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Preface

The objective of Document Analysis and Recognition (DAR) is to recognize
the text and graphical components of a document and to extract information.
With first papers dating back to the 1960’s, DAR is a mature but still grow-
ing research field with consolidated and known techniques. Optical Character
Recognition (OCR) engines are some of the most widely recognized prod-
ucts of the research in this field, while broader DAR techniques are nowadays
studied and applied to other industrial and office automation systems.

In the machine learning community, one of the most widely known re-
search problems addressed in DAR is recognition of unconstrained handwrit-
ten characters which has been frequently used in the past as a benchmark for
evaluating machine learning algorithms, especially supervised classifiers.

However, developing a DAR system is a complex engineering task that
involves the integration of multiple techniques into an organic framework. A
reader may feel that the use of machine learning algorithms is not appropri-
ate for other DAR tasks than character recognition. On the contrary, such
algorithms have been massively used for nearly all the tasks in DAR. With
large emphasis being devoted to character recognition and word recognition,
other tasks such as pre-processing, layout analysis, character segmentation,
and signature verification have also benefited much from machine learning
algorithms.

This book is a collection of research papers and state-of-the-art reviews
by leading researchers all over the world including pointers to challenges and
opportunities for future research directions. The main goals of the book are
identification of good practices for the use of learning strategies in DAR,
identification of DAR tasks more appropriate for these techniques, and high-
lighting new learning algorithms that may be successfully applied to DAR.

Depending on reader’s interests, there are several paths that can be fol-
lowed when reading the chapters of the book. We therefore avoided grouping
the chapters into sections; instead we provide a deep introduction to the field
and to the book’s contents in the first chapter.



VI Preface

It is our hope that this book will help readers identify the current status
of the use of machine learning techniques in DAR. Moreover, we expect that
it can contribute to stimulate new ideas, new collaborations and new research
activities in this research arena.

We wish to express our warmest thanks to the Authors, without whose
interesting work this book would not have materialized.

Simone Marinai, Hiromichi Fujisawa

July 2007
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Università di Bari
Dipartimento di Informatica
Via Orabona 4
70126 Bari - Italy
ferilli@di.uniba.it

Hiromichi Fujisawa
Central Research Laboratory,
Hitachi, Ltd.
1-280 Higashi-koigakubo
Kokubunji, Tokyo 185-8601
Japan
hiromichi.fujisawa.sb@hitachi.com

Venu Govindaraju
University at Buffalo
Dept. of Computer Science and
Engineering
520 Lee Entrance, Suite 202, UB
Commons
Amherst, NY 14228-2567
venu@cubs.buffalo.edu

Tatsuhiko Kagehiro
Central Research Laboratory,
Hitachi, Ltd.
1-280 Higashi-koigakubo
Kokubunji, Tokyo 185-8601
Japan
tatsuhiko.kagehiro.
tx@hitachi.com

Stefan Jaeger
Institute for Advanced Computer
Studies,
University of Maryland, College
Park,
MD 20742, USA
jaeger@umiacs.umd.edu

Huanfeng Ma
Institute for Advanced Computer
Studies,
University of Maryland, College
Park,
MD 20742, USA
hfma@umiacs.umd.edu

Cheng-Lin Liu
Institute of Automation,
Chinese Academy of Sciences
Beijing 100080, P.R. China
liucl@nlpr.ia.ac.cn

Donato Malerba
Università di Bari
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Introduction to Document Analysis
and Recognition

Simone Marinai

University of Florence
Dipartimento di Sistemi e Informatica (DSI)
Via S. Marta, 3, I-50139, Firenze, Italy
marinai@dsi.unifi.it

Document Analysis and Recognition (DAR) aims at the automatic extraction
of information presented on paper and initially addressed to human compre-
hension. The desired output of DAR systems is usually in a suitable symbolic
representation that can subsequently be processed by computers.

Over the centuries, paper documents have been the principal instrument to
make permanent the progress of the humankind. Nowadays, most information
is still recorded, stored, and distributed in paper format. The widespread use
of computers for document editing, with the introduction of PCs and word-
processors in the late 1980’s, had the effect of increasing, instead of reducing,
the amount of information held on paper. Even if current technological trends
seem to move towards a paperless world, some studies demonstrated that
the use of paper as a media for information exchange is still increasing [1].
Moreover, there are still application domains where the paper persists to be
the preferred media [2].

The most widely known applications of DAR are related to the processing
of office documents (such as invoices, bank documents, business letters, and
checks) and to the automatic mail sorting. With the current availability of
inexpensive high-resolution scanning devices, combined with powerful com-
puters, state-of-the-art OCR packages can solve simple recognition tasks for
most users. Recent research directions are widening the use of the DAR tech-
niques, significant examples are the processing of ancient/historical documents
in digital libraries, the information extraction from “digital born” documents,
such as PDF and HTML, and the analysis of natural images (acquired with
mobile phones and digital cameras) containing textual information.

The development of a DAR system requires the integration of several com-
petences in computer science, among the others: image processing, pattern
recognition, natural language processing, artificial intelligence, and database
systems. DAR applications are particularly suitable for the incorporation of

S. Marinai: Introduction to Document Analysis and Recognition, Studies in Computational In-

telligence (SCI) 90, 1–20 (2008)
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2 S. Marinai

machine learning techniques for two factors: first, classification algorithms are
used at several processing levels, from image pre-processing to character clas-
sification; second, large collections of manually annotated document images
are available and can be used for automatic training of classifiers. As a mat-
ter of fact, in the last decades isolated handwritten character recognition has
been frequently used as a standard benchmark for evaluating and comparing
machine learning algorithms. However, besides isolated character recognition
there are several other sub-tasks that have been tackled with machine learning
techniques.

In spite of these considerations, there are several systems described in
the DAR literature that address relevant sub-tasks with manually tuned al-
gorithms without resorting to machine learning techniques. The aim of this
book is to link together the DAR research with the machine learning one. The
chapters in the book cover the state of the art in several DAR sub-tasks and
include also inspiring pointers to future research directions. The DAR litera-
ture is large and covered by several books and survey papers [3, 4, 5, 6, 7, 8].
In this introductory chapter, we provide a brief guide to the DAR field pro-
viding pointers to the relevant literature and to benchmark databases. We
propose also an overview of the contents of this book: the remaining fifteen
chapters cover many sub-tasks in DAR applications providing some insights
in the current research trends.

1 DAR Applications

There are many examples of the use of DAR techniques into both commercial
and research-driven systems. Some systems have been in use (with continuous
improvements) for decades and are now widely identified as successful DAR
applications. We can split the DAR applications into two broad categories:
business-oriented and user-centered ones.

Office documents reach a total of more than 85% of the amount of new orig-
inal information stored on paper in the world [1]. It is therefore not surprising
that business-oriented applications received a great interest. In this category
we can include the automatic check processing (including both amount read-
ing and signature verification), the information extraction from forms and
invoices, the automatic document organization that involves page classifica-
tion.

One well known application of handwriting recognition is the automatic
postal mail sorting based on address recognition on envelopes. Two main
problems are addressed in these systems. First, the layout of the envelope
image is processed so as to identify the address position. Second, the address
is recognized, avoiding confusion between sender and recipient.

Among the user-centered applications we include the software tools, such
as OCR software for general purpose PCs, that can be used to process per-
sonal information originated in paper form. Other applications that received
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Regions
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Fig. 1. General view of the document processing data-flow. Oval boxes correspond
to tasks approached with significant results using machine learning-based methods.
In the right part, printed, hand-printed, and handwritten instances of the word
“Wall” are taken as examples to show different processing flows related to different
writing sources

attention in recent years are related to the development of tools aimed at
improving the access to the objects in digital libraries and processing of his-
torical documents. In this context, large collections of digitized documents
are now available in Internet, to both scholars and the general public. The
information extraction from these documents (mostly book and journals) al-
lows users to retrieve information related to the cultural heritage, as well as
to identify novels and essays of interest. Further applications in this category
are the recognition of printed music score and the analysis of drawings such as
maps and cadastral maps. Recently, portable devices, such as mobile phones
and PDAs, has been considered to provide input on-the-fly for camera-based
document processing systems1.

In most DAR applications the document content is conceptually described
by means of the physical and the logical structures. The physical structure
describes the visual aspect of the document by representing the basic objects
and their mutual positions. The logical structure assigns to each object a
suitable meaning.

2 Processing Steps in DAR

A complex DAR system is organized similarly to most Pattern Recognition
(PR) systems including four principal components: pre-processing, object
1 Some recent references can be found in the Camera Based Document Analysis

and Recognition (CBDAR) workshop proceedings: http://www.m.cs.osakafu-u.
ac.jp/cbdar2005
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segmentation, object recognition, and post-processing. The pre-processing
aims at improving the quality of the images. The object segmentation al-
lows to identify the basic objects in the document. In DAR this task takes
different names, depending on the application level considered. When dealing
with regions in the page the segmentation is referred to as layout analysis (see
Section 4). At a lover processing level we deal with various objects such as
signature, word, character, and so on. The object recognition, or classification,
deals with the objects identified in the previous step. We analyze in Section 6
the various levels at which object classification can occur in DAR applications.
Lastly, the post-processing checks the results of the classification on the basis
of contextual information.

To describe with more details the peculiarities of DAR systems we depict
in Fig. 1 the relationships between the main document processing tasks. Pre-
processing operations in DAR are used in order to improve the input image for
subsequent analysis. Common tasks are de-skew, image enhancement (noise
reduction) and character thinning. Layout analysis methods are aimed at ex-
tracting the physical and/or logical structure of the document image. When
dealing with the textual parts of a document, the words are usually located by
word segmentation with low-level methods such as morphological processing
and connected components clustering. It is important to remark that in some
languages, like Japanese and Chinese, there is no word separation by spaces
as in western languages such as English. Word segmentation is required for
the recognition of printed, hand-printed, and cursive text. The subsequent
word recognition can be based either on the segmentation and subsequent
recognition of the individual characters, or on the recognition of the whole
word image as a single unit. In the former approach, based on a “divide-
et-impera” scheme, a preliminary step of character segmentation is required
and the isolated characters are subsequently recognized. In holistic word recog-
nition the whole word is considered as a single object to be recognized. In so
doing errors due to wrong character segmentations can be avoided. However,
this approach can be effectively used only in the presence of a limited dic-
tionary for instance in postal applications and check reading. An alternative
approach is based on integrated segmentation and recognition, where the two
operations take place at the same time. Graphical items are recognized with
methods similar to those applied to character recognition, whereas specific
approaches are considered for dealing with signature verification.

Important DAR tasks are also script identification that helps processing
multi-lingual languages, and font recognition that can contribute to improve
the performance of text reading. In addition to text-intensive documents, a
large group of DAR applications deals with graphical documents such as tech-
nical drawings and maps, where different recognition methods are adopted.

Similarly to other PR applications there are two principal approaches to
document analysis: top-down and botttom-up. If the broad structure of the
document layout is known in advance, then a model-driven (top-down) ap-
proach can be used. When the physical structure is not known in advance,
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input image

filtered output image

Fig. 2. An MLP acting as a filter. The input is transformed onto the output by
moving the input window in raster order

then a data-driven (bottom-up) approach should be considered. In the latter
case all the objects in the image must be located and recognized in order to
identify the desired information. The peculiarities of top-down and bottom-
up approaches in layout analysis are discussed in particular in the chapter by
Beläıd and Rangoni.

In the following sections we provide a deeper analysis of the most impor-
tant tasks in DAR with pointers to appropriate chapters in this book.

3 Pre-processing

The document acquisition is the process of obtaining an electronic image of a
paper-based document. In most cases a flat-bed scanner is used, however in
digital libraries also book scanners can be considered, whereas in recent years
portable devices such as digital cameras and mobile phones are used as well.

Pre-processing operations in document image analysis transform the input
image into an enhanced image more suitable for further analysis. Image-to-
image transformations in DAR belong to four main classes [9]: filtering, ge-
ometrical transformations (e.g. skew detection), object boundary detection,
and thinning.

The filtering transforms the input into an image whose value in a generic
position (i, j) is usually a function of the input values in a neighborhood of
the point (i, j). The three main classes of filtering operations in DAR ([4],
page 3) are binarization, noise reduction, and signal enhancement. An exam-
ple of machine-learning applications for filtering is based on the well-known
property of universal approximation of neural networks, and in particular of
the Multi-Layer Perceptron (MLP) [10]. To this purpose, a trained MLP (or
other supervised classifiers) is fed with the pixels of a fixed-size sliding window
providing a suitable output image (Fig. 2).
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Thinning algorithms are needed to compute features based on the sym-
bol skeleton. The simplest approaches are based on a recursive erosion of the
object contour (for instance by using morphological operations). Other ap-
proaches rely on clustering-based skeletonization algorithm (CBSA) that is
also discussed in the chapter by Marinai, Marino, and Soda.

4 Layout Analysis

Printed pages contain various types of information (e.g. text, equations, graph-
ics, images) that should be processed with suitable techniques. Document lay-
out analysis is performed to segment the document image into regions having
an homogeneous content and to assign a meaning to the regions (Fig. 3). The
segmentation step is called physical layout analysis, and is used to identify the
geometric page structure. The logical layout analysis, or functional labeling,
assigns a logical meaning to each region generating the logical structure of
the document. Further remarks on these topics can be found in the chapter
by Malerba, Ceci, and Berardi. A layout analysis sub-task that is particularly
difficult to tackle is table recognition that is addressed in this book in the
chapter by Zanibbi, Blostein and Cordy.

4.1 Physical Layout Analysis

The physical layout analysis aims at extracting regions with uniform fea-
tures from the document. Segmentation algorithms in image processing can
be grouped into three main categories: pixel classification, edge-based segmen-
tation, and region-based segmentation. More specifically, document segmenta-
tion approaches pertain to pixel classification and region-based segmentation.

In pixel classification a label is attached to each pixel considering its color
and those of the neighboring pixels. It was initially applied to the binariza-
tion of document images (e.g. [11]) and then extended to deal with additional
classes (e.g. text, graphics, and line drawing). The regions are subsequently
extracted by removing small noisy elements, merging similar neighboring re-
gions, and locating connected components in the resulting image.

Most segmentation methods in DAR belong to the region-based family,
comprising bottom-up and top-down methods. Bottom-up approaches can
be regarded as merging methods and are mostly based on the location of
connected components, with subsequent aggregation in higher level structures.
In the top-down analysis a page is segmented from larger components to
smaller subcomponents (e.g. [12, 13]). For instance, a page can be split into
columns, in paragraphs, text lines, words and characters. Several methods
(e.g. the XY tree) are based on the computation of the projection profile by
computing the number of black pixels accumulated in horizontal and vertical
directions to identify gaps between regions in the page. Top-down methods
are usually faster but work well only for documents having a regular layout.
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Fig. 3. Example of layout segmentation. Text blocks are identified with continuous
lines. A dotted line and a dashed one identify one table region and one picture
region, respectively

Bottom-up methods are more expensive from a computational point of view,
but can deal with more complex layouts.

4.2 Logical Layout Analysis

The logical layout analysis assigns a meaning to the regions identified by the
physical layout analysis. Examples of features considered are the size of the
blocks, their mutual position, and some information on the textual parts such
as the predominant font, character size and spacing. In this book the use of the
logical classification of textual regions in a digital library context is described
in the chapter by Esposito, Ferilli, Basile, and Di Mauro.

The physical and logical analysis can be performed together [14] so as to
assign a meaning to blocks during their segmentation. In most cases this is
not feasible, since the class can be defined only after analyzing the region
position with respect to other parts of the page (or even after the reading of
its content).
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5 Text Recognition

The text recognition is executed to convert an image containing printed or
handwritten text into a format that can be understood by a computer (e.g.
ASCII or unicode). State-of -the-art OCR packages can read printed text with
very high recognition rates. However, the research on printed text recognition
is still in progress in order to deal with noisy documents and non-standard
fonts (see e.g. the chapter by Marinai, Marino, and Soda), as well as large
character sets (see e.g. the chapter by Jaeger, Ma, and Doermann and the
survey chapter by Liu and Fujisawa).

Text reading techniques can be split into two main categories (on-line
and off-line) on the basis of the input device used. The on-line recognition
uses tablet PCs as input and the text is acquired and processed in real time
when written by the user, whereas scanners are often used in off-line systems.
One significant difference between on-line and off-line systems is the nature
of the signal considered as input to the recognizer. In the on-line recognition
the signal is dynamic and represents the text drawn by the user with one
sequence of values that describes the pen position and pressure information.
In off-line processing the input signal is a raster image. The position of the
text in the page is usually unknown and should be identified by layout analysis
algorithms.

In on-line systems there are some advantages with respect to off-line pro-
cessing since the temporal information of the writing is known. This infor-
mation is helpful to segment individual characters and to identify character’s
strokes. A more subtle advantage of on-line systems is the interactivity that
is established between the user and the system. This interaction helps the
automatic training of reading systems, but is mostly important for user adap-
tation to the system (related issues of user interaction are addressed in the
chapter by Nagy and Veeranachaneni). The combination of on-line and off-line
recognition into a multiple classifier framework is proposed in the chapter by
Jaeger, Ma, and Doermann.

Some salient features of off-line reading systems are discussed in the rest
of this section.

5.1 Character Recognition

In the divide-et-impera paradigm, that is typical of several pattern recognition
applications, the text recognition systems frequently first split the words into
characters and then assign one class to each isolated object. When dealing
with printed text this approach is generally referred to as Optical Character
Recognition (OCR) that is exploited by several software tools available on the
market.

Summarizing, the character recognition process can be divided into three
main steps: 1) segmentation and preprocessing, are used to identify the char-
acters and improve the image quality; 2) classification is typically based on a
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sequential application of a feature extraction module and a supervised clas-
sifier; 3) contextual processing is adopted to check the recognition results on
the basis of contextual information such as domain-specific dictionaries.

The first patent of a system for the automatic recognition of printed char-
acters was registered in 1929 [3]. The system used electro-optical techniques
to recognize characters. There is a large literature on character recognition
and OCR with many technical papers dating back to the 1960’s. We do not
have the ambition of discussing in detail this literature. Instead, we point out
a few survey papers [3, 6, 8] and the chapter by Liu and Fujisawa in this book
that reviews the learning-based classification methods that have been applied
to character recognition.

5.2 Word Recognition

The segmentation-based word recognition cannot be exploited when the loca-
tion of segmentation points is impossible or unreliable, as in cursive handwrit-
ing. In this case one alternative is to use a holistic recognition where words
are recognized as single units. Holistic recognition is effective when dealing
with a reduced lexicon. For instance, the number of basic words required to
fill a check is limited to a few dozen (32 words are needed for writing legal
amounts of English checks [15], 30 words can be used for French checks [16]).

When the problem at hand requires a larger lexicon, then segmentation-
based reading is appropriate, nevertheless segmentation requires some feedback
from recognition. Integrated segmentation and recognition (ISR) techniques
are related to the contextual development of segmentation and recognition
modules. Two well known ISR techniques are Heuristic Over Segmentation
(HOS) and Time-Delay Neural Networks (TDNN).

In HOS a segmentation algorithm is applied to a word image to locate a
large number of candidate cutting points. Subsequently, a recognizer is em-
ployed to score the alternative segmentations generated and to find the best
character sequence. The basic idea behind this approach is to over-segment
the word in the hope of including all the correct segmentation points among
those extracted. The use of MLP for labeling valid segmentation points is
described in the chapter by Blumenstein, whereas a related application in the
field of postal address reading is discussed in the chapter by Kagehiro and
Fujisawa. In the chapter by Tulyakov and Govindaraju the combination of
handwritten word recognizers based on the HOS approach is analyzed.

Time-Delay Neural Networks (TDNN) have been initially proposed to deal
with temporal sequences. The output of a TDNN depends on its current
and previous inputs, which are delayed by one or more time units. If the
input signal is a vector of m values and we take a delay of n time units
into account, then a TDNN can be implemented with an MLP having n·
m input units ([17] page 256). TDNNs have been used for on-line and off-
line word recognition. In on-line recognition the meaning of “time” is quite
straightforward, whereas in the off-line case the horizontal axis in the window
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containing the word is considered as a temporal scale. In this book the chapter
by Beläıd and Rangoni contains a deep analysis of TDNN.

6 Classification in DAR

Classifiers trained by supervised learning are key components of many pat-
tern recognition systems and DAR systems are not exceptions. In this section
we summarize the various DAR sub-tasks that have been addressed with su-
pervised classifiers. Another important family of methods is based on unsu-
pervised classifiers whose applications in DAR are discussed in the chapters
by Nagy and Veeramachaneni and by Marinai, Marino, and Soda. Since the
book is at the cross-road of document analysis and machine learning, it is not
surprising that many chapters deal with the topics summarized below.

6.1 Pixel and Region Classification

Pixel classification (Section 4.1) can be used for both pre-processing and lay-
out analysis. Document image binarization is a simple pre-processing task
that can be performed with pixel classification. The assumption behind most
pixel classification approaches is that textual and graphical regions have dif-
ferent textures, and thus the membership of each pixel can be estimated by
analyzing a small region around it (e.g. [18]).

Region classification is used in most cases in conjunction with global fea-
tures describing the whole region to be labeled. The classification was initially
carried out using linear classifiers operating on these features according to
user-defined parameters [19]. The basic hypothesis that is exploited in region
classification is the assumption that the content of the region is homogeneous,
and consequently some general features of the whole region can be used as
inputs to a trainable classifier (e.g. [20]). The output of the classifier is a logic
role that can be associated to each region.

6.2 Reading Order Detection

The task of text reading cannot be limited to the simple recognition of the in-
dividual characters or words. Instead, the identification of the correct reading
order allows human readers to correctly understand the document content.
The identification of the correct word sequence can be extremely complex
when dealing with multi-column documents with footnotes and when figure
and tables are intermixed in the text. The chapter by Malerba, Ceci, and Be-
rardi formulates the reading order problem representing reading order chains
in first order logic formalism. In the proposed system the learned rules state
that one block “follows in reading” another block on the basis of the block
position in the page and other textual features.
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Input image

Segmented character

Connected characters

Sub−images

Fig. 4. Segmentation of connected strings. Supervised classifiers can be used for
both identifying and segmenting the connected characters (as in ‘5B’)

6.3 Text Recognition

In Section 5 we summarized the main features of text recognition systems.
Various chapters in this book address the problem of word and character
recognition. Liu and Fujisawa provide an updated survey of the use of learning
methods in handwritten character recognition. Varga and Bunke propose the
use of synthetic training data to improve the performance of an off-line cursive
handwriting recognition system. One important research topic is the study
of suitable techniques for combining classifiers so as to improve the overall
classification performance. The chapter by Tulyakov, Jaeger, Govindaraju,
and Doermann provides an overview of the classifier combination methods
that have been addressed in several DAR tasks and in particular in character
and word recognition.

Strictly related with word recognition is word retrieval that aims at effi-
ciently retrieving occurrences of user-defined query words. The application of
unsupervised learning to the task of word retrieval is discussed in the chapter
by Marinai, Marino, and Soda.

6.4 Character segmentation

Supervised classifiers can be used in character segmentation with two main
goals: the identification of touching characters and the location of cutting
points (Fig. 4). In the former case the classifier is trained to distinguish iso-
lated characters from pairs of touching characters (e.g. [21]) or more generally
to estimate the number of characters in a string of connected digits (e.g. [22]).
In the latter case the classifier is used for locating cutting points, i.e. the po-
sition in the word image that divides touching characters. Similarly to neural
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filters a classifier can be horizontally “moved” across the input image with
the aim of labeling the corresponding position.

When dealing with handwritten strings the segmentation points can be
located by analyzing the primitives (horizontal strokes) instead of the raw
image. This approach is considered in [23] where an MLP is used in order
to identify strokes that can correspond to cutting points. In this book the
chapter by Blumenstein proposes a neural-based technique for classifying seg-
mentation points in a cursive character segmentation algorithm.

6.5 Script Identification

Multi-lingual documents are important in particular in countries, like India,
where there are multiple scripts that can be mixed together in the same
text [24]. The script identification is a preliminary stage, with respect to the
language recognition, that aims at recognizing the script used in a fragment of
text. In some applications the identification is addressed at the page level. In
such cases texture-based algorithms can be considered. In other applications
there is more interest in the identification of the script of single words. In the
chapter by Jaeger, Ma, and Doermann the combination of classifiers with in-
formational confidence is tested, among other tasks, to the script identification
in bilingual (e.g., Arabic-English) dictionaries.

6.6 Signature Verification

The task of signature verification systems is to evaluate whether unknow
signatures are genuines or forgeries. At first one can imagine to solve the
problem with a classifier trained to distinguish among two classes: genuine
and forgery. However, several problems arise when trying to implement actual
systems. For instance, we should deal both with random forgeries (affixed
without knowing the actual signature) and with skilled ones (where the right
signature is known to the forger). These issues are discussed in the chapter by
Srihari, Srinivasan, Chen, and Beal that addresses the use of machine learning
techniques for signature verification.

6.7 Writer Identification

Together with signature verification, writer identification, that is aimed at
identifying the author of an handwritten text, is one of the oldest biometrics
used for forensic purposes. In addition to these traditional applications, writer
identification can be suitably incorporated in biometrics technology that is
being adopted in various security applications. Writer identification systems
can be either text-independent or text dependent. The former approach is the
most difficult, since any text can be used to establish the identity of a writer.
In this book the chapter by Schlapbach and Bunke presents an off-line, text-
independent system for writer identification and verification.
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6.8 Page Classification

In page classification the input to the classifier is the whole page. This task
is useful when processing large collections of documents, for instance to per-
form an automatic document indexing. Page classification methods can be
used in many application domains, such as form processing systems and dig-
ital libraries. Earlier applications concerned form classification methods that
are aimed at selecting an appropriate reading strategy for each form to be
processed. These methods often take the presence of ruling lines in the pre-
printed form layout into account [25]. Other typical classes are business letters
and technical papers [26]. In the last few years the classification of journal and
book pages received greater attention for digital library applications [27, 28].

Page classification in the domain of scientific documents is discussed in
the chapter by Esposito, Ferilli, Basile, and Di Mauro where multi-page doc-
uments are indexed by matching their first page against some automatically
learned models of document classes. Page classification for invoice processing
is addressed in the chapter by Marinai, Marino, and Soda.

6.9 Document Categorization

Page classification has some similarities with document categorization, where
documents are classified on the basis of the topic they address. Document
categorization can be obtained by taking into account the document textual
content (possibly recognized with an OCR software). The application of docu-
ment categorization techniques to PDF documents is discussed in the chapter
by Esposito, Ferilli, Basile, and Di Mauro. In some application domains it is
possible to attempt the document categorization relying on the word image
representation [29]. The latter strategy is addressed in the chapter by Marinai,
Marino, and Soda.

7 Training Data

The tuning and comparison of machine learning algorithms heavily relies on
the use of large collections of annotated data to be used to train the algo-
rithms. In particular, the recognition of isolated handwritten digits has been
considered for a long time as a benchmark for the comparison of trainable clas-
sifiers. For example the dataset “Optical Recognition of Handwritten Digits”
is hosted since 1998 in the well known UCI Machine Learning Repository 2. We
survey in this section some of the most widely used public domain databases
in the DAR field. We attempted to mention the most important datasets (in-
cluding those collected to perform competitions at main conferences), without
aiming to be exhaustive. Digital libraries are another important source of data

2 http://mlearn.ics.uci.edu/MLSummary.html
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for research in DAR. Some researchers built databases starting from widely
available data such as free DLs or web sites of main publishers (e.g. IEEE).
Examples of these datasets are adopted in the chapters by Esposito et al., and
Marinai et al.

7.1 Public Databases

The databases listed in this section have been used by different research groups
to compare the performance of DAR systems addressing several tasks. In most
cases the data are available on the Internet and can be freely downloaded for
research purposes.

UW databases

The UW databases are three document collections that have been gathered
and manually annotated by the Intelligent Systems Laboratory, at the Uni-
versity of Washington (WA) in the late 1990’s under the supervision of Prof.
Robert Haralick. The databases were distributed as CD-ROMs containing
document images and software for research and development.

The UW-III is the third in the series (it was published in 1996) and con-
tains pages of chemical and mathematical equations, pages of line drawings
and engineering drawings. There are also 33 pages containing English text
with the corresponding character level groundtruth, 979 pages from UW-I,
and 623 pages from UW-II corrected for skew, and the word bounding boxes
for each word on these pages. These CD-ROMs, distributed for research pur-
poses under the payment of a small fee, have been a reference for many years
for the research on printed text.

NIST databases

In the 1990’s the National Institute of Standards and Technologies (NIST)
produced several CD-ROMs aimed at supporting the research on OCR soft-
ware and information retrieval systems. A fully-automated process developed
at NIST was used to derive the groundtruth information for the document
images. The method involves matching the OCR results from a page with
typesetting files for an entire book. The databases included scanned images,
SGML-tagged groundtruth text, commercial OCR results, and image quality
assessment results.

NIST’s SD-3 (Special Database 3) and SD-1 contained binary images of
handwritten digits. NIST originally designated SD-3 as training set and SD-1
as test set. However, SD-3 is much cleaner and easier to recognize than SD-1
and this fact is a limit for comparing different algorithms.
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MNIST dataset

To overcome the previously mentioned limits of the NIST datasets Yann
LeCun [30] designed the MNIST database of handwritten digits with a train-
ing set of 60,000 examples, and a test set of 10,000 examples3. MNIST is
a subset of a larger collection of data available from NIST. The digits have
been size-normalized and centered in a fixed-size image. The database has
been widely used in the last few years for comparing various classifiers on
real-world data [30, 31].

MediaTeam database

The MediaTeam Oulu Document Database4 is a collection of 500 scanned
document images with related groundtruth information about the physical
and logical structure of the documents. The images cover a broad range of
document types including journal papers, maps, newsletters, form, music, dic-
tionaries and can be used for comparing various tasks in DAR.

Infty project

The InftyProject is a voluntary R&D organization consisting of researchers
from different universities and research institutes in Japan with the shared
objective of investigating and developing new systems to process scientific
information by computer. Starting from 2005 three datasets have been dis-
tributed5. InftyCDB-1 [32] consists of mathematical articles in English con-
taining 688,580 objects (characters and mathematical symbols) from 476
pages. The image of each object is recorded together with appropriate ground-
truth information. InftyCDB-2 has the same structure of InftyCDB-1 and
contains some documents in German and French, as well as many in English.
InftyCDB-3 is a database of single alphanumeric characters and mathemat-
ical symbols. Unlike InftyCDB-1 and InftyCDB-2, word and mathematical
expression structure is not included. The images are of individual characters
only for a total of 259,389 symbols.

IFN/ENIT database

The IFN/ENIT-database6 is based on more than 2,200 Arabic handwritten
forms (filled by Tunisian people) containing about 26,000 word images to-
gether with groundtruth information [33]. This database has been used as a
basis for a competition on Arabic handwriting recognition that is described
below.
3 http://yann.lecun.com/exdb/mnist
4 http://www.mediateam.oulu.fi/downloads/MTDB
5 http://www.inftyproject.org/en/database.html
6 http://www.ifnenit.com
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MARG database

MARG7 is a freely-available repository of document page images and their
associated groundtruth information on the textual and layout content. The
pages are representative of articles drawn from the corpus of important
biomedical journals. The database is suitable for the development of algo-
rithms to locate and extract text from the bibliographic fields typical of arti-
cles within such journals. These fields include the article title, author names,
institutional affiliations, abstracts and possibly others. Only the first page of
each article is available, or the second page if the abstract runs over [34].

IAM database

The IAM-Database8 includes over 1,500 scanned forms of handwritten text
from more than 600 different writers [35]. The groundtruth information is
provided at the word, line, and page levels allowing several types of experi-
mentations. Overall, the database contains 115,320 labeled words that have
been extracted using an automatic segmentation scheme and have been sub-
sequently manually verified.

7.2 Competitions

Besides “static” databases, that are built with significant efforts and aim at a
long term research, there are also several competitions that are run at confer-
ences and workshops in the DAR field. The data collected by the organizers
are usually available on the Internet. The format of the competitions is gen-
erally based on the distribution of training and test data to participants in
the months before the conference. The data are freely available for research
purposes, but a registration is usually required. The evaluation of the results
for system comparison can be based on three main approaches. In some cases
the participants send to the organizers the results obtained by their systems
on a pre-defined test set. In other cases the participants send the executable
programs to the organizers that compare the systems “in house”. In the last
approach the participants run their systems during the conference on new
data previously unknown.

These competitions are helpful for the DAR research not only for the test
data that are collected, but also for the development of performance evaluation
methods as well as approaches for the automatic generation of synthetic data
that are required to run these events. We list in the following some of the
most recent competitions that have been organized at DAR conferences.

7 http://marg.nlm.nih.gov/index2.asp
8 http://www.iam.unibe.ch/∼ fki/iamDB
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Page segmentation

Page segmentation is one important step in layout analysis and is particularly
difficult when dealing with complex layouts. The page segmentation competi-
tion has been organized in the last ICDAR conferences (from 2001 onwards)9.
The main objective of the competition is to compare the performance of layout
analysis algorithms using digitized documents from common publications [36].

Arabic handwritten

Starting from the experience made with the IFN/ENIT-database a series of
competitions to establish the state of the art of recognizing Arabic handwrit-
ten words has been organized at the ICDAR conference to give the oppor-
tunity to further develop methods and discuss results on Arabic recognition
systems [37].

Symbol recognition

The GREC workshop is organized every two years by the IAPR Technical
Committee on Graphics Recognition (TC 10). Graphics recognition is a sub-
field of DAR that deals with graphical entities in engineering drawings, maps,
architectural plans, musical scores, mathematical notation, tables, and dia-
grams. In the last editions of the workshop some contests have been organized
including an arc segmentation contest and a symbol recognition one10. The
main goal of the latter contest is the comparison of various methods for rec-
ognizing linear graphic symbols, i.e. symbols made of lines, arcs and simple
geometric primitives, which can be found in most graphic drawings.

Document image dewarping

In recent years the use of mobile devices for digitizing document images is
becoming more and more important. One challenging task in the processing
of camera-captured documents is the presence of page curl and perspective
distortions. The goal of page dewarping is to flatten a document image in order
to improve the recognition rate that can be achieved by state-of-the-art OCR
systems. During the CBDAR 2007 workshop a page dewarping contest has
been organized by the Image Understanding and Pattern Recognition group
at the DFKI in Kaiserslautern (Germany). A database of camera captured
documents with groundtruthed text-lines, text-zone, and ASCII text has been
provided to participants11.

9 http://www.cse.salford.ac.uk/prima/ICDAR2007 competition
10 http://symbcontestgrec05.loria.fr
11 http://www.iupr.org/doku.php?id=didcontest
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8 Concluding Remarks

In this introductory chapter we briefly introduced readers to the principal
themes in the DAR research. We also attempted to present in a uniform way
the main topics discussed in the chapters in the book that make, as a whole,
an accurate picture of the current state of the art.

We hope that this book will contribute in two ways to the research in
Document Analysis and Recognition. First, researchers in machine learning
can contribute to the DAR research by starting from the problems addressed in
this book and attempting to adopt innovative techniques previously studied in
other domains. Second, we hope that researchers already active in the DAR
field could employ machine learning techniques on several tasks modifying
algorithms that are too frequently defined “by hand” by software developers.
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Summary. This chapter addresses the problem of layout and logical structure ex-
traction from image documents. Two classes of approaches are first studied and dis-
cussed in general terms: data-driven and model-driven. In the latter, some specific
approaches like rule-based or formal grammar are usually studied on very stereo-
typed documents providing honest results, while in the former artificial neural net-
works are often considered for small patterns with good results. Our understanding
of these techniques let us to believe that a hybrid model is a more appropriate so-
lution for structure extraction. Based on this standpoint, we proposed a Perceptive
Neural Network based approach using a static topology that possesses the charac-
teristics of a dynamic neural network. Thanks to its transparency, it allows a better
representation of the model elements and the relationships between the logical and
the physical components. Furthermore, it possesses perceptive cycles providing some
capacities in data refinement and correction. Tested on several kinds of documents,
the results are better than those of a static Multilayer Perceptron.

1 Introduction

Automatic structure extraction remains a very challenging problem due to
the inherent complexity of documents. For raster images of documents, the
gap between physical and logical structure is huge. It is difficult to model the
intermediate steps and the relationships between the original image blocks
and recognized layout structures, and to maintain consistency between the
processing steps in the recognition process. It is also difficult to handle image
noise, layout variations and artifacts produced during processing.

In spite of the numerous researches done in this way, the investigation
made in this area is prudent:

• recognition has been limited to few structures (less than 10, let say 5 in
average), essentially in editorial documents (i.e. books, articles, reports,
etc.), often accompanied by a DTD (Document Type Definition), making
the recognition more stereotyped;
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• recognition methodology has been limited to translating DTD knowledge
and its application on the document. The methods were mainly oriented
toward context-free grammars and tree or graph comparisons, and often
considered as limited in their ability to handle complex situations.

Certainly, the literature provides many approaches to structural recogni-
tion, but their application to document analysis is not straightforward and
their advantages often equal their drawbacks.

There are two main approaches to document layout analysis: those based
primarily on information manipulation, and those based primarily of perceiv-
ing features in data. Considering the information manipulation aspect, two
sub-categories exist:

• model-driven (e.g. systems using rules or grammars). They use and for-
malize knowledge well, and are precise and fast but are dependent on an
expert to guide their actions. Unfortunately, they do not generalize well,
and have been found sensitive to variation and noise;

• data-driven, starting from low-level data. Their classes should represent
very well the structure elements, but data description is not easy and the
convergence is not assured. However, contrary model-driven methods, they
remain very general and flexible as their adaptation to new documents is
easier.

Considering the perception aspect, here also two points of view can be
distinguished:

• global to local which is often assimilated to top-down approach. The pro-
cess is based on a segmentation refinement: here the progress seems to be
made continuously and safely but if an error is introduced in the beginning,
it remains during all the process.

• local to global or bottom-up approaches. These labeling-based methods
start from fine to coarse building progressively the context. In this case, a
lot of unused features have to be extracted and managed.

As indicated above, all the methods investigated in the literature present
some limitations. Hence, the solution that seems to be appropriate for doc-
ument structure analysis is a hybrid approach in the sense where it mixes
both aspects: data consistency and perceptual approaches for the processing
methodology.

This chapter is organized as follows: section 2 discusses the use of Artificial
Neural Network (ANN) approaches in Document Analysis and Recognition
(DAR) area, specifically for recognition tasks involving the physical structure
of a document. Section 3 focuses on the ANN based solution for logical struc-
ture extraction. Finally, section 4 gives some perspectives about the use of
ANN in logical structure analysis.
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2 Neural Networks in Document Analysis
and Recognition

2.1 Physical or Geometrical Layout Analysis

In Document Analysis and Recognition (DAR), Artificial Neural Networks
(ANN) have been devoted mainly to preprocessing tasks or recognition of
small patterns as isolated characters. As detailed by Marinai et al. in [1],
such kind of use include binarization, noise reduction, skew detection, and
character thinning. The MultiLayer Perceptron (MLP) is used for example in
[2] to binarize images for character segmentation. After a segmentation phase
based on gray level histogram analysis, the authors feed a MLP with pixel
values within a 5×5 windows. In [3], a Self Organizing Map (SOM) and a
MLP are applied on the image to classify the pixels according to their gray
levels or color values. Another use of ANN is for noise elimination such as in
[4] by applying Kalman filtering.

For images representing characters, various ANN models dealing with
printed or handwritten scripts have been experimented. Main of them pro-
ceeds directly on the images as the inputs are often composed of the image
pixel values. Le Cun et al. [5] have provided a very interesting survey on vari-
ous ANN models related to handwritten words. Similar architectures (convo-
lutional) were used by [6] for handwritten digits recognition, complemented by
a SOM to correct the rejections. For each rejected character, a SOM is trained
and associated to the MLP to make possible the correction. Garris et al. [7]
used an enhanced MLP for the same problem, where the enhancements are
focused on neuron activation functions, regularization and Boltzmann prun-
ing.

Hence, these examples show clearly that ANN are able to deal with local
variations in a document image during recognition.

2.2 Logical Structure Analysis

There are few works on logical structure recognition using ANN. Indeed most
of the approaches are model-driven. The model contains the description of
the physical elements of the document and their associated logical labels. The
recognition procedure tries to identify these associations.

Usually, these models are either trees or grammar rules. In both cases, a
syntactical analysis procedure is employed to perform the structure labeling
[8]. For example, Brugger et al. [9] use a generalized n-gram (with n = 3) to
represent geometrical relationship between the text blocks, then an optimiza-
tion method to match the current input with a global model or a sub-tree
of this model. Hu et al. [10] use dynamic parsing and fuzzy logic to be more
flexible when analyzing the logical structure. A rule-based system is employed
by Niyogi et al. [11] with a top-down backward-chaining strategy. Their sys-
tem “DeloS” handles about 160 rules in three levels for classification, reading
order and logical structure analysis.
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Although this methodology seems natural as it transcribes a known struc-
ture hierarchy of the document and works very well for simple documents,
its application on more complex document becomes difficult and causes many
errors. In fact, the use of deterministic models fails because of the rigidity
in the application of the rules. Furthermore, these kinds of models are often
created manually, leading the operator to select and tune himself a lot of pa-
rameters. This can explain the limits of such models when applied on real
images where the structure is complex and does not fit exactly the general
model. The inherent noise of the input image can sometimes introduce errors
in the interpretation of the elements.

To face this problem, a data-driven method seems more appropriate. ANN
can provide a good solution because they learn from examples, are robust,
insensitive to noise and have a generalization capacity. Furthermore, the ANN
based solution will avoid the drawbacks of model-based method provided that
knowledge must be integrated. Indeed as mentioned in [1], the classical use
of MLP is not sufficient to tackle the problem. Existing methods are focused
on the tuning of the MLP to resolve the problem and not really on new
architectures. The idea is to use a model which is not only based on MLP but
which can integrate the structural aspect of the problem.

Two types of ANN can be considered:

• static ANN (with MLP configurations) can adapt to structured patterns
by cleverly integrating the structure in the topology as made by [12];

• dynamic ANN by transforming the temporal chain in structured version
as in [13, 14].

These two architectures will be described in the following.

3 Neural Networks for Structured Patterns

Neural networks are suitable to handle classification problems with static
information. For several applications including logical structure analysis, the
patterns to deal with are in a structured domain. ANN are designed to classify
unstructured patterns and cannot deal directly with tree or graph structures.
However, we can find models which can take into account the structured
patterns either in a dynamic or a static version.

3.1 Static Networks

The best know type of static network is the MLP because it is the easiest
to implement, its training algorithm is well known and it has been applied
successfully to different kinds of data.

As mentioned in section 2, its use is generally devoted to physical element
recognition where there are no or few structures to interpret. All research
done on this kind of network does not focus on the model topology but more
on the way MLP is applied to the specific task.
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3.2 Dynamic Networks

In order to take into account the temporal dimension of some real-world prob-
lems, a dynamic network can be applied rather than a static one.

The Time Delay NN (TDNN) is a straightforward solution that unfolds
the time sequence onto several static models through a Tapped Delay Line
(TDL) [15]. The same approach can be done with the RBFN (Radial Basis
Function Network) to take into account the temporal dimension [16].

Feedback dynamic methods as recurrent networks integrate feedback con-
trary to feed forward systems. The learning is recursive and consequently more
complex to undertake. The output Feedback based systems use the network
outputs in a second TDL besides the classical one’s as in TDNN [17].

State feedback methods feedback connections between neurons are intro-
duced: each neuron contributes to all components of the state vector.

Time Hopfield Networks (THN) [18] are mono-layer networks in which all
the possible interconnections are used. The Continuous THN (CTHN) is well
known as it can handle oscillations or even chaotic phenomenon. The Discrete
THN (DTHN) is similar to the previous one’s but here the activation function
is hard limiter and not a sigmoid.

Continuous Time Recurrent Neural Network (TRNN) [19] is quite sim-
ilar to CTHN: there is one layer of fully connected neurons, the difference is
in the differential equation managing the dynamic process. The same analogy
is done for the Discrete Time Recurrent Neural Networks (DTRNN) with its
hard-limiter function [20]. The DTRNN can simulate deterministic finite au-
tomate. In such ANN, the training stage is more complicated and two main
solutions can be seen in the literature. The first totally converts the network
into a feed forward version by unfolding the network over time. The second
method consists in the use of the recursive version of the gradient descent.

3.3 Dynamic Networks for Structured Patterns

The previous dynamic networks have been developed to process sequences of
patterns but adaptations to structured patterns can be found in the literature.

Küchler and Goller [13] propose an approach to classify structured pat-
terns. The patterns considered are those represented by a Direct Acyclic
Graph (DAG) or by a Rooted LDAG (i.e. a graph with only one root node,
i.e. one node with in degree zero). The network topology, in a static view,
corresponds to the folding of the DAG in a feed forward MLP. The first layers
compute the folding part (i.e. inputs through DAG representation) and the
following layers constitute the transformation part (Fig. 1).
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Fig. 1. Küchler et al. generic folding architecture

The input contains the vertex labels for distributed representation of DAG.
The last layer corresponds to the task specific output. The network dynamics
are defined as follows:

o
(l+1)
j (t) = f

(∑
i

o
(l)
i (t)w(l+1)

ij + θ
(l+1)
j

)
(1)

where o
(l)
i (t) is the output of neuron i in the layer l at recursion stage t,

θ
(l)
i is the bias associated with neuron i at layer l, w

(l+1)
ij the weight of the

connection between neuron i in layer l and neuron j in layer l + 1 and f the
sigmoid function.

The authors use a modified version of the Back-Propagation Through Time
(BPTT) algorithm where the structure of a labeled DAG is incorporated in
the error measurement

E =
p∑

i=1

q−1∑
j=0

1
2

(
[ti]j − o

(r+s)
j (root(si))

)2

(2)

where root denotes the function mapping structures to their root nodes, si

are in the general symbolic domain and ti define by Ξ(si) = ti with Ξ being
the function to be approximated.

Thanks to a special gradient descent technique called Back-Propagation
Through Structure (BPTS), the network can be trained. Experimentation has
been done on 2-classes classification problems on logical terms. The results are
very promising: 99% for the training and 98% for the test.

Sperduti et al. [14] propose another dynamic NN extended to structural
patterns. The main idea is to generalize a recurrent neuron in a “Generalized
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Recursive Neuron” (GNR). The approach is different from the standard one
which focuses on the tree-structure encoding in a fixed input vector. The GRN
considers the outputs of the unit for all the vertices which are pointed by the
current input vertex.

t
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1

p
n

Sequence Complex Structure (Tree, Graph)

Structured Pattern

Unstructured Pattern

Recurrent Neuron

Tree of Patterns

Single Pattern Sequence of Patterns
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Fig. 2. Neuron models for different input domains

Figure 2 shows the standard models for structured and unstructured pat-
terns, on the right side, the presented configuration can represent any graph
or tree structure thanks to the proposed GRN. Usually, in a standard neuron
the output is given by:

o(s) = f

(∑
i

wiIi

)
(3)

where f is non-linear function such as the sigmoid, I the input vector and w
the weight vector. In the recurrent version, the output depends on time:

o(r)(t) = f

(∑
i

wiIi(t) + wso
(r)(t − 1)

)
(4)

where o(r)(t − 1) is the previous output at time t − 1 that is weighted by ws

and added to the activation formulae. In the GRN the output o(g)(x) depends
on a vertex in the graph and computed recursively on the output performed
for all the vertices pointed by it. The output is given by:

o(g)(x) = f

⎛
⎝ NL∑

i

wili +
out degreeX(x)∑

j=1

ŵjo
(g)(outX(x, j))

⎞
⎠ (5)



28 A. Beläıd and Y. Rangoni

where x is a vertex of a graph X , NL the unit number encoding the label l
attached to the current input x, ŵj the weights on the recursive connections
and outX(x, j) the out nodes of the graph X attached to the node x. The
graph is encoded to fit with the GRN representation (Fig. 3).
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Fig. 3. On the left side, the network encoding for an acyclic graph is shown. On
the right side, the encoding network for a cyclic graph is shown

The authors have extended five supervised algorithms for ANN to handle
the GRN: back propagation through structure, real-time recurrent learning,
LRAAM-based networks and simple recurrent networks, cascade-correlation
for structures, and neural trees.

For example the Back propagation Through Structure (BPTS) is simply
as in [13] an expression of the back propagation through time. The trick
consists in unfolding through time the recurrent network in an equivalent and
fully feed forward network. As a consequence, the transformed network can
be trained using the back propagation algorithm. For the GRN, the network
is decomposed into two parts: an encoding function Ψ and a classification
function Φ such as

o(X) = Φ(Ψ(X)) (6)

Using standard back propagation, the weights are modified using (7) and (8):

∆WΦ = −η
∂Error(Φ(y))

∂WΦ
(7)

∆WΨ = −η
∂Error(Ψ(y))

∂y
∂y

∂WΨ
(8)

Two cases must be treated separately in the case of a DAG and graphs
with cycles. With DAG, Küchler et al. [13] algorithm can be used. The training
is computed by back propagation of the error from the feed forward network
through the encoding network of each structure. For cyclic graphs, recurrent
back propagation must be considered.

Real-Time Recurrent Learning can also be extended. For DAG the exten-
sion does not present particular problems, the cyclic graphs are more difficult
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Fig. 4. The encoding part of the NN passes encoded structures to the classifier, the
classifier returns the deltas used by the encoder to adapt its weights

to extend and require different situation according to global cycle presence.
Thanks to the “Strongly Connected Component” and “Component Graph”
notion, the cyclic graphs can be considered as many acyclic graphs and solved
more easily.

Labeling Recursive Auto Associative Memory (LRAAM) [21], another
model to represent labeled structures, is trained by a combination of a super-
vised method and an unsupervised one. For structured pattern recognition,
Sperduti uses this LRAAM to produce a compressed representation of the
structure, then he uses an MLP to carry out the classification.

GRN can be also extended to the cascade-correlation algorithm developed
by Fahlmane and Lebiere [22]. This model generates a standard ANN by
using an incremental approach for classification of unstructured patterns. The
starting network N0 is a network with no hidden nodes trained using LMS.
If N0 cannot resolve the problem, a hidden unit u1 is added so that the
correlation between the output of the unit and the residual error of the network
N0 is maximized. The weights of u1 are frozen and the remaining weights are
retained. If the retained network N1 cannot solve the problem, the network is
further grown by new hidden units which are connected (with frozen weights)
with all the inputs and previous hidden units. The resulting network is a
cascade of nodes. Sperduti et al. extend the output of the kth to GRN using
(9) where w(v,j) is the weight of the kth hidden unit associated with the output
of the vth hidden unit computed on the jth component pointed by x. w̄

(k)
q is

the weight of the connection from qth hidden unit and the kth hidden unit.
Learning is performed as in standard cascade-correlation with the difference
that the equations are recurrent on the structures.
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ŵ
(k)
(v,j)o

(v)(outX(x, j))

γ =
k−1∑
q=1

w̄(k)
q o(q)(x)

(9)

GRN can also be adapted to neural trees. The advantage of this kind of
model is to build the structure on the fly and not be restricted to a static
structure as in a feed forward network. New classes are learnt incrementally
with supervised or unsupervised training. The extension of this network to
a structured version is done by analogy: each discriminator associated with
each node of the tree is replaced by a generalized recursive discriminator.

Experiments on GRN have been carried out on several classification tasks.
The data are randomly generated. For small size structures (tree depth be-
tween 3 and 6) the results obtained on classification problems are nearly per-
fects for the training (near 100%) and very good for the testing (average of
95% and sometimes 100% with a good choice of hidden units and learning
parameters).

There is more and more work about dynamic networks, and although they
are not oriented directly towards logical structure extraction, it seems that
the previous contributions can be easily extended to this kind of application.
However, these recurrent techniques present some drawbacks compared to
static ANN:

• they are time and memory consuming;
• the convergence is more difficult to reach as there are more local minima;
• the convergence is slower, decreasing the training step make the training

more and more slow;
• there are more numerical errors that create serious repercussion on net-

work’s convergence;
• the gradient explosion occurs quickly on long sequences. The more the

sequence is long and the more the global error is large.

On top of that, the presented dynamic neuronal methods can deal with
logical structure recognition but are not sufficient. In addition to the inher-
ent limitations, the structures to be recognized need to be known and fixed
throughout the training and recognition. This it is not necessarily true in real
world applications.
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3.4 Transparent Neural Network for Handwriting Recognition

As seen in the previous section, dynamic ANN can be extended to deal with
structured patterns. The well known static ANN such as MLP can be also
improved to handle structured patterns.

In [23], Côté et al. propose a perceptual model, Perceptro, for handwritten
word recognition. The proposed method is based on McClelland and Rumel-
hart’s reading mode [24]. Two questions are explored: what kinds of features
are detected and how the information concerning the meaning of a word is
accessed. The key is to integrate a knowledge representation in the network.
Indeed, trying to use a standard network with distributed representation, such
as the MLP, cannot deal correctly with handwritten recognition. That is why
in [23] a network with local representation is chosen for the kernel of their
approach. The Interactive Activation Model of [24] is a neural network with
local knowledge representation, parallel processing of information, and grad-
ual propagation of activation between adjacent levels of neurons. The original
activation is given by

Ai(t + δt) = Ai(t) − θi(Ai(t) − ri) + Ei(t)

Ei(t) =

{
ni(t)(M − Ai(t)) if ni(t) > 0
ni(t)(Ai(t) − m) if ni(t) < 0

ni(t) =
∑

j

(αij − βij)aj(t)

(10)

where θi is a decreasing constant, ri the activation threshold, Ei(t) the neigh-
borhood contribution, M and m superior and lower activation bounds, αij and
βij the positive and negative stimulation from j to i, and aj(t) the activation
of node j.

Recognition is performed trough several bottom-up and top-down pro-
cesses. The physical features extracted from the image are specific to the
problem: primary (e.g. ascender, descender) secondary (e.g. loop, bar) and
face-up/face-down valley (e.g. connected components of the background be-
tween the lower and upper contours of the word). The architecture of the
system is general enough to handle hierarchical organized interpretation. The
authors have chosen three levels of neurons: feature, letter, and word (Fig. 5).

The connections between adjacent levels are excitatory and bi-directional.
The connections are only bottom-up between the feature letter and the letter
level. The weights are determined according to a priori knowledge. Thanks
to an active and passive neuron system, the network can reach the solution
after several cycles (until saturation) of bottom-up and top-down processes
called perceptual cycles. The system generates hypothesis, validates them and
may insert letter candidates in the right place using already validated letters
(Fig. 6).
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Fig. 5. Côté et al. hierarchically organized ANN model

Experiments have been made on CENPARMI database (French and En-
glish handwritten cheques), using 184 pattern for training and 2929 for testing
achieve from 85.3% for word length 3 up to 100% with word length 9.

In [25], Maddouri et al. propose an extension of the Perceptro model [23].
They use a geometrical correction method to improve the performances of the
Arabic handwritten word recognition system developed. The recognition pro-
ceeds in cycles of global and local observations. The global observations try
to detect apparent features of the words. They create hypotheses on the word
label. To carry out the recognition from different kinds of information, a nor-
malization stage is done on the word edges to improve the local observations.
Indeed, contrary to printed words or characters, the handwritten text needs a
powerful normalization stage to handle the variability in position, size, rota-
tion, slant, and distortion. The authors have chosen a Fourier based solution
to eliminate this variability. The whole recognition process is summarized in
Figure 7.

The top-down and bottom-up cycles are carried out thanks to the TNN
model (right part of the schema), the local observation comes from the nor-
malization of features such as ascenders, descenders, diacritics, and loops (left
part of Fig. 7).
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Fig. 6. Top-down process: feedback and insertion

The normalization is performed on the boundary of the word: a detection
of the contour is done first, then a Freeman chain code is generated, the
next step consists in computation of Fourier coefficient of the chain-encoded
contour and finally, the coefficients are normalized to cope with variability.
To obtain the final normalized character, a reverse Fourier transformation is
applied to the latest normalized coefficient. The reader can refer to [25] to see
how the boundary normalization is carried out. When the word is normalized,
a metric distance is used to evaluate the difference between the current word
and printed references.

3.5 Perceptive Structured Neural Network for Logical Structure
Analysis

In [12], Rangoni et al. propose a quite similar TNN for logical structure recog-
nition in document images. The hierarchically organized interpretation is kept
and transposed to handle editorial documents. Each neuron corresponds to an
interpretable concept and is attached to an element of the logical structure.
Excluding the first layer composed of input physical features, the following
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Fig. 7. Local normalization and global recognition

layers unfold the interpretation by introducing fine concepts in the first layers
and general concepts in the latest layers (Fig. 8).
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If a DTD is present, it can be helpful to set the neurons meaning: the
hierarchy included in the DTD can be unfolded to form the layers and the
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neurons. Contrary to other models [23, 25] the network is fully connected and
the neurons can be inhibitors.

Training and recognition

As the relations between the layers are not straightforward, a training phase
similar to MLP is proceeded to set all the weights.

In the back propagation algorithm, the error Ep(w) between the desired
output dq and the computed output oL,q is minimized for each pattern p

Ep(w) =
1
2

NL∑
q=1

(oL,q(xp) − dq(xp))2

ol,j = f

⎛
⎝Nl−1∑

i=0

wl,j,iol−1,i

⎞
⎠

(11)

As a consequence, the weight between the unit i in layer l and unit j in layer
l + 1 is modified as follows

wl,i,j → wl,i,j − µ

P∑
p=1

∂Ep(w)
∂ol,j

f ′

⎛
⎝Nl−1∑

m=0

wl,j,mol−1,m

⎞
⎠ ol−1,i (12)

In case of [12], all the neurons carry interpretable concepts and the desired
output is known for all the units. So, the partial term is given by:

∀l,
∂Ep(w)
∂ol,j

= ol,j(xp) − dj(xp) (13)

and the network can be trained as a cascade of mono-layer perceptrons.
The model is on the one hand data-driven thanks to the training stage and

on the other hand model-driven due to the integration of knowledge inside
the topology. This kind of ANN is called Transparent Neural Network (TNN)
in contrast to the “blackbox” aspect of MLP. For document logical layout
analysis, we have named this the Perceptive Structured NN (PSNN).

The aim of the final layers is to bring context during the perceptive cycles
as the previous authors used these to simulate the “word superiority effect” on
letters. As the network is feed forward, the learning of the network is the same
as an MLP but here the training is done separately between each consecutive
pair of layers because all the desired outputs are known.

During the recognition step, the network is used as an MLP but after each
propagation, the outputs are analyzed. If the output vector is close to a basis
vector (14& 15) the pattern is considered classified, otherwise the following
layers are taking into account to bring context. M(O) gives a vector with at
least one component with high value, Γ (O) give a vector where one component
has a value very high compared to other components.
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M(O) = ‖O‖∞ > ε with 0 � ε < 1 (14)

Γ (O) =
n((

∑
Oi)2 −

∑
O2

i )
(n − 1)(

∑
Oi)2

< η with 0 < η � 1 (15)

As these layers contain more global information, they are more robust and
accurate. They are used to generate hypothesis on the pattern. The context
manages the correction of the input features. Once a label is supposed to be
the good one, the input vector is modified according to this hypothesis and
according to the knowledge extracted from the training database. Indeed, sev-
eral representative samples are extracted from database and are matched with
the current input. The input is modified to be close to a representative sam-
ple and another perceptive cycle is completed and so on until no ambiguities
persist (Fig. 9).

Fig. 9. Recognition in Perceptive Structured Neural Network

There are several methods to determine these representative samples; un-
fortunately there is no exact solution. Some approaches have been investi-
gated. Methods using optimization produce mathematically perfect sample
but they do not correspond to real-world interpretable solutions. Methods
that are more straightforward can produce appropriate samples: mean sample
for only one representative or a k-NN for select several samples per class. Oth-
ers methods can be performed during the training stage: In [26], a new learning
method is presented which can produce from a very small subset of the global
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database an MLP almost as efficient as trained on the whole database. The
subset arisen from the algorithm will provide the representative samples.

Input feature clusterization

The perceptive cycles in this PSNN allow bottom-up and top-down resolution
and refine the recognition. However, if too many recognition cycles have to
be done, the task could be very time consuming because a lot of physical ex-
traction must be completed. On top of that, some of the inputs are high-level
(given by OCR) and slow down the logical structure recognition. In order to
face this problem, a manual selection has been used to trim down the extrac-
tions. To simulate global and local vision, the input features are partitioned
into clusters using a data categorization. Instead of feeding the network with
the whole features for each cycle, the features are given progressively during
the recognition and only if the pattern is too ambiguous (Fig. 10).
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Subsets of feature are computed according to their extraction time and
their predictive capacities. The first criterion is trivial as the extraction can
be timed by experiments or by analyzing the algorithm complexity. Evaluat-
ing the predictive power of a set of features is more complicated as there is
no optimal solution to do this. The literature proposes two main approaches:
filter-based methods and wrapper methods [27]. The filter methods only use
the sample database to score the feature, they are fast to evaluate the fea-
ture separately but do not produce good groups. On the other side, wrapper
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methods consider variables but they need the classifier to produce the groups.
The method presented in [12] is based on a filter approach but can compute
groups at the same time with ordered predictive power and less redundancy
inside each group (Fig. 11).
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By combining the input feature correction and selection, the PSNN is able
to adapt the computation amount according to pattern complexity without
adding too much processing time.

Experimentations

The system has been tested on scientific articles (Fig. 13). Physical inputs are
mainly extracted by commercial OCR, others are computed by using existing
ones. There are also 21 logical lables that cover any document image (Fig. 12).

After four perceptive cycles, the recognition rate increase to 91.7% which
is 10 points better than a classical MLP (Tab. 1).
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Fig. 12. Input feature clustering

Classes
PSNN

MLP C1 C2 C3 C4

Whole 81.6% 45.2 78.9 90.2 91.7%

Best 86.9% 66.7 85.3 85.3 99.3%

Worst 0.0% 0.0 0.0 4.0 28.6%

Time 1 0.7 1.45 1.85 2.40

Table 1. Logical structure classification for MLP and for PSNN
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Fig. 13. Document sample
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4 Conclusion and Perspectives

We outlined in this chapter several categories of approaches used for the ex-
traction of document structures from raster images. After a description of
their properties, advantages and drawbacks, we focused on neural approaches
for their capacities in noise absorption and generalization capacities. Their
application in document analysis was a real challenge for us as they were not
considered for this kind of structured data. The idea of McClelland to propose
a perceptive model with different cycles allowing a dynamic and progressive
approximation of the problem was the basis of our investigations. After the
study of others dynamic models, we proposed a specific one called Perceptive
Structured Neural Network which can be applied for logical structure recog-
nition. This model allows us to process several categories of structures based
only on physical data. After few cycles, the behavior of the system is better
than an MLP’s. Besides, it gives us the possibility to refine the outputs by
correcting the inputs accordingly.

Although dynamic ANN are able to deal with structured patterns, they
are not still used for document logical layout analysis. Besides, static networks
have been used far less than pure model-driven approaches. All the works pre-
sented in the section 3 show how to extend classical models to deal with such
a problem. The neuronal approach is accessible and can be as competitive as
grammar or rule based systems. It is obvious that, as mentioned in Nagy et al.
[28], domain specific knowledge appears essential for document interpretation.

The proposed PSNN can be improved in a different way: the data-driven
methods may be improved by introducing hidden layers between each layer
of interpretable concepts. The “transparency” property will be lost but the
system will be more accurate and have better generalization capacities.

Another approach could integrate transparency in a dynamic network or
adding dynamic properties to PSNN. A simply output feedback-based PSNN
will have more feedback information when using the context. On top of that,
the context will be taking into account not only during the recognition but
also during the training stage.
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Summary. Document image understanding refers to logical and semantic analy-
sis of document images in order to extract information understandable to humans
and codify it into machine-readable form. Most of the studies on document image
understanding have targeted the specific problem of associating layout components
with logical labels, while less attention has been paid to the problem of extracting
relationships between logical components, such as cross-references. In this chapter,
we investigate the problem of detecting the reading order relationship between com-
ponents of a logical structure. The domain specific knowledge required for this task
is automatically acquired from a set of training examples by applying a machine
learning method. The input of the learning method is the description of “chains”
of layout components defined by the user. The output is a logical theory which de-
fines two predicates, first to read/1 and succ in reading/2, useful for consistently
reconstructing all chains in the training set. Only spatial information on the page
layout is exploited for both single and multiple chain reconstruction. The proposed
approach has been evaluated on a set of document images processed by the system
WISDOM++.

1 Introduction

Documents are characterized by two important structures: the layout struc-
ture and the logical structure. Both are the results of repeatedly dividing the
content of a document into increasingly smaller parts, and are typically rep-
resented by means of a tree structure. The difference between them is the
criteria adopted for structuring the document content: the layout structure is
based on the presentation of the content, while the logical structure is based
on the human-perceptible meaning of the content.

The extraction of the layout structures from images of scanned paper doc-
uments is a complex process, typically denoted as document layout analysis,
which involves several steps including preprocessing, page decomposition (or
segmentation), classification of segments according to content type (e.g., text,
graphics, pictures) and hierarchical organization on the basis of perceptual
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criteria. Document image understanding refers to the process of extracting
the logical structure of a document image. This task is strongly application
dependent, since the same definition of the logical structure depends on the
type of information the user is interested in retrieving in a document.

Most works on document image understanding aim at associating a “log-
ical label” with some components of the layout structure: this corresponds
to mapping (part of) the layout structure into the logical structure. Gener-
ally, this mapping is based on spatial properties of the layout components,
such as absolute positioning with respect to a system of coordinates, relative
positioning (e.g., on top, to right), geometrical properties (e.g., height and
width), as well as information on the content type (e.g., text, graphics, and
picture). Some studies have also advocated the use of textual information of
some layout components to base, or at least to refine, the classification of
layout components into a set of logical labels.

The main problem for all these approaches remains the large amount of do-
main specific knowledge required to effectively perform this task. Hand-coding
the necessary knowledge according to some formalism, such as block gram-
mars [1], geometric trees [2], and frames [3] is time-consuming and limits the
application of a document image understanding system to a set of predefined
classes of documents. To alleviate the burden in developing and customizing
document image understanding systems, several data mining and machine
learning approaches have been proposed with the aim of automatically ex-
tracting the required knowledge [4].

In its broader sense, document image understanding cannot be considered
synonymous of “logical labeling”, since relationships among logical compo-
nents are also possible and their extraction can be equally important for an
application domain. Some examples of relations are the cross reference of a
caption to a figure, as well as the cross reference of an affiliation to an author.
An important class of relations investigated in this chapter is represented by
the reading order of some parts of the document. More specifically, we are
interested in determining the reading order of most abstract layout compo-
nents on each page of a multi-page document. Indeed, the spatial order in
which the information appears in a paper document may have more to do
with optimizing the print process than with reflecting the logical order of the
information contained.

Determining the correct reading order can be a crucial problem for several
applications. By following the reading order recognized in a document image,
it is possible to cluster together text regions labelled with the same logical label
into the same textual component (e.g., “introduction”, “results”, “method” of
a scientific paper). Once a single textual component is reconstructed, advanced
techniques for text processing can be subsequently applied. For instance, in-
formation extraction methods may be applied locally to reconstructed textual
components of documents (e.g., sample of the experimental setting studied in
the “results” section). Moreover, retrieval of document images on the basis of
their textual contents is more effectively realized.
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Several papers on reading order detection have already been published in
the literature. Their brief description is provided in the next Section. Some are
based only on the spatial properties of the layout components, while others
also exploit the textual content of parts of documents. Moreover, some meth-
ods have been devised for properly ordering layout components (independent
of their logical meaning), while others consider the recognition of some logi-
cal components, such as “title” and “body”, as preliminary to reading order
detection. A common aspect of all methods is that they strongly depend on
the specific domain and are not “reusable” when the classes of documents or
the task at hand change.

As for logical labelling, domain specific knowledge required to effectively
determine the reading order can be automatically acquired by means of ma-
chine learning methods. In this study we investigate the problem of inducing
rules which are used for predicting the proper reading order of layout com-
ponents detected in document images. The rules are learned from training
examples which are sets of ordered layout components described by means of
both their spatial properties and their possible logical label. Therefore, no tex-
tual information is exploited to understand document images. The ordering
of the layout components is defined by the user and does not necessarily re-
flect the traditional Western-style document encoding rule according to which
reading proceeds top-bottom and left-right. For instance, the user can specify
a reading order according to which the affiliation of an author immediately
follows the author’s name, although the two logical components are spatially
positioned quite far away on the page layout (e.g., the affiliation is reported
at the bottom of the first column of the paper). In multi-page articles, such
as those considered in this chapter, ordering is defined at the page level. More
precisely, different “chains” of layout components can be defined by the user,
when independent pieces of information are represented on the same page
(e.g., the end of an article and the beginning of a new one). Chains are mu-
tually exclusive, but not necessarily exhaustive, sets of most abstract layout
components in a page, so that their union defines a partial (and not necessarily
a total) order on the set of layout objects.

This chapter is organized as follows. In the next section, the background
and some related works are reported, while the reading order problem is for-
mally defined in Section 3. The machine learning system applied to the prob-
lem of learning from ordered layout components is introduced in Section 4.
The representation of training examples as well as the manner in which learned
rules are applied to a new document are also illustrated. Some experimental
results on a set of multi-page printed documents are reported and commented
on in Section 5. Finally, Section 6 concludes and discusses ideas for further
studies.
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2 Background and Related Works

In the literature there are already several publications on reading order detec-
tion. A pioneer work is reported in [5], where multi-column and multi-article
documents (e.g., magazine pages) with figures and photographs are handled.
Each document page is described as a tree, where each node, except the root,
represents a set of adjacent blocks located in the same column, ordered so
that the block on the upper location precedes the others. Direct descendants
of an internal node are also ordered in sequence according to their locations
in the same way that the block to the left and on the top precedes the others.
Reading order detection follows a preliminary rough classification of layout
components into “title” and “body”. Heads are blocks in which there are
only a few text lines with large type fonts, while bodies correspond to blocks
with several text lines with small type fonts. The reading order is extracted
by applying some hand-coded rules which allow the transformation of trees
representing layout structures (with associated ‘title” and “body” labels) into
ordered structures. Once the correct reading order is detected, a further inter-
pretation step is performed to attach some logical labels (e.g., title, abstract,
sub-title, paragraph) to each item of the ordered structure.

A similar tree-structured representation of the page layout is adopted in
the work by Ishitani [6]. The structure is derived by a recursive XY-cut ap-
proach [7], that is, a recursive horizontal/vertical partitioning of the input
image. The XY-cut process naturally determines the reading order of the lay-
out components, since for horizontal cuts the top-bottom ordering is applied
to the derived sections, while for vertical cuts the right-left (i.e., Japanese
style) ordering is applied to the derived columns.

The main problem with this XY-cut approach is that at each recursion
step, there are often multiple possible, and possibly conflicting, cuts. In the
original algorithm, the widest cut is selected at each recursion. While this
strategy works reasonably well for a page segmentation task, it is not always
appropriate for a reading order detection task. For this reason, Ishitani pro-
posed a bottom-up approach using three heuristics which take into account
local geometric features, text orientation and distance among vertically adja-
cent layout objects in order to merge some layout objects before performing
the XY-cut. As observed by Meunier [8], this aims at reducing the probability
of having to face multiple cutting alternatives, but it does not truly prevent
them from occurring. For this reason, he proposed to reformulate the problem
of recursively cutting a page as an optimization problem, and defined both a
scoring function for alternative cuts, and a computationally tractable method
for choosing the best partitioning.

A common aspect of all these approaches is that they are based exclusively
on the spatial information conveyed by a page layout. On the contrary, Taylor
et al. [9], propose the use of linguistic information to define the proper reading
order. For instance, to determine whether an article published in a magazine
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continues on the next page, it is suggested to look for a text, such as ‘continued
on next page’.

The usage of linguistic information has also been proposed by Aiello et al.
[10], who described a document analysis system for logical labelling and read-
ing order extraction of broad classes of documents. Each document object is
described by means of both attributes (i.e., aspect ratio, area ratio, font size
ratio, font style, content size, number of lines) and spatial relations (defined as
extensions of Allen’s interval relations [11]). Only objects labelled with some
logical labels (title and body) are considered for reading order. More precisely,
two distinct reading orders are first detected for the document object types
Title and Body, and then they are combined using a Title-Body connection
rule. This rule connects one Title with the left-most top-most Body object, sit-
uated below the Title. Each reading order is determined in two steps. Initially,
spatial information on the document objects is exploited by a spatial reasoner
which solves a constraint-satisfaction problem, where constraints correspond
to general document encoding rules (e.g., “in the Western-culture, documents
are usually read top-bottom and left-right”). The output of the spatial rea-
soner is a (cyclic) graph where edges represent instances of the partial ordering
relation BeforeInReading. A reading order is then defined as a full path in this
graph, and is determined by means of an extension of a standard topological
sort [12]. Due to the generality of the document encoding rule used by the
spatial reasoner, it is likely that one obtains more than one reading order, es-
pecially for complex documents with many blocks. For this reason, a natural
language processor is used in the second step of the proposed method. The
goal is that of disambiguating between different reading orders on the basis
of textual information of logical objects. This step works by computing prob-
abilities of sequences of words obtained by joining document objects which
are candidates to be followed in reading. The best aspect of this work is the
generality of the approach due to the generality of the knowledge adopted in
reasoning.

Topological sorting is also exploited in the approach proposed by Breuel
[13]. In particular, reading order is defined the basis of text lines segments,
which are pairwise compared on the basis of four simple rules in order to de-
termine a partial order. Then a topological sorting algorithm is applied to find
at least one global order consistent with this partial order. Columns, para-
graphs, and other layout features are determined on the basis of the spatial
arrangement of text line segments in reading order. For instance, paragraph
boundaries are indicated by relative indentation of consecutive text lines in
reading order.

All approaches reported above reflect a clear domain specificity. For in-
stance, the classification of blocks as “title” and “body” is appropriate for
magazine articles, but not for administrative documents. Moreover, the doc-
ument encoding rules appropriate for Western-style documents are different
for Japanese papers. Surprisingly, there is no work, to the best of our knowl-
edge, that handles the reading order problem by resorting to machine learning



50 D. Malerba et al.

techniques, which can generate the required knowledge from a set of train-
ing layout structures whose correct reading order has been provided by the
user. In previous works on document image analysis and understanding,
we investigated the application of machine learning techniques to several
knowledge-based document image processing tasks, such as classification of
blocks according to their content type [14], automatic global layout analysis
correction [15], classification of documents into a set of pre-defined classes [16],
and logical labelling [17]. Experimental results always proved the feasibility of
this approach, at least on a small scale, that is, for a few hundred of training
document images. Therefore, following this mainstream of research, herein we
consider the problem of learning the definition of reading order.

The proposed solution has been tested by processing documents with WIS-
DOM++1, a knowledge-based document image processing system originally
developed to transform multi-page printed documents into XML format. WIS-
DOM++ makes extensive use of knowledge and XML technologies for seman-
tic indexing of paper documents. This is a complex process involving several
steps:

1. The image is segmented into basic layout components (basic blocks), which
are classified according to the type of content (e.g., text, pictures and
graphics).

2. A perceptual organization phase (layout analysis) is performed to detect
a tree-like layout structure, which associates the content of a document
with a hierarchy of layout components.

3. The first page is classified to identify the membership class (or type) of
the multi-page document (e.g. scientific paper or magazine).

4. The layout structure of each page is mapped into the logical structure,
which associates the content with a hierarchy of logical components (e.g.
title or abstact of a scientific paper).

5. OCR is applied only to those logical components of interest for the appli-
cation domain (e.g., title).

6. The XML file that represents the layout structure, the logical structure,
and the textual content returned by the OCR for some specific logical
components is generated.

7. XML documents are stored in a repository for future retrieval purposes.

Four of seven processing steps make use of explicit knowledge expressed in the
form of decision trees and rules which are automatically learned by means of
two distinct machine learning systems: ITI [18], which returns decision trees
useful for block classification (first step), and ATRE [19], which returns rules
for layout analysis correction (second step) [15], document image classification
(third step) and document image understanding (fourth step) [4]. As explained
in Section 4, ATRE is also used to learn the intensional definition of two

1 http://www.di.uniba.it/∼malerba/wisdom++/
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predicates, which contribute to determine the reading order chains in a page
layout.

3 Problem Definition

In order to formalize the problem we intend to solve, some useful definitions
are necessary:

Definition 1. Partial Order [20]
Let A be a set of blocks in a document page, a partial order P over A is a
relation P ∈ A × A such that P is

1. reflexive ∀s ∈ A ⇒ (s, s) ∈ P
2. antisymmetric ∀s1, s2 ∈ A: (s1, s2) ∈ P ∧ (s2, s1) ∈ P ⇔ s1 = s2

3. transitive ∀s1, s2, s3 ∈ A: (s1, s2) ∈ P ∧ (s2, s3) ∈ P ⇒ (s1, s3) ∈ P

Definition 2. Weak Partial Order
Let A be a set of blocks in a document page, a weak partial order P over A is
a relation P ∈ A × A such that P is

1. irreflexive ∀s ∈ A ⇒ (s, s) /∈ P
2. antisymmetric ∀s1, s2 ∈ A: (s1, s2) ∈ P ∧ (s2, s1) ∈ P ⇔ s1 = s2

3. transitive ∀s1, s2, s3 ∈ A: (s1, s2) ∈ P ∧ (s2, s3) ∈ P ⇒ (s1, s3) ∈ P

Definition 3. Total Order
Let A be a set of blocks in a document page, a partial order T over the set A
is a total order iff ∀s1, s2 ∈ A: (s1, s2) ∈ T ∨ (s2, s1) ∈ T

Definition 4. Complete chain
Let:

• A be a set of blocks in a document page,
• D be a weak partial order over A
• B = {a ∈ A|(∃b ∈ A s.t. (a, b) ∈ D∨ (b, a) ∈ D)} be the subset of elements

in A related to any element in A itself.

If D∪{(a, a)|a ∈ B} is a total order over B, then D is a complete chain over
A

Definition 5. Chain reduction
Let D be a complete chain over A
the relation
C = {(a, b) ∈ D|¬∃c ∈ A s.t. (a, c) ∈ D ∧ (c, b) ∈ D}
is the reduction of the chain D over A.

Example 1. LetA = {a, b, c, d, e}. IfD = {(a, b), (a, c), (a, d), (b, c), (b, d), (c, d)}
is a complete chain over A, then C = {(a, b), (b, c), (c, d)} is its reduction (see
Figure 1).
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Fig. 1. A complete chain (a) and its reduction (b)

Indeed, for our purposes it is equivalent to deal with complete chains or
their reduction. Henceforth, for the sake of simplicity, the term chain will
denote the reduction of a complete chain.

By resorting to the definitions above, it is possible to formalize the reading
order induction problem as follows:

Given :

• A description DesTPi in the language L of the set of n training pages
TrainingPages = {TPi ∈ Π |i = 1..n} (where Π is the set of pages).

• A description DesTCi in the language L of the set TCi of chains (over
TPi ∈ TrainingPages) for each TPi ∈ TrainingPages.

Find :
An intensional definition T in the language L of a chain over a generic
page P ∈ Π such that T is complete and consistent with respect to all
training chains descriptions DesTCi, i = 1..n.

In this problem definition, we refer to the intensional definition T as a first
order logic theory. The fact that T is complete and consistent with respect to
all training chains descriptions can be formally described as follows:

Definition 6 (Completeness and Consistency).
Let:

• T be a logic theory describing chains instances expressed in the language
L,

• E+ be the set of positive examples for the chains instances (E+ =⋃
i=1..n

⋃
TC∈TCi

TC),
• E− be the set of negative examples for the chains instances (E− =⋃

i=1..n(TPi × TPi)/E+),
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• DesE+ be the description of E+ in L,
• DesE− be the description of E− in L,

then T is complete and consistent with respect to all training chains descrip-
tions iff T |= DesE+ ∧ T �|= DesE−.

This formalization of the problem permits us to represent and identify
distinct reading orders on the same page and avoids including blocks that
should not be included in the reading order (e.g. figures or page numbers).

4 Learning Reading Order

In order to learn first order logic theories for reading order identification, in
this work we use the learning system ATRE2 [19]. Indeed, ATRE is partic-
ularly suited for the task at hand since the spatial dimension of page layout
makes methods developed in inductive logic programming (ILP) [21, 22, 23,
24, 25] the most suitable approaches. This conviction comes from the fact
that most of the classical learning systems assume that training data are rep-
resented in a single table of a relational database, such that each row (or
tuple) represents an independent example (a layout component) and columns
correspond to properties of the example (e.g., height of the layout compo-
nent). This single-table assumption, however, is quite naive for at least three
reasons. First, layout components cannot be realistically considered indepen-
dent observations, because their spatial arrangement is mutually constrained
by formatting rules typically used in document editing. Second, spatial rela-
tionships between a layout component and a variable number of other compo-
nents in its neighborhood cannot be properly represented by a fixed number
of attributes in a table. Third, different layout components may have different
properties (e.g., the property “brightness” is appropriate for half-tone images,
but not for textual components), so that properties of the components in the
neighborhood cannot be effectively represented by the same set of attributes.
Since the single-table assumption limits the representation of relationships
(spatial or non) between examples, it also prevents the discovery of this kind
of pattern which could be very useful in reading order identification.

To automate the reconstruction of the reading order, WISDOM++ has
been opportunely extended in order to:

• Allow the user to define correct reading order chains on training documents
through the visual interaction with the system.

• Represent training reading order chains in first order logic formalism which
the learning system is able to interpret.

• Run the learning system.
• Apply the learned theories on new (testing) document images.

2 http://www.di.uniba.it/∼malerba/software/atre
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In the following, we briefly present the learning system ATRE. Subsequently,
we present the document descriptions provided by WISDOM++ to the learn-
ing system. Lastly, we explain how knowledge acquired by the learning system
is exploited for order reconstruction.

4.1 ATRE: The Learning System

ATRE is an ILP system which can learn recursive theories from examples.
The learning problem solved by ATRE can be formulated as follows:

Given

• a set of concepts C1, C2, . . . , Cr to be learned
• a set of observations O described in a language LO

• a background theory BK
• a language of hypotheses LH

• a user’s preference criterion PC

Find
A logical theory T expressed in the language LH and defining the concepts

C1, C2, . . . , Cr, such that T is complete and consistent with respect to O and
satisfies the preference criterion PC.

The completeness property holds when the theory T explains all observa-
tions in O of the r concepts C1, C2, . . . , Cr, while the consistency property
holds when the theory T explains no counter-example in O of any concept Ci.
The satisfaction of these properties guarantees the correctness of the induced
theory with respect to the given observations O. Whether the theory T is
correct with respect to additional observations not in O is an extra-logical
matter, since no information on the generalization accuracy can be drawn
from the training data themselves. In fact, the selection of the “best” the-
ory is always made on the grounds of an inductive bias embedded in some
heuristic function or expressed by the user of the learning system (preference
criterion).

In the context of the reading order learning, we identified two concepts to
be learned, namely first to read/1 and succ in reading/2. The former refers
to the first layout component of a chain, while the latter refers to the relation
successor between two components in a chain. By combining the two concepts
it is possible to identify a partial ordering of blocks in a document page.

As to the representation languages, the basic component is the literal,
which can be of the two distinct forms:

f(t1, . . . , tn) = Value (simple literal)
f(t1, . . . , tn) ∈ Range (set literal),

where f and g are function symbols called descriptors, ti’s are terms (constants
or variables) and Range is a closed interval of possible values taken by f . In
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the next section descriptors used for the representation of training examples
and hypotheses are presented.

4.2 Document Description

In ATRE, training observations are represented by ground multiple-head
clauses [26], called objects, which have a conjunction of simple literals in
the head. The head of an object contains positive and negative examples
for the concepts to be learned, while the body contains the description of lay-
out components on the basis of geometrical features (e.g. width, height) and
topological relations (e.g. vertical and horizontal alignments) existing among
blocks, the type of the content (e.g. text, horizontal line, image) and the logic
type of a block (e.g. title or authors of a scientific paper). Terms of literals
in objects can only be constants, where different constants represent distinct
layout components within a page.

The complete list of descriptors used for this task is reported in Table 1.

Table 1. Descriptors used in the first-order representation of the layout components

Descriptor name Definition

width(block) Integer domain
height(block) Integer domain
x pos centre(block) Integer domain
y pos centre(block) Integer domain
part of(block1,block2) Boolean domain: true if block1 contains block2
alignment(block1,block2) Nominal domain: only left col, only right col,

only middle col, only upper row, only lower row,
only middle row

to right(block1,block2) Boolean domain
on top(block1,block2) Boolean domain
type of(block) Nominal domain: text, hor line, image, ver line,

graphic, mixed
<logic type>(block) Boolean domain: true if block is labeled as <logic type>

associated to the block
class(doc) Nominal domain: represents the class associated

to the document page
page(doc) Nominal domain: first, intermediate,

last but one, last.
Represents the page associated to
the document page.

The descriptor <logic type>(block) is actually a meta-notation for a class
of first order logic predicates, which depend on the application at hand. In
particular, <logic type> can be instantiated to the logic labels associated with
layout components. In the case of scientific papers, among others, relevant
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logical labels could be title, author, abstract. This means that title(block),
author(block) and abstract(block) are possible descriptors.

In order to explain the semantics of geometrical and topological descrip-
tors, some useful notation is introduced. Let us to consider the reference sys-
tem whose origin is in the top left corner of the document page as shown
in Figure 2. TLx(z) (TLy(z)) denotes the abscissa (ordinate) of the top left
corner of a (rectangular) block z, while BRx(z) (BRy(z)) denotes the abscissa
(ordinate) of the bottom right corner of z. Then the semantics of descriptors
in Table 1 is the following:

• width(block) represents the block width, that is,
width(z) = BRx(z) − TLx(z)

• height(block) represents the block height, that is,
height(z) = BRy(z) − TLy(z)

• x pos centre(block) represents the abscissa of the block’s centroid, that
is, x pos centre(z) = (BRx(z) + TLx(z))/2

• y pos centre(block) represents the ordinate of the block’s centroid, that
is, y pos centre(z) = (BRy(z) + TLy(z))/2

• part of(block1,block2) represents the fact that the layout component
block1 corresponding to the page contains the layout object block2, that
is,
part of(z1, z2) = true ⇐⇒def

TLx(z1) ≤ TLx(z2) ∧ TLy(z1) ≤ TLy(z2) ∧ BRx(z1) ≥ BRx(z2) ∧
BRy(z1) ≥ BRy(z2)

• alignment(block1,block2) represents either horizontal or vertical align-
ment between two blocks. Six possible nominal values are considered:

alignment(z1,z2)= only left col ⇐⇒def

abs(TLx(z1) − TLx(z2)) ≤ α ∧ (TLy(z1) ≤ TLy(z2))

alignment(z1,z2)= only right col ⇐⇒def

abs(BRx(z1) − BRx(z2)) ≤ α ∧ (TLy(z1) ≤ TLy(z2))

alignment(z1,z2)= only middle col ⇐⇒def

alignment(z1, z2) �= only left col ∧ alignment(z1, z2) �= only right col ∧
abs(x pos centre(z1) − x pos centre(z2)) ≤ α ∧ (TLy(z1) ≤ TLy(z2))

alignment(z1,z2)= only upper row ⇐⇒def

abs(TLy(z1)− TLy(z2)) ≤ α ∧ (TLx(z1) ≤ TLx(z2))

alignment(z1,z2)= only lower row ⇐⇒def

abs(BRy(z1) − BRy(z2)) ≤ α ∧ (TLx(z1) ≤ TLx(z2))

alignment(z1,z2)= only middle row ⇐⇒def

alignment(z1, z2) �= only upper row ∧ alignment(z1, z2) �= only lower row∧
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abs(y pos centre(z1) − y pos centre(z2)) ≤ α ∧ (TLx(z1) ≤ TLx(z2))

• on top(block1,block2) indicates that block1 is above block2, that is,
on top(z1, z2) ⇐⇒def

BRy(z1) < TLy(z2) ≤ β + BRy(z1)∧
(TLx(z1) ≤ x pos centre(z2) ≤ BRx(z1)∨

TLx(z2) ≤ x pos centre(z1) ≤ BRx(z2))
• to right(block1,block2) aims at representing the fact that block2 is po-

sitioned to the right of block1. Its formal definition is:
to right(z1, z2) ⇐⇒def

BRx(z1) < TLx(z2) ≤ γ + BRx(z1)∧
(TLy(z1) ≤ y pos centre(z2) ≤ BRy(z1)∨

TLy(z2) ≤ y pos centre(z1) ≤ BRy(z2)).

The last three descriptors are parametrized, that is, their semantics is
based on few constants (α, β and γ) whose specification is domain dependent.

Fig. 2. Reference system used to represent components in the document page.
Origin represents the origin in the top left corner of the document page

The description of the document page reported in Figure 3 is reported in
the following:

object(′tpami17 1-13′, [class(p) = tpami,

first to read(0) = true, first to read(1) = false, ...

succ in reading(0, 1) = true, succ in reading(1, 2) = true,

..., succ in reading(7, 8) = true,

succ in reading(2, 10) = false, ...,

succ in reading(2, 5) = false],

[part of(p, 0) = true, ...,

height(0) = 83, height(1) = 11, ...

width(0) = 514, width(1) = 207, ...,

type of(0) = text, ..., type of(11) = hor line,

title(0) = true, author(1) = true,

affiliation(2) = true, ..., undefined(16) = true, ...
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Fig. 3. A document page: For each layout component, both logical labels and con-
stants are shown

x pos centre(0) = 300, x pos centre(1) = 299, ...,

y pos centre(0) = 132, y pos centre(1) = 192, ...,

on top(9, 0) = true, on top(15, 0) = true, ...,

to right(6, 8) = true, to right(7, 8) = true, ...

alignment(16, 8) = only right col, alignment(17, 5) = only left col, ...

alignment(15, 16) = only middle row,

class(p) = tpami, page(p) = first]).

The constant p denotes the whole page while the remaining integer constants
(0, 1, . . ., 17) identify distinct layout components. In this example, the block
number 0 corresponds to the first block to read (first to read(0) = true),
it is a textual component (type of(0) = text) and it is logically labelled as
‘title’ (title(0) = true). Block number 1 (immediately) follows block 0 in the
reading order (succ in reading(0, 1) = true); it is a textual component and
it includes information on the authors of the paper (author(1) = true).
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The expressive power of ATRE is also exploited in order to define back-
ground knowledge. In this application domain, the following background
knowledge has been defined:

at page(X) = first ← part of(Y, X) = true, page(Y ) = first.
at page(X) = intermediate←part of(Y, X)= true, page(Y )= intermediate.
at page(X) = last but one ← part of(Y, X) = true, page(Y ) = last but one.
at page(X) = last ← part of(Y, X) = true, page(Y ) = last.
alignment(X, Y ) = both rows ← alignment(X, Y ) = only lower row,

alignment(X, Y ) = only upper row.
alignment(X, Y ) = both columns ← alignment(X, Y ) = only left col

alignment(X, Y ) = only right col.

The first four rules allow information on the page order to be automatically
associated to layout components, since their reading order may depend on the
page order. The last two clauses define the alignment by both rows/columns
of two layout components.

As explained in the previous section, ATRE learns a logical theory T
defining the concepts first to read/1 and succ in reading/2, such that T is
complete and consistent with respect to the examples. This means that it is
necessary to represent both positive and negative examples and the repre-
sentation of negative examples for the concept succ in reading/2 poses some
feasibility problems due to their quadratic growth. In order to reduce the num-
ber of negative examples, we resort to sampling techniques. Indeed, this is a
common practice in the presence of unbalanced datasets [27]. In our case, we
sampled negative examples by limiting their number to 1000% of the number
of positive examples. In this way, it is possible to simplify the learning stage
and to have rules that are less specialized and avoid overfitting problems.

In summary, generated descriptions permit us to describe both the lay-
out structure, the logical structure and the reading order chains of a single
document page (see Figure 4).

ATRE is particularly indicated for our task since it can identify dependen-
cies among concepts to be learned or even recursion. Examples of rules that
ATRE is able to extract are reported in the following:

first to read(X1) = true ← title(X1) = true,
x pos centre(X1) ∈ [293..341], succ in reading(X1, X2) = true

succ in reading(X2, X1) = true ← on top(X2, X1) = true,
y pos centre(X2) ∈ [542..783]

The first rule states that the first block to read is a logical component
labelled as title, positioned approximately at the center of the document and
followed by another layout component in the reading order. The second rule
states that a block X2 “follows in reading” another block X1 if it is above
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Fig. 4. A document page: the input reading order chain. Sequential numbers indi-
cate the reading order

X1 and is positioned in the lower part of a page. Additional rules may state
further sufficient conditions for first to read and succ in reading.

4.3 Application of Learned Rules

Once rules have been learned, they can be applied to new documents in order
to generate a set of ground atoms, such as:

{first to read(0) = true, succ in reading(0, 1) = true, . . . ,

succ in reading(4, 3) = true, . . .}
which can be used to reconstruct chains of (possibly logically labelled) layout
components. In our approach, we propose two different solutions:

1. Identification of multiple chains of layout components
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2. Identification of a single chain of layout components

By applying rules learned by ATRE, it is possible to identify:

• A directed graph G =< V, E >3 where V is the set of nodes representing all
the layout components found in a document page and edges represent the
existence of a succ in reading relation between two layout components,
that is, E = {(b1, b2) ∈ V 2|succ in reading(b1, b2) = true}

• A list of initial nodes I = {b ∈ V |first to read(b) = true}
Both approaches make use of G and I in order to identify chains.

Multiple Chains Identification

This approach aims at identifying a (possibly empty) set of chains over the
set of logical components in the same document page. It is two-stepped. The
first step aims at identifying the heads (first elements) of the possible chains,
that is, the set

Heads = I ∪ {b1 ∈ V | ∃b2 ∈ V (b1, b2) ∈ E ∧ ∀b0 ∈ V (b0, b1) /∈ E}.

This set contains both nodes for which first to read is true and nodes which
occur as a first argument in a true succ in reading atom and do not occur as
a second argument in any true succ in reading atom.

Once the set Heads has been identified, it is necessary to reconstruct the
distinct chains. Intuitively, each chain is the list of nodes forming a path in G
which begins with a node in Heads and ends with a node without outgoing
edges. Formally, an extracted chain C ⊆ E is defined as follows:

C = {(b1, b2), (b2, b3), . . . , (bk, bk+1)}, such that

• b1 ∈ Heads,
• ∀i = 1..k : (bi, bi+1) ∈ E and
• ∀b ∈ V (bk+1, b) /∈ E.

In order to avoid cyclic paths, we impose that the same node cannot appear
more than once in the same chain. The motivation for this constraint is that
the same layout component is generally not read more than once by the reader.

Single Chain Identification

The result of the second approach is a single chain. Following the proposal
reported in [28], we aim at iteratively evaluating the most promising node to
be appended to the resulting chain.

More formally, let PREFG : V × V → {0, 1} be a preference function
defined as follows:

3 G is not a direct acyclic graph (dag) since it could also contain cycles
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PREFG(b1, b2) =

⎧⎨
⎩

1 if a path connecting b1 and b2 exists in G
1 if b1 = b2

0 otherwise

Let µ : V → N be the function defined as follows:

µ(L, G, I, b) = countConnections(L, G, I, b) + outGoing(V/L, b)
−inComing(V/L, b)

where

• G =< V, E > is the ordered graph
• L is a list of distinct nodes in G
• b ∈ V/L is a candidate node
• countConnections(L, G, I, b) = |{d ∈ L∪I|PREFG(d, b) = 1}| counts the

number of nodes in L ∪ I from which b is reachable.
• outGoing(V/L, b) = |{d ∈ V/L|PREFG(b, d) = 1}| counts the number of

nodes in V/L reachable from b.
• inComing(V/L, b) = |{d ∈ V/L|PREFG(d, b) = 1}| counts the number of

nodes in V/L from which b is reachable.

Algorithm 21 fully specifies the method for the single chain identification.
The rationale is that at each step a node is added to the final chain. Such a
node is that for which µ is the highest. Higher values of µ are given to nodes
which can be reached from I, as well as from other nodes already added to the
chain, and have a high (low) number of outgoing (incoming) paths to (from)
nodes in V/L. Indeed, the algorithm returns an ordered list of nodes which
could be straightforwardly transformed into a chain.

5 Experiments

In order to evaluate the applicability of the proposed approach to reading
order identification, we considered a set of multi-page articles published in an
international journal. In particular, we considered twenty-four papers, pub-
lished as either regular or short articles, in the IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), in the January and February
issues of 1996. Each paper is a multi-page document; therefore, we processed
211 document images. Each document page corresponds to an RGB 24bit
colour image in TIFF format.

Initially, document images are pre-processed by WISDOM++ in order to
segment them, perform layout analysis, identify the membership class and map
the layout structure of each page into the logical structure. Training examples
are then generated by manually specifying the reading order. In all, 211 pos-
itive examples and 3,263 negative examples for the concept fisrt to read/1
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Algorithm 1 Single chain identification algorithm
1: findChain (G =< V, E >, I)

Output: L: chain of nodes
2: L← ∅;
3: repeat
4: best mu ← −∞;
5: for all b ∈ V/L do
6: cc ← countConnections(L, G, I, b);
7: inC ← incoming(V/L, b);
8: outG ← outGoing(V/L, b);
9: if ((cc �= 0) AND (inC �= 0) AND (outG �= 0)) then

10: µ ← cc + outG − inC;
11: if best mu < µ then
12: best b ← b;
13: best mu ← µ;
14: end if
15: end if
16: end for
17: if (best mu <> −∞) then
18: L.add(best b);
19: end if
20: until best mu = −∞
21: return L

and 1,418 positive examples and 15,518 negative examples for the concept
succ in reading/2 are generated.

We evaluated the performance of the proposed approach by means of a
6-fold cross-validation, that is, the dataset is first divided into six folds of
near-equal size (see Table 2), and then, for every fold, the learner is trained
on the remaining folds and tested on them.

When generating descriptions, the following parameters have been set:
α=4, β=50 and γ=100. In the task at hand, the following logical labels are
considered: abstract, affiliation, author, biography, caption, figure, formulae,
index term, reference, table, page no, paragraph, running head, section title,
subsection title, title.

For each learning problem, statistics on precision and recall of the learned
logical theory are recorded. In order to evaluate the ordering returned by
the proposed approach, we resort to metrics used in information retrieval in
order to evaluate the returned ranking of results [29]. For this purpose several
metrics have been defined in the literature. Herein we consider the metrics
valid for partial orders evaluation.

In particular, we consider the normalized Spearman footrule distance
which, given two complete lists L and L1 on a set S (that is, L and L1

are two different permutations without repetition of all the elements in S), is
defined as follows:
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Fold Article ID Number of pages Tot number of pages
tpami13 3

FOLD1 tpami11 6 36
tpami04 14
tpami16 13
tpami07 6

FOLD2 tpami24 6 38
tpami17 13
tpami01 13
tpami06 1

FOLD3 tpami19 17 33
tpami23 7
tpami02 8
tpami05 6

FOLD4 tpami18 10 35
tpami22 5
tpami03 14
tpami10 3

FOLD5 tpami20 14 33
tpami21 11
tpami08 5
tpami15 15

FOLD5 tpami09 5 36
tpami14 10
tpami12 6

Table 2. Processed documents

F (L, L1) =
∑

b∈S abs(pos(L, b)− pos(L1, b))
|S|2/2

(1)

where the function pos(L, b) returns the position of the element b in the or-
dered list L.

This measure can be straightforwardly generalized to the case of several
lists:

F (L, L1, . . . , Lk) = 1/k
∑

i=1...k

F (L, Li). (2)

Indeed, this measure is specifically designed for total orders and not for
partial ones. In order to consider partial orders, we resorted to a variant of
this measure (induced normalized footrule distance).

F (L, L1, . . . , Lk) = 1/k
∑

i=1...k

F (L|Li , Li) (3)

where L|Li is the projection of L on Li. Since this measure does not take
into account the length of single lists, we also adopted the normalized scaled
footrule distance:

F ′(L, L1) =
∑

b∈S abs(pos(L, b)/|L| − pos(L1, b)/|L1|)
|L1|/2

. (4)

Also in this case it is possible to extend the measure to the case of multiple
lists:
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F ′(L, L1, . . . , Lk) = 1/k
∑

i=1...k

F ′(L|Li , Li). (5)

In this study, we apply such distance measures to chains. In particular:

• FD=F (L|L1 , L1) is used in the evaluation of single chain identification.
• SFD=F ′(L|L1 , L1) is used in the evaluation of single chain identification.
• IFD=F (L, L1, . . . , Lk) is used in the evaluation of multiple chains identi-

fication.
• ISFD=F ′(L, L1, . . . , Lk) is used in the evaluation of multiple chains iden-

tification.

Results reported in Table 3 show that the system has a precision of about
65% and a recall greater than 75%. Some statistics concerning the learned
theories are reported in Table 4. It is noteworthy that rules learned for the
concept first to read cover (on average) fewer positive examples than rules
learned for the concept succ in reading. Moreover, by considering the results
reported in Table 5, we note that there is no significant difference in terms
of recall between the two concepts, while precision is higher for rules con-
cerning the succ in reading concept. This is mainly due to the specificity
of rules learned for the concept first to read and we can conclude that the
concept first to read appears to be more complex to learn than the concept
succ in reading. This can be explained by the limited number of training
examples for this concept (one per page).

Precision% Recall%
FOLD1 76.60 61.80
FOLD2 73.00 64.90
FOLD3 80.10 67.40
FOLD4 68.00 58.20
FOLD5 76.80 68.40
FOLD6 78.20 62.60
AVG 75.45 63.88

Table 3. Overall Precision and Recall results

Concept first to read/1 succ in reading/2
NOC Training POS exs NOC Training POS exs

FOLD1 42 175 162 1226
FOLD2 46 173 145 1194
FOLD3 42 178 149 1141
FOLD4 42 176 114 1171
FOLD5 40 178 166 1185
FOLD6 41 175 177 1173
AVG coverage 4.17 7.77

Table 4. Number of rules per positive examples

In the following we report some rules learned by ATRE:
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Concept first to read/1 succ in reading/2
Precision % Recall% Precision% Recall%

FOLD1 75.00 50.00 76.90 64.10
FOLD2 66.70 63.20 74.10 65.20
FOLD3 74.30 78.80 81.00 66.10
FOLD4 69.40 71.40 67.80 56.30
FOLD5 66.70 66.70 78.40 68.70
FOLD6 71.00 61.10 79.40 62.90
AVG 70.52% 65.20% 76.27% 63.88%

Table 5. Precision and Recall results shown per concept to be learned

1. first to read(X1) = true ← x pos centre(X1) ∈ [55..177],
y pos centre(X1) ∈ [60..121], height(X1) ∈ [98..138].

2. first to read(X1) = true ← title(X1) = true,
x pos centre(X1) ∈ [293..341], succ in reading(X1, X2) = true.

3. succ in reading(X2, X1) = true ← affiliation(X1) = true,
author(X2) = true, height(X1) ∈ [45..124].

4. succ in reading(X2, X1) = true ← alignment(X1, X3) = both columns,
on top(X2, X3) = true, succ in reading(X1, X3) = true,
height(X1) ∈ [10..15].

They can be easily interpreted. For instance, the first rule states that a block
at the top of the page, horizontally positioned in the center-left part of the
page with a height between 98 an 138 pixels, is the first block to read.

The second rule states that if a block represents the title, is horizontally
positioned in the center of the document page and is read before another
block, then it is the first to be read. This rule captures concept dependencies.
In particular, the predicate first to read is defined in terms of the predicate
succ in reading.

The third rule states that a layout component whose height is between 45
and 124 pixels and labeled as ‘affiliation’ is read after the logical component
‘author’. Since affiliation and author are not close to each other in a typi-
cal document page (see Figure 4), this rule would not have been discovered
without considering results of the logical structure identification phase.

The fourth rule presents both an example of recursion on the predicate
succ in reading and an example of use of descriptors defined in the back-
ground knowledge (alignment(X1, X3) = both columns).

Experimental results concerning the reconstruction of single/multiple cha-
ins are reported in Table 6. We recall that the lower the distance value, the
better the reconstruction of the original chain(s). By comparing results in
terms of the footrule distance measure (IFD vs FD), we note that the recon-
struction of multiple chains shows better results than the reconstruction of
single chains. Indeed, this result does not take into account the length of the
lists. When considering the length of the lists (ISFD vs. SFD), the situation is
completely different and the reconstruction of single chains outperforms the
reconstruction of multiple chains.
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Concept Multiple chains Single chain
AVG. IFD% AVG. ISFD% AVG. FD% AVG. SFD%

FOLD1 13.18 21.12 47.33 10.17
FOLD2 10.98 18.51 46.32 8.13
FOLD3 1.31 26.91 47.32 17.63
FOLD4 1.32 24.00 49.96 14.51
FOLD5 0.90 22.50 49.31 10.60
FOLD6 0.90 27.65 54.38 12.97
AVG 4.76% 23.45% 49.10% 12.33%

Table 6. Reading order reconstruction results

6 Conclusions

In this chapter, we present a novel approach for automatically determining
the reading order in a document image understanding process. Reading order
identification is a crucial problem for several applications since it permits
us to reconstruct a single textual component to be used in subsequent text
processing steps, such as information extraction, information retrieval and
text reconstruction for rendering purposes. The proposed approach aims at
learning rules which are used for predicting reading order chains of layout
components detected in document images. The rules are learned from training
examples consisting of sets of ordered layout components described by means
of both layout and logical properties. The proposed approach presents two
main peculiarities. First, it fully exploits spatial information embedded in
the layout structure by resorting to inductive logic programming techniques.
Second, it reconstructs reading order chains, which may not necessarily define
a total ordering. This last aspect permits us to take into account the case
in which independent pieces of information are represented on the same page
(e.g., the end of an article and the beginning of a new one) and the case in
which some layout components should not be included in the reading order
(e.g. images or page numbers).

In the learning phase, rules which identify the first logical component to
read and define the successor relation are induced. In the recognition phase
such rules are used to reconstruct reading order chains according two dif-
ferent modalities: single vs. multiple chains identification. Results prove that
learned rules are quite accurate and that the reconstruction phase significantly
depends on the application at hand. In particular, if the user is interested in
reconstructing the actual chain (e.g. text reconstruction for rendering pur-
poses), the best solution is in the identification of single chains. On the con-
trary, when the user is interested in recomposing a text such that sequential
components are correctly linked (e.g. in information extraction applications),
the most promising solution is the identification of multiple chains.

For future work we intend to consider the entire document (and not the
single page) as the analysis unit. This would permit us to reconstruct mul-
tiple crossing-pages chains typically found in collections of documents (e.g.,
conference proceedings or transcriptions of ancient edicts).
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Summary. Recognition algorithms are difficult to write and difficult to maintain.
There is need for better tools to support the creation, debugging, optimization, and
comparison of recognition algorithms. We propose an approach that centers on a
process-oriented description. The approach is implemented using a new scripting
language called RSL (Recognition Strategy Language), which captures the recogni-
tion decisions an algorithm makes as it executes. This semi-formal process-oriented
description provides a powerful basis for developing and comparing recognition algo-
rithms. Based on this description, we describe new metrics related to the sequence
of decisions an algorithm makes during recognition. The capture of intermediate
decision outputs and these new process-oriented metrics greatly extend the limited
information available from final results and traditional results-oriented metrics such
as recall and precision. Using a simple example, we illustrate how these new metrics
can be used to understand and improve decisions within a recognition strategy. We
believe these new metrics may also be applied in machine learning algorithms that
construct optimal decision sequences from sets of decisions and/or strategies.

1 Introduction

Tables are used to summarize vast quantities of information in books, papers,
text files, electronic documents, and HTML web pages. Significant efforts
have been made towards developing automated and semi-automated methods
for searching, extracting, summarizing, and integrating the information they
contain. A wide variety of algorithms have been published for detecting tables
and analyzing their structure, and a number of surveys on table recognition
and processing are available [3, 4, 5, 6, 7, 8].

Algorithms that recognize tables search a space of possible interpretations
in order to describe the tables present in an input file. The space of inter-
pretations is defined by some model of table locations and structure whose
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www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



72 R. Zanibbi et al.

a. Original Image b. Decision 1 (Word Regions → Cells)

c. Decision 13 (Merge) d. Decision 19 (Merge)

e. Decision 32 (Merge) f. Decision 42 (Merge)

g. Decision 59 (Merge) h. Decision 85 (Merge) : Output

Fig. 1. Production of Cell Hypotheses by the Handley Algorithm [1]. (a) Input
image from the University of Washington Database [2], page a038. (b) Line and
Word regions are defined manually. All Word regions are immediately classified as
cells in the first step. (c) to (h) Cell region hypotheses are refined through merging
(see caption of Figure 9 for further details)
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operations are invoked by the algorithm while searching. The search for ta-
bles and/or structural elements of tables proceeds through a series of decisions
that determine which model operations to apply, and which interpretations
are worth pursuing or are acceptable for output.

Currently it is difficult to compare table recognition algorithms. One dif-
ficulty is that the algorithms often address different problems, and do not
use the same model to describe tables as a result [9, 10]. For example, some
algorithms assume that all table cells are separated by ruling lines, while in
others ruling lines are optional or are assumed to be absent. As another ex-
ample, some algorithms aim to detect cell locations in an image or text file,
while other methods assume cell locations are known, and then attempt to
recover the indexing structure of the table from header cells to body cells.
Also, algorithms are usually defined informally in the literature, often with
no explicit description of the table model or its associated space of possible
interpretations. This makes table recognition algorithms hard to replicate,
compare, and combine.

We do not believe that it is possible or even desirable for researchers to
adopt a standard table model. We propose instead to make table models
and their operations more explicit, in order to permit easier identification
of common elements in models and recognition techniques. A decision-based
specification of a table recognition algorithm defines a sequence of decisions
that each select from an explicit set of table model operations. Each decision is
defined in terms of the input data used to make the decision, the set of model
operations from which to select (defined using the inputs), and a function that
will decide which operations to select at run-time.

In Section 3 we present the Recognition Strategy Language (RSL [11]), a
functional scripting language for creating and executing decision-based speci-
fications. RSL provides a small but general set of decision types used to manip-
ulate interpretations represented by attributed graphs. We then demonstrate
how decision-based specifications allow algorithms to be compared through
decisions affecting common table model elements. Graph-based summaries of
table models used for recognition may be produced through static analysis
of RSL programs (see Section 4). After execution, the results of intermediate
decisions may be observed and compared in addition to the final results. To
illustrate, in Section 6 we compare the detection of table cells in two published
algorithms [1, 12] that have been re-implemented in RSL, and then combine
the algorithms to produce a better result. Figure 1 illustrates how one of these
algorithms creates and discards table cell hypotheses.

Commonly, measures such as recall and precision are used to evaluate
recognition algorithms. In the case of cells in table recognition, recall is the
percentage of ground-truth cells that are detected correctly, and precision is
the percentage of detected table cells that are in the ground truth. Using re-
call and precision, recognition is characterized only in terms of final results,
and not in terms of the process of recognition; there is no characterization of
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whether individual decisions are helpful, detrimental, or irrelevant for accu-
rately recognizing tables within a set of documents.

In conventional performance evaluations there is also no characterization
of false negatives: these are valid hypotheses that are created and later re-
jected by an algorithm. RSL records a complete history of all decision out-
comes, which makes it possible to determine which decisions create, reject,
and reinstate each generated hypothesis after execution (see Figures 9 and
10). Taking advantage of this additional information, we present historical re-
call and historical precision, two new metrics that characterize the complete
set of generated hypotheses (e.g. cell locations) in Section 5.

Aside from table recognition, we believe that the decision based-approach
to specification, comparison, and evaluation may be usefully applied to many
other document recognition and machine learning problems. These include
problems in document layout analysis such as page region labeling and in-
terpreting symbol layout within page regions (e.g. in text regions, figures,
and diagrammatic notations) where a series of decisions must be made about
region types, locations, and relationships, and the problem of classifier com-
bination, where a decision-based specification would support rapid construc-
tion and modification of classifier architectures from existing classifiers. Other
chapters in this book provide more information about machine learning tech-
niques related to document layout analysis and classifier combination. The
decision-based approach provides intermediate interpretations and metrics for
decision sequences (e.g. historical recall and precision) that could be used by
machine learning algorithms to train or optimize individual decisions within a
recognition strategy, or to learn recognition strategies themselves given a set
of decisions and/or strategies [13, 14, 15].

We begin our main discussion by introducing table recognition problems
as sequential decision-making problems in more detail.

2 Recognizing Tables: A Decision-Making Problem

Researchers have used the term physical structure to refer to explicit proper-
ties of an encoding, and logical structure to refer to properties that are implicit
in an encoding [5, 16, 17]. Simple examples of physical structure include the
number of rows and columns in an image file, the number of characters in
each text line of a text file, and the location of a pixel or character within an
image or text file (this is usually expressed geometrically, in terms of columns
and rows).

Source files for markup language encodings such as HTML and XML have
the same physical structure as plain text files, but also represent regions of the
file and the relationships between them using text demarcators (‘tags’). To
recover the information represented by the demarcators requires an inferential
process that uses the rules of structure for the appropriate markup language
(i.e. we must parse the file using an appropriate grammar). Properties of a file
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that must be recovered using an inferential process such as this are referred
to as logical structure.

Markup language parsers are formal language recognizers that recover im-
plicit logical structure from text encodings. From a pattern recognition per-
spective they are considered simple because the information used to deduce
the tag structure is largely fixed and unambiguous, and parsers assume that
input files contain data in the correct format.

Table recognition is a more difficult problem because which information
and inferential processes to use for recovering tables are neither fixed nor un-
ambiguous, and are subjects of ongoing study. Table structure is frequently
adapted to the idiosyncratic needs of authors, making it difficult and per-
haps impossible to make a single, formal definition. Unless strong assump-
tions about tables in input files are made, there is the additional problem of
selecting which model of table structure to apply.

Even if a valid table structure model is used for an input file, the set
of possible model instances may be large, and it is often difficult to define
inferencing methods that reliably identify table structures due to noise in the
file (e.g. smearing in images) and unanticipated properties of the input. For
systems recognizing tables in raw images, all table properties are implicit.
At the other extreme, for HTML files often table cells, rows, and columns
are already represented; however, tags for tables are often used to arrange
arbitrary data visually, and determining which encoded tables are real tables
is a difficult problem [18, 19].

In our work we have come to view structural pattern recognition prob-
lems such as table recognition as sequential decision-making problems: given
a model of logical structure to be recovered from a set of input files, what
series of decisions about model operations to apply will produce interpreta-
tions of logical structure that maximize a given performance criterion? For
recognition tasks, the performance criterion will be some combination of met-
rics for execution time, storage requirements, and accuracy. Similar views of
structural recognition problems have been proposed in the machine learning
literature [20, 21]. Accuracy metrics are influenced by the chosen source(s)
of ground truth; to accommodate this, a problem formulation in which the
source of ground truth is an explicit variable may be used (we have proposed
one such formulation [10]).

We wish to be able to easily compare, re-sequence, and combine individual
decisions about model operations made by different table recognition algo-
rithms. We also wish to be able to easily evaluate interpretations produced
by intermediate decisions, and characterize the complete set of hypotheses
generated by an algorithm, not just those accepted at a given point in the
algorithm’s execution.

Currently in the literature, table recognition algorithms are most com-
monly characterized as a sequence of operations that are implemented in a
general-purpose programming language. Less frequently model-driven speci-
fications are employed, in which a representation of the table model is used
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Nested Row Header

Row Header

Stub

Stub Head
Boxhead

Boxhead Separator

Body

Cell

Ass1 Ass2 Ass3
Final
Grade

1991

85 80 75 60 75 75

80 65 75 60 70 70

80 85 75 55 80 75

1992

85 80 70 70 75 75

80 80 70 70 75 75

75 70 65 60 80 70

Nested Column Header

Stub Separator Column Header

Term

Winter

Spring

Fall

Winter

Spring

Fall

Block

Assignments Examinations

Midterm Final

Fig. 2. Table Structure. This example is taken from Wang [26], and uses terminology
taken from the Chicago Manual of Style [27]

to ‘program’ the system (e.g. as an attributed grammar with rules containing
associated actions [22, 23, 24]). Given a model specification and an input file,
the sequence of decisions to make is determined algorithmically (e.g. by a
parser): the model definition is mapped to a decision sequence. The procedu-
ral approach has the benefit of being highly flexible, while the model-driven
approach has the benefits of concise specification and a level of formality
which permits more information about decision-making to be automatically
collected.

For our purposes, the primary disadvantage of procedural implementations
is that operations for computing input data for decisions, making decisions,
and applying model operations are represented in the same way. This makes
it difficult to extract individual decisions. A disadvantage of model-driven
systems is that their model definitions are usually tied quite tightly to a
particular set of recognition techniques, and it can be difficult to modify these
systems to accommodate unanticipated requirements and/or new techniques
[25].

In Section 3 we present the Recognition Strategy Language (RSL [11]),
which provides a way to express recognition algorithms as decision sequences
and automatically capture decision outcomes, while maintaining much of the
flexibility of procedural implementations. In this chapter we present two proce-
dural table recognition algorithms that have been successfully reimplemented
in RSL (see Section 3.3). It may be worth investigating whether there would
be benefits to having model-driven systems use a decision-based representa-
tion for the output algorithm. A model-driven system might compile a model
definition into an RSL program, for example. In this way, decision-based spec-
ifications provide an intermediate level of abstraction between procedural and
model-driven system specifications.
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2.1 Table Structure and Terminology

The most abstract representation of a table is the underlying data set that
the table visualizes; often a great deal of domain knowledge about the infor-
mation represented in a table is needed to recover this. A slightly less abstract
representation is the indexing structure, which describes how cells in the body
of the table are indexed by header cells in the boxhead, stub, and stubhead of
the table. As an example, in Figure 2, we might use a dot notation similar to
that of Wang [26] to represent the grade in the top-left corner of the body as
((Term.1991.Winter,Assignments.Ass1),85). This also often requires linguistic
and/or domain knowledge to recover as well [28], but to a lesser extent.

Closer to the physical structure of images and text files we have the table
grid, which describes the arrangement of cells in rows and columns, and the
location of ruling lines and whitespace separators. This is often represented
by extending all separators to the boundaries of a table, and then assigning
cells and separators to locations within the resulting grid.

The main structural elements of a printed table are illustrated in Figure
2. Cells of the table are organized in rows and columns. Some cells such as the
column header ‘Assignments’ are spanning cells, which belong to more than
one column and/or row of the table. Cells are further distinguished as header
cells, which determine how data cells in the body of the table are indexed.
Header cells which are indexed by other header cells are termed nested row
and nested column headers, as appropriate.

Commonly there are four regions of a table, as illustrated in Figure 2.
The body contains the data cells, which normally are the values intended to
be most easily searched and compared within the table. Header cells appear
in the boxhead (labeling columns) and stub (labeling rows, when present).
Sometimes, as in Figure 2, there is a header in the top-left region of the table,
called the stub head. An adjacent set of cells in the table body is referred to
as a block.

3 The Recognition Strategy Language: Decision-Based
Specification

As a first step towards being able to more easily observe intermediate deci-
sions and combine decisions from different recognition algorithms, we have
devised the Recognition Strategy Language (RSL [11]). RSL provides a level
of formalization that lies between procedural and model-driven specifications
(see Section 2). Based on notes from our survey of table recognition [8], the
language allows models of table structure to be defined in terms of three basic
decisions for regions in an input file: classification, segmentation, and parsing
(binary relationships).

We refer to RSL as a decision-based specification because the basic unit
of formalization defines the inputs and acceptable outputs for decisions. An
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RSL program defines properties of interpretations, a single set of constant
and variable parameters used for making decisions, and the sequencing of the
decisions. Decision outcomes are provided at run-time by functions referred
to in the decision specifications, but which are defined outside of the RSL
program. Functions that provide the decision outcomes may use arbitrary
techniques to arrive at a decision.

As currently defined, RSL is a simple functional scripting language influ-
enced by the text-based approach taken in Tcl/Tk [29], with some similarities
to an expert system shell [30]. Decisions in RSL are similar to rules in an ex-
pert system in that both define transformations of a knowledge representation,
though RSL decisions define only possible transformations, and not concrete
transformations as in the case with rules. The ability to trace rule applica-
tions in an expert system shell is replaced by record-keeping and annotation
in RSL, and RSL specifications are sequential, and not declarative (expert
system shells often support applying rules using various search algorithms).

RSL strategies may be interpreted for rapid development, or compiled.
RSL has been implemented using the TXL language [31], which is a func-
tional language for rapid prototyping that has been used for a wide array of
applications including source code transformation, design recovery, and pat-
tern recognition [32, 33].

In the remainder of this section we provide an overview of RSL and a
simple example of an RSL program and its execution.

3.1 Transforming Logical Structure Interpretations in RSL

Interpretations of logical structure are represented by attributed directed
graphs in RSL. Graph nodes represent geometric regions of an input file (R),
and graph edges represent relations on regions. The contains relation defines
the combination of regions into region segments (S), and additional binary
relations may be defined (E). The main elements of an interpretation in RSL
are:

• V , the set of expressible geometric locations in an input file, defined using
a set of functions. Currently in RSL there are only two functions used to
define V : one for bounding boxes, vBB (defined by top-left, bottom-right
corners), and another for polylines, vl (a list of points).

• R ⊆ (I ×V ), the set of input file regions used in an interpretation (defines
nodes of the graph). I is a set of legal identifiers. Each region in R has a
unique identifier, but regions may have identical locations

• S = {(S1 ⊆ R, r1 ∈ R), . . . , (Sn ⊆ R, rn ∈ R)}, the set of region segments
(regions containing other regions). Each set of regions Sj ⊆ R is unique,
and defines a region rj ∈ R: currently in RSL this region is located at the
bounding box of the regions in the segment (Sj)

• C = {(i1 ∈ I, C1 ⊆ R), . . . , (in ∈ I, Cn ⊆ R)}, the regions associated with
each region type identified by ij ∈ I (e.g. Word, Cell, Row, and Column)
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Fig. 3. RSL Decision Types for Transforming Interpretations. For the example
inputs and outputs, only accepted hypotheses are shown.
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• E = {(i1 ∈ I, E1 ⊆ R2), . . . , (in ∈ I, En ⊆ R2)}, defines binary relations
on regions for relation types identified by ij ∈ I (e.g. horizontal adjacency)

• A0, the set of named attributes associated with elements of R, S, and E
in the interpretation provided as input (I0). Attribute values are lists of
strings or floating point numbers

Input to an RSL program is an initial interpretation (I0) that defines the
initial sets of regions, segments, region classes, and region relations (R, S, C,
and E) and their attributes (A0). Within A0, the file described by the inter-
pretation is represented by a single region, with the name of the file provided
as an attribute of the region. For example, image files may be represented by
a region of type Image with a text attribute FILE NAME. Currently only
elements in the input interpretation I0 are permitted to have additional at-
tributes (to avoid side-effects [34]).

The output of an RSL program is a set of accepted interpretations, with
each interpretation annotated with a complete history of the model operations
that produced it. This allows all intermediate states of an interpretation to be
recovered. While RSL supports the selection of multiple alternatives at each
decision point [34], here we will consider only the case where each decision
selects exactly one alternative, producing a single interpretation as output.

Figure 3 summarizes the available decision types for transforming individ-
ual interpretations in RSL. Shown on the left of each row is the first line of
an RSL decision specification. Each decision type indicates the interpretation
elements that define the set of possible outcomes at run-time. In the case of
create and replace, the alternative outcomes are implicitly defined using
the set of all possible input regions (V ). Figure 5 illustrates how alternatives
are produced for a few decision types.

Examples of input and output interpretations are provided for each of
these decision types in Figure 3. Some alternate forms for the decision types
are also given. For example, more than one region type may be used to define
both the regions to classify and the possible classes in a classify operation.

Decisions that generate hypotheses either classify, segment, or relate re-
gions, while the reject decision type discards hypotheses. The replace,
resegment, and merge operations both assert and reject hypotheses. replace
returns sets of regions of a given type, replacing each with a new region of the
same type. merge and resegment reject a region type for regions, replacing
these with new region segments of the same type. merge combines regions and
segments into new ones, while resegment is more general, and may be used
to split segments as well (see examples in Figure 3).

RSL uses a simple method for classification in which all input regions
are classified as at most one of the possible output classes (some subset of
the region types in C): selecting no class indicates rejection. Segmentation
operators simultaneously define segments and assign a type to each segment
(altering S and C). Relating operations update the region edge sets in E.
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Additional decision types for altering parameters of decision functions and
accepting and rejecting interpretations are defined within RSL [34]. Other
than to accept all interpretations produced before a strategy completes (see
bottom of Figure 4), these are unused in any of the strategies described in
this chapter.

3.2 A Simple RSL Strategy

Figure 4 provides an example of a simple RSL strategy, and Figure 5 shows an
example execution of the first three decisions of the main function. The input
interpretation shown in Figure 5 contains three Word regions. As discussed
in the previous section, the decision type (first line) of each decision operator
defines a fixed set of possible outcomes for the associated external decision
function. External decision functions and the set of possible alternatives are
shown in rounded boxes in Figure 5. Selected alternatives are returned as text
records, which are first validated and then used to specify a transformation
to apply to the interpretation. RSL records all the decision outcomes, and
annotates changes made to the interpretation within the interpretation itself
when applying a transformation.

In Figure 4, the model regions and model relations sections define the
set of region and relation types for interpretations used in the strategy (i.e. de-
fine the elements of C and E). Any other relations or region types in the input
interpretation are left intact, but otherwise ignored by the strategy. Decisions
which refer to types not provided in these sections will produce a syntax er-
ror. The recognition parameters section defines a series of static (constant)
and adaptive (variable) parameters for use in the external decision functions.
Static parameters are indicated using a prefix ‘s’ (e.g. sMaxHorDistance in
Figure 4), and adaptive parameters using a prefix ‘a’ (e.g. aMaxColSep in
Figure 4). All parameters may be string or floating point number-valued.

Control flow is specified in RSL using strategy functions, which define a
sequence of decision operations and calls to other strategy functions. Recur-
sion is permitted: see the recursiveStrategy in Figure 4. Each strategy function
takes the current set of interpretations and parameter values as input, and
produces a new set of interpretations as output. For conciseness, this is im-
plicit rather than explicit within an RSL program (i.e. syntactically strategy
functions look like procedures, but they are in fact functions).

Following convention, execution begins with the main strategy function,
which is passed the input interpretation and the initial set of values for the
adaptive parameters defined in the recognition parameters section.

There is only one form of conditional statement in RSL which acts as
a guard for strategy functions. This statement prevents interpretations not
selected by an external decision function from being altered by a strategy
function, and must appear at the beginning of a strategy function declaration.

For example, in Figure 4 a for interpretations statement is used to
define the stopping point for the recursiveStrategy. The statement given calls
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an external decision function adjacencyIncomplete for each current inter-
pretation, using the aMaxColSep and aMaxHorSep parameters. adjacency-
Incomplete is required to specify which of the current interpretations the
recursiveStrategy may be applied to.

The observing keyword is used to add visible types to the interpretations
passed to external decision functions; by default, only the interpretation el-
ements that may be altered by the decision are visible (these are called the
scope types). For example, for classification operations, the visible regions in-
clude those associated with the types of input regions to be classified, but
none of the possible output classes are visible unless they are also an input
type or are explicitly added using observing. The create decision type is
unique in that by default no region types are visible in the interpretations
passed to the decision function: all visible types must be explicitly listed in
an observing statement.

However, the sets of regions and region segments (R∪S) in the interpreta-
tion are always visible to all external decisions. Consider Decision 2 in Figure
5, where the regions associated with Word are visible, but not their type. As
one would expect, only parameters explicitly passed to the external decision
function are visible for each decision.

3.3 Handley and Hu et al. Algorithms in RSL

As a proof of concept, we have re-implemented two table structure recognition
algorithms in RSL [1, 12]. All external decision functions were implemented
using TXL. These algorithms were chosen because they were part of a small
set of algorithms described in enough detail to permit replication, and because
they exhibited a degree of sophistication. Both algorithms are described pro-
cedurally, as sequences of operations.

As a brief summary, both algorithms recover table structure given a list
of input Line and Word regions (note that the Hu et al. algorithm ignores
the Line regions). The Handley algorithm uses a strictly geometry-based ap-
proach, in which Word regions are all hypothesized as Cell regions, and then
merged in a series of steps which makes use of weighted projection profiles
and cell adjacency relationships. The Hu et al. algorithm starts by detecting
columns based on a hierarchical clustering applied to the horizontal spans
of Word regions, detects the table boxhead, stub and rows of the table, and
finally Cells in the body of the table. The Hu algorithm makes use of limited
(but powerful) lexical information in its analysis; text in input Word regions
are classified as alphabetic or alphanumeric. Within RSL, the text of words
is represented as attributes of the input Word regions (i.e. the word text is
defined within A0).

Reflecting their different intended applications, the Handley algorithm
seeks only to recover table cells, while the Hu algorithm returns detected
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model regions
Word Cell Header Entry Image

end regions

model relations
adj right close to

end relations

recognition parameters
sMaxHorDistance 5.0 % mms

aMaxColSep 20.0 % mms

aMaxHorSep 25.0 % mms

end parameters

strategy main

relate { Word } regions with { hor adj } using
selectHorizAdjRegions(sMaxHorDistance)

segment { Word } regions into { Cell } using
segmentHorizAdjRegions()

observing { hor adj } relations

classify { Cell } regions as { Header, Entry } using
labelColumnHeaderAndEntries()

...

recursiveStrategy

accept interpretations
end strategy

strategy recursiveStrategy

for interpretations using
adjacencyIncomplete(aMaxColSep,aMaxHorSep)

observing { Word, Cell } regions { close to } relations
...

resursiveStrategy

end strategy

Fig. 4. A Simple RSL Strategy

rows, columns, and cell indexing structure for the table. Please note that we
have modified the Hu algorithm with an extra step to define textlines using a
simple projection of Word regions onto the Y-axis, defining textlines at gaps
greater than a given threshold value. This was necessary because the algorithm
was originally specified for detecting table structure within text files.
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RSL specifications for the two algorithms are available [34]; the Handley
algorithm is specified in roughly 540 lines of RSL, and the Hu algorithm in
about 240 lines. These lengths include significant commenting, but not code
for the external decision functions. The external functions were implemented
in roughly 5000 lines of TXL for the Handley algorithm, and roughly 3000
lines of TXL for the Hu algorithm. Small changes were made to these RSL
strategies in order to produce the results shown later in this chapter, in par-
ticular renaming common region types to make them more explicit. Some
bugs in the implementation of the external decision functions for the Handley
algorithm were also corrected, and the performance results provided later in
this chapter for the Handley algorithm are better than those reported earlier
[34, 35] as a result.

4 Static Analysis of RSL Specifications

Useful insights can be gained from examining static dependencies within an
RSL specification, and by comparing static dependencies between algorithms.
In this section, we illustrate this process using Figure 6, which provides table
model summaries for the Handley and Hu algorithms. First we describe how
these table model summaries are derived from a static analysis of the RSL
specifications. Next we discuss insights obtained from examining Figure 6, re-
garding comparisons and contrasts between the Handley and Hu algorithms.
This discussion is based on static analysis; dynamic aspects of the algorithms
are treated in Section 5.

4.1 Construction of Table Model Summaries

RSL specifications consist of a sequence of decision operations. Each decision
operation has an associated set of regions and relation types, a decision func-
tion, and decision parameters. Each region or relation type T that may be
altered by an RSL decision operator R has four dependencies:

1. On region types used to define the output model operations for
R. These are the scope types provided as input to a decision (see
Section 3.2)

2. On observed region or relation types (these follow the observing
keyword)

3. On the decision function used for R
4. On parameters used by the decision function for R

These per-decision dependencies may be used to construct data dependency
graphs. These graphs describe how inputs are used to produce outputs, and
are commonly used in software engineering and analysis [36]. Once a data
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a. Handley

Textline

Boxhead

Row_Header

Alpha_Column

NonAlpha_Column

Stub

Inconsistent_Line

Consistent_Line

Core_Line

Partial_Line

Cluster

Alpha_Word

NonAlpha_Word

indexes

*All

Row

indexes

*All
CellColumn_Header

Column

Word

REGION

b. Hu et al.

Fig. 6. Table Model Summaries for Two Algorithms: (a) Handley and (b) Hu et al.
Boxes represent region types, with thick borders indicating input types (Word, Line,
and REGION ). Gray boxes show types common to both algorithms. Labeled dashed
lines are relations between region types. Solid lines represent segmentation opera-
tions, and dash-dotted lines represent classification operations
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dependency graph has been constructed, additional analyses of an RSL speci-
fication can be made. For example, we can automatically determine the set of
decision operations and types associated with a particular decision function.
As another example, we can determine which region and relation types may
be affected by a given decision parameter. These analyses are analogous to the
techniques of backward and forward program slicing [37], respectively (please
note that slicing requires information about decision sequences not shown in
Figure 6).

The summaries of table model structure shown in Figure 6 are simple
data dependency graphs which are produced as follows. We compute only
dependencies of type 1: dependencies between output types and scope types
that define the alternative outcomes. Then we filter all operations that merge
and reject regions and relations. The resulting graph summarizes the table
model in terms of relationships between scope types and output types. Figure
6 does not represent reject and merge operations because these only modify
interpretations within a single type, either removing or combining elements
of that type, and we wish primarily to represent relationships between types.
Alternative summaries that incorporate merge and reject operations are of
course possible.

4.2 Discussion of Table Model Summaries

In Figure 6, boxes represent region types. The three input types (Word, Line,
and REGION ) are shown in boxes with thick borders. Region types common
to both algorithms are shown in gray boxes. Relations between region types
are represented using labeled dashed lines (e.g. indexes for the Hu algorithm).

The three basic inference types used in RSL are represented using different
arrow types: segmentation operations are represented by solid lines, classifica-
tion by dash-dotted lines, and relations by labeled dashed lines. Segmentation
and relation dependencies are drawn as arrows from output types to the scope
types on which they depend. For ease of reading, we have reversed the arrow
direction for classification operations; arrows representing classification are
drawn from scope types (those to be classified) to output types.

To indicate where classifications have more than one output class, con-
necting arcs are used. For example, in the Handley algorithm, Line regions
may be (exclusively) classified as horizontal (Hline) or vertical (Vline) lines,
or neither (see Section 3). The annotation *All is used to indicate labelings,
trivial classifications where all regions of the input type have been labeled as
the output type. For example, for at least one decision all Word regions are
labeled as Cell regions in the Handley algorithm, and Cluster regions in the
Hu algorithm. Though neither implemented strategy does so, arcs could also
be used to represent segmentation operations which combine multiple region
types into a segment (region) type.

The type REGION includes the set of all input regions expressible in RSL.
Currently this is all bounding boxes and polylines expressible within the input



88 R. Zanibbi et al.

image, as defined by the set V (see Section 3.1). Elements of REGION are
not promoted directly to a model region type unless a create or replace
operation is used. In the Handley algorithm, many input regions are directly
promoted to various types after geometric analyses (e.g. after projecting cells
and finding minima in histograms, to define rows and columns). In the Hu
algorithm, only Textline regions are produced by directly classifying input
regions, in the preprocessing step that we added to the algorithm.

The graphs shown in Figure 6 can be interpreted similarly to semantic
networks [38]. Segmentation edges correspond roughly to ‘has-a’ edges, and
classification edges correspond roughly to ‘is-a’ edges, with the remaining
edges defining other binary relationships (e.g. adjacency). Unlike a semantic
net, non-binary relationships are represented in the graph, using and-or re-
lationships. In this way, each unique set of relationships between scope and
output types are represented separately, as an ‘or’ of ‘ands’.

To illustrate the information that can be read directly from Figure 6,
consider the Textline regions in the Hu algorithm. The graph edges connecting
to the Textline box in Figure 6b tell us the following:

1. Textline regions may be segmented into Row regions
2. Word regions may be segmented into Textline regions
3. Image REGION s may be classified as a Textline region
4. A Textline region may be classified as either an Inconsistent Line

or Consistent Line, or neither
5. A Textline region may be classified as either a Partial Line or

Core Line, or neither

Despite their simplicity, these table model summaries provide useful infor-
mation for analyzing the implemented algorithms. First we discuss the region
types which are common and unique to each algorithm. Both algorithms uti-
lize Word, Cell, Row, Column, and Column Header regions. However, the
Handley algorithm takes lines (underlines and ruling lines in the table) into
account, and defines spatial relationships that are not used in the Hu algo-
rithm. The Hu algorithm on the other hand makes greater use of classification
operations, particularly for Column, Textline, and Word regions. The Hu al-
gorithm also explicitly defines Boxhead and Stub regions, which the Handley
algorithm does not.

Figure 6 also shows interesting differences between the relationships that
occur among the common regions. In the Handley algorithm, Cell regions are
classified as Column Header regions, while at some point in the Hu algorithm,
all Column Header regions are classified as Cells. In the Handley algorithm,
Column and Row regions contain Cells. In contrast, the Hu algorithm com-
poses Column and Row regions as follows: Column regions contain either Cell
or Word regions (but not both), whereas Row regions contain either Cell or
Textline regions, but not Word regions. The Hu algorithm defines an index-
ing relation from column headers to Columns of headers, while the Handley
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algorithm has no representation of indexing structure (as the algorithm was
not designed to address that problem).

This simple table model summary provides a useful course-grained view of
similarities and differences between the table models used by these two algo-
rithms. The relationships provided in the table model summaries are also
useful when debugging and during evaluation, as we will see in the next
section.

5 Evaluating the Accuracy of Decisions

The three main criteria for evaluating a recognition algorithm are accuracy,
speed, and storage requirements. Here, we concern ourselves solely with ac-
curacy but we acknowledge that speed and storage requirements are nearly
as important for real-world applications (e.g. for on-line interactive applica-
tions), and that some form of trade-off often needs to be made between these
three criteria.

Evaluating the accuracy of an algorithm means assessing the ability of the
algorithm to produce interpretations that meet the requirements of a given
task [10]. This is normally done using test data, for which the ground-truth
is known (significant difficulties in defining ground truth for tables have been
discussed in the literature [39, 40]). Normally evaluation of recognition algo-
rithms focuses on comparing the final interpretations accepted by algorithms
[3, 41, 42, 43, 44, 45].

In this section we use the decision-based approach to evaluate accuracy of
recognition by considering the decision process used to produce results. We
discuss characterizing individual decisions made by a recognition algorithm
as good or bad (Section 5.1), and we augment the traditional measures of
recall and precision with the new measures of historical recall and historical
precision (see Section 5.2).

5.1 Evaluating the Accuracy of Individual Decisions

Our goal is to measure the accuracy of individual recognition decisions, and
the accuracy of sequences of recognition decisions. This detailed information
is useful for planning improvements to a recognition algorithm, and provides a
basis for learning algorithms which seek to automatically improve recognition
performance.

In our evaluation of decision accuracy, we are concerned only with decisions
which affect the comparison with ground truth. It is common for algorithms
to hypothesize many objects and relationships that aren’t part of the inter-
pretation space used for evaluation. For example, the algorithm comparisons
we report in Section 6 use a ground truth that defines the location of cells,
but the ground truth does not identify which subset of cells are header cells.
The reason we did not record header cells in our ground truth is that one
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of the algorithms does not aim to identify all header cells. The ground truth,
and the comparisons based on ground truth, must be restricted to objects and
relationships that are identified by all the algorithms.

In order to define what constitutes a ‘good’ decision, we first define cor-
rect, complete, and perfect decisions. Each decision to apply an interpretation
model operation results in asserting and/or rejecting hypotheses. In RSL, each
decision record produced by a decision function corresponds to a set of model
operations to apply to the current interpretation, chosen from a space of al-
ternative model operations (see Figure 5). Examples for decision types are
provided in Section 6.3.

A decision is correct if all operations selected generate only valid hypothe-
ses and/or reject only invalid hypotheses. A decision is complete if it selects
the set of all correct operations in the set of alternatives that alter the in-
terpretation (e.g. re-classifying a Word as a Cell is no more complete than
not selecting this redundant operation). A perfect decision is both correct and
complete; all selected alternatives are correct, and all correct alternatives are
in the set. For the case where no alternatives are selected, this is either a per-
fect decision (when all alternatives are incorrect), or an incomplete decision
(when correct alternatives exist).

Using these definitions, ‘good’ decisions lie somewhere between perfect
decisions and those that are totally incorrect. One could characterize a deci-
sion using recall and precision metrics (see the next subsection), to give the
proportion of correct alternatives selected, and the proportion of selected al-
ternatives that are correct. These metrics could then be thresholded, or used
to assign fuzzy membership values for the set of ‘good’ decisions. More infor-
mally, one might consider any decision that is perfect, correct but incomplete,
or complete and mostly correct to be a ‘good’ one.

We could characterize a sequence of decisions (at those decisions for which
evaluation information exists) similarly, in terms of distributions of recall
and precision for selecting valid model operations. The metrics might also
be weighted based on the location of valid operations within the sequence of
decision outcomes, to weight earlier decisions more heavily for example.

These are internal performance measures which characterize decisions
based on their associated alternative outcomes. While we will only touch on
these briefly here, we believe that these may provide a basis for devising table
recognition algorithms based on game-theoretic principles such as mini-max
optimization [46, 10].

5.2 Historical Recall and Precision

The traditional detection metrics recall and precision measure how similar an
algorithm’s final interpretation is to the ground truth interpretation. Here
we introduce historical versions of these measures [35]. Informally stated,
the historical measures give an algorithm credit for correct hypotheses that
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Fig. 7. Recall, Precision, Historical Recall, and Historical Precision

it made somewhere along the way, even if the algorithm later rejected these
hypotheses. The historical measures can be evaluated at any point during
algorithm execution; this information provides valuable insight into the algo-
rithm’s treatment of hypothesis generation and rejection.

Figure 7 illustrates sets of hypotheses and assertions used in our discussion.
At a given point in time, the set of generated hypotheses produced by an
algorithm (e.g. cell locations) is defined by the union of accepted (A) and
rejected (R) hypotheses. We assume that at any given time, every hypothesis is
either accepted or rejected, but not both. The validity of individual hypotheses
within A and R is determined using GT , a set of ground truth declarations
which are taken to be valid (e.g. a set of cell locations taken to be valid). The
set of true positives (TP ) is defined by the intersection of accepted hypotheses
and ground truth (A ∩GT ). Similarly, the set of false negatives (FN), which
consists of ground truth elements that have been proposed and rejected, is
defined by the intersection of rejected and ground truth elements (R ∩ GT ).

Also shown in Figure 7 are recall and precision metrics, which describe
the ratio of true positives to recognition targets (|TP |/|GT |) and accepted
hypotheses (|TP |/|A|), respectively. Historical recall and precision describe
the recall and precision of the set of generated hypotheses (A∪R). Together,
the true positives and false negatives comprise the set of ground truth elements
that have been generated (TP ∪ FN). Historical recall is the proportion of
ground truth hypotheses that have been generated (|TP ∪ FN |/|GT |), while
historical precision is the proportion of generated hypotheses that match
ground truth (|TP ∪ FN |/|A ∪ R|). Note that if no hypotheses are rejected
(i.e. R = {}), then the ‘conventional’ and historical versions of recall and
precision are the same. The key difference here is that the historical metrics
take rejected hypotheses into account, while the conventional ones do not.
For an example of this, compare Figure 11a to Figure 11b; in Figure 11b, cell
hypotheses are never rejected.
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Conventional and historical recall can be directly compared, as they both
describe coverage of the set of ground truth elements. Note that historical
recall will always be greater than or equal to recall (refer again to Figure
11). Also, historical recall never decreases during a recognition algorithm’s
progress, while recall may increase or decrease at any point. The difference
between historical and conventional recall is the proportion of recognition
targets that have been falsely rejected (|FN |/|GT |).

It is harder to relate conventional and historical precision. Precision mea-
sures the accuracy of what is accepted as valid, while historical precision
measures the accuracy (or efficiency) of hypothesis generation. Put another
way, historical precision quantifies the accuracy of hypotheses that the algo-
rithm generates and accepts at some point.

6 Decision-Based Comparison of Algorithms in RSL

In this section we will compare the recognition accuracy of our RSL implemen-
tations of the Handley and Hu et al. table structure recognition algorithms. We
first consider a conventional results-based evaluation, in which the complete
sequence of recognition decisions are evaluated as a whole, without reference
to rejected hypotheses. We then contrast this with a decision-based compari-
son, in which the effects of individual decisions may be observed, and rejected
hypotheses are taken into account. Using this information, we then design a
new strategy which combines the observed strengths of the two algorithms,
to produce a better final result. All metrics presented here are in terms of
‘external’ accuracy, i.e. we compare the state of the interpretation to ground
truth after each decision affecting the hypothesis types in question.

Our goal here is not to evaluate these two algorithms in any real sense, but
to illustrate decision-based comparisons of algorithms. We will consider only
results for a single, reasonably challenging table as input, on which we will
try (informally) to optimize recognition. For a real-world application we would
train these algorithms by optimizing performance metrics such as conventional
and historical recall and precision over a representative sample of the set of
tables that we wish to recognize.

Input to both algorithms is a set of Word regions with an associated text
attribute (set to ‘a’ for words containing mostly alphabetic characters, and
‘1’ otherwise), and a set of Line regions (as seen in Figure 1b). All words in
cells were provided as input; any words not within the table (e.g. the table
title and footnotes) were not provided.

As can be seen in Figure 6, the Hu algorithm does not pay any attention to
the Line regions, and leaves them in the produced interpretation untouched.
As the classification decisions shown in Figure 6 suggest, the Hu algorithm
makes use of the text attribute associated with words; the Handley algorithm
makes its analysis based on region geometry and topology alone, and ignores
these attributes.
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a. Handley Cells b. Hu et al. Cells

Handley Hu et al. Common

TP 25 45 24
FP 13 7 0

S-GT 0 3 0
M-GT 27 4 4

SM-GT 0 0 0
O-GT 0 0 0

FA 0 0 0

Recall 48.1% 86.5%
Precision 65.8% 86.5%

c. Cell Hypothesis Sets and Metrics d. Ground Truth Cells

Fig. 8. Cell Output for UW Database Table (Page a038). Shown in (c) are the cell
hypothesis set sizes (True Positives (TP), False Positives (FP), Split Ground Truth
(S-GT), Merged Ground Truth (M-GT), Split-and-Merged Ground Truth (SM-GT),
Missing Ground Truth (O-GT), and False Alarms (FA)) and recall and precision
metrics. For each hypothesis set type, the size of the intersection of the Handley and
Hu sets is shown in the Common column

6.1 Conventional Evaluation

Normally in the table recognition literature when comparing two algorithms,
we consider only the final interpretations, for example as shown in Figure
8. Shown are the final cell hypotheses for both algorithms, along with the
ground truth interpretation they were evaluated against. Also shown are the
sets of true positive, false positive, and errors along with the resulting recall
and precision metrics. No errors of omission (cells whose words are entirely
missed) or ‘false alarms’ (cells whose contents do not belong to any ground
truth cells) are made, because we provide all words in cells, and only words
in cells in the input. There are also no ‘spurious’ cells (splitting and merging
of ground truth producing many-to-many matches with ground truth cells).
The approach to error analysis we are using here is based on that of Liang
[44]. However, we are presenting errors in terms of ground truth cells here;
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for example, the Hu algorithm produces seven false positives, which incorrectly
split three ground truth cells and merge four. The Handley algorithm produces
thirteen false positives, which incorrectly merge 27 cells.

As can be seen at a glance, both algorithms assign words to the appropriate
column. It is the decisions which assign words and cells to rows that have
produced the errors in the final interpretations.

In the rightmost column of Figure 8c, we’ve shown the size of the inter-
section of each cell hypothesis set type. 24 of the 25 true positives proposed
by the Handley algorithm are also proposed by the Hu algorithm; the remain-
ing cell is the ‘Total pore space (percent)’ column header (see Figure 8d). In
Figure 8c we can see that the false positives proposed by the two algorithms
are disjoint; the algorithms make different errors.

Figure 8c also describes how ground truth cells are mis-recognized by the
two algorithms (i.e. what specific errors are associated with the false positives).
All four of the cells incorrectly merged with words from other cells by the Hu
algorithm are also over-merged by the Handley algorithm (M −GT ). Looking
at Figures 8a, 8b, and 8d, two of these over-merged cells are located in the
leftmost column, and two are located in the table body in the fourth and
sixth columns, near the superscripted threes (3). All remaining errors for the
Handley algorithm result from merging cells across rows of the table (M−GT ),
while the Hu algorithm also splits (S − GT ) two cells near the superscripted
threes, and splits the rightmost column header (‘Total pore space (percent)’,
as mentioned earlier).

Looking at the recall and precision metrics, the Hu algorithm has higher
values for both. From this and our prior analysis, it appears that the Hu al-
gorithm performs better recognition of the cells in this particular table (i.e.
makes better decisions) than the Handley algorithm.

6.2 Metrics for Individual Decisions

We now have a reasonably detailed comparison of the outputs of the two
algorithms. We also have determined which types of decisions might be studied
more closely in order to improve recognition of the table shown in Figure 8:
those that affect cells and rows. So our next question is this: which are the
decisions that need to be improved, and where are they within our algorithm
implementations?

Currently in common practice, answering this question would be dealt
with in an ad-hoc way, often by outputting intermediate interpretations at
various points, evaluating them, and then trying to determine which parts of
the algorithm implementation do not generate or filter cell and row hypotheses
as needed. This often produces informal and partial error analyses. We believe
that the flaws in this process are in large part due to the effort required to
detect errors in decision-making when decisions invoking model operations are
not distinguished within the syntax of the implementation language, nor in
the output interpretations.
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b. Cumulative Cell Hypotheses

Decisions

1 All words classified as cells
13 Merge cells with little horizontal separa-

tion which overlap vertically by roughly
more than half the height of the taller
bounding box

19 Merge cells within columns that overlap
vertically by roughly more than half the
height of the taller bounding box

32 Merge cells sharing column and row as-
signments

42 ‘Total pore space (percent)’ header cell
detected in boxhead

59 Merge cell in leftmost column alone in
its row with the cell below (‘Pryoclastic
flow,’)

85 Merge cells sharing estimated line and
whitespace separators for rows and
columns

Fig. 9. Detection of Cells Shown in Figure 1 by the Handley Algorithm. A represents
accepted hypotheses, and R represents rejected hypotheses



96 R. Zanibbi et al.

This is where the benefits of decision-based specification become most ap-
parent. The syntax of a decision-based specification language such as RSL
explicitly represents decisions to invoke model operations; algorithms are
specified as sequences of possible model operation applications. Further, the
outputs of a decision-based language contain the entire history of model oper-
ation applications, including which decision(s) selected them. Hypotheses are
uniquely identified, and their complete history of creation, rejection, and re-
instatement are available in the output. Detecting decisions that cause errors
and reverting the output to intermediate states is carried out using simple fil-
tering and transformation of the output interpretation, rather than requiring
guesswork.

Changes in accepted cell hypotheses for the Handley algorithm are shown
in Figure 1, with each change indexed by the decision which produced it
(each corresponds to a decision operation in the RSL specification). Decisions
concerning cells which had no effect on the interpretation are not shown.

Figure 9 provides additional information about each decision in the Han-
dley algorithm that changed the cell hypotheses. At the bottom of the figure
a brief summary for each of these decisions is provided. Figure 9a illustrates
the changes made by each decision to the accepted and rejected sets of cell
hypotheses. These are shown as the number of newly proposed or rejected cells
that are accepted by each decision, and the number of accepted hypotheses
which are rejected by each decision. On the far left of the graph the number of
cells in ground truth is shown for comparison. For each decision we show the
decision number (in parentheses), and the number of cell hypotheses added to
the accepted (A) and rejected (R) sets. Ground truth hypotheses are shown
in light gray (true positive for A, false negative for R), and other hypotheses
are shown in dark gray (false positive for A, true negative for R).

Figure 9b illustrates the sets of accepted and rejected hypotheses after
each decision, i.e. the cumulative effects of the changes shown in Figure 9a.
Again, light gray is used to illustrate the number of accepted and rejected
hypotheses that match ground truth.

The cells produced by decisions in the Hu algorithm are shown in Figures
10a and 10b. Unlike the Handley algorithm, the Hu algorithm revises cell
hypotheses only twice for our example table. This is because the Hu algorithm
detects rows and columns before cells, and detects boxhead and stub head cells
before body and stub cells.

Similar to Figure 9a, Figure 10c illustrates changes in the sets of accepted
and rejected cell hypotheses for the Hu algorithm, while Figure 10d illustrates
the cumulative effect of the decisions (similar to Figure 9b). Because the Hu
algorithm never rejects cell hypotheses, R is always empty.

6.3 Evaluation and Error Analysis for Individual Decisions

Let us briefly try to characterize which are the ‘good’ decisions shown in
Figures 9 and 10. As discussed in Section 5, an internal evaluation of decisions
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Fig. 10. Cell Detection by Hu et al. Over Time. A represents accepted hypotheses,
and R represents rejected hypotheses

is with respect to their associated alternative outcomes, while the type of
metrics presented in Figures 9 and 10 are external evaluations, which compare
interpretations after each decision to goals (i.e. ground truth).

In terms of an internal evaluation, the Handley decision at time 42 is a
perfect decision which is both correct and complete; that is to say, of all the
possible cell merges, only the single valid alternative is selected. All other cells
used to define the possible merges are already correct or over-merged cells (as
can be seen from the cells shown at time 32 in Figure 1). The Handley decision
at time 19 is not a perfect decision, but we will claim that it is quite good,
as it is entirely correct (only valid merges are selected), though incomplete:
some valid merges within the set of alternatives are not selected, e.g. for some
of the column headers.

Both internally and externally, the remaining decisions made by the two
algorithms incorrectly merge cells, and lie somewhere between fairly good,
with a small number of errors (e.g. the Hu decisions, Handley time 13), and
detrimental, producing only errors, as at Handley time 85, when all assertions
and rejections are false. Looking at time 85 in Figure 9a, in the left bar we
see that all cells accepted by the decision are false positives (dark shading
indicates cells not in ground truth), and in the the right bar all cells rejected
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Fig. 11. Performance Metrics for Cell Hypotheses

by the decision are false negatives (light shading indicates cells in ground
truth).

Now let us identify which decisions in our RSL implementations caused
the errors in the final interpretations that we observed in Section 6.1. The
Hu algorithm splits a column header cell at Decision 86, and then proposes
the cells that have been incorrectly merged and split across rows in the stub
and body at Decision 93. We should point out that the errors related to su-
perscripts are caused by our projection-based textline detection addition to
the Hu algorithm, which does not take super and sub-scripts into account;
the original algorithm was designed for text files, which of course come with
textlines already defined. The Handley algorithm completes recognizing the
stub head and boxhead cells correctly, using a series of decisions ending at De-
cision 42, but over-merges cells across rows in the stub and body at Decisions
32, 59, and 85.

These errors may be determined automatically by searching the hypothesis
history for false positive cell hypotheses recorded in the output interpretation.
Here these errors may be found simply by looking at Figures 1 and 10.

6.4 Evaluating and Improving the Decision-Making Process

In addition to this hypothesis-level view, we can also use historical recall and
precision along with conventional recall and precision to give us an external,
higher-level view of the decision-making process. Figure 11 presents all four
of these metrics for each decision shown in Figures 1 and 10.

Most strikingly, note that our implementation of the Handley algorithm
has higher recall after Decision 19 than the recall of the Hu algorithm at any
point; if the algorithm had stopped at this point, it would have fared better
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Fig. 12. Results for Combining Decisions of the Hu et al. and Handley Algorithms.
First the Hu algorithm is applied, stopping after its first cell decision (for boxhead
and stub head cells). The original decision numbers for the Handley algorithm are
shown in brackets in (a). In the output, there are only two false positives, which
split one ground truth cell in the rightmost column (363)

in the conventional evaluation given in Section 6.1. At Decision 19 for the
Handley algorithm, the stub and body cells have all been correctly detected
with the exception of the cell with a prefix superscript (3) in the last column
of the table. Only five cells have not been correctly located: the incorrect body
cell, and four of the header cells (these correspond to the twelve false positives
at Decision 19, shown as the gray portion of the bar for accepted hypothesis
set in Figure 9b).

After Decision 19, the Handley algorithm recall and precision measures
start to decrease, and false negatives start being created. At Decision 32, thir-
teen valid cells are rejected; however, three new ground truth cells (column
headers) are produced, causing an increase in historical recall. As mentioned
earlier, Decision 42 is a perfect decision, and detects the rightmost column
header (increasing all metrics). The final two decisions decrease recall, pre-
cision, and historical precision, as they propose invalid merges. The histor-
ical precision for the Handley algorithm is uniformly low, partly because of
proposing all words as cells initially. This results in many invalid hypotheses
being generated. However, the historical recall is very high, and in fact only
one ground truth cell is never generated and considered: the ‘363’ cell in the
rightmost column of the body.

The Hu algorithm decisions have fairly high precision, and high final recall
(at Decision 93). However, the historical recall is considerably lower than that
of the Handley algorithm (it does not generate the ground truth cell missing
from the Handley algorithm’s hypothesis set, along with other cells). Note
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that the historical and conventional metrics are identical for the Hu algorithm,
because no cell hypotheses are ever rejected.

Can we combine the existing decisions of the Handley and Hu algorithms
to produce a result better than either algorithm in isolation? The answer
is yes, and the result for one such combination is shown in Figure 12. The
combination is produced by first running the Hu algorithm, stopping it after
it finishes identifying cells in the boxhead (Decision 86). In the output, we filter
all but Word, Line, and Cell region types. We then run the Handley algorithm
on the filtered output of the Hu algorithm, after making the following changes
to the Handley algorithm:

Decision 1: only words that do not already belong to a cell are classified as
cells (this preserves the detected header cells)

Decisions 32, 59, 86: are removed along with their supporting decision se-
quences (e.g. estimates of row and column structure)

No decision function parameters were altered.
In the combined strategy all the ground truth cells generated by the Han-

dley algorithm are detected, with identical historical and conventional recall
after each decision (one cell is still mis-recognized, as for the original algo-
rithms). At the final time, precision is higher than it is for either of the in-
dividual algorithms, while the historical precision has been improved relative
to the original Handley algorithm. While effective, this particular decision
sequence is likely over-fit to this particular table.

7 Conclusion

We have presented decision-based methods for specifying and comparing
recognition algorithms. The Recognition Strategy Language (RSL) is a first
attempt at formalizing recognition algorithms as sequences of decisions which
select among alternative model operations at run-time. Decision-based speci-
fications make a table recognition algorithm’s search within the space of pos-
sible interpretations defined by a model explicit, and allow more information
about an algorithms’ decision process to be automatically captured both stat-
ically and at run time. We have illustrated the decision-based approach using
RSL re-implementations of the Handley [1] and Hu et al. [12] table structure
recognition algorithms, and demonstrated by example how we can use the
additional information made available to improve recognition by combining
decisions from both.

Decision-based specification makes it possible to directly determine which
decisions in the recognition process affect a hypotheses. By capturing all hy-
potheses including those that are rejected, we can measure new metrics on the
set of hypotheses generated by an algorithm. We have presented two simple
but useful metrics that characterize generated hypotheses in terms of coverage
of the set of recognition goals (historical recall) and the accuracy/efficiency
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of hypothesis generation (historical precision). We believe that other useful
metrics may be defined, such as some measure of ‘fickleness’ that character-
izes how frequently hypotheses shift from between the sets of accepted and
rejected hypotheses.

In the future we wish to extend RSL to better support feature computa-
tions directly within an RSL program; currently all feature computations are
defined externally within the functions that make decisions at run-time. To
further support studying the combination of recognition strategies, we also
wish to explore new decision types that combine and select among decisions
and decision sequences within RSL programs. This would allow decision com-
binations to be produced automatically or semi-automatically, rather than
manually as we did in Section 6. Ultimately we would like to use decision-
based languages such as RSL for studying the problem of learning recognition
strategies [13, 14, 15].
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Summary. In the last years, the spread of computers and the Internet caused a
significant amount of documents to be available in digital format. Collecting them
in digital repositories raised problems that go beyond simple acquisition issues, and
cause the need to organize and classify them in order to improve the effectiveness and
efficiency of the retrieval procedure. The success of such a process is tightly related
to the ability of understanding the semantics of the document components and
content. Since the obvious solution of manually creating and maintaining an updated
index is clearly infeasible, due to the huge amount of data under consideration,
there is a strong interest in methods that can provide solutions for automatically
acquiring such a knowledge. This work presents a framework that intensively exploits
intelligent techniques to support different tasks of automatic document processing
from acquisition to indexing, from categorization to storing and retrieval.

The prototypical version of the system DOMINUS is presented, whose main char-
acteristic is the use of a Machine Learning Server, a suite of different inductive
learning methods and systems, among which the more suitable for each specific doc-
ument processing phase is chosen and applied. The core system is the incremental
first-order logic learner INTHELEX. Thanks to incrementality, it can continuously
update and refine the learned theories, dynamically extending its knowledge to han-
dle even completely new classes of documents.

Since DOMINUS is general and flexible, it can be embedded as a document
management engine into many different Digital Library systems. Experiments in a
real-world domain scenario, scientific conference management, confirmed the good
performance of the proposed prototype.

1 Introduction & Motivations

In the World Wide Web era, a huge amount of documents in digital format are
spread throughout the most diverse Web sites, and a specific research area,
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focused on principles and techniques for setting up and managing document
collections in a digital form, quickly expanded. Usually, these large repositories
of digital documents are defined as Digital Libraries, intended as distributed
collections of textual and/or multimedia documents, whose main goal is the
acquisition and the organization of the information contained therein.

During the past years a considerable effort was spent in the development
of intelligent techniques in order to automatically transform paper documents
into digital format, saving the original layout with the aim of reconstruction.
Machine Learning techniques have been applied to attain this goal, and a suc-
cessful application in preserving cultural heritage material is reported in [1].

Today, most documents are generated, stored and exchanged in a digital
format, although it is still necessary to maintain the typing convention of
classical paper documents. The specific problem we will deal with consists in
the application of intelligent techniques to a system for managing a collection
of digital documents on the Internet; such a system, aimed at automatically
extracting significant information from the documents, is useful to properly
store, retrieve and manage them in a Semantic Web perspective [2]. Indeed,
organizing the documents on the grounds of the knowledge they contain is
fundamental for being able to correctly access them according to the user’s
particular needs. For instance, in the scientific papers domain, in order to
identify the subject of a paper and its scientific context, an important role
is played by the information available in components such as Title, Authors,
Abstract and Bibliographic references. This last component in particular, with
respect to others, is a source of problems both because it is placed at the end
of the paper, and because it is, in turn, made up of different sub-components
containing various kinds of information, to be handled and exploited in dif-
ferent ways.

At the moment we are not aware of techniques able to automatically an-
notate the layout components of digital documents, without reference to a
specific template. We argue that a process is still necessary to identify the
significant components of a digital document through three typical phases:
Layout Analysis, Document Image Classification and Document Image Un-
derstanding. As widely known, Layout Analysis consists in the perceptual or-
ganization process that aims at identifying the single blocks of a document and
at detecting relations among them (Layout Structure); then, associating the
proper logical role to each component yields the Document Logical Structure.
Since the logical structure is different according to the kind of document, two
steps are in charge of identifying such a structure: Document Image Classifica-
tion, aiming at the categorization of the document (e.g., newspaper, scientific
paper, email, technical report, call for papers) and Document Image Under-
standing, aiming at the identification of the significant layout components for
that class. Once the class as been defined it is possible to associate to each
component a tag that expresses its role (e.g., signature, object, title, author,
abstract, footnote, etc.). We propose to apply multistrategy Machine Learn-
ing techniques along these phases of document processing where the classical
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statistical and numerical approaches to classification and learning may fail,
being not able to deal with the lack of a strict layout regularity in the variety
of documents available online.

The problem of Document Image Processing requires a first-order language
representation for two reasons. First, classical attribute-value languages de-
scribe a document by means of a fixed set of features, each of which takes
a value from a corresponding pre-specified value set; the exploitation of this
language in this domain represents a limitation since one cannot know a priori
how many components make up a generic document. Second, in an attribute-
value formalism it is not possible to represent and efficiently handle the re-
lationships among components; the information coming from the topological
structure of all components in a document turns out to be very useful in doc-
ument understanding. For instance, in a scientific paper, it is useful to know
that the acknowledgments usually appear above the references section and
in the end of the document, or that the affiliation of the authors is reported
generally at the beginning of the document, below or on the right of their
names.

The continuous flow of new and different documents in a Web repository
or in Digital Libraries calls for incremental abilities of the system, that must
be able to update or revise a faulty knowledge previously acquired for iden-
tifying the logical structure of a document. Traditionally, Machine Learning
methods that automatically acquire knowledge in developing intelligent sys-
tems, require to be provided with a set of training examples, belonging to a
defined number of classes, and exploit them altogether in a batch way.

Although sometimes the term incremental is used to define some learn-
ing method [3, 4, 5, 6], incrementality generally refers to the possibility of
adjusting some parameters in the model on the grounds of new observations
that become available when the system is already operational. Thus, classical
approaches require that the number of classes is defined and fixed since the
beginning of the induction step: this prevents the opportunity of dealing with
totally new instances, belonging to new classes, that require the ability to
incrementally revise a domain theory as soon as new data are encountered.
Indeed, Digital Libraries require autonomous or semi-autonomous operation
and adaptation to changes in the domain, the context, or the user needs. If any
of these changes happens, the classical approach requires that the entire learn-
ing process is restarted to produce a model capable of coping with the new
scenario. Such requirements suggest that incremental learning, as opposed to
classical batch one, is needed whenever either incomplete information is avail-
able at the time of initial theory generation, or the nature (and the kinds)
of the concepts evolves dynamically. E.g., this is the case of modifications in
time of typing style of documents that nevertheless belong to the same class
or of the introduction of a completely new class. Incremental processing allows
for continuous responsiveness to the changes in the context, can potentially
improve efficiency and deals with concept evolution. The incremental setting
implicitly assumes that the information (observations) gained at any given
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moment is incomplete, and thus that any learned theory could be susceptible
of changes.

This chapter presents the prototypical version of DOMINUS (DOcument
Management INtelligent Universal System): such a system is characterized by
the intensive exploitation of intelligent techniques in each step of document
processing from acquisition to indexing, from categorization to storing and
retrieval. Since it is general and flexible, it can be embedded as a document
management engine into many different Digital Library systems. In the fol-
lowing, after a brief description of the architecture of DOMINUS, the results
of the layout analysis on digital documents are discussed, with the interest-
ing improvements achieved by using kernel-based approaches and incremental
first-order learning techniques: the satisfying results in document layout cor-
rection, classification and understanding allow to start an effective structural
metadata extraction. Then, the categorization, filing and indexing tasks are
described with the results obtained in the effective retrieval of scientific docu-
ments. Finally, the application of the system in a real-world domain scenario,
scientific conference management, is reported and discussed.

2 The Document Management System Architecture

This Section briefly presents the overall architecture of DOMINUS, reported
in Figure 1. A central role is played by the Learning Server, which intervenes
during different processing steps in order to continuously adapt the knowl-
edge taking into consideration new experimental evidence and changes in the
context. The corresponding process flow performed by the system from the
original digital documents acquisition to text extraction and indexing is re-
ported in Figure 2.

The layout analysis process on documents in digital format starts with
the application of a pre-processing module, called WINE (Wrapper for the
Interpretation of Non-uniform Electronic document formats), that rewrites
basic PostScript operators to turn their drawing instructions into objects (see
Section 3). It takes as input a digital document and produces (by an in-
termediate vector format) the initial document’s XML basic representation,
that describes it as a set of pages made up of basic blocks. Due to the large
number of basic blocks discovered by WINE, that often correspond to frag-
ments of words, it is necessary a first aggregation based on blocks overlapping
or adjacency, yielding composite blocks corresponding to whole words. The
number of blocks after this step is still large, thus a further aggregation (e.g.,
of words into lines) is needed. Since grouping techniques based on the mean
distance between blocks proved unable to correctly handle the case of multi-
column documents, such a task was cast to a multiple instance problem (see
Section 3.1) and solved exploiting the kernel-based method proposed in [7],
implemented in a Learning Server module that is able to generate rewriting
rules that suggest how to set some parameters in order to group together
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Fig. 1. Document Management System Architecture

word blocks to obtain lines. The inferred rules will be stored in the Theories
knowledge base for future exploitation by RARE (Rule Aggregation REwriter)
and modification.

Once such a line-block representation is generated, DOC (Document
Organization Composer) collects the semantically related blocks into groups
by identifying the surrounding frames based on white spaces and the results
of the background structure analysis. This is an improvement of the original
Breuel’s algorithm [8], that finds iteratively the maximal white rectangles in
a page: here the process is forced to stop before finding insignificant white
spaces such as inter-word or inter-line ones (see Section 3.2).

At the end of this step, some blocks might not be correctly recognized. In
such a case a phase of layout correction is needed, that is automatically per-
formed in DOCG (Document Organization Correction Generator) by exploit-
ing embedded rules stored in the Theories knowledge base. Such rules were
automatically learned from previous manual corrections collected on some
document during the first trials and using the Learning Server.

Once the layout structure has been correctly and definitely identified, a
semantic role must be associated to each significant components in order to
perform the automatic extraction of the interesting text with the aim of im-
proving document indexing. This step is performed by DLCC (Document and
Layout Components Classifier) by firstly associating the document to a class
that expresses its type and then associating to every significant layout com-
ponent a tag expressing its role. Both these steps are performed thanks to
theories previously learned and stored in the Theories knowledge base. In
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Fig. 2. Document Management System Process Flow

case of failure these theories can be properly updated. The theory revision
step is performed by a first-order incremental learning system that runs on
the new observations and tries to modify the old theories in the knowledge
base. At the end of this step both the original document and its XML rep-
resentation, enriched with class information and components annotation, is
stored in the Internal Document Database, IDD.

Finally, the text is extracted from the significant components and the
Indexing Server is called by the IGT (Index Generator for Text) module
to manage such information, useful for an effective content-based document
retrieval.
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3 Layout Structure Recognition

Based on the ODA/ODIF standard, any document can be progressively parti-
tioned into a hierarchy of abstract representations, called its layout structure.
Here we describe an approach implemented for discovering a full layout hier-
archy in digital documents based primarily on layout information.

The layout analysis process starts with a preliminary preprocessing step
performed by a module that takes as input a generic digital document and
produces a corresponding vectorial description. An algorithm for performing
this task is PSTOEDIT [9], but it was discarded because it only applies to
PostScript (PS) and Portable Document Format (PDF) documents and returns
a description lacking sufficient details for our purposes.

Thus, a module named WINE has been purposely developed. At the mo-
ment, it deals with digital documents in PS or PDF formats, that represent
the current de facto standard for document interchange. The PostScript [10]
language is a simple interpretative programming language with powerful
graphical capabilities that allow to precisely describe any page. The PDF [11]
language is an evolution of PostScript that rapidly gained acceptance as a file
format for digital documents. Like PostScript, it is an open standard, enabling
integrated solutions from a broad range of vendors. In particular, WINE con-
sists of a rewriting of basic PostScript operators that turns the instructions
into objects. For example, the PS instruction to display a text becomes an
object describing a text with attributes for the geometry (location on the
page) and appearance (font, color, etc.). The output of WINE is a vector for-
mat describing the initial digital document as a set of pages, each of which
is composed of basic blocks. The descriptors used by WINE for representing a
document are the following:

box(id,x0,y0,x1,y1,font,size,RGB,row,string): a piece of text in the document,
represented by its bounding box;

stroke(id,x0,y0,x1,y1,RGB,thickness): a graphical (horizontal/vertical) line of
the document;

fill(id,x0,y0,x1,y1,RGB): a closed area filled with one color;
image(id,x0,y0,x1,y1): a raster image;
page(n,w,h): page information;

where: id is the block identifier; (x0, y0) and (x1, y1) are respectively the
upper-left/lower-right coordinates of the block (note that x0 = x1 for vertical
lines and y0 = y1 for horizontal lines); font is the the type font; size represents
the text size; RGB is the color of the text, line or area in #rrggbb format;
row is the index of the row in which the text appears; string is the text of the
document contained in the block; thickness is the thickness of the line; n rep-
resents the page number; w and h are the page width and height, respectively.
Figure 3 reports an extract of the vectorial transformation of the document.

Such a vectorial representation is translated into an XML basic represen-
tation, that will be modified as long as the layout analysis process proceeds,
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Fig. 3. WINE output: Vectorial Transformation of the Document

in order to represent the document by means of increasingly complex aggre-
gations of basic components progressively discovered by the various layout
analysis phases.

3.1 A Kernel-Based Method to Group Basic Blocks

The first step in the document layout analysis concerns the identification of
rules to automatically shift from the basic digital document description to a
higher level one. Indeed, by analyzing the PS or PDF source, the “elementary”
blocks that make up the document, identified by WINE, often correspond
just to fragments of words (see Figure 3), thus a first aggregation based on
their overlapping or adjacency is needed in order to obtain blocks surrounding
whole words (word-blocks). Successively, a further aggregation starting from
the word-blocks could be performed to have blocks that group words in lines
(line-blocks), and finally the line-blocks could be merged to build a paragraph
(frames). As to the grouping of blocks into lines, since techniques based on
the mean distance between blocks proved unable to correctly handle cases of
multi-column documents, we decided to apply Machine Learning approaches
in order to automatically infer rewriting rules that could suggest how to set
some parameters in order to group together rectangles (words) to obtain lines.
To do this, RARE uses a kernel-based method to learn rewriting rules able to
perform the bottom-up construction of the whole document starting from the
basic/word blocks up to the lines. Specifically, such a learning task was cast to
a Multiple Instance Problem and solved exploiting the kernel-based algorithm
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Fig. 4. Block Features

proposed in [7]. In our setting, each elementary block is described by means
of a feature-vector of the form:

[Block Name, Page No, Xi, Xf , Yi, Yf , Cx, Cy, H, W ]

made up of parameters interpreted according to the representation in Figure 4,
i.e.:

• Block Name: the identifier of the considered block;
• Page No: the number of page in which the block is positioned;
• Xi and Xf : the x coordinate values, respectively, for the start and end

point of the block;
• Yi and Yf : the y coordinate values, respectively, for the start and end point

of the block;
• Cx and Cy: the x and y coordinate values, respectively, for the centroid of

the block;
• H, W : the distances (height and width) between start and end point of,

respectively, x and y coordinate values.

Starting with this description of the elementary blocks, the corresponding
example descriptions, from which rewriting rules have to be learned, are built
considering each block along with its Close Neighbor blocks: Given a block
On and the Close Neighbor blocks CNOnk, with their own description:

[On, Page No, Xni, Xnf , Yni, Ynf , Cnx, Cny, Hn, Wn],
[CNOnk, Page No, Xnki, Xnkf , Ynki, Ynkf , Cnkx, Cnky , Hnk, Wnk]

we represent an example E by means of the template [On, CNOnk], i.e.:
[New Block Name, Page No, Xni, Xnf , Yni, Ynf , Cnx, Cny,
Xnki, Xnkf , Ynki, Ynkf , Cnkx, Cnky , Dx, Dy]

where the New Block Name is a name for the new block built by appending
the names of both the original blocks, the information about the x and y
coordinates are the original ones and two new parameters, Dx and Dy, contain
the information about the distances between the two blocks.

Fixed a block On, the template [On, CNOnk] is used to find, among all
the word blocks in the document, every instance of close neighbors of the
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considered block On. Such an example (set of instances) will be labelled by
an expert as positive for the target concept “the two blocks can be merged”
if and only if the blocks On and CNOnk are adjacent and belong to the same
line in the original document, or as negative otherwise. Figure 5 reports an
example of the selected close neighbor blocks for the block b1. All the blocks
represented with dashed lines could eventually be merged, and hence they will
represent the positive instances for the concept merge, while dotted lines have
been exploited to represent the blocks that could not be merged, and hence
will represent the negative instances for the target concept. It is worth noting
that not every pair of adjacent blocks has to be considered a positive example
since they could belong to different frames in the considered document. Such
a situation is reported in Figure 6. Indeed, typical cases in which a block
is adjacent to the considered block but actually belongs to another frame
are, e.g., when they belong to adjacent columns of a multi-column document
(right part of Figure 6) or when they belong to two different frames of the
original document (for example, the Title and the Authors frame - left part
of Figure 6).

In such a representation, a block On has at least one close neighbor
block and at most eight (CNOnk with k ∈ {1, 2, . . . , 8} or, top-down, from
left to right: top left corner, top, top right corner, right, bottom right corner,

Fig. 5. Close Neighbor blocks for block b1

Fig. 6. Selection of positive and negative blocks according to the original document:
one-column document on the left, two-columns document on the right
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bottom, bottom left corner, left); the immediate consequence of the adopted
representation is that each single example is actually made up of a bag of
instances and, hence, the problem can be clearly cast as a Multiple Instance
Problem to be solved by applying the Iterated-Discrim algorithm [7] in or-
der to discover the relevant features and their values to be encoded in rules
made up of numerical constraints allowing to automatically set parameters to
group together words in lines. In this way, the XML line-level description of
the document is obtained, that represents the input to the next step in the
layout analysis of the document.

In the following, an example of the representation is provided. Given the
representation shown in Figure 5 for the identification of positive and negative
blocks, and the template for the example description, a possible representation
for the positive example (a set of instances) expressing the description “block
b35 can be merged with blocks b36,b34, b24, b43 if and only if such blocks
have the reported numeric features (size and position in the document)” is:

ex(b35) :-
istance([b35, b36, 542.8, 548.3, 447.4, 463.3, 553.7, 594.7,

447.4, 463.3, 545.6, 455.3, 574.2, 455.3, 5.5, 0]).
istance([b35, b34, 542.8, 548.3, 447.4, 463.3, 529.2, 537.4,

447.4, 463.3, 545.5, 455.4, 533.3, 455.3, 5.5, 0]).
istance([b35, b24, 542.8, 548.3, 447.4, 463.3, 496.3, 583.7,

427.9, 443.8, 545.5, 455.3, 540.1, 435.9, 0, 3.5]).
istance([b35, b43, 542.8, 548.3, 447.4, 463.3, 538.5, 605.4,

466.9, 482.8, 545.5, 455.3, 571.9, 474.8, 0, 3.5]).

3.2 Discovery of the Background Structure of the Document

The objects that make up a document are spatially organized in frames, de-
fined as collections of objects completely surrounded by white space. It is
worth noting that there is no exact correspondence between the layout notion
of a frame and a logical notion such as a paragraph: two columns on a page
correspond to two frames, while a paragraph might begin in one column and
continue into the next column.

The next step towards the discovery of the document logical structure,
after transforming the original digital document into its basic XML represen-
tation and grouping the basic blocks into lines, consists in performing the
layout analysis of the document by applying an algorithm named DOC, a
variant of that reported in [8] for addressing the key problem in geometric
layout analysis. DOC analyzes the whitespace and background structure of
each page in the document in terms of rectangular covers, and it is efficient
and easy to implement.

Once DOC has identified the whitespace structure of the document, thus
yielding the background, it is possible to compute its complement, thus
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Fig. 7. DOC output: XML Representation of the Layout Structure of the Document
in Figure 3

obtaining the document content blocks. When computing the complement,
two levels of description are generated. The former refers to single blocks
filled with the same kind of content, the latter consists in rectangular frames
that may be made up of many blocks of the former type. Thus, the overall de-
scription of the document includes both kinds of objects, plus information on
which frames include which blocks and on the actual spatial relations between
frames and between blocks in the same frame (e.g., above, touches, etc.). This
allows to maintain both levels of abstraction independently. Figure 7 reports
the XML layout structure that is the output of DOC. Figure 8 depicts, along
with the original document, the graphical representation of the XML generated
by a two-column document trough the basic block vectorial transformation
and the grouped words/lines representation, obtained by means of a process
that is not a merely syntactic transformation from PS/PDF to XML.

It is worth to note that exploiting as-is the algorithm reported in [8] on the
basic representation discovered by the WINE tool in real document domains
turns out to be unfeasible due to the usually large number of basic blocks
discovered. Thus, the preliminary aggregation of basic blocks into words and
then of words into lines by means of the above procedure is fundamental
for the efficiency and effectiveness of the DOC algorithm. Additionally, some
modifications to the algorithm on which DOC is based deserve attention. First
of all, any horizontal/vertical line in the layout is considered as a natural
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separator, and hence is already considered as background (along with all the
surrounding white space) before the algorithm starts. Second, any white block
whose height or width is below a given threshold is discarded as insignificant
(this should avoid returning inter-word or inter-line spaces). Lastly, since the
original algorithm tries to find iteratively the maximal white rectangles, taking
it to its natural end and then computing the complement would result again
in the original basic blocks coming from the previous steps and provided as
input. This would be useless, and hence raised the problem of identifying a
stop criterion to end this process.

Such a criterion was empirically established as the moment in which the
area of the new white rectangle retrieved, W (R), represents a percentage of
the total white area in the document page, W (D), less than a given threshold
δ, i.e.:
Let A(D) be the area of the document page under consideration, A(Ri), i =
1, . . . , n be the areas of the blocks identified thus far in the page, and W (D) =
A(D)−∑

i=1,...,n A(Ri) be the total white area in the page (computed as the
difference between the total page area and the area of the blocks in the page),
then the stop criterion is established as:

W (R)
W (D)

< δ

The empirical study was performed applying the algorithm in full on a set
of 100 documents of three different categories, and it took into account the
values of three variables in each step of the algorithm: number of new white
rectangles (black line in Figure 9) normalized between 0 and 1, ratio of the
last white area retrieved with respect to the total white area of the current
page of the document (bold line in Figure 9), ratio of the white area retrieved
so far with respect to the total white area of the current page of the document
(dashed line in Figure 9). The ratio of the white area retrieved, the dashed

Fig. 8. Line and final layout analysis representations of the generated XML structure
of a document
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Fig. 9. Stop Criterion Analysis

line, is never equal to 1 (the algorithm does not find all the white area), but it
becomes stable before reaching 1/4 of the total steps of the algorithm. Such a
consideration is generally valid for all the documents except for those having
a scattered appearance. Such a point, highlighted in the figure with a black
diamond, is the best stop point for the algorithm since before it the layout
is not sufficiently detailed, while after it useless white spaces are found, as
shown with the black line in the graphic. Indeed, this is the point in which
all the useful white spaces in the document, e.g. those between columns and
sections, have been identified. Such a consideration is confirmed by analyzing
the trend of the ratio of the last white area retrieved with respect to the total
white area in the current page of the document (bold line), that decreases up
to 0 in such a point. This suggests to stop executing the algorithm just there.
It is worth noting that this value is reached very early, and before the size
of the structure containing the blocks waiting to be processed starts growing
dramatically, thus saving lots of time and space resources.

4 Structural Metadata Extraction

The organization of the document collection and the extraction of the inter-
esting text is a fundamental issue for a more efficient storage and retrieval
process in a digital library. To perform such tasks, one has to firstly identify
the correct type the document belongs to (e.g. understand whether the doc-
ument is a magazine, or a book, or a scientific paper) in order to file it in
the corresponding record. Then, the significant components of the document
have to be identified in order to extract from them the information needed to
categorize it. Since carrying out manually such a process is unfeasible due to
the huge amount of documents, our proposal is the use of a concept learning
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system to infer rules able to correctly classify the document type along with its
significant components. The inborn complexity of the document domain, and
the need to express relations among components, suggests the exploitation
of symbolic first-order logic as a powerful representation language to handle
such a situation. Furthermore, based on the belief that in typical digital li-
braries on the Internet new documents continuously become available over
time and are to be integrated in the collection, we consider incrementality
as a fundamental requirement for the techniques to be adopted. Even more
difficult, it could be the case that not only single definitions turn out to be
faulty and need revision, but whole new document classes are to be included
in the collection as soon as the first document for them becomes available.
This represents a problem for most existing systems, that require not only all
the information on the application domain to be available when the learning
process starts, but also the set of classes for which they must learn definitions
to be completely defined since the beginning.

These considerations, among others about the learning systems available
in the literature, led to the exploitation of INTHELEX (INcremental THEory
Learner from EXamples) [12], whose most characterizing features are its in-
cremental nature, the reduced need of a deep background knowledge, the
exploitation of negative information and the peculiar bias on the generaliza-
tion model, which reduces the search space and does not limit the expressive
power of the adopted representation language.

4.1 The Learning System

INTHELEX is an Inductive Logic Programming [13] system that learns hi-
erarchical logic theories from positive and negative examples. It is fully in-
cremental (in addition to the possibility of refining previously generated
hypotheses/definitions, learning can also start from an empty theory), and
adopts DatalogOI [14] as a representation language: based on the Object Iden-
tity assumption (different symbols must denote different objects), it ensures
effectiveness of the descriptions and efficiency of their handling, while preserv-
ing the expressive power of the unrestricted case. It can learn simultaneously
multiple concepts/classes, possibly related to each other; it can retain all the
processed examples, so to guarantee validity of the learned theories on all of
them.

INTHELEX has a closed loop architecture (i.e., feedback on performance is
used to activate the theory revision phase [15]). The learning cycle it performs,
depicted in Figure 10, can be described as follows. A set of examples of the
concepts to be learned, possibly selected by an expert, is provided by the
environment. This set can be subdivided into three subsets (training, tuning,
and test set) according to the way in which examples are exploited during
the learning process. Specifically, training examples, previously classified by
the expert, are stored in the base of processed examples, and exploited to
obtain an initial theory that is able to explain them. In INTHELEX, such a
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Fig. 10. Learning System Architecture

theory can also be provided by the expert, or even be empty. Subsequently, the
validity of the theory against new available tuning/test examples, also stored
in the example base as long as they are processed, is checked against the set
of inductive hypotheses, producing a decision that is compared to the correct
one. Test examples are exploited just to check the predictive capabilities of
the theory, intended as its behavior on new observations, without causing a
refinement of the theory in the case of incorrectness. Conversely, in case of
incorrectness on a tuning example, the cause of the wrong decision can be
located and the proper kind of correction chosen, firing the theory revision
process. In this way, tuning examples are exploited incrementally to modify
incorrect theories according to a data-driven strategy.

Specifically, INTHELEX incorporates two inductive refinement operators
to revise the theory, one for generalizing definitions that reject positive exam-
ples, and the other for specializing definitions that explain negative examples.
If an example is positive and not covered, the system first tries to general-
ize one of the available definitions of the concept the example refers to, so
that the resulting revised theory covers the new example and is consistent
with all the past negative examples. If such a generalization is found, then
it replaces the chosen definition in the theory, or else a new clause is chosen
to compute generalization. If no definition can be generalized in a consistent
way, the system checks whether the example itself can represent a new alter-
native (consistent) definition of the concept. If so, such a definition is added
to the theory, or else the example itself is added as an exception. If the ex-
ample is negative and covered, specialization is needed. Among the theory
definitions that concur in covering the example, INTHELEX tries to specialize
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one by adding to it one or more conditions which characterize all the past
positive examples and can discriminate them from the current negative one.
In case of failure, the system tries to add the negation of a condition, that is
able to discriminate the negative example from all the past positive ones. If
this fails too, the negative example is added to the theory as an exception.
New incoming observations are always checked against the exceptions before
applying the rules that define the concept they refer to.

Another peculiarity in INTHELEX is the embedding of multistrategy oper-
ators that may help in solving the theory revision problem by pre-processing
the incoming information. It was operated according to the theoretical frame-
work for integrating different learning strategies known as Inferential Theory
of Learning [16]. Deduction refers to the possibility of better representing the
examples and, consequently, the inferred theories. INTHELEX exploits deduc-
tion to recognize known concepts that are implicit in the examples description
and explicitly add them to the descriptions. The system can be provided with
a Background Knowledge, supposed to be correct and hence not modifiable,
containing (complete or partial) concept definitions to be exploited during
deduction. Differently from abstraction (see next), all the specific information
used by deduction is left in the example description. Hence, it is preserved in
the learning process until other evidence reveals it is not significant for the
concept definition, which is a more cautious behavior. Abduction was defined
by Peirce as hypothesizing facts that, together with a given theory, could ex-
plain a given observation, and aims at completing possibly partial information
in the examples (adding more details). According to the framework proposed
in [17], this can be done by exploiting a set of abducibles (concepts about
which assumptions can be made, that carry all the incompleteness of the do-
main: if it were possible to complete their definitions then the theory would be
correctly described) and a set of integrity constraints (each corresponding to
a combination of conditions that is not allowed to occur, that provide indirect
information about abducibles). Abstraction is a pervasive activity in human
perception and reasoning, and aims at removing superfluous details from the
description of both the examples and the theory. Thus, the exploitation of
abstraction results in the shift from the language in which the theory is de-
scribed to a higher level one. According to the framework proposed in [18], in
INTHELEX abstraction takes place by means of a set of operators that replace
a number of components by a compound object, or decrease the granularity
of a set of values, or ignore whole objects or just part of their features, or
neglect the number of occurrences of some kind of object.

4.2 Representation Language

In order to work, the learning system must be provided with a suitable first-
order logic representation of the documents. Thus, once the layout compo-
nents of a document are automatically discovered as explained in Section 3,
the next step concerns the automatic description of the pages, blocks and
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Fig. 11. Representation Plans according to [19]

frames according to their size, spatial [19] and inclusion relations. Dealing
with multi-page documents, the document description must be enriched with
page information such as: page number and position (whether it is at the be-
ginning, in the middle or at the end of the document, and specifically whether
it is the last one), total number of pages in the document. As pointed out,
the automatic process results in a set of content rectangles recognized in each
page. Such rectangles are described by means of their size (height and width),
their type (text, graphic, line) and their horizontal and vertical position in
the document. Furthermore, the algebraic relations ⊂ and ⊃ are exploited to
express the inclusion between frames and pages, e.g. contain(pagei, framej),
and between blocks and frames, e.g. contain(framej , blockk).

Another possible relation between rectangles is the spatial one. Given a
rectangle r, one can ideally divide the plan containing it in 25 parts (see Figure
11), and describe the relative position between the other rectangles and r in
terms of the plans they occupy with respect to r. Such a technique is applied
to every block belonging to a same frame and to all the adjacent frames, where
a rectangle is adjacent to another rectangle r if it is the nearest rectangle to r
in some plan. Additionally, such a kind of representation of the plans allows
also to express in the example description the topological relations [20, 19],
such as closeness, intersection and overlapping between rectangles. However,
the topological information can be deduced by the spatial relationships, and
thus it can be included by the system during the learning process by means of
deduction and abstraction. For instance, the following fragment of background
knowledge could be provided to the system to infer the topological relations
between two blocks or frames:

top_alignment(B1,B2):-

occupy_plane_9(B1,B2), not(occupy_plane_4(B1,B2)).

top_alignment(B1,B2):-

occupy_plane_10(B1,B2), not(occupy_plane_5(B1,B2)).

bottom_alignment(B1, B2) :-

occupy_plane_19(B1, B2), not(occupy_plane_24(B1, B2)).

bottom_alignment(B1, B2) :-

occupy_plane_20(B1, B2), not(occupy_plane_25(B1, B2)).
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Fig. 12. Block representation

left_alignment(B1,B2):-

occupy_plane_17(B1,B2), not(occupy_plane_16(B1,B2)).

left_alignment(B1,B2):-

occupy_plane_22(B1,B2), not(occupy_plane_21(B1,B2)).

right_alignment(B1, B2) :-

occupy_plane_19(B1, B2), not(occupy_plane_20(B1, B2)).

right_alignment(B1, B2) :-

occupy_plane_24(B1, B2), not(occupy_plane_25(B1, B2)).

touch(B1,B2):-

occupy_plane_14(B1,B2), not(occupy_plane_13(B1,B2)).

touch(B1,B2) :-

occupy_plane_17(B1,B2), not(occupy_plane_13(B1,B2)).

touch(B1,B2) :-

occupy_plane_18(B1,B2), not(occupy_plane_13(B1,B2)).

touch(B1,B2):-

occupy_plane_19(B1,B2), not(occupy_plane_13(B1,B2)).

Thus, given the representation of the two blocks reported in Figure 12 where
block B2 occupies plans 14, 15, 19, 24, 25 while block B1 occupies plans 13, 14,
18, 19, and having in common the plans 14 and 19, the initial representation
will be made up, among other descriptors, by:

....., occupy_plane_14(b2, b1), occupy_plane_19(b2, b1), ......

and the system is able to recognize the topological relations above reported
giving the following:

..., touch(b2,b1), bottom_alignment(b2,b1),....

In this language unary predicate symbols, called attributes, are used to
describe properties of a single layout component (e.g. height and length),
while n-ary predicate symbols, called relations, are used to express spatial
relationships between layout components. A complete list of attributes and
relations is reported in Table 1.
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Page Descriptors

page number(d,p): p is the number of current page in document d
last page(p): true if page p is the last page of the document
in first pages(p): true if page p belongs to the first n pages of the document

(n < 1/3 total number of the pages in the document)
in middle pages(p): true if page p is in the middle n pages of the document

(1/3 < n < 2/3 total number of the pages in the document)
in last pages pagine(p): true if page p belongs to the last n pages of the document

(n > 2/3 total number of pages in the document)
number of pages(d, n): n is the total number of pages in document d
page width(p,w): w is the page width (a value normalized in [0,1])
page height(p,h): h is the page height (a value normalized in [0,1])

Frame/Block Descriptors

frame(p,f): f is a frame of page p
block(p,b): b is a block of page p
type(b,t): t is the type of the block content (text, graphic, mixed, empty, verti-

cal line, horizontal line, oblique line)
width(b,w): w is the block width in pixels
height(b,h): h is the block height in pixels
x coordinate rectangle(r,x): x is the horizontal coordinate of the start point of the

rectangle (frame or block) r
y coordinate rectangle(r,y): y is the vertical coordinate of the start point of the

rectangle (frame or block) r

Topological Relation Descriptors

belong(b, f): block b belongs to frame f
pos upper(p, r): rectangle r is positioned in the upper part of page p
pos middle(p, r): the rectangle r is vertically positioned in the middle part of page

p
pos lower(p, r): the rectangle r is positioned in the lower part of page p
pos left(p, r): the rectangle r is positioned in the left part of page p
pos center(p, r): the rectangle r is horizontally positioned in the center part of page

p
pos right(p, r): the rectangle r is positioned in the right part of page p
touch(b1,b2): block b1 touches block b2 and vice versa
on top(b1,b2): block b1 is positioned on block b2
to right(b1,b2): block b1 is positioned on the right of block b2
top alignment(b1, b2): block b1 is over block b2
bottom alignment(b1, b2): block b1 is under block b2
left alignment(b1, b2): block b1 is on the left of block b2
right alignment(b1, b2): block b1 is on the right of block b2

Table 1. Attributes/Relations used to describe the documents
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4.3 Layout Correction

Due to the fixed stop threshold (see section 3.2), it might happen that after the
layout analysis step some blocks are not correctly recognized, i.e. background
areas are considered as content ones and/or vice versa. In such a case a phase
of layout correction would be desirable. A first correction of the automatically
recognized layout can be performed by allowing the system user to manually
force further forward steps, or to go some step backward, in the algorithm
with respect to the stop threshold. This is possible since the system maintains
three structures that keep track of: all white rectangles found (W ), all black
rectangles found (B) and all rectangles that it has not analyzed yet (N : if
no threshold is given all the rectangles are analyzed and N will be empty at
the end of processing). Hence, when the user is not satisfied by the discovered
layout because some background is missing, he can decide to go forward, and
the system will extract and process further rectangles from N . Conversely,
if the user notes that the system has found insignificant background pieces,
he can decide to go back and the system will correspondingly move blocks
between W , B and N .

However, such a solution is not always effective in case of lost significant
background rectangles (e.g., small areas that represent the cut point between
two frames), since they could be very small and hence it would be necessary to
perform many forward steps (during which the system would probably restore
insignificant white rectangles) before being able to retrieve them. Even worse,
the system could be completely unable to retrieve the needed background just
because it is too small to satisfy the constraints.

To solve both problems, DOCG, a module to improve the analysis per-
formed by DOC, was implemented. It uses machine learning techniques to
automatically infer rules for recognizing interesting background rectangles
among those discarded or not yet analyzed by the layout analysis algorithm,
according to their size and position with respect to the surrounding blocks.
Specifically, we first processed a number of documents, then presented to the
user all the blocks in the N structure and asked him to force as background
some rectangles that the system had erroneously discarded (even if such rect-
angles do not satisfy the constraints), and to remove insignificant rectangles
erroneously considered as background by the system. These blocks were then
considered as examples for the learning system in order to infer rules to au-
tomatically perform this task during future layout analysis processes. Again,
due to the need of expressing many relationships among blocks in order to
represent these situations, a first-order description language was required,
and INTHELEX was exploited as a learning system. Specifically, each example
described the block to be forced plus all the blocks around it, along with
their size and position in the document, both before and after the manual
correction.
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Classification

After detecting the document layout structure, a logic role can be associated
to some of its components. In fact, the role played by a layout component
represents meta-information that could be exploited to tag the document and
help its filing and management within the digital library. The logical com-
ponents can be arranged in another hierarchical structure, which is called
logical structure. The logical structure is the result of repeatedly dividing the
content of a document into increasingly smaller parts, on the basis of the
human-perceptible meaning of the content. The leaves of the logical structure
are the basic logical components, such as authors and title of a magazine arti-
cle or the date and signature in a commercial letter. The heading of an article
encompasses the title and the author and is therefore an example of com-
posite logical component. Composite logical components are internal nodes of
the logical structure. The root of the logical structure is the document class.
The problem of finding the logical structure of a document can be cast as the
problem of associating some layout components with a corresponding logical
component.

The first component that can be tagged is the document itself, according to
the class it belongs to (document image classification step). Indeed, in general
many kinds of documents with different layout structures can be present in
one library, and they have to be exploited in different ways according to their
type. In turn, the type of a document is typically reflected by the layout
structure of its first page: e.g., humans can immediately distinguish a bill
from an advertisement or a letter or a (newspaper or scientific) article without
actually reading their content, but just based on their visual appearance.

For this reason, we decided to apply machine learning to infer rules that
allow to automatically classify new incoming documents according to their
first-page layout, in order to determine how to file them in the digital reposi-
tory and what kind of processing they should undergo next. This step turns
out to be very significant in a digital library, where a lot of different layout
structures for the documents, either belonging to different classes or even to
the same class, can be encountered. Again, the diverse and complex relation-
ships that hold between the layout components of a document suggested the
use of a first-order representation language and learning system. Additionally,
the possibility of continuously extending the repository with new classes of
documents or with modifications of the existing ones asked for incremental
abilities that INTHELEX provides.

Classification of multi-page documents is performed by matching the lay-
out structure of their first page against the automatically learned models of
classes of documents. These models capture the invariant properties of the
images layout structures of documents belonging to the same class. They con-
sist of rules expressed in a first-order logic language, so that the document
classification problem can be reformulated as a matching test between a logic
formula that represents a model and another logic formula that describes the
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image/layout properties of the first page. The choice of a first-order logic
language fulfils the requirements of flexibility and generality.

Understanding

Once the class of a document has been identified on the basis of its first page
layout, its logical components that are present in any page can be located
and tagged by matching the layout structure of each page against models of
logical components. Indeed, if we assume that it is possible to identify logical
components by using only layout information, just as humans do, these models
capture the invariant layout properties of the logical components of documents
in the same class.

This is the task of the document image understanding phase, that must
necessarily follow document image classification since the kind of logical com-
ponents that can be expected in a document strongly depends on the docu-
ment class (e.g., in a commercial letter one expects to find a sender, possibly
a logo, an address, an object, a body, a date and a signature, whereas in a
scientific paper one could be interested in its title, authors and their affilia-
tions, abstract and bibliographic references). Once again, they are expressed
as rules in a first-order logic language. However, differently from document
classification, the document understanding problem cannot be effectively re-
formulated as a simple matching test between logic formulae. The association
of the logical description of pages with logical components requires a full-
fledged theorem prover, since it is typical that one component is defined and
identified in relation to another one.

5 Categorization, Filing and Indexing

One of the most important tasks in digital library management concerns the
categorization of documents. Effectiveness in performing such a task repre-
sents the success factor in the retrieval process, in order to identify documents
that are really interesting for the users. Indeed, a problem of most existing
word-based retrieval systems consists in their ineffectiveness in finding inter-
esting documents when the users exploit different words than those by which
the information they seek has been indexed. This is due to a number of tricky
features that are typical of natural language: different writers use different
words to describe the same idea (synonymy), thus a person issuing a query
in a search engine might use different words than those that appear in an in-
teresting document, and could not retrieve the document; one word can have
multiple meanings (polysemy), so a searcher can get uninteresting documents
concerning the alternate meanings. To face such a problem, the Latent Seman-
tic Indexing (LSI) technique [21] has been adopted, that tries to overcome the
weaknesses of term-matching based retrieval by treating the unreliability of
observed term-document association data as a statistical problem. Indeed,
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LSI assumes that there exists some underlying latent semantic structure in
the data, that is partially obscured by the randomness of word choice with re-
spect to the retrieval phase, and that can be estimated by means of statistical
techniques.

As a weighting function, a combination of the local and global relevance
of terms has been adopted in the following way:

wij = L(i, j) ∗ G(i)

where L(i, j) represents the local relevance of the term i in the document j
and G(i) represents the global value of the term i. A good way to relate such
values is represented by the log entropy function, where:

L(i, j) = log(tfij + 1)

G(i) = 1 −
∑

j=1,...,N

pij ∗ log(pij)
log(N)

Here, N represents the number of documents and pij = tfij

gfi
, where tfij is the

local relevance for each term (the frequency of the term i in the document
j, TF) and gfi is the global relevance for each term (the frequency of the
term i in the whole set of documents, IDF). This way, the logarithmic value
of the local factor L(i, j) mitigates the effects due to large variations in term
frequencies, while the entropy function of the global factor G(i) mitigates the
noise that could be present in the documents.

The success of the retrieval step turns out to be strictly related to the
choice of the parameter k that represents the best new rank, lower than the
original one, to reduce the matrix. In our system, it is set as the minimum
number of documents needed to cover the whole set of terms. As to the re-
trieval phase, the following weighting function was applied to each element
of the query vector in order to create, for the query too, the correspondence
between the local and global factor:

qij = (0.5 +
0.5 ∗ tfi

maxtf
) ∗ log

N

n

where tfi is the frequency of term i in the query, maxtf is the maximum value
among all the frequencies, N represents the total number of documents and n
is the number of documents in which term i appears. In our system the cosine
similarity function [22] was exploited to perform the comparison between the
query vector and each document vector. Documents that show a high degree
of similarity according to the value computed are those interesting for the user
query.

However, the large amount of items that a document management sys-
tem has to deal with, and the continuous flow of new documents that could
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be added to the initial database, require an incremental methodology to up-
date the initial LSI matrix. Indeed, applying from scratch at each update
the LSI method, taking into account both the old (already analyzed) and the
new documents, would become computationally inefficient. Two techniques
have been developed in the literature to update (i.e., add new terms and/or
documents to) an existing LSI generated database: Folding-In [23] and SVD-
Updating [24]. An analysis on the performance of both techniques shows that
SVD-Updating is more suitable to be exploited in a digital library environ-
ment. Indeed, the former is a much simpler alternative that uses the exist-
ing LSI matrix to represent new information but yields poor-quality updated
matrices, since the semantic correlation information contained in the new
documents/terms is not exploited by the updated semantic space. The latter
represents a trade-off between the former and the recomputation from scratch.

6 Exploitation and Evaluation

The system for automated digital documents processing was evaluated in each
step, from document acquisition to document indexing for categorization and
information retrieval purposes. Since the system can be embedded as a doc-
ument management engine into many different domain-specific applications,
in this section we focus on the Conference Management scenario. As we will
see DOMINUS can usefully support some of the more critical and knowledge-
intensive tasks involved by the organization of a scientific conference, such as
the assignment of the submitted papers to suitable reviewers.

6.1 Scientific Conference Management Scenario

Organizing scientific conferences is a complex and multi-faceted activity that
often requires the use of a Web-based management system to make some tasks
a little easier to carry out, such as the job of reviewing papers. Some of the fea-
tures typically provided by these packages are: submission of abstracts and pa-
pers by Authors; submission of reviews by the Program Committee Members
(PCMs); download of papers by the Program Committee (PC); handling of
reviewers preferences and bidding; Web-based assignment of papers to PCMs
for review; review progress tracking; Web-based PC meeting; notification of
acceptance/rejection; sending e-mails for notifications.

Let us now present a possible scenario. An Author connects to the Internet
and opens the submission page, where (after registering, or after logging in if
already registered) he can browse his hard disk and submit a paper by choos-
ing the corresponding file in one of the accepted formats. After uploading, the
paper undergoes the following processing steps. The layout analysis algorithm
is applied, in order to single out its layout components. Then, it is translated
into a first-order logic description and classified by a proper module according
to the theory learned so far for the acceptable submission layout standards. A
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single conference can allow different layout standards for the submitted papers
(e.g., full paper, poster, demo) and it can be the case that many conferences
have to be managed at the same time. Depending on the identified class, a
further step consists in locating and labelling the layout components of inter-
est for that class (e.g., title, author, abstract and references in a full paper).
The text contained in each of such components is read, stored and used to
automatically file the submission record (e.g., by filling its title, authors and
abstract fields). If the system is unable to carry out any of these steps, such
an event is notified to the Conference administrators, that can manually fix
the problem and let the system complete its task. Such manual corrections are
logged and used by the incremental learning component to refine the avail-
able classification/labeling theories in order to improve their performance on
future submissions. Nevertheless, this is done off-line, and the updated theory
replaces the old one only after the learning step is successfully completed, thus
allowing further submissions in the meantime. Alternatively, the corrections
can be logged and exploited all at once to refine the theory when the system
performance falls below a given threshold.

The next step, which is currently under investigation, concerns the auto-
matic categorization of the paper content on the grounds of the text it con-
tains. This allows to match the paper topic against the reviewers’ expertise,
in order to find the best associations for the final assignment. Specifically, we
exploit the text in the title, abstract and bibliographic references, assuming
that they concentrate the subject and research field the paper is concerned
with. This requires a pre-processing step that extracts the meaningful content
from each reference (ignoring, e.g., page numbers, place and editors). Further-
more, the paper topics discovered in the indexing phase are matched with the
conference topics with the aim of supporting the conference scheduling.

6.2 Experimental Results

In the above scenario, the first step concerns document image classification
and understanding of the documents submitted by the Authors. In order to
evaluate the system on this phase, experiments were carried out on a fragment
of 353 documents coming from our digital library, made up of documents of
the last ten years available in online repositories (i.e., publishers’ online sites,
authors’ home pages, the Scientific Literature Digital Library CiteSeer, our
submissions, etc.) interesting for our research topics. The resulting dataset
is made up of four classes of documents: the Springer-Verlag Lecture Notes
in Computer Science (LNCS) series, the Elsevier journals style (ELSEVIER),
the Machine Learning Journal (MLJ) and the Journal of Machine Learning
Research (JMLR). Specifically, 70 papers were formatted according to the
LNCS style (proofs and initial submission of the papers), 61 according to the
ELSEVIER style, 122 according to the MLJ (editorials, Kluwer Academy and
Springer Science publishers) style and 100 according to the JMLR style.
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Fig. 13. Two first pages from the JMLR class

It is worth to note that even documents in the same class might fall in
different layout standards, according to the period of publication, since the
publisher layout style may have changed in time. Thus, the changes in spatial
organization of the first page might affect the classification step (see Fig-
ure 13).

This calls for the incremental abilities of the incremental system that must
generate different concept definitions at the same time. Indeed, the system is
able, at any moment, to learn the layout description of a new class of document
style preserving the correct definition of the others. In this way a global theory
is built, containing the definitions of different document styles, that could be
used for many conferences.

Each document was described according to the features reported in Sec-
tion 4.2, and was considered as a positive example for the class it belongs to,
and as a negative example for all the other classes to be learned. The system
performance was evaluated according to a 10-fold cross validation methodol-
ogy, ensuring that the training and test sets contained the same percentage of
positive and negative examples. Furthermore, the system was provided with
background knowledge expressing topological relations (see Section 4.2), and
abstraction operators were used to discretize numeric values concerning size
and position into intervals expressed by symbolic descriptors. In the follow-
ing, an example of the abstraction rules for rectangles width discretization is
given.

width_very_small(X):-

rectangle_width(X, Y), Y >= 0, Y =< 0.023.
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width_small(X):-

rectangle_width(X, Y), Y > 0.023, Y =< 0.047.

width_medium_small(X):-

rectangle_width(X, Y), Y >= 0.047, Y =< 0.125.

width_medium(X):-

rectangle_width(X, Y), Y > 0.125, Y =< 0.203.

A first experiment was run to infer the document classification rules; good
results were obtained in terms of runtime, predictive accuracy, number of the-
ory revisions (Rev = total revisions, Rev+ = revisions performed on positive
examples only, Rev- = revisions performed on negative examples). Further-
more, in order to evaluate the theory revision rate, some additional measures
were considered: the global percentage of revisions Rev on the whole train-
ing set (RevRate), the percentage of revisions Rev- on the positive examples
(RevRate+) and the percentage of revisions Rev- on the negative examples
(RevRate-)), as reported in Table 2. The lowest accuracy and poorest perfor-
mance was obtained on MLJ, that reflects the variety of corresponding paper
formats and typing styles.

Table 2. Learning System Performance: inferring rules for paper class identification

Class Rev Rev+ Rev- RevRate RevRate+ RevRate- Time (s.) Acc. %

LNCS 16 11.7 4.3 0.05 0.18 0.02 662.88 97.2
MLJ 28.2 18.7 9.5 0.08 0.17 0.04 2974.87 93.5
ELSEVIER 13.6 11.2 2.4 0.04 0.20 0.01 303.85 98.9
JMLR 12.7 10 2.7 0.04 0.11 0.01 1961.66 98.2

As to the revision rate, Figure 14 sketches the system performance with
respect to revisions and accuracy on the training phase in the classification
step in one fold (the nearest to the average reported in Table 2). The curve
represents the trend in accuracy as long as new examples are analyzed, while
the cuts represent the revision points. These points become very sparse as the
number of analyzed examples increases and the accuracy curve, after a first
phase in which many revisions have to be performed to restore the theory cor-
rectness, tends to increase towards a stable condition. The results concerning
class MLJ are perfectly consistent with the composition of the selected sam-
ple; the variety of typing conventions and formats underlying the documents
requires to extend the training set.

Once the classification step has been completed the image document un-
derstanding phase starts. The second experiment was performed on the title,
authors, abstract and references layout components of documents belonging to
the LNCS class. This class was chosen since it represents the layout standard
of papers submitted to the 18th Conference on Industrial & Engineering Ap-
plications of Artificial Intelligence & Expert Systems (IEA/AIE 2005) which
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Fig. 14. Accuracy and revision rate of the learning system on tuning phase

has been used as a real testbed. In Table 3 the averaged results of the 10 folds
are reported, that can be considering satisfying from both the accuracy and
the time consuming point of view.

Table 3. Learning System Performance: inferring rules for components label
identification

Label Rev Rev+ Rev- RevRate RevRate+ RevRate- Time (s.) Acc. %

Title 16.5 13.7 2.8 0.06 0.22 0.01 217.60 95.3
Abstract 10.5 9.4 1.1 0.04 0.15 0.01 104.07 96.2
Author 14.6 11.1 3.5 0.05 0.17 0.02 146.48 98.6
Ref 15.4 10.6 4.8 0.06 0.17 0.02 150.93 97.4

A very hard task in the organization of Scientific Conferences is the re-
viewers assignment; due to the many constraints, manually performing such a
task is very tedious and difficult, and does not guarantee the best results. The
proposed document management system can assist the conference program
chair both in indexing and retrieving the documents and their associated top-
ics, although not explicitly reported by the paper authors. In the following we
present an experiment carried out on the above reported dataset consisting of
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264 papers submitted to the IEA/AIE 2005 conference, whose Call for Papers
included 34 topics of interest.

Firstly, the layout of each paper in digital format was automatically an-
alyzed in order to recognize the significant components. In particular, the
abstract and title were considered the most representative of the document
subject, and hence the corresponding text was extracted to apply the LSI
technique. The words contained therein were stemmed according to the tech-
nique proposed by Porter [25], resulting in a total of 2832 word stems. Then,
the same procedure was applied to index the reviewers expertise according
to the titles of their papers appearing in the DBLP Computer Science Bibli-
ography repository (http://www.informatik.uni-trier.de/∼ley/db/), resulting in
2204 stems.

In both cases, the LSI parameters were set in such a way that all the
conference topics were covered as different concepts. The experiment consisted
first in performing 34 queries, each corresponding to one conference topic,
both on papers and on reviewers, and then in associating respectively to each
paper/reviewer the first l results of the LSI queries. The results obtained on
document topic recognition showed that considering 88 documents per query
is enough to cover the whole set of documents. However, considering just 30
documents per query, 257 out of 264 documents (97.3%) were already assigned
to at least one topic. This is an acceptable trade-off since the remaining 7
documents can be easily assigned by hand. Moreover, 30 documents are a
good choice to assure the equidistribution over the document. Interestingly,
more than half of the documents (54.7%) concern 2 ÷ 4 topics so confirming
the extremely specialized nature of the conference and the high correlation
between the topics. The results, compared to the conference program chair
indications, showed a 79% accuracy on average. Setting l = 10, the automatic
assignment of the topics to the reviewers resulted in 65% accuracy compared
to the suggestions of the conference program chair.

Lastly, the expert system GRAPE (Global Review Assignment Processing
Engine) [26] has the task of automatically assigning the papers to reviewers
taking into account specific knowledge (i.e., conflicts, nationality, common
interest, etc.). The final assignments were considered very useful suggestions
by the experts so confirming the goodness of the indexing process and of the
topic associations.

7 Related Work

Image Document analysis refers to algorithms and techniques developed in
order to obtain a computer-readable description of a scanned document [27].

While an impressive amount of contribution has been presented applied to
scanned image documents, only recently a few works have faced the problem
of handling digital document formats such as PDF and PS. Most of them aim
at extracting (some part of) the document content by means of a syntactic
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parsing of the PDF [28, 29, 30] or at discovering the background by means of
statistical analyses applied to the numerical features of the documents and its
components [31]. A further step towards digital document analysis as opposed
(but complementary) to document image analysis is represented by the work
reported in [32]; here, a method is proposed for the extraction of the logical
structure from PDF files by examining the visual appearance and geometric
position of text and image blocks distributed over the whole document and
exploiting the information on line spacing and font usage in order to bridge the
semantic gap between the document image and its content. In this work, the
PDF file is firstly decomposed by syntactically parsing it, then grouping words
into lines (by means of APIs provided by the Acrobat Exchange viewer), lines
in bins (based on their point size, font name and their coordinates in the page)
and finally bins in blocks. Successively, relationships (greater/lesser status)
among two blocks are discovered by analyzing their features (font name and
point size) and labels of the discovered blocks are identified by applying (and
possibly modifying after new blocks are evaluated) a set of rules purposely
codified by a domain expert for the class/tags at hand.

Recently, some works [33, 34] proposed a strategy that mixes the layout
extraction methods from digital documents with the most widely used docu-
ment analysis techniques. The approach consists into three steps:

• parsing syntactically the PDF file to extract the document primitives (text,
image or graphics);

• recognizing and grouping homogeneous entities among the extracted prim-
itives;

• extracting the logical layout structure by means of text entities labelling
(e.g., title, author, body) and document modelling in which the entities
are projected in a document model.

Here, for each class of documents an expert provides a model, representing its
grammar, i.e. a hierarchy of logical entities.

A similar approach which uses grammars to annotate document compo-
nents is proposed in [35]. Here, based on the model provided by an expert, a
set of possible roles is assigned to each layout object. Then, they are collected
into more complex objects until the logical structure is produced.

All the approaches reported above perform geometric layout analysis by
means of a syntactic parsing of the document. Then, the mapping between
the geometric and logical structure is supported by using a template of the
document, a grammar representing its layout, or an expert system whose
knowledge base must be provided by a human expert.

8 Conclusion

The huge amount of documents available in digital form and the flourishing
of digital repositories raise problems about document management, concerned
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with effectiveness and efficiency of their successive retrieval, that cannot be
faced by manual techniques. This paper proposed DOMINUS, an intelligent
system characterized by the intensive application of Machine Learning tech-
niques as a support to all phases of automated document processing, from
document acquisition to document understanding and indexing. The core of
DOMINUS is the Learning Server, a suite of different inductive learning meth-
ods and systems, among which the more suitable for the specific document
processing phase is chosen and applied. The most interesting is INTHELEX, a
proprietary incremental learning system able to handle structural descriptions
and to automatically revise first-order theories.

Experiments in the real-world domain of automatic Scientific Conference
Management have been presented and discussed, showing the validity of the
proposed approach.

Several future work directions are planned for the proposed system. First
of all, the automatic processing of bibliographic references, that can improve
the identification of the document subject and context. Secondly, the use of
ontologies in text processing in order to improve the effectiveness of content-
based retrieval.
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Summary. Pattern classification methods based on learning-from-examples have
been widely applied to character recognition from the 1990s and have brought forth
significant improvements of recognition accuracies. This kind of methods include
statistical methods, artificial neural networks, support vector machines, multiple
classifier combination, etc. In this chapter, we briefly review the learning-based clas-
sification methods that have been successfully applied to character recognition, with
a special section devoted to the classification of large category set. We then discuss
the characteristics of these methods, and discuss the remaining problems in charac-
ter recognition that can be potentially solved by machine learning methods.

1 Introduction

The methods popularly used in the early stage of OCR (optical character
recognition) research and development are template matching and structural
analysis [1]. An intermediate approach between them is feature analysis, also
referred to as feature matching. The templates or prototypes in these early
methods were either designed artificially, selected or averaged from few sam-
ples. As the number of samples increases, these simple methods are insufficient
to accommodate the shape variability of samples, and so, are not able to yield
high recognition accuracy. To take full advantage of large sample data, the
character recognition community turned attention to learning-based classifi-
cation methods, especially artificial neural networks (ANNs) from the late
1980s and the 1990s. Due to the close connection between ANNs and statisti-
cal pattern recognition, statistical classification methods are also considered
seriously from then. Meanwhile, the research activities in pattern recognition
and machine learning communities are becoming close to each other. New
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learning methods, especially support vector machines (SVMs, and more gen-
erally, kernel methods) and ensemble methods (multiple classifier systems),
are now actively studied and applied in pattern recognition.

Learning methods3 have benefited character recognition tremendously:
they release engineers from painful job of template selection and tuning, and
the recognition accuracies have been improved significantly because of learn-
ing from large sample data. Some excellent results have been reported by,
e.g. [2, 3, 4]. While enjoying the benefits of learning-from-examples, we are
aware that the problem is far from being solved: the recognition accuracies
of either machine-printed characters on degraded image or freely handwritten
characters are insufficient; the existing learning methods do not work well
on large category set; huge sample data and ever-increasing data; recognition
errors cannot be eliminated even if we reject a large percentage of samples,
etc. The solution of these remaining problems should still rely on learning: to
better utilize knowledge and samples.

In this chapter, we first give a brief survey of classification methods in
character recognition. A special section is devoted to the classification of large
category set. We then discuss the strengths and weaknesses of these methods,
identify the needs of improved performance in character recognition, and sug-
gest some research directions of pattern classification that can help meet with
these needs. We will focus on the classification of isolated (segmented) char-
acters, though classification methods are also important for other tasks like
layout analysis and segmentation (see [5]). The classification of characters is
also important for segmentation, when over-segmentation-based or character-
model-based word/string recognition schemes are adopted. When we discuss
classification, it is assumed that pre-processing and feature extraction proce-
dures have been performed appropriately.

2 Brief Survey of Classification Methods

The classification methods for character recognition can be roughly categori-
zed into feature-vector-based methods and structural methods. Feature-vector-
based methods are prevailing, especially in off-line character recognition,
because of their simple implementation and low computational complexity.
Whereas a feature vector can be easily extracted from character images, for
structural methods, the extraction of components or strokes are rather diffi-
cult. Meanwhile, there is not an off-the-shelf method for learning structural
models from examples. Hence, we mainly discuss feature-vector-based meth-
ods, including statistical classification methods, ANNs, SVMs, and multiple
classifier combination. A comprehensive survey of classification methods has
been given by Jain et al. [6]. Statistical methods and ANNs are systematically

3 We refer to learning when classifier design is concerned, and refer to classification
when the task of recognition is concerned
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treated by Fukunaga [7] and Bishop [8], respectively. The textbook of Duda
et al. [9] emphasizes statistical methods, but covers other methods as well.
In the following, we briefly review the methods that have been successfully
applied to character recognition.

2.1 Statistical Methods

Statistical classification methods are rooted in the Bayes decision rule. In the
case of 0-1 loss, the input pattern is classified to the class of maximum a pos-
teriori (MAP) probability, which is computed by the Bayes formula from the
a priori probability (usually assumed equal for defined classes) and the con-
ditional probability density. Statistical classifiers are divided into parametric
ones and non-parametric ones depending on the probability density estimation
approach. Parametric classifiers assume for each class a known form of density
function, usually a Gaussian function, with unknown parameters estimated on
training samples by maximum likelihood (ML). Non-parametric classifiers ap-
proximate arbitrary density functions by interpolating the local densities of
training samples (Parzen window), or estimate the a posteriori probabilities
directly from samples (k-nearest neighbor (k-NN)). Non-parametric methods
are expensive in both storage space and execution, however. Though para-
metric methods assume restrictive density functions, they perform fairly well
for practical problems.

When assuming Gaussian density and equal a priori probabilities, the
Bayesian discriminant function is equivalent to a quadratic discriminant func-
tion (QDF), which is often taken as a standard classifier in benchmarking.
When further assuming that the Gaussian density functions of all classes
share a common covariance matrix, the QDF is reduced to a linear discrimi-
nant function (LDF). If more restrictively, the conditional density function is
spherical Gaussian with equal variance, the discriminant function is reduced
to the Euclidean distance from class mean, which was often taken in early fea-
ture matching methods. The QDF does not necessarily outperform the LDF
because it has as many parameters as square of feature dimensionality, and
so, is sensitive to the training sample size. The regularized discriminant anal-
ysis (RDA) method [10] alleviates this problem by smoothing the covariance
matrices. On the other hand, Kimura et al. replace the minor eigenvalues of
covariance matrix of each class with a constant [11]. The resulting modified
quadratic discriminant function (MQDF) involves less parameters and lower
computation than the QDF, and results in improved generalization accuracy
(accuracy on un-trained samples). The MQDF is popularly used, especially
in handwritten Chinese/Japanese character recognition. An improvement of
MQDF with elaborate parameter estimation is called as modified Bayes dis-
criminant function (MBDF) [12]. Another method that is often referred is
the projection distance [13], in which the distance of input pattern from a
linear subspace of each class serves a reasonable discriminant function. An
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improvement, called modified projection distance (MPD), has a functional
form similar to the MQDF [14].

Other than regularizing Gaussian density, the Gaussian mixture model
(mixture of Gaussians) can model multi-modal distributions. For high-
dimensional feature space as is the case of character recognition, however, it
does not generalize well. Using a mixture of low-dimensional linear subspaces
lowers the complexity of Gaussian mixture while maintaining the multi-modal
nature, and the classification performance can be largely improved, as have
been demonstrated in handwritten numeral recognition [15, 16].

Under the umbrella of statistical pattern recognition are also feature se-
lection and transformation methods. Feature transformation can reduce the
dimensionality of feature space and often improve the classification accuracy.
Principal component analysis (PCA) and Fisher discriminant analysis (FDA)
are two linear subspace learning methods that have been popularly used. PCA
is effective mainly in the recognition of small character set, whereas for large
character set, FDA is more efficient [12, 17]. Heteroscedastic discriminant
analysis and nonlinear dimensionality reduction have been actively studied in
pattern recognition, but are rarely applied to pratical character recognition.

Feature selection is also an active research field in pattern recognition and
machine learning. It benefits recognition when there is a large number of fea-
tures containing redundant and/or noisy ones. Extracting various types of
features followed by feature subset selection may yield higher performance
than classification on the original feature set or an artificially selected sub-
set. Promising results of handwritten digit recognition using feature subset
selection have been reported in [18].

Both parametric and non-parametric classifiers estimate the density pa-
rameters of each class independently without considering the separability of
different classes. Some methods have been proposed to improve the classifica-
tion accuracy by modifying the parameters according to the recognition errors
on training samples made by the ML classifier, like the LDA method [19] and
the mirror image learning method [20]. Parameter optimization methods by
error minimization will be reviewed in the context of neural networks.

2.2 Artificial Neural Networks

The connecting weights of artificial neural networks (ANNs) are adjustable to
fit an objective of functional approximation, e.g. minimum regression error.
Feedforward neural networks, including single-layer perceptron (SLP), mul-
tilayer perceptron (MLP), radial basis function (RBF) network, higher-order
neural network (HONNs), etc., have been widely applied to pattern recogni-
tion. Usually, each output node of the network corresponds to a class, and the
maximum output gives the decision of classification. The connecting weights
are usually adjusted to minimize the square error between the outputs and
target values on training samples (supervised learning). The minimum square
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error training algorithm for MLP is referred to as back-propagation (BP) in
particular. /indexback-propagation

The descriptions of supervised learning, SLP, MLP, and RBF network can
be found in most neural networks textbooks. The output of SLP can be viewed
as a linear discriminant function, with the weights estimated by error mini-
mization instead of maximum lieklihood (ML), and so, the SLP often gives
higher classification accuracy than the LDF with ML estimation. The MLP is
flexible to approximate nonlinear functions and capable of separating patterns
of complicated distributions. This power makes it a popular tool for pattern
classification. Many works in character recognition have taken the MLP as a
standard classifier or benchmark. The generalization performance of MLP can
be improved by weight decay, local connection (local receptive fields), weight
sharing, structure selection and stopping by cross-validation, etc. A network
using local connection and shared weights, called convolutional neural net-
work, has reported great success in character recognition [2, 21]. It directly
works on character image and the hidden nodes with local connection can be
viewed as trainable feature extractors. For feature vector-based classification,
using a modular network for each class can also improve the accuracy [22].

The RBF network has one hidden layer of Gaussian functions, which are
combined linearly by the output nodes. In early stage, the parameters of RBF
networks were usually estimated in two phases: Gaussian parameter estima-
tion by clustering and weight learning by error minimization. Since the clus-
tering procedure does not consider the speparability of patterns, the Gaussian
parameters learned this way do not lead to good classification performance.
A substantial improvement is to adjust all the parameters simultaneously by
error minimization [8]. This makes the RBF network competitive with the
MLP in classification accuracy.

The HONN is also referred to as functional-link network [23], polynomial
network, or polynomial classifier [24]. Its output is a weighted combination of
pattern features and their polynomial expansions. For high-dimensional fea-
tures, the number of (even 2nd-order) polynomial terms is extremely large.
This complexity can be reduced by dimensionality reduction before polyno-
mial expansion [25] or polynomial term selection [26]. A recently proposed
class-specific feature polynomial classifier (CFPC) improves the classification
accuracy by polynomial expansion on class-specific linear subspaces [27].

Some unsupervised learning methods have also been applied to pattern
recognition, among them are competitive learning for vector quantization
(VQ, can be used for learning prototypes for each class) and auto-association
network (an application to character recognition can be seen in [28]). On
the other hand, Zhang et al. learn mixtures of linear subspaces using neural
networks for classification [29].

The learning vector quantization (LVQ) algorithm of Kohonen [30] learns
class prototypes with the aim of separating the samples of different classes.
LVQ is a supervised learning method and can give higher classification ac-
curacy than VQ. We view VQ and LVQ as neural-like methods because like
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neural networks, the parameters (prototypes) are adjusted in online mode
(stochastic gradient descent, iteratively on training samples). Some improve-
ments of LVQ learn prototypes by minimizing classification or regression error
instead of heuristic adjustment [31].

The discriminative learning quadratic discriminant function (DLQDF) [32]
can also be viewed as a neural-like classifier. The DLQDF inherits the struc-
ture and initial parameters from the MQDF, but the parameters are optimized
on training samples by minimizing the classification error by stochastic gradi-
ent descent. In experiments of handwritten numeral recognition, the DLQDF
was shown to outperform most statistical and neural classifiers.

2.3 Kernel Methods

Kernel methods, including support vector machines (SVMs) [33, 34] primarily
and kernel PCA, kernel FDA, etc., are receiving increasing attention and have
shown superior performance in pattern recognition. Kernel methods use a
kernel function to represent the inner product of two patterns in expanded
nonlinear feature space (possibly of infinite dimensionality). Both training and
classification are performed via the kernel function without explicit access of
the nonlinear space. An SVM is a binary classifier with discriminant function
being the weighted combination of kernel functions over all training samples.
The weights (coefficients) are learned by quadratic programming (QP) with
the aim of maximizing the margin in feature space. After learning, the samples
of non-zero weights are called support vectors (SVs), which are stored and
used in classification. The maximal margin criterion of SVM learning leads
to good generalization performance, but the resulting large number of SVs
brings about heavy storage and computation in classification.

For multi-class classification, binary SVMs can be combined in two ways:
one-versus-all (one-against-others) or one-versus-one (pairwise). The pairwise
combination scheme was shown to outperform one-versus-all when using linear
kernel [35]. When nonlinear kernels are used, the one-versus-all scheme per-
forms sufficiently. In recent years, many results of character recognition using
SVM classification have been reported, mostly for small category set problems
like numeral recognition. The results (e.g. [4]) show that SVMs indeed yield
higher accuracies than statistical and neural classifiers, but the storage and
computation of large number of SVs are expensive. A strategy to alleviate the
computation cost is to use a statistical or neural classifier for selecting two
candidate classes, which are then discriminated by SVM [36]. Dong et al. used
a one-versus-all scheme for large set Chinese character recognition with fast
training [37]. They speed up the recognition by using a coarse classifier for
candidate selection, but cannot avoid the problem of storing large number of
SVs.
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2.4 Multiple Classifier Systems

Combining multiple classifiers has been long pursued for improving the accu-
racy of single classifiers [38, 39]. Rahman et al. give a survey of combination
methods in character recognition, including various structures of classifier or-
ganization [40]. Moreover, other chapters of this book are dedicated to this
subject. Parallel (horizontal) combination is more often adopted for high ac-
curacy, while sequential (cascaded, vertical) combination is mainly used for
accelerating large category set classification. According to the information
level of classifier outputs, the decision fusion methods for parallel combination
are categorized into abstract-level, rank-level, and measurement-level combi-
nation. Measurement-level combination takes full advantage of output infor-
mation, and many fusion methods have been proposed to it [41, 42, 43]. Some
character recognition results using multiple classifiers combined at different
levels are reported by Suen and Lam [44].

The classification performance of multiple classifiers not only depends on
the fusion strategy, but also relies on the complementariness (also referred
to as independence or diversity) of the classifiers. Complementariness can
be yielded by varying training samples, pattern features, classifier structure,
learning methods, etc. In recently years, methods for generating multiple clas-
sifiers (called an ensemble) by exploring the diversity of training samples based
on a given feature representation are receiving high attention, among them are
the Bagging [45] and the Boosting [46]. For character recognition, combining
classifiers based on different pre-processing and feature extraction techniques
is effective. Yet another effective method uses a single classifier to classify
multiple deformations (called perturbations or virtual test samples) of the in-
put pattern and combine the decisions on multiple deformations [47, 48]. The
deformations of training samples can also be used to train the classifier for
improving the generalization performance [48, 21].

3 Strategies for Large Category Set

Unlike numerals and English letters that have only tens of classes, the char-
acter sets of some oriental languages, like Chinese, Japanese, and Korean,
have thousands of daily-used characters. A standard of Chinese, GB2312-80,
contains 3,755 characters in the level-1 set and 3,008 characters in the level-2
set, 6,763 in total. A general-purpose Chinese character recognition system
needs to deal with an even larger set because those not-often-used characters
should be recognized as well.

For classifying a large category set, many classifiers become infeasible be-
cause either the training time or the classification time becomes unacceptably
long. Classifiers based on discriminative supervised learning (called discrim-
inative classifiers hereof), like ANNs and SVMs, are rarely used to directly
classify a large category set. Two divide-and-conquer schemes are often used
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to accelerate classification. In one scheme, a simple and fast classifier is used
to select a dynamic subset from the whole class set such that the input pat-
tern belongs to the subset with high probability. In another scheme, the class
set is divided into static (possibly overlapping) clusters and the input pattern
is assigned to one or several clusters, whose unification gives the subset of
classes for further discrimination. A hierarchical classification method using
both schemes was reported in [49]. Tree classifiers were ever pursued for fast
classification of large character set (e.g. [50]) but the accumulation of error
along hierarchies makes them insufficient in accuracy, especially for recogniz-
ing handwritten characters.

In divide-and-conquer schemes, the second-stage classifier for discriminat-
ing a subset of classes (called fine classifier) can be a quadratic classifier or a
discriminative classifier. The main advantage of quadratic classifiers is that the
parameters of each class are estimated independently using the samples of one
class only. The training time is hence linear with the number of classes (NoC).
Successful quadratic classifiers include the MQDF of Kimura et al. [11, 12]
and some modifications of Mahalanobis distance, which have lower complexity
and yield higher accuracy than the original QDF. A further improvement is
the compound discriminant functions [51, 14], which discriminate pairs of con-
fusing classes without extra parameters compared to the baseline quadratic
classifier. The asymmetric Mahalanobis distance of Kato et al. [52] yields su-
perior recognition accuracy, though with higher complexity than the MQDF.

The training time for a discriminative classifier is square of the NoC since
the total number of samples is linear with the NoC, and each sample is used
for training the parameters of all classes. To alleviate this problem for large
category set, neural networks are usually trained with a subset of samples. Fu
and Xu designed probabilistic decision-based neural networks for discriminat-
ing groups of classes divided by clustering [53], with each network trained with
the samples of the classes in a group. Kimura et al. design an MLP for each
of confusing classes, which are determined from the classification on training
samples using a statistical classifier [54]. Each MLP discriminates one target
class from some rivals that are confused to the target class by the statistical
classifier. In classification, an MLP is activated only when its target class is
the top-rank class given by the statistical classifier. Saruta et al. design an
MLP for each class, but the MLP is trained with the samples of a few classes
only [55].

Training SVMs with all samples for Chinese character recognition has been
attempted by Dong et al., who designed a fast training algorithm [37]. Though
the training with all samples is now feasible due to the increasing power of
computers, reducing the complexities of training, storage and classification is
concerned for practical applications.

As a discriminative classifier, the LVQ classifier has moderate complexity
for large category set [17, 31]. Fukumoto et al. has used a generalized LVQ
(GLVQ) algorithm for discriminatively adjusting the class means of quadratic
classifiers for large character set recognition [56]. The DLQDF [32], discrim-
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inatively adjusting all the parameters of quadratic classifier, provides more
accurate classification than LVQ, but its training is very computationally ex-
pensive for large category set. By introducing hierarchical rival class search
for acceleration, the training of DLQDF on large category set is feasible [57].
Compared to the ML-based MQDF, however, the DLQDF improves the ac-
curacy of handwritten Chinese character recognition only slightly [57, 58].

The mirror image learning method of Wakabayashi et al. [20], for adjusting
the covariance parameters of quadratic classifier, was recently applied to hand-
written Chinese character recognition with success [59]. Running quadratic
classification and modifying covariance matrices for five cycles on training
samples, the accuracy of MQDF on test samples was improved from 98.15%
to 98.38%. Using compound quadratic discriminant functions for pair discrim-
ination, the test accuracy was further improved to 98.50%.

Feature dimensionality reduction also plays an important role in large char-
acter set recognition, since it reduces the classifier complexity (both parameter
storage and computation) and possibly, improves the classification accuracy.
The Fisher discriminant analysis (FDA) has shown success in many recogni-
tion systems [12, 58], though it assumes equal covariance for all classes and
tends to blur the difference between nearby classes. Previous hetorescedas-
tic discriminant analysis (HDA) methods are computationally formidable for
large category set. A new HDA method was proposed recently and applies
effectively to Chinese character recognition [60].

A feature subspace learning method by error minimization, called discrim-
inative feature extraction (DFE) [61], has been tried to improve the accuracy
of Chinese character recognition [17, 62, 63, 57]. DFE optimizes the sub-
space vectors and classifier parameters simultaneously by stochastic gradient
descent. With a classifier of single prototype per class, the optimization for
thousands of classes is computationally feasible, and the simultaneous opti-
mization of class prototypes and subspace can be viewed as a combination of
LVQ and DFE. Using a quadratic classifier on the feature subspace learned by
DFE with a prototype classifier, the accuracy of handwritten Chinese char-
acter recognition is improved significantly compared to classification on FDA
subspace [57].

4 Comparison of Classification Methods

In this section we collect some character recognition results reported in the lit-
erature for comparing the performance of the classification methods reviewed
above, and we discuss the characteristics of these methods regarding their
impacts on practical applications.

4.1 Performance Comparison

The various experiments of character recognition differ in many factors such
as the sample data, pre-processing technique, feature representation, classifier
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structure and learning algorithm. It is hard to assess the performance of a spe-
cial classification or learning method from the recognition accuracies reported
by different works since the other factors are variable. Only a few works have
compared different classification/learning methods based on the same feature
data.

For handwritten character recognition, more experiments have been re-
ported for off-line recognition than for on-line recognition. Regarding the tar-
get of recognition, the 10 Arabic numerals are most often tested, while Chinese
characters or Japanese Kanji characters are often tested in large character set
recognition. The numeral databases that have been widely tested include the
CENPARMI, NIST Special Database 19 (SD19), MNIST, etc. The NIST SD19
contains huge number of character images, but researchers often use different
partitions of data for training and testing, unlike that the CENPARMI and
MNIST databases are partitioned into standard training and test sets.

Performance on Handwritten Numerals

We first collect some high recognition accuracies reported on standard numeral
databases, then summarize some results of classification on common feature
data.

The CENPARMI database contains 4,000 training samples and 2,000 test
samples. Early works using structural analysis hardly reached 95% of cor-
rect recognition on this test set [64]. In recently years, it is easy to achieve a
recognition rate over 98% by extracting statistical features and training clas-
sifiers. Suen et al. reported a correct rate 98.85% by training neural networks
on 450,000 samples [3]. By training with the standard 4,000 samples, correct
rates over 99% have been given by polynomial classifier (PC) and SVMs with
efficient image normalization and feature extraction [4, 65].

The MNIST database contains 60,000 training samples and 10,000 test
samples. Each sample was normalized to a gray-scale image of 20× 20 pixels,
which is located in a 28× 28 plane. The pixel values of normalized image are
used as feature values, on which different classifiers and learning algorithms
can be fairly compared. LeCun et al. collected a number of test accuracies
given by various classifiers [2]. A high accuracy, 99.30%, was given by a boosted
convolutional neural network (CNN) trained with distorted data. Simard
et al. improved both the distorted sample generation and the implementation
of CNN and resulted in a test accuracy 99.60% [21]. Instead of the trainable
feature extractors in CNN, extracting heuristically discriminating features also
lead to high accuracies. Without training with distorted samples, Teow and
Loe obtained a test accuracy 99.57% by extracting local structure features
and classification using triowise linear SVMs [66]. On 200D gradient direction
feature, Liu et al. obtained a test accuracy 99.58% by SVM classification,
99.42% by polynomial classifier, and over 99% by many other classifiers [4].

On the MNIST database, training classifiers without feature extraction
show worst performance. Since image pre-processing and feature extraction
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are both important to character recognition, a better scheme to compare clas-
sifiers is to train them on a common discriminating feature representation.
Holmström et al. compared various statistical and neural classifiers on PCA
features extracted from normalized images [67]. However, the PCA feature
does not perform satisfactorily. In the comparison studies of Liu et al. [68, 4],
the features used, chaincode and gradient direction features, are widely rec-
ognized and well-performing in practice. Their results show that parametric
statistical classifiers (especially the MQDF) generalize better than neural clas-
sifiers when training with small sample data, while neural classifiers outper-
forms when training with large sample data. The SVM classifier with RBF
kernel mostly gives the highest accuracy. The best neural classifier was shown
to be the polynomial classifier (PC), which is far less complex in storage and
execution than SVMs. And the RBF network mostly outperforms the MLP
when training all its parameters discriminatively.

A citation of error rates from [4] is shown in Table 1, where “4-grad”
and “8-grad” stand for 4-orientation and 8-direction gradient features, respec-
tively; and “SVC-poly” and “SVC-rbf” denotes one-versus-all support vector
classifiers with polynomial kernel and RBF kernel, respectively. In this table,
the RBF network is shown to be inferior to the MLP on the MNIST dataset,
but on many other datasets, the RBF network outperforms the MLP [4].

Table 1. A citation of error rates (%) on the MNIST test set

Feature pixel PCA 4-grad 8-grad

k-NN 3.66 3.01 1.26 0.97
MLP 1.91 1.84 0.84 0.60
RBF 2.53 2.21 0.92 0.69
PC 1.64 N/A 0.83 0.58
SVC-poly 1.69 1.43 0.76 0.55
SVC-rbf 1.41 1.24 0.67 0.42

Performance on Large Character Sets

In the area of Chinese/Japanese character recognition, a public handprinted
(constrained handwriting) database ETL9B has been widely tested. Various
classification methods have been proposed, but they have never been com-
pared on a common feature representation of samples.

The ETL9B database contains 200 samples for each of 3,036 classes, in-
cluding 2,965 Kanji and 71 hiragana characters. Early works often used 100
samples of odd number from each class for training and the even-numbered
samples for testing, and focused on image normalization and feature extrac-
tion for improving the performance of feature matching. Nonlinear normal-
ization based on line density equalization [69, 70] and edge direction feature
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extraction are now widely accepted. Using the class means of training sam-
ples as prototypes, the recognition accuracy on test samples was hardly over
95%. On this sample partitioning scheme, Saruta et al. achieved a correct
rate of 95.84% by using class-modular neural networks for fine classification
[55]. Using FDA for dimensionality reduction and GLVQ for optimizing the
class means, Fukumoto et al. reported a correct rate of 97.22% for Euclidean
distance, 98.30% for projection distance (PD) and 98.41% for modified PD
(MPD) [56]. The PD and MPD classifiers have comparable complexity with
the MQDF, however.

High accuracies have been reported on ETL9B by using quadratic classi-
fiers and SVMs. Nakajima et al. used 160 samples per class for training and
the remaining 40 samples for testing, and reported a correct rate 98.90% using
MPD and compound MPD [14]. Dong et al. tested on a partially different set
of 40 samples per class, and reported a correct rate 99.00% by using SVMs
trained on enhanced samples for fine classification [37]. Kimura et al. tested
on 40 samples per class in rotation and reported average rate 99.15% by us-
ing modified Bayes discriminant function on enhanced training samples [12].
Suzuki et al. [51] and Kato et al. [52] tested on 20 samples per class in rotation,
and both used partial inclination detection for improving normalization. Using
compound Mahalanobis distance for fine classification, Suzuki et al. improved
the recognition rate from 99.08% to 99.31%. Kato et al. reported a correct
rate 99.42% by using asymmetric Mahalanobis distance for fine classification.

Some works reported results on ETL9B as well as databases of handwritten
Chinese characters, say, HCL2000 [58] and CASIA [57]. The Chinese databases
are not available for free use, however. From the reported results, the Chinese
samples turn out to be more difficult to recognize than the samples of ETL9B.
Based on nonlinear normalization and gradient direction feature extraction,
the accuracies on ETL9B (with samples partitioned as [14]) are as high as
99.33% and 99.39%, while the accuracies on HCL2000 and CASIA databases
are 98.56% and 98.43%, respectively. The underlying classification methods
are DLQDF+compound quadratic discrminant [58] and DFE+DLQDF [57],
respectively.

4.2 Statistical vs. Discriminative Classifiers

We refer to statistical classifiers as those based on parametric or non-
parametric density estimation, and discriminative classifiers as those based
on minimum (regression or classification) error training. Discriminative clas-
sifiers include neural networks and SVMs, for which the parameters of one
class are trained on the samples of all classes or selected confusing classes.
For statistical classifiers, the parameters of one class are estimated from the
samples of its own class only. Non-parametric classifiers like Parzen window
method and k-NN rule are not practical for real-time applications, and so, are
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not considered in the following discussions. We compare the characteristics of
statistical and discriminative classifiers in the following respects.

• Complexity and flexibility of training. The training time of statistical clas-
sifiers is linear with the number of classes, and it is easy to add a new
class to an existing classifier since the parameters of the new class are esti-
mated from the new samples only. Also, adapting the density parameters
of a class to new samples is possible. In contrast, the training time of dis-
criminative classifiers is proportional to square of the number of classes,
and to guarantee the stability of parameters, adding new classes or new
samples need re-training with all samples.

• Classification accuracy. When training with enough samples, discrimina-
tive classifiers give higher generalization accuracies than statistical classi-
fiers. This is because discriminative classifiers are trained to separate the
samples of different classes in the feature space, while the pre-assumed
density form of statistical classifiers limits its capability to accommodate
large variability of samples.

• Dependence on training sample size. The generalization accuracy of regu-
larized statistical classifiers (like MQDF and RDA) are more stable against
the training sample size than discriminative classifiers (see [68]). On small
sample size, statistical classifiers can generalize better than discriminative
ones.

• Storage and execution complexity. At same level of classification accuracy,
discriminative classifiers tend to have less parameters than statistical clas-
sifiers. Hence, discriminative classifiers are more economical in storage and
execution.

• Confidence of decision. The discriminant functions of parametric statistical
classifiers are connected to the class conditional probability, and can be
easily converted to a posteriori probabilities by the Bayes formula. On the
other hand, the outputs of discriminative classifiers are directly connected
to a posteriori probabilities.

• Rejection capability. Classifiers of higher classification accuracies tend to
reject ambiguous patterns better, but not necessarily reject well outliers
(patterns out of defined classes) [68]. Parametric statistical classifiers are
resistant to outliers because of the assumption of compact density func-
tions, whereas discriminative classifiers are susceptible to outliers because
of open decision regions [71]. Outlier rejection is important to integrated
segmentation and recognition of character strings [72]. The rejection capa-
bility of discriminative classifiers can be enhanced by training with outlier
samples.

4.3 Neural Networks vs. SVMs

In addition to the common properties of discriminative classifiers as above,
neural classifiers and SVMs show different properties in the following respects.
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• Complexity of training. The parameters of neural classifiers are generally
adjusted by gradient descent with the aim of optimizing an objective func-
tion on training samples. By feeding the training samples a fixed number
of epochs, the training time is linear with the number of samples. SVMs
are trained by quadratic programming (QP), and the training time is gen-
erally proportional to the square of number of samples. Some fast SVM
training algorithms with nearly linear complexity are available, however.

• Flexibility of training. The parameters of neural classifiers (for character
classification) can be adjusted in string-level or layout-level training by
gradient descent with the aim of optimizing the global recognition perfor-
mance [2, 73]. SVMs can only be trained at the level of holistic patterns.

• Model selection. The generalization performance of neural classifiers is sen-
sitive to the size of the network structure, and the selection of an appro-
priate structure relies on cross-validation. The performance of SVMs also
depends on the selection of kernel type and kernel parameters, but this
dependence is not so influential as the structure selection of neural net-
works.

• Classification accuracy. SVMs have been demonstrated superior classifica-
tion accuracies to neural classifiers in many experiments.

• Storage and execution complexity. SVM learning by QP often results in
a large number of SVs, which should be stored and computed in classifi-
cation. Neural classifiers have much less parameters, and the number of
parameters are easy to control. For reducing the execution complexity of
SVMs, SV reduction techniques are effective, but may sacrifice the classi-
fication accuracy to some degree.

5 Remaining Problems and Future Works

Though tremendous advances have been achieved in applying classification
and learning methods to character recognition, there is still a gap between the
needs of applications and the actual performance, and some problems encoun-
tered in practice have not been considered seriously. We list these problems
and discuss the future research directions of classification and learning that
can potentially solve or alleviate them.

5.1 Improvements of Accuracy

Recognition rates over 99% have been reported to handwritten numeral recog-
nition and handprinted Chinese character recognition, but accuracies lower
than 90% are often reported to some difficult cases like English letters, cur-
sive words, unconstrained Chinese characters, etc. The recognition rate, even
as high as 99.9%, is never sufficient. Any improvement to accuracy will make
the recognition system more welcome by users. Improved accuracy can be
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achieved by carefully tuning every processing task: pre-processing, feature ex-
traction, sample generation, classifier design, multiple classifier combination,
etc. We hereof only discuss some issues related to classification and learning.

• Feature transformation. Feature transformation methods, including PCA
and FDA, have been proven effective in pattern classification, but no
method claims to find the best feature subspace. Generalized transfor-
mation methods based on relaxed density assumptions and those based on
discriminative learning are expected to find better feature spaces.

• Feature selection. Character classification has been mostly performed on a
limited number of features, which are usually artificially selected. Increas-
ing the number of features complicates the design of classifier and may
deteriorate the generalization performance. It is now possible to automat-
ically select a good feature set from huge number of candidate features.
With the aim of optimizing separability or description, the selected fea-
tures may lead to better classification than artificially selected ones.

• Sample generation and selection. Training with distorted samples has re-
sulted in improved generalization performance, but better methods of dis-
torted sample generation are yet to be found. Since very large number of
distorted samples can be generated and some of them may be mislead-
ing, the selection of samples then becomes important to guarantee the
efficiency and quality of training.

• Joint feature selection and classifier design. To select features and de-
sign classifier jointly may lead to better classification performance. The
Bayesian network belongs to such kind of classifiers and is now being stud-
ies intensively.

• Hybrid statistical/discriminative learning. A hybrid statistical/discrimina-
tive classifier may yielder high accuracy than both the pure statistical and
the pure discriminative classifier [74]. A way to design such classifiers is to
adjust the parameters of parametric statistical classifiers discriminatively
on training samples [75, 32], to improve both generalization accuracy and
resistance to outliers. Also, combining the decisions of statistical and dis-
criminative classifiers is preferred to combining similar classifiers.

• Ensemble learning. The performance of combining multiple classifiers pri-
marily relies on the complementariness of classifiers. Maximizing the di-
versity of classifiers is now receiving increasing attention. A heuristic is to
combine classifiers with different properties: training data, pre-processing,
feature extraction, classifier structure, learning algorithm, etc. Among the
methods that explore the diversity of data, the Boosting is considered as
the best ensemble classifier. It has not been widely tested in character
recognition yet.
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5.2 Reliable Confidence and Rejection

Since we cannot achieve 100% correct recognition in practice, it is desirable
to reject or delay the decision for those patterns with low confidence. There
maybe two kinds of confidence measures: class conditional probability-like
(conditional confidence) and posterior probability-like (posterior confidence).
Rejecting ambiguous patterns (those confused between different classes) is
generally based on posterior confidence, and rejecting outliers (those out of
defined classes) is generally based on conditional confidence. If we can estimate
the conditional confidence reliably, it would help reject ambiguous patterns
as well. Both confidence measures can be unified into the posterior probabil-
ities of open world: normalization to unity for defined classes and an outside
world. Transforming classifier outputs to probability measures facilitates con-
textual processing which integrates information from multiple sources. The
following ways may help improve the rejection capability of current character
recognition methods.

• Elaborate density estimation. Probability density estimation is a tradi-
tional problem in statistical pattern recognition, but is not well-solved
yet. Good density models for character classes can yield both high classi-
fication accuracy and rejection capability, especially outlier rejection. The
Gaussian mixture model is being studied intensively, and many efforts are
given to automatically estimating the number of components. For density
estimation in high-dimensional spaces, combining feature transformation
or selection may result in good classification performance. Density estima-
tion in kernel space would be a choice to explore nonlinear subspace.

• One-class classification. One-class classifiers separate one class from the
remaining world with parameters estimated from the samples of the target
class only. Using one-class classifiers as class verifiers added to a multi-class
classifier can improve rejection. The distribution of a class can be described
by a good density model (as discussed above) or support vectors in kernel
space [76]. Structural analysis, though do not compete with statistical
and discriminative classifiers in classification accuracy, may serve as good
verifiers.

• Hybrid statistical/discriminative learning.Hybrid statistical/discriminative
classifiers, as discussed in 5.1, may yield both high classification accuracy
and resistance to outliers. This principle of learning is to be extended to
more statistical models than Gaussian discriminant function and may be
combined with feature transformation.

• Multiple classifier combination. Different classifiers tend to disagree on
ambiguous patterns, so the combination of multiple classifiers can better
identify and reject ambiguous patterns [77]. Generally, combining comple-
mentary classifiers can improve the classification accuracy and the tradeoff
between error rate and reject rate.
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5.3 Improvements to Large Category Set

Discriminative learning methods have not been extensively applied to the
recognition of large character set. Using quadratic classifiers with sophisti-
cated normalization and feature extraction, high accuracies have been reported
to handprinted sample databases like the ETL9B. However many misrecog-
nized samples are easily recognized by humans and are potentially solvable
by discriminative learning. The probable reasons that neural networks could
not perform competitively (e.g. [55]) are: (1) There are few training samples
per class (less than 200 in ETL9B); (2) The class-modular network only takes
the samples of confusing classes as negative samples, so the resulting network
is not resistant to the samples of un-trained classes. The application of SVMs
to Chinese character recognition [37] is successful though its accuracy can-
not be compared directly to other works because of different pre-processing
and feature extraction procedures. To better utilize discriminative classi-
fiers for discriminating similar characters, several issues should be considered
seriously.

• Training sample size. To demonstrate the benefit of discriminative clas-
sifiers, we should use a large number of samples per class for training.
If using the discriminative classifier for discriminating a subset of classes
only, these selected classes should have more samples than other classes.
A new public database released in Japan, called JEITA-HP, contain more
than 500 samples per class. The Chinese database HCL2000 contains over
1,000 samples for each of 3,755 classes.

• Confusing set selection. The subset of confusing classes is usually selected
heuristically according to the classification results of a statistical classifier
on training samples. This procedure need to be considered more rigorously,
say, from probabilistic view.

• Type of discriminative classifier. When the discriminative classifier is used
to discriminate a subset of classes, the resistance to outliers is prefer-
able because the patterns of un-trained classes are often presented to the
discriminative classifier in execution. In this respect, the hybrid statisti-
cal/discriminative classifier is a good choice.

• Samples for training discriminative classifier. If a neural or SVM classifier
is used to discriminate a subset of classes, it should be trained with samples
of other classes too, in order to enhance the resistance to outliers.

• Fusion of cascaded classifiers. Using either a multi-class classifier or pair-
wise classifier for the second-stage classification, fusing the decisions of
first-stage and second-stage classifiers probabilistically will benefit the
global recognition accuracy.

5.4 Incremental Learning

As discussed in Section 4.2, when adding new classes or new samples to
defined classes, discriminative classifiers need to be re-trained with all the
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accumulated samples. Incremental learning for adapting existing classifiers to
new classes and new samples has rarely been considered in character recogni-
tion. Some published works of incremental learning in the neural networks
community can be referred for our application. Statistical models can be
adapted on new samples without forgetting past data distribution in the
framework of Bayesian learning, and hybrid statistical/discriminative mod-
els can also be stabilized to past distribution while adapting to new data. For
all classifier models, an ensemble classifier can be generated by combining new
classifiers trained with new samples with existing ones [78].

The samples for classifier training and adaptation are ever increasing. In
addition to adaptation to new labeled data, training with unlabeled data
is another topic that is intensively studied in machine learning, called semi-
supervised learning [79]. This learning scheme is applicable to character recog-
nition since we cannot attach class labels to all samples artificially.

5.5 Benchmarking of Methods

Fair comparison of classifiers is difficult because many classifiers, especially
neural networks, are flexible in implementation and their performance are af-
fected by human factors [80]. In the character recognition field, the comparison
of methods is more difficult because many processing steps (pre-processing,
feature extraction, classification) are involved. Even on experiments using the
same training and test sets, researchers often compare the performance at sys-
tem level: the final recognition rate obtained by integrating all the processing
steps. In these circumstances, it is hard to decide what method at which step
is the most influential to the final result.

To conduct a fair comparison of methods instead of overall systems, we
recommend to use standard techniques for all steps except the step under
comparison. For example, to compare classifiers, standard pre-processing and
feature extraction techniques should be applied to all the classifiers to com-
pare. Many techniques, e.g. nonlinear normalization and direction feature ex-
traction, are variable in implementation details. It is hoped that open source
codes of standard techniques for every processing step of character recognition
are released, such that other researchers can fairly compare the methods of a
special step. For comparing classifiers, to release common feature data instead
of sample images is meaningful.
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Summary. We propose a new statistical method for learning normalized confidence
values in multiple classifier systems. Our main idea is to adjust confidence values so
that their nominal values equal the information actually conveyed. In order to do so,
we assume that information depends on the actual performance of each confidence
value on an evaluation set. As information measure, we use Shannon’s well-known
logarithmic notion of information. With the confidence values matching their infor-
mational content, the classifier combination scheme reduces to the simple sum-rule,
theoretically justifying this elementary combination scheme. In experimental evalu-
ations for script identification, and both handwritten and printed character recog-
nition, we achieve a consistent improvement on the best single recognition rate. We
cherish the hope that our information-theoretical framework helps fill the theoreti-
cal gap we still experience in classifier combination, putting the excellent practical
performance of multiple classifier systems on a more solid basis.

1 Introduction

Multiple classifier systems are a relatively new field of research, which is cur-
rently under intensive investigation. We have seen a major boost of publi-
cations during the last ten years. A considerable number of publications is
older though. This chapter is in good company with many other papers ap-
plying multiple classifier systems to handwritten or printed character recog-
nition [1, 2, 3, 4]. In fact, character recognition seems to be one of the most
popular application targets for multiple classifier systems so far. Research on
multiple classifier systems has developed into two main branches: One major
research field addresses the problem of generating classifiers and compiling
classifier ensembles. Typical examples are Bagging [5] and Boosting [6, 7, 8].
Several other techniques, which are out of the scope of this chapter, have been
proposed during the recent years and have gained some importance [9, 10].
The second major research field investigated in the recent literature deals with
combination schemes for integrating the diverse outputs of classifier ensembles
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into a single classification result. Our work falls into this second category,
though we will address Boosting shortly at the end of this chapter.

Multiple classifier systems offer an appealing alternative to the conven-
tional monolithic classifier system. Instead of pressing all information into a
single classifier, the idea of multiple classifier systems is to distribute infor-
mation among more than one classifier. Distributing information over sev-
eral classifiers reduces the average complexity of each classifier, making them
easier to train and optimize. Another intriguing feature is that a multiple
classifier system can outperform each of its individual classifiers. In fact, a
multiple classifier system can achieve outstanding recognition rates even if
all its constituent classifiers provide only moderate performance. Classifiers
highlighting different aspects of the same classification problem are especially
suitable for combination purposes since they can complement each other. For
complementary classifiers, the weakness of one classifier is the strength of at
least one other classifier, which compensates for false judgments made by its
co-classifier. We can generate complementary classifiers by using, for example,
multiple feature sets, training methods, and classification architectures.

However, the combination of multiple classifiers requires integration of in-
dividual classifier outputs into a single answer. In virtually all practical cases,
classifier output is only a rough approximation of the correct a-posteriori class
probabilities. These approximations do not meet usually the mathematical
requirements for probabilities. While this is not a major problem for single
classifier systems, it can lead to severe performance degradation in multiple
classifier systems, where the individual outputs need to be combined in a
mathematically reasonable manner. In this chapter, we presume that each
classifier returns a confidence value for its recognition result and each poten-
tial candidate in an n-best list. These confidence values denote the confidence
of the classifier in its output. In order to compare confidences from different
classifiers, confidence values need to be compatible with each other. Identical
ranges and scales are necessary, but not sufficient, prerequisites of compatible
confidence values. Each classifier in a multiple classifier system should output
confidence values that are related to its actual performance. We must avoid
combining classifiers that are “too optimistic” with classifiers that are “too
pessimistic.” While the confidence values of the former are higher than their
actual performance suggests, the latter provide confidence values that are too
low and do not reflect their good performance properly [11]. In this sense, we
need techniques for making confidence values of different classifiers compatible
with each other.

We propose an information-theoretical approach to this problem. Our
method normalizes confidence values of different classifiers, acting as a re-
pair mechanism for imprecise confidence values. The idea is to combine the
information actually conveyed by each confidence value, instead of directly
combining the values themselves. In order to do so, we first compute a perfor-
mance estimate for each confidence value. Based on this performance estimate,
we compute the informational content for each confidence value according to
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the well-known logarithmic notion introduced by Shannon [12]. The newly
computed informational confidence values will then replace the old values,
serving as a standard representation enabling “fair” comparisons.

The following sections present the theoretical background of our approach,
which implies a clear statement regarding the optimal classifier combination
scheme: Since the natural way of combining information from different sources
is to simply add the amount of information provided by each source, the sum-
rule seems to be the logical combination scheme. In fact, being additive is
part of the definition of information. Accordingly, we strongly advocate the
use of the sum-rule for classifier combination, i.e. adding the confidence values
of all classifiers, because it is optimal in the information-theoretical sense.
We do not see our approach in competition with more complex combination
schemes, rather with elementary schemes such as max-rule or product-rule. In
fact, our approach can be used in combination with almost any other scheme,
though some schemes (e.g. product-rule) would theoretically make less sense.
We therefore concentrate on four elementary combination schemes in this
chapter: sum-rule, max-rule, product-rule, and majority vote.

Applying the plain sum-rule does not automatically guarantee perfor-
mance improvements. On the contrary, it can degrade performance. One of the
main goals of this chapter is therefore to show that sum-rule in combination
with informational confidence values can provide more consistent performance
improvements. We cherish the hope that our findings will contribute to over-
come the theoretical gap we have been experiencing in classifier combination
for quite some time now. In addition, the proposed framework can prove useful
in all kinds of sensor fusion tasks and learning in general.

We structured the chapter as follows: Section 2 explains the idea and
motivation of the proposed approach, followed by the theoretical background
in Section 3. Section 4 explains how we can learn informational confidence
values in practical applications and Section 5 then shows practical examples
for script identification and character recognition. Finally, a summary of the
main results concludes the chapter.

2 Motivation

Many combination schemes have been proposed in the literature. They range
from simple voting schemes [13, 14, 15] to relatively complex combination
strategies, such as the approach by Dempster/Shafer [16] or the Behavior-
Knowledge Space (BKS) method introduced in [17]. The large number of
proposed techniques shows the uncertainty researchers still have in this field.
Up till now, researchers have not been able to show the general superiority of a
particular combination scheme, neither theoretically nor empirically. Though
several researchers have come up with theoretical explanations supporting one
or more of the proposed schemes, a general commonly accepted theoretical
framework for classifier combination is still missing.
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Despite the high complexity of several proposed techniques, many re-
searchers still continue to experiment with much simpler combination schemes.
In fact, simple combination schemes have resulted in high recognition rates,
and it is by no means clear that more complex methods are superior to sim-
pler ones, such as sum-rule or product-rule. The sum-rule (product-rule), for
instance, just adds (multiplies) the score for every class provided by each
classifier of a classifier ensemble, and assigns the class with the maximum
score to the input pattern. Interesting theoretical results have been derived
for those simple combination schemes. For instance, Kittler et al. showed that
the sum-rule is less sensitive to noise than other rules [18]. As said above, we
also advocate the use of sum-rule, but for different reasons.

The main motivation of our chapter lies in an idea introduced by Oberlaen-
der more than ten years ago [11]. Though the approach presented here is more
elaborate, and common ground between both works may not be easy to detect
anymore, it was his approach that gave the main impetus for the technique
described. Oberlaender worked on a method for improving the recognition
rate of a single classifier system by adjusting the classifier’s confidence values.
He measured the classification rate of a confidence value by computing the
recognition rate on all test patterns classified with this particular confidence
value. For each classification, he then replaced each output confidence value
with its corresponding recognition rate stored in a look-up table. Figure 1 il-
lustrates this idea for two confidence values: On the left-hand side, confidence
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new
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Fig. 1. Alignment of confidence values with recognition rates

value Kold
1 performs better than its nominal value suggests. Consequently, this

confidence value is mapped to the larger value Knew
1 , which better reflects

the true classification performance. According to Oberlaender, the classifier
is “too pessimistic” when he outputs Kold

1 since the confidence value is lower
than its actual recognition rate. The left-hand side of Figure 1 also shows an
example of a confidence value that is too optimistic: confidence value Kold

2
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has a nominal value that is higher than its corresponding recognition rate. In
this case, the lower value Knew

2 reflects better the actual performance.
A potential problem with Oberlaender’s approach is that the order of con-

fidence values may be reversed after this process. The right-hand side of Fig-
ure 1 shows an example where this is the case: While, in the previous example,
Kold

1 is smaller than Kold
2 and Knew

1 is smaller than Knew
2 , i.e. monotony has

not been violated by the replacement process, the example on the right-hand
side of Figure 1 shows a reversed order after replacing each confidence value
with its new value. The new value Knew

2 is now smaller than Knew
1 .

Generally speaking, a classifier should not provide confidence values vio-
lating monotony, i.e. larger confidence values should always entail better per-
formance in the application domain. In practice, however, this goal is usually
hard to achieve due to the limited number of training samples for instance.
One can argue that reversing the order of confidence values is in general a
bad idea. After all, the classifier has been trained with typical examples from
the application domain so that its confidence values, and in particular their
relative order, should be meaningful. This apparent drawback motivated an-
other approach based on an idea from Velek et al., who proposed a method
in which confidence values still depend on their respective recognition rates,
but their relative order is never reversed. This approach has been successfully
applied to Japanese character recognition [19, 20, 21]. The key idea is to let
confidence values progress according to the partial sum of correctly recognized
patterns. This process, which warps the old confidence values, can be stated
mathematically as follows:

Knew
i = Ri =

∑i
k=0 ncorrect(Kold

k )
N

, (1)

where Ki is the ith confidence value, assuming discrete values, and N is the
number of all patterns tested. The term Ri denotes the relative number of
patterns correctly classified with a confidence smaller than or equal to Kold

i .
Equation 1 expresses this number using the help function ncorrect(Kold

k ),
which returns the number of patterns correctly classified with confidence Kold

k .
Since Ri is a monotonously increasing function, the new confidence values
Knew

i will also increase monotonously and will thus not change the relative
order of the old confidence values.

The following section introduces a new method that picks up ideas pre-
sented above, but realizes them in a general information-theoretical frame-
work.

3 Informational Confidence

Our approach is based on a simple observation: If the confidence values of a
classifier convey more information than provided by the classifier itself, the
additional information lacks foundation and is thus redundant. On the other
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hand, if the confidence values convey less information than suggested by the
classifier, essential information is lost. Consequently, confidence values that
contain exactly the same amount of information as provided by their classifier
are optimal, or fair, because they allow a fair comparison between different
classifiers. Throughout our chapter, we will refer to these optimal values as
“optimal confidence” or “informational confidence.” In practical classifier sys-
tems, confidence values are usually just approximations of their optimal val-
ues. While this does not necessarily hamper the operation of a single classifier,
which usually only depends on the relative proportion of confidence values,
it causes problems in multiple classifier systems, where we need the correct
amount of information conveyed for combination purposes.

We are going to propose an information-theoretical learning mechanism
for informational confidence. We assume that the amount of information con-
veyed by a confidence value depends directly on its performance, i.e. its pos-
itive feedback within the application domain. The higher the performance
of a confidence value, the higher its informational content and thus the in-
formational confidence. For the time being, we do not further specify what
“performance” actually means in this context. In fact, we will see that the pre-
cise mathematical definition of “performance” follows from the observations
and considerations made above, as soon as we assume a linear relationship
between information and confidence, and use the negative logarithm as the
definition of information.

We begin the formalization with notations for confidence and performance:
Let KC be a set of confidence values for a classifier C:

KC = {K0, K1, . . . , Ki, . . . , KN} (2)

Furthermore, let p(Ki) denote the performance of the i-th confidence value Ki.
We assume that the set of confidence values is either finite or that we can
map it to a finite set by applying an appropriate quantization. Let us agree on
identifying the lowest confidence with K0 and the highest confidence with KN .
Note that this restriction of confidence values to a finite set of discrete values is
not required per se, but it will later allow us to estimate performance values on
a training set. Discrete confidence values are implicitly introduced whenever
we process continuous values on a digital computer.

Claude Shannon’s theory of communication serves as the starting point for
the idea of informational confidence [12]. Shannon’s definition of information
has numerous applications in many fields, and can be considered a major
milestone of research in general. Readers interested in Shannon’s theory will
find a good introduction to information theory in [22, 23, 24]. According to
Shannon, the information of a probabilistic event is the negative logarithm
of its probability. Figure 2 shows his definition of information for both a
probabilistic event with probability x and its complement with probability
1 − x. Shannon’s logarithmic definition of information is motivated by two
main characteristics, which in combination are unique features of the negative
logarithm: First, a likely event conveys less information than an unlikely one.
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Fig. 2. Information I(x) = − log(x) for probability x, and I(1 − x) = − log(1 − x)
for x

Or, in other words, a very likely event does not cause much “surprise” since
it happens very often and we thus know it partly beforehand. Second, the
information of two independent events occurring simultaneously equals the
sum of information independently provided by each event:

I(x ∗ y) = I(x) + I(y) (3)

The only degree of freedom Shannon’s definition allows is the base of the
logarithm, which is the unit that information is measured in. Base 2 is very
often used by researchers and programmers alike. However, we choose the
natural logarithm ln with base e as information bit for reasons becoming
clear below. In Figure 2, we already used the natural logarithm to show the
information conveyed by a probabilistic event.

The last requisite needed for defining the information of a confidence value
Ki is the performance function p(Ki), which measures the performance, or re-
liability, of Ki under C. As mentioned above, we impose no further constraints
on this function here. The reader should think of p(Ki) as a function returning
values between 0 and 1, which are related to the probability that a pattern is
correctly classified given the confidence value Ki. We assume that the infor-
mation conveyed by a confidence value depends directly on its reliability. In
particular, we assume that a highly reliable confidence value Ki (a confidence
value with high performance p(Ki)) provides more information than a less
reliable confidence value. Mathematically, we achieve this desired behavior by
using the complement p(Ki) as the argument for the logarithm, instead of
p(Ki), when computing the information of a confidence value. The comple-
ment p(Ki), which is computed simply as 1 − p(Ki), denotes the uncertainty
one has to take into account when a pattern is classified with confidence Ki.
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Having made these reasonable assumptions, we now establish the following
linear relationship between old and new informational confidence values:

Knew
i = E ∗ I

(
p(Kold

i )
)

+ C (4)

In (4), the variable E is a multiplying factor just influencing the scale. How-
ever, we will later see that E represents also an expectation value in the
statistical sense. The term C is merely a constant specifying an offset. It will
play no further role in this chapter and will thus be equal to zero in the fol-
lowing. The expression I

(
p(Kold

i )
)

in (4) denotes the information conveyed
by the complement p(Kold

i ) of p(Kold
i ), and implements the desired feature of

providing more information for better performances of Ki. Inserting the def-
initions of information and performance complement into (4), and setting C
to 0, leads to the following central relationship between confidence and infor-
mation:

Knew
i = E ∗ I

(
1 − p(Kold

i )
)

= −E ∗ ln
(
1 − p(Kold

i )
)

(5)

We require confidence values to satisfy this equation in order to qualify as
informational confidence. The functional relationship defined by Equation (5)
ensures that old, raw confidence values with no performance, i.e. p(Ki) = 0,
will be mapped to an informational confidence value equal to zero. On the
other hand, confidence values showing perfect performance, i.e. p(Ki) = 1,
will be assigned infinite confidence. Generally speaking, we can regard Equa-
tion (5) as a function mapping raw confidence values to their informational
counterparts, depending on their performance. Each performance p(Ki) de-
termines a corresponding informational confidence value Ki, and vice versa,
each confidence value Ki requires a specific performance p(Ki). Hence, Equa-
tion (5) defines an equilibrium in which informational confidence values are
fixed points, i.e. Knew

i = Kold
i . In the following, we will therefore not further

distinguish between Kold
i and Knew

i , but just write Ki for a fixed point of
Equation (5). Information and confidence become basically the same in the
state of equilibrium.

Using the mathematical definition of informational confidence in Equa-
tion (5), we are now able to specify also the performance function p(Ki),
which has not been further investigated so far. The next subsection is go-
ing to derive the still missing mathematical specification of p(Ki), which is
essential for a practical computation of informational confidence.

3.1 Performance Function

The performance function is a direct consequence of the fixed point equation
in (5). By resolving (5) for p(Ki), the following straightforward transformation
produces its mathematical specification:
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Ki = E ∗ I (1 − p(Ki))

⇐⇒ Ki

E
= − ln (1 − p(Ki))

⇐⇒ e−
Ki
E = 1 − p(Ki)

⇐⇒ p(Ki) = 1 − e−
Ki
E (6)

This result shows that the performance function p(Ki) describes the distri-
bution of exponentially distributed confidence values. We can therefore con-
sider confidence as a random variable with exponential density and parameter
λ = 1

E . Let us repeat some of the basics of statistics in order to clarify this
crucial result.

The general definition of an exponential density function eλ(x) with pa-
rameter λ is:

eλ(x) =
{

λ ∗ e−λx : x ≥ 0
0 : x < 0 λ > 0 (7)

The mathematical key requirement for a function to be a density function
is that its enclosed area equals 1. Accordingly, exponential densities with
parameter λ meet the following criterion:

∞∫
−∞

eλ(x) dx =

∞∫
0

λ ∗ e−λx dx = 1 ∀λ > 0 (8)

Figure 3 shows three different exponential densities differing in their parame-
ter λ, with λ = 100, λ = 20, and λ = 10, respectively. We see that parameter
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Fig. 3. Exponential density for λ = 100, λ = 20, and λ = 10
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λ has a direct influence on the steepness of the exponential density: The
higher λ, the steeper the corresponding exponential density function.

The mathematical companion piece of a density function is its distribution.
Based on a random variable’s density, a distribution describes the probability
that the random variable assumes values lower than or equal to a given value k.
For a random variable with exponential density eλ(x), we can compute the
corresponding distribution Eλ(k) as follows:

Eλ(k) =
∫ k

−∞
eλ(x) dx

=
∫ k

0

λ ∗ e−λx dx

=
[−e−λx

]k

0

= 1 − e−λk (9)

Consequently, a random variable with exponential density is also called “expo-
nentially distributed random variable.” Figure 4 shows the corresponding dis-
tributions for the three different densities depicted in Figure 3, with λ = 100,
λ = 20, and λ = 10. The distribution converges on 1 with increasing confi-
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Fig. 4. Exponential distribution for λ = 100, λ = 20, and λ = 10

dence. Again, we see the influence of the parameter λ on the steepness of the
distribution function. The higher λ, the steeper the corresponding exponential
distribution. Moreover, there is a direct relation between λ and the expecta-
tion value E of the exponentially distributed random variable. Both are in
inverse proportion to each other, i.e. E = 1

λ . Accordingly, the expectation



Combining Classifiers with Informational Confidence 173

values belonging to the exponential densities in Figure 3, or distributions in
Figure 4, are E = 1

100 , E = 1
20 , and E = 1

10 , respectively.

3.2 Performance Theorem

When we compare the performance specification in (6) with the exponential
distribution in (9), we see that the only difference lies in the exponent of
the exponential function. In fact, we can make performance and exponential
distribution the same by simply setting λ to 1

E . This relationship between
performance and distribution now also sheds light on the parameter E. As
mentioned above, the expectation value of an exponentially distributed ran-
dom variable with parameter λ is 1

λ . The parameter E therefore denotes the
specific expectation value for classifier C. We summarize this important result
in the Performance Theorem:

Performance Theorem:
A classifier C with performance p(K) provides informational confidence K =
−E ∗ ln (1 − p(K)) if, and only if, p(K) is an exponential distribution with
expectation E.

Proof. The theorem follows from (5), (6), and (9).

3.3 Expected Information

We have already found out that parameter E is an expectation value in the
statistical sense. The performance theorem, however, reveals even more infor-
mation about E. Mapping raw confidence values with identical performance to
the same informational confidence value, the performance theorem describes
a warping process over the set of raw confidence values for monotonously in-
creasing performances [20]. The average information Iavg(C) provided by a
classifier C satisfying the performance theorem can be written in the form of
a definite integral:

Iavg(C) = E

∫ 1

0

− ln (1 − p(K)) dp(K)

= E

∫ 1

0

− ln (p(K)) dp(K)

= E

∫ 1

0

− ln (K) dK

= E [K − ln (K) ∗ K]10
= E (10)

We see that the average information provided by C is exactly E bits, or
more precisely E Euler-bits. This is in accordance with the fact that E is an
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expectation value. In fact, parameter E stands for both, expected information
and expected confidence, because the performance theorem is based on the
assumption that information and confidence are the same.

The mathematical results presented up to this point explain the meaning
and implications of the parameters p(K) and E. They say nothing about how
to actually compute them. For classifiers that do not provide informational
confidence and thus violate the performance theorem, we need to know the
specific values of E and p(K) in order to compute their correct informational
confidence values. The next section is going to explain how we can actually
use the performance theorem to first estimate these values and then compute
informational confidence values for a given classifier.

4 Learning

In most practical cases, classifiers do not provide informational confidence
values. Their confidence values typically violate the fixed point equation in
the performance theorem, indicating a distorted equilibrium between informa-
tion and confidence. In order to combine those classifiers, we need a second
training process in addition to the classifier-specific training methods, which
teach classifiers the decision boundaries for each class. Technically, there are
two different ways of restoring the equilibrium so that confidence values sat-
isfy the performance theorem: We can adjust the expectation E and/or the
confidence K. In both cases, we need to estimate the expectation and the
performance for each confidence value on a training set, or rather evaluation
set, which should be different from the set that classifier C was originally
trained with. For discrete confidence values, the fixed point equation of the
performance theorem then formulates as follows:

K̂i = −Ê ∗ ln
(
1 − p̂(K̂i)

)
, (11)

where K̂i is the estimated fixed point confidence for the expectation esti-
mate Ê and performance estimate p̂(K̂i). Accordingly, learning informational
confidence can be considered a 3-step process: In the first step we train clas-
sifier C with its specific training method and training set. In the second step,
we estimate the expectation and performance for each confidence value on an
evaluation set. Finally, we compute new informational confidence values ac-
cording to (11) and store them in a look-up table. In all future classifications,
confidence values provided by classifier C will then always be replaced with
their informational counterparts stored in the look-up table.

The following two subsections explain how we can compute estimates of
expectation and performance on the evaluation set.
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4.1 Expectation Estimation

In the following, expectation E will be an invariable constant for each classi-
fier, depending solely on the classifier’s global recognition rate R measured on
the evaluation set. In the practical experiments that are going to follow later
in this chapter, we will use the expectation per Euler-bit as an estimate of E,
instead of directly using R as E [25, 26]. In analogy to the computation of
information for confidence values in (4) and (5), we are computing an estimate
Î(C) of the information I(C) conveyed by classifier C as follows:

Î (C) = I (1 − R) = − ln (1 − R) , (12)

where R denotes the overall recognition rate of C on the evaluation set. Based
on the estimate Î(C), Ê now computes as Î(C)

√
R, which maps the global

recognition rate R to its corresponding rate for a one-bit classifier. The fixed
point equation in the performance theorem then formulates as follows:

K̂i = − Î(C)
√

R ∗ ln
(
1 − p̂(K̂i)

)
, (13)

This leaves us with the performance estimates as the only missing parameters
we still need to compute the final informational confidence values.

4.2 Performance Estimation

Motivated by the performance theorem, which states that the performance
function follows an exponential distribution, we propose an estimate that
expresses performance as a percentage of the maximum performance pos-
sible. Accordingly, our relative performance estimate describes the different
areas delimited by the confidence values under their common density func-
tion. Mathematically, it is based on accumulated partial frequencies and can
be described by the following formula:

p̂(K̂i) =
∑i

k=0 ncorrect(Kk)
N

(14)

This is the same formula as in (1), which the reader has already encountered
in Section 2. The use of accumulated partial frequencies guarantees that the
newly computed estimates of the informational confidence values will not af-
fect the order of the original confidence values. Based on this performance
estimate, the mapping of old confidence values to their informational coun-
terparts becomes a monotonous function satisfying the following relationship:

Ki ≤ Kj =⇒ K̂i ≤ K̂j (15)

Moreover, our performance estimate in (14) ensures that informational con-
fidence values have no affect on the recognition rate of a classifier C, except
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for ties introduced by mapping two different confidence values to the same
informational confidence value. Ties can happen when two neighboring confi-
dence values show the same performance and become indistinguishable due to
insufficient evaluation data. In most applications, this should be no problem,
though. Typically, the effect of informational confidence values shows only
when we combine C with other classifiers in a multiple classifier system.

Accumulated partial frequencies act like a filter in that they do not con-
sider single confidence values but a whole range of values. They average the
estimation error over all confidence values in a confidence interval. This di-
minishes the negative effect of inaccurate measurements of the estimate p̂(K̂i)
in application domains with insufficient or erroneous evaluation data.

Before inserting the relative performance estimate p̂(K̂i) into (13), we still
normalize again to the one-bit classifier using Î(C), as we already did for
the expectation value. For expectation and performance estimates, the final
version of the fixed point equation in the performance theorem then reads as
follows:

K̂i = − Î(C)
√

R ∗ ln
(

1 − Î(C)
√

p̂(K̂i)
)

(16)

The next section presents practical experiments using the proposed theo-
retical framework and performance estimate.

5 Experimental Results

Using informational confidence values, we will show that combined recognition
rates outperform the single best recognition rates in several multiple classifier
systems trained for handwritten or printed character recognition, and script
identification. Let us begin with handwritten character recognition.

5.1 Japanese On-Line/Off-Line Handwritten Character
Recognition

Handwriting recognition is a very promising application field for classifier
combination, as it is both challenging and practically important. Handwrit-
ing, together with speech, is one of the most natural interfaces for interacting
with computers. Multiple classifier systems therefore have a long tradition
in handwriting recognition [1, 4]. In particular, the duality of handwriting
recognition, with its two branches off-line recognition and on-line recogni-
tion, makes it suitable for multiple classifier systems. While off-line classifiers
process static images of handwritten words, on-line classifiers operate on the
dynamic data and expect point sequences over time as input signals. On-line
systems require special hardware that is able to recover the dynamic informa-
tion during the writing process. Compared to the time-independent pictorial
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representations used by off-line classifiers, on-line classifiers suffer from the
many stroke-order and stroke-number variations inherent in human hand-
writing and thus in on-line data. On the other hand, dynamic information
provides valuable information that on-line classifiers can exploit to better dis-
criminate between classes. In fact, off-line and on-line information complement
each other. This relationship between off-line and on-line classifiers suggests
the combination of both types of classifiers to overcome the problem of stroke-
order and stroke-number variations [27, 28]. This is especially important in
Japanese and Chinese character recognition because the average number of
strokes per character, and thus the number of variations, is much higher than
in the Latin alphabet [29, 30].

Classifiers

We tested a multiple classifier system comprising two classifiers for on-line
handwritten Japanese characters. One of these two classifiers, however, trans-
forms the captured on-line data into a pictorial representation by connecting
neighboring on-line points using a sophisticated painting method [19, 31].
This transformation happens in a pre-processing step before feature compu-
tation and actual classification. We can therefore consider this classifier to be
an off-line classifier. Both on-line and off-line classifiers are nearest neighbor
classifiers. Each classifier was trained with more than one million handwritten
Japanese characters. The test and evaluation set contains 54, 775 handwrit-
ten characters. From this set, we took about two thirds of the samples to
estimate, and about one third to test the informational confidence values. For
more information on the classifiers and data sets used, we refer readers to the
references [31, 32, 33].

Table 1 lists the individual recognition rates for the off-line and on-line
classifier. It shows the probabilities that the correct class label is among the
n-best class labels in which the off-line or on-line classifier has the most confi-
dence in, with n ranging from 1 to 3. We see that the off-line recognition rates

Japanese offline online AND OR

1-best 89.94 81.04 75.41 95.56

2-best 94.54 85.64 82.62 97.55

3-best 95.75 87.30 84.99 98.06

Table 1. Single n-best rates for handwritten Japanese character recognition

are much higher than the corresponding on-line rates. Clearly, stroke-order
and stroke-number variations are largely responsible for this performance dif-
ference. They complicate considerably the classification task for the on-line
classifier. The last two columns of Table 1 show the percentage of test patterns
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for which the correct class label occurs either twice (AND) or at least once
(OR) in the n-best lists of both classifiers. The relatively large gap between
the off-line recognition rates and the numbers in the OR-column suggests that
on-line information is indeed complementary and useful for classifier combi-
nation purposes.

Combination Experiments

Table 2 shows the recognition rates for combined off-line/on-line recognition,
using sum-rule, max-rule, and product-rule as combination schemes. As their

Japanese (89.94) Raw Conf. Perf. Conf. Inf. Conf. Norm. Inf. Conf.

Sum-rule 93.25 93.31 93.16 93.78

Max-rule 91.30 91.35 91.30 91.14

Product-rule 92.98 49.04 57.69 65.16

Table 2. Combined recognition rates for handwritten Japanese character
recognition

names already suggest, sum-rule adds the confidence values provided by each
classifier for the same class, while product-rule multiplies the confidence val-
ues and max-rule simply takes the maximum confidence without any further
operation. The class with the maximum overall confidence will then be chosen
as the most likely class for the given test pattern, followed by the n-best al-
ternatives ranked according to their confidence. Note that the sum-rule is the
mathematically appropriate combination scheme for integrating information
from different sources [12]. Also, the sum-rule is very robust against noise,
as was already mentioned in Section 2, at least theoretically [18]. The upper
left cell of Table 2 lists again the best single recognition rate from Table 1,
achieved by the off-line recognizer. We tested each combination scheme on
four different confidence types:

1) raw confidence Ki as provided directly by the respective classifier
2) performative confidence p̂(K̂i) as defined by the performance estimate

in (14)
3) informational confidence K̂i as defined in (11) with Ê = R
4) normalized informational confidence K̂i as defined in (16)

Compared to the individual rates, the combined recognition rates in Ta-
ble 2 are clear improvements. The sum-rule on raw confidence values already
accounts for an improvement of almost 3.5%. The best combined recogni-
tion rate achieved with normalized informational confidence is 93.78%. It out-
performs the off-line classifier, which is the best individual classifier, by al-
most 4.0%. Sum-rule performs better than max-rule and product-rule, a fact
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in accordance with the results in [18]. Mathematically, informational confi-
dence values only make sense when used in combination with sum-rule. For
the sake of completeness, however, we list the combined recognition rates for
the other combination schemes as well. Generally speaking, the recognition
rates in Table 2 compare favorably with the state-of-the art, especially when
we consider the difficult real-world test data used for training and testing.
Also, sum-rule in combination with informational confidence exploits the can-
didate alternatives in the n-best lists to a fairly large extent, as indicated by
the small difference between the “OR”-column and the practical recognition
rates actually achieved. This should also benefit syntactical post-processing.

Figure 5 depicts the performance estimate for the off-line classifier (left-
hand side) and on-line classifier (right-hand side). In both cases, the perfor-
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mance estimates describe a monotonously increasing function. The off-line
function is steeper and reaches a higher level though. Figure 6 shows the cor-
responding informational confidence values computed according to (16). On
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average, due to the better performance of the off-line classifier, the off-line
confidence values are higher than the on-line confidence values.

5.2 Printed Character Recognition

The second application we experimented with is optical character recognition
(OCR) for a transliterated Arabic-English bilingual dictionary scanned with
a resolution of 300dpi. Our character set comprises all Latin characters and
a large number of dictionary-specific special characters, which let the over-
all number of categories grow to 129. Figure 7 shows a sample page of the
dictionary.

Fig. 7. Arabic-English dictionary

Classifiers

We used two different nearest neighbor classifiers for recognition: a classifier
based on a weighted Hamming distance operating on the pictorial data and a
classifier using Zernike moments. The Hamming distance of the first classifier
describes the distance between the size-normalized character image and a
binary template map computed for each character class from the training
set. On the other hand, moment descriptors have been studied for image
recognition and computer vision since 1960s [34]. Teague [35] first introduced
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the use of Zernike moments to overcome the shortcomings of information
redundancy present in the popular geometric moments. Zernike moments are
a class of orthogonal moments which are rotation invariant and can be easily
constructed to an arbitrary order. They are projections of the image function
onto a set of complex, orthogonal polynomials defined over the interior of a
unit circle x2 + y2 = 1. It has already been shown in [36, 37] that Zernike
moments can be useful for OCR. In our work, the order of Zernike moments
was chosen to be 12, which provides a 48-dimensional moment vector. Due to
space constraints, we refer readers again to the references for more information
on Zernike moments, e.g. [36, 37].

Table 3 lists the n-best single recognition rates and the corresponding
AND and OR rates. In our experiments, the weighted Hamming distance

Latin Hamming Zernike AND OR

1-best 96.35 93.66 91.01 99.01

2-best 96.97 97.75 95.46 99.26

3-best 97.00 98.64 96.34 99.30

Table 3. Single n-best rates for printed Latin character recognition

is superior to the Zernike moments. It achieves a recognition rate of 96.35
versus 93.66 achieved by the Zernike moments. The OR-column of Table 3 is
again an indication that a combination of both classifiers has the potential to
improve the single best recognition rate, i.e. the recognition rate provided by
the Hamming distance.

Combination Experiments

Table 4 is an overview of the combined recognition rates we computed. It is

Latin (96.35) Raw Conf. Perf. Conf. Inf. Conf. Norm. Inf. Conf.

Sum-rule 98.12 98.16 97.94 98.50

Max-rule 97.06 96.69 96.72 96.97

Product-rule 97.78 79.87 84.98 93.83

Table 4. Combined recognition rates for printed Latin character recognition

organized similar to Table 2, with the single-best recognition rate listed in the
upper left corner of the table. Each column contains the recognition rate for a
particular confidence type and each row contains the rates for a specific com-
bination scheme. The recognition rates in Table 3 and 4 represent the average
over twenty randomly selected pages with 64570 test patterns from which
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we took every second pattern to compute the performance estimate. As we
have already observed for Japanese character recognition, the sum-rule yields
higher improvements than max-rule and product-rule. On raw confidence val-
ues, it achieves a considerable improvement on the best single recognition rate.
Normalized informational confidence values increase the recognition rate fur-
ther to 98.50, which is more than two percent higher than the best individual
rate.

5.3 Script Identification

In our third application, we investigate the effect of informational confidence
values on a multiple classifier system integrating different classification archi-
tectures. The application domain is bi-lingual script identification.

A significant number of today’s documents can only be accessed in printed
form. A large portion of them are multilingual documents, such as patents or
bilingual dictionaries. In general, automatic processing of these documents
requires that the scripts must be identified before they can be fed into an
appropriate OCR system for automatic processing. Earlier work on script
identification includes template-based approaches [38], approaches exploit-
ing character-specific characteristics [39, 40, 41], as well as text line projec-
tions [42] and font recognition based on global texture analysis [43]. For our
classifier combination experiments, we have developed a different approach
that operates on word-level [44, 45]: A modified Docstrum algorithm first seg-
ments the document into words, then we use Gabor filters to compute features
for each script class [46]. Our experiments focus on bilingual documents with
one script being English and the second script being either Arabic, Chinese,
Hindi, or Korean. Accordingly, script identification then becomes a 2-class
classification problem for each word. Figure 8 shows a page from a bilingual
Arabic-English word dictionary, with the Arabic words successfully identified.

Classifiers

This subsection is a brief description of the different classifiers used in our
multiple classifier system for script identification, including their recognition
rates. More information on the features used and pre-processing steps is given
in [44].

Our multiple classifier system comprises four classifiers based on differ-
ent classification principles: nearest neighbors, weighted Euclidean distances,
support vectors, and Gaussian mixtures.

• Nearest Neighbor (KNN): First introduced by Cover and Hart [47]
in 1967, the Nearest Neighbor (NN) classifier was proven to be a very ef-
fective and simple classifier. It found applications in many research fields.
Using the NN classifier, a test sample x is classified by assigning it the
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Fig. 8. Arabic word segmentation

label that its nearest sample represents in the training samples. The dis-
tance between two feature vectors is usually measured by computing the
Euclidean distance. In the experiments reported here, the classifier’s con-
fidence in a class label λi assigned to a testing sample x computes as
follows:

conf(x|λi) = min
xt∈Sλi

(dis(x,xt)),

where dis(x,xt) is the Euclidean distance between two vectors x and xt,
and Sλi is the set containing all training samples with label λi. In our
experiments, x represents a 32-dimensional feature vector.

• Weighted Euclidean Distance (WED): Based on the mean µ(i) and
standard deviation α(i) of the training samples for each class λi, the dis-
tance between a test sample x and λi is computed as follows:

dis(x, λi) =
d∑

k=1

∣∣∣∣∣xk − µ
(i)
k

α
(i)
k

∣∣∣∣∣ i = 1...M

where d is the feature dimension and M is the number of classes. Testing
samples are assigned the class label with the minimum distance, and the
classifier’s confidence in a class label λi is computed as:

conf(x|λi) =

∑M
j=1,j �=i dis(x, λj)∑M

j=1 dis(x, λj)
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• Support Vector Machine (SVM): SVMs were first introduced in the
late seventies, but are now receiving increased attention. The SVM classi-
fier constructs a ‘best’ separating hyperplane (the maximal margin plane)
in a high-dimensional feature space which is defined by nonlinear transfor-
mations from the original feature variables. The distance between a test
sample and the hyperplane reflects the confidence in the final classifica-
tion. The larger the distance, the more confidence the classifier has in its
classification result. Hence, we can directly use this distance as confidence.
A detailed description of the computation of the separating hyperplanes
is given, for instance, in [48]. The experiments reported here are based
on the SVM implementation SVM-light, which uses a polynomial kernel
function [49].

• Gaussian Mixture Model (GMM): The Gaussian Mixture Model
(GMM) classifier is used to model the probability density function of a
feature vector, x, by the weighted combination of M multi-variate Gaus-
sian densities (Λ):

p(x|Λ) =
M∑
i=1

pigi(x),

where the weight (mixing parameter) pi corresponds to the prior probabil-
ity that feature x was generated by component i, and satisfies

∑M
i=1 pi = 1.

Each component λi is represented by a Gaussian mixture model λi =
N(pi, µi, Σi) whose probability density can be described as:

gi(x) =
1√

(2π)d|Σi|
exp(−1

2
(x − µi)

T Σ−1
i (x − µi)),

where µi and Σi are the mean vector and covariance matrix of Gaussian
mixture component i, respectively. Details about the estimation of these
parameters can be found in [44]. In the following experiments, the likeli-
hood value ln(p(λi|x)) describes the classifier’s confidence in labeling test
pattern x as λi.

Table 5 lists the individual recognition rates of each classifier for all scripts,
i.e. the percentage of successful discriminations between English and respec-
tive non-English words. The KNN and SVM classifiers provide the best over-

Script/Classifier KNN WED GMM SVM AND OR

Arabic 90.90 80.07 88.14 90.93 68.55 98.04

Chinese 92.19 84.89 90.59 93.34 76.04 98.66

Korean 94.04 84.68 90.72 92.54 76.57 98.53

Hindi 97.51 91.97 93.11 97.27 86.48 99.51

Table 5. Single Recognition rates for script identification
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all performance. Classification rates are lowest for Arabic script since Arabic
words are more similar to English (Latin) words than they are to words of
other scripts. The OR-column indicates that the combination of all four clas-
sifiers has the potential to improve recognition.

Combination Experiments

In addition to the elementary combination schemes sum-rule, max-rule, and
product-rule, we also experimented with combinations based on majority vote.
Majority vote implements a simple voting among all four classifiers. The class
with the maximum number of votes will then be chosen as the most likely
class for a given test pattern. In case of ties, we take the label provided by the
classifier with the highest recognition rate as ultimate decision. We roughly
labeled between 6000 and 10000 evaluation patterns for each script, and used
again 50% of these sets to estimate the performance of each confidence value.
Tables 6, 7, 8, and 9 show the combined recognition rates for each script and
each combination scheme.

Arabic (90.93) Raw Conf. Perf. Conf. Inf. Conf. Norm. Inf. Conf.

Sum-rule 91.03 92.39 92.39 92.73

Max-rule 88.18 90.67 90.87 90.80

Product-rule 91.03 91.13 91.17 91.23

Majority vote 91.46 — — —

Table 6. Combined recognition rates for Arabic script identification

Chinese (93.34) Raw Conf. Perf. Conf. Inf. Conf. Norm. Inf. Conf.

Sum-rule 94.24 94.26 94.24 94.50

Max-rule 90.83 93.24 93.24 93.30

Product-rule 93.45 93.45 93.45 93.45

Majority vote 93.79 — — —

Table 7. Combined recognition rates for Chinese script identification

The results show that the combined recognition rates based on normalized
informational confidence consistently outperform the best single recognition
rate, which is again displayed in the upper left cell of each table. We achieve
the biggest improvement of 1.8% on the most difficult script: Arabic. In par-
ticular, normalized informational confidence values perform better than other
confidence types. The unnormalized informational confidence values also lead
to improvements in all four cases. A very important point to notice is that the
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Korean (94.04) Raw Conf. Perf. Conf. Inf. Conf. Norm. Inf. Conf.

Sum-rule 93.73 93.75 94.16 94.35

Max-rule 90.99 93.30 93.49 94.06

Product-rule 92.52 92.38 92.38 92.38

Majority vote 94.06 — — —

Table 8. Combined recognition rates for Korean script identification

Hindi (97.51) Raw Conf. Perf. Conf. Inf. Conf. Norm. Inf. Conf.

Sum-rule 98.05 97.98 97.83 98.08

Max-rule 93.13 95.64 95.81 96.65

Product-rule 97.32 97.19 97.19 97.19

Majority vote 97.93 — — —

Table 9. Combined recognition rates for Hindi script identification

plain sum-rule is not able to improve the single best recognition rate for Ko-
rean, whereas normalized informational confidence leads to an improvement.
This is another confirmation of the fact that sum-rule does not necessarily
improve recognition rates, as has already been observed by many researchers
before. It performs better than max-rule or product-rule in our experiments,
though. The simple performative confidence estimate also performs well except
for Korean. Majority voting outperforms sum-rule on Arabic and Korean. On
the other hand, it is outperformed by sum-rule on Chinese and Hindi. This
somewhat inconsistent behavior also reflects very well the practical experi-
ences of other authors.

AdaBoost

This subsection reports recognition experiments with Boosting, i.e. AdaBoost,
in order to have a comparison with other, more complex state-of-the-art com-
bination schemes. AdaBoost (Adaptive Boosting) was introduced by Freund
and Schapire in 1995 to expand the boosting approach originally introduced
by Schapire. We focus on the AdaBoost approach called AdaBoost.M1 [7].
The AdaBoost algorithm generates a set of classifiers and combines them. It
changes the weights of the training samples based on classifiers previously
built (trials). The goal is to force the final classifiers to minimize the expected
error over different input distributions. The final classifier is formed using a
weighted voting scheme. Details of AdaBoost.M1 can be found in [7]. Table 10
is a representative example of our Boosting experiments, with the number of
trials being 20. In most cases, Boosting provides slight improvements of the
single recognition rates in Table 5. However, the improvements are smaller
than those achieved with informational confidence and do not outperform the
single best recognition rate for Hindi in our experiments.
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Classifier KNN WED GMM SVM

Arabic (90.93) 90.95 82.24 88.03 90.48

Chinese (93.34) 92.22 85.17 91.02 93.49

Korean (94.04) 94.12 85.18 91.14 93.03

Hindi (97.51) 97.39 92.13 92.85 97.38

Table 10. Recognition rates with Boosting

We must also note that the nearest neighbor classifier does not lend itself to
boosting because it never misclassifies on the training set. For this reason and
the fact that boosting can still be applied on top of informational confidence,
we do not report more results for boosting in this chapter.

6 Summary

The classifiers of a multiple classifier system typically provide confidence val-
ues with quite different characteristics, especially classifiers based on different
classification architectures. While this poses no problem for the individual
classifiers themselves, it considerably complicates the integration of differ-
ent classification results into a single outcome. We propose an information-
theoretical framework to overcome this problem and make confidence values
from different sources comparable. Our approach is based on two main postu-
lates. First, we assume that confidence is basically information as introduced
by Shannon’s logarithmic definition. Second, we require that the confidence of
a classifier depends on its performance function in a given application domain.
These two simple assumptions lead to a fixed point equation for what we call
informational confidence. Our main result, which we summarize in the Per-
formance Theorem, states that classifiers providing informational confidence
feature an exponential distribution as a performance function.

The performance theorem motivates a learning method for informational
confidence: We can estimate the performance of each confidence value on an
evaluation set and insert the estimate directly into the fixed point equation
given in the Performance Theorem. This provides us directly with the infor-
mational confidence values, which are fixed points. As performance estimate,
we use a monotonously increasing function whose main purpose is to estimate
the values of an exponential distribution for each confidence value.

In our experiments for character recognition and script identification, com-
bined recognition rates based on informational confidence consistently outper-
form the best single recognition rate. In particular, sum-rule in combination
with informational confidence outperforms other elementary combination
schemes, namely max-rule, product-rule, majority vote, and sum-rule itself
on raw confidence values.
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For monotonously increasing performance estimates, informational confi-
dence values do not affect the recognition rates of individual classifiers. They
take effect only when used in combination with informational confidence val-
ues from other classifiers. Nevertheless, a single recognizer can of course take
advantage of informational confidence values in the post-processing steps fol-
lowing classification, such as syntactic context analysis of n-best lists, etc.

While sum-rule is the most natural combination scheme for informational
confidence values, integration of informational confidence is by no means a
contradiction to other, more complex integration techniques. On the contrary,
informational confidence can be considered a general standard representation
for confidence on which other post-processing techniques can rest.
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Summary. In this chapter, we discuss the use of Self Organizing Maps (SOM) to
deal with various tasks in Document Image Analysis. The SOM is a particular type
of artificial neural network that computes, during the learning, an unsupervised
clustering of the input data arranging the cluster centers in a lattice. After an
overview of the previous applications of unsupervised learning in document image
analysis, we present our recent work in the field. We describe the use of the SOM
at three processing levels: the character clustering, the word clustering, and the
layout clustering, with applications to word retrieval, document retrieval and page
classification. In order to improve the clustering effectiveness, when dealing with
small training sets, we propose an extension of the SOM training algorithm that
considers the tangent distance so as to increase the SOM robustness with respect
to small transformations of the patterns. Experiments on the use of this extended
training algorithm are reported for both character and page layout clustering.

1 Introduction

Supervised classifiers are important components of most Document Image
Analysis (DIA) systems. Few systems rely on unsupervised learning, or clus-
tering. In unsupervised learning there is no explicit teacher and the training
algorithm takes into account unlabeled samples. Systems that include cluster-
ing algorithms discover “natural” groupings, or clusters, of the input patterns
that can be used in subsequent processing steps. Some specific knowledge
about the nature of the patterns to be processed is considered in the design
of the clustering algorithms, for instance to fix in advance the desired number
of clusters to be found in the training data. An appropriate choice of this pa-
rameter is essential for maximizing the performance of clustering algorithms.
Another important feature is the type of distance function that is embedded
in the clustering algorithm.

In this chapter, we focus our attention on a particular kind of cluster-
ing algorithm, the Self Organizing Map (SOM) [1], that is well suited to
S. Marinai et al.: Self-Organizing Maps for Clustering in Document Image Analysis, Studies in
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dimensionality reduction and exploratory data analysis. We analyze various
applications of SOM-based clustering in document image analysis sub-tasks
and the incorporation of the tangent distance in the SOM training.

The chapter is organized as follows. In Section 2 we summarize the main
features of SOM, as well as its standard training algorithm. In Section 3
we survey some recent applications of clustering algorithms in DIA with a
particular emphasis on the use of the SOM. In Section 4 and in Section 5 we
discuss our work related to SOM clustering at the character, word, and page
levels. Lastly, we present our concluding remarks in Section 6.

2 Self Organizing Maps

Self Organizing Maps are a particular kind of unsupervised Artificial Neural
Network (ANN). In this section we summarize some aspects of ANNs that
can be relevant to appreciate the SOM peculiarities. We describe also some
strategies that have been proposed in the literature to obtain invariant training
systems. Additional information on ANNs can be found in other chapters of
this book or in specific survey papers (see e.g. [2] for an overview of ANNs
applications in the field of Document Image Analysis).

2.1 Artificial Neural Networks

Artificial Neural Networks are biologically inspired processing systems com-
posed of a set of units, referred to as neurons, and a set of weighted connections
between neurons where the signals are propagated. One of the first models
for artificial neurons was the perceptron, which operates on continuous inputs
and returns a Boolean output usually regarded as a classification of the input
pattern. Perceptrons were dismissed primarily because of their limited capac-
ity for function approximation. In contrast, Multi-Layer Perceptrons (MLPs)
exhibit a universal interpolation capacity (see e.g. [3, 4]). In Multi-Layer Per-
ceptrons the neurons are arranged into layers, and the connections link one
layer to the next one. The input is regarded as a special layer which is prop-
agated forward to hidden layers and, lastly, to the output. The term MLP
usually denotes networks with sigmoidal neurons. Also RBF networks present
the same layered architecture, but are often organized in two layers composed
of RBF units and sigmoidal units, respectively.

The neural network’s learning process can be either supervised or unsuper-
vised. In the former case an expected target value is assigned to each example.
In the latter case there is no external teacher that pre-defines the desired be-
havior of the network for the training samples. The supervised training of
feed-forward architectures is performed by searching in the weight space for a
set of parameters minimizing the mismatch between the target values and the
network outputs. This search is typically made with the Back-propagation al-
gorithm [5]. Competitive learning is another class of training algorithms where



Self-Organizing Maps for Clustering in Document Image Analysis 195

the output neurons compete among themselves. Both unsupervised (e.g.Vector
Quantization and Self Organizing Maps [6]) and supervised learning (e.g.
Learning Vector Quantization) can be considered. In the Self-Organizing Map
the neurons are usually arranged in a two dimensional lattice and each neuron
receives inputs from the input layer and from the other neurons in the lattice.
During the learning process the network performs clustering. The mapping
of the neurons to class membership can be carried out upon completion of
the learning process. For instance, each neuron can be labeled with the most
frequent class among the training patterns belonging to its cluster.

2.2 Invariant Recognition

One of the most important goals in pattern recognition is the ability to achieve
invariant recognition with respect to irrelevant distortions of the input pat-
terns. For this purpose, prior knowledge on the pattern recognition problem
to be solved can be considered in the training process adopting three main
strategies: invariance by feature extraction, invariance by training, and invari-
ance by structure [7].

In invariance by feature extraction, the prior knowledge is considered
in the design of the feature extraction algorithm. A pattern can be represented
either with a flat feature vector or with higher level structural representations
(e.g. lists, trees, or graphs). In pattern recognition applications, including
DIA, this is the prevailing strategy and large emphasis is placed on the design
of appropriate feature extraction algorithms adopting standard paradigms for
the classification.

In invariance by training, the prior knowledge is used when building
the training set that is designed to contain samples depicting different aspects
of the patterns to be processed. For instance, in the case of OCR, invari-
ance to translations can be obtained by “building” training samples that are
slightly shifted with respect to the original position (in [8] this type of pro-
cessing is referred to as dithering). A similar approach has been proposed, for
instance, for the generation of touching characters required to train neural
segmentation algorithms [9]. A related application for the generation of syn-
thetic handwritten data is described in the chapter by Varga and Bunke in
this book.

In invariance by structure the classifier is designed to produce the same
output when transformed versions of one pattern are presented to it. Con-
volutional networks [10] are examples of architectures based on feedforward
neural networks which are invariant with respect to translations (for instance
in handwriting recognition). Convolutional neural networks are based on local
receptive fields where each hidden neuron (the receptive field) is only connected
to a set of units in the previous layer. The first layers are organized as local
receptive fields to extract some elementary visual features such as orientated
edges, end-points and corners, independently of horizontal and vertical trans-
lation. Since the receptive fields of neighboring units overlap, a large number
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of connections should be trained, thus giving raise to overfitting. To reduce
the number of free parameters and, consequently, the risk of overfitting, the
units in a layer are organized in planes within which all the units share the
same set of weights.

One extension of this approach relies on the use of the tangent distance in
the training algorithm so as to incorporate into the learning process some tol-
erance with respect to small known transformations [11]. For example, in [12]
the tangent distance was used for computing the input-output distance of
autoassociators, obtaining a recognition of handwritten characters that is in-
variant with respect to a set of eight transformations (x- and y-translation,
rotation, scaling, axis-deformation, diagonal-deformation, x- and y-thickness).
An autoassociator ([13], pp. 55, 161) is an MLP with the same number of input
and output units and less neurons in the hidden layer. During the training the
network, that is forced to reproduce the input to the output, is fed only with
samples of one class. A modular classifier can be built by feeding in parallel
one autoassociator for each class, and including one decision module which
interprets the distances between the output vectors and the input pattern.
The lower the distance, the higher the similarity between the pattern and the
corresponding autoassociator class.

In this chapter the integration of the tangent distance in the context of
character clustering will be discussed in Section 4.1, whereas the layout clus-
tering based on tangent distance will be addressed in Section 5.2.

2.3 Self-Organizing Map

The Self Organizing Map (SOM [1]) is an artificial neural network that per-
forms clustering by means of unsupervised competitive learning. In the SOM
the neurons are usually arranged in a two dimensional lattice (the feature
map). Each neuron gets information from the input layer and from the other
neurons in the map. The training samples are usually described by real vectors
x(p) ∈ Rn, where p is the index of the sample (p ∈ [1, NP ]), and NP is the
number of training patterns. Each node in the SOM contains a model vector
mi ∈ Rn that can be regarded as a prototype of the patterns in the cluster.
During the learning, the network performs clustering and the model vectors
are modified so as to reflect cluster similarity. The goal of the mapping is to
represent the patterns in the source space by corresponding points in a lower
dimensional target space (e.g. a 2D space). In this mapping the distance and
proximity relationships should be preserved as much as possible.

The initial values of the model vectors, mi(0), can be selected at random
or can be initialized in some orderly fashion, for instance arranging the vectors
along a two-dimensional subspace spanned by the two principal eigenvectors of
the input data. The two most widely used learning algorithms are the on-line
and the batch. We report in Algorithm 1 a summary of the on-line version that
is the basis of the modified algorithm that is described later in this chapter.
NN is the number of neurons and NTrain is the number of training cycles.
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—————————————————————————————
Algorithm 1: On-line training

—————————————————————————————
1: for all i = 1 to NN do
2: Initialize mi(0)
3: end for
4: p ← 0;
5: for all j = 0 to NTrain do
6: p ← p + 1;
7: Find the BMU (b(x))

||x(p) − mb(x)|| = mini{||x(p) − mi(j)||} (1)

8: for all i ∈ neighborhood of b(x) do
9: Adapt model vectors

mi(j + 1) = mi(j) + hb(x),i(j)(x(p) − mi(j)), (2)

where:

hb(x),i(j) = α(j)exp(−||ri − rb(x)||2
2σ2(j)

), (3)

10: end for
11: for all i /∈ neighborhood of b(x) do
12: mi(j + 1) = mi(j)
13: end for
14: decrease α(j)
15: decrease σ(j)
16: if p = NP then
17: p ← 0
18: end if
19: end for
—————————————————————————————

The algorithm is based on two main stages.

1. The training vector, x(p), is compared with all the model vectors mi(j)
and the best matching unit (BMU) on the map is identified. The BMU is
the node having lowest distance with respect to x(p). The final topological
organization of the map is heavily influenced by the distance function
considered in this step. Usually, the Euclidean distance is considered and
the best matching unit b(x) is identified by Eq. (1).

2. The model vector of the BMU as well as those of its neighboring nodes are
changed so as to “move” towards the current input pattern x(p) according
to Eq. (2), where hb(x),i is the neighborhood function implemented with
a smoothing kernel that is time-variable and is defined over the lattice
points. The neighborhood function is a decreasing function of the distance
between the i-th and the b(x)-th models on the map grid. The extension
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of the kernel is also decreasing monotonically during the iterations. A
common neighborhood function is based on the Gaussian function, Eq. (3),
where 0 < α(j) < 1 is the learning-rate factor that decreases with the
iterations, ri ∈ �2 and rb(x) ∈ �2 are the locations of the neurons in the
lattice, and σ(j) defines the width of the neighborhood function that also
decreases monotonically.

One advantage of the use of the SOM with respect to other clustering algo-
rithms is the spatial organization of the feature map that is achieved after the
learning process. Basically, more similar clusters are closer than more differ-
ent ones. Consequently, the distance among prototypes in the output layer of
the map can be considered as a measure of similarity between patterns in the
clusters, and this feature can be considered in several application domains.

3 Unsupervised Learning in Document Analysis

The aim of unsupervised learning, or clustering, is to find some structure in a
set of patterns without the interaction with an explicit teacher. In particular,
the goal of clustering is to identify a finite and discrete set of groupings in the
patterns. There is no universally agreed definition of clusters, but in general
the similarity between objects in a group is required to be larger than the
similarity between objects belonging to different clusters.

When using clustering algorithms two important issues should be ad-
dressed: the choice of an appropriate similarity measure (or distance function)
and the identification of a rule to select the number of clusters to be found.
It is important to remark that the use of different distance measures with a
given clustering algorithm can give rise to different groupings with significant
differences in the final results.

The applications of clustering in pattern recognition follow three main
lines ([14], page 517) that are briefly analyzed in the following.

Clustering algorithms are designed to deal with unlabeled data, this feature
is therefore particularly helpful in applications where the human validation of
the pattern membership needed to train a supervised classifier is difficult. A
suitable combination of supervised and unsupervised approaches relies on the
preliminary identification of the clusters on the basis of unlabeled patterns.
A class is attached to the clusters relying on a reduced number of labeled
patterns. We will discuss a page layout classification method based on this
idea in Section 5.2.

A second approach relies on the application of unsupervised learning to
extract features to be used, for instance, as input to a discriminant classifier.
Features computed by means of unsupervised clustering can be considered
also for retrieval systems. An application of this approach in DIA is character
clustering that is discussed in Section 3.3.
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Exploratory data analysis is an application of clustering techniques that
allows to discover natural orderings of the patterns and can be suitably inte-
grated in complex pattern recognition systems. Several techniques described
in this chapter can be used in this context.

In the rest of this section we analyze some recent applications of clustering,
with a special emphasis on SOM-based approaches, in the field of document
image analysis.

3.1 Symbol Thinning

Thinning algorithms are used, in pre-processing, to extract features based
on the symbol skeleton. These features, when used in handwritten character
recognition systems, allow a recognition independent from the stroke thick-
ness. Ahmed proposed in [15] a clustering-based skeletonization algorithm
(CBSA) implemented with SOM. The CBSA is composed by two main steps:
in the first step some clusters, corresponding to adjacent pixels, are located in
the input image; in the second step the skeleton is built connecting together
the neighboring cluster centers. The clustering step is implemented in [15] by
means of a particular SOM (the self-organizing graph) where the adjacency
of neurons can change during learning. More recently, a topology-adaptive
self-organizing neural network has been proposed for skeletonization [16]. The
map grows in size over time and improves the performance with respect to
a SOM having a fixed dimension. The system can handle rotated patterns
and works with binary and gray level images. A similar approach is described
in [17], whereas a multi-scale skeletonization method based on SOM is de-
scribed in [18].

3.2 Layout Analysis

Layout analysis is executed after the pre-processing with the aim of extracting
homogeneous regions from the document image assigning a semantic mean-
ing to each region. When dealing with color documents, the layout analysis
consists in the identification of regions with uniform color. To this purpose,
different colors are first identified and then pixels having the same color are
grouped together. The color identification is frequently addressed with clus-
tering in the color space. Global color clustering methods are described in [19]
and in [20]. In [19] the clustering is obtained by using the Euclidean Mini-
mum Spanning Tree (EMST) in color space, that is claimed to provide better
results than the k-means algorithm. In [20] three-dimensional morphological
operators are adopted to erode the regions in the color space. Iterating this
erosion the cluster centers are identified. In [21], a color grouping algorithm,
the LOCUSi method, is proposed. This algorithm extracts the clusters in the
RGB space and is based on the analysis of the expected shape of clusters in
this space.
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Clustering at the spatial level is adopted in [22] for document image seg-
mentation. In this case, the text lines are represented by means of the proposed
interval encoding and subsequently clustered with the k-means algorithm. A
hierarchical clustering algorithm is adopted in [23] for grouping closest con-
nected components in an OCR system that is aimed at processing mathemat-
ical equations.

3.3 Character Clustering

Character clustering is the basis of some character-like coding techniques
where similar objects, usually corresponding to characters, are clustered on
the basis of their shape. Each word is then represented by concatenating the
codes assigned to the individual objects. In character-like coding, in contrast
with OCR, no alphabetical class is assigned to symbols. The query is encoded
with the same algorithm used during the indexing and is compared with the
indexed words taking into account various matching approaches. For instance,
in [24] the words are represented with strings and compared by means of an
inexact string matching technique. By adopting this symbolic representation
indexed words can be sorted allowing users to retrieve words printed with
different fonts as well as to satisfy partial-match queries.

Character clustering is applied also in some document image compression
algorithms that first group together similar symbols roughly corresponding
to characters. The characters and the background image are afterwards com-
pressed with specific algorithms [25, 26]. In [26] the characters are compressed
by extracting the marks (connected components) in each page, and a library
of marks is built. Each mark is then replaced with a pointer to the closest
item in the library. The library is obtained with a simple template matching
clustering algorithm that provides good results when processing documents
with a small variability of fonts and a low level of noise.

A related method is addressed in [27], where a hierarchical clustering algo-
rithm is used to enhance degraded document images. Bitmaps of the symbols
belonging to each cluster are identified and an average symbol for each class
is computed. By replacing the original symbols with the average bitmap it
is possible to render the document at arbitrary resolutions and enhance de-
graded document images.

3.4 Handwriting

Clustering algorithms, and in particular the SOM, have been widely used for
the recognition of isolated handwritten digits. A three-stage recognition sys-
tem dealing with handwritten numerals is described in [28]. The first stage
is based on a SOM whose aim is to create prototypes representing parts of
the characters that capture the similarities between digits. The gradual shape
variations are represented in the feature map, since closer prototypes gener-
ally represent similar patterns. In the second stage a suitable function is used
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to convert the distances between the input (unknown) pattern and the proto-
types into membership values so as to obtain a fuzzy membership. The third
stage performs the final classification by means of a fully connected MLP.

A three-dimensional SOM for unconstrained handwritten numeral recogni-
tion is described in [29]. The third dimension is defined by taking into account
11 layers of 9x9 SOMs. The neighborhood consists of the units that are within
a cube centered on the BMU.

A hybrid handwritten word recognition system using SOM, discrete HMM,
and evolutionary programming has been proposed in [30]. In this system the
purpose of the SOM clustering is to partition the feature space into a set
of codeword vectors to limit the number of observation symbols in discrete
HMM training. The weight vectors of the trained map are used as codewords to
describe the word frames, that are represented by a sequence of 2-dimensional
codeword positions in the map. The neighborhood information preserved by
the SOM is used for smoothing the trained HMM parameters.

In [31] handprinted character recognition is addressed by representing the
characters with a fixed number of ellipses that capture the local structure of
the strokes. Each ellipse is described with the center, the length and the ori-
entation of the mayor axis. A modified SOM is used to accomplish one elastic
matching and find the correspondence between the feature points. When the
network converges, a mapping between the input feature patterns and the
neuron support is obtained.

3.5 Structure Adaptive Classifiers

Structure adaptive classifiers automatically adjust their structure to the un-
even distribution of classes in the pattern space. These classifiers are par-
ticularly useful in applications where a large number of classes is addressed,
such as oriental character recognition. In this context, clustering algorithms
are frequently used for grouping together most similar patterns in modular
classifiers, that are mostly based on parallel and serial combinations [32].

In serial combinations [2] the classifiers are arranged in a list. For each un-
known pattern the first classifier decides if a further refinement of the decision
is required by one or more subsequent classifiers. The individual classifiers are
usually applied in increasing order of complexity and the “simplest” symbols
are recognized first, whereas the more difficult ones are processed by next
classifiers. Some methods analyze the recognition results of the first classifier
in order to identify the most confused classes. Examples of this approach are
proposed in [33] and in [34]. In [33] maxima in the confusion table are auto-
matically identified. In [34] the confusion table of the first stage, a feature-
based OCR, is manually analyzed to find nine sets of classes corresponding
to most confused groups of characters (e.g. {S,5,6}; {B,D,O,8}), which are
recognized by appropriate MLPs. Alternatively, clustering algorithms can be
explicitly applied to the characters belonging to the learning set. For instance,
Su et al. [35] cluster together similar characters and organize the classifiers so
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that most indistinguishable classes (e.g. “4” and “A”) are recognized by the
last networks. Each network is subsequently trained to recognize the patterns
belonging to its classes, and to reject the patterns that should be recognized
by the other classifiers.

In hierarchical combinations, the classifiers are arranged in a tree. A struc-
ture adaptation method for the recognition of Korean characters using a self
organizing neural tree has been proposed in [36]. The basic idea is to automati-
cally find a network structure and size suitable for the classification of large-set
and complex patterns. The tree-structured network is based on subnetworks
that are logically connected to nodes in the previous level. As a matter of
fact, subnetworks define with higher resolution regions of the pattern space
containing more patterns. Another hierarchical structure adaptation SOM for
the recognition of handwritten digits is proposed in [37].

3.6 Text

The WEBSOM [38] is a SOM-based system that is able to organize large
document collections according to textual similarities. The feature vectors
describing the documents are statistical representations of their vocabularies.
One peculiarity of the system described in [38] is the scaling up of the SOM
algorithm in order to process large collections of high-dimensional data. In the
experiments 6,840,568 patent abstracts have been mapped onto a 1,002,240-
node SOM. To reduce the feature vector size some random projections of
weighted word histograms are computed, obtaining 500-dimensional vectors.
A similar application has been described in [39].

In [40] the documents are represented with feature vectors containing the
occurrences of 489 terms in each document so as to reveal the document sim-
ilarity. One hierarchical feature map is then built considering this document
representation. This hierarchical representation is claimed to be well suited
for text archive organization.

The SOM clustering is used in [41] to build a lexical analyzer designed
to focus on a very limited sub-set of the whole dictionary. Each string S is
represented by a vector X = [X0, X1, . . . , X25] where Xi corresponds to the
number of characters of class Ci (C0 = ‘A’ , . . . , C25 = ‘Z’) in the string S
(the anagrams of S share the same representation). The map is a two dimen-
sional array, organized as a tore to avoid singularity effects on the sides. The
neighborhood relations in the projected space of the map are used to define
a short list of hypotheses considered for spell checking.

3.7 Discussion

In this section, we analyzed some applications of unsupervised clustering in the
domain of DIA. The main advantage of SOM clustering, with respect to other
clustering algorithms like k-means, is the spatial organization of the neurons
that reflects cluster similarity into prototype proximity in the 2D space. The
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distance among prototypes in the SOM map can therefore be considered as
an estimate of the similarity between objects belonging to the clusters. It is
important to remark that in general the use of SOM for multivariate data
projection on large data sets is not advisable due to the high computational
cost [42]. However, usually a reduced number of objects (obtained from few
documents) are used to compute the mapping that is subsequently adopted
to label all the patterns to be processed.

In the next sections we describe the use of the SOM at three processing
levels: the character clustering, the word clustering, and the layout cluster-
ing, with applications to word retrieval, to document retrieval and to page
classification.

4 Word Indexing

Word indexing, that aims at a fast retrieval of words in a document collec-
tion, can either process the output of OCR engines or directly work on the
document image. Several strategies have been proposed to deal with OCR
errors [43, 44]. In most approaches the uncorrected OCR output is used for
text indexing and the words are compared with the query by means of string
edit distance algorithms. This strategy has been improved by modifying the
edit costs for the most common OCR errors (e.g. [45]).

When the use of OCR is not advisable, either due to the low quality
of images or to the presence of non-standard fonts, then image-based word
retrieval is a viable alternative. Two main strategies have been considered in
this framework: character-like coding and holistic word representation.

In methods based on character-like coding some objects, that potentially
correspond to characters, are extracted from each word. The word is then
represented by concatenating the codes assigned to the objects. In so doing
similar words share most of the codes.

In the holistic approach each word image is encoded by means of some
global features (e.g. the number of characters or the number of ascen-
ders/descenders) [46]. A particular case of holistic word representation is
zoning (e.g. [47]) that consists of overlapping the word image with a fixed-size
grid. Suitable features, such as the density of black pixels, are computed in
each grid region. Most keyword spotting methods are based on this kind of
representation. For instance, signal processing techniques are used in [48] to
allow scale and translation invariance. Holistic shape features for handwrit-
ten word image retrieval are described also in [49] where a training set is
used to learn a joint probability distribution between word features and their
transcriptions.

In this section, we discuss the use of SOM clustering to perform word
indexing with two approaches: a character-based and a holistic one. In both
cases, during the indexing each document image is first processed with a
layout analysis tool that identifies the text regions and extracts the words
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using an RLSA-based algorithm. To perform the word retrieval a query word
is inserted into one text field in the user interface. A word image is computed
by processing the query word with the LATEX software and this image is used
to compute a suitable word representation either based on character clustering
or on holistic features. Lastly, the indexed words are sorted estimating their
similarity to the query by appropriate processing steps that are described in
detail in [50] for the character-based encoding and in [51] for the holistic-
based approach. In this section we focus our attention on the peculiarities of
character and word clusterings.

4.1 Character Clustering

In word indexing based on character coding each word is first split into Charac-
ter Objects (CO) that in most cases correspond to isolated characters (some-
times one CO can comprise two touching characters). The COs extracted
from a few random pages are used to compute appropriate collection-specific
character prototypes by means of SOM clustering. To improve the clustering
we include the tangent distance into the on-line training algorithm as detailed
in the following.

Tangent Distance

The SOM training algorithm generally relies on the Euclidean distance to
compare the training patterns and the model vectors. Unfortunately, the Eu-
clidean distance between two patterns is very sensitive to small transforma-
tions and a limited displacement of a character can give rise to a large value
of the distance, since many pixels in the two patterns are no longer aligned.
To address this problem, we propose the use of the tangent distance in the
SOM training algorithm.

The invariance of the training algorithm with respect to transformations of
the patterns (Section 2.2) can be achieved with techniques based on invariance
by structure, invariance by feature extraction, and invariance by training.
The use of the tangent distance into a training algorithm can be considered
an invariance by structure technique whose goal is the incorporation in the
distance function of the tolerance with respect to small transformations in the
pattern space.

We shortly outline in the following the tangent distance principle. Readers
interested in more details can refer, for instance, to [11]. Let us suppose to
transform a pattern P with a non linear transformation t that is controlled
by one parameter β (for instance t can be the rotation of the pattern with
the angle β). In the pattern space the set of all the transformed patterns
SP = {x | ∃ β x = t(P, β)} can be regarded as a one-dimensional curve
parametrized by β. In the general case several transformations are combined
together. The possible transformations can be characterized by a vector of
n parameters (

−→
β ), that is expected to describe all the possible deformations
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that can be applied to the patterns. The patterns in SP are now arranged in a
manifold and two objects P and Q in the same class are expected to generate
identical manifolds SP ≡ SQ. Two problems should be addressed to compute
the distance between patterns taking into account these manifolds.

The first problem is related to the identification of appropriate transfor-
mations that should generate realistic patterns. In the case of handwritten
characters, some standard transformations have been proposed, such as ro-
tation, translation, and line thickening. However, real patterns are usually
subjected to transformations that are difficult to model and actual patterns
usually stay close to the manifold but are not perfectly described by it.

The second problem is related to the computational cost required to eval-
uate the distance between two manifolds. The solution addressed by the tan-
gent distance approach is based on a local approximation of one manifold by
means of the hyperplane tangent to it in the point P . The tangent plane is
defined with the linear combination of the n vectors computed by applying
small independent transformations to the original pattern.

The tangent distance between patterns P and Q can be computed by first
defining the tangent planes to P and Q:

TP (
−→
βP ) = P + LP

−→
βP

TQ(
−→
βQ) = Q + LQ

−→
βQ

(4)

where LP and LQ are the matrices containing the tangent vectors which
are usually pre-computed. The double-sided tangent distance is defined as the
minimum Euclidean distance between the tangent planes:

TD(P, Q) = minx∈TP ,y∈TQ ||x − y||2. (5)

Computing the tangent distance amounts to solve a linear least squares
problem (e.g. see [11]). In some cases it is simpler to use the one-sided tangent
distance where the minimum distance between one pattern and the plane
tangent to the other pattern is computed:

TD1(P, Q) = minx∈TP ||x − Q||2. (6)

Character Clustering with Tangent Distance

Character object labeling is made on the basis of the prototypes that are
obtained by clustering the COs contained in some pages of the collection to
be indexed. Each CO image is scaled to fit a fixed size grid obtaining an 80-
dimensional feature vector that is used as input to the clustering algorithm.
The SOM-based character clustering computed using the Euclidean distance
is very sensitive to small local transformations of the character. To reduce
these problems in the proposed SOM TD model we use the tangent distance
instead of the Euclidean distance during the SOM training. To speed-up the
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Fig. 1. Two SOMs built on the Gothic data-set. Left: map computed with the
SOM TD. Right: map computed with the standard SOM training

training we pre-compute the tangent vectors for each pattern (CO) in the
training set. Even if the estimation of the tangent vectors is computationally
expensive, it is important to remark that the vectors are computed only once
for each pattern. During the training, we use the one-sided tangent distance,
Eq. (6), to identify the BMU for each pattern, replacing Eq. (1) with:

||x(p) − mb(x)|| = mini{TD1(x(p), mi(j))}. (7)

In the next section we compare the results obtained performing the char-
acter clustering with the standard SOM training algorithm and with the
SOM TD model.

Experimental Results

To evaluate the effectiveness of the proposed SOM training model we used
two data-sets having complementary features described in [50]: the Gothic
and the French one. The Gothic data-set contains 14 pages printed with a
Gothic font that is not recognized by current off-the-shelf OCR packages. The
second data-set contains more than 600 pages printed with a standard font.

The tangent distance is a technique appropriate for data-sets having a
small number of training examples. It is therefore not surprising that the
experimental results on the French data-set do not show significant differences
between the standard and the tangent SOM. Therefore, we will not discuss
results for this collection in the chapter.

On the other hand, when dealing with the Gothic data we have some in-
teresting results that it is worth to analyze. A pictorial comparison of the
maps computed with the two methods is shown in Figure 1. The quantita-
tive comparison of the two approaches is obtained by testing the retrieval
system described in [50] without the use of the word alignment method that
is described in that paper. The precision-recall plots shown in Figure 2 are
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Fig. 2. Comparison of precision-recall plots with and without the use of the tangent
distance. The transformations 1,2, 4, and 6 correspond to vertical shift, hyperbolic,
scale and line thickness, respectively
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Fig. 3. Comparison of different combinations of various tangent vectors. For in-
stance, the black circle corresponds to the combination of vertical shift, hyperbolic,
and line thickness

computed by running the word retrieval system with 26 query words represen-
tative of both frequent and rare words and averaging the single plots. The five
plots correspond to the standard map (“SOM”) and to the results obtained
with the SOM TD model using some of the most important transformations.
The tangent vectors computed with these transformations allow us to obtain
better results with respect to the standard model, since the precision-recall
plots are always better than the SOM one. Figure 3 shows the results that
can be obtained with few combinations of the transformations analyzed in
Figure 2.
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Fig. 4. Graphical representation of a WordSOM

4.2 Holistic Word Clustering

In holistic word indexing the SOM is used to cluster together most similar
words (from a graphic point of view). The word images are linearly scaled to
appropriate normalized dimensions, obtaining a vectorial representation where
the value in each vector item is the average gray level of the pixels belonging
to the corresponding grid cell. To allow a uniform representation for variable
size words we compute six maps. Each map contains the words having aspect-
ratio in a pre-defined interval. The main drawback of this approach is the
large vector size (hundreds of items) that is reflected into a long training
time. However, it should be remarked that the training is performed during
the indexing, that can be considered an off-line stage.

In Figure 4 we show a WordSOM computed by processing the pages in a
book belonging to the French data-set previously mentioned. A deeper analysis
of the contents of four neurons is depicted in Figure 5 where the words in the
clusters are ordered from top to bottom on the basis of the distance with
respect to the model vector of the neuron. As we can expect, the farthest
words are generally loosely related with those closer to the model vector.

The large vector size affects the retrieval performance for problems related
to the curse of dimensionality. To speed-up the search in high dimensional
spaces we proposed in [51] a method based on the combination of SOM clus-
tering with the search in a lower dimensional space obtained by the PCA
projection. The main steps performed in the word retrieval are as follows.
We first identify the three clusters closer to the query. In the second step we
search the most similar words sorting the PCA-projected vectors. Lastly, to
merge the three lists and refine the final ranking, we compute the distance
in the original space between the query word and the most similar words in
the three lists. Some detailed experiments on the use of the SOM for holistic
word indexing are described in [51].
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Fig. 5. Contents of four neurons of the WordSOM shown in Figure 4. The words
are sorted on the basis of the distance from the cluster centroid

5 Page Indexing

In this section, we discuss two approaches aimed at indexing documents at
the page level. The first application (Section 5.1) targets the page retrieval
considering text similarities computed combining word image clustering and
the tf-idf weighting. In Section 5.2 we explore the SOM clustering of the page
layout for page classification applications. In this approach, we analyze also
the use of the tangent distance between vectorial representations of the page
layout in order to improve the recognition rate for data-sets containing few
labeled pages.
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5.1 Document Retrieval

The proposed document retrieval based on word image clustering originates
from one classical approach in text-based Information Retrieval: the vector
model (see [52], Chapter 2). This approach is based on a vectorial description
of the document contents where the vector items are related to the occurrences
of index terms, usually corresponding to words, in the document. Vector val-
ues are weighted to give more importance to most discriminant terms. To
this purpose one common approach relies on the well known tf-idf weighting
scheme. The basic idea is that index terms that are present in many docu-
ments of the collection should have a low weight since their presence is not
discriminant. With the tf-idf approach the weight assigned to the k-th word
in the document Di is computed by:

wi,k = fi,k · log
(

N

nk

)
, (8)

where fi,k is the frequency of the k-th word in Di normalized with respect
to the maximum word frequency in Di, N is the total number of documents,
and nk is the number of documents containing the k-th word.

The vector model has been designed to process textual documents where
the word identification and clustering (with possible stemming and stopword
removal) is quite straightforward. The document retrieval discussed in this
section relies on the use of the WordSOM clusters in lieu of ASCII words in
the tf − idf weighting. Basically, a document is represented by a vector whose
items correspond to the neurons of the six maps computed (Section 4.2). Each
vector item contains the number of words in the document that are assigned
to the corresponding neuron (i.e. the words having that neuron as BMU). In
analogy with the vector model, we apply the tf − idf weighting to this rep-
resentation. It is worth to remark that the size of the overall vector (on the
average 1,800 items) is smaller than the typical size of the dictionaries con-
sidered with the vector model (for instance for the well known Reuters 21578
corpus the dictionary contains around 19,000 terms). After the indexing, a
weighted vector is associated to each document.

To perform document retrieval a vector is computed from the query doc-
ument taking into account the neurons assigned to each word in the page.
The similarity is evaluated by comparing the query (q) with each indexed
document (d) by using the cosine of the angle between the vectors:

sim(q,d) =
∑n−1

i=0 (qi · di)√∑n−1
i=0 q2

i ·
√∑n−1

i=0 d2
i

(9)

To obtain a global ranking of the indexed documents we compute the sim-
ilarity of all the documents with respect to the query and sort the documents
on the basis of the measure computed in Eq. (9).
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Rank Page Sim. Most frequent words

1 448 0.1624 carbonate, carbon, sulfate
(carbonate, coal, sulphate)

2 446 0.1492 four
(oven)

3 1007 0.1368 mouvement, cylindre, ouvrier, roues
(movement, cylinder, worker, wheels)

4 822 0.1348 –
5 1164 0.1320 similar to 1007
6 1254 0.1313 –
7 455 0.1309 ammoniaque, sulfate

(ammonia, sulfate)

Table 1. Most frequent words in the top ranked pages of the example query for
document retrieval

Experimental Results

The experiments described in this section are made on two books (contain-
ing 1280 pages) that are part of an encyclopedia addressing machineries and
techniques of the industry of the XIXth Century 1. The images are quite clean
and the OCR works well on these documents. The interest for this data-set
lies on the homogeneity of the contents of the pages in each chapter, so that
the evaluation is simplified.

An accurate evaluation of document retrieval systems requires a judgment
of the relevance which is provided by human experts. In our application this
information is not available and we evaluated the system in two ways. First,
we made a global test by performing several queries for each chapter. Second,
we carefully analyzed some queries by checking the contents of the neurons
providing the highest contribution to the similarity measure (Eq. 9).

We describe in the following the results obtained with one query page by
highlighting the most important neurons for each selected page. The query
page (number 452) belongs to chapter 4 ‘sodium and potassium’ and describes
one specific machinery. Therefore, the page contains several technical terms
(e.g. cylinder, wheels, oven, movement, combustion, handle, heat, worker, rota-
tion). This machinery is used for the production of sodium and the following
words are contained in the page: sulfate, reaction, carbonate, chaux (lime).
Table 1 reports the first ranked pages together with the most frequent words
contained in the clusters providing the higher contribution to Eq. (9). Pages
448 and 455 belong to the same chapter as the query page. Page 446 describes
a machinery very similar to the one addressed in the query page. Also the
machineries described at page 1007 and 1164 are very similar to the query,
but are designed to work with other materials. Another interesting point is
the presence among the top ranked pages of few pages belonging to chapter 4
1 Les Merveilles De l’Industrie: downloaded from the web site of the National Li-

brary of France.
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Fig. 6. Two pages of the Issue2 class. We show the regions identified by the layout
analysis and the grid overlapped to the pages

(pages 419-480), since the query page contains few references to sodium and
potassium.

5.2 Layout Clustering

Another application of SOM clustering is the page layout classification. The
approach proposed in this section is particularly useful when dealing with
data sets where only few pages have been manually annotated, and therefore
the training of a discriminant classifier can be difficult.

Page classification methods generally represent the page layout either with
fixed-size feature vectors [53, 54] or with graphical structures (e.g. graphs and
trees [55]). In [55] we compared some approaches for SOM-based page clus-
tering relying on the MXY-tree page representation. Graphical representa-
tions usually suffer important non-linearities and small transformations (e.g.
translations) in the image space can give rise to significant changes in the
subsequent representation.

In this chapter we propose the use of the tangent distance for layout clus-
tering. This clustering is subsequently used to perform the page classification.
We propose a vectorial page representation that smoothly depends on small
transformations in the image space. The latter is a requirement to adopt the
tangent distance approach.

A layout analysis tool is used to extract the homogeneous regions in the
pages. Each page is then represented with a fixed-size feature vector obtained
by computing appropriate features in the cells defined by a regular grid su-
perimposed to the page. Two segmented pages of the same class are shown
in Figure 6 together with the overlapping grid. From the figure we can notice
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Fig. 7. Simulation of a horizontal displacement of a page. For each page we show
the layout regions and the overlapping grid

that the right page has a similar layout but is vertically shifted. For each cell
we compute the percentage of its area that is covered by text, image and line
regions, respectively. For horizontal and vertical lines we assign a virtual area
around each line (see the dotted area around vL in Figure 7) and evaluate the
percentage of the cell covered by the union of all the virtual areas. In this way
broken lines provide a contribution similar to continuous ones.

Two of the most important transformations that should be addressed in
the layout clustering are horizontal and vertical displacements. To simulate
these transformations in the tangent distance paradigm we compute, for each
training page, the new representations that are obtained by slightly shifting
the grid in the horizontal and vertical directions (an example of horizontal
displacement is shown in Figure 7). By means of these transformed page
representations we can compute a sort of tangent vectors that can be used to
train the SOM TD with the method described in Section 4.1.

Experimental Results

In this section we discuss the performance of the SOM TD model for page
layout clustering. The clustering is afterwards used to perform a layout-based
page classification with particular interest on data-sets having a reduced num-
ber of labeled training patterns. Two experiments have been performed to
analyze the approach under different conditions. In the first experiment we
considered a data-set that is typical of digital library repositories that con-
tains a digitized Encyclopedia. The second experiment deals with a collection
of commercial invoices.

The Encyclopedia data-set is composed by 6 books containing 4035 pages
that have been assigned to more than ten classes2. We made our experiments
considering the seven most important classes (Figure 8). The SOM training

2 This data-set is a superset of the one used in Section 4.1.
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ITLPa Text2 Image

SecM2Text2ImageImageText2

Fig. 8. Examples of pages of the main classes considered in the layout retrieval

10x8 12x10 15x10

SOM SOM TD SOM SOM TD SOM SOM TD

55.59 67.51 59.91 60.97 70.74 71.41

Table 2. Encyclopedia Data Set: average recognition rate for various sizes of the
SOM

has been made with the 617 pages of the first book. Figure 9 shows one SOM
trained on this data-set. Some map regions containing similar pages have been
identified in order to make easier the visual analysis of the map. After training
the SOM map either with the standard or with the SOM TD algorithm we
label each neuron on the basis of the most frequent class among the pages in
the training set firing the neuron.

During the test (that is made considering the remaining five books) we
classify all the pages in the test set belonging to the nine classes of inter-
est. The class assigned to each page is the label of the closest neuron. The
comparison of the two approaches is made computing the recognition rate for
each class when using the standard SOM and the SOM TD. To reduce the
variations in the training we used the same starting map for both learning
methods. In Table 2 we compare the average recognition rate for the two ap-
proaches considering various map sizes. We can notice that in all the cases the
tangent map provides better results. Moreover, larger maps allow us to obtain
higher recognition rates. To further investigate these results we compare, in
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Fig. 9. A graphical representation of the layout SOM computed for the Encyclopedia
data-set. Some regions containing similar pages are shown on the map

Table 3, the recognition rate for each class when using the largest map. We
can observe that the tangent map provides better results for all the classes
with the exception of the classes Text2Image and Text2. As a matter of fact
pages of the two classes are sometimes confused. The reason for this behavior
is probably due to the fact that the Text2 class is the most populated one
and has a very simple layout (text on two columns). In this case the use of
tangent vectors is not useful since several training patterns already exist, and
the addition of local distortions can be confusing for the clustering.

The experiments performed on the invoice data-set have been made with
the aim of evaluating the effectiveness of the proposes SOM TD model when
dealing with a large collection of patterns that are labeled only in a small
percentage.



216 S. Marinai et al.

SOM SOM TD

ImageText2 81.33 82.14

Text2Image 69.08 67.05

SecM2 36.30 40.84

Image 96.72 96.72

Issue2 84.21 87.50

ITLPa 28.00 32.00

Text2 96.03 93.65

Table 3. Encyclopedia Data Set: average recognition rate of SOM and SOM TD
for the main classes

12x10 15x10 18x10

SOM 59% 52% 59%

SOM TD 58% 66% 61%

Table 4. Invoice Data Set: average recognition rate for various sizes of the SOM

The SOM training and labeling has been performed in two steps: first
we trained a map with the SOM TD algorithm considering all the patterns
belonging to the training set. In the second step we labeled some neurons in
the map on the basis of a majority voting computed with 64 pages belonging to
15 classes. The classification is obtained, as before, assigning each unknown
page to the class of the closest neuron. Since a reduced number of labeled
samples is available we made the experiments with a leave-one-out approach.
From Table 4, containing the average recognition rate for the invoice data-set,
we can notice that the best results are obtained with the 15x10 map when
using the SOM TD training algorithm. In this case we needed larger maps
with respect to the Encyclopedia data-set since there are more classes anf the
pages not belonging to the 15 labeled classes are more than a half of the whole
data-set.

6 Conclusions

This chapter addresses the use of unsupervised learning in DIA applications
with a special emphasis on SOM-based clustering. Clustering techniques are
particularly appropriate in applications where a large number of labeled train-
ing samples is not available, or when there is no need to assign patterns into
a pre-defined number of classes (for instance in document image retrieval ap-
plications). A well known technique for enhancing classifiers trained with a
reduced number of training patterns is the tangent distance that we use, in
this chapter, for SOM training.

The application of SOM clustering is discussed at three main process-
ing levels: character, word, and layout clustering. In particular, the proposed
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SOM TD approach is evaluated on two applications: the word retrieval based
on character clustering and the layout classification based on page clustering.
In both cases the experimental results confirm the hint that the tangent dis-
tance is particularly suited when dealing with data sets having a small number
of labeled training patterns.
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Summary. This chapter explores three aspects of learning in document analysis:
(1) field classification, (2) interactive recognition, and (3) portable and networked
applications. Context in document classification conventionally refers to language
context, i.e., deterministic or statistical constraints on the sequence of letters in syl-
lables or words, and on the sequence of words in phrases or sentences. We show how
to exploit other types of statistical dependence, specifically the dependence between
the shape features of several patterns due to the common source of the patterns
within a field or a document. This type of dependence leads to field classification,
where the features of some patterns may reveal useful information about the fea-
tures of other patterns from the same source but not necessarily from the same
class. We explore the relationship between field classification and the older concepts
of unsupervised learning and adaptation. Human interaction is often more effective
interspersed with algorithmic processes than only before or after the automated
parts of the process. We develop a taxonomy for interaction during training and
testing, and show how either human-initiated and machine-initiated interaction can
lead to human and machine learning. In a section on new technologies, we discuss
how new cameras and displays, web-wide access, interoperability, and essentially
unlimited storage provide fertile new approaches to document analysis.

1 Introduction

The classical models for character recognition and document image analysis
must be extended to accommodate the classification of multiple common-
source patterns. We show how field classification exploits statistical depen-
dence due to the common source of a field of patterns and also leads to a
simple and operational definition of classifier adaptation. We explore diverse
contextual constraints beyond those imposed by language models. Instead of
ignoring the ever-present human-computer interaction, we propose more effec-
tive ways of exploiting it. We also examine the impact of recent technological
developments on OCR and DIA and raise some research questions.
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In this introductory section we list some of the limitations of conventional
models for classification and propose extensions to field classification, adapta-
tion and unsupervised learning. In the second section, Field Classification, we
examine the contextual constraints that favor field classification and present
some situations for which field classification algorithms have already been
developed. We also attempt to clarify some distinctions between trainable,
supervised, semi-supervised, unsupervised, adaptive and self-organizing algo-
rithms for training, teaching, and learning.

The third section, Interaction in training and testing, considers paradigms
where some interaction helps either or both the operator or the algorithmic
parts of the system. Our premise is that interaction will remain necessary, for
the foreseeable future, in most operational recognition systems. The fourth
section, Technology and Applications, explores how advances in technology
foster new applications in OCR and DIA. While the rest of this survey is
mainly a retrospective and attempts to rationalize existing results, here we
attempt to look ahead. In the Conclusions we list some trends and open
research problems.

1.1 The Classical Paradigm for Pattern Recognition

Until the last decade, the customary framework for statistical pattern recogni-
tion in Optical Character Recognition (OCR), Hand-printed Character Recog-
nition (HCR), and Document Image Analysis (DIA) was based on three key
constraints:

1. Representative training set. The data was divided into two mutually ex-
clusive sets of patterns for training and testing, each consisting of samples
from a fixed number of classes with given or estimated prior probabilities.
It was generally assumed that the patterns in both sets were independent
samples produced by selecting a class label according to the prior class
probabilities, then generating an observation (feature, attribute) vector
from the corresponding class-conditional probability distributions. The
labels of the test set were used only to determine classification accuracy.
(Some researchers partitioned the training set further to provide a valida-
tion set for tuning parameters.)

2. Singlet classification. The patterns were classified one at a time. Each
pattern was assigned a label on its own merits, independently of every
other pattern. In OCR and HCR, each pattern was a single glyph (i.e.,
a letter, numeral, or ideograph). In DIA, it could be an entire word, a
drawing or a photograph, or even an entire document. The only important
exception to this constraint was the application of linguistic context in
character recognition. Other entities, like forms, tables and documents,
were also usually processed as though they occurred in isolation.

3. No interaction. Only algorithmic processes were considered of interest.
It was understood that in real applications the labels in both the training
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set and the test set would have to be provided by key entry, that human
help was necessary to produce segmented character or word patterns for
experimentation, and that intervention would be necessary at the opera-
tional level to deal with unclassified and misclassified patterns. However,
these interactive components of the system were considered extraneous
to the pattern recognition system, and in research settings and research
publications little attention was devoted to optimizing them.

This architecture is typically represented by a data flow diagram similar
to that shown in Fig. 1. No special provisions are made to indicate either the
relevant data sets or the class labels.

Fig. 1. Generic first generation pattern recognition system

Over the last decade or two, many systems were proposed that did not
fit neatly into the above paradigm. Some of the new approaches were the
result of theoretical advances, while others arose from the realization that
some important applications grossly violated the stated constraints. Many
simply exploited technological advances: faster CPUs, larger amounts of stor-
age, miniaturization, portability and connectivity, and better displays.

Our objective in this chapter is to construct a more general framework for
pattern classification that encompasses recent research and may even leave
room for new ideas. The notions at the core of the new paradigm are learn-
ing and adaptation, styles, multi-pattern classification, and human-machine
interaction. We will give examples of methods and applications that fit the
new paradigm, and discuss the technological advances that made them possi-
ble. We will also show how some widely used techniques, like clustering, ex-
pectation maximization, and active learning, fit naturally into the proposed
framework.

We propose to define the new paradigm at a level of detail sufficient for
probabilistic simulation of alternative classification algorithms. In this kind of
simulation, the labels and patterns are generated by pseudo-random-number
generators such as are readily found in most programming language libraries
and in Matlab or Excel. Languages and software packages designed for sim-
ulation, like Simula, Modsim, Ross, Simscript, and Matlab toolboxes, offer
a variety of built-in univariate probability distributions. It is, however, more
difficult to generate multivariate distributions (e.g., Multinomial, Dirichlet, or
Uniform), other than Gaussian, with the desired degree of statistical depen-
dence completely specified by an arbitrary covariance matrix.

Our architecture for simulation does not address a critical component of
all pattern recognition systems, feature extraction. Feature extraction is the
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step that transforms the output of the transducer (scanner, camera, tablet,
microphone) into an abstract high-dimensional vector space where classifica-
tion boundaries are defined. The error rate achievable by an ideal classifier
depends on the chosen set of features. We are not, however, aware of any
general technique for designing a good feature set, and even methods for se-
lecting a subset of good features from a larger set leave much to be desired.
We will therefore blithely assume that for each application some expert has
already provided software for generating feature vectors. The simulations will
start with a probabilistic feature space where the simulation parameters can
simply be set to “good” features or “bad” features.

Another important aspect of OCR and DIA that we cannot simulate (but
will discuss) is segmentation. Much effort has been devoted to separating text
from illustrations, locating paragraphs and lines of print, and to word and
character segmentation. Although the relevant algorithms fall in the realm of
image processing rather than pattern recognition, segmentation and classifi-
cation are often combined. As for feature extraction, there are few statistical
models and tools for segmentation.

In the next subsection we define the components of a more comprehensive
classifier architecture.

1.2 Definitions for an Expanded Paradigm

The definitions here pertain primarily to the role of various data sets in a clas-
sification system, with particular regard to simulated data. Merely envisaging
it lends precision to definitions.

Training set. The training set consists of a set of labeled pattern (fea-
ture) vectors. For the purpose of analysis, one can assume that the feature
vectors have either continuous or discrete valued components, but simulators
can generate only discrete valued features. The number of components in the
feature vectors, called the dimensionality of the problem, is fixed. There are
four types of labels: class labels, source labels, style labels, and instance labels,
as described below. The training set must have at least class labels, but the
presence or absence of source and style labels leads to different types of classi-
fiers. Patterns with the same source label share the same style, while patterns
with different source labels may or may not be of the same style.

Test set. The test set consists of a sequence of feature vectors with source
and class labels. The class labels must be used only for error counts. Each
test pattern has a source label. The source length is the number of test pat-
terns from the same source. The source distributions may be the same as in
the training set, or different. Even if they are the same, the correspondence
between the source labels of the test set and the source labels of the training
set is assumed to be unknown. The test set has no style labels.

Field. For purpose of classification, the patterns of the test set are divided
into fields. A field consists of a fixed number of patterns (called field length)
from the same source. The choice of field length depends on the available
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computing resources, while the source length (the number of patterns from
the same source in the test set) defines the scope of statistical dependence or
context. Even in the absence of linguistic context, a field length of only two
(i.e., pair classification) may lead to a significant increase in accuracy over
singlet classification.

Source, style, and class labels. The assignment of these labels is the most
time-consuming part of preparing a real dataset for experimentation. Under
the assumption that each document is generated by the same source, only
one source label per document need be entered. Style labels in the training
set may be assigned by inspection, by font recognition for printed characters,
by clustering or expectation maximization for handprint, or not assigned at
all. Initial class labels are usually assigned by some classifier, and then the
errors are found by proofreading and corrected manually. Sometimes data for
experiments on printed characters is automatically generated by a script that
generates so many samples of each font, in which case source, style and class
labels can be assigned automatically.

Instance labels. Although not necessary for describing a classification
scheme, it is good experimental practice to attach a unique label (accession
code, serial number, identifier) to every pattern. This allows tracking changes
in class label assignments when classifier parameters are changed, and whether
errors committed by different classifiers are correlated. It may also serve as
a time stamp for scenarios where the order of the patterns within the field
matters, as in the case of linguistic context.

Example: Some NIST data sets have samples of isolated digits (10 classes).
Each pattern is represented by a 24x30 binary array, therefore the dimension-
ality of the feature vector is 720 [1]. There are 600 writers, and the serial
number of the writer is attached to each digit. These writer labels are our
source labels. Writer consistency in the shape of the numerals is one aspect of
style. Several writers may have the same style. To ensure that patterns of the
same writer do not occur on both training and test set, the data is partitioned
by writer. There are about 100 digits from each writer, so the source length
is approximately 100. The NIST data set does not include style labels. As
we will see, the presence of styles may improve classification accuracy even
without the presence of explicit style labels.

Simulated data. The source label, which identifies patterns guaranteed to
have the same style, is generated first. Then a style label is selected with fixed
prior probability over the styles. Next, a sequence of class labels is generated
according to class priors. The source length may be fixed or subject to a
probability distribution that governs the number of patterns per source (for
example, the number of digits in the courtesy field of a bank check, or the
number of letters, digits and punctuation in a business letter). Finally, the
feature vectors are generated from class-and-style conditional feature distri-
butions. The patterns from each source are restricted to a single style; in other
words, isogenous or common-source patterns of the same class are indepen-
dently drawn samples from the same distribution. Before classification, the



226 G. Nagy and S. Veeramachaneni

test set is partitioned into same-source fields. To simulate some applications,
we may allow all of these probability distributions to change gradually. This
makes a difference only if the classifier has a bounded horizon, i.e., if the field
is shorter than the test set.

The important distinction between the new framework and old framework
is the presence of multiple feature distributions that are constant within a
source but may change from source to source. In order to exploit within-source
consistency, field classification rather than singlet classification is necessary.
A further distinction is that the distribution of the patterns may change with
time. The nature of the classifiers appropriate for different scenarios within
the above overall framework is elaborated in the next section.

2 Field Classification

We are now ready to consider situations where it is advantageous to classify
entire groups of objects instead of classifying each object in isolation. This is
generally the case in DIA and OCR, where a message (substantiated as a doc-
ument) consists of an ordered collection of visual objects (glyphs). We show
that many common constraints on acceptable sequences of symbols, and on
the visual appearance of the glyphs used to represent them, can be expressed
in terms of statistical dependence between patterns. Because the estimation
and exploitation of the underlying joint probability distributions requires ex-
amination of more than one pattern at a time, we discuss field classification.
We relegate the relevant mathematical formalisms to the cited references, but
we present some tools that facilitate the study of the inter-pattern feature
dependences, and state the assumptions under which optimal or approximate
field classification algorithms have already been developed. We conclude the
section with a discussion of adaptive classification and unsupervised learning.

2.1 Context

Information relevant to classifying an object (digit, letter, word, illustration
or document) is often extraneous to the object itself. It may either reside in
other objects that are also to be classified, or it can be considered part of
the environment in which the classifier operates. In the first case, recognition
accuracy can be improved by taking into account the characteristics of an
entire group of objects to classify each one, i.e., by field classification. In the
second case, the recognition can be improved by providing means to specialize
or tune the classifier for either singlet patterns or fields to its environment.
The additional information is generally called context, regardless of whether
it can be derived from the available samples [2, 3].

In character and speech recognition, the word “context” is often reserved
for linguistic context. It has, however, a much wider scope in Artificial Intelli-
gence, as exemplified by the topics discussed at the biennial ACM Context con-
ferences, which draw on several centuries of studies in epistemology [4, 5, 6, 7].
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We will examine situations other than linguistic context where field classifi-
cation is useful, but neglect broader considerations that need to be taken into
account in preprocessing and feature extraction rather than in the classifier
itself. In other words, we will concentrate on the kinds of context where the
patterns to be classified provide information about each other.

Since the use of linguistic context is well established in both character and
speech recognition, we will first look at language models. Then we will examine
some relations between the shapes of the patterns. We will distinguish between
order-independent and order-dependent relations, and also between forms of
statistical dependence that arise between labels, between shape features, and
between labels and shape features –of all the patterns within a field.

Language Models

Language models are approximate descriptions of natural language at the
morphological, lexical, syntactic, semantic, or pragmatic levels. While many
of the earlier models were rule-based, the advent of large computer-readable
corpora for estimating parameters has given rise to statistical models.

Morphological models typically consist of polygram frequencies [8]. These
frequencies vary from language to language and are always highly skewed [9].
In English text, for example, the probability of “e” is 0.1241, while that of “z”
is only 0.0007. The skew increases with polygram length: P[th]=0.04, while
P[qh]=0. It is clear that an ambiguity between an e and a c after a d should
be resolved in favor of e, but is e or c more likely after u? Elaborate methods
have been proposed to estimate the probabilities of rare letter or phoneme
sequences [10].

Lexical models are based on word frequencies and word transition frequen-
cies. The simplest systems are based on dictionaries (strictly speaking, lexi-
cons) that report only the existence or non-existence of a sequence of letters
as a valid word of a particular language, without its frequency of occurrence.
(Agglutinative languages with many case endings and verb forms, like Italian,
typically require lexicons at least three times larger than English.) Commercial
OCR systems routinely use not only large general lexicons but also specialized
lexicons of biological, chemical or legal terminology, and lists of abbreviations,
acronyms, and proper names. Most often dictionary-lookup is carried out only
as a post-processing step, which is generally suboptimal. Some examples of
over-reliance on lexicons are given in [11], which also describes many other
sources of OCR errors.

The best statistical syntactic models surpass the power of rule-based sys-
tems [12, 13, 14]. Estimates of transition frequencies between syntactic cate-
gories (noun, verb, adjective, adverb ...) can be obtained from large annotated
corpora. Syntactic models are of limited use in English because of the multi-
ple categories carried by many words (e.g., Yellow soap / I wonder where the
yellow went, or To fit a dress / A fit athlete / A good fit). Applying semantic
and pragmatic models is even harder [15].
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Formally, all linguistic context in character recognition can be expressed
as statistical dependence between the labels of patterns. The random variables
whose joint probabilities must be estimated are letter, word, or part-of-speech
labels. Linguistic context is always order-dependent, and therefore often mod-
eled with transition frequencies in Markov Chains, Hidden Markov Models,
and Markov Random Fields [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].
Linguistic variables are usually assumed to be independent of character shape,
even though titles and headings in large or bold type have a different lan-
guage structure than plain text. Optimal field classification of printed matter
is often approximated by a post-processor that simply attempts to integrate
confidence measures based on shape and language.

Style

We term style any difference between the statistical characteristics of a group
of patterns generated by a single source and the characteristics of a group of
patterns generated by several sources [29, 30, 31]. A single-source group usu-
ally exhibits some shape consistency. For instance, we may be able to dis-
tinguish numerals written by Alice from numerals written by Bob. Alice’s
numerals seem similar to each other, and Bob’s numerals are also similar to
each other, but Alice’s numerals are different from Bob’s. The same notion
can be applied also to text printed in different fonts. Forensic analysts can
tell whether two sets of letters or numerals were written with the same pen,
or printed on the same printer.

More formally, style context is defined as the presence of statistical depen-
dence arising between patterns (represented as random vectors) because they
are from the same source. Unlike language context, it is independent of the
order of the patterns in the field. It takes two distinct forms, which we call
intra-class style and inter-class style [32].

Intra-class style is the shape consistency of a single class from each source.
It reveals how consistent a writer is in writing a glyph. Does Alice always
cross her 7s, while Bob never does? It is, of course, even more marked in
print, where words, paragraphs, and entire documents are often composed
in a single typeface. Experts can recognize dozens of typefaces by inspection.
More subtle than typeface consistency is the intra-class style within documents
printed by the same printer or scanned by the same scanner. In OCR, where
each glyph (a letter, numeral or ideograph) is usually represented by a feature
vector, we say that a data set exhibits intra-class style if the feature-vectors
of patterns of the same source and class, considered as random variables, are
(class-and-style-conditionally) statistically dependent.

Inter-class style determines how much the shape of a given class reveals
about the appearance of other classes from the same source. The way Alice
writes 1 helps predict the way she will write 7. If the n has no serifs, neither will
h, m, or r. We say that the data set exhibits inter-class style if the feature-
vectors of patterns of different classes, considered as random variables, are
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(class-and-style-conditionally) statistically dependent. Fig. 2. illustrates two
pairs that cannot both be recognized correctly as 17 by a singlet classifier,
and an instance where the label assigned by a singlet classifier is corrected by
the field classifier.

Fig. 2. Benefit of pair classification when there is inter-class style

We show in Fig. 3 a useful representation for visually comparing singlet
and field classification boundaries. (This representation allows showing only a
single feature for each pattern, hence only a 2-D field feature.) We plot some
field features, which have bimodal Gaussian mixture distributions, for each
field class (AA, AB, BA, BB) of a two-class problem (A,B) with a single feature
x. We also show the 2-D decision boundaries of the singlet classifier and of
the field classifier. The optimal field classification boundaries and the singlet
boundaries are different, so we would expect some gain with a field classifier.
Simulation of a field classifier shows a reduction in the error rate of single
patterns from 15% to about 10%.
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Fig. 3. Gaussian class-conditional distributions of a single feature x for classes A

and B and styles 1 and 2. Below are the representations of singlet (left) and pair
(right) feature (spaces x1, x2) and decision boundaries for a field of two patterns.
The AA region is bottom left, AB is bottom right, BA top left, and BB top right

Order-Dependent Inter-Pattern Dependence

Inter-pattern class-feature dependence is fairly rare. It occurs when features
of a pattern depend on the class, rather than on the rendering (features),
of an adjacent pattern. For example, the vertical location of an apostrophe
may depend on whether the previous letter had an ascender, but not on its
font (Fig. 4). That is, the features of the apostrophe are independent of the
preceding letter, given its label.

Feature dependence between adjacent patterns is common, as illustrated in
Fig. 5 (from [3]). In cursive writing, the location of the last stroke of a pattern
determines the nature of the ligature that joins it to the next pattern. It is
different from style, because the ligature-sensitive features of the two patterns
depend on the shape and order of the patterns. A similar phenomenon in
speech is called co-articulation.
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Fig. 4. Example of inter-pattern class-feature dependence

Fig. 5. Examples of order-dependent inter-pattern feature dependence: note the
difference between the ligatures preceding the a’s

2.2 Field Classifiers

Dependence between patterns suggests that a field classifier should assign
a field label, consisting of a sequence of class labels, based on the feature
vectors of all the patterns in a test field. The number of possible field labels
rises exponentially with field length, thereby effectively limiting the maximum
operational field length.

We discuss below several types of field classifiers that have been proposed
under various assumptions. These field classifiers are generally based on the
formulation of singlet classifiers: for instance, they may be Bayes classifiers
or MAP classifiers, and either parametric or non-parametric classifiers. In
addition to standard statistical classifiers, neural networks and support vector
machines can also be exploited for field classification. To classify each pattern,
all field classifiers combine information derived from the entire training set
with information from the whole test field.

Field-Trained Classifiers

An obvious idea is to concatenate the features of singlet patterns to form field
feature vectors, and train the classifier on every possible field class. All of the
well-developed theory of singlet classification then applies. This method, how-
ever, requires training samples of every field class, and is therefore generally
impractical with field lengths greater than two.

In text, not all combinations of letters occur. Word classifiers can therefore
be trained on words, rather than on every possible sequence of characters. One
version of this approach divides the letters of the alphabet into fewer and more
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easily classified categories based on character shape codes (ascenders and de-
scenders) [33, 34]. Because character-level segmentation is error prone, most
word classifiers are not based on concatenating singlet character features, but
on features extracted from the entire word. This approach is particularly suit-
able for limited-vocabulary applications like postal addresses or legal amounts
on bank checks [35, 36], and for correction of OCR errors [37]. Another ex-
ample of holistic word classification is based on statistics extracted from each
cell of a grid superimposed on the word [38]. For degraded documents with
larger vocabularies, word level indexing (as opposed to keyword spotting) was
proposed with a three-stage comparison based on word aspect ratios, vector
features extracted with a grid superimposed on each word, and within-word
connectivity. Experimental evidence for high precision and recall in retrieval
was adduced from a multilingual collection of OCR-resistant documents span-
ning four centuries [39].

Font Classification

For printed matter, font classifiers and font-specific character classifiers can
be trained on data sets of specific type faces or on broad groups (serif/sans-
serif, italic, bold). The font classifier is then applied first to a test field, and its
decision is used to select the appropriate character classifier [40, 41, 42, 43].
The same idea can be applied to writer identification [44]. Many words of text
may be necessary to reliably identify the font. Furthermore, the resulting clas-
sifier is generally suboptimal, because the features in character classification
are neglected in font classification, and those used in the font classifier are
neglected in character classification. Style classifiers, discussed below, use the
entire set of features.

Discrete-Style Classifier and Style-First Classifier

If the underlying feature distributions are Gaussian, and the training set has
style labels that allow estimating the parameters of the class-and-style con-
ditional feature distributions, then the joint posterior mixture-distributions
of the field classes can be computed for fields of arbitrary length. The re-
sulting optimal classifier is known as the Discrete Style Classifier [31]. The
lengthy computation (exponential with field length) can be approximated by
keeping track of frequently co-occurring (same-source) shapes [45] or, more
consistently, by a Style First Classifier that computes the posterior probabil-
ity based on the most likely style [46]. Non-parametric nearest-neighbor field
classifiers are described in [47] and support vector machine field classifiers
in [48].

Style-Conscious Quadratic Discriminant Field Classifier

In some applications, like handprint recognition with a multitude of writers,
it is sensible to assume a continuous distribution of Gaussian styles instead
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of some predetermined fixed number. The posterior distribution for any field
length can then be determined from only the cross-covariance matrix of pairs
of same-source pattern feature vectors (op. cit. [46]). The resulting Style-
Conscious Quadratic Discriminant Field classifier is optimal under the stated
assumptions. The experiments described in the cited references indicate that
all of these field classifiers achieve lower character error rate than the singlet
classifiers on which they are based.

2.3 Adaptive Classifiers

The word adaptive (which surfaced in conjunction with stochastic approxima-
tion, potential functions, adelines, madelines, and perceptrons), is overloaded
and has been used in many different ways since its appearance – first in au-
tomatic control then in pattern recognition – more than forty years ago [49].
Adaptation and learning were linked to stochastic approximation (Robbins-
Monroe and Kiefer-Wolfovitz processes) by Aizerman, Tsypkin and Fu among
others [50, 51, 52]. Nevertheless we need a word for a concept that fits with our
definitions of training and test sets and of field classification, and that shares
the connotation associated with adaptation. In our context, adaptation can
be defined clearly and simply without introducing any additional notions. Our
definition offers the advantage that it applies equally to structural adaptation,
parameter adaptation, and to complex classification formulas that could be
equivalent to either.

We define an adaptive classifier as a field classifier with a field that en-
compasses the entire test set.

Such a classifier can clearly use all of the information that is available
in the patterns to be classified. Not only does the classification of the last
pattern in the test set profit from information garnered from the first pattern,
but the classification of the first pattern also benefits from the last pattern.
In principle, the field-classification boundaries of an adaptive classifier can
be determined entirely from the training set. This does not imply that the
distribution of shorter subsequences of patterns in the field is stationary, but
it does require all of the test patterns to be available at the same time.

For long test sets, the computation of the posterior field probabilities must
be approximated. Dynamic field classifiers adjust their classification parame-
ters after classifying a finite subset of the test field, thereby approximating an
optimal adaptive classifier. The approximation may be necessary either be-
cause there are insufficient computational resources to classify the entire test
set optimally, or because some of the test patterns must be classified before
all of them are available.

Dynamic classifiers present the danger of wandering off course, perhaps
because of a completely mislabeled subset of the test field, and never recover. It
may therefore be prudent to test them periodically on some typical validation
field and, if the error rate is too high, reset the parameters to those obtained
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from the original trusted training set. Adaptation in commercial OCR systems
seldom exceeds page length (c. 2000 characters).

The style-constrained classifiers described below are not dynamic, because
their decision depends only on the ensemble of patterns of the current field,
which is generally only a subset of the test set. If a field reappears later,
after many other fields from different sources and styles were classified, the
result will be the same. (In contrast, a classifier that is dynamic according to
our definition could well classify a subsequent but identical field differently.)
Nevertheless, it may be appropriate to claim that these classifiers adapt to
the style of each test field.

2.4 Supervised, Semi-supervised, and Unsupervised Learning

Algorithmic grouping or clustering of unlabeled patterns according to their
distance to each other in feature space is often called unsupervised classifi-
cation or learning [53]. Persistent attempts since the sixties to endow self-
organization, (self-)adaptivity, learning without a teacher, training without
a trainer, self-produced pattern discrimination, self-correction, and unsuper-
vised, semi-supervised or non-supervised classification with a stable meaning
have proved futile [54, 55, 56]. As mentioned above, we reserve the word adap-
tive for a more specific concept.

We take the position that pattern recognition in OCR and DIA cannot
be entirely unsupervised, because documents, words, letters and numerals al-
ready have some prior meaning to human readers. At some point, this meaning
must be communicated to the classifier so as to regain the correspondence be-
tween the arbitrary labels assigned by the machine and the labels of the user
community (for instance ASCII character labels, or Reuters document cate-
gories). We attempt next to discover what is the “hidden” information used
by various “unsupervised” pattern recognition methods.

The least information necessary to turn a mixture decomposition method
into a classifier is admirably elucidated in [57, 58]. The unlabeled patterns are
presented as a Gaussian mixture distribution with unknown mixing parame-
ters. It is shown that with an increasing number of samples, the parameters of
the constituent distributions can be estimated to arbitrary precision. However,
in order to determine with better than chance accuracy which constituent cor-
responds to which class, we need at least one labeled pattern. Increasing the
proportion of labeled to unlabeled samples brings such a classifier closer to
the vanilla-flavored (supervised) classifier.

The idea of first partitioning unlabeled samples, and then assigning labels
to each partition, was thoroughly explored in the sixties from the perspective
of both signal-processing [59, 60, 61] and potential functions [62, 63, 64]. In
1966 Dorofeyuk presented several clustering algorithms, and then assigned
labels to each cluster according to the known majority label in each cluster.
He tested his algorithms on five classes of hand-printed digits. He called the
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procedure teaching without a teacher, because the labels were not used in the
clustering process [65].

Examples of easy- and difficult-to-cluster pattern configurations are simple
to visualize in two dimensions [66, 67]. The widely-used K-means cluster-
ing algorithm was popularized as a general method for “exploratory” multi-
variate analysis of unlabeled data [68, 69]. A variation that addressed some
of the shortcomings of the elementary algorithm by splitting and merging
classes was called Isodata [70]. In the communications community, iterative
minimization of the sum-of-squared-error criterion became known as Vector
Quantization [71, 72]. Among the first attempts at evaluating regiorously the
effectiveness of clustering methods were Dubes and Jain [73]. Variations of
the method with respect to initialization, cost function, splitting and merging
clusters, and distance metrics, have been amply described [74, 75]. Current
research focuses on combining multiple cluster configurations obtained by dif-
ferent algorithms, i.e., clustering ensembles [76].

Clustering with the K-means algorithm using labeled seeds (initial clus-
ter centroids) circumvents the need for assigning labels after the clustering
process. One of the simplest adaptive classifiers (called decision-directed ap-
proximation [77]) is a minimum-distance-to-class-centroid classifier that iter-
atively recomputes the class centroids according to the class labels assigned
on the previous step (Fig 6). It is clear that the final class centroids de-
pend, as do cluster centroids in K-means, only on the initial seeds (here the
class means of the training set), and on the patterns in the test field. Sev-
eral successful examples of decision-directed classification in OCR have been
reported [78, 79, 80, 81, 82, 83]. Other applications include Morse Code tran-
scription [84], adaptive equalization [85, 86], and thematic mapping in remote
sensing [87, 88].

Crisp clustering algorithms assign each pattern to a single cluster. Fuzzy
clustering algorithms assign membership functions. Agglomerative and di-
visive algorithms group or partition patterns according to a pre-calculated
matrix of pairwise similarities (which need not have metric properties). Statis-
tical methods based on the very general principle of Expectation Maximization
[89, 90] attempt to decompose mixture distributions into their constituents.
In each of these approaches, the problem is simplified if the number of classes
is known. The number of classes may be replaced or augmented by other per-
tinent information, like constraints on the number of patterns per cluster, or
on the cluster diameters.

We underline that any of the above methods for grouping patterns accord-
ing to some predetermined measure of similarity may serve as the foundation
for “unsupervised” classification. All of them exploit style consistency, albeit
only intra-class style. Like other style classifiers, these methods reduce the
need for labeled samples. The methods for addressing small-training-sample
problems [2], [9] and ‘wrong’ (or non-representative) training-sample problems
are essentially equivalent. However, classifiers based on only intra-class styles
are obviously suboptimal when the data exhibits inter-class style as well.
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Fig. 6. Adjustment of the classification boundary in a decision-directed classifier.
The new boundary is at equal distance from the class centroids of the patterns as
classified by the original classifier learn on the training set

Patterns are often clustered for multi-stage classification of large- alphab-
bets, like Chinese [92, 93]. As a demonstration of the power of language con-
text, all the characters in a document can be clustered, and labels assigned
to the cluster labels by solving a substitution cipher, without using any prior
class-related shape information [94, 95, 96, 97, 98].

Clustering is not necessarily followed by assigning an object label to each
cluster. Clustering the connected components (most of which correspond to
individual characters) in an isogenous text image is the basis for efficient
text-image compression, such as DjVu and JBIG2 [99, 100, 101]. Clustering
of approximate representations of document words was used to reduce the
number of comparisons of a query versus document words in the multilingual
word indexing scheme mentioned above [102]. The method was called font-
adaptive because the words in each source were clustered separately.

3 Interaction in Training and Classification

Research aimed at fully automating the processing of document images has
received sustained attention over the past 40 years. Nevertheless, any of the
dozens of surveys to date (one of our favorites is [103]) will reveal that progress
in automatic recognition and interpretation has been slower than predicted.
Further improvement on cursive handwriting and degraded print may be even
slower because the remaining challenges are harder. As in speech recognition,
bridging the “semantic gap” between machine and human knowledge appears
problematic. The context in all the varieties discussed above brought by hu-
mans to any classification task is much greater than what can be codified



Adaptive and Interactive Approaches to Document Analysis 237

automatically from even the largest collections of training samples available
to our community. Endowing fully automated systems with broad knowledge
remains an elusive goal. Fortunately, in many applications it is not necessary
to fully automate the task of document analysis. This may be the case when
the focus is on a relatively few high-value documents (perhaps just one). The
computer can play the role of an assistant to help the user acquire information
that would otherwise remain inaccessible. While such documents could be col-
lected and returned to a central repository for scanning and batch processing
in the traditional manner, it may be advantageous to exploit the information
immediately and in situ.

There are pronounced differences between human and machine cognitive
abilities. A divide-and-conquer strategy for visual recognition can partition
difficult domains into components that are relatively easier for both human
and machine (Table I). Humans excel in gestalt tasks, like object-background
separation. They apply to recognition a rich set of contextual constraints and
superior noise-filtering abilities. They can also easily read degraded text (e.g.,
CAPTCHA’s [104]) on which the best optical character recognition systems
produce only gibberish. On the other hand, the study of psychophysics reveals
that humans have limited memory and poor absolute judgment [105].

Computers can perform many tasks faster and more accurately. They can
store thousands of images and the associations between them, and never forget
a name or a label. They can compute geometrical properties like higher-order
moments whereas a human is challenged to determine even the centroid of a
complex figure. Spatial frequency and other kernel transforms can be easily
computed to differentiate similar textures. Computers can count thousands
of connected components and sort them according to various criteria (size,
aspect ratio, convexity). They can quickly measure lengths and areas, and
flawlessly evaluate multivariate conditional probabilities, decision functions,
logic rules, and grammars. Nevertheless, computer vision systems have diffi-
culty in recognizing “obvious” differences and they do not generalize well from
limited training sets

We are not advocating here exploratory data analysis in feature space [106,
107], but operator interaction with displayed document images or parts
thereof. Although we cannot clearly separate human interaction during train-
ing and testing (because when a human helps the system during classification
time, it can be viewed as training) we attempt to categorize interaction as:
(1) Human-initiated or Machine-initiated; (2) Durable or Ephemeral. Durable
Interaction immediately alters some system parameters and therefore affects
how the system deals with new data. Ephemeral Interaction merely labels new
patterns or modifies the results of classification.

3.1 Examples of Human-Initiated Interaction

The most common example of human-initiated interaction is labeling training
patterns. Another example is word completion on touch-screen devices (word
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HUMAN MACHINE
Dichotomies

Multi category classification
Figure-ground separation
Part-whole relationships
Salience

Non-linear high dimensional classification
boundaries

Extrapolation from limited
training samples

Broad context
Precise mesaurement of individual features
Enumeration
Store and recall many labeled reference
patterns

Accurate estimation of statistical
parameters

Application of Markovian properties
Estimation of decision functions from
training samples

Evaluation of complex sets of rules
Gauging relative size and intensity
Detection of significant
differences between objects

Computation of geometric moments
Orthogonal spatial transforms
(e.g. wavelets)

Connected components analysis
Sorting and searching
Rank-ordering items according to a
criterion

Additive white noise, salt and pepper noise
Colored noise; Texture
Non-linear feature dependence

Determination of local etrema in high-
dimensions

Global optima in low dimensions

Table 1. Comparison of relative strengths of human and machine in diverse aspects
of visual pattern recognition
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completion is seldom used with regular keyboards because it tends to distract
the operator). Such interaction has also proved its value in the vectorization of
engineering drawings and maps. We briefly describe these three applications.

Labeling Training Patterns in OCR

Nowadays all manual labeling of documents, or parts of documents, is car-
ried out with computer display of digitized material, and can therefore be
considered interactive. Indeed, considerable ingenuity has been applied to
provide interfaces that speed up the process and reduce mislabeling. Com-
mercial OCR firms strive to improve successive releases of their recognition
systems by accumulating millions of labeled characters. If everything is keyed,
it is human-initiated interaction. If they first OCR the training documents
and only correct the errors, then the interaction is machine-initiated. It is
ephemeral because the current classifier does not benefit from the newly la-
beled patterns.

Most OCR systems also provide at least limited facilities for additional
training in the field for new shapes and new classes. If necessary, the operator
can separate document segments set in different typefaces or written by dif-
ferent individuals. Entering only part of a document may help a recognition
system designed with this in mind to fine-tune the classification algorithms.
The underlying assumption is that if the remainder of the document(s) is
from the same source, then the adjusted parameters will yield more accurate
recognition. Training is not limited to characters: for example, a table-location
algorithm can be trained via multi-parameter optimization [108].

Mobile Text Entry

It is clear that one bottleneck in mobile interactive document analysis is text
entry. Without scanning or a regular keyboard, the alternatives are (1) virtual
keyboard on a touch sensitive screen, (2) finger-operated keypad on arm or
thigh (perhaps incorporated in the operator’s clothing), and (3) automatic
speech recognition. We believe that the stylus is the most appropriate so-
lution, because in addition to text entry it can also mediate the graphical
communication essential in other phases of document image analysis.

The virtual keyboard was invented in the seventies to avoid having the op-
erator shift constantly between pointing device and keyboard while digitizing
maps and line-drawings. It consisted of a picture of a keyboard that could be
shifted to the area of the drawing being vectorized. Current virtual keyboards
usually appear in a fixed partition of the touch-sensitive screen of a handheld
device. Edwards’ survey of input interfaces in mobile devices covers most of
the relevant issues [109]. Data input is usually a local operation, so it makes
little difference whether the device is networked or not.

Important considerations for stylus data entry are speed, operator com-
fort, and ramp-up time. The first two factors are influenced by the amount of
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space allocated to the keyboard, to the recognized or keyed text, and to con-
trol functions. The third factor depends heavily on the keyboard layout. The
QWERTY layout, developed to prevent binding of type bars in mechanical
typewriters, is suboptimal even for typing, and even more so for one-handed
stylus entry.

Ancona gives a good overview of alternative keyboards and word-completion
algorithms [110]. An upper bound on the speed of individual character entry
is imposed by Fitts’ Law, which is a nonlinear relationship between pointing
time and the distance and size of the target. The relevant distance is that
between the screen areas (“keys”) corresponding to consecutive letters. The
letter transition frequency is given by a language model. It is possible to re-
duce the average distance by having multiple keys for common symbols, but
this decreases the size of the keys. Several researchers have optimized key-
board designs according to various language models [111, 112, 113, 114]. The
computed speeds hover about 40 words per minute, but actual text entry is
much slower.

The speed increase obtainable by word completion depends on the lan-
guage model. Ancona (op. cit. [110]) demonstrates a keyboard with separate
keys for the ten most common words (with a cumulative word frequency of
28%). After each tap on the screen, the ten most likely words appear in the
selection area of the screen. If the correct word is included, it can be selected
with one additional tap. If not, another letter is tapped, which brings up ten
new words. With a vocabulary of 13,000 words, the expected number of taps
per word was 3.3. The performance of word-completion systems depends on
how well the stored lexicon is matched to the user input. Multiple lexicons –
for different languages and applications – can be either stored on board, or
downloaded via a wireless connection.

Vectorization

Entering line art (maps and engineering drawings) manually is even more
laborious and expensive than keying text. Manual vectorization was first con-
ducted from hardcopy on a digitizing table. The operator traced the lines with
cross-hairs under a magnifying glass with a MARK button. After the advent of
large-size roller-feed scanners and bitmapped displays all service bureaus and
in-house operations adopted on-screen vectorization. Vectorized lines could
now be displayed with a different color, deviations between the manually en-
tered line segments and the original bitmap became clearly visible, and the
operator could zoom in on dense portions of the drawing.

If most of the labels on a drawing or map cannot be recognized by OCR
because of poor document quality or unusual character shapes, it is still possi-
ble to rapidly mark their location and orientation, rotate them to horizontal,
and move them to a single area of the screen [115]. This accelerates man-
ual label entry (a single E-size drawing may contain over 3,000 alphanumeric
symbols). Most such data-entry systems are part of GIS or CAD software
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designed for standard workstations, where all graphical operator interaction
is mediated by the mouse. As demonstrated by Engelbart and colleagues at
SRI long ago, direct-action devices, like a touch-sensitive stylus, would allow
faster and more accurate interaction [116]. However, the aspects of interest
here are the machine-initiated algorithms developed for semi-automated data
entry.

To enter colored maps, different color layers are first separated according to
RGB values. Vectorizing algorithms are manually initialized to a line segment
or curve, and automatically follow that line at least to the next intersection
point. Some systems also attempt to automatically recognize map and drawing
symbols (e.g., for schools or resistors). If it fails, the operator overrides it. The
character recognition software recognizes cleanly lettered labels (elevations,
part numbers, resistor values), but leaves labels confused by overlaid line art
or poor lettering to the operator.

These interactive systems (like CAVIAR, below) exhibit clear speed advan-
tages over completely manual data entry, and are robust enough (unlike auto-
mated systems) for operational application. Although some of these systems
are laboriously trainable, one key difference compared to CAVIAR is that no
commercial system that we are aware of incorporates active algorithms (i.e.,
durable interaction) that take advantage of routine operator input.

3.2 Machine-Initiated Interaction

All trainable systems incorporate, by definition, durable interaction. Most
such systems, however, are human-initiated: training is a preliminary, sepa-
rate phase from the recognition, without regard to what can be correctly or
incorrectly recognized without additional training. We believe that eventu-
ally all interaction in DIA should be machine-initiated and durable. In other
words, the operator should not even have to look at data that the system
had no trouble in classifying, and every interaction should be utilized by the
system to improve subsequent classification. We therefore present some of our
work outside of DIA on machine-initiated, durable interaction. Then we pro-
pose several phases in DIA where we see potential applications of similar types
of interaction.

Machine-Initiated, Durable Interaction in CAVIAR Systems

CAVIAR (Computer Assisted Visual Interactive Recognition) is an interac-
tive system for recognizing faces and flowers, both problems of a level of
difficulty (i.e., current automated accuracy) comparable to document recog-
nition [117, 118, 119, 120, 121]. Experiments on sizable databases of faces
and flowers indicate that interactive recognition is more than twice as fast
as the unaided human, and yields an error rate ten times lower than state-
of-the-art automated classifiers. The benefit margin of interactive recognition
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increases with improved automated classification. Parsimonious human inter-
action throughout the interpretation process is much better than operator
intervention only at the beginning and the end, e.g., framing the objects to be
recognized or dealing with rejects. Furthermore, this interactive architecture
has been shown to scale up: it can start with only a single sample of each
class, and it improves as recognized samples are added automatically to the
reference database (decision-directed adaptation).

The notions embodied in CAVIAR differ in fundamental ways from past
efforts at mobile, interactive recognition. Whether such an approach can be
equally effective in the domain of documents as it is for flowers and faces
is unproven, and adapting CAVIAR to document analysis requires further
research. There are, however, other projects that share similar goals and as-
sumptions. The Army Research Laboratory’s Forward Area Language Con-
verter (FALCon) system provides mobile optical character recognition (OCR)
and translation capabilities [122, 123], but, so far as we know, it has a tradi-
tional user interface. Research on camera-based document acquisition is grow-
ing [124, 125]. However, this work, like FALCon, treats the later processing
stages as though they will be fully automated.

Camera-based systems for locating and recognizing text in traffic signs
and providing translation services for visitors to foreign lands are somewhat
similar [126, 127], but their interaction paradigm is less integrated into classifi-
cation than CAVIAR’s. Reading systems for the vision-impaired likewise focus
on page-at-a-time processing, but offer an auditory user interface [128, 129]. A
somewhat similar notion is recent work on developing tools to support forensic
document analysis [130]. Forensic systems are, however, intended for off-line
use by domain experts (as opposed to opportunistic document readers whose
primary jobs lie elsewhere), and have no need for mobility.

Potential for Machine-Initiated Durable Interaction in DIA

We mention some DIA tasks where CAVIAR-like systems may prove advan-
tageous. We focus on scenarios where automated algorithms work accurately
only on exceptionally clean documents, but where a little interaction can
quickly produce acceptable results on ordinary material.

Binarization. Most OCR algorithms are designed for binarized images,
because all scripts avoid discrimination based on shades of gray or color.
Therefore documents must be converted to binary images after digitization
to 8-bit gray scale or RGB. Global binarization algorithms work only if the
foreground and background reflectance are uniform throughout the document,
which may not be the case if part of a folded documents suffers prolonged ex-
posure to sunlight, or if there are dark areas around the edges of a photocopy.
Local binarization algorithms set the threshold according to the distribution of
reflectance in a window translated through the page. The threshold estimates
of the relative density and configuration of the foreground (ink) and back-
ground invariably depend on explicit or implicit assumptions that hold only
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for a narrow class of documents. An operator can easily tell when binarization
fails. Setting the appropriate window size for local algorithmic thresholding
requires far less work than setting the threshold manually everywhere, and it
is more robust than fully automated local thresholding.

Page segmentation. Column, paragraph and line segmentation are other
instances where interaction may be effective. The first step is usually estimat-
ing global document skew. While accurate skew estimation and correction
algorithms have been developed for printed matter, they do not work well
on handwriting because the orientation of individual lines varies, the margins
are not straight, there may be only a few words on a page, or there may be
several columns of words or phrases at different angles. Humans can, however,
judge skew remarkably well, and convey this information to the computer by
a few well chosen stylus taps or by rotating a superimposed grid. After the
computer-proposed skew correction and line finding is corrected, the occa-
sional merged pair of lines – due to overlapping ascenders and descenders –
can be likewise rapidly separated.

Word segmentation. This is relatively easy for printed text, except for ex-
tremely tightly-set, micro-justified print. In handwriting, however, large spaces
may appear within words. Towards the end of a line, words are often squeezed
together. In Arabic and other scripts, some inter-letter spaces are mandatory.
Underlined groups of words can further complicate the task. Again, humans
can usually spot missed word boundaries even in unfamiliar languages and
scripts. If the writing lines are already properly segmented, then a simple
interface can be designed to correct linked and broken words.

Character recognition. An operator can provide global assistance to the
character recognition system. He or she may be able to recognize the lan-
guage or script of a document, indicate the average slant, and (in Western
scripts) the prevalent case. The operator may decide which of the available
lexicons would provide the best language model, and the chosen lexicons can
be automatically updated with entries from the processed documents that
have been deemed correct. Humans can also tell where perfect accuracy is im-
portant, as in telephone numbers, email addresses, and proper nouns and, if
recognition fails, enter them manually or select them from the top recognition
candidates. Finally, if the typeface is entirely outside the machine’s repertory,
it can cluster the character images, so that the operator need to label only a
representative member of each cluster [131].

Active Learning: Machine-Initiated Durable Interaction During
Training

During the training of pattern classifiers it is often feasible to provide labels for
the training patterns incrementally. The most ‘informative’ patterns can be
chosen iteratively, and their labels queried. This learning paradigm, wherein
the learner is allowed to choose the information to be acquired, is called active
learning and has been shown to significantly reduce the labeling cost, while
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preserving the accuracy of the trained classifier [132, 133]. Although we are
not aware of any formal application of active learning in DIA (as opposed
to document categorization), the training samples are often augmented when
classification errors arise. This practice is seldom documented.

4 Technology and Applications

In this section we briefly discuss recent technological advances that alter the
landscape of OCR and DIA and open up new applications.

4.1 Cameras and Displays

Solid state sensors are more sensitive to light than film. Current digital
consumer-grade cameras, PDA cameras, and even cell-phone cameras with
tiny lenses have comparable spatial sampling rate, geometric fidelity, and
higher photometric range than desktop scanners of just a few years ago. Top
of the line camera-phones already provide 5 mega pixels in color, which is
sufficient for most A4 pages. The effects of non-uniform illumination can be
mitigating by taking calibration pictures. We can therefore expect that most
document acquisition will soon take place with 2-D sensor arrays rather than
linear sensor sweep [134, 135].

High quality portable document acquisition systems (first for law enforce-
ment and military applications) will require personal OCR, DIA, and doc-
ument interpretation support systems [136]. Current defense interests are
mainly in foreign-language documents and non-Latin scripts. Since the person
acquiring the document is likely to have some expertise or at least interest
in its contents, and images are not acquired in large quantities, increased
interaction seems appropriate, at least in preprocessing. Interaction will be
enhanced by direct action which allows pointing faster and more accurately
than with a mouse, but hampered by the miniature screen. A letter-size doc-
ument is certainly not readable on any camera-back display. Zooming and
scrolling on both directions is impractical. Perhaps the new textile based dis-
plays will provide a satisfactory interface. Another alternative for interaction
is notebook-sized touch-sensitive displays like the Tablet-PC.

Another topic of rising interest is reading text in videos, including road
signs from car-mounted cameras [137, 138, 139, 140]. Such text is often in color
and exhibits more geometric and photometric distortion than text scanned
from paper. Furthermore, there is less context of every kind.

4.2 Web-Wide Data Accessibility

Rapidly increasing storage and communication capacity has led to a qualita-
tive change in the nature of document image collections available for experi-
mentation. The information retrieval community is alread making good use of



Adaptive and Interactive Approaches to Document Analysis 245

web-based document collections to evaluate diverse approaches in the contests
of the Text Retrieval Conferences (TREC) Genomics Track, the Knowledge
Discovery and Data Mining Cup, and the Creative Assessment of Informa-
tion Extraction in Biology. Image test databases typically contain at least two
orders of magnitude fewer documents than test collections for information
retrieval, extraction, categorization, and screening (because about a million
bytes must be processed per page image, versus a few thousand bytes for an
encoded page).

Most DIA research has been based on ad hoc collections of documents
assembled by the researchers themselves because they are rich in aspects rel-
evant to their particular research task. Although the collection, annotation
and documentation of such test databases is not a trivial task, we seldom see
much reuse by different groups of researchers, except possibly in Chinese and
Japanese character recognition. This is likely to change as more and more
research data sets are posted on the web. Large enough benchmarks would
allow each test to be run on new, but statistically representative, samples.
This would help avoid tuning algorithms to the test set, which is an almost
inevitable consequence of open test collections of limited size [141].

Most applications must contend with highly repetitive material (for exam-
ple, some firms do nothing but convert telephone directories to computable
readable form). Nevertheless, many researchers strive for diversity within the
constraints imposed by their task. Although this approach tests the range of
applicability of the algorithms, it would also be desirable to experiment with
adaptation on large, relatively homogeneous sets of document images that can
now be readily found on the web.

Collection tools for DIA research require some database of digital libraries
with downloadable page images, and a search engine capable of searching the
database (or the whole web). The first step is the location of one or more col-
lections with images of the desired type. (It is not always easy to tell, just by
looking at a display, which pages are in image format, and which pages are in
coded format). Whether partial processing of documents, such as type catego-
rization, script or language recognition, contrast enhancement, skew detection
and removal, segmentation at various levels (e.g. paragraph, line, word), ta-
ble spotting, etc., is valuable by itself may be open to question, but there
are certainly a great many researchers and publications engaged in pursuing
such relatively narrow goal because end-to-end document processing requires
a large team with varied resources. It would therefore be valuable to develop
tools for the extraction of document collections with specific characteristics
including degree of homogeneity or heterogeneity from digital libraries, and
appropriate specifications of standard formats for intermediate results.

A small-scale study was reported on the Making of America collection
(part of Cornell University’s Digital Library), which at the time comprised 267
monographs (books) and 22 journals (equaling 955 serial volumes) for a total
of 907,750 pages, making it three orders of magnitude larger than the datasets
traditionally used in document analysis research (e.g., the UW1 CD-ROM).
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Two tasks were evaluated: optical character recognition and table detection.
In the case of the former, the textual transcriptions provided by the digital
library (primarily for retrieval purposes) were used as the ground-truth, while
for the latter, a visual inspection of the pages purported to contain tables was
conducted, enabling precision (but not recall) measurements [142].

4.3 Digital Libraries

The Million Book Project at Carnegie Mellon is already well over the half-way
mark. The Google consortium plans to digitize over 10.5 million unique books.
The non-profit Open Content Alliance, initiated by the Internet Archive and
Yahoo, proposes to provide broad access to non-proprietary world culture on
paper. The CMU project produces only page images, but Google is experi-
menting with commercial OCR systems in dozens of languages with a view
to provide searchable text. The European Library offers access to both digital
and non-digital resources of the 45 national libraries of Europe. Most cur-
rent digitization projects produce only page images: browsing digital libraries
accessible through university libraries suggests that only a small fraction of
their content has been transcribed. Crane addresses the issues of scale and
sampling of quasi-infinite collections [143].

These “cultural” collections, which convert old books to computer-readable
form, represent only part of the growth of digital libraries. Equally important
are specialized collections for research, assembled from journals, conference
proceedings and reports that are already in computer readable form. Some
well known examples are: ArXiv for Physics, DML for Mathematics, Cite-
Seer for Computer Science, and Medline for medicine, but there are growing
collections in every field of study.

In addition to web-wide access to cultural and technical collections, there
are many novel services. Among the most popular are music servers, ge-
nealogical searches, and software that allows organizing and sharing personal
photographs. Newspapers, radio and television stations offer access to their
archives, and specialized search engines have been developed for sound ef-
fects [144]. Some of these require audio interaction, while many game sites
and some web-based educational laboratories need a haptic modality. Never-
theless, we do not believe that multimedia will diminish the importance of
digital sources of conventional printed information, and of related technolo-
gies. Current developments at the intersection digital library development and
DIA include research opportunities in digitizing, coding, annotating, dissem-
inating and preserving library documents [145].

4.4 Interoperability

A simple ASCII or Unicode file may be sufficient output for experiments
on isolated digits and characters. But how should we code the output of an
equation recognition system? Most researchers use either a proprietary format
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or TeX [146, 147, 148]. Both lack a good transition to analytical and numerical
equation processing tools like Mathematica and Maple. A similar quandary
arises with table recognition. Again, we would like a format that allows a
smooth transition to a database query language. We favor Wang Notation,
which provides a layout-independent representation of the relations between
hierarchical category headers and content cells [149, 150]. For archival circuit
diagrams and engineering drawings, the natural choice seems to be one of the
widespread CAD formats (like Spice, Synopsis, and AutoCad).

Most business documents now carry XML tags, which facilitate their inter-
pretation by whatever community agrees to the underlying convention. XML
tags allows automated processing of equivalent fields, regardless of what they
are called on the document. For instance, one tag may specify to whom pay-
ment should be routed, regardless of whether the name field is called vendor,
provider, supplier, or seller. Digital libraries have evolved elaborate conven-
tions for tagging metadata, beginning with the Library of Congress MARC
format, and migrating from SGML to XML and the Dublin and SDLIP
Cores [151]. Perhaps it is finally time for our research community to agree
at least on XML schemes for “interoperability” [152]. This will also eventu-
ally help to relieve us from the tedious task of reading technical articles, which
will be delegated to indefatigable autonomous agents.

XML tags have no actual meaning or semantics. The notion of meaning
appears to require some kind of shared understanding of a topic. Since many
current attempts to formalize meaning are focused on ontologies, ontologi-
cal engineering may play a part in the extraction of concepts from docu-
ments [153].

4.5 Document Storage

We keep defining new units to keep up with the size and speed of storage
devices. We can store book-length files and high-resolution pictures on devices
that hang on our key chain. Whereas document image compression used to be
a popular field of research that led to impressive increases in the compression
ratio of mainly-text images, there is no longer any need to compress documents
at the “retail” level. Large archives are still compressed, but communication
links are so fast that they are often decompressed before retrieval.

Merely digitizing or coding something does not guarantee permanent ac-
cess. For instance, many records from WWII were kept on punched cards.
Not only did the punch cards disintegrate, but the card readers have disap-
peared. Magnetic tape and disk and optical media have a relatively short life.
Furthermore, the software required to read the coded data may be incompati-
ble with computers of another generation. It is not uncommon for engineering
drawings prepared on earlier Computer Aided Design systems to be rescanned
and revectorized, simply because the CAD software can no longer run on any
available computer. Diskettes, tape cassettes, and ZIP drives are already ob-
solete. Until recently, many organizations opted for archiving documents on



248 G. Nagy and S. Veeramachaneni

microfilm or microfiche instead of digital media. However, at current storage
costs, it is plausible to keep everything on line. When the server is replaced,
everything is copied, so there is no need to worry about removable media for-
gotten in some cabinet. Is the solution to keep every document spinning for
ever?

5 Conclusions

This survey can be regarded only as samples of research selected from a large
population according to prior probabilities that correspond only to the au-
thors’ own research interests. It is far from exhaustive or representative, and
different topics are covered at different depths. In spite of the plethora of
citations, it suffers from small-sample effects. Some of our samples may be
distorted or mislabeled. As a training set for predicting research, it is highly
biased. Nevertheless, we take the opportunity to list our impressions, based
on imperfect training and grossly suboptimal recognition, of where the field
is heading, and of what research problems should be addressed to reach the
next stage.

5.1 Trends

Increasing processing power and storage capability by over a factor of 1000
during the last decade allows much greater use of context of all types. This
leads naturally to exploiting common-source language and style constraints,
i.e., field classification in OCR and joint processing of multiple tables, forms,
figures and other document components in DIA. Further decreases in er-
ror rates are unlikely without adaptive/dynamic field classification. Although
none of the underlying ideas are new, they can now be tested without ac-
cess to supercomputers, and perhaps even incorporated into commercial OCR
engines.

The availability of useful OCR and DIA software and inexpensive scanners
on desktop computer systems means that all necessary interaction, including
labeling training material, adjusting parameters, proofreading and corrections,
is likely to be carried out by folks who would rather be doing something else.
We do not believe that interaction can be eliminated in the foreseeable future,
i.e., that most tasks of interest can be fully automated. This increases the
premium on transparent and effective interaction. The demands on users can
be alleviated by systems capable of taking full advantage of machine-initiated,
durable interaction.

OCR and DIA capability is migrating to consumer-grade cameras, pocket
computers and even to camera-phones. Although good interfaces that replace
page-displays and keyboards are still lacking, many users will find these de-
vices convenient enough to accept a touch-sensitive screen-and-audio interface
for casual document capture.
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5.2 Open Problems

Although both style and language constraints have been extensively investi-
gated, we found little or no research on combining style, language constraints
and order-dependent shape context. How can these diverse constraints be
combined optimally?

In interactive dynamic recognition systems, both operator interventions
and classification results can permanently change some of the classification
parameters. Therefore the overall accuracy of such systems depends both on
the quality of the interaction and on the order of arrival of patterns to be
classified. How should such systems be evaluated?

Interactive visual classification benefits from the availability of a visual
model for mediating communications between the operator and the machine.
How can such visual models be constructed for new visual recognition tasks?

In all OCR and DIA systems with which we are familiar, feature sets are
constructed by trial and error. How can a complete OCR and DIA system for
a new language, script, and page layout, be generated automatically, starting
only with a collection of labeled pixel maps?

Acknowledgement. George Nagy acknowledges support from the National Science
Foundation under Award #0414854.

References

1. Grother, P.: Handprinted Forms and Character Database, NIST Special
Database 19, technical report, March. 1995.

2. McCarthy, J.: Notes on formalizing contexts. In Kehler, T., and Rosenschein,
S., eds., Proceedings of the Fifth National Conference on Artificial Intelligence,
pp. 555–560. Los Altos, CA, Morgan Kaufmann, 1986.

3. Veeramachaneni, S., Sarkar, P., Nagy, G.: Modeling Context as Statistical De-
pendence, in Procs. Modeling and Using Context: 5th International and In-
terdisciplinary Conference CONTEXT 2005, Paris, France, July 5-8, (2005).
Lecture Notes in Computer Science, Volume 3554, pp. 515–528, Jul 2005.

4. Bouquet, P., Serafini L.: Comparing formal theories of context in AI. Artificial
Intelligence, (2004). 155: pp. 1–67.

5. Modeling and Using Context: Second International and Interdisciplinary Con-
ference, CONTEXT’99, Trento, Italy, September pp. 9–11, (1999), Proceedings
Lecture Notes in Computer Science Vol. 1688 Bouquet, P.; Serafini, L.; Brezil-
lon, P.; Benerecetti, M.; Castellani, F. (Eds.)

6. Modeling and Using Context: 4th International and Interdisciplinary Confer-
ence, CONTEXT 2003, Stanford, CA, USA, June 23-25, 2003, Proceedings
Series: Lecture Notes in Computer Science, Vol. 2680 Blackburn, P.; Ghidini,
C.; Turner, R.M.; Giunchiglia, F. (Eds.) (2003).

7. Modeling and Using Context: 5th International and Interdisciplinary Confer-
ence, CONTEXT 2005, Paris, France, July 5-8, 2005, Proceedings Series: Lec-
ture Notes in Computer Science, Vol. 3554 Dey, A.; Kokinov, B.; Leake, D.;
Turner, R. (Eds.) (2005).



250 G. Nagy and S. Veeramachaneni

8. Yannakoudakis, E., Angelidakis, G.: An insight into the entropy and redun-
dancy of the English dictionary, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 10(6), 960–970, 1988.

9. Suen, C.Y.: N-gram statistics for natural language understanding and text
processing, IEEE Transactions on Pattern Analysis and Machine Intelligence,
1(2), 164–172, 1979

10. Katz, S. M. : Estimation of probabilities from sparse data for the language
model component of a speech recognizer, IEEE Transactions on Acoustics,
Speech and Signal Processing, 35(3):400–401, March 1987.

11. Rice, S., Nagy, G., Nartker T.: Optical Character Recognition: An
Illustrated Guide to the Frontier, Kluwer Academic Publishers,
Boston/Dordrecht/London, 1999.

12. Hull, J.J., Srihari S.N.: Experiments in Text Recognition with Binary N-Gram
and Viterbi Algorithms, IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 4(5), 520–530, Sept. 1982.

13. Hull, J.J.: A hidden Markov model for language syntax in text recognition.
In Proceedings of the Eleventh Conference on Pattern Recognition, volume 2,
124–127, 1992.

14. Hull, J.J.: Incorporating language syntax in visual text recognition with a
statistical model. IEEE Trans. Pattern Analysis and Machine Intelligence,
18(12):1251–1256, 1996.

15. Nagy, G.: Teaching a Computer to Read, Proc. 11th Int’l Conf. Pattern Recog-
nition, vol. 2, pp. 225–229, 1992.

16. Raviv, J.: Decision Making in Markov Chains Applied to the Problem of Pat-
tern Recognition, IEEE Trans. Information Theory, VOL. IT-13, no. 4, 536–
551, 1967.

17. Toussaint, G. T.: The use of context in pattern recognition,Pattern Recognition,
Vol. 10, 189–204, 1978.

18. Shinghal, R., Toussaint, G.T., Experiments in text recognition with the modi-
fied Viterbi algorithm, IEEE Trans. Pattern Analysis and Machine Intelligence
1(2), 184–193, 1979.

19. Shinghal, R., Toussaint, G.T.: The sensitivity of the modified Viterbi algorithm
to the source statistics, IEEE Trans. Pattern Analysis and Machine Intelligence
2(2), 1181–1184, 1980.

20. Sinha, R.M.K., Prasada, B.: Visual Text Recognition through Contextual Pro-
cessing, Pattern Recognition, 20(5), 463–479, 1988.

21. Sinha, R.M.K., Prasada, B., Houle, G. F., Sabourin, M.: Hybrid Contextural
Text Recognition with String Matching, IEEE Trans. Pattern Anal. Mach.
Intell. 15(9), 915–925 (1993).

22. Rabiner, L.R. : A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition, Proceedings of the IEEE, 77(2), 257–286, 1989.

23. Gilloux, M., Leroux, M. Bertille J.M.: Strategies for Handwritten Words Recog-
nition Using Hidden Markov Models, Proc. Second Int’l Conf. Document Anal-
ysis and Recognition, 299–304, 1993.

24. Kuo, S.S., Agazzi, O.E.: Visual keyword recognition using hidden Markov mod-
els, Proc. of IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, 329–334, 1993.

25. Nathan, K.A., Bellegarda, J.R., Nahamoo, D., Bellegarda, E.J.: On-Line Hand-
writing Recognition Using Continuous Parameter HiddenMarkov Models, Proc.
Int’l Conf. Acoustics, Speech, and Signal Processing, vol. 5, 121–124, 1993.



Adaptive and Interactive Approaches to Document Analysis 251

26. MacKay, D.J.C., Peto, L.: A hierarchical Dirichlet language model. Natural
Language Engineering, 1(3):1–19, 1994.

27. Bazzi, I., Schwartz, R, Makhoul, J.: An Omnifont Open-Vocabulary OCR Sys-
tem for English and Arabic, IEEE Trans. Pattern Analysis and Machine In-
telligence, vol. 21(6) 495–504, June 1999.

28. Feng, S., Manmatha, R., McCallum, A.: Exploring the Use of Conditional Ran-
dom Field Models and HMMs for Historical Handwritten Document Recogni-
tion, Proc. 2nd IEEE International Conference on Document Image Analysis
for Libraries, DIAL 2006, Lyon, France, April 2006.

29. Sarkar, P., Nagy, G.: Classification of Style-Constrained Pattern-Fields, Proc.
15th Int’l Conf. Pattern Recognition, 859–862, 2000.

30. Sarkar, P., Nagy, G.: Style Consistency in Isogenous Patterns, Proc. Sixth Int’l
Conf. Document Analysis and Recognition, pp. 1169–1174, 2001.

31. Sarkar, P., Nagy, G.: Style Consistent Classification of Isogenous Patterns,
IEEE Trans. Pattern Analysis and Machine Intelligence, 27(1), Jan. 2005.

32. Veeramachaneni, S., Nagy, G.: Analytical Results on Style-constrained
Bayesian Classification of Pattern Fields, IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 29(7) 1280–1285, July 2007.

33. Spitz, A.L.: An OCR based on character shape codes and lexical information,
Proceedings of the Third International Conference on Document Analysis and
Recognition (Volume 2) Volume 2, Page: 723, 1995.

34. Spitz, A. L., Maghbouleh, A.: Text Categorization using Character Shape
Codes, SPIE Symp on Electronic Image Science and Technology, San Jose,
pp. 174–181, 2000.

35. Ho, T.K., J.J. Hull, S.N. Srihari: A Computational Model for Recognition of
Multifont Word Images, Machine Vision and Applications 5, 157–168, 1992.

36. Ho, T.K., J.J. Hull, S N. Srihari: A Word Shape Analysis Approach to Lexicon
Based Word Recognition, Pattern Recognition Letters 13, 821-826, 1992.

37. Hong, T., Hull, J.J.: Visual Inter-Word Relations and Their Use in OCR Post-
processing, Proc. Third Int’l Conf. Document Analysis and Recognition, vol.
1, pp. 442–445, 1995.

38. Cesarini, F., Gori, M., Marinai, S., Soda, G.: INFORMys: A flexible invoice-like
for reader system, IEEE Trans. on Pattern Recognition and Machine Intelli-
gence, 20(7), 730–745, July 1998

39. Marinai, S., Marino, E., Soda, G.: Font Adaptive Word Indexing of Modern
Printed Documents, IEEE Trans. Pattern Recognition and Machine Intelli-
gence 28(8), 1187–1199, August 2006.

40. Shi, H., Pavlidis, T.: Font Recognition and Contextual Processing for More
Accurate Text Recognition, Proc. Fourth Int’l Conf. Document Analysis and
Recognition, vol. 1, pp. 39–44, 1997.

41. Zramdini, A.W., Ingold, R.: Optical Font Recognition from Projection Profiles,
Electronic Publishing 6(3): 249–260 (1993).

42. Zramdini, A.W., Ingold, R.: Optical Font Recognition Using Typographical
Features, IEEE Trans. Pattern Analysis and Machine Intelligence, 20(8), 877–
882, Aug. 1998.

43. Bapst, F., Ingold, R.: Using Typography in Document Image Analysis. In
Proc. Raster Imaging and Digital Typography (RIDT’98), Saint-Malo (France),
pp. 240–251, 1998.



252 G. Nagy and S. Veeramachaneni

44. Srihari, S.N., Bandi, K., Beal, M.: A Statistical Model for Writer Verification,
Proc. Int. Conf. on Document Analysis and Recognition (ICDAR-05) Seoul,
Korea, August 2005.

45. Kawatani, T.: Character Recognition Performance Improvement Using Per-
sonal Handwriting Characteristics, Proc. Third Int’l Conf. Document Analysis
and Recognition, vol. 1, pp. 98–103, 1995.

46. Veeramachaneni, S., Nagy, G.: Style Context with Second-Order Statistics,
IEEE Trans. Pattern Analysis and Machine Intelligence, 27(1), Jan. 2005.

47. Andra, S.: Non-parametric approaches to style-consistent classification, Rens-
selaer Polytechnic Institute PhD dissertation, December 2006.

48. Andra, S., Nagy, G.: Combining Dichotomizers for MAP Field Classification,
Proceedings of International Conference on Pattern Recognition-XVIII, Hong
Kong, September 2006.

49. Widrow, B, Hoff, M.E.: Adaptive switching circuits, 1960 IRE WESCON
Conv. Record, Part 4, 96-104, 1960.

50. Aizerman, M.A., Braverman, E.M., Rozonoer, L.I.: The Robbins-Monroe pro-
cess and the method of potential functions, Automation and Remote Control
26, 1882–1885, November 1965.

51. Tsypkin, Y. Z.: Adaptation, training, and self-organization in automatic sys-
tems, Automation and Remote Control, vol. 27, pp. 1652, January 1966.

52. Fu, K.S.: Learning techniques in pattern recognition systems, in Pattern Recog-
nition (L.N. Kanal, ed.) Thompson Book Company, Washington, 1968.

53. Jain, A., Duin, R., Mao, J.: Statistical Pattern Recognition A Review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000.

54. Zadeh, L.A.: On the definition of adaptivity, Proceedings of the IRE 51, #3.
469–470, 1963.

55. Lendaris, G.G.: On the Definition of Self-Organizing Systems, Proceedings of
the IEEE 52, 3, March, 1964

56. Nagy, G.: Pattern Recognition IEEE 1966 Workshop, IEEE Spectrum, pp. 92–
94, February 1967.

57. Castelli, V., Cover, T.: On the exponential value of labeled samples, Pattern
Recognition Letters 16, 105–111, 1995.

58. Castelli, V., Cover, T.: The relative value of labeled and unlabeled samples in
pattern recognition with an unknown mixing parameter, IEEE-Trans. Infor-
mation Theory 42(6), 2101–2117, 1996.

59. Scudder, H.J.: Probability of error of some adaptive pattern-recognition ma-
chines, IEEE. Trans. Information Theory IT-11, 363–371, July 1965.

60. Spragins, J.: Learning without a teacher, IEEE Trans. Information Theory,
vol. IT-12, 223–229, April 1966.

61. Stanat, D.F.: Unsupervised learning of mixtures of probability functions, in
Pattern Recognition (L.N. Kanal, ed.) Thompson Book Company, Washington,
1968.

62. Aizerman, M.A., Braverman, E.M., Rozonoer, L.I.: The probability problem of
pattern recognition learning and the method of potential functions, Automation
and Remote Control 25, 1175–1192, September 1964.

63. Braverman, E.M.: Experiments on machine learning to recognize visual pat-
terns, translated from Automat. i Telemekh., vol. 23, pp. 349–364, March 1962,
Automation and Remote Control, vol. 23, 315–327, 1962.



Adaptive and Interactive Approaches to Document Analysis 253

64. Braverman, E.M.: The method of potential functions in the problem of training
machines to recognize patterns without a trainer, Automation and Remote
Control, vol. 27, 1748-1771, October 1966.

65. Dorofeyuk, A.A.: Teaching algorithm for a pattern recognition machine without
a teacher, based on the method of potential functions, Automation and Remote
Control, vol. 27, 1728–1737, October 1966.

66. Nagy, G.: State of the Art in Pattern Recognition,Proceedings of the IEEE 56,
#5, 336–362, May 1968.

67. Jain, A.K.: Cluster Analysis, Chapter 2 in Handbook of Pattern Recognition and
Image Processing (K-S Fu and T-Y Young, eds), Academic Press, NY 1986.

68. Ball, G.H.: Data analysis in the social sciences: What about the details? Procs.
Fall Joint Computer Conference, pp. 533–560, Spartan Books, 1965.

69. MacQueen, J.: Some methods for classification and analysis of multivariate
observations, Proc. 5th Berkeley Symp on Statistics and Probability, pp. 281-
297, Berkeley, CA University of California Press, 1967.

70. Ball, G.H., Hall, D.J.: A clustering technique for summarizing multivariate
data, Behavioral Science, 12, pp. 153–155, March 1967.

71. Linde, Y., Buzo, A., Gray, R.M. : An algorithm for vector quantization design,
IEEE Trans. Comm. 28, 84–95, 1980

72. Gersho, A., Gray, R. M. : Vector Quantization and Signal Compression, The
International Series in Engineering and Computer Science, 1991.91

73. Dubes, R., Jain, A.K.: Validity studies in clustering methodologies, Pattern
Recognition 11, 235–254, 1979.

74. Jain, A.K., Dubes, R.: Algorithms for Clustering Data, Prentice Hall 1988.
75. Theodoridis, S., Koutroumbas, T.: Pattern Recognition, Academic Press, 1999.
76. Topchy, A., Jain, A.K., Punch, W.: Clustering Ensembles: Models of Consensus

and Weak Partitions, IEEE Trans. Pattern Analysis and Machine Intelligence,
27(12), 1866–1881, Dec 2005.

77. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. New York: John
Wiley and Sons, 2001.

78. Nagy, G., Shelton, G.L. : Self-Corrective Character Recognition System, IEEE
Transactions on Information Theory IT-12, #2, pp. 215–222, April 1966.

79. Baird, H.S., Nagy, G.: A Self-Correcting 100-Font Classifier, Document Recog-
nition, Proc., IS&;T/SPIE Symp. on Electronic Imaging: Science Technology,
San Jose, CA, February 6-10, 1994, L. Vincent and T. Pavlidis, eds., vol. 2181,
pp. 106–115, 1994.

80. Breuel, T., Mathis, C.: Classification Using a Hierarchical Bayesian Approach,
Proc. 16th Int’l Conf. Pattern Recognition, 40103–40106, Aug. 2002.

81. Sarkar, P., Baird, H.S., Zhang, X.: Training on Severely Degraded Text- Line
Images, Proc. Seventh Int’l Conf. Document Analysis and Recognition, pp. 38–
43, Aug. 2003.

82. Veeramachaneni, S., Nagy, G.: Adaptive Classifiers for Multisource OCR, Int’l
J. Document Analysis and Recognition, 6(3), 154–166, Aug. (2004).
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Summary. The segmentation of cursive and mixed scripts persists to be a difficult
problem in the area of handwriting recognition. This research details advances for
segmenting characters in off-line cursive script. Specifically, a heuristic algorithm
and a neural network-based technique, which uses a structural feature vector repre-
sentation, are proposed and combined for identifying incorrect segmentation points.
Following the location of appropriate anchorage points, a character extraction tech-
nique, using segmentation paths, is employed to complete the segmentation process.
Results are presented for neural-based heuristic segmentation, segmentation point
validation, character recognition, segmentation path detection and overall segmen-
tation accuracy.

1 Introduction

The problem of automated handwriting recognition has endured for many
decades. Active research still persists in order to pursue a satisfactory solu-
tion for recognizing off-line cursive handwriting. The motivating factors in-
clude commercial applications and scientific progress in an age-old artificial
intelligence problem. One of the main impediments for progress has been the
inherent variability in handwritten material [1].

Handwriting recognition itself is a mechanical process that transforms
graphical human handwritten scripts into symbols that are stored on a com-
puter system in the form of ASCII code or Unicode. One of the major problems
in recognizing unconstrained cursive words is the process of segmentation [2],
[3]. Segmentation refers to the method of separating the characters in a word,
so that they may be used to assist in final word interpretation. Some systems
use the method of over-segmentation to dissect the word at many intervals
into primitives. The term “primitive” refers to an entire character or charac-
ter components. Following initial over-segmentation, various techniques may
be used to correctly assemble the primitives using contextual processing to
recognise entire words. The removal of incorrect segmentation points from
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over-segmented words is still a difficult problem. A solution to this prob-
lem would guarantee a higher success rate for handwritten word recognition.
A number of segmentation techniques have been proposed in the literature,
some of which are described below.

In [4], Bozinovic and Srihari attempt to locate possible segmentation points
based on proximity to minima in the lower contour and the use of other rules
that force segmentations in areas that are between two distant segmentation
points. A technique proposed by Cheriet [5] for extracting “key letters” in
cursive script analyses face-up and face-down valleys along with open loop
regions. Cheriet employs background analysis to achieve segmentation.

Some of the more recent studies employing dissection or presegmentation
include that of Han and Sethi [6] who proposed an algorithm for segment-
ing handwritten words based on a number of features such as crossing points,
loops, concave and convex points. They reported that 50 real-world postal ad-
dress images were segmented with an accuracy of 85.7%. Yamada and Nakano
[7] reported a segmentation algorithm that segmented cursive words based on
contour features. Reasonable recognition rates were obtained when the seg-
mentation algorithm was used as part of a complete word recognition system.

Yanikoglu and Sandon [8] proposed a segmentation algorithm by evaluat-
ing a cost function to locate successive segmentation points along the baseline.
The decision to segment at a particular point is made if the first minimum
cost is located. The cost is calculated by summing the weights of four global
characteristics or “style parameters” in the cursive script. The algorithm used
a linear programming technique to obtain the weights of the features. The
global characteristics included pen thickness, dominant slant, average charac-
ter width and distance from the previous segmentation point. Finally, char-
acters were extracted by finding the best angular line.

Eastwood et al. [9] proposed a neural-based technique for segmenting cur-
sive script. In their research they trained a neural network with feature vectors
representing possible segmentation points as well as “negative” features that
represented the absence of a segmentation point. The feature vectors were
manually obtained from training and test words in the CEDAR benchmark
database. The accuracy of the network on a test set of possible segmentation
points was 75.9%.

Dimauro et al. [10] proposed an advanced technique for segmenting cur-
sive words as part of a recognition system to read the amounts on Italian
bank cheques. The segmentation technique is based on a hypothesis-then-
verification strategy. Initially, the entire word image is searched, and con-
nected components are located within the image. Each “block” detected via
this process is passed to a recogniser. If the block is rejected, a hypothesis is
generated to split the block by using a “drop falling” algorithm. The algo-
rithm employs a number of rules that analyse the background of the image to
determine the first cutting point. They then employ a descending procedure
that simulates a “drop-falling” process. The dropping procedure is guided by
rules that take into account neighbouring pixels and a regional analysis of



Cursive Character Segmentation Using Neural Network Techniques 261

the upper contour to form an appropriate segmentation path. The hypothesis
is then verified by classifying the strokes that have originated as a result of
segmentation. A nearest neighbour technique is employed for this process. If
the stroke is classified with high confidence, the segmentation hypothesis is
accepted. Otherwise, a different hypothesis is considered.

Nicchiotti et al. [11] presented a simple but effective segmentation algo-
rithm. The algorithm is divided into three main steps. The first step is to
detect possible segmentation points by analysing the minima in the lower
contour and holes. The second step is to determine the cut direction of the
segmentation point. The chosen direction is the one that contains the least
number of black pixels. Finally, over-segmented strokes are merged back to
the main character by some heuristic rules.

Xiao and Leedham [12] presented a knowledge-based technique for cursive
word segmentation. Based on connected component analysis, those compo-
nents that contain more than one character are over-segmented based on a
face-up or face-down region. Then over-segmented components are merged
into a single character based on the knowledge of the character structure.

In this chapter, an existing neural-based segmentation technique [13] is
enhanced to validate prospective segmentation points. The existing technique
first uses a Feature-based Heuristic Segmenter (FHS) [14] to over-segment the
handwriting. Following this, a neural confidence-based module is used to eval-
uate a prospective segmentation point by obtaining a fused value from three
neural confidence values: segmentation point validation (SPV), left character
validation (LCV) and centre character validation (CCV). The segmentation
technique has two advantages. Firstly, it can reduce the number of missed seg-
mentation points and hence increase the overall character/word recognition
rate in subsequent processing. Secondly, since the number of segmentation
points is optimised directly following over-segmentation, it can reduce the
processing time of later stages.

The enhancements to the existing segmentation technique include an En-
hanced Heuristic Segmenter (EHS) that employs ligature detection and a neu-
ral assistant for obtaining better prospective segmentation points. In addition,
the neural confidence-based module is improved by using 1) a recently pro-
posed feature extraction technique [15] for processing relevant features, 2)
a single character classifier for the recognition of left characters and centre
characters and 3) a segmentation path detection-based character extraction
technique [16].

The remainder of the chapter is broken down into 4 sections. Section 2 de-
scribes the enhanced neural-based segmentation technique. Section 3 provides
experimental results, followed by discussion in Section 4. Finally, conclusions
are drawn in Section 5.
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2 Enhanced Segmentation Technique

This section presents some enhancements to the neural-based segmentation
technique. The new heuristic segmenter, EHS, employs two new attributes -
ligature detection and a neural assistant. The first component was investigated
since the former segmenter, FHS, could not effectively locate prospective seg-
mentation points that were located under over-lapped strokes. The second
feature, the neural assistant, uses a hybrid strategy that combines a character
classifier and heuristic rules to over-segment the handwriting. Figure 1 shows
an overview of the EHS algorithm.

Fig. 1. Overview of EHS algorithm

The improved neural confidence-based module uses a newly proposed fea-
ture extraction technique, the Modified Direction Feature (MDF) for SPV,
LCV and CCV. LCV and CCV use a single classifier for character recogni-
tion and a Segmentation Path Detection (SPD) technique is used to extract
characters for the recognition process. Figure 2 illustrates an overview of the
entire neural-based segmentation technique. In the following sub-sections, fur-
ther details of ligature detection, the neural assistant, MDF, neural confidence
calculation/fusion and SPD are provided.

2.1 Ligature Detection

A ligature is a small stroke that is used to connect joined/cursive characters.
One of the major features of a ligature is that it is usually located within
the “middle-region” of handwritten words spanning an area down to the word
baseline. Hence, a baseline detection technique can be used to identify this
middle region. In this work, a modified vertical histogram is generated based
on the middle region of the handwriting to locate possible ligatures.

Baseline Detection

Small strokes in a word image may extend above or below the main body
of handwriting. Such letter components are called ascenders and descenders
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Fig. 2. Overview of the improved, neural-based segmentation technique

respectively. Examples of letters that contain such strokes are: ‘f’, ‘j’, ‘g’,
‘T’ etc. Hence the letters that contain ascenders or descenders may overlap
parts of characters in the main body that do not contain such strokes. In
order to over-segment the word image more accurately, it is necessary to
remove ascenders and descenders before the actual segmentation process. In
this research, the technique calculates the average vertical value of the maxima
and minima of the upper and lower contours respectively. Outlier maxima and
minima values are removed based on this average value. Finally, baselines are
estimated by the average of the remaining maxima and minima.

Modified Vertical Histogram

The second step in the ligature detection algorithm is to analyse the middle
region and to locate ligatures. One common approach is the use of vertical
(density) histogram analysis. The analysis is based on the vertical distribution
of foreground pixels. The histogram is drawn by a projection of the total
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number of foreground pixels in each column of the word image. Areas with
low pixel density are then identified as possible segmentation points. Figure 3
illustrates an example vertical histogram; the vertical histogram is formed
based on the middle region of the word “Top”.

Fig. 3. Vertical histogram analysis

Figure 3 illustrates that there are an excessive number of “low” density
regions. This is because the vertical histogram is not adequate to distinguish
the difference between “holes” and “ligatures”. In this research, a modified
vertical histogram was developed to improve the accuracy of ligature location.
Figure 4 shows the modified vertical histogram of the word shown in Figure 3.

Fig. 4. Modified vertical histogram analysis

The concept of the modified vertical histogram is formed by calculating
the distance between the top and bottom foreground pixels for each column in
a word image. As may be seen from Figure 4, the ligature region is clear and
hence easy for the segmenter to detect. One weakness of the modified vertical
histogram is that it is not suitable for characters with overlapped strokes.
But in this research, since the overlapped strokes are removed in most cases
(i.e. the modified vertical histogram is formed from the middle region), the
advantage of the modified vertical histogram can then be maximized.
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Ligatures are located using the modified vertical histogram and a heuristic
based on the average stroke width. Regions with distance values smaller than
the average stroke width are defined as ligatures.

2.2 Neural Assistant

The neural assistant uses a character classifier and some extra heuristics to
generate additional segmentation points following regular feature-based seg-
mentation point assignment. Regions between two successive prospective seg-
mentation points are extracted and processed by MDF in order to obtain
a confidence value. Additional segmentation points are added based on the
confidence value and the distance between the two prospective segmentation
points. Experimental results in [16] showed that the classifier could be effec-
tively used to distinguish character and non-character components, and hence
could provide appropriate assistance in the current step.

2.3 Modified Direction Feature (MDF)

Recent work has shown that the Modified Direction Feature (MDF) enhances
the character recognition process and outperforms some popular feature ex-
traction techniques such as the Transition Feature (TF) [15]. This work
demonstrated the superiority of MDF for describing patterns based on their
contour or boundary. This prompted an investigation to determine the fea-
sibility of employing MDF for SPV, LC and CC recognition to enhance the
overall segmentation process. The details of MDF have been described in [15].

2.4 Neural Confidence Calculation and Fusion

Segmentation Point Validation (SPV)

Following heuristic segmentation it is necessary to discard “incorrect” segmen-
tation points while preserving the “correct” points in a cursive word. This is
achieved by calculating a number of confidence values for each prospective
segmentation point (PSP) generated by the heuristic segmenter. For SPV,
a neural network is trained with features extracted from segmentation areas
(SAs) originally located by the heuristic algorithm. The neural network veri-
fies whether each particular area is or is not characteristic of a segmentation
point [14]. If an area is positively identified as a segmentation point, the net-
work outputs a high confidence (>0.5). Otherwise the network will output a
confidence close to 0.1. In this research, the MDF extraction technique was
used to describe the segmentation area.
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Left and Centre Character Classification

For this step, additional neural networks trained with handwritten charac-
ters (upper case and lower case) are required to confirm the first neural net-
work’s output. The network(s) is/are presented with areas immediately cen-
tred on/adjacent to each segmentation point. Area width is calculated based
upon average character width. If for example, the area immediately to the left
of the PSP proves to be a valid character, the network will output a high confi-
dence (LC) for that character class. At the same time, if the area immediately
centred on the segmentation point provides a high confidence for the reject
neuron (CC), then it is likely that the PSP is a valid segmentation point.
The “reject” output of the neural network is specifically trained to recognise
non-character patterns (i.e. joined characters, half characters or unintelligible
primitives). If this neuron gives a high confidence, this will usually indicate
that the particular area being tested is a good candidate for a segmentation
point. Otherwise, if any valid characters are given a high confidence (in the
centre character area), it is unlikely that that particular area should be seg-
mented. The procedure of SPV, LC and CC validation is illustrated in Figure
5. Fusion of character and segmentation point confidences is detailed in the
next sub-section and in [13].

Fig. 5. Overview of SA, LC and CC extraction and validation

Confidence Fusion

A Correct Segmentation Point (CSP) is found:

if fSPV V er(ft1) >= 0.5 AND
fLCC V er(ft2) is a high character confidence AND
fCCC V er(ft3) is a high non-character confidence;

fCSP (ft1, f t2, f t3) = fSPV V er(ft1) + fLCC V er(ft2) + fCCC V er(ft3)
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where, fSPV V er(features) - Confidence value from the Segmentation Point
Validation neural network. fLCC V er(features) - Left Character Confidence
(LCC) value from the character neural network. fCCC V er(features) -
Centre Character Confidence (CCC) from the character neural network
(reject neuron output).

An Incorrect Segmentation Point (ISP) is found:

if fSPV V er(ft1) < 0.5 AND
fLCC V er(ft2) is a high non-character confidence AND
fCCC V er(ft3) is a high character confidence;

fISP (ft1, f t2, f t3) = (1 − fSPV V er(ft1)) + fLCC V er(ft2) + fCCC V er(ft3)

where, fSPV V er(features) - Confidence value from Segmentation Point
Validation neural network. fLCC V er(features) - Left Character Confidence
value from character neural network (reject neuron output).
fCCC V er(features) - Centre Character Confidence value from character
neural network (highest confidence from 36 character neuron outputs).

Finally, the outcome of fusion is decided by the following equation:
f(confidence) = max(f(CSP ), f(ISP ))

Enhancements to Classification Procedure

Building on previous work, two novelties are introduced to enhance the LC
and CC classification rate. Firstly, instead of using the Transition Feature
(TF) [17] for incorporation of character confidences into the segmentation
technique, the neural network was trained on feature vectors produced by
MDF. Secondly, in previous work, two separate neural networks were trained
for both upper case and lower case characters. This introduced the problem
of deciding upon when to use the lower case or upper case networks. Hence, in
order to bypass this issue, lower case and upper case characters were combined
into a single network containing 37 outputs. The configuration was similar to
that undertaken in previous work [18], where upper and lower case characters
that were similar in appearance were grouped in the same class i.e. ‘c’ and
‘C’ would share one output class. The only exception was that in this case a
reject neuron was also added. The reject neuron was trained to fire when a
non-character component was presented to the network (as described above).

2.5 Character Extraction by Segmentation Paths

Previously in the neural confidence-based segmentation technique, LC and CC
were extracted using vertical dissections based on the x-coordinates of PSPs
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provided by the heuristic segmenter (mentioned earlier). It was found that this
simplistic scheme was inadequate for the purpose of extracting overlapping
and tightly coupled characters in cursive script. The reason being that in
some cases, characters would be imprecisely split. This section details a novel
character extraction procedure based on the segmentation points output by
the heuristic segmentation algorithm.

Segmentation Path Detection (SPD)

The first step of extracting characters using SPD is to measure the ascenders
and descenders of the word image. As mentioned earlier, ascenders and de-
scenders are strokes that extend above or below the middle zone or main body
of a handwriting sample. Next, the main body of the image is equally divided
up into 4 sections, namely sections 1, 2, 3, and 4 (See Figure 6). Based on
the x-coordinate of a segmentation point, SPD performs backward traversal.
Once a foreground (black) pixel is encountered, the system checks whether
the location of the black pixel is below section 1. The line at the bottom of
section 1, in Figure 6, is called the “best-fit” line.

Fig. 6. Word sample sections and segmentation path generation

The “best-fit” line is used as a threshold position, which informs the algo-
rithm whether or not an alternate extraction path should be detected. If the
encountered black pixel is below the “best-fit” line, then this pixel, along with
all connected foreground pixels are ignored. However, if this black pixel exists
on or above the “best-fit” line, this is considered to be the starting point of an
overlapping stroke. This pixel is called the “turning point”. Commencing from
this turning point, a path directed around the overlapping stroke is explored.
The algorithm attempts to investigate the right hand side of the turning point.
If it is possible to reach the top row of the image, then the extraction path is
found. Otherwise, if the traversal to the right hand side is blocked, then the
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algorithm returns to the turning point, and traverses towards the left hand
side. As shown in Figure 6, both left-hand and right-hand segmentation paths
of the character ‘t’ are detected. Once an extraction path is located, all pixel
coordinates are stored for the purpose of character extraction.

3 Experimental Results

A number of experiments were conducted in this research. Experiments were
first conducted to compare the performance of the EHS and FHS algorithms.
Further experiments were conducted to compare the performance of MDF and
a simple Density Feature (DF) extraction technique for SPV and subsequently
the accuracy of character classification for LC and CC. In addition, the perfor-
mance of character extraction was evaluated using SPD and finally the over-
all neural confidence-based segmentation technique for validating prospective
segmentation points, was tested.

Segmentation performance is measured based on three types of seg-
mentation errors: “over-segmentation”, “missed” and “bad” metrics. “Over-
segmentation” refers to a character that has been divided into more than three
components. A “missed” error occurs when no segmentation point is found
between two successive characters. The “bad” error refers to a segmentation
point that could not be used to extract a character perfectly, but might still
be used for the purpose of character separation.

3.1 Handwriting Database and Neural Network Configuration

The training and testing patterns for this work were obtained from handwrit-
ten words contained in the CEDAR benchmark database [19], specifically the
“/train/cities/BD” and “/test/cities/BD” directories respectively.

The classifiers used in this research were feed-forward Multi-layered Per-
ceptrons (MLPs) trained with the resilient back-propagation (BP) algorithm.
For experimental purposes, the architectures were modified varying the num-
ber of inputs, outputs and hidden units.

3.2 EHS and SPV Segmentation Performance

Table 1 shows the segmentation performance of FHS and EHS. The results are
based on the 1031 segmentation points that existed between joined, cursive
characters contained in the CEDAR words used for testing.

Results for SPV are presented below in tabular form. Table 2 presents top
results comparing MDF and DF using a total of 32028 segmentation patterns
for training and 3162/4854 patterns for testing.
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Table 1. Segmentation performance of EHS and FHS (1031 segmentation points)

Segmentation Error Rates
Over-segmented [%] Missed [%] Bad [%]

FHS 4.07 4.07 6.99

EHS 2.72 2.42 4.56

Table 2. SPV rates with a BP-MLP

Test Set Recognition Rate [%]
3162 Patterns 4854 Patterns
DF MDF DF MDF

1-Output 81.21 82.19 80.61 81.15

2-Outputs N/A 81.97 N/A 81.15

3.3 Character Classification Results

This sub-section lists character classification results using a single neural net-
work trained with both upper and lower case characters in addition to a reject
neuron (for non-character patterns). In total, 25830 characters were used for
training and 3179 for testing. As the number of reject patterns in the above
training set represented a large proportion of the data, it was decided that the
number of reject patterns be halved in subsequent experiments to demonstrate
the effect on the recognition rate. As a result of this procedure, the training
set subsequently contained 20464 characters, with the test set remaining con-
stant. Table 3 lists results using both configurations.

Table 3. Character recognition rates with a BP-MLP

Test Set Recognition Rate [%]
All reject patterns Half of reject patterns

Total Test Set 67.54 64.39

Reject Patterns only 78.49 70.1

Characters Only 50.29 54.83

3.4 Segmentation Path Results

Experimental results are displayed below for correct character extraction em-
ploying the SPD technique proposed above. Table 4 displays the percentage of
words where characters were all successfully extracted whilst including errors
introduced by the heuristic segmenter. Table 4 also shows the percentage of
words where characters were all correctly extracted without the interference
of incorrect segmentation points (ISPs). The latter is an ideal situation and
supposes that all segmentation points are correct.
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Table 4. Character extraction rates using SPD

Character Extraction Rate [%]
Including ISPs Excluding ISPs

317 Words 78.9 95.27

3.5 Performance of the Neural-based Segmentation Technique

The errors of the enhanced neural-based segmentation technique are calcu-
lated based on the number of correct segmentation points obtained in the word
samples. The total number of segmentation points in the 317 test word samples
is 1718. Only 1031 segmentation points that existed between joined/cursive
characters were chosen for testing purposes. The reason for this is to test
the segmenter on its ability to separate cursive character components. Table
5 shows the overall results of the enhanced neural-based segmentation tech-
nique and the existing neural-based segmentation technique using 317 testing
words.

Table 5. Overall results of the neural-based segmentation technique (1031 segmen-
tation points)

Segmentation Error Rates
Over-segmented [%] Missed [%] Bad [%]

Existing Technique 7.08 2.33 10.86

Experiment 1 (FHS) 8.73 0.1 8.63

Experiment 2 (EHS) 7.37 0.1 6.79

4 Analysis and Discussion of Results

4.1 Analysis of EHS Over-segmentation

The introduction of ligature detection to locate prospective segmentation
points hidden by large horizontal strokes or overlapping characters proved
quite successful. As may be seen from Table 1, EHS performed fairly well on
the test set with only 2.42% of “missed” errors being generated.

Two problems were found during the inspection process. The first prob-
lem arises when segmenting very noisy characters. Since the enhanced heuris-
tic algorithm was heavily dependent on contour analysis, heavy noise that
was inherent around the handwriting could cause serious errors. One of the
solutions to this problem was additional pre-processing.

The second problem that was observed related to the neural assistant. The
main problem was incorrect classification. However, overall the classification
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rate was acceptable based on the current character classifier’s recognition
accuracy (approx. 89%).

The missed segmentation points were due to the neural assistant misrecog-
nising two joined characters as a single character. This type of error is very
hard to deal with, since when two characters are tightly coupled, the liga-
ture cannot be detected. One solution is to employ a better neural classifier
or incorporate more heuristic rules. However, in some cases the missed seg-
mentations may be recovered when the neural-based segmentation technique
is employed, which uses the centre area associated with each segmentation
point. Figure 7 provides some sample handwriting with segmentation points
found by EHS.

Fig. 7. Sample word images segmented by the enhanced feature-based heuristic
segmenter. (a), (b), (c) successful words. (d), (e), (f) unsuccessful words.

Although neural classifiers may contribute problems in some instances,
their use in the described segmenter was very beneficial, because it could
introduce more segmentation points without using complex heuristics.

4.2 SPV Discussion

As may be seen from Table 2, in comparing the recognition rates when using
DF and MDF, the MLP trained with MDF patterns produces a slightly higher
recognition rate. The small increase in recognition rates demonstrates that
the MDF is comparable with DF for small, uncomplicated patterns. When a
two-output neural network was used (the first neuron indicated a “correct”
segmentation and the second indicated an “incorrect” one), the recognition
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rates on both MDF data sets either remained constant or decreased nominally
in comparison with the single-output MLP. A comparison was not directly
possible in this case with the DF dataset.

4.3 Character Classification

The use of a 37-output neural architecture was considered an important step
for the overall segmentation process. With the current configuration, although
the recognition rate was not excessively high, it is possible to classify both
lower and upper case characters with a single network.

As may be seen from Table 3, the results for recognizing reject patterns is
nearly 80% when using all available patterns for training. This is a favourable
outcome, as the LC and CC depend on this confidence for correct segmenta-
tion. Conversely, the character recognition rate is substantially lower, however
it may be seen that when half of the reject patterns are removed for training,
a higher character recognition rate is achieved. This indicates that the slight
disproportion between characters and reject patterns may be leading to a bias
during training.

4.4 SPD Discussion

As may be seen in Table 4, the results for correct character extraction are
most favourable. The result of 78.9%, using the x-coordinates produced by
the heuristic segmenter is encouraging. Upon improving the segmenter further,
the success of the character extractor may approach the ideal rate of 95.27%.

4.5 Analysis of Neural-based Segmentation

As may be seen from Table 5, the segmentation technique was successful at
discarding bad segmentation points as well as recovering “missed” segmenta-
tion points by adding them at large gaps between points in words based on
the average character width. Both experiments (using FHS and EHS) recorded
the same “missed” error of only 0.1%, which is a very promising result. Fur-
thermore, the results also showed that the enhanced heuristic segmenter was
able to produce better inputs to increase overall segmentation results.

The reason for the higher “bad” errors by the neural-based segmentation
technique as compared to those obtained by the enhanced heuristic segmenter
is because some “missed” errors are turned into “bad” ones. This is due to
the technique recovering “missed” segmentation points based on the average
character width. In some cases, it could not perfectly locate the character
boundary (using SPD) and hence contributed to the “bad” error. Although
the “over-segmentation” error went up slightly as compared to previous work,
it is possible to recover this at a later stage.

Another reason for the increase of the segmentation performance is related
to the use of the MDF and the segmentation path-based character extraction
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technique (SPD). Since ‘clean’ characters can be extracted and MDF provides
better features for the single classifier, the performance of LCV and CCV are
improved.

5 Conclusions and Future Work

This chapter describes an improved neural-based segmentation technique for
cursive words. The technique included an enhanced heuristic segmenter to
over-segment handwriting in addition to the use of an MDF extraction tech-
nique for SPV, LCV and CCV. The enhanced heuristic segmenter provided
better inputs to the subsequent neural validation process. Encouraging results
were obtained that can increase the overall performance of a segmentation-
based handwriting recognition system.

In the future, EHS will be used to locate prospective segmentation points
from the training set facilitating re-training and testing of the SPV classifier
for further enhanced performance. The above-mentioned technique will also
be tested on a larger dataset to validate the improvements proposed. Finally,
a new character extraction technique that uses the direction feature on the
character’s boundary will be investigated.
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Summary. Document layout analysis is a tough task for a document analysis and
recognition system, especially when there are many variations in the layouts. Often,
layout analysis requires character recognition, while character recognition requires
layout analysis beforehand. It’s a Catch-22, or a “chicken-and-egg” problem. This
chapter discusses this kind of dilemma and presents a two-part solution that first
analyzes the layout and then, using a hypothesis-driven approach, segments the
numerical character line. Basically, the approach is to first generate multiple hy-
potheses based on low-level image processing, then to conduct layout analysis and
create many candidates based on each of the hypotheses. Finally, the correct candi-
date is selected by the results of content recognition. Probabilistic verification is used
to select the candidates that are input to the recognition module, with parameters
that are learned from samples in advance. The second part of the solution, which
relies on a hypothesis-driven approach for the segmentation of the numerical char-
acter line will also be presented. As a test case, these solutions were applied to the
Japanese postal address recognition system. They show how tough problems involved
in analyzing the surface images of mail pieces can be solved. The hypotheses-driven
approach manages every possible variation, including writing orientation, printed or
hand-written, address-block location, character size, and so on.

1 Introduction

OCR (Optical Character Recognition) has many uses in the automation of
work in offices and factories. About 30 years ago, OCR was developed to
read numeral characters written in fixed areas, and these recognition results
are used to generate helpful information to automate office and factory work.
As time went on, the readable character position became more variable, and
various character sets (Alphabets, Kanji, etc.) could also be read by OCR.
OCR continues to expand and become more adaptable, and it is hoped that
in future OCR will be able to recognize documents correctly and read more
types of documents.

When the design of the document is known in advance, OCR can get the
positions of the characters in the input image. An example of these documents
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are fixed forms. In this case, it is not necessary to analyze the layout of
the document; OCR can segment the character patterns by using a priori
knowledge, and recognize each character. But when OCR is used to read
more varied types of documents, the positions and layout of characters can
change with each type. The document types shown below are itemized by
their degree of format complexity, from type 1 to type 4.

Type 1: Fixed form
Type 2: Business or name card, Cover page of paper, Contents page of book
Type 3: Address surface of mail, Cover page of magazine, Newspaper
Type 4: Handwritten memorandum, Signed board

For type 1, examples of fixed forms include those used by bank tellers
and various office forms. OCR machines can read the contents of fixed forms
correctly.

In type 2, the character position is strongly restricted, but not completely
fixed. In this case, an OCR system can analyze the layout correctly. A little
recognition error can occur and in a real workflow humans must correct these
errors.

In type 3, there is a common rule in the document layout, but this rule
has some variations. Type 3 documents make a good target for document
analysis research, so many papers have been published [18][19][21][22][23][12].
The destination address on mail is an especially good candidate for automatic
recognition, because current mail sorting machines read the destination ad-
dress less than perfectly. Rejected mail requires humans to attach the correct
address. The process described here represents a real solution for the use of
OCR in the real world.

As for type 4, it is difficult for OCR to recognize handwritten memos and
signed boards. Because humans write memos according to their own inspira-
tion or memory, there is no format for the character allocation and sometimes
no structure for the layout. There is a big demand for automatic recognition
of signed boards in the real world, because they often contain very important
information. But in order for OCR to read signed boards two different mod-
ules in the layout analysis must be developed completely, one to detect the
position of the signed board from the scene image, the other to analyze the
layout on the board. In order to recognize the kinds of documents in type 4,
it will be necessary to implement a human vision approach to the computer
[25].

2 Approaches to Layout Analysis

Layout analysis has a very important role in document recognition. If the lay-
out cannot be analyzed correctly, it is impossible to understand the contents
of the document. But on the other hand, the contents of the document pro-
vide useful information for analyzing the layout. This is a “Catch-22” or the
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so-called “chicken-and-egg” problem. Humans can analyze the layout and un-
derstand the content in parallel, but it is difficult for the computer to imitate
the human process, because computer procedures are generally sequential.

There are two approaches to document analysis, top-down and bottom-
up. The top-down approach tries to estimate the layout based on a model,
and extract the features which are needed to validate the model [5][16]. The
bottom-up approach first extracts various features from the input image, and
then tries to match these features to the model. Accordingly, if it is possible to
estimate the layout in advance, the top-down approach is more effective and
reliable. The bottom-up approach is generally expensive, but this approach
has advantage to not output the big error, if the model of the layout is not
known in advance [10].

There is an optimal approach for each type of document. The top-down ap-
proach is most effective for documents with a predictable layout structure (for
example, business cards, cover pages of papers and content pages of books).
Common-sense knowledge of the layout is given to the OCR system in ad-
vance, and the positions of characters are matched to this layout knowledge.
After that, the contents of the document are read using the information about
the layout. In this case, it is necessary to dynamically match the character
positions to the layout information, because the character positions can be
somewhat ambiguous [14][30].

If the supposition of the layout is difficult, or if variations of the common-
sense approach can be expected, then the bottom-up approach is more ef-
fective. But a complete bottom-up approach requires large calculation costs,
because all characters in the document must be recognized before the layout
analysis. So the real OCR is designed to use the positions and sizes of each
character pattern to analyze the layout. Usually, a rectangle circumscribed to
each pattern is used to express position and size. In this method, the rectan-
gles of the character patterns are extracted first, and then close rectangles are
merged to create the character lines or blocks. This method does not require
huge calculation costs and can use the layout knowledge while merging the
pattern rectangles.

3 ROI in Document

There are two types of office documents. For one type, it is necessary to under-
stand the entire contents of the document; the other requires understanding
of only the important part of the document. This important part is called
ROI (Region Of Interest). In fact, OCR systems are often designed to read
only the ROI in documents, because the content of the ROI has sufficient in-
formation to automate the office task. For example, the ROI of an application
form might be the name and address of the applicant, and the ROI of a piece
of mail is the destination address and name. In the case of a scientific paper,
the title, authors, and affiliations constitute a ROI. In these cases, it is not
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necessary to understand the entire contents of the document. But in order to
select the ROI, the whole structure of the layout must be analyzed.

The multiple hypotheses approach is an effective way to extract the ROI
from a document. This approach creates a number of candidates by mak-
ing some hypotheses in cases in which the layout analysis process can not
decide on only one answer. If the post-process can get other useful informa-
tion, the number of candidates is reduced. Finally, the most valid candidate
is selected as the correct answer. The candidates are evaluated under each
hypothesis which was applied during the candidate creation. For example, if
the size of characters is unknown, a number of ROI candidates are created
by some hypotheses regarding character size. After that, each candidate is
evaluated on the condition of each character size which was used by the hy-
potheses. This approach can control the balance between calculation cost and
recognition accuracy. If it is necessary to improve the recognition accuracy
without increasing the calculation cost, unusable candidates must not be cre-
ated and more effective information must be used to evaluate the candidates
in each step. An OCR which adopts multiple hypotheses can be implemented
quickly, because no one process in the system is responsible for outputting a
completely correct answer, and recognition accuracy is increased while each
process is revised step by step.

4 Target Documents for Discussion

In this chapter, the layout analysis of mail addresses is used as an example
in order to discuss layout analysis and ROI extraction strategies. The layout
of mail addresses is loosely restricted by common-sense knowledge. The ROI
of a piece of mail is the destination address, which is needed to automate the
mail-sorting task. But it is not easy to determine the ROI on a given piece
of mail. It can be in a variety of positions, it can have one of two character
types (printed and handwritten), there can be variations of the mail direction,
and in the countries of East Asia, the character lines can be either horizontal
or vertical. In addition there is the stamp area, the return address area, and
sometimes advertisements on the mail, all of which create heavy obstacles to
ROI extraction.

The multiple hypotheses approach is used to analyze the layout and read
the destination information. After binarization of the input image, each pro-
cess creates some candidates; post-processing then evaluates the candidates.
In the final step, one candidate is selected as the correct answer by checking
the destination point in a real address data set. This approach can control
the balance between calculation cost and recognition accuracy, because the
number of the candidates in each process can be controlled by setting various
parameters.

The character segmentation method which uses the multiple hypotheses
approach will be introduced later. Address characters on mail can be written
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by machine or hand, and in either horizontal or vertical lines in the Asian
countries. There can be various interpretations of the character segmentation
results, because Kanji characters consist of some simple patterns, many of
which can be read as other characters. In order to solve this problem, the
multiple hypotheses approach creates candidates of the segmented patterns,
and selects the best candidate as a correct answer.

5 Ambiguity of Mail Address Recognition

The technique of mail destination address recognition is important for automa-
tion of the mail-sorting task. But it is difficult for a machine to understand the
destination address if it does not know the layout of the address in advance
[20][11]. The layout of the address has several variations and much ambiguity,
so the design of the address recognition system is much more difficult and
complex.

In order to recognize the destination address, it is necessary to extract
the area of the destination address characters. This area is called the address-
block. If many mail samples are observed, it is possible to observe that there
are variations in the address-block position, direction, and printed or hand-
written characters, along with the return address area and possible adver-
tisements. Some parameters for extracting the address-block can not be fixed
uniformly, because of the variations and ambiguities. Many papers have been
published on the topic of analyzing the layout of mail pieces [2][19][4][5][6].

After getting the address-block, it is necessary to read the character lines
in the address-block. Current character recognition and segmentation modules
can hardly output the correct answer. Character recognition has been studied
for several years, however many researchers are continuing to improve the
technique [24][29][26][27], and various approaches to character segmentation
have been reported [17][1][15][13]. For example, the first of these approaches
applies the similarity of the characters for recognition, the second uses the
peripheral information of the character pattern, and the last employs the
linguistic information of the character strings [8][9].

The character segmentation of Japanese street numbers is an especially
difficult problem. In Japan, the street numbers can be written in either hori-
zontal or vertical lines. Furthermore, the Kanji numerals “One”, “Two” and
“Three” are expressed as simple horizontal lines, with the number of horizon-
tal lines corresponding to the Kanji numerals. Thus, “One” is one horizontal
line, “Two” is two horizontal lines, and “Three” is three horizontal lines.
Kanji numerals written in a vertical line introduce much ambiguity into the
character segmentation. In this case, it is not effective to apply linguistic in-
formation, because there are various street numbers in real addresses. So the
Kanji numerals must be segmented using information about the figures and
their positions.
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In this chapter, two methods which can solve the above mentioned prob-
lems are described. One is the address-block extraction method, the other
is the character segmentation method for Kanji numerals in a vertical line.
These methods adopt the multiple hypotheses approach and use a Bayesian
rule for the validation of each candidate. The Bayesian rule can combine sev-
eral different confidence values, and calculate the total confidence value. If the
likelihood ratio can be observed from many learning samples, the Bayesian
rule can be implemented to solve real problems. In the following sections we
describe a useful method which applies the Bayesian rule to real problems
[31][28].

6 Address-Block Extraction from Mail Pieces

6.1 Background of Address-Block Extraction

In order to read a mail destination address correctly, it is first necessary to
accurately extract the destination address lines. Because the lines of a desti-
nation address on Japanese mail can be written in various ways, extracting
them is very difficult.

Moreover, the existence of the return address lines and of advertisements
on pre-printed mail sometimes makes the extraction much more difficult. In
this chapter, we call the area occupied by the destination address lines the
“address-block”.

There are several conventional methods for extracting the address-block
[4][5]. For example, in the case of handwritten mail, there is a technique for
estimating the address-block by analyzing the positional relationship between
character lines and ruled lines. When the address-block has ruled lines, this
method is very useful, but it essentially has no power to extract an address-
block without ruled lines. In the case of large-sized mail, another technique
extracts an area having a uniform grey value as an address-block [6]. This
technique is effective for extracting an address-block on an attached address
label. However, it is not enough to use techniques that can only be applied to
specific types of address-blocks.

The proposed method, which will be described later, can be adapted to
various address-block types. This method extracts several candidates for the
address-block by using multiple hypotheses on types and sorts them according
to a confidence value. To calculate the confidence value of a candidate, an
evaluation based on a Bayesian rule is executed by using a type-hypothesis.
Address-block candidates are read by an address character recognition module
one by one until one candidate is accepted as an address; the result is then
regarded as the destination address of the mail. This recognition procedure
can effectively read the destination address of mail [7].
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6.2 Variations of Address-block Types in Japanese Mail

There are various types of address-block in Japanese mail. We have classified
address-blocks into several types by human observation. That is, the type
of mail envelope is either portrait or landscape, the direction of the written
address is either vertical or horizontal, and the address is either printed or
handwritten. Note that a landscape mail envelope with vertical writing is very
uncommon. The total number of types is therefore six, abbreviated as follows:

P-PV: (Printed, Portrait, Vertical writing)
P-PH: (Printed, Portrait, Horizontal writing)
P-LH: (Printed, Landscape, Horizontal writing)
H-PV: (Handwritten, Portrait, Vertical writing)
H-PH: (Handwritten, Portrait, Horizontal writing)
H-LH: (Handwritten, Landscape, Horizontal writing)

The six types of address-blocks are shown in Figure 1. We assume that
the mail image is scanned in portrait orientation so that the stamp is always
located in the upper left. The resolution of the image is 200 dpi.

The rectangles in Figure 1 show the address-blocks. It is difficult for a
simple method to extract the address-block, because its position and area are
different in each type (as shown in Figure 1). Since the type of address-block
cannot be known in advance, it is not possible to adjust the extraction process
for each type. Moreover, return addresses and pre-printed advertisements on
the mail sometimes make address extraction even more difficult.

6.3 Mail Destination Address Reading System

To read a mail destination address, two operations must be performed: extrac-
tion of the address-block and reading of the address lines in the address-block.
The address-block extraction should be a bottom-up approach, because it is
performed without the knowledge of the address-block type. The address-block
extraction consists of the following four steps:

1. Removal of noise by pre-processing
2. Extraction of objects
3. Creation of address-block candidates
4. Evaluation and sorting of the address-block candidates

Figure 2 shows the flow of these steps. In the pre-processing step, noise and
underlines are removed from the input binary image by simple image process-
ing. Next, connected components are derived from the image. All processing
after this step is performed using connected components.

In the object extraction step, the objects (a stamp, a postal code, character
lines, etc.) that may commonly exist in the mail image are extracted. The ex-
traction uses common knowledge of all address-block types such as knowledge
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Fig. 1. Address-block Type Variations

of the position and the size of each object. In the address-block candidate cre-
ation step, several character lines extracted in the object extraction step are
combined, and several candidates for the address-block are generated. This
step creates several proper candidates for each mail type, because the posi-
tion and the area of the correct address-block are different for each type. In
the next step, one correct answer will be selected from the candidates even if
there is no knowledge of the address-block type.

In the address-block candidate evaluation step, a confidence value express-
ing the likelihood that a candidate is the correct address-block is calculated
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according to a Bayesian rule. The confidence value is calculated by using fea-
tures detected in the candidate. One candidate will have several confidence
values corresponding to all address-block types. The number of confidence
values for one candidate is therefore the same as the number of types. Next,
the candidates are sorted in order of their maximum confidence values. In the
address-lines reading step, the sorted candidates are analyzed one by one, us-
ing character recognition. When the recognition result is an address, it can be
regarded as the destination address of the mail. Candidate evaluation using a
Bayesian rule is described in detail in the next section.

Fig. 2. Mail Destination Address Reading System

6.4 Segmentation of Character Lines by Multiple Hypotheses

Some character lines are extracted by merging some closely connected com-
ponents of the patterns. These merge rules have different threshold values in
response to the layout of the destination address. We call the segmentation
setting for printed character the “small” character setting, and the segmenta-
tion setting for handwritten characters the “large” character setting. Figure
3 shows the character-line extraction results for each setting. In Figure 3, the
printed character lines (Input Image A) are extracted correctly by the small
character setting, but incorrectly by the large character setting. The hand-
written character lines (Input Image B) are extracted correctly by the large
character setting, but incorrectly by the small character setting. The charac-
ter lines segmentation for all mail pieces can not be processed correctly by
one-half of these settings.

The layout of the mail address lines is not known in advance. It is dif-
ficult to judge the layout of the destination address, because there also are
advertisement and return address areas. Since the layout of the destination
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Fig. 3. Character Line Segmentation Results

address can not be decided, the segmentation settings can not be changed
in response to the layout. Character lines segmentation is therefore executed
twice by both settings, as shown in Figure 4. After the character lines are
segmented by the multiple hypotheses, some candidates are outputted to the
post-process. The correct character lines segmentation is found among these
candidates wherever possible.
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Fig. 4. Character Line Segmentation by Multiple Hypotheses

6.5 Address-Block Evaluation by Bayesian Rule

6.5.1 Calculation of Confidence Value

In the address-block candidate evaluation step, the confidence value is calcu-
lated from the following features that can be observed from the candidate.

1. Averages of height and width of character lines
2. Variances of height and width of character lines
3. Area of address-block candidate
4. Position of the candidate

Since the standard values of the features change according to the address-
block type, a single set of parameters for the candidate cannot be determined.
To cope with this problem, several address-block dictionaries are prepared ac-
cording to each type, as shown in Figure 5. The optimal confidence values
of all candidates in each type can thus be calculated. However, because the
address-block type is unknown in advance, a dictionary corresponding to a
certain type cannot be selected. Accordingly, an address-block candidate for
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each type is assumed, and a confidence value for each type is calculated in-
dependently as each dictionary is selected and referenced. Several confidence
values per candidate are thus computed and are compared with each other
to select the maximum value among them. This maximum value is regarded
as a representative confidence value for the candidate, because the confidence
value computed from the dictionary of the corresponding type should be the
highest and all confidence values for an incorrect candidate should be low.

Fig. 5. Address-Block Evaluation

6.5.2 Address-Block Dictionary and Bayesian Rule

A Bayesian rule is applied to calculate the confidence value for the address-
block candidate. The confidence value is calculated using the candidate fea-
tures according to the Bayesian rule given in Eq. (1):

P (Hc|e1, e2, e3, · · ·, en) =

P (Hc)
P (H̄c)

∏n
k=1 L(ek|Hc)

1 +
P (Hc)
P (H̄c)

∏n
k=1 L(ek|Hc)

(1)

Likelihood : L(ek|Hc) =
p(ek|Hc)
p(ek|H̄c)

(2)

where c is the address-block type, Hc is the hypothesis of the correct
candidate for type c, e1, e2, e3, ... en are the observed features of a candi-
date, P (ek|Hc) is a posterior probability of ek supposing hypothesis Hc, and
L(ek|Hc) is the likelihood ratio for ek supposing hypothesis Hc as shown in
equation 2.

We define P (Hc|e1, e2, e3, ...en) as a confidence for a candidate, where e1,
e2, e3, ... en are observed features.
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To obtain P (Hc|e1, e2, e3, ...en), the likelihood ratio L(ek|Hc) is required in
advance. The likelihood ratio is estimated from learning data, and is stored as
shown in Figure 5. It is referenced while the confidence values are calculated.
The likelihood ratio should also be calculated independently according to each
type. The learning data for each type of address-blocks is therefore collected
from real mail images in advance.

To estimate the likelihood ratio L(ek|Hc), P (ek|Hc) and P (ek|H̄c) must
be known. P (ek|Hc) is a posterior probability of ek supposing hypothesis Hc.
We consider that a posterior probability can generally be estimated from the
occurrence frequency of ek in the case of Hc. Thus, to estimate P (ek|Hc) and
P (ek|H̄c), in the address-block candidate creation step, many address-block
candidates are created from a learning set of mail images. Next, all candidates
are judged to be correct or incorrect by human observation. Features of candi-
dates are extracted from the address-block candidates, and the frequencies of
features in correct and incorrect candidates are calculated. These frequencies
are used to calculate probabilities, P (ek|Hc) and P (ek|H̄c).

Note that P (Hc) and P (H̄c) are prior probabilities of Hc and H̄c, and
they can be obtained by calculating the ratios of the number of correct and
incorrect candidates to the total number of candidates.

6.6 Experimental Results

6.6.1 Evaluation of Address-block Extraction

To evaluate the proposed address-block extraction method, we measured its
accuracy rate. Two datasets were prepared: a set of 500 pieces of printed mail
and a set of 500 pieces of handwritten mail. We considered 1341 learning
samples that included both types of mail. This dataset is different from the
evaluation dataset mentioned above. Two methods were compared in terms
of their accuracy in the extraction of the address-block:

(A) Conventional heuristic method
(B) Proposed Bayesian rule method

In method (A), the parameter set was adjusted heuristically based on the
learning data. In the evaluation of both methods, the type of test mail was
not known in advance. We compared the cumulative extraction rate for the
address-block in mails of the P-LH and H-PV types.

Figure 8 shows the cumulative extraction rates for the two methods. Cumu-
lative extraction rate is calculated from the frequency of candidate rankings,
including correct ones. Hereinafter, the cumulative extraction rate from the
top to the 5th candidate is called the “top-five correct rate”.

In the case of the P-LH type, the top-one correct rate for method (B) was
improved by 16 points up to 79% in comparison with method (A). The top-
three, top-four, and top-five correct rates for methods (A) and (B) became
equivalent, that is, 95%.
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In the case of type H-PV, the top-one correct rate for method (B) was
improved 11 points up to 90% in comparison with method (A). The top-five
correct rate for (B) is still larger, that is, 91%, than for method (A).

A general experiment with all types of mail confirms that the proposed
method can extract the top-five candidates, including the correct address-
block, in 94% of printed mail cases and in 89% of handwritten mail cases.

Figure 6 and 7 show the input images of the P-LH and H-PV formats, and
the address-block extraction results obtained by this proposed method. The
rectangles in these images are the extraction results of the character lines,
postal code, and stamp. In Figure 6, the first candidate is the correct answer.
The others consist of some small character lines, not the destination address.
These incorrect candidates are located at a valid position in the H-PV format,
but the confidence value is not large because none of the other information,
apart from position, is valid for H-PV format. In Figure 7, the first candidate is
the correct answer, and the second candidate is the part of the return address
area. It is possible to put the correct candidate in a superior position to all
other candidates, if the confidence value is calculated from features of each
candidate.

6.7 Evaluation of Address Reading

We measured the read rate of a destination address using the proposed
method. The number of test mail samples was 13778 for printed mail and
7265 for handwritten mail. In the destination address reading system men-
tioned in Section 6.3, the read rates of two systems using methods (A) and
(B) respectively were compared.

In the case of the printed mail, the read rates for methods (A) and (B)
were equivalent, 84.5%. In the case of the handwritten mail, the read rate
for method (B) was improved by 0.61pt to 67.5% in comparison with method
(A).

As shown by this evaluation, the read rate improvement using method (B)
for handwritten mail is larger than that for printed mail. This is because the
parameter set for method (A) was heuristically adjusted for printed mail but
not for the handwritten mail. If we had used a parameter set adjusted for
handwritten mail, the improvement for handwritten mail would have been
larger than that for printed mail. Therefore if it were possible to judge in
advance whether the mail is printed or handwritten, an optimal parameter
set for method (A) could be selected according to the judgment. However, it
is difficult to predict the mail type in advance. Method (B), on the other hand,
can cope with both printed and handwritten cases without prior knowledge
of types.

6.8 Conclusion of Address-Block Extraction

A method for extracting the address-block from a mail image in various
formats was developed and tested. In terms of the address-block extraction
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Fig. 6. Address-block Extraction Results (Printed)

accuracy of this method, the top-five correct rate was 94% for printed mail and
89% for handwritten mail. In the case of an address reading system using this
method, the read rate for printed mail was 84.5% and that for handwritten
mail was 67.5%. It is thus concluded the developed method can be applied to
future areas such as signboard extraction and document analysis, if sufficient
learning data is collected in advance.

7 Segmentation of Handwritten Kanji Numerals
Integrating Peripheral Information

7.1 Background of Character Segmentation

We have developed a new method for segmenting handwritten Kanji numerals
written vertically. The segmentation of Kanji numerals written vertically is
difficult, because part of one Kanji numeral pattern can be read as another
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Fig. 7. Address-block Extraction Results (Handwritten)

Kanji numeral character. Figures 9 (a)-(d) show Kanji numerals and hyphens
written vertically. In Figure 9 (a), there are three Kanji numerals and two
hyphens, showing the Kanji numeral “three”, hyphen, “two”, hyphen, and
“one” from top to bottom. The Kanji numeral “one” is expressed by one
horizontal stroke, “two” is expressed by two horizontal strokes; and “three”
is expressed by three horizontal strokes. Thus, if two horizontal strokes are
written in a vertical direction, the pattern is ambiguous; they can be read as
a pair of one’s or as a single two.

Three kinds of information can generally be used to segment characters
[8].

(1) peripheral information like size, shape, and relative positions of patterns
(2) similarity of a candidate character pattern(s) to a valid character
(3) word matching score

In the case of Kanji numeral segmentation, information types (1) and (2)
can be used effectively, but type (3) information can not be used because
unlike a string of characters, the numeral sequence has no contextual infor-
mation. Type (1) information is effective for character segmentation but is
not sufficient by itself. Type (2) information is particularly useful for valid
segmentation, but it is risky to use it alone because segmentation in some
cases is highly ambiguous, as described above.

Our method uses both information types (1) and (2) to resolve the ambi-
guities. The first problem we faced was the fact that the peripheral features
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Fig. 8. Address-Block Extraction Accuracy

included in type (1) information, for example width, height, aspect ratio, and
gap, do not have the same degree of usefulness for ambiguity resolution. Fur-
ther, the degree of usefulness depends on the character category. To overcome
these problems, we applied the Bayesian rule to obtain confidence values for
each potential reading. These confidence values enable us to increase the seg-
mentation accuracy.

7.2 Conventional Character Segmentation Method

An input image is analyzed by a pre-segmentation module that creates
multiple candidates of segmented character patterns. In Figure 10, there
are pre-segmented patterns of Kanji numerals. The hypotheses of the pre-
segmentation are represented in terms of a graph (or a network), and one of
the paths from the initial node to the terminal node is the result of segmenta-
tion. To select the optimum path among all possible paths, the links between
nodes, which represent pre-segmentation candidates, are evaluated. The simi-
larity of each pre-segmented pattern is used in the conventional segmentation
method. The valid patterns (links) have a high similarity value, and the invalid
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Fig. 9. Kanji Numerals Written Vertically

patterns (links) have a low value. In Figure 10, one of the pre-segmented pat-
terns is inputted into the character classification module, then the character
category and similarity value of 0.9 are obtained. In this case, the similarity
is high because the inputted pattern has a valid shape. The evaluation of the
links between nodes eventually identifies the optimum path. This search for
the optimum path can be done through dynamic programming.

However, many pre-segmented patterns of Kanji numerals could be a part
of several Kanji numeral patterns. As shown in Figure 10, the pre-segmented
patterns consist of one horizontal line, two horizontal lines, and three horizon-
tal lines. All patterns can be classified as the Kanji numerals, or with a high
degree of similarity. Therefore, all evaluation values are very high, so it is dif-
ficult to determine the correct path from these pre-segmentation hypotheses
in the case of Kanji numerals.

7.3 Information Concerning Character Category and Peripheral
Features

7.3.1 Character Category Information

When the peripheral features of Kanji numerals “three”, hyphen, “two”, hy-
phen, and “one” (Figure 9(a)) are determined, the aspect ratio of the Kanji
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Fig. 10. Character Segmentation by Multiple Hypotheses Method

numeral “three” is about 1.0. In contrast the width of Kanji numeral “one”
is much greater than the height. Also, the Kanji numeral “three” consists of
three connected components, while the Kanji numeral “one” consists of one.
In this way, the valid values of the peripheral features differ depending on the
character categories.

The usefulness of a feature also differs depending on the character cate-
gories. For example, the usefulness of the spaces in front of and behind the
characters is different for Kanji numerals “three” and “one” because the Kanji
numeral “one” has the same shape as one part of the Kanji numeral “three”,
but a single horizontal line can be distinguished as either “one” or as one part
of Kanji numeral “three” by using information concerning the spaces. There-
fore, for the Kanji numeral “one”, the information concerning the spaces in
front of and behind characters is very important, and the usefulness of this
feature is high.

On the other hand, the similarity given by the character classifier is not
important and is not useful for Kanji numeral “one” because the similarity
values for “one” and the one part of “three” is large in both cases. However,
this information is very useful for other character categories.

Thus, we have to determine the usefulness of specific features for each
character category, and the degrees of usefulness can then be used to calculate
the link evaluation values.
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7.3.2 Usefulness of Features

The degree of feature usefulness can be presented as a likelihood ratio that is
given by equation 3,

L(ek|Hc) =
p(ek|Hc)
p(ek|H̄c)

(3)

where

c : character category assumed for a candidate
Hc : the positive hypothesis of the link being a pattern of character category

c assumed for a candidate
ek : one of the measured features, or the evidence of the hypothesis
P (ek|Hc) : the probability of ek supposing event Hc

The likelihood ratio is then evaluated for the assumed category. We com-
puted the conditional probability P (ek|Hc) in terms of the histogram of ek

when event Hc occurred. To make this histogram, features ek are extracted
from all pre-segmented patterns, then classified into the corresponding char-
acter categories, and further divided into two classes, namely the correct and
incorrect segmentation classes. So P (ek|Hc) can then be obtained from the
histogram. By using the above formula, likelihood ratio L(ek|Hc) can be ob-
tained from this P (ek|Hc).

Figure 11 shows the likelihood ratio graph of a feature extracted from
the pre-segmented character patterns. This graph shows the likelihood dis-
tribution in the case of the character category of Kanji numeral “one”; the
horizontal axis is the feature value of space in front of and behind the char-
acter, and the vertical axis is the likelihood ratio. Increasing the space value
increases the likelihood ratio, demonstrating that the feature of the space in
front of and behind characters is useful.

Thus, after extracting many features from pre-segmented patterns, we se-
lected the most useful features for character segmentation. These features are
shown below.

(A) Pattern height (normalized by line width)
(B) Pattern width (normalized by line width)
(C) Pattern aspect ratio
(D) Spaces in front of and behind characters
(E) Number of connected components in pattern
(F) Similarity of character classifier
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Fig. 11. Likelihood Ratio

7.4 Integrate Likelihood Ratios

The method we used to calculate the confidence value of a link by using the
likelihood ratios of features is described below. We define this confidence value
as the a posteriori probability P (Hc|e1, e2, e3, ..., en), where e1, e2, e3, ..., en is
a list of measured features, or the evidence of the hypothesis. In this chapter,
e1, e2, e3, ..., en are the (A)-(F) features listed above. The confidence value
can be transformed into a computable formula by applying the Bayesian rule
(Bayes theorem), as shown in equation 4.

P (Hc|e1, e2, e3, · · ·, en) =

P (Hc)
P (H̄c)

∏n
k=1 L(ek|Hc)

1 +
P (Hc)
P (H̄c)

∏n
k=1 L(ek|Hc)

(4)

where

c : character category assumed for a candidate
Hc : positive hypothesis of category c given the candidate
e1, e2, e3, ...en : measured features of the candidate
L(ek|Hc) : likelihood ratio for ek for correct category c

The usefulness of each feature is represented by the likelihood ratio. Thus,
the calculated confidence value can be used for the link evaluation.



298 T. Kagehiro and H. Fujisawa

7.5 Implementation

7.5.1 Learning Stage

In the learning stage, many sample images are pre-segmented where candi-
date character patterns, including over-segmented partial patterns, are ex-
tracted. Peripheral features and similarity values are extracted from all of the
pre-segmented patterns, and the histogram of these features is computed as
described in 7.3.2 The sampled versions of the conditional density functions
are then calculated, and the likelihood ratios L(ek|Hc) are pre-computed in
a non-parametric way. The calculated L(ek|Hc) of each feature is stored and
used in the recognition stage.

7.5.2 Recognition Stage

When an image is to be recognized, the pre-segmentation module performs
segmentation as described above, and the features for each candidate are
gathered. Among the features, there is a category index c given by a charac-
ter classifier, and the confidence is computed for the assumed category. The
computation process is depicted in Figure 12. Selection of the best path is
then made using these confidence values.

Fig. 12. New Character Segmentation Method for Street Numbers
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7.6 Experimental Results

In order to measure the character segmentation accuracy, 208 sample images
of character strings which were written by the general public were used for
the experiment. There was no noise pattern in this input data. In the learning
step 1288 samples of correct character patterns and 5082 samples of incorrect
character patterns were used. This learning data set is different from the above
208 sample images. The likelihood ratio was created from the learning data
set. In these samples, characters were written vertically with a ball-point pen,
a writing brush, or a fiber-tipped pen.

In this experiment, we compared three methods as follows.

M1: Use similarity for confidence
M2: Use similarity and peripheral information uniformly for confidence
M3: Use similarity and peripheral information in response to character cate-

gory for confidence

Table 1 shows the character segmentation and the recognition accuracy.
In this experiment, a correct result for character segmentation means that all
characters in the character line were segmented correctly. A correct recognition
result means that all characters in the character line were recognized correctly.

Table 1. Accuracy of character segmentation and recognition

Character segmentation Recognition

M1 33% 30%

M2 73% 62%

M3 87% 71%

Table 1 shows that the character segmentation accuracy of M3 increased by
54 points compared to M1, and 14 points compared to M2. This means that
peripheral information is effective for the character segmentation of Kanji
numerals. Changing the importance level of the peripheral information in
response to the character category is also effective.

With M3, character recognition accuracy increased by 41 points compared
to M1, and 9 points compared to M2. The increment value of character recog-
nition is less than character segmentation, because it is difficult to use lin-
guistic information with the street numbers, despite the correct character
segmentation results.

Figure 13 shows one example of segmentation results. In the Figure, M1
segmented each simple pattern as the characters in ImageA, ImageB, and
ImageC. This means that each simple pattern has a high similarity value,
because each can be read as Kanji numerals. M2 segmented those patterns
which are separated by wide gaps from other patterns as shown in Figure 13
ImageB. M3 was able to segment the character patterns correctly, because
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Fig. 13. Character Segmentation Results
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it used information about the size, aspect, and gaps for the confidence value
in response to the character category. Especially, ImageC in Figure 13 shows
that M3 can solve the difficult character segmentation problem when there
are many simple patterns and various sizes.

8 Conclusion

There are many approaches to document analysis, and these approaches can
be divided in two types, top-down and bottom-up. Each of these two types has
its good and bad points, and the most effective approach is different according
to the kind of document in question. The top-down approach is best suited to
well-known layouts, and the bottom-up approach is better when the layout is
unknown.

OCR systems which read only the ROI (Region Of Interest) in a docu-
ment can be effectively used for office automation. In this case, there are many
methods which adopt the multiple hypotheses approach. If the multiple hy-
potheses approach is used for an OCR system, it is easy to design the whole
system and adjust the balance between recognition accuracy and calculation
costs.

In this discussion, a recognition system for mail destination addresses was
introduced as a case in which the multiple hypotheses approach was used
successfully. We described an effective method which can solve the ambiguity
and variation in destination address recognition. Specifically, an address-block
extraction method and character segmentation of the street numbers were in-
troduced. These methods create a number of candidates using multiple hy-
potheses, and evaluate each candidate by a Bayesian rule. These evaluated
candidates are then sorted by confidence value, and one correct answer is
finally selected.

Future OCR systems will probably include expanded target fields and in-
creased recognition accuracy. This will enable many more tasks in the office to
be automated, freeing humans from simple, repetitive labor. Many researchers
are currently working on character recognition in real scenes. For example, an
embedded OCR was developed for mobile phones. We believe that the most
difficult problems facing OCR will gradually be solved, and that eventually
OCR systems will be able to recognize whole characters which are written
anywhere in the world.
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Summary. Two types of matching score dependencies might be observed during
the training of multiple classifier recognition system - the dependence between scores
produced by different classifiers and the dependence between scores assigned to
different classes by the same classifier. Whereas the possibility of first dependence
is evident, and existing classifier combination algorithms usually account for this
dependence, the second type of dependence is mostly disregarded. In this chapter we
discuss the properties of such dependence and present few combination algorithms
effectively dealing with it.

1 Introduction

The integration of recognition algorithms into a single document processing
system might involve different available modules suitable for a single task.
For example, we might possess few character or word recognition algorithms
which all can be used in the system. One possible approach is to test these
algorithms and to choose the one with the best performance. But practice
shows that better approach is to try to use all available algorithms and to
combine their outputs in order to achieve a better performance than any
single algorithm. The combination problem consists in learning the behavior
of given algorithms and deriving best possible combination function.

We assume that both the combined algorithms and the result of combi-
nation are classifiers. Thus a finite number of classes are distinguished in the
problem, and the task is to find a class, which corresponds most to the input.
As examples, classes might be a character set, a word lexicon, a person list,
etc. Usually classifiers output the numeric matching scores corresponding to
each class, and we will assume that these scores are available for combination.
The combination algorithm is a function producing a final combined score for
each class, and the final classifier selects class with the best combined score.

The purpose of this chapter is to investigate the different scenarios of com-
bining classifiers, to show the difficulties in finding the optimal combination
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algorithms, and to present few possible approaches to combination problems.
Generally, the classifier combination problem can be viewed as a construc-
tion of postprocessing classifier operating on the matching scores of combined
classifiers. For many classifier combination problems, though, the number of
classes or the number of classifiers and, consequently, the number of match-
ing scores is too big, and applying generic pattern classification algorithms is
difficult. Thus some scores are usually discarded from combination algorithm,
or simplifying assumptions on score distributions are made and used in the
combination algorithm. Though the dependency between classifiers is usually
learned by the combination algorithms, the dependency between scores as-
signed to different classes by the same classifier is discarded. In this work we
will show that accounting for score dependencies is essential for proper com-
bination of classifiers. The theory will be complemented by the experiments
we perform on handwritten word recognizers and biometric person matchers.

2 Problem Description

Though the general theory presented in this chapter can be applied to any
classifier combination task, we will mostly focus on two particular applica-
tions: handwritten word recognition and biometric person authentication. As
a result, we are making few assumptions about combined classifiers. First we
assume that each classifier assigns a matching score for each class, and we
use these scores for combination. It would be convenient to call these classi-
fiers ‘matchers’ or ‘recognizers’, in contrast to the general notion of classifiers
making a decision and thus having selected class as their only output. Sec-
ond, we assume that we only combine a small number of given matchers; in
fact, for both applications we consider combinations of two matchers. Thus we
separate ourselves from the so called ‘classifier ensembles’ having potentially
large number of dynamically generated classifiers. Finally, we assume that the
number of classes is large and may be variable. Indeed, the number of possi-
ble handwritten words defined by the corresponding lexicon or the number of
enrolled persons in biometric database can be both large and variable. To be
more specific, we describe both applications next.

2.1 Handwritten Word Recognizers

We consider the application of handwritten word recognizers in the automatic
processing of United Kingdom mail. The destination information of the mail
piece will usually contain the name of the postal town or county. After au-
tomatic segmentation of the mail piece image the goal of handwritten word
recognizer is to match hypothesized town or county word image against a
lexicon of possible names. Provided lexicon contains 1681 entries.

We use two handwritten word recognizers for this application: Character
Model Recognizer (CMR)[1] and Word Model Recognizer (WMR)[2]. Both
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recognizers employ similar approaches to word recognition: they oversegment
the word images, match the combinations of segments to characters and de-
rive a final matching score for each lexicon word as a function of character
matching scores. Still, the experiments (see Table 1) reveal that these match-
ers produce somewhat complementary results and their combination might be
beneficial.

Our data consists of three sets of word images of approximately same
quality (the data was provided as these three subsets and we did not regroup
them). The images were manually truthed and only those images containing
any of the 1681 lexicon words were retained. The word recognizers were run
on these images and their match scores for all 1681 lexicon words were saved.
Note, that both recognizers reject some lexicon entries if, for example, the
lexicon word is too short or too lengthy for presented image. We assume that
in real systems such rejects will be dealt with separately (it is possible that
the lexicon word corresponding to image truth will be rejected), but for our
combination experiments we only keep scores of those lexicon words which are
not rejected by any of the two recognizers. Thus for each image Ik we have a
variable number Nk of score pairs (scmr

i , swmr
i ), i = 1, . . . , Nk corresponding

to non-rejected lexicon words. One of these pairs corresponds to the true word
of the image and we will call these scores ‘genuine’, and other ‘impostor’ score
pairs correspond to non-truth words.

After discarding images with non-lexicon words, and images where truth
word was rejected by any recognizer, we are left with three sets of 2654, 1723
and 1770 images and related sets of score pairs. We will refer to the attempt
of recognizing word image as identification trial. Thus each identification trial
has a set score pairs (scmr

i , swmr
i ), i = 1, . . . , Nk with one genuine score pair

and Nk − 1 impostor pairs. The scores of each recognizer were also linearly
normalized so that each score is in the interval [0, 1] and bigger score means
better match.

In order to get the general picture of the performance of considered recog-
nizers we can count the numbers of identification trials where genuine score
is better than all impostor scores of that trial. We summarized these counts
in Table 1. The number of trials where first matcher (CMR) produced the
genuine score bigger than all impostor scores is 3366, and second matcher
(WMR) did the same 4744 times. Apparently, WMR has better performance,
but still there are some identification trials (5105− 4744 = 361), where CMR
is correct and WMR is not. Since there is such distinction between recogniz-
ers, we strongly hope that their combination might achieve higher recognition
rates.

Since our data was already separated into three subsets, we used this struc-
ture for producing training and testing sets. Each experiment was repeated
three times, each time one subset is used as a training set, and two other
sets are used as test sets. Final results are derived as averages of these three
training/testing phases.
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Matchers Total # 1st matcher 2nd matcher Both are Either one
of trials is correct is correct correct is correct

CMR&WMR 6147 3366 4744 3005 5105

li&C 5982 4870 4856 3937 5789

li&G 5982 4870 4635 3774 5731

Table 1. Numbers of identification trials with any matcher having best score for
the correct class

2.2 Biometric Person Matchers

We used biometric matching score set BSSR1 distributed by NIST[3]. This set
contains matching scores for a fingerprint matcher and two face matchers ‘C’
and ‘G’. Fingerprint matching scores are given for left index ‘li’ finger matches
and right index ‘ri’ finger matches. In this work we used both face matching
scores and fingerprint ‘li’ scores and we do two types of combinations: ‘li’&‘C’
and ‘li’&‘G’.

Though the BSSR1 score set has a subset of scores obtained from same
physical individuals, this subset is rather small - 517 identification trials with
517 enrolled persons. In our previous experiments[4] we used this subset, but
the number of failed identification attempts for most experiments was less
than 10 and it is difficult to compare algorithms with so few negatives. In
this work we use bigger subsets of fingerprint and face matching scores of
BSSR1 by creating virtual persons; the fingerprint scores of a virtual person
come from one physical person and the face scores come from another physical
person. The scores are not reused, and thus we are limited to the maximum
number of identification trials - 6000 and the maximum number of classes,
or enrolled persons, - 3000. Some enrollees and some identification trials also
needed to be discarded since all corresponding matching scores were invalid
probably due to enrollment errors. In the end we split data in two equal parts
- 2991 identification trials with 2997 enrolled persons with each part used as
training and testing sets in two phases.

Table 1 shows the numbers of identification trials with genuine scores
bigger than all impostor scores of that trial. The matchers now are more
equal in strength and there is only a small number of trials where neither
matcher correctly identified the genuine person.

3 Verification and Identification Tasks

Above described applications might include different operating scenarios. In
one scenario the system generates a hypothesis of a true class of the input
beforehand, and the task of the matchers is to verify if the input indeed of
the hypothesized class. For example, a bank check recognition system might
hypothesize about the value of the check based on the legal field, and numeric
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string recognition module must confirm that courtesy value coincides with the
legal amount[5]. In biometric person verification systems a person presents
a unique person identifier to the system, and biometric recognition module
verifies if person’s biometric scan matches the enrolled biometric template of
claimed person’s identity.

In another operating scenario a class of the input should be selected from
a set of possible classes. Each lexicon word can be associated with a class for
word recognition applications. In our considered application a set of UK postal
town and county names serves as a lexicon for word recognizers. For biometric
person recognition a set of classes can coincide with the set of enrolled persons.
The task of recognizer in this scenario is to select the class, which is the true
class of input signal. We will assume that we deal with so called ‘closed set
identification’, where the true class of input is included in the set of possible
classes; in contrast ‘open set identification’ might not include true class in this
set, and input needs to be rejected in this case.

We will call the system operating in the verification mode as verification
system, and system operating in identification mode as identification system.
Correspondingly, the problem solved by matchers or their combinations in the
first case will be called verification task, and in the second case - identifica-
tion task. Note that there could also be other operating scenarios involving
considered matchers; as an example we have given open set identification.

3.1 Performance Measures

Different modes of operation demand different performance measures. For
verification systems the performance is traditionally measured by means of
Receiver Operating Characteristic (ROC) curves or by Detection Error Trade-
off (DET) curve. These curves are well suited for describing the performance
of two-class pattern classification problems. In such problems there are two
types of errors: the samples of first class are classified to belong to second class,
and samples of second class are classified to be in first class. The decision to
classify a sample to be in one of two classes is usually based on some threshold.
Both performance curves show the relationship between two error rates with
regards to a threshold (see [6] for precise definition of above performance
measures).

In our case we will use ROC curves for comparing algorithm performance.
If a matcher is used for verification task there are two classes: genuine if
input belongs to the same hypothesized class, and impostor otherwise. The
decision is traditionally based on the matching score of a recognizer assigned
for hypothesis class.

For measuring performance of identification systems we will use ranking
approach. In particular, we are interested in maximizing the rate of correctly
identifying the input, first-rank-correct rate. If we look at identification task
as a pattern classification problem, this performance measure will directly
correspond to the traditional minimization of the classification error. Note
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that there are also other approaches to measure performance in identification
systems[6], e.g. Rank Probability Mass, Cumulative Match Curve, Recall-
Precision Curve. Though they might be useful for some applications, in our
case we will be more interested in correct identification rate.

4 Verification Systems

The problem of combining matchers in verification systems can be easily
solved with pattern classification approach. As we already noted, there are
two classes: genuine verification attempts and impostor verification attempts.
The hypothesis class of the input is provided before matching. Each matcher
j outputs a score sj corresponding to a match confidence between input sam-
ple and hypothesis class. Assuming that we combine M classifiers, our task is
to perform two-class classification (genuine and impostor) in M -dimensional
score space {s1, . . . , sM}. If the number of combined classifiers M is small, we
will have no trouble in training pattern classification algorithm.

We employ the Bayesian risk minimization method as our classification
approach[7]. This method states that the optimal decision boundaries between
two classes can be found by comparing the likelihood ratio

flr(s1, . . . , sM ) =
pgen(s1, . . . , sM )
pimp(s1, . . . , sM )

(1)

to some threshold θ where pgen and pimp are M -dimensional densities of score
tuples {s1, . . . , sM} corresponding to two classes - genuine and impostor ver-
ification attempts. In order to use this method we have to estimate the den-
sities pgen and pimp from the training data. For our applications the number
of matchers M is 2 and the number of training samples is large (bigger than
1000), so we can successfully estimate these densities.

In our data each identification trial has one genuine and Nk − 1 impostor
score pairs, so the total number of genuine score pairs is T = K (K is the
number of identification trials in the training set) and the total number of
impostor score pairs is T =

∑K
k=1(Nk − 1). We approximate both densities as

the sums of 2-dimensional gaussian Parzen kernels

p̂(s1, s2) =
1
T

T∑
t=1

1
2πσ2

e−
(s1−s1

t )2+(s2−s2
t )2

2σ2

where {s1
t , s

2
t}t=1,...,T are the set of training score pairs. The window param-

eter σ is estimated by the maximum likelihood method on the training set[8]
using leave-one-out technique. Note that σ is different for genuine and impos-
tor density approximations.

For a given threshold θ we calculate the number of misidentified sam-
ples from the test data set of each class. The genuine samples (s1, s2) are
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misidentified as impostor samples if f̂lr(s1, s2) = p̂gen(s1,s2)
p̂imp(s1,s2) < θ (false re-

jects), and impostor samples misidentified as genuine if f̂lr(s1, s2) ≥ θ (false
accepts). Thus for each θ we calculate false reject and false accept rates,
FRR(θ) and FAR(θ), and construct ROC curve, which is a graph of FRR(θ)
versus FAR(θ). The resulting ROC curves for original matchers and for their
combinations with likelihood ratio method are shown in Figures 1, 2 and 3.
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Fig. 1. ROC curves for two handwritten word recognizers (WMR and CMR) and
their combinations by likelihood ratio and weighted sum methods

As we expected, the combination has better performance than any of the
individual matchers. Biometric matchers are based on different modalities and
thus better complement each other than word recognizers. This is indicated
by the performance graphs: the improvement is bigger in the case of biometric
matchers.

The likelihood ratio combination method is theoretically optimal for ver-
ification systems and its performance only limited by our ability to correctly
estimate score densities. The density estimation is known to be a difficult
task; working with many-dimensional data, having heavy tailed distributions
or discreteness in the data can lead to very poor density estimates. In our
experiments we had sufficient number of training samples in 2-dimensional
space and the task was relatively easy, but still we had to make adjustments
for the discreteness of fingerprint scores represented by the integer numbers
in the range 0 − 350.
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Fig. 2. ROC curves for two biometric matchers (fingerprint ‘li’ and face ‘C’) and
their combinations by likelihood ratio and weighted sum methods

Since our problem is the separation of genuine and impostor classes, we
could apply many existing pattern classification techniques. For example, sup-
port vector machines have shown good performance in many tasks, and can
be definitely used to improve the likelihood ratio method. In [9] we performed
some comparisons of likelihood ratio method with SVMs on an artificial task
and found that on average (over many random training sets) SVMs do have
slightly better performance, but for a particular training set it might not
be true. The difference in performance is quite small and decreases with the
increasing number of training samples. Also note that many pattern classifi-
cation algorithms provide only a single decision boundary (separating hyper-
plane in the kernel mapped space for SVMs), and this effectively results in
the single point of FAR-FRR plane instead of ROC curve. The advantage of
likelihood ratio combination method is that we get the whole range of solu-
tions by varying threshold parameter θ and which are represented by ROC
curve.

5 Identification Systems

In identification systems a hypothesis of the input sample is not available
and we have to choose the input’s class among all possible classes. Denote N
as the number of classes. The total number of matching scores available for
combination now is MN : N matching scores for each class from each of M
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Fig. 3. ROC curves for two biometric matchers (fingerprint ‘li’ and face ‘G’) and
their combinations by likelihood ratio and weighted sum methods

combined classifiers. If numbers M and N are not big, then we can use generic
pattern classifiers in MN -dimensional score space to find the input’s class
among N classes. For some problems, e.g. digit or character recognition, this
is an acceptable approach; the number of classes is small and usually there is
a sufficient number of training samples to properly train pattern classification
algorithms operating in MN score space.

But for our applications in handwritten word recognition and biometric
person identification the number of classes is too big and the number of train-
ing samples is too small (there might be even no training samples at all for a
particular lexicon word), so the pattern classification in the MN -dimensional
score space seems to be out of the question. The traditional approach in this
situation is to use some combination rules. The combination rule implies the
use of some combination function f operating only on M scores corresponding
to one class, f(s1, . . . , sM ), and it states that the decision class C is the one
which maximizes the value of a combination function:

C = arg max
i=1,...,N

f(s1
i , . . . , s

M
i ) (2)

Note that in our notation the upper index of the score corresponds to the
classifier, which produced this score, and lower index corresponds to the class
for which it was produced. The names of combination rules are usually di-
rectly derived from the names of used combination functions: the sum function
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f(s1, . . . , sM ) = s1 + · · ·+ sM corresponds to the sum rule, the product func-
tion f(s1, . . . , sM ) = s1 . . . sM corresponds to the product rule and so on.

Many combination rules have been proposed so far, but there is no agree-
ment on the best one. It seems that different applications require different
combination rules for best performance. Anyone wishing to combine matchers
in real life has to test few of them and choose the one with best performance.
Combination rules are also frequently used for verification problems to find
the final score, which is compared with threshold and the decision is based on
this comparison. But there is no real need to do it - the plethora of pattern
classification algorithms is available for solving combinations in verification
problems.

Our main interest in this chapter is to investigate the problem of finding
the optimal combination function for identification systems. This problem ap-
pears to be much more difficult in comparison to combinations in verification
systems.

5.1 Likelihood Ratio Combination Rule

As we already know, likelihood ratio function is the optimal combination func-
tion for verification systems. We want to investigate whether it will be optimal
for identification systems. Suppose we performed a match of the input sample
by all M matchers against all N classes and obtained MN matching scores
{sj

i}i=1,...,N ;j=1,...,M . Assuming equal prior class probabilities, the Bayes de-
cision theory states that in order to minimize the misclassification rate the
sample should be classified as one with highest value of likelihood function
p({sj

i}i=1,...,N ;j=1,...,M |ωi). Thus, for any two classes ω1 and ω2 we have to
classify input as ω1 rather than ω2 if

p({sj
i}i=1,...,N ;j=1,...,M |ω1) > p({sj

i}i=1,...,N ;j=1,...,M |ω2) (3)

Let us make an assumption that the scores assigned to each class are sampled
independently from scores assigned to other classes; scores assigned to gen-
uine class are sampled from M -dimensional genuine score density, and scores
assigned to impostor classes are sampled from M -dimensional impostor score
density:

p({sj
i}i=1,...,N ;j=1,...,M |ωi)

= p({s1
1, . . . , s

M
1 }, . . . , {s1

ωi
, . . . , sM

ωi
}, . . . , {s1

N , . . . , sM
N }|ωi)

= pimp(s1
1, . . . , s

M
1 ) . . . pgen(s1

ωi
, . . . , sM

ωi
) . . . pimp(s1

N , . . . , sM
N )

(4)

After substituting 4 into 3 and canceling out common factors we obtain
the following inequality for accepting class ω1 rather than ω2:

pgen(s1
ω1

, . . . , sM
ω1

)pimp(s1
ω2

, . . . , sM
ω2

) > pimp(s1
ω1

, . . . , sM
ω1

)pgen(s1
ω2

, . . . , sM
ω2

)
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or
pgen(s1

ω1
, . . . , sM

ω1
)

pimp(s1
ω1

, . . . , sM
ω1

)
>

pgen(s1
ω2

, . . . , sM
ω2

)
pimp(s1

ω2
, . . . , sM

ω2
)

(5)

The terms in each part of the above inequality are exactly the values of the
likelihood ratio function flr taken at the sets of scores assigned to classes ω1

and ω2. Thus, the class maximizing the MN -dimensional likelihood function of
inequality 3 is the same as a class maximizing the M -dimensional likelihood
ratio function of inequality 5. The likelihood ratio combination rule is the
optimal combination rule under used assumptions.

Matchers 1st matcher 2nd matcher Either one Likelihood Weighted
is correct is correct is correct Ratio Rule Sum Rule

CMR&WMR 3366 4744 5105 4293 5015

li&C 4870 4856 5789 5817 5816

li&G 4870 4635 5731 5737 5711

Table 2. Correct identification rate for likelihood ratio and weighted sum combi-
nation rules

Table 2 shows the performance of this rule on our data sets. Whereas the
combinations of biometric matchers have significantly higher correct identi-
fication rates than single matchers, the combination of word recognizers has
lower correct identification rate than a single WMR matcher. This fact is
rather surprising: the calculation of the combined scores by the likelihood
ratio is exactly the same as we did for combinations in verification systems
which gave us significant improvements in all cases ( Figures 1, 2 and 3).

Few questions arise after reviewing the results of these experiments:

• If likelihood ratio combination rule was not able to improve correct identi-
fication rate of word recognizers, is there any other rule which will succeed?

• What are the reasons for the failure of seemingly optimal combination
rule?

• What is the true optimal combination rule, and can we devise an algorithm
of learning it from the training data?

In the rest of this chapter we will investigate these questions.

5.2 Weighted Sum Combination Rule

One of the frequently used rules in classifier combination problems is the
weighted sum rule with combination function f(s1, . . . , sM ) = w1s

1 + · · · +
wMsM . The weights wj can be chosen heuristically with the idea that better
performing matchers should have bigger weight, or they can be trained to
optimize some criteria. In our case we train the weights so that the number of
successful identification trials on the training set is maximized. Since we have
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two matchers in all configurations we use brute-force method: we calculate the
correct identification rate of combination function f(s1, s2) = ws1 +(1−w)s2

for different values of w ∈ [0, 1], and find w corresponding to highest rate.
The numbers of successful identification trials on the test sets is presented

in Table 2. In all cases we see an improvement over the performances of single
matchers. The combination of word recognizers is now successful and is in line
with the performance of other combinations of matchers.

We also investigated the performance of this method in the verification
task. Figures 1, 2 and 3 contain ROC curves of the weighted sum rule used
in verification task with the same weights as in identification experiments. In
all cases we get slightly worse performance from the weighted sum rule than
from the likelihood ratio rule. This confirms our assertion that the likelihood
ratio is the optimal combination method for verification systems.

5.3 Explaining Identification System Behavior

The main assumption that we made while deriving likelihood ratio combina-
tion rule in section 5.1 is that the score samples in each identification trial
are independent. That is, genuine score is sampled from genuine score distri-
bution and is independent from impostor scores which are independent and
identically distributed according to impostor score distribution. We can verify
if this assumption is true for our matchers.

Matchers firstimp secondimp thirdimp meanimp

CMR 0.4359 0.4755 0.4771 0.1145

WMR 0.7885 0.7825 0.7663 0.5685

li 0.3164 0.3400 0.3389 0.2961

C 0.1419 0.1513 0.1562 0.1440

G 0.1339 0.1800 0.1827 0.1593

Table 3. Correlations between sgen and different statistics of the impostor score
sets produced during identification trials for considered matchers

Table 3 shows correlations between genuine score and some functions of
the impostor scores obtained in the same identification trial. firstimp column
has correlations between genuine and the best impostor score, secondimp and
thirdimp consider second-best and third-best impostor scores, and meanimp

has correlations between the mean of all impostor scores obtained in an iden-
tification trial and a genuine score. Non-zero correlations indicate that the
scores are dependent. The correlations are especially high for word recogniz-
ers, and this might be the reason why the likelihood ratio combination rule
performed poorly there.

The dependence of matching scores obtained during a single identification
trial is usually not taken into account. One of the reasons might be that as a
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rule all matching scores are derived independently from each other: the same
matching process is applied repeatedly to all enrolled biometric templates or
all lexicon words, and the matching score for one class is not influenced by the
presence of other classes or the matching scores assigned to other classes. So
it might seem that the matching scores are independent, but it is rarely true.
The main reason for this is that all matching scores produced during identifi-
cation trial are derived using the same input signal. For example, a fingerprint
matcher, whose matching score is derived from the number of matched minu-
tia in enrolled and input fingerprint, will produce low scores for all enrolled
fingerprints if the input fingerprint has only few minutiae.

The next three examples will illustrate the effect of score dependences
on the performance of identification systems. In particular, second example
confirms that if identification system uses likelihood ratio combination, then
its performance can be worse than the performance of a single matcher.

5.3.1 Example 1

Suppose we have an identification system with one matcher and, for simplicity,
N = 2 classes. During each identification attempt a matcher produces two
scores corresponding to two classes, and, since by our assumption the input
is one of these two classes (closed set identification), one of these scores will
be genuine match score, and another will be impostor match score. Suppose
we collected a data on the distributions of genuine and impostor scores and
reconstructed score densities (let them be gaussian) as shown in Figure 4.
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Fig. 4. Hypothetical densities of matching(genuine) and non-matching(impostors)
scores

Consider two possible scenarios on how these densities might have origi-
nated from the sample of the identification attempts:

1. Both scores sgen and simp are sampled independently from genuine and
impostor distributions.
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2. In every observed identification attempt : simp = sgen − 1. Thus in this
scenario the identification system always correctly places genuine sample
on top. There is a strong dependency between scores given to two classes,
and score distributions of Figure 4 do not reflect this fact.

If a system works in verification mode and we have only one match score
to make a decision on accepting or rejecting input, we can only compare
this score to some threshold. By doing so both scenarios would have same
performance: the rate of false accepts (impostor samples having match score
higher than threshold) and the rate of false rejects (genuine samples having
match score lower than threshold) will be determined by integrating impostor
and genuine densities of Figure 4 no matter what scenario we have. If system
works in identification mode, the recognizer of the second scenario will be
a clear winner: it is always correct while the recognizer of first scenario can
make mistakes and place impostor samples on top.

This example shows that the performance of the matcher in the verification
system might not predict its performance in the identification system. Given
two matchers, one might be better for verification systems, and another for
identification systems.

5.3.2 Example 2

Consider a combination of two matchers in two class identification system: one
matcher is from the first scenario, and the other is from the second scenario.
Assume that these matchers are independent. Let the upper score index refer
to the matcher producing this score; sj

i is the score for class i assigned by the
classifier j. From our construction we know that the second matcher always
outputs genuine score on the top. So the optimal combination rule for identi-
fication system will simply discard scores of first matcher and retain scores of
the second matcher:

f(s1, s2) = s2 (6)

The input will always be correctly classified as arg maxi s2
i .

Let us now use the likelihood ratio combination rule for this system.
Since we assumed that matchers are independent, the densities of genuine
pgen(s1, s2) and impostor pimp(s1, s2) scores are obtained by multiplying cor-
responding one-dimensional score densities of two matchers. In our example,
impostor scores are distributed as a Gaussian centered at (0, 0), and genuine
scores are distributed as a Gaussian centered at (1, 1). Figure 5(a) contains
the contours of function |pgen − pimp| which allows us to see the relative po-
sition of these gaussians. The gaussians have same covariance matrix, and
thus the optimal decision contours are hyperplanes[7] - lines s1 + s2 = c. Cor-
respondingly, the likelihood ratio combination function is equivalent to the
combination function f = s1 + s2 (note, that true likelihood ratio function
will be different, but if two functions have same contours, then their combi-
nation rules will be the same). Such combination improves the performance



Learning Matching Score Dependencies for Classifier Combination 319

of the verification system relative to any single matcher; Figure 5(b) shows
corresponding ROC curves for any single matchers and their combination.
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Fig. 5. (a) Two-dimensional distributions of genuine and impostor scores for ex-
amples 2 and 3 (b) ROC curves for single matchers and their likelihood ratio
combination

Suppose that (s1
1, s

2
1) and (s1

2, s
2
2) are two score pairs obtained during one

identification trial. The likelihood ratio combination rule classifies the input
as a class maximizing likelihood ratio function:

arg max
i=1,2

pgen(s1
i , s

2
i )

pimp(s1
i , s

2
i )

= arg max
i=1,2

s1
i + s2

i (7)

Let the test sample be (s1
1, s

2
1) = (−0.1, 1.0), (s1

2, s
2
2) = (1.1, 0). We know from

our construction that class 1 is the genuine class, since the second matcher
assigned score 1.0 to it and 0 to the second class. But the class 2 with scores
(1.1, 0), has combined score s1

2 + s2
2 = 1.1 + 0 = 1.1, which is bigger than

combined score for class 1, s1
1 + s2

1 = −0.1 + 1.0 + 0 = 0.9. Hence class 2 has
bigger ratio of genuine to impostor densities than class 1, and the likelihood
ratio combination method would incorrectly classify class 2 as the genuine
class.

Thus the optimal for verification system likelihood ratio combination rule
(7) has worse performance than a single second matcher. On the other hand,
the optimal for identification system rule (6) does not improve the perfor-
mance of the verification system. Recall, that in section 5.1 we showed that
if scores assigned by matchers to different classes are independent, then like-
lihood ratio combination rule is optimal for identification systems, as well
as for verification systems. Current example shows that if there is a depen-
dency between scores, this is no longer a case, and the optimal combination
for identification systems can be different from the optimal combination for
verification systems.
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It seems that this example is analogous to our experiments with the com-
bination of word recognizers. Our better performing word recognizer, WMR,
has strong dependence between scores assigned to different classes (Table 3),
and the resulting combination by likelihood ratio rule has worse performance
than WMR’s.

5.3.3 Example 3

The problem of finding optimal combination function for verification systems
was a relatively easy task: we needed to approximate the densities of genuine
and impostor scores and take their ratio. It turns out that the problem of
finding optimal combination function for identification systems is considerably
more difficult - we are not able to express it in such simple form. In fact, it
is even difficult to construct an artificial example where we would know what
this function is. Here we consider one such example.

Let Xgen, Ximp and Y be independent two-dimensional random variables,
and suppose that genuine scores in our identification system are sampled as
a sum of Xgen and Y : sgen = xgen +y, and impostor scores are sampled as a
sum of Ximp and Y : simp = ximp +y, xgen ∼ Xgen, ximp ∼ Ximp and y ∼ Y ,
bold symbols here denote two-dimensional vector in the space (s1, s2). The
variable Y provides the dependence between scores in identification trials; we
assume that its value y is the same for all scores in one identification trial.

Let Xgen and Ximp have gaussian densities pXgen(s1, s2) and pXimp(s1, s2)
as in the previous example and in the Figure 5(a). For any value of y con-
ditional densities of genuine and impostor scores pXgen+Y |Y =y(s1, s2) and
pXimp+Y |Y =y(s1, s2) are also gaussian and independent. As we discussed in
the previous example, the likelihood ratio combination rule results in the com-
bination function f(s1, s2) = s1 + s2, and this rule will be optimal for every
identification trial and its associated value y. The rule itself does not depend
on the value of y, so we can use it for every identification trial, and this is our
optimal combination rule for identification system.

On the other hand, this rule might not be optimal for the verification sys-
tem defined by the above score distributions. For example, if Y is uniformly
distributed on the interval 0 × [−1, 1], then the distributions of genuine and
impostor scores Xgen+Y and Ximp+Y will be as shown in the Figure 6(a) and
the optimal combination rule separating them will be as shown in the Figure
6(b). By changing the distribution of Y and thus the character of dependence
between genuine and impostor scores we will also be changing optimal combi-
nation rule for verification system. At the same time, the optimal combination
rule for identification system will stay the same - f(s1, s2) = s1 + s2.

If we knew only the overall score distributions as in the Figure 6(a) we
would not have enough information to find the optimal combination function
for identification system. If score vectors having distributions of Figure 6(a)
are in its own turn are independent, then likelihood ratio combination of
Figure 6(b) will be optimal for identification system. Or, if scores are generated
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Fig. 6. (a) Two-dimensional distributions of genuine and impostor scores for exam-
ple 3 (b) Contours of the likelihood ratio combination function

by the initial construction, linear combination function is the optimal one.
Thus, there could be different optimal combination functions for identification
systems with scores distributed as in the Figure 6(a), and the difference is
determined by the nature of the score dependencies in identification trials.

6 Estimating Optimal Combination Function
for Identification Systems

As we saw in the example 3 of the previous section, it is rather difficult to
say from the training samples what is the optimal combination function for
the identification system. The densities of genuine and impostor matching
scores are of little help, and might be useful only if the scores in identification
trials are independent. For dependent scores we have to consider the scores in
each identification trial as a single training sample, and train the combination
function on these samples.

This was precisely the technique we used to train the weighted sum rule
for identification systems in section 5.2. For each training identification trial
we checked whether the genuine score pair produced bigger combined scores
than all impostor score pairs. By counting the numbers of successful trials we
were able to choose the proper weights.

Though the weighted sum rule provides a reasonable performance in our
applications, its decision surfaces are linear and might not completely sepa-
rate generally non-linear score distributions. We might want our combination
function to be more complex, trained with available training set and possi-
bly approaching ideal optimal function when the size of the training set is
increased. In this section we present two ideas on learning such combination
functions. Since we do not know the exact analytical form of optimal combi-
nation function, the presented combination methods are rather heuristic.
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6.1 Learning Best Impostor Distribution

The likelihood ratio combination function of section 5.1 separates the set of
genuine score pairs from the set of all impostor score pairs. But we might
think that for identification systems it is more important to separate genuine
score pairs from the best impostor score pairs obtained in each identification
trial. There is a problem, though, that we do not know which score pair is the
best impostor in each identification trial. The best impostor score pair can be
defined as one having biggest combined score, but the combination function
is unknown.

To deal with this problem we implemented an iterative algorithm, where
the combination function is first randomly initialized and then updated de-
pending on found best impostor score pairs. The combination rule is based on
the likelihood ratio function with the impostor density trained only on the set
of found best impostor score pairs. The exact algorithm is presented below:

1. Make initialization of f(s1, s2) = p̂gen(s1,s2)
p̂imp(s1,s2) by selecting random impostor

score pairs from each training identification trial for training p̂imp(s1, s2).
2. For each training identification trial find the impostor score pair with

biggest value of combined score according to currently trained f(s1, s2).
3. Update f(s1, s2) by replacing impostor score pair of this training identi-

fication trail with found best impostor score pair.
4. Repeat steps 2-3 for all training identification trials.
5. Repeat steps 2-4 for predetermined number of training epochs.

The algorithm converges fast - after 2-3 training epochs, and found best
impostor score pairs change little in the subsequent iterations. The trained
combination function subsequently gets tested using a separate testing set.
Table 4 (Best Impostor Likelihood Ratio method) provides the results of the
experiments.

Matchers Likelihood Weighted Best Impostor Logistic Weighted Sum
Ratio Rule Sum Rule Likelihood Ratio Sum Rule + Ident Model

CMR&WMR 4293 5015 4922 5005.5 5025.5

li&C 5817 5816 5803 5823 5826

li&G 5737 5711 5742 5753 5760

Table 4. Correct identification rate for all considered combination methods

The method seems to perform well, but weighted sum combination rule is
still better for word recognizers and biometric li&C matchers. This method is
not able to fully account for the dependence of scores in identification trials,
and the learning of the optimal combination function will not be probably
achieved with it.
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6.2 Sum of Logistic Functions

Generally, the matching score reflects the confidence of the match, and we
can assume that if the score is bigger, then the confidence of the match
is higher. When the scores are combined, the higher score should result in
higher combination score. Thus, the combination function f(s1, s2) should be
monotonically nondecreasing in both of its arguments. One type of monotonic
functions, which are frequently used in many areas, are logistic functions:

l(s1, s2) =
1

1 + e−(α1s1+α2s2+α3)

If α1 ≥ 0 and α2 ≥ 0, then l(s1, s2) is monotonically nondecreasing in both of
its arguments. Our goal is to approximate the optimal combination function
as a sum of such logistic functions. The sum of monotonically nondecreasing
functions will also be monotonically nondecreasing.

Suppose we have one identification trial and s1 = (s1
1, s

2
1) and s2 = (s1

2, s
2
2)

are two score pairs of this trial. Let s1 be a genuine score pair, and s2 be an
impostor score pair. Suppose also that we have some initial sum of logistic
functions as our combination function. If both matchers gave a higher score
to the genuine class and s1

1 > s1
2 and s2

1 > s2
2, then by our construction the

combination score for genuine class will be higher than the combination score
for impostor class. There is no need to do any modifications to our current
combination function. If both matchers gave a lower score to the genuine class
and s1

1 < s1
2 and s2

1 < s2
2, then we can not do anything - any monotonically

nondecreasing function will give a lower combination score to the genuine
class.

If one matcher gave a higher score to the genuine class and another matcher
gave a higher score to the impostor class, we can adjust our combination
function by adding corresponding logistic function to the current sum. For
example, if s1

1 > s1
2 and s2

1 < s2
2 logistic function l(s1, s2) = 1

1+e−(α1s1+α3) will
be increasing with respect to the first argument and constant with respect to
the second argument. The input sample will be assigned genuine class since
first matcher correctly identified it. We choose parameters α1 and α3 relative
to the training sample:

l(s1, s2) =
1

1 + e−
1
h

1
a−b (s1− a+b

2 )
(8)

where a = s1
1 and b = s1

2, and h is the smoothing parameter. If a and b are
close to each other, we get a steeper logistic function, which will allow us
better separate genuine and impostor score pair. Similar logistic function is
added to the current sum if second matcher is correct, and first is not: we
replace s1 by s2 in equation (8), and a = s2

1,b = s2
2.

The overall training algorithm is similar to the training we did for best
impostor likelihood ratio in the previous section:
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1. Make initialization f(s1, s2) = s1 + s2, n = 1.
2. For each training identification trial and for each impostor score pair in

this trial check if its combined score is higher than combined score of the
genuine pair.

3. Update f(s1, s2) by adding described above logistic function: f(s1, s2) =
1

n+1 (nf(s1, s2) + l(s1, s2)), n = n + 1.
4. Repeat steps 2-3 for all training identification trials.
5. Repeat steps 2-4 for predetermined number of training epochs.

The smoothing parameter h is chosen so that the performance of the al-
gorithm is maximized on the training set. The convergence of this algorithm
is even faster than the convergence of the best impostor likelihood ratio algo-
rithm. Table 4 (Logistic Sum method) presents correct identification rate for
this method.

The method outperforms weighted sum method for both biometric combi-
nations, but not for the combination of word recognizers. This suggests that
our heuristic was quite good, but still can be improved somehow. We can
also see that the advantage of this method for second biometric combination
outweighs its disadvantage for the combination of word recognizers, and thus
we can consider it as the best combination rule so far.

7 Utilizing Identification Model

The previous two section investigated the usage of the so called combination
rules in identification systems. We defined the combination rules by equation
(2) and mentioned that such combination rules are a specific type of a classi-
fiers operating in MN -dimensional score space and separating N classes, M
is the number of classifiers. By considering the combinations of this restricted
type we are able to significantly reduce the difficulty of training combination
function, but at the same we might not get the best possible performance
from our system.

We discussed this topic in length in [4] (see also the chapter on the re-
view of combination methods). It turns out that besides two already men-
tioned types of combinations (combination rules of equation (2), low complex-
ity combinations, and all possible N -class pattern classification methods in
MN -dimensional score space, high complexity combinations) we can distin-
guish two additional types of classifier combinations in between. Medium I
complexity combinations make the combination function class-specific:

C = arg max
i=1,...,N

fi(s1
i , . . . , s

M
i ) (9)

while medium II complexity combinations remain class-generic and derive the
combination score for each class not only from M scores assigned to this class
but from potentially all available MN scores:
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C = arg max
i=1,...,N

f(s1
i , . . . , s

M
i ; {sj

k}j=1,...,M ;k=1,...,N ;k �=i) (10)

Generally, it is possible to use both medium I and medium II complexity
type combinations for our applications, but we will concentrate on medium II
complexity type. Since the combination functions of this type consider scores
for all classes in order to derive a combined score for a particular type, we
have a fair chance to properly learn the dependency between scores assigned
to different classes, and train the combination function with this dependency
in mind.

7.1 Identification Models

The goal of constructing an identification model is to somehow model the
distributions of scores in identification trials. Better model will provide more
information to the combination algorithm and result in better performance.
We can use different heuristics in order to decide on which identification model
might work best in a given application. For example, we might want the
identification model to provide a good estimate for posterior class probability
for a score from a current set of identification scores.

Consider our third example from the section 5.3. Recall, that genuine
and impostor distributions are represented as sums of two random variables:
Xgen + Y and Ximp + Y . If each identification trial has many impostor sam-
ples, we can estimate the current value of Y as sum of all scores in this trial:
ŷ =

∑
i=1,...,N si (note, that the mean of Ximp is 0). The identification model

in this case could state that instead of scores si, we have to take their trans-
formations: s′i = si − ŷ. If the combination rule is trained to use s′i instead of
si, we will achieve near-optimal combination.

The identification model produced for this example is non-trainable, and
it is only justified by the assumption that genuine and impostor scores are the
sums of two random variables. If the assumption is not true, then the iden-
tification model might not perform well. In our research we are interested in
designing general identification models which can be learned from the training
data and which perform well for any applications.

There might be two approaches on using identification models as repre-
sented in Figures 7 and 8. In the first approach the identification model is
applied to each score before the actual combination. Thus the score is nor-
malized using identification model and the other identification trial scores.
In the second approach identification model provides some statistics about
current identification trial, and these statistics are used together with the
scores in a single combination step. For our example, we can normalize scores
s′i = si − ŷ and use normalized score s′i in subsequent combination. This will
be a two step combination approach. Alternatively, we can use both si and ŷ
as an input to the 1-step combination algorithm.
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Fig. 7. 2-step combination method utilizing identification model

Fig. 8. 1-step combination method utilizing identification model

7.2 Related Research

We can list two general approaches in classifier combination research, which
implicitly use the concept of identification model. These are the combina-
tion approaches based on rank information and combinations utilizing score
normalization with current identification trial scores.

Rank based approaches replace the matching scores output by classifiers
by their rank among all scores obtained in the current identification trial.
Such transformation is performed for each classifier separately, and the ranks
are combined afterward. T.K. Ho has described classifier combinations on
the ranks of the scores instead of scores themselves by arguing that ranks
provide more reliable information about class being genuine [10]. If there is
a dependence between identification trial scores as for second matcher in our
first example of section 5.3 (where the top score always belongs to the genuine
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class), then the rank of the class will be a perfect indicator if the class is
genuine or not. Combining low score for genuine class with other scores as
in the second example could confuse a combination algorithm, but the rank
of the genuine class is still good, and using this rank should result in true
classification. Brunelli and Falavigna [11] considered a hybrid approach where
traditional combination of matching scores is fused with rank information in
order to achieve identification decision. Saranli and Demirekler [12] provide
additional references for rank based combination and a theoretical approach
to such combinations.

Another approach for combinations, which might use the identification
model, is a score normalization followed by some combination rule. Usually
score normalization [13] means transformation of scores based on the clas-
sifier’s score model learned during training, and each score is transformed
individually using such a model. Such normalizations do not use the informa-
tion about scores in identification trial, and the combinations using them can
still be represented as a combination rule of equation (2). But some score nor-
malization techniques indeed use a dynamic set of identification trial scores.
For example, Kittler et al. [14] normalize each score by the sum of all other
scores before combination. The combinations employing such normalizations
are medium II complexity type combinations and can be considered as im-
plicitly using an identification model.

Score normalization techniques have been well developed in the speaker
identification problem. Cohort normalizing method [15, 16] considers a subset
of enrolled persons close to the current test person in order to normalize the
score for that person by a log-likelihood ratio of genuine (current person) and
impostor (cohort) score density models. [17] separated cohort normalization
methods into cohorts found during training (constrained) and cohorts dynam-
ically formed during testing (unconstrained cohorts). Normalization by con-
strained cohorts followed by low complexity combination amounts to medium
I combination types, since whole combination method becomes class-specific,
but only one matching score of each classifier is utilized. On the other hand,
normalization by unconstrained cohorts followed by low complexity combi-
nation amounts to medium II or high complexity combinations, since now
potentially all scores of classifiers are used, and combination function can be
class-specific or non-specific.

The related normalization techniques are Z(zero)- and T(test)- normaliza-
tions [17, 18]. Z- normalization is similar to constrained cohort normalization,
since it uses impostor matching scores to produce a class specific normaliza-
tion. Thus Z-normalization used together with low complexity combination
rule results in medium I combination. T-normalization uses a set scores pro-
duced during single identification trial, and used together with low complexity
combination rule results in medium II combination (note that this normaliza-
tion is not class-specific).

Medium II combinations seem to be the most appropriate type of combi-
nations for identification systems with large number of classes. Indeed, it is
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usually hard to train class-specific combination types of medium I and high
complexity since the number of training samples for each class can be too
small. As an example justifying medium II combinations in biometrics, [19]
argued for applying T-normalizations in face verification competition. Ranks,
T-normalization and many other investigated score normalization approaches
are usually non-trainable. The concept of identification model implies that
there is some training involved.

7.3 Identification Model for Weighted Sum

We will use the following idea for our identification model in this section. The
confidence of a matching score is determined by the score itself and by the
other scores in the same identification trial. If for a given score of a classifier
there is another score in the same trial which is higher, then we have less
confidence that the score belongs to the genuine class. Conversely, if all other
scores are lower than a given score, we have more confidence that the score
belongs to the genuine class.

The identification model in this case will consists in considering the follow-
ing function of the identification trial scores: sbs(sj

i ) - the best score besides
score sj

i in set of the current identification trial scores {sj
i}i=1,...,N of classifier

j:
sbs(sj

i ) = max
k=1,...,N ;k �=i

sj
k (11)

We use the 1-step identification model combination with weighted sum com-
bination function. It means that instead of using only matching scores sj

i ,
j = 1, . . . , M for producing combined score Si of class i, we will be using
both sj

i and sbs(sj
i ). For two classifiers in our applications we will have the

following combination function:

Si = w1s
1
i + w2sbs(s1

i ) + w3s
2
i + w4sbs(s2

i ) (12)

The number of considered input parameters for this method is two times
bigger than the number of input parameters to the original weighted sum
rule. We can still use the brute force approach to train the corresponding
weights. Note, that though the number of weights is increased, the increase is
rather small in comparison to the total number of classes (thousands). Thus
we achieved the good trade-off between taking into consideration all scores
produced by classifiers and the simplicity of training combination function.

The results of the experiments are presented in the Table 4 (Weighted
Sum + Ident Model). The method outperforms all other methods for identifi-
cation tasks. Note, that as in all our experiments, we used separate data sets
for training weights and testing the trained method; thus the performance
improvement is due not to more possibilities for training, but due to more
complex combination function.
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7.4 Identification Model for Verification Systems

Although most verification systems use only matching scores for one given
class to make combinations and decisions on whether the class is genuine
or impostor, there is an idea that the performance can be improved if the
matching scores for other classes are taken into consideration. In fact, most of
the cohort score normalization methods, which we referenced above, employ
a superfluous set of matching scores for a cohort of a given class in order
to make verification decision. These scores might be available naturally in
identification system, but the verification system has to do additional matches
to create these scores.

If the scores for other classes are available in addition to the score for a
given class, they can provide significant amount of information to the com-
bination algorithm. Indeed, as we discussed before, the matching scores are
usually dependent and the dependence is caused by the quality of the in-
put sample. Scores for other classes can implicitly provide us the information
about the input sample quality. Consequently, we can view the application of
identification model as score normalization with respect to the input sample.

The information supplied by the identification model can be considered
as a predictor about the given score we consider in the verification task. We
imply that this score is genuine, and the goal of the identification model is to
check if this score is reasonable in comparison with scores we get for other,
impostor, scores. Thus we can check the correlations of the genuine score with
different functions of the impostor scores in order to find the statistics, which
best predict the genuine score. Table 3 contains the correlation measurements
for our matchers, and these measurements can be used to determine which
statistics of impostor scores the identification model should include. In our
experiments we considered first and second best impostor statistics. They seem
to be good predictors according to Table 3, and, as an additional advantage,
first few best scores are usually available due to the utilizing indexing methods
in identification systems.

The application of the identification model in verification system is clear
now. Instead of taking a single match score for a given class from a particular
matcher, take few additional match scores for other class, and calculate some
statistics from them. Then use these statistics together with a match score
for a designated class in the combination. Since the likelihood ratio method
is optimal for verification tasks, we use it here. If we employ the statistic of
second best score from the previous section, our combination method will be
written as

flr(s1
i , . . . , s

M
i ; {sj

k}j=1,...,M ;k=1,...,N ;k �=i) =
pgen(s1

i , sbs(s
1
i ), . . . , s

M
i , sbs(sM

i ))
pimp(s1

i , sbs(s
1
i ), . . . , s

M
i , sbs(sM

i ))
(13)

Note that we are dealing with the verification task, so we only produce the
combined score for thresholding, and do not select among classes with arg max.
Also, during our experiments we used a little different statistics than the
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statistics sbs = maxk=1,...,N ;k �=i sj
k from the previous section - we selected the

second ranked score from {sj
k, k = 1, . . . , N ; k �= i}.
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Fig. 9. The effect of utilizing identification model in the likelihood ratio combination
function for handwritten word recognizers

Figure 9 contains the resulting ROC curve from utilizing identification
model by equation 13 in the combination of word recognizers. Note, that
this method performs significantly better than the original likelihood ratio
method. We have also reported similar improvements for the biometric match-
ers before[20].

If we look at the verification task as the two class pattern classification
problem in the M -dimensional score-feature space, then using identification
model corresponds to expanding the feature space by the statistics of iden-
tification trials. The achieved improvements confirm the usefulness of these
additional features.

8 Summary

In this work we considered combinations of handwritten word recognizers
and biometric matchers. There can be different operating scenarios for the
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applications involving these matchers, and we considered two of them - ver-
ification and closed set identification. Different operating scenarios require
different performance measures: ROC curves for verification problems, and
correct identification rate for identification problems.

It turns out that for different scenarios we need to construct different
combination algorithms in order to achieve optimal performance. This need is
caused by the frequent dependence among scores produced by each matcher
during a single identification trial. The optimal combination algorithm for
verification systems corresponds to the likelihood ratio combination function.
It can be implemented by the direct reconstruction of this function with gen-
uine and impostor score density approximations. Alternatively, many generic
pattern classification algorithms can be used to separate genuine and impos-
tor scores in the M -dimensional score space, M is the number of combined
matchers.

The optimal combination algorithm for the identification systems is more
difficult to realize. We do not know how to express analytically the optimal
combination function, and can only speculate on the heuristics leading to its
construction. We described two possible approaches for approximating the
optimal combination function in identification systems and compared them
with traditionally used weighted sum combination method. The results are
promising, but it is clear, that further development is needed in this area.

The concept of identification model provides a different point of view on
the combinations in identification systems. The score dependence in iden-
tification trials can be explicitly learned in these models. The combination
algorithm utilizing identification model uses more information about identifi-
cation trial scores than traditional combination methods relying on a single
match score for designated class. As a result it is possible to achieve significant
improvements using these models.
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Summary. In this chapter, the use of synthetic training data for handwriting recog-
nition is studied. After an overview of the previous works related to the field, the
authors’ main results regarding this research area are presented and discussed, in-
cluding a perturbation model for the generation of synthetic text lines from existing
cursively handwritten lines of text produced by human writers. The goal of synthetic
text line generation is to improve the performance of an off-line cursive handwriting
recognition system by providing it with additional training data. It can be expected
that by adding synthetic training data the variability of the training set improves,
which leads to a higher recognition rate. On the other hand, synthetic training data
may bias a recognizer towards unnatural handwriting styles, which could lead to a
deterioration of the recognition rate. The proposed perturbation model is evaluated
under several experimental conditions, and it is shown that significant improvement
of the recognition performance is possible even when the original training set is large
and the text lines are provided by a large number of different writers.

1 Introduction

The problem of automatic recognition of scanned handwritten documents is of
great significance in numerous scientific, business, industrial, and personal ap-
plications that require the reading and processing of human written texts. The
ultimate goal is that computers approach, or even surpass, the text recognition
performance of humans. Despite the enormous amount of research activities
that already have been carried out in the past decades to study this problem,
it is considered very difficult and still not satisfactorily solved [1, 2]. Today’s
commercial systems work in areas where strict task specific knowledge and
constraints are available, such as postal address reading [3], and the process-
ing of bank checks [4] and forms [5, 6]. On the other hand, the more challenging
task of recognizing unconstrained handwriting has also many potential appli-
cations, for example, office automation, digital libraries, and personal digital
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assisting devices. In this chapter the problem of unconstrained recognition is
addressed.

Despite the existence of the numerous elaborated and mature handwriting
recognition techniques [7, 8, 9, 10, 11, 12], machines’ reading performance is
still considerably lower than that of humans. This inspired researchers to focus
not only on the development of novel recognition algorithms, but also on the
improvement of other aspects of handwriting recognition systems. These ef-
forts include multiple classifier combination [13, 14, 15], the better utilization
of the available a-priori, e.g. linguistic knowledge [16, 17], as well as the col-
lection of large, publicly available datasets of human written texts [18, 19, 20],
which enables better training of the recognizers and also an objective com-
parison of their performances.

As an alternative, to overcome the difficulties and inherent limitations
of collecting a large number of human written samples, the present chapter
investigates the generation and use of synthetic training data for off-line cur-
sive handwriting recognition. It has been shown in many works before that
the size and quality of the training data has a great impact on the perfor-
mance of handwriting recognition systems. A general observation is that the
more texts are used for training, the better recognition performance can be
achieved [21, 22, 23, 24].

In this work it is examined whether this observation holds if the training
set is augmented by synthetically generated texts. The motivation is that aug-
menting the training set by computer generated text samples is much faster
and cheaper than collecting additional human written samples. To achieve our
goal, a perturbation model is presented to generate synthetic text lines from
existing cursively handwritten lines of text produced by human writers. Our
purpose is to add synthetic data to the natural training data, rendered by hu-
man writers, so as to enlarge the training set. The basic idea of the approach
is to use continuous nonlinear functions that control a class of geometrical
transformations applied on the existing handwritten texts. The functions en-
sure that the distortions performed are not reversed by standard preprocessing
operations of handwriting recognition systems. Besides the geometrical dis-
tortions, thinning and thickening operations are also part of the model.

A closer examination reveals, however, that the use of synthetic training
data does not necessarily lead to an improvement of the recognition rate, be-
cause of two adversarial effects. First, it can be expected that the variability
of the training set improves, which potentially leads to a higher recognition
rate. On the other hand, synthetic training data may bias a recognizer to-
wards unnatural handwriting styles, which can lead to a deterioration of the
recognition rate, particularly if natural handwriting is used for testing.

The aim in this chapter is to find configurations of our recognizer and
the synthetic handwriting generation process, by which the recognition per-
formance can be significantly improved. The parameters examined include
the number of Gaussian mixture components in the recognizer used for dis-
tribution estimation, distortion strength, training set size, and the number
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of writers in the training set. It is shown that significant improvement of the
recognition performance is possible even when the original training set is large
and the text lines are provided by many different writers. But to really achieve
an improvement in this case, one has also to consider the capacity of the recog-
nition system, which needs to be appropriately adjusted when expanding the
training set with synthetic text lines. Parts of this work have been published
in [25, 26]. The current chapter provides a synoptic presentation and overview
of the authors’ previous work on synthetic text line generation for the training
of handwriting recognition systems.

The chapter is organized as follows. In Section 2, an overview of the related
previous works on synthetic text generation is given. Section 3 introduces our
perturbation model, while in Section 4 a concise description of the off-line
handwriting recognition system used for the experiments is given. Experi-
mental results are presented in Section 5. Finally, Section 6 provides some
conclusions and suggestions for future work.

2 Synthetically Generated Text

The concept of synthetic text relates to both machine printed and handwritten
documents. Synthesizing text means that real-world processes that affect the
final appearance of a text are simulated by a computer program. For example,
in the case of machine printed documents the printing and scanning defects,
while in the case of handwriting the different writing instruments or the whole
writing process can be modeled and simulated by computer.

Synthetic texts can be generated in numerous ways, and they have
widespread use in the field of document analysis and recognition. In the fol-
lowing, a brief overview is given. Approaches for both machine printed and
handwritten synthetic text generation are presented, since they often have
similar aims, and thus the findings and developments of one field can also
affect and stimulate the other one and vice versa.

2.1 Improving and Evaluating Recognition Systems

The two main difficulties that contemporary text recognizers have to face are
the degraded quality of document images as well as the great variation of
the possible text styles [27, 28, 29]. The quality of document images usually
degrades to various extent during printing, scanning, photocopying, and fax-
ing. Style variation means that either different fonts might be used (machine
printed text), or many individual writing styles can occur (handwritten text).

One way to alleviate the above mentioned problems is to train the recog-
nizers using sets of text samples that are more representative to the specific
recognition task under consideration. This idea is supported by two facts. First
of all, every recognizer needs to be trained, i.e. it has to learn how the differ-
ent characters and/or words may look like. Furthermore, in the past decade
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researchers in the field of image pattern recognition realized that any further
improvement of recognition performance depends as much on the size and
quality of the training data as on the underlying features and classification
algorithms used [30]. As a rule of thumb says, the classifier that is trained on
the most data wins.

A straightforward way to improve the training set is to collect more real-
world text samples [18, 19, 20]. The effectiveness of this approach has been
experimentally justified by numerous works in the literature, yielding higher
recognition performance for increased training set sizes [21, 22, 23, 24]. Un-
fortunately, collecting real-world samples is a rather expensive and time con-
suming procedure, and truthing the collected data is error-prone [31, 32]. A
possible solution to these drawbacks is to create text image databases au-
tomatically by generating synthetic data, which is cheap, fast, and far less
error-prone. Furthermore, it enables the generation of much larger databases
than those acquired by the conventional method. The main weakness of the
synthetic approach is that the generated data may not be as representative
as real-world data.

In machine printed OCR (Optical Character Recognition), especially when
the possible fonts are a-priori known, the concept of representativeness of
the training set can be approached from the side of document degradation.
In [33, 34, 35], defects caused by the use of printing and imaging devices are
explicitly modeled and applied to ideal input images (e.g. Postscript docu-
ment) to generate realistic image populations. Such synthetic data can then
be used to build huge and more representative training sets for document im-
age recognition systems [36, 37, 38]. The ability of controlling the degree of
degradation makes it also possible to carry out systematic design and evalu-
ation of OCR systems [36, 39, 40, 41].

For handwriting recognition, no parameterized model of real-world image
populations is available, due to the lack of mathematical models accounting for
the enormous variations present in human handwriting. Nevertheless, several
attempts to generate synthetic data for handwriting recognition systems are
reported.

In [42], human written character tuples are used to build up synthetic text
pages. Other approaches apply random perturbations on human written char-
acters [21, 43, 44, 45, 46], or words [47, 48]. In [49], realistic off-line characters
are generated from on-line patterns using different painting modes.

Generating synthetic handwriting does not necessarily require to use hu-
man written texts as a basis. In [50] and [51], characters are generated by
perturbation of the structural description of character prototypes.

Those works where the application of synthetic training data yielded im-
proved recognition performance over natural training data are mainly related
to the field of isolated character recognition [21, 43, 45, 46]. The natural train-
ing set was augmented by perturbed versions of human written samples, and
the larger training set enabled better training of the recognizer. However, to
the knowledge of the authors, for the problem of general, cursive handwritten
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word and text line recognition, no similar results besides those of the authors
(see e.g. [25, 26]) involving synthetically generated text images have been
reported.

Finally, perturbation approaches can also be applied in the recognition
phase, making the recognizer insensitive to small transformations or distor-
tions of the image to be recognized [44, 47, 52].

2.2 Handwritten Notes and Communications

The use of handwriting has the ability to make a message or a letter look
more natural and personal. One way to facilitate the input of such messages
for electronic communication is to design methods that are able to generate
handwriting-style texts, particularly in the style of a specific person.

Such methods have several possible applications. For example, using a
word processor, editable handwritten messages could be inputted much faster
directly from the keyboard. For pen-based computers, errors made by the user
could be corrected automatically by substituting the erroneous part of text
by its corrected version, using the same writing style.

In [53], texts showing a person’s handwriting style are synthesized from
a set of tuples of letters, collected previously from that person, by simply
concatenating an appropriate series of static images of tuples together.

Learning-based approaches are presented in [54], [55], and [56], to generate
Hangul characters, handwritten numerals, and cursive text, respectively, of a
specific person’s handwriting style. These methods need temporal (on-line)
information to create a stochastic model of an individual style.

A method that is based on character prototypes instead of human writ-
ten samples is presented in [57]. Korean characters are synthesized using
templates of ideal characters, and a motor model of handwriting generation
(see [58]) adapted to the characteristics of Korean script. The templates con-
sist of strokes of predefined writing order. After the geometrical perturbation
of a template, beta curvilinear velocity and pen-lifting profiles are generated
for the strokes, which are overlapped in time. Finally, the character is drawn
using the generated velocity and pen-lifting profiles.

One possible application of the method is to build handwriting-style fonts
for word processors. On the other hand, the method can provide training data
for handwriting recognizers. Although the generated characters look natural
and represent various styles, they were not used for training purposes.

2.3 Reading-Based CAPTCHAs

At present, there is a clear gap between the reading abilities of humans and
machines. Particularly, humans are remarkably good at reading seriously de-
graded (e.g. deformed, occluded, or noisy) images of text, while modern OCR
systems usually fail when facing such an image [59].
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This observation can be used to design so-called CAPTCHAs (Completely
Automatic Public Turing test to tell Computers and Humans Apart), to
distinguish humans from computers [60, 61, 62]. The main application of
CAPTCHAs is to prevent computer programs from automatic registration
to publicly available services offered on the Internet. For example, this way
spammers can be prevented from registering automatically thousands of free
e-mail accounts for their fraudulent activities.

Several reading-based CAPTCHAs were proposed in the literature. All of
them synthesize a degraded text image that is used to challenge the appli-
cant to read it. The approval for the access to the required resource is then
based on the correctness of the answer the applicant types in. The challenges
may contain machine printed texts [60, 59, 63, 64, 65, 66, 67], or handwrit-
ing [68]. Reading-based CAPTCHAs that are already in industrial use in-
clude [60], [66], and [67].

3 Perturbation Model

Variation in human handwriting is due to many sources, including letter shape
variation, variety of writing instruments, and others. In this section, a pertur-
bation model for the distortion of cursive handwritten text lines is presented,
where these sources of variation are modeled by geometrical transformations
as well as thinning and thickening operations.

3.1 Previous Work and Design Goals

In the field of handwritten character recognition, numerous methods are re-
ported to perturb character images. Among other geometrical transforma-
tions, translation, scaling, rotation, shearing, shrinking, interpolation between
character samples, and also nonlinear deformations were tried [21, 43, 45, 46].
Other types of perturbations include erosion and dilation [21], and pixel in-
version noise [45].

Although they seem to be very different approaches, surprisingly almost
all of the transformations mentioned in the previous paragraph have been ap-
plied successfully to generate additional training samples for character recog-
nition systems, yielding improvements in the recognition performance.1 Thus
the character recognition experiments suggest that most of the perturbations
might improve the recognition rate. Furthermore, there is no comparative
study showing that one or more of these approaches are superior to the oth-
ers.

With this background from character recognition research in mind, the de-
sign of our perturbation model was motivated by two important aspects: sim-
plicity and nonlinearity. Simplicity is achieved by applying the same concept

1 The only exception is shrinking, which deteriorated the system performance in [21]
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Fig. 1. Example of a CosineWave function

(underlying function, see Subsection 3.2) to each type of geometrical transfor-
mation, and considering only some basic types of distortions (shearing, scaling
and shifting along one of the main axes). Nonlinearity is needed so that the
distortions applied on the handwriting cannot be reversed by standard linear
preprocessing operations of a state-of-the-art handwriting recognition system
(see Section 4).

The perturbation model incorporates some parameters with a range of
possible values, from which a random value is picked each time before dis-
torting a text line. There is a constraint on the text lines to be distorted:
they have to be skew and slant corrected, because of the nature of the ap-
plied geometrical transformations. This constraint is not severe, because skew
and slant correction are very common preprocessing steps found in almost any
handwriting recognition system. In the following subsections the perturbation
model is described in greater detail.

3.2 Underlying Functions

Each geometrical transformation in the model is controlled by a continuous
nonlinear function, which determines the strength of the considered transfor-
mation. These functions will be called underlying functions.

The underlying functions are synthesized from a simple function, called
CosineWave. A CosineWave is the concatenation of n functions, f1, f2, . . . , fn,
where fi : [0, li] → R, fi(x) = (−1)i ·a ·cos( π

li
·x), li > 0. An example is shown

in Fig. 1. The functions fi (separated by vertical line segments in Fig. 1) are
called components. The length of component fi is li and its amplitude is |a|.
The amplitude does not depend on i, i.e. it is the same for all components.

To randomly generate a CosineWave instance, three ranges of parameter
values need to be defined:

• [amin, amax] for the amplitude |a|,
• [lmin, lmax] for the component length,
• [xmin, xmax] for the interval to be covered by the concatenation of all

components.

The generation of a CosineWave is based on the following steps. First the
amplitude is selected by picking a value α ∈ [amin, amax] randomly and letting
a = α or a = −α with a 50% probability each. Then l1 is decided by randomly
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Fig. 2. Example of a sum of two CosineWave functions

picking a value from [lmin, lmax]. Finally the beginning of the first component
(i.e. f1) is chosen randomly from the [xmin − l1, xmin] interval. From this
point on we only have to add additional components, one after the other,
with randomly chosen lengths, until xmax is reached. For randomly picking a
value from an interval, always the uniform distribution over that interval is
used.

An underlying function is obtained by summing up a number, m, of such
CosineWave functions. Fig. 2 depicts an example of such an underlying func-
tion with m = 2.

3.3 Geometrical Transformations

The underlying functions control several geometrical transformations, which
are divided into two groups: the line level transformations applied on whole
lines of text, and the connected component level transformations applied on
the individual connected components of the considered line of text. The un-
derlying function of each transformation is randomly generated, as described
in Subsection 3.2. The parameters xmin and xmax are always defined by the
actual size of the image to be distorted. In the following the geometrical trans-
formations will be defined and illustrated by figures. Note that the figures are
only for illustration purposes, and weaker instances of the distortions are ac-
tually used in the experiments described later on.

There are four classes of geometrical transformations on the line level.
Their purpose is to change properties, such as slant, horizontal and vertical
size, and the position of characters with respect to the baseline. The line level
transformations are these:

• Shearing: The underlying function, denoted by f(x), of this transfor-
mation defines the tangent of the shearing angle for each x coordinate.
Shearing is performed with respect to the lower baseline. An example is
shown in Fig. 3. In this example and the following ones, the original text
line is shown at the bottom, the underlying function in the middle, and
the result of the distortion on top.

• Horizontal scaling: Here the underlying function determines the hori-
zontal scaling factor, 1 + f(x), for each x coordinate. This transformation
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Fig. 3. Illustration of shearing. The original text line is at the bottom, the under-
lying function is in the middle, and result of the distortion is on top

Fig. 4. Illustration of horizontal scaling

is performed through horizontal shifting of the pixel columns.2 An example
of this operation is shown in Fig. 4.

• Vertical scaling: The underlying function determines the vertical scaling
factor, 1 + f(x), for each x coordinate. Scaling is performed with respect
to the lower baseline. An example can be seen in Fig. 5.

• Baseline bending: This operation shifts the pixel columns in vertical
direction, by the amount of h · f(x) for each x coordinate, where h is the
height of the body of the text (i.e. the distance between the upper and
lower baselines). An example is given in Fig. 6.3

The perturbation model also includes transformations, similar to the ones
described above, on the level of connected components. These transformations
change the structure of the writing in a local context, i.e. within each con-
nected component. After the application of these transformations, the result-
ing connected components are scaled in both horizontal and vertical direction
so that their bounding boxes regain their original sizes, and then they are
placed in the image exactly at their original locations. For each connected
component, individual underlying functions are generated. There are three
classes of such transformations:

2 The appropriate shifting value at x is given by
∫ x

0
(1 + f(x))dx = x +

∫ x

0
f(x)dx

3 It can be observed that the baseline is usually not a straight line, but rather of a
wavy shape
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Fig. 5. Illustration of vertical scaling

Fig. 6. Illustration of baseline bending

• Horizontal scaling: This transformation is identical to the line level hor-
izontal scaling as described before, but it is applied to individual connected
components rather than whole lines of text.

• Vertical scaling 1: This is the counterpart of horizontal scaling in the
vertical direction.

• Vertical scaling 2: This transformation is identical to the line level verti-
cal scaling, except that scaling is performed with respect to the horizontal
middle-line of the bounding box.

The effect of all three transformations applied one after the other is shown
in Fig. 7. In this figure, the lower text line is the original one, and above its
distorted version is displayed. One can observe that in spite of the distortions
the connected components underwent, their bounding boxes have remained
the same.

3.4 Thinning and Thickening Operations

The appearance of a text line can also be changed by varying the thickness of
its strokes. In the present perturbation model this is done by applying thinning
or thickening steps iteratively. The method is based on a grayscale variant of
the MB2 thinning algorithm [69]. (A general way to get the grayscale version
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Fig. 7. Illustration of connected component level distortions. The original text line
is below, and the result of the distortions is above

Fig. 8. Illustration of thinning (above) and thickening (below) operations. The
original text line is in the middle

of a specific type of thinning algorithm operating on binary images can be
found in [70]). Thinning and thickening could also be performed using the
morphological erosion and dilation operators, respectively, but this would not
be safe when applied iteratively, because part of the original writing might be
lost after too many steps of erosion. An illustration is given in Fig. 8, where
the original text line is located in the middle, and above (below) it the results
of two successive thinning (thickening) steps can be seen. The choice whether
thinning or thickening is applied, as well as the number of steps (including
zero) is randomly made.

3.5 Distorted Text Line Generation

Now that the main constituents of the perturbation model have been intro-
duced, a simple scheme for the distortion of whole text lines can be designed.
The steps of the perturbation method for distorting a given skew and slant
corrected text line are the following:

1. Apply each of the line level transformations to the text line, one after the
other, in the order given in Subsection 3.3.
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Fig. 9. Demonstration of the perturbation method. The original human written
text line is on top, and below it five distorted versions can be seen

2. For each individual connected component, apply the connected component
level transformations, and make sure that the bounding boxes remain the
same with respect to both size and location.

3. Apply thinning or thickening operations.

Of course, these steps are not required to be always rigorously followed. In
particular, one can omit one or several of the transformations. The method is
demonstrated in Fig. 9. The original human written text line is on top, and
below there are five synthetically generated versions of that line. It can be
seen that all of the characters have somewhat changed in each generated line.
Note that due to the random nature of the perturbation method, virtually all
generated text lines are different. Other examples are given in Section 5.

4 Handwriting Recognition System

The application considered in this chapter is the off-line recognition of cur-
sively handwritten text lines. The recognizer used is the Hidden Markov Model
(HMM) based cursive handwritten text line recognizer described in [12]. The
recognizer takes, as a basic input unit, a complete line of text, which is first
normalized with respect to skew, slant, baseline location and writing width.4

4 Text line normalization is also applied in the training phase. Since the text lines
to be distorted have to be skew and slant corrected, synthetic training text line
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Fig. 10. Example of an input text line, before (above) and after (below) normal-
ization

An example is shown in Fig. 10. Normalization with respect to baseline loca-
tion means that the body of the text line (the part which is located between
the upper and lower baselines), the ascender part (above the upper baseline),
and the descender part (below the lower baseline) will be vertically scaled to a
predefined height. Writing width normalization is performed by a horizontal
scaling operation, and its purpose is to scale the characters so that they have
a predefined average width value.

For feature extraction, a sliding window of one pixel width is moved from
left to right over the input text line, and nine geometrical features are ex-
tracted at each window position. Thus an input text line is converted into a
sequence of feature vectors in a 9-dimensional feature space. The nine features
used in the system are the average gray value of the window, the center of
gravity, the second order moment of the window, the position and the gra-
dient of the upper and lower contours, the number of black-white transitions
in vertical direction, and the average gray value between the upper and lower
contour [12].

For each character, an HMM is built. In all HMMs the linear topology is
used, i.e. there are only two transitions per state, one to itself and one to the
next state. In the emitting states, the observation probability distributions
are estimated by mixtures of Gaussian components. In other words, contin-
uous HMMs are used. The character models are concatenated to represent
words and sequences of words. For training, the Baum-Welch algorithm [71]
is applied. In the recognition phase, the Viterbi algorithm [71] with bigram
language modeling [17] is used to find the most probable word sequence. As
a consequence, the difficult task of explicitly segmenting a line of text into
isolated words is avoided, and the segmentation is obtained as a byproduct of
the Viterbi decoding applied in the recognition phase. The output of the rec-
ognizer is a sequence of words. In the experiments described in the following,
the recognition rate will always be measured on the word level.

generation takes place right after the skew and the slant of the text line have
been normalized
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5 Experimental Evaluation

The purpose of the experiments is to investigate whether the performance
of the off-line handwritten text recognizer described in Section 4 can be im-
proved by adding synthetically generated text lines to the training set. Two
configurations with respect to training set size and number of writers are ex-
amined: small training set with only a few writers, and large training set with
many writers.

For the experiments, subsets of the IAM-Database [20] were used. This
database includes over 1,500 scanned forms of handwritten text from more
than 600 different writers. In the database, the individual text lines of the
scanned forms are extracted already, allowing us to perform off-line handwrit-
ten text line recognition experiments directly without any further segmenta-
tion steps.5

All the experiments presented in this section are writer-independent,
i.e. the population of writers who contributed to the training set is disjoint
from those who produced the test set. This makes the task of the recognizer
very hard, because the writing styles found in the training set can be totally
different from those in the test set, especially if the training set was provided
by only a few writers. However, when a given training set is less representative
of the test set, greater benefit can be expected from the additional synthetic
training data.

If not mentioned otherwise, all the three steps described in Subsection 3.5
are applied to distort a natural text line. Underlying functions are obtained by
summing up two randomly generated CosineWave functions (two is the min-
imum number to achieve peaks with different amplitudes, see Figs. 1 and 2).
Concerning thinning and thickening operations, there are only three possi-
ble events allowed: one step of thinning, one step of thickening, or zero steps
(i.e. nothing happens), with zero steps having the maximal probability of the
three alternatives, while the two other events are equally probable.

5.1 Small Training Set with a Small Number of Writers

The experiments described in this subsection are conducted in order to test
the potential of the proposed method in relatively simple scenarios, i.e. the
case of a small training set and only of few writers. For the experiments, 541
text lines from 6 different writers, were considered.6 The underlying lexicon
consisted of 412 different words. The six writers who produced the data used in
the experiments will be denoted by a, b, c, d, e and f in the following. Subsets
of writers will be represented by sequences of these letters. For example, abc
stands for writers a, b, and c.

Three groups of experiments were conducted, in which the text lines of
the training sets were distorted by applying three different subsets of the
5 See also: http://www.iam.unibe.ch/∼fki/iamDB
6 Each writer produced approximately 90 text lines
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Table 1. Results of the experiments described in Subsection 5.1 (in %)

original all dist. line level cc. level

a 33.14 48.98 47.06 38.69

b 38.68 43.07 40.41 42.61

c 39.16 49.31 46.80 44.41

d 30.56 53.14 48.62 43.02

e 54.40 59.61 58.88 54.24

f 18.83 31.98 26.90 27.76

ab 60.69 73.46 75.79 54.92

cd 56.84 61.30 62.44 59.66

ef 63.84 68.46 67.54 67.51

abc 75.19 74.11 75.78 74.83

def 65.35 68.87 67.04 68.74

distortions described in Section 3. The three subsets were the set of all dis-
tortions, the set of geometrical transformations on the line level, and the set
of connected component level geometrical transformations. In each case, five
distorted text lines per given training text line were generated and added to
the training set. So the extended training set was six times larger than the
original one.

Fig. 11 shows examples of natural and synthetically generated pairs of text
lines used in the experiments where all the distortions were applied. For each
pair of text lines the natural one is shown below, while the synthetic one is
above it. The first pair belongs to writer a, the second to writer b, and so on.

The recognition results of the three experiments are shown in Table 1,
where the rows correspond to the different training modalities. The test set
is always the complement of the training set, and consists of natural text
only. For example, the test set corresponding to the first row consists of all
natural text lines written by writers bcdef, while the training set is given
by all natural text lines produced by writer a plus five distorted instances
of each natural text line. In the first column, the results achieved by the
original system that uses only natural training data are given for the purpose
of reference. The other columns contain the results of the three groups of
experiments using expanded training sets, i.e. the results for all, line level, and
connected component level distortions, respectively. In those three columns
each number corresponds to the median recognition rate of three independent
experimental runs. In each run a different recognition rate is usually obtained
because of the random nature of the distortion procedure.

In Table 1 it can be observed that adding synthetic training data leads
to an improvement of the recognition rate in 29 out of 33 cases. Some of
the improvements are quite substantial, for example, the improvement from
33.14% to 48.98% in row a.

Augmenting the training set of a handwriting recognition system by syn-
thetic data as proposed in this chapter may have two adversarial effects on
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Fig. 11. Natural (below) and synthetic (above) text lines for writers a-f

the recognition rate. First, adding synthetic data increases the variability of
the training set, which may be beneficial when the original training set has a
low variability, i.e. when it was produced by only one or a few writers. On the
other hand, the distortions may produce unnatural looking words and char-
acters, which may bias the recognizer in an undesired way, because the test
set includes only natural handwriting.
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The greatest increase in recognition performance can be observed in Ta-
ble 1 for those cases when there is only one writer in the training set. Then
the variability of the training set is low and the addition of synthetic data
leads to a better modeling of the test set. In this case, the application of
all distortions outperforms the use of only line level or connected component
level distortions. Where multiple writers are used for training, the variability
of the training set is larger and the increase in recognition performance be-
comes smaller when synthetic training data is added. Also, in this case using
all distortions does not always result in higher recognition rate than applying
just line level or connected component level distortions.

Since in the majority of the experimental runs, an improvement of the
recognition rate was observed, it can be concluded that the use of synthetic
training data can potentially lead to improved handwriting recognition sys-
tems, in case of only a few writers in the training set.

In all experiments described in this subsection, single Gaussians were used
in the HMMs’ states to estimate observation probability distributions (see also
Section 4). As we will see in the following, the number of Gaussians should be
increased if the training set contains handwriting samples from many writers.

5.2 Large Training Set with Many Writers

In the following, the case where there are many writers and a large training
set is considered. For the experiments, a subset of the IAM-Database different
from that used in the previous subsection was considered, consisting of 1,993
text lines produced by 400 different writers, and the underlying lexicon con-
tained 6,012 words. This set of text lines was randomly divided into training,
validation and test set, such that their sets of writers were pairwise disjoint.
The training and validation set contained 1,433 lines from 288 writers, and
160 text lines from 32 writers, respectively. The test set contained 400 text
lines from 80 writers.

First, the training and the validation set were used to find the optimal
parameters for the system that uses natural training data only, and for the
system that uses a mixture of natural and synthetic training data. In the
following, these two optimized systems will be referred to as Original System
and Expanded System, respectively.

The optimization was performed in terms of capacity and distortion
strength. The capacity of the recognition system is defined as the number
of free parameters to be estimated from the training set. It determines how
much information the recognizer can store to express its knowledge about the
handwriting represented by the training set. A capacity too high may cause
overfitting on the training data. On the other hand, a capacity too low may
lead to a poor handwriting model. Since the synthetically expanded training
set contains increased variability (both natural and unnatural), its optimal
capacity is expected to be higher than the recognizer’s optimal capacity for
the original training set. That is, if the capacity of the system is not increased
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after the expansion of the training set, there is the danger that the capacity
may be too low, such that the system is biased towards the unnatural variabil-
ity introduced by the additional synthetic text lines, to an extent which may
cause the recognition performance to drop. In the experiments, the capacity
was varied through changing the number of Gaussian mixture components
used for estimating the feature value distributions in the states of the Hidden
Markov Models (see Section 4). The number of Gaussian mixtures, Ga, is the
same in all HMMs. If this parameter, Ga, is increased, then it enables the sys-
tem to model the distributions of the features extracted from the handwriting
more accurately. Thus the capacity of the system is increased.

The second parameter to optimize was the distortion strength, which can
be controlled by changing the interval of the possible amplitude values for
the underlying functions described in Section 3. Four levels of strength were
defined based on a subjective assessment: very weak, weak, middle and strong.
Note that these terms indicate only the relative order of the four levels, rather
than absolute categories.7 In Fig. 12, two examples are shown, where the text
lines on top were distorted using all four different distortion strengths. For
the distorted text line generation, all of the distortions were applied, in the
way described in Subsection 3.5. A trade-off between quality and variability of
the generated text lines can be observed, which is governed by the distortion
strength. That is, stronger distortions usually introduce more variability, but
on the other hand, the generated text lines tend to look less natural. Thus
tuning the distortion strength is expected to be beneficial.

Detailed results of the optimization stage are reported in Table 2. In the
HMM training procedure, the training set, consisting of natural and synthetic
training data, was used, while the recognition rates were measured on the
validation set, which consisted of natural text lines only. Column original
corresponds to the system using exclusively natural training data. According
to the best result, the system with Ga = 15 is chosen as the Original System,
which achieved a recognition rate of 70.48%. The other four columns, namely
very weak, weak, middle and strong, show the recognition rates of the system
using a mixture of natural and synthetic training data. For each text line in the
training set, always five distorted text lines were generated, thus the expanded
training set was always six times larger than the original one. Those results
which correspond to statistically significant improvements with respect to the
Original System (with a significance level higher than 90%), are highlighted
using boldface.8

It can be seen that increasing the capacity is beneficial for expanded train-
ing sets. Rows Ga = 6 and Ga = 12 show the effects of low capacity after
7 The strength was increased by jointly increasing the amplitude parameters for

all the transformations, sampling in equal steps in terms of the parameter values
of the perturbation model. For thinning/thickening, the probability of zero steps
was decreased

8 The significance level of an improvement was calculated from the writer level
recognition rates, by applying a statistical z-test for matched samples
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a)

b)
Fig. 12. Illustration of levels of distortion strength used in the experiments of
Subsection 5.2. From top to bottom, for both a) and b) parts: original, very weak,
weak, middle and strong
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Table 2. Results of the optimization stage of the experiments of Subsection 5.2
(in %). Statistically significant improvements are highlighted using boldface

original very weak weak middle strong

Ga=6 67.04 65.45 66.12 65.52 62.81

Ga=12 69.95 69.69 71.41 69.76 70.09

Ga=15 70.48 70.88 72.27 71.54 70.48

Ga=18 70.15 72.20 72.47 72.40 71.01

Ga=21 69.62 71.61 72.40 72.01 71.54

Ga=24 70.48 71.34 73.00 73.33 71.21

Ga=27 70.22 71.48 72.87 73.86 71.67

Ga=30 69.49 71.67 72.14 73.20 71.74

training set expansion with synthetic data, resulting in lower recognition rates
in the majority of the cases. With an increasing strength of the distortions, the
optimal capacities become higher: from column original to column strong the
optimal Ga’s were 15, 18, 24, 27 and 30, respectively. This can be explained by
the increasing variability of the training set. (Note that for strength strong,
the optimal capacity is possibly above Ga = 30.) The most significant im-
provements came at strengths weak and middle. All significant improvements
in these columns have a significance level greater than 95%. The most sig-
nificant area is at strength middle, from Ga = 24 to Ga = 30. Here the
significance level is greater than 99%. Thus the Expanded System was chosen
among these, namely the one with Ga = 27, where the recognition rate was
73.86%.

After the optimization stage, the Original System was trained on the union
of the training and validation set, and the Expanded System on the union of
the expanded training and expanded validation set. For each natural text line
in the validation set, five synthetic text lines were generated at strength mid-
dle to get the expanded validation set. Then, using the test set for testing
on previously unseen examples, the recognition results of the Original System
and the Expanded System were 76.85% and 79.54%, respectively, as shown in
Table 3. This shows that using synthetic text lines, the recognition perfor-
mance could be improved by more than 2.5%. The significance level of this
improvement is greater than 99%. (The recognition rates on the test set differ
a lot from those measured on the validation set. This can be explained by the
relatively small size of the validation set. The magnitude of the validation set
is limited by the amount of text lines in the training set, so that the training
set has approximately the same optimal capacity as its union with the vali-
dation set. This way the negative effects of too low capacity can be avoided
at the testing phase. But the choice of the training set size is also constrained
by the computational complexity of the training process, since the training of
HMMs using a large number of Gaussian mixtures is a rather time consuming
procedure.)
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Table 3. Results on the test set of the experiments of Subsection 5.2

Ga strength recognition rate

Original System 15 – 76.85%

Expanded System 27 middle 79.54%

We also note that the synthetic training set expansion methodology pre-
sented above consists of such optimizations that must always be done, inde-
pendently of the underlying datasets:

• The most appropriate distortion strength between zero and extremely
strong can only be found empirically, because it may depend on the details
of the recognizer under consideration, as well as on the concrete dataset.

• Finding the optimal number of Gaussians (or more generally, the optimal
capacity) is a must in a multi-Gaussian system, because it is dependent on
the characteristics of the training set. The same optimization is needed for
the synthetically expanded training set, in order to have a fair comparison
with the original system.9

Thus, the experiments show that expansion of the available set of text lines
by synthetically generated instances makes it possible to significantly improve
the recognition performance of a handwritten text line recognizer, even when
the original training set is large and contains handwriting from many writers.

5.3 Capacity and Saturation

The main goal of synthetic training set expansion was to improve the recog-
nition performance, by adding synthetic text lines to the original, i.e. human
written, training set. With respect to this goal, an important observation of
the experiments was that the number of Gaussians needed to be appropri-
ately increased so that the synthetic training set expansion can improve the
recognition rate.

To further examine this phenomenon, an experiment was conducted us-
ing gradually increasing training sets of an increasing number of writers, while
keeping the test set as well as the number of Gaussian components (i.e. the ca-
pacity) fixed. The natural training and validation set defined in Subsection 5.2
was used for training and testing, respectively. The numbers of Gaussians con-
sidered were 1 and 6. The two corresponding curves of recognition rates are
shown in Fig. 13, where different proportions of the training set were used
for training, while the test set was always the same. The percentages on the
horizontal axis are to be understood with respect to the union of the training
set and the validation set (the union consists of 1433+160 = 1, 593 text lines).

Based on these curves, two statements can be made:
9 It was also demonstrated in this subsection why the optimization of the capacity

should not be overlooked, see Table 2
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Fig. 13. Recognition rates on the test set using increasing training set sizes and
fixed capacity of the recognizer

• For 1 Gaussian, we cannot expect further improvements above approxi-
mately 20% of 1, 593 ≈ 320 training text lines.

• For 6 Gaussians, we cannot expect further improvements above approxi-
mately 50% of 1, 593 ≈ 800 training text lines.

This leads to the intuitive notion of saturation, which means that given a
fixed capacity of the handwriting recognition system, from a certain amount
of natural training data no further improvements in the recognition rate can
be expected. In other words, it cannot be predicted whether increasing the
training set size yields (slightly) improved or deteriorated recognition perfor-
mance. Furthermore, in Fig. 13 it also can be seen that in case of a higher
capacity of 6 Gaussians, the recognizer needs more natural training data to
get saturated.

Apparently, if the amount of natural training data already causes the sys-
tem to be saturated, we cannot expect any positive change in the recognition
rate through the expansion with synthetic data either, since even additional
natural data does not help.10 To the contrary, the negative effect of unnatu-
rality inherent in the synthetic data can become dominant, causing the recog-
nition rate to drop.

As an example for 6 Gaussians, in Table 2 the recognition rate dropped be-
cause the system was already saturated (note that the same data was used here

10 Assuming that natural data is more appropriate than synthetic data for the esti-
mation of details of natural handwriting



Synthetic Training Data in Handwriting Recognition 355

to illustrate saturation). In other words, the too low capacity of the system
after synthetic training set expansion manifested itself through saturation.

To overcome the problem of saturation, in Subsection 5.2 the capacity
of the recognizer had to be increased, in order to make room for further
improvement when synthetic training set expansion is applied.

6 Conclusions and Future Work

In this chapter, the generation and use of synthetic training data in handwrit-
ing recognition was discussed. First, an overview of the related works of the
field was given, including both machine printed and handwritten synthetic
text generation.

The most important results of the authors’ research in the field of syn-
thetic handwriting generation for training purposes were also presented. A
method for training set expansion by generating randomly perturbed versions
of natural text lines rendered by human writers was presented and evaluated
under several experimental conditions in writer-independent experiments. It
was demonstrated that using such expanded training sets, improvements in
the recognition rate can be achieved rather easily when the original training
set is small and contains handwriting from only a limited number of writers.
In the second experiment, it was shown that significant improvement in the
recognition rate is possible to achieve even in the case of a large training set
provided by many writers. In this case, the applied distortion strength needs
to be adjusted, and the capacity of the recognizer (i.e. the number of Gaus-
sians used for distribution estimations) plays an important role. The capacity
has to be optimized after training set expansion, because the optimal capac-
ity of the recognition system trained on the expanded training set is expected
to be higher than the optimal capacity of the system trained on the original
training set. If the capacity is not properly adjusted when using the syntheti-
cally expanded training set, there is the danger that the capacity may become
too low, such that the system is biased towards unnatural handwriting styles
in an undesired way, causing the recognition performance to drop.

Finally, based on the empirical observations of the experiments, the in-
tuitive concept of saturation was introduced. The most important point is
that the saturation has to be taken into account, because neither synthetic
nor natural training set expansion can improve the recognition rate when the
recognition system is already saturated by the available amount of natural
training data. To cope with this problem, in the experiments the capacity of
the recognizer was increased to open up room for further improvement.

As for possible future work, we plan to use not only one but several distor-
tion strengths when expanding the training set. This may produce smoother
training data than, for example, having only natural and strongly distorted
text lines, but nothing between these two levels. Another idea is not to add all
the generated texts to the training set, but perform a kind of pre-selection of
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the most appropriate ones, by using an rejection mechanism. Style dependent
distortions as well as distortion strengths may also facilitate the creation of
expanded training sets of better quality.

Since the problem of synthetic training data was addressed from a rather
general point of view in the experiments, many questions mostly related to the
enhancement of the baseline perturbation method are still open, e.g. consid-
ering other types of distortions as well as underlying functions, or examining
the suitability of the individual distortions.

Our current work makes use of HMM for handwritten text line recogni-
tion. However, similar effects can be expected when dealing with other types
of recognizers, for example, nearest neighbor classifier [21, 46] and neural net-
works [43, 45].
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Summary. Classifier combination methods have proved to be an effective tool to
increase the performance of pattern recognition applications. In this chapter we
review and categorize major advancements in this field. Despite a significant num-
ber of publications describing successful classifier combination implementations, the
theoretical basis is still missing and achieved improvements are inconsistent. By in-
troducing different categories of classifier combinations in this review we attempt to
put forward more specific directions for future theoretical research. We also introduce
a retraining effect and effects of locality based training as important properties of
classifier combinations. Such effects have significant influence on the performance of
combinations, and their study is necessary for complete theoretical understanding
of combination algorithms.

1 Introduction

The efforts to automate the combination of expert opinions have been stud-
ied extensively in the second half of the twentieth century [1]. These stud-
ies have covered diverse application areas: economic and military decisions,
natural phenomena forecasts, technology applications. The combinations pre-
sented in these studies can be separated into mathematical and behavioral
approaches [2]. The mathematical combinations try to construct models and
derive combination rules using logic and statistics. The behavioral methods
assume discussions between experts, and direct human involvement in the
combination process. The mathematical approaches gained more attention
with the development of computer expert systems. Expert opinions could
be of different nature dependent on the considered applications: numbers,
functions, etc. For example, the work of R. Clemen contains combinations of
multiple types of data, and, in particular, considers combinations of experts’
estimations of probability density functions [2].

The pattern classification field developed around the end of the twentieth
century deals with the more specific problem of assigning input signals to two

S. Tulyakov et al.: Review of Classifier Combination Methods, Studies in Computational Intel-

ligence (SCI) 90, 361–386 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



362 S. Tulyakov et al.

or more classes. The combined experts are classifiers and the result of the
combination is also a classifier. The outputs of classifiers can be represented
as vectors of numbers where the dimension of vectors is equal to the number
of classes. As a result, the combination problem can be defined as a problem of
finding the combination function accepting N -dimensional score vectors from
M classifiers and outputting N final classification scores (Figure 1), where the
function is optimal in some sense, e.g. minimizing the misclassification cost.
In this chapter, we will deal exclusively with the mathematical methods for
classifier combination from a pattern classification perspective.
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Fig. 1. Classifier combination takes a set of sj
i - score for class i by classifier j and

produces combination scores Si for each class i

In the last ten years, we have seen a major boost of publications in optical
character recognition and biometrics. Pattern classification applications of
these two fields include image classification, e.g character recognition and word
recognition, speech recognition, person authentication by voice, face image,
fingerprints or other biometric characteristics. As a result, these two fields
are the most popular application targets for multiple classifier systems so
far [3, 4, 5, 6].

In this chapter, we will present different categorizations of classifier com-
bination methods. Our goal is to give a better understanding of the current
problems in this field. We will also provide descriptions of major classifier com-
bination methods and their applications in document analysis. We organized
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this chapter as follows: Section 2 introduces different categorizations of clas-
sifier combination methods. Section 3 discusses ensemble techniques, while
Section 4 focuses on non-ensemble techniques. In Section 5, we address addi-
tional issues important to classifier combination, such as retraining.

2 Defining the Classifier Combination Problem

In order to provide a more complete description of the classifier combination
field we attempt to categorize different types of classifier combinations in this
section.

2.1 Score Combination Functions and Combination Decisions

Classifier combination techniques operate on the outputs of individual clas-
sifiers and usually fall into one of two categories. In the first approach the
outputs are treated as inputs to a generic classifier, and the combination al-
gorithm is created by training this, sometimes called ‘secondary’, classifier.
For example, Dar-Shyang Lee [7] used a neural network to operate on the
outputs of the individual classifiers and to produce the combined matching
score. The advantage of using such a generic combinator is that it can learn the
combination algorithm and can automatically account for the strengths and
score ranges of the individual classifiers. In the second approach, a function
or a rule combines the classifier scores in a predetermined manner.

The final goal of classifier combination is to create a classifier which oper-
ates on the same type of input as the base classifiers and separates the same
types of classes. Using combination rules implies some final step of classifi-
cation decision. If we denote the score assigned to class i by base classifier
j as sj

i , then the typical combination rule is some function f and the final
combined score for class i is Si = f({sj

i}j=1,...,M ). The sample is classified as
belonging to class argmaxi Si. Thus the combination rules can be viewed as
a classifier operating on base classifiers’ scores, involving some combination
function f and the argmax decision, showing that there is no real conceptual
difference between the categories mentioned above.

Generic classifiers used for combinations do not have to be necessarily
constructed following the above described scheme, but in practice we see this
theme commonly used. For example, in multilayer perceptron classifiers the
last layer has each node containing a final score for one class. These scores
are then compared and the maximum is chosen. Similarly, k-nearest neighbor
classifier can produce scores for all classes as ratios of the number of represen-
tatives of a particular class in a neighborhood to k. The class with the highest
ratio is then assigned to a sample.

In summary, combination rules can be considered as a special type of
classifier of particular argmax f form. Combination functions f are usually
simple functions, such as sum, weighted sum, max, etc. Generic classifiers
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such as neural networks and k-nearest neighbor, on the other hand, imply
more complicated functions.

2.2 Combinations of Fixed Classifiers and Ensembles of Classifiers

One main categorization is based on whether the combination uses a fixed
(usually less than 10) set of classifiers, as opposed to a large pool of classifiers
(potentially infinite) from which one selects or generates new classifiers. The
first type of combinations assumes classifiers are trained on different features
or different sensor inputs. The advantage comes from the diversity of the
classifiers’ strengths on different input patterns. Each classifier might be an
expert on certain types of input patterns. The second type of combinations
assumes large number of classifiers, or ability to generate classifiers. In the
second type of combination the large number of classifiers are usually obtained
by selecting different subsets of training samples from one large training set, or
by selecting different subsets of features from the set of all available features,
and by training the classifiers with respect to selected training subset or subset
of features.

2.3 Operating Level of Classifiers

Combination methods can also be grouped based on the level at which they op-
erate. Combinations of the first type operate at the feature level. The features
of each classifier are combined to form a joint feature vector and classifica-
tion is subsequently performed in the new feature space. The advantage of
this approach is that using the features from two sets at the same time can
potentially provide additional information about the classes. For example, if
two digit recognizers are combined in such a fashion, and one recognizer uses
a feature indicating the enclosed area, and the other recognizer has a feature
indicating the number of contours, then the combination of these two fea-
tures in a single recognizer will allow class ‘0’ to be easily separated from the
other classes. Note that individually, the first recognizer might have difficulty
separating ‘0’ from ‘8’, and the second recognizer might have difficulty sepa-
rating ‘0’ from ‘6’ or ‘9’. However, the disadvantage of this approach is that
the increased number of feature vectors will require a large training set and
complex classification schemes. If the features used in the different classifiers
are not related, then there is no reason for combination at the feature level.

Combinations can also operate at the decision or score level, that is they
use outputs of the classifiers for combination. This is a popular approach be-
cause the knowledge of the internal structure of classifiers and their feature
vectors is not needed. Though there is a possibility that representational in-
formation is lost during such combinations, this is usually compensated by
the lower complexity of the combination method and superior training of the
final system. In the subsequent sections we will only consider classifier com-
binations at the decision level.
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The following is an example of the application where feature level combina-
tion can improve a classifier’s performance. Bertolami and Bunke [8] compared
the combinations at the feature and the decision levels for handwriting recog-
nition. Their handwriting recognizer uses a sliding window to extract pixel
and geometrical features for HMM matching. The combination at the feature
level has a single HMM trained on the composite vector of these features. The
combination at the decision level has two HMMs trained on separate pixel and
geometrical feature vectors, and the recognition results, word matching scores,
are combined together with the language model. The combination at the fea-
ture level seems to achieve better results, and authors explain its effectiveness
by improved alignment of the HMM recognizer.

Note that combination on the feature level is not conceptually differ-
ent from trying to incorporate different types of information into a single
feature vector. For example, Favata [9] constructed handwritten word rec-
ognizers which utilized a character recognizer based on gradient, concavity
and structural features. Thus feature level combination rather delegates the
combination task to the base classifier (HMM in above example) instead of
solving it.

2.4 Output Types of Combined Classifiers

Another way to categorize classifier combination is by the outputs of the
classifiers used in the combination. Three types of classifier outputs are usually
considered [3]:

• Type I (abstract level): This is the lowest level since a classifier provides
the least amount of information on this level. Classifier output is merely
a single class label or an unordered set of candidate classes.

• Type II (rank level): Classifier output on the rank level is an ordered
sequence of candidate classes, the so-called n-best list. The candidate class
at the first position is the most likely class, while the class positioned at
the end of the list is the most unlikely. Note that there are no confidence
values attached to the class labels on rank level. Only their position in the
n-best list indicates their relative likelihood.

• Type III (measurement level): In addition to the ordered n-best lists of
candidate classes on the rank level, classifier output on the measurement
level has confidence values assigned to each entry of the n-best list. These
confidences, or scores, can be arbitrary real numbers, depending on the
classification architecture used. The measurement level contains therefore
the most information among all three output levels.

In principle, a combination method can operate on any of these levels. For
combinations based solely on label sets or rankings of class labels, i.e. output
on abstract and rank level, several voting techniques have been proposed and
experimentally investigated [10, 11, 12]. The advantage of classifier output
on abstract and rank level is that different confidence characteristics have
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no negative impact on the final outcome, simply because confidence plays no
role in the decision process. Nevertheless, the confidence of a classifier in a
particular candidate class usually provides useful information that a simple
class ranking cannot reflect. This suggests the use of combination methods
that operate on the measurement level, and which can exploit the confidence
assigned to each candidate class. Nowadays most classifiers do provide infor-
mation on measurement level, so that applying combination schemes on the
measurement level should be possible for most practical applications. On mea-
surement level, however, we have to take into account that each classifier in a
multiple classifier system may output quite different confidence values, with
different ranges, scales, means etc. This may be a minor problem for classifier
ensembles generated with Bagging and Boosting (see Section 3 since all clas-
sifiers in the ensemble are based on the same classification architecture, only
their training sets differ. Each classifier will therefore provide similar output.
However, for classifiers based on different classification architectures, this out-
put will in general be different. Since different architectures lead more likely
to complementary classifiers, which are especially promising for combination
purposes, we need effective methods for making outputs of different classifiers
comparable.

If the combination involves classifiers with different output types, the out-
put is usually converted to any one of the above: to type I [3], to type II [10],
or to type III [7]. Most existing classifier combination research deals with
classifier outputs of type III (measurement level), among which we can find
combinations with fixed structure, e.g. sum of scores [3, 13], or combinations
that can be trained using available training samples (weighted sum, logistic
regression [10], Dempster-Shafer rules [3], neural network [7], etc.).

2.5 Complexity Types of Classifier Combinations

In [14] we proposed a new framework for combining classifiers based on the
structure of combination functions. Though we applied it only to biometric
person authentication applications there, it can provide a useful insight into
other applications as well.

As Figure 1 shows, the combination algorithm is a map

{sj
k}j=1,...,M ;k=1,...,N ⇒ {Si}i=1,...,N (1)

of NM classifiers’ scores into the N -dimensional final score space, where N
is the number of classes. The complexity types define how such maps are
constructed. Specifically, the combination type is determined by whether all
classifiers’ scores participate in the derivation of each final combined score,
and whether only a single combination function is trained for all classes or
there is an individual combination function for each class.

We separate combination algorithms into four different types depending
on the number of classifier’s scores they take into account and the number of
combination functions required to be trained:
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1. Low complexity combinations: Si = f({sj
i}j=1,...,M ). Combinations of this

type require only one combination function to be trained, and the combi-
nation function takes as input scores for one particular class.

2. Medium complexity I combinations: Si = fi({sj
i}j=1,...,M ). Combinations

of this type have separate score combining functions for each class and
each such function takes as input parameters only the scores related to
its class.

3. Medium complexity II combinations:

Si = f({sj
i}j=1,...,M , {sj

k}j=1,...,M ;k=1,...,N,k �=i) (2)

This function takes as parameters not only the scores related to one class,
but all output scores of classifiers. Combination scores for each class are
calculated using the same function, but scores for class i are given a special
place as parameters. Applying function f for different classes effectively
means permutation of the function’s parameters.

4. High complexity combinations: Si = fi({sj
k}j=1,...,M ;k=1,...,N ). Functions

calculating final scores are different for all classes, and they take as pa-
rameters all output base classifier scores.

In order to illustrate the different combination types we can use a matrix
representation as shown in Figure 2. Each row corresponds to a set of scores
output by a particular classifier, and each column has scores assigned by
classifiers to a particular class.

Fig. 2. Output classifier scores arranged in a matrix; sj
i - score for class i by

classifier j

Figure 3 shows four complexity types of combinations using the score ma-
trix. The combinations of low and medium I complexity types use only scores
of one particular class to derive a final combined score for this class. Medium
II and high complexity combinations use scores related to all classes to derive
a final combined score of any single class. Low and medium II complexity
combinations have a single combination function f used for all classes, and
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(a) Low (b) Medium I

(c) Medium II (d) High

Fig. 3. The range of scores considered by each combination type and combination
functions

medium I and high complexity combinations might have different combination
functions fi for different classes i.

As an example, simple combination rules (sum, weighted sum, product,
etc.) typically produce combinations of low complexity type. Combinations
which try to find the separate combination function for each class [15, 16]
are of medium I complexity type. The rank-based combination methods (e.g.
Borda count in Section 4) represent the combinations of medium II com-
plexity type, since calculating rank requires comparing the original score with
other scores produced during the same identification trial. Behavior-knowledge
spaces (BKS, see Section 4) are an example of high complexity combination
type, since they are both rank-based and can have user-specific combina-
tion functions. One way to obtain combinations of different types is to use
different score normalizations before combining normalized scores by a sim-
ple combination rule of low complexity. For example, by using class-specific
Z-normalization or identification trial specific T-normalization [17], we are
dealing respectively with medium I or medium II complexity combination
types.

Higher complexity combinations can potentially produce better classifica-
tion results since more information is used. On the other hand the availability
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of training samples will limit the types of possible combinations. Thus the
choice of combination type in any particular application is a trade-off be-
tween classifying capabilities of combination functions and the availability of
sufficient training samples. When the complexity is lowered it is important
to see if any useful information is lost. If such loss happens, the combination
algorithm should be modified to compensate for it.

Different generic classifiers such as neural networks, decision trees, etc.,
can be used for classifier combinations within each complexity class. However,
the choice of the generic classifiers or combination functions is less important
than the choice of the complexity type.

2.6 Classification and Combination

From Figure 1 and the discussion in Section 2.1 we can view the prob-
lem of combining classifiers as a classification problem in the score space
{sj

i}j=1,...,M ;i=1,...,N . Any generic pattern classification algorithm trained in
this score space can act as a combination algorithm. Does it make sense to
search for other, more specialized methods of combination? In other words,
does classifier combination field has anything new to offer with respect to
traditional pattern classification research?

One difference between the combination problem and the general pattern
classification problem is that in the combination problem features (scores)
have a specific meaning of being related to a particular class or being produced
by a particular classifier. In the general pattern classification problem we do
not assign such meaning to features. Thus intuitively we tend to construct
combination algorithms which take such meaning of scores into consideration.
The four combination complexity types presented in the previous section are
based on this intuition, as they pay special attention to the scores si of class
i while deriving a combined score Si for this class.

The meaning of the scores, though, does not provide any theoretical ba-
sis for choosing a particular combination method, and in fact can lead to
constructing suboptimal combination algorithms. For example, by construct-
ing combinations of low and medium I complexity types we effectively disre-
gard any interdependencies between scores related to different classes. As we
showed in [14] and [18] such dependencies can provide useful information for
the combination algorithm.

The following is a list of cases which might not be solved optimally in
traditional pattern classification algorithms. The task of classifier combination
can be defined as developing specialized combination algorithms for these
cases.

1. The situation of having to deal with a large number of classes arises fre-
quently in the pattern recognition field. For example, biometric person
identification, speech and handwriting recognition are applications with
very large number of classes. The number of samples of each class avail-
able for training can be small, such as in biometric applications where
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a single person template is enrolled into the database, or even zero for
speech and handwriting recognition when the class is determined by the
lexicon word.

2. The number of classifiers M is large. For example, taking multiple training
sets in bagging and boosting techniques yields arbitrarily large number of
classifiers. The usual method of combination in these cases is to use some
a priori rule, e.g. sum rule.

3. Additional information about classifiers is available. For example, in the
case of multimodal biometrics combination it is safe to assume that clas-
sifiers act independently. This might be used to better estimate the joint
score density of M classifiers as a product of M separately estimated score
densities of each classifier.

4. Additional information about classes is available. Consider the problem of
classifying word images into classes represented by a lexicon: The relation
between classes can be expressed through classifier independent methods,
for example, by using the string edit distance. Potentially classifier com-
bination methods could benefit from such additional information.

The cases listed above present situations where generic pattern classifi-
cation methods in score space are not sufficient or suboptimal. The first two
cases describe scenarios where the feature space has very large dimensions. By
adopting a combination of reduced complexity we are able to train combina-
tion algorithm and achieve performance improvement. If neither the number of
classifiers nor the number of classes is large, the generic pattern classification
algorithm operating in the score space can solve the combination problem.

When additional information besides training score vectors is available as
in scenarios 3 and 4 it should be possible to improve on the generic classifica-
tion algorithms which use only a sample of available score vectors for training,
but no other information.

3 Classifier Ensembles

The focus of this chapter is to explore the combinations on a fixed set of
classifiers. We assume that there are only few classifiers and we can collect
some statistical data about these classifiers using a training set. The purpose
of the combination algorithm is to learn the behavior of these classifiers and
produce an efficient combination function.

In this section, however, we shortly address another approach to combi-
nation that includes methods trying not only to find the best combination
algorithm, but also trying to find the best set of classifiers for the combi-
nation. This type of combination usually requires a method for generating
a large number of classifiers. Few methods for generating classifiers for such
combinations exist. One of the methods is based on bootstrapping the train-
ing set in order to obtain a multitude of subsets and train a classifier on each
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of these subsets. Another method is based on the random selection of the
subsets of features from one large feature set and training classifiers on these
feature subsets [19]. A third method applies different training conditions, e.g.
choosing random initial weights for neural network training or choosing di-
mensions for decision trees [20]. The ultimate method for generating classifiers
is a random separation of feature space into the regions related to particular
classes [21].

Simplest methods of combination apply some fixed functions to the outputs
of all the generated classifiers (majority voting, bagging [22]). More complex
methods, such as boosting [23, 24], stack generalization [25], attempt to select
only those classifiers which will contribute to the combination.

Although there is substantial research on the classifier ensembles, very few
theoretical results exist. Most explanations use bias and variance framework
which is presented below. But such approaches can only give asymptotic expla-
nations of observed performance improvements. Ideally, the theoretical foun-
dation for classifier ensembles should use statistical learning theory [26, 27].
But it seems that such work will be quite difficult. For example, it is noted
in [28] that an unrestricted ensemble of classifiers has a higher complexity
than individual combined classifiers. The same paper presents an interesting
explanation of the performance improvements based on the classifier’s margin
- the statistical measure of the difference between scores given to correct and
incorrect classification attempts. Another theoretical approach to the classi-
fier ensemble problem was developed by Kleinberg in the theory of stochastic
discrimination [29, 21]. This approach considers very general type of classi-
fiers (which are determined by the regions in the feature space) and outlines
criteria on how these classifiers should participate in the combination.

3.1 Reductions of Trained Classifier Variances

One way to explain the improvements observed in ensemble combination
methods (bagging, boosting) is to decompose the added error of the classifiers
into bias and variance components [30, 31, 22]. There are few definitions of
such decompositions [24]. Bias generally shows the difference between opti-
mal Bayesian classification and average of trained classifiers, where average
means real averaging of scores or voting and average is taken over all possible
trained classifiers. The variance shows the difference between a typical trained
classifier and an average one.

The framework of Tumer and Ghosh [32] associates trained classifiers with
the approximated feature vector densities of each class. This framework has
been used in many papers on classifier combination recently [33, 34, 35, 36]. In
this framework, trained classifiers provide approximations to the true posterior
class probabilities or to the true class densities:

fm
i (x) = pi(x) + εm

i (x) (3)
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where i is the class index and m is the index of a trained classifier. For a fixed
point x the error term can be represented as a random variable where ran-
domness is determined by the random choice of the classifier or used training
set. By representing it as a sum of mean β and zero-mean random variable η
we get

εm
i (x) = βi(x) + ηm

i (x) (4)

For simplicity, assume that the considered classifiers are unbiased, that is
βi(x) = 0 for any x, i. If point x is located on the decision boundary between
classes i and j then the added error of the classifier is proportional to the sum
of the variances of ηi and ηj :

Em
add ∼ σ2

ηm
i

+ σ2
ηm

j
(5)

If we average M such trained classifiers and if the error random variables ηm
i

are independent and identically distributed as ηi, then we would expect the
added error to be reduced M times:

Eave
add ∼ σ2

ηave
i

+ σ2
ηave

j
=

σ2
ηi

+ σ2
ηj

M
(6)

The application of the described theory is very limited in practice since too
many assumptions about classifiers are required. Kuncheva [34] even compiles
a list of used assumptions. Besides independence assumption of errors, we
need to hypothesize about error distributions, that is the distributions of the
random variable ηi. The tricky part is that ηi is the difference between true
distribution pi(x) and our best guess about this distribution. If we knew what
the difference is, we would have been able to improve our guess in the first
place. Although there is some research [33, 37] into trying to make assumptions
about these estimation error distributions and seeing which combination rule
is better for a particular hypothesized distribution, the results are not proven
in practice.

3.2 Bagging

Researchers have very often concentrated on improving single-classifier sys-
tems mainly because of their lack in sufficient resources for simultaneously
developing several different classifiers. A simple method for generating multi-
ple classifiers in those cases is to run several training sessions with the same
single-classifier system and different subsets of the training set, or slightly
modified classifier parameters. Each training session then creates an individ-
ual classifier. The first more systematic approach to this idea was proposed
in [22] and became popular under the name “Bagging.” This method draws the
training sets with replacement from the original training set, each set resulting
in a slightly different classifier after training. The technique used for generat-
ing the individual training sets is also known as bootstrap technique and aims
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at reducing the error of statistical estimators. In practice, bagging has shown
good results. However, the performance gains are usually small when bagging
is applied to weak classifiers. In these cases, another intensively investigated
technique for generating multiple classifiers is more suitable: Boosting.

3.3 Boosting

Boosting has its root in a theoretical framework for studying machine learning,
and deals with the question whether an almost randomly guessing classifier
can be boosted into an arbitrarily accurate learning algorithm. Boosting at-
taches a weight to each instance in the training set [38, 24, 39]. The weights
are updated after each training cycle according to the performance of the
classifier on the corresponding training samples. Initially, all weights are set
equally, but on each round, the weights of incorrectly classified samples are
increased so that the classifier is forced to focus on the hard examples in the
training set [38].

A very popular type of boosting is AdaBoost (Adaptive Boosting), which
was introduced by Freund and Schapire in 1995 to expand the boosting ap-
proach introduced by Schapire. The AdaBoost algorithm generates a set of
classifiers and votes them. It changes the weights of the training samples based
on classifiers previously built (trials). The goal is to force the final classifiers to
minimize expected error over different input distributions. The final classifier
is formed using a weighted voting scheme. Details of AdaBoost, in particular
the AdaBoost variant called AdaBoost.M1, can be found in [24].

Boosting has been successfully applied to a wide range of applications.
Nevertheless, we will not go more into the details of boosting and other en-
semble combinations in this chapter. The reason is that the focus of classifier
ensembles techniques lies more on the generation of classifiers and less on their
actual combination.

4 Non-Ensemble Combinations

Non-ensemble combinations typically use a smaller number of classifiers than
ensemble-based classifier systems. Instead of combining a large number of au-
tomatically generated homogeneous classifiers, non-ensemble classifiers try to
combine heterogeneous classifiers complementing each other. The advantage
of complementary classifiers is that each classifier can concentrate on its own
small subproblem instead of trying to cope with the classification problem as
a whole, which may be too hard for a single classifier. Ideally, the expertise
of the specialized classifiers do not overlap. There are several ways to gener-
ate heterogeneous classifiers. The perhaps easiest method is to train the same
classifier with different feature sets and/or different training parameters. An-
other possibility is to use multiple classification architectures, which produce
different decision boundaries for the same feature set. However, this is not
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only more expensive in the sense that it requires the development of indepen-
dent classifiers, but it also raises the question of how to combine the output
provided by multiple classifiers.

Many combination schemes have been proposed in the literature. As we
have already discussed, they range from simple schemes to relatively complex
combination strategies. This large number of proposed techniques shows the
uncertainty researchers still have in this field. Up till now, researchers have not
been able to show the general superiority of a particular combination scheme,
neither theoretically nor empirically. Though several researchers have come up
with theoretical explanations supporting one or more of the proposed schemes,
a commonly accepted theoretical framework for classifier combination is still
missing.

4.1 Elementary Combination Schemes on Rank Level

The probably simplest way of combining classifiers are voting techniques on
rank level. Voting techniques do not consider the confidence values that may
have been attached to each class by the individual classifiers. This simplifica-
tion allows easy integration of all different kinds of classifier architectures.

4.1.1 Majority Voting

A straightforward voting technique is majority voting. It considers only the
most likely class provided by each classifier and chooses the most frequent
class label among this crisp output set. In order to alleviate the problem
of ties, the number of classifiers used for voting is usually odd. A trainable
variant of majority voting is weighted majority voting, which multiplies each
vote by a weight before the actual voting. The weight for each classifier can
be obtained; e.g., by estimating the classifiers’ accuracies on a validation set.
Another voting technique that takes the entire n-best list of a classifier into
account, and not only the crisp 1-best candidate class, is Borda count.

4.1.2 Borda Count

Borda count is a voting technique on rank level [11]. For every class, Borda
count adds the ranks in the n-best lists of each classifier, with the first entry
in the n-best list; i.e., the most likely class label, contributing the highest rank
number and the last entry having the lowest rank number. The final output
label for a given test pattern X is the class with highest overall rank sum. In
mathematical terms, this reads as follows: Let N be the number of classifiers,
and rj

i the rank of class i in the n-best list of the j-th classifier. The overall
rank ri of class i is thus given by

ri =
N∑

j=1

rj
i (7)
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The test pattern X is assigned the class i with the maximum overall rank
count ri.

Borda count is very simple to compute and requires no training. Similar to
majority vote, there is a trainable variant that associates weights to the ranks
of individual classifiers. The overall rank count for class i then computes as

ri =
N∑

j=1

wjr
j
i (8)

Again, the weights can be the performance of each individual classifier mea-
sured on a training or validation set.

While voting techniques provide a fast and easy method for improving
classification rates, they nevertheless leave the impression of not realizing the
full potential of classifier combination by throwing away valuable information
on measurement level. This has lead scientists to experiment with elementary
combination schemes on this level as well.

4.2 Elementary Combination Schemes on Measurement Level

Elementary combination schemes on measurement level apply simple rules for
combination, such as sum-rule, product-rule, and max-rule. Sum-rule simply
adds the score provided by each classifier of a classifier ensemble for every class,
and assigns the class label with the maximum score to the given input pattern.
Analogously, product-rule multiplies the score for every class and then outputs
the class with the maximum score. Interesting theoretical results, including
error estimations, have been derived for those simple combination schemes.
For instance, Kittler et al. showed that sum-rule is less sensitive to noise than
other rules [13]. Despite their simplicity, simple combination schemes have
resulted in high recognition rates, and it is by no means obvious that more
complex methods are superior to simpler ones, such as sum-rule.

The main problem with elementary combination schemes is the incom-
patibility of confidence values. As discussed in Subsection 2.4, the output of
classifiers can be of different type. Even for classifier output on measurement
level (Type III), the output can be of different nature; e.g., similarity mea-
sures, likelihoods in the statistical sense, or distances to hyperplanes. In fact,
this is why many researchers prefer using the name “score,” instead of the
names “confidence” or “likelihood,” for the values assigned to each class on
measurement level. This general name should emphasize the fact that those
values are not the correct a posteriori class probabilities and have, in general,
neither the same range and scale nor the same distribution. In other words,
scores need to be normalized before they can be combined in a meaningful
way with elementary combination schemes.

Similar to the situation for combination schemes, there is no commonly
accepted method for normalizing scores of different classifiers. A couple of
normalization techniques have been proposed. According to Jain et al., a good
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normalization scheme must be robust and efficient [40, 41]. In this context,
robustness refers to insensitivity to score outliers and efficiency refers to the
proximity of the normalized values to the optimal values when the distribution
of scores is known.

The perhaps easiest normalization technique is the min-max normaliza-
tion. For a given set of matching scores {sk}, k = 1, 2, . . . , n, the min-max
normalized scores {s′k} are given by

s′k =
sk − min

max − min
, (9)

where max and min are the maximum and minimum estimated from the
given set of matching scores {sk}, respectively. This simple type of normal-
ization retains the original distribution of scores except for a scaling factor,
transforming all the scores into a common range [0 ; 1]. The obvious disadvan-
tage of min-max normalization is its sensitivity to outliers in the data used
for estimation of min and max. Another simple normalization method, which
is, however, sensitive to outliers as well, is the so-called z-score. The z-score
computes the arithmetic mean µ and the standard deviation σ on the set of
scores {sk}, and normalizes each score with

s′k =
sk − µ

σ
(10)

It is biased towards Gaussian distributions and does not guarantee a common
numerical range for the normalized scores. A normalization scheme that is
insensitive to outliers, but also does not guarantee a common numerical range,
is MAD. This stands for “median absolute deviation,” and is defined as follows:

s′k =
sk − median

MAD
, (11)

with MAD = median(|sk − median|). Note that the median makes this
normalization robust against extreme points. However, MAD normalization
does a poor job in retaining the distribution of the original scores. In [41],
Jain et al. list two more normalization methods, namely a technique based
on a double sigmoid function suggested by Cappelli et al. [42], and a tech-
nique called “tanh normalization” proposed by Hampel et al. [43]. The latter
technique is both robust and efficient.

Instead of going into the details of these two normalization methods, we
suggest an alternative normalization technique that we have successfully ap-
plied to document processing applications, in particular handwriting recog-
nition and script identification. This technique was first proposed in [44]
and [45]. Its basic idea is to perform a warping on the set of scores, align-
ing the nominal progress of score values with the progress in recognition rate.
In mathematical terms, we can state this as follows:

s′k =

k∑
i=0

ncorrect(si)

N
(12)



Review of Classifier Combination Methods 377

The help function ncorrect(si) computes the number of patterns that were
correctly classified with the original score s′k on an evaluation set with N pat-
terns. The new normalized scores s′k thus describe a monotonously increasing
partial sum, with the increments depending on the progress in recognition
rate. We can easily see that the normalized scores fall all into the same nu-
merical range [0 ; 1]. In addition, the normalized scores also show robustness
against outliers because the partial sums are computed over a range of original
scores, thus averaging the effect of outliers. Using the normalization scheme
in (12), we were able to clearly improve the recognition rate of a combined
on-line/off-line handwriting recognizer in [44, 45]. Combination of off-line and
on-line handwriting recognition is an especially fruitful application domain
of classifier combination. It allows combination of the advantages of off-line
recognition with the benefits of on-line recognition, namely the independence
from stroke order and stroke number in off-line data, such as scanned hand-
written documents, and the useful dynamic information contained in on-line
data, such as data captured by a Tablet PC or graphic tablet. Especially
on-line handwriting recognition can benefit from a combined recognition ap-
proach because off-line images can easily be generated from on-line data.

In a later work, we elaborated the idea into an information-theoretical
approach to sensor fusion, identifying the partial sum in (12) with an expo-
nential distribution [46, 47, 48]. In this information-theoretical context, the
normalized scores read as follows:

s′k = −E ∗ ln (1 − p(sk)) (13)

The function p(sk) is an exponential distribution with an expectation value E
that also appears as a scaler upfront the logarithmic expression. The func-
tion p(sk) thus describes an exponential distribution defining the partial sums
in (12). Note that the new normalized scores, which we refer to as “infor-
mational confidence,” are information defined in the Shannon sense as the
negative logarithm of a probability [49]. With the normalized scores being in-
formation, sum-rule now becomes the natural combination scheme. For more
details on this information-theoretical technique, including practical experi-
ments, we refer readers to the references [46, 47, 48] and to another chapter
in this book.

4.3 Dempster-Shafer Theory of Evidence

Among the first more complex approaches for classifier combination was the
Dempster-Shafer theory of evidence [50, 51]. As its name already suggests,
this theory was developed by Arthur P. Dempster and Glenn Shafer in the
sixties and seventies. It was first adopted by researchers in Artificial Intelli-
gence in order to process probabilities in expert systems, but has soon been
adopted for other application areas, such as sensor fusion and classifier com-
bination. Dempster-Shafer theory is a generalization of the Bayesian theory
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of probability and differs in several aspects: First, Dempster-Shafer’s theory
introduces degrees of belief that do not necessarily meet the mathematical
properties of probabilities. Second, it assigns probabilities to sets of possible
outcomes rather than single events only. Third, it considers probability inter-
vals that contain the precise probability for sets of possible outcomes. The
two main ideas of Dempster-Shafer’s theory, as they are usually presented
in textbooks, are to obtain degrees of belief for one question from subjective
probabilities for a related question, and Dempster’s rule for combining such
degrees of belief when they are based on independent items of evidence [Glenn
Shafer]. Dempster’s rule of combination is a generalization of Bayes’ rule. It
operates on masses assigning probabilities to sets of outcomes. For two sets
of masses m1 and m2, Dempster’s rule defines the joint mass m1,2(X) for an
outcome set X as follows:

m1,2(X) =

{
0 if X = ∅

1
1−K

∑
Ai∩Bj=X

m1(Ai)m2(Bj) if X �= ∅ (14)

where
K =

∑
Ai∩Bj=∅

m1(Ai)m2(Bj) (15)

The Dempster-Shafer approach has produced good results in document pro-
cessing and its still used today, notwithstanding its higher complexity com-
pared to other approaches [52].

4.4 Behavior Knowledge Space

An equally complex, but perhaps more popular approach is the Behavior-
Knowledge Space (BKS) method introduced in [53]. The BKS method is a
trainable combination scheme on abstract level, requiring neither measure-
ments nor ordered sets of candidate classes. It tries to estimate the a posteri-
ori probabilities by computing the frequency of each class for every possible
set of classifier decisions, based on a given training set. The result is a lookup
table that associates the final classification result with each combination of
classifier outputs; i.e., each combination of outputs in the lookup table is rep-
resented by its most often encountered class label. Given a specific classifier
decision S1, . . . , SN from N individual classifiers, the a posteriori probability
P̂ (ci|S1, . . . , SN ) of class ci is estimated as follows

P̂ (ci|S1, . . . , SN ) =
N(ci|S1, . . . , SN )∑
i

N(ci|S1, . . . , SN)
(16)

where N(ci|S1, . . . , SN ) counts the frequency of class ci for each possible com-
bination of crisp classifier outputs.

In order to provide reasonable performance, the BKS method needs to be
trained with large datasets so that meaningful statistics can be computed for
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each combination in the lookup table. If k is the number of classes and N is
the number of combined classifiers, then BKS requires estimates of kN+1 a
posteriori probabilities. This can pose problems when this number is high but
the available set of training patterns is only small.

In addition to the methods presented in this section, several other tech-
niques have been proposed in the recent past [20, 54]. They have gained some
importance, but are out of the scope of this chapter.

5 Additional Issues in Classifier Combinations

5.1 The Retraining Effect

The combined classifiers usually produce complementary results and combina-
tion algorithms utilize this property. But there is another reason why combina-
tions might produce the performance improvement. The improvement might
be the result of the combination algorithm retraining the imperfect matching
score outputs of combined classifiers on new training data.

Fig. 4. Using additional training samples in the region of incorrectly classified
samples might result in the correction of classification errors

Suppose we have two classes with equal prior probability and equal mis-
classification cost as in Figure 4. The optimal classification algorithm should
make a decision based on whether the probability density function (pdf) of
one class is bigger or less than that of the other class: p1(x) <> p2(x). Suppose
we have one classifier and it outputs a matching scores s1(x) and s2(x) for
two classes approximating the pdfs of the corresponding classes. The decision
of this classifier will be based on its scores: s1(x) <> s2(x). The difference
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between these two decisions produces an area in which classification decisions
are different from ideal optimal decisions (“Incorrectly classified samples” area
of Figure 4). The classification performance can be improved if the decisions
in this area are reversed.

The range of matching scores can be separated into regions of the type
c ≤ s1(x) ≤ a, or b ≤ s2(x) ≤ d or the intersections of those (“Score retrain-
ing area” of Figure 4). By using an additional set of training samples, the
postprocessing algorithm can calculate the frequencies of training samples of
each class belonging to these regions, say F1 and F2. If the number of training
samples falling in these regions is large, then the frequencies will approximate
the original class pdfs: F1 ∼ p1(x) and F2 ∼ p2(x). Consequently, the scores
s1(x) and s2(x) could be replaced by new scores corresponding to frequencies
F1 and F2, respectively. It is quite possible that the classification based on
new scores will be correct in previously incorrectly classified regions.

This technique was implemented in [55] for the problem of classifying hand-
written digits. The algorithm was able to improve the correctness of a classifier
with 97% recognition rate by around 0.5% and of a classifier with 90% recog-
nition rate by around 1.5%. Approximately 30,000 digit images were used for
retraining and no information about the original training sets was provided.

This type of score postprocessing can be considered as a classifier com-
bination function f which works only with one classifier and transforms the
scores of this classifier s1, s2 into the combined scores S1, S2:

c ≤ s1 ≤ a & b ≤ s2 ≤ d =⇒ (S1, S2) = f(s1, s2) = (F1, F2)

This combination function is trained on newly supplied training samples and
achieves improvement only due to the extraneous training data. Similarly,
if we consider traditional combinations utilizing two or more classifiers, then
some of the performance improvement might be attributed to using additional
training data.

As far as we know, the retraining effect on classifier combinations has not
been investigated so far. In particular, it would be interesting to know for each
practical application, what part of the improvement is due to the retraining.

5.2 Locality Based Combination Methods

The retraining algorithm of the previous section implied the ability to sepa-
rate training samples based on their class matching scores. The score for the
test sample can be corrected if we are able to find a reference subset of train-
ing samples having similar performance. There exist few attempts to explore
similar ideas in classifier combinations.

Behavior-knowledge spaces [53] can be considered as one of such locality
based methods. The reference set is the subset of the training samples having
same ranks assigned by all classifiers as a test sample. The choice of such
reference sets might seem not very efficient - their number is large, and even
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single rank change places training sample in a different reference set. But ex-
perimental results seem to confirm the validity of such reference sets. Though
the full technique is applicable only in cases with small number of classes and
classifiers (two classifiers of ten digit classes in [53]), it can be extended to
other cases by grouping together relevant subsets, e.g. subsets having same
ranks for first few classes. Note, that rank information implicitly accounts for
the dependence between scores assigned to different classes. By incorporat-
ing this information into the combination algorithm we effectively perform
medium II or high complexity combinations.

Another type of forming reference sets is to use some additional informa-
tion about classes. In the method of local accuracy estimates [56] the reference
set for each test sample is found by applying the k-nearest neighbor algorithm
to the original feature space. Subsequently, the strength of each classifier is
determined on this reference set, and the classification decision is made by the
classifier with highest performance. Clearly, the method could be extended to
not only selecting the best performing classifier for the current test sample,
but to combine the scores of classifiers according to their strengths. In any
case, the important information about the test sample and its relationships
with training samples is supplied by the k-nearest neighbor method. In a sense,
the k-nearest neighbor method can be viewed as an additional classifier, which
is combined with other classifiers. Similar approaches are also investigated in
[57, 58].

Opposite to the presentation of the retraining effect in the previous
subsection, the methods of finding reference sets discussed here do not rely
exclusively on the matching scores of classifiers. Thus, by using additional in-
formation these methods can potentially perform better than the generic clas-
sifier operating in the score space. But, due to the similarity with retraining
methods, it might be that a significant part of the performance improvement
is caused by the retraining effect.

5.3 Locality Based Methods with Large Number of Classes

The interesting problem of finding the reference set for the test sample arises
in the situations with large or variable number of classes. As we discussed in
Subsection 2.6, such problems are not easily solvable with traditional pattern
classification algorithms. For example, the recognition of handwritten words
might include a large word lexicon, and the training data might simply not
include all these words. In biometric person authentication only a small num-
ber of training samples, e.g. a single sample, per person is available. How can
a reference set of training data be found in these cases?

The string edit distance might provide a valuable neighborhood informa-
tion for the handwritten word application in order to find a reference set. In a
more complicated approach we introduced the concept of local lexicon density
in [59]. The lexicon density is determined not only by the lexicon itself, but
also by the strength of the word recognizer using this lexicon. In addition to
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finding a reference set, the presented algorithm could be used to estimate the
strength of each recognizer in the neighborhood of the test sample. Though
the method of estimating lexicon density seems to have good performance, it
has not been applied to problem of combining word recognizers yet.

The problem of finding a reference set for biometric person authentica-
tion has been investigated before in speaker identification research [60, 61].
The set of persons having similar biometrics to the queried person (cohort) is
found using training samples of all enrolled persons. During testing, a match-
ing score for the query person is judged against the matching scores of the
cohort persons. These research was mostly used for making decisions on the
matching scores, and not in combining different matchers. Some research has
appeared recently [15, 16] trying to find user specific combinations of biomet-
ric matchers. But these methods use locality information only implicitly by
estimating performance on the whole set of enrolled persons, and not on the
cohort set. As far as we know, the cohort method has not been applied to
classifier combinations so far.

The local neighborhood in cohorts is determined by the matching distances
among enrolled templates. These distances can be used in constructing so
called ‘background models’ [61]. In our research we used the set of matching
scores between input template and enrolled templates to construct so called
‘identification models’ [18]. Both models can be used for finding reference sets
in classifier combination algorithms. In addition, both models can be user-
generic or user-specific, and both models can be used in a single combination
method.

6 Conclusion

This chapter presented an overview of classifier combination methods. We
categorized these methods according to complexity type, output type, ensem-
ble vs non-ensemble combinations, etc. We also tried to define the classifier
combination field by specifying cases, e.g. the presence of a large number of
classes, which can not be readily solved by traditional pattern classification al-
gorithms. We briefly presented main research directions in ensemble classifier
combinations (Section 3) and non-ensemble classifier combinations (Section
4). In the last section, we discussed the retraining effect and issues of local-
ity in classifier combinations. This section also presented some potential new
research topics.

Overall, our goal was to show the current state of the art in classifier
combination. Though significant progress has been made so far in devising new
combination methods, the research is still mostly limited to the low complexity
type of combinations. Exploring other complexity types of combinations and
understanding locality properties of classifiers can be a fertile ground for future
research.
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Summary. Signature verification is a common task in forensic document analy-
sis. It’s aim is to determine whether a questioned signature matches known signa-
ture samples. From the viewpoint of automating the task it can be viewed as one
that involves machine learning from a population of signatures. There are two types
of learning tasks to be accomplished: person-independent (or general) learning and
person-dependent (or special) learning. General learning is from a population of
genuine and forged signatures of several individuals, where the differences between
genuines and forgeries across all individuals are learnt. The general learning model
allows a questioned signature to be compared to a single genuine signature. In special
learning, a person’s signature is learnt from multiple samples of only that person’s
signature - where within-person similarities are learnt. When a sufficient number
of samples are available, special learning performs better than general learning (5%
higher accuracy). With special learning, verification accuracy increases with the num-
ber of samples. An interactive software implementation of signature verification in-
volving both the learning and performance phases is described.

1 Introduction

The most common task in the field of forensic document analysis [1, 2, 3, 4, 5]
is that of authenticating signatures. The problem most frequently brought to a
document examiner is the question relating to the authenticity of a signature:
Does this questioned signature (Q) match the known, true signatures (K) of
this subject? [6] A forensic document examiner - also known as a questioned
document (QD) examiner - uses years of training in examining signatures in
making a decision in forensic case work.

The training of a document examiner involves years of learning from sig-
natures that are both genuine and forged. In case-work, exemplars are usually
only available for genuine signatures of a particular individual, from which
the characteristics of the genuine signature are learnt.
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Automating the task of signature verification is the subject of this chapter.
It is naturally formulated as a machine learning task. A program is said to
exhibit machine learning capability in performing a task if it is able to learn
from exemplars, improve as the number of exemplars increase, etc. [7]. The
performance task of signature verification is one of determining whether a
questioned signature is genuine or not. An example of a case where a ques-
tioned signature sample is to be matched against multiple known samples of
a particular writer is shown in Fig. 1.

Fig. 1. Signature verification where a questioned signature (right) is matched
against four knowns

Paralleling the learning tasks of the human questioned document examiner,
the machine learning tasks can be stated as general learning (which is person-
independent) or special learning (which is person-dependent) [8]. In the case
of general learning the goal is to learn from a large population of genuine and
forged signature samples. The focus is on differentiating between genuine-
genuine differences and genuine-forgery differences. The learning problem is
stated as learning a two-class classification problem where the input consists of
the difference between a pair of signatures. The verification task is performed
by comparing the questioned signature against each known signature. The
general learning problem can be viewed as one where learning takes place
with near misses as counter-examples [9].

Special learning focuses on learning from genuine samples of a particu-
lar person. The focus is on learning the differences between members of the
class of genuines. The verification task is essentially a one-class problem of
determining whether the questioned signature belongs to that class or not.

There is scattered literature on automatic methods of signature verifica-
tion [10, 11, 12, 13, 14]. Automatic methods of writer verification - which is
the task of determining whether a sample of handwriting, not necessarily a
signature, was written by a given individual - are also relevant [15]. Identifi-
cation is the task of determining as to who among a given set of individuals
might have written the questioned writing. The handwriting verification and
identification tasks parallel those of biometric verification and identification
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for which there is a large literature. The use of a machine learning paradigm
for biometrics has been proposed recently [16].

The rest of this chapter is organized as follows. Section 2 describes the
processes of computing the features of a signature and matching the features
of two signatures. Section 3 describes the two methods of learning. Section
4 deals with how the learnt knowledge is used in evaluating a questioned
signature (called the performance task). A comparison of the accuracies of
the two strategies on a database of genuines and forgeries is described in
Section 5. Section 6 describes an interactive software implementation of the
methods described. Section 7 is a chapter summary.

2 Feature Extraction and Similarity Computation

Signatures are relied upon for identification due to the fact that each person
develops unique habits of pen movement which serve to represent his or her
signature. Thus at the heart of any automatic signature verification system
are two algorithms: one for extracting features and the other for determining
the similarities of two signatures based on the features. Features are elements
that capture the uniqueness. In the QD literature such elements are termed
discriminating elements or elements of comparison. A given person’s samples
can have a (possibly variable) number of elements and the combination of
elements have greater discriminating power.

A human document examiner uses a chart of elemental characteristics [6].
Such elements are ticks, smoothness of curves, smoothness of pressure changes,
placement, expansion and spacing, top of writing, base of writing, angu-
lation/slant, overall pressure, pressure change patterns, gross forms, varia-
tions, connective forms and micro-forms. The elemental characteristics such
as speed, proportion, pressure and design are used to determine higher level
characteristics such as rhythm, form and balance.

Automatic signature verification methods described in the literature use
an entirely different set of features. Some are based on image texture such as
wavelets while others focus on geometry and topology of the signature image.
Types of features used for signature verification are wavelet descriptors [17],
projection distribution functions [18, 14, 19], extended shadow code [18] and
geometric features [20].

2.1 GSC Features

A quasi-multiresolution approach for features are the Gradient, Structural
and Concavity, or GSC, features [21, 22]. Gradient features measure the local
scale characteristics of image, structural features measure the intermediate
scale ones, and concavity can measure the characteristics over the scale of
whole image. Following this philosophy, three types of feature maps are drawn
and the corresponding local histograms of each cell is quantized into binary
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features. Fig. 2(a) shows an example of a signature, which has a 4x8 grid
imposed on it for extracting GSC features; rows and columns of the grid are
drawn based on the black pixel distributions along the horizontal and vertical
directions. A large number of binary features have been extracted from these
grids, as shown in Fig. 2(b), which are global word shape features [23]; there
are 1024 bits which are obtained by concatenating 384 gradient bits, 384
structural bits and 256 concavity bits.

(a) Variable size grid

(b) 1024-bit binary feature vector

Fig. 2. Signature feature computation using a grid: (a) variable size 4x8 grid, and
(b) binary feature vector representing gradient, structural and concavity features

A similarity or distance measure is used to compute a score that signifies
the strength of match between two signatures. The similarity measure converts
the pairwise data from feature space to distance space.

Several similarity measures can be used with binary vectors, including
the well-known Hamming distance. Much experimentation with binary-valued
GSC features, has led to the correlation measure of distance as yielding the
best accuracy in matching handwriting shapes [24]. It is defined as follows.
Let Sij (i, j ∈ {0, 1}) be the number of occurrences of matches with i in
the first vector and j in the second vector at the corresponding positions,
the dissimilarity D between the two feature vectors X and Y is given by the
formula:

D(X, Y ) =
1
2
− S11S00 − S10S01

2
√

(S10 + S11)(S01 + S00)(S11 + S01)(S00 + S10)

It can be observed that the range of D(X, Y ) has been normalized to [0, 1].
That is, when X = Y , D(X, Y ) = 0, and when they are completely different,
D(X, Y ) = 1.
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A refined method to compute the features and obtain the distance values
is discussed next.

2.2 GSC Features using Flexible Templates

The GSC features which are based on non-overlapping rectangular cells placed
on the signature can be improved upon by considering the specific pair of
signatures being compared.

2.2.1 Image Grid for Signature Matching

The GSC binary feature vector depends upon the grid used to partition the
image– one of which is shown in Fig. 2(a). The simplest one with equal cell size
can be used for character recognition. A more complex linear grid is obtained
from two one-dimensional projection histograms obtained along horizontal
and vertical directions so that the foreground pixel masses of cells are equal
both column- and row- wise. To achieve good alignment between signature
images a non-linear sampling grid should be applied. The problem of searching
a specific geometric transformation or mapping function to match two closely
related images is a classic image registration problem. Thus the generation
of non-linear grid consists of two stages: point mapping and transformation
searching, which is also the general solution of matching problem without
prior knowledge of registration. In the first stage, the extrema of strokes are
labeled as the landmarks of signatures, then an appropriate graph matching
algorithm is applied to match these two point sets. Based on the registration
information obtained from the first stage a geometric transformation which
minimizes a specific cost funtion can be found. The non-linear grid is naturally
the projection of the reference grid by the mapping function.

2.2.2 Landmark Mapping

The extrema along the strokes where the curvature of contours has local maxi-
mum record representative information of personal writing. After labeling the
extremas along the contours as landmarks of images the Scott and Longuet-
Higgins algorithm [25] can be used to match the landmark sets of two im-
ages. In this algorithm the two point sets are placed at the same surface and
a proximity matrix G is constructed to indicate their spatial relations, i.e.,
G = exp(−r2

ij/σ2), where rij is the Euclidean distance between points i and
j. The pairing matrix P is then constructed to approximate a permutation
matrix which corresponds to a matching function. Using Scott and Longuet-
Higgins algorithm point-to-point matching can be constructed between two
point sets while igoring some bad matches (Fig. 3).
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Fig. 3. Extremas matching between two signature contour images

2.3 Cell Alignment by Spline Mapping

With registration information from the previous stage, a geometric transfor-
mation can be constructed to map the landmarks of the reference image– also
called control points– to correspondence in the test image. Thin-plate spline
warping is a powerful spatial transformation to achieve this goal. An imagi-
nary infinite thin steel plate is constrained to lie over the displacement points
and the spline is the superposition of eigenvectors of the bending energy ma-
trix. The spline algebra tries to express the deformation by minimizing the
physical bending energy over the flat surface. The resulting plate surface is
differentiable everywhere. The spline function

f(x, y) = a1 + axx + ayy +
n∑

i=1

WiU (|Pi − (x, y)|)

along x and y coordinates can map every point in the reference image into
one in the test image. Please see [26] for details.

Thus from the reference grid we can generate the corresponding grid using
the mapping function obtained. The aligned cell is defined as the region whose
boundaries are the generated grids (Fig. 4).

(a)

(b)

Fig. 4. Signature grids: (a) using horizontal and vertical pixel histograms, the image
is divided by a 4 × 8 grid, (b) mapping grid obtained by spline warping
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3 Learning Strategies

Person-independent or general learning is a one-step approach that learns
from a large population of genuine and forged samples. On the other hand
person-dependent(person specific) learning focuses on learning from the gen-
uine samples of a specific individual.

3.1 Person-Independent (General) Learning

The general learning approach uses two sets of signature pairs: genuine-
genuine and genuine-forgery. Features are extracted for these samples and
a similarity measure is used to compute the distance between each pair. Let
DS denote the vector of distances between all pairs in set one, which repre-
sents the distribution of distances when samples truly came from the same
person. Similarly let DD denote the vector of distances between all pairs in
set two, which represents the distribution of distances when samples truly
came from different persons. These distributions can be modeled using known
distributions such as Gaussian or gamma. Fig. 5 shows typical distribution
curves obtained when distances are modeled using a gamma distribution. The
Gaussian assigns non-zero probabilities to negative values of distance although
such values are never encountered. Since this problem in not there with the
Gamma, it is to be preferred. The probability density function of the gamma
distributions is as follows:

Gamma(x) =
xα−1 exp(−x/β)

(Γ (α))βα

Here α and β are gamma parameters which can be evaluated from the
mean and variance as follows α = µ2/σ2 and β = σ2/µ. ‘α’ is called the shape
parameter and ‘β’ is the scale parameter. The parameters that need to be
learnt for such a model are typically derived from the sufficient statistics of
the distribution, and are namely µ (mean) and σ (variance) for a Gaussian,
or α (shape) and β (width) for a gamma. These distributions are referred
to as genuine-genuine and genuine-impostor distributions in the domain of
biometrics.

3.2 Person-Dependent Learning (Person Specific Learning)

In questioned document case work there are typically multiple genuine signa-
tures available. They can be used to learn the variation across them - so as
to determine whether the questioned signature is within the range of varia-
tion. First, pairs of known samples are compared using a similarity measure
to obtain a distribution over distances between features of samples - this rep-
resents the distribution of the variation/similarities amongst samples - for the
individual. The corresponding classification method involves comparing the
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Fig. 5. Parametric models of two distributions: genuine-genuine distances (DS), and
genuine-forgery distances (DD). In both cases the best fits with gamma distributions
are illustrated. Values of the gamma probability density functions at d are shown

questioned sample against all available known samples to obtain another dis-
tribution in distance space. The Kolmogorov-Smirnov test, KL-divergence and
other information-theoretic methods can be used to obtain a probability of
similarity of the two distributions, which is the probability of the questioned
sample belonging to the ensemble of knowns. These methods are discussed
below.

3.2.1 Within-Person Distribution

If a given person has N samples,
(
N
2

)
defined as N !

N !(N−r)! pairs of samples can
be compared as shown in Figure 6. In each comparison, the distance between
the features is computed. This calculation maps feature space to distance
space. The result of all

(
N
2

)
comparisons is a {(N

2

)×1} distance vector. This
vector is the distribution in distance space for a given person. For example,
in the signature verification problem this vector is the distribution in distance
space for the ensemble of genuine known signatures for that writer. A key
advantage of mapping from feature space to distance space is that the number
of data points in the distribution is

(
N
2

)
as compared to N for a distribution

in feature space alone. Also the calculation of the distance between every pair
of samples gives a measure of the variation in samples for that writer. In
essence the distribution in distance space for a given known person captures
the similarities and variation amongst the samples for that person. Let N
be the total number of samples and NWD =

(
N
2

)
be the total number of

comparisons that can be made which also equals the length of the within-
person distribution vector. The within-person distribution can be written as

DW = (d1, d2, . . . , dNWD )� (1)
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where � denotes the transpose operation and dj is the distance between the
pair of samples taken at the jth comparison, j ∈ {1, . . . , NWD}.

Fig. 6. Person-dependent (special) learning involves comparing all possible genuine-
genuine pairs, as shown for four genuine samples, to form the vector DW, which in

this example is of length NWD =
(
4
2

)
= 6 comparisons

4 Performance Task

The performance task of signature verification is to answer the question
whether or not a questioned signature belongs to the genuine signature set.
The person-independent method uses knowledge from a general population to
determine whether two samples, one a questioned and the other a genuine, be-
long to the same person. This task is called 1 :1 verification. Person-dependent
classification tasks involves matching one questioned sample against multiple
known samples from the person. Details of the two performance algorithms
are given below.

4.1 Person-Independent Classification

The process of 1 : 1 verification(one input sample compared with one known
sample) starts with feature extraction and then computing the distance d
between the features using a similarity measure. From the learning described
in Section 3.1, the likelihood ratio defined as P (DS |d)

P (DD |d) can be calculated, where
P (DS |d) is the probability density function value under the DS distribution at
the distance d and P (DD|d) is the probability density function value under the
DD distribution at the distance d. If the likelihood ratio is greater than 1, then
the classification answer is that the two samples do belong the same person
and if the ratio is less than 1, they belong to different persons. Figure 5 shows
how the likelihood ratio is obtained. If there are a total of N known samples
from a person, then for one questioned sample N , 1 : 1 verifications can be
performed and the likelihood ratios are multiplied. In these circumstances it is
convenient to deal with log-likelihood-ratios rather than with just likelihood
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ratios. The log-likelihood-ratio (LLR) is given by logP (DS |d)− log P (DD|d).
The decision of same-person is favored if log P (DS |d) − log P (DD|d) > 0,
and the decision of different-person chosen if log P (DS |d)− log P (DD|d) < 0.
When N of these 1 : 1 verifications are performed these LLR’s are summed
and then the decision is taken.

4.2 Person-Dependent Classification

When multiple genuines are available then the within-person distribution is
obtained in accordance with equation 1. A questioned can be compared against
the ensemble of knowns for verification. The classification process consists of
two steps.

(i) obtaining questioned vs known distribution; and
(ii) comparison of two distributions: questioned vs known distribution

and within-person distribution.

Questioned vs Known Distribution

Using Equation (1) the within-person distribution is obtained by comparing
every possible pair of samples from within the given person’s samples. Anal-
ogous to this, the questioned sample can be compared with every one of the
N knowns in a similar way to obtain the questioned vs known distribution.
The questioned vs known distribution is given by

DQK = (d1, d2, . . . , dN )� , (2)

where dj is the distance between the questioned sample and the jth known
sample, j ∈ {1, . . . , N}.

Comparing Distributions

Once the two distributions are obtained, namely the within-person distribu-
tion, denoted Dw (Equation (1)), and the Questioned vs Known distribution,
DQK (Equation (2)), the task now is to compare the two distributions to ob-
tain a probability of similarity. The intuition is that if the questioned sample
did indeed belong to the ensemble of the knowns, then the two distributions
must be the same (to within some sampling noise). There are various ways of
comparing two distributions and these are described in the following sections.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test can be applied to obtain a probability of
similarity between two distributions. The KS test is applicable to unbinned
distributions that are functions of a single independent variable, that is, to
data sets where each data point can be associated with a single number [27].
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The test first obtains the cumulative distribution function of each of the two
distributions to be compared, and then computes the statistic, D, which is a
particularly simple measure: it is defined as the maximum value of the absolute
difference between the two cumulative distribution functions. Therefore, if
comparing two different cumulative distribution functions SN1(x) and SN2(x),
the KS statistic D is given by D = max−∞<x<∞ |SN1(x) − SN2(x)|. The
statistic D is then mapped to a probability of similarity, P , according to
equation 3

PKS = QKS

(√
Ne + 0.12 + (0.11/

√
Ne)D

)
, (3)

where the QKS(·) function is given by (see [27] for details):

QKS(λ) = 2
∞∑

j=1

(−1)j−1e−2j2λ2
, such that : QKS(0) = 1, QKS(∞) = 0,

(4)
and Ne is the effective number of data points, Ne = N1N2(N1 +N2)−1, where
N1 is the number of data points in the first distribution and N2 the number
in the second. In the rest of this section, other methods of comparing two
distributions are discussed.

Kullback-Leibler Divergence and other methods

The Kullback-Leibler (KL) divergence is a measure that can be used to com-
pare two binned distributions. The KL divergence measure between two dis-
tributions is measured in bits or nats. An information theoretic interpretation
is that it represents the average number of bits that are wasted by encoding
events from a distribution P with a code which is optimal for a distribution Q
(i.e. using codewords of length − log qi instead of − log pi). Jensen’s inequality
can be used to show that DKL = KL(P‖Q) ≥ 0 for all probability distribu-
tions P and Q, and DKL = KL(P‖Q) = 0 iff P = Q. Strictly speaking, the
KL measure is a divergence between distributions and not a distance, since it
is neither symmetric nor satisfies the triangle inequality). The KL divergence
so obtained can be converted to represent a probability by exp (−ζDKL) (for
the sake of simplicity we set ζ = 1 in this article). If the divergence DKL is
0, then the probability is 1 signifying that the two distributions are the same.
In order to use this method and other methods discussed in the following sec-
tions it is first necessary to convert the two unbinned distributions to binned
distributions with a probability associated with each bin. The KL divergence
between two distributions is given in Equation 5 below, where B is the total
number of bins, Pb and Qb are the probabilities of the bth bin of two distri-
butions respectively. PKL denotes the probability that the two distributions
are the same. Other related measures between distributions P and Q that we
will examine are given in Equations (7), (9) and (11)
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Kullback-Leibler:DKL =
B∑

b=1

Pb log(
Pb

Qb
) (5)

PKL = e−ζDKL (6)

Reverse KL:DRKL = KL(Q‖P ) =
B∑

b=1

Qb log(
Qb

Pb
) (7)

PRKL = e−ζDRKL (8)

Symmetric KL:DHKL =
1
2
KL (P‖Q) +

1
2
KL (Q‖P ) =

DKL + DRKL

2
(9)

PHKL = e−ζDHKL (10)

Jensen-Shannon KL:DJS =
1
2
KL

(
P

∥∥∥∥P + Q

2

)
+

1
2
KL

(
Q

∥∥∥∥P + Q

2

)
(11)

PJS = e−ζDJS (12)

Combined KL and KS measure

A combination of the Kolmogorov-Smirnov and Kullback-Leibler measure, de-
noted KLKS, has been found to outperform the individual measures as will be
analyzed in the performance evaluation section following this. The method to
combine is very simple and is obtained by averaging the probabilities defined
in equations (3) and (5).

PKLKS =
PKL + PKS

2
(13)

5 Performance Evaluation

5.1 Experiments

A database of off-line signatures was prepared as a test-bed [13]. Each of 55
individuals contributed 24 signatures thereby creating 1320 genuine signa-
tures. Some were asked to forge three other writers’ signatures, eight times
per subject, thus creating 1320 forgeries. Few samples from genuine signatures
are shown in Figure 7. Ten examples of genuines of one subject (subject no.
21) and ten forgeries of that subject are shown in Figure 8. Each signature
was scanned at 300 dpi gray-scale and binarized using a gray-scale histogram.
Salt pepper noise removal and slant normalization were two steps involved in
image preprocessing. The database had 24 genuines and 24 forgeries available
for each writer as in Figure 8. For each test case a writer was chosen and N
genuine samples of that writer’s signature were used for learning. The remain-
ing 24 − N genuine samples were used for testing. Also 24 forged signatures
of this writer were used for testing. Two different error types can be defined
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Fig. 7. Genuine signature samples

Fig. 8. Samples for one writer: (a) genuines and (b) forgeries

for any biometric person identification problem. False reject rate (Type 1) is
the fraction of samples classified as not belonging to the person when truly
there were from that person. False acceptance rate (Type 2) is the fraction
of samples classified as belonging to the person when truly the samples were
not from that person. In the domain of signatures, Type 1 is the fraction of
samples classified as forgeries when truly they were genuine and Type 2 the
fraction of samples classified as genuine when truly they were forgeries.

5.2 Person-Independent(General) Method

The classification decision boundary discussed in Section 4.1 is given by the
sign of the log likelihood-ratio, LLR, logP (DS |d) − log P (DD|d). A modi-
fied decision boundary can be constructed using a threshold α, such that
log P (DS |d) − log P (DD|d) > α. When α is varied, we can plot ROC curves
as shown in Figure 9. The different subplots in the figure correspond to the
ROC curves as the number of known samples is increased from 5 to 20. For
each plot, the total error rate defined as (False acceptance+False reject)/2 is
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minimum at a particular value of α. This is the best setting of α for the spec-
ified number of known samples, denoted the operating point, and is indicated
with an asterix ‘*’. When 20 samples are used for learning the error rate is
approximately 79%.
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Fig. 9. ROC curves parameterized by α is varied. Each subplot is titled with the
number of knowns used for training and the optimum error rate that is possible.
The asterix ‘*’ denotes the optimal operating point α for that model.

Figure 10 shows the distribution of LLRs when the questioned samples
were genuine and when they were forgeries. A larger region of overlap indicates
a higher error rate.

5.3 Person-Dependent Method

The person-dependent classification discussed in Section 4.1 mentioned six
different statistics for comparing the two distributions to obtain a probability
of match between the questioned sample and the ensemble of knowns. In order
to measure error rates for this classificaton technique, once again a decision
needs to be made based on the probability of whether or not the questioned
sample belongs to the ensemble of knowns. If the probability of match > α,
then the decision is in favour of the questioned signature to be genuine, and
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Fig. 10. LLR’s obtained from each test case plotted as histograms. The probability
(y-axis) that the LLR falls into a range of LLR values (x-axis) is shown for the
results of truly genuine (solid) and forgery cases (dotted). Each subplot corresponds
to training on a different number of knowns.

if the probability of match < α, the decision is in favor of a forgery (this α
should not be confused with that used in the person-independent method).
By varying the parameter α, once again ROC curves (False Accept vs. False
Reject) can be plotted for each of the six measures. The best setting of α is
termed as the operating point. This setting of α corresponds to the least total
error rate possible. Note that the ROC curves are plotted for the test data
set and the operating point determined on them. This test data set can be
considered as a validation set that helps to determine the operating point. In
the curve, the operating point is the point closest to the origin. Table 1 shows
the least total error rate possible when different number of known samples
were used for training for each of the 6 different measures. Figure 12(a) shows
the same table as a graph comparing the different measures and it can be seen
that the combined KL and KS measure performs the best. The reason for this
can be intutively explained by examining Figure 11(a), where it can be seen
that the KS statistic has low false accept rates whereas the KL statistic has
low false reject rates. The combination of these two in the KL and KS measure
works the best.

Figure 12(b) shows how the operating point (best setting of α) varies with
the number of known samples used. It can be seen that in order to obtain the
least total error rate, the value of α changes with the number of knowns for
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Fig. 11.

certain measures. The value of α explains a lot about what each statistic learns
from the known samples. For example, the high value of α for the KS statistic
when large numbers of known samples were used explains that the KS statistic
focuses on learning the variation amongst the known samples. Presence of
large known samples accounts for greater variation amongst them. Hence if
KS focuses on learning the variation, then almost every questioned sample
ends up receiving a high probability of match as the majority of questioned
samples (genuines and forgeries) invariably fall within the variation. Thus by
setting a high value of α the decision that a sample is truly genuine is made
only if probability is really high. In simple terms this means that when more
samples are used for training the KS statistic will declare a sample as genuine
only if the probability of match is really high. In contrast to this measure
the KL measure captures the similarities amongst the known samples a lot.
This is evident by the low value of α when large number of known signatures
are used. Presence of large number of samples accounts for observing more
similarities. The KL measure focuses on learning the similarities amongst
the samples and it returns a high probability of match very rarely and only
when every similarity that is learnt amongst the known samples is present
in the questioned sample. Hence the majority of questioned sample receive
a low probability of match by the KL measure. To counter this, a low value
of α, ensures that the KL measure will declare a sample as forgery only if
the probability of match is really low. Similar comments can be made about
other measures and it is important to note that those measures for which the
operating point does not vary with the number of knowns and those which
are around the 50% mark can be a useful property. This basically shows
that irrespective of the number of knowns used for training, one can make
a decision using the same operating point, and also if the operating point is
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around the 50% mark there is an equal range of probabilties across which the
two different decisions fall. And it is also intuitive that the combined KL KS
measure has this fine property. It can be seen that the operating point for
the combined KL and KS measure is closest to the 50% mark amongst other
measures and is also independent of the number of known samples to some
extent. Proceeding with the conclusion that the combined KL KS measure
has the above mentioned properties and also outperforms other measures in
terms total error rate, we can now consider allowing rejections to reduce the
error rates even further. Consider probabilities between .5 − β and .5 + β
for some β > 0 as the region for reject probabilities. No decision is made if
.5−β < Probability < .5+β. This can significantly reduce the total error rate.
Figure 13 shows the total error rate as the rejection percentage is changed by
changing the value of β. This analysis enables the operator to select a value
of β that will induce a certain rejection rate and in turn result in a certain
desired error rate. For example, in order to obtain a error rate of 10% with
20 knowns in this data set one should set β to .15 and that accounts for 35%
reject rate. Similarly for an error rate of 5% for 20 knowns, β needs be set to
.30 which accounts for 62% reject rate.

No. of Knowns KS KL RKL HKL JS KL and KS
5 25.88 24.70 25.61 24.96 25.26 23.87
6 23.54 25.10 25.40 24.57 24.60 22.52
7 22.71 23.35 23.83 23.57 23.31 21.54
8 21.67 23.76 24.60 23.58 23.39 21.20
9 22.17 23.31 24.01 23.03 23.03 20.94
10 21.36 21.93 22.79 21.94 21.63 20.58
11 19.27 20.74 20.96 20.28 20.18 19.02
12 21.13 20.96 21.71 20.42 20.10 19.58
13 20.14 21.73 20.81 21.25 20.78 19.72
14 19.06 20.03 20.84 19.46 19.33 18.41
15 18.28 18.88 19.15 18.10 17.76 17.32
16 19.27 19.08 20.08 18.50 18.38 17.56
17 17.37 17.28 17.36 16.68 16.43 16.07
18 17.79 17.88 18.31 17.58 17.52 17.17
19 17.39 18.09 18.42 17.75 17.37 16.97
20 17.31 17.15 18.58 16.90 17.23 16.40

Table 1. Error rates for signature verification. Measures are Kolmogorov-Smirnov
(KS), Kullback-Leibler (KL), reverse KL (RKL), symmetrized KL (HKL), Jensen-
Shannon (JS), and combined KL and KS (KL and KS). These are graphed in
Figure 12(a)

5.4 Results with Deformed Template

With the construction of a more sophisticated grid, the GSC featuers can be
extracted from using these cells in the grid and distances can be computed as
before. The refinement method based on flexible template was compared with
the original GSC features for performance comparison. In this experiment
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Fig. 13. Error rates as the percentage of allowed rejected (no decision) cases in-
creases. The rejection rate is indirectly controlled by varying the β which assigns the
probability region 50−β and 50+β where no decisions are made and considered as
rejects. The different subplots show the plots for different number of knowns used
for learning. We have plotted only the trend for the combined KL and KS measure
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for each writer we randomly chose 16 signatures from genuine set as known
signatures. The testing signature is matched with all the 16 known signatures
resulting in 16 distances. Here again, the previously discussed approaches of
person-independent and person-dependent can be applied. But for simplicity,
a simple averaging of all the 16 distance can be done. The resulting average
distance can be compared to a threshold (learnt from a training set), to make a
decision of Genuine/Forgery. This resulted in an improvement of performance
from 16.07% to as low as 7.9%. It suffices to say that the more sophisticated
person-dependent approach using these distances computed from these refined
features, will yield even lower error rates for signature verification.

6 Interactive Implementation

Document examination is still a process that must use the expertise of a
human examiner since signatures can change with time and there are non-
image issues such as speed and pressure of writing, etc. Thus an image-based
method described earlier is only one part of the solution. The process of using
the algorithms also needs to be interactive so that the user can prepare the
inputs and obtain an opinion from the system.

This section describes an interactive software implementation of signature
verification where machine learning is a part of the process. CEDAR-FOX [28]
is a forensic document examination system. It has graphical interfaces for
performing various writer and signature verification/identification tasks.

The learning method chosen for CEDAR-FOX is person-dependent or spe-
cial learning. This reflects the fact that the questioned document examiner
insists on having a set of genuines (size greater than one) in order to perform
the task. The combination of KL and KS methods is used.

The learning phase involves the user selecting files corresponding to images
of genuine signatures and specifying a name for the compiled learning set. A
screen shot of the user interface, where five genuine signatures are used in
learning, is shown in Fig 14. CEDAR-FOX allows the user to choose either
the standard GSC feature set or the deformed GSC set in feature extraction.

The testing phase involves the user selecting: (i) the file corresponding to
the questioned signature, (ii) the name of the compiled learning set and (iii)
the choice of the feature extraction algorithm. This is shown in the screen-shot
of Fig. 15. The interface allows the user to filter out noise in the signature
image, e.g., by automatically erasing extraneous printed text that might ac-
company the signature image. The result of signature verification is displayed
as a probability. In this case the questioned matched the knowns with proba-
bility 0.9895.



406 S.N. Srihari et al.

Fig. 14. Signature learning in CEDAR-FOX. The user has interactively slected five
genuine image files

Fig. 15. Signature testing in CEDAR-FOX. The display shows five known signa-
tures, the questioned signature and the probability of the questioned matching the
genuines

7 Summary and Discussion

Automatic signature verification is a task where machine learning can be used
as a natural part of the process. Two different machine learning approaches,
one involving genuines and forgeries in a general set and another involving only
genuines for a particular case were described. The first approach is analogous
to using counter-examples with near misses in the learning process. Both ap-
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proaches involve using a similarity measure to compute a distance between
features of two signatures. Special learning outperforms general learning par-
ticularly as the number of genuines increases. General learning is useful when
the number of genuines is very small (less than four). A refined method of ex-
tracting features for signatures was also discussed which can further increase
verification accuracy. An interactive software implementation of signature ver-
ification was described. Future work should consider combining the two types
of learning to improve performance.
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Summary. This chapter presents an off-line, text-independent system for writer
identification and verification. At the core of the system are Gaussian Mixture Mod-
els (GMMs). GMMs provide a powerful yet simple means of representing the distri-
bution of features extracted from the text lines of a writer. For each writer, a GMM
is built and trained on text lines of that writer. In the identification or verification
phase, a text line of unknown origin is presented to each of the models. As a result
of the recognition process each model returns a log-likelihood score. These scores
are used for both the identification and the verification task. Three types of confi-
dence measures are defined on the scores: simple score based, cohort model based,
and world model based confidence measures. Experiments demonstrate a very good
performance of the system on the identification and the verification task.

1 Introduction

In recent years, significant progress has been made in recognizing a person
based on biometric features [1, 2, 3]. Different biological traits such as face,
fingerprint, iris, signature, and voice are being used to identify a person or ver-
ify its identity. This chapter addresses the problem of personal identification
and verification based on a person’s handwriting.

Writer identification is the task of determining the author of a sample
handwriting from a set of writers [4]. Related to this task is writer verification,
i.e., the task of determining whether or not a handwritten text has been
written by a certain person. If any text may be used to establish the identity
of the writer, the task is text independent. Otherwise, if a writer has to write
a particular predefined text to identify himself or herself, or to verify his or
her identity, the task is text dependent.

If temporal and spatial information about the writing is available, writer
identification and verification can be performed on-line, otherwise if only a
scanned image of the handwriting is available the recognition is performed off-
line. The system we propose in this chapter performs text independent writer
identification and verification using off-line handwritten text lines. Examples
A. Schlapbach and H. Bunke: Off-line Writer Identification and Verification Using Gaussian

Mixture Models, Studies in Computational Intelligence (SCI) 90, 409–428 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



410 A. Schlapbach and H. Bunke

Fig. 1. Examples of text lines

of handwritten text lines from our database, produced by different writers,
are given in Fig. 1. Possible applications of our system include forensic writer
identification [5], the retrieval of handwritten documents from a database [6]
or authorship determination of historical manuscripts [7].

In this chapter we use Gaussian Mixture Models (GMMs) to model a per-
son’s handwriting. GMMs provide a powerful yet simple means of representing
the distribution of features extracted from text lines written by a person. For-
mally, a GMM consists of a weighted sum of uni-modal Gaussian densities.
While GMMs have been used in speech recognition [8, 9] they have not yet
been applied to off-line, text independent writer identification and verification,
to the best of our knowledge.

For each writer in the considered population, an individual GMM is trained
using data from that writer only. Thus for n different writers we obtain n
different GMMs. Intuitively, each GMM can be understood as an expert spe-
cialized in recognizing the handwriting of one particular person. Given an
arbitrary text line as input, each GMM outputs a recognition score. Assum-
ing that the recognition score of a model is higher on input from the writer
the model is trained on than on input from other writers, we can utilize the
scores produced by the different GMMs for the task of identifying the writer
of a text line or of verifying whether a text line has actually been written by
the person who claims to be the writer.
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Our approach has several advantages compared to other approaches:
GMMs have a mathematically simple, well understood structure and there
exist standard algorithms for training and testing [9]. For every writer there
is exactly one model which is trained with a set of simple features. We do
not need to model characters or words. Therefore we do not need a transcrip-
tion of the text, but can use any unlabeled text for training and testing. This
property makes our system language independent.

The rest of this chapter is structured as follows. In Sect. 2 we present
related work in the field of writer identification and verification. The GMMs
used by our system are introduced in Sect. 3. An overview of our writer
identification and verification system is given in Sect. 4 and in Sect. 5 we
present several confidence measures for our system. Results of a number of
experiments are presented and discussed in Sect. 6. Finally, Sect. 7 concludes
the chapter and proposes future work.

2 Related Work

Surveys covering work in automatic writer identification and signature verifi-
cation until 1993 are given in [4, 10]. Recently, several additional approaches
to writer identification and verification have been proposed.

Said et al. [11] treat the writer identification task as a texture analysis
problem. They use global statistical features extracted from the entire image
of a text using multi-channel Gabor filtering and grey-scale co-occurrence
matrix techniques.

Srihari et al. [12, 13] address the problem of writer verification, i.e., the
problem of determining whether two documents are written by the same per-
son or not. In order to identify the writer of a given document, they model
the problem as a classification problem with two classes, authorship and non-
authorship. Given two handwriting samples, one of known and the other of
unknown identity, the distance between two documents is computed. Then
the distance value is used to classify the data as positive or negative.

Zois et al. [14] base their approach on single words by morphologically
processing horizontal projection profiles. The projections are partitioned into
a number of segments from which feature vectors are extracted. A Bayesian
classifier and a neural network are then applied to the feature vectors.

In Hertel et al. [15] a system for writer identification is described. The
system first segments a given text into individual text lines and then extracts
a set of features from each text line. The features are subsequently used in a
k-nearest-neighbor classifier that compares the feature vector extracted from
a given input text to a number of prototype vectors coming from writers with
known identity.

Bulacu et al. [16] use edge-based directional probability distributions as
features for the writer identification task. The authors introduce edge-hinge
distribution as a new feature. The key idea behind this feature is to consider
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two edge fragments in the neighborhood of a pixel and compute the joint prob-
ability distribution of the orientations of the two fragments. Additionally, in
[17] the histogram of connected-component contours (CO3) for upper-case
handwriting is introduced as a new feature. Combining this feature with the
edge-hinge feature achieves better results than each of the features used sep-
arately. In [18] this approach is extended to mixed-style handwriting using
fragmented connected-component contours.

In a number of papers [19, 20, 21] graphemes are proposed as features for
describing the individual properties of handwriting. Furthermore, it is shown
that each handwriting can be characterized by a set of invariant features,
called the writer’s invariants. These invariants are detected using an automatic
grapheme clustering procedure. In [22] these graphemes are used to address
the writer verification task based on text blocks as well as on handwritten
words.

Leedham et al. [23] present a set of eleven features which can be extracted
easily and used for the identification and the verification of documents con-
taining handwritten digits. These features are represented as vectors, and by
using the Hamming distance measure and determining a threshold value for
the intra-author variation a high degree of accuracy in authorship detection
is achieved.

Previously, we have proposed to use Hidden Markov Model (HMM) [24]
based text recognizers for the purpose of writer identification and verification
[25, 26]. For each writer, an individual recognizer is built and trained on text
lines of that writer. This results in a number of recognizers, each of which is
an expert on the handwriting of exactly one writer. Assuming that correctly
recognized words have a higher score than incorrectly recognized words and
that the recognition rate of a system is higher on input from the writer the
system was trained on than on input from other writers, the scores produced
by the different HMMs are used to decide who has written the input text line.

In this chapter, instead of HMM based recognizers, we use GMMs to model
a person’s handwriting. While GMMs have been used in the speech recognition
community [8, 9], they have not been applied, to the best of our knowledge,
to off-line writer identification and verification. A GMM can be viewed as a
single-state HMM with a Gaussian mixture observation density. The advan-
tages of using GMMs over HMMs are manifold. First, GMMs are conceptually
less complex than HMMs consisting of only one state and one output distri-
bution function, which leads to significantly shorter training times. Second,
in GMMs only the parameters of the output distribution function have to
be estimated during training compared to HMMs where the state transition
probabilities have to be estimated as well. Third, neither words nor characters
have to be modeled using GMMs, because every writer is represented by ex-
actly one model. Finally, no transcription of the text lines are needed during
training.
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Fig. 2. A two-dimensional GMM consisting of a weighted sum of three uni-modal
Gaussian densities

3 Gaussian Mixture Models

We use Gaussian Mixture Models (GMMs) to model the handwriting of each
person of the underlying population. The distribution of the feature vectors
extracted from a person’s handwriting is modeled by a Gaussian mixture
density. For a D-dimensional feature vector x the mixture density for a specific
writer is defined as

p(x|λ) =
M∑
i=1

wipi(x). (1)

where the mixture weights wi sum up to one. The mixture density is a
weighted linear combination of M uni-modal Gaussian densities pi(x), each
parametrized by a D × 1 mean vector µi and a D × D covariance matrix Ci:

pi(x) =
1

(2π)D/2|Ci|1/2
exp{−1

2
(x − µi)′(Ci)−1(x − µi)}. (2)

The parameters of a writer’s density model are denoted as λ = {wi, µi, Ci}
for all i = 1, . . . , M . This set of parameters completely describes the model
and enables us to concisely model a person’s handwriting.

The GMMs are trained using the Expectation-Maximization (EM) algo-
rithm [27]. The EM algorithm follows the Maximum Likelihood (ML) principle
by iteratively refining the parameters of the GMM to monotonically increase
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the likelihood of the estimated model for the observed feature vectors. The
algorithm starts with a data set X of N feature vectors xj , an initial set of
M uni-modal Gaussian densities Ni=̂N(µi, Ci), and M mixture weights wi.
Then, in the first step, for each training data point xj the responsibility of
each component Ni is determined. In the second step, the component densi-
ties, i.e., the mean vector µi and the variance matrix Ci for each component
and the weights wi are re-estimated based on the training data. These two
steps are repeated until the likelihood score of the entire data set does not
change substantially or a limit on the number of iterations is reached.

While the general model supports full covariance matrices, often only di-
agonal covariance matrices are used. This simplification is motivated by the
following observations: first, theoretically the density modeling of an M di-
mensional full covariance matrix can equally well be achieved using a larger
order diagonal covariance matrix. Second, diagonal covariance matrices are
computationally more efficient than full covariance matrices, and third, diag-
onal matrix GMMs outperformed full matrix GMMs in various experiments
[9]. An example of a two dimensional GMM with a diagonal covariance matrix
is shown in Fig. 2.

The Gaussian component densities can either be initialized randomly or
by using vector quantization techniques such as k-means clustering [28]. Fur-
thermore, often variance flooring is employed to avoid an overfitting of the
variance parameters [29]. The idea of variance flooring is to impose a lower
bound on the variance parameters as a variance estimated from only few data
points can be very small and might not be representative of the underlying
distribution of the data [29]. The minimal variance value is defined by

σ2
min = α ∗ σ2

global (3)

where α denotes the variance flooring factor and the global variance σ2
global is

calculated on the complete data set. The minimal variance, σ2
min , is used to

initialize the variance parameters of the model. During the EM update step,
if a calculated variance parameter is smaller than σ2

min then the variance
parameter is set to this value.

During decoding, the feature vectors X = {x1, . . . ,xT } extracted from a
text line are assumed to be independent. The log-likelihood score of a model
λ for a sequence of feature vectors X is defined as

log p(X |λ) =
T∑

t=1

log p(xt|λ), (4)

where p(xt|λ) is computed according to Eq. 1.
In this work, we use diagonal covariance matrices and the models are

initialized using k-means clustering. The GMMs are implemented using the
Torch library [30].
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Fig. 3. Schematic overview of the writer identification and verification system

4 System Overview

We use GMMs as the building blocks of our writer identification and verifica-
tion system. A schematic overview of the system is shown in Fig. 3. For each
writer, a GMM as described in the previous section is built and trained with
data coming from this writer only. As a result of the training procedure, we
get a model for each writer.

A set of features is extracted from each text line to train the GMMs.
Before feature extraction, a series of normalization operations are applied to
each text line. The operations are designed to improve the quality of the
features extracted without removing writer specific information.

For the purpose of normalization, the contrast of the grey-scale images is
enhanced first, leading to images with black strokes written on white back-
ground. Then vertical scaling and thinning normalization operations are ap-
plied, which are described in the following two paragraphs. The aim of vertical
scaling is to normalize the height of the text line and thinning assures inde-
pendence of the writing pen.

To perform vertical scaling a text line is divided into three zones: a zone
containing the ascenders, a middle zone, and a zone containing the descen-
ders. These three zones are to be normalized to a predefined height which is
important in order to reduce the variability of the features used to train the
GMMs. To actually perform this operation, the upper and the lower base-
line of the text line have to be determined. To find the two baselines, the
histogram of the horizontal projection of the image of the text line is used.
The real histogram is matched with an ideal histogram. The location of the
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Text line before normalization and thinning

Text line after normalization and thinning

Fig. 4. A text line before and after normalization and thinning

upper and the lower baseline are detected and the three main writing zones
are determined. Each of these three zones is then individually positioned and
scaled to a predefined height.

Different pens of different width have been used to write the text lines.
In order to eliminate the effect of the pen width on the performance of the
system, all text lines are thinned using the iterative MB2 thinning algorithm
[31]. After thinning, all strokes in a text line image are at most two pixels wide.
In Fig. 4 a text line before and after normalization and thinning is shown.

In the next step, features are extracted by a sliding window. The window
moves from left to right one pixel per step. For every column of pixels in the
sliding window, nine geometrical features are extracted. These features have
shown to produce good results on both the text recognition task [32] as well
as on the writer identification and verification task [33].

The feature set consists of three global and six local features. The three
global features describe the distribution of the pixels in the column, e.g., the
fraction of black pixels in the window, the center of gravity and the second
order moment. The six local features describe specific points in the column.
The features describe the position and the orientation of the upper- and the
lower-most pixel, the number of black-to-white transitions in the window, and
the fraction of black pixels between the upper- and the lower-most black pixel
(see Fig. 5 for an illustration of the six local features). The feature vectors of
every column in the sliding window are averaged to produce the final feature
vector. At last, the feature vectors which only describe white space are deleted.

The width of the sliding window was optimized in an independent exper-
iment involving 571 text lines from 20 writers. These 20 writers are not part
of the data set used to train the GMM models in the subsequent experiments.
A fixed number of 100 Gaussian mixture components and a variance flooring
factor of 0.001 were used for training. The window width was varied from 2
to 32 by steps of two. The highest writer identification rate of 99.05% was
achieved using a window width of 14 pixels. This window width was used in
all subsequent experiments to extract the features from a text line.

The sequences of nine-dimensional feature vectors extracted from the text
lines are used to train the GMMs. After training, each GMM is especially
adapted to the individual handwriting style of a particular writer. During
identification, a text line to be classified is presented to the GMM of each
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Fig. 5. Six local features extracted from each row in the sliding window

writer. Each GMM outputs a log-likelihood score and a standard deviation for
the given text line. These scores are the basis for identification and verification
as described below.

5 Confidence Measures

In order to assign a text line to a certain person or to verify the identity of a
text line with a claimed identity we need a means of measuring how sure the
system is about the given text line. A confidence measure enables us to judge
the quality of the recognition and to implement a rejection mechanism based
on this measure.

For writer identification we define the following rejection mechanism. If
the confidence measure of a text line is above a given threshold, the system
returns the identity of the text line with the highest ranked score; otherwise
the system rejects the input. Thus if we have n writers, the writer identification
problem is a n-class classification problem with a reject option.

The decision criterion for writer verification is similar. If the confidence
measure of a text line is above a certain threshold, we assume that the text
line was in fact written by the claimed writer; otherwise the input is classified
as not being of the claimed identity. In writer verification we deal with a
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two-class classification problem that is independent of the number of writers
under consideration.

Various confidence measures for off-line handwriting recognition have been
presented in the literature [34, 35, 36]. In this chapter, three common types
of confidence measures are used. The first type of confidence measure is solely
based on the score of the model under consideration and therefore is not
normalized. The other two types of confidence measures normalize the recog-
nition score based on a cohort model and a world model approach, respectively.
The cohort model approach normalizes the score of the model of the claimed
writer with respect to the score of the most competitive writers [37]. The
world model approach normalizes the score of the claimed writer by a model
which is trained on a large number of samples from many writers [38].

5.1 Confidence Measures for Writer Identification

A text line is presented to each model and the returned log-likelihood scores
are sorted. Given a text line t of an unknown author, the simplest confidence
measure is to judge the quality of the recognition based on the log-likelihood
score of the first ranked model:

cmIdentLLScore(t) = llfirstRanked (5)

The next confidence measure is inspired by the cohort model approach.
The confidence measure is calculated from the difference of the log-likelihood
score of the first ranked model, llfirstRanked, and the log-likelihood score of the
second ranked model, llsecondRanked:

cmIdentCohortModel(t) = llfirstRanked − llsecondRanked (6)

The third confidence measure uses a world model to normalize the log-
likelihood score of the first ranked writer. The world model is trained on
a large number of text lines coming from different writers. The confidence
measure is calculated on the difference of the log-likelihood score of the first
ranked writer, llfirstRanked, and the world model, llworldModel:

cmIdentWorldModel(t) = llfirstRanked − llworldModel (7)

All the confidence measures for writer identification presented in this sec-
tion need to determine the system which produces the highest log-likelihood
score. A text line has to be presented to the model of each writer under con-
sideration. Then the returned scores have to be sorted, which means that the
calculation of these confidence measures depends on the number of writers.

5.2 Confidence Measures for Writer Verification

The confidence measures for writer verification are similar to the ones de-
fined for writer identification in the previous section. Compared to the writer
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identification case where the log-likelihood score of the first ranked system
is normalized, the log-likelihood score of the claimed system is normalized
instead.

The first simple confidence measure for a text line t is the log-likelihood
score of the model of the claimed identity, llclaimedID:

cmVerif LLScore(t) = llclaimedID (8)

The next confidence measure is inspired by the cohort model approach.
Based on the ranking of the scores the confidence measure is calculated from
the difference of the log-likelihood score of the claimed identity, llclaimedID,
and the first best ranked competing writer, llbestRankedCompeting:

cmVerif CohortModel(t) = llclaimedID − llbestRankedCompeting (9)

The third confidence measure implements a world model approach. The
difference of the score of the model of the claimed identity and the world
model is computed:

cmVerif WorldModel(t) = llclaimedID − llworldModel (10)

In comparison to the world model based confidence score in the identifica-
tion case (Eq. 7), in the verification case we do not need to present the text
line in question to all the models, but to the model of the claimed identity
and the world model only.

6 Experiments

6.1 Data sets

The text lines used in our experiments are part of the IAM handwriting
database [39]1. The database currently contains over 1,500 pages of hand-
written text. For each writer we use five pages of text from which between 27
and 54 text lines are extracted.

Five-fold cross validation is used in our experiments. Cross validation en-
ables us to use all text lines for training without committing the error of train-
ing or of optimizing meta parameters on the test set [40]. For each writer, the
set of available text lines is split into five sets. The idea is to train the system
on three sets, use the fourth set to find an optimal set of meta parameters and
then test on the fifth set. This procedure is iterated five times such that each
set is used for testing once. The final recognition rate is obtained by averaging
the five results from each of the test sets.

1 The IAM handwriting database is publicly available at:
www.iam.unibe.ch/˜fki/iamDB
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Example of original text lines

Example of skillfully forged text lines

Fig. 6. Examples of original and skillfully forged text lines

In this experimental setup, the data set consists of text lines from 100
different writers. All in all, 4,103 text lines are available and due to cross
validation we can use all the text lines for both training and testing.

A verification system can make two types of errors. First, the system can
falsely reject a text written by a client and, second, it can falsely accept a
text coming from an impostor [41]. Therefore we need two sets for testing a
writer verification system: one set consisting of clients and one set containing
impostors. The impostor set can be composed of unskilled forgeries, where
the impostor makes no effort to simulate a genuine handwriting, and of skilled
forgeries, where the impostor tries to imitate the handwriting of a client as
closely as possible [42].

The unskillfully forged test set used in our experiments consists of two
disjoint subsets coming from clients and impostors. The unskilled forgeries
that form the impostor set are obtained from the database by extracting 571
text lines produced by 20 writers. The writers of these text lines are disjoint
from the 100 clients and no model exists that is trained on the handwriting
of any of these 20 writers. Based on these text lines the impostor data set is
constructed by assigning, to each of these text lines, seven identities of writers
known to the system. In total, the impostor data set consists of 7×571 =3,997
lines and the complete test set of 8,100 text lines. The rationale is that the
number of text lines to be accepted should be approximately the same as
the number of text lines that have to be rejected, i.e., the two classes under
consideration should be balanced.
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Fig. 7. Writer identification rate as a function of the number of Gaussian mixture
components and the variance flooring factor on the validation set

The skillfully forged test set is again composed of two subsets, a client
and an impostor subset. The client data set consists of one page of text each
from 20 different writers which are part of the 100 clients. A total of 169 text
lines are extracted from these 20 pages. The same 20 pages are then skillfully
forged. The acquisition protocol is as follows. A person is presented with a
page of handwritten text and given 10 minutes to train the writing. Then
he or she is asked to forge the text. An example of three original and three
skillfully forged text lines are given in Fig. 6. From the forgeries thus created,
another 169 text lines are extracted. Hence, in total 338 text lines are used in
this test set.

6.2 Writer Identification Experiments

We first conducted an experiment to measure the influence of the number of
Gaussian mixture components and the variance flooring factor on the writer
identification rate. The number of Gaussian mixture components is varied
from 60 to 200 by steps of 10 and the variance flooring factor is varied from
0.001 to 0.025 by steps of 0.002.

The writer identification rate as a function of the number of Gaussian
mixture components and the variance flooring factor on the validation set is
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Fig. 9. Error-rejection curves for different confidence measures

shown in Fig. 7. On the validation set, the highest writer identification rate
of 98.20% is achieved using 130 Gaussian mixture components and a variance
flooring factor of 0.011. An identification rate higher than 97.03% is achieved
using 60 Gaussian mixture components or more on the validation set. The two
meta parameters optimized on the validation set are then used to calculate the
final writer identification rate of 97.88% on the test set. We also use the world
model trained with these meta parameters in the subsequent experiments.

In Fig. 8, the n-best list is shown where the writer identification rate based
on the first n ranks is plotted. The error rate of the system drops below 1% if
the first three ranks, and below 0.5% if the first seven ranks are considered.
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Table 1. Equal Error Rates (EERs) for the unskillfully and skillfully forged test set

Equal Error Rate (ERR) Unskilled Forgeries Skilled Forgeries

cmVerif LLScore 13.0% 41.0%
cmVerif WorldModel 3.2% 18.6%
cmVerif CohortModel 1.5% 9.3%

The error-rejection curves obtained from the identification test set are
shown in Fig. 9. The simple log-likelihood score based confidence score
(cmIdentLLScore) produces the lowest performing error-rejection curve. The
error rate drops below 1% only if more than 22% of the text lines with the
lowest confidence score are rejected. The next best error-rejection curve is
produced by the world model based approach (cmIdentWorldModel). The er-
ror rate is smaller than 1% if less than 5% of the text lines are rejected.
The cohort model based approach (cmIdentCohortModel) yields the best error-
rejection curve. Fewer than 5% of the text lines have to be rejected to obtain
an error rate smaller than 0.5%.

The observation that the cohort model based approach performs best can
be explained by the fact that the normalization is based on the actual text
line being presented, i.e., the adequate model to normalize the text line is
selected anew for each text line. In comparison, the world model approach
normalizes the score of a text line by the score of a general world model which
is independent of the text line under consideration.

6.3 Writer Verification Experiments

The results of the writer verification experiments are reported as Receiver
Operator Characteristic (ROC) curves in Figs. 10 and 11. An ROC curve
describes the performance of a verification system on a test set by plotting
the False Acceptance Rate (FAR) against the False Rejection Rate (FRR) [41].
In Table 6.3 the estimated Equal Error Rates (EERs) for the ROC curves are
given [41]. The Equal Error Rate estimates the point on an ROC curve where
the FAR is identical to the FRR.

In Fig. 10 the ROC curves on the unskillfully forged test set are shown.
The ROC curves produced by the simple log-likelihood score (cmVerif LLScore)
has the lowest performance with an EER of 13.0%. The world model based
confidence measure (cmVerif WorldModel) achieves an EER of 3.2%. The ROC
curve based on the cohort model approach (cmVerif CohortModel) performs best
and yields an EER of around 1.5%.

The ROC curves on the skillfully forged test set for the GMM based sys-
tems are shown in Fig. 11. The ROC curve with the lowest performance re-
sults from the simple log-likelihood score confidence measure (cmVerif LLScore)
with an EER of around 41.0%. The world model based confidence measure
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Fig. 10. ROC curves on the unskillfully forged test set

(cmVerif WorldModel) yields an EER of around 18.6%. The best ROC curve is
produced by the cohort model based confidence measure (cmVerif CohortModel)
with an EER of around 9.3%.

In both verification experiments, the ROC curves show the same hierar-
chy of performance: the simple log-likelihood score based confidence measure
yields the lowest performing ROC curve, the next best ROC curve is produced
by the world model based confidence measure which itself is outperformed by
the cohort model based ROC curve. This behavior is consistent with the writer
identification case, where the best error-rejection curve is achieved when the
score of a text line is normalized with respect to the score of the most com-
petitive writer.

The calculation of the cohort model based confidence measure however is
costly compared to the world model based confidence measure. For every text
line, the log-likelihood scores of all writers models have to be computed and
sorted to determine the best performing model. In comparison, to compute the
world model based confidence measure, only the score of the claimed system
and the world model is needed and is independent of the number of client
models.

7 Conclusion

We have used Gaussian Mixture Models (GMMs) to address the task of off-line
text-independent writer identification and verification. GMMs provide a pow-
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Fig. 11. ROC curves on the skillfully forged test set

erful yet simple means of representing the distribution of features extracted
from handwritten text lines. A sliding window extracts a sequence of simple,
language independent feature vectors from a text line. The feature sequences
are used to train one model for each writer. During recognition, a text line
of unknown origin is presented to each of the models. Each model returns a
log-likelihood score for the given input. The scores are the basis for writer
identification and verification.

On the writer identification task, a text line is assigned to the writer of
the first ranked model if the confidence measure is above a given threshold.
We achieve a correct writer identification rate of 97.88% in a 100 writers
experiment using 4,103 text lines. If we consider not only the first, but the
three highest ranked writers, in over 99.0% of all cases the writer of the text
line under question is correctly identified. Furthermore, if we reject fewer than
5% of the text lines with the lowest confidence score, the writer identification
rate improves to over 99.5% using the best performing confidence measure.

Similarly, on the writer verification task a text line is accepted if its confi-
dence score is above a certain threshold; otherwise it is rejected. Two sets of
experiments have been conducted: the unskillfully forged test set contains in
total 8,100 text lines from 100 clients and 20 impostors. The skillfully forged
test set contains 338 text lines from 20 clients and 20 impostors. An Equal
Error Rate (EER) of around 1.5% is achieved on the unskillfully forged test
set and an EER of approximately 9.3% is obtained on the skillfully forged test
set by the best confidence measure.
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Three types of confidence measures have been presented in this chapter:
simple score based, cohort model based and world model based confidence
measures. For both writer identification and verification, the cohort model
based confidence measure performs best. This observation can be explained
by the fact that the normalization depends on the actual text line being pre-
sented, i.e., the relevant model to normalize the text line is selected anew for
each text line. In comparison, the world model confidence measure normalizes
the score of a text line by the score of a general world model.

In future work we plan to measure the influence of using less data to train
the GMMs. A possible approach would be to use a universal background model
[9] and then adapt this model to a specific writer model. Another interesting
question is to investigate whether modifications of the world model based
confidence measure as presented in [43] would yield performances similar to
the ones obtained by the cohort model based confidence measure. Furthermore
we plan to compare the performance of this system to the HMM based system
developed previously.
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RBF, see radial basis function
reading order, 10, 23, 46
reading order induction problem, 52
recall, 63, 65, 91, 205, 232, 246, 310
receiver operator characteristic, 309,
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recognition rate, 38, 148, 150, 152, 156,
164, 167, 175, 176, 178, 182, 185,
214, 260, 261, 270, 272, 307, 334,
338, 345, 347, 350, 353, 377, 380,
412, 419

recognition strategy language, 77
region of interest, 279
reject neuron, 267
reject rate, 399
rejection, 91, 96, 151, 153, 273, 403,

417, 422
retraining, 379
ROC, see receiver operator characteris-

tic
RSL, see recognition strategy language

saturation of recognition system, 353
scaling, 196, 341, 415
score normalization, 375

informational confidence, 377
median absolute deviation, 376
min-max normalization, 376
partial recognition rates, 377
z-score, 376

script identification, 12, 182
segmentation, 224
segmentation areas, 265
segmentation path detection, 259, 261,

268
segmentation performance, 269
segmentation point validation, 259, 261
self-organization, 194, 234
self-organizing map, 23, 194, 196
semantic web, 106
shearing, 340
signature representation, 389
signature verification, 12
simulated data, 225
skew detection, 243, 339
skilled forgery, 421
sliding window, 416
SOM, see self-organizing map
source label, 225
special learning, 388
specific learning, 393
statistical classifier, 150, 231
statistical dependence, 221
statistical methods, 141
structure adaptive classifiers, 201
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style, 228
style label, 225
style-first classifier, 232
support vector machine, 144, 149, 151,

184, 312
SVM, see support vector machine
syntactic models, 227
synthetic training data, 333
synthetically generated text, 335
system

ATRE, 53
CEDAR FOX, 405
DOMINUS, 136
WISDOM++ , 50

table recognition, 73, 75
tangent distance, 196, 204
template matching, 139
test set, 148, 156, 222, 224, 260, 270,

271, 307, 316, 346–349, 419, 420,
422

text line normalization, 415
tf-idf, 128, 209
thickening, 342
thinning, 199, 342, 416
time delay neural network, 9, 25
topological sorting, 49
training of recognizers, 336
training set, 45, 132, 168, 174, 180, 203,

206, 214, 216, 222, 224, 270, 307,
310, 312, 324, 346, 347, 364, 366,
370–373, 378

expansion, 334, 336, 347, 349
generation, 153
variability, 334

transition feature, 265

underlying functions, 339
unskilled forgery, 420

unsupervised learning, 30, 143, 193,
194, 196, 198, 222, 234

validation set, 174, 222, 349, 350, 352,
353, 374, 401, 421

variance flooring, 414
vector quantization, 143, 235, 414
vectorization, 240
verification systems, 309, 310

likelihood ratio combination for, 310
virtual keyboard, 239
VQ, see vector quantization

Wang notation, 247
Web-wide data accessibility, 244
weighted Euclidean distance, 183
weighted sum combination rule, 315
word

-completion, 240
clustering, 208
indexing, 203
recognition, 9, 31, 32, 231, 260, 261,

306, 313, 362
segmentation, 243
shape feature, 390

world model, 418
writer identification, 12, 409

off-line, 409
on-line, 409
text dependent, 409
text independent, 409

writer verification, 409
off-line, 409
on-line, 409
text dependent, 409
text independent, 409

writer-independent, 346

XY tree, 48, 212




