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Abstract. Biometrics play an increasingly important role in the context of ac-
cess control techniques as they promise to overcome the problems of forgotten
passwords or passwords that can be guessed easily.

In this paper we introduce and provide a formal definition of the notion of se-
cret locking which generalizes a previously introduced concept for cryptographic
key extraction from biometrics. We give details on an optimized implementation
of the scheme which show that its performance allows the system for use in prac-
tice. In addition, we introduce an extended framework to analyze the security of
the scheme.
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1 Introduction

Biometrics play an increasingly important role in a broad range of security applications.
In particular, biometrics have manifold applications in the context of access control
techniques which to date are largely based on the use of passwords. Biometrics promise
to overcome the problems of forgotten passwords or passwords that can be guessed
easily.

Most biometric systems used in practice to date store profiles of users. A user profile
typically consists of a collection of measurements of the user’s physical characteristics
(e.g., the user’s iris patterns or fingerprints) obtained during an initial enrollment phase.
Later, when a user presents herself for identification, the system performs measurements
and matches those against the database of stored user profiles. If a “good” match is
found, the user is identified. While these systems protect against an online attacker,
they however, pose a considerable risk for offline attacks in which an attacker may
obtain and exploit the knowledge of the stored profiles.
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Recently, the alternative approach of biometric key encapsulation has been pro-
posed: instead of replacing the use of passwords by means of biometrics, passwords
are “hardened” by incorporating biometric features. No user profiles are stored in the
system. Due to the inherent variability in biometric readings, the system, however,
requires a biometric feature extractor in order to reliably recover the same (crypto-
graphic) key from an imprecise input, i.e., to provide “error tolerance.” In this context,
a solution based on error-correcting codes and randomness extraction was developed
(Juels and Wattenberg, 1999; Juels and Sudan, 2002; Dodis et al., 2004; Boyen, 2004).
An alternative line of work based on secret sharing techniques was proposed in
(Monrose et al., 2002; Monrose et al., 2001). While the former provides an information-
theoretical optimal solution for error-tolerance, it at the same time requires a uniform
level of error-tolerance for all users alike and as such poses significant challenges for
use in practice. In contrast, the latter allows for an individual level of error-tolerance for
each user.

In this paper we focus on extending the work in (Monrose et al., 2002). In particu-
lar, we introduce a formal definition of the notion of secret locking which generalizes
the concept proposed previously. We furthermore provide an extended discussion on
the determinant-based scheme. We give details on an optimized implementation of the
scheme which show that its performance allows the system for use in practice. In ad-
dition, we introduce an extended framework to analyze the security of the scheme. In
the original work, the security of the determinant-based construction was proved under
an idealized attack model only. In this paper we consider arbitrary attacks. Finally, we
discuss heuristic connections between the security of the scheme and well-known hard
problems in computational mathematics and coding theory.

1.1 Motivation

Using biometrics in practice poses a number of challenges, in particular when used
in applications to protect resource limited devices such as cell phones or PDAs. Ide-
ally, these devices should obtain biometric measurements without requiring any addi-
tional dedicated hardware. Currently, most portable devices have built-in microphones,
keyboards or writing pads. As such, systems using biometrics such as voice patterns,
keystroke dynamics or stylus drawing patterns are more readily deployable than sys-
tems based on iris or retina scans. Furthermore, it should be difficult for an adversary
to capture the user’s biometric measurements, and in particular this counter-indicates
fingerprint scans as a biometric in this regard, as fingerprint marks are quite easy to
obtain.

Static vs. Non-static Biometrics. While static biometrics capture physiological char-
acteristics of an individual (e.g., iris or retina patterns, and fingerprints), non-static bio-
metrics (e.g., voice patterns, keystroke dynamics) relate to behavioral characteristics. In
general, it is harder for an attacker to capture non-static than static biometrics, so they
could prove useful for the type of application we consider. However, non-static bio-
metrics have a high variability of robustness from user to user: Some users have more
reliably reproducible feature readings than others. Consequently, less error-tolerance
is required to support identification of users with more reliably reproducible feature
readings (Doddington et al., 1998).
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Biometric Key Encapsulation. requires the exact reconstruction of the underlying
key, and some form of error-tolerance must therefore be employed in order to ac-
commodate the variability in biometric readings. In order for a system to accommo-
date different levels of error-tolerance allowed to identify particular users, ideally it
should allow for variable error-tolerance. Alternatively, the system-wide level could be
adjusted to the worst case, i.e., the least robust user. In (Juels and Wattenberg, 1999;
Juels and Sudan, 2002; Dodis et al., 2004; Boyen, 2004) error-tolerance is achieved by
means of error-correcting codes and randomness extraction. In practice, this solution
either requires uniformity, with the same error-correcting code employed for all users,
or the codes need to be defined on a user-by-user basis. While the former solution suf-
fers from the problem that the security of the system is reduced to the level of the least
robust user, the latter reveals to an attacker the code used (and therefore the level of
error-tolerance supported) upon inspection.

In contrast, the system introduced by Monrose et al. allows for non-uniformity of ro-
bustness of a user’s biometric characteristics. In particular, the system hides the amount
of error-tolerance required by a specific user. In other words, if the attacker has access to
the key encapsulation value, his effort to decide how much error-tolerance the particular
user required should be roughly equal to the effort of breaking the key encapsulation of
that user.

2 Related Work

There are numerous approaches described in literature to use biometrics for au-
thentication purposes or to extract cryptographic secrets from biometrics. There
are various systems using biometric information during user login process (e.g.,
(Joyce and Gupta, 1990)). These schemes are characterized by the fact that a model
is stored in the system (e.g., of user keystroke behavior). Upon login, the biometric
measurements (e.g., user keystroke behavior upon password entry) are then compared
to this model. Since these models can leak additional information, the major drawback
of these systems is that they do not provide increased security against offline attackers.

In (Soutar and Tomko, 1996), a technique is proposed for the generation of a repeat-
able cryptographic key from a fingerprint using optical computing and image processing
techniques. In (Ellison et al., 2000), cryptographic keys are generated based on users’
answers to a set of questions; subsequently, this system was shown to be insecure
(Bleichenbacher and Nguyen, 2000). Davida, Frankel, and Matt (Davida et al., 1998)
propose a scheme which makes use of error-correction and one-way hash functions.
The former allows the system to tolerate a limited number of errors in the biometric
reading. This approach was generalized and improved in (Juels and Wattenberg, 1999)
by modifying the use of error-correcting codes.

In (Monrose et al., 2002; Monrose et al., 2001), a new approach is proposed, focus-
ing on using keystroke features and voice characteristics to harden the passwords them-
selves. The work improves on previous schemes in that it is the first to offer better
security against a stronger attacker. Furthermore, this approach allows a user to recon-
struct the key even if she is inconsistent on a majority of her features. The techniques
introduced by (Ellison et al., 2000; Davida et al., 1998; Juels and Wattenberg, 1999) re-
spectively, do not permit that.
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Recently, a new theoretical model for extracting biometric secrets has been de-
veloped (Juels and Sudan, 2002; Dodis et al., 2004; Boyen, 2004), extending the work
in (Juels and Wattenberg, 1999). The model is based on the use of population-wide met-
rics combined with (optimal) error-correction strategies. While the model is provably
secure and allows for optimal constructions under certain assumptions, it has not been
empirically validated that these constructions are applicable to biometrics of interest in
practice.

3 Secret Locking and Secret Sharing Schemes

In the traditional setting, a secret sharing scheme consists of a dealer, a set of partic-
ipants P = {P1, . . . , Pn}, an access structure Γ ⊆ 2P as well as algorithms Share
and Recover. In order to share a secret K amongst the participants, the dealer uses the
algorithm Share to compute each share si to send to user Pi. In order to reconstruct
the shared secret using the algorithm Recover, only those shares are needed which cor-
respond to authorized subsets of participants —i.e., shares corresponding to sets in the
access structure Γ . The most well-known secret sharing schemes are threshold schemes.
While these schemes have a simple access structure (which contains all user sets of car-
dinality larger than a threshold t, i.e., S ∈ Γ ⇐⇒ |S| > t), for use with biometrics,
we are interested in secret sharing schemes with different properties.

The concept of a compartmented access structure was introduced in (Simmons, 1990),
and has received attention from a number of researchers (Brickell, 1989);
(Ghodosi et al., 1998). In a compartmented secret sharing scheme, each user Pi is as-
signed a level �(Pi). The same level may be assigned to different users. In order to
reconstruct the secret, one share from each level is needed. More formally, the access
structure of the compartmented secret sharing scheme is Γ = {A ∈ 2P : A ∩ P i �= ∅},
where P i = {Pj ∈ P : �(Pj) = i}.

Compartmented access structures can be used to achieve error-tolerance in biometric
key encapsulation: Let φ = (φi)i=1,...,m be the set of discretized measurements1 of
biometric features (for instance timing intervals between different keystrokes). Each
φi assumes a value in the same finite set D. For each user U , let Ri(U) ⊂ D be the
range of values that are likely2 to be observed by measuring φi on user U . In order to
encapsulate a key K for user U , where the key is a random value from a finite field Fq,
proceed as follows. First, define a virtual participant set P = {Pi,j}{i=1,...,m;j∈D}, and
assign to Pi,j a level �(Pi,j) = i. Next, use the Share algorithm for the compartmented
access structure to compute initial shares ŝj

i . Finally, perturb this initial set of shares
to obtain shares sj

i which match the initial shares ŝj
i whenever j ∈ Ri(U), and are set

to a newly chosen random share value otherwise. When the legitimate user U presents
herself for authentication, it is sufficient to measure each value φi(U) ∈ D of the

biometric feature φi on user U , then select the share s
φi(U)
i from level i and apply the

1 Biometric measurements are continuous values. Measurements are discretized by breaking the
range of the measurement into equal probability ranges.

2 One needs repeated measurements of each biometric feature in order to arrive at the range of
likely values. Particularly with non-static biometrics this range may vary over time. Refer to
(Monrose et al., 2002) for details of a practical implementation of such a scheme.
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Recover algorithm. By construction, the outcome is likely to be the encapsulated secret
K . On the other hand, the same is not likely to be the case if a different user U ′ tries to
impersonate U , as the feature values for U ′ are not likely to align (i.e., fall in the likely
range at each level) with those of U .

The above idea can be readily applied with any efficient compartmented secret shar-
ing scheme, such as that in (Ghodosi et al., 1998), if the target is simply user authen-
tication. However, as we seek mechanisms to achieve secure key encapsulation, the
scheme must moreover have the property that an attacker who has access to the set of
all shares cannot determine which shares to pick at each level. It can be readily seen
that the scheme in (Ghodosi et al., 1998) is not secure in this sense, and therefore is not
sufficient for our purposes.

We can abstract the previously introduced concepts as follows: Let D be a finite set,
and consider the product set Dm. We call an element (φi)i=1,...,m ∈ Dm a sequence
of feature values. Consider some universe U , and for each element U of the universe,
and for each feature value φi we associate the likely range, a subset Ri(U) ⊂ D. Let
ρi = Ri(U)/D be the relative size of the likely range Ri(U). Let τi(U) be defined as
− log(ρi), which equals the logarithm of the expected number of random trials before
a value for φi(U) is chosen within U ’s likely range Ri(U), among all values in D.
Finally, let τU =

∑
i τi(U). The value τU is the logarithm of the expected number

of random trials before one produces a sequence of likely features (for U ) by simply
choosing random sequences in Dm. Clearly, τU is a natural parameter of the difficulty
of guessing likely sequences for U .

Definition 1. A secure secret locking scheme is a set of algorithms Share and Recover
with the following properties:

1. Given a compartmented participant set P = {Pi,j}{i=1,...,m;j∈D}, where D is a

finite set, and given a secret K in Fq, Share produces a collection sj
i of shares

(which are values in a set S) which implement the access structure Γ = {A ∈
2P : A ∩ P i �= ∅, i = 1, . . . , m}, where P i = {Pi,j}j∈D. In other words, Share
and Recover implement a compartmented secret sharing scheme with levels i =
1, . . . , m.

2. Assume that a set of shares sj
i originally produced by Share has been perturbed

by substituting for sj
i a random element of S whenever j is not a likely value for

φi(U). Then, each probabilistic algorithm A, that receives as input the share set
(partially randomized as above), and that terminates in polynomially many steps in
τU has negligible probability of success in recovering the original shared secret.

Binary Features: In the following we describe some general constructions of the secret
locking concept introduced in (Monrose et al., 2002). For simplicity of argument, we
assume that all features assume binary values, i.e., D = {0, 1}, even though all schemes
described can be generalized to any finite D. In the binary case, the range of values
Ri(U) for a feature i and element U is one of three possibilities, namely {0}, {1}, or
{0, 1}. In the latter we call the feature non-distinguishing for U , while in the former
two cases the feature is distinguishing.
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3.1 Secret Locking Constructions

For each construction, it is sufficient to provide the algorithms Share and Recover, as
the security property is not constructive. Instead it must be verified for each construc-
tion. We first describe an implementation of secret locking introduced in
(Monrose et al., 2002) which is based on the well-known Shamir secret sharing scheme:

Shamir Secret Sharing (SSS) is based on polynomial interpolation. In general, for a
random polynomial f(x) over Zp of degree d − 1 and a secret K = f(0) ∈ Zp to
be shared, a share will be determined as a point on the polynomial, i.e., as the tuple
(x, f(x)). Using Lagrange interpolation, the knowledge of at least d distinct shares will
allow the reconstruction of the secret K (Shamir, 1979).

In order to construct a secret locking scheme based on SSS, it is sufficient to choose
f(x) as a polynomial of degree m − 1 with f(0) = K . The 2m shares {s0

i , s
1
i }1≤i≤m

of secret K are determined as s0
i = f(2i) and s1

i = f(2i + 1). Consequently, any m
shares will allow for the reconstruction of the secret K , and clearly one share per row
will do. However, this scheme is not compartmented, but simply a threshold scheme.
Furthermore, it does not provide security in the sense of our definition if the percent-
age of distinguishing features is small (i.e., less than 60% of the total number of fea-
tures). This is due to the fact that it is then possible to treat the system as a Reed-
Solomon list decoding problem, which can be solved by means of a polynomial time
algorithms (Guruswami and Sudan, 1998).

A truly compartmented construction based on unimodular matrix constructions is
also presented in (Monrose et al., 2002), and is the focus of our attention for the re-
maining part of the paper.

Determinant-based Secret Locking Construction. The determinant-based scheme
introduced in (Monrose et al., 2002) encapsulates a secret by means of a set of vectors
in a vector space. In general, for a secret K ∈ Zp to be shared, the shares are determined
as vectors in Z

m
p . The secret can be reconstructed by arranging m of the shares in an

m × m-dimensional matrix and computing its determinant.
In order to construct the set of shares, initially m vectors s0

i in Z
m
p are chosen with the

property that det(s0
1, . . . , s

0
m) mod p = K , the secret to be encapsulated. The second

set of shares is then determined by means of a unimodular transformation matrix Υ =
(υ1, . . . , υm) where υi ∈ Z

m
p (1 ≤ i ≤ m). The unimodular matrix can be efficiently

generated by permuting the rows of a random, triangular unimodular matrix: Υ = Π ·
Υ ′ · Π−1, where Π = (π1, . . . , πm) is any permutation matrix and Υ ′ = (υ′

1, . . . , υ
′
m)

is an upper-triangular matrix that has 1 for each diagonal element and random elements
of Zq above the diagonal. Eventually, the second set of shares is computed as s1

i = Υs0
i

for 1 ≤ i ≤ m.
It can be easily seen from the way the shares are constructed, that this scheme indeed

implements a compartmented access structure. In fact, if one share is picked from each
one of the m levels (feature), the secret K can be reconstructed —due to the unimodu-
lar relation between the two shares at the same level. However, if the two shares from
the same level are used, then the reconstructed secret is random, as the unimodular re-
lationship between the two sets of shares is not preserved. In the following sections, we
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discuss the security characteristics of this scheme, and provide details on an optimized
implementation of the scheme with good performance profile.

3.2 Security

In this section we explore some of the underlying hard problems that are related to the
security of the determinant-based sharing scheme described above. Note that while the
construction and its analysis are presented only for the case of binary features, similar
arguments can be presented for the general case.

First, consider the case when all features are distinguishing, and thus only one se-
quence of feature values reveals the secret. By construction, all other shares are random
and cannot be combined with the true shares to obtain any partial information about
the secret. Moreover, without further information (such as cipher-text encrypted under
the encapsulated key) the attacker cannot distinguish when the correct secret is recon-
structed. The probability of success is therefore 2−m, where m is the total number of
features.

In the presence of non-distinguishing features the setting is different. For instance,
consider the case where the first feature is non-distinguishing. Let φ0 and φ1 be two
feature sequences that differ only in the first feature, with φ0

1 = 0 and φ1
1 = 1. Sup-

pose further that both feature sequences are valid for U , i.e., lead to reconstruction of
the correct secret. That means that the following matrices have the same determinant:

K = det
(
s0
1 sφ2

2 sφ3
3 · · · sφm

m

)
= det

(
s1
1 sφ2

2 sφ3
3 · · · sφm

m

)
, where φi = φ0

i = φ1
i ,

for i > 1. It is well-known that the determinant is a multi-linear function of the matrix
columns, which implies: det

(
s0
1 − s1

1 sφ2
2 sφ3

3 · · · sφm
m

)
= 0 mod p. We conclude

that if the first feature is non-distinguishing one finds a non-trivial algebraic relation on
the sets of shares. The method is not constructive, however, because it requires previous
knowledge of a valid sequence of values for all the other features. In order to search for
such relations systematically, one represents the choice for the value of feature i as a
function of a boolean variable:

φi(xi) = ifxi then s1
i else s0

i .

The determinant computation may then be fully expanded as a boolean circuit, and
the equation which expresses the determinant being equal to 0 mod p reduced to a
single boolean formula. Any satisfying assignment to that formula corresponds to a
sequence of feature values which may be a valid sequence for U , and conversely all
valid sequences for U give rise to satisfying assignments.

Since SAT approximation algorithms can generally only handle relatively small
boolean formulas (in the thousands of variables), the complexity of this approach can be
estimated by studying a relaxation of the problem. In order to “linearize” the boolean
formula, we allow feature choices in the whole field Fq, by putting φi(xi) = (1 −
xi)s0

i + xis
1
i . Note that φi(0) = s0

i and φi(1) = s1
i correspond to legitimate shares,

while for other values in xi ∈ Fq there is no natural interpretation to the meaning of
φi(xi). Linearization enables the use of the rich machinery of computational algebra
to attack the corresponding “relaxed” problem of finding zeros of the multilinear poly-
nomial Δ(x2, . . . , xm) which represents the determinant det(s0

1 − s1
1, (1 − x2)s0

2 +
x2s

1
2, · · · , (1 − xm)s0

m + xms1
m).
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m = 5 6
(2, 100, 25, 30.6) (2, 60, 49, 60.25)

7 8
(2, 80, 97, 120.6) (3, 60, 225, 252.3)

9 10
(3, 40, 449, 502.6) (4, 10, 961, 1017.7)

Fig. 1. m = # of features. The quadruplet under m = 6 indicates that the # of distinguishing
features was 2, and Δ had a minimum of 49 and an average of 60.25 non-zero coefficients over
60 random trials.

The complexity of this zero-finding problem was assessed by means of experiments
using the symbolic computation package MAPLE. In particular, the experiments de-
termined the number of non-zero coefficients of Δ(x2, . . . , xm), for 5 ≤ m ≤ 10.
It was assumed that only �0.4m� of the features were distinguishing —a conservative
approach, since the fewer distinguishing features there are, the more symmetric the
polynomial should be, and the greater the chances are that some of its coefficients eval-
uate to 0. The results or the experiments are shown in Fig. 1. These results support the
security of the scheme, as the number of non-zero coefficients exhibits an exponential
increase. As a consequence, this renders any algebraic attempts to attack the problem
ineffective, and in fact, even the best approximation algorithms known to date to simply
counting zeros (as opposed to finding them) on multilinear polynomials have linear cost
with the number of non-zero coefficients (Karpinski and Lhotzky, 1991).

4 Implementation

In order to implement the scheme in practice, it is not sufficient to have error-tolerance
purely from the secret sharing construction, as features φi will occasionally assume a
value outside the likely range Ri(U) even if evaluated on the legitimate user U . We
call such errors “noisy errors.” Unlike the natural variation of measurements within
likely ranges, the variability introduced by noisy errors is not tolerated well by the
secret locking construction. In practice, we can accommodate a few of these errors by
simply executing an exhaustive search on a Hamming ball of small radius e centered
on the measured input sequence φ = (φi(U))i=1,...,m. We show that with appropriate
optimizations, this method is practical for small values of e, for instance e ≤ 3, which
seems more than sufficient to guarantee a reasonable false negative rate with keyboard
typing patterns (Monrose et al., 2002).

The first optimization we made was to change the mechanism for reconstructing the
secret from the selected matrix entries. Instead of insisting on sharing the determinant
—which would require working with matrices over large finite fields Fq, with log q ≥
80 —we instead use a hash function such as SHA-1 to process the concatenation of
all matrix entries from the distinguishing features. Recall from Section 3.2 that once
a feature sequence is found with the correct values for all distinguishing features, the
non-distinguishing positions can be detected by showing that the determinant remains
unchanged if that feature value is flipped. Using this modified recovery algorithm we
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Fig. 2. Time to compute determinants as a function of the matrix size. The times are averaged
over 10000 runs.

can allow the dimension of the base field to be made much smaller, without affecting
the entropy of the keyspace. In our experiments we used Fq = Z8191, which allows each
matrix entry to fit in a 16-bit buffer. This also enables implementation of all modular
and matrix operations using native 32-bit integer operations and optimized C code.

A second optimization is to save the (common value of the) determinant of a correct
set of features to enable fast elimination of incorrect guesses during the exhaustive
test of possible candidates in the Hamming ball. Note that saving the determinant does
not present a security risk, since (1) the secret is no longer the determinant, but the
entirely independent hash value of the concatenated matrix entries corresponding to
distinguishing positions, and (2) identifying the determinant value reduces the degree
of freedom in the possible choices by adding a single polynomial relation between these
choices. Note that this extra information is comparable to that available to an adversary
that is able to correctly guess the position of a non-distinguishing feature—when it may
write a similar relation with determinant to equal zero (see Section 3.2).

Experimental Setup. All the experiments were conducted on a 64-bit dual 2 GHz Pow-
erPC G5 running MacOS Server 10.3.5, with 3 GB main memory, and 4 KB virtual pages.
Our implementation is inC and compiled withgcc3.3using the-O3,-ffast-math,
-malign-natural and -fprefetch-loop-arrays optimization flags.
(For more details on gcc optimizations see (The GNU Project, 2005).) We note that the
Apple G5 provides native support for 32-bit applications and that all our code was com-
piled for a 32-bit architecture. All arithmetic is performed in Z

∗
p, where p is prime and

equals 8191 = 213 − 1. Since we are working on a 32-bit architecture and 8191 < 216,
all elements in Z

∗
8191 can be stored in shorts. This means that multiplication in Z

∗
8191
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m = 16 32 48
e = 2 0.009 0.220 1.371

3 0.041 1.688 13.554
4 0.174 10.559 184.924

Fig. 3. Time (in seconds) to recover the key K from a feature sequence φ′ such that dist(φ, φ′) =
e, where e = # of errors corrected and m = # of features. 80% of φ’s features are distinguishing.

will not overflow the size of a regularint and that we can implement the scheme without
multi-precision arithmetic.

Computing Determinants. Given feature sequence φ′, we begin by generating all se-
quences within a hamming distance e of φ′. We call this set β(φ′, e) = {φ∗ ∈ {0, 1}m :
dist(φ∗, φ′) ≤ e}. For each φ∗ ∈ β(φ′, e), we then compute δ′ = det(sφ∗

1
1 · · · sφ∗

m
m )

and check whether δ′ = δ, the latter being the stored determinant value of (any) correct
choice of feature values. Since |β(φ′, e)| =

∑e
i=0

(
m
i

)
, we have to perform a large num-

ber of determinant computations, and therefore it is important to optimize the running
time of determinant evaluation. We first benchmarked the performance of various deter-
minant algorithms and implementations, in particular Gaussian elimination and Gauss-
Bareiss (both described in (Cohen, 1993)) and compared their performance (Fig. 2),
concluding that plain Gaussian elimination performs better in this task. We found that a
large part of the time spent was in the computation of modular inverses. Consequently,
we precomputed all inverses in Z

∗
8191 and replaced our use of the extended Euclidean

algorithm by simple table lookups. Since each element in Z
∗
8191 can be stored in two

bytes, the entire table can fit in approximately 16 KB.

Reusing Computations. Apart from optimizing individual determinant computations
we re-used intermediate elimination results to speed up Gaussian elimination when
several determinants are computed in succession. Consider M1 and M2, two m × m
matrices. During Gaussian elimination, elements in column i only affect elements in
columns j > i. If the leftmost column where M1 and M2 differ is i, then the operations
we perform on columns 0 through i−1 when computing det(M1) and det(M2) will be
the same, and we avoid repetition by storing the intermediate results. We take maximum
advantage of this optimization by choosing an appropriate ordering when generating
all the feature sequences within the Hamming ball. Figures 3 and 4 summarize the
timings for recovering the correct key K . That is, these timings include determining

the distinguishing features for those φ∗ ∈ β(φ′, e) with δ = det(sφ∗
1

1 · · · sφ∗
m

m ) and
computing K as the respective hash value.

In the case of keyboard biometrics, the number of features is approximately 15
and one noisy error must be corrected with 12 distinguishing features (numbers from
(Monrose et al., 2002)), which our implementation can compute in a fraction of a sec-
ond. A measure with twice as much entropy, say 30 features and two noisy errors, would
also take less than half a second. These results were obtained in a powerful machine by
today’s standards, however these times are sufficiently small that we feel confident the
scheme can be practically implemented in most current 32-bit architectures.
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Fig. 4. Time to recover the key K from a feature sequence φ′ such that dist(φ,φ′) = e, where e
is the # of errors corrected. 80% of φ’s features are distinguishing.

5 Conclusions and Future Work

While the security analysis in this paper does not constitute a complete proof in the
standard model, the outlined heuristic connections between the security of the scheme
and well-known hard problems in computational mathematics show the difficulty of
the underlying problem. The remaining open questions will be addressed by future re-
search. In addition, future work includes testing of the implementation for use in the
context of other non-static biometrics (e.g., voice patterns).
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