
Strategies for Service Composition in P2P Networks

Jan Gerke1, Peter Reichl2, and Burkhard Stiller3

1 Swiss Federal Institute of Technology ETH Zurich, Computer Engineering and Networks Lab
TIK Gloriastrasse 35, CH-8092 Zurich, Switzerland

gerke@tik.ee.ethz.ch
2 Telecommunications Research Center FTW Vienna

Donau City Strasse 1, A-1220 Vienna, Austria
reichl@ftw.at

3 University of Zurich, Department of Informatics IFI and ETH Zrich, TIK
Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

stiller@ifi.unizh.ch

Abstract. Recently, the advance of service-oriented architectures and peer-to-
peer networks has lead to the creation of service-oriented peer-to-peer networks,
which enable a distributed and decentralized services market. Apart from the us-
age of single services, this market supports the merging of services into new
services, a process called service composition. However, it is argued that for the
time being this process can only be carried out by specialized peers, called ser-
vice composers. This paper describes the new market created by these service
composers, and models mathematically building blocks required for such a ser-
vice composition. A general algorithm for service composition developed can be
used independently of solutions for semantic difficulties and interface adaption
problems of service composition. In a scenario for buying a distributed comput-
ing service, simulated strategies are evaluated according to their scalability and
the market welfare they create.

Keywords: Service Composition, Peer-to-Peer Network, Service-oriented Ar-
chitecture.

1 Introduction

In recent years the development of distributed systems especially the Internet
has been influenced heavily by two paradigms: Service-orientation and peer-to-peer
(P2P) (A. Oram (Editor), 2001). The benefit of service-oriented architectures (SOA)
is their support of loose coupling of software components, i.e., providing a high
degree of interoperability and reuse (He, 2003) by standardizing a small set of
ubiquitous and self-descriptive interfaces, e.g., the standardization of web services
(World Wide Web Consortium, 2004) by the world wide web consortium, and its im-
plementations like .NET (Microsoft Developer Network, 2004). Additionally, P2P file
sharing systems like BitTorrent have proven to be scalable content distribution net-
works (Izal et al., 2004). This scalability is achieved by the distributed nature of P2P
networks. Rather than using centralized server infrastructure, they rely on distributed
hosts, the peers, and their self-organization abilities. Lately, P2P networks have also

J. Filipe et al. (Eds.): ICETE 2005, CCIS 3, pp. 62–77, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Strategies for Service Composition in P2P Networks 63

been put to commercial use. For instance, Blizzard uses the BitTorrent technology to
distribute program updates to their customer base of several hundred thousands, thus
reducing the need for a centralized server infrastructure (Blizzard Corporation, 2005).

In order to combine the benefits of the two paradigms and to achieve a decentral-
ized platform for loosely coupled software components, an architecture of a service-
oriented middleware was proposed by (Gerke et al., 2003). In order to implement this
architecture, (Gerke and Stiller, 2005) presented a JXTA-based middleware. This mid-
dleware enables a fully distributed service market, in which peers provide services to
other peers. This middleware supports this market by providing mechanisms to search
within the underlying distributed P2P network for services, to negotiate the terms of
service usage, and finally to charge for service usage. The market itself offers low en-
trance hurdles, as any Internet host can enter the market by running this middleware
implementation.

In addition to the usage of a single service by a single peer, the middleware-enabled
service market makes it possible to combine services into new value-added services.
This process, called service composition, allows for the maximum benefit from ser-
vice reusability when creating new services. Thus, new services can be deployed much
quicker and the expert knowledge of service developers can be used in new services.

Service composition consists of two main sub problems: (a) understanding what
functionality is provided by services and (b) understanding how services com-
municate through their interfaces. The first problem has been tackled through
the development of semantic service descriptions (Hendler et al., 2002), as well
as through the application of artificial intelligence (Carman et al., 2003). The sec-
ond problem is addressed mainly through interface description languages like
WSDL (Web Services Descriptions Working Group, 2005). Other interface standards
like CORBA do not offer the self-description capabilities of web services, thus reducing
the reusability of software components.

The highest benefit from service composition would be achieved, if it could be car-
ried out by any peer in a completely automated manner, at high speed, and costs ap-
proaching zero. However, both sub problems described above have not yet been com-
pletely solved. Therefore, for the time being, service composition can only be carried
out by specialized peers, called service composers at a certain cost.

Therefore, this paper investigates composition strategies for service composers, while
abstracting from the detailed technique used. To this end, a general algorithm for service
composition is defined and its evaluation is performed in a scenario, where computing
power is bought from various peers. Thus, general influences of parameters onto this
algorithm are evaluated, and the welfare a service composer can create is defined. The
overall goal is to find a strategy for service composition, which scales well while cre-
ating high welfare for service consumers and service composers. How this welfare is
distributed fairly between the two is out of the scope of this paper, but will addressed
elsewhere with the help of public auctions (Varian, 2003).

The remainder of this paper is structured as follows. Section 2 gives an overview of
the distributed service market and the underlying P2P architecture. Section 3 contains
definitions of services, their properties and descriptions. Section 4 introduces the gen-
eral service composition algorithm proposed. While Section 5 presents the evaluation

64 J. Gerke, P. Reichl, and B. Stiller

of this algorithm with different parameters, Section 6 concludes the work and gives an
overview over future work.

2 P2P Service Market

Before investigating service composition, it is necessary to describe the environment
in which it takes place. Thus, the underlying service-oriented P2P network and roles
being part of the system are outlined. Additionally, the service market enabled by the
underlying P2P network and the markets for composed services are discussed.

2.1 Underlying Technology

The P2P network is not a physical network, but is built on top of the Internet
(A. Oram (Editor), 2001). This implies that peers are Internet hosts and links of the
P2P network are end-to-end (e2e) connections through the Internet between such hosts.
Thus, the set of hosts taking part in the P2P network and the e2e connections between
them form an overlay network on top of the Internet, consisting of peers and links. In
turn, the notion of terms like ’link’ or ’neighbor’ is different in the Internet and in the
overlay network. It is assumed that connections provide an e2e quality of service guar-
antees when required by services, regardless of the technology used to provide these
guarantees, e.g., IntServ or DiffServ.

Every peer inside the network can provide and request services to and from other
peers. The term service is defined as functionality which is offered by a peer to other
peers, and which can be accessed through input and output interfaces. Services are de-
scribed through documents called service descriptions, including service functionality
and interfaces, but also characteristics such as terms of usage, e.g., prices and methods
of payment. Services can be used by applications, which are programs running on peers
which are not provided as services themselves and offer user interfaces.

A peer providing a service to another peer is acting as a service provider, while a peer
which is using a service from another peer is acting as a service consumer. A single peer
can take over both roles successively or even at the same time, if he provides a set of
services to a set of peers and uses a set of other services from another set of peers. The
service usage is always initiated by the service consumer, thus a service provider can
not supply unrequested services to consumers or even demand payment for services
delivered in such a fashion. Due to the dynamic nature of P2P networks, the duration of
a service usage is restricted, i.e., it is not possible to rely on the availability of a certain
service for weeks or months.

Service usage follows a one-to-one relationship between service consumer and
provider, i.e., neither do several service consumers use the same service instance, nor
do several service providers together provide a service to a consumer directly. Several
service consumers can still use the same service at the same time, but several service
instances are created by the service provider and service usage takes place indepen-
dently. Furthermore, service providers can use services from other service providers,
in order to provide a new value-added service to a service consumer. This process of

Strategies for Service Composition in P2P Networks 65

combining services is called service composition. A peer carrying out this process is
said to play the role of a service composer. There is no direct relation between additional
service providers and the service consumer. Examples of such service usages are shown
in Figure 1.

Peer 1
Peer 2

Peer 3 Peer 4

Application

Service Instance

Service

Service Provision

Fig. 1. The use model (Gerke and Stiller, 2005)

2.2 Market Model

The service market consists of the peers which offer services and use them, without
composing new services on demand. This service market is assumed to be a global
market with low entrance barriers, due to its open P2P nature. This market is character-
ized through perfect competition between its participants since the number of market
participants is large. Therefore, if a peer was offering a service for a price much higher
than his own costs, another peer would offer the same service at a lower price. Thus,
prices for services are set by the market itself through competition, service prices are
given and not negotiable. Service providers do not have to price their services. Either
they are able to offer a service for the market price or they do not offer the service at
all.

However, the market model is clearly different when service composition is con-
sidered. Service composition is a complex process. Therefore, it is assume that only a
small number of peers decide to take on the role of service composer. Each of them car-
ries out his own variant of service composition, using his own business secrets. Service
composers act as brokers between service consumers and service providers. They take
part in the service market as buyers and in the composed service market as sellers, as
shown in Figure 2.

Because of the high specialization required, only a small number of overall peers
will act as service composer. Therefore, the market for composed services will not have
perfect competition but will be dominated by an oligopoly of service composers. In fact,
there is a separate market for every new composed service. It is created whenever a ser-
vice consumer contacts an oligopoly of service composers with the request to compose
a new service. Thus, pricing is an important issue in the composed services market, as
a price has to be found for a previously inexistent service. Table 1 covers key properties
of these two markets.

66 J. Gerke, P. Reichl, and B. Stiller

Service

Consumer
(one)

Service

Composers
(a few)

Service

Suppliers
(many)

ServicesComposed

Services

Service Market (with

Perfect Competition)
Composed Service

Market (Oligopoly)

Fig. 2. The two markets model

Table 1. Comparison of the Two Markets

Service Market Composed Ser-
vice Market

No. of Sellers Many Some
No. of Buyers Many One
Market Form Perfect compe-

tition
Oligopoly

Traded Good Services Composed Ser-
vices

Persistence Constant Created by re-
quest

Prices Set by market Pricing re-
quired

3 Service Properties

Due to the market-based view and discussion above, goods traded need a formal defini-
tion. Therefore, services must be described by specifying their properties as well as the
implications of these properties are explained.

(American Heritage Dictionaries (Editor), 2000) defines a service as an act or a va-
riety of work done for others, especially for pay. In the scope of this paper, this defini-
tion is applied only to the envisioned technical system and its participants (the peers).
Thus, a service is a piece of software or a software component operated by one of the
systems participants. It fulfills one or several tasks on behalf of another participant of
the system, thus carrying out work for him, for which he is paid.

Every service S has properties S
′

= (S
′

1, ..., S
′

n), n ∈ N which describe the char-
acteristics of the service (Dumas et al., 2001), especially the task which is carried out
by the service. These properties may include parameters and information from four
different groups:

Strategies for Service Composition in P2P Networks 67

• Functionality: A formal description of what the service should do (if specified by
the service consumer) or what it can do (if specified by the service provider)

• Quality: A list of QoS parameters which describe with which quality the service
should be provided (if specified by the service consumer) or can be provided (if
specified by the service provider). All parameters can have fixed values or can be
described with value ranges.

• Cost: A tariff (Reichl and Stiller, 2001) used to charge the consumption of the ser-
vice (if specified by the service provider, the actual cost is calculated by applying
the tariff to the functionality and quality properties measured during the service
delivery) or the willingness-to-pay function (if specified by the service consumer)
which describes how much the consumer is willing to pay for a service depending
on its functionality and quality parameters.

• Others: Who is providing/requesting the service.

Based on these definitions and explanations of services and their properties the fol-
lowing formalized approach is taken.

Service properties are specified in service descriptions, where every property S
′

x

consists of a formal property description S
′′

x and a property range S∗
x = [S

′

x, S
′

x]. The
property description describes the meaning of properties according to a common se-
mantic standard shared by all peers (Hendler et al., 2002). The property range describes
the degree of fulfillment of this property in numerical values. Metrics generating these
values are part of the property description.

Two property descriptions match when they are semantically equal according to the
common semantic standard. Thus, a property A

′

x is said to fulfill another property B
′

y , if

and only if, A
′′

x matches B
′′

x and their property ranges overlap, i.e., B
′

x ≤ A
′

x ≤ B
′

x or

B
′

x ≤ A
′

x ≤ B
′

x . Analogously, a property A
′

x is said to exactly fulfill another property

B
′

y , if and only if, A
′′

x matches B
′′

x and A
′

x = B
′

x and A
′

x = B
′

x.

Then, a service S with properties S
′

= (S
′

1, ..., S
′

n), n ∈ N is said to imple-
ment a service description D with properties D

′
= (D

′

1, ..., D
′

m), m ∈ N, if and
only if, all its properties fulfill the properties specified in the service description, i.e.,
n = m and ∀i ∈ [1, n] : S

′

i fulfills D
′

i. Analogously, a service S with properties
S

′
= (S

′

1, ..., S
′

n), n ∈ N is said to exactly implement a service description D with
properties D

′
= (D

′

1, ..., D
′

m), m ∈ N, if and only if, n = m and ∀i ∈ [1, n] : S
′

i

exactly fulfills D
′

i. Thus, a service S is called an (exact) implementation of a service
description D, if and only if, S (exactly) implements D. Vice versa, a service descrip-
tion D is said to (exactly) describe a service S, if and only if, S (exactly) implements
D. It is assumed that exact service descriptions exist and have been published within
the P2P network for all services offered by peers acting as service providers. Of course,
service descriptions can exist without corresponding implementations.

Even if a consumer specifies fixed property values in a service description, an infinite
number of different services can implement his service description. Thus, a service
class is defined as a set of services which has specific common properties. Let S =
{S1, ..., Sn}, n ∈ N be the set containing all services and let D be a service description
with properties D

′
= (D

′

1, ..., D
′

m), m ∈ N. Then, ̂D is called a service class for

68 J. Gerke, P. Reichl, and B. Stiller

a service description D, if and only if, ̂D = {Sx|Sx implements D}, Sx ∈ S. All
services which have these properties are called members of the service class. Let C be
the service class for a service description D. Then, a service S is called a member of
C, if and only if, S implements D. Thus, every implementation of a service description
is a member of the service class created by the description. Furthermore, every service
description automatically creates a service class, though this class does not need to have
any members.

4 Service Composition

From the service composers point of view, the service composition process starts when
he receives a service description from a service consumer. The service consumer does
not have to state fixed service properties within this description, but can make use of
property ranges as defined in Section 3.

After receiving the consumers service description, the composer searches the P2P
network for member services of the service class described by this description. If he can
not find such a service, he starts composing the service by combining other services. In
order to do this, he must obtain or create a building plan (Gerke, 2004), which describes
how to achieve the properties of the original service class by combining members from
other service classes. Generally, a building plan describes how members of a specific
service class can be combined with members of other specific service classes to create
a new composed service. In particular, it describes properties of the composed service
and how these properties relate to the properties of its component services. This process
is supported by the mapping m in such a way that if D is a service with properties D

′
,

then B is called a building plan for D, if and only if, B contains service descriptions
{D1, ..., Dn}, n ∈ (N) and a mapping m : D

′

1 × ... × D
′

n → D
′

which describes the
relation between properties of component services (i.e., specific services fulfilling the
service descriptions) on the properties of the composed service (i.e., the service created
by composing the component service as also described in the building plan).

When the composer has obtained one or several building plans for the service class
described by the consumers service description, he searches the P2P network for imple-
mentations of the service classes described within them. If he is unable to find any of
these service classes, he recursively creates building plans for this service class. Thus,
he creates a service dependency graph, as shown in Figure 3.

The original service class (described by the consumers service description) is the
root of this tree. Several ways to implement this service (one implementation and two
building plans) are connected to the root node via an or node, while service classes
are connected to the building plan via and nodes. Composed services can be found by
traversing the tree from its root node. At each or node exactly one link must be chosen
for traversal, while at each and node all links have to be traversed. A sub tree found
by applying this algorithm models a composed service when only services form this
trees leaves. Such a tree is called a cover of the original service dependency tree and is
also shown in Figure 3. The algorithm does rate the quality of a composed service in
any way. Building plans only ensure that every composed service fulfills the consumers
initial service description (i.e., the functionality is the same and all properties overlap
with described properties).

Strategies for Service Composition in P2P Networks 69

Initial
Service Class

Service
Class 4

Service
Class 3

Implementation 6

Implementation 7

Implementation 5

Implementation 1

Building Plan 1 Service

Class 2

Service

Class 1

Implementation 4

Implementation 2

Building Plan 3

Cover

“and” node

“or” node

Service Class

Building Plan

Service Implementation

Building Plan 2

Fig. 3. An example service dependence tree

The following pseudo code defined a recursive algorithm to build a service depen-
dence tree.

buildDependenceTree(ServDescr SC) {
while (ServDescr SI =
searchNewServiceImplementation (SC)
!= nil) {

buildDependenceTree (SI);
SC.addChild (SI);

}
while (BuildingPlan BP =
searchNewBuildingPlan (SC) != nil) {

for (int i=0; i <
BP.getChildren().length; i++)

buildDependenceTree
(BP.getChildren()[i];

SC.addChild (BP);
}

}

In order to achieve this presentation, slightly simplified, the following assumptions
have been made:

• The classes ServiceDescription and BuildingPlan are tree nodes.
• The and and or nodes are neglected. All children of a ServiceDescription are in-

herently connected via an or node and all children of a BuildingPlan are inherently
connected via an and node.

• Each new BuildingPlan already comes with ServiceClass children (instead of con-
necting them by hand according to service descriptions).

The algorithm describes a general way to build service dependence trees. By using it,
any kind of service dependence tree can be created. The decision about what tree is
created is made by the two functions searchNewServiceImplementation and search-
NewBuildingPlan. These methods include individual secrets of each service composer,
namely:

70 J. Gerke, P. Reichl, and B. Stiller

• How to find a new building plan or service implementation for a given service
description.

• When to stop searching for a new building plan or service implementation.

5 Evaluation

The general service algorithm described in Section 4 has been evaluated by simulations.
The service requested in these simulations is a computing service with a computing
power measured in GFLOPS (billions of floating point operations per second). Different
strategies for when to stop searching for more building plans are evaluated. The criteria
for evaluation is the achieved average welfare W (S) of a composed service S. The
welfare of a composed service depends on the utility U(S) the consumer receives from
the service, the cost of the service C(S), and the cost for composing the service B(S)
in such a way that W (S) = U(S) − C(S) − B(S) holds. The cost of the composed
service is equal to the sum of the costs of the services needed to create it. I.e., let
S1...Si, i ∈ [1, m] be the services used to create the composed service S, then C(S) =
∑m

i=1 C(Si).

5.1 General Assumptions

The simulations make the following assumptions:

• The code to be executed with the computing power can be parallelized to a granu-
larity of 1 GFLOPS, which is also the smallest amount which can be bought as a
single service.

• The parallelization incurs no extra effort. Especially, no additional synchronization
or signalling overhead must be taken into account.

• Any amount of required GFLOPS can be bought directly as a service implemen-
tation from at least one service provider. This assumption is reasonable due to the
perfect competition existing in the service market.

• For any amount of GFLOPS five building plans exist, which describe how to ob-
tain the GFLOPS by buying two GFLOPS shares instead. This assumption is not
stringent, as there are not many differences between finding a bad building plan
and finding none at all. Plans describe 0.9/0.1 (worst), 0.8/0.2, 0.7/0.3, 0.6/0.4 and
0.5/0.5 (best) ratios of the original amount of GFLOPS.

• The cost of finding a new building plan or finding out that no more building plan
exist is fixed and is equal to . However, it is also assumed that the service composer
has no previous knowledge of the cost, i.e., only after every search for building plan
does he know what this search did cost.

• The cost of finding service implementations is negligible, as this functionality is
provided by the service search of the underlying P2P network. Thus, let n be the
number of searched building plans, then B(S) = n · Z .

• The utility function of the service consumer is increasing monotonously and it is
convex, based on the amount of GFLOPS received. Thus, additional utility created
by additional amounts of GFLOPS decreases monotonously.

Strategies for Service Composition in P2P Networks 71

• Since there is perfect competition in the service market, all service providers use
a similar cost function. This cost function is increasing monotonously and it is
concave, based on the amount of GFLOPS received. Thus, the cost of additional
GFLOPS is monotonously increasing.

• Properties are fixed. This means, that the service consumer does not specify a range
of GFLOPS, but rather a precise amount of GFLOPS. Since building plans define
exact ratios for their two respective component services, the amount of GFLOPS in
service classes and service implementations also becomes fixed.

5.2 Simulation Setup

The service composition algorithm was implemented in Java and executed with differ-
ent search strategies and parameters. Simulations were carried out on a PC with 512
MB memory and a 1.8 GHz CPU. For all settings, the average welfare was calculated
as the average over 100 simulation runs. In all simulations the amount of the requested
computing power has been set to 1024 GFLOPS. The cost function used in those simu-
lations is C(x) = x2

10000 , the utility function is U(x) = log x · 10 (x being the number
of GFLOPS), as shown in Figure 4.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

GFLOPS

U
til

ity
 a

nd
 C

os
t

cost
utility

Fig. 4. Utility and cost functions

5.3 Balanced Search

The algorithm used to build the service dependence tree is constructed from the root
as a balanced tree. This means that for every service class in the tree the same amount
of searches for building plans is carried out until the previously defined search depth is
reached. Figure 5 depicts the welfare for different costs of finding building plans, when
building plans are only searched once, i.e., no recursion takes place (strategy #1). Vice
versa, Figure 6 depicts the welfare for different costs of finding building plans, when
recursion takes place until a certain tree depth is reached. At all steps only a single
building plan is searched (strategy #2).

Both strategies produce good results for the average cost for searching building plans
of 3. Thus, this cost was chosen for strategy #3, which investigated, whether the welfare

72 J. Gerke, P. Reichl, and B. Stiller

1
2

3
4

5
6

0

2

4

6

−15

−10

−5

0

5

10

15

20

No. of Building PlansBuilding Plan Cost

W
el

fa
re

Fig. 5. Welfare for different numbers of building plan searches and different building plan costs

1
2

3
4

5
6

0

2

4

6

−300

−200

−100

0

100

Tree Depth
Building Plan Cost

W
el

fa
re

Fig. 6. Welfare for different service dependency tree depths and different building plan search
costs

could be increased by varying the number of building plans searched at every step, as
well as the tree depth. However, the results depicted in Figure 7 clearly show, that the
increased benefit achieved by building a wide and deep service dependency tree is by far
outweighed by the increased cost for building this tree. In order to optimize the welfare,
more sophisticated heuristics for influencing the trees width and depth are required.

5.4 Search Until Welfare Decreases

In order to avoid search cost explosions (cf. Figure 7), the service composition algo-
rithm was extended with strategy #4: The service dependency tree is built recursively
without a predefined search depth. The recursion is stopped when the previous search
for a building plan has created less additional benefit than the search cost, i.e., the wel-
fare decreased.

Strategies for Service Composition in P2P Networks 73

1
2

3
4 1 1.5 2 2.5 3 3.5 4

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

Tree Depth
No. of Building Plans

W
el

fa
re

Fig. 7. Average welfare for different numbers of building plan searches and different service
dependency tree depths, with fixed building plan cost of 3

0

5

10

15 1
1.5

2
2.5

3

−8000

−6000

−4000

−2000

0

2000

No. of Building Plans
BP search cost

W
el

fa
re

Fig. 8. Average welfare for different numbers of building plan searches and building plan search
costs, using the local welfare decrease heuristic

Strategy #4 is clearly not optimal, as the next search for a building plan could still
provide a higher benefit. However, results depicted in Figure 8 clearly show that this
strategy makes the algorithm resistant against high building plan search costs. Still, the
algorithm produces bad results for higher numbers of building plans searched.

5.5 Tree Width Decreases with Increasing Tree Depth

Strategy #5 makes the following extension to the previous one: If the search continues
(i.e., the last search step produced additional welfare), the number of building plans
searched will be decreased by one in comparison to the previous search step. This strat-
egy outperforms the previous one in all cases except one: When initially only a single
building plan is searched the tree depth will only be 1 and the resulting welfare will be
equal to the welfare as depicted in Figure 9 for the search of a single building plan.

74 J. Gerke, P. Reichl, and B. Stiller

0

5

10

15 0

2

4

6

−6000

−4000

−2000

0

2000

No. of Building Plans
BP search cost

W
el

fa
re

Fig. 9. Average welfare for strategy #5

5.6 Tree Width Decreasing with Welfare Decrease

Finally, strategy #6 computes the number of building plans depending on the size of
the additional welfare created in the last search step. The welfare divided by the cost
for searching the building plan equals the number of building plans to be searched
next. This strategy performs worse than the previous one for higher numbers of initially
searched building plans, but always creates higher welfare for a maximum number of
searched building plans of 1.

0

5

10

15 1

2

3

4

−2.5

−2

−1.5

−1

−0.5

0

0.5

x 10
4

No. of Building Plans
BP search cost

W
el

fa
re

Fig. 10. Average welfare for strategy #6

5.7 Discussion

The set of strategies show a number of different heuristics. However, measuring scal-
ability requires to count the number of searches for building plans carried out, which
have been omitted in detail for space reasons, but they are part of the calculated welfare
in the form of the cost for building the service dependence tree. Thus, the depicted wel-
fare functions clearly show the influence of bad scalability in the rapid drops of welfare
due to a high number of searches for building plans.

Strategies for Service Composition in P2P Networks 75

1 2 3 4 5 6 7 8 9 10 11
−20

−10

0

10

20

30

40

50

Building plan cost

W
el

fa
re

strategy #1, best results
strategy #2, best results
strategy #4, 1 BP
strategy #5, 2 BPs
strategy #6, 1 BP

Fig. 11. Comparison of optimal sub-strategies

On one hand, simulation results show that all strategies produce bad results when
building a wide service dependence tree, i.e., when searching for several building plans
for a single service class. On the other hand, results indicate that controlling the depth of
the tree, i.e., deciding when to stop the recursion, can be handled very well by strategies.
For each of theses strategies an optimal sub-strategy exists. Strategy #4 and #6, produce
their highest welfare when at each algorithm step a single building plan at the most is
searched. Strategy #5, produces its highest welfare when initially searching for two
building plans. Welfare of these sub strategies are compared in Figure 11. It can be
clearly seen, that strategy #4 outperforms all other strategies. Furthermore, it produces
higher welfare than the theoretical hulls of strategies #1 and #2, which were created
by manually selecting the best sub strategy for each building plan search cost. Thus,
for any building plan search cost investigated the described sub strategy #4 is the best
choice. Furthermore, the results depicted in Figure 11 indicate that for high building
plan search costs strategy #4 produces the same welfare as the hulls of strategy #1 and
#2. This is logical, since for high building plan search costs no profit can be made, in
which case all three strategies will stop after a single search for a building plan.

6 Summary

Different strategies for service composition in P2P networks have been investigated.
Based on the distributed and decentralized service market together with its underlying
P2P network, the service market model was extended by the composed service market.
Driven by models of all building blocks for the service composition process the generic
service composition algorithm was specified, resulting in service dependence trees. Dif-
ferent strategies for building this tree were developed and evaluated in simulations of
composing a distributed computing service.

Such strategies for building the service dependence tree can differ in the width of the
tree (i.e., how many building plans are searched for each service class) and the depth of
the tree (i.e., when to stop the recursion of the tree building algorithm). Those results

76 J. Gerke, P. Reichl, and B. Stiller

show that extending the tree and the width at the same time quickly leads to a dropping
welfare of several orders of magnitude. However, improved heuristically strategies con-
trol the width and depth of the tree. All strategies proved to be very sensitive to the
number of building plans searched at each step. Not a single heuristic was able to pro-
duce a high (or even positive) welfare, when a larger number of building plans could
be searched for. In fact, these results indicate that at the most two building plans should
be searched for within any service class. If those strategies were used in this way, they
produced positive welfare for most of the investigated spectrum of building plan search
costs. One strategy produced positive welfare for the whole spectrum, and continually
outperformed all other strategies.

Thus, it has been shown that service composition can be economically successful,
when a generic algorithm is used with the proposed strategies and a small number of
building plans searched for at each step. Future work includes the development of public
auctions for composed services, thus enabling the service consumer to publish his utility
function, which in turn enables the maximization of the welfare of the composed service
market.

This work has been partially performed in the EU-projects MMAPPS and DAIDA-
LOS, and the Austrian Kplus competence center programme.

References

Oram, A. (ed.): Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly (2001)
American Heritage Dictionaries (Editor): The American Heritage Dictionary of the English Lan-

guage, 4th edn. Houghton Mifflin (2000)
Blizzard Corporation, Blizzard Downloader F.A.Q. (2005),

http://www.worldofwarcraft.com/info/faq/blizzarddownloader.
html

Carman, M., Serafini, L., Traverso, P.: Web service composition as planning. In: ICAPS 2003
Workshop on Planning for Web Services, Trento, Italy (2003)

Dumas, M., O’Sullivan, J., Heravizadeh, M., ter Hofstede, A., Edmond, D.: Towards a semantic
framework for service description. In: IFIP Conference on Database Semantics, Hong Kong,
China (2001)

Gerke, J.: Service composition in peer-to-peer systems. In: Proceedings of the Dagstuhl Seminar
on Peer-to-Peer Systems and Applications, Dagstuhl, Germany (2004)

Gerke, J., Hausheer, D., Mischke, J., Stiller, B.: An architecture for a serviceoriented peer-to-
peer system (sopps). In: Praxis der Informationsverarbeitung und Kommunikation (PIK), 2
(2003)

Gerke, J., Stiller, B.: A service-oriented peer-to-peer middleware. In: Müller, P., Grotzhein,
R., Schmitt, J.B. (eds.) Kommunikation in Verteilten Systemen (KiVS) 2005, Informatik
Aktuell. Springer, Heidelberg (2005)

He, H.: What is Service-Oriented Architecture. In: O’Reilly webservices.xml.com (2003),
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html

Hendler, J., Berners-Lee, T., Miller, E.: Integrating applications on the semantic web. Journal of
the Institute of Electrical Engineers of Japan 122(10) (2002)

Izal, M., Urvoy-Keller, G., Biersack, E., Felber, P., Hamra, A.A., Garces-Erice, L.: Dissecting
bittorrent: Five months in a torrent’s lifetime. In: Passive and Active Measurements (PAM),
Antibes Juan-les-Pins, France (2004)

http://www.worldofwarcraft.com/info/faq/blizzarddownloader.html
http://www.worldofwarcraft.com/info/faq/blizzarddownloader.html
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html

Strategies for Service Composition in P2P Networks 77

Microsoft Developer Network, NET Framework Product Overview (2004),
http://msdn.microsoft.com/netframework/technologyinfo/
overview/

Reichl, P., Stiller, B.: Nil nove sub sole? why internet tariff schemes look like as they do. In: 4th
Internet Economics Workshop (IEW’01), Berlin, Germany (2001)

Varian, H.: Intermediate Microeconomics: A Modern Approach. W.W. & Company, Norton
(2003)

Web Services Descriptions Working Group, Web Services Description Language (WSDL) Ver-
sion 2.0. (2005), http://www.w3.org/2002/ws/desc

World Wide Web Consortium, Web Services Activity Statement (2004),
http://www.w3c.org/2002/ws/Activity

http://msdn.microsoft.com/netframework/technologyinfo/overview/
http://msdn.microsoft.com/netframework/technologyinfo/overview/
http://www.w3.org/2002/ws/desc
http://www.w3c.org/2002/ws/Activity

	Strategies for Service Composition in P2P Networks
	Introduction
	P2P Service Market
	Underlying Technology
	Market Model

	Service Properties
	Service Composition
	Evaluation
	General Assumptions
	Simulation Setup
	Balanced Search
	Search Until Welfare Decreases
	Tree Width Decreases with Increasing Tree Depth
	Tree Width Decreasing with Welfare Decrease
	Discussion

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

