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Abstract. The self-similarity (
2S ) filter is proposed for real-time applications. 

It can be used independently or as an extra component for the enhanced RTPD 
(real-time traffic pattern detector) or E-RTPD. The 2S  filter basis is the 
“asymptotically second-order self-similarity” concept (alternatively called 
statistical OSSnd2 or OSSS nd2 ) for stationary time series. The focus is 
the IAT (inter-arrival times) traffic. The filter is original because similar 
approaches are not found in the literature for detecting self-similar traffic 
patterns on the fly. Different experiments confirm that with help form the 2S  
filter the FLC (Fuzzy Logic Controller) dynamic buffer size tuner control more 
accurately. As a result the FLC improves the reliability of the client/server 
interaction path leading to shorter roundtrip time (RTT). 

Keywords: Real-time traffic pattern detection (RTPD), stationary, 
asymptotically second-order self-similarity, CAB, Gaussian property, fractal. 

1   Introduction 

It is hard to harness the roundtrip time (RTT) of an end-to-end client/server interaction 
path over a TCP channel in time-critical applications. The problem is the heterogeneity 
and sheer size of the Internet. If the path error probability for retransmissions is ρ ,  

the average number of trials (ANT) for successful transmission is 
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The value ρ  encapsulates different faults and errors, and one of them is caused by 

buffer overflow along the end-to-end interaction path. There are two levels of buffer 
overflows: a) system/router level that includes all activities inside the TCP channel, 
and b) user level that involves the buffer at the receiving end. Methods to prevent 
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network congestion that causes router buffer overflow include active queue 
management (AQM) (Braden, 1998). One effective approach to eliminate user-level 
buffer overflow to improve the end-to-end path reliability is dynamic buffer size 
tuning (Wong, 2002). The accuracy and stability of the tuning process, however, are 
affected by the Internet traffic patterns in terms of messages' inter-arrival times (IAT). 
To resolve this problem the previous real-time traffic pattern detector (RTPD) (Lin, 
2004) was proposed. With the detected results the dynamic buffer size tuners can 
mitigate/nullify the ill effects by traffic on system stability and performance in a 
dynamic fashion. The RTPD, however, does not detect self-similar traffic, and this 
leads to the proposal of the self-similarity ( 2S ) filter in this paper. Inclusion of 
the 2S filter into RTPD created the enhanced RTPD (E-RTPD). It will be 
demonstrated later how E-RTPD helps the Fuzzy Logic Controller (Lin, 2004B) self-
tune better on the fly to gain more accurate and smoother user-level dynamic buffer 
size tuning and shorter RTT as a result.   

The Internet involves many different client/server interaction protocols 
(Lewandowski, 1998), and its traffic follows the power law (Medina, 2000). Over 
time the traffic in any part of the Internet may change suddenly, for example, from 
LRD (long-range dependence) to SRD (short-range dependence) or vice versa 

(Willinger, 2003). Using the Hurst (H) effect (i.e. ssH  (Taqqu, 2003)) as the 

yardstick then 15.0 << H   is for LRD and 5.00 ≤< H  for SRD. If 
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It is impractical to monitor the overwhelming number of network parameters in the 
Internet to harness the client/server RTT. A practical approach is to treat the Internet 
as a “black box” and measure the end-to-end RTT to interpret the channel behavior. 
This is the IEPM (Internet End-to-End Performance Measurement (Cottrel, 1999)) 
approach. Any sudden changes in the IAT traffic pattern affect the performance of 
applications running on the Internet. The traffic’s ill effect on the FLC stability and 
accuracy (Lin, 2004) is an example. Figure 1 shows how the mean deviations (MD) 
from the FLC steady-state reference due to traffic changes in one deployment. Traffic 
self-similarity (or self-affinity) consistently produces the largest deviations compared 
to heavy-tailed and Markovian traffic. Two objects are geometrically similar if one is 
derived from another by linear scaling, rotation or translation. The GP% (gradient 
percentage) in Figure 1 is a derivative (D) control parameter in FLC. For the same GP 
value different traffic patterns produce different MD values. The reconfigurable 
version of the FLC uses the RTPD to detect a traffic pattern on the fly and utilizes the 
result to neutralize traffic ill effects by choosing the correct GP value accordingly 
(Lin, 2004). The RTPD differentiates LRD from SRD and identifies heavy-tailed 
traffic, but it does not detect self-similar patterns. Combining the previous RTPD 
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Fig. 1. Internet traffic impact on FLC accuracy 

model with the self-similarity ( 2S ) filter (or simply 2S  filter) creates the enhanced 
RTPD (E-RTPD), which has the capability to identify self-similarity and compute its 
dimension (D). If an object is geometrically, recursively split into similar pieces, then 

at the thK iteration step the total measure of the object is “product of the number of 

similar pieces and DO ”. The parameter O is the splitting resolution or reduction. The 
Cantor Set is an example in which a line segment of interval [0,1] is drawn as the first 
step (i.e. 0=K ). This line is then manipulated by the subsequent steps: a) divide the 

line into three equal portions (i.e. resolution is 3
1  ) and remove the middle portion 

(i.e. 1=K ), b) remove the middle portions from the remaining two (i.e. 2=K ), and 

c) repeat the last step ad infinitum. The thK iteration produces K2  similar line 
segments of length Ks )3

1(=  each. The Cantor Set’s self-similarity dimension is 

defined by the formula =sD K2 * K)3
1(  or alternatively    

63.0]))3log((
))2log(([ ≈= K
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An object is fractal if its D value is non-integer. Different non-converging dimension 
definitions exist, the Cantor Set provides only a conceptual basis. A stochastic process 

)(tX  is ssH , self-similar and fractal, provided that its two finite-dimensional 
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distributions , )(atX  and )(tXa H  are identical for 0>a . That is, the following 

expression holds: ≡)}()...(),({ 21 natXatXatX )}(),...({ 1 n
HH atXatXa ;  ≡  means 

equality and H is the scaling exponent. 

2   Related Work 

The previous RTPD is enhanced from the traditional R/S (rescaled adjusted statistics) 
approach for non-real-time (i.e. “post-mortem”) applications. The enhanced R/S (i.e. 

E-R/S) is a real-time “ filtrationSRRTM ++ /3 ” package. The RTM 3 element is a 

micro Convergence Algorithm (CA) or MCA implementation (Wong, 2001). The CA 
is the technique adopted from the IEPM (Internet End-to-End Performance 
Measurement) problem domain (Cottrel, 1999). The MCA, which predicts the mean 
of a traffic waveform quickly and accurately, operates as a logical object to be 
invoked for service anytime and anywhere by message passing. It helps the R/S 
mechanism differentiates SRD from LRD on-line. The filtration process activates an 
appropriate filter to identify the exact traffic pattern; for example, the modified QQ-
plot filter identifies heavy-tailed distributions. The main RTPD contribution is that it 
can be a part of any time-critical application, which uses it to detect traffic patterns on 
the fly. These applications can then use the detected result to self-tune for better 
system performance (Lin, 2004). Similar to its R/S predecessor, the E-R/S calculates 
the Hurst (H) parameter/value but on-line. The 15.0 << H  range means LRD 

traffic (e.g. heavy-tailed and self-similar traces) and 5.00 ≤< H for SRD (short-
range dependence, e.g. Markovian traffic) (Molnar, 1999). 
The traditional R/S is defined by  
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The best value for k is usually found by trial and error, and this becomes the 
drawback because R/S accuracy and speed depend on k. The R/S ratio is the rescaled 

range of the stochastic process X over a time interval k, },...2,1:{ kiX i = . A useful 

R/S feature is the log-log of Hk
S

R )2(≈  , which yields the H value.  

The CA operation, which is derived from the Central Limit Theorem, is 

summarized by the equations: (2.1) and (2.2). The estimated mean iM in the thi  

prediction cycle is based on the fixed F (flush limit) number of data samples. The 
cycle time therefore depends on the interval for collecting the F samples. It was 
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confirmed previously that iM has the fastest convergence for F=14 (Wong, 2001). 

Other parameters include: a) 1−iM  is the feedback of the last predicted mean to the 

current iM prediction cycle, b) i
jm  is the jth data item sampled in the current ith iM  

cycle, )1(,....,3,2,1 −= Fj , and c) 0M is the first data sample when the MCA had 

started running. In the E-R/S, iM replaces X to yield .  
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This replacement makes the E-R/S more suitable for real-time applications because 

the number of data items (e.g. IAT) to calculate iW  becomes predictable 

(i.e. 14=F ). In real-life applications ∑
=

=
k

i
iXkX

1

1  will need much longer 

computation time than iM for two reasons: a) k is usually larger than F , and b) the 

IAT among iX could be so large that the product of “ k  and average IAT” means a 

significant time delay. In an E-RTPD implementation the E-/RS, RTM 3 and filter 
modules are running in parallel. The E-RTPD execution time depends on the E-R/S 
module, which has the longest execution. The Intel’s VTune Performance Analyzer 
(Intel VTune, 2002) records from the Java RTPD prototype the following average 

execution times in clock cycles: 981 for E-R/S, 250 for RTM 3 , and 520 for the 
modified QQ-plot filter. The novel 2S  filter provides RTPD with the additional 
capability to quickly detect self-similar traffic on the fly. 
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3   The Self-similarity Filter 

LRD traffic has at two basic components: heavy-tailed and self-similar. The proposed 

self-similarity ( 2S ) filter differentiates heavy-tailed IAT patterns from self-similar 
ones. Self-similarity in many fractal point processes results from heavy-tailed 
distributions, for example, FRP (Fractal Renewal Process) inter-arrival times. The 
heavy-tailed property, however, is not a necessary condition for self-similarity 
because at least the FSNDPP (Fractal-Shot-Noise-Driven Poisson Process) does not 

have heavy-tailed property. The 2S filter basis is the “asymptotically second-order 

self-similarity” concept, or simply called statistical OSSnd2  or OSSS nd2 , which 

associates with a sufficiently large aggregate level or lag l  in a stochastic process X. 

For an aggregate }1:{ ≥= lXX m
l

m of size m in X, OSSS nd2  for ∞→m  
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means that the associated autocorrelation function (ACF), namely )(lr m  (for mX ) 

is proportional to )22( Hl −− . OSSS nd2  is LRD for its ACF is non-summable, as 
indicated by  . 

=)(lr m ∞=∑
∞

−1l

mr  

The condition of “ )22()( Hm llr −−∝  for ∞→m ” is mathematically equivalent 

to the slowly decaying variance property. That is, the variance of the mean of sample 
size m  decays more slowly than m . This phenomenon is represented by the 

expression: β−∝ mXVar m )( . For a stationary OSSnd2  process X and 

15.0 << H  the value of H22 −=β  should apply. Equations (3.1) and (3.2) 

summarize the OSSS nd2  property and they hold for the weaker condition in 
equation (3.3). The slowly decaying variance property is clear if a log-log plot is 
produced for equation (3.1). As shown by equation (3.4), ))(log( XVar  is a 

constant, ))(log( mXVar  versus )log(m  yields a straight line with slope β− . 

The H value can then be calculated by the 

)2(1 β−=H  

formula. The 2S filter finds β  for mX  on the fly. The )( mXVar  calculation uses 

the mean value )( mXE estimated by the RTM 3  process.  )( mXE  is 

∑
+−=

−
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1)1(

1  conceptually, and the key for the 2S filter operation is to choose a 

sufficiently large m , which is the multiples (i.e. C) of 14=F  to virtually satisfy 

∞→m ; FCm *=  for estimating β . The detected result is available at the 

Ag time point. In Figure 2 for example, the β result for aggregate 2 is available at 

the point of 2=Ag . 
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The process in the 2S filter to calculate β is the “continuous aggregate based 

(CAB)” method. The CAB evaluates if an aggregate is stationary by checking its 
Gaussian property or “Gaussianity” (Arvotham, 2001) by the kurtosis and skewness 
metrics. A symmetrical normal distribution has perfect Gaussianity indicated 
by 3=kurtosis  and 0=skewness . Statistically measured kurtosis and skewness 
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values are rarely perfect, and reasonable limits can be used to indicate the presence of 
a bell curve, which belongs to the exponential family of independent stationary 

increments. The 2S filter follows the CAB procedure and finds β  by linear 

regression, and the quality of which can be judged by the coefficient of determination 

or 2R between 0 and 1 (Jain, 1992). Higher 2R implies better quality for the linear 

regression. By the predefined threshold 2R
Th  (e.g. 0.85 or 85%) the 2S  filter can 

reject a hypothesis of self-similarity in mX  for 2
2

R
ThR < . The CAB operation in 

Figure 2 works with the aggregates m
lAgX = in a stochastic process X along the time 

axis. Assuming: a) P1, P2, and P3 are the log-log plots for three successive  

aggregates based on equation (3.4), b) these plots yield different β  values: 1β  for P1 

with 82.02 =R , 2β  for P2 with 98.02 =R , and 3β  for P3 with 95.02 =R , c) 

lAg = is the aggregate level, and d) 9.02 =
R

Th , then both P2 and P3 confirms 

self-similar traffic but not P1 (for 
2

2

R
ThR < ). If P2 and P3 yield very 

different β values, their H values by 

)2(1 β−=H  

indicate different dimensions or D. The D value may change over time due to various 
factors, for example, the ON/OFF situations in the network (Willinger, 2003). A 
changing D or H is a sign of non-linearity in the stochastic process being examined. A 
D/H correlation will be demonstrated, but the focal discussion of how H or D could 
affect system stability will be left out. 

 

Fig. 2. The “aggregate based (AB)” approach 

Skewness is represented by ( )
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where x  and sd are the measured mean and standard deviation respectively for the 
aggregate of m samples. It measures the symmetry of a bell-shape aggregate 
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distribution. A positive value indicates that the bell curve skews right and the right tail 
is heavier than the left one. Kurtosis is represented by 

sd
xx

m
i
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4
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and its value decides whether the bell curve is peaked (for positive value) or flat (or 
negative value) compared to the normal distribution with 3=kurtosis  and 

0=skewness . 

4   Experimental Results 

The 2S  filter was verified by simulations based on the CAB approach. The 
experiments were conducted on the stable Aglets mobile agent platform, which is 
designed for Internet applications. The Aglets makes the experimental results scalable 
for the open Internet. The setup for the experiments is shown in Figure 3, in which the 
driver and server are both aglets (agile applets). The driver picks a known waveform 
or a pre-collected IAT trace that may embeds different traffic patterns over time. The 
pick simulates the IAT among the requests that enter the server queue. The FLC 

dynamic buffer size tuner is the test-bed for the 2S  filter. It adjusts the buffer size on 
the fly by leveraging the current queue length, buffer length, and detected traffic 
pattern. The traffic pattern(s) that drives the IAT is also recorded by the E-RTPD that 

has included the 2S  filter. This helps matching the FLC control behavior with the 
specific traffic pattern. The VTune measures the E-RTPD's average execution time so 
that its contribution to time-critical applications on the Internet can be evaluated. 
Experiments with different IAT traffic patterns were carried out. The results conclude 

that the 2S  filter indeed detects self-similar traffic and helps the FLC deliver more 
accurate dynamic buffer size tuning. The experimental results presented here include: 
self-similarity detections, traffic and FLC accuracy, and D/H correlation.  

Table 1 summarizes seven of the many different simulations conducted. The self-
similar traces, which simulate the inter-arrival times (IAT) for the request into the 
server’s buffer being controlled by the FLC (Figure 3), are generated by using the 
Kramer’s tool (Kramer, 2002).  The useful information from the Table 1 summary is 
listed as follows: 

The 2S  filter always detect and recognizes self-similarity in the IAT traffic as 
long as the network loading or utilization ψ is 50% (i.e. 0.5 simulated by the same 

tool) or less.  
ψ is proportional to the self-similarity dimension (explained later with Figure 9).  

For 4.0>ψ the traffic self-similarity scales differently as indicated Figure 5 and 6. 

Our analysis indicates that this is possibly the beginning of non-linear scaling or a 

sign of possible multifractal traffic. Both Figure 5 and 6 work with 9.02 =
R

Th .  

The scaling exponent H (Hurst effect) changes with ψ , which is inversely 

proportional to the IAT length that is the  “reduction/resolution” in light of traffic. For 
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Fig. 3. Setup for the 
2S  filter experiments 

 

Fig. 4. Kurtosis and skewness measurements 

 

Fig. 5. 
2S filter yields slope = -0.6809(β= 0.6809), R2= 97.74% for 2.0=ψ  
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Fig. 6. 
2S filter yields slope = -0.4685(β= 0.4685), R2= 95.97% for 5.0=ψ  

 

Fig. 7. Faster convergence of the FLC+
2S filter than the FLC working alone 

 

Fig. 8. Less MD deviation by FLC+
2S than the FLC alone 
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Fig. 9. D/H correlation for Table 1 

4.0≤ψ  the scaling is basically the same (i.e. a monofractal sign). The β  value in 

every case (row) in Table 1 is the average of several aggregates for the same 
stochastic process X. 

The kurtosis and skewness are different for the different self-similar traces. 
Nevertheless they always indicate the presence of a bell curve.  

The kurtosis and skewness values for each case (row) in Table 1 are plotted for 
comparison (Figure 4). These values are obviously affected by the loading. When the 
loading is high (e.g. 60% and 70%) the bell curve tends to skew less but still to the 
right. Meanwhile the bell curve tends to get flatter. Comparatively the skewness of the 
bell curves for the seven simulation cases in Table 1 are less than a Weibull 
( 5.1=gamma ) distribution, which is relatively more peaked ( 5.4≈kurtosis ). The 

trend-lines in Figure 7 for the IAT traffic trace in Figure 5 shows that the 

“ 2SFLC + filter” combination converges much faster to given steady state than the 

FLC working alone. With help from the 2S  filter the FLC adjusts the GP value for 
the derivative (D) control element on the fly according to the currently detected self-
similarity. As a result it produces less MD than the FLC working alone (Figure 8). In 
the experiments the FD3 tool (Sarraille, 2004), which confirms if an image (e.g. a 
time series generated by the Kramer’s tool) is really fractal and measures its 
dimension D, was used. The purpose is to evaluate the D/H correlations (Peitgen, 
2004). This correlation for Table 1 is plotted and shown in Figure 9. It shows that if D 
changes suddenly, H also rescales accordingly to indicate possible traffic nonlinearity. 
In contrast, if H scales linearly, it is a sign of monfractal traffic. The intrinsic average 

2S filter execution time as observed from all the experiments is 1455 clock cycles as 
measured by the Intel’s VTune Performance Analyzer. It is intrinsic because it works 
with immediately available data (without any actual IAT delay) in a trace. For a 
platform of 100 mega hertz the corresponding physical time is )10*100/(1455 6  or 

14.55 micro seconds. In real-life applications the 2S filter has to collect enough IAT 

samples on the fly before computing β . This sampling latency can be significant, and 

therefore the success of 2S filter application depends of choosing size m for the 
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Table 1. 2S  filter’(log(variance) versus log (aggregate level) to find β  

)21(H 2R (coefficient of determination) loading
kurtosis skewness 

0.6583        0.671    0.956 (95.6%) 0.1 (10%) 0.597045 1.180861 
0.6809        0.660 0.975 (97.5%) 0.2 -0.56218 0.798282 
0.6425        0.679 0.977 (97.7%) 0.3 0.40215 1.277175 
0.6473        0.677 0.972 (97.2%) 0.4 -0.53386 0.861215 
0.4685        0.766 0.959 (95.9%) 0.5 -0.58417 0.892037 
0.3762        0.812 0.885 (88.5%) (less than

2R
Th ) 0.6 (rejected) -1.01033 0.446756 

0.1978         0.901 0.605 (60.5%) 0.7 (rejected) -1.16043 0.388599  

mX  aggregate correctly. For example, if the average IAT is one second, 1000=m  
means 1000 seconds. On the contrary for the same size m and mean IAT of 1 ms, the 

physical time is only one second. Therefore, the m value for the 2S filter Java 
prototype is a variable rather than a chosen constant, and the user/tester should fix the 
time span T instead of collecting the fixed m samples on the fly. That is, the number 

of samples (i.e. m ) in an aggregate within T depends on the IAT; shorter IAT delays 

yield a larger m . Then, the 2S filter works adaptively with the m  value decided by 
the IAT for the “timed aggregate” based on the chosen T. 

5   Conclusions 

The novel self-similarity ( 2S ) filter is proposed for real-time applications. It is based 
on the “asymptotically second-order self-similarity” concept (alternatively called 

statistical OSSnd2  or OSSS nd2 ) for stationary time series. As a component in the 
enhanced RTPD or E-RTPD it helps the FLC dynamic buffer tuner yield more 
accurate control by detecting self-similarity in the IAT traffic. This means improved 

reliability for the client/server interaction path and shorter roundtrip time. The 2S  
filter is original because there is no previous examples in the literature that can detect 
self-similarity in a time series on the fly. The next step in the research is to perfect the 
CAB approach by enabling it to determine the range of aggregate size m that can 
produce accurate traffic detection but without any unnecessary and significant latency 
in the process. 
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