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Abstract. Source code authorship analysis is the particular field that attempts to 
identify the author of a computer program by treating each program as a 
linguistically analyzable entity. This is usually based on other undisputed 
program samples from the same author. There are several cases where the 
application of such a method could be of a major benefit, such as tracing the 
source of code left in the system after a cyber attack, authorship disputes, proof 
of authorship in court, etc. In this paper, we present our approach which is 
based on byte-level n-gram profiles and is an extension of a method that has 
been successfully applied to natural language text authorship attribution. We 
propose a simplified profile and a new similarity measure which is less 
complicated than the algorithm followed in text authorship attribution and it 
seems more suitable for source code identification since is better able to deal 
with very small training sets. Experiments were performed on two different data 
sets, one with programs written in C++ and the second with programs written in 
Java. Unlike the traditional language-dependent metrics used by previous 
studies, our approach can be applied to any programming language with no 
additional cost. The presented accuracy rates are much better than the best 
reported results for the same data sets. 
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1   Introduction 

In a wide variety of cases it is important to identify the author of a piece of code. Such 
situations include cyber attacks in the form of viruses, trojan horses, logic bombs, 
fraud, and credit card cloning or authorship disputes or proof of authorship in court 
etc. But why do we believe it is possible to identify the author of a computer 
program? Humans are creatures of habit and habits tend to persist. That is why, for 
example, we have a handwriting style that is consistent during periods of our life, 
although the style may vary, as we grow older. Does the same apply to programming? 
Although source code is much more formal and restrictive than spoken or written 
languages, there is still a large degree of flexibility when writing a program (Krsul, 
and Spafford, 1996).  
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Source code authorship analysis could be applied to the following application areas 
(Frantzeskou et al 2004):  

1.  Author identification. The aim here is to decide whether some piece of code 
was written by a certain author. This goal is accomplished by comparing this 
piece of code against other program samples written by that author. This type 
of application area has a lot of similarities with the corresponding literature 
where the task is to determine that a piece of work has been written by a certain 
author. 

2. Author characterisation. This application area determines some characteristics 
of the author of a piece of code, such as cultural educational background and 
language familiarity, based on their programming style.  

3. Plagiarism detection. This method attempts to find similarities among multiple 
sets of source code files. It is used to detect plagiarism, which can be defined as 
the use of another person’s work without proper acknowledgement. 

4. Author discrimination. This task is the opposite of the above and involves 
deciding whether some pieces of code were written by a single author or by 
some number of authors. An example of this would be showing that a program 
was probably written by three different authors, without actually identifying the 
authors in question. 

5. Author intent determination. In some cases we need to know whether a piece of 
code, which caused a malfunction, was written having this as its goal or was the 
result of an accidental error. In many cases, an error during the software 
development process can cause serious problems. 

The traditional methodology that has been followed in this area of research is 
divided into two main steps (Krsul, Spafford 1995; MacDonell et al. 2001; Ding 
2004). The first step is the extraction of software metrics and the second step is using 
these metrics to develop models that are capable of discriminating between several 
authors, using a machine learning algorithm.  In general, the software metrics used are 
programming - language dependent. Moreover, the metrics selection process is a non 
trivial task. 

In this paper we present a new approach, which is an extension of a method that 
has been applied to natural language text authorship identification (Keselj et al., 
2003). In our method, byte-level N-grams are utilised together with author profiles. 
We propose a new simplified profile and a new similarity measure which enables us 
to achieve a high degree of accuracy for authors for whom we have a very small 
training set. Our methodology is programming - language independent since it is 
based on low-level information and is tested to data sets from two different 
programming languages. The simplified profile and the new similarity measure we 
introduce provide a less complicated algorithm than the method used in text 
authorship attribution and in many cases they achieve higher prediction accuracy. 
Special attention is paid to the evaluation methodology. Disjoint training and test sets 
of equal size were used in all the experiments in order to ensure the reliability of the 
presented results. Note, that in many previous studies the evaluation of the proposed 
methodologies was performed on the training set. Our approach is able to deal 
effectively with cases where there are just a few available programs per author. 
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Moreover, the accuracy results are high even for cases where the available programs 
are of restricted length. 

The rest of this paper is organized as follows. Section 2 contains a review on past 
research efforts in the area of source code authorship analysis.  Section 3 describes 
our approach and section 4 includes the experiments we have performed. Finally, 
section 5 contains conclusions and future work. 

2   Related Work 

The most extensive and comprehensive application of authorship analysis is in 
literature. One famous authorship analysis study is related to Shakespeare’s works 
and is dating back over several centuries. Elliot and Valenza (1991) compared the 
poems of Shakespeare and those of Edward de Vere, 7th Earl of Oxford, where 
attempts were made to show that Shakespeare was a hoax and that the real author was 
Edward de Vere, the Earl of Oxford. Recently, a number of authorship attribution 
approaches have been presented (Stamatatos et. al, 2000; Keselj, et al., 2003; Peng et 
al, 2004) proving that the author of a natural language text can be reliably identified. 

Although source code is much more formal and restrictive than spoken or written 
languages, there is still a large degree of flexibility when writing a program (Krsul, 
and Spafford, 1996). Spafford and Weeber (1993) suggested that it might be feasible 
to analyze the remnants of software after a computer attack, such as viruses, worms or 
trojan horses, and identify its author. This technique, called software forensics, could 
be used to examine software in any form to obtain evidence about the factors 
involved. They investigated two different cases where code remnants might be 
analyzed: executable code and source code. Executable code, even if optimized, still 
contains many features that may be considered in the analysis such as data structures 
and algorithms, compiler and system information, programming skill and system 
knowledge, choice of system calls, errors, etc. Source code features include 
programming language, use of language features, comment style, variable names, 
spelling and grammar, etc.  

Oman and Cook (1989) used “markers” based on typographic characteristics to test 
authorship on Pascal programs. The experiment was performed on 18 programs 
written by six authors. Each program was an implementation of a simple algorithm 
and it was obtained from computer science textbooks. They claimed that the results 
were surprisingly accurate. 

Longstaff and Shultz (1993) studied the WANK and OILZ worms which in 1989 
attacked NASA and DOE systems. They have manually analyzed code structures and 
features and have reached a conclusion that three distinct authors worked on the 
worms. In addition, they were able to infer certain characteristics of the authors, such 
as their educational backgrounds and programming levels. Sallis et al (1996) 
expanded the work of Spafford and Weeber by suggesting some additional features, 
such as cyclomatic complexity of the control flow and the use of layout conventions. 

An automated approach was taken by Krsul and Spafford (1995) to identify the 
author of a program written in C. The study relied on the use of software metrics, 
collected from a variety of sources. They were divided into three categories: layout, 
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style and structure metrics. These features were extracted using a software analyzer 
program from 88 programs belonging to 29 authors. A tool was developed to 
visualize the metrics collected and help select those metrics that exhibited little 
within-author variation, but large between-author variation. A statistical approach 
called discriminant analysis (SAS) was applied on the chosen subset of metrics to 
classify the programs by author. The experiment achieved 73% overall accuracy.  

Other research groups have examined the authorship of computer programs written 
in C++ (Kilgour et al., 1997); (MacDonell et al. 2001), a dictionary based system 
called IDENTIFIED (integrated dictionary- based extraction of non-language-
dependent token information for forensic identification, examination, and 
discrimination) was developed to extract source code metrics for authorship analysis 
(Gray et al., 1998). Satisfactory results were obtained for C++ programs using case-
based reasoning, feed-forward neural network, and multiple discriminant analysis 
(MacDonell et al. 2001).  The best prediction accuracy has been achieved by Case-
Based Reasoning and it was 88% for 7 different authors. 

Ding (2004), investigated the extraction of a set of software metrics of a given Java 
source code, that could be used as a fingerprint to identify the author of the Java code. 
The contributions of the selected metrics to authorship identification were measured 
by a statistical process, namely canonical discriminant analysis, using the statistical 
software package SAS. A set of 56 metrics of Java programs was proposed for 
authorship analysis. Forty-six groups of programs were diversely collected.  
Classification accuracies were 62.7% and 67.2% when the metrics were selected 
manually while those values were 62.6% and 66.6% when the metrics were chosen by 
SDA (stepwise discriminant analysis). 

The main focus of the previous approaches was the definition of the most 
appropriate measures for representing the style of an author.  Quantitative and 
qualitative measurements, referred to as metrics, are collected from a set of programs. 
Ideally, such metrics should have low within-author variability, and high between-
author variability (Krsul and Spafford, 1996), (Kilgour et al., 1997).  Such metrics 
include: 

- Programming layout metrics: include those metrics that deal with the layout of 
the program. For example metrics that measure indentation, placement of 
comments, placement of braces etc.  

- Programming style metrics: Such metrics include character preferences, 
construct preferences, statistical distribution of variable lengths and function 
name lengths etc. 

- Programming structure metrics: include metrics that we hypothesize are 
dependent on the programming experience and ability of the author. For 
example such metrics include the statistical distribution of lines of code per 
function, ratio of keywords per lines of code etc. 

- Fuzzy logic metrics: include variables that they allow the capture of concepts 
that authors can identify with, such deliberate versus non deliberate spelling 
errors, the degree to which code and comments match, and whether identifiers 
used are meaningful. 
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However, there are some disadvantages in this traditional approach. The first is that 
software metrics used are programming - language dependant. For example metrics 
used in Java cannot be used in C or Pascal. The second is that metrics selection is not 
a trivial process and usually involves setting thresholds to eliminate those metrics that 
contribute little to the classification model. As a result, the focus in a lot of the 
previous research efforts, such as (Ding 2004) and (Krsul, Spafford 1995) was into 
the metrics selection process rather than into improving the effectiveness and the 
efficiency of the proposed models. 

3   Our Approach 

In this paper, we present our approach, which is an extension of a method that has 
been successfully applied to text authorship identification (Keselj, et al 2003). It is 
based on byte level n-grams and the utilization of two different similarity measures 
used to classify a program to an author. Therefore, this method does not use any 
language-dependent information.  

An n-gram is an n-contiguous sequence and can be defined on the byte, character, 
or word level. Byte, character and word n-grams have been used in a variety of 
applications such as text authorship attribution, speech recognition, language 
modelling, context sensitive spelling correction, optical character recognition etc. In 
our approach, the Perl package Text::N-grams (Keselj 2003) has been used to produce 
n-gram tables for each file or set of files that is required. An example of such a table 
is given in Table 1. The first column contains the n-grams found in a source code file 
and the second column the corresponding frequency of occurrence.  

Table 1. n-gram frequencies extracted from a source code file 

3-gram Frequency 
sio 28 
_th 28 
f_( 20 
_=_ 17 
usi 16 
_ms 16 
out 15 
ine 15 
\n/* 15 
on_ 14 
_in 14 
fp_ 14 
the 14 
sg_ 14 
_i_ 14 
in_ 14 

The algorithm used, computes n-gram based profiles that represent each of the 
author category. First, for each author the available training source code samples are 
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concatenated to form a big file. Then, the set of the L most frequent n-grams of this 
file is extracted. The profile of an author is, then, the ordered set of pairs {(x1; f1); (x2; 
f2),…,(xL; fL)} of the L most frequent n-grams xi and their normalized frequencies fi. 
Similarly, a profile is constructed for each test case (a simple source code file). In 
order to classify a test case in to an author, the profile of the test file is compared with 
the profiles of all the candidate authors based on a similarity measure. The most likely 
author corresponds to the least dissimilar profile (in essence, a nearest-neighbour 
classification model). 

The original similarity measure (i.e. dissimilarity more precisely) used by Keselj et 
al (2003) in text authorship attribution is a form of relative distance: 

2 2
1 2 1 2

1( ) 2( )
1 22

( ) ( ) 2( ( ) ( ))

( ) ( )f n f n
n profile n profile

f n f n f n f n

f n f n  

(1) 

where f1(n) and f2(n) are the normalized frequencies of an n-gram n in the author and 
the program profile, respectively, or 0 if the n-gram does not exist in the profile. A 
program is classified to the author, whose profile has the minimal distance from the 
program profile, using this measure. Hereafter, this distance measure will be called 
Relative Distance (RD). 

One of the inherent advantages of this approach is that it is language independent 
since it is based on low-level information. As a result, it can be applied with no 
additional cost to data sets where programs are written in C++, Java, perl etc. 
Moreover, it does not require multiple training examples from each author, since it is 
based on one profile per author. The more source code programs available for each 
author, the more reliable the author profile. On the other hand, this similarity measure 
is not suitable for cases where only a limited training set is available for each author. 
In that case, for low values of n, the possible profile length for some authors is also 
limited, and as a consequence, these authors have an advantage over the others. Note 
that this is especially the case in many source code author identification problems, 
where only a few short source code samples are available for each author. 

In order to handle this situation, we propose a new similarity measure that does 
not use the normalized differences fi of the n-grams. Hence the profile we propose is a 
Simplified Profile (SP) and is the set of the L most frequent n-grams {x1, x2,…,xL}. If 
SPA and SPP are the author and program simplified profiles, respectively, then the 
similarity distance is given by the size of the intersection of the two profiles: 

PA SPSP ∩  (2) 

where |X| is the size of X. In other words, the similarity measure we propose is just 
the amount of common n-grams in the profiles of the test case and the author. The 
program is classified to the author with whom we achieved the biggest size of 
intersection. Hereafter, this similarity measure will be called Simplified Profile 
Intersection (SPI). We have developed a number of perl scripts in order to create the 
sets of n-gram tables for the different values of n (i.e., n-gram length), L (i.e., profile 
length) and for the classification of the program file to the author with the smallest 
distance. 
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4   Experiments 

4.1   Comparison with a Previous Approach 

Our purpose during this phase was to check that the presented approach works at least 
equally well as the previous methodologies for source code author identification.  For 
this reason, we run this experiment with a data set that has been initially used by Mac 
Donell et al (2001) for evaluating a system for automatic discrimination of source 
code author based on more complicated, language-dependent measures. All programs 
were written in C++. The source code for the first three authors was taken from 
programming books while the last three authors were expert professional 
programmers. The data set was split (as equally as possible) into the training set 50% 
(134 programs) and the test set 50% (133 programs). The best result reported by Mac 
Donell et al (2001) on the test set was 88% using the case-based reasoning (that is, a 
memory-based learning) algorithm. Detailed information for the C++ data set is given 
in Table 2. Moreover, the distribution of the programs per author is given in Table 3. 

Table 2. The data sets used in this study. ‘Programs per author’ is expressed by the minimum 
and maximum number of programs per author in the data set. Program length is expressed by 
means of Lines Of Code (LOC). 

Data Set C++ Java 
Number of authors 6 8 
Programs per author 5-114 5-8 
Total number of programs 268 54 
Training set programs 134 28 
Testing set programs 133 26 
Size of smallest program ( 
LOC) 

19 36 

Size of biggest program ( LOC) 1449 258 
Mean LOC per program 210 129 
Mean LOC in training set 206.4 131.7 
Mean LOC in  testing set 213 127.2 

Table 3. Program distribution per author for the C++ data set 

 Training 
Set 

Test Set 

Author 1 34 34 
Author 2 57 57 
Author 3 13 13 
Author 4 6 6 
Author 5 3 2 
Author 6 21 21 
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We used byte-level n-grams extracted from the programs in order to create the 
author and program profiles as well as the author and program simplified profiles. 
Table 4 includes the classification accuracy results for various combinations of n (n-
gram size) and L (profile size). In many cases, classification accuracy reaches 100%, 
much better than the best reported (MacDonell et al, 2001) accuracy for this data set 
(88% on the test set). This proves that the presented methodology can cope with 
effectively with the source code author identification problem. For n<4 and L<1000 
accuracy drops. The same (although to a lower extent) stands for n>6. 

More importantly, RD performs much worse than SPI in all cases where at least 
one author profile is shorter than L. For example for L=1000 and n=2, L is greater 
than the size of the profile of Author No5 (the maximum L of the profile of Author 
No 5 is 769) and the accuracy rate declines to 51%. This occurs because the RD 
similarity measure (1) that calculates similarity is affected by the size of the author 
profile. When the size of an author profile is lower than L, some programs are 
wrongly classified to that author. In summary, we can conclude that the RD similarity 
measure is not as accurate for those n, L combinations where L exceeds the size of 
even one author profile in the dataset. In all cases, the accuracy using the SPI 
similarity measure is better than (or equal to) that of RD. This proves that this new 
and simpler similarity measure is not affected by cases where L is greater than the 
smaller author profile. 

4.2   Application to a Different Programming Language 

The next experiment was performed on a different data set from a different 
programming language. In more detail the new data set consists of student programs 
(assignments from a programming language course) written in Java. Detailed 
information for this data set is given in Table 2. We used 8 authors. From each author 
6-8 programs were chosen. Table 5 shows the distribution of programs per author. 
The size of programs was between 36 and 258 lines of code. The data set was split in 
training and test set of approximately equal size. This data set has been chosen in 
order to evaluate our approach when the available training data per author are limited 
 

Table 4. Classification accuracy (%) on the C++ data set for different values of n-gram size and 
profile size using two similarity measures: Relative Distance and Simplified Profile Intersection 

Profile 
Size L n-gram Size  

  2 3 4 5 6 7 8 
  RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI 

200 98.4 98.4 97.7 97.7 97 97 95.5 95.5 94.7 95.5 92.5 92.5 92.5 94.7 
500 100 100 100 100 100 100 99.2 100 98.4 98.4 97.7 97.7 97.7 97.7 

1000 51 99.2 100 100 100 100 100 100 100 100 100 100 99.2 99.2 
1500 5.3 98.4 100 100 100 100 100 100 100 100 99.2 99.2 99.2 100 
2000 1.5 97.7 98.4 100 100 100 100 100 100 100 100 100 100 100 
2500 1.5 95.5 99.2 100 100 100 100 100 100 100 100 100 100 100 
3000 1.5 95.5 55.6 100 100 100 100 100 100 100 100 100 100 100  
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Table 5. Program distribution per author of the Java data set 

 Training Set Test Set 
Author 1 3 3 
Author 2 4 4 
Author 3 3 2 
Author 4 3 3 
Author 5 4 4 
Author 6 3 3 
Author 7 4 3 
Author 8 4 4 

(6-7 short programs per author). Note that the programs written by students usually 
have no comments, their programming style is influenced by the instructor, they can 
be plagiarised, circumstances that create some extra difficulties in the analysis.  

The results of the proposed method to this data set are given in Table 7. The best 
accuracy rate achieved with similarity measure RD was 84.6%. Again, when the 
profile size of at least one author is shorter than the selected profile size L, the 
accuracy of RD drops significantly. Using the similarity measure SPI, the best result 
was 88.5%. In generally SPI performed better than RD. Moreover, it seems that 
4<n<7 and 1000<L<3000 provide the best accuracy results. 

4.3   The Significance of Training Set Size 

The purpose of this experiment was to examine the degree in which the training set 
size affects the classification accuracy. For this reason we used the C++ data set for 
which we reached classification accuracy of 100% for many n, L combinations with 
both similarity measures. This result has been achieved by using a training set of 134 
programs in total. For the purposes of this experiment we used the same test set as in 
the experiment of section 4.1 but now we used training sets of different, smaller size. 
The smallest training set was comprised by only one program from each author and 
the biggest by 5 programs from each one (with the exception of one author for whom 
the available training programs were only 3). The presented source code author 
identification approach was applied to these new training sets using n=6 and L=1500 
and similarity measure SPI. Note that the training size of authors was smaller than L 
in many of these experiments and as already explained, in such cases the 
classification accuracy decreases dramatically when using the similarity measure RD. 

The accuracy results achieved are shown in Table 6. As can be seen, even with just 
one program per author available in the training set, high classification accuracy was 
achieved. By adding a second program per author the accuracy increased significantly 
above 96%. Note that the second programs added in the training set were in average 
longer than the first programs (see second column in table 7). We reached 100% of 
accuracy for training set based on five programs per author. This is a strong indication 
that our approach is quite effective even when very limited size of training set is 
available; a condition usually met in source code author identification problems. 

 



172 G. Frantzeskou, E. Stamatatos, and S. Gritzalis 

Table 6. Classification Accuracy (%) on the C++ data set using different training set size (in 
programs per author) 

Training 
Set Size 

Mean LOC  
in Training Set 

Accuracy
(%) 

1 52 63.9 
2 212 96.2 
3 171 97 
4 170  99.2 
5 197 100 

Table 7. Classification accuracy (%) on the Java data set for different values of n-gram size and 
profile size using two similarity measures: Relative Distance and Simplified Profile Intersection 

Profile 
Size L n-gram Size  

  3 4 5 6 7 8 
  RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI 

1000 80.8 80.8 84.6 84.6 84.6 84.6 80.8 80.8 80.8 80.8 84.6 84.6 
1500 84.6 84.6 76.9 76.9 80.8 80.8 84.6 84.6 80.8 80.8 80.8 80.8 

2000 53.8 80.8 65.4 80.8 76.9 80.8 84.6 88.5 84.6 84.6 84.6 84.6 
2500 53.8 73.1 53.8 76.9 53,8 80.8 84.6 88.5 84.6 88.5 84.6 84.6 
3000 53.8 73.1 53.8 80.8 50 76.9 53.8 84.6 69,2 84.6 84.6 84.6  

5   Conclusions 

In this paper, an approach to source code authorship analysis has been presented. It is 
based on byte-level n-gram profiles, a technique successfully applied to natural 
language author identification problems. The accuracy achieved for two data sets 
from different programming languages were 88.5% and 100% on test sets disjoint 
from training set, improving the best reported results for this task so far. Moreover the 
proposed method is able to deal with very limited training data, a condition usually 
met in source code authorship analysis problems (e.g., cyber attacks, source code 
authorship disputes, etc.) with no significant compromise in performance.  

We introduced a new simplified profile and a new similarity measure. The 
advantage of the new measure over the original similarity measure is that it is not 
dramatically affected in cases where there is extremely limited training data for some 
authors. Moreover, the proposed method is less complicated than the original 
approach followed in text authorship attribution. 

More experiments have to be performed on various data sets in order to be able to 
define the most appropriate combination of n-gram size and profile size for a given 
problem. The role of comments has also to be examined. In addition, cases where all 
the available source code programs are dealing with the same task should be tested as 
well. Another useful direction would be the discrimination of different programming 
styles in collaborative projects. 
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