
J. Filipe et al. (Eds.): ICETE 2005, CCIS 3, pp. 163–173, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Suppοrting the Cybercrime Investigation Process:
Effective Discrimination of Source Code Authors Based

on Byte-Level Information

Georgia Frantzeskou, Efstathios Stamatatos, and Stefanos Gritzalis

Laboratory of Information and Communication Systems Security, Aegean University
Department of Information and Communication Systems Engineering, Karlovasi,

Samos, 83200, Greece
gfran@aegean.gr, stamatatos@aegean.gr, sgritz@aegean.gr

Abstract. Source code authorship analysis is the particular field that attempts to
identify the author of a computer program by treating each program as a
linguistically analyzable entity. This is usually based on other undisputed
program samples from the same author. There are several cases where the
application of such a method could be of a major benefit, such as tracing the
source of code left in the system after a cyber attack, authorship disputes, proof
of authorship in court, etc. In this paper, we present our approach which is
based on byte-level n-gram profiles and is an extension of a method that has
been successfully applied to natural language text authorship attribution. We
propose a simplified profile and a new similarity measure which is less
complicated than the algorithm followed in text authorship attribution and it
seems more suitable for source code identification since is better able to deal
with very small training sets. Experiments were performed on two different data
sets, one with programs written in C++ and the second with programs written in
Java. Unlike the traditional language-dependent metrics used by previous
studies, our approach can be applied to any programming language with no
additional cost. The presented accuracy rates are much better than the best
reported results for the same data sets.

Keywords: Source Code Authorship Analysis, Software Forensics, Security.

1 Introduction

In a wide variety of cases it is important to identify the author of a piece of code. Such
situations include cyber attacks in the form of viruses, trojan horses, logic bombs,
fraud, and credit card cloning or authorship disputes or proof of authorship in court
etc. But why do we believe it is possible to identify the author of a computer
program? Humans are creatures of habit and habits tend to persist. That is why, for
example, we have a handwriting style that is consistent during periods of our life,
although the style may vary, as we grow older. Does the same apply to programming?
Although source code is much more formal and restrictive than spoken or written
languages, there is still a large degree of flexibility when writing a program (Krsul,
and Spafford, 1996).

164 G. Frantzeskou, E. Stamatatos, and S. Gritzalis

Source code authorship analysis could be applied to the following application areas
(Frantzeskou et al 2004):

1. Author identification. The aim here is to decide whether some piece of code
was written by a certain author. This goal is accomplished by comparing this
piece of code against other program samples written by that author. This type
of application area has a lot of similarities with the corresponding literature
where the task is to determine that a piece of work has been written by a certain
author.

2. Author characterisation. This application area determines some characteristics
of the author of a piece of code, such as cultural educational background and
language familiarity, based on their programming style.

3. Plagiarism detection. This method attempts to find similarities among multiple
sets of source code files. It is used to detect plagiarism, which can be defined as
the use of another person’s work without proper acknowledgement.

4. Author discrimination. This task is the opposite of the above and involves
deciding whether some pieces of code were written by a single author or by
some number of authors. An example of this would be showing that a program
was probably written by three different authors, without actually identifying the
authors in question.

5. Author intent determination. In some cases we need to know whether a piece of
code, which caused a malfunction, was written having this as its goal or was the
result of an accidental error. In many cases, an error during the software
development process can cause serious problems.

The traditional methodology that has been followed in this area of research is
divided into two main steps (Krsul, Spafford 1995; MacDonell et al. 2001; Ding
2004). The first step is the extraction of software metrics and the second step is using
these metrics to develop models that are capable of discriminating between several
authors, using a machine learning algorithm. In general, the software metrics used are
programming - language dependent. Moreover, the metrics selection process is a non
trivial task.

In this paper we present a new approach, which is an extension of a method that
has been applied to natural language text authorship identification (Keselj et al.,
2003). In our method, byte-level N-grams are utilised together with author profiles.
We propose a new simplified profile and a new similarity measure which enables us
to achieve a high degree of accuracy for authors for whom we have a very small
training set. Our methodology is programming - language independent since it is
based on low-level information and is tested to data sets from two different
programming languages. The simplified profile and the new similarity measure we
introduce provide a less complicated algorithm than the method used in text
authorship attribution and in many cases they achieve higher prediction accuracy.
Special attention is paid to the evaluation methodology. Disjoint training and test sets
of equal size were used in all the experiments in order to ensure the reliability of the
presented results. Note, that in many previous studies the evaluation of the proposed
methodologies was performed on the training set. Our approach is able to deal
effectively with cases where there are just a few available programs per author.

 Suppοrting the Cybercrime Investigation Process 165

Moreover, the accuracy results are high even for cases where the available programs
are of restricted length.

The rest of this paper is organized as follows. Section 2 contains a review on past
research efforts in the area of source code authorship analysis. Section 3 describes
our approach and section 4 includes the experiments we have performed. Finally,
section 5 contains conclusions and future work.

2 Related Work

The most extensive and comprehensive application of authorship analysis is in
literature. One famous authorship analysis study is related to Shakespeare’s works
and is dating back over several centuries. Elliot and Valenza (1991) compared the
poems of Shakespeare and those of Edward de Vere, 7th Earl of Oxford, where
attempts were made to show that Shakespeare was a hoax and that the real author was
Edward de Vere, the Earl of Oxford. Recently, a number of authorship attribution
approaches have been presented (Stamatatos et. al, 2000; Keselj, et al., 2003; Peng et
al, 2004) proving that the author of a natural language text can be reliably identified.

Although source code is much more formal and restrictive than spoken or written
languages, there is still a large degree of flexibility when writing a program (Krsul,
and Spafford, 1996). Spafford and Weeber (1993) suggested that it might be feasible
to analyze the remnants of software after a computer attack, such as viruses, worms or
trojan horses, and identify its author. This technique, called software forensics, could
be used to examine software in any form to obtain evidence about the factors
involved. They investigated two different cases where code remnants might be
analyzed: executable code and source code. Executable code, even if optimized, still
contains many features that may be considered in the analysis such as data structures
and algorithms, compiler and system information, programming skill and system
knowledge, choice of system calls, errors, etc. Source code features include
programming language, use of language features, comment style, variable names,
spelling and grammar, etc.

Oman and Cook (1989) used “markers” based on typographic characteristics to test
authorship on Pascal programs. The experiment was performed on 18 programs
written by six authors. Each program was an implementation of a simple algorithm
and it was obtained from computer science textbooks. They claimed that the results
were surprisingly accurate.

Longstaff and Shultz (1993) studied the WANK and OILZ worms which in 1989
attacked NASA and DOE systems. They have manually analyzed code structures and
features and have reached a conclusion that three distinct authors worked on the
worms. In addition, they were able to infer certain characteristics of the authors, such
as their educational backgrounds and programming levels. Sallis et al (1996)
expanded the work of Spafford and Weeber by suggesting some additional features,
such as cyclomatic complexity of the control flow and the use of layout conventions.

An automated approach was taken by Krsul and Spafford (1995) to identify the
author of a program written in C. The study relied on the use of software metrics,
collected from a variety of sources. They were divided into three categories: layout,

166 G. Frantzeskou, E. Stamatatos, and S. Gritzalis

style and structure metrics. These features were extracted using a software analyzer
program from 88 programs belonging to 29 authors. A tool was developed to
visualize the metrics collected and help select those metrics that exhibited little
within-author variation, but large between-author variation. A statistical approach
called discriminant analysis (SAS) was applied on the chosen subset of metrics to
classify the programs by author. The experiment achieved 73% overall accuracy.

Other research groups have examined the authorship of computer programs written
in C++ (Kilgour et al., 1997); (MacDonell et al. 2001), a dictionary based system
called IDENTIFIED (integrated dictionary- based extraction of non-language-
dependent token information for forensic identification, examination, and
discrimination) was developed to extract source code metrics for authorship analysis
(Gray et al., 1998). Satisfactory results were obtained for C++ programs using case-
based reasoning, feed-forward neural network, and multiple discriminant analysis
(MacDonell et al. 2001). The best prediction accuracy has been achieved by Case-
Based Reasoning and it was 88% for 7 different authors.

Ding (2004), investigated the extraction of a set of software metrics of a given Java
source code, that could be used as a fingerprint to identify the author of the Java code.
The contributions of the selected metrics to authorship identification were measured
by a statistical process, namely canonical discriminant analysis, using the statistical
software package SAS. A set of 56 metrics of Java programs was proposed for
authorship analysis. Forty-six groups of programs were diversely collected.
Classification accuracies were 62.7% and 67.2% when the metrics were selected
manually while those values were 62.6% and 66.6% when the metrics were chosen by
SDA (stepwise discriminant analysis).

The main focus of the previous approaches was the definition of the most
appropriate measures for representing the style of an author. Quantitative and
qualitative measurements, referred to as metrics, are collected from a set of programs.
Ideally, such metrics should have low within-author variability, and high between-
author variability (Krsul and Spafford, 1996), (Kilgour et al., 1997). Such metrics
include:

- Programming layout metrics: include those metrics that deal with the layout of
the program. For example metrics that measure indentation, placement of
comments, placement of braces etc.

- Programming style metrics: Such metrics include character preferences,
construct preferences, statistical distribution of variable lengths and function
name lengths etc.

- Programming structure metrics: include metrics that we hypothesize are
dependent on the programming experience and ability of the author. For
example such metrics include the statistical distribution of lines of code per
function, ratio of keywords per lines of code etc.

- Fuzzy logic metrics: include variables that they allow the capture of concepts
that authors can identify with, such deliberate versus non deliberate spelling
errors, the degree to which code and comments match, and whether identifiers
used are meaningful.

 Suppοrting the Cybercrime Investigation Process 167

However, there are some disadvantages in this traditional approach. The first is that
software metrics used are programming - language dependant. For example metrics
used in Java cannot be used in C or Pascal. The second is that metrics selection is not
a trivial process and usually involves setting thresholds to eliminate those metrics that
contribute little to the classification model. As a result, the focus in a lot of the
previous research efforts, such as (Ding 2004) and (Krsul, Spafford 1995) was into
the metrics selection process rather than into improving the effectiveness and the
efficiency of the proposed models.

3 Our Approach

In this paper, we present our approach, which is an extension of a method that has
been successfully applied to text authorship identification (Keselj, et al 2003). It is
based on byte level n-grams and the utilization of two different similarity measures
used to classify a program to an author. Therefore, this method does not use any
language-dependent information.

An n-gram is an n-contiguous sequence and can be defined on the byte, character,
or word level. Byte, character and word n-grams have been used in a variety of
applications such as text authorship attribution, speech recognition, language
modelling, context sensitive spelling correction, optical character recognition etc. In
our approach, the Perl package Text::N-grams (Keselj 2003) has been used to produce
n-gram tables for each file or set of files that is required. An example of such a table
is given in Table 1. The first column contains the n-grams found in a source code file
and the second column the corresponding frequency of occurrence.

Table 1. n-gram frequencies extracted from a source code file

3-gram Frequency
sio 28
_th 28
f_(20
= 17
usi 16
_ms 16
out 15
ine 15
\n/* 15
on_ 14
_in 14
fp_ 14
the 14
sg_ 14
i 14
in_ 14

The algorithm used, computes n-gram based profiles that represent each of the
author category. First, for each author the available training source code samples are

168 G. Frantzeskou, E. Stamatatos, and S. Gritzalis

concatenated to form a big file. Then, the set of the L most frequent n-grams of this
file is extracted. The profile of an author is, then, the ordered set of pairs {(x1; f1); (x2;
f2),…,(xL; fL)} of the L most frequent n-grams xi and their normalized frequencies fi.
Similarly, a profile is constructed for each test case (a simple source code file). In
order to classify a test case in to an author, the profile of the test file is compared with
the profiles of all the candidate authors based on a similarity measure. The most likely
author corresponds to the least dissimilar profile (in essence, a nearest-neighbour
classification model).

The original similarity measure (i.e. dissimilarity more precisely) used by Keselj et
al (2003) in text authorship attribution is a form of relative distance:

2 2
1 2 1 2

1() 2()
1 22

() () 2(() ())

() ()f n f n
n profile n profile

f n f n f n f n

f n f n

(1)

where f1(n) and f2(n) are the normalized frequencies of an n-gram n in the author and
the program profile, respectively, or 0 if the n-gram does not exist in the profile. A
program is classified to the author, whose profile has the minimal distance from the
program profile, using this measure. Hereafter, this distance measure will be called
Relative Distance (RD).

One of the inherent advantages of this approach is that it is language independent
since it is based on low-level information. As a result, it can be applied with no
additional cost to data sets where programs are written in C++, Java, perl etc.
Moreover, it does not require multiple training examples from each author, since it is
based on one profile per author. The more source code programs available for each
author, the more reliable the author profile. On the other hand, this similarity measure
is not suitable for cases where only a limited training set is available for each author.
In that case, for low values of n, the possible profile length for some authors is also
limited, and as a consequence, these authors have an advantage over the others. Note
that this is especially the case in many source code author identification problems,
where only a few short source code samples are available for each author.

In order to handle this situation, we propose a new similarity measure that does
not use the normalized differences fi of the n-grams. Hence the profile we propose is a
Simplified Profile (SP) and is the set of the L most frequent n-grams {x1, x2,…,xL}. If
SPA and SPP are the author and program simplified profiles, respectively, then the
similarity distance is given by the size of the intersection of the two profiles:

PA SPSP ∩ (2)

where |X| is the size of X. In other words, the similarity measure we propose is just
the amount of common n-grams in the profiles of the test case and the author. The
program is classified to the author with whom we achieved the biggest size of
intersection. Hereafter, this similarity measure will be called Simplified Profile
Intersection (SPI). We have developed a number of perl scripts in order to create the
sets of n-gram tables for the different values of n (i.e., n-gram length), L (i.e., profile
length) and for the classification of the program file to the author with the smallest
distance.

 Suppοrting the Cybercrime Investigation Process 169

4 Experiments

4.1 Comparison with a Previous Approach

Our purpose during this phase was to check that the presented approach works at least
equally well as the previous methodologies for source code author identification. For
this reason, we run this experiment with a data set that has been initially used by Mac
Donell et al (2001) for evaluating a system for automatic discrimination of source
code author based on more complicated, language-dependent measures. All programs
were written in C++. The source code for the first three authors was taken from
programming books while the last three authors were expert professional
programmers. The data set was split (as equally as possible) into the training set 50%
(134 programs) and the test set 50% (133 programs). The best result reported by Mac
Donell et al (2001) on the test set was 88% using the case-based reasoning (that is, a
memory-based learning) algorithm. Detailed information for the C++ data set is given
in Table 2. Moreover, the distribution of the programs per author is given in Table 3.

Table 2. The data sets used in this study. ‘Programs per author’ is expressed by the minimum
and maximum number of programs per author in the data set. Program length is expressed by
means of Lines Of Code (LOC).

Data Set C++ Java
Number of authors 6 8
Programs per author 5-114 5-8
Total number of programs 268 54
Training set programs 134 28
Testing set programs 133 26
Size of smallest program (
LOC)

19 36

Size of biggest program (LOC) 1449 258
Mean LOC per program 210 129
Mean LOC in training set 206.4 131.7
Mean LOC in testing set 213 127.2

Table 3. Program distribution per author for the C++ data set

 Training
Set

Test Set

Author 1 34 34
Author 2 57 57
Author 3 13 13
Author 4 6 6
Author 5 3 2
Author 6 21 21

170 G. Frantzeskou, E. Stamatatos, and S. Gritzalis

We used byte-level n-grams extracted from the programs in order to create the
author and program profiles as well as the author and program simplified profiles.
Table 4 includes the classification accuracy results for various combinations of n (n-
gram size) and L (profile size). In many cases, classification accuracy reaches 100%,
much better than the best reported (MacDonell et al, 2001) accuracy for this data set
(88% on the test set). This proves that the presented methodology can cope with
effectively with the source code author identification problem. For n<4 and L<1000
accuracy drops. The same (although to a lower extent) stands for n>6.

More importantly, RD performs much worse than SPI in all cases where at least
one author profile is shorter than L. For example for L=1000 and n=2, L is greater
than the size of the profile of Author No5 (the maximum L of the profile of Author
No 5 is 769) and the accuracy rate declines to 51%. This occurs because the RD
similarity measure (1) that calculates similarity is affected by the size of the author
profile. When the size of an author profile is lower than L, some programs are
wrongly classified to that author. In summary, we can conclude that the RD similarity
measure is not as accurate for those n, L combinations where L exceeds the size of
even one author profile in the dataset. In all cases, the accuracy using the SPI
similarity measure is better than (or equal to) that of RD. This proves that this new
and simpler similarity measure is not affected by cases where L is greater than the
smaller author profile.

4.2 Application to a Different Programming Language

The next experiment was performed on a different data set from a different
programming language. In more detail the new data set consists of student programs
(assignments from a programming language course) written in Java. Detailed
information for this data set is given in Table 2. We used 8 authors. From each author
6-8 programs were chosen. Table 5 shows the distribution of programs per author.
The size of programs was between 36 and 258 lines of code. The data set was split in
training and test set of approximately equal size. This data set has been chosen in
order to evaluate our approach when the available training data per author are limited

Table 4. Classification accuracy (%) on the C++ data set for different values of n-gram size and
profile size using two similarity measures: Relative Distance and Simplified Profile Intersection

Profile
Size L n-gram Size

 2 3 4 5 6 7 8
 RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI

200 98.4 98.4 97.7 97.7 97 97 95.5 95.5 94.7 95.5 92.5 92.5 92.5 94.7
500 100 100 100 100 100 100 99.2 100 98.4 98.4 97.7 97.7 97.7 97.7

1000 51 99.2 100 100 100 100 100 100 100 100 100 100 99.2 99.2
1500 5.3 98.4 100 100 100 100 100 100 100 100 99.2 99.2 99.2 100
2000 1.5 97.7 98.4 100 100 100 100 100 100 100 100 100 100 100
2500 1.5 95.5 99.2 100 100 100 100 100 100 100 100 100 100 100
3000 1.5 95.5 55.6 100 100 100 100 100 100 100 100 100 100 100

 Suppοrting the Cybercrime Investigation Process 171

Table 5. Program distribution per author of the Java data set

 Training Set Test Set
Author 1 3 3
Author 2 4 4
Author 3 3 2
Author 4 3 3
Author 5 4 4
Author 6 3 3
Author 7 4 3
Author 8 4 4

(6-7 short programs per author). Note that the programs written by students usually
have no comments, their programming style is influenced by the instructor, they can
be plagiarised, circumstances that create some extra difficulties in the analysis.

The results of the proposed method to this data set are given in Table 7. The best
accuracy rate achieved with similarity measure RD was 84.6%. Again, when the
profile size of at least one author is shorter than the selected profile size L, the
accuracy of RD drops significantly. Using the similarity measure SPI, the best result
was 88.5%. In generally SPI performed better than RD. Moreover, it seems that
4<n<7 and 1000<L<3000 provide the best accuracy results.

4.3 The Significance of Training Set Size

The purpose of this experiment was to examine the degree in which the training set
size affects the classification accuracy. For this reason we used the C++ data set for
which we reached classification accuracy of 100% for many n, L combinations with
both similarity measures. This result has been achieved by using a training set of 134
programs in total. For the purposes of this experiment we used the same test set as in
the experiment of section 4.1 but now we used training sets of different, smaller size.
The smallest training set was comprised by only one program from each author and
the biggest by 5 programs from each one (with the exception of one author for whom
the available training programs were only 3). The presented source code author
identification approach was applied to these new training sets using n=6 and L=1500
and similarity measure SPI. Note that the training size of authors was smaller than L
in many of these experiments and as already explained, in such cases the
classification accuracy decreases dramatically when using the similarity measure RD.

The accuracy results achieved are shown in Table 6. As can be seen, even with just
one program per author available in the training set, high classification accuracy was
achieved. By adding a second program per author the accuracy increased significantly
above 96%. Note that the second programs added in the training set were in average
longer than the first programs (see second column in table 7). We reached 100% of
accuracy for training set based on five programs per author. This is a strong indication
that our approach is quite effective even when very limited size of training set is
available; a condition usually met in source code author identification problems.

172 G. Frantzeskou, E. Stamatatos, and S. Gritzalis

Table 6. Classification Accuracy (%) on the C++ data set using different training set size (in
programs per author)

Training
Set Size

Mean LOC
in Training Set

Accuracy
(%)

1 52 63.9
2 212 96.2
3 171 97
4 170 99.2
5 197 100

Table 7. Classification accuracy (%) on the Java data set for different values of n-gram size and
profile size using two similarity measures: Relative Distance and Simplified Profile Intersection

Profile
Size L n-gram Size

 3 4 5 6 7 8
 RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI

1000 80.8 80.8 84.6 84.6 84.6 84.6 80.8 80.8 80.8 80.8 84.6 84.6
1500 84.6 84.6 76.9 76.9 80.8 80.8 84.6 84.6 80.8 80.8 80.8 80.8

2000 53.8 80.8 65.4 80.8 76.9 80.8 84.6 88.5 84.6 84.6 84.6 84.6
2500 53.8 73.1 53.8 76.9 53,8 80.8 84.6 88.5 84.6 88.5 84.6 84.6
3000 53.8 73.1 53.8 80.8 50 76.9 53.8 84.6 69,2 84.6 84.6 84.6

5 Conclusions

In this paper, an approach to source code authorship analysis has been presented. It is
based on byte-level n-gram profiles, a technique successfully applied to natural
language author identification problems. The accuracy achieved for two data sets
from different programming languages were 88.5% and 100% on test sets disjoint
from training set, improving the best reported results for this task so far. Moreover the
proposed method is able to deal with very limited training data, a condition usually
met in source code authorship analysis problems (e.g., cyber attacks, source code
authorship disputes, etc.) with no significant compromise in performance.

We introduced a new simplified profile and a new similarity measure. The
advantage of the new measure over the original similarity measure is that it is not
dramatically affected in cases where there is extremely limited training data for some
authors. Moreover, the proposed method is less complicated than the original
approach followed in text authorship attribution.

More experiments have to be performed on various data sets in order to be able to
define the most appropriate combination of n-gram size and profile size for a given
problem. The role of comments has also to be examined. In addition, cases where all
the available source code programs are dealing with the same task should be tested as
well. Another useful direction would be the discrimination of different programming
styles in collaborative projects.

 Suppοrting the Cybercrime Investigation Process 173

References

Ding, H., Samadzadeh, M.: Extraction of Java program fingerprints for software authorship
identification. The Journal of Systems and Software 72(1), 49–57 (2004)

Elliot, W., Valenza, R.: Was the Earl of Oxford The True Shakespeare? Notes and Queries 38,
501–506 (1991)

Gray, A., Sallis, P., MacDonell, S.: Identified (integrated dictionary-based extraction of non-
language-dependent token information for forensic identification, examination, and
discrimination): A dictionary-based system for extracting source code metrics for software
forensics. In: Proceedings of SE:E&P’98 (Software Engineering: Education and Practice
Conference, pp. 252–259. IEEE Computer Society Press, Los Alamitos (1998)

Gray, A., Sallis, P., MacDonell, S.: Software forensics: Extending authorship analysis
techniques to computer programs. In: Proc. 3rd Biannual Conf. Int. Assoc. of Forensic
Linguists (IAFL’97), pp. 1–8 (1997)

Frantzeskou, G., Gritzalis, S., Mac Donell, S.: Source Code Authorship Analysis for supporting
the cybercrime investigation process. In: Proc. 1st International Conference on e-business
and Telecommunications Networks (ICETE04), vol. 2, pp. 85–92 (2004)

Keselj, V., Peng, F., Cercone, N., Thomas, C.: N-gram based author profiles for authorship
attribution. In: Proc. Pacific Association for Computational Linguistics (2003)

Keselj, V.: Perl package Text:N-grams or (2003), http://www.cs.dal.ca/ vlado/srcperl/N-grams,
http://www.cs.dal.ca/ vlado/srcperl/N-grams

Kilgour, R.I., Gray, A.R., Sallis, P.J., MacDonell, S.G.: A Fuzzy Logic Approach to Computer
Software Source Code Authorship Analysis. In: the Fourth International Conference on
Neural Information Processing – The Annual Conference of the Asian Pacific Neural
Network Assembly (ICONIP’97). Dunedin. New Zealand (1997)

Krsul, I., Spafford, E.H: Authorship analysis: Identifying the author of a program. In: Proc. 8th
National Information Systems Security Conference, pp. 514-524, National Institute of
Standards and Technology (1995)

Krsul, I., Spafford, E.H.: 1996, Authorship analysis: Identifying the author of a program,
Technical Report TR-96-052 (1996)

Longstaff, T.A., Schultz, E.E.: Beyond Preliminary Analysis of the WANK and OILZ Worms:
A Case Study of Malicious Code. Computers and Security 12, 61–77 (1993)

MacDonell, S.G, Gray, A.R.: Software forensics applied to the task of discriminating between
program authors. Journal of Systems Research and Information Systems 10, 113–127 (2001)

Oman, P., Cook, C.: Programming style authorship analysis. In: Seventeenth Annual ACM
Science Conference Proceedings, pp. 320–326. ACM Press, New York (1989)

Peng, F., Shuurmans, D., Wang, S.: Augmenting naive bayes classifiers with statistical
language models. Information Retrieval Journal 7(1), 317–345 (2004)

Sallis, P., Aakjaer, A., MacDonell, S.: Software Forensics: Old Methods for a New Science. In:
Proceedings of SE:E&P’96 (Software Engineering: Education and Practice), Dunedin, New
Zealand, pp. 367–371. IEEE Computer Society Press, Los Alamitos (1996)

Spafford, E.H.: The Internet Worm Program: An Analysis. Computer Communications
Review 19(1), 17–49 (1989)

Spafford, E.H., Weeber, S.A.: Software forensics: tracking code to its authors. Computers and
Security 12, 585–595 (1993)

Stamatatos, E., Fakotakis, N., Kokkinakis, G.: Automatic text categorisation in terms of genre
and author. Computational Linguistics 26(4), 471–495 (2000)

	Suppοrting the Cybercrime Investigation Process: Effective Discrimination of Source Code Authors Based on Byte-Level Information
	Introduction
	Related Work
	Our Approach
	Experiments
	Comparison with a Previous Approach
	Application to a Different Programming Language
	The Significance of Training Set Size

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

