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Abstract. In this paper we describe optimal trade-offs between time and space
complexity of Merkle tree traversals with their associated authentication paths,
improving on the previous results of Jakobsson, Leighton, Micali, and Szydlo
(Jakobsson et al., 03) and Szydlo (Szydlo, 04). In particular, we show that our
algorithm requires 2 log n/ log(3) n hash function computations and storage for
less than (log n/ log(3) n + 1) log log n + 2 log n hash values, where n is the
number of leaves in the Merkle tree. We also prove that these trade-offs are op-
timal, i.e. there is no algorithm that requires less than O(log n/ log t) time and
less than O(t log n/ log t) space for any choice of parameter t ≥ 2.

Our algorithm could be of special use in the case when both time and space
are limited.
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1 Introduction

Merkle trees have found wide applications in cryptography mainly due to their conceptual
simplicity and applicability. Merkle trees were first described by Merkle (Merkle, 82) in
1979 and studied intensively. In cryptographic applications, however, Merkle trees were
not very useful for small computational devices, as the best known techniques for traver-
sal required a relatively large amount of computation and storage. Several recent papers,
e.g., (Jakobsson et al., 03) and (Szydlo, 04), improved the time and space complexity
of Merkle trees. In this paper we address the issue of possible further improvements of
Merkle tree traversals.

Merkle tree is a complete binary tree such that values of internal nodes are one-
way functions of the values of their children. Every leaf value in a Merkle tree can be
identified with respect to a publicly known root and the authentication path of that leaf.
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An authentication path of a leaf consists of the siblings of all nodes on the path from
this leaf to the root.

Merkle trees have many cryptographic applications, such as certification refreshal
(Micali, 97), broadcast authentication protocols (Perrig et al., 02), third party data pub-
lishing (Devanbu et al., 01), zero-knowledgesets (Micali et al., 03) and micro-payments
(Rivest, Shamir, 96). A frequent problem faced in such applications is the Merkle tree
traversal problem, the problem of consecutively outputting the authentication data for
every leaf. In (Merkle, 87) Merkle has proposed a technique for traversal of Merkle
trees which requires O(log2 n) space and O(log n) time per authentication path in the
worst case. Recently, two results improving a technique of Merkle have appeared. In
(Jakobsson et al., 03) the authors describe a Merkle tree traversal algorithm with
O(log2 n/ log log n) space and O(log n/ log log n) time per output. In (Szydlo, 04)
Szydlo describes a method requiring O(log n) space and O(log n) time and provides
a proof that this bound is optimal, i.e. he proves that there is no traversal algorithm that
would require both o(log n) space and o(log n) time. Observe that we measure the time
complexity of outputting the authentication path of a single leaf.

In this paper we investigate further the trade-off between time and space require-
ments of Merkle tree traversals.

First, we present an algorithm that works in O(log n/h) time and O((log n/h)2h)
space per round for arbitrary parameter h ≥ 1. For h = O(1) our result is equivalent
to the result of Szydlo; however, we consider all operations (not just computations of
one-way functions) in our analysis. Our result is also an extension of that of Jakobsson,
Leighton, Micali and Szydlo (Jakobsson et al., 03); we prove that it can be extended for
arbitrary values of h.

Secondly, we show that the results of Szydlo and Jakobsson, Leighton, Micali, Szydlo
remain true, if we consider all operations and not just hash computations. (If h is not a
constant, we ignore time that we need to output the values in the last case). In particular,
we show that an algorithm with 2 logn/ log log log n hash functions evaluations and
storage requirement of (log n/ log log log n + 1) log log n + 2 log n hash values per
output can be constructed. This algorithm works with O(log n/ log(3) n) operations per
output.

At the end, we show that if a tree traversal algorithm works in time O(log n/h), then
required space is Ω((log n/h)2h). Thus we show that our trade-off is optimal.

The presented results give a complete answer to the question of time and space com-
plexity of the Merkle tree traversal problem. These results are also important for prac-
tical applications.

2 Preliminaries and Notation

Below we denote by a hash a one-way function, and hash computation will denote
a computation of the value of a one-way function. In a Merkle tree leaf values are
hash values of leaf pre-images. Leaf pre-images can be, for instance, generated with
a pseudo-random generator. We will denote by leaf-calc a function that computes pre-
images of the leaves. Let φ1=hash◦leaf-calc be the function that computes value of the
i-th leaf. Let φ2(parent)=hash(left-child||right-child) be the function that computes the
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value of the parent node from the values of its children. We will presume that we need
one computation unit to compute φ1 or φ2.

We must generate n outputs, where n is the number of leaves. Every output consists
of the leaf pre-image and its authentication path. An authentication path consists of the
siblings of all nodes on the path to the root. Outputs for the leaves must be generated
consecutively left-to-right. This makes our task easier, because outputs for consecutive
leaves share many common node values.

In order to verify a leaf, one consecutively computes the values of its ancestors.
Verification succeeds only if the computed root value equals to the known root value.

In this paper the following notation will be used. H will denote the Merkle tree
height. We will say that a node is on level A, if its depth is H − A. The i-th node from
the left on level A will be denoted by (A, i). A job, computing node (A, i) will also
be denoted by (A, i). We will say that A is the job level and i is the index of the job.
Sometimes we will identify a subtree of the Merkle tree by its root node (A, i). We will
use a subtree height h as a parameter in our algorithm and L will be equal to H/h. We
say that a node N is needed if it is a part of an authentication path.

3 Main Idea

We describe here the main idea of our algorithm and key observations on which the
algorithm is based.

The well-known evaluation algorithm, shown on Fig. 1, is used to compute the value
of the i-th node on level A and is an important part of all Merkle tree traversal algo-
rithms.

Eval (A,i)
if (A == 0)

return φ1(i);
else

minlev := A − 1
V := Eval(A − 1, 2i)
V := φ2(V, Eval(A − 1, 2i + 1))
minlev := A
return V

Fig. 1. Evaluation of the i-th node on level A

This basic version of algorithm Eval requires O(2A) computational units and A
storage units. The last follows from the fact that at most one node value V for every
height i = 0, 1, . . . , A has to be stored at every stage of the algorithm. These stored
values will be further called tail values. Variable minlev stores the value of the minimal
level and equals to the minimum level for which the tail value of a job must be stored.

Our algorithm uses procedure Eval to estimate the values of nodes that will be needed
in the future authentication paths. The set of computations for finding the value of node
(A, i) using procedure Eval(A, i) will be further called a job (A, i).



Optimal Trade-Off for Merkle Tree Traversal 153

Our algorithm combines two important observations that were also used in the papers
of Jakobsson, Leighton, Micali and Szydlo (Jakobsson et al., 03), and Szydlo
(Szydlo, 04). The first key observation on which our algorithm is based is that dur-
ing the computation of node (A, i) its children (A−1, 2i), (A−1, 2i+1) as well as all
other descendants are computed. Therefore by storing intermediate results of evaluation
some future computations can be saved. Actually, for every computed node N on level
ih all its descendants on levels ih − 1, . . . , ih − h (i.e. a complete subtree of height h
rooted in N ) will be retained to be used in the future authentication paths. Thus only
nodes at height ih, i = 1, . . . , L will be computed directly (see Fig 2).

2 2 2h+1 h+2h

h

h

h

h

Fig. 2. Subtrees computed at a round of the algorithm

Another key observation is that we can schedule the computations of the nodes
needed in the future in such a way that at most H storage units are necessary to store
all tail values.

In section 6 a further constant improvement is described. We show that in a subtree
only nodes with odd indices must be stored. We also show that the next subtree can be
computed as the nodes of the current subtree are discarded so that the total number of
nodes used by subtrees on a level is 2h.

4 Algorithm Description

Our algorithm consists of three phases: root generation, output, and verification.
During the first phase the root of the Merkle tree is generated. Additionally, the ini-
tial set of subtrees with roots at (0, 2ih), i = 1, . . . , L is computed and stored. The
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verification phase is identical to the traditional verification phase (see, for instance,
(Jakobsson et al., 03)). The output phase consists of 2H rounds, and during round j an
image of the j-th leaf and its authentication path are output. In the rest of this section
we will describe an algorithm for the output phase and prove its correctness.

For convenience we will measure time in rounds. During each round 2L computation
units are spent on computation of subtrees needed in the future authentication paths.
Thus our algorithm starts at time 0 and ends at time 2H − 1, and the i-th round starts
at time i. In the first part of the algorithm description we will ignore the costs of all
operations, except of the computations of hash functions. Later we will show that the
number of other operations performed during a round is O(L).

During round j we store L already computed subtrees with roots at (sh, ms) where
j ∈ [ms2sh, (ms + 1)2sh), s = 0, 1, . . . , L. During the same round we also spend 2L
computation units in order to compute jobs (sh, ms + 1) and construct the correspond-
ing subtrees. At round (ms+1)2sh the subtree (sh, ms) will be discarded, However the
subtree (sh, ms+1) will be retained for the next 2sh rounds, while subtree (sh, ms+2)
is computed.

During each round there are at most L different jobs competing for 2L computa-
tion units. These jobs will be called active. Active jobs are scheduled according to the
following rules:

1. A job (ih, k) k = 1, . . . , H/2ih becomes active at time (k − 1)2ih, i.e. during the
(k − 1)2ih-th round.

2. All active jobs (s′, ks′) with s′ > s such that minimal level of (s′, ks′) does not
exceed s have priority over the job (s, ks) on level s.

3. In all other cases jobs with the lower level have priority over jobs with the higher
level.

Consider job (sh, i) that becomes active at time 2sh(i − 1). Rule 2 guarantees us
that all jobs with levels s′h such that s′ > s do not store any tail values on levels
1, 2, . . . , sh − 1 when the computation of job (sh, i) starts. Therefore, when job (sh, i)
is computed, only one tail node on each of the levels (s− 1)h, (s− 1)h+1, . . . , sh− 1
will be stored. Now consider a job (s′′h, is′′) on level s′′h, s′′ = 1, . . . , s − 1. If job
(sh, i) stores a tail node on level s̃ < s′′, then (s′′h, is′′) is either already completed
(rule 3), or did not start yet (rule 2).

This scheduling guarantees us that at any time only one tail value for a level i =
1, 2, . . . , H will be stored by all jobs (sh, i). Only 2L subtrees (one currently used and
one currently computed for each level ih) must be stored at each round, and subtrees
require (2H/h)(2h+1 − 1) space. Hence the memory requirement of our algorithm is
O((2H/h)2h) + O(H) = O((H/h)2h).

These considerations allow us to formulate the following trade-off between time and
space complexity.

Theorem 1. Merkle tree can be traversed in time O(H/h) with O((H/h)2h) storage
units for any h ≥ 1.

Corollary 1. Merkle tree can be traversed in time O(log n/ log(3) n) with
O(log n log log n/ log(3) n) storage units.
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In the next subsections we will prove the algorithm correctness by showing that all
values are computed on time, and we prove the time bound stated in the theorem by
analysis of the operations necessary for the job scheduling.

4.1 Correctness Proof

In this section we show that job (sh, k) will be completed at time k2sh.

Lemma 1. Suppose that at time (k−1)2sh for every level i = h, 2h, . . . , (s−1)h, (s+
1)h, . . . Lh there is at most one unfinished job on level i. Then job (sh, k) will be com-
pleted before k2sh .

Proof: Consider the time interval [(k−1)2sh, k2sh). There is at most one job (s′′h, ks′′)
with s′′ > s, such that the minimal level of (s′′h, ks′′) is smaller than s. After less than
2sh+1 hash computations minimal level of (s′′h, ks′′ ) will be at least sh. Besides that,
there are also jobs with lower indices that must be completed before (sh, k) can be
completed. There are at most 2(s−s′)h such jobs for every s′ < s. All jobs on level s′h
require less than 2(s−s′)h2s′h+1 = 2sh computation units for every s′ < s. Hence, the
total number of computation units needed for these jobs is (s − 1)2sh. Thus we have
2sh+1 computation units left to complete the job (sh, k).

Lemma 2. At every moment of time there is only one running job on level sh, s =
1, 2, . . . , L.

Proof: At time 0 we start only one job on level sh. For every level sh and every index i,
we can prove by induction using Lemma 1 that at time interval [2shi, 2sh(i + 1)) there
is only one running job with index i on level sh.

Lemma 3. The computation of job (sh, i) will be finished before time i2sh

Proof: Easily follows from Lemma 1 and Lemma 2.
In our computation only every h-th node on the computation path is computed di-

rectly. Below we will show which nodes should be retained during the computation of
(sh, i).

All nodes (ih − m, s2m + j), where m = 1, . . . , h and j = 0, . . . , m − 1 must be
retained. In other words, all descendants of (ih, s) at levels ih − 1, . . . , (i − 1)h must
be retained.

Proposition 1. Descendants of a node (ih, m) are needed during rounds [m2ih, (m +
1)2ih).

Proof: Indeed, children of (ih, m) are needed during rounds [m2ih+2h−1, (m+1)2ih)
and [m2ih, m2ih +2h−1). For descendants on other levels this proposition is proved by
the fact that when a node is needed, the sibling of its parent is also needed.

Combining Lemma 3 with Proposition 1, we see that every node will be computed
before it is needed for the first time.
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4.2 Time Analysis

We have shown above that our algorithm performs 2L hash function computations per
round. Now we will show that all other operations will take O(L) time per round.

Lemma 4. Job scheduling, according to rules 1.-3. can be implemented in O(L) time
per round.

For every level s = ih we store a list Qi of level s jobs that have to be performed. When
a new job on level ih becomes active or when the minimal level of some job becomes
smaller than ih, it is added to Qi. Lists Qi are implemented as queues (FIFO).

At round j our algorithm checks all queues Qi in ascending order. If a non-empty
Qi is found, we spend 2L hash computations on computing the last job l in Qi. If the
job l is finished after k < 2L hash computations, or if the minimal level of l becomes
higher than (i + 1)h − 1 we remove l from Qi and traverse queues Qi, Qi+1, . . .QL

until another non-empty queue is found.
Procedure Eval can require up to H − 1 recursive calls in the worst case. However,

an equivalent non-recursive implementation is possible (see procedure EvalBottom in
Appendix ).

5 The Lower Bound

In this section we prove the lower bound on space and time complexity of Merkle tree
traversals and show that the algorithm described above is asymptotically optimal. We
prove the following result:

Theorem 2. Any Merkle tree traversal algorithm with average time per round
O(log n/a) requires Ω((log n/a)2a) space for any a > 1 .

In order to prove this theorem, we will consider only time required for the hash compu-
tations.

First, we distinguish between nodes with even and odd indices, further called even
and odd nodes respectively. Even internal nodes are needed after their children. In case
of odd internal nodes the situation is opposite: they are needed before their children.
Namely, (s, 2i+1) is needed during the time interval [2i2s, (2i+1)2s) and its children,
(s − 1, 4i + 3) and (s − 1, 4i + 2), are needed during [2s−1(4i + 2), 2s−1(4i + 3)) and
[2s−1(4i + 3), 2s−1(4i + 4)) respectively. We can generalize this observation: an odd
node is needed before all its proper descendants. We have just proved it for children; to
extend the proof by one more generation, observe that when a node is needed and it is
not the root, then the sibling of its parent is needed.

During the computation, when we execute

v = Eval(s, i) = φ2(Eval(s − 1, 2i), Eval(s − 1, 2i + 1))

we can remove v0 = Eval(s − 1, 2i) and v1 = Eval(s − 1, 2i + 1) or not. Suppose
that we are not removing value vj , j = 0, 1, even though we will not keep vj until it is
needed . Then we can normalize our algorithm by removing vj and keeping v instead:
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computing v is the only use for vj other than including it in a certificate. Clearly, this
normalization increases neither memory nor time.

For every odd node in a Merkle tree we do three things: (a) we account for a certain
number of steps – steps used to compute this node using other remembered values, (b)
we account for a certain number of memory units (one memory unit allows to store one
value through one round) and (c) we account for a certain number of job units; job units
correspond to the steps that would be executed if this value were computed from scratch.

Computing Eval(s, i) takes 2s+1 − 1 computation units, and in our lower bound
reasoning we can estimate this as 2s steps. By adding s’s over all needed odd nodes we
obtain the total number of job units. The number of job units for odd nodes on level
s is 2s2H−s−1 = 2H−1 = n/2. Therefore the total number of job units for odd nodes
of the Merkle tree is Hn/2. We do not count the costs of computing needed values of
even nodes in our lower bound proof.

We account for the remembered values in order in which children precede the parents.
Suppose that we remember the value of node v0 during the computation of node v,

but do not remember the value of v1, where v1 is an ascendant of v0. Then we can save
more job units by remembering v1 instead of v0. Hence, if we remember the value of
v0 on level l0 during computation of node v on level l, then values of all nodes on levels
l0, l0 + 1, . . . , l are also remembered. Therefore when a node on level s is computed
it is either computed “from scratch” with 2s+1 − 1 steps or it is computed with 1 step
because its children were already computed and remembered.

Suppose that we remember the result Eval(s, 2i + 1) and we use this value a
times for computation of node values (including node (s, 2i + 1) ). The last use, when
Eval(s, 2i+1) is needed, requires 2s memory units. If we want to use this value twice,
we have to compute it before its parent (or other odd ancestor is needed), and since the
parent (ancestor) is needed for 2s+1 rounds or more, we need at least 2s+1 memory
units. By induction, if we want to use Eval(s, 2i+1) for a node values, we need to use
at least 2a−12s memory units.

Consider a node (s, 2i + 1). Suppose that its value was used in a computations.
As shown above, we need either 2s+1 − 1 steps or 1 step to compute it. If we need 1
step, then the total number of job values we accounted for is a, and the total number of
memory units is 2a−12s. Suppose that we needed 2s+1 −1 steps to compute (s, 2i+1).
Then the total number of job units is a(2s+1 − 1), and the number of memory units is
2a−12s. Now we can distribute the steps and memory units between the job units that
we have accounted for. Each of them receives a−1 steps and at least 2a−1/a memory
units.

If we use zk to express the amount of steps a job unit k = 1, 2, . . . , Hn/2 obtains,
then the minimal number of obtained memory units is f(zk) = 1

2zk21/zk . Note that
f(z) is a convex function of z (the second derivative is positive for positive z). The total
number of steps

∑
zk = Hn/2a. Since f(z) is convex, 1

Hn/2

∑
f(zk) ≥ f(

�
zk

Hn/2 ) and
∑

f(zk) ≥ (Hn/2)f(a) = 2a/a × Hn/4
Thus we have shown that if the computation takes Hn/2a steps, then it uses at least

2a/a × Hn/4 memory units. Since the total number of rounds is n, during an average
round we must remember at least H2a/4a values.
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6 A Constant Improvement

In this section we describe an improved version of the algorithm from the section 4. In
our improved version we do not compute all nodes in the subtrees. Instead of this, only
the nodes with odd indices are computed. This is possible because even nodes will be
needed after their children are needed. Therefore, if we store both children of an even
node until their parent is needed, we can compute its value with one hash computation.

Thus, in a subtree (ih, k) we only compute nodes (ih − 1, 2k + 1), (ih − 2, 4k +
1), (ih − 3, 8k + 1), . . . and only the nodes (ih − 1, 2k + 1), (ih − 2, 4k + 1), (ih −
2, 4k + 3), . . . , (ih − h, k2h + 1), . . . , (ih − h, k2h + 2h − 1) must be stored. (see an
example on Fig. 3)

Computation of all odd descendants of (ih, k) will take time 2ih−1+1−1+2ih−2+1−
1 + . . . + 2ih−h+1 − 1 =

∑h−1
k=0 2ih−k − h = 2ih+1 − 2(i−1)h+1 − h. We will need

h extra hash computations to compute the even nodes. Therefore the total number of
computations for subtree (ih, k) is 2ih+1 − 2(i−1)h+1.

Fig. 3. Example of a subtree. Computed nodes are marked by circles. Nodes marked by circles or
squares are stored.

It is easy to see that there is at most one “new” even node at every round. Therefore it
takes at most one extra computation per round to deal with even nodes (if we compute
even nodes just as they are needed ).

To compute the node (s, j) with one hash computation we have to store its odd child
(s − 1, 2j + 1) during rounds [(2j + 1)2s−1, (2j + 2)2s−1). Thus there are at most
h odd nodes that should be kept “extra time” and at most h nodes that are a part of
an authentication path during each round. Therefore the total memory requirement is
(2h − 1 + 2h)L per subtree. We need the first summand to store the odd nodes in the
subtree and we need the second summand to store the even nodes from the current
authentication path and odd nodes kept “extra time”.



Optimal Trade-Off for Merkle Tree Traversal 159

The nature of our trade-off depends on the subtree height h. For subtree height h = 1
this improvement results in speed-up of almost factor 2. This allows us to formulate the
following result

Corollary 2. A Merkle tree traversal algorithm can be implemented with log n hash
function evaluations, 3 logn memory locations for hash values and O(log n) time for
other operations per round.

For larger values of h the time improvement becomes very small but we have an almost
two-fold decrease of the space used by hash values. In the last case we can also schedule
our computation in such way that the values in the next subtree are computed almost
exactly at the time when the corresponding values in the current subtree “expire” and
can be discarded. In this case at most one extra value per subtree would have to be
stored. In our modified procedure computation of odd nodes of subtree (ih, k), i =
2, 3, , . . . , L − 1 is divided into two stages. In the first stage descendants of (ih, k)
on level (i − 1)h (“leaves” of the subtree) are computed. We will further call nodes
((i − 1)h, 2hk + j), j ∈ [0, 2h) bottom level nodes of subtree (ih, k). In the second
stage the odd nodes are computed from bottom level nodes. Observe that computation
of the subtree (ih, k) takes place in the same time interval [2ih(k − 1), 2ihk) as in
our first algorithm. The idea of our modification is that nodes ((i − 1)h, 2hk + j),
j ∈ [0, 2h), i.e. bottom level nodes of (ih, k), are computed slower than odd nodes of
subtree (ih, k − 1) are discarded. Computation of the odd nodes from the bottom tree
nodes is performed during the last 2h rounds of the interval [2ih(k − 1), 2ihk). We will
further call the jobs computing the bottom level nodes secondary jobs, and the last job
computing the remaining odd nodes of the subtree will be called a primary job. In order
to reserve 2h rounds for the primary job, we allocate 2(i−1)h−1 rounds for computation
of every secondary job. A pseudocode description of the modified procedure Eval is
given in Appendix.

Now we prove the space bound of our modified algorithm. First we show that a
secondary job of a node on ih can be completed in 2(i−1)h − 1 rounds.

Lemma 5. Suppose that at time (k − 1)2ih + m2(i−1)h − m, m = 0, 1, . . . , 2h − 1
for every level l = h, 2h, . . . , (i − 1)h, (i + 1)h, . . . Lh there is at most one unfinished
secondary job of a job on level l. Then the m-th secondary job of (ih, k) will complete
before (k − 1)2ih + (m + 1)2(i−1)h − m − 1 .

Proof: Consider the time interval [(k − 1)2ih + m2(i−1)h − m, (k − 1)2ih + (m +
1)2(i−1)h − m − 1).

There is at most one job (i′′h, ki′′) with i′′ > i, such that the minimal level of
(i′′h, ki′′ ) is smaller than i. After at most 2ih+1 −2 hash computations minimal level of
(i′′h, ki′′ ) will be at least ih. Besides that, there are also jobs on lower levels that must
complete before (sh, k) can be completed. There are at most 2(i−i′)h such jobs for every
index 1 < i′ < i. Thus for any fixed i′ < i all jobs on level i′ require 2(i−i′)h(2i′h+1 −
1) < 2ih+1−2 job units. Another (2h+1−1)2(i−1)h < 2ih+1−2 computation units are
claimed by subtrees on level h. Hence the total number of computation units required
by all other jobs is strictly less than (L − 1)(2ih+1 − 2).

Thus we have at least 2ih+1 − 1 computation units left to complete the m-th sec-
ondary job of (ih, k).
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Lemma 6. Computation of the m-th secondary job of (ih, k), i = 2, 3, . . . , L − 1 will
be finished before time (k − 1)2ih + (m + 1)2(i−1)h − m − 1.

Proof is analogous to the Proof of Lemma 3
It easily follows from Lemma 6 and the above discussion that the computation of

the m-th bottom node of (sh, k) will be finished in interval [2ih(k − 1) + m2(i−1)h −
m, 2ih(k − 1)+ (m + 1)2(i−1)h − m − 1). It remains to compute how many odd nodes
of (ih, k − 1) are discarded before 2ih(k − 1) + m2(i−1)h − m.

Let w = 2h. After 2h(i−1)m rounds the number of remaining nodes can be estimated
as (w − m)/2 + (w − m)/4 + . . . + (w − m)/w ≤ (w − m). We did not count the
nodes of the current authentication path in this estimation. Therefore the total number
of stored nodes in subtrees (ih, k) and (ih, k − 1) in interval [2ih(k − 1), 2ihk − 2h) is
limited by 2h.

The primary job for (sh, k) can be computed in 2h rounds. This job can be performed
in-place, because when a new node is computed its even child can be discarded.

In the modified algorithm we apply the job scheduling scheme only to subtrees on
levels ih, i = 2, . . . , L − 1. Since there is only one subtree for i = L, it is not recom-
puted. Therefore the total number of tail nodes does not exceed H − h.

During each round we use two reserved computation units to compute the next level
h subtree. By the same argument as above we can see that the number of remaining
nodes in the current level h subtree after m rounds is limited by 2h − m . Therefore
the total number of nodes in the current and future subtrees of level h is limited by 2h.
This computation would require up to h additional units for the tail values. Therefore
the total number of tail values is H − h + h = H .

The above considerations allow us to formulate the following

Theorem 3. A Merkle tree traversal can be implemented in O(L) time with 2L hash
operations. This algorithm requires L2h + 2H memory locations to store hash values.

In the last Theorem we have ignored time necessary to output the log n values per round.
The result described in the abstract follows if we choose h = log(3) n.

7 Conclusion

In this paper we describe the first optimal trade-off between time and space complexity
of Merkle tree traversals.

We believe it is possible to improve further the constants in the described trade-off
by differentiating between various types of nodes in our procedure.

Another interesting problem was described in (Szydlo, 04): given space to store
only S hash nodes, what is the minimal number of hash computations per round?
(Szydlo, 04) proposes it in a combination with (Jakobsson et al., 03) as a starting point
of this investigation.

Yet another interesting problem is the complexity of the traversal of the so-called
skew (unbalanced) Merkle trees (Karpinski, Nekrich, 04).
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Appendix

In this Appendix we give a pseudocode description of the modified procedure Eval(A,k),
A = ih. Recall that first all descendants of (A, k) on level (i − 1)h are computed and
computation of the m-th descendant starts at time 2ih(k − 1) + 2(i−1)hm − m.

Eval1 (A,k)

i := A/h

if ( round = 2ih(k − 1) + 2(i−1)hm − m)

bottom[m] := \

EvalBottom(2(i−1)h, m + (k − 1)2h)
EvalTop(A, k)

Fig. 4. Procedure Eval1

Procedure EvalBottom is algorithmically identical to procedure Eval in section 3.
That is, the same sequence of hash computations is performed. Therefore all proofs in
section 4 remain valid if we use EvalBottom or Eval1 instead of Eval . But the im-
plementation presented here does not use recursion. Variables Taillev are global, i.e.
common for all procedures EvalBottom.
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EvalBottom (A,k)

ind := 2Ak

minlev := lev := 0
while (lev < A)

V := φ1(ind)
while (ind mod 2 = 1)

V := φ2(Taillev , V )
lev := lev + 1
minlev := minlev + 1
ind := ind/2

Taillev := V

ind := (ind + 1)2lev

minlev := lev := 0

EvalTop (A,k)

ind := 2Ak

minlev := lev := 0
while (lev < A)

V := bottom[ind]
while (ind mod 2 = 1)

leftind := 2levind

rightind := 2lev(ind + 1)
bottom[leftind] := \

φ2(bottom[leftind], bottom[rightind])
lev := lev + 1
minlev := minlev + 1
ind := ind/2

ind := (ind + 1)2lev

minlev := lev := 0

Fig. 5. Procedures EvalBottom and EvalTop

Procedure EvalTop(A,k) computes all odd nodes of the height h subtree rooted in
(A, k) if all descendants of (A, k) on level (i − 1)h are known. The pseudocode is
very similar to EvalBottom but EvalTop(A,k) works in-place, i.e. with only a constant
number of additional variables. When (A, i) = φ2((A − 1, 2i), (A − 1, 2i + 1)) is
computed, we store (A, i) in place of the node ((A − 1, 2i).
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