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Abstract. The Host Identity Protocol (HIP) is one of the more recent designs 
that challenge the current Internet architecture. The main features of HIP are 
security and the identifier-locator split, which solves the problem of 
overloading the IP address with two separate tasks. This paper studies the 
possibility of providing HIP services to legacy hosts via a HIP proxy.  Making a 
host HIP enabled requires that the IP-stack of the host is updated to support 
HIP. From a network administrator's perspective this can be a large obstacle. 
However, by providing HIP from a centralized point, a HIP proxy, the transition 
to begin using HIP can be made smoother. This and other arguments for a HIP 
proxy will be presented in this paper along with an analysis of a prototype HIP 
proxy and its performance. 
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1   Introduction 

The current Internet is based on an over 20-year-old architecture. That architecture 
has flaws - some more serious than others. Many of these issues have been addressed 
by tools and methods designed to patch the flaws of the architecture. Examples of 
these new designs are e.g. IPv6 that provides a new larger addresses space in place of 
the one currently used, and IPsec (Kent (1), 1998) that provides security in the 
insecure network. 

One of the more recent designs is the Host Identity Protocol (Moskowitz (1), 
2004). HIP is still being researched and is not yet a complete product and thus not 
being used in a large scale. Considering that one of the main benefits of using HIP is 
secured communication, one can assume that HIP might appeal more to companies 
and organizations rather than the average home computer user.  When HIP will begin 
to be utilized by a larger user group than just the developers and some other interested 
parties, as it is today, ease of use will be one factor that will affect how well and wide 
HIP will spread. Enabling HIP in a host requires that the host is updated with a HIP 
enabled IP-stack. This might be a disadvantage of HIP when a network administrator 
is considering different methods of protecting the communication to and from the 
network. 

This paper studies the possibility of providing HIP services to hosts without having 
to modify them. Having legacy hosts communicating with HIP enabled hosts, using 
HIP, is possible with a HIP proxy. However, providing HIP to hosts via a proxy, with 
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Fig. 1. HIP proxy scenario 

the actual HIP implementation residing outside of the host, puts some restrictions on 
the network environment. A HIP proxy scenario is shown in Figure 1. 

The paper is structured as follows; first some background information will be 
presented, with the focus on some of the problems of the current architecture. 
Different solutions for these problems will be presented, including HIP. Next follows 
a technical view of how HIP works and the reasoning for a HIP proxy. After that, the 
functionality of a HIP proxy is presented, followed by a look at the design and 
performance of a prototype HIP proxy. Then we look at how the prototype could be 
further developed, after which the conclusions are presented. 

2   Background 

Changing the current Internet architecture is a quite hot topic, and it has been that for 
some years already. The topic has been discussed in various papers, including the 
New Arch paper (Braden, 2000) and the Plutarch paper (Crowcroft, 2003). There are 
many issues with the current architecture that have helped to recognize the need for a 
change. Maybe the most recognized issues include the lack of support for security by 
the IP protocol, address space depletion, the heavy load on routers and the 
overloading of the IP address to serve as both identifier and locator. Additionally, 
mobile hosts are becoming more common which adds demand for an always better 
mobility solution. 

To some of the aforementioned problems there are already working solutions; 
users who want security can utilize one of the many available security solutions e.g. 
IPsec, PGP, SSH or TLS. The utilization of the IPv4 address space has been improved 
with the help of Classless Inter-Domain Routing (CIDR). Also mobility is possible in 
the current Internet. Routers are heavily burdened because the size of the IPv4 address 
does not allow for much address aggregation. IPv6, with its four times bigger address 
size compared to IPv4, will improve the possibility for address aggregation. However, 
there is still no widely deployed method that provides an identifier-locator split. 

2.1   Why Do We Need a Change 

So what is the big deal with using the IP address both as an identifier and a locator? 
The problem can be spotted by examining how the IP address behaves when a host is 
changing its topological position in a network, while remembering what qualities are 
necessary for an identifier and a locator respectively. Consider a host with the IP 
address IPA. The locator of the host, i.e. the information used to route packets to the 
host, is the IP address IPA. The same information is used to identify the host. If the 
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host moves to another topological position the host has to change its address to the 
new address IPA'. When a host now wants to send packets to this host the new IP 
address, IPA', is used to route the packets to the host.  This means that the locator has 
changed to match the current location of the host, which is exactly how a locator 
should function. However, since the IP address serves as both an identifier and a 
locator the host has now been assigned a new identifier. This change is not welcome 
since having an identifier that can change frequently makes the identifier useless 
except for the short timeframe that it stays constant. A true identifier should stay 
constant, if not forever, at least for a very long time, in the range of years. 

Because the notion of an identifier is used in the Internet, it should also fill the 
requirements set for an identifier. Namely that it is constant and uniquely identifies a 
host regardless of where in the network the host is located. This makes the IP address 
an unfit candidate for an identifier. What is needed is another coexistent address 
space, actually an ``identifier space'', from which hosts are assigned an identity. 
Another possibility could be something along the lines of what was suggested in the 
GSE proposal (Crawford, 1999); part of the IP address is used for identifying the host 
while the rest is used as a locator for the host. In this case the identifier part has to 
stay constant when the host moves in the network and updates the locator part to 
match the current location of the host. 

2.2   The HIP Solution 

The Host Identity Protocol is one of the new designs that, amongst other things, target 
the identifier-locator split. In addition, HIP also provides security, mobility and multi-
homing. All the features provided by HIP are based on the solution for the identifier-
locator split. 

HIP separates the identifier from the locator by introducing a new name space for 
identifiers. The entities in that set are called Host Identities (HI) and are of variable 
length. A HI is the public key of an asymmetric key-pair, which is used to provide 
security in HIP. Because the HIs are of variable length it is difficult to use them as 
such in HIP, so instead a 128-bit hash over the HI, called a Host Identity Tag (HIT), is 
used. When operating in an IPv4 network a 32-bit hash over the HI, a Local Scope 
Identifier (LSI), is used. Because of its length, the LSI cannot be considered to be 
globally unique. When a HIP enabled host sends a packet to another HIP enabled host 
the packet is sent to a HIT, or an LSI respectively, but the packet is transported using 
the locator i.e. the IP address. 

The use of HITs and LSIs is made possible by introducing a new layer to the IP-
stack. The HIP-layer finds its place between the internetworking layer and the 
transport layer, and is sometimes referred to as layer 3,5. At the layers above the HIP-
layer HITs, or LSIs, are used instead of IP addresses. At the HIP-layer a translation 
takes place; from HITs or LSIs to IPv6 or IPv4 addresses, or vice versa. In the 
remaining layers the IP addresses are used. Using HIP, the Host Identifier (HIT or 
LSI) of a host is always constant as it should be, and the locator can change when the 
peer moves to another position. 
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2.3   Other Similar Solutions 

HIP is one of the more complete solutions that provide the identifier-locator split. 
However, there are also some other proposals that target the same problem. In this 
subsection three other solutions will be presented: the Forwarding directive, 
Association, and Rendezvous Architecture (FARA) (Clark, 2003), PeerNet (Eriksson, 
2003) and the Internet Indirection Infrastructure (I3) (Stoica, 2002). 

FARA is a framework that can be used when designing a new architecture. The 
FARA model is divided into two layers; the upper layer contains the communicating 
entities and the communication endpoints, the lower layer handles the packet 
forwarding. The communication link between two entities is stateful and is called an 
Association. Each Association is identified by a locally unique Association ID (AId). 
When an entity moves its AIds stay constant while the information used to forward 
the packets to the entity changes. It is easy to draw some parallels between this and 
how HIP uses constant HIs while the IP address can change to reflect the current 
position.  In the FARA paper (Clark, 2003) HIP is actually suggested as something 
that could be used in a FARA architecture. 

PeerNet is based on peer-to-peer thinking. The hosts are located as leafs in a binary 
tree, with the path from the root presenting the address of the host.  When a new host 
attaches to the network it asks one of the hosts in its vicinity for an address. The asked 
host splits its address space into two and assigns one of them to the new node and 
keeps the other for itself. The hosts also have an identity that stays constant regardless 
of node movements. PeerNet uses distributed peer-to-peer routing with each host 
storing some routing information, i.e. identity-to-address mappings. PeerNet is not a 
ready solution, it does have the identifier-locator split, but security issues have not 
been addressed. 

The I3 design introduces some new elements to the network, the I3 servers. To be 
able to receive packets hosts have to register their identity and current locator into an 
I3 server. This is called inserting a trigger.  The trigger has a limited lifetime and thus 
it has to be updated periodically by the host if it wishes to continue to receive packets 
via it. In I3 packets are sent to identities and the sent packet searches the I3 servers for 
a trigger that matches the destination identity. Once a match is found the destination 
of the packet is changed for the IP address found in the trigger.  By updating the 
trigger I3 supports mobility, and by letting multiple hosts register with the same 
identity a multicast property is achieved. But just as PeerNet, I3 is not a complete 
solution. The biggest concern of I3 is the lack of security. To provide security for I3 a 
combination of HIP and I3, called Hi3, is being researched (Nikander, 2004). 

2.4   Problems with Having a New Architecture 

Even if these new designs might sound very good, creating them is only part of the 
job, getting the design deployed is also a big challenge. Deploying a new architecture 
is not the same as deploying a new standalone, e.g. security solution. Deploying the 
design in a small test network which one has full control over is easy, but when the 
target is a global public network, the Internet, there is not really any good way to get 
it done. The problem of deploying e.g. HIP is similar to getting IPv6 deployed 
globally. An ideal solution would be to get all of Internet updated by the flick of a 
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switch, moving from an all IPv4 network to an all IPv6 network in a neglectable time 
interval. However, this is not possible, not for IPv6 nor HIP. An update of this 
proportion will proceed incrementally, requiring some sort of compatibility between 
the new and the old architecture. Deploying HIP is not as difficult as the IPv6 
problem since HIP enabled hosts can still communicate with legacy hosts using 
regular IP. However, to truly benefit from all the features of HIP, it would be 
desirable that as many hosts as possible were HIP enabled. 

3   HIP 

To enable HIP in a host the IP-stack of the host has to be updated to a HIP modified 
one. An asymmetric key-pair has to be generated and the public key will serve as the 
identity of the host, with hashes of the key resulting in HITs and LSIs. To initiate a 
HIP connection with another HIP enabled host the HIT of the peer has to be obtained. 
This can be done from a HIP modified DNS or other similar lookup service. 

The creation of a HIP connection between two HIP enabled hosts is called the HIP 
base exchange (Moskowitz (2), 2004) and it is depicted in Figure 2. When the 
Initiator wants to establish a connection it sends an I1 packet to the Responder. The 
packet contains the HIT of the Initiator (HITI), and if the HIT of the Responder 
(HITR) has been obtained it is also included in the message. If the Initiator does not 
know HITR it is set to NULL in the I1 packet. This is called opportunistic mode HIP. 
The I1 packet is actually just an initiation message for the connection. 

 

Fig. 2. The HIP base exchange 

The Responder responds with an R1 packet which contains the HITs used in the I1 
packet, the HI of the Responder and a challenge. If the Initiator is attempting 
opportunistic mode HIP the Responder has now added its HIT to the packet instead of 
the received NULL HIT. The R1 packet also initiates the Diffie-Hellman (Rescorla, 
1999) exchange and gives the preferences of the Responder in respect of which IP 
Encapsulating Security Payload (ESP) (Kent (2), 1998) mode to use. The supported 
integrity and encryption algorithms are also presented. The challenge in the packet is 
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a puzzle that the Initiator has to solve to prove that it is serious about creating a 
connection. The Responder can have in advance prepared R1 packets to ease its load, 
while the puzzle requires the Initiator to do heavy calculations. This makes 
connection initiation expensive and is thus a form of Denial of Service (DoS) 
protection. 

When the Initiator has solved the puzzle it sends an I2 packet to the Responder. 
The packet again contains the two HITs and now also the solution to the puzzle. Also 
the HI of the Initiator is included, it is encrypted using the selected algorithms and 
generated keys. Based on the information that the Responder receives in the packet it 
can decrypt the HI. The Responder also receives the Security Parameter Index (SPI) 
to use when sending packets to the Initiator. 

The last packet of the HIP base exchange, the R2 packet sent to the Initiator, 
contains the SPI that the Initiator should use along with the two HITs.  Similar to all 
but the first packet of the base exchange, the R2 packet contains a digital signature, 
and in addition a HMAC (Krawczyk, 1997) calculated over the packet. Besides that, 
also other consistency checks are done on each packet, including checking that the 
received HITs are the correct ones. The result of the HIP base exchange is a pair of 
IPsec ESP security associations (SA). After the base exchange all traffic between the 
Initiator and the Responder is ESP protected. 

The four packets used during the base exchange (I1, R1, I2, R2) are HIP specific 
packets. Apart from these packets there are also some other HIP specific packets of 
which the Update packet is the most important one. The Update packet is used for 
signaling rekeying when the old SA needs to be replaced, e.g. if the ESP sequence 
number is getting too big. The Update packet is also used for handling location 
updates by sending location update messages. 

The security provided by HIP is basically very similar to IPsec without IKE.  The 
HI of a host, and the corresponding private key, are used for authentication purposes 
and for negotiating security parameters and SAs. The SAs are established between 
two HITs, so when sending a packet the SA is located based on the HITs found in the 
outgoing packet. When receiving a packet the SA is located based on the SPI, and the 
HITs for the connection are found from the SA. 

4   Why a HIP Proxy 

The difficulty of deploying a new architecture was mentioned earlier; all hosts in a 
global network cannot simultaneously be update to support a new architecture, the 
migration to a new architecture will take time. HIP does not need to spread to all hosts 
in the Internet, and it probably never will, but the wider it spreads the more useful 
HIP is for its users. A HIP proxy that makes it possible for a HIP host to communicate 
with a legacy host, using HIP between the HIP host and the HIP proxy, could help to 
promote HIP. The more possibilities there are for using HIP the more appeal it will 
have. The problem with a HIP proxy is that if it is located in a public network the 
security features of HIP are rendered useless. The connection between the proxy and 
the legacy host is not protected in any way. If one would like, some other form of 
security could of course be applied between the HIP proxy and the legacy host. 
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To be able to benefit from the security functionality provided by HIP, when using a 
HIP proxy, the proxy would have to be situated in a secure network.  One likely 
scenario might be a private network, e.g. the internal network of a company. By 
having a HIP proxy at the border between the private network and the Internet, the 
users of the private network could contact HIP enabled hosts in the Internet using 
HIP. Because the private network is considered to be secure the only difference of this 
scenario, compared to two HIP enabled hosts communicating with each other, is that 
the legacy host cannot take advantage of all the features provided by HIP, e.g. HIP 
mobility. 

If the hosts of a private network do not need all the features provided by HIP, a 
HIP proxy might even be considered the preferred alternative compared to enabling 
HIP in all the hosts. Enabling HIP in all hosts might be considered to generate too 
much work compared to having a HIP proxy solution. With a static network 
configuration the work estimates might actually be correct. However, most networks 
are not static, and having a HIP proxy in a dynamic network will generate excess 
work in the form of keeping the proxy configurations up-to-date. A HIP proxy is not 
the preferred solution but it is well suited as a stepping-stone when going from an all 
legacy network to an all HIP network. 

5   The HIP Proxy Prototype 

As a proof of concept a HIP proxy prototype has been implemented. The 
implementation was done for FreeBSD 5.2, and tested with the HIP implementation 
developed at Ericsson Finland (http://hip4inter.net). Besides implementing the HIP 
proxy application also the kernel of FreeBSD had to be modified; a new feature, 
divert sockets for IPv6, had to be implemented. To perform its task the proxy utilizes 
divert sockets and the firewalls (ipfw and ip6fw) of FreeBSD. The network 
environment where the proxy operates is between two small LANs, one acting as a 
private network containing the legacy hosts and the other acting as the Internet 
containing the HIP enabled hosts. If the proxy was to function in one network in 
which there are both kinds of hosts the legacy hosts would have to be configured to 
route all their packets via the HIP proxy. 

5.1   Functionality of a HIP Proxy 

When looking at the HIP proxy as a host in the network its task is to serve as the 
endpoint for HIP associations between itself and HIP enabled hosts. HIP hosts 
connected via it believe that they are communicating with the legacy host using HIP 
while the legacy hosts believe that they are communicating with the HIP host using 
plain IP. For the communicating endpoints the HIP proxy is invisible. The proxy itself 
can be seen as a host that performs translation between the two communication 
formats; plain IP and HIP. 

When a legacy host wishes to communicate with one of the HIP enabled hosts it 
queries DNS for the IP address of the peer. The query travels through the HIP proxy 
and on to a HIP modified DNS in the Internet. The reply contains the IP address and 
the HIT of the HIP host. When the reply passes the proxy it caches the IP-HIT 
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mapping for future use when it possibly has to initiate a HIP base exchange with the 
host. The legacy host receives the IP address and can now use it to contact the HIP 
enabled host. HIP enabled hosts can contact legacy hosts via the proxy if the IP 
address of the proxy, and the HITs assigned to the legacy hosts, are registered into 
DNS. Thus a HIP enabled host will receive an IP address and a HIT, as expected, 
when querying the information about one of the legacy hosts. 

When a packet passes through the HIP proxy host the packet must be diverted from 
its path and sent to the HIP proxy application. If the packet is on its way from a 
legacy host to a HIP enabled host the proxy checks if there is an SA available for the 
connection. If a matching SA is found the packet is sent out using the SA. Otherwise 
the proxy has to initiate the HIP base exchange to establish SAs for the connection. 
Using the IP-HIT mapping it has gotten from the DNS query, and the IP address of 
the legacy host along with the HIT assigned to the legacy host, the proxy can initiate 
the base exchange. When the HIP association has been established the packet sent by 
the legacy host can be sent to the HIP enabled host and the communication between 
the peers can begin. When a packet is received over an SA, from a HIP enabled host, 
the proxy decrypts the ESP packet and forwards it as a plain IP packet with the IP 
addresses of the peers. The packet is then sent to the legacy host whose IP address 
was found based on the destination HIT. The connection initiation is depicted in 
Figure 3. 

 

Fig. 3. Connection initiation via a HIP proxy 

When a HIP enabled host initiates a connection to a legacy host it uses the 
information it has received from DNS. The HIP host believes that it is connecting to 
the legacy host, although the actual HIP connection is established to the HIP proxy. 
When the SAs have been established the HIP host begins sending packets over them. 
The HIP proxy converts the received packets to plain IP packets and forwards them to 
the correct legacy host. 

5.2   The Prototype Design 

The prototype HIP proxy does not function exactly as described in the previous 
section. We did not have a HIP enabled DNS so the IP-HIT mappings of both the 
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legacy hosts and the HIP enabled hosts were added to a configuration file for the  
HIP proxy. 

The proxy reads the configuration file and stores the HIT-IP mappings into two 
linked lists, one for legacy hosts and one for HIP enabled hosts. Apart from the DNS 
issue the HIP proxy works as described. 

To get the received packets diverted to the proxy application we use the IPv4 and 
IPv6 divert sockets and the firewalls. Basically we tell the firewalls to divert all 
packets received from the private network except for broadcast packets and other 
packets that we intuitively know that are not meant for the proxy. This will result in 
that all connection initiations from the legacy hosts, and the subsequent packets of the 
connections, go through the proxy. To receive the ESP packets sent from the HIP 
enabled hosts we tell the proxy to divert all packets that have an address prefix of 
01bin for both source and destination addresses. This is a characteristic of HITs; a HIT 
always has the prefix 01bin (there is also a secondary format for HITs with a 10bin 
prefix). Even if the packets have IP addresses in the IP header while they travel the 
Internet, IPsec processing, where the IP addresses are replaced by HITs, happens 
before the firewall rules are checked. Finally, to allow HIP initiations from the HIP 
host, we tell the firewall to allow all traffic that uses the HIP protocol, i.e. the packets 
for the base exchange and the other HIP specific packets such as the Update packet. 

The structure of the application is divided into two parts; in the first part the proxy 
is initialized, the second part consists of a read/write loop where the packets are 
processed. During the initialization part the configuration file is read and the 
mappings found in it are recorded. Before a HIP base exchange can begin the Initiator 
has to have a HIP context for that particular connection. A context consists of the 
Initiator HIT along with the HIT and IP address of the responder. The prototype 
creates the needed HIP contexts after the configuration file is read. Before the 
read/write loop begins the proxy also creates the divert sockets so that it can receive 
packets. 

In the read/write loop the proxy waits for packets diverted to it. Once the proxy 
receives a packet it examines the source and destination addresses of the packet. 
Using the two linked lists with HIT-IP mappings the proxy can conclude where the 
packet is coming from and where it is going to, e.g. from the legacy network to the 
HIP network. If either of the addresses is not found in the linked lists the proxy cannot 
process the packet correctly, in that case the packet is forwarded unchanged by the 
proxy. If mappings for both addresses are found, and both addresses in the packet are 
found to be either HITs or IP addresses (a mix of one IP and one HIT is not accepted, 
it indicates an erroneous packet), the proxy changes the IPs for HITs or vice versa. 
After recalculating the checksums the packet is sent out again. If the packets are going 
to the legacy host they are forwarded via the output handling to the private network. If 
the packet is going to one of the HIP hosts it will have HITs as addresses in the IP 
header. In this case the packet will be sent to IPsec handling. If no SA is found for the 
specific connection the HIP daemon is signaled to perform the HIP base exchange 
after which the packet is sent out utilizing the newly created SAs. 

Before the read/write loop starts over again the proxy checks if the configuration 
file should be re-read. This makes it possible to add information about new hosts 
without restarting the proxy. The prototype uses a very basic method for finding out if 
the file should be re-read; for each n packets the configuration file is re-read. When 
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testing this feature, the value for n was set to 10. The value should be adjusted based 
on how heavy traffic there is through the proxy and the length of the list of hosts 
entered into the file. With heavy traffic n should be increased so that the re-read does 
not happen very frequently. Also with a long list of hosts n should be increased 
because with a longer list the updating of the linked lists takes longer. A more 
appropriate solution would be to check if the file has been updated, and only when an 
update has occurred should the file be re-read. 

5.3   Performance 

To measure how the HIP proxy prototype performs some tests were conducted. The 
first test was done to check how having the proxy in the path of the packets affects the 
round trip times (RTT). First the round trip times for ping6 were measured as an 
average over 20 packets with the packets going through the proxy but not being 
processed by it. To get values to compare against the average round trip times were 
also measured for the case when the packets did not have to go via the proxy, the host 
with the HIP proxy just forwarded the packets.  Finally we measure how the use of 
the HIP proxy, and having it process packets affected the round trip times. The results 
from these measurements are presented in Table 1. 

It can be concluded from the two first entries that introducing the proxy does add 
delay; with the proxy we get approximately 12% longer round-trip times. This is 
something that can be expected since having the packets go via the proxy adds 
processing on the path. Having to pass a packet to an application in user space, 
compared to only handling it in kernel space, adds delay. 

Table 1. How the proxy affects round-trip times 

Using proxy Using HIP Avg. RTT 
No No 0,624ms 
Yes No 0,698ms 
Yes Yes 0,851ms 

The last entry in Table 1 concentrates on how applying IPsec ESP to the packets 
affect the delay. Based on the result we can see that when the HIT-IP mappings are 
found in the linked lists of the proxy the round-trip time increases approximately by 
22% compared to having he proxy sending the packet to output handling without any 
processing. When we compare the delays of sending packets without using the proxy 
and the case when the proxy is used and it processes the packets we can see that the 
increase in delay is approximately 36%. This increase in delay includes both the 
added delay of having to send the packet to user space, approximately 0,070ms, and 
the delay that results from performing cryptographic functions, approximately 
0,150ms. The by the HIP proxy added delay is mostly a result of doing the 
cryptographic functions on the data. This is something we cannot affect; if we want 
security it will cost us time. The total delay added by the proxy is not at an alarming 
level, and is as such acceptable. 

Another interesting aspect of the performance of the proxy is how the amount of 
entries in the linked lists affects the delay. In the measurements presented in Table 1 
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there were a total of three entries, two in the HIP hosts list and one in the legacy hosts 
list. In the next set of measurements we had first 10 then 100 and finally 1000 entries 
per list. The correct information was situated last in the respective list so that the 
proxy would have to go through all of the lists. For each packet both the linked lists 
have to be examined. The results from these measurements are presented in Table 2. 

From the measured values we can see that if we add enough entries to the lists it 
will show in the round-trip times. But since the prototype proxy is not meant for huge 
networks the delay added by looking up mappings from long lists should not be an 
issue. The values in Table 2 differ somewhat from the corresponding values in  
Table 1. The reason for the differing values is that the measurements were performed 
at different times, so the load on the network was different. 

Table 2. The effects of serving many hosts 

Hosts/list Avg. RTT 
10 0,676ms 
100 0,705ms 
1000 0,770ms 

When the proxy reads the host information from a configuration file, as is the case 
with this prototype, the amount of hosts should be kept small to keep the 
configuration file manageable. If some automatic updating procedure is implemented 
it allows for more hosts. Still, the delay caused by having to look up host information 
from very long lists will sooner or later add too much delay. However, when the 
amount of hosts configured into the proxy reaches that level it will probably be the 
amount of traffic that the proxy has to handle that will be the performance bottleneck, 
not the delay from looking up the correct mappings. 

6   Further Work 

In the previous section we concluded that approximately a third of the added delay 
that results from using a HIP proxy compared to plain IP is a result of the proxy 
application. This is one aspect of the proxy that could be improved; by moving the 
application from user space to kernel space the delay induced by the proxy could 
probably be decreased. Overall the proxy still performs well and as expected. With a 
small set of hosts the delays are kept at an acceptable level, keeping the RTTs in 
roughly the same range as for legacy connections. However, one must remember that 
a HIP proxy is only a solution for a small set of nodes. When the amount of nodes 
configured into the proxy gets too big, either a second proxy should be introduced, 
and the load balanced between the proxies, or then the legacy hosts should be made 
HIP enabled. When a HIP modified DNS is available it will increase the limits of a 
HIP proxy by being able to dynamically add HIT-IP mappings when they are needed. 
Also old mappings that are considered obsolete can be deleted since they can be re-
fetched from DNS if necessary. The amount of legacy hosts that the proxy can serve 
will still be a limiting factor. 
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If the HIP proxy is situated in a public network the security provided by HIP is in 
effect useless since all the information also travels unencrypted in the network, 
namely between the proxy and the legacy host. This is quite alright as long as both 
parties are aware of this. However, when using a HIP proxy the HIP enabled host 
does not know that it is communicating with a proxy but believes that it is actually 
communicating with another HIP enabled host. This puts the HIP enabled host at a 
disadvantage, and it is a problem that needs to be solved; the HIP enabled host must 
know when it is communicating via a HIP proxy so that it knows that the information 
it sends might not be secured all the way to the actual endpoint. 

A last issue that will be mentioned regarding the HIP proxy is a problem that arises 
when the HIP host, that is using the services of the HIP proxy, is mobile.  When a HIP 
host is mobile and moves to another location, and thus gets a new locator, it informs 
its communication parties of its new location. With two HIP enabled hosts this works 
well. However, when one of the endpoints is a HIP proxy the location update message 
sent to the proxy modifies established SAs as necessary, but the information does not 
reach the proxy. If a connection was established between a legacy host and the HIP 
host before the location change, the connection will continue to work even after the 
HIP host has moved. If another legacy host now tries to initiate a connection to the 
mobile host, using its new locator, the connection will not be established since the 
proxy has not gotten the new locator of the mobile HIP host. This can be solved by 
updating the proxy configuration file with the new information of the mobile HIP 
host. This works well if there are no connections established from legacy hosts to the 
old locator of the HIP host. However, if there still are connections to the old locator 
the result is that the legacy host using the old locator of the mobile HIP host will 
begin receiving packets from the HIP host's new locator without knowing that it 
actually is the same host. A solution for this problem could be that the HIP proxy 
would keep a record of previous locators of each HIP host, and state information for 
each connection. Using this information all connections could be maintained. All this 
of course adds delay to the system. The solution presented here is probably not the 
optimal one and some more research in this area is needed. 

7   Conclusions 

The HIP proxy prototype was constructed as a proof-of-concept for a HIP proxy.  The 
proxy performs well and fills its tasks. However, as mentioned in the previous section 
there are still many areas in which the proxy may, and should, be improved. The 
preferred solution for using HIP is of course to have HIP enabled hosts. However, a 
HIP proxy might be a good tool to help HIP get spreading. The HIP proxy prototype 
described in this paper is probably not something that should be used as such for a 
HIP proxy. However, it might be a good starting point for developing a new and 
improved version that better fits the requirements of a HIP proxy. 
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