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Abstract. timeml is an expressive language for temporal information,
but its rich representational properties raise the bar for traditional infor-
mation extraction methods when applied to the task of text-to-timeml

analysis. We analyse the extent to which timebank, the reference cor-
pus for timeml, supports development of timeml-compliant analytics.
The first release of the corpus exhibits challenging characteristics: small
size and some noise. Nonetheless, a particular design of a time anno-
tator trained on timebank is able to exploit the data in an implemen-
tation which deploys a hybrid analytical strategy of mixing aggressive
finite-state processing over linguistic annotations with a state-of-the-art
machine learning technique capable of leveraging large amounts of unan-
notated data. We present our design, in light of encouraging performance
results; we also interpret these results in relation to a close analysis of
timebank’s annotation ‘profile’. We conclude that even the first release
of the corpus is invaluable; we further argue for more infrastructure work
needed to create a larger and more robust reference corpus.1

Keywords: corpus analysis, TimeBank, TimeML, temporal information
extraction, machine learning.

1 Introduction

timeml was designed [1] to connect the processes of temporal analysis of a text
document into a rich, intermediate, representation and its subsequent formali-
sation by means of an ontology of time [2]. This paper assumes some familiary
with timeml; in essence, the language uses the representational principles of
xml markup to annotate the analysis of the core elements in a temporal frame-
work: time expressions, events, and links among these (additionally moderated
by temporal connectives, or signals). For details of the markup language for time,
readers are referred to [3].

In line with the established methodology of creating community-wide anno-
tated resources, where linguistic analysis is captured by means of a range of
tags, and finer-grained specification of analytical detail is expressed by means
of suitably defined attributes on these tags, timeml implements a flexible rep-
resentational scheme for text markup. At the same time, the language takes

1 This work was supported in part by the ARDA NIMD (Novel Intelligence and Mas-
sive Data) program PNWD-SW-6059.
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the notion of markup to an extreme, developing half-a-dozen entity and rela-
tion marking tags—both consuming and non-consuming—and defining a large
number of attributes for most of them.

Consequently, the resulting language is both very expressive and very com-
plex. The expressiveness is almost a necessity, arising from the richness of time
information and depth of temporal analysis, and addressed from the beginning of
the design effort. The complexity is at least in comparison with markup schemes
designed for the kinds of “named entities” which have traditionally been at the
focus of conventional information extraction (IE) endeavours.

Many markup schemes for IE to date target relatively simple phenomena;
unlike timeml, their design has not been informed by the need to capture the
variety and complexity of information required to support inference and rea-
soning. The extent to which IE can be argued to offer some basis for language
understanding can be found in the ‘spirit’ of the MUC2 event scenario tasks,
which instantiate semantic networks [4,5]. However, the mapping of an entire
text document to a single template can hardly be regarded as logically complete
and coherent, in the sense required and assumed by formal event and/or time
ontologies.

More recently, a growing body of work has initiated investigations into the
nature of linguistic annotation—as a principled description of a linguistic phe-
nomenon of interest (see, for instance, [6]). Such a description, of course, would
then be instrumental to a deeper level of analysis and understanding.

Interestingly enough, an early instance of such an annotation effort—with a
schema focusing on an identifiable linguistic phenomenon, and not just “named
entities” markup—was defined by the ACE3 event timestamping task, which
sought to identify within-sentence event-time links. it could be argued that even
within the limited set of event classes defined to be in the scope of ACE, the
emphasis in schema design was on the annotation of relational information over
a full inventory of temporal relations, and not just that of extents and spans.

In a similar spirit, timeml aims to capture a much richer set of the temporal
characteristics in a text document, so that the intricate temporal linking among
all time expressions and events can then get fully mapped onto an ontologically-
grounded temporal graph (or its equivalent), cf. [7], [8]. Indeed, such a mapping
(see [9] for a sketch) has been one of the guiding principles in the conception
and design of timeml.

The design of timeml therefore brings both promises—but also challenges—as
its representational properties significantly raise the bar for traditional informa-
tion extraction methods. A particularly relevant question, then, concerns the
extent to which timeml-compliant analysis can be automated: temporal rea-
soning frameworks crucially require such analysis for any practical understand-
ing of time: “... the [timeml] annotation scheme itself, due to its closer tie to

2 Message Understanding Conferences; see http://www.itl.nist.gov/iad/
894.02/related projects/muc/main.html

3 Automatic Content Extraction; see http://www.nist.gov/speech/tests/ace/
index.htm
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surface texts, can be used as the first pass in the syntax-semantics interface of a
temporal resolution framework such as ours. The more complex representation,
suitable for more sophisticated reasoning, can then be obtained by translating
from the annotations.” [8].

Analysis into timeml is the primary question addressed by this paper. We
start from the position stated by Pustejovsky et al. [10] as one of the guiding
motivations for developing the timebank corpus, which is the primary reference
resource for timeml: it would be regarded as a resource for “training and eval-
uating algorithms which determine event ordering and time-stamping” (ibid.),
as well as providing general-purpose training data for any and all timeml com-
ponents. We then demonstrate that small (and somewhat noisy) as it is (com-
pared to guidelines implicitly established by other information extraction tasks
relying on annotated data), timebank is still the valuable resource that [10]
describes.

Our method rests on developing a strategy for time analysis of text specifically
informed by the characteristics of timebank: a synergistic approach deploying
both finite-state (FS) grammars with broad range of analysis and machine learn-
ing techniques capable of also leveraging unannotated data. Thus we aim to make
maximal use of the information captured by this particular corpus, even if it was
not explicitly designed and constructed as a proper training resource.

2 Quantitative and Qualitative Analysis of TimeBank

One of the common characteristics of annotation efforts is that they make, from
the outset, infrastructural provisions for the development of a substantial ‘refer-
ence’ corpus, which defines a gold standard (“truth”) for the task. The corpus
contains materials selected to be representative of the phenomenon of inter-
est; sizes of training and testing samples are carefully considered especially as
they depend on the complexity of the task; experienced annotators are used;
the corpus is not released until a certain level of inter-annotator agreement is
reached. These measures ensure that the reference corpus is of a certain size and
quality.

The timebank corpus is small. This need not be surprising, given that the
TERQAS4 effort did not commit to producing a ‘reference’, training-strength,
corpus in the sense described above. In fact, timebank is almost a ‘side effect’
of the work: it was largely an exercise in applying the annotation guidelines—
as they were being developed—to real texts (news articles, primarily) in order
to assess the need for, and then the adequacy of, the language representational
devices as they were being designed in the process of timeml evolution.

Just how small timebank is is illustrated by the following statistics. The
corpus has only 186 documents, with a total of 68.5K words. As there are no
4 Temporal and Event Recognition for QA Systems; http: //www.timeml.org/
terqas/index.html). The TERQAS effort coordinated, over an extended period
of time, a series of definitional and follow-up workshops from which emerged the
current set of timeml annotation guidelines.
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separate training and test portions, it would need partitioning somehow; if we
held out 10% of the corpus as test data, we have barely over 60K words for
training.

To put this into perspective, this is order of magnitude less than other stan-
dard training corpora in the NLP community: the Penn Treebank corpus5 for
part-of-speech tagging (arguably a simpler task than timeml component anal-
ysis) contains more than 1M words—which makes it over 16 times larger than
timebank; the CoNLL’03 named entity chunking task6 is defined by means of
a training set with over 200K words. A task closely related to time analysis is
ACE’s TERN (Temporal Expression Recognition and Normalisation)7. TERN
only focuses on timex2 (timex3, which extends the timex2 tag [3], is just one
of half-a-dozen timeml components); even so, the TERN training set is almost
800 documents/300K words-strong.

Boguraev et al. [11] offer a detailed quantitative and qualitative analysis of
the timebank corpus, in its original version—which was the basis for the exper-
iments and results reported in this paper. In general, the observation is that the
combination of the small size of timebank, the uneven distribution of timeml

components, and the erroneous annotation introduced by mixture of infrastruc-
ture issues and annotation methodology, lead to some significant challenges in
using the corpus as a training resource.

Consider, for instance, the extreme paucity of positive examples over a range of
categories. Fig. 1 (reproduced here, for convenience of reference, from [11]) shows
the distribution of tlink and event types. These are the ‘targets’ of relational
time analysis, capturing the temporal semantics above time expressions. As such,
they are crucial for any analytical device.

The numbers in the figure illustrate the highly uneven distribution of this
category data. The numbers also reveal some of the variety and complexity of
timeml annotation: the extensive typing of events, timex3’s and links in-
troduces even more classes in an operational timeml typology. Thus an event
recognition and typing task is, in effect, concerned with partitioning recognised
events into 7 categories (as we shall see in Section 5.2, a particular implementa-
tion of such a partitioning is realised as (2k + 1)-way classification task, where
k = 7 in our case). Similarly, for tlink analysis the relevant comparison is to
consider that in contrast to, for instance, the CoNLL’03 named entity recognition
task—with training data containing 23K examples of named entities belonging
to just 4 categories, timebank offers less than 2K examples of tlinks, which,
however, range over 13 category types.

The analysis in [11] additionally discusses the sources of noise in the first
release of timebank. Broadly speaking, there are three different categories of
error: errors due to failures in the annotation infrastructure, errors resulting from
broad interpretation of the annotation guidelines, and errors due to the inherent
complexity of the annotation task (further compounded by underspecification in

5 See http://www.cis.upenn.edu/̃treebank/home.html
6 See http://cnts.uia.ac.be/conll2003/ner/
7 See http://timex2.mitre.org/tern.html
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tlink type # occurrences event type # occurrences

IS INCLUDED 866 OCCURRENCE 4,452
DURING 146 STATE 1,181

ENDS 102 REPORTING 1,010
SIMULTANEOUS 69 I ACTION 668

ENDED BY 52 I STATE 586
AFTER 41 ASPECTUAL 295
BEGINS 37 PERCEPTION 51

BEFORE 35
INCLUDES 29
BEGUN BY 27

IAFTER 5
IDENTITY 5
IBEFORE 1

Total : 1,451 Total : 8,243

Fig. 1. Distribution of (some) timeml component types. Note that the count of 1451
tlinks refers only to the tlinks between an event and a temporal expression, itself in
the body of a document. (tlinks with timex3’s in metadata are not counted here.)

the guidelines). The reader is referred to that discussion, because it is important,
for correctly situating our experiments and interpretating the results, to have
an appreciation of the degree of noise which is at a level above what typically
might be expected of a training resource.

Parenthetically, we observe that the kind of detailed analysis presented in
[11]—itself motivated by the desire to understand how to interpret the perfor-
mance figures reported in this paper—was itself the basis for a focused effort
to revise and clean up the timebank corpus, which is currently distributed (as
Version 1.2) through the offices of the Linguistic Data Consortium.

3 Challenges for TimeML Analysis

It is clear that temporal annotation is a very complex problem: timeml was
developed precisely to address the issues of complexity and to provide a rep-
resentational framework capable of capturing the richness of analysis required.
One consequence of this is the pervasiveness of relational data which is inte-
gral to the underlying representation: all links are, notationally, relations con-
necting events with other events or temporal expressions. As recent work in
relation finding information extraction shows (in particular, in the context of
the ACE program), the task requires both some linguistic analysis of text and
the definition of complex learning models, typically going beyond just token
sequences.
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Additionally, as the previous section shows, a different degree of complexity
is introduced by the size (and coverage) characteristics of timebank. While it
may be reasonable to take a position that in our investigation we will focus
on those timeml components which are relatively more prevalent in the data
(e.g. tlinks over alinks and slinks), we still need to address the problem of
insufficient training data. Our position thus is that in addition to deploying
sophisticated feature generators, we crucially need to leverage machine learning
technology capable of exploiting unlabeled data.

Our strategy for timeml analysis of text develops a hybrid approach utilising
both finite-state (FS) grammars over linguistic annotations and machine learn-
ing (ML) techniques incorporating a novel learning strategy from large volumes
of unlabeled data. The respective strengths of these technologies are well suited
for the challenges of the task: complexity of analysis, need for some syntactic
and discourse processing, and relative paucity of examples of timeml-style an-
notation.

The initial targets of our analysis are timex3 (with attributes), event (plus
type), and tlink (plus type, and limited to links between events and time ex-
pressions); see Section 2 and Fig. 1. This kind of limitation is imposed largely by
the distributional properties of timeml components annotated in timebank (as
discussed in Section 2 earlier); but it is also motivated by the observation that
to be practically useful to a reasoner, a time analysis framework would need to
support, minimally, time stamping and temporal ordering of events. As this is
work in progress, the description below offers more details specifically on iden-
tifying timex3 expressions, marking and typing events, and associating (some
of these) with timex3 tags (typing the links, as appropriate).

All of these subtasks have components which can be naturally aligned with
one or the other of our strategic toolkits. Thus timex3 expressions are intrinsi-
cally amenable to FS description, and a grammar-based approach is well-suited
to interfacing to the task of timex3 normalisation (i.e. instantiating its value).
On the other hand, certain attributes of a timex3 (such as temporalFunction,
valueFromFunction, functionInDocument) can be assigned by a machine learning
component. FS devices can also encode some larger context for time analysis
(temporal connectives for marking putative events, clause boundaries for scop-
ing possible event-time pairs, etc; see Section 4). To complement such analysis,
an ML approach can, using suitable classification methods, cast the problem of
marking (and typing) events as chunking (Section 5.2). As we will see later,
a tlink classifier crucially relies on features derived from the configurational
characteristics of a syntactic parse; a result in line with recent work which shows
that mid-to-high-level syntactic parsing—typically derived by FS cascades—can
produce rich features for classifiers.

In summary, we address the challenges of the timebank corpus by combining
FS grammars for temporal expressions, embedded in a shallow parser adapted
for time analysis, with machine learning trained with timebank and unannotated
corpora.
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4 Finite State Devices for Temporal Analysis

Temporal expressions conform to a set of regular patterns, amenable to grammar-
based description. Viewing timex3 analysis as an information extraction task, a
cascade of finite-state grammars with broad coverage (compiled down to a single
timex3 automaton with 500 states and over 16000 transitions) targets abstract
temporal entities such as unit, point, period, relation, etc; typically, these will be
further decomposed and typed into e.g. month, day, year (for a unit); or interval or
duration (for a period).

Temporal expressions are characterised by “local” properties—granularity (e.g.
month, day, etc), cardinality, ref direction(e.g. prior, or subsequent to “now”), and
so forth—which are intrinsic to their temporal nature, but not directly related to
timex3 attributes. Fine-grained analysis of temporal expressions, instantiating
such local propertiesis is crucially required for normalising a timex3: consider,
for example, that representing e.g. “the last five years” as illustrated in Fig. 2
below greatly facilitates the derivation of a value (in this case ”5PY”) for the
timex3 value attribute.

[timex : [relative : true ]
[ref_direction : past ]
[cardinality : 5 ]
[granularity : year ] ]

Fig. 2. Analysis of a time expression in terms of local attributes

In effect, such analysis amounts to a parse tree under the timex3. (Not shown
above is additional information, anchoring the expression into the larger dis-
course and informing other normalisation processes which emit the full comple-
ment of timex3 attributes—type, temporalFunction, anchorTimeID, etc).

It is important to separate the processes of recognition of the span of a timex3

expression from local attribute instantiation for that expression. There is noth-
ing intrinsic to the recognition which necessitates a grammar-based description
in preference to a statistical model (as the TERN evaluation exercise demon-
strated [12]). However, local attributes (as exemplified above) are necessary for
the interpretation rules deriving timex3 value.

timebank does not contain such fine-grained mark-up: the grammars thus
perform an additional ‘discovery’ task, for which no training data currently
exists, but which is essential for discourse-level post-processing, handling e.g.
ambiguous and/or underspecified time expressions or the relationship between
document-internal and document-external temporal properties (such as ‘docu-
ment creation time’).

In addition to parsing of temporal expressions, FS devices are deployed for
shallow parsing for feature generation. We build upon prior work [13], which
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showed how substantial discourse processing can be carried out from a shallow
syntactic base, and derived by means of FS cascading.

Our grammars interleave syntactic analysis with named entity extraction. In
particular, they define temporal expressions—as well as other timeml compo-
nents, namely events and signals—in terms of linguistic units, as opposed to
simply lexical cues (as many temporal taggers to date do). The focus on lin-
guistic description cannot be over-emphasised. One of the complex problems for
timeml analysis is that of event identification. A temporal tagger, if narrowly
focused on time expressions only (cf. [14]), offers no clues to what events are
there in the text. In contrast, a temporal parser aware of the syntax of a time
phrase like “during the long and ultimately unsuccessful war in Afghanistan” is
very close to knowing—from the configurational properties of a prepositional
phrase—that the nominal argument (“war”) of the temporal preposition (“dur-
ing”) is (most likely) an event nominal.

This kind of information is easily captured within a parsing framework. Ad-
ditionally, given that events and links are ultimately posted by a machine
learning component, the parser need not commit to e.g. event identification and
typing. It can gather clues, and formulate hypotheses; and it can then make
these available to an appropriate classifier, from whose point of view an event

annotation is just another feature. Indeed, the only use of syntactic analysis be-
yond the timex3 parser is to populate a feature space for the classifiers tasked
with finding events and links (Section 5).

Feature generation typically relies on a mix of lexical properties and some con-
figurational syntactic information (depending on the complexity of the task). The
scheme we use (Section 5) requires additionally some semantic typing, knowledge
of boundaries of longer syntactic units (typically a variety of clauses), and some
grammatical function. Fig. 3 illustrates the nature of the FS cascade output.

Most of the above is self-explanatory, but we emphasise a few key points. The
analysis captures the mix of syntactic chunks, semantic categories, and timeml

components used for feature generation (a label like GrmEventOccurrence denotes
a hypothesis, generated by the syntactic grammars, that “earned” is an occur-
rence type event). It maintains local timex3 analysis; the time expression is
inside of a larger clause boundary, with internal grammatical function identifi-
cation for some of the event predicates. The specifics of mapping configurational
information into feature vectors is described in Section 5.

[Snt [svoClause
[tAdjunct In [NP [timex3 the 1988 period timex3] NP] tAdjunct],
[SUB [NP the company NP] SUB]
[VG [GrmEventOccurrence earned grmEventOccurrence] VG]
[OBJ [NP [Money $20.6 million Money] NP] OBJ] svoClause] ... Snt]

Fig. 3. Shallow syntactic analysis (simplified) from finite-state parsing
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timeml parsing is thus a bifurcated process of timeml components recogni-
tion: timex3’s are marked by FS grammars; signals, events and links are
putatively marked by the grammars, but the final authority on their identifi-
cation are classification models built from analysis of both timebank and large
unannotated corpora. Features for these models are derived, as we shall see be-
low, from common strategies for exploiting local context, as well as from mining
the results—both mark-up and configurational—of the FS grammar cascading.

5 Classification Models for Temporal Analysis

The classification framework we adopt for this work is based on a principle
of empirical risk minimization. In particular, we use a linear classifier, which
makes classification decisions by thresholding inner products of feature vectors
and weight vectors. It learns weight vectors by minimizing classification errors
(empirical risk) on annotated training data.

There are good reasons to use linear classifiers; an especially good one is that
they allow for easy experimentation with various types of features, without mak-
ing any model assumptions. This is particularly important in an investigation
like ours, where we do not know a priori what kinds of features and feature sets
would turn out to be most productive.

For our experiments (Section 6), we use the Robust Risk Minimization (RRM)
classifier [15], a linear classifier, which has independently been shown useful for
a number of text analysis tasks such as syntactic chunking [15], named entity
chunking [16,17,18], and part-of-speech tagging [19].

In marked contrast to generative models, where assumptions about features
are tightly coupled with algorithms, RRM—as is the case with discriminative
analysis—enjoys clear separation of feature representation from the underlying
algorithms for training and classification. This facilitates experimentation with
different feature representations, since the separation between these and the
algorithms which manipulate them does not require that the algorithms change.
We show how choice of features affects performance in Section 6.

To use classifiers, one needs to design feature vector representation for the
objects to be classified. This entails selection of some predictive attributes of
the objects (in effect promoting these to the status of features) and definition
of mappings between vector dimensions and those attributes (feature mapping).
Before we describe (later in this section) the essence of our feature design for
event and tlink recognition,8 we briefly outline word profiling as the enabling
technique for counteracting the paucity of training data in timebank.

5.1 Word Profiling for Exploitation of Unannotated Corpora

In general, classification learning requires substantial amount of labeled data
for training—considerably more than what timebank offers (Section 2). This
8 We do not discuss signal recognition here, as the signal tag itself contributes

nothing to event or tlink recognition, beyond what is captured by a lexical feature
over the temporal connective, independent of whether it is tagged as signal or not.



50 B. Boguraev and R.K. Ando

characteristic of size is potentially a limiting factor in supervised machine learn-
ing approaches. We, however, seek to improve performance by exploiting unan-
notated corpora, which have the natural advantages of being sizable, and freely
available. We use a word profiling technique, developed specially for the pur-
poses of exploiting a large unannotated corpus for tagging/chunking tasks [19].
Word profiling identifies, extracts, and manipulates information that charac-
terizes words from unannotated corpora; it does this, in essence, by collecting
and compressing feature frequencies from the corpus, a process which maps the
commonly used feature vectors to frequency-encoded context vectors.

More precisely, word profiling turns co-occurrence counts of words and fea-
tures (within certain syntactic configurations: e.g. ‘next word’, ‘within a phrase’,
‘head of subject’, etc) into new feature vectors. Note that this requires pre-
analysis of the unannotated corpus. For example, observing—in that corpus—
that nouns like “extinction” and “explosion” are often used as syntactic subject
to “occur”, and that “happen”’s subjects contain “earthquake” and “explosion”,
helps to predict that “explosion”, “extinction”, and “earthquake” all function like
event nominals. Such a prediction is motivated by the parallel observation about
the preponderance, in the annotated corpus, of event nominals in subject posi-
tion to “occur” and “happen” . In Section 6.2, we demonstrate the effectiveness
of word profiling, specifically for event recognition.

5.2 EVENT Recognition as a Classification Problem

Similarly to named entity chunking, we cast the event recognition task as a
problem of sequential labeling of tokens by encoding chunk information into
token tags. For a given class, this generates three tags: E:class (the last, end,
token of a chunk denoting a mention of class type), I:class (a token inside of a
chunk), and O (any token outside of any target chunk). The example sequence
below indicates that the two tokens “very bad” are spanned by an event-state
annotation.

· · · another/O very/I:event-state bad/E:event-state week/O · · ·

In this way, the event chunking task becomes a (2k+1)-way classification of
tokens where k is the number of event types; this is followed by a Viterbi-style
decoding. (We use the same encoding scheme for signal recognition.)

The feature representation used for event extraction experiments mimics the
one developed for a comparative study of entity recognition with word profiling
[19]. The features we extract are:

◦ token, capitalisation, part-of-speech (POS) in 3-token window;
◦ bi-grams of adjacent words in 5-token window;
◦ words in the same syntactic chunk;
◦ head words in 3-chunk window;
◦ word uni- and bi-grams based on subject-verb-object and preposition-noun

constructions;
◦ syntactic chunk types (noun or verb group chunks only);
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Fig. 4. Partitions for tlink classifier segmentation

◦ token tags in 2-token window to the left;
◦ tri-grams of POS, capitalisation, and word ending;
◦ tri-grams of POS, capitalisation, and left tag.

5.3 TLINK Recognition as a Classification Problem

tlink is a relation between events and time expressions which can link two
events, two timex3’s, or an event and a timex3. As we stipulated earlier
(Section 3), presently we focus on tlinks between events and time expressions.

As a relational link, tlink does not naturally fit the tagging abstraction
underlying the chunking problem, as outlined above. Instead, we formulate a
classification task as follows. After posting event and timex3 annotations (by
the event classifier and the FS temporal parser, respectively), for each pairing
between an event and a timex3, we ask whether it is a certain type of tlink.
This defines a (�+1)-way classification problem, where � is the number of tlink

types (before, after, etc). The adjustment term ‘+1’ is for the negative class, which
indicates that the pair does not have any kind of temporal link relation.

The relation-extraction nature of the task of posting tlinks requires a dif-
ferent feature representation, capable of encoding the syntactic function of the
relation arguments (events and timex3’s), and some of the larger context of
their mentions. To that end, we consider the following five partitions (defined in
terms of tokens): spans of arguments (P 1 or P 2); two tokens to the left/right
of the left/right argument (P left/P right); and the tokens between the argu-
ments (P middle). From each partition, we extract tokens and parts-of-speech
as features (Fig. 4).

We also consider segments (i.e. syntactic constructions derived by FS analysis:
‘when-clause’, ’subject’, etc) in certain relationship to partitions:

◦ contained in P 1, P 2, or P middle;
◦ covering P 1 (or P 2) but not overlapping with P 2 (or P 1);
◦ occurring to the left of P 1 (or the right of P 2); or
◦ covering both P 1 and P 2.
We use uni- and bi-grams of types of these segments as features.
In this feature representation, segments play a crucial role by capturing the

syntactic functions of events and timex3’s, as well as the syntactic relations
between them.

Thus in the example analysis in Fig. 3 (p. 48), svoClause is the smallest seg-
ment containing both an event and a timex3, which is indicative of (or at least
does not prohibit) a direct syntactic relation between the two. In the next exam-
ple (Fig. 5), the timex3 and event chunks are contained in different clauses (a
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[Snt
Analysts have complained
[thatClause that [timex3 third-quarter timex3] corporate earnings

have n’t been very good thatClause]
[svoClause , but the effect [event hit event] ... svoClause] Snt]

Fig. 5. Syntactic configuration discouraging of a tlink

thatClause and a svoClause, respectively), which structurally prohibits a tlink

relation between the two. Our feature representation is capable of capturing
this information via the types of the segments that contain each of event and
timex3 without overlapping.

6 Experiments

In line with our current investigation focus (as defined in Section 3), we present
here performance results on recognition and typing of timex3, event and tlink

only. Our primary objective here is to report on how effective our analytical
strategy is in leveraging the reference nature of the small timebank corpus for
training classifiers for timeml. This is the first attempt to build a timeml-
compliant analyser which addresses a more or less full complement of timeml

components; thus there are no comparable results in the literature.
The results (micro-averaged F-measure) reflect experiments with different set-

tings, against the timebank corpus, and produced by 5-fold cross validation.

6.1 TIMEX Recognition and Typing

Fig. 6 presents performance results of our timex3 analysis subsystem. Exper-
iments were carried out under different settings. “Span” refers to strict match
of both boundaries (the extent) of a timex3 expression; “sloppy” admits time
expressions recognised by the FS grammars as long as their right boundary is
the same as the reference expression in timebank. (One of the observations
from the quality analysis of timebank reported in [11] is that the corpus is
inconsistent with respect to whether some ‘left boundary’ items—determiners,
pre-determiners, and so forth—are marked as a part of the time expression or
not; the “sloppy” setting tries to account for this somewhat). As of the time or
writing, there are no published results for full timeml-compliant analysis. We
offer here only indirect assessment of our timex3 analysis task, by observing
that the numbers for extent marking are not very far from the best systems
performance reported at the TERN conference. Of course, given the different
definitions of timex2 and timex3, as well as timebank’s relatively ‘cavalier’
attitude with respect to timex3’s left boundary, the comparison is not very
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Task P R F

Span 77.6 86.1 81.7
Span (‘sloppy’) 85.2 95.2 89.6

Accuracy

Type (given ‘true’ span) 81.5

Span + type 64.5 71.6 67.9
Span (‘sloppy’) + type 70.1 77.8 73.7

Fig. 6. timex3 analysis results, with/without typing. Typing carried out after/
simultaneously with span marking.

meaningful; still, it is indicative of some level of grammar coverage, especially
given the incommensurate sizes of the TERN training data and the timebank
corpus (Section 2).

While timex3 spans are determined by grammars, we use a classifier to type
the time expressions. Again, this decision was motivated largely by observing
some inconsistencies in type assignment in the corpus, and we felt that, for
the purposes of strictly matching the data, machine learning was a more fitting
approach to try first (we are yet to compare the typing results presented here
with typing by the FS grammars; such a comparison is tied somewhat to getting
a better understanding of the quality of annotations in timebank). The timex3

typing classifier (second segment of Fig. 6) is configured to use “true” timex3

spans, as per timebank, as data points, to which it assigns a category (type)
label; thus the table gives a single accuracy measure.

Finally, we report on a joint task, which combines (in sequence) extent mark-
ing by FS grammars and type determination as classification process over given
spans (this classification task, and features, are defined similarly to the IEO
scheme used for event extraction and typing, in without-word-profiling setting;
see Section 5.2). In effect, the results here confirm the intuition that imperfect
subtasks individually contribute to cumulative degradation of performance.

6.2 EVENT Recognition and Typing

The example analysis in Fig. 3, and the description of features used for the
event classification task (Section 5.2) demonstrates how local information and
syntactic environment both contribute to the feature generation process. Fig. 7
shows performance results with and without word profiling for exploiting an
unannotated corpus.

For the word profiling experiments, we extracted feature co-occurrence counts
from 40 million words of 1991 Wall Street Journal articles. The proposed event
chunks are counted as correct only when both the chunk boundaries and event
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features with typing w/o typing
basic 61.3 78.6
basic + word-profiling 64.0 (+2.7) 80.3 (+1.7)

Fig. 7. event extraction results, with/without typing. Numbers in parentheses show
contribution of word profiling, over using basic features only.

types are correct. 64.0% F-measure is lower than typical performance of, for
instance, named entity chunking; this result is indicative of the effects of insuf-
ficient training data. On the other hand, a strongly positive indicator here is
the fact that word profiling clearly improves performance. In a different setting,
when we train the event classifiers without typing, we obtain 80.3% F-measure.
This confirms the intuition that the event typing task is inherently complex,
and requires more training data.

6.3 TLINK Recognition and Typing

In this experimental setting, we only consider the pairings of event and timex3

which appear within a certain distance in the same sentences (as we will see
shortly, this hardly reduces the problem space).9

For comparison, we implement the following simple baseline method. Consid-
ering the text sequence of events and timex3’s, only ‘close’ pairs of potential
arguments are coupled with tlinks; event e and timex3 t are close if and only
if e is the closest event to t and t is the closest timex3 to e. For all other pair-
ings, no temporal relation is posted. Depending on the ‘with-’/‘without-typing’
setting, the baseline method either types the tlink as the most populous class
in timebank, is included, or simply marks it as ‘it exists’.

Results are shown in Fig. 8. Clearly, the detection of temporal relations be-
tween events and time expressions requires more than simply coupling the closest
pairs within a sentence (as the baseline does). It is also clear that the baseline
method performs poorly, especially for pairings over relatively long distances. For
instance, it produces 34.9% (in F-measure) when we consider the pairings within
64 tokens without typing. In the same setting, our method produces 74.8% in
F-measure, significantly outperforming the baseline.

We compare performance against two types of feature representation: ‘basic’
and ‘basic+FS grammar’, which reflect the without- and with-segment-type in-
formation obtained by the grammar analysis, respectively. As the positive delta’s
show, configurational syntactic information can be exploited beneficially by our
process. When we focus on the pairings within a 4-tokens window, we achieve
81.8% F-measure without typing of tlinks, and 58.8% with typing. (The task

9 To evaluate the tlink classifier alone, we use the event and timex3 annotations
in timebank. Also, note that the focus on links within a sentence span naturally
excludes tlinks with time expressions in document metadata.
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distance (# of tlinks) features with typing w/o typing
distance ≤ 64 tokens baseline 21.8 34.9

(1370 tlinks) basic 52.1 74.1
basic+FS 53.1 (+1.0) 74.8 (+0.7)

distance ≤ 16 tokens baseline 38.7 61.3
(1269 tlinks) basic 52.8 75.8

basic+FS 54.3 (+1.5) 76.5 (+0.7)
distance ≤ 4 tokens baseline 49.8 76.1

(789 tlinks) basic 57.0 80.1
basic+FS 58.8 (+1.8) 81.8 (+1.7)

Fig. 8. tlink extraction results, with/without typing. Parentheses show positive con-
tribution of grammar-derived features, over using basic features only. Baseline method
posts tlinks over ‘close’ pairs of events and timex3’s.

without typing is a binary classification to detect whether the pairing has a
tlink relation or not, regardless of the type.) As the figure shows, the task
becomes harder when we consider longer distance pairings. Within a 64 token
distance, for instance,, we obtain figures of 74.8% and 53.1%, without and with
typing respectively.

While we are moderately successful in detecting the existence of temporal
relations, the noticeable differences in performance between the task settings
with and without typing indicate that we are not as successful in distinguishing
one type from another. In particular, the major cause of the relatively low per-
formance of tlink typing is the difficulty in distinguishing between during and
is included link types.

7 Conclusion

We have used the task of timeml-compliant parsing to experiment with a spe-
cially developed strategy for leveraging minuscule amounts of training data. The
strategy synergistically blends finite-state analysis for shallow syntactic parsing
with a machine learning technique. The potential for such synergistic approaches
to complex analytical problems is clear, especially in situations where reference
data—in sufficient quantity, and/or quality—is hard to come by.

This paper highlights two aspects of this blend. We carry out aggressive anal-
ysis, by a complex grammar cascade, aiming at considerably more than just
partitioning text into chunks: the analysis targets both intrinsic characteristics
of temporal expressions, as well as higher-order syntactic configurations used
to derive features for a machine learning component. The learning component
itself is enhanced by a mechanism specifically designed to counteract paucity in
pre-annotated data with the ability to train over unannotated data as well as
exploit whatever labeled data is available, no matter how small.
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The extreme paucity of the available reference data correlates with the per-
formance results, in particular where the novel components of event and tlink

analysis are targeted, as they appear to fall short of expectations in line with
current state-of-the-art information extraction capabilities. Our results are fur-
ther explained by the inherently noisy nature characteristic of the timebank
corpus. However, given that the corpus was not designed and populated using
rigorous methods for generating training data, our experience is indicative of the
effectiveness of a hybrid analytical approach.

Direct comparison of the results reported here with related work is not yet
possible. Ours is the first systematic attempt at timeml-compliant analysis,
aiming at a more or less full complement of timeml components: thus there are
no comparable results in the literature.

Mani et al. [20] discuss some pioneering work in linking events with times, and
ordering events, suggestive of productive strategies for posting (some) tlink

information. However, the nature of these efforts is such that differences in
premises, representation, and focus make a direct performance comparison im-
possible. Furthermore, the work pre-dates timeml, and cannot be conveniently
mapped to timebank data; this, in effect, precludes a quantitative comparison
with our work. Most recently, the TARSQI project has been developing strate-
gies and heuristics for particular subsets of timeml components [21]; again,
there is no basis for direct comparison, as only partial overlap exists between
the phenomena and attributes targeted by that work and ours (but see [11] for
some in-depth analysis of complementary analytic strategies). For this reason, as
well as because TARSQI does not explicitly focus on investigating the utility of
timebank as a training resource, it is not constructive to attempt comparative
assessment.

One thing our work makes especially clear is that, given the ability to use
unannotated corpora in conjunction with timebank to develop a more accurate
and felicitous timeml models, even small improvements to the corpus would sig-
nificantly boost performance. The corpus would benefit substantially from the
application of rigorous methodology for compiling training data. Even a rela-
tively minor effort of cleaning up the existing data would improve performance:
this is confirmed by considering the results presented in Section 6 and the corpus
characteristics highlighted in Section 2.

A cleanup operation—largely focused on fixing both the errors of omission and
commission in the original timebank—has now been carried out: timebank Ver-
sion 1.2 represents a considerable improvement over timebank 1.1, with respect
to largely removing the noise in the first release [11]. timebank 1.2 is available
through the offices of Linguistic Data Consortium. Future work, of further use
to the community, would be an effort to create a larger timebank which—by
virtue of the systematic methods of developing an annotated corpus within an
established set of annotation guidelines—will truly become the widely usable
reference resource envisaged from the outset of the timeml definition and by
more recent standardisation efforts [22].
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