

Lecture Notes in Artificial Intelligence 4795

Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Frank Schilder Graham Katz

James Pustejovsky (Eds.)

Annotating, Extracting
and Reasoning about
Time and Events

International Seminar

Dagstuhl Castle, Germany, April 10-15, 2005

Revised Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Frank Schilder
Thomson Corp., R&D
610 Opperman Drive, Eagan, MN 55123, USA
E-mail: frank.schilder@thomson.com

Graham Katz
Georgetown University, Department of Linguistics
37th and O Streets, NW, Washington, DC 20057, USA
E-mail: egk7@georgetown.edu

James Pustejovsky
Brandeis University, Computer Science Department
415 South St., Waltham, MA, 02454, USA
E-mail: jamesp@cs.brandeis.edu

Library of Congress Control Number: 2007937633

CR Subject Classification (1998): I.2.4, I.2.6-7, I.7.2, H.2.8, H.3, F.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743

ISBN-10 3-540-75988-3 Springer Berlin Heidelberg New York

ISBN-13 978-3-540-75988-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12181247 06/3180 5 4 3 2 1 0

Preface

The Dagstuhl Seminar 05151 “Annotating, Extracting and Reasoning about
Time and Events” took place April 10–15, 2005 at the International Conference
and Research Center (IBFI), Schloss Dagstuhl, Germany. During the seminar,
17 leading researchers from 5 different countries presented current research and
discussed open problems concerning annotation, temporal reasoning, and event
identification. The work presented at this seminar, together with other previous
and ongoing research, centers around an emerging de facto standard for time and
event annotation: TimeML. TimeML has recently been adopted as a candidate
for an ISO standard, and is currently being reviewed in this capacity.

At the seminar, the discussions focussed on the following three TimeML-
related issues: using the TimeML language effectively for consistent annotation,
determining how useful such annotation is for further processing, and describing
modifications that should be applied to the standard for applications such as
question-answering and information retrieval.

Discussions at the Dagstuhl Seminar led to new research ideas, and a variety
of publications and conference and workshop presentations resulted. This current
collection of papers adds to the growing body of work on TimeML. It focusses
on important sub-areas within TimeML research such as temporal annotation
and temporal reasoning and points to future research directions that are crucial
for further progress.

The editors would like to thank participants for their attendance at the
Dagstuhl Seminar, and for their contributions to the many lively and inspir-
ing discussions. We are also grateful for having had Schloss Dagstuhl as a venue
for this seminar. The research center is unique and provides a very nurturing
environment for advancing exciting research. Finally, we would also like to thank
Inderjeet Mani and David Ahn for providing additional reviews of several papers
in this collection.

August 2007 Frank Schilder
Graham Katz

James Pustejovsky

Table of Contents

Annotating, Extracting and Reasoning About Time and Events 1
Frank Schilder, Graham Katz, and James Pustejovsky

Drawing TimeML Relations with TBox . 7
Marc Verhagen

Text Type and the Position of a Temporal Adverbial Within the
Sentence . 29

Janet Hitzeman

Effective Use of TimeBank for TimeML Analysis . 41
Branimir Boguraev and Rie Kubota Ando

Event Extraction and Temporal Reasoning in Legal Documents 59
Frank Schilder

Computational Treatment of Temporal Notions: The CTTN–System . . . 72
Hans Jürgen Ohlbach

Towards a Denotational Semantics for TimeML . 88
Graham Katz

Arguments in TimeML: Events and Entities . 107
James Pustejovsky, Jessica Littman, and Roser Sauŕı

Chronoscopes: A Theory of Underspecified Temporal Representations . . . 127
Inderjeet Mani

Author Index . 141

Annotating, Extracting and Reasoning About

Time and Events

Frank Schilder1, Graham Katz2, and James Pustejovsky3

1 R&D, Thomson Corp.
610 Opperman Drive, Eagan 55123, USA

Frank.Schilder@Thomson.com
2 Institute for Cognitive Science University of Osnabrück

Kolpingstr. 7, 49076 Osnabrück, Germany
gkatz@uos.de

3 Computer Science Department, Brandeis University
415 South St., Waltham, MA 02454 USA

jamesp@cs.brandeis.edu

Abstract. The main focus of the Dagstuhl seminar 05151 was on
TimeML-based temporal annotation and reasoning. We were concerned
with three main points: how effectively can one use the TimeML language
for consistent annotation, determining how useful such annotation is for
further processing, and determining what modifications should be ap-
plied to the standard to make it more useful for applications such as
question-answering and information retrieval.

1 Introduction

Today’s information extraction systems are capable of reliably extracting named
entities such as person or company names and locations. Newspaper arti-
cles and other natural language texts, however, describe much more information
between such entities than this. In particular, the underlying temporal relations
between events would be very valuable for summarization system that produced
summaries of developing stories. In order to provide a summary of a developing
news story, for example, sequences of events need to be presented in a chrono-
logical and coherent way. A system that can produce such a summary would
need to extract a time stamp for each event and to order the extracted events
according to the time line. Current summarization systems are not able to do
this or can offer only a rough approximation of the temporal information.

Such a summarization system is one example of future IE system that would
require reliable temporal information in order to allow for temporal reasoning
capabilities. Other systems that would benefit from temporal information in-
clude: Question-Answering systems, medical documentation systems, and legal
reasoning systems.

Hence, a crucial first step toward the automatic extraction of information
from texts is the capacity to identify what events are being described and to
make explicit when these events occurred and which temporal relations hold

F. Schilder et al. (Eds.): Reasoning about Time and Events, LNAI 4795, pp. 1–6, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 F. Schilder, G. Katz, and J. Pustejovsky

among them. There has recently been a renewed interest in making use of this
kind of temporal and event-based information, with a wide variety of proposals
and applications having been presented at recent conferences and workshops.
[1,2,3,4,5].

Extracting temporal information from natural-language text is not trivial,
since much of the temporal information conveyed in a natural language text
is left implicit. Significant recent work has focused on developing schemata for
making this information explicit, typically via annotation. An important result
of contemporary research has been the adoption of a de facto standard for time
and event annotation: TimeML [3,4,6].1 This XML-based markup language is
specifically designed for annotating texts with tags that make explicit the tem-
poral and event-based information conveyed by the text, and has been adopted
by a number of researchers in this domain. Much of our seminar was concerned
with issues specific to this annotation scheme.

There are three basic types of tags used within the TimeML language:

TIMEX tags are used to annotate temporal expressions and provide them with
a normalized value (e.g.,

<TIMEX tid="t1" val="2005-04-21">April 21st, 2005</TIMEX>

EVENT tags are used to annotate event expressions, providing “hooks” to relate
them to other events and times:

<EVENT eid="ei">opened</EVENT>

TLINK tags indicate the temporal relations that hold between times and events
(e.g. the stock market opened on April 21st, 2005 at 10:00pm):

<TLINK event="e1" relatedTime="t1" relation="IS_INCLUDED"/>

Other tags are used to capture more subtle semantic relations. SLINK tags, for
example, are used to indicate various kinds of subordination relations, such as
reported speech, in The spokesman said the bomb injured 20 people, or intensional
contexts, such as in Investors hoped that the stock market would open on April
21st, 2005 at 10:00pm. Finally, ALINK tags indicate the aspect (or phase) of
an event, as in The market began to fall suddenly. A corpus of 183 TimeML
annotated documents (TimeBank) has been released by the LDC, and can be
browsed and downloaded at timeml.org.

The seminar took place at Schloss Dagstuhl from 10. April - 15. April 2005.
The central goal of the seminar was to consolidate the insights that have been
made in recent years and to identify and address issues concerning annotation,
temporal reasoning, and event identification that remain unresolved.

The various talks presented ranged from addressing the logical foundations
of temporal reasoning to discussing the practical aspects of computing temporal
information:
1 To promote TimeML as a more formal standard, it has recently been adopted as a

candidate for an ISO standard, and is currently being reviewed in this capacity.

Annotating, Extracting and Reasoning About Time and Events 3

1. Branimir Boguraev (IBM Research, USA)
TimeBank-driven TimeML Analysis

2. Frank Schilder (Thomson R&D, USA)
Temporal Information Extraction from Legal Documents

3. Andrea Setzer (University of Sheffield, GB)
TimeML in a Medical Application

4. Jerry Hobbs (USC/ISI - Marina del Rey, USA)
A Temporal Ontology for the Semantic Web

5. Lauri Karttunen and Annie Zaenen (PARC - Palo Alto, USA)
Veridicity and Commitment?

6. Laure Vieu (LOA -Trento, I)
Scope of Temporal Adverbials in Discourse

7. David Ahn (University of Amsterdam, NL)
Towards Task-based Temporal Extraction and Recognition

8. Benjamin Han (CMU - Pittsburgh, USA)
Understanding Times: An Constraint-based Approach

9. Tom Bittner (Univ. des Saarlandes, D)
Approximate Qualitative Temporal Reasoning

10. Mark Steedman (University of Edinburgh, GB)
The Calculus of Affordance

11. Marc Verhagen (Brandeis University, USA)
Drawing TimeML Relations

12. Hans-Jürgen Ohlbach (Universität München, D)
Computational Treatment of Temporal Notions the CTTN System

13. Rob Gaizauskas (University of Sheffield, GB)
Getting Closure: Vagueness and Disjunction in TimeML

14. Graham Katz (University of Osnabrück, D)
The Semantics of TimeML

15. James Pustejovsky (Brandeis University, USA)
Event Arguments in TimeML

16. Ian Pratt-Hartmann (Manchester University, GB)
Temporal Prepositions and their Logic

17. Inderjeet Mani (MITRE, USA)
Chronoscopes: A theory of Underspecified Temporal Relations

This book contains selected papers that are further developments of the work
presented at the workshop. The papers are representative for a set of important
sub-areas identified by the seminar where progress has to be made in order to
advance this field.

Issues Concerning Temporal Annotation. An increasingly important research
question is concerned with the representation of temporal information, either
while carrying out the annotation or for the purpose of representing it. Firstly,
the annotation task can be made more reliable if the annotated temporal rela-
tions are easily viewable without burdening the annotator with too many details.
Secondly, the resulting temporal information needs to be presented to a viewer in

4 F. Schilder, G. Katz, and J. Pustejovsky

a understandable way. Previous work using a graph representation were already
a step forward compared to simply adding temporal information to the XML
tags. However, a graph annotation used for TANGO could produce too many
links, because all implicit temporal information would be made explicit. In oder
to deal with this representational problem, Marc Verhagen proposes a graphical
representation called TBox that leaves some temporal information implicit by
reducing the number of explicitly presented relations. This representation re-
duces the number of inconsistencies that may be introduced by a more cluttered
representation of temporal information in an annotation tool.

Linguistic Analysis of Temporal Expressions. In this volume, Janet Hitzeman
provides an account on the semantics of initial and sentence final temporal ad-
verbials. She compares four different texts in order to evaluate whether text-type
has an effect on the position (and interpretation) of temporal adverbials.

At the seminar, Laure Vieu presented an analysis of Locating Adverbials
(LAs) such as un peu plus tard or ce matin (a little later, this morning) when
they are dislocated to the left of the sentence (IP Adjuncts cases). She showed
evidence that LAs seem to play an important part in structuring discourse. Lauri
Karttunen and Annie Zaenen illustrate some cases of conventional implicature
and show how they indicate an author’s commitment to the truth of his/her
statements and briefly state the importance of these distinctions for Information
Extraction.

Learning from Annotations. Since the compilation of TimeBank, work on auto-
matically learning the temporal relations has been enabled. Learning the tem-
poral relations between the time stamp and events as well as between adjacent
events in a text have recently been investigated within the SemEval competition.
The TempEval task used the TimeBank corpus [5].

Within this collection, Bran Boguraev and Rie Kubota Ando present an
in-depth analysis of TimeBank and discus experimental results on TimeML-
compliant parsing via a blend of finite-state approaches with machine learning
techniques.

Similarly, David Ahn, Joris van Rantwijk and Maarten de Rijke [7] published
a follow-up paper of David Ahn’s talk at the Dagstuhl seminar describing tag-
ging temporal expressions via a cascaded approach combining several machine
learning classifiers. Their experiments on the TERN 2004 data show that the
cascaded machine-learning approach requires a much smaller number of compo-
sition rules for the derivation of the ISO-time stamps than competing approaches
with comparable results.

New Domains. Talks at the seminar also identified interesting new domains for
time and event annotation. Frank Schilder’s paper discusses what kind of le-
gal documents (legal narratives, transactional documents, statutes) may benefit
from temporal information extraction and presents a prototype for extracting
temporal information from U.S. statutes.

Annotating, Extracting and Reasoning About Time and Events 5

At the seminar, two other domains were discussed. Andrea Setzer presented a
project from the medical domain.2 In this project temporal information from pa-
tient notes dictated by doctors is to be extracted and mapped onto a database
containing records of interventions (e.g., surgery) and investigations (e.g., X-
RAY) performed on the patient. Ben Han investigated another domain that is
different from the standard news texts TimeBank consists of (viz., email mes-
sages). Subsequent work by him was published at NAACL 2006 [8].

Time Logic. Practical tools for reasoning with temporal information were pre-
sented at the seminar by Benjamin Han and Hans-Jürgen Ohlbach. They pre-
sented implementations that do reasoning with temporal information, such as
computing the current date “plus 2 months” (two months from today). Their
implementations are written in Python (Han) and C++ (Ohlbach). Ohlbach
expands on this work in the paper in this volume.

Graham Katz’s paper provides a model-theoretic semantics for TimeML,
closely based on Discourse Representation Theory. He addresses the problems
of semantic scope, providing a second-order semantics that simulates semantic
scope, and presents a very basic treatment of some of the non-extensional aspects
of TimeML, namely the modality and the SLINK tags.

Ian Pratt-Hartmann published a paper based on his talk at the Seventh Inter-
national Workshop on Computational Semantics [9]. His paper is concerned with
the translation from TimeML annotation to temporal interval logic. Jerry Hobbs’
presentation at the workshop was concerned with the annotation of durations
of event descriptions in text. This work was published subsequently at different
conferences and workshops (e.g., [10]). Mark Steedman analyzes temporal se-
mantics for natural language in terms of a calculus developed for planning and
reasoning about action. He proposed an event calculus based on Linear Dynamic
Logic, and on instantaneous changes rather than intervals.

Reasoning. An important next step in this research area will involve techniques
for reasoning with temporal information.

James Pustejovsky, Jessica Littman and Roser Sauŕı discuss the issue of
whether TimeML should incorporate all of a verb’s arguments into the markup
specification language. They propose that the language of TimeML should make
reference only to event arguments, and not to all verbal arguments. TimeML al-
ready makes reference to considerable argument structure in subordinating and
aspectual contexts. These event-event relations between the predicate and an
argument cover a large number of the events selected for by predicates. Most
of those not covered, it is argued, are lexical discourse markers, such as lead to,
and should be handled by a new LINK-type, called a DLINK (discourse link).

Inderjeet Mani’s paper focuses on an important component of temporal rea-
soning that has been largely neglected: granularity. The author introduces an
abstract device called chronoscopes that allows temporal abstraction over events
and temporal relations depending on the chosen time granularity.

2 http://nlp.shef.ac.uk/clef/

6 F. Schilder, G. Katz, and J. Pustejovsky

Another talk during the seminar was also concerned with granularity. Tom
Bittner describes representation and reasoning methods taking the limits of our
knowledge explicitly into account. For example, happened yesterday does not
mean that x started at 12 am and ended 0 pm. He proposes an approach that
describes the temporal location of events and processes as approximate and
“rough” in nature, rather than exact and crisp. At the seminar, Rob Gaizauskas
also discussed different approaches to representing the temporal information
encoded in TimeML. He investigates how vague temporal information can be
presented.

References

1. Mani, I., Wilson, G.: Robust temporal processing of news. In: Proceedings of the
38th Annual Meeting of the ACL, Hong Kong, Association for Computational
Linguistics (2000)

2. Harper, L., Mani, I., Sundheim, B. (eds.): Proceedings on the Workshop on Tem-
poral and Spatial Information Processing, Toulouse, France, ACL (July 2001)

3. Pustejovsky, J.: Terqas: Time and event recognition for question answering systems.
In: ARDA Workshop, Boston, Mitre (2002)

4. Pustejovsky, J., Mani, I., Belanger, L., Boguraev, B., Knippen, B., Littman, J.,
Rumshisky, A., See, A., Symonen, S., Van Guilder, J., Van Guilder, L., Verhagen,
M.: Arda summer workshop on graphical annotation toolkit for timeml. Technical
report, Mitre, Boston (2004),
http://nrrc.mitre.org/NRRC/TangoFinalReport.pdf

5. Verhagen, M., Gaizauskas, R., Schilder, F., Hepple, M., Katz, G., Pustejovsky,
J.: Semeval-2007, task 15: Tempeval temporal relation identification. In: Proceed-
ings of the Fourth International Workshop on Semantic Evaluations (SemEval-
2007), Prague, Czech Republic, Association for Computational Linguistics, pp.
75–80 (June 2007)

6. Sauŕı, R., Littman, J., Gaizauskas, R., Setzer, A., Pustejovsky, J.: TimeML anno-
tation guidelines version 1.2. Technical report, Brandeis University (January 2006),
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=
LDC20006T08

7. Ahn, D., van Rantwijk, J., de Rijke, M.: A cascaded machine learning approach to
interpreting temporal expressions. In: Human Language Technologies: The Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics. Proceedings of the Main Conference, Rochester, New York, Association
for Computational Linguistics pp. 420–427 (April 2007)

8. Han, B., Gates, D., Levin, L.: Understanding temporal expressions in emails. In:
Proceedings of the Human Language Technology Conference of the NAACL, Main
Conference, New York City, USA, Association for Computational Linguistics pp.
136–143 (June 2006)

9. Pratt-Hartmann, I.: From TimeML to Interval Temporal Logic. In: Proceedings of
the 7th International Workshop on Computational Semantics, Tilburg, The Nether-
lands (January 2007)

10. Pan, F., Mulkar, R., Hobbs, J.R.: Learning event durations from event descrip-
tions. In: Proceedings of the 44th Annual Meeting of the Association for Compu-
tational Linguistics (COLING-ACL), Sydney, Australia, Association for Compu-
tational Linguistics, 38–45 (2006)

http://nrrc.mitre.org/NRRC/TangoFinalReport.pdf
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC20006T08
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC20006T08

Drawing TimeML Relations with TBox

Marc Verhagen

Computer Science Department
Brandeis University

Waltham, USA
marc@cs.brandeis.edu

Abstract. TBox is a new way of visualizing the temporal relations in
TimeML graphs. Until recently, TimeML’s temporal relations were pre-
sented as rows in a table or as directed labeled edges in a graph. Nei-
ther mode of representation scales up nicely when bigger documents are
considered and both make it harder than necessary to get a quick pic-
ture of the temporal structure of a document. TBox uses left-to-right
arrows, box-inclusions and stacking as three distinct ways to visualize
precedence, inclusion and simultaneity.

Keywords: TimeML, temporal annotation, visualization, timelines,
temporal closure.

1 Introduction

In the early days of TimeML, the TimeBank corpus was created as an illus-
tration of the temporal annotation proposed by TimeML.1 The first version of
TimeBank was annotated almost exclusively with the Alembic Workbench [6].
Alembic proved useful for annotation of non-relational tags, but it does not deal
neatly with the highly relational and inter-connected information embodied in
the temporal links (TLinks) of TimeML. In Alembic, TLinks can be added as
rows to a table where the columns denote the events and times that are linked
and the relation type of the TLink (before, after, includes etc). This works fine
when an annotator sweeps through the text linearly and creates TLinks between
events and times that are close to each other in the text. It makes it impossible,
however, to get a picture of what the temporal structure of a document is. In
addition, Alembic annotation of TLinks proved to be sensitive to directionality
errors where an annotator would, for example, accidentally add [X before Y]
instead of the intended [Y before X].

In 2003, a new tool named Tango [5,7] was developed in order to make
TimeML annotation more intuitive. Tango is a graphical annotation tool that
uses a graph to display the various links in a TimeML document. Annotation

1 See [1,2] for an overview of TimeML and [3] for a description of TimeBank. TimeML
and TimeBank were created in the context of the ARDA/AQUAINT workshops
TERQAS and TANGO [4,5].

F. Schilder et al. (Eds.): Reasoning about Time and Events, LNAI 4795, pp. 7–28, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

8 M. Verhagen

was expected to be more intuitive because with Tango it involves direct manip-
ulation of a timeline. And indeed, adding a TLink does not involve elaborate
manipulation of a table, but proceeds by drawing arrows between events and
times that are displayed on a two-dimensional pane, as shown in figure 1. Tem-
poral relations are represented by labels on the edges: precedence relations are
represented by arrows, proper and non-proper inclusion by circles, simultaneity
by boxes, and begins and ends by diamonds. Time expressions are printed in a
different color towards the top of the display, thereby suggesting a timeline. The
Tango graph only prints events and time expressions. Another Tango widget
contains the text where events and time expressions are color-coded. Selecting
an event in the Tango graph will highlight it in the text widget.

Fig. 1. A fragment from TimeBank Document ABC19980108.1830.0711, as displayed
by Tango. This is a black and white version of Tango’s colored interface.

It turned out that Tango made annotation of TLinks more reliable and that
it invitedthe annotator to explore the temporal structure of a document more
thoroughly. Annotation with Tango also appears to result in a TimeML graph
where the events and times are more tightly connected.

There are a couple of limitations though. The main problem is that it is still
hard to quickly capture the temporal structure of the document. And when a
lot of links are involved the Tango display is simply not that clear. Larger docu-
ments can contain hundreds of links and graph clutter makes it hard to see the
big picture. There are several reasons for these difficulties. One is that all seman-
tics pertaining to the kind of temporal relation is encoded on the label of the
graph and it is hard to make all the distinctions used by TimeML; using color
to group similar kinds of TLinks is not an option since color is already used
to distinguish between temporal links and other kinds of links like aspectual
links and subordination links. But most importantly, the visualization prob-
lems exist because no clear semantics is associated with the relative positions of
events and times with respect to each other. The annotator has complete free-
dom to place events and times where she likes them to be. Typically, some kind of

Drawing TimeML Relations with TBox 9

left-to-right ordering that follows precedence relations is adopted but one cannot
rely on that. In many cases, the Tango display is only readily interpretable by
the annotator who created it. Another drawback of the Tango display is that
it does not discourage the annotator from adding TLinks that are inconsistent
with existing TLinks. Given existing links [X before Y] and [Y before Z], only
careful inspection of the labels will prevent an annotator from adding a link
[Z before X].

This paper presents a better way to visualize TimeML relations. One that
makes it easier to grasp the temporal structure of a document and one that,
when embedded in an annotation tool, makes it less likely that inconsistencies
are introduced. Section 2 introduces the TBox representation and its main dis-
play rules. Section 3 outlines the procedure that takes a TimeML annotation
and visualizes it with TBox drawings. Section 4 dwells on the relation between
annotation consistency and TBox visualization, sketching an informal proof that
a consistent TimeML annotation can be drawn and that any TBox representa-
tion that can be drawn is a consistent annotation. Finally, section 5 explores the
potential use of disjunctions in TimeML and its visualization.

2 Drawing TimeML Relations with TBox

A TBox is a graphical representation of events and times where temporal rela-
tions between the events and times are represented by left-to-right arrows, box
inclusion and box stacking. The name TBox stands for temporal box or time
box and it should be pointed out right here at the onset that there is no relation
with the terminological box from Description Logic.

The central idea of TBox representations2 is that relative placement of two
events or times is completely determined by the temporal relations between
them. Each event or time expression is placed in a box called a TBox. A TBox has
a default size, but can be stretched as needed. Events and times have a similar
ontological status in the sense that both participate in TLinks and both are
placed in boxes in the TimeML graph. But times are distinguished from events
by color-coding them. As mentioned before, TBox uses arrows, box inclusion and
stacking instead of the labeled edges of Tango. TimeML relations are associated
with visualization constraints that have to be met in the display. There are
three constraints that determine placement of two events or times relative to
each other:

1. Precedence Constraint. If event X is before event Y, then X’s box will always
be displayed to the left of Y’s box and there is a sequence of arrows that
leads from one box to the other. X and Y are not necessarily displayed at the
same vertical position. A variation of this theme is when X is immediately
before Y (X meets Y, or, in TimeML terminology, X ibefore Y). In that case,
the arrow is replaced by a line ending in a solid dot.

2 I will be using the terms TBox, TBox representation and TBox drawing
interchangeably.

10 M. Verhagen

(1) X Y

(2) X Y

2. Inclusion Constraint. If X includes Y then the TBox of X is extended with
a box that has thinner lines. The included event Y is placed inside this box.
If needed, the including event X can be stretched so that it has space for Y.
Y does not touch any side of the box. This constraint also governs begin
and end relations. If Y begins or ends X, then the box of Y will touch the
extension of X.

(3)

X

Y

Y

X

Y

X

3. Equality Constraint. If X and Y are simultaneous then their boxes will be
stacked directly on top of each other or there is a series of boxes between
X and Y that are stacked similarly. If X and Y both include events, then
these would be placed in a shared extension underneath Y. Simultaneity and
identity are displayed differently. If two events are identical, then they will
be placed together in the same box.

(4)
X

Y

These constraints cover all TimeML relations. They assume an interval interpre-
tation of TimeML events, similar to the one proposed by James Allen in [8]. If no
rule governs placement of two events X and Y, then none of the configurations
above will occur. X could be above, below, to the right or to the left of Y, but
X cannot be inside the extension of Y, nor can there be a sequence of arrows
between the two, nor can X and Y be stacked in any way.3 It cannot be stressed
enough that vertical and horizontal placement by themselves don’t mean any-
thing. They only mean something in connection with arrows, box inclusion or
stacking.

Figure 2 shows the TBox representation of the TimeBank fragment that was
displayed before in figure 1. At first blush, the TBox representation differs from
the old Tango display in two important respects. There are fewer edges (6 as
compared to 21), and temporal relations are expressed in more than one way.
Not visible explicitly, but nevertheless important because it aides comprehension
of the graph, is that this display is governed by the constraints given above. As
3 Note that the constaints do not cover the overlap relation. TimeML currently has

no overlap relation, but if it had, overlap could be represented as in section 5 where
TBox representations of a larger set of temporal relations is given, including overlap
in example (38).

Drawing TimeML Relations with TBox 11

a consequence, interpretating figure 2 is much easier than interpreting figure 1
and TBox representations are much more likely to reveal something odd in an
annotation (figure 2, for example, may suggest that the annotator over-used the
simultaneous relation a bit).

four year

five year

believe

fallen

drop

hit

lost

get

holdlast twenty four hours

19980108

owns

believe

get

discounts

find

goes

estimates

recession

goes

Fig. 2. A TimeBank fragment in TBox style

The TBox representation abandons the timeline metaphor. With a timeline,
placement of an event e below a timeline element t strongly suggest that e is
included in or overlapping with t. In reality, many events cannot be placed like
this. The temporal structure of a document is not a timeline due to all kinds of
under-specification that is prevalent in natural language. Having a timeline at the
top of the display makes it hard to find a space for an event that is not related to
any of the times in the timeline. The TBox representation has the added benefit
that it is not attempting to visualize a timeline. Vertical placement under a
time or date does not mean anything, unless inclusion or stacking is present. In
figure 2, for example, there are no temporal relations between the four events
grouped together inside of the large box. All we know is that they are included
in the duration last twenty four hours.

2.1 Special Cases

The constraints above do need some elaborations. A special case occurs when one
event is included in two unrelated events, that is, [X includes Z], [Y includes Z]
and there is no TimeML relation between X and Y. The TBox way to represent
this is to print Z twice and convey with an arrow that the two Z’s are the same
thing, as exemplified in (5).

12 M. Verhagen

(5)

X

Z

Y

Z

X and Y do not have to line up horizontally, but the two Z’s do need to line up
(and therefore X and Y will at least appear to have some overlap, which conforms
to our intuitions). Any existing internal structure of Z will be displayed on only
one of the two instances. There are related special cases for begin and end
relations, as well as for certain mixes of includes, begins and ends.

The current formulation of the Precedence Constraint (placement of two events
where one is before the other) fails to correctly account for the interplay of in-
clusion and precedence relations. Take the case where [X includes Y] and [X be-
fore Z].

(6)

X

Y

Z

We display this case as above, but technically another arrow is needed from Y to
Z because the display has strictly not made explicit that Y is before Z because
there is no sequence of arrows between the two. However, the drawing above
makes it completely obvious that [Y before Z]. So rule 1 should be amended,
allowing that [X before Y] can also be expressed by X being included in a box
that has a chain of arrows to Y.

The sister case is not problematic, but is worth looking at because it illustrates
how certain inferences cannot and should not be made from a TBox drawing.
If [X includes Y] and [Y before Z] then it cannot be inferred that [X before Z].
There should be no arrow from X to Z and the display should not strongly imply
that X is before Z (it does strongly imply that X is at least not after Z).

(7)

X

Y Z

With this example, it becomes clear why the border of the extended box is
thinner. If it were thicker, then it would be harder to imagine that Z is not

Drawing TimeML Relations with TBox 13

necessarily after X. An alternative to the line would have been to use a grey
area, but the problem with this approach is that it does not scale up neatly to
a whole chain of inclusion relations.

The display rules by themselves do not force a minimal and clear representation
of a TimeML graph. What they do is provide the basic building blocks for an
intuitive visualization. The next section presents a procedure that creates a TBox
drawing from a TimeML annotation.

3 A Procedure to Display TimeML Relations

There is a mechanical procedure to move from a TimeML annotation to a TBox
drawing. It is not the case that every TimeML annotation can be mapped to a
TBox drawing and the procedure will only successfully terminate for a subset
of TimeML annotations, namely those annotations that are consistent. In fact,
consistency checking is built into the procedure which consists of four stages:
(1) temporal closure, (2) graph reduction, (3) mapping to an attribute-value
matrix, and (4) mapping the attribute-value matrix onto a TBox drawing. These
four steps are discussed in detail below.

3.1 Temporal Closure

The first stage is to create a TimeML annotation that is complete, where com-
pleteness means that any temporal relation that can be inferred from other
relations is expressed by a TLink. This can be achieved using a constraint prop-
agation algorithm as described in the interval algebra of James Allen [8]. Allen’s
algorithm also detects inconsistencies in the input, but unfortunately inconsis-
tency checking in the unrestricted interval algebra4 is not tractable. Tractability,
however, is restored when a restricted version of interval algebra is used, based
on the point algebra of Villain, Kautz and van Beek [9]. This restricted alge-
bra is applied as a temporal closure component for TimeML in [10] and used
as the first step in the display procedure. If an annotation is inconsistent then
the procedure terminates at this stage. This happens often enough to warrant
attention. In version 1.1 of the manually annotated TimeBank corpus, 32 out of
183 documents contain inconsistencies, and there is anecdotal evidence that an
automatic temporal processing chain that does not include consistency checking
produces even more inconsistencies.

3.2 Graph Reduction

The goal here is to map a complete TimeML graph to a unique minimal repre-
sentation. Graph reduction consists of three sub steps: (1) creation of equivalence
classes, (2) normalization of TimeML relations, and (3) deletion of relations that

4 Unrestricted in the sense that any disjunction of relations is allowed as a label on
the edges.

14 M. Verhagen

can be inferred. The first step reduces the number of nodes (and by extension the
number of edges), the second step eliminates cycles, and the third step eliminates
edges that can be derived from other edges.

1. Create Equivalence Classes
The TimeML relations identity, during, and simultaneous are all equiv-
alence relations. We can group events and times in equivalence classes and
select one event or time to be the class representative. All TLinks from ele-
ments in the equivalence class to elements outside it are deleted except for
relations from the class representative. Later, in the TBox drawing, this rep-
resentative will be placed at the top of the box. The creation of equivalence
classes is not without some ontological slight of hand. Equivalence relations
are reflexive, symmetric and transitive and this is not the case for all three
TimeML relations above. TimeML’s during is not symmetric since an event
is during a time and not the other way around. Also, TimeML does not stip-
ulate anything about reflexivity and leaves it undefined. Using equivalence
as a notion is valid however because we choose to interpret all TimeML re-
lations as basic Allen relations between intervals. TimeML’s simultaneous,
identity and during are all mapped to equals, which is an equivalence
relation.

2. Normalize Non-Equivalence Relations
The procedure that turns an attribute-value matrix into a TBox drawing
requires a directed acyclic graph with a limited set of temporal relations.
Cycles can simply be removed by selecting a set of normalized relations and
mapping the inverse relations to elements of the selected set. For example,
[X after Y] can be mapped to [Y before X], [X is included Y] to [Y includes X]
and [X begins Y] to [Y begun by X]. The set of normalized TimeML relations
contains before, ibefore, includes, begun by, and ended by, as well as the
equivalence relations identity and simultaneous.

3. Remove Implicit Relations
The closure algorithm in [10] uses a complete set of compiled out composition
rules. These rules can be used to delete relations that can be derived. For
example, a before relation between X and Z can be removed given a com-
position rule like "[X before Y] � [Y before Z] = [X before Z]". The
procedure uses two passes, one in which all derivable relations are marked
and one that removes all marked relations. This reversed closure operation
results in a unique minimal graph because all nodes that stand in equivalence
relations to each other have been conflated into single nodes and therefore
all potential non-deterministic cases have been eliminated. An example of a
graph before and after this step is given in figure 3.

The reduced graph is semantically the same as the complete graph and allows
the same inferences. The complete graph can be recreated from the minimal
graph by reversing the steps in this section.

Drawing TimeML Relations with TBox 15

1

2

3

4

5

6 7

8

1

2

3

4

5

6 7

8

Fig. 3. The third step of graph reduction. Arrows indicate before links and lines that
end in open squares indicate includes links.

3.3 From Graph to Attribute-Value Matrix

The minimal directed acyclic graph from the previous section can be trivially
mapped to an attribute-value matrix (AVM) with re-entrancies and list values:

(8)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

id 1

before

〈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

id 2

before

〈[
id 4

]
,

⎡
⎢⎢⎢⎢⎢⎢⎣

id 5

includes 6

⎡
⎢⎢⎢⎣

id 6

before
[
id 7

]

includes
[
id 8

]

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎣id 3

before 6

⎤
⎦
〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In general, every annotation can be represented in a single AVM, even those
annotations that do not consist of one connected graph, but of a series of graphs.
For those cases we need to introduce a root node that is not in the original
annotation. This root node can be seen as the event before all other events and
the roots of all other graphs will be pointed to from this root node with a before
edge.

Let’s print the AVM in example (8) slightly differently. The lists are flattened
out by repeating the attribute name, node names are printed as an index, and
boxes are drawn for clarity. The re-entrant box is shaded for clarity. These are
simple mechanical changes but they make the following steps more transparent.
The AVM above can now be printed as follows.

(9)

before
before

before

before

includes

includes
7

8

6
5

4

6
3

2
1

before

before

16 M. Verhagen

The main reason for undertaking this mapping from directed acyclic graph to
AVM is that the AVM’s visual layout is similar to a TBox drawing and that it
facilitates an intuitive explanation of the drawing procedure.

3.4 From Attribute-Value Matrix to TBox

There is a bottom-up step-by-step process for replacing parts of a TimeML AVM
with their corresponding TBox representations. Let’s say we have an AVM, in
which some parts have already been replaced by TBox drawings, as in the figure
below.

(10)

rel1
0

rel2

rel3

.

.

drawing1

drawing2

drawing3

The process outlined below focuses on the before and includes relations,
ignoring ibefore, begun by and ended by. These latter three relations act in
ways very similar to before and includes.

Basic Mapping Rule. The basic AVM-to-drawing mapping rule for an AVM
labeled 0 is as follows:

1. Draw a bar for 0 in the top left corner of the AVM
2. For every attribute equal to before, remove the attribute and draw an arrow

from bar 0 to the head of the drawing that is the value of before. The head
of the drawing is the bar that is at the top left, the one that dominates all
others.

3. For every attribute equal to includes, remove the attribute and move the
value of the attribute to the box underneath 0, draw the extension box if
there isn’t one yet. The value of the attribute should not be completely
moved inside the box underneath, only the head of the drawing plus its
extension should be moved in. This is to make sure that when [X includes Y]
and [Y before Z], Z is not dragged inside of X because X does not necessarily
include Z.

4. Remove the border of the box when there are no more attributes left in the
box. Also remove the label of the box.

Application of the basic rule is illustrated in the next eight figures where parts
of the AVM are gradually replaced by TBox drawings.

Drawing TimeML Relations with TBox 17

(11)

before
0

before

includes

includes

1

2

3

4

before
0

before

includes

includes

1

2

3

4

0
0

before

includes

includes

1

2

3

4

0
0

includes

includes

1

2

3

4

0

(12)

0

includes

1

23

4

0
0

1

23

4

0
0 1

23

4

0 1

23

4

0

Special Cases. The picture is not complete yet because the basic rule only
governs creation of drawings for those AVMs that do not include re-entrancies,
that is, they work for trees, not for directed acyclic graphs. There are three
special cases for nodes in the TimeML graph whose in-degree is higher than one:

(13)

More generally formulated, the three special cases are (1) a node that has more
than one incoming precedence relation from other nodes, (2) a node that has
more than one incoming inclusion relation, and (3) a node that has a mixture of
incoming precedence and inclusion relations. These three cases can be solved by
using two extra rules: one special rule for merging in an arrow into a TBox that
is already pointed to by another arrow or that is included in another box, and
one special rule for merging two box inclusions. In most cases it is possible to
use the first special rule and simply draw an arrow if one merges in a re-entrancy
inside a before relation, as shown in example (14) below.

(14)

18 M. Verhagen

Sometimes, this arrow will actually not point to the right and violate the Prece-
dence Constraint. In that case, the drawing that is the target of the arrow needs
to be moved to the right.

The second special rule corresponds to the special rule in section 2.1: two
events that are not related yet include the same event. The solution is to line up
horizontally the boxes of the included event, and to add a connecting two-way
arrow that indicates that the two included boxes are the very same box:

(15)

These two special rules require that the bottom-up redrawing strategy cannot
indiscriminately take any attribute whose value is a TBox drawing and then
apply the rules. Instead, care should be taken that the includes attributes are
taken before the before attributes and that the re-entrancy is put on the before
relation if possible.

A More Elaborate Example. The remainder of this section is devoted to a
more extended example, showing how the AVM of section 3.3 is turned into a
TBox drawing. The first two steps are to replace the sub-AVM labeled 6 with a
box labeled 6, which encloses a box labeled 8 and connects with an arrow to a
box labeled 7:

(16)

before
before

before

includes
5

4

6
3

2
1

before

before
6

8

7

The next steps are to introduce another including box to represent that 5 includes
6, and to add precedence arrows from 2 to 4 and 5:

Drawing TimeML Relations with TBox 19

(17)

before

before 6
3

1

before

6

8

7

5

2 4

At this point, the only sub-AVM that can be drawn is the one with the re-
entrant box labeled 6 in it. An arrow is now drawn from 3 to the target of the
re-entrancy. Note that this requires that the target of the re-entrancy has already
been drawn.

(18)

before1

before

6

8

7

5

2 4

3

Finally, we take care of the last two remaining before links.

(19) 6

8

7

5

2 4

3

1

4 Consistency and Drawability

Temporal closure catches inconsistencies in an annotation. As does impossibility
to arrange a graph with the rules above. Take the graph below, where each arrow
indicates a before link.

(20)

X

Z

Y

20 M. Verhagen

The Precedence Constraint of section 2 dictates that Z should be drawn both
to the left of X and to the right of Y, which is impossible. Similarly, temporal
closure will derive that given [X before Y] and [Y before Z], we should have
[X before Z], but we already have [Z before X]. An appealing characteristic of the
TBox representation is that it features a strong correspondence with annotation
consistency.5 For each consistent annotation there is a TBox drawing and each
TBox drawing represents a consistent annotation. In this section, I will sketch
an informal proof for these theorems.

Theorem 1. Every consistent TimeML annotation can be visualized using a
TBox representation.

For simplicity’s sake, I will sketch a related proof, namely that an attribute-
value matrix that encodes a consistent annotation can be mapped to a TBox
representation. That is, the steps from a consistent annotation to the AVM are
taken for granted. The proof resembles an inductive proof and uses the procedure
outlined in section 3.4. The bottom-up procedure looks at attribute-value pairs
in an AVM labeled x where the attribute is one of the five allowed temporal
relations (before, ibefore, includes, begun by and ended by) and the value
is an empty AVM, a TBox drawing, or a re-entrancy. There are five cases.

1. The value is an empty AVM without attributes. This AVM, which stands
for a single event or time expression with no outgoing temporal relation, can
simply be drawn with a single TBox with label x and the attribute value
pair can now be drawn as one of the TBox drawings in examples (1), (2)
and (3) in section 2.

2. The attribute is before or ibefore and the value is a TBox drawing. This
pair can simply be turned into a TBox representation by drawing an arrow
from x to the embedded TBOX:

(21) x

[
before TBOX

]
=⇒ x → TBOX

3. The attribute is one of includes, begun by and ended by and the value is
a TBox drawing. This case is a bit more complicated because the internal
structure of the TBox determines the action. If the head of the TBox has
no precedence arrows leaving it, then the whole TBox is included in the
new head. But if there is an outgoing before or ibefore relation, then only
the head (plus anything in its extension box), will be included inside the
extension of the new head.

(22) x

[
includes x’ → TBOX

]
=⇒

X

X' TBOX

5 An annotation is consistent if the constraint propagation algorithm used by James
Allen in [8] does not detect an inconsistency. It does not matter that TimeML only
uses a subset of the labels allowed in [8], in both cases the same algorithm is used
with the same set of constraints, the only difference is that Allen’s unrestricted
interval algebra requires some extra machinery to deal with disjunctive relations.

Drawing TimeML Relations with TBox 21

The previous cases together account for AVMs without re-entrancies, that is, for
those annotation graphs that do not have nodes with more than one incoming
edge. The most complicated cases deal with re-entrancies, that is, nodes that
have more than one incoming edge (cf. example (13) in section 3.4).

4. The attribute of x is before or ibefore and the value is a re-entrancy named
y. This case is isomorphic to the first special rule depicted in example (14)
of section 3.4. It is important to note that in a consistent AVM the target
of the re-entrancy y has to be outside of the AVM x because x and y can
be linked by only one temporal relation. In addition, the target of y cannot
be in pathj because cycles were eliminated. This case can be schematized as
follows:

(23) x0

⎡
⎣pathi TBOX

pathj x

[
before y

]
⎤
⎦

Here, the value of pathi is the TBox drawing that contains a TBox named
y, and pathi and pathj are paths from the root of the AVM to the sub AVM
named x and the TBox drawing. To create a drawing for the attribute-value
pair inside of x, we draw an arrow from the box labeled x to the appropriate
spot inside the TBox.

(24) x0

[
pathi TBOX

pathj x

]
�

In this case, the arrow does not point to the left, which is a violation of the
Precedence Constraint. This can be dealt with by shifting the TBox drawing
to the right.

(25) x0

[
pathi TBOX

pathj x

]
���

This shifting operation may set off a sequence of shifts because it is possible
that from inside the TBox there is an arrow going to another part of the
AVM named x0. Note that this shifting process will always terminate because
there are no cycles in the AVM.

To simplify the next case we are going to assume that re-entrancies are placed
as the value of a before relation where possible. So the graph in example (26)
will be represented as the AVM in (27) where the structure of the graph below
node 3 is realized as the value of the includes relation and not the before
relation.

(26)
1 3

2

4

22 M. Verhagen

(27) x0

⎡
⎢⎢⎣
pathi 1

[
before 3

]

pathj 2

[
includes 3

[
before 4

]]
⎤
⎥⎥⎦

With this assumption in place, we can continue with the last case.

5. The attribute of x is one of includes, begun by and ended by, and the
value is a re-entrancy named y. This situation refers to the second special
rule given in example (14) of section 3.4.

(28) x0

⎡
⎣pathi TBOX

pathj x

[
includes y

]
⎤
⎦

Given the assumption above, we know that the box labeled y inside of the
TBox is either the head of the TBox, in which case pathi ends in an includes
relation, or is inside the TBox included in another box. In either case, this
is an instance of example (5) in section 2.1 and the solution is to duplicate
the box for y and draw a double arrow indicating that the two boxes refer
to the same node. Example (29) shows the result for the case that the TBox
consists of a box x′ that includes box y and nothing else.

(29)
y

x'

y

x

pathi

pathj

X0

This concludes the proof of theorem 1. Note that we have again glossed over the
ibefore, begun by and ended by relations. In section 3.4, when describing the
mapping from AVMs to TBox drawings, we also ignored those relations. For the
proof, their omission can again be motivated by the similarity of these relations
to the once we did deal with. We now turn, in far less detail, to the reversed
case.

Theorem 2. Every TBox representation of a TimeML annotation is necessarily
a representation of a consistent annotation.

The proof is in many ways a reversed version of the proof of theorem 1. The idea
is to use a bottom-up rebuilding of a TBox drawing into an AVM, and at each
step show that the AVM has to be an AVM of a consistent annotation. We start
with those parts of the TBox drawing where we have a TBox without extension
and without outgoing arrows. These boxes can be replaced with empty AVMs

Drawing TimeML Relations with TBox 23

and empty AVMs trivially are consistent. We then look at AVM’s that are either
included in one box or are pointed to from one box. The including box, or the
box that points at the AVM can simply be incorporated, as shown for inclusion
in example (30).

(30)

X

y =⇒ X

⎡
⎣includes Y

[
reli vali
relj valj

]⎤
⎦

Note that if the embedded AVM named Y is consistent, then the new AVM has
to be consistent as well. The more complicated cases are the ones where an AVM
is not just included by one box or pointed to by one box, as in example (30).

(31)

X

Y
Z

For a case like this, we need to create two AVM fragments, where one contains
a re-entrance to the embedded AVM. This is best illustrated by embedding (30)
in a larger AVM:

(32)

X

Y
X0 Z

The corresponding AVM is as follows.

(33) X0

⎡
⎢⎢⎢⎢⎣

before X

⎡
⎣includes Z

[
reli vali
relj valj

]⎤
⎦

before Y

[
before Z

]

⎤
⎥⎥⎥⎥⎦

It is again the case that the new AVM is consistent, given the consistency of the
AVM named Z. Nodes X and Y are not related to each other and having one
include Z and the other be before Z does not introduce inconsistencies. Similar
cases can be made for all other configurations.

24 M. Verhagen

5 Extending TimeML with Disjunctions

TimeML has defined a set of precise temporal relations along the lines of Allen’s
interval algebra, but some discussion has focused on whether more underspeci-
fied relations should be allowed. In the past, several authors (cf. [11], [12]) have
reasoned that coarse temporal information is needed to properly describe indef-
inite temporal information in discourse, and within the TimeML community a
discussion continues on what disjunctions of TimeML relations to allow.6

In this section, I consider a restricted set of disjunctions based on the point
algebra proposed by Villain, Kautz and van Beek [9]. For this restricted set,
we use precedence and equality relations on begin and end points of intervals.
For example, we can define a relation between two intervals where the begin
points are equal. This would translate into the following disjunction of TimeML
relations: simultaneous, begins and begun by. If we take {=, <, ?} as the
allowed temporal relations on points, then we can define a set of 29 convex
relations7, some examples are given below.

(34)

point constraints Allen relations TimeML relations
x2<y1 before before
x1=y1 starts equals startsi begins simultaneous begun by
x1<y2 ∧ x2>y2 duringi startsi overlapsi includes begun by
x1<y1 ∧ x2=y2 finishesi ended by

This table shows constraints on point relations and the set of Allen relations that
corresponds to the constraints. For example, the point relation x2 <y1, where
x2 refers to the end point of the interval x and y1 to the beginning point of
interval y, corresponds to the before relation. Inverse relations are indicated
with a superscript. TimeML translations of the Allen relations are given for
comparison (there is no translation for overlapi since overlap doesn’t exist in
TimeML).

With this expanded vocabulary of temporal relations, it is not the case any-
more that drawability implies annotation consistency and inconsistent graphs
can be drawn. As an example, take the annotation graph and TBox drawing
in figure 4. The TBox drawing on the right is perfectly allowable given the
constraints in section 2. But the annotation graph is not consistent. With clo-
sure we can compose [X {di,oi,si} Y] with [Y fi Z] and derive [X {di,oi,si} Z].
6 It is not entirely the case that TimeML relations are all precise since some relations

can be interpreted in a more liberal manner. For example, simultaneous and during
can be seen as ambiguous between strictly equals in the Allen sense or as ”mostly
occurring in the same interval”. For purposes of consistency checking and TBox
representation these vague relations have been interpreted in a precise manner, which
may in some cases not be conform to the annotator’s interpretation. One could argue
that there needs to be a distinction between precise and vague interpretations of these
relations and that using disjunctions can be part of the solution.

7 The term convex in this context means that the relations between intervals can be
expressed as a conjunction of point relations.

Drawing TimeML Relations with TBox 25

X

Y

Z

y1<z1 & y2=z2 {fi}x1<y2 & x2>y2 {di,oi,si}

x2<z1 {<}

X

Y

Z

Fig. 4. An inconsistent annotation graph with its TBox drawing

Which is inconsistent with the already existing [X < Z] because the intersec-
tion of {di,oi,si} with {<} is the empty set. The correspondence of annotation
consistency and drawability is lost now the set of allowable temporal relations
is expanded without adding visualization constraints. Of course, the only rea-
son that there is a TBox drawing for the annotation graph is that there is no
constraint that governs the disjunctive relation between X and Y. But the point
is that with the current set of constraint we can create a TBox drawing for an
inconsistent graph.

It turns out that the added disjunctive relations can all be easily displayed in
a TBox-like fashion and that new visualization constraints can be formulated.
Take for example the three disjunctions that describe how the begin points
relate: [x1<y1], [x1 = y1], and [x1 > y1]. The first of these corresponds to the
disjunction of TimeML relations [before ∨ ibefore ∨ ended by ∨ includes].
The corresponding TBox drawings are depicted below.

(35)
X

Y

X

Y

X

Y

The main thing to note is that arrows are drawn from the corners of the boxes.
Placement rules for arrows are unchanged, that is, the source of the arrow is
placed to the left of the target of the arrow. A straight vertical dotted line
connects two begin points that are equal. There are no restrictions on how the
right corners of the boxes relate spatially, this is governed by the size of the
boxes, which in turn is governed by the contents of the boxes. Three similar
relations and TBox drawings can be defined for relations between end points.
Other disjunctions occur when the beginning of one event precedes the end of
the other and vice versa ([x1 <y2], and [y1 <x2]), and when the beginnings of
both events both precede the end of the other event ([x1<y2 ∧ y1<x2]).

(36)
X

Y

X

Y

X

Y

26 M. Verhagen

Six other disjunctions that are defined by two point relations are printed below
without comment.

(37)

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

Those who were counting may have noticed that so far only 26 different disjunc-
tions have been accounted for. The missing ones are (i) the totally underspecified
relation, for which there exists no constraint, and (ii) the overlaps relation and
its inverse, which does not exist in TimeML but which could be drawn as follows:

(38)

X

Y

The set of 29 convex relations used above was generated by taking {=, <, ?}
as the allowed temporal relations between points. The set of 13 basic interval
relations (and by extension, with some caveats, the set of TimeML relations), is a
natural subset of these convex relations, namely the set of those relations where
implicitly all relations between the beginning and ending points are specified.
In the previous sections it became clear that the TBox representation is an
attractive way to visualize TimeML relations. And the current section showed
that every one of the 29 convex relations between events can be drawn and that
the set of constraints in section 2 could be expanded accordingly.

Whether this should be done, and to what extent, is an empirical question
depending on (i) simplicity of design, (ii) potential for increased clutter for each
display relation, and (iii) added convenience and clarity of the display. For exam-
ple, adding overlap to the display is unlikely to scale up gracefully when three or
more events stand in overlap relations. On the other hand, adding lines between
begin points may be a viable option.

5.1 Disjunctions and Consistency

Recall the example in figure 4 which showed that the constraints in section 2
allow you to draw inconsistent annotations. But the example given cannot be
drawn if we expand our constraint set to include all 29 convex relations. The
relation between X and Y now has a visual display, using arrows from the corners
and an overlap of the horizontal extent:

Drawing TimeML Relations with TBox 27

(39)

X

Y

Z

X

It is clear that X now has to be at two places at the same time and that the
constraints that govern placement are now incompatible. So consistency and
drawabilty are again flip sides of the same coin even with the expanded set of
relations.

6 Conclusion

TBox is a viable and attractive alternative to the table-based and graph-based
display modes of Alembic and Tango. A TBox representation is easier to read
due to strict visualization constraints associated with temporal relations. A TBox
representation is also always a representation of a consistent annotation. So if
the annotation environment uses a TBox display then it is impossible to in-
troduce inconsistencies. It should be stressed that I do not suggest that TBox
representations should replace tables and graphs. A solid case can be made for
an annotation environment where the annotator can switch freely between the
modes, using the display mode that seems most comfortable at a given time.
TBox has been implemented as an addition to Tango and will soon be made
available at http://www.timeml.org/tango/.

Acknowledegments

The TBox approach was inspired by an email from Nick Chubrich, who proposed
many ways to improve on the Tango display. One of his ideas was to introduce a
mechanism that allows annotators to select a whole group of events and use only
one link to state that every event in this group stands in a particular temporal
relation to another event or timex. TBox derives in a crooked way from this.
Alex Baron implemented the TBox addition to the Tango annotation tool. Part
of this work was carried out in the context of the AQUAINT TARSQI project
and funded under US/DoD grant number NBCHC040027.

References

1. Pustejovsky, J.: Castaño, J., Ingria, R., Sauŕı, R., Gaizauskas, R., Setzer, A., Katz,
G.: TimeML: Robust Specification of Event and Temporal Expressions in Text. In:
IWCS-5 Fifth International Workshop on Computational Semantics (2003)

2. Pustejovsky, J., Knippen, R., Littman, J., Sauŕı, R.: Temporal and event infor-
mation in natural language text. Language Resources and Evaluation 39, 123–164
(2005)

28 M. Verhagen

3. Day, D., Ferro, L., Gaizauskas, R., Hanks, P., Lazo, M., Pustejovsky, J., Sauŕı,
R., See, A., Setzer, A., Sundheim, B.: The TimeBank Corpus. Corpus Linguistics
(2003)

4. Pustejovsky, J., Belanger, L., Castaño, J., Gaizauskas, R., Hanks, P., Ingria, B.,
Katz, G., Radev, D., Rumshishky, A., Sanfilippo, A., Sauŕı, R., Setzer, A., Sund-
heim, B., Verhagen, M.: TERQAS Final Report. Technical report, The MITRE
Corporation, Bedford, Massachusetts (2002)

5. Pustejovsky, J., Mani, I., Belanger, L., van Guilder, L., Knippen, R., See, A.,
Schwarz, J., Verhagen, M.: TANGO Final Report. Technical report, The MITRE
Corporation, Bedford, Massachusetts (2003)

6. Day, D., Aberdeen, J., Hirschman, L., Kozierok, R., Robinson, P., Vilain, M.:
Mixed-Initiative Development of Language Processing Systems. In: Fifth Confer-
ence on Applied Natural Language Processing Systems, Washington D.C., U.S.A.,
pp. 88–95 (1997)

7. Verhagen, M., Knippen, R.: TANGO: A Graphical Annotation Environment for
Ordering Relations. In: Pustejovsky, J., Gaizauskas, R. (eds.) Time and Event
Recognition in Natural Language. John Benjamin Publications (Forthcoming)

8. Allen, J.: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26(11), 832–843 (1983)

9. Vilain, M., Kautz, H., van Beek, P.: Constraint propagation algorithms: A revised
report. In: Weld, D.S., de Kleer, J. (eds.) Qualitative Reasoning about Physical
Systems, pp. 373–381. Morgan Kaufman, San Mateo, California (1990)

10. Verhagen, M.: Temporal Closure in an Annotation Environment. In: Pustejovsky,
J., Gaizauskas, R. (eds.) Language Resources and Evaluation, vol. 39, pp. 123–164.
Springer, Heidelberg (2005)

11. Freksa, C.: Temporal Reasoning Based on Semi-Intervals. Artificial Intelli-
gence 54(1), 199–227 (1992)

12. Schilder, F.: Temporal Relations in English and German Narrative Discourse. PhD
thesis, University of Edinburgh, Edinburgh, UK (1997)

F. Schilder et al. (Eds.): Reasoning about Time and Events, LNAI 4795, pp. 29–40, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Text Type and the Position of a Temporal Adverbial
Within the Sentence∗

Janet Hitzeman∗∗

The MITRE Corporation
202 Burlington Road, M/S K309

Bedford, MA 01730 USA
hitz@mitre.org

Abstract. Consider example (a), below. When the temporal adverbial since
1992 is in sentence-final position as in (i.a), it can attach syntactically at the
VP-level or at sentence-level:

i. a. Mary has worked in Amsterdam since 1992.
 b. Since 1992 Mary has worked in Amsterdam.

Hitzeman (1993, 1997) argues that these different positions allow it to take on
two readings: one in which there was some period between 1992 and speech
time during which Mary worked in Amsterdam and another in which Mary has
worked in Amsterdam for the period from 1992 until speech time. In contrast,
sentence (i.b), in which the adverbial must attach at sentence-level, has only the
second reading. If an initial-position adverbial unambiguously specifies the
time of the event expressed by a sentence, then it should be a useful tool for a
reader trying to determine the order of events in a narrative. To test the
hypothesis that initial-position adverbials occur more often in texts describing
events with some temporal order (i.e., a story line), I compare the use of these
adverbials in narrative text and in non-narratives. The results show that
significantly more initial-position adverbials are used in narratives. I then test
the individual narratives and show that the significant difference in use of
initial-position adverbials is correlated with the amount of flashback material in
a narrative, i.e., with the complexity of the story line.

Keywords: temporal adverbial, narrative, perfect, flashback.

1 Introduction

In English, a phrase such as “a dog” can denote a specific entity in the world, e.g.,
Rover, or to any entity which fits the description “dog.” Diesing (1992) shows that

 ∗ This work was done for ESPRIT Basic Research project DANDELION, funded by the

European Union.
∗∗ The author’s affiliation with The MITRE Corporation is provided for identification purposes

only, and is not intended to convey or imply MITRE’s concurrence with, or support for, the
positions, opinions or viewpoints expressed by the author.

30 J. Hitzeman

this phenomenon is common to many languages, and argues that it can be explained
by positing that these phrases are interpreted differently at the syntax-semantics
interface depending on their structural position in the sentence. Hitzeman (1993,1997)
extends this argument to temporal adverbials with examples such as (1):

1. a. Mary has worked in Amsterdam for three years.
 b. For three years Mary has worked in Amsterdam.

When the temporal adverbial for three years is in sentence-final position as in (1a), it
has two possible readings: one in which there was some three-year period in the past
during which Mary worked in Amsterdam and another in which Mary has worked in
Amsterdam for the three years preceding speech time. In contrast, sentence (1b) in
which the adverbial is in sentence-initial position has only the reading in which Mary
works in Amsterdam at speech time and has done so for the preceding three years.

Obviously, there are other ways to precisely specify the time of an event, as in (2):

2. Mary worked in Amsterdam from November 5, 1995 until August 12th of the
following year.

The question is whether authors make use of sentence-initial temporal adverbials,
which pinpoint an event in time, as a tool to help the reader understand the order of
the events described in the text. In order to explore this hypothesis, I examine the use
of sentence-initial adverbials in four corpora from the European Corpus Initiative
(ECI): The Financial Times, which contains descriptions of business dealings but not
much of a story line, Far from the Madding Crowd which contains a simple forward-
moving narrative, A Christmas Carol, which has one extended scene in which the
main character visits his past, and Silas Marner, which has a great deal of flashback
material throughout the text. The results will show that significantly more initial-
position adverbials are used in narratives than non-narratives. A test of the individual
narratives will show that the significant difference in use of initial-position adverbials
is correlated with the amount of flashback material in a narrative, i.e., with the
complexity of the story line.

2 The Ambiguity

The purpose of this section is to describe the two readings associated with a for-
adverbial and to show that these temporal adverbials in English follow the pattern of
having two readings when the adverbial is in sentence-final position but only one of
these readings when it is in sentence-initial position.
 Consider the following examples:

3. a. Martha will be in her office for an hour.
 b. For an hour Martha will be in her office.

Sentence (3a) has two readings: The first reading is one in which Martha will be in
her office for some unspecified hour in the future and another reading in which
Martha will be in her office for the hour beginning at speech time. When the
adverbial is in initial position, as in (3b), the only available reading is one in which
Martha will be in her office for an hour beginning at speech time.

I will adopt Klein's (1992) term position-definite (p-definite) to refer to an
adverbial when its content fixes the position of a time span on the time axis, and I will

 Text Type and the Position of a Temporal Adverbial Within the Sentence 31

call it non-p-definite when it is interpreted as expressing a time span whose position
on the timeline is vague, e.g., we know that the NP refers to a one-hour interval after
speech time, but we don't know the exact position of this interval. For example, 2:00
P.M. on January 9, 1983 is p-definite regardless of context since it refers to a
particular time on the time axis, and expressions such as yesterday are p-definite in a
context where the day of the utterance is known, while two hours can either be p-
definite if it refers to a specific two hours or non-p-definite if it refers to any
nonspecific or unknown two-hour period.

The contrast between the two readings in (3) is more clearly seen when the
presence of another adverbial forces the non-p-definite reading, as below:

4. a. Martha will be in her office for an hour one day next week.
 b. Martha will be in her office one day next week for an hour.
 c. #For an hour Martha will be in her office one day next week.
 d. #One day next week for an hour Martha will be in her office.

The phrase one day next week forces the one-hour interval to be interpreted as being
in the future so that the p-definite reading, in which the one-hour interval begins at
speech time, is ruled out. The awkwardness of the sentence when the for-phrase is in
initial position, as in (4c) and (d), shows that the non-p-definite reading is
incompatible with the for-phrase in this position.
 See Hitzeman (1997) for an extension of this argument to other English temporal
adverbials.

3 The Effect of Text Type

3.1 The Initial Hypothesis

I have presented an analysis in which an adverbial in initial position must refer to a
specific time, thus pinpointing the event described by the sentence in time, while an
adverbial in final position is ambiguous between a p-definite and non-p-definite
reading. How does this analysis of temporal adverbials play out in different text
types? Consider that in a narrative the order of events is more important than in a fact-
reporting, typically non-narrative text such as The Financial Times (FT). In the bit of
narrative in (5), for example, the events are understood to occur sequentially, and this
is important for the understanding of the story:

5. The Ghost conducted him through several streets familiar to his feet; and as they
went along, Scrooge looked here and there to find himself, but nowhere was he to
be seen. They entered poor Bob Cratchit's house; the dwelling he had visited
before; and found the mother and the children seated round the fire. (Christmas
Carol, line 6123)

In the following texts from The Financial Times in (6), however, the order of events is
less important:

6. a. Thus organisations like British Rail and British Gas could use the wayleaves
afforded by their railway lines and pipes to provide long-distance
telecommunications. Cable TV operators would be allowed to provide local

32 J. Hitzeman

telecommunications services, which for 10 years BT would be excluded from
doing. New competitors such as satellite operators would be allowed to
operate international links. (FT, line 16490)

 b. The suggestions look sensible in themselves; but it does not seem likely that
they will win credibility for more than a few months. The reason is political
as much as economic: a free-enterprise government can hardly maintain a
murderous squeeze on profits for ever, nor can a government nearing
election choose to stick to rising unemployment. (FT, line 20462)

More stative sentences and modals appear in these examples and there is no narrative
progression. Aiding the reader in understanding how events progress in time is
important to any cooperative author of a narrative. It is a reasonable hypothesis that
the author of a narrative will use temporal expressions which are specific with respect
to time, and that we will therefore find more temporal adverbials in initial position,
where they are unambiguously p-definite, than in final position. I will test this
hypothesis below.

3.2 The Raw Data

Before analyzing the data in these four texts, it was important that only temporal for-
phrases which can be interpreted either as p-definite or non-p-definite should be
included, since it is only those adverbials which can be disambiguated by moving
them to sentence-initial position.

I first eliminated all non-temporal uses of for, such as “For he could then see the
path of his life clearly.” I also eliminated examples where the adverbial appeared in
the middle of the sentence, as in (7), and examples in which the adverbial modified an
NP, as in (8):

Table 1. Comparing The Financial Times with the three novels

Financial Times Three novels
initial final initial final

p-def 5 36 21 32

non-p-def - 4 - 19 for

Totals 5 40 21 51

Table 2. Comparison of the three novels

A Christmas Carol Silas Marner Madding Crowd
initial final initial final initial final

p-def 0 11 13 27 8 82

non-p-def - 2 - 1 - 16
for

Totals 0 13 13 28 8 98

 Text Type and the Position of a Temporal Adverbial Within the Sentence 33

Table 3. χ2 comparison of adverbial position for The Financial Times and the three novels

Initial Final

The three novels
Observed: 21

E = (26 x 72) / 117 = 16
Contribution to χ2 = 1.6

Observed: 51
E = (91 x 72) / 117 = 56
Contribution to χ2 = 0.4

72

Financial Times
Observed: 5

E = (26 x 45) / 117 = 10
Contribution to χ2 = 2.5

Observed: 40
E = (91 x 45) / 117 = 35
Contribution to χ2 = 0.7

45

 26 91 117

χ2 = 5.2
df = 1
Significant with p = .01

Table 4. χ2 comparison of adverbial position for the three novels

Initial Final

A Christmas Carol
Observed: 0

E = (21 x 13) /160 = 1.7
Contribution to χ2 = 1.7

Observed: 13
E = (139 x 13) / 160 = 11.3

Contribution to χ2 = 0.3
13

Silas Marner
Observed: 13

E = (21 x 41) / 160 = 5.4
Contribution to χ2 = 10.7

Observed: 28
E = (139 x 41) / 160 = 35.6

Contribution to χ2 = 1.6
41

Madding Crowd
Observed: 8

E = (21 x 106) / 160 = 13.9
Contribution to χ2 = 2.5

Observed: 98
E = (139 x 106) / 160 = 92.1

Contribution to χ2 = 0.4
106

 21 139 160

χ2 = 17.2
df = 2
Significant with p = 0.01

7. I have but to swallow this, and be for the rest of my days persecuted by a legion

of goblins, all of my own creation. Humbug, I tell you; humbug! (Christmas
Carol, line 1315)

8. Oil prices of Dollars 50 per barrel for any length of time could push the US and
other economies into a fully-fledged recession. Some bond markets may have
discounted a short, limited and successful armed conflict with Iraq, but a longer
engagement would bring unforeseen pressures. (FT, line 24854)

The analysis of the remaining for-phrases is shown in Tables 1 and 2. Table 1 shows
the totals for The Financial Times and the three novels, and Table 2 shows the
breakdown of the data for the three novels.

These phrases were analyzed as to whether they appeared in initial or final
position, and also whether their interpretation in context was p-definite or non-p-
definite. An example of such an adverbial is underlined in (9):

34 J. Hitzeman

Table 5. Pairwise comparisons of the adverbials in the three novels

Initial Final

A Christmas Carol
Observed: 0

E = (13 x 13) / 54 = 3.1
Contribution to χ2 = 3.1

Observed: 13
E = (41 x 13) / 54 = 9.9
Contribution to χ2 = 1.0

13

Silas Marner
Observed: 13

E = (13 x 41) / 54 = 9.9
Contribution to χ2 = 1.0

Observed: 28
E = (41 x 41) / 54 = 31.1
Contribution to χ2 = 0.3

41

 13 41 54

χ2 = 5.4, df = 1
Significant with p = 0.05

Initial Final

A Christmas Carol
Observed: 0

E = (8 x 13) / 119 = 0.9
Contribution to χ2 = 0.9

Observed: 13
E = (111 x 13) / 119 = 12.1

Contribution to χ2 = 0.1
13

Madding Crowd
Observed: 8

E = (8 x 106) / 119 = 7.1
Contribution to χ2 =0.1

Observed: 98
E = (111 x 106) / 119 = 98.9

Contribution to χ2 = 0.0
106

 8 111 119

χ2 = 1.1, df = 1
Not significant

Initial Final

Silas Marner
Observed: 13

E = (21 x 41) / 147 = 5.9
Contribution to χ2 = 8.5

Observed: 28
E = (126 x 41) / 147 = 35.1

Contribution to χ2 = 1.4
41

Madding Crowd
Observed: 8

E = (21 x 106) / 147 = 15.1
Contribution to χ2 = 3.3

Observed: 98
E = (126 x 106) / 147 = 90.9

Contribution to χ2 = 0.6
106

 21 126 147

χ2 = 13.8, df = 1
Significant with p = 0.01

9. It was one of his daily tasks to fetch his water from a well a couple of fields off, and
for this purpose, ever since he came to Raveloe, he had had a brown earthenware
pot, which he held as his most precious utensil among the very few conveniences he
had granted himself. It had been his companion for twelve years, always standing
on the same spot, always lending its handle to him in the early morning, so that its
form had an expression for him of willing helpfulness, and the impress of its handle
on his palm gave a satisfaction mingled with that of having the fresh clear water.
(Silas Marner, line 822)

 Text Type and the Position of a Temporal Adverbial Within the Sentence 35

Table 6. χ2 shows significant results for Silas Marner and The Financial Times

Initial Final

A Christmas Carol
Observed: 0

E = (5 x 13) / 58 = 1.1
Contribution to χ2 = 1.1

Observed: 13
E = (53 x 13) / 58 = 11.9
Contribution to χ2 = 0.1

13

Financial Times
Observed: 5

E = (5 x 45) / 58 = 3.9
Contribution to χ2 = 0.3

Observed: 40
E = (53 x 45) / 58 = 41.1
Contribution to χ2 = 0.0

45

 5 53 58

χ2 = 1.5
df = 1
Not significant

Initial Final

Silas Marner
Observed: 13

E = (18 x 41) / 86 = 8.6
Contribution to χ2 = 2.3

Observed: 28
E = (68 x 41) / 86 = 32.4
Contribution to χ2 = 0.6

41

Financial Times
Observed: 5

E = (18 x 45) / 86 = 9.4
Contribution to χ2 = 2.1

Observed: 40
E = (68 x 45) / 86 = 35.6
Contribution to χ2 = 0.5

45

 18 68 86

χ2 = 5.5
df = 1
Significant with p = 0.05

Initial Final

Madding Crowd
Observed: 8

E = (13 x 106) / 151 = 9.1
Contribution to χ2 = 0.1

Observed: 98
E = (138 x 106) / 151 = 96.9

Contribution to χ2 = 0.0
106

Financial Times
Observed: 5

E = (13 x 45) / 151 = 3.9
Contribution to χ2 = 0.3

Observed: 40
E = (138 x 45) / 151 = 41.1

Contribution to χ2 = 0.0
45

13 138 151

χ2 = 0.4
df = 1
Not significant

Out of context, the adverbial phrase for twelve years can be interpreted either as "for
some twelve year period in the past" (the non-p-definite reading) or "for the twelve
years preceding speech time" (the p-definite reading). In this context it takes on the
latter reading.
 There were also examples of for-phrases containing an NP the interpretation of
which was necessarily either p-definite, as in (10), or non-p-definite, as in (11):

36 J. Hitzeman

10. a. “I'll be plain and open for the rest o' my life.” (Silas Marner, line 9057)
 b. “Let it be, then, let it be,” he said, receiving back the watch at last; “I must

be leaving you now. And will you speak to me for these few weeks of my
stay?” (Madding Crowd, line 10643)

11. The Soviet-backed government in Afghanistan declared an immediate amnesty
for prisoners held for up to three years to mark the fourth anniversary of a
government drive for reconciliation. (FT, line 858)

In (10) the phrases the rest o' my life and these few weeks of my stay refer
unambiguously to particular time intervals in any context, and in (11) the phrase for
up to three years must refer to an amount of time rather than a particular three year
period. These types of examples are not of interest because their position in the
sentence does not affect their interpretation. Similarly, I ignored examples with a
generic interpretation such as (12):1

Table 7. χ2 comparison of the number of for-phrases that occur in perfect sentences for the
three novels

Perfect No Perfect

A Christmas Carol
Observed: 7

E = (61 x 19) / 203 = 5.7
Contribution to χ2 = 0.3

Observed: 12
E = (142 x 19) / 203 = 13.3

Contribution to χ2 = 0.1
19

Silas Marner
Observed: 23

E = (61 x 54) / 203 = 16.2
Contribution to χ2 = 2.9

Observed: 31
E = (142 x 54) / 203 = 37.8

Contribution to χ2 = 1.2
54

Madding Crowd
Observed: 31

E = (61 x 130) / 203 = 39.1
Contribution to χ2 = 1.7

Observed: 99
E = (142 x 130) / 203 = 90.9

Contribution to χ2 = 0.7
130

 61 142 203

χ2 = 6.9, df = 2
Significant with p = 0.05

12. a. It has been said that mere ease after torment is delight for a time; and the

countenances of these poor creatures expressed it now. Forty-nine
operations were successfully performed. (Madding Crowd, line 8424)

 b. So, when Priscilla was not with her, she usually sat with Mant's Bible before
her, and after following the text with her eyes for a little while, she would
gradually permit them to wander as her thoughts had already insisted on
wandering. (Silas Marner, line 8438)

In a generic sentence an adverbial can only have a non-p-definite interpretation, e.g.,
in (12b) for a little while doesn't refer to a single time but to a series of (non-p-definite)
times during which Priscilla is not present. A present tense (non-reportative) sentence or
a sentence with a frequency adverb such as always or a modal such as can are generic,
and any adverbials in such sentences are likely to take on generic interpretations.

1 See (Carlson, 1980) regarding generic sentences.

 Text Type and the Position of a Temporal Adverbial Within the Sentence 37

Table 8. χ2 pairwise comparison of the number of perfect examples in the three novels

Perfect No Perfect

A Christmas Carol
Observed: 7

E = (30 x 19) / 73 = 7.8
Contribution to χ2 = 0.1

Observed: 12
E = (43 x 19) / 73 = 11.2
Contribution to χ2 = 0.1

19

Silas Marner
Observed: 23

E = (30 x 54) / 73 = 22.2
Contribution to χ2 = 0.0

Observed: 31
E = (43 x 54) / 73 = 31.8
Contribution to χ2 = 0.0

54

30 43 73

χ2 = 0.2, df = 1
Not significant

Perfect No Perfect

A Christmas Carol
Observed: 7

E = (38 x 19) / 149 = 4.8
Contribution to χ2 = 1.0

Observed: 12
E = (111 x 19) / 149 = 14.2

Contribution to χ2 = 0.3
19

Madding Crowd
Observed: 31

E = (38 x 130) / 149 = 33.2
Contribution to χ2 = 0.1

Observed: 99
E = (111 x 130) / 149 = 96.8

Contribution to χ2 = 0.1
130

 38 111 149

χ2 = 1.5, df = 1
Not significant

Perfect No Perfect

Silas Marner
Observed: 23

E = (54 x 54) / 184 = 15.8
Contribution to χ2 = 3.3

Observed: 31
E = (130 x 54) / 184 = 38.2

Contribution to χ2 = 1.4
54

Madding Crowd
Observed: 31

E = (54 x 130) / 184 = 38.2
Contribution to χ2 = 1.4

Observed: 99
E = (130 x 130) / 184 = 91.8

Contribution to χ2 = 0.6
130

54 130 184

χ2 = 6.7, df = 1
Significant with p = 0.05

3.3 The Results

The results showed a significant difference in use of initial-position adverbials
between The Financial Times and the three narrative texts, as given in the χ2 analysis
in Table 3.2 This result strengthens the argument that initial-position adverbials are
used to help the reader interpret the temporal order of events in a narrative.

2 χ2 analysis was chosen because of its ability to accurately find significance for small amounts

of data.

38 J. Hitzeman

Table 9. χ2 pairwise comparison perfect examples in The Financial Times with each of the
three novels

Perfect No Perfect

A Christmas
Carol

Observed: 7
E = (27 x 19) / 106 = 4.8
Contribution to χ2 = 1.0

Observed: 12
E = (79 x 19) / 106 = 14.2
Contribution to χ2 = 0.3

19

Financial Times
Observed: 20

E = (27 x 87) / 106 = 22.2
Contribution to χ2 = 0.2

Observed: 67
E = (79 x 87) / 106 = 64.8
Contribution to χ2 = 0.1

87

27 79 106

χ2 = 1.6
df = 2
Not significant

Perfect No Perfect

Silas Marner
Observed: 23

E = (43 x 54) / 141 = 16.5
Contribution to χ2 = 2.6

Observed: 31
E = (98 x 54) / 141 = 37.5
Contribution to χ2 = 1.1

54

Financial Times
Observed: 20

E = (43 x 87) / 141 = 26.5
Contribution to χ2 = 1.6

Observed: 67
E = (98 x 87) / 141 = 60.5
Contribution to χ2 = 0.7

87

 43 98 141

χ2 = 6.0
df = 2
Significant with p = 0.05

Perfect No Perfect

Madding Crowd
Observed: 31

E = (51 x 130) / 217 = 30.6
Contribution to χ2 = 0.0

Observed: 99
E = (166 x 130) / 217 = 99.4

Contribution to χ2 = 0.0
130

Financial Times
Observed: 20

E = (51 x 87) / 217 = 20.4
Contribution to χ2 = 0.0

Observed: 67
E = (166 x 87) / 217 = 66.6

Contribution to χ2 = 0.0
87

51 166 217

χ2 = 0
df = 2
Not significant

Of course, even a financial text may have some small narrative elements. I will now

argue that it is the complexity of the event ordering in a narrative that correlates with
greater initial-position adverbial use, where a judgment of the amount of flashback
material and a tally of the use of past perfects will serve as a measure of complexity.

First, note that the comparison of the narratives in Table 4 shows a significant
difference in adverbial position in the three narratives. The pairwise comparison in

 Text Type and the Position of a Temporal Adverbial Within the Sentence 39

Table 5 then shows that Silas Marner stands out as significantly different from the
others. A comparison of the individual novels with The Financial Times, given in
Table 6, again shows that Silas Marner stands out as significantly different.

Consider that these narratives contain different amounts of flashback material, and
that the interpretation of the order of the events described by such material is more
complex than in a simpler, forward-moving narrative. The use of the perfect tense is
a good indication that a sentence refers to an event in the past, such as the following
passage from Silas Marner, where the fall is interpreted as occurring before speech
time:

13. Marner was highly thought of in that little hidden world, known to itself as the
church assembling in Lantern Yard; he was believed to be a young man of
exemplary life and ardent faith; and a peculiar interest had been centred in him
ever since he had fallen, at a prayer-meeting, into a mysterious rigidity and
suspension of consciousness, which, lasting for an hour or more, had been
mistaken for death.

A count of the number of perfects (past and present) in the texts can serve as an
indication of how much flashback material they contain because they relate an event
occurring at the now point with an event in the past, as in (14):

14. Silas picked up the shovel. He had buried the box.

One might pick up a shovel in order to bury something, but because of the perfect in
the second sentence of (14) there is a reversal of the progression of events, and Silas
must have picked up the shovel after burying the box.

The results in Table 7 show that there is a significant difference in the number
of for-phrases in perfect sentences in the three novels. Breaking down the data to look
at pairwise comparisons of the novels in Table 8 we see that Silas Marner has
significantly more perfect examples than Far from the Madding Crowd. Similarly, as
shown in Table 9, Silas Marner has significantly more perfect examples than The
Financial Times, and The Financial Times doesn't show a significant difference in the
number of perfect examples from either A Christmas Carol or Far from the Madding
Crowd. More specifically, Silas Marner contains a considerable number of perfects
(43% of the sentences with a for-phrase were in the perfect) as the main character,
Silas, reflects on past phases of his life and goes back to the past to clear his name; A
Christmas Carol has fewer (37%) since only one of the ghosts takes the main
character, Scrooge, to the past; and Far from the Madding Crowd (24%) and The
Financial Times (23%) contain even fewer since the former is a simple forward
narrative and the latter is a non-narrative text which contains occasional passages
containing narrative, but generally reports on factual, non-narrative matters.

4 Conclusion

Temporal adverbials such as for an hour can have two readings in sentence-final
position but are unambiguous in initial position, fixing the event in time. The first
hypothesis was that initial-position adverbials would be more common in narratives
than in non-narratives. A comparison of three narratives and The Financial Times
was consistent with this hypothesis. A second hypothesis was that more complex
narratives would have significantly more initial-position temporal adverbials. The

40 J. Hitzeman

data was also consistent with this hypothesis; Silas Marner, a novel with many
flashback scenes, stood out as having more sentence-initial adverbials than the other
texts. A finer-grained categorization of “narrative” is therefore needed, and such a
categorization may prove useful in temporal analysis of discourse.

References

1. Carlson, G.: Reference to Kinds in English. In: Hankamer, J. (ed.) Outstanding
Dissertations in Linguistics, Harvard University Press (1980)

2. Diesing, M.: Bare Plural Subjects and the Derivation of Logical Representations.
Linguistic Inquiry 3, 353–380 (1992)

3. Hitzeman, J.M.: Temporal Adverbials and the Syntax-Semantics Interface. Ph.D. thesis,
University of Rochester, Department of Linguistics, Rochester, NY (1993)

4. Hitzeman, J.: Semantic Partition and the Ambiguity of Sentences Containing Temporal
Adverbials. Journal of Natural Language Semantics (1997)

5. Klein, W.: The Present Perfect Puzzle. Language 68(3), 525–552 (1992)

Effective Use of TimeBank for TimeML Analysis

Branimir Boguraev and Rie Kubota Ando

IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA
bran@us.ibm.com, rie1@us.ibm.com

Abstract. timeml is an expressive language for temporal information,
but its rich representational properties raise the bar for traditional infor-
mation extraction methods when applied to the task of text-to-timeml

analysis. We analyse the extent to which timebank, the reference cor-
pus for timeml, supports development of timeml-compliant analytics.
The first release of the corpus exhibits challenging characteristics: small
size and some noise. Nonetheless, a particular design of a time anno-
tator trained on timebank is able to exploit the data in an implemen-
tation which deploys a hybrid analytical strategy of mixing aggressive
finite-state processing over linguistic annotations with a state-of-the-art
machine learning technique capable of leveraging large amounts of unan-
notated data. We present our design, in light of encouraging performance
results; we also interpret these results in relation to a close analysis of
timebank’s annotation ‘profile’. We conclude that even the first release
of the corpus is invaluable; we further argue for more infrastructure work
needed to create a larger and more robust reference corpus.1

Keywords: corpus analysis, TimeBank, TimeML, temporal information
extraction, machine learning.

1 Introduction

timeml was designed [1] to connect the processes of temporal analysis of a text
document into a rich, intermediate, representation and its subsequent formali-
sation by means of an ontology of time [2]. This paper assumes some familiary
with timeml; in essence, the language uses the representational principles of
xml markup to annotate the analysis of the core elements in a temporal frame-
work: time expressions, events, and links among these (additionally moderated
by temporal connectives, or signals). For details of the markup language for time,
readers are referred to [3].

In line with the established methodology of creating community-wide anno-
tated resources, where linguistic analysis is captured by means of a range of
tags, and finer-grained specification of analytical detail is expressed by means
of suitably defined attributes on these tags, timeml implements a flexible rep-
resentational scheme for text markup. At the same time, the language takes

1 This work was supported in part by the ARDA NIMD (Novel Intelligence and Mas-
sive Data) program PNWD-SW-6059.

F. Schilder et al. (Eds.): Reasoning about Time and Events, LNAI 4795, pp. 41–58, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

42 B. Boguraev and R.K. Ando

the notion of markup to an extreme, developing half-a-dozen entity and rela-
tion marking tags—both consuming and non-consuming—and defining a large
number of attributes for most of them.

Consequently, the resulting language is both very expressive and very com-
plex. The expressiveness is almost a necessity, arising from the richness of time
information and depth of temporal analysis, and addressed from the beginning of
the design effort. The complexity is at least in comparison with markup schemes
designed for the kinds of “named entities” which have traditionally been at the
focus of conventional information extraction (IE) endeavours.

Many markup schemes for IE to date target relatively simple phenomena;
unlike timeml, their design has not been informed by the need to capture the
variety and complexity of information required to support inference and rea-
soning. The extent to which IE can be argued to offer some basis for language
understanding can be found in the ‘spirit’ of the MUC2 event scenario tasks,
which instantiate semantic networks [4,5]. However, the mapping of an entire
text document to a single template can hardly be regarded as logically complete
and coherent, in the sense required and assumed by formal event and/or time
ontologies.

More recently, a growing body of work has initiated investigations into the
nature of linguistic annotation—as a principled description of a linguistic phe-
nomenon of interest (see, for instance, [6]). Such a description, of course, would
then be instrumental to a deeper level of analysis and understanding.

Interestingly enough, an early instance of such an annotation effort—with a
schema focusing on an identifiable linguistic phenomenon, and not just “named
entities” markup—was defined by the ACE3 event timestamping task, which
sought to identify within-sentence event-time links. it could be argued that even
within the limited set of event classes defined to be in the scope of ACE, the
emphasis in schema design was on the annotation of relational information over
a full inventory of temporal relations, and not just that of extents and spans.

In a similar spirit, timeml aims to capture a much richer set of the temporal
characteristics in a text document, so that the intricate temporal linking among
all time expressions and events can then get fully mapped onto an ontologically-
grounded temporal graph (or its equivalent), cf. [7], [8]. Indeed, such a mapping
(see [9] for a sketch) has been one of the guiding principles in the conception
and design of timeml.

The design of timeml therefore brings both promises—but also challenges—as
its representational properties significantly raise the bar for traditional informa-
tion extraction methods. A particularly relevant question, then, concerns the
extent to which timeml-compliant analysis can be automated: temporal rea-
soning frameworks crucially require such analysis for any practical understand-
ing of time: “... the [timeml] annotation scheme itself, due to its closer tie to

2 Message Understanding Conferences; see http://www.itl.nist.gov/iad/
894.02/related projects/muc/main.html

3 Automatic Content Extraction; see http://www.nist.gov/speech/tests/ace/
index.htm

Effective Use of TimeBank for TimeML Analysis 43

surface texts, can be used as the first pass in the syntax-semantics interface of a
temporal resolution framework such as ours. The more complex representation,
suitable for more sophisticated reasoning, can then be obtained by translating
from the annotations.” [8].

Analysis into timeml is the primary question addressed by this paper. We
start from the position stated by Pustejovsky et al. [10] as one of the guiding
motivations for developing the timebank corpus, which is the primary reference
resource for timeml: it would be regarded as a resource for “training and eval-
uating algorithms which determine event ordering and time-stamping” (ibid.),
as well as providing general-purpose training data for any and all timeml com-
ponents. We then demonstrate that small (and somewhat noisy) as it is (com-
pared to guidelines implicitly established by other information extraction tasks
relying on annotated data), timebank is still the valuable resource that [10]
describes.

Our method rests on developing a strategy for time analysis of text specifically
informed by the characteristics of timebank: a synergistic approach deploying
both finite-state (FS) grammars with broad range of analysis and machine learn-
ing techniques capable of also leveraging unannotated data. Thus we aim to make
maximal use of the information captured by this particular corpus, even if it was
not explicitly designed and constructed as a proper training resource.

2 Quantitative and Qualitative Analysis of TimeBank

One of the common characteristics of annotation efforts is that they make, from
the outset, infrastructural provisions for the development of a substantial ‘refer-
ence’ corpus, which defines a gold standard (“truth”) for the task. The corpus
contains materials selected to be representative of the phenomenon of inter-
est; sizes of training and testing samples are carefully considered especially as
they depend on the complexity of the task; experienced annotators are used;
the corpus is not released until a certain level of inter-annotator agreement is
reached. These measures ensure that the reference corpus is of a certain size and
quality.

The timebank corpus is small. This need not be surprising, given that the
TERQAS4 effort did not commit to producing a ‘reference’, training-strength,
corpus in the sense described above. In fact, timebank is almost a ‘side effect’
of the work: it was largely an exercise in applying the annotation guidelines—
as they were being developed—to real texts (news articles, primarily) in order
to assess the need for, and then the adequacy of, the language representational
devices as they were being designed in the process of timeml evolution.

Just how small timebank is is illustrated by the following statistics. The
corpus has only 186 documents, with a total of 68.5K words. As there are no
4 Temporal and Event Recognition for QA Systems; http: //www.timeml.org/
terqas/index.html). The TERQAS effort coordinated, over an extended period
of time, a series of definitional and follow-up workshops from which emerged the
current set of timeml annotation guidelines.

44 B. Boguraev and R.K. Ando

separate training and test portions, it would need partitioning somehow; if we
held out 10% of the corpus as test data, we have barely over 60K words for
training.

To put this into perspective, this is order of magnitude less than other stan-
dard training corpora in the NLP community: the Penn Treebank corpus5 for
part-of-speech tagging (arguably a simpler task than timeml component anal-
ysis) contains more than 1M words—which makes it over 16 times larger than
timebank; the CoNLL’03 named entity chunking task6 is defined by means of
a training set with over 200K words. A task closely related to time analysis is
ACE’s TERN (Temporal Expression Recognition and Normalisation)7. TERN
only focuses on timex2 (timex3, which extends the timex2 tag [3], is just one
of half-a-dozen timeml components); even so, the TERN training set is almost
800 documents/300K words-strong.

Boguraev et al. [11] offer a detailed quantitative and qualitative analysis of
the timebank corpus, in its original version—which was the basis for the exper-
iments and results reported in this paper. In general, the observation is that the
combination of the small size of timebank, the uneven distribution of timeml

components, and the erroneous annotation introduced by mixture of infrastruc-
ture issues and annotation methodology, lead to some significant challenges in
using the corpus as a training resource.

Consider, for instance, the extreme paucity of positive examples over a range of
categories. Fig. 1 (reproduced here, for convenience of reference, from [11]) shows
the distribution of tlink and event types. These are the ‘targets’ of relational
time analysis, capturing the temporal semantics above time expressions. As such,
they are crucial for any analytical device.

The numbers in the figure illustrate the highly uneven distribution of this
category data. The numbers also reveal some of the variety and complexity of
timeml annotation: the extensive typing of events, timex3’s and links in-
troduces even more classes in an operational timeml typology. Thus an event
recognition and typing task is, in effect, concerned with partitioning recognised
events into 7 categories (as we shall see in Section 5.2, a particular implementa-
tion of such a partitioning is realised as (2k + 1)-way classification task, where
k = 7 in our case). Similarly, for tlink analysis the relevant comparison is to
consider that in contrast to, for instance, the CoNLL’03 named entity recognition
task—with training data containing 23K examples of named entities belonging
to just 4 categories, timebank offers less than 2K examples of tlinks, which,
however, range over 13 category types.

The analysis in [11] additionally discusses the sources of noise in the first
release of timebank. Broadly speaking, there are three different categories of
error: errors due to failures in the annotation infrastructure, errors resulting from
broad interpretation of the annotation guidelines, and errors due to the inherent
complexity of the annotation task (further compounded by underspecification in

5 See http://www.cis.upenn.edu/̃treebank/home.html
6 See http://cnts.uia.ac.be/conll2003/ner/
7 See http://timex2.mitre.org/tern.html

Effective Use of TimeBank for TimeML Analysis 45

tlink type # occurrences event type # occurrences

IS INCLUDED 866 OCCURRENCE 4,452
DURING 146 STATE 1,181

ENDS 102 REPORTING 1,010
SIMULTANEOUS 69 I ACTION 668

ENDED BY 52 I STATE 586
AFTER 41 ASPECTUAL 295
BEGINS 37 PERCEPTION 51

BEFORE 35
INCLUDES 29
BEGUN BY 27

IAFTER 5
IDENTITY 5
IBEFORE 1

Total : 1,451 Total : 8,243

Fig. 1. Distribution of (some) timeml component types. Note that the count of 1451
tlinks refers only to the tlinks between an event and a temporal expression, itself in
the body of a document. (tlinks with timex3’s in metadata are not counted here.)

the guidelines). The reader is referred to that discussion, because it is important,
for correctly situating our experiments and interpretating the results, to have
an appreciation of the degree of noise which is at a level above what typically
might be expected of a training resource.

Parenthetically, we observe that the kind of detailed analysis presented in
[11]—itself motivated by the desire to understand how to interpret the perfor-
mance figures reported in this paper—was itself the basis for a focused effort
to revise and clean up the timebank corpus, which is currently distributed (as
Version 1.2) through the offices of the Linguistic Data Consortium.

3 Challenges for TimeML Analysis

It is clear that temporal annotation is a very complex problem: timeml was
developed precisely to address the issues of complexity and to provide a rep-
resentational framework capable of capturing the richness of analysis required.
One consequence of this is the pervasiveness of relational data which is inte-
gral to the underlying representation: all links are, notationally, relations con-
necting events with other events or temporal expressions. As recent work in
relation finding information extraction shows (in particular, in the context of
the ACE program), the task requires both some linguistic analysis of text and
the definition of complex learning models, typically going beyond just token
sequences.

46 B. Boguraev and R.K. Ando

Additionally, as the previous section shows, a different degree of complexity
is introduced by the size (and coverage) characteristics of timebank. While it
may be reasonable to take a position that in our investigation we will focus
on those timeml components which are relatively more prevalent in the data
(e.g. tlinks over alinks and slinks), we still need to address the problem of
insufficient training data. Our position thus is that in addition to deploying
sophisticated feature generators, we crucially need to leverage machine learning
technology capable of exploiting unlabeled data.

Our strategy for timeml analysis of text develops a hybrid approach utilising
both finite-state (FS) grammars over linguistic annotations and machine learn-
ing (ML) techniques incorporating a novel learning strategy from large volumes
of unlabeled data. The respective strengths of these technologies are well suited
for the challenges of the task: complexity of analysis, need for some syntactic
and discourse processing, and relative paucity of examples of timeml-style an-
notation.

The initial targets of our analysis are timex3 (with attributes), event (plus
type), and tlink (plus type, and limited to links between events and time ex-
pressions); see Section 2 and Fig. 1. This kind of limitation is imposed largely by
the distributional properties of timeml components annotated in timebank (as
discussed in Section 2 earlier); but it is also motivated by the observation that
to be practically useful to a reasoner, a time analysis framework would need to
support, minimally, time stamping and temporal ordering of events. As this is
work in progress, the description below offers more details specifically on iden-
tifying timex3 expressions, marking and typing events, and associating (some
of these) with timex3 tags (typing the links, as appropriate).

All of these subtasks have components which can be naturally aligned with
one or the other of our strategic toolkits. Thus timex3 expressions are intrinsi-
cally amenable to FS description, and a grammar-based approach is well-suited
to interfacing to the task of timex3 normalisation (i.e. instantiating its value).
On the other hand, certain attributes of a timex3 (such as temporalFunction,
valueFromFunction, functionInDocument) can be assigned by a machine learning
component. FS devices can also encode some larger context for time analysis
(temporal connectives for marking putative events, clause boundaries for scop-
ing possible event-time pairs, etc; see Section 4). To complement such analysis,
an ML approach can, using suitable classification methods, cast the problem of
marking (and typing) events as chunking (Section 5.2). As we will see later,
a tlink classifier crucially relies on features derived from the configurational
characteristics of a syntactic parse; a result in line with recent work which shows
that mid-to-high-level syntactic parsing—typically derived by FS cascades—can
produce rich features for classifiers.

In summary, we address the challenges of the timebank corpus by combining
FS grammars for temporal expressions, embedded in a shallow parser adapted
for time analysis, with machine learning trained with timebank and unannotated
corpora.

Effective Use of TimeBank for TimeML Analysis 47

4 Finite State Devices for Temporal Analysis

Temporal expressions conform to a set of regular patterns, amenable to grammar-
based description. Viewing timex3 analysis as an information extraction task, a
cascade of finite-state grammars with broad coverage (compiled down to a single
timex3 automaton with 500 states and over 16000 transitions) targets abstract
temporal entities such as unit, point, period, relation, etc; typically, these will be
further decomposed and typed into e.g. month, day, year (for a unit); or interval or
duration (for a period).

Temporal expressions are characterised by “local” properties—granularity (e.g.
month, day, etc), cardinality, ref direction(e.g. prior, or subsequent to “now”), and
so forth—which are intrinsic to their temporal nature, but not directly related to
timex3 attributes. Fine-grained analysis of temporal expressions, instantiating
such local propertiesis is crucially required for normalising a timex3: consider,
for example, that representing e.g. “the last five years” as illustrated in Fig. 2
below greatly facilitates the derivation of a value (in this case ”5PY”) for the
timex3 value attribute.

[timex : [relative : true]
[ref_direction : past]
[cardinality : 5]
[granularity : year]]

Fig. 2. Analysis of a time expression in terms of local attributes

In effect, such analysis amounts to a parse tree under the timex3. (Not shown
above is additional information, anchoring the expression into the larger dis-
course and informing other normalisation processes which emit the full comple-
ment of timex3 attributes—type, temporalFunction, anchorTimeID, etc).

It is important to separate the processes of recognition of the span of a timex3

expression from local attribute instantiation for that expression. There is noth-
ing intrinsic to the recognition which necessitates a grammar-based description
in preference to a statistical model (as the TERN evaluation exercise demon-
strated [12]). However, local attributes (as exemplified above) are necessary for
the interpretation rules deriving timex3 value.

timebank does not contain such fine-grained mark-up: the grammars thus
perform an additional ‘discovery’ task, for which no training data currently
exists, but which is essential for discourse-level post-processing, handling e.g.
ambiguous and/or underspecified time expressions or the relationship between
document-internal and document-external temporal properties (such as ‘docu-
ment creation time’).

In addition to parsing of temporal expressions, FS devices are deployed for
shallow parsing for feature generation. We build upon prior work [13], which

48 B. Boguraev and R.K. Ando

showed how substantial discourse processing can be carried out from a shallow
syntactic base, and derived by means of FS cascading.

Our grammars interleave syntactic analysis with named entity extraction. In
particular, they define temporal expressions—as well as other timeml compo-
nents, namely events and signals—in terms of linguistic units, as opposed to
simply lexical cues (as many temporal taggers to date do). The focus on lin-
guistic description cannot be over-emphasised. One of the complex problems for
timeml analysis is that of event identification. A temporal tagger, if narrowly
focused on time expressions only (cf. [14]), offers no clues to what events are
there in the text. In contrast, a temporal parser aware of the syntax of a time
phrase like “during the long and ultimately unsuccessful war in Afghanistan” is
very close to knowing—from the configurational properties of a prepositional
phrase—that the nominal argument (“war”) of the temporal preposition (“dur-
ing”) is (most likely) an event nominal.

This kind of information is easily captured within a parsing framework. Ad-
ditionally, given that events and links are ultimately posted by a machine
learning component, the parser need not commit to e.g. event identification and
typing. It can gather clues, and formulate hypotheses; and it can then make
these available to an appropriate classifier, from whose point of view an event

annotation is just another feature. Indeed, the only use of syntactic analysis be-
yond the timex3 parser is to populate a feature space for the classifiers tasked
with finding events and links (Section 5).

Feature generation typically relies on a mix of lexical properties and some con-
figurational syntactic information (depending on the complexity of the task). The
scheme we use (Section 5) requires additionally some semantic typing, knowledge
of boundaries of longer syntactic units (typically a variety of clauses), and some
grammatical function. Fig. 3 illustrates the nature of the FS cascade output.

Most of the above is self-explanatory, but we emphasise a few key points. The
analysis captures the mix of syntactic chunks, semantic categories, and timeml

components used for feature generation (a label like GrmEventOccurrence denotes
a hypothesis, generated by the syntactic grammars, that “earned” is an occur-
rence type event). It maintains local timex3 analysis; the time expression is
inside of a larger clause boundary, with internal grammatical function identifi-
cation for some of the event predicates. The specifics of mapping configurational
information into feature vectors is described in Section 5.

[Snt [svoClause
[tAdjunct In [NP [timex3 the 1988 period timex3] NP] tAdjunct],
[SUB [NP the company NP] SUB]
[VG [GrmEventOccurrence earned grmEventOccurrence] VG]
[OBJ [NP [Money $20.6 million Money] NP] OBJ] svoClause] ... Snt]

Fig. 3. Shallow syntactic analysis (simplified) from finite-state parsing

Effective Use of TimeBank for TimeML Analysis 49

timeml parsing is thus a bifurcated process of timeml components recogni-
tion: timex3’s are marked by FS grammars; signals, events and links are
putatively marked by the grammars, but the final authority on their identifi-
cation are classification models built from analysis of both timebank and large
unannotated corpora. Features for these models are derived, as we shall see be-
low, from common strategies for exploiting local context, as well as from mining
the results—both mark-up and configurational—of the FS grammar cascading.

5 Classification Models for Temporal Analysis

The classification framework we adopt for this work is based on a principle
of empirical risk minimization. In particular, we use a linear classifier, which
makes classification decisions by thresholding inner products of feature vectors
and weight vectors. It learns weight vectors by minimizing classification errors
(empirical risk) on annotated training data.

There are good reasons to use linear classifiers; an especially good one is that
they allow for easy experimentation with various types of features, without mak-
ing any model assumptions. This is particularly important in an investigation
like ours, where we do not know a priori what kinds of features and feature sets
would turn out to be most productive.

For our experiments (Section 6), we use the Robust Risk Minimization (RRM)
classifier [15], a linear classifier, which has independently been shown useful for
a number of text analysis tasks such as syntactic chunking [15], named entity
chunking [16,17,18], and part-of-speech tagging [19].

In marked contrast to generative models, where assumptions about features
are tightly coupled with algorithms, RRM—as is the case with discriminative
analysis—enjoys clear separation of feature representation from the underlying
algorithms for training and classification. This facilitates experimentation with
different feature representations, since the separation between these and the
algorithms which manipulate them does not require that the algorithms change.
We show how choice of features affects performance in Section 6.

To use classifiers, one needs to design feature vector representation for the
objects to be classified. This entails selection of some predictive attributes of
the objects (in effect promoting these to the status of features) and definition
of mappings between vector dimensions and those attributes (feature mapping).
Before we describe (later in this section) the essence of our feature design for
event and tlink recognition,8 we briefly outline word profiling as the enabling
technique for counteracting the paucity of training data in timebank.

5.1 Word Profiling for Exploitation of Unannotated Corpora

In general, classification learning requires substantial amount of labeled data
for training—considerably more than what timebank offers (Section 2). This
8 We do not discuss signal recognition here, as the signal tag itself contributes

nothing to event or tlink recognition, beyond what is captured by a lexical feature
over the temporal connective, independent of whether it is tagged as signal or not.

50 B. Boguraev and R.K. Ando

characteristic of size is potentially a limiting factor in supervised machine learn-
ing approaches. We, however, seek to improve performance by exploiting unan-
notated corpora, which have the natural advantages of being sizable, and freely
available. We use a word profiling technique, developed specially for the pur-
poses of exploiting a large unannotated corpus for tagging/chunking tasks [19].
Word profiling identifies, extracts, and manipulates information that charac-
terizes words from unannotated corpora; it does this, in essence, by collecting
and compressing feature frequencies from the corpus, a process which maps the
commonly used feature vectors to frequency-encoded context vectors.

More precisely, word profiling turns co-occurrence counts of words and fea-
tures (within certain syntactic configurations: e.g. ‘next word’, ‘within a phrase’,
‘head of subject’, etc) into new feature vectors. Note that this requires pre-
analysis of the unannotated corpus. For example, observing—in that corpus—
that nouns like “extinction” and “explosion” are often used as syntactic subject
to “occur”, and that “happen”’s subjects contain “earthquake” and “explosion”,
helps to predict that “explosion”, “extinction”, and “earthquake” all function like
event nominals. Such a prediction is motivated by the parallel observation about
the preponderance, in the annotated corpus, of event nominals in subject posi-
tion to “occur” and “happen” . In Section 6.2, we demonstrate the effectiveness
of word profiling, specifically for event recognition.

5.2 EVENT Recognition as a Classification Problem

Similarly to named entity chunking, we cast the event recognition task as a
problem of sequential labeling of tokens by encoding chunk information into
token tags. For a given class, this generates three tags: E:class (the last, end,
token of a chunk denoting a mention of class type), I:class (a token inside of a
chunk), and O (any token outside of any target chunk). The example sequence
below indicates that the two tokens “very bad” are spanned by an event-state
annotation.

· · · another/O very/I:event-state bad/E:event-state week/O · · ·

In this way, the event chunking task becomes a (2k+1)-way classification of
tokens where k is the number of event types; this is followed by a Viterbi-style
decoding. (We use the same encoding scheme for signal recognition.)

The feature representation used for event extraction experiments mimics the
one developed for a comparative study of entity recognition with word profiling
[19]. The features we extract are:

◦ token, capitalisation, part-of-speech (POS) in 3-token window;
◦ bi-grams of adjacent words in 5-token window;
◦ words in the same syntactic chunk;
◦ head words in 3-chunk window;
◦ word uni- and bi-grams based on subject-verb-object and preposition-noun

constructions;
◦ syntactic chunk types (noun or verb group chunks only);

Effective Use of TimeBank for TimeML Analysis 51

Fig. 4. Partitions for tlink classifier segmentation

◦ token tags in 2-token window to the left;
◦ tri-grams of POS, capitalisation, and word ending;
◦ tri-grams of POS, capitalisation, and left tag.

5.3 TLINK Recognition as a Classification Problem

tlink is a relation between events and time expressions which can link two
events, two timex3’s, or an event and a timex3. As we stipulated earlier
(Section 3), presently we focus on tlinks between events and time expressions.

As a relational link, tlink does not naturally fit the tagging abstraction
underlying the chunking problem, as outlined above. Instead, we formulate a
classification task as follows. After posting event and timex3 annotations (by
the event classifier and the FS temporal parser, respectively), for each pairing
between an event and a timex3, we ask whether it is a certain type of tlink.
This defines a (�+1)-way classification problem, where � is the number of tlink

types (before, after, etc). The adjustment term ‘+1’ is for the negative class, which
indicates that the pair does not have any kind of temporal link relation.

The relation-extraction nature of the task of posting tlinks requires a dif-
ferent feature representation, capable of encoding the syntactic function of the
relation arguments (events and timex3’s), and some of the larger context of
their mentions. To that end, we consider the following five partitions (defined in
terms of tokens): spans of arguments (P 1 or P 2); two tokens to the left/right
of the left/right argument (P left/P right); and the tokens between the argu-
ments (P middle). From each partition, we extract tokens and parts-of-speech
as features (Fig. 4).

We also consider segments (i.e. syntactic constructions derived by FS analysis:
‘when-clause’, ’subject’, etc) in certain relationship to partitions:

◦ contained in P 1, P 2, or P middle;
◦ covering P 1 (or P 2) but not overlapping with P 2 (or P 1);
◦ occurring to the left of P 1 (or the right of P 2); or
◦ covering both P 1 and P 2.
We use uni- and bi-grams of types of these segments as features.
In this feature representation, segments play a crucial role by capturing the

syntactic functions of events and timex3’s, as well as the syntactic relations
between them.

Thus in the example analysis in Fig. 3 (p. 48), svoClause is the smallest seg-
ment containing both an event and a timex3, which is indicative of (or at least
does not prohibit) a direct syntactic relation between the two. In the next exam-
ple (Fig. 5), the timex3 and event chunks are contained in different clauses (a

52 B. Boguraev and R.K. Ando

[Snt
Analysts have complained
[thatClause that [timex3 third-quarter timex3] corporate earnings

have n’t been very good thatClause]
[svoClause , but the effect [event hit event] ... svoClause] Snt]

Fig. 5. Syntactic configuration discouraging of a tlink

thatClause and a svoClause, respectively), which structurally prohibits a tlink

relation between the two. Our feature representation is capable of capturing
this information via the types of the segments that contain each of event and
timex3 without overlapping.

6 Experiments

In line with our current investigation focus (as defined in Section 3), we present
here performance results on recognition and typing of timex3, event and tlink

only. Our primary objective here is to report on how effective our analytical
strategy is in leveraging the reference nature of the small timebank corpus for
training classifiers for timeml. This is the first attempt to build a timeml-
compliant analyser which addresses a more or less full complement of timeml

components; thus there are no comparable results in the literature.
The results (micro-averaged F-measure) reflect experiments with different set-

tings, against the timebank corpus, and produced by 5-fold cross validation.

6.1 TIMEX Recognition and Typing

Fig. 6 presents performance results of our timex3 analysis subsystem. Exper-
iments were carried out under different settings. “Span” refers to strict match
of both boundaries (the extent) of a timex3 expression; “sloppy” admits time
expressions recognised by the FS grammars as long as their right boundary is
the same as the reference expression in timebank. (One of the observations
from the quality analysis of timebank reported in [11] is that the corpus is
inconsistent with respect to whether some ‘left boundary’ items—determiners,
pre-determiners, and so forth—are marked as a part of the time expression or
not; the “sloppy” setting tries to account for this somewhat). As of the time or
writing, there are no published results for full timeml-compliant analysis. We
offer here only indirect assessment of our timex3 analysis task, by observing
that the numbers for extent marking are not very far from the best systems
performance reported at the TERN conference. Of course, given the different
definitions of timex2 and timex3, as well as timebank’s relatively ‘cavalier’
attitude with respect to timex3’s left boundary, the comparison is not very

Effective Use of TimeBank for TimeML Analysis 53

Task P R F

Span 77.6 86.1 81.7
Span (‘sloppy’) 85.2 95.2 89.6

Accuracy

Type (given ‘true’ span) 81.5

Span + type 64.5 71.6 67.9
Span (‘sloppy’) + type 70.1 77.8 73.7

Fig. 6. timex3 analysis results, with/without typing. Typing carried out after/
simultaneously with span marking.

meaningful; still, it is indicative of some level of grammar coverage, especially
given the incommensurate sizes of the TERN training data and the timebank
corpus (Section 2).

While timex3 spans are determined by grammars, we use a classifier to type
the time expressions. Again, this decision was motivated largely by observing
some inconsistencies in type assignment in the corpus, and we felt that, for
the purposes of strictly matching the data, machine learning was a more fitting
approach to try first (we are yet to compare the typing results presented here
with typing by the FS grammars; such a comparison is tied somewhat to getting
a better understanding of the quality of annotations in timebank). The timex3

typing classifier (second segment of Fig. 6) is configured to use “true” timex3

spans, as per timebank, as data points, to which it assigns a category (type)
label; thus the table gives a single accuracy measure.

Finally, we report on a joint task, which combines (in sequence) extent mark-
ing by FS grammars and type determination as classification process over given
spans (this classification task, and features, are defined similarly to the IEO
scheme used for event extraction and typing, in without-word-profiling setting;
see Section 5.2). In effect, the results here confirm the intuition that imperfect
subtasks individually contribute to cumulative degradation of performance.

6.2 EVENT Recognition and Typing

The example analysis in Fig. 3, and the description of features used for the
event classification task (Section 5.2) demonstrates how local information and
syntactic environment both contribute to the feature generation process. Fig. 7
shows performance results with and without word profiling for exploiting an
unannotated corpus.

For the word profiling experiments, we extracted feature co-occurrence counts
from 40 million words of 1991 Wall Street Journal articles. The proposed event
chunks are counted as correct only when both the chunk boundaries and event

54 B. Boguraev and R.K. Ando

features with typing w/o typing
basic 61.3 78.6
basic + word-profiling 64.0 (+2.7) 80.3 (+1.7)

Fig. 7. event extraction results, with/without typing. Numbers in parentheses show
contribution of word profiling, over using basic features only.

types are correct. 64.0% F-measure is lower than typical performance of, for
instance, named entity chunking; this result is indicative of the effects of insuf-
ficient training data. On the other hand, a strongly positive indicator here is
the fact that word profiling clearly improves performance. In a different setting,
when we train the event classifiers without typing, we obtain 80.3% F-measure.
This confirms the intuition that the event typing task is inherently complex,
and requires more training data.

6.3 TLINK Recognition and Typing

In this experimental setting, we only consider the pairings of event and timex3

which appear within a certain distance in the same sentences (as we will see
shortly, this hardly reduces the problem space).9

For comparison, we implement the following simple baseline method. Consid-
ering the text sequence of events and timex3’s, only ‘close’ pairs of potential
arguments are coupled with tlinks; event e and timex3 t are close if and only
if e is the closest event to t and t is the closest timex3 to e. For all other pair-
ings, no temporal relation is posted. Depending on the ‘with-’/‘without-typing’
setting, the baseline method either types the tlink as the most populous class
in timebank, is included, or simply marks it as ‘it exists’.

Results are shown in Fig. 8. Clearly, the detection of temporal relations be-
tween events and time expressions requires more than simply coupling the closest
pairs within a sentence (as the baseline does). It is also clear that the baseline
method performs poorly, especially for pairings over relatively long distances. For
instance, it produces 34.9% (in F-measure) when we consider the pairings within
64 tokens without typing. In the same setting, our method produces 74.8% in
F-measure, significantly outperforming the baseline.

We compare performance against two types of feature representation: ‘basic’
and ‘basic+FS grammar’, which reflect the without- and with-segment-type in-
formation obtained by the grammar analysis, respectively. As the positive delta’s
show, configurational syntactic information can be exploited beneficially by our
process. When we focus on the pairings within a 4-tokens window, we achieve
81.8% F-measure without typing of tlinks, and 58.8% with typing. (The task

9 To evaluate the tlink classifier alone, we use the event and timex3 annotations
in timebank. Also, note that the focus on links within a sentence span naturally
excludes tlinks with time expressions in document metadata.

Effective Use of TimeBank for TimeML Analysis 55

distance (# of tlinks) features with typing w/o typing
distance ≤ 64 tokens baseline 21.8 34.9

(1370 tlinks) basic 52.1 74.1
basic+FS 53.1 (+1.0) 74.8 (+0.7)

distance ≤ 16 tokens baseline 38.7 61.3
(1269 tlinks) basic 52.8 75.8

basic+FS 54.3 (+1.5) 76.5 (+0.7)
distance ≤ 4 tokens baseline 49.8 76.1

(789 tlinks) basic 57.0 80.1
basic+FS 58.8 (+1.8) 81.8 (+1.7)

Fig. 8. tlink extraction results, with/without typing. Parentheses show positive con-
tribution of grammar-derived features, over using basic features only. Baseline method
posts tlinks over ‘close’ pairs of events and timex3’s.

without typing is a binary classification to detect whether the pairing has a
tlink relation or not, regardless of the type.) As the figure shows, the task
becomes harder when we consider longer distance pairings. Within a 64 token
distance, for instance,, we obtain figures of 74.8% and 53.1%, without and with
typing respectively.

While we are moderately successful in detecting the existence of temporal
relations, the noticeable differences in performance between the task settings
with and without typing indicate that we are not as successful in distinguishing
one type from another. In particular, the major cause of the relatively low per-
formance of tlink typing is the difficulty in distinguishing between during and
is included link types.

7 Conclusion

We have used the task of timeml-compliant parsing to experiment with a spe-
cially developed strategy for leveraging minuscule amounts of training data. The
strategy synergistically blends finite-state analysis for shallow syntactic parsing
with a machine learning technique. The potential for such synergistic approaches
to complex analytical problems is clear, especially in situations where reference
data—in sufficient quantity, and/or quality—is hard to come by.

This paper highlights two aspects of this blend. We carry out aggressive anal-
ysis, by a complex grammar cascade, aiming at considerably more than just
partitioning text into chunks: the analysis targets both intrinsic characteristics
of temporal expressions, as well as higher-order syntactic configurations used
to derive features for a machine learning component. The learning component
itself is enhanced by a mechanism specifically designed to counteract paucity in
pre-annotated data with the ability to train over unannotated data as well as
exploit whatever labeled data is available, no matter how small.

56 B. Boguraev and R.K. Ando

The extreme paucity of the available reference data correlates with the per-
formance results, in particular where the novel components of event and tlink

analysis are targeted, as they appear to fall short of expectations in line with
current state-of-the-art information extraction capabilities. Our results are fur-
ther explained by the inherently noisy nature characteristic of the timebank
corpus. However, given that the corpus was not designed and populated using
rigorous methods for generating training data, our experience is indicative of the
effectiveness of a hybrid analytical approach.

Direct comparison of the results reported here with related work is not yet
possible. Ours is the first systematic attempt at timeml-compliant analysis,
aiming at a more or less full complement of timeml components: thus there are
no comparable results in the literature.

Mani et al. [20] discuss some pioneering work in linking events with times, and
ordering events, suggestive of productive strategies for posting (some) tlink

information. However, the nature of these efforts is such that differences in
premises, representation, and focus make a direct performance comparison im-
possible. Furthermore, the work pre-dates timeml, and cannot be conveniently
mapped to timebank data; this, in effect, precludes a quantitative comparison
with our work. Most recently, the TARSQI project has been developing strate-
gies and heuristics for particular subsets of timeml components [21]; again,
there is no basis for direct comparison, as only partial overlap exists between
the phenomena and attributes targeted by that work and ours (but see [11] for
some in-depth analysis of complementary analytic strategies). For this reason, as
well as because TARSQI does not explicitly focus on investigating the utility of
timebank as a training resource, it is not constructive to attempt comparative
assessment.

One thing our work makes especially clear is that, given the ability to use
unannotated corpora in conjunction with timebank to develop a more accurate
and felicitous timeml models, even small improvements to the corpus would sig-
nificantly boost performance. The corpus would benefit substantially from the
application of rigorous methodology for compiling training data. Even a rela-
tively minor effort of cleaning up the existing data would improve performance:
this is confirmed by considering the results presented in Section 6 and the corpus
characteristics highlighted in Section 2.

A cleanup operation—largely focused on fixing both the errors of omission and
commission in the original timebank—has now been carried out: timebank Ver-
sion 1.2 represents a considerable improvement over timebank 1.1, with respect
to largely removing the noise in the first release [11]. timebank 1.2 is available
through the offices of Linguistic Data Consortium. Future work, of further use
to the community, would be an effort to create a larger timebank which—by
virtue of the systematic methods of developing an annotated corpus within an
established set of annotation guidelines—will truly become the widely usable
reference resource envisaged from the outset of the timeml definition and by
more recent standardisation efforts [22].

Effective Use of TimeBank for TimeML Analysis 57

References

1. Pustejovsky, J., Castaño, J., Ingria, R., Sauŕı, R., Gaizauskas, R., Setzer, A., Katz,
G., Radev, D.: TimeML: Robust specification of event and temporal expressions
in text. In: AAAI Spring Symposium on New Directions in Question-Answering
(Working Papers), Stanford, CA, pp. 28–34 (2003)

2. Hobbs, J., Pan, F.: An ontology of time for the semantic web. TALIP Special Issue
on Spatial and Temporal Information Processing 3(1), 66–85 (2004)

3. Sauŕı, R., Littman, J., Knippen, B., Gaizauskas, R., Setzer, A., Pustejovsky, J.:
TimeML annotation guidelines. Technical report, TERQAS Workshop (2005), Ver-
sion 1.4, (date of citation: February 02, 2006)
http://timeml.org/site/publications/timeMLdocs/AnnGuide 1.2.1.pdf

4. Advanced Research Projects Agency: In: Proceedings of the Sixth Message Under-
standing Conference (muc-6), Advanced Research Projects Agency, Software and
Intelligent Systems Technology Office (1995)

5. Advanced Research Projects Agency: In: Proceedings of the Seventh Message Un-
derstanding Conference (muc-7), Advanced Research Projects Agency, Software
and Intelligent Systems Technology Office (1998)

6. Boguraev, B., Ide, N., Meyers, A., Nariyama, S., Stede, M., Wiebe, J., Wilcock,
G.: Linguistic Annotation Workshop (the LAW); ACL-2007, Prague, The Czech
Republic, Association for Computational Linguistics (June 2007)

7. Fikes, R., Jenkins, J., Frank, G.: JTP: A system architecture and component library
for hybrid reasoning. Technical Report KSL-03-01, Knowledge Systems Laboratory,
Stanford University (2003)

8. Han, B., Lavie, A.: A framework for resolution of time in natural language. TALIP
Special Issue on Spatial and Temporal Information Processing 3(1), 11–35 (2004)

9. Hobbs, J., Pustejovsky, J.: Annotating and reasoning about time and events. In:
AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning,
Stanford, CA (March 2004)

10. Pustejovsky, J., Hanks, P., Sauŕı, R., See, A., Gaizauskas, R., Setzer, A., Radev, D.,
Sundheim, B., Day, D., Ferro, L., Lazo, M.: The Timebank corpus. In: McEnery,
T. (ed.) Corpus Linguistics, Lancaster, pp. 647–656 (2003)

11. Boguraev, B., Pustejovsky, J., Ando, R., Verhagen, M.: Evolution of TimeBank as
a community resource for TimeML parsing. Language Resources and Evaluation
(Forthcoming 2007)

12. DARPA TIDES (Translingual Information Detection, Extraction and Summariza-
tion): The TERN evaluation plan; time expression recognition and normalization.
In: Working papers, TERN Evaluation Workshop (2004), (date of citation: July
12, 2005) http://timex2.mitre.org/tern.html

13. Kennedy, C., Boguraev, B.: Anaphora for everyone: Pronominal anaphora res-
olution without a parser. In: Proceedings of COLING 1996. 16th International
Conference on Computational Linguistics, Copenhagen, DK (1996)

14. Schilder, F., Habel, C.: Temporal information extraction for temporal QA. In:
AAAI Spring Symposium on New Directions in Question-Answering (Working Pa-
pers), Stanford, CA, pp. 35–44 (2003)

15. Zhang, T., Damerau, F., Johnson, D.E.: Text chunking based on a generalization
of Winnow. Journal of Machine Learning Research 2, 615–637 (2002)

16. Florian, R., Ittycheriah, A., Jing, H., Zhang, T.: Named entity recognition through
classifier combination. In: Proceedings of CoNLL-2003 (2003)

http://timeml.org/site/publications/timeMLdocs/ AnnGuide_1.2.1.pdf
http://timex2.mitre.org/tern.html

58 B. Boguraev and R.K. Ando

17. Zhang, T., Johnson, D.E.: A robust risk minimization based named entity recog-
nition system. In: Proceedings of CoNLL-2003, pp. 204–207 (2003)

18. Florian, R., Hassan, H., Jing, H., Kambhatla, N., Luo, X., Nicolov, N., Roukos, S.:
A statistical model for multilingual entity detection and tracking. In: Proceedings
of HLT-NAACL 2004 (2004)

19. Ando, R.K.: Exploiting unannotated corpora for tagging and chunking. Proceed-
ings of ACL 2004 (2004)

20. Mani, I., Pustejovsky, J., Sundheim, B.: Introduction: special issue on temporal
information processing. ACM Transactions Asian Language Information Process-
ing 3(1), 1–10 (2004)

21. Verhagen, M., Mani, I., Sauri, R., Littman, J., Knippen, R., Jang, S.B., Rumshisky,
A., Phillips, J., Pustejovsky, J.: Automating temporal annotation with tarsqi. In:
ACL 2005. 43rd Annual Meeting of the Association for Computational Linguistics,
Ann Arbor, Michigan, (Poster/Demo) (2005)

22. Lee, K., Pustejovsky, J., Boguraev, B.: Towards an international standard for anno-
tating temporal information. In: Third International Conference on Terminology,
Standardization and Technology Transfer, Beijing, China, ISO TC/37 and SC (Au-
gust (2006)

Event Extraction and Temporal Reasoning in

Legal Documents

Frank Schilder

R&D, Thomson Corp.
610 Opperman Drive, Eagan 55123, U.S.A.

Frank.Schilder@Thomson.com

Abstract. This paper presents a prototype system that extracts events
from the United States Code on U.S. immigration nationality and links
these events to temporal constraints, such as in entered the United States
before December 31, 2005. In addition, the paper provides an overview
of what kinds of other temporal information can be found in different
types of legal documents. In particular, it discusses how one could do
further reasoning with the extracted temporal information for case law
and statutes.

1 Introduction

In the recent past, little research has been carried out in legal reasoning looking
at formalizing temporal information. This should come in particular as a surprise
since case law documents, laws, regulations and legal documents in general are
normally filled with temporal information:

(1) On November 12, 1998, Illinois State Police Trooper Daniel Gillette
stopped defendant on Interstate Route 80 in La Salle County for driving
71 miles per hour in a zone with a posted speed limit of 65 miles per hour.

(2) (. . .) is an alien who entered the United States on or before December
31, 1990, who filed an application for asylum on or before December 31,
1991, and who, at the time of filing such application, was a national
of the Soviet Union, (. . .)

(3) The primary treating physician shall be responsible for obtaining all of the
reports of secondary physicians and shall, unless good cause is shown, within
20 days of receipt of each report incorporate, or comment upon, the findings
and opinions of the other physicians in the primary treating physician’s
report and submit all of the reports to the claims administrator.

(4) Celltech owns a family of patents called the ”Adair” patents and sought to
claim royalties from Medimmune under a patent licence dated 19 January
1998.

Although temporal information is actually ubiquitous in legal text, systems for
legal reasoning deal normally only on an ’ad-hoc-basis’ with this important phe-
nomenon [1]. With the exception of the special issue of Information & Communi-
cations Technology Law in 1998 [1,2,3], there is hardly any research on temporal

F. Schilder et al. (Eds.): Reasoning about Time and Events, LNAI 4795, pp. 59–71, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

60 F. Schilder

information in legal text carried out. A couple of recent attempts focused on the
specification of legal text in XML including temporal information [4,5,6]. Apart
from these few research projects the extraction of temporal information has not
been looked at in the literature. Traditionally, legal reasoning has been the focus
of AI-related research, where the content of laws and regulations may, for exam-
ple, become formalized in the event calculus [7]. Time may play a role within
such a formalization, but it has not been the main focus of the formalization
apart from a few exceptions.

The aim of this paper is to give a first attempt on how temporal informa-
tion extraction techniques can be married with formal temporal reasoning ap-
proaches. Instead of formalizing legal text, we would like to extract parts of legal
text a lawyer may be interested via Information Extraction (IE) methods such
as finite state transducers. This first task could be coined event extraction where
a lawyer, for example, is interested in a specified event type mentioned in various
legal documents such as statutes. As a second task, we would like to capture the
temporal constraints that may be associated with these events.

As an example, we can assume that a lawyer would like to find entering the
United States events in the United States Code 8 (U.S.C. 8) on U.S. immigration
and nationality. However, the number of occurrences of the phrase entered the
United States is quite high in the entire statute and the lawyer may want to
filter out only events that describe the actual circumstances of how her client
entered the country. In order to do this, we need to extract events that do not
contradict the temporal constraints given by the concrete case. A person may
have entered the country on November 16, 2005. A section of the U.S.C. 8 that
talks about aliens who entered the country before January 1, 1995 is clearly not
relevant and should not be presented to the lawyer for further review.

The rest of the paper is organized as follows. We will first look at temporal
information in legal text in general. We discuss different types of legal text and
investigate what kind of temporal information they can contain and after review-
ing how this information could be automatically extracted, we will present our
results of a first study on extraction and reasoning with the temporal information
in statutes.

Section 2 contains an overview of different kinds of legal documents and pro-
vides a brief introduction on how temporal information and constraints can be
important for researching these legal documents. Section 3 focuses on a prototype
system for event and temporal information extraction implemented within the
UIMA framework. Section 4 concludes and discusses possible avenues of future
research.

2 Legal Documents and Temporal Information

Legal documents can be categorized in different ways. For this paper, we make
the following distinction for different U.S. legal documents:

Event Extraction and Temporal Reasoning in Legal Documents 61

– Statutes (issued by the federal government)
– Proclamations, code of Federal Regulations, administrative decisions (issued

by the President, Executive Departments and administrative departments
(e.g. National Labor Relations Board (NLRB))

– Case law (authorized by trial courts, appellate courts or the supreme courts)
– Transactional documents (written by lawyers)
– Documents used as evidence for a case
– News documents that mention parties or people relevant to a case

There are different ways of how to look at temporal information and legal
documents. For one thing we can look at the documents and their creation date
or the date when the law described by them takes effect. Legal documents can be
ordered along a time line according to these dates. This ordering of documents
could be called extrinsic temporal ordering.

Another ordering would be an intrinsic temporal ordering of the events de-
scribed within the document and placing them onto a time line. This type of
temporal extraction is clearly more sophisticated and requires deep NLP pro-
cessing techniques.

Another way of processing temporal information derived from legal documents
is the mining of information about the participating parties mentioned in the
document. Based on the creation date, one can derive that a lawyer works for
a particular company at that time. A different case may show the same lawyer
working for a different company at a latter point in time. Other text types
such as news messages about companies, law firms or lawyers may also give
information about the current affiliation of the people mentioned in the text.
This information could be used to update databases on companies, law firms or
lawyers.

All these three dimensions of temporal extraction and reasoning can be found
if we look at the normal life cycle of a case. Traditionally, the search for precedent
cases is the centerpiece for the American legal system and most often the starting
point for the legal researcher. Hence, it is absolutely essential to find precedent
cases relevant to the current case that are also not superseded by decisions of
a higher court made at a later date. Services such as KeyciteTM offer a legal
researcher the tool to search the history and status of U.S. and state court cases
and statutes. In order to ensure accuracy this information is annotated by editors
a couple of hours after the decisions have become public.

Apart from this classic case of ordering legal cases according to a time line,
there are other applications where the automatic temporal ordering of documents
can become crucial for a legal researcher. In the following, we will look at two
different kinds of legal text in more detail: legal narratives and statutes. The oc-
currence of temporal expressions in another type of legal text (i.e., transactional
documents) is discussed in [8]. Here, we first discuss fact-based narratives in case
law which are most similar to news messages, because they mention mainly ac-
tual events that are linked to temporal expressions. Second, we investigate what
kind of temporal expressions can be found in statutes. They are concerned with
normative legal concepts rather than with concrete events. Consequently, event

62 F. Schilder

types are described that are linked to temporal expressions. We found a higher
number of durations than is normally the case in news messages.

2.1 Legal Narratives in Case Law

Narrative language describing the facts of the case most often contains temporal
expressions. At the beginning of a case the judge normally describes the facts
and the reasoning that follows should be based on the relevant laws, statutes or
regulations relevant to these facts.

(5) On November 12, 1998, Illinois State Police Trooper Daniel Gillette stopped
defendant on Interstate Route 80 in La Salle County for driving 71 miles
per hour in a zone with a posted speed limit of 65 miles per hour. Trooper
Gillette radioed the police dispatcher that he was making the traffic stop.

Such narratives are very similar to news messages and an off-the-shelf tempo-
ral tagger could extract temporal expressions reasonably well from this type of
text. In addition research focusing on temporal information derived from narra-
tives [9] could be leveragesd for deriving a formal representation of the chain of
events. Having derived the temporal constraints on the event described in the
case, searches could be carried out that contain temporal constraints. A query
such as ”Banana /s slip /before fall” would return only cases where a slipping
event occurred before a falling event. Note that this is a (temporal) relation
between events and not sentences.

2.2 Temporal Restrictions in Statutes or Regulations

Statutes and regulations contain several different types of temporal expressions.
In contrast to the fact-based narratives one finds in case law, they often contain
periods of time (e.g. 30 days) or sets of times (e.g. every year). These two types
of temporal expressions are used to add time constraints to event types rather
than to an actual event, as this is the case in news messages or the facts sections
of a case.

(6) ATTORNEY GENERAL OPTION TO ELECT TO APPLY NEW
PROCEDURES.- In a case described in paragraph (1) in which an eviden-
tiary hearing under section 236 or 242 and 242B of the Immigration and
Nationality Act has not commenced as of the title III-A effective date, the
Attorney General may elect to proceed under chapter 4 of title II of such
Act (as amended by this subtitle). The Attorney General shall provide notice
of such election to the alien involved not later than 30 days before the
date any evidentiary hearing is commenced. If the Attorney General makes
such election, the notice of hearing provided to the alien under section 235
or 242(a) of such Act shall be valid as if provided under section 239 of such
Act (as amended by this subtitle) to confer jurisdiction on the immigration
judge.

Event Extraction and Temporal Reasoning in Legal Documents 63

The anchor for the duration in (6) is found in the date an evidentiary hearing
is commenced. It is important to note that the link between the temporal ex-
pression and this event is conditional. Only if such an evidentiary hearing exists
does the 30-days restriction apply.

Statutes may also contain date expressions. These can be linked to an actual
event, as for an effective date (or termination date) in (e.g. (7)). But mostly,
even these date expressions are linked to an event type as a temporal constraint,
as in (8).

(7) Amendment by Pub. L. 99177 effective Dec. 12, 1985, and applicable with
respect to fiscal years beginning after Sept. 30, 1985, but with subsec. (c)
to expire Sept. 30, 2002, see section 275(a)(1), (b) of Pub. L. 99177, as
amended, set out as an Effective and Termination Dates note under section
900 of Title 2, The Congress.

(8)) (. . .) is an alien who entered the United States on or before December
31, 1990, who filed an application for asylum on or before December 31,
1991, and who, at the time of filing such application, was a national of
the Soviet Union, Russia, any republic of the former Soviet Union, Latvia,
Estonia, Lithuania, Poland, Czechoslovakia, Romania, Hungary, Bulgaria,
Albania, East Germany, Yugoslavia, or any state of the former Yugoslavia;

In a preliminary study of the United State Code we investigated the perfor-
mance of an off-the-shelf temporal tagger (i.e. TempEx by [10]) on a small test
set drawn from the United States Code by hand-annotating this test set with
respect to the links between temporal expressions and events or event types ac-
cording to the TimeML specification [11]. TimeML is a specification language
for the annotation of events and temporal expressions. Events, for example, are
annotated by EVENT tags, temporal expressions by TIMEX tags and the relation
between events and temporal expressions are indicated by TLINK.

First we ran the TempEx tagger and computed precision and recall for a ran-
domly selected set of 26 statute sections extracted from the 8th United States
Code on Aliens and Nationality. Of the 64 temporal expressions in the sampled
sections, the temporal tagger identified 24. Of these, four, contained incorrect
date attributions. Results on this test are shown in table 1. Take into considera-
tion that the Tempex tagger was written for news messages and that such a test
can only be seen as a baseline for temporal taggers that are more fine-tuned for
legal language in statutes or regulations.

Then we hand-annotated all temporal expressions in these 26 sections accord-
ing to the subordinated link and temporal link between the temporal expression

Table 1. Temporal tagging accuracy

correct occurrences percent

Precision 20 24 83.33%
Recall 20 64 31.25%

64 F. Schilder

Table 2. Distribution of temporal expressions in subset of U.S.C. 8

ET AE
Period Set Date Date

22 26 11 5
59 5

total 64

and the event (type). We distinguished the following two categories: (a) an
event type describes an event that is not necessarily anchored on the time
line (e.g., emphan alien who entered the United States before January 1st,
1999). Formally, the event variable can be bound by a universal quantifier (i.e.,
∀e enter(e) → τ(e) < 1999− 01 − 01).

In addition to the distinction between and event type and an actual event, we
investigated which temporal modifiers (e.g., frequencies or dates) co-occur with
the events. We found the following combinations of event type/actual event and
temporal modifiers:1

ET-Period Event type linked to a period describes an event that has to happen
within a definite period of time (e.g., needs to file within 20 days)

ET-Set Event type linked to a set of times (or a frequency) indicates an event
frequency (e.g., must not enter more than two times)

ET-Date Event type linked to a date specifies when an event should (or should
not have) happened in order to meet some condition (e.g., an alien who
entered the United States before January 1st, 1999)

AE-Date An actual event linked to a date (e.g., John Smith entered the country
on January 5th, 2005)

The event type definition can be seen as similar to the event ordering definition
provided by [12] (i.e., establishing the relative position of two events in time).

The results of our preliminary study of the distribution of different types of
links between temporal expressions and event (types) can be found in figure 2.
From the distribution of these different link types one can conclude that temporal
expressions in statutes serve a different function than in news messages or in the
facts sections of cases. Statutes define event types that can be restricted by
temporal constraints. A set of people may be defined by their actions within a
certain time frame in addition to other conditions that have to hold (e.g. (8)).
Such conditional definitions do not occur that often in factive text.

Nevertheless, the TimeML specification allows for such a link via an SLINK
[11]:

(9) Bush held out the prospect of more aide248 to Jordan ifs1298 it cooperatese249

with the trade embargo.

1 We did not find any periods or sets of times linked to actual events (e.g. John wrote
the note within 2 minutes).

Event Extraction and Temporal Reasoning in Legal Documents 65

<SLINK eventInstanceID="e248" subordinatedEventInstance="e249"
signalID="s1298" relType="CONDITIONAL"/>

Important signals for conditional SLINKs are conjunctions when or if, as de-
scribed in the TimeML annotation guide. TimeBank 1.22 contains indeed 45
SLINKS which are almost exclusively signaled by if -constructions (i.e., 39/45).
Those signals, however, are not found in statutes. Instead these temporal ex-
pressions are often used within a modal context (cf. The Attorney General shall
provide notice of such election to the alien involved not later than 30 days).

Extracting these links can be useful for the shallow processing of statutes
where conditions including temporal ones are extracted and a matching algo-
rithm could filter those statutes or regulations relevant to a given case (e.g. for-
mer citizen of East Germany entered the United States om November 11th, 1990
and filed an application for asylum 20 days after he entered the country fulfills
all conditions stated in (8)).

Another important temporal dimension one encounters with this type of doc-
ument is the history of the statute. Arnold-Moore describes a system that keeps
track of the amendments that were added to a statutes of regulation. This system
is currently being used for legislations in Tasmania.3

3 Reasoning with Temporal Information and Event
Types

As a case study, we extracted sentences describing entering the US event type
descriptions from the U.S.C. 8. The goal of this study was to show how temporal
information extracted for event types can be used to match description of real
cases such as in (10)).

(10)Juan Anibal Aguirre-Aguirre entered the United States without inspection
in 1993 and applied for asylum and withholding of deportation.

3.1 System Description

We implemented the prototype as several UIMA4 components that produced
Prolog clauses as output representing the syntactic structure, the named entities
and the date and time information. Given these clauses, a temporal reasoner
is able to determine whether sentences from the U.S.C. 8 match with given
descriptions of concrete cases. Our prototype consists of the following analysis
engines:

– Tokenizer and sentence splitter
– Syntactic analysis

2 http://timeml.org/site/timebank/timebank.html
3 http://www.thelaw.tas.gov.au/index.w3p
4 http://www.alphaworks.ibm.com/tech/uima

66 F. Schilder

– Named entity tagging
– Time and date extraction
– Event extraction

For the first three engines, we used openNLP, an open source tool for POS tag-
ging, sentence splitting and shallow parsing.5 We developed our own DateTime
annotator that also derives the meaning of the temporal prepositional phrase
such as before December 31, 1990. The temporal reasoning part was carried out
on the generated Prolog clauses.

U.S.C. 8

Analysis engines

Tokenizer,
Sentence
splitter,
shallow
parser

(openNLP)

Date and time
extraction

Event
extraction

Annotations

Satisfies
temporal

constraint?

present
sentence
to user

YES

discard
sentence

No

Fig. 1. System overview

Time and date extraction. The annotation of temporal expressions and their
temporal relations carried out by a simple Analysis Engine focussing in particular
on the temporal expressions in entering events. First of all, each temporal expres-
sion has a representation within an ISO 8601-like representation [13]. Secondly,

5 http://opennlp.sourceforge.net/

Event Extraction and Temporal Reasoning in Legal Documents 67

we added temporal prepositions to the derived temporal information and finally,
used some basic temporal functions (e.g., adding and subtracting times).

Temporal representation format. We use ISO 8601 with some extensions that
capture in particular time periods with definite and indefinite beginning or
ending point. Generally, an ISO expression can either be anchored or unan-
chored. The anchored expression or timestamp (TS) contains the date and time
information of the following form: YYYY-MM-DDTHH:MM:SS. The string
2007-07-07TXX:XX:XX, for example, indicates July 7th, 2007. The granularity
level is day and the time information is underspecified, as indicated by the Xs.
For brevity, the underspecified time information is often omitted.

An unanchored expression is a duration and is schematically represented as
PNG, where N is either a number or X, and G is the abbreviation for the given
granularity level. The duration two months, for instance is encoded as P2M and
the unspecified temporal expression weeks is represented as PXW.

Durations can also be anchored if a timestamp is supplied by the context. In
such a case the unanchored duration PNG is turned into an anchored time stamp.
For example the period of three days (i.e. P3D), as in the next three days, can be
anchored with a time stamp (e.g., July 7, 2007) and turned into 2007-07-07P3D
which represents the closed time interval starting with July 7, 2007 and ending
with July 9, 2007. Conversely, we can add a time stamp at the ending of this
period which results in the expression 2007-07-07PB3D referring to a three day
interval with the last day being July 6, 2007. Note that TSPB intervals are open
with respect to the time stamp, whereas TSP intervals with the time stamp at
the left end of the period includes the time stamp.

Temporal relations. Our DateTime tagger also tags temporal prepositions. Note
that temporal prepositions contribute to the temporal meaning of temporal ex-
pressions [14]. For the prototype, we adopted the specification of temporal prepo-
sitions, as described in [13]. The preposition before, for instance, is defined as a
function that takes an anchored TS and gives back an interval TSPBXG, where G
is the granularity of TS.

In order to relate the temporal expression to the event time of the event
(i.e., τ(e)), a subset relation between the interval described by the temporal
PP tPP and the event time is stipulated (i.e. τ(e) ⊂ tPP). This representation
is equivalent to an alternative representation where the temporal preposition
introduces the temporal relation (e.g., τ(e) < tNP), where tNP is the time
denoted by the NP in the temporal PP (e.g., Sunday in before Sunday) provided
that tPP is an open interval as defined earlier (e.g., 2007-07-07PBXD).

In a news context, however, the event most likely occurred in a couple of
days before (or after) the anchor date. The sentence He left after July 7, 2007
in a news context, for example, describes a situation where the leaving event
occurred a couple of days after July 7, 2007. Consequently, the time stamp
2007-07-07PBXD may be further constrained by X < 5.

In the legal context, however, time periods can sometimes be fully underspec-
ified with respect to the beginning and ending point of the related time interval.

68 F. Schilder

An expression such as before December 1st, 1999 for example, refers to a pe-
riod with no definite beginning point.6 However, the meaning of the temporal
expression is still 1999-12-01TPBXD indicating a granularity level of days. The
reasoning component has to consider which interpretation of X is preferred. A
legal description prefers the interpretation with an open time interval, whereas
a news context indicates a limited number of days before the anchor time.

Temporal functions. In order to compute the correct temporal information, a
couple of temporal functions need to be employed. Such functions include, for
example, adding or subtracting date and time information. For the prototype,
we used some basic temporal functions from the package joda-Time7 and imple-
mented additional ones. Most importantly, we need to address the question of
conjunctions in temporal PPs, such as in on or before January 1, 2000. Given a
disjunction, we compute two temporal PPS (i.e., on January 1, 2000 and before
January 1, 2000). The time stamps are translated into their ISO representations,
respectively (i.e., 2000-01-01P1D and 2000-01-01PBXD). A function add gives
back a new timestamp, if it represents a consecutive time span: 2000-01-02PBXD.
Similarly, on or after January 1, 2000 is translated to 2000-01-01PXD.

Event extraction. The end result of this pipeline is a database of sentences
that described an entering the United States event and a temporal constraint.
Given a sentence that describes a concrete case, we are now able to match the
actual event against the event type description, such as in (10).

(11)(a) entered the United States prior to January 1, 1972.

The event extraction module is a finite state automaton that checks for the
occurrence of the verb entered and a subsequent occurrence of the NP the United
States. In addition, the temporal PP is extracted and the meaning is computed.
In example (11), the following clause can be derived:

clause(E, enter, ’United States’, ’1972-01-01PBXD’, ’USC8’, 1259).

This clause contains the temporal constraint that the entering event had to
occur within the time frame of before January 1st, 1972 as well as the pointer
to the section in the U.S.C. 8. After mining the code for entering events as
well as the temporal constraints, a knowledge base of these event types can be
established. Checking this data base with a concrete case involving a person who
entered the United States at a certain date can easily be done via the following
query:

clause(E,enter,’United States’,T, Codes, Section),
temp_subset(’1970-04-04’, T).

6 One could, however, argue that the earliest point in time would be the creation of
the United States Codes.

7 http://joda-time.sourceforge.net/

Event Extraction and Temporal Reasoning in Legal Documents 69

Fig. 2. An entering event and its temporal constraint

3.2 Extensions

Future extensions include the computation of further temporal constraints and
the representation of other constraints, such as citizenship of the alien or of the
filing date for asylum.

Another important extension in order to make this approach usable for a
lawyer is to compute the validity of the statute section. Our system runs on
the raw U.S.C. text and does not consider which parts may not be valid any
more because of later amendments of the statute. Documents that take the
amendments into account, however, can easily be made available to the lawyer
based on editorial enhancements.

4 Conclusions

This paper reports on work-in-progress on event extraction and temporal infor-
mation extraction and reasoning techniques for legal documents. More specifi-
cally, we presented first results in modeling an extraction and reasoning tool for
entering the United States events in the U.S.C. 8.

In general, we find that most legal text contain many temporal expressions
that could be mined and used for automatic reasoning systems for a variety of
purposes that may be interesting for the legal practitioner:

– Legal narratives in case law are similar to news messages and off-the-shelf
temporal taggers should provide a good coverage with respect to extracting
temporal expressions. In addition, the narrative structure should give ad-
ditional clues for ordering the events of the current case. Applications that

70 F. Schilder

could benefit from temporal extraction techniques are more detailed searches
with temporal connectors or temporal reasoning of witness accounts in order
to detect inconsistencies among the witnesses’ statements.

– Statutes or regulations have a different languages and differ in many respect
from other legal texts by providing legal rules that should match the facts of
the current case. This is also reflected in the temporal information encoded
into these rules. In a preliminary study, we found a large amount of tem-
poral expressions that are linked to event types rather than actual event. A
temporal and event tagger has to take this into account when applied to this
kind of data. Consequently, the off-the-shelf temporal tagger we used had a
very low recall. Future applications could use the temporal constraints men-
tioned in the statutes and match them against the actual case and suggest
relevant passages.

References

1. Vila, L., Yoshino, H.: Time in automated legal reasoning. Information and Com-
munications Technology Law 7, 173–197 (1998)

2. Knight, B., Ma, J., Nissan, E.: Representing temporal knowledge in legal discourse.
Law, Computers, and Artificial Intelligence / Information and Communications
Technology Law 7(3), 199–211 (1998)

3. Farook, D.Y., Nissan, E.: Temporal structure and enablement representation for
mutual wills: Law, Computers, and Artificial Intelligence / Information and Com-
munications Technology Law 7(3), 243–268 (1998)

4. Arnold-Moore, T.: About time: legislation’s forgotten dimension. In: Proceedings of
the 3rd AustLII Law via the Internet Conference 2001, Sydney, Australia (Novem-
ber 2001)

5. Arnold-Moore, T.: Point in time publication for legislation (xml and legislation).
In: Proceedings ot the 6th Conference on Computerisation of Law via the Internet,
Paris, France (December 2004)

6. Grandi, F., Mandreoli, F., Tiberio, P., Bergonzini, M.: A temporal data model and
system architecture for the management of normative texts (extended abstract). In:
Proceedings of SEBD 2003 - Natl’. Conf. on Advanced Database Systems, Cetraro,
Italy, pp. 169–178 (June 2003)

7. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1),
67–95 (1986)

8. Schilder, F., McCulloh, A.: Temporal information extraction from legal documents.
In: Katz, G., Pustejovsky, J., Schilder, F. (eds.) Annotating, Extracting and Rea-
soning about Time and Events. Dagstuhl Seminar Proceedings, Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany. Dagstuhl Seminar Proceedings, vol. 05151 (2005), (date of citation: Jan-
uary 1, 2005), http://drops.dagstuhl.de/opus/volltexte/2005/313

9. Mani, I., Pustejovsky, J.: Temporal discourse models for narrative structure. In:
Webber, B., Byron, D.K. (eds.) Proceedings of the ACL, Workshop on Discourse
Annotation, Barcelona, Spain, Association for Computational Linguistics, pp. 57–
64 (July 2004)

10. Mani, I., Wilson, G.: Robust temporal processing of news. In: ACL 2000. Proceed-
ings of the 38th Annual Meeting of the Association for Computational Linguistics,
Hong Kong, pp. 69–76 (June 2000)

http://drops.dagstuhl.de/opus/volltexte/2005/313

Event Extraction and Temporal Reasoning in Legal Documents 71

11. Pustejovsky, J., Ingria, B., Sauri, R., Castano, J., Littman, J., Gaizauskas, R.,
Setzer, A., Katz, G., Mani, I.: The specification language TimeML. In: Mani, I.,
Pustejovsky, J., Gaizauskas, R. (eds.) The Language of Time: A Reader, Oxford
University Press, Oxford (February 2005)

12. Pustejovsky, J., Knippen, R., Littman, J., Sauŕı, R.: Temporal and event infor-
mation in natural language text. Computers and the Humanities 39(2-3), 123–164
(2005)

13. Schilder, F.: Extracting meaning from temporal nouns and temporal prepositions.
ACM Trans. Asian Lang. Inf. Process. 3(1), 33–50 (2004)

14. Schilder, F., Habel, C.: From temporal expressions to temporal information: Se-
mantic tagging of news messages. In: Proceedings of ACL2001 workshop on tem-
poral and spatial information processing, Toulouse, France, pp. 65–72 (2001)

Computational Treatment of Temporal Notions:

The CTTN–System

Hans Jürgen Ohlbach

Institut für Informatik, Universität München
ohlbach@lmu.de

Abstract. The CTTN–system is a computer program which provides
advanced processing of temporal notions. The basic data structures of the
CTTN–system are time points, crisp and fuzzy time intervals, labelled
partitionings of the time line, durations, and calendar systems. The la-
belled partitionings are used to model periodic temporal notions, quite
regular ones like years, months etc., partially regular ones like timeta-
bles, but also very irregular ones like, for example, dates of a conference
series. These data structures can be used in the temporal specification
language GeTS (GeoTemporal Specifications). GeTS is a functional spec-
ification and programming language with a number of built-in constructs
for specifying customised temporal notions.

CTTN is implemented as a Web server and as a C++ library. This
paper gives a short overview over the current state of the system and its
components.

1 Introduction

In the CTTN–project we aim at a very detailed modelling of the temporal no-
tions. These are, in particular, time points, crisp and fuzzy temporal intervals
together with built-in as well as user definable relations between and operations
on these intervals. Furthermore, there is support for various kinds of regular and
irregular periodic temporal notions, again built-in ones as well as user definable
ones. The possibilities range from very simple ones like seconds or minutes up
to complex ones like Easter time or solar eclipses. A special specification and
programming language GeTS (GeoTemporal Specifications [10]) allows applica-
tions and users to defined their own versions of temporal notions and to do all
kinds of computations with them.

CTTN is not the implementation of a theoretical temporal logic, but it models
the flow of time as it is perceived on our planet. It realizes

the main concepts and operations underlying many temporal notions in nat-
ural language.

The key components of the CTTN–system consist of the modules depicted
in Figure 1. The Service module at the bottom contains a large variety of ap-
plication independent functions. The FuTI module (Fuzzy Time Intervals) [9,8]
contains the data structures and operations on time time points and crisp and

F. Schilder et al. (Eds.): Reasoning about Time and Events, LNAI 4795, pp. 72–87, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computational Treatment of Temporal Notions: The CTTN–System 73

Service

FuTI

Point
Interval
Operation
Y-Function

Socket SOAP CORBA RMI

Interfaces

Parser, abstract machine

GeTS

algorithmic Granules
duration Labels
tree Labellings

individual / sequence

YearMonthDay

HourMinuteSecond

SubSeconds

Gregorian

Julian
...

Partitioning Region

Calendar Systems

�

� �

�
�

�
�

��

��������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

							
�

Fig. 1. The CTTN-System

fuzzy time intervals. The largest module is the PartLib module (Partitioning Li-
brary). It contains the machinery for specifying and working with periodic tem-
poral notions. Since calendar systems consist of such periodic temporal notions,
a module for representing different calendar systems is also part of PartLib.

The GeTS module implements a functional programming language with cer-
tain additional constructs for this application area. A flex/bison type parserc
and an abstract machine for GeTS has been implemented as part of the CTTN–
system. GeTS is the first specification and programming language with such a
rich variety of built-in data structures and functions for GeoTemporal notions.
In a first case study it has been used to define various versions of fuzzy interval–
interval relations [8].

74 H.J. Ohlbach

The basic interface to the CTTN system is socket based and implements the
CTTN protocol. Prototypes of RMI, CORBA and SOAP interfaces have also
been implemented, but not yet fully tested.

2 Time Points and Time Intervals in the FuTI–Module

The flow of time underlying most calendar systems corresponds to a time axis
which is isomorphic to the real numbers R. Since the most precise clocks devel-
oped so far, atomic clocks, measure the time in discrete units, it is sufficient to
restrict the representation of concrete time points to integers. Therefore FuTI
represents time points with integers, either with 64–bit integers, or with multiple
precision integers (this is a compiler option). Within FuTI there is no assumption
about the meaning of these integers, whether they are days, seconds, femtosec-
onds or not even time points1.

Although FuTI represents time points only with integers, there is still the
underlying assumption that the time axis is isomorphic to the real numbers.
That means, for example, the interval between the time points 0 and 1 is not
empty, but it is set of real numbers between 0 and 1.

The next important data type is that of time intervals. Time intervals can be
crisp or fuzzy. With fuzzy intervals one can encode notions like ‘around noon’
or ‘late night’ etc. Since fuzzy intervals are more general and more flexible than
crisp intervals, FuTI uses fuzzy intervals as basic interval data type.

Fuzzy intervals are usually defined through their membership functions [15,4].
A membership function maps a base set to real numbers between 0 and 1. The
base set for fuzzy time intervals is a linear time axis.

�

�

R
0

1

Crisp and Fuzzy Intervals

The fuzzy intervals can also be infinite. For example, the term ‘after tonight’
may be represented as a fuzzy distribution which rises from fuzzy value 0 at 6
pm until fuzzy value 1 at 8 pm and then remains 1 ad infinitum.

Fuzzy time intervals are realized in the FuTI–module as polygons with inte-
ger coordinates. The x-coordinates represent time points and the y-coordinates
represent fuzzy values as integers between 0 and a maximum value (the default
value is 1000). A normalised fuzzy value between 0 and 1 can then be obtained
by dividing the integer y-coordinate by the maximum value. A y-coordinate of
500, for example, represents the normalised fuzzy value 0.5.
1 A special component of FuTI, which was developed for another application allows

for the representation of circular intervals like angles between 0 and 360 degrees. In
this case the integers represent fractions of angular degrees.

Computational Treatment of Temporal Notions: The CTTN–System 75

�

�

R
0

1

after tonight
6 8

If the integers represent hours, one can, for example, represent the interval
‘around noon’ as the polygon ((11,0) (12,1000) (13,0)). The membership function
of the corresponding fuzzy interval starts at 11 o’clock with fuzzy value 0 and
then rises linearly to fuzzy value 1 at noon. From there on it falls linearly to
fuzzy value 0 at 1 pm.

FuTI provides a large collection of operations on these intervals. There are
methods for accessing information about the intervals, the location of various
parts of an interval, its size (which is the integral over the membership func-
tion), its components etc. There are methods for transforming the intervals, for
example, hull computations, there are integration functions, fuzzification func-
tions etc. There are also very general unary and binary transformation functions
which can be parameterised with functions operating on the fuzzy values. All the
set operations on fuzzy intervals, for example, are realized as transformations
with functions on the fuzzy values. The transformations of the fuzzy membership
functions need not be linear, i.e. they may transform straight lines into curved
lines. The FuTI–module contains for these cases an approximation algorithm
which approximates curved lines by polygons.

Example 1 (Birthday Party Time). This example illustrates some of the opera-
tions which are possible with the FuTI–module. Consider the statement
“the birthday party for took place from around noon until early evening of
20/7/2003”. The corresponding fuzzy interval could be generated by integrating
the fuzzy interval for ‘around noon’ in positive direction, integrating the fuzzy
interval for ‘early evening’ in negative direction and then intersecting the two
integrals. The resulting fuzzy set is:

�

�

R
0

1

Birthday Party Time
11 12 13 20 21 2422

A GeTS specification of this example is given in Example 9.

76 H.J. Ohlbach

3 Periodic Temporal Notions in the PartLib–Module

The PartLib module offers powerful machinery for specifying and working with
periodic temporal notions. The basic concept is the concept of the partition-
ings of the time axis. Since most periodic temporal notions, for example, days,
yield infinite partitionings of the time axis, PartLib offers different versions of
finite representations of these infinite structures. The operations on the infinite
structures are turned into operations on the corresponding finite representations.

Partitions can be labelled, e.g., with ‘Monday’, ‘Tuesday’ etc. Partitionings
with labels can be comprised in different ways to different structures. For exam-
ple, from the day–partitioning and the corresponding labelling one can derive
the structure which corresponds to ‘all Mondays’ or to ‘all non-Mondays’. If the
labels are organised in a hierarchy, for example, Monday,..,Friday are all ‘Work-
days’ and Saturday and Sunday are ‘Weekenddays’ one can derive the notion of
‘all Workdays’. Since there are a number of further ways to derive new substruc-
tures of the time axis from labelled partitionings, all these ways are comprised
into the concept of region structure (see Sec. 3.5). A region structures is essen-
tially a subset of a partitioning of the time axis. Many operations in the CTTN
system work with the more general region structures instead with partitionings.

3.1 Partitionings of the Time Axis

Most basic time units of calendar systems, years, months etc., are essentially
partitionings of the time axis. Other periodical temporal notions, for example,
semesters, school holidays, sunsets and sunrises etc., can also be modelled as
partitionings.

A partitioning of the real numbers R may be, for example, (..., [−100, 0[,
[0, 100[, [100, 101[, [101, 500[, ...). The intervals in the partitionings need not be of
the same length (because time units like years are not of the same length either).
The intervals can, however, be enumerated by integers (their coordinates). For
example, we could have the following enumeration

... [−100 0[[0 100[[100 101[[101 500[...

... −1 0 1 2 ...

The enumeration of partitions, i.e. their coordinates, are a very useful means
for concrete computations. It turned out, however, that in some cases instead of
integer coordinates, certain other structures which are isomorphic to integers are
more useful. An example for a structure which is isomorphic to the integers are
the paths in an infinite tree. Therefore PartLib has introduced the concept of
Partition Access Specifier (PASp) as a generalisation of the integer coordinates.

Definition 1 (Partitioning). A partitioning P of the time axis in PartLib is
a sequence

. . . [t−1, t0[, [t0, t1[, [t1, t2[, . . .

of non-empty half open intervals in R with integer boundaries such that ti < ti+1
for all i.

Computational Treatment of Temporal Notions: The CTTN–System 77

The partitioning may be finite at one or both sides, i.e.] − ∞, t0[, ..., [tn, +∞[
is allowed.

A Partition Access Specifier Structure is a set of objects which is isomorphic
to the integers.

A coordinate mapping c is a bijective mapping between a partitioning and a
Partition Access Specifier Structure (or a part of it if the partitioning is finite)
such that if partition p is before partition q then c(p) < c(q).

The choice of half open intervals of the kind [ti, ti+1[as partitions was arbitrary.
It means that, for example, Midnight always belongs to the next day.

3.2 Labelled Partitionings

The partitions in CTTN can be labelled. The labels are just names for the par-
titions like in the following example.

Example 2 (The Labelling of Days). We count the time in seconds beginning
with January 1st 1970. This was a Thursday. Therefore we choose as labelling
for the day partitioning

L =def Th, Fr, Sa, Su, Mo, Tu, We.

The following correspondences are obtained:

time : . . . [−86400, 0[[0, 86400[[86400, 172800[. . .
coordinate : . . . −1 0 1 . . .
label : . . . We Th Fr . . .

This means, for example, L(−1) = We, i.e. December 31 1969 was a Wednesday.

Labels are different to coordinates because different partitions can have the same
label (e.g., all Mondays). Labellings can be used for three purposes. The first
purpose is to get access to the partitions via their names (labels). One can
use these names in various GeTS functions. The second purpose is to associate
partitions with further attributes. The labels can, for example, serve as keys
into databases. The third purpose is to use the labels for grouping partitions
together into regions. An example is the set of all Mondays. This is no longer a
partitioning of the time axis because there are gaps between the Mondays.

Definition 2 (Labels). A set of labels in PartLib is just an arbitrary finite or
infinite set2

A label hierarchy is a binary relation � which orders the labels in a tree.
A labelling of a PartLib partitioning is a possibly partial mapping from the

partitions into the set of labels.

2 Labels are in fact instances of subclasses of a class Label.

78 H.J. Ohlbach

Since a labelling can be partial, not all partitions need to have labels. As an
example, where this makes sense, consider the partitioning of hours and the
labelling which associates the label ‘working hour’ with all hours between 8 am
and noon and all hours between 1 pm and 5 pm. The other hours don’t have
labels. This labelling specifies implicitly the concept of ‘working day’, the concept
of ‘lunch time’, and the concept of ‘after work’. These implicit definitions can
be made explicit in PartLib by turning them into region structures (see below).

3.3 Specification of Partitionings

Partitionings have a finite representation in PartLib. There are the following
representations for partitionings.

Algorithmic Partitionings
This type of partitionings is mainly used for modelling the basic time units of cal-
endar systems, years, months etc. The specification consists of an offset against
time point 0, an average length of the partitions, and a correction function which
corrects the average length to the actual length.

Example 3 (Basic Time Units for the Gregorian Calendar).
The specification of the basic time units as algorithmic partitionings for the
Gregorian Calendar are:

second: average length: 1, offset: 0, correction function: λ(n)0.

minute: average length: 60, offset: 0, correction function: λ(n)0.

hour: average length: 3600, offset: 0, correction function: λ(n)0.

day: average length: 86400, offset: 0, correction function: λ(n) − 3600 · h if the
day n is during the daylight saving time period, 0 otherwise.
The number h is usually 1 (for 1 hour). Exceptions are, for example, the year
1947 in Germany, where in the night of 1947/5/11 the clock was set forward a
second time by 1 hour such that the offset against standard time was 2 hours.

week: average length: 604800, offset -2592003, correction function: again, this
function has to return an offset of −3600 · h for the weeks during the daylight
saving time periods.

month: average length: 2592000 (30 days), offset 0, correction function: this
function has to deal with the different length of the months and the daylight
saving time regulations.

year: average length: 31536000 (365 days), offset 0, correction function: this
function has to deal with leap years only. The effects of daylight saving time
regulations are averaged out over the year.

Duration Partitionings
They are specified by an anchor time and a sequence of ‘durations’.

3 This is because the first of January 1970 is Thursday.

Computational Treatment of Temporal Notions: The CTTN–System 79

For example, I could define ‘my weekend’ as a duration partitioning with
anchor time 2004/7/23, 4 pm (Friday July, 23rd, 2004, 4 pm) and durations: (‘8
hour + 2 day’, ‘4 day + 16 hour’). The first interval would be labelled ‘weekend.

A simpler example is the notion of a semester at a university. In the Munich
case, the dates could be: anchor time: October 2000. The durations are: 6 months
(with label ‘winter semester’) and 6 months (with label ‘summer semester’). This
defines a partitioning with partition 0 starting at the anchor time, and then
extending into the past and the future. The first partition in this example is the
winter semester 2000/2001.

The units for the duration are in fact region structures, and not just parti-
tionings. Thus, one can, for example, define durations in terms of granules. An
example is ‘3.5 working days + 1.5 weekends’.

smallskipDate Partitionings
In this version we provide the boundaries of the partitions by concrete dates.
Therefore the partitioning can only cover a finite part of the time line.

An example could be the dates of the Time conferences: 1994/5/4 Time94
1994/5/4 gap 1995/4/26 Time95 1995/4/26 . . . 2004/7/1 Time04 2004/7/3.

Since the intervals between two adjacent dates determine durations, date par-
titionings are in fact special cases of duration partitionings, and this is how they
are treated in PartLib.

Intersection Partitionings
They combine two previously defined partitionings by intersecting their parti-
tions. If the two original partitionings are labelled then a new labelling can be
computed by means of mapping rules for labels.

As an example, suppose there is a partitioning p1 representing the lecture
course l, say every Wednesday from 10 am until 12 am. There is a second par-
titioning p2 which represents public holidays. p2 is labelled with the holiday
names (Easter, Christmas etc.) The holiday name labels are all sub-labels in a
label hierarchy with top element ‘holiday’. The partitioning which represents the
lecture time without the public holidays can be generated by intersecting p1 and
p2 with the following mapping rules

l ∗ holiday �→ gap;
l ∗ gap �→ l;
gap ∗ holiday �→ gap

with the extra provision that adjacent partitions without labels are comprised
into a single partition. ‘gap’ stands for the empty label. The following picture
illustrates the example.

�

�

�

l l

holiday

l

l l resulting labelled partitioning

80 H.J. Ohlbach

Tree Partitionings
This type of specification for partitionings can be used when concrete dates
are involved. Typical examples are bus timetables. A tree partitioning is given
by a Partition Access Format (PAF) and a Partition Access Tree (PAT). The
PAF determines a kind of calendar to be used for interpreting the nodes in the
PAT [11].

Example 4 (for a Tree Partitioning Specification). A typical PAF is the standard
date format year/week/day/hour/minute/second.

The following PAT may define a bus schedule.

year *

week *

day 0–4 5–6

hour 5 6 . . . 20 8 10 . . . 16

minute 20–21 20–21 . . . 20–21 0–1 0–1 . . . 0–1

It specifies the following bus schedule: every year, every week, every work day
(0–4), there is a bus at 5:20 – 5.21 (2 minutes stay at the bus stop), 6:20 – 6:21
until 20:20 – 20:21, and at the weekends (days 5,6) there is a bus every hour
from 8 until 16 hours.

The nodes in the PAT determine an offset from the start of the region given
by the corresponding position in the PAF. There are four different node types:
NumberRange nodes. They specify concrete number sets, for example, 4-6,10-
12 specifies the set {4, 5, 6, 10, 11, 12}
NumberIterator nodes. They specify iterators like, for example, in a ‘for loop’.
The iterator is given by a start value, a step value and a number of iterations.
For example, start = 1, step = 2, iterations = 5 specifies the set {1, 3, 5, 7, 9}
LabelRange nodes. They specify concrete label sets, for example, March-May,
August specifies the set {2, 3, 4, 7} (January is month 0).
LabelIterator nodes. They specify labels by giving a label together with a
number iterator. For example, startLabel = ’L’ start = 2, steps = 10, iterations
= 5 The loop starts with the second occurrence of L and then continues 5 times
in steps of 10 partitions with this label, 5 iterations.

In all four cases it is also possible to interpret the numbers as distances from
the end of a partition. For example, if the day partition is right below the month
partition in the corresponding Partition Access Format, and the backwards flag
is set to true, then the number 0 at the day level is interpreted as the very last
day in the given month.

Computational Treatment of Temporal Notions: The CTTN–System 81

The specification of a partitioning can be quite complex and require a lot of
data. Therefore for each partitioning type, except for algorithmic partitionings,
there is a corresponding XML document type for specifying a partitioning. After
the CTTN interface has read and parsed such an XML specification one can use
them in the same way as the built-in partitionings for calendar systems.

3.4 Leap Seconds

To compensate for the slowing down of the earth’s rotation, since 1971 every few
years a leap second has been introduced. The last minute in the year where a leap
second has been inserted has 61 seconds instead of 60 seconds. This has an effect
on all partitionings above the level of seconds. It would be very complicated and
error prone to integrate the effect of leap seconds in all these partitionings. As
an alternative, this phenomenon is taken care of by separating the reference time
into a global reference time and a local reference time. The global reference time
counts the seconds as they are. It knows nothing about leap seconds. The local
reference time shrinks the leap seconds to 0 length. That means the last minute
in the years where a leap second has been inserted has still 60 seconds in the
local reference time. The extra second occurs only in transition to the global
reference time. This way the leap second calculations have been concentrated in
a single place, the transition between local and global reference time. All other
partitioning dependent calculations can ignore leap seconds.

3.5 Region Structures

The labels which can be attached to the partitionings generate a variety of new
substructures of the time axis which are no longer partitionings because there
can be gaps between the corresponding time intervals. Since periodic temporal
notions with gaps are much more frequent than partitionings, the new concept
of region structures has been introduced.

Region structures are like partitionings, but there are two essential differences

– there are gaps allowed between two neighbouring regions
– there are gaps allowed even within a region. An example is ‘working day’

from 8 am until 5 pm with a lunch break from 12 am until 1 pm.

CTTN distinguishes the following types of region structures:

PartitioningRegion: each partition is a region. Labels are ignored.

LabelRegion: are determined by a label (possibly within a label hierarchy). For
example, the LabelRegion with label ‘weekendday’ of a day partitioning (with
sub-labels Saturday and Sunday below weekendday) would join the days of the
weekends into a region. A Saturday is a region, followed by the following Sunday,
followed by the following Saturday etc.

LabelBlock: is similar to a LabelRegion. The difference is that neighbouring
partitions with the given label form one region. A LabelBlock with labels ‘week-
endday’ (see above) would join Saturdays and Sundays into one single region.

82 H.J. Ohlbach

LabellingRegion: declares a whole label sequence as a region. For example,
the labelling ‘Monday’, ‘Tuesday’, ... ‘Sunday’ of the day partitioning comprises
a whole week into a single region.

GapBlock: A GapBlock comprises all adjacent partitions without labels into
one region.

Granule: A granule is a sequence of partitions with the same label possibly
interrupted by partitions without label. As an example, consider the hour par-
titioning where the hours between 8 and 12 and between 13 and 18 hours a
labelled ‘working hour’. The corresponding granule comprises the working hours
into one, in this case non-convex, region. This concept is very much like the
concept of granules found in the literature [1].

As soon as a labelling has been attached to a partitioning, all these types
of region structures are available as concrete data types, and a common API is
available via the superclass ’Region’. Typical examples for the API are methods
which move from a given region to the next region, methods which move from a
given time point n regions forward or backward (n may be fractional), methods
which measure time intervals in terms of region length etc.

3.6 Calendar Systems

A calendar system in the CTTN–system is a set of partitionings or region struc-
tures, for example the partitionings for seconds, minutes, hours, weeks, months
and years, together with some extra data and methods. Dershowitz and Rein-
gold’s ‘calendrical calculations’ are used here [3] for computing the details down
to the level of days. In addition PartLib models all the nasty features of real
calendar systems, in particular leap seconds and daylight saving time schemes
(in a submodule DLST). Calendar systems can be arranged in sequences, for
example, the sequence consisting of the Julian calendar system until 4th of Oc-
tober 1582 followed by the Gregorian system. Another example of a sequence of
calendar systems in PartLib could be a sequence of calendars and time zones a
traveller encounters when he travels around the world.

The Calendar submodule in PartLib has predefined general classes for years/
months/days, for hours/minutes/seconds and for sub-seconds. Using these
classes it requires very little code to add new calendar systems.

4 The GeTS Language

The PartLib module has, via the XML-interface, mechanisms for integrating user
defined periodic temporal notions. Not all temporal notions and computations,
however, have to do with periodicies. The GeoTemporal Specification Language
GeTS has therefore been added as a general purpose language for working with
temporal notions. The design of the GeTS language was influenced by the fol-
lowing considerations:

Computational Treatment of Temporal Notions: The CTTN–System 83

1. Although the GeTS language has many features of a functional programming
language, it is not intended as a general purpose programming language. It
is a specification language for temporal notions, however, with a concrete
operational semantics.

2. The parser, compiler, and in particular the underlying GeTS abstract ma-
chine are not standalone systems. They must be embedded into a host system
which provides the data structures and algorithms for time intervals, par-
titionings etc., and which serves as the interface to the application. GeTS
provides a corresponding application programming interface (API).

3. The language should be simple, intuitive, and easy to use. It should not
be cluttered with too many features which are mainly necessary for general
purpose programming languages.

4. The last aspect, but even more the point before, namely that GeTS is to
be integrated into a host system, were the main arguments against an easy
solution where GeTS is only a particular module in a functional language
like SML or Haskell. The host system was developed in C++ (it could also
be Java, but multiple precision integers are more efficient in C++). Linking
a C++ host system to an SML or Haskell interpreter for GeTS would be
more complicated than developing GeTS in C++ directly. The drawback
is that features like sophisticated type inferencing or general purpose data
structures like lists or vectors are not available in the current version of
GeTS.

5. Developing GeTS from scratch instead of using an existing functional lan-
guage has also an advantage. One can design the syntax of the language in
a way which better reflects the semantics of the language constructs. This
makes it easier to understand and use. As an example, the syntax for a time
interval constructor is just [expression1, expression2].

The GeTS language is a strongly typed functional language with a few imperative
constructs. Here we can give only a flavour of the language. The technical details
are in [10].

Example 5 (tomorrow). The definition

tomorrow = partition(now(),day,1,1)

specifies ‘tomorrow’ as follows: now() yields the time point of the current point
in time. day is the name of the day partitioning. Let i be the coordinate of
the day-partition containing now(). partition(now(),day,1,1) computes the
interval [t1, t2[where t1 is the start of the partition with coordinate i + 1 and
t2 is the end of the partition with coordinate i + 1. Thus, [t1, t2[is in fact the
interval which corresponds to ‘tomorrow’.

In a similar way, we can define

this_week(Time t) = partition(t,week,0,0).

The time point t, for which the week is to be computed, is now a parameter of
the function.

84 H.J. Ohlbach

Example 6 (Christmas). The definition

christmas(Time t) =
dLet year = date(t,Gregorian_month) in

[time(year|12|25,Gregorian_month),
time(year|12|27,Gregorian_month)]

specifies Christmas for the year containing the time point t.

date(t,Gregorian month) computes a date representation for the time point t
in the date format Gregorian month (year/month/day/hour/minute/second).
Only the year is needed. dLet year = ... therefore binds only the year to the
integer variable year. If, for example, in addition the month is needed one can
write dLet year|month = date(....

time(year|12|25,Gregorian month) computes t1 = begin of the 25th of
December of this year. time(year|12|27,Gregorian month) computes t2 =
begin of the 27th of December of this year. The expression [...,...] denotes
the half open interval [t1, t2[.4 The result is therefore the half open interval from
the beginning of the 25th of December of this year until the end of the 26th of
December of this year.

Example 7 (Point–Interval Before Relation). The function

PIRBefore(Time t, Interval I) =
if (isEmpty(I) or isInfinite(I,left)) then false
else (t < point(I,left,support))

specifies the standard crisp point–interval ‘before’ relation in a way which works
also for fuzzy intervals.

If the interval I is empty or infinite at the left side then PIRBefore(t,I) is
false, otherwise t must be smaller than the left boundary of the support of I.
Now we define a parameterised fuzzy version of the interval–interval before
relation.

Example 8 (Fuzzy Interval–Interval Before Relation). A fuzzy version of an
interval–interval before relation could be

IIRFuzzyBefore(Interval I, Interval J, Interval->Interval B) =

case

isEmpty(I) or isEmpty(J) or

isInfinite(I,right) or isInfinite(J,left) : 0,

(point(I,right,support) <= point(J,left,support)) : 1,

isInfinite(I,left) : integrateAsymmetric(intersection(I,J),B(J))

else integrateAsymmetric(I,B(J))

4 Crisp intervals in CTTN are always half open intervals [. . . , . . . [. Sequences of such
intervals, for example, sequences of days, can therefore be used to partition a time
period. The syntactic representation of these intervals in GeTS is [...,...] and
not [...,...[because this simplifies the grammar and the parser considerably.

Computational Treatment of Temporal Notions: The CTTN–System 85

The input are the two intervals I and J and a function B which maps intervals
to intervals. B is used to compute for the interval J an interval B(J), which
represents the degree of ‘beforeness’ for the points before J.

The function first checks some trivial cases where I cannot be before J (first
clause in the case statement), or where I definitely is before J (second clause in
the case statement). If I is infinite at the left side then

∫
(I ∩J)(x) ·B(J)(x)dx/

|I ∩ J | is computed to get a degree of ‘beforeness’, at least for the part where
I and J intersect. If I is finite then

∫
I(x) · B(J)(x)dx/|I| is computed. This

averages the degree of a point–interval ‘beforeness’, which is given by the product
I(x) · B(J)(x), over the interval I.

The next example is a parameterised version of an ‘Until’ operator. It can
be used to formalise expressions like ‘from around noon until early evening’.
The parameters are operators which manipulate the front and back end of the
intervals, together with a complement operator.

Example 9 (Until). an ‘Until’ operator can be defined in GeTS:

Until(Interval I, Interval J, Side s1, Side s2,
(Interval*Interval)->Interval Ints,
Interval->Interval Ep, Interval->Interval En,
Interval->Interval C) =

if (s1 == left) then
(if (s2 == left) then Ints(Ep(I),C(Ep(J)))

else Ints(Ep(I),En(J)))
else

(if (s2 == left) then Ints(C(En(I)),C(Ep(J)))
else Ints(C(En(I)),En(J)));

The birthday party example (Example 1) could be specified using this func-
tion:

Birthdayparty(I,J)
= Until(I, J, left, right,
lambda(Interval K, Interval L) intersection(K,L),
lambda(Interval K) integrate(K,positive),
lambda(Interval K) integrate(K,negative),
lambda(Interval K) complement(K)).

5 The Web–Interface

CTTN is a collection of C++ classes and methods which can be used in any
other C++ program. There is, however, also a command interface which is re-
alized as a web server. It communicates with a client through a socket. There is
a group of commands for uploading application specific definitions of temporal
notions in the GeTS language and in the specification language for labelled parti-
tionings. There are also commands for working with instances of these temporal
notions, particular time intervals, particular partitionings, particular calendar
systems etc.

86 H.J. Ohlbach

6 Extensions of the CTTN–System

A number of extensions of the CTTN–system are on the agenda. The most im-
portant one is the inclusion of constraint reasoning for ‘floating’ time intervals.
The expression ‘two weeks between Christmas and Easter’, for example, cannot
be represented so far, because the precise location of these two weeks are not
known. Here we need to invoke constraints and constraint reasoning. Since the
basic intervals are fuzzy intervals, the constraint calculus must also be able to
deal with fuzziness. There are some approaches in the direction of fuzzy tem-
poral reasoning [5,14,6] and fuzzy constraint networks [13,7] which might be us-
able for the CTTN–system. Temporal constraint reasoning without taking fuzzi-
ness into account is certainly also very useful and should be integrated into the
system [2].

Another extension is a context module. A simple example for context informa-
tion which is useful for an application of the CTTN–system are the specification
of time zones. Time zones are submitted to the current CTTN–system as offsets
to GMT time. It would, however, be much more user friendly, if there would be
an automatic mapping of countries or regions to time zones.

A third extension is a link to a system which represents named entities. The
phrase ‘after the Olympic games in Rome’, for example, can only be analysed if
some dates about the Olympic games in Rome are available. We are currently
working on a link to the EFGT net, which stores named entities in a three
dimensional context of thematic fields, geographic regions and time periods [12].

More details about the CTTN–system are available at the CTTN homepage:
http://www.pms.ifi.lmu.de/CTTN.

Acknowledgements

This research has been funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net).

References

1. Bettini, C., Sibi, R.D.: Symbolic representation of user-defined time granularities.
Annals of Mathematics and Artificial Intelligence 30, 53–92 (2000)

2. Bry, F., Rieß, F.-A., Spranger, S.: A Reasoner for Calendric and Temporal
Data. Forschungsbericht/research report PMS-FB-2005-18, Institute for Informat-
ics, University of Munich (2005)

3. Dershowitz, N., Reingold, E.M.: Calendrical Calculations. Cambridge University
Press, Cambridge (1997)

4. Dubois, D., Prade, H. (eds.): Fundamentals of Fuzzy Sets. Kluwer Academic Pub-
lishers, Dordrecht (2000)

5. Godo, L., Vila, L.: Possibilistic temporal reasoning based on fuzzy temporal con-
straints. In: IJCAI 1995. Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, vol. 2, pp. 1916–1922 (1995)

Computational Treatment of Temporal Notions: The CTTN–System 87

6. Navarette, I., Cardenas, M.A., Marin, R.: Efficient resolution mechanism for fuzzy
temporal constraint logic. In: TIME 2000. Proc. of the Seventh International
Workshop on Temporal Representation and Reasoning, pp. 39–46. IEEE Press,
Reasoning (2000)

7. Roque Maŕın, M.A., Viedma, C., Balsa, M., Sanchez, J.L.: Obtaining solutions in
fuzzy constraint networks. Int. J. Approx. Reasoning 16(3-4), 261–288 (1997)

8. Ohlbach, H.J.: Relations between fuzzy time intervals. In: Proceedings of 11th
International Symposium on Temporal Representation and Reasoning, Tatihoui,
Normandie, France, 1st–3rd July 2004, pp. 44–51. IEEE Computer Society Press,
Los Alamitos, http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2004-33

9. Ohlbach, H.J.: Fuzzy time intervals – the FuTI-library. Research Report PMS-FB-
2005-26, Inst. für Informatik, LFE PMS, University of Munich (June 2005), URL:
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-26

10. Ohlbach, H.J.: GeTS – a specification language for geo-temporal notions. Research
Report PMS-FB-2005-29, Inst. für Informatik, LFE PMS, University of Munich
(June 2005), URL:
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-29

11. Ohlbach, H.J.: Periodic temporal notions as ‘tree partitionings’. Forschungs-
bericht/research report PMS-FB-2006-11, Institute for Informatics, University of
Munich (2006)

12. Schulz, K.U., Weigel, F.: Systematics and architecture for a resource representing
knowledge about named entities. In: Bry, J.M.F., Henze, N. (eds.) Principles and
Practice of Semantic Web Reasoning, pp. 189–208. Springer, Berlin (2003)

13. Vila, L., Godo, L.: On fuzzy temporal constraint networks. Mathware and Soft
Computing 3, 315–334 (1994)

14. Vila, L., Godo, L.: Query-answering in fuzzy temporal constraint networks. In:
Mellish, C.S. (ed.) FUZZ-IEEE 1995. IEEE International Conference on Fuzzy
Systems Yokohama, vol. 1, pp. 43–48. IEEE, Los Alamitos (1995)

15. Zadeh, L.A.: Fuzzy sets. Information & Control 8, 338–353 (1965)

http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2004-33
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-26
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-29

Towards a Denotational Semantics for TimeML�

Graham Katz

Stanford University

Abstract. The XML-based markup language TimeML encodes tempo-
ral and event-time information for use in automatic text processing. The
TimeML annotation of a text contains information about the temporal
intervals that are mentioned in the text as well as the relationship of
these temporal intervals to the times and events mentioned in the text.
We provide here a formal denotational semantics for TimeML, addressing
problems of operator scope that arise in the context of a “flat” repre-
sentation language and providing a sketch of an intensional extension to
the main extensional semantics.

1 Introduction

TimeML is an XML-based markup language for encoding temporal and event-
time information for use in automatic text processing. The TimeML annotation
of a text contains information about what times and events are mentioned in a
text, as well as information about the temporal relationships that hold among
these times and events. In essence, TimeML is a simple semantic representa-
tion language for natural language texts, limited to representing temporal and
event-based information. TimeML is intended to capture the kind of information
conveyed in a text that one might put on a “time-line”—essentially what hap-
pened when. TimeML markup thus provides semantic information which might
well be useful for a wide range of applications in which temporal information
is of crucial interest, such as question answering and text summarization [1].
TimeML has been used to hand-annotate a small corpus of newswire texts, and
this annotated corpus, TIMEBANK [2] is now being used as a standard for eval-
uating the performance of computational systems for doing automatic temporal
interpretation [3].

To give an example, a TimeML annotation of the sentence “The plane crashed
into the hillside at 10am yesterday” (the type of sentence found in TIMEBANK)
is given below:

(1) The plane
<EVENT class="OCCURRENCE" eid="e1" stem="crash"> crashed </EVENT>
into the hillside
<SIGNAL sid="s1"> at </SIGNAL>

� This research reported here was carried out in part at the Institute for Cognitive Sci-
ence at the University of Osnabrück. Thanks to Kai-Uwe Kühnberger, Jens Michaelis
and Peter Bosch, as well as to Cleo Condoravdi at PARC, for helpful discussion

F. Schilder et al. (Eds.): Reasoning about Time and Events, LNAI 4795, pp. 88–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Towards a Denotational Semantics for TimeML 89

<TIMEX3 tid="t2" type="TIME" value="2003-11-24-T10:00">
10am yesterday </TIMEX3>
<MAKEINSTANCE eventID="e1" eventInstanceID="ei1"
tense="PAST" aspect="NONE"/>
<TLINK lid="l1" eventInstanceID="ei1" signalID="s1"relatedToTime="t2"
relType="IS_INCLUDED"/>

The annotation specifies both the actual time that the temporal expression
10am yesterday is intended to refer to, as well as the relationship between this
time and the time of the crash. This is information that any English-speaker read-
ing this text in context would derive from it quite naturally. TimeML has been
designed to be expressive enough to encode most of the temporal information
present in natural language texts [4], and the annotation guidelines for TimeML
[5] specify quite specifically how annotators should translate their semantic intu-
itions into TimeML markup. Although there is obviously an intuitive semantic
interpretation associated with these annotation guidelines, the TimeML speci-
fication does not explicitly provide a formal, model-theoretic semantics for the
TimeML language.1 In this paper we will take up this task, specifying a model-
theoretic semantic interpretation for the TimeML markup language.2

The semantics we will propose here is based essentially on the kind of se-
mantic interpretation familiar from the Discourse Representation Theory litera-
ture [9,10]. We first provide a straightforward first-order interpretation, treating
TimeML markup as a logical representation language, in many ways similar
to the Discourse Representations of DRT. This will be seen to have a number
of problems related to the scoping of operators such as negation. It should be
pointed out that the TimeML language is primarily designed not as a represen-
tation language, but as a markup language, meaning that issues concerning ease
of use by annotators, correspondence to standards for annotation languages and
information processing considerations have played a central role in the design
of TimeML. Our task, then, is to fill in post hoc the implicit semantics of the
intended interpretation of the TimeML language. A number of well-articulated
semantic representational languages for representing temporal information have
been proposed (for example [11,12]), but these have generally been applied to a
limited range of cases, and their use for the analysis of even very short texts has
proved difficult [13].

2 TimeML Markup

A TimeML annotated document can be viewed as a list of TimeML tags. There
are a number of types of tags. The four main tags relevant for semantic inter-
pretation are the following: <EVENT>, <TIMEX3>, <MAKEINSTANCE> and <TLINK>.
These are all illustrated in the above example (other tags, such as the <SLINK>
and <ALINK> tags will be discussed later; the <SIGNAL> tag carries no semantic
1 Hobbs & Pustejovsky have made programatic suggestions in this direction [6].
2 This task is, in many ways, related to the task of specifying a formal semantics for

timeline-style diagrams, a problem that has recieved some attention [7,8].

90 G. Katz

import and will be ignored). Tags carry different types of semantic information.
<EVENT> tags mark expressions in the text that refer to event types, <TIMEX3>
tags mark relevant time referring expressions, and provide these with a decontex-
tualized value, <MAKEINSTANCE> relates event types to particular event instances
<TLINK> tags specify temporal relations among event instances and between
events instances and times.

As is typical of markup languages, some tags are used to provide information
about bits of text. The <EVENT> tags are associated with event-denoting expres-
sions (such as verbs and event nominals), while the <TIMEX3> tags are associated
with temporal expressions such as temporal adverbials. The <MAKEINSTANCE>
and <TLINK> tags, however, are “non-consuming” tags which are not associated
with any textual material. All tags contain attribute specifications (such as the
value specification on the <TIMEX3> tag above). These attributes specify the
semantic information encoded in the TimeML markup. In fact, all information
relevant to semantic interpretation is contained in the tag labels. As we shall see,
this allows us to state the truth conditions for TimeML documents entirely in
terms of conditions on the tag labels. The tagged text is of no semantic import.3

One of the main features of the TimeML tags is the use of time and event iden-
tifier variables in the attribute specifications which can be used as placeholders
for underspecified semantic values. These play the role of variable-like elements
which can participate in multiple predications. The identifier e1 in example (1)
above is an identifier for the crashing event types, the identifier t1 an identifier
associated with the time 10am on November 24, 2003, and the identifier ei1 is
an identifier associated with the particular crashing event described. Making use
of these identifiers is what allows us to relate events with times (via the <TLINK>
tag) even in cases in which the time value is unknown. It also allows us to specify
the temporal relationships that hold among events without specifying when the
events occur.

Note that we have two kinds of identifiers associated with events: event-type
identifiers and event-instance identifiers. Distinguishing event instances from
event types allows us to make sense of the kind of claim made in a sentence
such as Peter didn’t leave, in which the non-existence of particular events of a
general type is what is conveyed, or of sentences such as Peter played tennis on
Monday and on Thursday, in which a single expression is associated with two
actual event instances. This will be discussed in detail below.

3 Semantics for TimeML

3.1 Events and Times

In the tradition of [14], we take events to be concrete individuals located at
particular times and in particular places, with particular causal characteristics

3 Version 2.1 of TimeML has included the stem feature on the <EVENT> tag type, which
can and will be used to specify the semantic type of the event.

Towards a Denotational Semantics for TimeML 91

and standing in mereological relations to one another [15,16]—a particular house-
building might, for example include a building of a fireplace as a part. Events are
sorted into event types, such as crashing events or speaking events. For simplicity
we will assume that event types are modeled as sets of event instances. The
semantic content of an event-type predicate is to specify the appropriate set. We
assume that the lexical item whose stem form is the value of the stem attribute
of an <EVENT> tag specifies this. (Of course a more articulated ontology of event
types, such as that implicit in the WordNet hierarchy [17] or more explicitly
pursued as part of the Semantic Web initiative [18] would be more appropriate.)
Here we will simply take each verb root to be associated with an appropriate set
of concrete events.

We take <TIMEX3> tags to be associated also with concrete temporal indi-
viduals. Following [19] the TimeML annotation essentially adopts the ISO 8601
standard specification for times which defines the modern clock/calendar system
in terms of a standardized notation. This is the YYYY-MM-DD-THH:MM notation,
which we have already seen as the value on the <TIMEX3> tag above. Formally,
we will model time as a set of intervals. The ISO standard specifies two vari-
eties of temporal objects, periods—which we will take to be sets of temporal
intervals of equal duration—and non-periods—which we will simply take to be
temporal intervals. The association of a particular ISO notation, for example
2003-11-24-T10:00 with a particular interval is defined by the notation itself
and is operationalized in terms of the temporal arithmetic defined on it. The fact,
for example, that 2003-11-24-T10:00 plus PT27:00 is 2003-11-25-T13:00 is
part of this specification. We will not be concerned further with the issue of
temporal ontology here, but see [20].

3.2 Models for TimeML Texts

The syntax of the TimeML language is specified formally elsewhere [21], and we
will assume this throughout. We will interpret TimeML texts with respect to
a class of model structures 〈E, �,I, <, ⊆, τ,Val〉 containing a domain of concrete
events and a domain of temporal intervals, where:

E is the set of events,
� is the part of relation on events,
I the set of time intervals,
< is the ordering relation on time intervals,
⊆ is the inclusion relation on time intervals,
τ is the run-time function from E to I,
Val is the valuation function.

These models must satisfy a number of axioms which capture the intuitive rela-
tionship between events, times and ordering. For example, we assume that the
ordering relation and inclusion relations are transitive, and that ordering and
inclusion are related in the natural way [22,23]. Furthermore, if one event is a
part of another, the runtime of the former is included in that of the later.

92 G. Katz

∀x, y, z ∈ I[x < y ∧ y < z → x < z]
∀x, y, z ∈ I[x ⊆ y ∧ y ⊆ z → x ⊆ z]
∀w, x, y, z ∈ I[x < y ∧ z ⊆ x ∧ w ⊆ y → z < w]
∀w, x, y, z ∈ I[x < y ∧ y < z ∧ x ⊆ w ∧ z ⊆ w → y ⊆ w]
∀x, y ∈ E[x � y → τ(x) ⊆ τ(y)]

These axioms specify a fairly simple first order model, whose domain is struc-
tured in an intuitively natural way.

TimeML, then, might be thought of as a simple first-order language. The
terms are the identifiers, and each tag specifies a property or relation that holds of
these terms. The intended models for TimeML are models in which the valuation
function Val assigns appropriate denotations for the constants of the language,
these being the TimeML tag attributes and their values. For example, the terms
which fill the value of the of the value attribute of a <TIMEX3> tag are character
strings, which correspond to the temporal specification of the ISO 8601 standard
for time specification. An appropriate valuation function for TimeML models is
one that assigns particular intervals to these strings, consistent with the intent
specified by the ISO standard itself. Similarly for the constants associated with
event predicates. As mentioned above, we assume that the root attribute of
the <EVENT> tag takes as its value symbols that are associated with natural
categories of events in an articulated ontology.

We specify this intended interpretation as function as follows. A model M is
appropriate for interpreting TimeML texts iff:

If α is an ISO-8601 term that doesn’t start with P then Val(α) = the
set of intervals I′ (⊆ I) which ISO notation specifies for α
If α is an ISO-8601 term that start with P then Val(α) = the set of
intervals I′ (⊆ I) such that each i ∈ I′ is of equal length and that is the
length determined by the ISO notation
If α is an event predicate then Val(α) = the set of events E′ (⊆ E) such
that each e ∈ E′ is an event of the type naturally associated with α.

In short we assume that our temporal value specifications refer to the times that
standard ISO-8601 temporal ontology says they should refer to and that the
event predicates specifications pick out sets of events of the appropriate type.

To illustrate we will assume that Val(2003-11-24) is the (singleton) set con-
taining the interval of time that is one day long that starts at midnight on the
23rd of November, 2003 and ends a day later. This element will be a member
of the set Val(P1D), which will be the set of all day-long intervals. The temporal
value specification conventions allow for expressions such as XXXX-XX-24 which
would have as interpretation the set of all day-long intervals which are the 24th
day of some month. Using this as our basic foundation, the central task now is
to specify a recurse definition of satisfaction in a model for a complete Time ML
text.

Towards a Denotational Semantics for TimeML 93

3.3 Satisfaction of TimeML Text in Model

Intuitively, a TimeML text is satisfied by an appropriate model if we can find a
set of times and event instances which satisfy all the conditions implicit in the
tags. For example, in our example TimeML text (1) is satisfied in a model if
there is a crashing event whose run time was the interval of time associated with
2003-11-24-T10:00. Our task is to provide a general definition of satisfaction
that captures this intuition.

The first thing we have to specify is the interpretation of the time and event
identifiers. Recall that these identifiers, such as e1 and t1 in the example, stand
for times and events. We will treat these identifiers as variables, and specify their
semantics via an embedding function, which will specify for every identifier in
the text, what it refers to. For convenience let us define the following functions
from TimeML texts to sets of identifiers and tags:

Let T be a TimeML text,
Dome(T) = the set of event ids in T
Domt(T) = the set of time ids in T
Domei(T) = the set of event instance ids in T
Ident(T) = Dome(T) ∪ Domt(T) ∪ Domei(T)
Tag(T) = the set of all tags in T

An embedding function is, of course, a function from the set of identifiers to
events, times and event types. We can specify the embedding function f as con-
sisting of the union of the following:

fe: Dome(T) → Pow(E),
fei: Domei(T) → E,
ft: Domt(T) → Pow(I),

where fei is one-to-one, meaning that distinct event instance identifiers are
mapped to distinct events. All time identifiers are interpreted as sets (perhaps
singleton sets) of temporal intervals. We take f: Ident(T) → Pow(E) ∪ E ∪
Pow(I) to specify these extensions.

We can now say that a text is satisfied by a model if we can find an embedding
function f which satisfies each tag in the text.

A text T is satisfied by a model M iff there is a function f (assigning
denotations to identifiers) such that for all tags t ∈ Tag(T), t is satisfied
by f in M.

We need, of course, to specify what it means for a tag to be satisfied by an
assignment function in a model. We specify this by enumeration.

We first enumerate tag satisfaction conditions for the <EVENT> and <TIMEX3>
tags. Here it is the identifiers that play the central role in the interpretation.
Essentially, an <EVENT> or <TIMEX3> tag is satisfied by an embedding function f
if the identifier is assigned the appropriate interpretation by f, in the case of an
event identifier this will be as a set of events denoted by the root attribute, in
the case of a temporal identifier, this will the set of times denoted by the value
attribute.

94 G. Katz

A tag t is satisfied by an embedding function f in M iff if t has the form
<EVENT eid=α class=β root=γ > then f(α) = Val(γ),
<TIMEX3 tid=α value=γ > then f(α) = Val(γ), . . .

We now enumerate the tag-satisfaction conditions for the <MAKEINSTANCE> tag.
This tag specifies the relationship between an event type and an event token.4

if t has the form
<MAKEINSTANCE eiid=α eid=β polarity="POS" modality= "">
then f(α) ∈ f(β),
<MAKEINSTANCE eiid=α eid=β polarity="NEG" modality= "">
then f(α) �∈ f(β), . . .

A positive <MAKEINSTANCE> tag is satisfied if the event instance identifier is
interpreted as an event of the type which the event identifier is interpreted,
while a negative <MAKEINSTANCE> tag is satisfied if this is not the case. We will
address the modality attribute below, as interpreting <MAKEINSTANCE> tags with
non-null modality requires us to enrich our models significantly.

Finally, we consider the non-consuming <TLINK> tags, which relates times and
events temporally. There are 28 types of <TLINK>s (14 relation types relating an
event instances to another event instance, and 14 relation types relating an
event instance to a time). I will only give satisfaction conditions for three exem-
plary <TLINK> types here. It should be clear what the clauses for the remaining
<TLINK>-types are. Let us consider first links relating event instances. These are
straightforward—the temporal relation specified by the <TLINK>s relType at-
tribute indicates the relationship that holds between the run times of the events
related:

if t has the form:
<TLINK eventInstanceID=α relatedtoEventInstance=β
relType= "IS_INCLUDED">
then τ(f(α)) ⊆ τ(f(β))
<TLINK eventInstanceID=α relatedtoEventInstance=β
relType= "BEFORE">
then τ(f(α)) < τ(f(β))
<TLINK eventInstanceID=α relatedtoEventInstance=β
relType= "DURING">
then τ(f(α)) = τ(f(β))

Next we turn to the <TLINK> between events instances and time. This is made
only slightly more complex by the fact that temporal identifiers are are inter-
preted as sets of intervals. Relations here will be specified as holding between at
least one element of the set.
4 We are only considering the case in which the cardinality is unspecified (i.e. corre-

sponds to 1). The semantics for other values of the tag feature cardinality is highly
problematic.

Towards a Denotational Semantics for TimeML 95

<TLINK eventInstanceID=α relatedtoTime=β
relType= "IS_INCLUDED">
then ∃ I ∈ f(β) such that τ(f(α)) ⊆ I,
<TLINK eventInstanceID=α relatedtoTime=β
relType= "BEFORE">
then ∃ I ∈ f(β) such that τ(f(α)) < I,
<TLINK eventInstanceID=α relatedtoTime=β
relType= "DURING">
then ∃ I ∈ f(β) such that τ(f(α)) = I,

<TLINK> tags are in general satisfied by an embedding function if the identifiers
which are related are mapped to events or times which stand in the appropriate
temporal relation.

Let us illustrate the system as we have developed it so far by applying it to
the interpretation of the following very brief TimeML text.

(2) John
<EVENT eid="e1" class="OCCURRENCE" pred="TEACH">
taught
</EVENT>
<TIMEX3 tid="t1" type="DURATION" value="P20M">
20 minutes
</TIMEX3>
<SIGNAL sid="s1">
on
</SIGNAL>
<TIMEX3 tid="t2" type="DATE" value="XXXX-WXX-1">
Monday
</TIMEX3>
<MAKEINSTANCE eventID="e1" eventInstanceID="ei1" " negation="FALSE">
<TLINK eventInstanceID="ei1" signalID="s1" relatedToTime="t2"
relType="IS_INCLUDED"/>
<TLINK eventInstanceID="ei1" relatedToTime="t1" relType="DURING"/>

The first thing we need to do is to specify, for this text, what domain of identifiers
of each type is. For such a short text this is fairly straightforward:

Dome(T2) = {e1}
Domei(T2) = {ei1}
Domt(T2) = {t1,t2}

Then we can determine whether or not the annotation is satisfied in a model M.
It will be satisfied if we can find an embedding function f such that:

f(e1) = Val(teach) the set of teaching events
f(t2) = Val(XXXX-WXX-1) the set of Mondays
f(t1) = Val(P20M) the set of 20 minute intervals
f(ei1) ∈ f(e1)
there is an i ∈ f(t2) such that τ(f(ei1)) ⊆ i
there is an i ∈ f(t1) such that τ(f(ei1)) = f(t1)

96 G. Katz

This seems to give the correct truth conditions, which are essentially those of
the following first-order formula.

∃ e,t,t′ [teaching(e) ∧ τ(e) = t ∧ t ⊆ t′ ∧ monday(t′) ∧ 20min(t)]

This is, of course, the intended interpretation. Note that the implicit existential
associated with the embedding function is what gives rise to the existential
quantification over times. In contrast, the explicit existential associated with
the <MAKEINSTANCE> tag is what gives rise to the existential quantification over
events.

It may already be clear that there are significant problems for this analysis,
and we will come to these shortly. But before addressing these, let us turn to
the tag types <ALINK> and <SLINK>.

3.4 Secondary Link Tags

In addition to the temporal <TLINK> tags, TimeML has two other kinds of non-
consuming “link” tags which relate events: aspectual <ALINK> tags and modal
<SLINK> tags. The <ALINK> tags are used to relate events to their aspectual parts
and the <SLINK> tags are used to relate events to other modally subordinated
events. An <ALINK> is illustrated in the annotated sentence (3) below and a
<SLINK> in (4).

(3) They
<EVENT eid="e1" class="ASPECTUAL" root="begin">
began
</EVENT>
<MAKEINSTANCE eiid="ei1" eventID="e1" tense="PAST"
aspect="NONE" polarity="POS"/>
<EVENT eid="e1" class="OCCURRENCE" root="withdraw">
withdrawing
</EVENT>
<TIMEX3 tid="t1" type="DATE" value="XXXX-WXX-1">
Monday
</TIMEX3>
<MAKEINSTANCE eiid="ei2" eventID="e2" tense="nil"
aspect="PROG" polarity="POS"/>
<ALINK eventInstanceID="ei1" signalID="s1"
relatedToEvent="ei2" relType="INITIATE"/>
<TLINK eventInstanceID="ei1" relatedToTime="t1"
relType="IS-INCLUDED"/>

(4) Bill
<EVENT eid="e1" class="I_STATE" root="want">
wants
</EVENT>
<MAKEINSTANCE eiid="ei1" eventID="e1" polarity="POS"/>
to
<EVENT eid="e2" class="OCCURRENCE" root="teach">

Towards a Denotational Semantics for TimeML 97

teach
</EVENT>
<MAKEINSTANCE eiid="ei2" eventID="e2" polarity="POS"/>
<TIMEX3 tid="t1" type="DATE" value="XXXX-WXX-1">
Monday
</TIMEX3>
<TLINK eventInstanceID="ei2" relatedToTime="t1"
relType="IS_INCLUDED"/>
<SLINK eventInstanceID="ei1" subordinatedEventInstance="ei2"
relType="MODAL"/>

Interpreting <SLINK> tags also requires us to consider more enriched models,
and we will set them aside for the moment. <ALINK>s are less problematic. The
<ALINK> tag above, for example, is used to relate the beginning of the withdrawal
and the withdrawal itself, a relation that is fairly straightforward to express in
terms of the event-part relation � and the temporal relation <.

There arefive types of<ALINK> relations:INITIATES,CULMINATES,TERMINATES,
CONTINUES and REINITIATES. We can specify the tag satisfaction conditions of
these in a straightforwardmanner, making use of the functions beg and end which
specify the first and last point of a temporal interval (REINITIATES is set aside, as
it has primarily modal content).

A tag t is satisfied by the embedding function f in M iff if t has the form:
<ALINK eventInstanceID=α relatedtoEventInstance=β
relType="INITIATES">
then f(α)) � f(β) and beg(τ(f(α))) = beg(τ(f(β)))
<ALINK eventInstanceID=α relatedtoEventInstance=β
relType="CULMINATES"> or
<ALINK eventInstanceID=α relatedtoEventInstance=β
relType="TERMINATES">
then f(α)) � f(β) and end(τ(f(α))) = end(τ(f(β)))
<ALINK eventInstanceID=α relatedtoEventInstance=β
relType="CONTINUES">
then f(α)) � f(β) and τ(f(α)) ⊆ τ(f(β))

The annotated text above is satisfied in a model M if we can find an embedding
f such that:

f(e1) = Val(begin) the set of beginning events
f(e2) = Val(withdraw) the set of withdrawal events
f(t1) = Val(XXXX-WXX-1) the set of Mondays
f(ei1) ∈ f(e1)
f(ei2) ∈ f(e2)
τ(f(ei1)) ⊆ f(t1)
τ(f(ei1)) ⊆ τ(f(ei2))
f(ei1) � f(ei1)

98 G. Katz

Again this seems to be about what is desired. There is, of course, much to say
about the detailed semantics of these aspectual verbs, which we are ignoring
here [24].

For a wide range of cases, given an appropriate interpretation for the con-
stants, this semantics for this subset of TimeML delivers exactly the intuitive
truth conditions for which it was designed, essentially specifying what happened
when and what happened before or during what. There are, however, a number
of issues that arise when we begin to consider even a slightly wider range of data,
and these have to do with cases in which the information conveyed in the text
is not simply positive and conjunctive. We consider these in the next section.

4 Problems of Operator Scope

Not all information is positive and conjunctive. The following sentence from
TIMEBANK, for example, tell us about the non-existence of certain events:

(5) It hasn’t
<EVENT eid="e490" class="OCCURRENCE"> diversified </EVENT>
beyond steel, nor has it
<EVENT eid="e56" class="OCCURRENCE"> linked up </EVENT>
with a joint venture partner to
<EVENT eid="e59" class="OCCURRENCE">share</EVENT>
costs and risks.

While “negative” events such as the non-occurrence of the diversification de-
scribed above are relatively rare they are not non-existent. In TIMEBANK, 295
of the 7940 <MAKEINSTANCE> tags have NEG polarity. To illustrate, let us consider
the interpretation of the somewhat simplified example given below, in which we
have temporal expressions linked to a single negative event.

(6) John didn’t
<EVENT eid="e1" class="OCCURRENCE" stem="teach">
teach
</EVENT>
<SIGNAL sid="s1">
on
</SIGNAL>
<TIMEX3 tid="t2" type="DATE" value="XXXX-WXX-1">
Monday
</TIMEX3>
<MAKEINSTANCE eventID="e1" eventInstanceID="ei1" polarity="NEG">
<TLINK eventInstanceID="ei1" signalID="s1" relatedToTime="t2"
relType="IS-INCLUDED"/>

Following the semantic interpretation we gave above, this TimeML text is sat-
isfied in a model M if we can an embedding function f such that:

f(e1) = Val(teach) the set of teaching events
f(t2) = Val(XXXX-WXX-1) the set of Mondays

Towards a Denotational Semantics for TimeML 99

f(ei1) �∈ f(e1)
∃ I ∈ f(t2) τ(f(ei1)) ⊆ I

In other words, the text is satisfied if there was an event that was not a teaching
that was on a Monday. This is clearly incorrect, since a model in which there is
a non-teaching on a Monday might also be one in which there is a teaching on a
Monday. Again the “translation” to first order formulae might be helpful. What
we in fact have is an interpretation equivalent to:

∃ e,t [¬teaching(e) ∧ τ(e) ⊆ t ∧ monday(t)]

What we would like, however, is something equivalent to:

¬∃ e,t [teaching(e) ∧ τ(e) ⊆ t ∧ monday(t)]

The basic problem is that TimeML provides no mechanism for indicating scopal
relations. In cases like that given above negation should take scope both over the
temporal relation encoded by the <TLINK> tag and over the event type predicate
indicated by the <MAKEINSTANCE> tag, but as it is the single tags are interpreted
conjunctively and negation can only scope over one of these atomic predications,
here that associated with the <MAKEINSTANCE> tag.

This problem extends to any case in which such scoping mechanisms are
needed. For example, the subordinating <SLINK> tags also require a scope mech-
anism, as these links are intended to convey an informational subordinating
relationship. In the case we gave above, for example, this would be the rela-
tionship between Bill’s desires (the “wanting” event) and a potential event of
teaching on Monday. Here again there is no actual event of teaching on Monday
that is being denoted, and the description for this potential event needs to be
assembled out of a number of different TimeML tags.

That sentences whose semantic interpretation crucially involves expressions
which are traditionally taken to be scope taking operators should be problematic
is not entire surprising: the TimeML annotation is entirely “flat”—TimeML
tags don’t contain any embedding—and therefore if we interpret them, as we
have, as simple first-order conjunctions we are bound to run into trouble. Under
its “natural” interpretation— which we have formalized above—TimeML is a
very week logical representation language—essentially DRT without embedded
DRSs.5

4.1 Simulating Scope

We would like to interpret the following set of tags (which would be associ-
ated with the sentence John didn’t teach for 20 minutes on Monday) with the
interpretation given informally in first-order notation below.

5 Since TimeML was designed to encode the kinds of information that simple time-
line diagrams do, it should not be a surprise if we find it to have the same kinds of
weaknesses that diagrams have been shown to have [25,26].

100 G. Katz

(7) <EVENT eid= "ei1" root="teach">
<TIMEX3 tid="t1" val="XXXX-WXX-1">
<MAKEINSTANCE eiid="ei1" eventID="e1" polarity="NEG">
<TLINK relatedToTime ="ti1" eventID="ei1" relation="IS_INCLUDED">

(8) ¬ ∃ e,t [teaching(e) ∧ τ(e) ⊆ t ∧ monday(t) ∧ 20min(t)]

What we don’t have, however, is a way of letting the negation scope over the
entire clause. This lack of a “scope domain” is the central representational short-
coming of TimeML. In this section we sketch an approach to addressing this
problem.

Our approach will be to treat identifiers not as standing for event instances,
but rather to treat them as standing for predicates of events. Before giving this
revised interpretation of the TimeML language, let us illustrate the idea by
way of the second-order formulae below. The essential idea is that each of the
conjoined conditions (contributed by the individual tags) will partially specify
an event predicate. The temporal relations will go into constructing this event
predicate, and the polarity of the sentence will determine if there is or is not an
event of which this predicate holds. In order to specify this notion we will use
the following defined logical operators: the to relate predicates6 and we will
use a maximizing existential ∃max7. This will allow us to specify the maximal
predicate which entails each of the relations specified by tags, and this is the
central idea behind the analysis. Each tag will be taken to contribute conjunctive
information about an event predicate. The tags will be satisfied if there is (in
the positive case) or is not (in the negative case) an event of which the maximal
event predicate subsuming each of the tag satisfaction conditions associated with
the tag holds.

We illustrate this below:

(9) John taught for 20 minutes on Monday.
∃max P [P λ e [teaching(e)] ∧ P λ e [20min(τ(e))] ∧ P λ e [τ(e) ⊆
Monday)]] ∧ ∃ e [P(e)]

(10) John didntt each for 20 minutes on Monday
∃max [P λ e [teaching(e)] ∧ P λ e [20min(τ(e))] ∧ P λ e [τ(e) ⊆
Monday)]] ∧ ¬∃ e [P(e)]

In this case, then, we specify a predicate which is true of (all) events which are
teachings, which are 20 minutes long and which occur on Monday and specify
either that there is such an event (or that there is not.

4.2 Type-Level Satisfaction

In order to implement this idea, we need to provide a new definition of satisfac-
tion. We do this by modifying the satisfaction definition slightly. As above, we
take the domain of the embedding functions to be the various sets of identifiers
in the text. So, if we let T be a TimeML text, then:
6 ∀ P,Q [P � Q ↔ ∀ x P(x) → Q(x).
7 ∃max P φ is true iff ∃ P φ and ¬∃ P′ [P � P′ ∧ φ[P′/P]].

Towards a Denotational Semantics for TimeML 101

Dome(T) = the set of event ids in T
Domei(T) = the set of event instance ids in T
Domt(T) = the set of time ids in T
Tag(T) = the set of all tags in T

An embedding function f will be taken to be the union of the functions:

fe: Dome(T) → Pow(E),
fei: Domei(T) → Pow(E),
ft: Domt(T) → Pow(I)

Note that in contrast to the previous section, we take fei to map event instance
identifiers to sets of events. We now say that a text T is satisfied by a model M
iff there is a maximal embedding function f such that f every tag in T is satisfied
by f. An embedding function f is maximal (in the sense here intended) iff ∀ x,y
[f(x) = y] → ∀ f′ [f′(x) ⊆ y]. This means that when f assigns an extension to an
element, it always assigns the maximal possible extension.

The satisfaction conditions for <EVENT> tags and <TIMEX3> tags need not be
altered. The new satisfaction conditions for <TLINK>, <ALINK>, and
<MAKEINSTANCE> tags will be parallel to those we gave above, but will always
specify a partial specification of an event predicate. So, for example the <TLINK>
relation will specify that identifier associated with the eventInstanceID at-
tribute is mapped to a maximal subset of the set of events which stand in the
appropriate relation to a time associated with the relatedToTime identifier. In
general, then, a tag t is satisfied by f in M iff :

if t has the form:
<TLINK eventInstanceID=α relatedtoTime=β
relType="IS_INCLUDED">
then there is an i ∈ I such that f(α) λ e [τ(e) ⊆ i],
<TLINK eventInstanceID=αrelatedtoTime=β relType="BEFORE">
then there is an i ∈ I such that f(α) λ e [τ(e) < i],
<TLINK eventID=α relatedtoTime=β relType="DURING">
then there is an i ∈ I such that f(α) λ e [τ(e) = i],

The event-instances are interpreted as sets of events that stand in the appropriate
relations. MAKEINSTANCE will now simply be a certain sort of specification:

if t has the form:
<MAKEINSTANCE eventInstanceID=α eventID=β polarity="POS"
modality="">
then there is an event e ∈ f(β) such that e ∈ f(α)
<MAKEINSTANCE eventInstanceID=α eventID=β polarity="NEG"
modality="">
then there is no event e ∈ f(β) such that e ∈ f(α)

In other words, the <MAKEINSTANCE> tag is to be reinterpreted as a relation
between two event types, one of these is that related to the eventID (associated

102 G. Katz

with the main lexically specified event-type predicate) and the other related to
the eventInstanceID which is the event predicate that is specified by the various
<TLINK> tags.

It should be clear that this is explicitly not the interpretation that was im-
plicit in the design of TimeML, rather we are here providing a coherent post-hoc
interpretation of the TimeML language as it stands that addresses the scope
problem raised above. These new satisfaction conditions do assure us that the
tags in (7) receive the interpretation as in (10) above.

There are a number of expressions—in particular disjunction and modality—
which require special treatment along the lines that we have just given for nega-
tion because of their scopal properties. In the next section we will address the
interpretation of modality features in TimeML. Unlike disjunction, modality is
quite common in TIMEBANK and therefore calls for some attention.8

4.3 Modality and SLINKs

We will make no effort here to give a serious treatment of natural language
modality, but restrict ourselves to sketching how the scope issue associated with
modality can be addressed along the lines we have explored above. Modality
may be tagged in two places in TimeML, once on the modality attribute of
the <MAKEINSTANCE> tag and also via the relType attribute of the <SLINK>
tag. The <SLINK> tag we have illustrated above. Simple modality as marked on
<MAKEINSTANCE> is as illustrated in (11).

(11) John can
<EVENT eid="e1" class="OCCURRENCE" stem="teach">
teach
</EVENT>
<SIGNAL sid="s1">
on
</SIGNAL>
<TIMEX3 tid="t2" type="DATE" value="XXXX-WXX-1">
Monday
</TIMEX3>
<MAKEINSTANCE eventID="e1" eventInstanceID="ei1" polarity="NEG"
modality="CAN">
<TLINK eventInstanceID="ei1" signalID="s1" relatedToTime="t2"
relType="IS-INCLUDED"/>

In both cases the intent of marking modality is to indicate that the event being
specified as modal is not an actual event, but merely a potential event. We
will adopt the standard semantic possible worlds treatment of modality [28,29].
Actual events will be those that exist in the actual world, and non-actual those
that exist in other possible worlds.

Let the model structures be extended to contain a set W of possible worlds
(with the distinguished world w0) and the relation Acc among worlds. The
8 For a different approach see [27].

Towards a Denotational Semantics for TimeML 103

valuation function Val will provide each <TIMEX3> value and each <EVENT>
root with an intensional interpretation—a function from possible worlds to sets
of times on the one hand and from possible worlds to event predicates on the
other. Embedding functions will now map identifiers to intensions (i.e. functions
from worlds to event predicates). An embedding function f will be taken to be
the union of the functions:

fe: Dome(T) → W → Pow(E),
fei: Domei(T) → W →Pow(E),
ft: Domt(T) → W → Pow(I),

We will say that a text T is satisfied in a model M at a world w iff all tags in
the text are satisfied by M in w by a maximal embedding9 f. A tag t is satisfied
by f in M at w iff :

if t has the form:
<TLINK eventInstanceID=α relatedtoTime=β
relType="IS_INCLUDED">
then there is an i ∈ I such that f(α) λ w λ e [τ(e) ⊆ i],
<TLINK eventInstanceID=αrelatedtoTime=β relType="BEFORE">
then there is an i ∈ I such that f(α) λ w λ w λ e [τ(e) < i],
<TLINK eventID =α relatedtoTime =β relType= "DURING">
then there is an i ∈ I such that f(α) λ w λ e [τ(e) = i],

The event-instances are interpreted as sets of events that stand in the appropriate
relations. MAKEINSTANCE will now simply be a certain sort of specification
of the relation of the the actuality of the event described. In the non-modal case
the event described will be be taken to exist in the world of evaluation, while in
the modal case it will be taken to hold in another world. So, a tag t is satisfied
by f in M at w iff:

if t has the form:
<MAKEINSTANCE eventInstanceID=α eventID=β
polarity="POS" modality= "">
then there is an event e ∈ f(β)(w) such that e ∈ f(α)(w),
<MAKEINSTANCE eventInstanceID=α eventID=β
polarity="NEG" modality= "">
then there is no event e ∈ f(β)(w) such that e ∈ f(α)(w),
<MAKEINSTANCE eventInstanceID=α eventID=β
polarity="POS" modality="CAN">
then there is a world w′ ∈ W such that Acc(w,w′) and there is an
event e ∈ f(β)(w′) such that e ∈ f(α)(w′),
<MAKEINSTANCE eventInstanceID=α eventID=β
polarity="NEG" modality="CAN"> then there is a world w′ ∈ W
such that Acc(w,w′) and there is no an event e ∈ f(β)(w′) such that
e ∈ f(α)(w′), . . .

9 A maximal embedding is now interpreted as maximal on worlds and on events.

104 G. Katz

We can extend this analysis to the treatment of <SLINK>s by allowing the link to
specify the modal relation. We make use of the notion of an e alternatives to a
world—these being the worlds which are accessible from w which are compatible
with the agent of e’s attitude in e. In other words these will be the worlds
compatible with Bill’s desires, in the case in which e is the event of Bill’s wanting
expressed in (4). We can now extend this modal semantics to the treatment of
<SLINK>s. For these the tag is satisfied by f in M at w iff:

if t has the form:
<SLINK eventInstanceID=α subordinatedEventInstance=β
relType="MODAL"/>
then every world w′ ∈ W which is an alternative to w compatible
with f(α) there is an event e ∈ f(β)(w′)

Here it is the <SLINK> itself which indicates that the modal relation to the
subordinate event is lexically specified by the subordinating attitude event. It
will be the case, then, that (4) is satisfied in a world w0 in a modal iff every
world which is a desire alternative of Bills in w0 is a world in which there is an
event of teaching which is on a Monday. This, of course, is the classical analysis.

What is crucial is how the scope of the modal expression, be it that on the
<MAKEINSTANCE> tag or that associated with the <SLINK> tag, is simulated. This
is done by making use of the subsumption of intensions and by requiring that
the satisfying embedding be maximal. Intuitively in the treatment of (4) we
are relating Bill’s desires to subordinate teaching events that are on Monday
by “building” a maximal intentional event predicate which subsumes teaching
events and monday events and relating this to Bill’s desire event.

5 Conclusion

As we have seen, the formal semantic interpretation of the TimeML markup
language is not nearly as straightforward as one might have expected from the
intuitive characterization implicit in [4]. The characterization of simple positive
time and event information is relatively straightforward. We take the event iden-
tifiers and the time identifiers introduced by <EVENT> or <TIMEX3> tags to be
interpreted much like variables or discourse referents, which receive more or less
specification as to their actual value from the attributes on this tag as well as
from the attributes of other TimeML tags in the text. More problematic are
natural language expressions such as negation, modality, indirect speech and
expressions of propositional attitude, which have traditionally been analyzed
as scope taking operators. These present challenges for the interpretation of a
language which contains no syntactic reflexes of embedding.

The analysis presented here, in which the semantic effects of embedding struc-
tures is reflected the second order characterization of event predicates, has much
in common with recent work in Minimal Recursion Semantics [30]. The semantic
scope of operators is only simulated and not expressed directly in the represen-
tation language, as it is in DRT, for example. Whether this type treatment can

Towards a Denotational Semantics for TimeML 105

be successfully applied to the wide range of data for which TimeML has been
designed remains to be seen. It should be clear that while TimeML appears
to provide the tools for representing a wide range of temporal and event-based
information expressed in natural language, giving this annotation language a
well-defined semantics illustrates, once again, how difficult the task of doing
natural language semantics truly is.

References

1. Pustejovsky, J., Sauŕı, R., Castaño, J., Radev, D., Gaizauskas, R., Setzer, A., Sund-
heim, B., Katz, G.: Representing temporal and event knowledge for qa systems.
In: Maybury, M.T. (ed.) New Directions in Question Answering, MIT Press, Cam-
bridge (2004)

2. Pustejovsky, J., Hanks, P., Sauŕı, R., See, A., Gaizauskas, R., Setzer, A., Radev, D.,
Sundheim, B., Day, D., Ferro, L., Lazo, M.: The Timebank corpus. In: Proceedings
of Corpus Linguistics 2003, Lancaster, pp. 647–656 (2003)

3. Verhagen, M., Gaizauskas, R., Schilder, F., Hepple, M., Katz, G., Pustejovsk, J.:
Semeval-2007 task 15: Tempeval temporal relation identification. In: ACL SemEval
Workshop (2007)

4. Pustejovsky, J., Ingria, R., Castaño, J., Sauŕı, R., Littman, J., Gaizauskas, R.,
Setzer, A., Katz, G., Mani, I.: The specification language timeml. In: Mani, I.,
Pustejovsky, J., Gaizauskas, R. (eds.) The Language of Time: A Reader, Oxford,
pp. 545–557 (2005)

5. Sauŕı, R., Littman, J., Knippen, B., Gaizauskas, R., Setzer, A., Pustejovsky, J.:
Timeml annotation guidelines version 1.2.1 (2006)

6. Hobbes, J.R., Pustejovsky, J.: Annotating and reasoning about time and events.
American Association for Artificial Intelligence (2003)

7. Dillon, L.K., Kutty, G., Melliar-Smith, P.M., Moser, L.E., Ramakrishna, Y.S.: Vi-
sual specifications for temporal reasoning. Journal of Visual Languages and Com-
puting 5(1), 61–81 (1994)

8. Smith, M.H., Holzmann, G.J., Etessami, K.: Events and constraints: A graphical
editor for capturing logic requirements of programs. In: RE 2001. Proceedings of
the Fifth IEEE International Symposium on Requirements Engineering (RE 2001),
p. 14. IEEE Computer Society, Washington (2001)

9. Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, J.,
Janssen, T., Stokhof, M. (eds.) Formal Methods in the Study of Language, Math-
ematical Centre, Amsterdam (1981)

10. Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer Academic Publishers, Dor-
drecht (1993)

11. Hwang, C., Schubert, L.K.: Interpreting tense, aspect, and time adverbials: a com-
positional, unified approach. In: Gabbay, D., Ohlbach, H. (eds.) Proc. of the 1st
Int. Conf. on Temporal Logic, pp. 238–264 (1994)

12. ter Meulen, A.G.B.: Representing time in natural language: the dynamic interpre-
tation of tense and aspect. MIT Press, Cambridge (1995)

13. Reyle, U., Roßdeutscher, A.: Temporal underspecification in discourse. In: Rohrer,
A.R.C., Kamp, H. (eds.) Linguistic Form and its Computation, CSLI Publications,
Stanford, CA (2001)

14. Davidson, D.: The logical form of action sentences. In: Rescher, N. (ed.) The Logic
of Decision and Action, Pittsburgh Press, Pittsburgh (1967)

106 G. Katz

15. Link, G.: Algebraic semantics for event structures. In: Stokhof, M., Veltman, F.
(eds.) Proceedings of the Sixth Amsterdam Colloquium, University of Amsterdam,
Institute for Language Logic and Information, pp. 243–262 (1987)

16. Krifka, M.: Nominal reference, temporal constitution and quantification in event
semantics. In: Bartsch, R., van Benthem, J., van Emde Boas, P. (eds.) Semantics
and Contextual Expression, Foris Publications, Dordrecht (1989)

17. Miller, G.A.: Wordnet: A lexical database for english. Commun. ACM 38(11), 39–
41 (1995)

18. Shadbolt, N., Lee, T.B., Hall, W.: The semantic web revisited. IEEE Intelligent
Systems 21(3), 96–101 (2006)

19. Ferro, L., Mani, I., Sundheim, B., Wilson, G.: Tides temporal annotation guide-
lines draft - version 1.02. Mitre technical report mtr mtr 01w000004, The Mitre
Corporation, McLean, Virginia (2001)

20. Hobbes, J.R., Pan, F.: An ontology of time for the semantic web. ACM TRansac-
tions on Asian Languages Information Processing 3, 66–85 (2004)

21. Group, T.W.: Timeml 1.2.1 a formal specification language for events and temporal
expressions

22. Van Bentham, J.: The Logic of Time. Reidel, Dordrecht (1983)
23. Landman, F.: Structures for Semantics. Kluwer, Dordrecht (1991)
24. Freed, A.F.: The Semantics of English Aspectual Complementation. Reidel, London

(1979)
25. Lemmon, O.: Comparing the efficacy of visual languages. In: Barker-Plummer, D.,

Beaver, D.I., van Benthem, J., di Luzio, P.S. (eds.) Words, Proofs and Diagrams,
CSLI Publications (2002)

26. Lemmon, O., Pratt, I.: On the insufficiency of linear diagrams for syllogisms. Notre
Dame Journal of Formal Logic 39, 573–580 (1998)

27. Sauŕı, R., Verhagen, M.: Temporal information in intensional contexts. In: Bunt,
H., Geertzen, J., Thijse, E. (eds.) IWCS-6. Sixth International Workshop on Com-
putational Semantics, pp. 404–406 (2005)

28. Kripke, S.: A completeness theorem in modal logic. Journal of Symbolic Logic 24,
1–14 (1959)

29. Hintikka, J.: Semantics for propositional attitudes. In: Davis, J.W. (ed.) Philsoph-
ical Logic, pp. 21–45. Reidel, Dordrecht (1969)

30. Copestake, A., Flickinger, D., Pollard, C., Sag, I.A.: Minimal recursion semantics:
an introduction. Research on Language and Computation 3(4), 281–332 (2006)

Arguments in TimeML: Events and Entities

James Pustejovsky, Jessica Littman, and Roser Sauŕı

Computer Science Department, Brandeis University
415 South St., Waltham, MA 02454 USA

{jamesp,jlittman,roser}@cs.brandeis.edu

Abstract. TimeML is a specification language for the annotation of
events and temporal expressions in natural language text. In addition,
the language introduces three relational tags linking temporal objects
and events to one another. These links impose both aspectual and tempo-
ral ordering over time objects, as well as mark up subordination contexts
introduced by modality, evidentiality, and factivity. Given the richness of
this specification, the TimeML working group decided not to include the
arguments of events within the language specification itself. Full reason-
ing and inference over natural language texts clearly requires knowledge
of events along with their participants. In this paper, we define the ap-
propriate role of argumenthood within event markup and propose that
TimeML should make a basic distinction between arguments that are
events and those that are entities. We first review how TimeML treats
event arguments in subordinating and aspectual contexts, creating event-
event relations between predicate and argument. As it turns out, these
constructions cover a large number of the argument types selected for by
event predicates. We suggest that TimeML be enriched slightly to include
causal predicates, such as lead to, since these also involve event-event re-
lations. As such, causal relationships will be a relation type for the new
Discourse Link that will also encode other discourse relations such as
elaboration. We propose that all other verbal arguments be ignored by
the specification, and any predicate-argument binding of participants to
an event should be performed by independent means. In fact, except for
the event-denoting arguments handled by the extension to TimeML pro-
posed here, almost full temporal ordering of the events in a text can be
computed without argument identification.

1 Introduction

The question to be addressed in this paper is not whether arguments should be
included in the specification language of TimeML, but which arguments should
be and how they should best be represented. We review the treatment of complex
complementation in TimeML, whereby a proposition-denoting or event-denoting
expression is linked to the predicate (event) introducing it by an explicit rela-
tional tag, the SLINK. This effectively binds these complements as arguments
to their governing events. In fact, currently, any event-denoting expression ap-
pearing as an argument to a predicate, broadly speaking, is annotated explicitly

F. Schilder et al. (Eds.): Reasoning about Time and Events, LNAI 4795, pp. 107–126, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

108 J. Pustejovsky, J. Littman, and R. Sauŕı

in a link relation. In this paper, we wish to make the strategy explicit by which
an argument to an event is annotated. We suggest that predicates selecting for
situation, proposition, or event types should be part of the explicit annotation of
an event. As a result, this requires expanding the specification to include causal
predicates and other discourse markers such as lead to and induce. Finally, we
suggest the simplest way to incorporate entity-denoting arguments in the speci-
fication. While the specification language allows for bindings to entities, it does
not require annotation of the entities for well-formed markup.

2 Overview of Current TimeML Specification

The TimeML specification language provides a standard for capturing all tempo-
ral information in a natural language text. This includes temporal expressions,
events, and the relationships they share. To achieve such an annotation, TimeML
uses four main tag types that fall into two categories, those that consume text
and those that do not. TIMEX3, SIGNAL, and EVENT fall into the former group.
The LINK tag type is non-consuming as it relates temporal objects to one an-
other. In addition, the specification allows for non-consuming TIMEX3 tags to
hold information on implicit temporal expressions, and non-consuming EVENT
tags if more than one instance of an event is needed. In the subsections that
follow, we briefly describe each of these tags.

2.1 Temporal Expressions

TimeML expands on earlier attempts to annotate temporal expressions ([1], [2]),
with the introduction of the TIMEX3 tag. Specifically, TIMEX3 adds functionality
to the TIMEX2 standard [3].

Temporal expressions in TimeML fall into four categories: DATEs, TIMEs,
DURATIONs, and SETs. A DATE is any calendar expression such as July 3
or February, 2005. The annotation of such examples includes a value attribute
that specifies the contents of the expression using the ISO 8601 standard. The
example in (1) shows the annotation of a fully specified DATE TIMEX3.

(1) a. April 7, 1980
b. <TIMEX3 tid="t1" type="DATE" value="1980-04-07"

temporalFunction="false">

April 7, 1980

</TIMEX3>

April 7, 1980 is a fully specified temporal expression because it includes all of
the information needed to give its value. Many temporal expressions are not fully
specified and require additional information from other temporal expressions
to provide their full value. We will say more about the annotation of these
expressions shortly, but, for now, notice that the annotation in (1) includes an
attribute called temporalFunction and that it is set to “false”. When a temporal
expression requires more information to complete its annotation, this attribute

Arguments in TimeML: Events and Entities 109

is set to “true” to indicate that a temporal function will be used. For more on
this process, refer to the section below on temporal functions.

While the DATE type is used to annotate most calendar expressions, the
TIME type is used to capture expressions whose granularity is smaller than one
day. Examples of this include 4:20 and this morning. Example (2) shows the
annotation of a fully specified TIME TIMEX3. Notice that for a TIME to be fully
specified, it must include date information as well.

(2) a. 10:30am April 7, 1980
b. <TIMEX3 tid="t1" type="TIME" value="1980-04-07T10:30"

temporalFunction="false">

10:30am April 7, 1980

</TIMEX3>

Expressions such as for three months include a DURATION TIMEX3. The
value attribute of a DURATION again follows the ISO 8601 standard. For
example, three months receives a value of “P3M”. Occasionally, a DURATION
will appear anchored to another temporal expression. Since TimeML strives
to annotate as much temporal information as possible, this information is also
included in the annotation of a DURATION with the beginPoint and endPoint
attributes as shown in (3).

(3) a. two weeks from December 17, 2005
b. <TIMEX3 tid="t1" type="DURATION" value="P2W"

beginPoint="t2" endPoint="t3">two weeks</TIMEX3>
c. <TIMEX3 tid="t2" type="DATE" value="2005-12-17">

December 17, 2005</TIMEX3>
d. <TIMEX3="t3" type="DATE" value="2005-12-31"

temporalFunction="TRUE" anchorTimeID="t1"/>

The example in (3a) contains to temporal expressions separated by a signal (see
subsection 2.3). The first, two weeks, is annotated as a DURATION. The second,
December 17, 2005, is a fully specified DATE. Every TIMEX3 annotation includes
an identification number. This number is used to relate the temporal expression
to other TimeML objects. In this case, the identification value in (3c), “t2”, is
included in the annotation of two weeks as the beginPoint of the duration. With
this information, the endPoint of the duration can be calculated. An additional
TIMEX3 is created to hold its value. This is the TIMEX3 given in (3d). Since the
value of the new TIMEX3 must be calculated, temporalFunction is set to “true”
and a temporal anchor is suppled. This new attribute will be explained below.

The final type of TIMEX3 is used to capture regularly recurring temporal ex-
pressions such as every three days. This type, SET, uses the attributes quant
and freq to annotated quantifiers in an expression and the frequency of the
expression, respectively. An example is given in (4).

(4) a. two days every week
b. <TIMEX3 tid="t1" type="SET" value="P2D" quant="EVERY"

freq="1W">two days every week</TIMEX3>

110 J. Pustejovsky, J. Littman, and R. Sauŕı

Temporal Functions. When a temporal expression is not fully specified, it
requires the use of a temporal function to calculate its value. In a manual anno-
tation, the user provides a particular anchor time ID that supplies the missing
information. The user then gives the correctly calculated value for the TIMEX3.
In automatic annotation, a library of temporal functions is used to perform the
calculation.

The example in (3d) shows an annotation that uses a temporal function. In
this case, the end point of a duration was calculated using the beginPoint and
value of the duration given in (3b). For the new temporal expression in (3d),
the temporalFunction attribute is set to “TRUE” and the tid for the duration
is given as the anchorTimeID. Finally, the correct value is supplied. This same
process is used for temporal expressions that are missing information such as
April 7, which is missing the year, and for relative temporal expressions such as
today.

2.2 Events

Events that can be anchored or ordered in time are captured with TimeML. Such
events are predominantly verbs, but nouns, adjectives, and even some preposi-
tions can also be eventive. TimeML events are annotated with the EVENT tag.
This tag has three main attributes: an ID number, an event instance ID num-
ber, and an event class. The classification of an event can help determine what
relationships that event may participate in. For example, an event classified as
REPORTING will be the first element of an evidential SLINK (see the subsection
on Subordinating Links in section 2.4). There are seven event classes:

– REPORTING: say, report, tell
– PERCEPTION: see, watch, hear
– ASPECTUAL: initiate, terminate, continue
– I ACTION: try, investigate, promise
– I STATE: believe, want, worry
– STATE: on board, live, seek
– OCCURRENCE: land, eruption, arrive

Several of these classes introduce an event argument and are of particular
interest to the work in this paper. The TimeML Annotation Guidelines [4] detail
exactly which events fall into which classes.

Besides the classification of an event, natural language documents supply
much more information about events that we need to represent in an accurate
annotation. In addition to the head of the event that is captured in the text, an
event may include further tense and aspect indicators or modifiers that affect
its modality or polarity. Therefore, along with the ID numbers and event class,
tense, aspect, part of speech, modality, and polarity information are also stored
in the EVENT tag. Earlier specifications of TimeML put this information in a
separate tag called MAKEINSTANCE. The motivation for this tag was to account
for multiple instances of a single event. However, to simplify the annotation, this

Arguments in TimeML: Events and Entities 111

tag has been removed and the information stored in it is now stored with the
event itself.

In some cases, a single mention of an event in the text can actually refer to
multiple instances, as in example (5).

(5) John swims on Monday and Tuesday.

Here, there is one mention of swim that is tagged as an OCCURRENCE
EVENT. The TimeML annotation should link this event to the temporal expres-
sions also present in the sentence. However, it is clear that the swim event that
takes place on Monday is not the same one that takes place on Tuesday. Instead,
it is an instance of the event that is anchored to each temporal expression.
With the removal of the MAKEINSTANCE tag, this is accomplished by adding a
non-consuming EVENT that holds the correct instance information.

Instances of events can also have different tense, aspect, polarity, or modality
properties. When an additional instance of an event is needed, a non-consuming
EVENT tag is created to hold information on that instance. For the sake of consis-
tency, the event instance ID number that is included with all EVENTs, even if only
one instance is needed, is used to show that an instance of an event participates
in a TimeML relationship as seen in section 2.4.

2.3 Signals

When temporal objects are related to each other, there is often an additional
word present whose function is to specify the nature of that relationship. These
words are captured with the SIGNAL tag, which has one attribute that provides
an identification number. Example (6) shows a typical use of preposition at as
SIGNAL, and a complete annotation of all the temporal objects present.

(6) a. The bus departs at 3:10 pm.
b. The bus

<EVENT eid="e1" eiid="ei1" class="OCCURRENCE"

pos="VERB" tense="PRESENT" aspect="NONE" polarity="POS">

departs

</EVENT>

<SIGNAL sid="s1">

at

</SIGNAL>

<TIMEX3 tid="t1" type="TIME" value="XXXX-XX-XXT15:10">

3:10pm

</TIMEX3>

2.4 Links

TimeML uses three varieties of LINK tag to represent relationships among tem-
poral objects. In all cases, the LINK tag is non-consuming as there may not be

112 J. Pustejovsky, J. Littman, and R. Sauŕı

any explicit text to capture or the relationship could be between objects whose
locations vary greatly. Each link tag comes with a set of relation types to specify
the nature of the relationship. In the following paragraphs, we briefly describe
each of these tags: TLINK, ALINK, and SLINK.

Temporal Relationships. All temporal relationships are represented with the
TLINK tag. TLINK can be used to annotate relationships between times, between
events, or between times and events. In this way, TimeML can both anchor and
order temporal objects. A signalID can also be used in a TLINK if it helps to
define the relationship. The TLINK in example (7) completes the annotation of
The bus departs at 3:10pm.

(7) <TLINK lid="l1" eventInstanceID="ei1" relatedToTime="t1"
signalID="s1" relType="IS INCLUDED"/>

The possible relType values for a TLINK are based on Allen’s thirteen relations
[5].1 The relationships for TLINK include before and after, immediately before and
after, included, during, simultaneous, and begins and ends. TLINK is also used
to assert that two event instances refer to the same event using the IDENTITY
relType.

Aspectual Links. Events classified as ASPECTUAL introduce an ALINK.
These include events such as begin, stop and continue. The ALINK represents
the relationship between an aspectual event and its argument event. In some
ways, the ALINK is like a combination of a TLINK and an SLINK as it indicates
both a relationship between two temporal elements and aspectual subordination.
The possible relationship types for ALINK are: initiates, culminates, terminates,
continues, and reinititiates.

Subordinating Links. As mentioned in section 2.2, certain event classes in-
troduce a subordinated event argument. Some examples are verbs like claim,
suggest, promise, offer, avoid, try, delay, think; nouns like promise, hope, love,
request; and adjectives such as ready, eager, able, afraid. In the following sen-
tences, the events selecting for an argument of situation or proposition type
appear in bold face, whereas the corresponding argument is underlined:

(8) a. The Human Rights Committee regretted that discrimination against
women persisted in practice.

b. Uri Lubrani also suggested Israel was willing to withdraw from south-
ern Lebanon.

c. Kidnappers kept their promise to kill a store owner they took hostage.

In TimeML, subordination relations between two events are represented by
means of a Subordinating Links (or SLINKs). The SLINK tag is perhaps the best
example of the current treatment of arguments in TimeML. Reference to each
1 See [22] for details on the mapping of these relations into TimeML.

Arguments in TimeML: Events and Entities 113

event is expressed by a pointer to them (through the attributes eventInstan-
ceID and subordinatedEventInstance), and the relation type is conveyed by
means of the attribute relType, which captures the type of modality projected
in each case onto the event denoted by the subordinated clause. relType can be
any of the following types:

1. FACTIVE: When the argument event is entailed or presupposed. Here is an
annotated example:2

(9) a. The Human Rights Commitee regretted that discrimination
against women persisted in practice.

b. The Human Rights Committee
<EVENT eid="e1" class="I ACTION">
regretted
</EVENT>
that discrimination against women
<EVENT eid="e2" class="ASPECTUAL">
persisted
</EVENT>
in practice.
<SLINK eventInstanceID="e1" subordinatedEventInstance="e2"
relType="FACTIVE"/>

2. COUNTERFACTIVE: When the main predicate presupposes the non-veracity of
its argument:
(10) a. A Time magazine reporter avoided jail at the last minute...

b. A Time magazine reporter
<EVENT eid="e1" class="I ACTION">
avoided
</EVENT>
<EVENT eid="e2" class="STATE">
jail
</EVENT> at the last minute...
<SLINK eventInstanceID="e1" subordinatedEventInstance="e2"
relType="COUNTERFACTIVE"/>

3. EVIDENTIAL: Typically introduced by REPORTING or PERCEPTION events, such
as tell, say, report and see, hear, respectively.

4. NEGATIVE EVIDENTIAL: Introduced by REPORTING and PERCEPTION events con-
veying negative polarity; e.g., deny.

5. MODAL: For annotating events introducing a reference to possible world.
(11) a. Uri Lubrani also suggested Israel was willing to withdraw from

southern Lebanon.
2 For the sake of simplicity, in this and the following examples we obviate the an-

notation of the part of speech, tense, aspect, modality, and polarity information in
each event and use the eventID number as a reference in the links. In a complete
annotation, this information would be included and the event instance ID would be
used as a reference in the LINK tags.

114 J. Pustejovsky, J. Littman, and R. Sauŕı

b. Uri Lubrani also
<EVENT eid="e1" class="I ACTION">
suggested
</EVENT>
Israel was
<EVENT eid="e2" class="I STATE">
willing
</EVENT>
to
<EVENT eid="e3" class="OCCURRENCE">
withdraw
</EVENT>
from southern Lebanon.
<SLINK eventInstanceID="e1" subordinatedEventInstance="e2"
relType="MODAL"/>
<SLINK eventInstanceID="e2" subordinatedEventInstance="e3"
relType="MODAL"/>

6. CONDITIONAL" For annotating conditional contexts.

(12) a. If Graham leaves today, he will not hear Sabine.
b. <SIGNAL sid="s1"

If
</SIGNAL>
Graham
<EVENT eid="e1" class="OCCURRENCE">
leaves
</EVENT>
<TIMEX3 tid="t1" type="DATE" value="XXXX-XX-XX"
temporalFunction="true" >
today
</TIMEX3>
, he will not
<EVENT eid="e2" class="OCCURRENCE">
hear
</EVENT
Sabine.
<SLINK eventInstanceID="e1" subordinatedEventInstance="e2"
signaled="s1" relType="CONDITIONAL"/>
<TLINK eventInstanceID="ei1" relatedToEventInstance="ei2"
relType="BEFORE"/>

The goal of a TimeML annotation is to provide the most complete temporal
picture of a text possible. On the surface, it may seem as if temporal links
are all that are needed to achieve this. Yet, subordinating and aspectual links
are also an essential part of this process. ALINKs contribute information about
the internal temporal structure of the events in question. On the other hand,
temporal relations can be inferred from some SLINKs. For example, a TLINK of
BEFORE relType can be derived between an event and its embedded infinitival

Arguments in TimeML: Events and Entities 115

clause holding an SLINK of MODAL relType. That is, if the subordinated event
does happen, it will most likely occur after the subordinating event.3

The extraction of new temporal links from subordinating or aspectual relation-
ships should not be mistaken as a replacement for those SLINKs and ALINKs.
On the contrary, they still play a vital role in the annotation. The example de-
scribed above is a case and point: if the new BEFORE TLINK were to replace
the SLINK, then there would be no remaining evidence that the subordinated
event may or may not have actually happened.

Thus, annotating the relation between proposition- or event-denoting expres-
sion and the predicate that selects them contributes two substantial benefits:

a. It enables distinguishing between events that are presented as extensional
and those characterized as intensional, a feature that is fundamental for any
subsequent task involving temporal ordering and reasoning over events.

b. It expresses a linkage from which additional temporal relations can be auto-
matically derived.

SLINKs, ALINKs, and some TLINKs are examples of how TimeML already
accounts for some event arguments. In the next section, we explore this further
and consider the impact of adding entity arguments to the annotation.

3 Events and Their Participants

We will assume for our discussion that events can be represented as first order
individuals, existentially quantified in a neo-Davidsonian manner where partic-
ipants to the event are conjoined relations between individuals and the event
([7], [8]). For each event, e, we will identify the participants to this event with
a three-place relation, Arg, between arguments e, x (of type individual), and k
(of type integer).

(13) λk: intλx: indλe: event[Arg(k, e, x)]

Rather than labeling arguments with specific named semantic functions, such as
agent, patient, and instrument, we identify the argument by an index, k. The
idea is that a post-parsing procedure will identify the appropriate semantic role
played by an argument.

Both named entity arguments and event arguments are expressible in this
fashion. For example, for the sentence in (14a), the participants are directly
identified by their indices 1 and 2, respectively, but not functionally, as Agent
and Patient.

(14) a. John kissed Mary.
b. ∃e[kiss(e) ∧ Arg(1, e, j) ∧ Arg(2, e, m)]

3 This has been explored within the TARSQI project [6], aimed at creating a toolkit
for doing automatic TimeML annotation.

116 J. Pustejovsky, J. Littman, and R. Sauŕı

Notice that the current TimeML representation of (14a) identifies the event
predicate but not its arguments.

(15) John

<EVENT eid="e1" eiid="ei1" class="OCCURRENCE"

pos="VERB" tense="PAST" aspect="NONE" polarity="POS">

kissed

</EVENT>

Mary.

With the addition into TimeML of an Arg-relation, we would be able to iden-
tify the entity participants as represented in (14b) above. This should be done
cautiously, however, without complicating the specification language or making
the annotation task more difficult than it already is. We will take up this issue
in Section 5 below.

By design, TimeML treats predicates that select for event arguments dif-
ferently from those taking named entities. For example, the event-embedding
predicate see, in most cases, allows the same simple conjunctive representation
over arguments that we saw in (14b), assuming the argument is extensional.4

(16) a. John saw Mary fall.
b. ∃e1∃e2[see(e1) ∧ Arg(1, e1, j) ∧ Arg(2, e1, e2) ∧ fall(e2) ∧ Arg(1, e2, m)]

In the next section, we turn to the question of how to generalize the encoding
of an event argument as expressed in TimeML through SLINKs.

3.1 SLINK Encodes Partial Argument Structure

According to the TimeML specification, predicates in natural language that are
encoded as introducing SLINKs in fact already identify the embedded comple-
ment as an argument to the verb.

For example, the TimeML markup of (17a) explicitly identifies the embedded
complement (verb) as a subordinated argument to the event regret.

(17) a. John regretted that Sue marrried Bill.
b. John

<EVENT eID="e1" class="I ACTION">

regretted

</EVENT>

that Sue

<EVENT eID="e2" class="OCCURRENCE">

married

</EVENT>

Bill.

<SLINK eventID="e1" subEventID="e2" relType="FACTIVE"/>

4 We assume that the typing on the Arg relation can be generalized to allow events
as arguments.

Arguments in TimeML: Events and Entities 117

As it happens, with a factive predicate such as regret we can existentially quantify
the event representing the embedded complement of the SLINK predicate. A
first-order neo-Davidsonian representation of this sentence would, therefore, look
like the following:

(18) ∃e1∃e2[regret(e1)∧Arg(1, e1, j)∧Arg(2, e1, e2)∧marry(e2)∧Arg(1, e2, s)∧
Arg(2, e2, b)]

The current TimeML representation of this sentence, however, expressed as a
first-order expression, is closer to that shown in (19), since no entity arguments
are represented in TimeML.

(19) ∃e1∃e2[regret(e1) ∧ Arg(2, e1, e2) ∧ marry(e2)]

For all other modality-introducing predicates, TimeML is generally descriptively
adequate in differentiating the modal force of the complement expression. For
example, the SLINK predicate believe is annotated as (20b) below.

(20) a. John believes that Bill went to Japan.
b. John

<EVENT eID="e1" class="I ACTION">

believes

</EVENT>

that Bill

<EVENT eID="e2" class="OCCURRENCE">

went

</EVENT>

to Japan.

<SLINK eventID="e1" subEventID="e2" relType="MODAL"/>

The modal subordination introduced by the propositional attitude predicate
believe is represented by an SLINK with a relType value of MODAL. To model
this, we will introduce a special first order variable, ê, effectively encoding the
modality of the event and the domain of its subordination. On this strategy, a
first order expression representing the partial argument structure of (20b) would
be that shown in (21).5

(21) ∃e∃ê[believe(e) ∧ Arg(2, e, ê) ∧ go(ê)]

We have now partial argument structure for some predicates, but there are
many other verbs which select events as their direct arguments as well. This is
for example the case of causative predicates (cause, led, etc.). The question is,
should they be treated in TimeML, and if so, how? The following section will
focus on these kind of predicates, proposing a solution to account for them in
a way parallel to SLINK relations. We will also show that the same treatment
needs to be applied to other relations generally expressed at the discourse level.
5 This is similar to the first order representations in DAML for modal subordination

(Jerry Hobb (p.c); cf. http://www.daml.org/ontologies/

118 J. Pustejovsky, J. Littman, and R. Sauŕı

4 Encoding Discourse Relations in TimeML

4.1 Relations of Causation

Causative predicates express a specific relation between their event arguments,
that of causation, which contributes basic temporal information in a way similar
to SLINKs. The representation of causation between event denoting expressions
within the same sentence is common in natural languages. For example, the fol-
lowing sentences express causal (and hence temporal) relations between events.

(22) a. [The rain]e1 caused [the flooding]e2.
b. [The rioting]e1 led to [curfews]e2.
c. [Fifty years of peace]e1 brought about [great prosperity]e2.

The information provided by this type of relations has been so far ignored in
TimeML. However, we believe that there should be an explicit representation of
this relation in an event ordering markup language such as this. To capture it,
we introduce a new link type, called DLINK for discourse link.

DLINKs will encode the causal relation between two events denoting respec-
tively the cause and the effect, as expressed by verbs like the following, in their
causative sense:

(23) cause, stem from, lead to, breed, engender, hatch, induce, occasion, produce,
bring about, produce, secure.

By means of a DLINK, a sentence such as (24a) can be explicitly annotated as
involving a causal relation:

(24) a. The rioting led to curfews on November 22, 2004.
b. The

<EVENT eid="e1" eiid="ei1" class="OCCURRENCE"

pos="NOUN" tense="NONE" aspect="NONE">

rioting </EVENT>

<EVENT eid="e2" eiid="ei2" class="CAUSE"

pos="VERB" tense="PAST" aspect="NONE">

led </EVENT>

to

<EVENT eid="e3" eiid="ei3" class="OCCURRENCE"

pos="NOUN" tense="NONE" aspect="NONE>

curfews </EVENT>

on

<TIMEX3 tid="t1" type="DATE value="2004-11-22">

November 22, 2004

</TIMEX3>.

<DLINK eventInstanceID="ei1" relatedToEvent="ei3"

relType="CAUSAL" signalID="ei2"/>

<TLINK eventInstanceID="ei3" relatedToTime="t1"

reltype="IS INCLUDED"/>

Arguments in TimeML: Events and Entities 119

Note that both the subject and object event expressions are syntactically
arguments to the causal predicate. In this case, the Arg relation is not operative
since the matrix predicate is itself a realization of a Cause relation directly:

(25) a. The rioting led to curfews.
b. ∃e1∃e2[rioting(e1) ∧ Cause(e1, e2) ∧ curfews(e2)]

In addition to causative constructions like those in (22), there are many others
where causation is expressed through an explicit causative predicate as well, and
yet the relation is not syntactically between two events but between an individual
and an event. Consider:

(26) a. [John]x caused [a fire]e2.
b. [The drug]x induced [a seizure]e2.

In such cases of event metonymy ([9], [10]), we will introduce a skolemized
event instance, ei1, to act as the proxy in the causation relation. Hence, the
TimeML for (26a) would be as follows below:6

(27) John

<EVENT eid="e1" eiid="ei1" class= "NONE"

tense="NONE" aspect="NONE"/>

<EVENT eid="e2" eiid="ei2" class="CAUSE"

pos="VERB" tense="PAST" aspect="NONE">

caused </EVENT>

a

<EVENT eid="e3" eiid="ei3" class="OCCURRENCE"

tense="NONE" aspect="NONE">

fire </EVENT>

<DLINK eventInstanceID="ei1" relatedToEvent="ei3"

relType="CAUSAL" signalID="ei2"/>

In English as in most languages, causation can be expressed as a relation
between elements within the same sentence by means of lexical items such as
those presented in (23). But it can also be expressed as a relation between events
in two different sentences, connected by causative markers such as because, since,
or given that. Consider:

(28) Because [the drought reduced U.S. stockpiles]s1, [they have more than
enough storage space for their new crop]s2.

The same type of DLINKs can be used to express the causation here:7

6 Note that the interpretation of John as the agent of an event involved in the causation
is out of the scope of TimeML; it would be the responsibility of subsequent semantic
interpretation to bind the entity John to the causing event.

7 Note that the relation between the events expressed as drought and reduced is also
of causal nature. In this case, it is entailed by the predicate reduce, which denotes
change of state as part of its core meaning. TimeML aims at being as much surface-
based as possible, and so we will not consider cases like this one for the moment.

120 J. Pustejovsky, J. Littman, and R. Sauŕı

(29) <SIGNAL sid="s1">

because </SIGNAL>

the

<EVENT eid="e1" eiid="ei1" class= "OCCURRENCE"

tense="NONE" aspect="NONE">

drought </EVENT>

reduced U.S. stockpiles, they

<EVENT eid="e2" eiid="ei2" class="STATE"

pos="VERB" tense="PRESENT" aspect="NONE">

have </EVENT>

more than enough food storage space ...

<DLINK eventInstanceID="ei1" relatedToEvent="ei2"

relType="CAUSAL" signalID="s1"/>

So far, we have proposed introducing a new TimeML entity, DLINK, in order
to encode causation relations between two events. What is, however, the main
asset of this move in the context of annotating temporal information in text? As
already mentioned, causation relations inherently convey basic temporal infor-
mation which is of relevance for subsequent temporal reasoning: the cause event
(at least) starts at a point in time prior to the beginning of the resulting event.

Other discourse relations also entail a temporal component as part of their
meaning. Let’s see what they are and how they can be accounted for within
TimeML.

4.2 Discourse Relations and Temporal Information

There are a number of discourse relation classifications available in the field (e.g.,
[11], [12], [13], [14], [15], [16]; see [17] for a comparison of some of them). Our
analysis here is based on the classification presented in [18], which annotates the
Discourse Graphbank corpus [19], because this corpus has recently been used in
the TimeML framework on research devoted to the automatic identification of
discourse relations [20].

The classification put forward by Wolf et al. define four broad classes of dis-
course (or coherence) relations, which in some cases split into more specialized
subclasses. Table 1 presents them.8

A first glance at this table already reveals a two-fold classification between
temporally relevant versus non-relevant discourse relations. Of those with tem-
poral consequences there are the classes of Temporal Sequence and Cause-effect
relations. Of the other kind, there are Attribution and Resemblance relations.

Classifying Temporal Sequence relations as belonging to the class of those
that intrinsically hold temporal information is obvious.9 As a matter of fact,
the information that in GraphBank is encoded by means of these relations is, in
TimeML, expressed through temporal links (TLINKs).
8 The definitions and examples are mainly extracted from [18] and [19].
9 Temporal Sequence corresponds to what other classifications call Narrative.

Arguments in TimeML: Events and Entities 121

Table 1. Coherence relations [18]

Resemblance: Establishing commonalities and contrasts between the
discourse segments.

Parallel e.g., [John organized rallies for Clinton], and [Fred distributed
pamphlets for him].

Contrast e.g., [John supported Clinton], but [Mary opposed him].
Example e.g., [Young aspiring politicians often support their party’s presid-

ential candidate]. For instance, [John campaigned hard for Clinton].
Generalization e.g., [John campaigned hard for Clinton in 1992]. [Young aspiring

politicians often support their party’s presidential candidate].
Elaboration e.g., [A Young aspiring politician was arrested in Texas today]. [John

Smith, 34, was nabbed in a Houston law firm while attempting to
embezzle funds for his campaign].

Cause-effect: Establishing a causal inference between the discourse
segments.

Explanation Understood as the the standard cause-effect relation.
e.g., [John organized rallies for Clinton], and [Fred distributed leaflets].

Violated expectation Normally there is a causal relation between the two segments,
but here that causal relation is absent.
e.g., [The weather was nice] [but our flight got delayed].

Condition The event described in the main clause can only take place if the
event described in the if-clause also takes place.
e.g., If the system works, everyone will be happy.

Temporal Sequence: Defining a temporal sequence between the two discourse units.
No causal relation is involved between them.
e.g., [John bought a book], then [he bought groceries].).

Attribution: Establishing an evidential relation of reporting type.
e.g., [John said] that [Mary had brought some wine].

Cause-effect relations as defined in [18] are temporally relevant as well. In the
previous subsection, we already argued this for the cases that are characterized
here as Explanation relations –that is, the standard cause-effect relation; e.g,
(28). The cause event starts (and possibly also ends) before the beginning point
of the effect event.

That same temporal inference can be derived from the other two subclasses as
well: Violated expectation and Condition. In the former, the event that creates
the expectation (equivalent to the cause in Explanation) starts before the event
that violates the expectation (equivalent to the result). In the latter, the event
described by the if-clause will precede the event in the main clause, if that event
holds in the world. Interestingly, conditional constructions are already annotated
in TimeML by means of (non-lexically triggered) SLINKs [4].

On the other hand, neither Attribution nor any of the Resemblance relations
entail specific temporal relations. Note that the Attribution relations in fact
encode some of the relations that in TimeML are expressed by means of SLINKs,
particularly, SLINKs of EVIDENTIAL relType –those expressing some sort of
reporting speech act, as in John said..., according to..., etc. This is not to say
that it is impossible to infer any temporal relationship from this type of SLINK,
but the type of TLINK would not be entailed by virtue of the EVIDENTIAL
relType in the SLINK. Instead, we would have to examine the tense and aspect
of the link participants to try to infer a TLINK.

122 J. Pustejovsky, J. Littman, and R. Sauŕı

Finally, temporal relations are not entailed in Resemblance relations either,
except for the case of Elaboration. The temporal relation between the two events
at play in Parallel and Contrast relations can be of any type: one preceding the
other, one overlapping with the other, one after the other, etc. As for Example
and Generalization, they express a relation between a generic and a particular
situation, but do not involve any particular temporal relation.

Elaboration is however the only coherence relation in this class that intrin-
sically conveys a particular temporal relation, since the elaborating segment
details the event or situation expressed in the elaborated one. Hence, a general
temporal relation of inclusion can be inferred.

To sum it up, there are four different discourse relations that are of interest to
an annotation scheme devoted to the encoding of temporal information in text,
such as TimeML:

– Temporal Sequence, already captured by TLINKs.
– Explanation (our standard cause-effect relation). It encodes a relation of

temporal ordering between the events in the two segments. A new link type
has already been proposed for annotating it; namely, DLINK.

– Violated expectation. Encoding the same temporal relation as
Explanation.

– Condition. Encoding the same temporal relation as Explanation. TimeML
encodes them by means of SLINKs.

– Elaboration. Entailing a relation of overlapping of the two events at play.

4.3 DLINK Scheme

Earlier in the section we introduced a new link type in order to annotate causal
relations which, when denoted by a causative predicate, are comparable to
SLINKs both syntactically but also in terms of the temporal information they
contribute to the discourse. We showed that the link type can be extended also
to annotating causation relations expressed by means of discourse markers.

Given the analysis presented in the previous subsection, we now propose to
generalize the new link in order to include other temporally relevant discourse
relations as well. In particular, it will now account for the relations of: elabora-
tion, explanation (i.e., cause-effect), violated expectation, and condition. Note
that in earlier versions of TimeML this last relation was previously accounted
for by means of SLINKs.

The specification scheme for the new DLINK entity is shown below:

<DLINK>
attributes ::= [lid] [origin] eventInstanceID signalID

subordinatedEventInstance relType
lid ::= ID
{lid ::= LinkID
LinkID ::= l<integer>}
origin ::= CDATA
eventInstanceID ::= IDREF

Arguments in TimeML: Events and Entities 123

{eventInstanceID ::= EventInstanceID}
subordinatedEventInstance ::= IDREF
{subordinatedEventInstance ::= EventInstanceID}
signalID ::= IDREF
{signalID ::= SignalID | EventInstanceID}
relType ::= ’CAUSAL’|’COND’|’ELAB’

The different types of relations will be identified through the attribute
relType. The CAUSAL value clusters together the relations of Explanation and
Violated Expectations since they are temporally equivalent. Condition relations,
on the other hand, will be distinguished by means of a different value: that of
COND. The two events there hold the same temporal relation than those in
Explanation and Violated Expectation relations. By contrast, however, they are
marked as intensional. Indeed, representing conditional constructions by means
of DLINKs changes the spec for SLINKs as well, which will not have the COND
relType value anymore. Finally, Elaboration relations, from which a different
TLINK can be derived, will be represented by means of the value ELAB.

5 Binding Entity Arguments in TimeML

In this section, we propose an extension to the current specification of TimeML
to accommodate the treatment of entity arguments. Our goal is to avoid any ex-
plicit mention of entities within the TimeML markup. There are two reasons for
this move: first, entity arguments are not temporally sensitive text extents, unlike
event-denoting predicates and temporal expressions; secondly, we wish to avoid
complicating the specification and subsequent annotation task for human or ma-
chine tagging. Therefore, our strategy will be to accomplish the argument binding
independent of the event tag itself. Currently, the EVENT tag is defined as follows:

<Event>
attributes ::= eid eiid class

tense aspect pos modality polarity
eid ::= ID
{eid ::= EventID
EventID ::= e<integer>}
eiid ::= ID
{eiid ::= EventInstanceID
EventInstanceID ::= ei<integer>}
class ::= ’OCCURRENCE’ | ’PERCEPTION’ | ’REPORTING’

’ASPECTUAL’ | ’STATE’ | ’I_STATE’ | ’I_ACTION’
tense ::= ’FUTURE’|’PAST’|’PRESENT’|’INFINITIVE’|

’PRESPART’|’PASTPART’|’NONE’
aspect ::= ’PROGRESSIVE’|’PERFECTIVE’|

’PERFECTIVE_PROGRESSIVE’|’NONE’
pos ::= ’ADJECTIVE’|’NOUN’|’VERB’|’PREPOSITION’|’OTHER’
modality ::= CDATA
polarity ::= ’NEG’|’POS’

124 J. Pustejovsky, J. Littman, and R. Sauŕı

On our approach, this need not change. Rather than add an argument list to
the event —similar to the subcat list in HPSG [21]— we will treat the binding
of particpants to events in a parallel fashion to the treatment of event ordering;
by introducing a new linking relation, called ARGLINK. This will encode, in
TimeML, the binding accomplished by the Arg relation defined in (13) above.

<ARGLINK>
attributes ::= alid [origin] eventInstanceID ArgID
alid ::= ID
{alid ::= ArgLinkID
ArgLinkID ::= al<integer>}
origin ::= CDATA
eventInstanceID ::= IDREF
{eventInstanceID ::= EventInstanceID}
ArgID ::= IDREF
{ArgID ::= EntityID}

Now let us see how the two participants in sentence (30),

(30) John kissed Mary.

can be represented, using the ARGLINK tag. Recall that the desired logical form
for this sentence is:

(31) ∃e[kiss(e) ∧ Arg(1, e, j) ∧ Arg(2, e, m)]

Assuming that the named entities in (30) have been identified and indexed, we
can express the bindings shown in (31) as the two ARGLINKs below:

(32) John (ai1)

<EVENT eid="e1" eiid="ei1" class="OCCURRENCE"

pos="VERB" tense="PAST" aspect="NONE" polarity="POS">

kissed </EVENT>

Mary (ai2).

<ARGLINK alid="al1" eventInstanceID="ei1" ArgID ="ai1"/>

<ARGLINK alid="al2" eventInstanceID="ei1" ArgID ="ai2"/>

This allows us to take advantage of entity tagging information from other re-
sources, while binding these values to the events identified and marked up within
TimeML.

5.1 Event-Based Entity Chronicles

Once a document has been completely annotated in TimeML, we have a very
good idea of what happened when within the document. With the addition of
entity arguments, we also know who participated in these events. What can we
do with all this information? In this section, we present one application that is
in development that should aid in the extraction of information from a TimeML-
annotated text.

Arguments in TimeML: Events and Entities 125

Event-based chronicles are designed to track the event-based behavior of an
entity over a document collection. This is an important departure from other
work on TimeML for two reasons. First, it relies heavily on knowing who the
entity participants of an event are. Second, it is cross document, meaning it
takes advantage of multiple documents that have been individually annotated
with TimeML to do inference over the entire collection.

The basic functionality of these chronicles is to allow a user to only see those
events that a particular entity or group of entities are involved in. This will
greatly reduce the number of temporal relationships a user has to sort through.
By narrowing the focus of the annotation, a user can quickly assertain just what
events the entities in question participated in and how those events relate to
other events in the document. Moreover, this application could display events
from other documents that involve these entities without overwhelming the user
with too much information on irrelevant events and their relationships.

This sort of application would not be possible if not for two things. First, it
requires as complete a temporal annotation as possible. This means that simply
including temporal links would be insufficient since subordinating, aspectual,
and discourse links also supply vital temporal information to the annotation.
Second, some awareness of entity arguments is obviously needed so that the
focus of the annotations can be narrowed. While these entity arguments are not
temporal in nature, they are an invaluable part of using the temporal annotation
for this kind of application or question answering in general.

6 Conclusions

In this paper, we discussed the role of arguments in an event annotation spec-
ification language. We first described how TimeML handles event arguments
in subordinating and aspectual contexts, where SLINKs and ALINKs create
event-event relations between a predicate and an event-denoting argument. We
proposed that TimeML be enriched slightly to include causal predicates, such
as lead to, since these also involve event-event relations. Finally, we introduced
a linking mechanism that allows entities to be identified with the event they
participate in, while not including named entity tagging as part of TimeML.

References

1. Mani, I., Wilson, G.: Robust temporal processing of news. In: ACL 2000. Proceed-
ings of the 38th Annual Meeting of the Association for Computational Linguistics,
New Brunswick, New Jersey, pp. 69–76 (2000)

2. Schilder, F., Habel, C.: From Temporal Expressions To Temporal Information:
Semantic Tagging Of News Messages. In: ACL-EACL-2001, Toulose, France, pp.
65–72 (July 2001)

3. Ferro, L., Mani, I., Sundheim, B., Wilson, G.: Tides temporal annotation guide-
lines. Technical Report Version 1.0.2, MITRE Technical Report (2001) MTR
01W0000041

126 J. Pustejovsky, J. Littman, and R. Sauŕı

4. Sauŕı, R., Littman, J., Knippen, R., Gaizauskas, R., Setzer, A., Pustejovsky, J.:
TimeML Annotation Guidelines (2005), http://www.timeml.org

5. Allen, J.: Towards a general theory of action and time. Artificial Intelligence 23,
123–154 (1984)

6. Verhagen, M., Mani, I., Sauŕı, R., Knippen, R., Littman, J., Pustejovsky, J.: Au-
tomating temporal annotation within TARSQI. In: Proceedings of the ACL 2005
(2005)

7. Davidson, D.: The logical form of action sentences. In: The Logic of Decision and
Action (1967)

8. Parsons, T.: Events in the Semantics of English. MIT Press, Cambridge (1990)
9. Pustejovsky, J.: Current issues in computational lexical semantics. In: ACL 1989,

pp. xvii–xxv (1989)
10. Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1995)
11. Hobbs, J.: On the coherence and structure of discourse (1985)
12. Grosz, B., Sidner, C.: Attention, intentions, and the structure of discourse. Journal

of Computational Linguistics 12(3), 175–204 (1986)
13. Mann, W., Thompson, S.: Rhetorical structure theory: Toward a funcitonal the-

ory of text organization. Text 8(3), 243–281 (also available at USC/Information
Sciences Institute Research Report RR-87-190) (1988)

14. Polanyi, L.: A formal model of the structure of discourse. Journal of Pragmatics 12,
601–638 (1985)

15. Kehler, A.: Coherence, Reference, and the Theory of Grammar. CSLI Publications
(2002)

16. Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press,
Cambridge (2003)

17. Hovy, E.H., Maeir, E.: Parsimonious or profligate: How many and which discourse
structure relations? (1995)

18. Wolf, F., Gibson, E., Fisher, A.: meredith Knight: A procedure for collecting a
database of texts annotated with coherence relations (2003)

19. Wolf, F., Gibson, E.: Representing discourse coherence: A corpus-based analysis.
Computational Linguistics 31(2), 249–287 (2005)

20. Wellner, B., Pustejovsky, J., Havasi, C., Rumshisky, A., Sauŕı, R.: Classification of
Discourse Coherence Relations: An Exploratory Study using Multiple Knowledge
Sources. In: 7th SIGDIAL Workshop on Discourse and Dialogue, Sydney, Australia,
pp. 117–125 (July 2006)

21. Pollard, C., Sag, I.: Head-Driven Phrase Structure Grammar. CSLI, Stanford, CA
(1994)

22. Verhagen, M.: Times Between the Lines, PhD thesis. Brandeis University,
Waltham, USA (2004)

http://www.timeml.org

F. Schilder et al. (Eds.): Reasoning about Time and Events, LNAI 4795, pp. 127–139, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Chronoscopes: A Theory of Underspecified Temporal
Representations

Inderjeet Mani

The MITRE Corporation
202 Burlington Road

Bedford, MA 01730, USA
imani@mitre.org

Abstract. Representation and reasoning about time and events is a fundamental
aspect of our cognitive abilities and intrinsic to our construal of the structure of
our personal and historical lives and recall of past experiences. These
capabilities also underlie our understanding of narrative language. This paper
describes an abstract device called a Chronoscope, that allows a temporal
representation (a set of events and their temporal relations) to be viewed based
on temporal abstractions. The temporal representation is augmented with
abstract events called episodes that stand for discourse segments. The temporal
abstractions allow one to collapse temporal relations, or view the representation
at different time granularities (hour, day, month, year, etc.), with corresponding
changes in event characterization and temporal relations at those granularities.
The paper situates Chronoscopes in terms of systems for automatically
extracting the temporal structure of narratives.

Keywords: abstraction, temporal information extraction, temporal reasoning,
granularity.

1 Introduction

Regularities in our experience, in the form of periodic/cyclic events, provide a basis
for our systems for time reckoning, and are crucial in the scheduling of activities for a
culture as well as a species. Representation and reasoning about time and events are,
of course, intrinsic to our construal of the structure of our personal and historical lives
and recall of past experiences. In all these different areas of existence, experiences in
the world give rise to various inferences about events and their temporal organization.

Psychological research has shed some light on this inferential process. Early work
on visual perception [1] suggested that in inferring whether two event stimuli are
simultaneous or successive, the inter-stimulus interval is the determining factor. Later,
experiments by [2] revealed that this inference is dependent on stimulus duration and
persistence of the image in iconic short term memory. Research on consciousness [3]
indicated that ordering of sensations is influenced by latencies in stimulus signal
propagation and the brain’s tendency to adjust for this delay. This can result in
sensations being reported as occurring in a different “subjective” order from their
“objective” temporal order. In research on auditory perception, [4] found that

128 I. Mani

estimates of temporal durations depend on prior expectations and particular modes of
attending. Further work on durations [5] showed that the structure of auditory events
influences retrospective judgments of their duration.

Natural language has a variety of devices to communicate information about events
and their temporal organization, including the use of finite verbs and event nouns,
tense and aspect markers, and temporal adverbials, with these devices playing
different roles in different languages. While such linguistic information is often
present in natural language discourses, they are often vague as to the precise temporal
relationships. In (1), from [6], while we know that John arrived at Mary’s house after
Mary left for dinner, we don’t know which started earlier, John’s hurrying or Mary’s
leaving, These events, along with their temporal durations, are left underspecified,
resulting in a partial ordering.

(1) John hurried to Mary’s house after work. But Mary had already left for
 dinner.

Further, crucial information about temporal relationships is often not overtly
expressed in the text. In (2), temporal adverbials and aspectual information cue the
inference that the twisting occurred during the running, while commonsense
knowledge suggests that the pushing occurred before the twisting.

(2) Yesterday Holly was running a marathon when she twisted her ankle.
 David pushed her.

Finally, natural language may express information at different levels of temporal
granularity. Mentions of events which have long durations may be interspersed with
mentions of more punctual ones, as in (3), from [7] (my italics):

(3) In the course of the two decades he spent in Kabul, Babur led four
expeditions into India. His fifth and final campaign was launched in
October 1525: it had a characteristically light-hearted beginning: “We
mostly drank and had morning draughts on drinking days”. Between
marches Babur and his nobles wrote poetry, collected obscene jokes, and
gave chase to the occasional rhinoceros. Despite internal dissensions the
Lodis managed to field an army of 100,000 men and 1,000 elephants
against Babur's paltry force of 12,000. The armies met on April 20, 1526,
at the historic battlefield of Panipat a few miles north of Delhi.

The way events are perceived in the world have a strong influence on the
interpretation of natural language narratives like (1)-(3). Psychological research by
Zwaan [8] has shown that in reading narrative passages, there is a default expectation
that successive sentences will describe chronologically successive and contiguous
(i.e., temporally adjacent) events. Deviations from this narrative format (as we have in
our example passages above) will result in delays in processing information. Further
research, such as [9], has confirmed and elaborated this finding, supporting the
hypothesis that readers build models of the situation described by the narrative,
including representations of temporal directions and distances between events. Kelter
et al. [10] have found that when processing a narrative consisting of a sequence of
immediately successive events without a temporal shift (i.e., a shift that would be

 Chronoscopes: A Theory of Underspecified Temporal Representations 129

marked by a temporal adverbial), readers took longer to access events that, although
mentioned recently, were temporally somewhat remote from the current narrative
‘now’. They argue that readers construct dynamic models of the situation, simulating
the events in the narrative, and as part of that simulation they represent the temporal
distances between events. A temporal shift results in a new model being constructed;
no temporal distance effect was found when the text had a temporal shift.

Research in computational linguistics further suggests that readers find it difficult
to infer fine-grained temporal relations from natural language. A pilot experiment
[11] with 8 subjects providing event-ordering judgments on 280 clause pairs revealed
that people have difficulty distinguishing whether there are gaps between events. The
subjects were asked to distinguish whether an event was (i) strictly before the other,
(ii) before and extending into the other, or (iii) simultaneous with it. These
distinctions can be hard to make, as in the example of ordering try on with respect to
realize in (4):

(4) a. Shapiro said he tried on the gloves
 b. and realized they would never fit Simpson’s larger hands.

Agreement between 3 subjects was relatively weak (.5 Kappa), but became
acceptable (.61 Kappa) if the distinction between (i) and (ii) was ignored.

The above body of psychological literature establishes correspondences between
formal aspects of the temporal structure of discourse and the mental representations
readers construct. Specifically, the order in which events are narrated, their
chronology, the durations of and temporal distances between events, and the
narrator’s explicit shifts in reference times, marked by temporal adverbials, are all
important features used in constructing mental models of narratives. Interestingly,
these features are of the sort that can be constructed automatically by information
extraction systems, e.g., [12]. However, given that there is vagueness, partial
ordering, missing information, and different granularities of temporal representation
in narrative language, the representations humans construct from reading narratives
can at best be only approximate. This paper focuses on a method of folding such
approximation into these formal models, based on a model of granularity.

I will describe an approach that allows one to represent and reason about time and
events in the face of vagueness, missing information, and different granularities of
temporal representation. Such a representation, called a Chronoscope, aims at
capturing some of the subjectivity and looseness, as well as the flexibility inherent in
our construction of temporal representations from natural language. It is closely tied
to recent frameworks for formal reasoning about time [13][14][15]. Unlike some
other theories of granularity and abstraction, it also allows for a straightforward
implementation and embedding in various temporal reasoning and visualization tools.

2 Representational Distinctions for Natural Languages

2.1 Underspecified Temporal Relations

Consider example (4) again. Subjects found it difficult to distinguish between the
event of Shapiro trying on the gloves being (i) entirely before the event of realizing,

130 I. Mani

versus (ii) extending into and overlapping into the event of realizing. We can
represent the temporal relations involved in relations (i) or (ii) as a disjunction1 of the
well-known interval relations defined by Allen [13]:

(5) ea [< m o] eb

These disjunctions of Allen relations can be reified as new, coarse-grained
relations. In temporal calculi, this notion has been explored in the work of Freksa
[15]. In particular, [< m o] corresponds to Freksa’s relation ob (older and survived
by), which has a semantics of the start (end) of the first interval preceding the start
(end) of the second. Freksa defines 16 coarse-grained relations based on reified
disjunctions involving the 13 fine-grained relations specified by Allen. Building on
Freksa’s work, [16] and [17] have described how relations can be arranged in a
hierarchy based on relations between start and end points. In Section 3, we will show
how the representation of different levels of coarse- and fine-grained relations can be
captured by the chronoscope concept of Zooming.

2.2 Abstract Events and Temporal Discourse Structure

In addition to reification of temporal relations, it is possible to reify abstract events
corresponding to entire discourses. Consider discourse (6), from [18]:

(6) a. John went into the florist shop.
 b. He had promised Mary some flowers.
 c. She said she wouldn’t forgive him if he forgot.
 d. So he picked out three red roses.

It is clear that b and c comprise a sub-discourse in the main discourse. If we
represent these discourses by abstract events (i.e., e0 for the root discourse, e1 for the
sub-discourse), then individual events can be viewed as being temporally included (⊆)
in their immediate discourse, giving rise to a tree-structured representation of
discourse [19]. This is shown in Figure 1.

In this tree representation, the dominance relation between nodes corresponds to
temporal inclusion. The tree is unordered in terms of precedence relation, though by
convention the nodes are ordered in order of mention. Abstract events representing

 e0

ea e1 ed

eb ec

Fig. 1. Episodes in the narrative in (6)

1 The disjunction is represented here using square brackets.

 Chronoscopes: A Theory of Underspecified Temporal Representations 131

(properly contained) sub-discourses will be called episodes. So, the temporal relations
in (6) are given by (7), where there is one episode e12:

(7) ea ⊆ e0 & e1 ⊆ e0 & ed ⊆ e0 & eb ⊆ e1 & ec ⊆ e1 & ec < ea & ea < ed

States are represented as minimally included (⊆min) in the embedding event,
without committing to whether the state extends before or after the event. Note that
the ordering of eb and ec is left unspecified rather than reified, since the disjunction
set {<, >} is inconsistent. See [19] for more details, and a comparison to Discourse
Representation Theory (DRT) [20].

In some cases, the attachment of sub-discourses will be ambiguous, i.e., there will
be more than one tree possible for a given discourse. As an example, consider
discourse (8), from [21]:

 (8) a. Yesterday, Jack and Sue went to a hardware store
 b. as someone had stolen their lawnmower.
 c. She had seen a man take it and
 d. had chased him down the street, but
 e. he had driven away in a truck.

The narrative (8) could be analyzed as consisting of the events {ea, eb, and e1},
where episode e1 consists of {c, d, e}. Let us now extend discourse (8) with (9):

(9) f. Later, they went to the police station.
 g. The police were not interested in such a minor crime.

Here, ef could be attached under e0 or e1. We can therefore represent the temporal
relations for the discourse (8-9) as shown in (10):

(10) ea ⊆ e0 & eb ⊆ e0 & e1 ⊆ e0 & ec ⊆ e1 & ed ⊆ e1 & ee ⊆ e1 & eb <
 ea & eb < ec & ec < ed & ed < ee & eg ⊆ ef & ef ⊆ [e0 e1]

Such an underspecified representation of ambiguity based on factoring out
common elements is similar in some respects to underspecified approaches used quite
widely in natural language semantics. Representing underspecified temporal structure
of this kind, which is common in narratives, is likely to be highly relevant to the
temporal models human construct.

3 Chronoscopes

An abstraction allows information to be viewed at different levels of granularity, and
is based on research by [22][23][24][25][26]. Temporal Abstractions allow one to
collapse temporal relations, or to zoom the representation to different time
granularities.

Let E be a set of events and R be a set of binary temporal relations on E. A
Temporal Representation is a relation T ⊆ E x E x R. A Temporal Representation

2 Here variables are implicitly existentially quantified. We are ignoring the full logical form,

focusing instead on the temporal relations alone.

132 I. Mani

spanning several years could be abstracted at different grain sizes, e.g., time units
such as year, month, week, or day. Let U=<U1,…,Un> be a sort of Time Units such
that Ui during Ui+1 for 1 ≤ i < n, i.e., U= <…, YYYY-MM-DD1, YYYY-MM2,
YYYY3, YY-DE4

3, YY5,..>.
Let us define the time-granularity for an event related by a temporal relation r to a

time of granularity g:

∀e ∀r ∀g time-granularity(e, r, g) ≡ ∃t calendarTime(e, r, t) &
coerceToUnit(t, Ug)

(A1)

Here, calendarTime(e, r, t) means event e is in the temporal relation r to time t.
Also, coerceToUnit(t, Ug) means that time t can be mapped to time unit U at
granularity g. For example, “June 1974” could be coerced to “1974”, so that we have
coerceToUnit(1974-06, U3); or else it could be coerced to the 1970’s, with
coerceToUnit(1974-06, U4), or to the 1900’s, with coerceToUnit(1974-06, U5), etc.

Let’s now consider equi-granular (~rg) events:

e1 ~rg e2 ≡ time-granularity(e1, r, g) & time-granularity(e2, r, g) (A2)

For example, in (3), launched ~during-4 met, i.e., launched ~during-152X met. Events
whose temporal locations are in the same calendar decade of the same century will be
in a common equivalence class corresponding to the decade position of that century.

The Chronoscope requires that we index temporal relations to a particular level of
granularity. In particular, when we introduce a coarse-grained relation, it has to be
defined in terms of fine-grained relations at the same level of granularity. Axiom (A3)
illustrates how this is done for Freksa’s relation ob (older and survived by):

Older-and-survived-by at g:

∀x ∀y obg(x, y) ≡ beforeg(x, y) V meetsg(x, y) V overlapsg(x, y)
(A3)

When we index a temporal relation to a particular level of granularity, certain
relations are such that they hold at all higher levels of granularity. For example, in (3),
the writing of poetry, collecting of jokes, and chasing of rhinoceros, which occurred
during the interval October 1525-April 1526, are simultaneous in the 1520’s, and so
are simultaneous in the 1500’s, etc. This generalization is captured in Axiom (A4):

Upward entailment of simultaneity:

∀x ∀y simultaneousg(x, y) ⊃ simultaneousg+1(x, y)
(A4)

As discussed earlier in connection with axiom (A2), even though launched in (3) is
before met, launched is equi-granular with met with respect to the 1520s. Thus,
launched can be viewed as simultaneous with met at decade or higher granularities.
Axiom (A5), which relates equi-granularity to simultaneity, allows us to make such
an inference:

Zoomed-simultaneity at g:

∀x ∀y x ~during-g y ⊃ simultaneousg(x, y)
(A5)

3 DE stands for “decade” in the time expression annotation scheme in TimeML; see [27].

 Chronoscopes: A Theory of Underspecified Temporal Representations 133

There will be relations which hold at all levels of granularity. For example, in (3),
launched and beginning are simultaneous at all granularities, since they are synonyms
of one another. Axiom (A6) allows one to drop the granularity subscript for a given
relation r.

Granularity-invariance of relation r:

∀x ∀y invariant(r) ≡ rg(x, y) ≡ rg+1(x, y)
(A6)

For any set of events E, let characterization(e, E) be true if e can represent E. In
general, a characterization is an abstract event corresponding to the individual
correlate of some proper subset of events in E. For example, an abstract event that is
the individual correlate of the set of events e unique to a month of a particular year
could serve as a characterization of the events E of that month. Or E might be
characterized in terms of an abstract event from a background ontology. When a set of
events E is characterized by an abstract event e, every temporal relation (or link) from
an event y not in E to any event in E has to be ‘rewired’ from y to e, and every link
from any event in E to an event y not in E has to be rewired from e to y. In a
characterization of E, temporal links among the events in E disappear from view.

With equi-granularity ~rg as the equivalence relation on a temporal representation s,
we can create a hierarchy of partitions π~rg (s) . Let Zr(s) = <π~rg1(s), .., π~rgn(s)> be a
sequence such that π~rgi(s) ≤ π~rgi+1(s) for 1 ≤ i < n, where ≤ is a refinement relation.
We call Zr (s) a Temporal Zooming, as it permits zooming to any temporal grain
size. Given an ordering of time units, a Zooming Zr allows us to drill down to views
of temporal representations based on fine-grained units as well as roll up to views
based on coarse-grained units. We call Zrj a Zooming to grain j. Thus, a Zooming to
year grain U3, i.e., Zr3, will not look inside the months (instead, it will use
characterizations for them).

Consider text (3) again:

(3) In the course of the two decades he spent in Kabul, Babur led four
expeditions into India. His fifth and final campaign was launched in
October 1525: it had a characteristically light-hearted beginning: “We
mostly drank and had morning draughts on drinking days”. Between
marches Babur and his nobles wrote poetry, collected obscene jokes, and
gave chase to the occasional rhinoceros. Despite internal dissensions the
Lodis managed to field an army of 100,000 men and 1,000 elephants
against Babur's paltry force of 12,000. The armies met on April 20, 1526,
at the historic battlefield of Panipat a few miles north of Delhi.

Let us assume that r = [= o ⊆ mi], where mi is ‘met by’. The resulting Zooming ZR

for the text (3) is as follows4:

4 The square brackets are used, in somewhat overloaded fashion, to indicate the set of events in the

partition cell that is being characterized. The calendar time associated with the events in the
partition cell is indicated as a subscript.

134 I. Mani

(11) Zr2(s) (month grain):

/* the least granularity in the text is at day grain, so the first
grain size to which we roll up is month grain. */

1526-04: e1526-04-20

Zr3(s) (year grain):

/*here, sub-year granularities are rolled up5. */

1525: e1525-10, march, write, collect, give-chase, dissent,
 manage, field
1526: e1526-04

Zr4(s) (decade grain):
152X: e1525, e1526

Zr5(s) (century grain):
15XX: [150/1X spend, lead, expedition], [152X e1525 e1526]

where
 e1526-04-20 =[1526-04-20 meet]

 e1526-04 =[1526-04 e1526-04-20]
 e1526 = [1526 e1526-04]

 e1525-10 = [1525-10 launch, campaign, drink]
 e1525 = [1525 e1525-10 march, write, collect, give-chase, dissent,
 manage, field]

It can be seen from (11) that π~rgi(s) ≤ π~rgi+1(s) for 1 ≤ i < n. Also, since the
characterization of a singleton set allows for picking that element as its representative,
the meet event can be projected upwards. Finally, if launching, campaigning, and
drinking are viewed as the single event of preparing-for-war (via an event script, for
an example), then (11) would simplify to:

(12)
Zr2(s) (month grain):

1526-04: 1526-04-20meet

Zr3(s) (year grain):
1525: 1525-10prepare-for-war, march, write, collect, give-
 chase, dissent, manage, field
1526: 1526-04meet

Zr4(s) (decade grain):
152X: e1525, 1526meet

Zr5(s) (century grain):
15XX: [150/1X spend, lead, expedition], [152X e1525 1526meet]

5 This is an over-simplification for the sake of readability. The marches take place from

October 1525-April 1526.

 Chronoscopes: A Theory of Underspecified Temporal Representations 135

As we will see later, there are a number of tasks where we may need to compare
temporal representations. For example, we may want to compare the narrative of two
different histories of a famous (or infamous) military campaign. In order to do so, we
can consider their intersection ∩, i.e., the elements (events E and temporal relations
R) in common. Once we have granularity in the picture, however, we can make the
intersection sensitive to the granularity. Thus, we can make the narratives being
compared look more similar, in terms of intersection, as we zoom out. The following
theorem shows that it does not matter whether we zoom first and then intersect, or
vice versa.

Distributivity of zooming over intersection:

∀s1 ∀s2 Zrg (s1 ∩ s2) ≡ Zrg(s1) ∩ Zrg(s2)
(A7)

Given a temporal representation, it can be filtered in various ways depending on
the needs of a particular task. Filters can include time constraints, e.g., events on 9/11
or during and after the Hiroshima attack; the particular episode, e.g., the ‘Mary’
episode in (6); particular participant, etc. A temporal representation constrained based
on event participants is called a trajectory. A trajectory is the temporal path taken by
an event participant (or sets of them), e.g., the trajectory of Babur during his lifetime
or during his last invasion of India. Trajectories can be abstracted and intersected at
particular levels of granularity. The intersections of trajectories are particularly
interesting in the construction of biographical, historical, and literary narratives.

In a Chronoscope, temporal abstraction, filtering, and zooming can be composed
together, allowing for considerable flexibility in dealing with the complexity of the
cognitive information space. One would expect that in human comprehension of
narratives, the events and their temporal ordering can be indexed by agent, and this is
indeed an assumption of psychological research [10][11]. Given this assumption, the
models constructed by readers are likely to include intersections of agents’ trajectories
at different levels of granularity.

4 Embodiment

The TimeML annotation scheme for events and their temporal anchors in text [27]
forms a basic underpinning for Chronoscopes. Temporal Representations are directly
represented in TimeML as temporal links (TLINKs) among events, and between
events and times, corresponding to the calendarTime relation described above. Recent
research in information extraction has yielded new machine learning approaches that
can automatically generate the temporal relations in TimeML [12].

It is often useful to be able to compare two temporal representations, in order to
assess reliability of human annotation of temporal representations or of different
accounts of a given course of events, to score a machine temporal representation
against a human one, or to merge two different temporal representations of similar
information for information extraction or summarization purposes. A simple scorer
for temporal links has been developed to compare TLINKs in a pair of documents
(which are identical except possibly for TLINKs), before or after axioms for transitive
closure have been applied. The scorer can easily be extended to allow for user-defined
temporal relation equality predicates, e.g., Freksa’s pr = [< m], ob = [< m o]. It could

136 I. Mani

Fig. 2. Graphical Representation of TimeML temporal relations in the narrative in (3)

also be extended to allow for granularity parameter, so that at e.g., year grain, one can
successfully match TLINKs with unequal relations, e.g., (launch1525-10 < drink1525-10)
and (launch1525-10 > drink1525-10).

Chronoscopes can also be embedded in an annotation and visualization
environment called TANGO, which is tied to TimeML. Figure 2 shows the graphical
display of the TimeML annotation of the example (3). TANGO allows for editing and
viewing of TimeML annotations by viewing events and their links in a grid-like
display, where times are laid out horizontally and events aligned vertically. TANGO
also permits the selection of sets of elements in the display by boxing a region. Built-
in temporal filters can be expressed as queries on a temporal database underlying the
TimeML representation, and can then be integrated with TANGO by applying those
constraints to a boxed region. A list of named entities in a document, attached as
arguments to TimeML event predicates, can be used very easily as a filtering
mechanism to detect trajectories and their crossings. Episodes require a layer of

 Chronoscopes: A Theory of Underspecified Temporal Representations 137

annotation on top of TimeML, as described in [19]. Once annotated, TANGO can be
extended to display episodes by visually marking a set of events and their links that
constitute an episode. Zooming can be implemented by sorting the times into bins
based on time units, and then constructing different granular representations based on
their characterizations.

5 Related Work

This research derives from earlier work by [22], who suggested that in the course of
reasoning we conceptualize the world at different levels of granularity, and that in a
particular reasoning process we distinguish only those things that are relevant to that
process, making other things indistinguishable for all practical purposes. In any given
situation, a granularity is determined, allowing the local theory to be selected. When
the grain size shifts, certain “articulation axioms” are used to map to another local
theory. In general, a mapping which induces a change in granularity can be
considered a special case of an abstraction in the sense of [23], which lays out a
formal theory of abstraction.

Others who have discussed granularity shifts include Euzenat [24], who exploits
complex relations which are disjunctions of other relations. Euzenat's approach
postulates a number of fundamental algebraic properties of granularity operators.
Pianesi and Varzi [25] discuss degrees of temporal granularity in event structure. The
analogue of zooming in their account is in terms of a “minimal divisor” on structures
corresponding to sets of events, where temporal differences within the divisor are
neglected. The question of how granularity shifts may be accommodated within
semantic processing of natural language sentences is addressed in [26], which views
granularity shifts in terms of abstraction operators on logical forms. Bettini et al. [28]
have developed the GSTP system, which allows simple (i. e., non-disjunctive) metric
temporal constraints that include granularity, such as “one to three (business) days”,
to be mapped to different ranges of hours depending on the application. GSTP
includes algorithms for temporal constraint satisfaction with multiple granularities.

There have been a variety of systems for temporal visualization of natural
language. One particular system that takes granularity into account is that of
Matsushita et al. [29], who represent time expressions as points in a plane, with the
points connected by lines to express transitions in time. These transition patterns
remain similar across scales, and Matsushita et al. argue that they reflect what literary
theorists [30] call the “rhythm” of a narrative.

6 Conclusion

The Chronoscope is a simple but flexible device that allows one to represent and
manipulate temporal representations inferred from natural language texts. It is tied to
existing annotation schemes and ontologies, and can also be integrated with
annotation and visualization tools. It is also motivated by psychological
considerations.

138 I. Mani

There are many challenges remaining to be addressed in this work, including the
representation of gapped sets of times like the events between marches in (3), generic
events like the drinking in (3), and the zooming applied to events which are in the
scope of modal operators or subordinated to other events (including the quotation in
(3)). While TimeML and OWL-Time have a representation for some of these items,
there is much remaining to be done here. Concise characterization in zooming
remains a fundamental challenge, however, though work on event summarization and
‘event scripts’ is clearly relevant. Research on the precision of event durations, and
extracting metric as well as qualitative temporal constraints from natural language
narratives, as [31] and [32] have explored, are also important to the further automatic
extraction of Chronoscopes.

Acknowledgements

I am grateful to two anonymous reviewers for their comments.

References

1. Allport, D.A.: Phenomenal Simultaneity and the Perceptual Moment Hypothesis. British
Journal of Psychology 59(4), 395–406 (1968)

2. DiLollo, V.: Temporal integration in visual memory. Journal of Experimental
Psychology 109(1), 75–97 (1980)

3. Libet, B., Wright, E., Feinstein Jr., B., Pearl, D.K.: Subjective referral of the timing for a
conscious sensor experience: A functional role for the somatosensory specific projection
system in man. Brain 194, 191–222 (1979)

4. Jones, M.R.: Dynamic Attending and Responses to Time. Psychological Review 96(3),
459–491 (1989)

5. Boltz, M.G.: Effects of Event Structure on Retrospective Duration Judgments. Perception
and Psychophysics 57, 1080–1096 (1995)

6. Dowty, D.: The effects of aspectual class on the temporal structure of discourse: semantics
or pragmatics? Linguistics and Philosophy 9, 36–61 (1986)

7. Ghosh, A.: The Man Behind The Mosque, (2005) http://www.amitavghosh.com/
8. Zwaan, R.A.: Processing narrative time shifts. Journal of Experimental Psychology:

Learning, Memory, and Cognition 22, 1196–1207 (1996)
9. van der Meer, E., Beyer, R., Heinze, B., Badel, I.: Temporal order relations in language

comprehension. Journal of Experimental Psychology: Learning, Memory, and
Cognition 28(4), 770–779 (2002)

10. Kelter, S., Kaup, B., Claus, B.: Representing a described sequence of events: A dynamic
view of narrative comprehension. Journal of Experimental Psychology: Learning,
Memory, and Cognition 30, 451–464 (2004)

11. Mani, I., Schiffman, B.: Temporally Anchoring and Ordering Events in News. In:
Pustejovsky, J., Gaizauskas, R. (eds.) Time and Event Recognition in Natural Language,
John Benjamins, Amsterdam (2006)

12. Mani, I., Wellner, B., Verhagen, M., Lee, C.M., Pustejovsky, J.: Machine Learning of
Temporal Relations. In: Proceedings of the 44th Annual Meeting of the Association for
Computational Linguistics (COLING-ACL), Sydney, Australia, pp. 753–760 (2006)

 Chronoscopes: A Theory of Underspecified Temporal Representations 139

13. Allen, J.: Towards a General Theory of Action and Time. Artificial Intelligence 23, 123–
154 (1984)

14. Hobbs, J., Pan, F.: An Ontology of Time for the Semantic Web. ACM Transactions on
Asian Language Processing (TALIP): Special issue on Temporal Information
Processing 3(1), 66–85 (1984)

15. Freksa, C.: Temporal Reasoning Based on Semi-Intervals. Artificial Intelligence 54(1),
199–227 (1992)

16. Verhagen, M.: Times Between the Lines. Ph.D. thesis. Department of Computer Science.
Brandeis University (2005)

17. Schilder, F.: A Hierarchy for Convex Relations. In: Proceedings of the 4th International
Workshop on Temporal Representation and Reasoning, pp. 86–93 (1997)

18. Webber, B.: Tense as Discourse Anaphor. Computational Linguistics 14(2), 61–73 (1988)
19. Mani, I., Pustejovsky, J.: Temporal Discourse Models for Narrative Structure. In: ACL

Workshop on Discourse Annotation, Barcelona, Spain (2004)
20. Kamp, H., Reyle, U.: Tense and Aspect, pp. 483–546, ch. 5. Kluwer Academic Publishers,

Dordrecht (1993)
21. Hwang, C.H., Schubert, L.K: Tense Trees as the fine structure of discourse. In:

Proceedings of the 30th Annual Meeting of the ACL, pp. 232–240 (1992)
22. Hobbs, J.: Granularity. In: Proceedings of the International Joint Conference on Artificial

Intelligence, pp. 432–435 (1984)
23. Giunchiglia, F., Walsh, T.: A Theory of Abstraction. Artificial Intelligence 57, 2–3 (1992)
24. Euzenat, J.: An Algebraic Approach to Granularity in Qualitative Time and Space

Representation. In: Proceedings of IJCAI 1995, pp. 894–900 (1995)
25. Pianesi, F., Varzi, A.C.: Refining Temporal Reference in Event Structures. Notre Dame

Journal of Formal Logic 37(1), 71–83 (1996)
26. Mani, I.: A Theory of Granularity and its Application to Problems of Polysemy and

Underspecification of Meaning. In: Cohn, A.G., Schubert, L.K., Shapiro, S.C. (eds.) KR
1998. Principles of Knowledge Representation and Reasoning: Proceedings of the Sixth
International Conference, pp. 245–255. Morgan Kaufmann, San Francisco (1998)

27. Pustejovsky, J., Ingria, B., Sauri, R., Castano, J., Littman, J., Gaizauskas, R., Setzer, A.,
Katz, G., Mani, I.: The Specification Language TimeML. In: Mani, I., Pustejovsky, J.,
Gaizauskas, R. (eds.) The Language of Time: A Reader, Oxford University Press (2005)

28. Bettini, C., Mascetti, V., Pupillo, V., GSTP,: A Temporal Reasoning System supporting
Multi-Granularity Temporal Constraints. In: Proceedings of IJCAI 2003, pp. 1633–1634
(2003)

29. Matsushita, M., Ohta, M., Iida, T.: A visualization method of time expressions using
starting/ending point plane. In: TIME 1998. Proceedings of Temporal Representation and
Reasoning, pp. 162–168 (1998)

30. Genette, G.: Narrative Discourse: An Essay in Method. Cornell University Press (1983)
31. Pan, F., Mulkar, R., Hobbs, J.: Learning Event Durations from Event Descriptions. In:

Proceedings of the 44th Annual Meeting of the Association for Computational Linguistics
(COLING-ACL), Sydney, Australia, pp. 393–400 (2006)

32. Mani, I., Wellner, B.A: Pilot Study on Acquiring Metric and Temporal Constraints for
Events. In: Proceedings of the ACL 2006 Workshop on Annotating and Reasoning about
Time and Events (ARTE), Sydney, Australia, pp. 753–760 (2006)

Author Index

Ando, Rie Kubota 41

Boguraev, Branimir 41

Hitzeman, Janet 29

Katz, Graham 1, 88

Littman, Jessica 107

Mani, Inderjeet 127

Ohlbach, Hans Jürgen 72

Pustejovsky, James 1, 107

Sauŕı, Roser 107
Schilder, Frank 1, 59

Verhagen, Marc 7

	Title Page
	Preface
	Table of Contents
	Annotating, Extracting and Reasoning About Time and Events
	Introduction

	Drawing TimeML Relations with TBox
	Introduction
	Drawing TimeML Relations with TBox
	Special Cases

	A Procedure to Display TimeML Relations
	Temporal Closure
	Graph Reduction
	From Graph to Attribute-Value Matrix
	From Attribute-Value Matrix to TBox

	Consistency and Drawability
	Extending TimeML with Disjunctions
	Disjunctions and Consistency

	Conclusion

	Text Type and the Position of a Temporal Adverbial Within the Sentence
	Introduction
	The Ambiguity
	The Effect of Text Type
	The Initial Hypothesis
	The Raw Data
	The Results

	Conclusion
	References

	Effective Use of TimeBank for TimeML Analysis
	Introduction
	Quantitative and Qualitative Analysis of TimeBank
	Challenges for TimeML Analysis
	Finite State Devices for Temporal Analysis
	Classification Models for Temporal Analysis
	Word Profiling for Exploitation of Unannotated Corpora
	 EVENT Recognition as a Classification Problem
	 TLINK Recognition as a Classification Problem

	Experiments
	 TIMEX Recognition and Typing
	 EVENT Recognition and Typing
	TLINK Recognition and Typing

	Conclusion

	Event Extraction and Temporal Reasoning in Legal Documents
	Introduction
	Legal Documents and Temporal Information
	Legal Narratives in Case Law
	Temporal Restrictions in Statutes or Regulations

	Reasoning with Temporal Information and Event Types
	System Description
	Extensions

	Conclusions

	Computational Treatment of Temporal Notions: The CTTN–System
	Introduction
	Time Points and Time Intervals in the FuTI--Module
	Periodic Temporal Notions in the PartLib--Module
	Partitionings of the Time Axis
	Labelled Partitionings
	Specification of Partitionings
	Leap Seconds
	Region Structures
	Calendar Systems

	The GeTS Language
	The Web--Interface
	Extensions of the CTTN--System

	Towards a Denotational Semantics for TimeML
	Introduction
	TimeML Markup
	Semantics for TimeML
	Events and Times
	Models for TimeML Texts
	Satisfaction of TimeML Text in Model
	Secondary Link Tags

	Problems of Operator Scope
	Simulating Scope
	Type-Level Satisfaction
	Modality and SLINKs

	Conclusion

	Arguments in TimeML: Events and Entities
	Introduction
	Overview of Current TimeML Specification
	Temporal Expressions
	Events
	Signals
	Links

	Events and Their Participants
	SLINK Encodes Partial Argument Structure

	Encoding Discourse Relations in TimeML
	Relations of Causation
	Discourse Relations and Temporal Information
	DLINK Scheme

	Binding Entity Arguments in TimeML
	Event-Based Entity Chronicles

	Conclusions

	Chronoscopes: A Theory of Underspecified Temporal Representations
	Introduction
	Representational Distinctions for Natural Languages
	Underspecified Temporal Relations
	Abstract Events and Temporal Discourse Structure

	Chronoscopes
	Embodiment
	Related Work
	Conclusion
	References

	Author Index

