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Abstract. XML access control policies involving updates may contain security
flaws, here called inconsistencies, in which a forbidden operation may be sim-
ulated by performing a sequence of allowed operations. This paper investigates
the problem of deciding whether a policy is consistent, and if not, how its incon-
sistencies can be repaired. We consider policies expressed in terms of annotated
DTDs defining which operations are allowed or denied for the XML trees that
are instances of the DTD. We show that consistency is decidable in PTIME for
such policies and that consistent partial policies can be extended to unique “least-
privilege” consistent total policies. We also consider repair problems based on
deleting privileges to restore consistency, show that finding minimal repairs is
NP-complete, and give heuristics for finding repairs.

1 Introduction

Discretionary access control policies for database systems can be specified in a number
of different ways, for example by storing access control lists as annotations on the data
itself (as in most file systems), or using rules which can be applied to decide whether to
grant access to protected resources. In relational databases, high-level policies that em-
ploy rules, roles, and other abstractions tend to be much easier to understand and main-
tain than access control list-based policies; also, they can be implemented efficiently
using static techniques, and can be analyzed off-line for security vulnerabilities [7].

Rule-based, fine-grained access control techniques for XML data have been con-
sidered extensively for read-only queries [11,15,14,2,17,10]. However, the problem of
controlling write access is relatively new and has not received much attention. Authors
in [2,10,16] studied enforcement of write-access control policies following annotation-
based approaches.

In this paper, we build upon the schema-based access control model introduced by
Stoica and Farkas [19], refined by Fan, Chan, and Garofalakis [11], and extended to
write-access control by Fundulaki and Maneth [13]. We investigate the problem of
checking for, and repairing, a particular class of vulnerabilities in XML write-access
control policies. An access control policy specifies which actions to allow a user to
perform based on the syntax of the atomic update, not its actual behavior. Thus, it is
possible that a single-step action which is explicitly forbidden by the policy can nev-
ertheless be simulated by one or more allowed actions. This is what we mean by an
inconsistency; a consistent policy is one in which such inconsistencies are not possible.
We believe inconsistencies are an interesting class of policy-level security vulnerabili-
ties since such policies allow users to circumvent the intended effect of the policy. The
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Fig. 1. DTD graph (a) and XML documents conforming to the DTD (b, c)

purpose of this paper is to define consistency, understand how to determine whether a
policy is consistent, and show how to automatically identify possible repairs for incon-
sistent policies.

Motivating Example. We introduce here an example and refer to it throughout the pa-
per. Consider the XML DTD represented as a graph in Fig. 1(a). A document conform-
ing to this DTD has as root an R-element with a single child element that can either be
an A, B, J or K-element (indicated with dashed edges); similarly for G. An A-element
has one C and one D children elements. A B-element can have zero or more E children
elements (indicated with ∗-labeled edges); similarly, E and J elements can have zero
or more G children elements. Finally, F , H , I and K are text elements. Fig. 1(b) and
(c) show two documents that conform to the DTD.

Suppose that a security policy allows one to insert and delete G elements and for-
bids one from replacing an H with an I element. It is straightforward to see that the
forbidden operation can be simulated by first deleting the G element with an H child
and then inserting a G element with an I child. There are different ways of fixing this
inconsistency: either (a) to allow all operations below element G or (b) forbid one of
the insert and delete operations at node G.

Now, suppose that the policy allows one to replace an A-element with a B-element
and this with a J-element, but forbids the replacement of A with J elements. The latter
operation can be easily simulated by performing a sequence of the allowed operations.
As in the previous case, the repairs that one can propose are (a) to allow the forbidden
replace operation or (b) forbid one of the allowed replace operations.

Our contributions. In this paper we consider policies that are defined in terms of non-
recursive structured XML DTDs as introduced in [11] that capture without loss of gen-
erality more general non-recursive DTDs. We first consider total policies in which all
allowed or forbidden privileges are explicitly specified. We define consistency for such
policies and prove the correctness of a straightforward polynomial time algorithm for
consistency checking. We also consider partial policies in which privileges may be
omitted. Such a policy is consistent if it can be extended to a consistent total policy;
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there may be many such extensions, but we identify a canonical least-privilege consis-
tent extension, and show that this can be found in polynomial time (if it exists). Finally,
given an inconsistent (partial or total) policy, we consider the problem of finding a “re-
pair”, or minimal changes to the policy which restore consistency. We consider repairs
based on changing operations from allowed to forbidden, show that finding minimal
repairs is NP-complete, and provide heuristic repair algorithms that run in polynomial
time.

The rest of this paper is structured as follows: in Section 2 we provide the definitions
for XML DTDs and trees. Section 3 discusses i) the atomic updates and ii) the access
control policies that we are considering. Consistency is discussed in Section 4; Section 5
discusses algorithms for detecting and repairing inconsistent policies. We conclude in
Section 6. Proofs of theorems and detailed algorithms can be found in the full version
of the paper [4].

2 XML DTDs and Trees

We consider structured XML DTDs as discussed in [11]. Although not all DTDs are
syntactically representable in this form, one can (as argued by [11]) represent more
general DTDs by introducing new element types. The DTDs we consider here are 1-
unambiguous as required by the XML standard [5].

Definition 1 (XML DTD). Let L be the infinite domain of labels. A DTD D is rep-
resented by (Ele, Rg, rt) where i) Ele ⊆ L is a finite set of element types ii) rt is a
distinguished type in Ele called the root type and iii) Rg defines the element types: that
is, for any A ∈ Ele, Rg(A) is a regular expression of the form:

Rg(A) := str | ε | B1, B2, . . . , Bn | B1 + B2 + . . . + Bn | B1∗
where Bi ∈ Ele are distinct, “,”, “+” and “∗” stand for concatenation, disjunction and
Kleene star respectively, ε for the EMPTY element content and str for text values.

We will refer to A → Rg(A) as the production rule for A. An element type Bi that
appears in the production rule of an element type A is called the subelement type of A.
We write A ≤D B for the transitive, reflexive closure of the subelement relation.

A DTD can also be represented as a directed acyclic graph that we call DTD graph.

Definition 2 (DTD Graph). A DTD graph GD = (VD, ED, rD) for a DTD D =
(Ele, Rg, rt) is a directed acyclic graph (DAG) where i) VD is the set of nodes for
the element types in Ele∪{str}, ii) ED = {(A, B) | A, B ∈ Ele and B is a subelement
type of A} and iii) rD is the distinguished node rt.

Example 1. The production rules for the DTD graph shown in Fig. 1 are:
R → A+B +J +K
A → C, D
C → F∗

D → F∗
B → E∗
E → G∗

G → H + I
J → G∗
F → str

H → str
I → str
K → str �

We model XML documents as rooted unordered trees with labels from L ∪ {str}.
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Definition 3 (XML Tree). An unordered XML tree t is an expression of the form t =
(Nt, Et, λt, rt, vt) where i) Nt is the set of nodes ii) Et ⊂ Nt × Nt is the set of edges,
iii) λt : Nt → L ∪ {str} is a labeling function over nodes iv) rt is the root of t and is
a distinguished node in Nt and v) vt is a function that assigns a string value to nodes
labeled with str.

We denote by childrent(n), parentt(n) and desct(n), the children, parent and descen-
dant nodes, respectively, of a node n in an XML tree t. The set desce

t (n) denotes the
edges in Et between descendant nodes of n. A node labeled with an element type A in
DTD D is called an instance of A or an A-element.

We say that an XML tree t = (Nt, Et, λt, rt, vt) conforms to a DTD D = (Ele, Rg,
rt) at element type A if i) rt is labeled with A (i.e., λt(rt) = A) ii) each node in Nt is
labeled with either an Ele element type B or with str, iii) each node in t labeled with an
Ele element type B has a list of children nodes such that their labels are in the language
defined by Rg(B) and iv) each node in t labeled with str has a string value (vt(n) is
defined) and is a leaf of the tree. An XML tree t is a valid instance of the DTD D if rt

is labeled with rt. We write ID(A) for the set of valid instances of D at element type
A, and ID for ID(rt).

Definition 4 (XML Tree Isomorphism). We say that an XML tree t1 is isomorphic to
an XML tree t2, denoted t1 ≡ t2, iff there exists a bijection h : Nt1 → Nt2 where: i)
h(rt1) = rt2 ii) if (x, y) ∈ Et1 then (h(x), h(y)) ∈ Et2 , iii) λt1(x) = λt2(h(x)), and
iv) vt1(x) = vt2(h(x)) for every x with λt1(x) = str = λt2(h(x)).

3 XML Access Control Framework

3.1 Atomic Updates

Our updates are modeled on the XQuery Update Facility draft [8], which considers
delete, replace and several insert update operations. A delete(n) operation will delete
node n and all its descendants. A replace(n, t) operation will replace the subtree with
root n by the tree t. A replace(n, s) operation will replace the text value of node
n with string s. There are several types of insert operations, e.g., insert into(n, t),
insert before(n, t), insert after(n, t), insert as first(n, t), insert as last(n, t). Update
insert into(n, t) inserts the root of t as a child of n whereas update insert as first(n, t)
(insert as last(n, t)) inserts the root of t as a first (resp. last) child of n. Update oper-
ations insert before(n, t) and insert after(n, t) insert the root node of t as a preceding
and following sibling of n resp..

Since we only consider unordered XML trees, we deal only with the operation
insert into(n, t) (for readability purposes, we are going to write insert(n, t)). Thus, in
what follows, we will restrict to four types of update operations: delete(n), replace(n, t),
replace(n, s) and insert(n, t).

More formally, for a tree t1 = (Nt1 ,Et1 , λt1 , rt1 , vt1), a node n in t1, a tree t2
= (Nt2 , Et2 , λt2 , rt2 , vt2) and a string value s, the result of applying insert(n, t2),
replace(n, t2), delete(n) and replace(n, s) to t1, is a new tree t = (Nt, Et, λt, rt, vt)
defined as shown in Table 1. We denote by [[op]](t) the result of applying update opera-
tion op on tree t.
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Table 1. Semantics of update operations

Nt Et λt rt vt

[[insert(n, t2)]](t1) Nt1 ∪ Nt2 Et1 ∪ Et2∪ {(n, rt2 )} λt1 (m), m ∈ Nt1 rt1 vt1 (m), m ∈ Nt1
λt2 (m), m ∈ Nt2 vt2 (m), m ∈ Nt2

[[replace(n, t2)]](t1) Nt1 ∪ Nt2 Et1 ∪ Et2∪ λt1 (m), rt1 vt1 (m),
\desct1 (n) {(parentt1

(n), rt2 )}\ m ∈ (Nt1 \ {n}) m ∈ (Nt1\{n})
desce

t1
(n) λt2 (m), m ∈ Nt2 vt2 (m), m ∈ Nt2

[[replace(n, s)]](t1) Nt1 Et1 λt1 (m), m ∈ Nt1 rt1 vt1 (m),
m ∈ (Nt1\{n})
vt1 (n) = s

[[delete(n)]](t1) Nt1 \ desct1 (n) Et1 \ desce
t1

(n) λt1 (m), rt1 vt1 (m),
m ∈ (Nt1\desct1 (n)) m ∈ (Nt1\desct1 (n))

An update operation insert(n, t2), replace(n, t2), replace(n, s) or delete(n) is valid
with respect to tree t1 provided n ∈ Nt1 and t2, if present, does not overlap with t1 (that
is, Nt1 ∩Nt2 = ∅). We also consider update sequences op1; . . . ; opn with the (standard)
semantics [[op1; . . . ; opn]](t1) = [[opn]]([[opn−1]](· · · [[op1]](t1))). A sequence of updates
op1; . . . ; opn is valid with respect to t0 if for each i ∈ {1, . . . , n}, opi+1 is valid with
respect to ti, where t1 = [[op1]](t0), t2 = [[op2]](t1), etc. The result of a valid update
(or valid sequence of updates) exists and is unique up to tree isomorphism. We restrict
attention to valid updates and sequences in the rest of the paper.

3.2 Access Control Framework

We use the notion of update access type to specify the access authorizations in our
context. Our update access types are inspired from the XAcUannot language discussed
in [13]. Authors followed the idea of security annotations introduced in [11] to specify
the access authorizations for XML documents in the presence of a DTD.

Definition 5 (Update Access Types). Given a DTD D, an update access type (UAT)
defined over D is of the form (A, insert(B1)), (A, replace(B1, B2)), (A, replace(str,
str)) or (A, delete(B1)), where A is an element type in D, B1 and B2 are subelement
types of A and B1 �= B2.

Intuitively, an UAT represents a set of atomic update operations. More specifically, for
t an instance of DTD D, op an atomic update and uat an update access type we say that
op matches uat on t (op matchest uat) if:

λt(n) = A t′ ∈ ID(B)

insert(n, t′) matchest (A, insert(B))
λt(n) = B λt(parentt(n)) = A

delete(n) matchest (A, delete(B))
λt(n) = B, t′ ∈ ID(B′), λt(parentt(n)) = A, B �= B′

replace(n, t′) matchest (A, replace(B,B′))
λt(n) = str, λt(parentt(n)) = A

replace(n, s) matchest(A, replace(str, str))

It is trivial to translate our update access types to XAcUannot security annotations. In
this work we assume that the evaluation of an update operation on a tree that conforms
to a DTD D results in a tree that conforms to D. It is clear then that each update
access type only makes sense for specific element types. For our example DTD, the
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update access type (A, delete(C)) is not meaningful because allowing the deletion of
a C-element would result in an XML document that does not conform to the DTD,
and therefore, the update will be rejected. Similar for (R, delete(A)) or (R, insert(A)).
But, (B, delete(E)) and (B, insert(E)) are relevant for this specific DTD. The relation
uat valid in D, which indicates that an update access type uat is valid for the DTD D,
is defined as follows:

Rg(A) := B∗
1

(A, insert(B1)) valid in D

Rg(A) := B1∗
(A,delete(B1)) valid in D

Rg(A) := str
(A, replace(str, str)) valid in D

Rg(A) := B1 + · · · + Bn, i, j ∈ [1, n] i �= j

(A, replace(Bi, Bj)) valid in D

We define the set of valid UATs for a given DTD D as valid(D) = {uat | uat valid in
D}. A security policy will be defined by a set of allowed and forbidden valid UATs.

Definition 6. A security policy P defined over a DTD D, is represented by (A, F)
where A is the set of allowed and F the set of forbidden update access types defined
over D such that A ⊆ valid(D), F ⊆ valid(D) and A ∩ F = ∅. A security policy is
total if A ∪ F = valid(D), otherwise it is partial.

Example 2. Consider the DTD D in Fig. 1 and the total policy P =(A, F) where A is:
(R, replace(A, B)) (R, replace(B, J)) (R, replace(J, K)) (R, replace(K, J))
(R, replace(K, B)) (C, insert(F )) (C, delete(F )) (D, insert(F ))
(D, delete(F )) (F, replace(str, str)) (B, insert(E)) (B, delete(E))
(E, insert(G)) (E, delete(G)) (G, replace(I,H)) (J, insert(G))
(J, delete(G)) (D, insert(F )) (D, delete(F )) (H, replace(str, str))
(I, replace(str, str)) (K, replace(str, str))

and F = valid(D) \ A. On the other hand, P = (A, ∅) is a partial policy. �

The operations that are allowed by a policy P = (A, F) on an XML tree t, denoted
by [[A]](t), are the union of the atomic update operations matching each UAT in A.
More formally, [[A]](t) = {op | op matchest uat, and uat ∈ A}. We say that an update
sequence op1; . . . ; opn is allowed on t provided the sequence is valid on t and op1 ∈
[[A]](t), op2 ∈ [[A]]([[op1]](t)), etc.1 Analogously, the forbidden operations are [[F ]](t) =
{op | op matchest uat, and uat ∈ F}. If a policy P is total, its semantics is given by
its allowed updates, i.e. [[P ]](t) = [[A]](t). The semantics of a partial policy is studied in
detail in Section 4.1.

4 Consistent Policies

A policy is said to be consistent if it is not possible to simulate a forbidden update
through a sequence of allowed updates. More formally:

Definition 7. A policy P = (A, F) defined over a DTD D is consistent if for every
XML tree t that conforms to D, there does not exist a valid sequence of updates
op1; . . . ; opn that is allowed on t and a valid update op0 ∈ [[F ]](t) such that:

[[op1; . . . ; opn]](t) ≡ [[op0]](t).
1 Note that this is not the same as {op1, . . . , opn} ⊆ [[A]](t).
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In our framework inconsistencies can be classified as: insert/delete and replace.
Inconsistencies due to insert/delete operations arise when the policy allows one to

insert and delete nodes of element type A whilst forbidding some operation in some
descendant element type of A. In this case, the forbidden operation can be simulated by
first deleting an A-element and then inserting a new A-element after having done the
necessary modifications.

There are two kinds of inconsistencies created by replace operations on a production
rule A → B1 + · · · + Bn of a DTD. First, if we are allowed to replace Bi by Bj and
Bj by Bk but not Bi by Bk, then one can simulate the latter operation by a sequence
of the first two. Second, consider that we are allowed to replace some element type Bi

with an element type Bj and vice versa. If some operation in the subtree of either Bi

or Bj is forbidden, then it is evident that one can simulate the forbidden operation by a
sequence of allowed operations, leading to an inconsistency.

We say that nothing is forbidden below an element type A in a policy P = (A, F)
defined over D if for every Bi s.t. A ≤D Bi and every (Bi, x) ∈ valid(D), (Bi, x) �∈ F .
If A → B1 + . . . + Bn, then we define the replace graph GA = (VA, EA) for a policy
P = (A, F), where i) VA is the set of nodes for B1, . . . , Bn and ii) (Bi, Bj) ∈ EA

if there exists (A, replace(Bi, Bj)) ∈ A. Also, the set of forbidden edges of A, is
EF

A = {(Bi, Bj) | (A, replace(Bi, Bj)) ∈ F}. We say that a graph G = (V , E) is
transitive if (x, y), (y, z) ∈ E then (x, z) ∈ E . We write G+

A for the transitive graph of
GA. The following theorem characterizes policy consistency:

Theorem 1. A policy P = (A, F) defined over DTD D is consistent if and only if for
every production rule:
1. A → B∗ in D, if (A, insert(B)) ∈ A and (A, delete(B)) ∈ A, then nothing is

forbidden below B
2. A → B1 + · · · + Bn in D, if for every edge (Bi, Bj) in G+

A , (Bi, Bj) �∈ EF
A , and

3. A → B1 + · · · + Bn in D, if for every i ∈ [1, . . . n], if Bi is contained in a cycle in
GA then nothing is forbidden below Bi.

Proof (Sketch). The forward direction is straightforward, since if any of the rules are
violated an inconsistency can be found, as sketched above. For the reverse direction, we
first need to reduce allowed update sequences to certain (allowed) normal forms that are
easier to analyze, then the reasoning proceeds by cases. A full proof is given in [4]. �

In the case of total policies, condition 2 in Theorem 1 amounts to requiring that the
replace graph GA is transitive (i.e., GA = G+

A ).

Example 3. (example 2 continued) The total policy P is inconsistent because:
– (E, insert(G)) and (E, delete(G)) are in A, but (G, replace(H, I)) ∈ F (condition

1, Theorem 1),
– (R, replace(A, J)), (R, replace(A, K)) and (R, replace(B, K)) are in F (condi-

tion 2, Theorem 1), and
– There are cycles in GR involving both B and J , but below both of them there is a

forbidden UAT, namely (G, replace(H, I)) (condition 3, Theorem 1). �

It is easy to see that we can check whether properties 1, 2, and 3 hold for a policy using
standard graph algorithms:
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Proposition 1. The problem of deciding policy consistency is in PTIME.

We wish to emphasize that consistency is highly sensitive to the design of policies
and update types. For example, we have consciously chosen to omit an update type
(A, replace(Bi, Bi)) for an element type A in the DTD whose production rule is either
of the form B∗ or B1 + . . . + Bn. Consider the case of a conference management sys-
tem where a paper element has a decision and a title subelement. Suppose that the
policy allows the author of the paper to replace a paper with another paper element,
but forbids to change the value of the decision subelement. This policy is inconsis-
tent since by replacing a paper element by another with a different decision subele-
ment we are able to perform a forbidden update. In fact, the replace(paper, paper) can
simulate any other update type applying below a paper element. Thus, if the policy
forbids replacement of paper nodes, then it would be inconsistent to allow any other
operation on decision and title. Because of this problem, we argue that update type
(A, replace(Bi, Bi)) should not be used in policies. Instead, more specific privileges
should be assigned individually, e.g., by allowing replacement of the text values of title
or decision element types.

4.1 Partial Policies

Partial policies may be smaller and easier to maintain than total policies, but are am-
biguous because some permissions are left unspecified. An access control mechanism
must either allow or deny a request. One solution to this problem (in accordance with
the principle of least privilege) might be to deny access to the unspecified operations.
However, there is no guarantee that the resulting total policy is consistent. Indeed, it is
not obvious that a partial policy (even if consistent) has any consistent total extension.
We will now show how to find consistent extensions, if they exist, and in particular how
to find a “least-privilege” consistent extension; these turn out to be unique when they
exist so they seem to be a natural choice for defining the meaning of a partial policy.

For convenience, we write AP and FP for the allowed and forbidden sets of a policy
P ; i.e., P = (AP , FP ). We introduce an information ordering P 
 Q, defined as
AP ⊆ AQ and FP ⊆ FQ; that is, Q is “more defined” than P . In this case, we say
that Q extends P . We say that a partial policy P is quasiconsistent if it has a consistent
total extension. For example, a partial policy on the DTD of Figure 1 which allows
(B, insert(E)), (B, delete(E)), and denies (H, replace(str, str)) is not quasiconsistent,
because any consistent extension of the policy has to allow (H, replace(str, str)).

We also introduce a privilege ordering on total policies P ≤ Q, defined as AP ⊆
AQ; that is, Q allows every operation that is allowed in P . This ordering has unique
greatest lower bounds P ∧ Q defined as (AP ∩ AQ, FP ∪ FQ). We now show that
every quasiconsistent policy has a least-privilege consistent extension P †; that is, P † is
consistent and P † ≤ Q whenever Q is a consistent extension of P .

Lemma 1. If P1, P2 are consistent total extensions of P0 then P1 ∧P2 is also a consis-
tent extension of P0.

Proof. It is easy to see that if P1, P2 extend P0 then P1 ∧ P2 extends P0. Suppose
P1 ∧ P2 is inconsistent. Then there exists an XML tree t, an atomic operation op0 ∈
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[[FP1∧P2 ]](t), a sequence op allowed on t by P1 ∧ P2, such that [[op0]](t) = [[op]](t).
Now AP1∧P2 = AP1 ∩ AP2 , so op0 must be forbidden by either P1 or P2. On the other
hand, op must be allowed by both P1 and P2, so t, op0, op forms a counterexample to
the consistency of P1 (or symmetrically P2). �

Proposition 2. Each quasiconsistent policy P has a unique ≤-least consistent total
extension P †.

Proof. Since P is quasiconsistent, the set S = {Q | P 
 Q, Q consistent} is finite,
nonempty, and closed under ∧, so has a ≤-least element P † =

∧
S. �

Finally, we show how to find the least-privilege consistent extension, or determine that
none exists (and hence that the partial policy is not quasiconsistent). Define the operator
T : P(valid(D)) → P(valid(D)) as:

T (S) = S ∪ {(C, x) | B ≤D C, Rg(A) = B∗, {(A, insert(B)), (A,delete(B))} ⊆ S}
∪{(C, x) | Bi ≤D C, Rg(A) = B1 + . . . + Bn, (Bi, Bi) ∈ G+

A (S)}
∪{(A, replace(Bi, Bk)) | Rg(A) = B1 + . . . + Bn, (Bi, Bk) ∈ G+

A (S)}

where G+
A (S) is the transitive graph of A for the partial policy S.

Lemma 2. If uat ∈ T (S) then for any valid operation op0 matching uat on t there
exists a valid sequence of operations op allowed on t by S such that [[op0]](t) = [[op]](t).

Theorem 2. Let P be a partial policy. The following are equivalent: (1) P is quasicon-
sistent, (2) P is consistent (3) T (AP ) ∩ FP = ∅.

Proof. To show (1) implies (2), if P ′ is a consistent extension of P , then any incon-
sistency in P would be an inconsistency in P ′, so P must be consistent. To show (2)
implies (3), we prove the contrapositive. If T (AP ) ∩ FP �= ∅ then choose uat ∈
T (AP )∩FP . Choose an arbitrary tree t and atomic update op satisfying op0 ∈ [[uat]](t).
By Lemma 2, there exists a sequence op allowed by AP on t with [[op]](t) = [[op0]](t).
Hence, policy P is inconsistent. Finally, to show that (3) implies (1), note that (T (AP ),
valid(D) \ T (AP )) extends P and is consistent provided T (AP ) ∩ FP = ∅.

Indeed, for a (quasi-)consistent P , the least-privilege consistent extension of P is sim-
ply P † = (T (AP ), valid(D) \ T (AP )) (proof omitted). Hence, we can decide whether
a partial policy is (quasi-)consistent and if so find P † in PTIME.

5 Repairs

If a policy is inconsistent, we would like to suggest possible minimal ways of modifying
it in order to restore consistency. In other words, we would like to find repairs that are
as close as possible to the inconsistent policy.

There are several ways of defining these repairs. We might want to repair by changing
the permissions of certain operations from allow to forbidden and vice versa; or we
might give preference to some type of changes over others. Also, we can measure the
minimality of the repairs as a minimal number of changes or a minimal set of changes
under set inclusion.



106 L. Bravo, J. Cheney, and I. Fundulaki

Due to space restrictions, in this paper we will focus on finding repairs that transform
UATs from allowed to forbidden and that minimize the number of changes. We believe
that such repairs are a useful special case, since the repairs are guaranteed to be more
restrictive than the original policy.

Definition 8. A policy P ′ = (A′, F ′) is a repair of a policy P = (A, F) defined over
a DTD D iff: i) P ′ is a policy defined over D, ii) P ′ is consistent, and iii) P ′ ≤ P .

A repair is total if F ′ = valid(D) \ A′ and partial otherwise. Furthermore a repair
P ′ = (A′, F ′) of P (A, F) is a minimal-total-repair if there is no total repair P ′′ =
(A′′, F ′′) such that |A′| < |A′′| and a minimal-partial-repair if F ′ = F and there is no
partial repair P ′′ = (A′′, F) such that |A′| < |A′′|.
Given a policy P = (A, F) and an integer k, the total-repair (partial-repair) problem
consists in determining if there exists a total-repair (partial-repair) P ′ = (A′, F ′) of
policy P such that |A\A′| < k. This problem can be shown to be NP-hard by reduction
from the edge-deletion transitive-digraph problem [20].

Theorem 3. The total-repair and partial-repair problem is NP-complete.

If the DTD has no production rules of the type A → B1+ · · ·+Bn, then the total-repair
problem is in PTIME.

5.1 Repair Algorithm

In this section we discuss a repair algorithm that finds a minimal repair of a total or
partial policy. All the algorithms can be found in [4].

The algorithm to compute a minimal repair of a policy relies in the independence
between inconsistencies w.r.t. insert/delete (Theorem 1, condition 1) and replace (The-
orem 1, conditions 2 and 3) operations. In fact, a local repair of an inconsistency w.r.t.
insert/delete operations will never solve nor create an inconsistency with respect to a re-
place operation and vice-versa. We will separately describe the algorithm for repairing
the insert/delete inconsistencies and then the algorithm for the replace ones.

Both algorithms make use of the marked DTD graph MGD = (GD, μ, χ) where μ
is a function from nodes in VD to {“+”, “−”} and χ is a partial function from VD to
{⊥}. In a marked graph for a DTD D and a policy P = (A, F) i) each node in the
graph is either marked with “+” (i.e., nothing is forbidden below the node) or with a
“−” (i.e., there exists at least one update access type that is forbidden below the node).
If, for nodes A and B in the DTD, both (A, insert(B)) and (A, delete(B)) are in A
and μ(A) = “−”, then χ(A) = “⊥”. A marked graph is obtained from algorithm
markGraph which takes as input a DTD graph and a policy P and traverses the
DTD graph starting from the nodes with out-degree 0 and marks the nodes and edges
as discussed above.

Example 4. Consider the graph for DTD D in Fig. 2(a) and policy P = (A, F), with
A defined in Example 2. The result of applying markGraph to this DTD and policy
is shown in Fig. 2(b). Notice that nodes B, E and J are marked with both a “−” and
“⊥” since i) update access type (G, replace(H, I)) is in F and ii) all insert and delete
update access types for B, E and J are in A. For readability purposes we do not show
the multiplicities in the marked DTD graph. �
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Fig. 2. DTD Graph (a) and Marked DTD Graph (b) for the DTD in Fig. 1

Repairing Inconsistencies for Insert and Delete Operations. Recall that if both the
insert and delete operations are allowed at some element type and there is some op-
eration below this type that is not allowed, then there is an inconsistency (see Theo-
rem 1, condition 1). The marked DTD graph provides exactly this information: a node
A is labeled with “⊥” if it is inconsistent w.r.t. insert/delete operations. For each such
node and for the repair strategy that we have chosen, the inconsistency can be min-
imally repaired by removing either (A, insert(B)) or (A, delete(B)) from A. Algo-
rithm InsDelRepair in [4] takes as input a DTD graph GD and a security policy
P = (A, F) and returns a set of UATs to remove from A to restore consistency w.r.t.
insert/delete-inconsistencies.

Example 5. Given the marked DTD graph in Fig. 2(b), it is easy to see that the UATs
that must be repaired are associated with nodes B, J and E (all nodes are marked with
“⊥”). The repairs that can be proposed to the user are to remove from A one UAT
from each of the following sets: {(B, insert(E)), (B, delete(E))}, {(E, insert(G)),
(E, delete(G))} and {(J, insert(G)), (J, delete(G))}. �

Repairing Inconsistencies for Replace Operations. There are two types of inconsis-
tencies related to replace operations (see Theorem 1, conditions 2–3): the first arises
when some element type A is contained in some cycle and something is forbidden be-
low it; the second arises when the replace graph GA cannot be extended to a transitive
graph without adding a forbidden edge in EF

A . In what follows we will refer to these
type of inconsistencies as negative-cycle and forbidden-transitivity. By Theorem 3, the
repair problem is NP-complete, and therefore, unless P = NP, there is no polynomial
time algorithm to compute a minimal repair to the replace-inconsistencies. Our objec-
tive then, is to find an algorithm that runs in polynomial time and computes a repair that
is not necessarily minimal.

Algorithm ReplaceNaive given in [4] traverses the marked graph MGD and at
each node, checks whether its production rule is of the form A → B1+. . .+Bn. If this is
the case, it builds the replace graph for A, GA, and runs a modified version of the Floyd-
Warshall algorithm [12]. The original Floyd-Warshall algorithm adds an edge (B, D) to
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the graph if there is a node C such that (B, C) and (C, D) are in the graph and (B, D)
is not. Our modification consists on deleting either (B, C) or (C, D) if (B, D) ∈ EF

A ,
i.e., if there is forbidden-transitivity. In this way, the final graph will satisfy condition 2
of Theorem 1. Also, if there are edges (B, C) and (C, B) and μ(C) = “−”, i.e., there
is a negative-cycle, one of the two edges is deleted. Algorithm ReplaceNaive returns
the set of edges to delete from each node to remove replace-inconsistencies.

Example 6. The replace graph GG has no negative-cycles nor forbidden-transitivity,
therefore it is not involved in any inconsistency. On the other hand, the replace graph
GR = (VR, ER), shown in Fig. 3(a) is the source of many inconsistencies. A possible
execution of ReplaceNaive is: (A, B), (B, J) ∈ ER but (A, J) ∈ EF

R , so (A, B) or
(B, J) should be deleted, say (A, B). Now, (B, J), (J, K) ∈ ER and (B, K) ∈ EF

R ,
therefore we delete either (B, J) or (J, K), say (B, J). Next, (K, J), (J, K) ∈ ER

and μ(J) = “−” in Fig. 2(b), therefore there is a negative-cycle and either (K, J) or
(J, K) has to be deleted. If (K, J) is deleted, the resulting graph has no forbidden-
transitivity nor negative-cycles. The policy obtained by removing (R, replace(A, B)),
(R, replace(B, J)) and (R, replace(J, K)) from A has no replace-inconsistencies. �

The ReplaceNaive algorithm might remove more than the necessary edges to achieve
consistency: in our example, if we had removed edge (B, J) at the first step, then we
would have resolved the inconsistencies that involve edges (A, B), (B, J) and (J, K).

An alternative to algorithm ReplaceNaive, that can find a solution closer to min-
imal repair, is algorithm ReplaceSetCover also given in [4]. This algorithm com-
putes, using the Floyd-Warshall algorithm, the transitive closure of the replace graph
GA and labels each newly constructed edge e with a set of justifications J . Each justifi-
cation contains the sets of edges of GA that were used to add e in G+

A . Also, if a node is
found to be part of a negative-cycle, it is labeled with the justifications J of the edges
in each cycle that contains the node. An edge or vertex might be justified by more than
one set of edges. In fact, the number of justifications an edge or node might have is
O(2|EA|). To avoid the exponential number of justifications, ReplaceSetCover as-
signs at most J justifications to each edge or node, where J is a fixed number. This new
labeled graph is then used to construct an instance of the minimum set cover problem
(MSCP) [18]. The solution to the MSCP, can be used to determine the set of edges to
remove from GA so that none of the justifications that create inconsistencies are valid
anymore. Because of the upper bound J on the number of justifications, it might be the
case that the graph still has forbidden-transitivity or negative-cycles. Thus, the justifi-
cations have to be computed once more and the set cover run again until there are no
more replace inconsistencies.

Example 7. For J = 1, the first computation of justifications of ReplaceSetCover
results in the graph in Fig. 3 (b) with the following justifications:

J ((A, J)) = {{(A, B), (B, J)}}
J ((A, K)) = {{(A, B), (B, J), (J, K)}}
J ((B, K)) = {{(B, J), (J, K)}}

J ((J, B)) = {{(J, K), (K, B)}}
J (B) = {{(B, J), (J, K), (K, B)}}
J (J) = {{(J, K), (K, J)}}

Justifications for edges represent violations of transitivity. Justification for nodes rep-
resent negative-cycles. If we want to remove the inconsistencies, it is enough to delete
one edge from each set in J . �
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Fig. 3. Replace GR (a) and Transitive Replace Graph G+
R (b)

The previous example shows that, for each element type A, replace-inconsistencies can
be repaired by removing at least one edge from each of the justifications of edges and
vertices in G+

A . It is easy to see that this problem can be reduced to the MSCP. An
instance of the MSCP consists of a universe U and a set S of subsets of U . A subset C
of S is a set cover if the union of the elements in it is U . A solution of the MSCP is a
set cover with the minimum number of elements.

The set cover instance associated to G+
A = (VA, EA) and the set of forbidden edges

EF
A , is MSCP(G+

A , EF
A ) = (U , S) for i) U = {s | s ∈ J (e), e ∈ EF

A } ∪ {s | s ∈ J (V ),
V ∈ VA}, and ii) S =

⋃
e∈E I(e) where I(e) = {s | s ∈ U , e ∈ s}. Intuitively, U

contains all the inconsistencies, and the set I(e) the replace-inconsistencies in which an
edge e is involved. Notice that in this instance of the MSCP, U is a set of justifications,
therefore, S is a set of sets of justifications.

Example 8. The minimum set cover instance, MSCP(G+
R , EF

R ) = (U , S), is such that
U = {{(A, B), (B, J), (J, K)}, {(A, B), (B, J)}, {(B, J), (J, K)}, {(J, K), (K, B)},
{(J, K), (K, J)}, {(K, J), (J, K)}, {(B, J), (J, K), (K, B)}} and S = {I((A, B)),
I((B, J)), I((J, K)), I((K, J)), I((K, B))}. The extensions of I are given in Table 2,
where each column corresponds to a set I and each row to an element in U . Values 1
and 0 in the table represent membership and non-membership respectively. A minimum
set cover of MSCP(G+

R , EF
R ) is C = {I((B, J)), I((J, K))}, since I((B, J)) covers

all the elements of U except for the element {(A, B), (B, J)}, which is covered by
I((J, K)). Now, using the solution from the set cover, we remove edges (B, J) and
(J, K) from GR. If we try to compute the justifications once again, it turns out that there
are no more negative-cycles and that the graph is transitive. Therefore, by removing
(R, replace(B, J)) and (R, replace(J, K)) from A, there are no replace-inconsistencies
in node R. �

The set cover problem is MAXSNP-hard [18], but its solution can be approximated
in polynomial time using a greedy-algorithm that can achieve an approximation factor
of log(n) where n is the size of U [9]. In our case, n is O(J × |Ele|). In the ongoing
example, the approximation algorithm of the set cover will return a cover of size 2. This
is better than what was obtained by the ReplaceNaive algorithm. In order to decide
which one is better, we need to run experiments to investigate the trade off between
efficiency and the size of the repaired policy.

Algorithm ReplaceRepair will compute the set of UATs to remove from A, by
using either ReplaceNaive or ReplaceSetCover .
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Table 2. Set cover problem

S
U I((A, B)) I((B, J)) I((J, K)) I((K, J)) I((K, B))

{(A, B), (B, J), (J,K)} 1 1 1 0 0
{(A, B), (B, J)} 1 1 0 0 0
{(B, J), (J, K)} 0 1 1 0 0
{(J, K), (K, B)} 0 0 1 0 1
{(J, K), (K, J)} 0 0 1 1 0
{(K, J), (J, K)} 0 0 1 1 0

{(B, J), (J, K), (K, B)} 0 1 1 0 1

Computation of a Repair. Algorithm Repair computes a new consistent policy
P ′ = (A′, F ′) from P = (A, F) by removing from A the union of the UATs returned
by algorithms InsDelRepair and ReplaceRepair. The algorithm is capable of
computing total and partial repairs.

Theorem 4. Given a total (partial) policy P , algorithm Repair returns a total (par-
tial) repair of P .

6 Conclusion

Access control policies attempt to constrain the actual operations users can perform, but
are usually enforced in terms of syntactic representations of the operations. Thus, poli-
cies controlling update access to XML data may forbid certain operations but permit
other operations that have the same effect. In this paper we have studied such incon-
sistency vulnerabilities and shown how to check consistency and repair inconsistent
policies. This is, to our knowledge, the first investigation of consistency and repairs for
XML write-access control policies. We also considered consistency and repair prob-
lems for partial policies which may be more convenient to write since many privileges
may be left unspecified.

Cautis, Abiteboul and Milo in [6] discuss XML update constraints to restrict insert
and delete updates, and propose to detect updates that violate these constraints by mea-
suring the size of the modification of the database. This approach differs from our secu-
rity framework for two reasons: a) we consider in addition to insert/delete also replace
operations and b) we require that each operation in the sequence of updates does not
violate the security constraints, whereas in their case, they require that only the input
and output database satisfies them.

Minimal repairs are used in the problem of returning consistent answers from incon-
sistent databases [1]. There, a consistent answer is defined in terms of all the minimal
repairs of a database. In [3] the set cover problem was used to find repairs of databases
w.r.t. denial constraints.

There are a number of possible directions for future work, including running ex-
periments for the proposed algorithms, studying consistency for more general security
policies specified using XPath expressions or constraints, investigating the complexity
of and algorithms for other classes of repairs, and considering more general DTDs.
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