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Abstract. An outline of the history of the algebras corresponding to 
Lukasiewicz many-valued logic from the pioneering work by G. Moisil in 
1940 until D. Mundici's work in 1986. 

1 Lukasiewicz and Post Many-Valued Logics 

The three-valued system of propositional calculus was constructed by Jan 
Lukasiewicz in the year 1920 and described in a lecture given at the Polish 
Philosophical Society in Lw6w. A short paper in Polish, based on his lecture, 
was published the same year [40]. 

The n-valued systems, discovered by Lukasiewicz in 1922, were briefly de
scribed in a textbook on Mathematical Logic published in 1929 [41]. A joint pa
per with Alfred Tarski, published in German in 1930 [44], contains, among other 
things, an account of results obtained by several Polish logicians on n-valued 
systems of propositional calculi, where n is either an integer ~ 2 or n = ~0 . In 
[42], published in the same year and also in German, Lukasiewicz explains the 
philosophical ideas about determinism and modalities that leaded him to the 
construction of the n-valued calculi. 

An idea of Lukasiewicz's philosophical motivation for the introduction of 
many-valued logic can be grasped from the following paragraphs of his Farewell 
Lecture as Rector of Warsaw University, on March 7, 1918 [10]: 

I have declared a spiritual war upon all coercion that restricts man's 
creative activity. There are two kinds of coercion. One of them is physical 
[ ... ]. 
The other kind of coercion is logical. We must accept self evident princi
ples and the theorems resulting therefrom. This coercion is much stronger 
than the physical; there is no hope for liberation. No physical or in
tellectual force can overcome the principles of logic and mathematics. 
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That coercion originated with the rise of Aristotelian logic and Euclid
ean geometry. 
The concept was born of science as a system of principles and theorems 
connected by logical relationship. [ ... ] 
In the universe conceived in this way there is no place for a creative act 
resulting not from a law but from a spontaneous impulse [ ... ]. 
The creative mind revolts against this concept of science, the universe 
and life. A brave individual, conscious of his value, does not want to be 
just a link in the chain of cause, but wants himself affect the course of 
events. This was always been the background of the opposition between 
science and art. [ ... ] 
He has two paths to choose from: either to submerge himself in scepticism 
and abandon research, or to come to grips with the concept of science 
based on Aristotelian logic. I have chose that second path.[ ... ] 
In striving to transform the concept of science based on Aristotelian logic 
I had to forge weapons stronger than that logic. It was symbolic logic 
that became such a weapon for me. 

As the Referee pointed out, it is worthwhile to stress the fact that Lukasiewicz's 
idea of a third truth-value as a way to 'liberation' from 'the coercion originated 
with the rise of Aristotelian logic and Euclidean geometry' grew up in the discus
sions on determinism which took place immediately before World War I among 
polish scholars (see [70,92]). 

In his 1920 thesis at Columbia University [69], Emil Leon Post1 developed 
systems of n-valued propositional calculi, for n an integer ~ 2, as natural gen
eralizations of the truth-table approach to classical propositional calculus. 

In contrast with Lukasiewicz, Post had no philosophical motivations. 
The following paragraph is taken from the Introduction of the published paper: 

Whether these "non-Aristotelian" logics and the general development 
which includes them will have a direct application we do not know; but 
we believe that, inasmuch as the theory of elementary propositions is 
at the base of the complete system of Principia, this broadened outlook 
upon the theory will serve to prepare us for a similar analysis of that 
complete system, and so ultimately of mathematics. 

Other systems of many-valued logic were considered by different authors, even 
before the publication of [40] 2 . Only Post's work is explicitly mentioned because 
we will see that for each finite n ~ 2, Lukasiewicz and Post n-valued logics are 
strongly related from the algebraic point of view. 

1 Although Post was born in Poland, he arrived in the United States when he was 
seven years old, so had no influence of the Polish philosophical school. 

2 A system of three-valued logic, different from the one of Lukasiewicz was considered 
by Charles S. Peirce in 1912, see [24]. More than two truth values were used by Paul 
Bernays in his Habilitationsschrift at the University of Gottingen (1918), to give 
independence proof for postulates of classical propositional calculus. Parts of this 
work were published eight yeas latter [5] (see [94]). 
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2 Moisil's Lukasiewicz Algebras 

In 1940 Gregorie Moisil introduced in [49] three-valued and four-valued 
Lukasiewicz algebras. To my knowledge, this was the first attempt to give al
gebras corresponding to Lukasiewicz many-valued logic. 

In 1942 Paul C. Rosenbloom [75] introduced Post algebras, the algebras of 
Post many-valued logics. 

Moisil's motivations and aims are clearly established in the following para-
graphs, extracted from the Introduction of [49]: 

La logique formelle, en tant que science symbolique independante, est en 
possession de deux methodes differentes. La premiere, appelee d'habitude 
methode axiomatique est celle qui a ete presque unanimement utilisee, 
celle qu'on trouve, par exemple, dans les traites de MM. Hilbert et Ack
ermann, de MM. Hilbert et Bernays, dans Principia Mathematica. On 
considere la logique comme un ensemble de theses, en appelant these 
une expression qui est toujours vraie. Les theses sont deduites d'un cer
tain nombre d'axiomes a l'aide de certains schemas deductifs (tels que le 
modus ponens ou la regle de substitution). Cette methode sera appelee 
calcul des theses. 
Une seconde methode est celle introduite par MM. Gentzen et Jaskowski 
[ ... ]. 
A chacune de ces methodes purement logiques (c'est-a-dire ne supposant 
pas les Mathematiques constituees) on peut faire correspondre une 
branche des Mathematiques [ ... ]. 
Au calcul des theses correspond ce qu'il convient d'appeler d'Algebre 
de la Logique, en donnant a ce terme la signification generale d'etude 
algebrique des systemes suggeres par le calcul des theses. Les systemes 
les plus interessantes sont ceux qui ont ete appeles structures (Oystein 
Ore), lattice (G. Birkhoff), Verbande (F. Klein) ou logiques. Ce sont des 
systemes a deux lois de composition. Parmi les structures on a etudie 
les structures modulaires, distributives, avec elements complementaires 
el les algebres de Boole. 
La relation entre le calcul des theses et l' Algebre de la Logique est etablie 
par la methode des matrices. Un premier probleme consiste a definir une 
matrice telle que le calcul des theses considere soit celui qui est remplie 
ou satisfait par cette matrice (Tarski [84]) . Le calcul des propositions 
classiques a ete definie a l'aide de la matrice £ 2 a deux elements ( "le vrai" 
et "le faux"), celui de M. Heyting pour une matrice infinie (Jaskowski 
[32]), les logiques de M. Lukasiewicz a l'aide des matrices qui sont des 
structures simplement ordonnees. 
Un second probleme qui se pose est celui caracteriser algebriquement 
toutes les matrices qui correspondent a un calcul des theses donne. Ce 
probleme est resolu pour le calcul des theses classique auquel correspond 
l'etude des algebres de Boole. 
MM. Birkhoff [6] et Stone [83] ont montre que toute algebre de Boole finie 
est le produit de structures £ 2 et que toute algebre de Boole infinie peut 
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etre representee comme une algebre de classes, c'est-a-dire comme une 
sous-structure de L!f, ou E est uncertain ensemble. C'est la un troisieme 
probleme fondamental, celui de la representation des differentes algebres 
suggeres par la logique. 
C'est a l'etude de ceux deus derniers problemes pour les logiques triva
lentes et tetravalentes de M. Lukasiewicz qu'est dedie ce Memoire. 
Nous avons tout d'abord caracterise algebriquement ces logiques, en 
creant un calcul qui les rend tres maniables pour l'algorithmiste. 
En second lieu nous avons demontre que, dans le cas finie, ce calcul est 
adequat a ces logiques, toute algebre qui satisfait ses axiomes etant un 
produit cartesien de structures L2, L3 respectivement L2, L3, L4. 

Lukasiewicz built up his logic from the connectives ofimplication----+and negation-,, 
whose "truth-tables" are defined, for x, y E [0, 1] as 

---,x := 1- x, (2.1) 

x----+ y := min(1- x + y, 1). (2.2) 

When n is an integer ?: 2, the n-valued calculus is obtained by restricting the 
values of x, y to 

1 2 n- 2 
Ln := {0, --,-- · · · --, 1} <;;;; [0, 1], 

n-1 n-1 n-1 

and for n = N0 , x, yare allowed to take any rational value in [0, 1]. 
Notice that for x, y E [0, 1], 

max(x, y) = (x----+ y)----+ y, 

and 
min(x,y) = ---,max(---,x,---,y). 

Thus the order structure of [0, 1] can be recovered from ---, and ----+. 

The unary operator \7, defined by the truth-table 

if X> 0, 

if X= 0, 

can be interpreted as a modal operator of possibility. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Tarski, then a collaborator of Lukasiewicz, observed that \7 can be defined on 
L3 by 

'Vx = ---,x----+ x = min(x + x, 1). 

Moisil defined three-valued Lukasiewicz algebras as systems 

(A, v, /\, ,, \7, o, 1) 
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such that (A, V, A, 0, 1) is a distributive lattice with smallest element 0 and 
greatest element 1, --, and \7 are unary operations that correspond to negation 
and to possibility, respectively. 

£ 3 , equipped with the natural lattice operations and --, and \7 as given re
spectively by (2.1) and (2.6) is an example of a three-valued Lukasiewicz-algebra, 
which has £ 2 , the two-element Boolean algebra, as a subalgebra. 

Moisil showed that Lukasiewicz's implication (2.2) is definable in £ 3 , and that 
each finite three-valued Lukasiewicz algebra is a direct product of algebras £ 3 

and £2. 
In the subsequent paper [50], Moisil introduced the following example of a 

three-valued Lukasiewicz algebra: Let B be a Boolean algebra, and let B[2l := 
{(x, y) E B x B: x:::; y}. Then B[2l with the lattice operations defined pointwise, 
and --,(x,y) := (--,y,--,x), and \i'(x,y) = (y,y) is a three-valued Lukasiewicz
algebra. 

Then he proved that for each three-valued Lukasiewicz algebra A there is a 
Boolean algebra B such that A is embedded in B[2l, improving a result already 
obtained in [49]. In this way, and taking into account the results of Stone [83], he 
obtained a representation of three-valued Lukasiewicz algebras as pairs of sets. 

Inspired by the relations discovered by Stone between Boolean algebras and 
rings [82], Moisil investigated the relations between three-valued Lukasiewicz 
algebras and rings that are a product of a ring of characteristic 2 and a ring of 
characteristic 3 [51]. An equational characterization of three-valued Lukasiewicz 
algebra was given in [52]. 

On each Ln Moisil considered n - 1 unary operations \7]', ... , \7~_ 1 defined 
as follows: 

\i'n(_J_· ) - {1 
i n-1 - 0 

Notice that \7~ = \7 and 'Vy = --,\7--,. 

if i + j ?_ n, 

if i + j < n. 
(2.7) 

Moisil considered these operations as generalized modal operators, \7]', which 
assigns the value 0 to each x -1- 1, correspond to necessity, and \7~_ 1 corresponds 
to possibility. 

In his paper [50] he also introduced n-valued Lukasiewicz algebras for 2 :::; 
n < N0 as bounded distributive lattices equipped with an involutive negation 
satisfying the De Morgan laws, and n- 1 unary operations corresponding to the 
modal operators (2.7). 

Moisil showed that each n-valued Lukasiewicz algebra can be embedded in a 
product of algebras Ln, and also in B[nl, for some Boolean algebra B. 

It follows that the modal operations 'Vf can be defined on Ln from Lukasiewicz 
implication and negation, but as was observed by Alan Rose while he was visiting 
the University of Bahia Blanca in 1965, it is not possible to define Lukasiewicz 
implication from the lattice operations, the negation and the modal operators 
when n ?_ 5. Hence, for n ?_ 5 n-valued Lukasiewicz algebras do not correspond 
to n-valued Lukasiewicz logic. 
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A correct algebrization of then-valued calculus, for n ~ 5, can be obtained by 
adding to the operations of n-valued Lukasiewicz algebras a set of n(n-;5)+2 binary 
operations satisfying some simple equations. In this way n-valued Lukasiewicz 
propositional calculus can be considered as an expansion of the intuitionistic cal
culus. The algebras so expanded are called proper n-valued Lukasiewicz algebras 
[16,17]. 

It is worthwhile to remark that Dana Scott [81], without reference to Moisil, 
considered the operators Vi on Ln as two-valued valuations, and he showed that 
they are related with n-valued Lukasiewicz implication as follows: 

'Vj(x----+ y) = 1 iff whenever i + j:::; k + 1 and 'Vjx = 1, then 'V'ky = 1. 
Moisil also defined infinite-valued Lukasiewicz algebras, where the modal op

erators are indexed by a totally ordered set of arbitrary cardinality. But they 
are not related with Lukasiewicz infinite-valued calculus. Moisil considered these 
algebras in relation with fuzzy logic.3 

Three-valued Lukasiewicz algebras were intensively investigated by Antonio 
Monteiro during the early sixties of the last century. Monteiro's work during that 
period was mostly shown in his lectures at the University of Bahfa Blanca (Ar
gentina), and it is partially summarized in his posthumous paper [56, Chapitre 
VII]. 

Besides given a simple equational characterization of three-valued Lukasiewicz 
algebras [54], he introduced the weak implication =} by the formula: 

(2.8) 

and he showed that the Lukasiewicz implication (2.2) and the weak implication 
are related as follows: 

X =} y =X----+ (x----+ y). 

Hence a subset of a three-valued Lukasiewicz algebra containing the greatest 
element is closed under modus ponens with respect to Lukasiewicz implication 
if and only if it is closed under modus ponens with respect to weak implication. 
Hence both implications are equivalent from the point of view of deduction in 
three-valued Lukasiewicz logic (see [56]). 

Let me mention the following important results obtained by Monteiro: 

1. Three-valued Lukasiewicz algebras coincide with the semisimple Nelson alge
bras, i. e., the algebras of the constructive logic with strong negation consid
ered by D. Nelson and A. A. Markov. Consequently, three-valued Lukasiewicz 
logic is an axiomatic extension of the constructive logic with strong negation 
(see [56,57]). 

3 The monograph [9] is the standard reference for Moisil's Lukasiewicz algebras. They 
are also considered in [1, Chapter XI]. For historical remarks and updated references 
see [26]. 
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2. It is possible to define from each monadic Boolean algebra A (as defined by 
Halmos [29]) a three-valued Lukasiewicz algebra L(A), and each three-valued 
Lukasiewicz algebra is isomorphic to L(A) for a suitable monadic Boolean 
algebra A (see [55,56]). 

As a matter offact, it turns out that the relation between three-valued Lukasiewicz 
algebras and monadic Boolean algebras is functorial (see [45]). 

Since it was shown by Halmos that monadic Boolean algebras are the algebraic 
counterpart of classical first order monadic calculus, Monteiro considered that 
the representation of three-valued Lukasiewicz algebras into monadic Boolean 
algebras gives a proof of the consistency of Lukasiewicz three-valued logic relative 
to classical logic. 

It is fair to say that Monteiro's results on three-valued Lukasiewicz alge
bras inspired most of the research done in the theory of Lukasiewicz n-valued 
Lukasiewicz algebras (see [9] and the references given there). 

3 Chang's MY-Algebras 

A deep result on Lukasiewicz infinite valued-logic was proved by Robert Mac
Naughton in 1951 [48], characterizing the propositional formulas of n variables, 
modulo logical equivalence, by means of [0, 1]-valued piecewise linear continuous 
functions on the hypercube [0, 1]n equipped with the usual product topology. 

MacNaughton also characterized the functions from L~ into Ln that represent 
the formulas of Lukasiewicz n-valued propositional calculus. 

Lukasiewicz had conjectured that a propositional formula cp is a tautology of 
the ~0-valued calculus if and only if cp can be derived by the rules of detach
ment and substitution from five formulas that he proposed as axioms (see [44]). 
Mordechaj Wajsberg, who in 1931 had given an axiomatization of Lukasiewicz 
three-valued logic, claimed in [91] that he had proved the conjecture, but his 
proof was never published. Wajsberg was killed during the Second World War. 

The first printed proof of Lukasiewicz conjecture, due A. Rose and B. J. 
Rosser, appeared in 1958 [74]. They use in their proof MacNaughton's theorem. 

The same year C. C. Chang [13] introduced MY-algebras, with the intention 
of proving Lukasiewicz conjecture by algebraic means. 

Notice that in the real segment [0, 1] we have that 

x EB y := min(1, x + y) = --,x----+ y, (3.9) 

and 
x----+ y = --,x EB y. (3.10) 

Hence Chang defined MY-algebras essentially in terms of a binary operation 
EB that corresponds to the truncated addition in [0, 1] and the negation --, that 
have to satisfy certain equations. Thus MY-algebras form a variety or equational 
class. (The operation 8 can be defined as x 8 y = --,(--,x EB --,y). 
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If we add to the axioms given by Chang to define MV-algebras the requirement 
that the operation EB be idempotent, x EB x = x, then we obtain the characteri
zation of Boolean algebras as complemented distributive lattices. 

Of course, the segment [0, 1] with truncated addition and Lukasiewicz negation 
-.given by (2.1) is an MV-algebra, known as the standard MV-algebra. 

Moreover, Chang proved that the Lindenbaum-Tarski algebra of Lukasiewicz 
N0-valued calculus is an MV-algebra, and that a formula rp is provable from 
Lukasiewicz axioms by detachment and substitution if and only if its equivalence 
class is the unit of this algebra. 

Hence to prove Lukasiewicz conjecture turns out to be equivalent to prove 
that the standard MV-algebra generates the variety of MV-algebras. 

Chang proved that (in the current universal algebra language) the simple 
MV-algebras are the standard MV-algebra and its subalgebras. 

Then one way to prove that the standard MV-algebra generates the whole 
variety is to prove that all algebras in the variety are semisimple, i. e., subdirect 
products of subalgebras of the standard MV-algebra [0, 1]. Notice that it is the 
method used by Rasiowa and Sikorski [71] to prove the completeness of some 
axiomatizations of the classical propositional calculus with respect to two-valued 
tautologies. 

But (fortunately) this is not the case, because Chang constructed an example 
of a non-semisimple MV-algebra. 

As a matter of fact, the paper develops a very sophisticated mathematical 
theory that ends with some weak applications to Lukasiewicz logic (see [15]). 

The next year, Chang published in the same journal another paper [14], where 
he observed that if u is a positive element of a totally ordered abelian group G, 
then the segment [0, u] = { x E G : 0 :::; x :::; u} becomes an MV-algebra if we 
define the operations EB and -. as 

x EB y = min(u, (x + y)), 

and 

-.x = u-x. 

Then, given a totally ordered MV-algebra A, he was able to construct a totally 
ordered abelian group G(A) and u > 0 in G(A) such that A is isomorphic to the 
MV-algebra [0, u]. 

He also proved that every MV-algebra is a subdirect product of totally ordered 
MV-algebras. From these results he could prove Lukasiewicz's conjecture by 
translating it into a problem in the first order theory of totally ordered abelian 
groups. 

In the early sixties Chang and his student Belluce published some papers 
concerning with the predicate calculus based on Lukasiewicz infinite-valued logic. 
In particular monadic MV-algebras were considered [4,2]. 

In 1973 appeared Piero Mangani's paper [46], in which the author derived 
from a few axioms many important properties of MV-algebras. For instance, he 
showed that the algebras Ln are quasi-primal. 
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Mangani's paper was followed by papers by Saeli and Lacava [77,38,35,36,37], 
all published in Italian, were some interesting results on MV-algebras are ob
tained. For instance, Lacava [35] observed that if u is a positive element of a 
lattice ordered abelian group G, then the segment [0, u] := { x E G : 0 :::; x :::; u} 
becomes an MV-algebra by defining 

x ffi y = u 1\ ( x + y) and -.x = u - x. 

Moreover, using the fact that each MV-algebra is a subdirect product of totally 
ordered MV-algebras together with Chang's results, Lacava embedded each MV
algebra in a segment of a lattice-ordered abelian group. Lacava also characterized 
the subdirectly irreducible MV-algebras and showed that (lattice) complete MY
algebras are semisimple [36]. 

In 1977, Revaz Grigolia [28] gave an equational characterization of the subva
rieties of the variety of MV-algebras generated by the finite chains Ln, considered 
as subalgebras of the standard MV-algebra [0, 1]. The algebras in such subvari
eties were called MV n-algebras. 

Grigolia used MV n-algebras to give an axiomatization for each n-valued 
Lukasiewicz calculus. 

MV n-algebras and proper n-valued Lukasiewicz algebras are term-wise equiv
alent. Besides being defined with just two operations, MV n-algebras have the 
advantage that all belong to the same variety, independently of n. This is not 
the case with proper n-valued Lukasiewicz algebras, because the first order lan
guage used to define them depends on n. 

On each n-valued Lukasiewicz algebra A define the operators Ji, for i = 

1, ... ,n -1: 
Ji(x) = O"~_i(x) 1\ -.(J~-i- 1 (x), 

where O"~(x) = 0 and O";;:(x) = 1. Notice that in Ln we have: 

Thus for j = 1, ... , n- 1, the sentence 

if i = j, 

if i =I= j. 

"The proposition p has truth-value n~ 1 " 

can be expressed in Lukasiewicz n-valued logic. 
But it follows from the mentioned results of MacNaughton that such kind of 

operations cannot be defined in the infinite-valued logic. In some cases this kind 
of operations can be added, as it is the case of the so called Baaz operation. 

As I already mentioned, Post algebras of order n, the algebras of n-valued 
Post logic, have been introduced by Rosenbloom in 1941. They were further in
vestigated during the sixties by G. Epstein [23], T. Traczyk [87,88], G. Rousseau 
[76] , Ph. Dwinger [22] (see also [1,9] and the references given there). It turned 
out that they can be characterized as n-valued Lukasiewicz algebras with n- 2 
constants, satisfying some simple equations, added [1,9]. Post algebras were also 
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considered by Dietrich Schwartz [78, 79] under the name of MV-algebras of finite 
order. An MV-algebra of order n is an MV-algebra A satisfying the equation 
xn-l EB x = x and endowed with a constant c that satisfies equations that guar
antee that the map n~l f---7 k.c is an MY-homomorphism from Ln into A. 

The (lattice) complete Post algebras of order n can be characterized as the 
injective objects in the category of MV n-algebras. 

H. W. Buff [12] considered decidability problems of MV-algebras, and L. P. 
Belluce [3] gave a functional representation of semi-simple MV-algebras, initiate 
the study of the prime spectra of MV-algebras, and consider some problems on 
(lattice) complete MV-algebras. 

4 Other Approaches to MY-Algebras 

In 1966 Y. Imai and K. Iseki [30] introduced BCK-algebras as a common ab
straction of the algebras corresponding to the implicative fragments of several 
logics existing in the literature, including classical and intuitionistic logic. Since 
then a lot of papers concerned with these algebras were published. 

The bounded commutative BCK-algebras , a class of BCK-algebras defined 
by K. Iseki and S. Tanaka [31], was intensively investigated by W. H. Cornish 
[18,19], A. Romanowska and T. Traczyk [72,73] at the end of the seventies and 
beginning of the eighties. It was proved by Font, Rodriguez and Torrens [25], 
and independently, by Daniele Mundici [59], that these algebras coincide with 
MV-algebras. As a consequence, some results on MV-algebras were rediscovered 
in terms of BCK-algebras. 

In particular, relations between a class of bounded commutative BCK-algebras 
and lattice ordered abelian groups were obtained by Cornish [18], corresponding 
to the relation between perfect MV-algebras and lattice-ordered abelian groups 
established by Di Nola and Lettieri [21]. 

Bruno Bosbach [11] introduced MV-algebras under the name of symmetric 
bricks. He was lead to bricks by his investigations on the algebraic structure of 
positive cones of (non necessarily abelian) lattice ordered groups. He developed 
the theory of bricks in an independent way. The paper contains, among other 
things, representations theorems that generalize the characterization of Boolean 
algebras as Boolean rings, and results on the structure of complete bricks. 

In 1981, Yuichi Komori [34] investigated the axiomatic extensions of infinite
valued Lukasiewicz propositional calculus using algebraic tools. Although Ko
mori was acquainted with the papers [13,14] and in a few places refers to them, 
his work was rather independent from Chang's. He introduced CN algebras, that 
were presented in the original language of Lukasiewicz, i. e., implication and 
negation, and with axioms that were straightforward adaptations of the axioms 
conjectured by Lukasiewicz. Komori made explicit use of the completeness of 
the first order theory of a special class of totally ordered abelian groups, previ
ously introduced by him in [33]. Komori's CN-algebras are term-wise equivalent 
to Chang's MV-algebras, hence Komori determined the lattice of subvarieties of 
the variety of MV-algebras. 
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In his Doctoral Dissertation of 1981 at the University of Barcelona, Anto
nio Jesus Rodriguez also presented MY-algebras in the original language of 
Lukasiewicz, and he called the algebras so defined Wajsberg algebras. The main 
parts of the dissertation was published in [25]. Trough this paper Willem Blok 
became acquainted with the algebras of Lukasiewicz infinite-valued logic, and 
with his collaborators connected them with the theory of hoops [8, 7]. 

A. Torrens [86] started the classification of Wajsberg algebras in terms of 
Boolean products. 

5 Mundici's Work 

In the papers described before, the algebras related to Lukasiewicz many-valued 
logic were considered as interesting algebraic structures that could eventually be 
applied to obtain some logical results. 

A turning point of the theory was the paper [58] by Daniele Mundici Interpre
tation of AF C*-Algebras in Lukasiewicz Sentential Calculus published in the 
Journal of Functional Analysis in 1986. 

It was certainly surprising to see the words "Lukasiewicz sentential calculus" 
in the title of an article of about fifty pages published in the Journal of Functional 
Analysis, and even more surprising to see that the paper was communicated by 
the 1982 Fields Medal Alan Connes. 

In that paper it is proved that Chang's MY-algebras are categorically equiv
alent to lattice-ordered abelian groups with a strong unit. This result allowed 
Daniele to relate, via dimension groups, countable MY-algebras with 
A(pproximately) F(inite-dimensional) C*-algebras, an important class of 
algebras considered in Functional Analysis (see, for instance, [27]). Since MY
algebras are the Lindenbaum algebras of Lukasiewicz propositional calculus 
modulo a theory, a theory of the calculus is associated with the corresponding 
AFC* -algebra, and Daniele showed, among other things, that to simple AFC*
algebras correspond finitely axiomatizable theories. Daniele continued these in
vestigations in several papers (see, for instance, [60,61,62,65,66,67]). 

In subsequent papers Daniele gave a semantics for MY n-algebras in terms of 
Ulam games, paving the way to apply MY-algebras to coding theory [63,64,67]. 
Moreover, he discovered that deduction in Lukasiewicz logic are related to desin
gularization of to ric varieties [ 68]. 

These results stimulated further researches by Daniele and many other people 
in the theory of MY-algebras and their connections with other mathematical 
structures. But this is not history, but present. The evolution of these ideas 
should be consider in the future. 

Perhaps another old professor will explain them during the celebration of the 
60th birthday of some of the young organizers of this meeting. 

Thanks for your attention. 
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