
Engineering Database Component Ware

Bernhard Thalheim

Christian Albrechts University Kiel, Department of Computer Science, 24098 Kiel, Germany
thalheim@is.informatik.uni-kiel.de

Abstract. Large database applications often have a very complex structuring that
complicate maintenance, extension, querying, programming. Due to this com-
plexity systems become unmaintenable. We observe, however, that large database
applications often use an implicit structuring into connected components. We pro-
pose to initially use this internal structuring for application development. The
application architecture is based on database components. Database components
can be composed to an application system. This paper shows how components
may be developed, composed and applied.

1 Towards Information Systems Engineering

Component-Based Application Engineering
Software engineering is still based on programming in the small although a number
of approaches has been proposed for programming in the large. Programming in the
large uses strategies for programming, is based on architectures, and constructs software
from components which collaborate, are embedded into each other, or are integrated
for formation of new systems. Programming constructs are then pattern or high-level
programming units and languages.

The next generation of programming observed nowadays is programming in the
world within a collaboration of programmers and systems. It uses advanced scripting
languages such as Groovy with dynamic integration of components into other compo-
nents, standardisation of components with guarantees of service qualities, collaboration
of components with communication, coordination and cooperation features, distribution
of workload, and virtual communities. Therefore, component engineering will also form
the kernel engineering technique for programming in the world. The next generation of
software engineering envisioned is currently called as programming by composition or
construction. In this case components also form the kernel technology for software and
hardware.

Software development is mainly based on stepwise development from scratch. Soft-
ware reuse has been considered but never reached the maturity for application engi-
neering. Database development is also mainly development in the small. Schemes are
developed step by step, extended type by type, and normalized locally type by type.
Views are still defined type by type although more complex schemata can be easily
defined by extended ER schemata [Tha00].

Therefore, database engineering must still be considered as handicraft work which
require the skills of an artisan. Engineering in other disciplines has already gained the
maturity for industrial development and application.

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 B. Thalheim

�

�

�
�

� �

ScrewBasic

ScrewOtherData

ScrewManufacturing

ScrewMaterial

ScrewAddOn ScrewHead ScrewSupplier

Fig. 1. HERM Representation of the Star Type Screw

Engineering applications have been based on the simple separation principle: Sepa-
ration of elements which are stable from those elements which are not. This separation
allows standardization and simple integration. An example is the specification of screws
as displayed in Figure 11. Screws have a standardized representation: basic data, data
on the material, data on the manufacturing, data on specific properties such as head, etc.

Complex Applications Result in Large Schemata
Monographs and database course books usually base explanations on small or ‘toy’
examples. Reality is, however, completely different. Database schemata tend to be
large, not surveyable, incomprehensible and partially inconsistent due to application,
the database development life cycle and due to the number of team members involved
at different time intervals. Thus, consistent management of the database schema might
become a nightmare and may lead to legacy problems. The size of the schemata may be
very large.

It is a common observation that large database schemata are error-prone, are difficult
to maintain and to extend and are not surveyable. Moreover, development of retrieval
and operation facilities requires highest professional skills in abstraction, memoriza-
tion and programming. Such schemata reach sizes of more than 1000 attribute, entity
and relationship types. Since they are not comprehensible any change to the schema is
performed by extending the schema and thus making it even more complex. Database
designers and programmers are not able to capture the schema.

Application schemata could be simpler only to a certain extent if software engineering
approaches are applied. The repetition and redundancy in schemata is also caused by

– different usage of similar types of the schema,
– minor and small differences of the types structure in application views, and
– semantic differences of variants of types.

Therefore, we need approaches which allow to reason on repeating structures inside
schemata, on semantic differences and differences in usage of objects.

1 We use the extended ER model [Tha00] that allows to display subtypes on the basis of unary
relationship types and thus simplifies representation.

Engineering Database Component Ware 3

Large schemata also suffer from the deficiency of variation detection: The same or
similar content is often repeated in a schema without noticing it.

Techniques to Decrease Complexity in Applications
Large database schemata can be drastically simplified if techniques of modular mod-
elling such as modular design by units [Tha00] are used. It is an abstraction technique
based on principles of hiding and encapsulation. Design by units allows to consider
parts of the schema in a separate fashion. The parts are connected via types which func-
tion similar to bridges.

Data warehousing and user views are often based on snowflake or star schemata. The
intuition behind such schemata is often hidden. Star and snowflake schemata are easier
to understand, to query, to survey and to maintain. At the same time, these structures
are of high redundancy and restricted modelling power. For instance, the central type
in a star or snowflake schema is a relationship type which has attributes that use only
numerical types. We may wonder, however, why we need to apply these restrictions and
why we should not use this approach in general.

Co-design [Tha00] of database applications aims in consistent development of all
facets of database applications: structuring of the database by schema types and static
integrity constraints, behavior modelling by specification of functionality and dynamic
integrity constraints and interactivity modelling by assigning views to activities of ac-
tors in the corresponding dialogue steps. Co-design, thus, is based on the specification
of the the database schema, functions, views and dialogue steps. At the same time,
various abstraction layers are separated such as the conceptual layer, requirements ac-
quisition layer and implementation layer.

Software becomes surveyable, extensible and maintainable if a clear separation of
concerns and application parts is applied. In this case, a skeleton of the application
structure is developed. This skeleton separates parts or services. Parts are connected
through interfaces. Based on this architecture, an application can be developed part by
part.

We combine modularity, star structuring, co-design, and architecture development
to a novel framework based on components. Such combination seems to be not fea-
sible. We discover, however, that we may integrate all these approaches by using a
component-based approach. This skeleton can be refined during evolution of the
schema. Then, each component is developed step by step. Structuring in component-
based co-design is based on two constructs:

Components: Components are the main building blocks. They are used for structur-
ing of the main data. The association among components is based on ‘connector’
types (called hinge or bridge types) that enable in associating the components in a
variable fashion.

Skeleton-based construction: Components are assembled together by application of
connector types. These connector types are usually relationship types.

Goals of the Paper
The paper surveys our approach [Tha02, Tha03a, Tha05] for systematic development of
large database schemata and applies it for database construction based on components
and for collaborating component suites. The paper is based on [Fey03, FT02, ST06a,

4 B. Thalheim

ST04]. We introduce first the concept of database components and then discuss engi-
neering of database applications based on components.

2 Database Components and Construction of Schemes

Database Schemes in a Nutshell
We use the extended ER model for representation of structuring and behavior gener-
alizing the approach of [PBGG89]. The extended ER model (HERM) [Tha00] has a
generic algebra and logic, i.e., the algebra of derivable operations and the fragment of
(hierarchical) predicate logic may be derived from the HERM algebra whenever the
structure of the database is given.

A database type S = (S, O, Σ) is given by
– a structure S defined by a type expression defined over the set of basic types B, a

set of labels L and the constructors product (tuple), set and bag, i.e. an expression
defined by the recursive type equality
t = B | t × ... × t | {t} | [t] | l : t ,

– a set of operations defined in the ER algebra and limited to S, and
– a set of (static and dynamic) integrity constraints defined in the hierarchical predi-

cate logic with the base predicate PS .

Objects of the database type SC are S-structured. Classes SC are sets of objects for
which the set of static integrity constraints is valid.

Operations can be classified into “retrieval” operations enabling in generating values
from the class SC and “modification” operations allowing to change the objects in the
class SC if static and dynamic integrity constraints are not invalidated.

A database schema D = (S1,,Sm, ΣG) is defined by

– a list of different database types and
– a set of global integrity constraints.

The HERM algebra can be used to define (parameterized) views V = (V, OV) on a
schema D via

– an (parameterized) algebraic expression V on D and
– a set of (parameterized) operations of the HERM algebra applicable to V .

The view operations may be classified too into retrieval operations OR
V and modification

operations OM
V . Based on this classification we derive an output view OV of V and an

input view IV of V.
In a similar way (but outside the scope of this paper) we may define transactions,

interfaces, interactivity, recovery, etc.
Obviously, IV and OV are typed based on the type system. Data warehouse design

is mainly view design [Tha00].

Database Components and Component Algebra
A database component is database scheme that has an import and an export inter-
face for connecting it to other components by standardized interface techniques. Com-
ponents are defined in a data warehouse setting. They consist of input elements, output

Engineering Database Component Ware 5

elements and have a database structuring. Components may be considered as input-
output machines that are extended by the set of all states SC of the database with a set
of corresponding input views IV and a set of corresponding output views OV . Input
and output of components is based on channels K . The structuring is specified by SK .
The structuring of channels is described by the function type : C → V for the view
schemata V . Views are used for collaboration of components with the environment via
data exchange. In general, the input and output sets may be considered as abstract words
from M∗ or as words on the database structuring.

A database component K = (SK , IVK , OV
K , SC

K , ΔK) is specified by

(static) schema SK describing the database schema of K,

syntactic interface providing names (structures, functions) with parameters and
database structure for SC

K and IVK , OV
K ,

behavior relating the IV , OV (view) channels
ΔK : (SC

K × (IVK → M∗)) → P(SC
K × (OV

K → M∗)).

Components can be associated to each other. The association is restricted to domain-
compatible input or output schemata which are free of name conflicts.

Components K1 = (S1, I
V
1 , OV

1 , SC
1 , Δ1) and K2 = (S2, I

V
2 , OV

2 , SC
2 , Δ2) are free

of name conflicts if the set of attribute, entity and relationship type names are disjoint.
Channels C1 and C2 of components K1 = (S1, I

V
1 , OV

1 , SC
1 , Δ1) and

K2 = (S2, I
V
2 , OV

2 , SC
2 , Δ2) are called domain-compatible if

dom(type(C1)) = dom(type(C2)).
An output OV

1 of the component K1 is domain-compatible with an input IV
2 of the

component K2 if dom(type(OV
1)) ⊆ dom(type(IV

2))
Component operations such as merge, fork, transmission are definable via appli-

cation of superposition operations [Kud82, Mal70]: Identification of channels, per-
mutation of channels, renaming of channels, introduction of fictitious channels, and
parallel composition with feedback displayed in Figure 2.

� �

� �

� �
C1 C2

Fig. 2. The Composition of Database Components

Thus, a component schema is usually characterized by a kernel entity type used
for storing basic data, by a number of dimensions that are usually based on subtypes
of the entity type which are used for additional properties. These additional properties
are clustered according to their occurrence for the things under consideration. Typically,
the component schema uses four dimensions: subtypes, additional characterization, ver-
sions and meta-characterizations.

6 B. Thalheim

The star schema is the main component schema used for construction.
A star schema for a database type C0 is defined by

– the (full) (HERM) schema S = (C0, C1, ..., Cn) covering all types on which C0
has been defined,

– the subset of strong types C1,, Ck forming a set of keys K1, ..., Ks for C0, i.e.,
∪s

i=1Ki = {C1,, Ck} and Ki → C0 , C0 → Ki for 1 ≤ i ≤ s
and card(C0, Ci) = (1, n) for (1 ≤ i ≤ k) .

– the extension types Ck+1, ..., Cm satisfying the (general) cardinality constraint
card(C0, Cj) = (0, 1) for ((k + 1) ≤ i ≤ n) .

The extension types may form their own (0, 1) specialization tree (hierarchical inclusion
dependency set). The cardinality constraints for extension types are partial functional
dependencies.

There are various variants for representation of a star schemata:

– Representation based on an entity type with attributes C1, ..., Ck and
Ck+1,, Cl and specialisations forming a specialization tree Cl+1, ..., Cn.

– Representation based on a relationship type C0 with components C1, ..., Ck, with
attributes Ck+1,, Cl and specialisations forming a specialization tree Cl+1, ...,
Cn. In this case, C0 is a pivot element [BP00] in the schema.

– Representation by be based on a hybrid form combining the two above.

Star schemata may occur in various variants within the same conceptual schema. There-
fore, we need variants of the same schema for integration into the schema. We distin-
guish the following variants:

Integration and representation variants: For representation and for integration we
can define views on the star type schema with the restriction of invariance of iden-
tifiability through one of its keys. Views define ‘context’ conditions for usage of
elements of the star schema.

Versions: Objects defined on the star schema may be a replaced later by objects that
display the actual use, e.g., Documents are obtained and stored in the Archive.

Variants replacing the entire type another through renaming or substitution of
elements.

History variants: Temporality can be explicitly recorded by adding a history dimen-
sion, i.e., for recording of instantiation, run, usage at present or in the past, and
archiving.

Lifespan variants of objects and their properties may be explicitly stored. The lifespan
of products in the acquisition process can be based on the Product-Quote-Request-
Response-Requisition-Order-InventoryItem-StoredItem cycle displayed in Figure 6

Meta-Characterization of Components, Units, and Associations
Utilization information is often only kept in log files. Log files are inappropriate if
the utilization or historic information must be kept after the data have been changed.
Database applications are often keeping track of utilization information based on
archives. The same observation can be made for schema evolution. We observed that
database schemata change already within the first year of database system exploitation.
In this case, the schema information must be kept as well.

Engineering Database Component Ware 7

The skeleton information is kept by a meta-characterization information that allows
to keep track on the purpose and the usage of the components, units, and associations.
Meta-characterization can be specified on the basis of dockets [SS99] that provide in-
formation. The following frames follows the co-design approach [Tha00] with the inte-
grated design of structuring, functionality, interactivity and context. The frame is struc-
tured into general information provided by the header, application characterization, the
content of the unit and documentation of the implementation.

– on the content (abstracts or summaries),
– on the delivery instruction,
– on the parameters of functions for treatment of the unit (opening with(out) zoom-

ing, breath, size, activation modus for multimedia components etc.)
– on the tight association to other units (versions, releases etc.),
– on the meta-information such as resources, restriction, copyright, roles, distribution

policy etc.
– on the content providers, content reviewers and review evaluators with quality con-

trol policies,
– on applicable workflows and the current status of completion and
– on the log information that enable in tracing the object’s life cycle.

Dockets can be extended to general descriptions of the utilization. The following def-
inition frame is appropriate which classifies meta-information into mandatory, good
practice, optional and useful information.

3 Non-invasive Database Component Composition

Construction Requirements
Component construction is based on a general component architecture or a skeleton.
Each component is developed in separate. The advantage of the strict separation is an
increase of modularisation, parameterisability and conformance to standards.

We derive now a none-invasive construction approach which does not change com-
ponents used for construction. Due to this restriction we gain a number of properties
such as adaptivity, seemless gluing, extensibility, aspect separation, scalability, and
metamodelling and abstraction.

Components and Harnesses
The construction is based on harnesses and the application skeleton. The skeleton is
a special form of a meta-schema architecture. It consists of a set of components and a
set of harnesses for superposition operations. Harnesses are similar to wiring harnesses
used in electrotechnics. A harness consists of a set of input-output channels that can
be used to combine wrapped components.

Given a sets of components K = {K1, ..., Km} and labels L = {L1, ..., Ln} with
n ≥ m. Given furthermore a total function τ : L → K used for assigning roles to
components in harnesses. The triple (K, L, τ) is called harness skeleton H. The arity
of the skeleton is n.

8 B. Thalheim

The skeleton is graphically represented by doubly rounded boxes. Components are
graphically represented by rounded boxes. The construction may lead to complex com-
ponents called units.

The example in Figure 3 has been used in one of our projects. Parliamentarians
and inhabitants are combined into a component Users. We may use a large variety of
positions. A user may use a certain service through some devices. Appointments are
based on the usage of services. Tools vary depending on services and on equipment.
The final schema contains more than 2.500 attribute, entity, cluster and relationship
types. The skeleton of the application is rather simple.

Position �
��

	 �

Organi-
zation
model

User

�
��

�
��

	 �

Appoint-
ment

Meet-
ing

�
��

�
��

	 �

Usage Docu-
ment

Service
Equip-
ment �

��
�
��

� �

Tool

Fig. 3. Skeleton of a Schema for e-Government Service Applications

Harness Filters
Components may be associated in a variety of ways. In the application in Figure 3 the
usage of services depends on the properties of parties, the tools they may use, and the
services provided. Services, parties, and tools have their own dimensionality. If we use
the classical approach to schema development each subtype may cause the introduction
of a new usage type. The schema explodes due to the introduction of a large variety of
usage type. To overcome this difficulty we introduce filters.

Given component schemata of an n-ary harness skeleton. A filter of an n-ary harness
is an n-ary relation defined of the multi-dimensional structure of the components, i.e.
on the views defined for the components.

Filters may be represented either graphically or in a tabular form. In our example, we
obtain the following filter. Components are already presented in Figure 3. We develop a
number of services which might be used depending on the role, rights, and positions of
the users. For instance, the parliamentarian is interested in search of related documents
in the role of an inhabitant and in search of related meetings.

Engineering Database Component Ware 9

�

�

�

User

Component

System Component

Service Component

•

•
•

•
•

•

•
••

Parliamentarian
view

Inhabitant
view

Document

Meeting

Proposals, critics
Download

Search related
Planing

Survey work

PrCr
Load
SRe
Pla
Sur

Parliam. Inhab.

- Doc
Meet -
Meet Doc
Meet,Doc Doc
Doc Doc

The implementation of filters is rather straightforward. Each harness has a filter.
Since views are defined together with their identification mechanism, an n-ary harness
may be represented by an (n+1)-ary relationship type associating the components with
their roles and extended by the filter.

A harness consists of the harness skeleton H = (K, L, τ) and the harness filter
F = {(Li, VLi) | 1 ≤ i ≤ n, Li ∈ L, VLi ⊆ Vτ(Li)} for a set of wrapped components
(Ki, Vi).

Operators Used For Non-Invasive Schema Construction
In [Tha03b] a number of composition operators for construction of entity and rela-
tionship types has been introduced: constructor-based composition, bulk composition,
lifespan composition (architecture-based composition, evolution composition, circula-
tion composition, incremental composition, network composition, loop composition),
and context composition.

We generalize now these composition operators to component-based schema con-
struction.

Constructor harnesses are based on composition operations such as product, nest, dis-
joint union, difference and set operators.

Bulk harnesses allow to bound components, types or classes which share the same
skeleton. Two harness skeletons H1 = (K1, L1τ1) and H2 = (K2, L2τ2) are called
unifiable if they are defined over the same set of components, | L1 | = | L1 | = n,
and there exists a permutation ρ on {1, ..., n} such that Kτ1(i) = Kτ2(ρ(i)). The bulk
harness of unifiable harnesses H1, ..., Hp is constructed by renaming the labels Lj

of each harness Hi to Li,j and combining the label functions τi.

10 B. Thalheim

Application-separating harnesses: An enterprize is usually split into departments or
units which run their own applications and use their own data. Sharing of data is
provided by specific harnesses.

Distribution-based harnesses: Data, functions and control may be distributed. The ex-
change is provided through specific combinations which might either be based on
exchange components that are connected to the sites by harnesses or be based on
combination harnesses.

Application-separation-based harnesses have been widely used for complex struc-
turing. The architecture of SAP R/3 often has been displayed in the form of a waffle.
For this reason, we prefer to call this composition waffle composition or architecture
composition displayed in Figure 4.

A

B

F

central
unit

C

E

D

Fig. 4. The Waffle Architecture Composition

An Application of Component Composition

A typical lifespan construction is the Order chain displayed in Figure 6. We discover a
chain in the ordering and trading process: Quote, Request, Response, Requisition, Or-
der, Delivery, Billing, Payment. Within this chain, parameters such as people responsi-
ble in certain stages are inherited through the components. They are included into the
type for the purpose of simpler maintenance. They cannot be changed within the type
inheriting the component. Thus, we use an extended inheritance of structuring beyond
the inheritance of identification.

At the same time, this schema can be constructed on the basis of components. We
may distinguish only four basic parts. Parties are either organisations or people. Prod-
ucts have a number of properties that are independent on parties. The two components
are associated within the ordering and trading process. The parties may play differ-
ent roles within this process. The parties act based on these roles. So, the component
schema is given in Figure 5.

The roles of parties in the ordering and trading process can be unfolded. We observe a
role of a supplier, of a requestor, of a responding party, of a requisition party and finally
the role of the orderer. At the same time, the final order has a history or a lifespan.
We may apply the lifespan constructor as well. The application can be either based on
collaborating components are can be condensed to the schema given in Figure 6. This
schema combines components and unfolds roles and expands the ordering and trading
activities. We notice that this schema is not necessarily the solution for the ordering and

Engineering Database Component Ware 11

Party �
�� Party

role �
��

�
��Activity Product

Fig. 5. Component Schema for Product Acquisition Activities

Business
Sales
Rule

Product

Organization

Person

�

Supplier

� Quote

�

Party⊕�

�

Request

�

�

� Response

� Requisition

�

�

�

�

Order

��

Governed
By

Creator

Of

By

For

IsA

On

Answers

By

Billing
To

By OnThe
Basis

Of

In
Response

To

Fig. 6. The Database Schema of the Ordering and Trading Process After Composition

trading process. We may use the components instead and explicitly model component
collaboration. In this case the components may stay non-integrated.

4 Collaborating Database Component Suites

Services Provided By Components For Loosely Coupled Suites
A service consists of a wrapped component (Ki, Vi), the competencies Σ(Ki,Vi) pro-
vided and properties Ψ(Ki,Vi) guaranteeing service quality. Wrapped components offer
their own data and functions through their views. The competence of a service mani-
fests itself in the set of tasks T that may be performed and in the guarantees for their
quality.

Database Component Collaboration
Instead of expanding and unfolding the component schema in Figure 5 we may follow
a different paradigm. The four basic parts are loosely associated by a collaboration, are
supported by component databases and communicate for task resolution. This approach
has already been tried for distributed databases. Our approach is far more general and
provides a satisfying solution.

12 B. Thalheim

A collaborating database component suite S = (K, H, F, Σ) consists of

– an set K of wrapped database components (Ki, Vi)
– a harness consisting of the harness skeleton H = (K, L, τ) and the harness filter F,
– an collaboration schema F among these components based on the harness, and
– obligations Σ requiring maintenance of the collaboration.

The collaboration schema explicitly models collaboration among components. We
distinguish three basic processes of component collaboration:

Communication is defined via exchange of messages and information or simply de-
fined via services and protocols [Kön03]. It depends on the choice of media, trans-
mission modes, meta-information, conversation structure and paths, and on the re-
striction policy. Communication must be based on harnesses.

Coordination is specified via management of components, their activities and resources.
It rules collaboration. The specification is based on the pre-/post-articulation of
tasks and on the description management of tasks, objects, and time. Coordination
may be based on loosely or tightly integrated activities, may be enabled, forced, or
blocked. Coordination is often specified through contracts and refines coordination
policies.

Cooperation is the production of work products taking place on a shared space. It can
be considered as the workflow or life case perspective. We may use a specification
based on storyboard-based interaction that is mapped to (generic and structured)
workflows. The information exchange is based on component services [ST06a] for
production, manipulation, organization of contributions.

This understanding has become now a folklore model for collaboration but has not yet
been defined in an explicit form. We use the separation of concern for the specification
of component collaboration.

Collaboration obligations are specified through the collaboration style and the col-
laboration pattern.
The collaboration style is based on four components describing
supporting programs of the connected component including collaboration

management;
data access pattern for data release through the net, e.g., broadcast or P2P, for sharing

of resources either based on transaction, consensus, and recovery models or based
on replication with fault management, and for remote access including scheduling
of access;

the style of collaboration on the basis of component models which restrict possible
communication;

and the coordination workflows describing the interplay among parties, discourse
types, name space mappings, and rules for collaboration.

Collaboration pattern generalize protocols and their specification [Kön03]. They in-
clude the description of components, their responsibilities, roles and rights. We know
a number of collaboration pattern supporting access and configuration (wrapper, fa-
cade, component configuration, interceptor, extension interface), event processing (re-
actor, proactor, asynchronous completion token, accept connector), synchronization

Engineering Database Component Ware 13

(scoped locking, strategized locking, thread-safe interface, double-checked locking op-
timization) and parallel execution (active object, monitor object, half-sync/half-async,
leader/followers, thread-specific storage).

Exchange frames combine the collaboration schema with the collaboration obliga-
tions. The collaboration schema can be considered to be an exchange architecture that
may also include the workplace of the client using the component suite.

Supporting Collaboration Schemata By Service Managers
The abstraction layer model [Tha00, ST06b] distinguishes between the application do-
main description, the requirements prescription, the system specification, and the logi-
cal or physical coding. The specification layer typically uses schemata for specification.
These schemata may be mapped to logical codings. The mapping of services to logical
database components is already given by classical database textbooks. We map col-
laboration schemata to service managers. This mapping provides also a framework for
characterisation of competencies and quality.

The service manager Man supports functionality and quality of services and man-
ages sets of wrapped components. The manager supports a number of features for col-
laboration. The architecture of the services manager follow the separation of concern
into communication, coordination, and cooperation. We may thus envision the architec-
ture in Figure 7.

Communication space:
(a)synchronous, multicast/broadcast,

protocols, standard

Coordination space:
operation management, session management,

shared resources management,
component management

Cooperation space/workspace:
workspace control, awareness, notifications,

security over component functions
Cooperation

Layer

Coordination
Layer

Communication
Layer

Wrapped component
manager

Coordination and
contracting system

Communication
support system

Fig. 7. Layers of a services manager for typical collaborating components

Collaborating services are defined by the quadruple S = (S, Man, ΣS , ΨS) de-
scribing (Collaborating Suite, Service Manager, Competence, Characteristics). The
competence is derived from the competence of the services. The quality of collabo-
rating services may also be derived from the quality properties of components in the
suite based on the properties of the harnesses, their collaboration schema, and the cor-
responding obligations. Typically, quality heavily depends on the suite properties. For
instance, reliability of a suite may be less than the reliability of its components.

Concluding by Demonstrating the Potential of Privacy Supporting Suites
Let us show the potential of loosely coupled database component suites for privacy
workbenchs. Privacy research is becoming the “poor cousin” among the mainstream
research. Novel applications such as Web2.0 have created a new rush towards social

14 B. Thalheim

networking and collaborative applications. This enables new possibilities, but also is a
threat to users’ privacy and data. On the surface, many people seem to like giving away
their data to others in exchange for building communities or like to get bribes from
companies in exchange of privacy. A number of hidden privacy implications of some
Web2.0 and Identity2.0 services, standards and applications can be observed here. At
the same time, it is often stated that there is no way to properly preserve privacy.

We show the potential of collaborating databases based on the infon model of
[AFFT05]. An infon is a discrete item of information of an individual and may be
parametric. The parameters are objects, and the so-called anchors assign these objects
such as agents to parameters.

We may distinguish four relationships between infons and individuals (people), in-
stitutions, agencies, or companies: An infon may be possessed by an individual, institu-
tion, agency, or company. For example, an individual may possess private information
of another individual or, a company may have in its database, private information of
someone. Individuals know that an infon is in possession of somebody else. Infons may
belong to individuals. Finally, an infon is owned by an individual. The ownership is the
basis for the specification of privacy.

The owner sovereignty principle restrains the right or sovereignty of people over
their owned infons. A policy supporting the owner sovereignty principle restrains the
possessor in the role of ‘content and topic observer’ and preserves the owner in the
role of ‘informed owner’ and ‘refresher’. The contract between owner and possessor
restricts the possibilities and rights of the possessor for using content and topics on an
ongoing basis by additional actions such as

– to monitor activities of the possessor,
– to collect information (about conditions of possession),
– to give a warning to the owner, and
– to take actions such as use, security, welfare, accuracy, correctness, and

maintenance of infons to the owner.

The collaboration is faithful if the portfolio and profile of contracting possessor do not
include any forbidden action or ability, all reporting obligations are observed, and the
proprietor is able to observe obligations applied to the possessor.

The private database is called information wallet if it is a component service with
the following additional function enhancements for owners o, possessors p, infons i,
infon requests ri, time stamps t, delivered infon streams identifiers si, public keys
puk(ri, o, p, t) for p, private keys prik(i, o, p, t) for o, records of delivered infons by
the owner store(o, i, p, si), and encoding and decoding relations encrypt(i, prik, si),
decrypt(p, ri, si, puk, t) extended by steganographic watermarking mark(i, o, p) for
infons:

– satisfy(request(ri, o, p, t)) ⇒
encrypt(i, prik(i, o, p, t), si)) ∧ deliver(p, o, si)) ∧ store(o, i, p, si))

– decrypt(p, ri, si, puk(si, o, p, t), t′) ⇒
inform(o, Act(p, si, decrypt), t′) ∧ mark(i, o, p)

– read(p, mark(i, o, p), t′) ⇒ inform(o, Act(p, si, read), t′)
– send(p, mark(i, o, p), p′, t′) ⇒ inform(o, Act(p, si, send(p, p′)), t′)∧

¬send(p, mark(i, o, p), p′, t′) ∧ send(p, ri, p
′, t′)

Engineering Database Component Ware 15

– satisfy(request(puk(si, o, p, t), o, p, t′)) ⇒
deliver(p, o, puk(si, o, p, t)) ∧ store(o, i, p, puk(si, o, p, t)) .

We assume that watermarked infons cannot be changed by anybody. We can show now
that information wallets preserve the owner sovereignty principle.

References

[AFFT05] Al-Fedaghi, S.S., Fiedler, G., Thalheim, B.: Privacy enhanced information systems.
In: Proc. EJC’05. Informaton Modelling and Knowledge Bases, Tallinn. Series
Frontiers in Arificial Intelligence, vol. XVII, IOS Press, Amsterdam (2005)

[BP00] Biskup, J., Polle, T.: Decomposition of database classes under path functional de-
pendencies and onto contraints. In: Schewe, K.-D., Thalheim, B. (eds.) FoIKS 2000.
LNCS, vol. 1762, pp. 31–49. Springer, Heidelberg (2000)

[Fey03] Feyer, T.: A Component-Based Approach to Human-Computer Interaction - Spec-
ification, Composition, and Application to Information Services. PhD thesis, BTU
Cottbus, Computer Science Institute, Cottbus (Dezember 2003)

[FT02] Feyer, T., Thalheim, B.: Many-dimensional schema modeling. In: Manolopoulos,
Y., Návrat, P. (eds.) ADBIS 2002. LNCS, vol. 2435, pp. 305–318. Springer, Heidel-
berg (2002)

[Kön03] König, H.: Protocol Engineering: Prinzip, Beschreibung und Entwicklung von
Kommunikationsprotokollen. Teubner, Stuttgart (2003)

[Kud82] Kudrjavcev, V.B.: Functional systems (in Russian). Moscov Lomonossov University
Press, Moscov (1982)

[Mal70] Malzew, A.I.: Algebraic systems. Nauka, Moscow (1970)
[PBGG89] Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The structure of the relational

database model. Springer, Heidelberg (1989)
[SS99] Schmidt, J.W., Schering, H.-W.: Dockets: a model for adding vaulue to content. In:

Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS,
vol. 1728, pp. 248–262. Springer, Heidelberg (1999)

[ST04] Schmidt, P., Thalheim, B.: Component-based modeling of huge databases. In:
Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255,
pp. 113–128. Springer, Heidelberg (2004)

[ST06a] Schewe, K.-D., Thalheim, B.: Component-driven engineering of database applica-
tions. In: APCCM’06, vol. CRPIT 49, pp. 105–114 (2006)

[ST06b] Schewe, K.-D., Thalheim, B.: Usage-based storyboarding for web information sys-
tems. Technical Report 2006-13, Christian Albrechts University Kiel, Institute of
Computer Science and Applied Mathematics, Kiel (2006)

[Tha00] Thalheim, B.: Entity-relationship modeling – Foundations of database technology.
Springer, Heidelberg (2000)

[Tha02] Thalheim, B.: Component construction of database schemes. In: Spaccapietra, S.,
March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 20–34. Springer,
Heidelberg (2002)

[Tha03a] Thalheim, B.: Database component ware. ADC’2003, Australian Computer Science
Communications 25(2), 13–26 (2003)

[Tha03b] Thalheim, B.: Database component ware. Proc. ADC’2003, Journal on Research
and Practice in Information Technology 17, 1–13 (2003)

[Tha05] Thalheim, B.: Component development and construction for database design. Data
and Knowledge Engineering 54, 77–95 (2005)

	Engineering Database Component Ware
	Towards Information Systems Engineering
	Database Components and Construction of Schemes
	Non-invasive Database Component Composition
	Collaborating Database Component Suites
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

