

Lecture Notes in Computer Science 4473
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Dirk Draheim Gerald Weber (Eds.)

Trends in Enterprise
ApplicationArchitecture

2nd International Conference, TEAA 2006
Berlin, Germany, November 29 - December 1, 2006
Revised Selected Papers

13

Volume Editors

Dirk Draheim
Software Competence Center Hagenberg
Austria
E-mail: draheim@acm.org

Gerald Weber
The University of Auckland
Department of Computer Science
New Zealand
E-mail: g.weber@cs.auckland.ac.nz

Library of Congress Control Number: 2007937136

CR Subject Classification (1998): C.3, C.4, D.2, F.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-75911-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75911-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12179268 06/3180 5 4 3 2 1 0

Preface

Enterprise applications range from simple Web shops to complex enterprise re-
source planning systems. In the area of enterprise applications, interesting re-
search questions arise with regard to software development, system performance,
stability, scalability, security, usability, and maintainability.

The purpose of this conference was to bring together researchers and prac-
titioners in the field of enterprise application architecture. In TEAA 2006, the
authors presented a wide range of contributions to current fields of research in
enterprise applications. We would like to thank our invited speaker, Bernhard
Thalheim, for his inspiring keynote, as well as all the speakers and participants
for their contributions and discussions. We are grateful to our sponsor IBM for
supporting the conference.

January 2007 Dirk Draheim
Gerald Weber

Organization

General Chair

Hans-Joachim Lenz Freie Universität Berlin, Germany

Program Committee Co-Chairs

Dirk Draheim SCCH, Austria
Gerald Weber The University of Auckland, New Zealand

Local Organizing Co-Chairs

Dirk Draheim SCCH, Austria
Marten Schönherr Technische Universität Berlin, Germany

TEAA 2006 Program Committee

Ilkay Altintas University of California, San Diego, USA
Jose Enrique

Armendariz-Inigo Universidad Pública de Navarra, Spain
Colin Atkinson University of Mannheim, Germany
Sandrine Balbo University of Melbourne, Australia
Phil Bernstein Microsoft Corporation, USA
Jim Bezdek University of West Florida, USA
Behzad Bordbar University of Birmingham, UK
Rajendra Bose University of Edinburgh, UK
Myra B. Cohen University of Nebraska - Lincoln, USA
Judith Cushing The Evergreen State College, USA
Hendrik Decker Ciudad Politecnica de la Innovacion Valencia,

Spain
Klaus R. Dittrich Universität Zürich, Switzerland
Gill Dobbie University of Auckland, New Zealand
Jürgen Ebert Universität Koblenz, Germany
Robert Franz University of Applied Sciences Brandenburg,

Germany
James Frew University of California, Santa Barbara, USA
Avigdor Gal Technion Haifa, Israel
Vahid Garousi Carleton University, Canada
Martin Gogolla Universität Bremen, Germany

VIII Organization

Norbert Gronau Universität Potsdam, Germany
Martin Große-Rhode Fraunhofer ISST, Germany
Richard Hall Laboratoire LSR-IMAG, France
Olaf Herden Berufsakademie Stuttgart, Germany
Igor Ivkovic University of Waterloo, USA
Raj Jain Washington University in St. Louis, USA
Seon Ho Kim University of Denver, USA
Josva Kleist Aalborg University, Denmark
Evangelos Kotsovinos Deutsche Telekom Laboratories, Germany
Hermann Krallmann Technical University Berlin, Germany
Gunther Lenz Siemens Corporate Research, USA
Wolfgang Lindner MIT, USA
Giuseppe A. Di Lucca University of Sannio, Italy
Christof Lutteroth University of Auckland, New Zealand
Teresa Mallardo Universita degli Studi di Bari, Italy
Hermann Maurer Universität Graz, Austria
Josephine Micallef Telcordia Technologies Inc., USA
Roland Mittermeir Universität Klagenfurt, Austria
Roland M. Müller Free University Berlin, Germany
Jan Newmarch Monash University, Australia
Toyohiro Nomoto Hitachi Systems Development Lab, Japan
Klaus-Dieter Schewe Massey University, New Zealand
Marten Schönherr Technische Universität Berlin, Germany
Douglas C. Schmidt Vanderbilt University, USA
Alan P. Sexton University of Birmingham, UK
Marcin Sikorski Gdansk University of Technology, Poland
Dennis Smith Carnegie Mellon University, USA
Il-Yeol Song Drexel University, USA
Bernhard Thalheim Christian-Albrechts-Universität Kiel, Germany
Dan Toft IBM Rochester, USA
Can Türker ETH Zürich, Switzerland
Mark van den Brand Technical University of Eindhoven, Netherlands
Hans Vangheluwe McGill University, Canada
Marlon E. Vieira Siemens Corporate Research, USA
Gerd Wagner Universität Cottbus, Germany
Rajeev Wankar University of Hyderabad, India
Rainer Weinreich Johannes Kepler Universität Linz, Austria
Yun Yang Swinburne University of Technology, Australia
Byunggu Yu University of Wyoming, USA
Yanchun Zhang Victoria University, Australia

Table of Contents

Invited Talk: Engineering Database Component Ware 1
Bernhard Thalheim

An Architecture for Integrating Heterogeneous University Applications
That Supports Monitoring . 16

Dhiah el Diehn I. Abou-Tair and Jörg Niere

On the Specification of Parameterizable Business Components 25
Jörg Ackermann and Klaus Turowski

Implementing Non-functional Service Descriptions in SOAs 40
Stephan Aier, Philipp Offermann, Marten Schönherr, and
Christian Schröpfer

Industrializing Software Development: The “Factory Automation”
Way . 54

N. Ilker Altintas, Semih Cetin, and Ali H. Dogru

A Closer Look at Database Replication Middleware Architectures for
Enterprise Applications . 69

J.E. Armendáriz-Iñigo, H. Decker, F.D. Muñoz-Escóı, and
J.R. González de Mend́ıvil

Using Rules and R2ML for Modeling Negotiation Mechanisms in
E-Commerce Agent Systems . 84

Costin Bădică, Adrian Giurca, and Gerd Wagner

Dealing with Scalability in an Event-Based Infrastructure to Support
Global Software Development . 100

Rubby Casallas, Oscar González, and Nicolás López

Models and Tools for SOA Governance . 112
Patricia Derler and Rainer Weinreich

Generating Systems from Multiple Levels of Abstraction 127
Martin Girschick, Thomas Kühne, and Felix Klar

Using Mobile Architecture Modeling and Simulation for Enterprise
Applications . 142

Volker Gruhn and Clemens Schäfer

An UML-Based Approach for Validation of Software Architecture
Descriptions . 158

Mohamed Hadj Kacem, Mohamed Jmaiel, Ahmed Hadj Kacem, and
Khalil Drira

X Table of Contents

Integration of an Action Language Via UML Action Semantics 172
Claudius Heitz, Peter Thiemann, and Thomas Wölfle

Software Product Lines, Service-Oriented Architecture and Frameworks:
Worlds Apart or Ideal Partners? . 187

Andreas Helferich, Georg Herzwurm, Stefan Jesse, and
Martin Mikusz

Modeling the Effect of Application Server Settings on the Performance
of J2EE Web Applications . 202

Gábor Imre, Tihamér Levendovszky, and Hassan Charaf

Possibilities for Advanced Dissemination and Durable Storage of
Scientific Data on the Grid . 217

Rutger Kramer

Developing Realistic Approaches for the Migration of Legacy
Components to Service-Oriented Architecture Environments 226

Grace Lewis and Dennis B. Smith

A Generic Constraints-Based Framework for Business Modeling 241
Min Li and Christopher J. Hogger

Experimenting with the Expressive Power of an Enterprise Architecture
Framework . 255

Francisca Losavio, Dinarle Ortega, Maŕıa Pérez, and
Martha González

AP1: A Platform for Model-Based Software Engineering 270
Christof Lutteroth

A User-Oriented Design for Business Workflow Systems 285
Amir Pourabdollah, Tim Brailsford, and Helen Ashman

Olympic Agents . 298
Nikolaos Skarmeas, Christos KK Loverdos, Katerina Tsiara,
Alexandros Bassakidis, Aris Tzoumas, and Dimitris Livas

Relating Requirements to a User Interface Architecture for a Rich
Enterprise Web Application . 311

Rajanikanth Tanikella, Gilberto Matos, Grace Tai, and
Brad Wehrwein

FJM2 - A Decentralized JMS System . 326
Ruey-Shyang Wu, Kuo-Jung Su, Fengyi Lin, and Shyan-Ming Yuan

Implementing Automated Analyses in an Active Data Warehouse
Environment Using Workflow Technology . 341

Michael Zwick, Christian Lettner, and Christian Hawel

Author Index . 355

Engineering Database Component Ware

Bernhard Thalheim

Christian Albrechts University Kiel, Department of Computer Science, 24098 Kiel, Germany
thalheim@is.informatik.uni-kiel.de

Abstract. Large database applications often have a very complex structuring that
complicate maintenance, extension, querying, programming. Due to this com-
plexity systems become unmaintenable. We observe, however, that large database
applications often use an implicit structuring into connected components. We pro-
pose to initially use this internal structuring for application development. The
application architecture is based on database components. Database components
can be composed to an application system. This paper shows how components
may be developed, composed and applied.

1 Towards Information Systems Engineering

Component-Based Application Engineering
Software engineering is still based on programming in the small although a number
of approaches has been proposed for programming in the large. Programming in the
large uses strategies for programming, is based on architectures, and constructs software
from components which collaborate, are embedded into each other, or are integrated
for formation of new systems. Programming constructs are then pattern or high-level
programming units and languages.

The next generation of programming observed nowadays is programming in the
world within a collaboration of programmers and systems. It uses advanced scripting
languages such as Groovy with dynamic integration of components into other compo-
nents, standardisation of components with guarantees of service qualities, collaboration
of components with communication, coordination and cooperation features, distribution
of workload, and virtual communities. Therefore, component engineering will also form
the kernel engineering technique for programming in the world. The next generation of
software engineering envisioned is currently called as programming by composition or
construction. In this case components also form the kernel technology for software and
hardware.

Software development is mainly based on stepwise development from scratch. Soft-
ware reuse has been considered but never reached the maturity for application engi-
neering. Database development is also mainly development in the small. Schemes are
developed step by step, extended type by type, and normalized locally type by type.
Views are still defined type by type although more complex schemata can be easily
defined by extended ER schemata [Tha00].

Therefore, database engineering must still be considered as handicraft work which
require the skills of an artisan. Engineering in other disciplines has already gained the
maturity for industrial development and application.

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 B. Thalheim

�

�

�
�

� �

ScrewBasic

ScrewOtherData

ScrewManufacturing

ScrewMaterial

ScrewAddOn ScrewHead ScrewSupplier

Fig. 1. HERM Representation of the Star Type Screw

Engineering applications have been based on the simple separation principle: Sepa-
ration of elements which are stable from those elements which are not. This separation
allows standardization and simple integration. An example is the specification of screws
as displayed in Figure 11. Screws have a standardized representation: basic data, data
on the material, data on the manufacturing, data on specific properties such as head, etc.

Complex Applications Result in Large Schemata
Monographs and database course books usually base explanations on small or ‘toy’
examples. Reality is, however, completely different. Database schemata tend to be
large, not surveyable, incomprehensible and partially inconsistent due to application,
the database development life cycle and due to the number of team members involved
at different time intervals. Thus, consistent management of the database schema might
become a nightmare and may lead to legacy problems. The size of the schemata may be
very large.

It is a common observation that large database schemata are error-prone, are difficult
to maintain and to extend and are not surveyable. Moreover, development of retrieval
and operation facilities requires highest professional skills in abstraction, memoriza-
tion and programming. Such schemata reach sizes of more than 1000 attribute, entity
and relationship types. Since they are not comprehensible any change to the schema is
performed by extending the schema and thus making it even more complex. Database
designers and programmers are not able to capture the schema.

Application schemata could be simpler only to a certain extent if software engineering
approaches are applied. The repetition and redundancy in schemata is also caused by

– different usage of similar types of the schema,
– minor and small differences of the types structure in application views, and
– semantic differences of variants of types.

Therefore, we need approaches which allow to reason on repeating structures inside
schemata, on semantic differences and differences in usage of objects.

1 We use the extended ER model [Tha00] that allows to display subtypes on the basis of unary
relationship types and thus simplifies representation.

Engineering Database Component Ware 3

Large schemata also suffer from the deficiency of variation detection: The same or
similar content is often repeated in a schema without noticing it.

Techniques to Decrease Complexity in Applications
Large database schemata can be drastically simplified if techniques of modular mod-
elling such as modular design by units [Tha00] are used. It is an abstraction technique
based on principles of hiding and encapsulation. Design by units allows to consider
parts of the schema in a separate fashion. The parts are connected via types which func-
tion similar to bridges.

Data warehousing and user views are often based on snowflake or star schemata. The
intuition behind such schemata is often hidden. Star and snowflake schemata are easier
to understand, to query, to survey and to maintain. At the same time, these structures
are of high redundancy and restricted modelling power. For instance, the central type
in a star or snowflake schema is a relationship type which has attributes that use only
numerical types. We may wonder, however, why we need to apply these restrictions and
why we should not use this approach in general.

Co-design [Tha00] of database applications aims in consistent development of all
facets of database applications: structuring of the database by schema types and static
integrity constraints, behavior modelling by specification of functionality and dynamic
integrity constraints and interactivity modelling by assigning views to activities of ac-
tors in the corresponding dialogue steps. Co-design, thus, is based on the specification
of the the database schema, functions, views and dialogue steps. At the same time,
various abstraction layers are separated such as the conceptual layer, requirements ac-
quisition layer and implementation layer.

Software becomes surveyable, extensible and maintainable if a clear separation of
concerns and application parts is applied. In this case, a skeleton of the application
structure is developed. This skeleton separates parts or services. Parts are connected
through interfaces. Based on this architecture, an application can be developed part by
part.

We combine modularity, star structuring, co-design, and architecture development
to a novel framework based on components. Such combination seems to be not fea-
sible. We discover, however, that we may integrate all these approaches by using a
component-based approach. This skeleton can be refined during evolution of the
schema. Then, each component is developed step by step. Structuring in component-
based co-design is based on two constructs:

Components: Components are the main building blocks. They are used for structur-
ing of the main data. The association among components is based on ‘connector’
types (called hinge or bridge types) that enable in associating the components in a
variable fashion.

Skeleton-based construction: Components are assembled together by application of
connector types. These connector types are usually relationship types.

Goals of the Paper
The paper surveys our approach [Tha02, Tha03a, Tha05] for systematic development of
large database schemata and applies it for database construction based on components
and for collaborating component suites. The paper is based on [Fey03, FT02, ST06a,

4 B. Thalheim

ST04]. We introduce first the concept of database components and then discuss engi-
neering of database applications based on components.

2 Database Components and Construction of Schemes

Database Schemes in a Nutshell
We use the extended ER model for representation of structuring and behavior gener-
alizing the approach of [PBGG89]. The extended ER model (HERM) [Tha00] has a
generic algebra and logic, i.e., the algebra of derivable operations and the fragment of
(hierarchical) predicate logic may be derived from the HERM algebra whenever the
structure of the database is given.

A database type S = (S, O, Σ) is given by
– a structure S defined by a type expression defined over the set of basic types B, a

set of labels L and the constructors product (tuple), set and bag, i.e. an expression
defined by the recursive type equality
t = B | t × ... × t | {t} | [t] | l : t ,

– a set of operations defined in the ER algebra and limited to S, and
– a set of (static and dynamic) integrity constraints defined in the hierarchical predi-

cate logic with the base predicate PS .

Objects of the database type SC are S-structured. Classes SC are sets of objects for
which the set of static integrity constraints is valid.

Operations can be classified into “retrieval” operations enabling in generating values
from the class SC and “modification” operations allowing to change the objects in the
class SC if static and dynamic integrity constraints are not invalidated.

A database schema D = (S1,,Sm, ΣG) is defined by

– a list of different database types and
– a set of global integrity constraints.

The HERM algebra can be used to define (parameterized) views V = (V, OV) on a
schema D via

– an (parameterized) algebraic expression V on D and
– a set of (parameterized) operations of the HERM algebra applicable to V .

The view operations may be classified too into retrieval operations OR
V and modification

operations OM
V . Based on this classification we derive an output view OV of V and an

input view IV of V.
In a similar way (but outside the scope of this paper) we may define transactions,

interfaces, interactivity, recovery, etc.
Obviously, IV and OV are typed based on the type system. Data warehouse design

is mainly view design [Tha00].

Database Components and Component Algebra
A database component is database scheme that has an import and an export inter-
face for connecting it to other components by standardized interface techniques. Com-
ponents are defined in a data warehouse setting. They consist of input elements, output

Engineering Database Component Ware 5

elements and have a database structuring. Components may be considered as input-
output machines that are extended by the set of all states SC of the database with a set
of corresponding input views IV and a set of corresponding output views OV . Input
and output of components is based on channels K . The structuring is specified by SK .
The structuring of channels is described by the function type : C → V for the view
schemata V . Views are used for collaboration of components with the environment via
data exchange. In general, the input and output sets may be considered as abstract words
from M∗ or as words on the database structuring.

A database component K = (SK , IVK , OV
K , SC

K , ΔK) is specified by

(static) schema SK describing the database schema of K,

syntactic interface providing names (structures, functions) with parameters and
database structure for SC

K and IVK , OV
K ,

behavior relating the IV , OV (view) channels
ΔK : (SC

K × (IVK → M∗)) → P(SC
K × (OV

K → M∗)).

Components can be associated to each other. The association is restricted to domain-
compatible input or output schemata which are free of name conflicts.

Components K1 = (S1, I
V
1 , OV

1 , SC
1 , Δ1) and K2 = (S2, I

V
2 , OV

2 , SC
2 , Δ2) are free

of name conflicts if the set of attribute, entity and relationship type names are disjoint.
Channels C1 and C2 of components K1 = (S1, I

V
1 , OV

1 , SC
1 , Δ1) and

K2 = (S2, I
V
2 , OV

2 , SC
2 , Δ2) are called domain-compatible if

dom(type(C1)) = dom(type(C2)).
An output OV

1 of the component K1 is domain-compatible with an input IV
2 of the

component K2 if dom(type(OV
1)) ⊆ dom(type(IV

2))
Component operations such as merge, fork, transmission are definable via appli-

cation of superposition operations [Kud82, Mal70]: Identification of channels, per-
mutation of channels, renaming of channels, introduction of fictitious channels, and
parallel composition with feedback displayed in Figure 2.

� �

� �

� �
C1 C2

Fig. 2. The Composition of Database Components

Thus, a component schema is usually characterized by a kernel entity type used
for storing basic data, by a number of dimensions that are usually based on subtypes
of the entity type which are used for additional properties. These additional properties
are clustered according to their occurrence for the things under consideration. Typically,
the component schema uses four dimensions: subtypes, additional characterization, ver-
sions and meta-characterizations.

6 B. Thalheim

The star schema is the main component schema used for construction.
A star schema for a database type C0 is defined by

– the (full) (HERM) schema S = (C0, C1, ..., Cn) covering all types on which C0
has been defined,

– the subset of strong types C1,, Ck forming a set of keys K1, ..., Ks for C0, i.e.,
∪s

i=1Ki = {C1,, Ck} and Ki → C0 , C0 → Ki for 1 ≤ i ≤ s
and card(C0, Ci) = (1, n) for (1 ≤ i ≤ k) .

– the extension types Ck+1, ..., Cm satisfying the (general) cardinality constraint
card(C0, Cj) = (0, 1) for ((k + 1) ≤ i ≤ n) .

The extension types may form their own (0, 1) specialization tree (hierarchical inclusion
dependency set). The cardinality constraints for extension types are partial functional
dependencies.

There are various variants for representation of a star schemata:

– Representation based on an entity type with attributes C1, ..., Ck and
Ck+1,, Cl and specialisations forming a specialization tree Cl+1, ..., Cn.

– Representation based on a relationship type C0 with components C1, ..., Ck, with
attributes Ck+1,, Cl and specialisations forming a specialization tree Cl+1, ...,
Cn. In this case, C0 is a pivot element [BP00] in the schema.

– Representation by be based on a hybrid form combining the two above.

Star schemata may occur in various variants within the same conceptual schema. There-
fore, we need variants of the same schema for integration into the schema. We distin-
guish the following variants:

Integration and representation variants: For representation and for integration we
can define views on the star type schema with the restriction of invariance of iden-
tifiability through one of its keys. Views define ‘context’ conditions for usage of
elements of the star schema.

Versions: Objects defined on the star schema may be a replaced later by objects that
display the actual use, e.g., Documents are obtained and stored in the Archive.

Variants replacing the entire type another through renaming or substitution of
elements.

History variants: Temporality can be explicitly recorded by adding a history dimen-
sion, i.e., for recording of instantiation, run, usage at present or in the past, and
archiving.

Lifespan variants of objects and their properties may be explicitly stored. The lifespan
of products in the acquisition process can be based on the Product-Quote-Request-
Response-Requisition-Order-InventoryItem-StoredItem cycle displayed in Figure 6

Meta-Characterization of Components, Units, and Associations
Utilization information is often only kept in log files. Log files are inappropriate if
the utilization or historic information must be kept after the data have been changed.
Database applications are often keeping track of utilization information based on
archives. The same observation can be made for schema evolution. We observed that
database schemata change already within the first year of database system exploitation.
In this case, the schema information must be kept as well.

Engineering Database Component Ware 7

The skeleton information is kept by a meta-characterization information that allows
to keep track on the purpose and the usage of the components, units, and associations.
Meta-characterization can be specified on the basis of dockets [SS99] that provide in-
formation. The following frames follows the co-design approach [Tha00] with the inte-
grated design of structuring, functionality, interactivity and context. The frame is struc-
tured into general information provided by the header, application characterization, the
content of the unit and documentation of the implementation.

– on the content (abstracts or summaries),
– on the delivery instruction,
– on the parameters of functions for treatment of the unit (opening with(out) zoom-

ing, breath, size, activation modus for multimedia components etc.)
– on the tight association to other units (versions, releases etc.),
– on the meta-information such as resources, restriction, copyright, roles, distribution

policy etc.
– on the content providers, content reviewers and review evaluators with quality con-

trol policies,
– on applicable workflows and the current status of completion and
– on the log information that enable in tracing the object’s life cycle.

Dockets can be extended to general descriptions of the utilization. The following def-
inition frame is appropriate which classifies meta-information into mandatory, good
practice, optional and useful information.

3 Non-invasive Database Component Composition

Construction Requirements
Component construction is based on a general component architecture or a skeleton.
Each component is developed in separate. The advantage of the strict separation is an
increase of modularisation, parameterisability and conformance to standards.

We derive now a none-invasive construction approach which does not change com-
ponents used for construction. Due to this restriction we gain a number of properties
such as adaptivity, seemless gluing, extensibility, aspect separation, scalability, and
metamodelling and abstraction.

Components and Harnesses
The construction is based on harnesses and the application skeleton. The skeleton is
a special form of a meta-schema architecture. It consists of a set of components and a
set of harnesses for superposition operations. Harnesses are similar to wiring harnesses
used in electrotechnics. A harness consists of a set of input-output channels that can
be used to combine wrapped components.

Given a sets of components K = {K1, ..., Km} and labels L = {L1, ..., Ln} with
n ≥ m. Given furthermore a total function τ : L → K used for assigning roles to
components in harnesses. The triple (K, L, τ) is called harness skeleton H. The arity
of the skeleton is n.

8 B. Thalheim

The skeleton is graphically represented by doubly rounded boxes. Components are
graphically represented by rounded boxes. The construction may lead to complex com-
ponents called units.

The example in Figure 3 has been used in one of our projects. Parliamentarians
and inhabitants are combined into a component Users. We may use a large variety of
positions. A user may use a certain service through some devices. Appointments are
based on the usage of services. Tools vary depending on services and on equipment.
The final schema contains more than 2.500 attribute, entity, cluster and relationship
types. The skeleton of the application is rather simple.

Position �
��

	 �

Organi-
zation
model

User

�
��

�
��

	 �

Appoint-
ment

Meet-
ing

�
��

�
��

	 �

Usage Docu-
ment

Service
Equip-
ment �

��
�
��

� �

Tool

Fig. 3. Skeleton of a Schema for e-Government Service Applications

Harness Filters
Components may be associated in a variety of ways. In the application in Figure 3 the
usage of services depends on the properties of parties, the tools they may use, and the
services provided. Services, parties, and tools have their own dimensionality. If we use
the classical approach to schema development each subtype may cause the introduction
of a new usage type. The schema explodes due to the introduction of a large variety of
usage type. To overcome this difficulty we introduce filters.

Given component schemata of an n-ary harness skeleton. A filter of an n-ary harness
is an n-ary relation defined of the multi-dimensional structure of the components, i.e.
on the views defined for the components.

Filters may be represented either graphically or in a tabular form. In our example, we
obtain the following filter. Components are already presented in Figure 3. We develop a
number of services which might be used depending on the role, rights, and positions of
the users. For instance, the parliamentarian is interested in search of related documents
in the role of an inhabitant and in search of related meetings.

Engineering Database Component Ware 9

�

�

�

User

Component

System Component

Service Component

•

•
•

•
•

•

•
••

Parliamentarian
view

Inhabitant
view

Document

Meeting

Proposals, critics
Download

Search related
Planing

Survey work

PrCr
Load
SRe
Pla
Sur

Parliam. Inhab.

- Doc
Meet -
Meet Doc
Meet,Doc Doc
Doc Doc

The implementation of filters is rather straightforward. Each harness has a filter.
Since views are defined together with their identification mechanism, an n-ary harness
may be represented by an (n+1)-ary relationship type associating the components with
their roles and extended by the filter.

A harness consists of the harness skeleton H = (K, L, τ) and the harness filter
F = {(Li, VLi) | 1 ≤ i ≤ n, Li ∈ L, VLi ⊆ Vτ(Li)} for a set of wrapped components
(Ki, Vi).

Operators Used For Non-Invasive Schema Construction
In [Tha03b] a number of composition operators for construction of entity and rela-
tionship types has been introduced: constructor-based composition, bulk composition,
lifespan composition (architecture-based composition, evolution composition, circula-
tion composition, incremental composition, network composition, loop composition),
and context composition.

We generalize now these composition operators to component-based schema con-
struction.

Constructor harnesses are based on composition operations such as product, nest, dis-
joint union, difference and set operators.

Bulk harnesses allow to bound components, types or classes which share the same
skeleton. Two harness skeletons H1 = (K1, L1τ1) and H2 = (K2, L2τ2) are called
unifiable if they are defined over the same set of components, | L1 | = | L1 | = n,
and there exists a permutation ρ on {1, ..., n} such that Kτ1(i) = Kτ2(ρ(i)). The bulk
harness of unifiable harnesses H1, ..., Hp is constructed by renaming the labels Lj

of each harness Hi to Li,j and combining the label functions τi.

10 B. Thalheim

Application-separating harnesses: An enterprize is usually split into departments or
units which run their own applications and use their own data. Sharing of data is
provided by specific harnesses.

Distribution-based harnesses: Data, functions and control may be distributed. The ex-
change is provided through specific combinations which might either be based on
exchange components that are connected to the sites by harnesses or be based on
combination harnesses.

Application-separation-based harnesses have been widely used for complex struc-
turing. The architecture of SAP R/3 often has been displayed in the form of a waffle.
For this reason, we prefer to call this composition waffle composition or architecture
composition displayed in Figure 4.

A

B

F

central
unit

C

E

D

Fig. 4. The Waffle Architecture Composition

An Application of Component Composition

A typical lifespan construction is the Order chain displayed in Figure 6. We discover a
chain in the ordering and trading process: Quote, Request, Response, Requisition, Or-
der, Delivery, Billing, Payment. Within this chain, parameters such as people responsi-
ble in certain stages are inherited through the components. They are included into the
type for the purpose of simpler maintenance. They cannot be changed within the type
inheriting the component. Thus, we use an extended inheritance of structuring beyond
the inheritance of identification.

At the same time, this schema can be constructed on the basis of components. We
may distinguish only four basic parts. Parties are either organisations or people. Prod-
ucts have a number of properties that are independent on parties. The two components
are associated within the ordering and trading process. The parties may play differ-
ent roles within this process. The parties act based on these roles. So, the component
schema is given in Figure 5.

The roles of parties in the ordering and trading process can be unfolded. We observe a
role of a supplier, of a requestor, of a responding party, of a requisition party and finally
the role of the orderer. At the same time, the final order has a history or a lifespan.
We may apply the lifespan constructor as well. The application can be either based on
collaborating components are can be condensed to the schema given in Figure 6. This
schema combines components and unfolds roles and expands the ordering and trading
activities. We notice that this schema is not necessarily the solution for the ordering and

Engineering Database Component Ware 11

Party �
�� Party

role �
��

�
��Activity Product

Fig. 5. Component Schema for Product Acquisition Activities

Business
Sales
Rule

Product

Organization

Person

�

Supplier

� Quote

�

Party⊕�

�

Request

�

�

� Response

� Requisition

�

�

�

�

Order

��

Governed
By

Creator

Of

By

For

IsA

On

Answers

By

Billing
To

By OnThe
Basis

Of

In
Response

To

Fig. 6. The Database Schema of the Ordering and Trading Process After Composition

trading process. We may use the components instead and explicitly model component
collaboration. In this case the components may stay non-integrated.

4 Collaborating Database Component Suites

Services Provided By Components For Loosely Coupled Suites
A service consists of a wrapped component (Ki, Vi), the competencies Σ(Ki,Vi) pro-
vided and properties Ψ(Ki,Vi) guaranteeing service quality. Wrapped components offer
their own data and functions through their views. The competence of a service mani-
fests itself in the set of tasks T that may be performed and in the guarantees for their
quality.

Database Component Collaboration
Instead of expanding and unfolding the component schema in Figure 5 we may follow
a different paradigm. The four basic parts are loosely associated by a collaboration, are
supported by component databases and communicate for task resolution. This approach
has already been tried for distributed databases. Our approach is far more general and
provides a satisfying solution.

12 B. Thalheim

A collaborating database component suite S = (K, H, F, Σ) consists of

– an set K of wrapped database components (Ki, Vi)
– a harness consisting of the harness skeleton H = (K, L, τ) and the harness filter F,
– an collaboration schema F among these components based on the harness, and
– obligations Σ requiring maintenance of the collaboration.

The collaboration schema explicitly models collaboration among components. We
distinguish three basic processes of component collaboration:

Communication is defined via exchange of messages and information or simply de-
fined via services and protocols [Kön03]. It depends on the choice of media, trans-
mission modes, meta-information, conversation structure and paths, and on the re-
striction policy. Communication must be based on harnesses.

Coordination is specified via management of components, their activities and resources.
It rules collaboration. The specification is based on the pre-/post-articulation of
tasks and on the description management of tasks, objects, and time. Coordination
may be based on loosely or tightly integrated activities, may be enabled, forced, or
blocked. Coordination is often specified through contracts and refines coordination
policies.

Cooperation is the production of work products taking place on a shared space. It can
be considered as the workflow or life case perspective. We may use a specification
based on storyboard-based interaction that is mapped to (generic and structured)
workflows. The information exchange is based on component services [ST06a] for
production, manipulation, organization of contributions.

This understanding has become now a folklore model for collaboration but has not yet
been defined in an explicit form. We use the separation of concern for the specification
of component collaboration.

Collaboration obligations are specified through the collaboration style and the col-
laboration pattern.
The collaboration style is based on four components describing
supporting programs of the connected component including collaboration

management;
data access pattern for data release through the net, e.g., broadcast or P2P, for sharing

of resources either based on transaction, consensus, and recovery models or based
on replication with fault management, and for remote access including scheduling
of access;

the style of collaboration on the basis of component models which restrict possible
communication;

and the coordination workflows describing the interplay among parties, discourse
types, name space mappings, and rules for collaboration.

Collaboration pattern generalize protocols and their specification [Kön03]. They in-
clude the description of components, their responsibilities, roles and rights. We know
a number of collaboration pattern supporting access and configuration (wrapper, fa-
cade, component configuration, interceptor, extension interface), event processing (re-
actor, proactor, asynchronous completion token, accept connector), synchronization

Engineering Database Component Ware 13

(scoped locking, strategized locking, thread-safe interface, double-checked locking op-
timization) and parallel execution (active object, monitor object, half-sync/half-async,
leader/followers, thread-specific storage).

Exchange frames combine the collaboration schema with the collaboration obliga-
tions. The collaboration schema can be considered to be an exchange architecture that
may also include the workplace of the client using the component suite.

Supporting Collaboration Schemata By Service Managers
The abstraction layer model [Tha00, ST06b] distinguishes between the application do-
main description, the requirements prescription, the system specification, and the logi-
cal or physical coding. The specification layer typically uses schemata for specification.
These schemata may be mapped to logical codings. The mapping of services to logical
database components is already given by classical database textbooks. We map col-
laboration schemata to service managers. This mapping provides also a framework for
characterisation of competencies and quality.

The service manager Man supports functionality and quality of services and man-
ages sets of wrapped components. The manager supports a number of features for col-
laboration. The architecture of the services manager follow the separation of concern
into communication, coordination, and cooperation. We may thus envision the architec-
ture in Figure 7.

Communication space:
(a)synchronous, multicast/broadcast,

protocols, standard

Coordination space:
operation management, session management,

shared resources management,
component management

Cooperation space/workspace:
workspace control, awareness, notifications,

security over component functions
Cooperation

Layer

Coordination
Layer

Communication
Layer

Wrapped component
manager

Coordination and
contracting system

Communication
support system

Fig. 7. Layers of a services manager for typical collaborating components

Collaborating services are defined by the quadruple S = (S, Man, ΣS , ΨS) de-
scribing (Collaborating Suite, Service Manager, Competence, Characteristics). The
competence is derived from the competence of the services. The quality of collabo-
rating services may also be derived from the quality properties of components in the
suite based on the properties of the harnesses, their collaboration schema, and the cor-
responding obligations. Typically, quality heavily depends on the suite properties. For
instance, reliability of a suite may be less than the reliability of its components.

Concluding by Demonstrating the Potential of Privacy Supporting Suites
Let us show the potential of loosely coupled database component suites for privacy
workbenchs. Privacy research is becoming the “poor cousin” among the mainstream
research. Novel applications such as Web2.0 have created a new rush towards social

14 B. Thalheim

networking and collaborative applications. This enables new possibilities, but also is a
threat to users’ privacy and data. On the surface, many people seem to like giving away
their data to others in exchange for building communities or like to get bribes from
companies in exchange of privacy. A number of hidden privacy implications of some
Web2.0 and Identity2.0 services, standards and applications can be observed here. At
the same time, it is often stated that there is no way to properly preserve privacy.

We show the potential of collaborating databases based on the infon model of
[AFFT05]. An infon is a discrete item of information of an individual and may be
parametric. The parameters are objects, and the so-called anchors assign these objects
such as agents to parameters.

We may distinguish four relationships between infons and individuals (people), in-
stitutions, agencies, or companies: An infon may be possessed by an individual, institu-
tion, agency, or company. For example, an individual may possess private information
of another individual or, a company may have in its database, private information of
someone. Individuals know that an infon is in possession of somebody else. Infons may
belong to individuals. Finally, an infon is owned by an individual. The ownership is the
basis for the specification of privacy.

The owner sovereignty principle restrains the right or sovereignty of people over
their owned infons. A policy supporting the owner sovereignty principle restrains the
possessor in the role of ‘content and topic observer’ and preserves the owner in the
role of ‘informed owner’ and ‘refresher’. The contract between owner and possessor
restricts the possibilities and rights of the possessor for using content and topics on an
ongoing basis by additional actions such as

– to monitor activities of the possessor,
– to collect information (about conditions of possession),
– to give a warning to the owner, and
– to take actions such as use, security, welfare, accuracy, correctness, and

maintenance of infons to the owner.

The collaboration is faithful if the portfolio and profile of contracting possessor do not
include any forbidden action or ability, all reporting obligations are observed, and the
proprietor is able to observe obligations applied to the possessor.

The private database is called information wallet if it is a component service with
the following additional function enhancements for owners o, possessors p, infons i,
infon requests ri, time stamps t, delivered infon streams identifiers si, public keys
puk(ri, o, p, t) for p, private keys prik(i, o, p, t) for o, records of delivered infons by
the owner store(o, i, p, si), and encoding and decoding relations encrypt(i, prik, si),
decrypt(p, ri, si, puk, t) extended by steganographic watermarking mark(i, o, p) for
infons:

– satisfy(request(ri, o, p, t)) ⇒
encrypt(i, prik(i, o, p, t), si)) ∧ deliver(p, o, si)) ∧ store(o, i, p, si))

– decrypt(p, ri, si, puk(si, o, p, t), t′) ⇒
inform(o, Act(p, si, decrypt), t′) ∧ mark(i, o, p)

– read(p, mark(i, o, p), t′) ⇒ inform(o, Act(p, si, read), t′)
– send(p, mark(i, o, p), p′, t′) ⇒ inform(o, Act(p, si, send(p, p′)), t′)∧

¬send(p, mark(i, o, p), p′, t′) ∧ send(p, ri, p
′, t′)

Engineering Database Component Ware 15

– satisfy(request(puk(si, o, p, t), o, p, t′)) ⇒
deliver(p, o, puk(si, o, p, t)) ∧ store(o, i, p, puk(si, o, p, t)) .

We assume that watermarked infons cannot be changed by anybody. We can show now
that information wallets preserve the owner sovereignty principle.

References

[AFFT05] Al-Fedaghi, S.S., Fiedler, G., Thalheim, B.: Privacy enhanced information systems.
In: Proc. EJC’05. Informaton Modelling and Knowledge Bases, Tallinn. Series
Frontiers in Arificial Intelligence, vol. XVII, IOS Press, Amsterdam (2005)

[BP00] Biskup, J., Polle, T.: Decomposition of database classes under path functional de-
pendencies and onto contraints. In: Schewe, K.-D., Thalheim, B. (eds.) FoIKS 2000.
LNCS, vol. 1762, pp. 31–49. Springer, Heidelberg (2000)

[Fey03] Feyer, T.: A Component-Based Approach to Human-Computer Interaction - Spec-
ification, Composition, and Application to Information Services. PhD thesis, BTU
Cottbus, Computer Science Institute, Cottbus (Dezember 2003)

[FT02] Feyer, T., Thalheim, B.: Many-dimensional schema modeling. In: Manolopoulos,
Y., Návrat, P. (eds.) ADBIS 2002. LNCS, vol. 2435, pp. 305–318. Springer, Heidel-
berg (2002)

[Kön03] König, H.: Protocol Engineering: Prinzip, Beschreibung und Entwicklung von
Kommunikationsprotokollen. Teubner, Stuttgart (2003)

[Kud82] Kudrjavcev, V.B.: Functional systems (in Russian). Moscov Lomonossov University
Press, Moscov (1982)

[Mal70] Malzew, A.I.: Algebraic systems. Nauka, Moscow (1970)
[PBGG89] Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The structure of the relational

database model. Springer, Heidelberg (1989)
[SS99] Schmidt, J.W., Schering, H.-W.: Dockets: a model for adding vaulue to content. In:

Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS,
vol. 1728, pp. 248–262. Springer, Heidelberg (1999)

[ST04] Schmidt, P., Thalheim, B.: Component-based modeling of huge databases. In:
Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255,
pp. 113–128. Springer, Heidelberg (2004)

[ST06a] Schewe, K.-D., Thalheim, B.: Component-driven engineering of database applica-
tions. In: APCCM’06, vol. CRPIT 49, pp. 105–114 (2006)

[ST06b] Schewe, K.-D., Thalheim, B.: Usage-based storyboarding for web information sys-
tems. Technical Report 2006-13, Christian Albrechts University Kiel, Institute of
Computer Science and Applied Mathematics, Kiel (2006)

[Tha00] Thalheim, B.: Entity-relationship modeling – Foundations of database technology.
Springer, Heidelberg (2000)

[Tha02] Thalheim, B.: Component construction of database schemes. In: Spaccapietra, S.,
March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 20–34. Springer,
Heidelberg (2002)

[Tha03a] Thalheim, B.: Database component ware. ADC’2003, Australian Computer Science
Communications 25(2), 13–26 (2003)

[Tha03b] Thalheim, B.: Database component ware. Proc. ADC’2003, Journal on Research
and Practice in Information Technology 17, 1–13 (2003)

[Tha05] Thalheim, B.: Component development and construction for database design. Data
and Knowledge Engineering 54, 77–95 (2005)

An Architecture for Integrating Heterogeneous

University Applications That Supports
Monitoring

Dhiah el Diehn I. Abou-Tair and Jörg Niere

Software Engineering Group
University of Siegen

aboutair@informatik.uni-siegen.de
joerg.niere@uni-siegen.de

Abstract. Within a company or a university different organization units
need their own information system to perform their business tasks. There
is also a massive need of integration in order to optimize the processes.
Integration usually means to wrap the applications or couple them via
technologies such as CORBA. Especially when applications are coupled,
it is hard work to get an overview over the whole system or to establish
common data-consistency rules or to monitor privacy issues. In this pa-
per we present an approach in which we model the data-models of the
independent applications and connect them by pre-defined integration
connections. Upon our common business model we are able to estab-
lish data-consistency rules or monitor, e.g., privacy issues or data-flow.
Therefore, our solution presents a smart integration without loosing the
application’s independence.

1 Introduction

During the last years the business processes within German universities have
raised dramatically. On the one hand the change from the ’diploma’ to a con-
secutive ’bachelor/master’ program challenges administrative processes. On the
other hand the universities legal form has changed and universities got a so-called
global budget. Due to the newly gained autonomy of universities, the govern-
ment demands a huge amount of reports, e.g. acquired third party projects,
number of students, lectures, graduates and their relations, etc. In addition to
the newly gained responsibilities, a university has and in the future will also
have a number of traditional services and tasks such as, creation of the program
of lectures, assigning lecturers and rooms, maintaining a library and a refectory,
staff management, etc.

Usually German universities are structured in organization units, like other
universities. The structure differs from university to university, but there are
basic common structures. Usually a university has a library, a computer cen-
ter, an overall administration, etc., which are independent from the scientific
organization such as institutes, faculties and research groups. Research groups

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 16–24, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Architecture for Integrating Heterogeneous University Applications 17

maintain specific laboratories for their research area, whereas the computer cen-
ter maintains common labs. Research groups provide lectures, seminars, project
groups, practical trainings, and they are responsible for the organization of ex-
ams corresponding to the offered lectures. The coordination of exams in a certain
course of study is the duty of the student registration office organizationally lo-
cated in a faculty or institute, which usually consists of a number of research
groups.

Nearly each organization unit in a university maintains its own information
system. The computer center manages logins for their laboratories or MAC-
addresses to access the public WLAN net. Each student, who wants to lend
out a book from the library needs a certain access to the library’s information
system, which also manages the states of the books. Sometimes information
systems store data redundantly, e.g. exam results, which exist in the faculty
located office’s information system and in the information system of certain
research groups. In principle, collecting information, which is stored locally in
one information system does not require much effort, but collecting information,
spread over a number of different information systems means much effort usually
because the identity in the different systems is not common. An example of such
a problematic task is the government report each year or half a year.

In this paper we present the current business and the existing heterogeneous
information systems at the University of Siegen in more detail. The business
model is transferable to other universities so we are able to derive requirements
for the integration of different information systems at universities in general.
Afterwards we assess the performance of currently existing systems and present
current research activities in this area. Our solution is currently under develop-
ment and uses an intelligent integration channel. The architecture of the system
is presented in section 4. Finally we figure out current and future work.

2 Today’s Universities Business and IT-System
Requirements

This section describes the organizational structure and the current IT situation
at the University of Siegen more detailed and we will derive requirements for an
integration of the different used information systems.

2.1 Heterogeneous Information Systems

Within the university the different organization units use different information
systems. Some units use modules of the the current market leader HIS-GX-
Software. For example the university administration as well as the student regis-
tration office in the computer science department use specific modules from HIS-
GX-Software. An alternative software for student registration offices is FlexNow!
[1], which is used in other departments. Public information such as lectures,

18 D. el D.I. Abou-Tair and J. Niere

room, staff etc, are available via web access and underlying is a software called
UnivIS (University Information System), cf. [2]. In order to input data into
UnivIS, the system provides web forms in contrast to the HIS modules, which
provides a platform dependent client to input and export data. The university
library uses the Aleph-Software, [3], which use nearly all university libraries in
the German state Northrhine-Westfalia. There also exists a central e-learning
platform called Moodle [4], which comes from the CampusSource-Initiative [5].
Last but not least, each department uses its own information systems, e.g. the
electrical engineering and computer science department uses a proprietary sys-
tem to manage how many students take a certain lecture and to manage the
room capacities and evaluation forms appropriately.

The reason for such a heterogeneous information system structure mainly
results from missed investments in the past. 20 years ago most administrative
processes worked with paper and pencils. Coming along with computers also
the information systems have been established and especially in the beginning
those systems where handmade. In addition, the university’s organization struc-
ture without a leading IT department was another reason for the heterogeneous
structure.

datadata

report

GUI

Business logic

database
UnivIS

GUI

Business logic

database
Library

University Computer Science Department Library

GUI

Business logic

GUI

Business logic

database
HIS

Fig. 1. Universities’ heterogeneous IT-landscape example

An Architecture for Integrating Heterogeneous University Applications 19

2.2 Business Processes

Assume a lecturer wants to publish his/her a lecture announcement in the next
semester. Such a task includes diverse data, e.g. the content of the lecture, the
prerequisites, references etc. In this case, the lecturer has to input the lecture
announcement itself into the UnivIS system, and the Moodle e-learning plat-
form together with the references and links to other lectures or material. Hence
the lecturer needs a room he/she has to input the data into the proprietary
system of the department and finally the lecturer must inform the student reg-
istration office in a written form, because the system is only accessible by cer-
tain persons due to data protection laws. In addition, the lecturer will publish
the announcement on his/her research groups’ web pages. Concluding, the lec-
turer has to input the data into different isolated systems manually, if possible.
This holds some problems if changes occur, e.g. the room or time schedule has
changed.

Evermore, tasks such as creating of reports will be done manually. E.g. in
order to generate the government report the lecturer respectively the department
secretary, at first requires the data from the actual system separately and after
that he/she assembles the report, manually. Unfortunately, the process to gather
the data is quite extensive when we consider that every application needs own
identification data, there is no standard export format for the data. Most users
do this using the traditional ’copy and paste’ even if some screened systems such
as the HIS software do not allow it. In addition, if a lecturer wants to know if
some students have done the required lectures to enter some exam, he/she must
send a list of all students who wanted to attend to the examination office.

The information systems used at the University of Siegen are mostly not con-
nected to each other and also incompatible concerning the data exchange format.
The systems also provide less interfaces and are maintained by different orga-
nization units. This results in redundant data and complex business processes
such as described above. E.g. a student has usually more than four different
logins to different systems such as the computers in the laboratories, email ac-
count, library authentication and a login for the e-learning platform, access to
certain machines, rooms, etc. The same problem occurs during other adminis-
trative processes within the university such as providing the program of lectures
or the reports to the government.

Figure 1 shows the current situation of heterogeneous systems. Data exchange
is done manually by the users of the individual information systems and per-
formed only if necessary. For example, a research group, who wants to perform
an exam, retrieves a list of all registrated students from the students registra-
tion office. In the preparation phase of the exam, the data will be stored in the
research group’s information system and a copy will be send back to the of-
fice which includes the results. In general, Information, which must be collected
from more than one information system, usually means to ask the corresponding
persons and assemble the data afterwards.

20 D. el D.I. Abou-Tair and J. Niere

2.3 IT-System Requirements

Based on our own analysis we can derive the following requirements for the
integration of information systems at universities:

– single sign-in systems
– distributed maintained sub-systems
– data-consistency
– no violation of data protection and privacy laws
– comfortable collection of system spread information
– flexible system extension

3 Related Work

By searching the IT-Landscape a variety of possible IT solutions are found.
The middleware platforms, Enterprise Application Integration, and Web Services
belong to this category.

Approaches such as the traditional middleware platforms and CORBA are
heavily used for the implementation of complex distributed applications[6]. Un-
fortunately, for our domain such architectures are insufficient because they need
knowledge of the nature of the core systems before the implementation[7]. Enter-
prise Application Integration technology provides a possible solution, the prob-
lem with this being that in a huge domain such as a university, it is difficult to
keep an overview on the interfaces between the diverse application – n*(n-1)/2
interfaces where n is the number of applications. Even more, the implementa-
tion of such a solution is complex, not easy to maintain, and prone to bugs. The
Service Oriented Architecture and the Web Services provide a possible solution,
but in the case of our domain by using such a technology we could not trace
who uses the data anymore, which is an essential requirement of the German
Federal Data Protection Act (Bundesdatenschutzgesetz) (BDSG). In fact, we
need a solution that integrates the diverse heterogeneous systems and monitors
the data to consider the BDSG.

Approaches which are based on a mediator architecture where the diverse
heterogeneous systems are unified under one big data schema are not sufficiently
efficient for our domain, so that our aim of coupling the systems is not only to
gain a common ground, but also to keep their independence. In other words, we
want to have integration on the common layer only. Other integration architec-
ture like the Import/Export-Schema architecture are less helpful because of the
previously mentioned problem of privacy.

During the last years a number of projects have been instantiated to solve the
problem of Universities’ heterogeneous systems. For example the KII (Karlsruhe
Integrative Information Management), which is mainly used to evaluate the ex-
cellence in teaching, cf. [8]. The IntegraTUM project [9,10] tries to integrate
different isolated systems within one portal. Such huge projects carry a certain
feasibility risk, which the Campus Management project at the FU Berlin has
shown, cf. [11].

An Architecture for Integrating Heterogeneous University Applications 21

in
te

gr
at

ed
 m

od
ul

es

GUI

HIS Module 1

GUI

HIS Module 2

database
HIS module 1

database
HIS module 2

GUI

HIS Module 1

GUI

HIS Module 2

database
integrated

st
an

da
lo

ne
 m

od
ul

es

Fig. 2. Varieties between standalone and integrated mode of HIS Modules

Most software used in German universities is a product made by Hochschul-
Informations-System GmbH (HIS) [12]. HIS is Germany’s market leader in build-
ing Information Systems for university needs. Over the years the products of HIS
where expanded to cover all administrative areas of universities. These products
are divided in modules where every module covers an administrative area, e.g.
student registration office. These modules use a two tier client/server architec-
ture. On the one hand this architecture decision provides limited flexibility. On
the other one, the only integration possibility works right on the database man-
agement system.

Figure 2 illustrate two of the varieties of HIS modules in a standalone mode
as in integrated mode. Even though the presented approach is one of the es-
tablished solutions for the integration, it has disadvantages and troubles fig-
ured out during the practical adoption of the HIS products. E.g. continuous
data redundancy, data inconsistencies through switching between the modes, no
encapsulation of the modules functionality, no access control to sensitive data
and it does not provide a standardized integration solution between all modules
either.

22 D. el D.I. Abou-Tair and J. Niere

Moreover, we found out during the analysis of the HIS database layer that it
lacks a conceptual construction. It seems that every module was built as the need
for it arose without considering the data integrity. Furthermore, by developing
new modules HIS offers asynchronous data transmission between them. In fact,
such a mechanism is not expensive to implement but it does not provide any
form of data integration, which is a key point for such domains.

4 System Integration at the Business Logic Level

Figure 3 illustrate the architecture of our integration approach. The main com-
ponent of our approach is the integration channel, where all extant systems in
the university domain dock to it through their business logic. In fact the in-
tegration channel monitors, synchronizes and integrates the data flow between
those applications. The Common Business Model consists of the domain knowl-
edge in form a lightweight ontology. In the following subsections we describe the
Common Business Model in detail.

4.1 The Common Business Model

Our integration approach does not mean full data integration. Such integration
is infeasible, ”... owners of data want to be able to share data without any central
authority (even at the logical level). In some cases, the data is so diverse that a
mediated schema would be almost impossible to build or to agree upon, and very
hard to maintain over time”[13]. Therefore, our approach consists of a Common

Naming Service

GUI

Business logic

GUI

Business logic

database
HIS

GUI

Business logic

database
UnivIS

GUI

Business logic

database
Library

GUI

Department Application

GUI

Report Application

Integration Channel

Common Business Model

University Computer Science Department Library

Fig. 3. Integration solution of diverse applications in the same domain

An Architecture for Integrating Heterogeneous University Applications 23

Business Model, which consists of the domain knowledge in form a lightweight
ontology.

The Common Business Model is the brain of the Integration Channel. In
difference compared to middleware platforms and CORBA is that the common
business logic supplies the integration channel with domain knowledge about the
diverse systems in the domain independently of the docking instant. On the one
hand, the need of specific domain knowledge, especially about the data sources
encapsulated in the domain are a key point of the development of a particular
system that exploits previously accumulated domain demands. It is an essential
point to obtain a well defined domain analysis, which evolves continuously within
the systems. On the other hand, the Common Business Model does not provide
a full integrated schema for every data source in the domain. In contrast, it just
consist of the common interfaces of the diverse systems in the domain whichinput
are essential for the integration process. Firstly, this guarantees that other system
have only access to common data. Secondly, every system keeps it independency.

Furthermore, by docking the existing systems to our integration channel, ev-
ery application holds its own graphical user interface (GUI). Thus, the existing
applications will not loose their stand-alone properties. No visible changes will
occur for the users whom are already using them. By doing so, we do not provide
an integration solution which is limited to systems within a single company; our
aim is to integrate heterogeneous systems only in their common parts to per-
form common tasks and to maintain their independency. Moreover, the diverse
services provided by the applications will be registered in the Naming Service
component to make them available for other applications.

5 Conclusion

This paper presents our novel architecture of an integration channel, that allows
for integrating previously independent applications. The main and also the most
different part to existing approaches is our common business model, which we
call ’the brain’ of the integration channel. The brain is a lightweight ontology
and consists of the integrated parts of the applications docked on to the chan-
nel. In addition, we allow the users of the different applications to access them
independently and our integration channel monitors and manages the common
integrity. This feature makes our approach more flexible and extensible than
traditional ones.

References

1. University of Bamberg, Germany: FlexNow! (2005) (last visited, January 2006),
online available http://flexnow.uni-bamberg.de

2. Config Informationstechnik eG, Germany: UnivIS (University Information System)
(2006) (last visited, January 2006), online available http://www.univis.de/

3. Ex Libris Ltd., Germany: Aleph Software by Ex Libris Ltd. (2006) (last visited,
January 2006), online available http://www.exl.de/aleph.htm

http://flexnow.uni-bamberg.de
http://www.univis.de/
http://www.exl.de/aleph.htm

24 D. el D.I. Abou-Tair and J. Niere

4. Moodle, Germany: Moodle E-Learning-Plattform (2006) (last visited, January
2006), online available http://moodle.org/

5. CampusSource, Germany: CampusSource Initiative (2006) (last visited, January
2006), online available http://www.campussource.de

6. Hauck, F.J., Kapitza, R., Reiser, H.P., Schmied, A.I.: A flexible and extensible
object middleware: Corba and beyond. In: SEM ’05: Proceedings of the 5th in-
ternational workshop on Software engineering and middleware, pp. 69–75. ACM
Press, New York, NY, USA (2005)

7. Alonso, G., Casati, F., Kuno, H.: Web Services: Concepts, Architectures, Applica-
tions. Springer, Heidelberg (2004)

8. Universität Karlsruhe (TH), Germany: Karlsruhe Integrative Information Manage-
ment (2006) (last visited, January 2006), online available
http://www.kim.uni-karlsruhe.de

9. Technische Universität München, Germany: CIO TU München (2006) (last visited,
January 2006), online available
http://portal.mytum.de/cio/projekte/integratum/dokumente/index html

10. Technische Universität München, Germany: TU München Porta (2006) (last visited
January 2006), online available
http://portal.mytum.de/campus/folder listing

11. Freie Universität Berlin, Germany: Campus Management (2006) (last visited, Jan-
uary 2006), online available
http://www.fu-berlin.de/campusmanagement/

12. HIS GmbH, Germany: HIS (2006) (last visited, January 2006), online available
http://www.his.de

13. Tatarinov, I., Halevy, A.: Efficient query reformulation in peer data management
systems. In: SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pp. 539–550. ACM Press, New York (2004)

http://moodle.org/
http://www.campussource.de
http://www.kim.uni-karlsruhe.de
http://portal.mytum.de/cio/projekte/integratum/dokumente/index_html
http://portal.mytum.de/campus/folder_listing
http://www.fu-berlin.de/campusmanagement/
http://www.his.de

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 25–39, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On the Specification of Parameterizable Business
Components

Jörg Ackermann and Klaus Turowski

Chair of Business Informatics and Systems Engineering,
University of Augsburg, Universitätsstr. 16, 86135 Augsburg, Germany

{joerg.ackermann,klaus.turowski}@wiwi.uni-augsburg.de

Abstract. To build enterprise applications out of software components prom-
ises more flexible and adaptable information systems. In practice it turns out
that the business components to be used must be themselves adaptable. Parame-
terization is an adaptation technique which is well-suited for adaptation on
business level. Successful reuse of business components requires techniques to
specify the components. In this paper we discuss how the parameterization
properties of a component can be included in its specification – this includes pa-
rameters themselves and their effect on the components functionality.

Keywords: Component-Based Enterprise Application Systems, Specification of
Business Components, Parameterization.

1 Introduction

Many information systems currently in use are monolithic, integrated applications that
are hard to maintain and hard to adapt to changing requirements [23]. One solution to
these problems is to follow a component-based approach where it becomes easier to
change system parts (by replacing components). Exchanging components alone, how-
ever, can not solve all variability issues because it is not efficient for frequent smaller
changes. Parameterization is a common technique that is well-suited when used for
smaller non-technical adaptations. This is the reason why we study parameterizable
business components.

A crucial prerequisite for third-party component reuse is the comprehensive and
standardized specification of software components [21]. How to include parameteri-
zation options in a component specification was earlier not addressed but is now topic
of a research project (Sect. 2). After introducing an exemplary component (Sect. 3)
we develop proposals how parameter settings and parameterization effects can be
included in the component specification and describe consequences for the specifica-
tion of terminology, tasks, interfaces and behavior (Sect. 4). The paper concludes with
a discussion of related work (Sect. 5) and a summary (Sect. 6).

This paper makes the following contributions: We address the (so far unsolved) is-
sue how to specify the parameterization properties of business components. For that
we propose how to specify parameters and parameterization tasks themselves and
additionally we show how the effects parameterization has on the components func-
tionality can be specified. These results by itself form an important building block for

26 J. Ackermann and K. Turowski

the complete specification of parameterizable components. Moreover, the results are
interesting for any software using parameterization (like standardized business appli-
cation suites as SAP R/3) because our approach is a first step towards general specifi-
cation of parameterization effects. This paper extends earlier project results [1,2] in
two ways: specification of the domain perspective is novel and results for the techni-
cal perspective [2] were updated and aligned with the domain perspective.

2 Specification of Parameterizable Software Components

A comprehensive and standardized specification of software components is prerequi-
site for a composition methodology [21] and supports reuse of components by third
parties [10]. With specification of a component we denote the complete, unequivocal
and precise description of its external view - that is which services a component pro-
vides under which conditions [24].

Currently there exists no generally accepted and supported specification standard
covering all aspects relevant to component-based software engineering (see Sect. 5).
We base our work on the specification framework “Standardized Specification of
Business Components” [24] which defines different specification levels (for terminol-
ogy, tasks, interfaces, behavior, coordination, quality, marketing), identifies the ob-
jects to be specified and proposes for each level a specific notation language.

Adaptation is of great importance in component-based application systems because
components can rarely be reused without being adapted [4]. (For a short overview on
adaptation see Sect. 5.) One adaptation technique is the so called (data-based) param-
eterization [2]. It is a technique for planned adaptation where the component producer
defines parameters (which influence structure and behavior of the component) and the
component consumer chooses parameter settings that are suitable for his require-
ments. Parameter values are assumed to be data-like and non-executable – in differ-
ence to situations where programs or whole components are expected as parameter
values (program-based parameterization). Main advantages of data-based parame-
terization are that adaptation can be easily performed and does not require implemen-
tation knowledge because no coding modifications are necessary. One disadvantage is
that adaptation is limited to use cases foreseen by the component producer. Another
disadvantage stems from the way parameterization is often used: many software sys-
tems like SAP R/3 allow complex parameterization without providing an adequate
parameter specification – correlations between parameters and the components func-
tionality become almost impossible to trace [15].

Parameter settings typically change structure and behavior of a component – that is
they influence the components external view. Consequently parameterization aspects
must be part of a components specification. This earlier unsolved issue is currently
under investigation in our research project.

3 Exemplary Component WarehouseManagement

In this section we introduce an exemplary component WarehouseManagement that
will be used throughout the rest of the paper. To be as realistic as possible design and

 On the Specification of Parameterizable Business Components 27

terminology of the example were influenced by real business application products like
SAP R/3. To be suitable as example, however, we simplified the component substan-
tially – real applications are typically more complex. The business task of the compo-
nent is to manage a simple warehouse complex. Fig. 1 shows the information objects
belonging to the component. (More details about the role of the model in the specifi-
cation and the meaning of the notations can be found in Sect. 4.)

The component WarehouseManagement allows to define several warehouses
which might differ in their warehouse handling (e.g. fixed bin picking area or hall
with high rack shelves). Each warehouse consists of different storage bins (storage
places) where the goods are physically stored. An entity of WarehouseStock repre-
sents one unit of a material stored at a specific storage bin. The type Material stands
for the warehouse specific properties of a material. To simplify matters we assume
that each material will be stored at exactly one warehouse (real business applications
might support complex warehouse determination strategies.)

«component»
WarehouseManagement

*

id
maxNumberOfUnits

«type»
StorageBin

id
name
useStorageUnitTypes
putawayStrategy
removalStrategy

«parameterization type»
Warehouse

dateOfPutaway

«type»
WarehouseStock

*

id
name
length
width
height

«parameterization type»
StorageUnitType

id
name
basicUnitType

«type»
Material

0..1 *

*

0..1

1

*

1

*
0..1

*

Fig. 1. Conceptual data model for component WarehouseManagement

The component allows parameterization by providing several parameters (data
fields used for parameterization) as e.g. putawayStrategy. Parameters are typically
grouped by parameter groups as e.g. Warehouse. Note that these groups can have
several instances and therefore allow different behavior in parallel.

The exemplary component has two parameter groups: StorageUnitType and Ware-
house. Storage unit types define the unit size in which materials are stored (e.g. a euro
palette or a fixed size box). The organizational unit Warehouse offers several control
parameters. The parameter putawayStrategy (removalStrategy) defines how to find a
suitable storage bin in which to store (from which to retrieve) a unit of material. The
following putaway strategies are supported: each material is assigned to fixed bins
(static putaway), the system looks for a suitable bin optimizing e.g. storage space
(dynamic putaway) or a storage bin is selected by the operator (manual putaway).

28 J. Ackermann and K. Turowski

The Boolean parameter useStorageUnitTypes controls how the size of a storage bin is
described. If true, then each storage bin is assigned to the unit type it stores, each
material is assigned to the unit type it is delivered in and storage is only allowed if
they correspond. If false, then a storage bin can be directly assigned to a material.

To fulfill its business tasks the component offers several interfaces: The interfaces
IWarehouse and IStorageUnitType are used to set parameters and the interfaces IStor-
ageBin and IMaterial manage corresponding master data. Additionally there is the
interface IStockManagement which is used for the actual stock management activities
as storing und retrieving stock and determining the number of available stock units.

4 Specification Proposals for Parameterization Properties

In this section we develop specification proposals for the parameterization properties
of business components. Following the specification framework [24] we discuss the
specification of terminology, tasks, interfaces and behavioral constraints in the
subsequent subsections. For each of these aspects we need to distinguish between
specifying parameter settings themselves and the impact these settings have on the
functionality of the component [1]. Note that the specification framework [24] (in
difference to many other approaches) considers not only the technical perspective
(interface, behavior and coordination levels) but also the domain perspective (termi-
nology and task levels). The latter describes the component from a domain (concep-
tual) point of view and supports functional experts in component selection – for this it
needs a notation suitable for persons not necessarily familiar with UML or other
modeling languages.

4.1 Specification on Terminology Level

The task of the terminology level is to clarify all used functional terms on a domain
level. For this it provides a dictionary of all used terms including their definition and
their relationship to other terms. According to [21,24] the specification of a term
provides its name, a short definition and an accompanying example. (Fig. 2 shows
exemplary how the term Putaway Strategy is specified.) The specification must addi-
tionally include the relationship to other terms: In our example putaway strategy is a
property of a warehouse and putaway strategy is specialized into manual, static and
dynamic putaway strategy. Additionally one can supplement constraints the term or
its properties need to adhere to.

The notation used on terminology level is normative language, which is an ontol-
ogy definition language that is both machine- and human-understandable [20]. Its idea
is to use a standardized form of natural language to reduce disambiguities. To specify
the relationship between terms one can distinguish between four relationship types:
decomposition (A consists of B), association (A is related to B), property (A has
property B) and specialization (A is a B or a C). For each of them a sentence building
pattern (as shown in parentheses) is predefined that standardizes the relationship
specification [21].

Using sentence building patterns has two advantages compared to natural lan-
guage: Specifications become less ambiguous und the resulting dictionary structure

 On the Specification of Parameterizable Business Components 29

forms a light-weight ontology allowing an easy way to automatically retrieve relation-
ship information (e.g. find all terms related to a certain term). The advantage of using
normative language compared to other ontology notations or UML lies in the fact that
it is understandable for functional experts who in general do not have knowledge of
formal modeling or ontology notations. (Note that it is possible to automatically trans-
form normative language expressions into other ontology notations.)

Term: PUTAWAY STRATEGY

Short definition: PUTAWAY STRATEGY defines which strategy is used within
one WAREHOUSE to put away stock. Supported strategies are manual, static and
dynamic.

Example: Dynamic putaway strategy

Relationships:
PUTAWAY STRATEGY is a MANUAL PUTAWAY STRATEGY or a STATIC
PUTAWAY STRATEGY or a DYNAMIC PUTAWAY STRATEGY.

WAREHOUSE has property PUTAWAY STRATEGY.

PUTAWAY STRATEGY is a parameter.

Fig. 2. Specification of parameter term Putaway Strategy

To specify parameter settings we start with the fact that the top-level specification
objects are parameters and parameter groups [2]. Parameters and their groups typi-
cally have a domain meaning and therefore must be specified on terminology level.
Next we observe that parameterization objects have a structure similar to other infor-
mation objects and in borderline cases it is not always possible to clearly distinguish
between them [1]. Therefore we propose to specify parameter and parameter groups
similarly to other domain terms. Parameters need, however, to be clearly recognizable
for component users because parameters often influence component functionality
substantially and moreover must be set at configuration time. Therefore we propose to
identify parameters and parameter groups by an additional statement in the collection
of relationships. To improve intelligibility and allow for automatic processing we
define two new sentence building patterns: “X is a parameter.” and “Y is a parameter
group.”. The last line of Fig. 2 shows an example how such a pattern is applied and
specifies that Putaway Strategy is a parameter. As a result parameters are specified
analogously to other domain terms but are recognizable by an additional annotation.

Next we discuss how to specify the effects parameterization can have on domain
terms. Specification objects on terminology level are term definitions, relationships
and constraints. If the meaning of a term is variable (depending on a parameter), all
variants need to be described in the terms short definition. (For reasons of clarity,
however, one should avoid making the meaning of a term parameter dependent. In-
stead one could define separate terms for each variant using specialization.) Depend-
encies of a constraint on a parameter must be explicitly covered in the constraint.

From domain analysis [7], reference data modeling [22] and an analysis about
parameterization effects on component specifications [2] we know that parameters

30 J. Ackermann and K. Turowski

often influence relationships between terms. Domain analysis identifies five variabil-
ity types (mandatory, optional, alternative, optional alternative, (inclusive) or) which
are used in feature modeling [7]. Experience has shown that these five variability
types are sufficient to model structural variability in domain analysis.

The sentence building patterns introduced earlier (e.g. “A consists of B” for de-
composition) describe must-relationships and thus correspond to the mandatory vari-
ability type. To express variability we propose to define additional patterns. Fig. 3
shows five sentence building patterns resulting from applying the five variability
types to the decomposition relationship. (Note that the sentence building patterns
were designed to be easily extendable to more terms. Example: “A consists of exactly
one of B or C or D.” To keep the presentation simple we used at most three terms.)
Similar sentence building patterns are defined for relationship types association and
property. Sentence building patterns for specialization are slightly different and will
be discussed in section 4.2.

Mandatory decomposition: A consists of B.

Optional decomposition: A can consist of B.

Alternative decomposition: A consists of exactly one of B or C.

Optional alternative decomposition: A consists of at most one of B or C.

Or-decomposition: A consists of one or more of B or C.

Fig. 3. Variability types and associated sentence building patterns for decomposition

It must be explicitly specified if a relationship variability depends on parameters.
For this we follow two approaches in parallel: First we just denote on which parame-
ters a variability depends using predefined sentences – for an example refer to the third
relationship in Fig. 4. Second we specify detailed which parameter settings result in the
occurrence of which relationship variant. Such specifications are included in the speci-
fication category constraint which is done in natural language (see also Fig. 4).

The detailed specification is necessary because only so the exact effects of parame-
terizations can be described. As these dependencies can be arbitrarily complex it is
not possible to define sentence building patterns for them. Therefore we utilize – as
for all other constraints – natural language specification. Declaring additionally the
parameter dependency using sentence building patterns provides a crucial advantage:
Parameter dependencies can be automatically retrieved – so it becomes possible to
search for all effects one particular parameter has. This is a big advantage compared
to current business applications where such information can not be captured easily
[2]. Additionally it is shown that a variable relationship is parameter dependent (this
corresponds to so-called build-time operators in reference data modeling [22]).

Fig. 4 shows how parameter dependent variability is described in the specification
of the term Storage Bin. The third relationship specifies that Storage Bin is either re-
lated to Storage Unit Type or to Material or to none of them. Which relationship is
allowed is defined by the parameter Use Storage Unit Types. This dependency is

 On the Specification of Parameterizable Business Components 31

Term: STORAGE BIN

Short definition: A STORAGE BIN (also storage slot) is the smallest available unit
of space within a WAREHOUSE that can be separately addressed.

Example: Storage bin 015-07-02 located at lane 015, shelf 07, area 02 of Ware-
house 001

Relationships:
WAREHOUSE consists of STORAGE BIN.

STORAGE BIN consists of WAREHOUSE STOCK.

STORAGE BIN is related to at most one of STORAGE UNIT TYPE or
MATERIAL – variability depends on parameter USE STORAGE UNIT TYPES of
parameter group WAREHOUSE.

STORAGE BIN has property MAXIMAL NUMBER OF UNITS.

Constraints:

If USE STORAGE UNIT TYPES is true for the WAREHOUSE the STORAGE BIN
belongs to, then STORAGE BIN is related to a STORAGE UNIT TYPE and is not
related to a MATERIAL.

If USE STORAGE UNIT TYPES is false for the WAREHOUSE the STORAGE
BIN belongs to, then STORAGE BIN is not related to a STORAGE UNIT TYPE
and can be related to a MATERIAL.

Fig. 4. Specification of business term Storage Bin

detailed in the constraints where it is specified how the parameter Use Storage Unit
Types (of the Warehouse the Storage Bin belongs to) restricts the allowed associations.

Our specification proposals on terminology level were verified as follows: We con-
firmed that the sentence building patterns are powerful enough to express variability
types of feature models and so-called build-time operators in reference data modeling
[22]. Moreover we checked that the approach can express all (terminology relevant)
parameterization effects identified in [2]. Finally, specifying all terms of the exem-
plary component WarehouseManagement was satisfactorily possible.

4.2 Specification on Task Level

The duty of a business component is to support or execute certain business tasks
within an application system. For a functional expert to determine if a component is
suitable for his requirements it is necessary to analyze the business tasks supported by
the component on a domain (conceptual) level. All necessary information is provided
on the task level of the component specification [24].

According to [21] terms and tasks are specified in the same way (both considered
as instances of a more general idea concept). Therefore our specification proposals for
the task level are similar to the terminology level – we do not introduce new specifi-
cation techniques but transfer the proposals from Sect. 4.1 to the task level.

32 J. Ackermann and K. Turowski

Task: DEFINE PUTAWAY STRATEGY

Short definition: The task of DEFINE PUTAWAY STRATEGY is to define for a
WAREHOUSE which PUTAWAY STRATEGY will be employed and if
STORAGE UNIT TYPEs shall be used.

Example: Choose for warehouse 001 (High rack storage) dynamic putaway strategy
and the use of storage unit types.

Relationships:
MANAGE WAREHOUSES consists of DEFINE PUTAWAY STRATEGY.

DEFINE PUTAWAY STRATEGY is a parameterization task.

Constraints:
Choosing DYNAMIC PUTAWAY STRATEGY requires choosing true for USE
STORAGE UNIT TYPES.

Fig. 5. Specification of parameterization task Define Putaway Strategy

Analogously to terms the specification of a business task contains its name, a short
definition and an accompanying example. If applicable, one additionally specifies
relationships between tasks and supplements constraints that need to be adhered to
when executing the task. Specification on task level uses again normative language to
specify all related business tasks. For tasks the relationships of type specialization and
decomposition are specification relevant [21]: A specialization allows distinguishing
between different forms (variants) of a task (“A is B or C”) and decomposition allows
describing which subtasks form the task (“A consists of B”).

To specify parameter settings at the task level we note that parameterization tasks
(without its runtime effects) are the top-level specification objects. Parameterization
tasks are specified analogously to business tasks. To distinguish between parameteri-
zation tasks and normal business tasks the new sentence building pattern “Z is a
parameterization task.” is introduced. As an example Fig. 5 shows the specification
for the parameterization task Define Putaway Strategy. This task sets the related pa-
rameters Putaway Strategy and Use Storage Unit Types of a Warehouse. The depend-
ency between these two parameters is shown in the constraint category of Fig. 5.
Moreover the specification shows that Define Putaway Strategy is a subtask of the
task Manage Warehouses.

Next we discuss how to specify the effects parameterization can have on business
tasks. Parameters can influence business task definitions, relationships and con-
straints. Specification of such parameterization effects will be analogously to the
specification on terminology level. Variations in the definition (again not recom-
mended) or in constraints have to be included into the natural language specification.
For variable relationships between different tasks we use again special sentence build-
ing patterns – for decomposition we reuse the results from Fig. 3 and variants in a
specialization are discussed below. If the variability depends on a parameter, this is
again denoted using a special sentence building pattern (for an example see Fig. 7).

 On the Specification of Parameterizable Business Components 33

Mandatory one-subtype specialization: A is B.

Optional one-subtype specialization: A can be B.

Alternative specialization: A is exactly one of B or C.

Optional alternative specialization: A is at most one of B or C.

Or-specialization: A is one or more of B or C.

Optional or-specialization: A is none or one or more of B or C.

Fig. 6. Variability types and associated sentence building patterns for specialization

Applying the earlier introduced variability types to the specialization relationship
yields the sentence building patterns in Fig. 6. The first two patterns describe the special
case of a specialization with only one subtype. The other four patterns
describe the different variants a specialization can occur in. (Note that feature modeling
knows a sixth variability type optional or which can be normalized to several optional
features [7] – assuming that the relationship is composite. As a specialization is of ab-
stractive nature this normalization is here not possible.) Note that these four patterns
(deduced from feature types) exactly correspond to the following specialization types
(in this order): disjoint total, disjoint partial, non-disjoint total, non-disjoint partial.

Task: PUTAWAY STOCK

Short definition: The task of PUTAWAY STOCK is to find suitable STORAGE
BINs for a number of units of MATERIAL and store them there physically.

Example: Store one euro palette of material ABC-XYZ – system assigns storage bin
015-07-02

Relationships:
PUTAWAY STOCK is exactly one of MANUAL PUTAWAY or STATIC
PUTAWAY or DYNAMIC PUTAWAY – variability depends on parameter PUT-
AWAY STRATEGY of parameter group WAREHOUSE.

Constraints:
The parameter PUTAWAY STRATEGY of the WAREHOUSE the MATERIAL is
stored in decides which task to perform. If this parameter is set to DYNAMIC
(STATIC / MANUAL) PUTAWAY STRATEGY, then DYNAMIC (STATIC /
MANUAL) PUTAWAY is performed.

Fig. 7. Specification of business task Putaway Stock

How the variability in the task Putaway Stock is specified can be seen in Fig. 7.
The component supports three variants (Dynamic Putaway, Static Putaway, Manual
Putaway) how the task can be performed – these variants are specified as subtasks. (It
is a modeling decision to decide if the differences in task variants are big enough to
justify defining separate subtasks.) In the specialization it is specified that exactly one

34 J. Ackermann and K. Turowski

of the three subtasks is performed when executing Putaway Stock. Which one will be
picked depends on the parameter Putaway Strategy. By using sentence building pat-
terns it becomes again easy to retrieve the parameterization information (e.g. which
tasks are influenced by a given parameter). The constraint in Fig. 7 describes the
strategy finding: the material decides in which warehouse to store a charge and the
parameter Putaway Strategy of that warehouse decides the used strategy.

4.3 Specification on Interface Level

The specification on interface level contains the signature of the components inter-
faces (operations, fault messages, data types) – common notation techniques are inter-
face definition languages like OMG IDL [17] or UML interface diagrams [19]. For an
example see the UML specification of the interface IStockManagement in Fig. 8. The
interface level is more technical compared to terminology and task levels and is
mainly intended for a technical expert who integrates the component into an
enterprise application system.

Fig. 8. (Partial) Interface specification of component WarehouseManagement

There can be two strategies how to assign values to the parameters of a component:
As strategy one the component could use XML configuration files provided by most
component frameworks (as Enterprise Java Beans or OMG CCM [18]) and parame-
ters are set by directly editing the configuration file. In this case the XML schema of
the configuration file provides the technical specification necessary for setting
parameters. As strategy two the component could allow setting parameters via inter-
faces – the component might store the values either in configuration (or other) files or
in data base tables. In this case it is highly desirable that the component provides

 On the Specification of Parameterizable Business Components 35

separate interfaces for parameterization and does not mix parameter settings with
regular components operations [18]. Reasons for such a separation are the require-
ment for an easy identification of parameterization features and the fact that opera-
tions used for parameterization are typically not intended for use by other components
of an application system. As there are technically no differences we propose to spec-
ify parameterization interfaces in the same way as and together with regular inter-
faces. To clearly identify parameterization interfaces we use for them an additional
annotation. For an example compare Fig. 8 which shows the interface specification of
our exemplary component: It contains the interface IWarehouse which is annotated
with the UML stereotype «parameterization interface».

A parameterization effect on interface level would be given if a component signa-
ture varies depending on parameter settings. The dynamic change of a component
signature, however, is not possible in mainstream component technologies and there-
fore there is no need for such a specification. Note in this context that the interface
level is only concerned with the signature elements that are physically present – the
fact that an operation or an operation parameter is not allowed for use (although pre-
sent) for certain parameter settings must be specified on behavioral level.

4.4 Specification on Behavioral Level

Behavioral specifications describe how the component behaves in general and in bor-
derline cases. This is achieved by defining constraints (invariants, pre- and postcondi-
tions) based on the idea of designing applications by contract [16]. The UML Object
Constraint Language (OCL) is one of the most used techniques to express such con-
straints and is often employed for component specifications [6,9,21,24]. The behavioral
level contains two types of information: an optional specification data model (realized
as UML type diagram – see Fig. 1) which shows the information objects stored by the
component [1] and OCL constraints that specify restrictions when using the interfaces.

To specify parameters and parameter groups on the technical level we proceed as
follows: Parameter values are stored by the component – therefore parameters should
be included in the specification data model. As parameterization objects are structur-
ally similar to other information objects and sometimes not clearly distinguishable [1]
they are specified analogously to other information objects. Fig. 1 shows the specifi-
cation of the parameter group Warehouse as an UML type and its parameters (e.g.
putawayStrategy) as attributes of this type. To distinguish between parameterization
objects and regular information objects we introduce a special annotation by using the
UML stereotype «parameterization type».

Besides specifying the parameters themselves we need to describe dependencies be-
tween parameters by OCL constraints. Fig. 9 shows an OCL constraint that specifies
the following: If a warehouse puts away stock dynamically (parameter putawayStrat-
egy) then it must use storage unit types (parameter useStorageUnitTypes).

context Warehouse

inv: putawayStrategy = PutawayStrategies::dynamic
implies useStorageUnitTypes = true

Fig. 9. Specification of a parameter dependency

36 J. Ackermann and K. Turowski

A parameterization effect on behavioral level is given if the structure of informa-
tion objects in the specification data model or OCL constraints vary depending on
parameter values. Structural variability in the data model can be expressed in the
model itself (as far as UML allows) and by accompanying constraints. Variability in
OCL constraints is expressed in the constraints themselves by including the parameter
dependency. As an example we consider the effect of the parameter useStorageUnit-
Types on a StorageBin. In the specification data model (see Fig. 1) the type Storage-
Bin has optional associations to both types Material and StorageUnitTypes. To ex-
press the exact interdependency between these two associations one additionally
needs the OCL constraints shown in Fig. 10.

context Storage Bin

inv: self.Warehouse.useStorageUnitTypes = true implies
 self.StorageUnitType->size() = 1 and
 self.Material->size() = 0
inv: self.Warehouse.useStorageUnitTypes = false implies
 self.StorageUnitType->size() = 0 and
 self.Material->size() <= 1

Fig. 10. Specification of parameterization effect on Storage Bin

As verification of our approach we checked that all possible parameterization ef-
fects on behavioral level (as identified in [2]) can indeed be specified in the proposed
way. This was supported by the successful specification of the exemplary component
WarehouseManagement.

Note that the specification of a business component contains a domain perspective
(terminology and tasks) and a technical perspective (interfaces and behavior). Some
of the specified information appears on both perspectives – one might argue that they
are redundant. We do not think so as both perspectives describe the component from
different angles and for a different audience: The domain perspective describes the
components functionality conceptually – for this it targets functional experts and uses
normalized language. The technical perspective describes the component from a com-
position point of view – it addresses technical experts and uses standard development
notations as UML. Moreover, it is rather common to specify constraints simultane-
ously in formal and natural language [6,24] because natural language specification
alone might be ambiguous and formal OCL specification alone is hard to understand
(especially for functional experts). To ease the maintenance of constraints one could
utilize automated translations between formal and informal specifications [11].

Finally it shall be mentioned that the specification framework [24] allows defining
mappings between specification objects on domain and technical perspectives. In our
example the term Warehouse is mapped to the UML type Warehouse (cf. Fig. 1), the
term Putaway Strategy (cf. Fig. 2) is mapped to the attribute putawayStrategy of type
Warehouse (cf. Fig. 1) and the decomposition between the terms Warehouse and
Storage Bin (cf. Fig. 4) is mapped to the aggregation between the corresponding
types. The parameter dependencies described as constraints in Fig. 4 are mapped to
UML OCL invariants on behavioral level which are shown in Fig. 10. (Due to a

 On the Specification of Parameterizable Business Components 37

top-down approach and the intended simplicity the specification objects on domain
and technical perspectives of our example use the same names and stand in one-to-
one relationships – note that this might not always be the case.) A specification tool
can use such mappings to allow for a simple navigation between related concepts on
domain and technical perspectives.

5 Related Work

Currently there exists no generally accepted and supported specification standard for
software components covering all relevant aspects. Various authors addressed specifi-
cations for specific tasks of the development process as e.g. design and implementa-
tion [6,9]. Approaches towards a comprehensive specification are few and include
[3,12,21,24]. Its consideration of technical and domain aspects in one unified proposal
is the main advantage of [24] (and the later work of [21]). Parameterization aspects
are not discussed in the literature about component specification.

Adaptation is an important aspect of component-based software engineering be-
cause in practice components can rarely be reused without being adapted [4]. Conse-
quently adaptation in component-based application systems is discussed by many
authors – for an overview see e.g. [4]. Important adaptation techniques include: copy-
ing code, inheritance, aggregation, wrapping, superimposition, adaptation interfaces,
parameterized contracts and several types of parameterization. Parameterization is
identified as an adaptation technique by most authors, but not discussed in detail.
Specification aspects are not covered in the literature about component adaptation.

Integrated standard application suites like SAP R/3 allow complex parameteriza-
tion (also called customizing). Although customizing is discussed frequently, little
attention has been paid to the detailed description of parameter settings. In practice
the quality of parameter documentation is often not sufficient – correlations between
parameters and the components functionality become almost impossible to trace [15].
There are some works containing detailed recommendations for parameter settings
specific for a software suite and a functional area (e.g. [8]). A general approach to-
wards specification of parameters and parameterization effects does not exist.

Variability is an important issue in software engineering and e.g. relevant for con-
figurable reference models [22], software reuse [13], generic programming [7] and the
related product-line approach [5], as well as for modern Business Process Manage-
ment [14]. We use their results as a methodical foundation.

6 Summary

In this paper we discussed how parameterization properties of a business component
can be included in the components specification. We proposed how to specify pa-
rameters and parameterization tasks themselves and additionally we showed how the
effects parameterization has on the components functionality can be specified. These
results are not only interesting for the specification of parameterizable business com-
ponents but present also a first step towards general specification of parameterization
effects. This paper concentrated on the components functionality (terminology, tasks,

38 J. Ackermann and K. Turowski

interfaces and behavior) – non-functional aspects (as quality and general commercial
information) were not considered and are direction of future research.

References

1. Ackermann, J.: Specification Proposals for Customizable Business Components. In: Over-
hage, S., Turowski, K. (eds.) Proceedings 1st International Workshop Component Engi-
neering Methodology, Erfurt, pp. 51–62 (2003)

2. Ackermann, J.: Zur Beschreibung datenbasierter Parametrisierung von Softwarekompo-
nenten. In: Turowski, K. (ed.) Architekturen, Komponenten, Anwendungen - Proceedings
zur Tagung AKA 2004, Augsburg. LNI issue P-57, pp. 131–149 (2004) (in German)

3. Beugnard, A., Jézéquel, J.-M., Plouzeau, N., Watkins, D.: Making Components Contract
Aware. IEEE Computer 7, 38–44 (1999)

4. Bosch, J.: Adapting Object-Oriented Components. In: Proceedings of the 2nd International
Workshop on Component-Oriented Programming (WCOP ’97), Turku, Finland (1997)

5. Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, H., Pohl, K.: Variability Issues
in Software Product Lines. In: van der Linden, F.J. (ed.) PFE 2002. LNCS, vol. 2290, pp.
13–21. Springer, Heidelberg (2002)

6. Cheesman, J., Daniels, J.: UML Components. Addison-Wesley, Boston (2001)
7. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applica-

tions. Addison-Wesley, Boston (2000)
8. Dittrich, J., Mertens, P., Hau, M.: Dispositionsparameter von SAP R/3-PP: Einstellung-

shinweise, Wirkungen, Nebenwirkungen. Vieweg Verlag, Wiesbaden (1999) (in German)
9. D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML: The Ca-

talysis Approach. Addison-Wesley, Reading (1998)
10. Geisterfer, C.J.M., Ghosh, S.: Software Component Specification: A Study in Perspective

of Component Selection and Reuse. In: Proceedings of the 5th International Conference on
COTS Based Software Systems (ICCBSS), Orlando, USA (2006)

11. Hähnle, R., Johannisson, K., Ranta, A.: An Authoring Tool for Informal and Formal Re-
quirements Specifications. In: Kutsche, R.-D., Weber, H. (eds.) ETAPS 2002 and FASE
2002. LNCS, vol. 2306, pp. 233–248. Springer, Heidelberg (2002)

12. Han, J.: A Comprehensive Interface Definition Framework for Software Components. In:
Proceedings of 1998 Asia-Pacific Software Engineering Conference, Taipei, pp. 110–117
(1998)

13. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse. ACM Press /Addison Wesley Long-
man, New York (1997)

14. Ly, L.T., Rinderle, S., Dadam, P.: Semantic Correctness in Adaptive Process Management
Systems. In: Dustdar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, pp.
193–208. Springer, Heidelberg (2006)

15. Mertens, P., Wedel, T., Hartinger, M.: Management by Parameters? Zeitschrift für Be-
triebswirtschaft 61, 569–588 (1991) (in German)

16. Meyer, B.: Applying "Design by Contract". IEEE Computer 10, 40–51 (1992)
17. OMG (ed.): The Common Object Request Broker: Architecture and Specification (2001)
18. OMG (ed.): CORBA Components Specification. Version 3.0 (June 2002) (Date of Call:

2006-02-02) URL: http://www.omg.org/
19. OMG (ed.): Unified Modeling Language: UML 2.0 Superstructure Specification July 4,

2005) (Date of Call: 2005-09-09) (2005) URL: http://www.omg.org/technology/documents

 On the Specification of Parameterizable Business Components 39

20. Ortner, E., Schienmann, B.: Normative Language Approach: A Framework for Under-
standing. In: Thalheim, B. (ed.) Conceptual Modeling, pp. 261–276. Springer, Heidelberg
(1996)

21. Overhage, S.: UnSCom: A Standardized Framework for the Specification of Software
Components. In: Weske, M., Liggesmeyer, P. (eds.) Object-Oriented and Internet-Based
Technologies, Proceedings of the 5th Net’Object Days, Erfurt (2004)

22. Schütte, R.: Grundsätze ordnungsmäßiger Referenzmodellierung. Ph.D. thesis. Gabler
Verlag, Wiesbaden (1998) (in German)

23. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented Pro-
gramming, 2nd edn. Addison-Wesley, Harlow (2002)

24. Turowski, K. (ed.): Standardized Specification of Business Components: Memorandum of
the working group 5.10.3 Component Oriented Business Application Systems. University
of Augsburg (2002) (Date of Call: 2005-09-09) URL: http://www.fachkomponenten.de

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 40–53, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Implementing Non-functional
Service Descriptions in SOAs

Stephan Aier1, Philipp Offermann2, Marten Schönherr2, and Christian Schröpfer2

1 Institut of Information Management, University of St. Gallen,
Mueller-Friedberg-Strasse 8, 9000 St. Gallen, Switzerland

stephan.aier@unisg.ch
2 Berlin University of Technology, Faculty of Computer Sciences and
Electrical Engineering, Franklinstr. 28/29, 10587 Berlin, Germany

{philipp.offermann,marten.schoenherr,
christian.schroepfer}@sysedv.tu-berlin.de

Abstract. This article describes a framework for extended service descriptions
based on OWL-S (Web Ontology Language for Services) focusing on non-
functional criteria. Necessary service management tasks will be introduced and
extended by corresponding data elements and statements for its automated sup-
port. After a short comparative description of several existing approaches to
semantic service descriptions the paper addresses the actual extension of
OWL-S. Non-functional extensions as service lifecycle elements and Quality of
Services (QoS) are added. To extend QoS capabilities, the approach combines
the common extension mechanism with UML (Unified Modeling Language)
Profile for QoS. A prototype delivers the proof-of-concept for the first part of
the extension. The prototype implements SOA-specific authentications and all
basic features for a tool-supported service management using extended seman-
tic service descriptions by defining an ontology-based service taxonomy and
service annotation.

Keywords: SOA, Protégé, OWL-S, QoS, UML Profile for QoS, service man-
agement, ontology, service lifecycle.

1 Service Management as a Key Issue in SOAs

Scientists and practitioners emphasize the potential of SOAs (service-oriented archi-
tectures) especially by reconciling business requirements and IT infrastructures. SOA
definitions range from a solely technology-driven approach to a new management
school approach on how to run the whole enterprise. Gold et al. consider technologi-
cal aspects focusing on standardized interface descriptions.

“[A service oriented architecture is] a set of components which can be in-
voked, and whose interface descriptions can be published and discov-
ered.” [1]

McCoy and Natis take into account aspects of stakeholder, granularity, reuse
and agility:

 Implementing Non-functional Service Descriptions in SOAs 41

“SOA is a software architecture that builds a topology of interfaces, inter-
face implementations and interface calls. SOA is a relationship of services
and service consumers, both software modules large enough to represent a
complete business function. So, SOA is about reuse, encapsulation, inter-
faces, and ultimately, agility.” [2]

Furthermore issues as service management and optimization are being addressed:

“SOA is the concept of service-enabling new and existing software; link-
ing internal and external service-enabled software systems; and imple-
menting an enterprise-wide infrastructure to enable, manage, and optimize
services use and interaction“ [3] (see also [4, 5])

A common understanding of further SOA characteristics are the distributed manner of
SOAs, the aspect of service orchestration, loose coupling of applications, and the
standardization of interface descriptions [4, 6, 7]. Lubinsky and Tyomkin focus on the
business process-driven integration and therefore derive the following three main
aspects of an SOA [4]:

• Service descriptions
• Business processes
• Service management

A proper description of services is a fundamental precondition for a service manage-
ment. While various research activities deal with aspects of functional service de-
scription, we will focus on non-functional elements of a service description in order to
enable a service lifecycle management (SLM) and aspects of quality of service (QoS).

Modeling functional and non-functional information in a machine-readable and
semantically enriched way is a basis for a highly automated service management
framework. In web services technology, UDDI (Universal Description, Discovery,
and Integration) repositories and WSDL (Web Services Description Language) are
used for service publication, discovery, and description but do not provide the neces-
sary semantic functionality for service management aspects.

Our approach builds on OWL-S (Web Ontology Language for Services), a well es-
tablished ontology framework, and existing tools to construct the necessary exten-
sions. The two aspects that need to be covered in the non-functional area are service
lifecycle information and offered QoS guarantees by a service. Hence, it is necessary
to look at semantic web service description standards in general as well as description
standards in the QoS domain.

2 Requirements for Non-functional Service Description

In order to support service management activities, like semi-automatic discovery,
service level management, and service migration, several types of information need to
be modeled within the service description. The following two sections describe re-
quirements for service description regarding information relevant for service life
cycle management and QoS guarantees. The lists contain the most obvious points in
both categories. However, they can not be regarded as complete. A future-proof

42 S. Aier et al.

approach must allow for extension of ontological terms used for description. Building
on this extensibility, domain-specific models can be build that capture most require-
ments relevant in the domain.

2.1 Additional Description for Service Lifecycle Management

In the area of lifecycle management, the following information should be covered.
The information can be categorized as organizational aspects and technical aspects.

Organizational aspects include information like service name, service category,
versioning information, variant information, and links to further business description
of the service. However, the most important organizational aspect for a service lifecy-
cle management is the lifecycle status of a service. Possible states are “Planned”,
“Design”, “Test”, “Pilot”, “Active–intensive maintenance”, “Active–regular mainte-
nance”, “Sunsetting candidate”, “Sunsetting in progress”, and “Sunsetted”. Especially
for the operational management of active services information about the service pro-
vider, different responsibilities, roles, persons (e.g. for maintenance), and pricing
(depending on QoS class) are of importance.

Technical aspects include information on the infrastructure the service runs on like
server name, configuration management ID, etc. and a link to source code of the ser-
vice. For managing service dependencies information about other services used as
well as services depending on a certain service are necessary.

These statements are not very complex. It will be shown that they can be easily re-
alized as OWL-S extensions.

2.2 QoS Guarantees

Quality of service aspects can be categorized in a general dimension, cost dimension,
performance dimension, reliability dimension, and other boundary conditions.

The general dimension includes the overall QoS-Level. The service level regarding
performance, quality (“Gold”, “Silver”, “Bronze”) are defined in a separate SLA
document. Furthermore services belong to a certain service category which may be
derived in a service domain analysis [8] and a communication pattern, e.g. real time
or batch.

The cost dimension specifies tariff models. Services may be paid, e.g. per period of
time, per service call, or for volume of traffic.

The performance dimension includes primarily technical values. Specified values
may be service response time, data capacity of an underlying database (normal/max
after extension), accuracy of the result of a calculation, arrival patterns describing
jitter and arrival distributions, and certain performance ratios like number of service
requests per period of time (throughput of data sets, calculations per time, nor-
mal/max after extension) etc.

The reliability dimension includes aspects of functional correctness of services,
their availability (business hours, weekdays/time, and incident resolution time), end-
user usability, and aspects of security like security level, encryption standard, access
rights, authenticity etc.

 Implementing Non-functional Service Descriptions in SOAs 43

Other boundary conditions describe organizational aspects like promoters/opponents
for certain activities, cultural aspects like different languages needed for end-user com-
munication and normative aspects like compliance with laws/regulations and certification.

3 Relevant Standards

A number of standards have evolved in the area of semantic service description. A
selection of them most relevant from a content and time perspective is being dis-
cussed in this section: OWL-S, WSMO (Web Service Modeling Ontology), and
WSDL-S (Web Services Description Language – semantically enriched). For the QoS
part we will discuss UML (Unified Modeling Language) Profile for QoS.

3.1 OWL-S

OWL-S (Web Ontology Language for Services) [9] is an upper ontology language
developed by the semantic web services arm of the DAML (Darpa Agent Markup
Language) program [10]. It uses the OWL (Web Ontology Language) ontology lan-
guage. OWL-S supplies a core set of markup language constructs for describing the
properties and capabilities of web services in unambiguous, computer-interpretable
form and facilitates the automation of web service tasks including automated service
discovery, execution, interoperation, composition, and execution monitoring [9].

OWL-S uses four classes to describe web services: Service, ServiceProfile, Ser-
viceGrounding, and ServiceModel. Service is a reference point for the other elements.
ServiceProfile facilitates service discovery and describes functional and non-
functional aspects. It is the part where OWL-S can be extended. ServiceProfile is
therefore described in detail in section 4. Figure 1 depicts all its elements. Ser-
viceModel is targeted at in depth analysis once the service has been discovered. It
describes in detail how to use the service, the semantics of requests, responses,
pre- and post-conditions (effects), as well as optionally even the process. Service-
Grounding describes how the actual instance of a service can be accessed, i.e. proto-
col, message format, serialization, transport, and addressing.

We have chosen OWL-S as the basis for our service description approach for two
reasons. First of all, it is based on OWL, a well established ontology language. Sec-
ondly, there are tools available for working with OWL ontologies as well as with
OWL-S service descriptions.

3.2 WSMF/WSMO/WSML

WSMO is another upper ontology for describing web services semantically. It has
been submitted to the W3C (The World Wide Web Consortium). WSMO represents a
meta-model for web service description and is compatible to MOF (Meta-Object
Facility). Basis for WSMO is WSMF (Web Service Modeling Framework) [11].
WSML (Web Services Modeling Language) which is used in WSMO provides a rule-
based language for the semantic web [12]. As defined in WSMF, WSMO uses four
main components: ontologies, goals, mediators, and web services.

44 S. Aier et al.

Fig. 1. Overview ServiceProfile [1]

Ontologies can be imported for the description of individual elements. In WSMO,
they are used to define an agreed common terminology by providing concepts, and
relations between the concepts [13].

Goals describe the functionality and interfaces of the web services from a user per-
spective. This is the section that can very well be used for discovery by potential
service requestors.

Mediators describe the elements mediating between different ontologies, goals,
and web services. They refer to external web services providing transformation ser-
vices. The concept of mediators makes WSMO interesting for the description of het-
erogeneous web services.

Web services are among others described by non-functional properties and a capa-
bility, describing its functionality from a provider’s perspective. Non-functional prop-
erties describe additional information about the web service, e.g. owner, contributor,
rights, and scalability. They can be defined also for other elements and extended by
using terms imported with ontologies.

Like OWL-S, WSMO only contains rather generic elements to describe web ser-
vices. Some elements for service lifecycle management and QoS elements are in-
cluded but seem rather ad hoc. That is why OWL-S has been chosen as the basis for
the approach described here. However, we assume that a similar approach can be
developed based on WSMO using non-functional properties.

3.3 WSDL-S

WSDL-S is a standard for a semantically enriched web services description. It is an
extension of WSDL (Web Services Description Language). With this incremental
approach it has been possible to add semantics to service descriptions without having
to redefine the standard. [14]

In WSDL-S, the actual ontology representation can be done with an ontology lan-
guage chosen by the user, e.g. OWL, WSML, or UML. In WSDL-S semantic

 Implementing Non-functional Service Descriptions in SOAs 45

description is done in the following way. Three new elements are added as extensibil-
ity elements to WSDL: category (extension to interface), preconditions, and effects
(extensions to operation). Service categorization can be done using category. The
actual semantic annotation to the service and its elements input, output, operation,
precondition, effect, and category is done by referring via URIs (Uniform Resource
Identifier) to an externally defined ontology. Two extension attributes specify the
association and schema mapping between WSDL elements and ontologies.

Summing up, WSDL-S is a standard for semantic description of web services
which heavily leverages existing standards and is very flexible with respect to ontol-
ogy and mapping languages.

3.4 UML Profile for QoS

UML Profile for QoS is a comprehensive framework for modeling QoS requirements
and offerings. It extends the reference UML 2.0 meta-model mainly by using the
stereotype concept. It allows for the modeling of QoS properties in UML models [15].

UML Profile for QoS uses the following approach. It describes a QoS model spe-
cific to the respective domain separated from the actual elements to be annotated. In
the actual UML model the elements can be annotated using terms defined in this QoS
model. UML profile is based on a QoS meta-model and comprises the three sub-
profiles QoS Characteristics, QoS Constraints, and QoS Levels.

The QoS model is defined by using QoS Characteristics. Among others, it uses the
stereotypes QoS Characteristic and QoS Dimension to specify respectively quantify
aspects of QoS. It is possible to use statistical values (maximum, minimum, range,
mean, variance, standard deviation, percentile, frequency, moment, and distribution)
to express preferences about the direction when comparing or optimizing parameters.
The relationship between several QoS Characteristics and elements that are part of
one QoS statement can be described by QoS Context.

Annotating the elements with QoS requirements/offerings is done with QoS Values
or with QoS Constraints. QoS Values specify values for QoS dimensions available at
modeling time. QoS Constraints describe limitations of QoS Characteristics for anno-
tated elements, either by listing the allowed elements or by stating the limits. Three
types of constraints exist: QoS Required, QoS Offered, and QoS Contract. For service
description in most cases QoS Offered will be used. However, using QoS Required it
is possible to specify constraints the provider has towards the requestor, e.g. invoca-
tion/arrival patterns. QoS Contract can be used for specifying service level agree-
ments. Different levels supported by a system with regard to QoS can be defined by
QoS Level. A QoS Level is described by an allowed space for the values of the QoS
characteristics. The different levels can be used in SLAs.

There are several reasons for choosing UML Profile for QoS for the extension of
OWL-S. Firstly, it comes with its own general catalog of QoS characteristics which is
neither domain- nor project-specific. Although it is not complete, it is an excellent
basis for a common understanding of the most important QoS parameters. Secondly, it
can be well integrated with business process modeling, which is the counterpart of the
web services matching problem to the service description. For service matching and
service level negotiation this offers the advantage of having both the description of
offered QoS and the description of required QoS in the same logical format. Thirdly,

46 S. Aier et al.

compared to other specifications, UML Profile for QoS is quite mature. A lot of other
QoS-related work and frameworks where considered already during its first definition.
Summarizing, UML Profile for QoS is a comprehensive framework for modeling QoS
requirements and offerings and is therefore well suited to add comprehensive QoS
capabilities to OWL-S.

4 Extending OWL-S for Non-functional Service Description

The following section describes the proposed extension to OWL-S with respect to
service lifecycle management and QoS.

4.1 Extensions for Service Lifecycle Management

Extension of OWL-S happens in the ServiceProfile. For the functional description
Parameter, Input, Output, Condition, Result, and Process are used. The first five refer
to the process description in ServiceModel. For the non-functional description the
following properties/classes are interesting: serviceClassification, serviceProduct,

<owl:Class rdf:ID="ServiceVersion">
 <rdfs:subClassOf rdf:resource=
 "http://www.daml.org/services/owl-s/1.2/Profile.owl#ServiceParameter"/>
</owl:Class>
<owl:Class rdf:ID="ServiceVersionInfo"/>
<owl:DatatypeProperty rdf:ID="VersionName">
 <rdfs:domain rdf:resource="#ServiceVersionInfo"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="VersionNumber">
 <rdfs:domain rdf:resource="#ServiceVersionInfo"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
</owl:DatatypeProperty>

Fig. 2. Definition of Service Version in OWL-S

<ServiceVersion rdf:ID="ServiceVersion_10">
 <profile:sParameter>
 <ServiceVersionInfo rdf:ID="ServiceVersionInfo_11">
 <VersionName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Snake</VersionName>
 <VersionNumber rdf:datatype="http://www.w3.org/2001/XMLSchema#float"
 >5.1</VersionNumber>
 </ServiceVersionInfo>
 </profile:sParameter>
 <profile:serviceParameterName rdf:datatype=
 "http://www.w3.org/2001/XMLSchema#string"
 >ServiceVersion</profile:serviceParameterName>
</ServiceVersion>
<profile:Profile rdf:ID="CalculateRoute_Profile">
 <profile:serviceParameter rdf:resource="#ServiceVersion_10"/>
[…]
</profile:Profile>

Fig. 3. Instance of a service description for CalculateRoute with details for ServiceVersion

 Implementing Non-functional Service Descriptions in SOAs 47

Table 1. Additional elements defined for service lifecycle management

Additional service
lifecycle parameter

Explanation

Properties/
subclasses

Data type Explanation

ServiceVersion Versioning information
VersionName String Version name described as literal
VersionNumber Float Version number x.x

ServiceVariant Variant information
Variant Integer Variant number

ServiceLifecycle-
Status

Lifecycle status of service component

LifecycyleStatus
(subclass of
owl:Thing)

(Enumer-
ated in-
stances)

Enumerated instances: “Planned”,
“Design”, “Test”, “Pilot”,
“Active_intensive_maintenance”,
“Active_regular_maintenance”,
“Sunsetting_candidate”,
“Sunsetting_in_progress”, “Sunsetted”

ServiceProvider Service provider information
ProviderLink anyURI Link to external information (name,

address, contacts, credentials, etc.) in
provider database

ServiceInfrastructure Infrastructure the service runs on
ServerID anyURI List of Server IDs the service runs on
ResourceID anyURI List of Resource IDs the service uses

SourceCodeLink Link to source code in code repository
SourceCode anyURI Link to source code

ServiceResponsibility Responsibility for service from business and technical
perspective

BusResponsibility anyURI Link to organization/person with
business responsibility

TechResponsibility anyURI Link to organization/person with
technical responsibility

BusinessDescription Information about business background
BusDescription String Textual description of business back-

ground
BusInfLink anyURI Link to further information resources

ServicePricing Pricing information
PricingModelQ1 anyURI Link to pricing model for QoS level 1
… … …
PricingModelQn anyURI Link to pricing model for QoS level n

serviceName, textDescription, ServiceCategory, and ServiceParameter. The first five
can be used for the requirements mentioned as they are. The web service can be clas-
sified using serviceClassification (mapping to an OWL ontology of services, e.g.
NAICS) and serviceProduct (mapping to an OWL ontology of products, e.g.
UNSPSC), as well as ServiceCategory (mapping to taxonomies potentially outside of

48 S. Aier et al.

OWL or OWL-S). Using serviceName, a semantic name can be given to a service.
Free text descriptions can be represented with textDescription.

The element ServiceParameter is especially important for the extension. Here the
remaining additional service lifecycle characteristics are defined (Table 1). Future
extensions also can be realized using ServiceParameter.

ServiceParameter consists of the serviceParameterName, the actual name of the
parameter, defined as literal or URI, and sParameter, a link to the value within an
OWL ontology. Figure 2 shows the definition of ServiceVersion in OWL-S as an
example. VersionName (type xsd:string) and VersionNumber (type xsd:float) are
defined as datatype properties of the class ServiceVersionInfo (subclass of owl:Thing).
Figure 3 shows the ServiceVersion information in OWL-S in a service description for
a logistics web service CalculateRoute. ServiceVersion_10 and ServiceVersion-
Info_11 are instances that contain the actual version information “snake” and “5.1”.

4.2 Extensions for QoS

Section 2.2 gives a flavor of what the level of complexity is when describing QoS
offerings. It shows that a comprehensive and extensible QoS framework that builds on
extensive experience needs to be leveraged. UML Profile for QoS is such a frame-
work that suffices these requirements.

Fig. 4. Example QoS requirements in an UML activity diagram

Hence we propose to use UML Profile for QoS together with OWL-S to bring QoS
functionality to web services description. To achieve this, it is not necessary to de-
velop the whole QoS model in OWL-S. It is sufficient to introduce the QoS annota-
tions to the services to be described. The QoS model does not have to be defined in
OWL-S. This description remains in UML and can be reused for other service
descriptions. This is very much in line with the idea of using the same QoS notation
on the business process side as well as on the service description side to facilitate
service level negotiation. Introducing the QoS annotations into the OWL-S service
descriptions can again be easily done by adding QoSCharacteristics as a new

 Implementing Non-functional Service Descriptions in SOAs 49

 <profile:Profile
 rdf:ID="GetCreditApplication_Profile">
 <profile:serviceParameter>
 <QoSCharacteristics rdf:ID="QoSCharacteristics_14">
 <profile:sParameter>
 <QoSStatement rdf:ID="QoSStatement_15">
 <Statement rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 <<QoSOffered>> {context PerformanceSupport inv: ResponseTime
 < 8}</Statement>
 </QoSStatement>
 </profile:sParameter>
 <profile:serviceParameterName rdf:datatype=
 http://www.w3.org/2001/XMLSchema#string>
 QoSCharacteristics </profile:serviceParameterName>
 </QoSCharacteristics>
 </profile:serviceParameter>
 […]
</profile:Profile>

Fig. 5. QoS offering for GetCreditApplication in the service description

ServiceParameter. QoSStatement is defined as a subclass of owl:Thing with the data
type property statement of the type string. This field contains the QoS constraints in
OCL (Object Constraint Language) of the element to be annotated. Figure 4 shows
example QoS requirements on the demand side in a UML activity diagram. Respon-
seTime of GetCreditApplication is required to be lower than 10 ms. Figure 5 shows
the corresponding QoS offering in the service description of GetCreditApplication.

5 Prototyping a Service Management

In order to support the mentioned features we have prototyped a service management
framework. It consists of a system architecture mainly integrating open source fea-
tures and a methodology describing how to use the prototype to introduce a service
management in an SOA.

5.1 Architecture

The architecture consists of a modeling approach using Protégé (extended by an OWL
plug-in) to edit an OWL-S ontology. The Jena framework is being used to integrate
and search the models. Furthermore there is a relational database (MySQL) represent-
ing the ontology attributes and integrating the UDDI taxonomy. The logic and GUI
implements a service management-specific authentication approach differentiating
roles as “Service Architect”, “Service Programmer”, and “Business Process Owner”.
A role-specific GUI shows relevant issues depending on the roles’ tasks and interests
only. For example a programmer needs to have detailed information about finding and
binding of services which a business process owner will never need. Figure 6 gives an
overview of the prototypical architecture and its three-layered structure.

Protégé is a free, open source ontology editor from Stanford University [16]. Pro-
tégé with Protégé-OWL, a plug-in for defining ontologies in OWL also from Stanford
University (available at [17]), is used for taxonomy definition. OWL-S Editor is a
Protégé plug-in developed at SRI International (available at [18]). It helps to define

50 S. Aier et al.

Fig. 6. Overview of service management prototype

services in OWL-S by making available the OWL-S ontology with its predefined
elements and a special view on the service, profile, grounding, and process instances.
The prototype itself is written in Java. It uses RMI (Remote Method Invocation) for
communication between the Java components and builds on Jena, a semantic web
service framework, for the semantic support. Jena facilitates the usage of internal and
external reasoners and access to the database via RDQL (Resource Description
Framework Query Language) [19]. The prototype uses it for interfacing with the da-
tabase where the semantic description is stored and for performing several operations
on the ontology database, in this case MySQL.

5.2 Methodology

The first version of the prototype supports basic tasks for a service management. The
following tasks are being implemented:

Taxonomy/Ontology Definition. The mentioned additions to the OWL-S ontology
can be made with the OWL Editor adding new ServiceParameter and owl:Thing sub-
classes. Later service descriptions and ontology extensions can be done using the
OWL file. Also, a taxonomy for the service category field and input/output para-
meters can be developed with Protégé OWL.

Service Description and Annotation. Service annotation and changes to existing
annotations are done with the OWL-S Editor by loading the OWL file that contains
the ontology extended by the above mentioned elements. It is possible to import exist-
ing WSDL descriptions.

Once the extended OWL-S ontology is loaded the services can be described. For
specifying a parameter for a service the predefined ServiceParameter has to be used.

 Implementing Non-functional Service Descriptions in SOAs 51

There are two ways of doing this. If the parameter contains listed elements, e.g. Ser-
viceLifecycleStatus, a link to an existing instance can be used. If the parameter con-
tains an element with free content like a number or a text field (e.g. ServiceVersion), a
new parameter value instance has to be created.

For the service description Protégé and the web-based GUI can be used. Protégé
does not support the service management-specific authentication system. Therefore
the use of the prototyped GUI should be preferred.

Apart from the non-functional elements, it is possible to semantically describe the
input/output parameters using normal OWL-S functionality and the service parameter
ontology defined.

Service Registration. Service registration is done by importing the OWL-S service
description into the prototype and its database. This is necessary in the case of
changing attributes. The prototype then performs the search activities laid out in the
next part.

Service Discovery and Review. The main functionality of the prototype is search
functionality across the services registered and described. There are several
possibilities for performing searches using the additional semantic information:

1. Simple queries – searching for services, input/output parameters, taxonomy ex-
pressions, etc. using the full names of these elements

2. Semantic queries for services using their input and output parameters
3. Semantic queries for services that match other services' input or output parameters
4. Semantic queries for services using taxonomy elements
5. Semantic queries using the other additionally defined parameters such as Ser-

viceVariant, ServiceResponsibility, and ServiceLifecycleStatus

Queries can be combined by limiting the search space by an outcome of a previous
search operation. For service management in complex environments it is absolutely
necessary to support role-specific views combined with access rights management.
The architect for example does not necessarily need to know all the details about the
pricing scheme. Business owners are not interested in technical details about invoca-
tion. Hiding unnecessary information improves usability, reduces the number of er-
rors, and is sometimes a must when it comes to confidentiality. The prototype is cur-
rently being extended by this functionality.

The main feature is the generic way of defining/redefining service taxonomy and
the permanent annotation of existing and new services. It is a matter of fact that there
is no stable service description in complex environments. Therefore the change of
taxonomy in a distributed SOA is a must when it comes to a huge number of imple-
mented services, different service lifecycle stages, and an existing role-based service
governance approach.

6 Conclusion

Sustainability as the most important characteristic of an integrated architecture needs
to be considered in an SOA, too. Changes in the design- and runtime of an SOA will

52 S. Aier et al.

be represented by changes in service taxonomy – changes regarding service manage-
ment requirements by changes in the specific OWL-S ontology. The effort of han-
dling changes and the methodology of staying up-to-date in the annotation using the
actual taxonomy needs more than known web service standards offer. The contribu-
tion of the work related to this article is a hands-on approach to service descriptions
that is extensible regarding additional future requirements. The article shows that it is
possible to build a semantically enriched service repository with OWL-S that supports
several tasks that are the basis for higher level service management activities. There-
fore it is evolutionary and a compatible upgrade of the existing web service descrip-
tion standards.

The current prototype will be extended regarding several issues. On the conceptual
level, the integration with a UDDI registry has to be improved. With this respect, the
role of WSDL-S for integration has to be examined. In addition, further work is nec-
essary to check whether similar extensions can be made with WSMO.

The presented approach is extendable. A valuable field for further research on the
business level is therefore a more structured examination of the content and the state-
ments related to service lifecycle management and QoS. For real world applicability,
it is important to have ready-to-use de facto standardized QoS models and extensions
to OWL-S.

References

1. Gold, N., Knight, C., Mohan, A., Munro, M.: Understanding Service-Oriented Software,
pp. 71–77. IEEE Computer Society Press, Los Alamitos (2004)

2. McCoy, D., Natis, Y.: Service-Oriented Architecture: Mainstream Straight Ahead. Gartner
Research (2003)

3. New Rowley Group: Building a more flexible and efficient IT infrastructure - Moving
from a conceptual SOA to a service-based infrastructure (2003),

 http://www.newrowley.com/reseach.html
4. Lubblinsky, B., Tyomkin, D.: Dissecting Service-Oriented Architectures. Business Inte-

gration Journal, 52–58 (2003)
5. Roth, P.: Moving to A Service Based Architecture. Business Integration Journal, 48–50

(2003)
6. Sleeper, B., Robins, B.: The Laws of Evolution: A Pragmatic Analysis of the Emerging

Web Services Market. The Stencil Group, San Francisco (2002)
7. Weinreich, R., Sametinger, J.: Component Models and Component Services: Concepts and

Principles. In: Council, W.T., Heinemann, G.T. (eds.) Component-Based Software Engi-
neering: Putting Pieces Together, pp. 22–64. Addison Wesley, Boston (2001)

8. Aier, S.: How Clustering Enterprise Architectures helps to Design Service Oriented Archi-
tectures. In: IEEE SCC2006, IEEE, Chicago, USA (2006)

9. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S: Se-
mantic markup for Web services (2006),

 http://www.ai.sri.com/daml/services/owl-s/ 2/ overview/
10. DAML: DAML Services (2006), http://www.daml.org/services/owl-s/
11. Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. In: Electronic

Commerce: Research and Applications, pp. 113–137 (2002)

 Implementing Non-functional Service Descriptions in SOAs 53

12. Feier, C., Domingue, J.: D3.1v0.1 WSMO primer. DERI (2005),
 http://www.wsmo.org/TR/d3de.1/v0.1/

13. de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M.,
König-Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman, D., Sci-
cluna, J., Stollberg, M.: Web Service Modeling Ontology (WSMO) - W3C Member sub-
mission 3 June 2005 (2005), http://www.w3.org/Submission/WSMO/

14. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T., Sheth, A., Verma, K.:
Web service semantics - WSDL-S - W3C member submission 7 November 2005 - Version
1.0 (2005), http://www.w3.org/Submission/2005/SUBM-WSDL-S-20051107/

15. OMG: UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms - OMG available specification - Version 1.0 - formal/06-05-02. OMG
(2006), http://www.omg.org/cgi-bin/apps/doc?formal/06-05-02.pdf

16. Welcome to Protégé. Stanford Medical Informatics (2006), http://protege.stanford.edu/
17. What is Protégé-OWL? Stanford Medical Informatics (2006),

 http://protege.stanford.edu/overview/protege-owl.html
18. The OWL-S Editor (2004), http://owlseditor.semwebcentral.org/
19. Jena - A Semantic Web Framework for Java. sourceforge.net, http://jena.sourceforge.net/

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 54–68, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Industrializing Software Development:
The “Factory Automation” Way

N. Ilker Altintas1,2, Semih Cetin1,2, and Ali H. Dogru2

1 Cybersoft Information Technologies,
Ata Plaza 3/3, Kat:3, 34758, Istanbul, Turkey

{ilker.altintas,semih.cetin}@cs.com.tr
2 Department of Computer Engineering

Middle East Technical University, Ankara, Turkey
dogru@ceng.metu.edu.tr

Abstract. Improving the productivity by means of systematic reuse has been a
major challenge particularly for the last decade in software industry. Following
the individual techniques like Architecture-Based Development, Model-Driven
Development and Software Product Lines, Software Factories have eventually
come to the stage as an umbrella solution to software productivity problem by
assembling the applications with frameworks, patterns, models and tools. While
this theoretically seems quite suitable, it still needs practical guidance at certain
points such as defining and orchestrating reusable assets for setting up distinct
software factories. This paper proposes a methodical way for such difficulties in
establishing software factories as the way other manufacturing industries have
been doing for several decades, which is known to be “factory automation”. We
articulate the “software factory automation” for managing reusable assets across
distinct software product lines based on an architecture-driven software factory
meta-model and tailoring them to form directly executable software assets.

1 Introduction

The vision of improving reusability and hence quality is critical for increasing the
productivity of software teams as well as decreasing the cost and time to market of
software products. Boehm put special emphasis on software productivity management
through systematic reuse leveraged by three basic strategies: working faster via tools
to automate the labor-intensive tasks, working smarter with process improvement, and
working less via reuse of software artifacts [7]. The question is which strategy will
produce the highest payoff? An extensive analysis addressed this question for the US
Department of Defense and concluded that “working less” is more valuable three
times than “working smarter” and six times than “working faster” [8].

Mainly for past two decades, software industry has demanded personal
productivity and now it turns its vision to the technologies that automate business
processes. As the industry matures, businesses look for much richer functionalities
and quicker response times. Accordingly, software industry should surpass the
techniques that brought it to this point, and embrace the industrialization best
practices achieved by manufacturing. These include product assembly from

 Industrializing Software Development: The “Factory Automation” Way 55

components, reducing labor-intensive tasks with automation, setting up the software
product lines and supply chains, formalizing the interfaces, and standardizing
architectures and processes. In short, such a vision is known to be the “software
factory” approach. Although this approach is not new and addressed by many
researchers and industry experts, it still needs formal models and practical assistance
for establishing them across different business domains.

This paper presents a methodical approach to set up software factories based on an
architecture-driven “software factory meta model”, defining factory assets accordingly
and tailoring them for creating actual software factories in diverse product lines. This
proposition is inspired by the “programmable logic controller” approach applied in
other industries for many years, however explicitly adapted to building software
factories. Establishing software product lines so far on different business domains such
as banking, insurance, enterprise resource planning and e-government, we concluded
that reusable assets can be designed for functional and non-functional requirements
even across these diverse business domains by modeling a generic software factory
schema and then tailoring to directly executable software assets.

The paper continues with brief explanation of comparable studies in the next
section. Then, we shall introduce the overview of our software factory automation
model. Followed by explaining the practical implementation aspects of our proposed
approach, the paper ends with conclusions and future work.

2 Background and Related Work

Some have claimed so far that software cannot be manufactured, hence automating
the software development process is not that much viable for reuse. Meanwhile, the
skilled labor bottleneck in software industry has led to rapidly increasing costs, time
to market delays, and common problems like reliability, security, and performance.
Early projects for the industrialization of software development had come in late 80’s
like European [32], Japanese [1], or Brazilian [33] models. However these attempts
were too early to be successful without the help of contemporary research in systems
modeling and software reuse.

Different software reuse techniques have been devised so far, which resulted in
reasonable savings by using prefabricated parts for higher productivity [4, 26].
Specifically, Component-Oriented Software Engineering (COSE) puts software reuse
within an architectural framework to produce a set of reusable components that are
composed to obtain a high level of reuse while developing members of an application
family [13]. Architecture-Based Development (ABD) shows a clear understanding of
domain architecture by separating design from implementation issues, which makes
the reusable aspects explicit [36]. Service-Oriented Architecture (SOA) leverages a
logical framework by decoupling several logical units of functionality, i.e. services,
which facilitates the software reuse by eliminating the recreation of common services
[3, 37]. Frameworks are providing software reuse by hiding the composition details
from component implementers through the use of proper patterns [16, 17].

Aspect-Oriented Software Development (AOSD) introduced new techniques for
the separation and composition of scattered and tangled concerns in a way that

56 N.I. Altintas, S. Cetin, and A. H. Dogru

recurring aspects can be easily modeled for reuse [15, 24]. Model-Driven
Development (MDD) uses models to automate development and achieve the software
reuse by automatically generating executable parts whenever and wherever needed.
MDD exploits Domain Specific Languages (DSL) to write higher-level specifications
of software that capture developer intent in computational forms [30, 35, 38].

While the aforementioned methods enable software reuse, they do not present a
complete roadmap. Software Product Line (SPL) has been the first complete approach
for systematic reuse by sharing a common and managed set of features that satisfies
the specific needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way [4, 12]. SPL is a conceptual
baseline and organizations should realize their own implementations accordingly [28].

The concept of SPL has been extended to define Software Factories that configure
extensible tools, processes, and content using a software factory template based on a
software factory schema to automate the development and maintenance of variants of
an archetypical product by adapting, assembling, and configuring framework based
components [18, 20, 25, 38]. Like SPL, Software Factory is also a logical baseline,
but there exist some implementations such as ISpySoft in .NET environment [23].
While they exist, there has been no mutual understanding yet to generalize the
establishment of Software Factories as the way manufacturing industry has been
doing. Some efforts like PuLSE by Fraunhofer [29] and Kulkarni et al [22] share the
concerns similar to our proposal, but the former is concentrated on individual setup of
SPLs with reference architectures and methodic processes whereas the latter proposes
a completely model-driven way. We differ from PuLSE primarily by using isolated
building blocks for seamless integration, and from Kulkarni et al by being more
architecture-driven.

3 The “Software Factory Automation” Way

It has been typically recognized in many industries that recurring and labor intensive
tasks were left to machines with automatic processes for maximizing the productivity.
Industrial automation such as controlling machines or factory assembly lines is done
through the use of small computers called Programmable Logic Controller (PLC). A
PLC has three basic building blocks: Programmable Processor (PP) to be programmed
with a Computer Language (CL) using a dedicated Development Environment (DE).

Our Software Factory Automation (SFA) approach is principally inspired by the
PLC concept. Fig. 1 shows this one-to-one correspondence: Domain Specific Engine
(DSE) is paired with PP, Domain Specific Language (DSL) with CL, and Domain
Specific Tool (DST) with DE. The encapsulation of DSE, DSL, and DST is called as
Domain Specific Kit (DSK) to be paired with PLC in analogy. As the way PLCs are
used for abstracting a wide range of functionalities like basic relay control or motion
control, DSKs in SFA approach can be designed specifically to abstract certain things
such as screen/report rendering or business rule execution in software factories.

 Industrializing Software Development: The “Factory Automation” Way 57

Development Environment (DE)

Computer Language (CL)

Programmable Processor (PP)

Programmable Logic Controller (PLC)

Domain Specific Tool (DST)

Domain Specific Language (DSL)

Domain Specific Engine (DSE)

Domain Specific Kit (DSK)

Industrial Factory Automation Software Factory Automation

Fig. 1. Software Factory Automation and PLC Analogy

SFA has further commonalities with PLC. Specifically, PLC is typically a Reduced
Instruction Set Computer (RISC) based and contains a variable number of I/O ports.
So does our SFA model. DSK has logical I/O ports to have seamless connection with
each other for context propagation. DSLs are kept in higher-level abstractions so that
the design and transformation can be easily accomplished as in the concept of RISC
in PLCs. Moreover, DSE has inherent execution monitoring features in design as PP
has extensions for Supervisory Control and Data Acquisition (SCADA) monitoring.

3.1 Basic Definitions and Stakeholders

Before giving the details, we present the basic definitions and identify stakeholders in
Table 1 for better understanding of our SFA model.

Table 1. Basic Definitions and Stakeholders of SFA Model

Term (Acronym) Definition
Software Factory Automation
(SFA)

A collection of best practices, software assets, and architectural frameworks
out of which it enables the creation of a software factory.

SFA Architectural Hyperframe A template for defining the composability of DSEs to form SPL reference
architecture (a sort of software factory schema).

SPL Reference Architecture SPL reference architecture is the generalized architecture of several end
products, and it defines the infrastructure common to the end systems and the
interfaces of components that will be included in the end systems [19].

Product Architecture A specialization of the SPL reference architecture for a specific product.
Domain Specific Language (DSL) A programming language dedicated to a particular domain or problem with

appropriate built-in abstractions and notations.
Domain Specific Engine (DSE) An engine specifically designed and tailored to execute a specific DSL.
Domain Specific Tool (DST) An environment to develop software artifacts of a specific DSL.
Domain Specific Kit (DSK) A collective name for DSL, DSE and DST.
Asset Meta Model (AMM) A meta-meta-modeling language, which allows us to define an asset modeling

language for a specific product line.
Asset Modeling Language (AML) A meta-model, derived from AMM, to define all software artifacts to be used

in a particular product line.
Asset Model The model of any specific software artifact, which is defined by using AML.
Executable Asset The runtime object built from an asset model after tailoring.
Stakeholder Responsibility
SFA Engineer Development of Software Factory Automation model.
SPL Engineer Design of a specific SPL, DSEs, and its SFA-based asset model, as well as

management of product line and its assets, which is in charge of product line
management and core asset development compliant with general SPL model.

Product Engineer Management of a specific product in an individual product line.
Product Line Staff People responsible for all other product line activities including business

domain modeling and asset tailoring for a specific product.

58 N.I. Altintas, S. Cetin, and A. H. Dogru

3.2 The Software Factory Automation Model

The conceptual model of Software Factory Automation has two parts: “architectural
modeling” and “product line modeling” as shown in Fig. 2. Architectural modeling is
needed once at the beginning of product line design for software product families and
used in product line modeling of that specific software factory.

Fig. 2. The Conceptual Model of Software Factory Automation

Architectural Modeling

Architecture modeling is expected to relate architectural aspects and quality targets to
running components and connectors. SFA uses an architectural modeling approach
first to localize these concerns in multiple concern spaces and then relate them from
problem to solution domain. This approach identifies the problem domain in Utility
Concern Spaces by correlating the Architectural Aspects and Quality Attributes, and
solution domain in Architectural Concern Spaces by correlating the Architectural
Tiers and Architectural Views.

Architectural aspects are the required set of architectural issues like authentication,
authorization, and logging whereas quality attributes are product quality issues such
as scalability, performance, and flexibility. Architectural tiers are well-known tiers of
“n-tier” architectural model such as presentation, Web, application and data tiers
whereas architectural views are different viewpoints of stakeholders like functional,

 Industrializing Software Development: The “Factory Automation” Way 59

process, design, and system views. Classical approaches map these problem domain
concerns to design decisions of solution domain, which may end up with crosscutting
concerns.

SFA prefers to address problem and solution domain concerns in isolated concern
spaces and map these concern spaces into each other instead of mapping individual
architectural concerns. This mapping technique is called “symmetric alignment” [9]
and assisted by a methodical approach to identify components (DSEs), and connectors
(composition of DSEs) in the solution domain, which constitutes the SPL Reference
Architecture (Software Factory Template) in our SFA model. Moreover, identification
of architectural properties facilitates the definition of SPL Contextual Information,
which contains the stateful/stateless information to connect individual DSEs, and is
needed for independent design and implementation of these individual DSEs through
a standard communication schema across DSLs. At the end of this step, DSEs and
DSLs have been identified within the solution domain (target scope of the software
factory).

SFA architectural modeling identifies the set of DSEs and associated DSLs with
the composability rules under an “SFA Architectural Hyperframe”, which is a sort of
software factory schema that can later form SPL Reference Architectures. SFA model
needs a way to define this architectural hyperframe through an XML-based meta-
model, which is called Asset Meta Model (AMM). AMM is a meta-modeling
language to define the Asset Modeling Language (AML) of a distinct SPL.

Accordingly, AML includes the set of required DSLs to define reusable assets of
an individual SPL. The common asset definition at a meta-level enables the design
and cross-utilization of reusable software assets across multiple factories. Embedding
the selected DSLs into AMM together with defining choreography and variability
points of assets constitute an AML for the target software factory. AML defines how
DSLs will be composed to form the assets of a software factory by defining the
composability rules and constraints. AMM also provides proper means to define
variability points and parameterizations of assets whereby the resulting AML has
specific definitions for the management of commonality/variability in domain assets.

Product Line Modeling

Apart from this architectural modeling process, functional requirements of business
domain for a product family need another modeling process, which is called “product
line modeling” in SFA approach and illustrated in the lower part of Fig. 2. Executed
from the bottom up, this process starts with a domain analysis to form a Business
Domain Model for the specific software factory. Domain analysis is performed in two
ways: one for understanding the functional requirements specific to a product family,
and the other for defining common/variable points among the current DSEs/DSLs
dedicated to functional items.

Business domain model is then mapped into Published Assets in the second phase.
Published assets are the meta-level specialization of reusable assets for the particular
functional requirements of a software factory. Towards publishing reusable assets for
a particular business domain, this step selects proper assets from Reusable Assets
Repository under the supremacy of Asset Modeling Language previously introduced

60 N.I. Altintas, S. Cetin, and A. H. Dogru

in architectural modeling. Published assets are semantically expressed and accessible
specifications that can be generated into actual Executable Assets. Formally, these
two steps depend on a semantically expressed notation known as Business Process
Modeling Notation (BPMN), which is a methodology independent and unambiguous
notation to express any business process with semantics apart from being a visual
notation [6]. Since BPMN is a notation that business process analyst uses to design
executable business processes, it is selected as the modeling notation for representing
business domain and publishing assets for SFA approach.

After representing the Published Assets, SFA needs another expression language to
specify the Executable Assets. SFA anticipated the use of Business Process Modeling
Language (BPML) [6] extended with DSL abstractions for several reasons. First,
BPMN directly translates into BPML, which thoroughly assists our transformation
approach from Published Assets to Executable Assets. Furthermore, BPML provides
an abstracted execution model for collaborative and transactional business processes
based on a transactional finite-state machine, which is quite suitable for the
expression of executable assets in terms of DSLs and for the deployment to DSEs
managed by a Choreography Engine.

However, there are some drawbacks as well. BPML adopts a monolithic execution
model where every sort of detail should be specified at once, which is contradictory to
the “deferred encapsulation” [20] of DSEs. In SFA approach, choreography engine
requires the separation of concerns across different DSEs and thus deferred
encapsulation can be achieved through plugging in and out any DSE as needed. That
is why BPML needs extensions to support DSLs with higher levels of abstraction.

3.3 SFA Architectural Hyperframe

The features mapped into specific DSLs are going to be executed by corresponding
DSEs. Therefore, dynamic plugging and context-awareness of DSLs are crucial for
the runtime execution model. However this is not enough, a central authority is
needed for the seamless integration. SFA Architectural Hyperframe (through a
Choreography Engine) enables this communication and coordination among DSEs. It
ensures context management, state coordination, communication, produce/consume
messaging, nested processes, distributed transactions, and process-oriented exception
handling.

Dynamically assembling the parts in software factories is a must and this can be
achieved only by “deferred encapsulation” [20] that can be modeled in different ways
such as Inversion-of-Control or Mediator Patterns [17]. Another systematic approach
for that is known to be “Feature-Oriented Programming/Development (FOP/D)”. The
features are first class entities to be used in the design of more capable SPLs, since
dynamically adding and removing features may facilitate the flexibility of designing
products and empower the commonality and variability management [14]. Our SFA
approach anticipates feature-driven specification with dynamically composable basic
aspects, which is called “Rule-Based Model for Basic Aspects (RUMBA)” [2, 10].

RUMBA basically enables the design of any entity with the dynamic composition
of feature-driven “basic aspects”. Moreover, every basic aspect may contain other
basic aspects recursively to form the “features”. RUMBA is a versatile component for
modeling the SFA Architectural Hyperframe. It has been used as a separate DSE for

 Industrializing Software Development: The “Factory Automation” Way 61

business rule management in modeling insurance applications. Furthermore, it can be
used in the design and implementation of very flexible DSEs for any feature set such
as content management and workflow management.

SFA Architectural Hyperframe needs a formal composition model like the way
PLCs can be composed to have the complete factory automation in other industries. A
DSL either may have a textual or graphical representation (concrete syntax) [38]. In
our approach, DSLs are required to comply with certain standards to be plugged into
the Choreography Engine. Each DSL defines artifact names, external references
(referred artifact names from the outer world), composition rules and constraints (like
connector types), and variability points specifically applicable for the domain. In such
a way, DSEs are declarative, context-free and loosely coupled to each other; hence we
can easily apply the golden principle of separation of concerns for different domains.
Therefore, each concern has been expressed and executed by different DSL and DSE
combination like PLCs are controlling certain concerns in industrial automation.

4 Software Asset Model for Software Factory Automation

A software asset model that will enable the cross-utilization of reusable assets is the
key concept in SFA approach. These software assets will then be applicable across
various software factories. In this section, the asset definition and corresponding
meta-levels are presented as well as the asset meta-model and specification of distinct
assets is discussed with a simplified example.

4.1 Understanding Software Asset

In product line approach, the definition of asset is left to the SPL Engineer. In factory
automation model we propose a semantic model for assets as shown in Fig. 3. Our
asset model is focused on the definition and management of all software artifacts,
rather than other process assets such as design artifacts, test scenarios, procedures,
etc. However, this does not imply that process-oriented product line assets are not
critical for the success of setting up SPL (see Section 5).

Different software factories can be instantiated from Software Factory Automation
model. Therefore, we devise a modeling language, AMM, to define the factory and its
asset model. Fig. 3 depicts this relation on the right of the figure.

SFA Model
an-instance-of

Software Product Line

defines

defines

Asset Meta Model
an-instance-of

Asset Modeling Language

Asset Model
an-instance-of

Executable Asset

an-instance-of

Fig. 3. Four Levels of Software Asset Models

62 N.I. Altintas, S. Cetin, and A. H. Dogru

AMM is a meta-meta-modeling language to allow us to define an AML. For each
software factory, an AML is defined using the meta-meta-model of AMM. AML is a
meta-model to define all software artifacts to be used in a particular software factory.
Notice that different product lines imply the use of different modeling languages. In a
software factory, software assets are modeled with corresponding AML. Finally,
within a product line, different products can be assembled using the reusable software
assets by means of tailoring. The term “tailoring” is used to cover all activities such as
parameterization and customization of existing assets and development of new ones.

4.2 Software Asset Meta Model

AMM is an XML-based specification language to support the definition of a software
factory and its asset model. Fig. 4 shows the overview model of AMM.

<

Fig. 4. Software Asset Meta Model (AMM)

The main block of AMM is the DSKs, which are formed by defining DSLs, DSEs
and DSTs. For instance, if business rule segregation is needed for the domain, then:

− DSL is an XML-based rule specification language, e.g. RuleML [31],
− DSE is the corresponding rule execution runtime environment, e.g. RUMBA,
− DST is the accompanied rule definition editor, e.g. RUMBA RuleEditor.

The domain specific needs of different software factories can be plugged into the
choreography engine by this approach. “Choreography” block in Fig. 4 defines the
rules and conditions of DSE interactions. A choreography definition indicates that
two specific DSEs may communicate with each other, and parameters like connection
type and communication protocol are also specified within this block.

“Context” and “Constraints” are decided during the architectural modeling and
product line modeling. Context includes all variables to be shared by DSEs through a
global namespace. This approach has already been used in several product lines for
banking, insurance, e-government for many years as the fundamental mechanism in
our Service-Oriented Architecture and Enterprise Service Bus [2, 3]. Context includes
not only architectural variables such as “session_identifier”, “user_id” etc., but also
business domain variables such as “branch_code” or “customer_id” for banking. Both
architectural and business domain definitions are product line specific extensions, and

refers

Asset
Model

Domain Specific
Kit

Domain Specific
Engine

Domain Specific
Tool

Constraint

Choreography

Property Implementer

connectsArtifacts

External Reference

Domain Specific
Language

Variability
Point

Context

 Industrializing Software Development: The “Factory Automation” Way 63

resulting AML describes such extensions. Domain specific constraints are expressed
as part of AML and they will be applicable to all assets defined by that AML.

Management of “Variability Points” is the key discriminator between conventional
software engineering and software product line engineering [21, 27]. The proposed
asset model provides means to define variability points. Variability point definitions
include variable items, variants, constraints, visibility, binding properties, and the likes.

4.3 Working with Assets

In this section, we discuss how software assets are specified, instantiated and
assembled as major concepts of software factories. During our discussion we shall
give the simplified version of a real life software asset from our banking product line.

Using the techniques discussed in Section 3, the resulting architectural model
has five Domain Specific Kits, which are listed in Table 2. From the asset
management point of view, it contains the components (DSE) that have software
artifacts to be managed collectively as software assets. For instance, the screen pages
and regions are defined in Enhanced Bean Markup Language (EBML: a DSL for
content specification [2, 3, 5]); all content and service rules are defined in RUMBA
[2, 10]; etc.

Table 2. DSKs in Example Architecture

DSL DSE DST Purpose and Comments

EBML (Enhanced Bean
Markup Language) [3,5]

ERE (EBML
Rendering
Engine)

EDS (EBML
Development Studio)

Facilitates rich client
presentation

Service XML [3,5] Service Executor Service Editor and
Eclipse IDE

Realization of the service-
oriented architecture. Enables the
services to be callable with
uniform interfaces

BPML (Business Process
Markup Language)

BPML Engine Process Designer Definition of business processes
and flows.

RUMBA [2,10] RUMBA Runtime RUMBA Design
Environment

RuleML like syntax to define
content, service and business
rules

POM (Persistent Object
Model) XML [3,5]

POM Runtime POM Eclipse Plug-in O2R definitions to access
RDBMS

Some descriptive parts of the AML for banking are given in Fig. 5. Major sections

of AML are context, domain specific kits, choreography of domain specific kits and
variability points. The context definition contains several architectural and functional
variables. Domain Specific Kit specification includes the DSL, DSE and DST
specifications, artifact names expressed with that DSL and external references to
other DSLs to access their artifacts. Name of the artifacts and external references are
similar to output and input ports of PLCs, respectively.

64 N.I. Altintas, S. Cetin, and A. H. Dogru

Fig. 5. An Example Asset Model for Banking Software Factory

After the specification of Domain Specific Kits, choreography rules and variability
points are defined. In the sample choreography definition, it is stated with the <link>
tag that EBML calls a service synchronously. Variability point example is the one that
some rules may have “reasoning” properties with values “forward” or “backward”. The
rules that will be using such an option are specified while defining an asset. Similarly,
service body definitions can be changed dynamically using implementers. The new
implementers can be plugged in using bytecode engineering facilities. The RUMBA
framework has dedicated architectural patterns for such kind of reflectivity [2, 10].

After briefly discussing the sample AML, we present a definition of a sample asset,
the “Document”. “Document” is an asset to be used in preparing, displaying, printing
and storing transactional documents such as bill payments and account statements.
The simplified definition of “Document” is given in Fig. 6.

<asset-meta-model name=”Banking”>
 <context>
 <var name=”session_id”/>
 <var name=”user_code”/>
 <var name=”brach_code”/>
 ...
 </context>
 <domain-specific-kits>
 <domain-specific-kit>
 <domain-specific-language name=”ebml”/>
 <domain-specific-engine name=”ere”/>
 <domain-specific-tool name=”eds”/>
 <domain-specific-artifacts>
 <domain-specific-artifact name=”page”/>
 <domain-specific-artifact name=”region”/>
 <domain-specific-artifact name=”popup”/>
 </domain-specific-artifacts>
 <external-references>
 <ref-type name=”process”/>
 <ref-type name=”service”/>
 <ref-type name=”rule”/>
 </external-references>
 </domain-specific-kit>
 <domain-specific-kit>
 <domain-specific-language name=”servicexml” />
 <domain-specific-engine name=”service executor” />
 <domain-specific-tool name=”service editor” />
 <domain-specific-artifact name=”service”/>
 <external-references>
 <ref-type name=”rule”/>
 <ref-type name=”pom”/>
 </external-references>
 </domain-specific-kit>
 ...
 </domain-specific-kits>
 <choreography>
 <link source=”ebml” dest=”service” connection-type=”sync” .../>
 ...
 </choreography>
 <variability-points>
 <properties>
 <rule name=”reasoning”>
 <val>forward</val>
 <val>backward</val>
 </rule>
 </properties>
 <implementers>
 <service name=”body”/>
 </implementers>
 </variability-points>
</asset-meta-model>

 Industrializing Software Development: The “Factory Automation” Way 65

Fig. 6. Definition of “Document” Asset (Simplified)

An asset contains artifacts (<parts> tag) that are defined by DSLs included in the
AML. Those parts may depend on parts from other asset definitions; hence these parts
are defined as external references. Similarly, the parts available to other assets are
declared in “export-parts” section to make them accessible. Variability points for
assets are defined as part of the asset definition as well.

The reusability of software assets directly depends on the existence of common
DSLs for different software factories. An asset can be reused across different factories
only if the necessary DSEs required by the asset specification exist in software factory
definition. The complete version of the given “Document” asset definition has been
used in two distinct product families. In banking, it is used to generate and store the
statements of the transactions whereas it is used as the means to generate and save the
policies in an insurance domain.

5 Setting up a Software Factory

The roadmap for setting up a software factory based on SFA is presented in Fig. 7. The
figure describes high-level activities while sieving most of the details. An architecture-
based domain modeling instantiates the SPL reference architecture. SFA architectural
hyperframe enables the construction of reference architecture by embedding several
DSEs. SPL setup will be completed by building and publishing the assets, and importing
the product line practices such as asset, configuration and product management.

<asset name=”document” asset-meta-model=”Banking”>
 <parts>
 <ebml artifact=”page”>Register_Document</ebml>
 <ebml artifact=”page”>Display_Document</ebml>
 <ebml artifact=”page”>Save_Document</ebml>
 <ebml artifact=”region”>Show_Document</ebml>
 <service>GenerateDocument</service>
 <service>SaveDocument</service>
 <service>UpdateMetaData</service>
 <service>
 <name>Get_Document</name>
 <use type=”rule”>isAuthorized</use>
 </service>
 <rule>
 <name>isAuthorized</name>
 <use type=”service”>getUserInfo</use>
 </rule>
 <rule>isDocumentAvailable</rule>
 ...
 </parts>
 <export-parts>
 <ebml>Show_Document</ebml>
 <service use-property=”template-name”>GenerateDocument</service>
 <service>SaveDocument</service>
 <rule use-property=”reasoning”>isDocumentAvailable</rule>
 ...
 </export-parts>
 <external-references>
 <service>getUserInfo</service>
 </external-references>
 <variability-points>
 <properties>
 <template-name/>
 </properties>
 </variability-points>
</asset>

66 N.I. Altintas, S. Cetin, and A. H. Dogru

Domain analysis to determine the quality attributes, architectural concerns, and
functional requirements for the new family of products

Architectural modeling to instantiate the SPL reference architecture. The required
architectural DSLs/DSEs are decided

Business modeling for a detailed product specification. Based on this, functional
DSLs/DSEs are decided and added to the reference architecture

Publish assets for the whole product family. Some are selected from the reusable asset
repository while some of them are introduced brand new

Import practices such as asset management, configuration and release management,
product management, etc.

Fig. 7. Setting up a Software Factory Based on SFA

In order to achieve high levels of systematic software reuse and interoperability,
the hyperframe provides specifications for both DSE and product engineers, and it
enables the creation of SPL reference architecture. SPL reference architecture is the
generalized architecture of a product family, and it defines the infrastructure common
to end products and interfaces of components that will be included in the end products
[19]. Then, concrete architecture is instantiated for a specific product. Product
architecture is a specialization of the SPL reference architecture, which includes the
considerations such as hardware, operating systems, system software vendors, etc.
Fig. 8 depicts the relationship of SFA model approach with levels of architectures.

SFA Model
an-instance-of

Software Product Line

has

has

Architectural Hyperframe
defined-by

SPL Reference Architecture

Product Architecture

an-instance-of

Fig. 8. Software Factory Model and Architectures

The hierarchy of architectures through asset management makes “configuration
management” the most critical activity from the management perspective. We learned
from lessons that such an activity must be supported with well-organized repositories,
automated tools and managerial/organizational processes [11, 34]. In fact, any
software factory should have detailed processes complying with Software Process
Improvement (SPI) frameworks such as Capability Maturity Model Integration
(CMMI), Software Process Improvement and Capability Determination (SPICE) and
Allied Quality Assurance Publications (AQAP). Regardless of the SPI standard the
organization has to comply with, it is expected to be transparent to software factory
automation. Hence, a separate SPI Hyperframe so-called “Lighthouse” in our SFA
approach has uniquely achieved such a transparency [11], which is also fully
compatible in its design to be integrated with our DSK encapsulation. This is

 Industrializing Software Development: The “Factory Automation” Way 67

something like PLCs are configured in factories without affecting the ISO compliance
of the actual manufacturing processes.

6 Conclusions and Future Work

Starting with SPLs, the Software Factory concept is the new trend to look for more
methodical ways to maximize productivity by means of automated efforts wherever
possible. However, establishing software factories is not trivial and still needs formal
ways and practical assistance. Even more, the reuse is still a meta-level concern in
setting up software factories across different business domains as well.

This paper introduced an approach for such difficulties, which is inspired by the
way other industries have been successfully realizing factory automation for decades.
Initiated from the simple PLC concept, the SFA approach proposed here has a similar
baseline to abstract the specialized functionalities in Domain Specific Kits and later
compose them according to a software factory meta-model. Authors presented the
idea and gave examples accordingly to show the applicability of it. In fact, the authors
have already applied the theory and practices given here for several years individually
or together, and decided to compile them towards a systematic SFA model. The
approach needs further work such as definition of asset ontology, smart repositories
recommending the selection of common/varying composition of reusable assets, and
tool support in many parts of the modeling and transformations.

References

1. Akima, N., Ooi, F.: Industrializing Software Development: A Japanese Approach. IEEE
Software 6(2), 13–21 (1989)

2. Altintas, N.I., Cetin, S.: Integrating a Software Product Line with Rule-Based Business
Process Modeling. In: Draheim, D., Weber, G. (eds.) TEAA 2005. LNCS, vol. 3888, pp.
15–28. Springer, Heidelberg (2006)

3. Altintas, N.I., Surav, M., Keskin, O., Cetin, S.: Aurora Software Product Line, TSAD
2005 (2005), http://trese.cs.utwente.nl/TSAD/Papers/aurora.pdf

4. Atkinson, C., Muthig, D.: Enhancing Software Reusability Through Product Line
Technology. In: Gacek, C. (ed.) Software Reuse: Methods, Techniques, and Tools. LNCS,
vol. 2319, pp. 93–108. Springer, Heidelberg (2002)

5. Aurora Software Product Line (2000), http://www.cs.com.tr/english/products/aurora.html
6. Business Process Management Initiative. http://www.bpmi.org/
7. Boehm, B.W.: Managing Software Productivity and Reuse. IEEE Computer 9, 111–113

(1999)
8. Boehm, B.W.: Analytic Methods in Software Engineering Economics. Springer,

Heidelberg (1993)
9. Cetin, S., Altintas, N.I., Sener, C.: An Architectural Modeling Approach with Symmetric

Alignment of Multiple Concern Spaces. In: Int. Conf. on Software Engineering Advances,
IEEE Computer Society Press, Los Alamitos (2006)

10. Cetin, S., Altintas, N.I., Solmaz, R.: Business Rules Segregation for Dynamic Process
Management with An Aspect-Oriented Framework. In: Eder, J., Dustdar, S. (eds.)
Business Process Management Workshops. LNCS, vol. 4103, pp. 193–204. Springer,
Heidelberg (2006)

11. Cetin, S., Tufekci, O., Karakoc, E., Buyukkagnici, B.: Lighthouse: An Experimental
Hyperframe for Multi-Model Software Process Improvement. In: EuroSPI2 Conference
(2006)

68 N.I. Altintas, S. Cetin, and A. H. Dogru

12. Clements, P., Northrop, L.: Software Product Lines: Patterns and Practice. Addison
Wesley, Reading, MA (2001)

13. Dogru, A.H., Tanik, M.M.: A Process Model for Component-Oriented Software
Engineering. IEEE Software 20(2), 34–41 (2003)

14. Batory, D.: Feature Oriented Programming for Product-Lines, European Conference on
Object Oriented Programming (2006)

15. Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., Ossher, H.: Discussing Aspects of AOP.
Communications of the ACM 44, 33–38 (2001)

16. Fayad, M., Schmidt, D., Johnson, R.: Building Application Frameworks: Object-Oriented
Foundations of Framework Design. John Wiley & Sons, Chichester (1999)

17. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, Reading
(2002)

18. Frankel, D.S.: Business Process Platforms and Software Factories, An Idea Paper,
International Workshop on Software Factories (2005)

19. Gallagher, B.P.: Using the Architecture Tradeoff Analysis Method to Evaluate a Reference
Architecture: A Case Study, Technical Note CMU/SEI-2000-TN-007 (2000)

20. Greenfield, J., Short, K.: Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. John Wiley & Sons, Chichester (2004)

21. Krueger, C.W.: Practical Strategies and Techniques for Adopting Software Product Lines.
In: Workshop on Industrial Experience with Product Line Approaches (2002)

22. Kulkarni, V., Reddy, S.: Enterprise Business Application Product Line As a Model Driven
Software Factory. In: International Workshop on Software Factories (2005)

23. Lenz, G., Wienands, C.: Practical Software Factories in.NET. Apress (2006)
24. Nechypurenko, A., Lu, T., Deng, G., Turkay, E., Schmidt, D.C., Gokhale, A.S.: Concern-

Based Composition and Reuse of Distributed Systems. In: Bosch, J., Krueger, C. (eds.)
ICOIN 2004 and ICSR 2004. LNCS, vol. 3107, pp. 167–184. Springer, Heidelberg (2004)

25. Neema, S., Scott, J., Karsai, G.: Architecture Analysis in Software Factories. In:
International Workshop on Software Factories (2005)

26. Peters, J.F., Pedrycz, W.: Software Engineering: An Engineering Approach. John Wiley &
Sons, Inc., Chichester (2000)

27. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

28. Product Line Hall of Fame: http://www.sei.cmu.edu/productlines/plp_hof.html
29. PuLSE: Product Line Software Engineering: http://fogo.iese.fraunhofer.de/PuLSE/
30. Rothenberger, M.A., Hershauer, J.C.: A Software Reuse Measure: Monitoring an Enterprise-

Level Model Driven Development Process. Information & Management 35(5) (1999)
31. Rule Markup Initiative. http://www.ruleml.org/
32. Schäfer, W., Weber, H.: European Software Factory Plan-the ESF profile, Modern

software engineering, foundations and current perspectives, pp. 613–637 (1989)
33. Sobrinho, F.G., Ferraretto, M.D.: Software plant: the Brazilian software consortium. In:

Proceedings of the 1987 Fall Joint Computer Conference on Exploring technology: today and
tomorrow, Dallas, US, pp. 235–243. IEEE Computer Society Press, Los Alamitos (1987)

34. Tufekci, O., Cetin, S., Altintas, N.I.: How to Process [Business] Processes, Integrated
Design and Process Technology (2006), http://www.cs.com.tr/free/publications/H2PP.pdf

35. Voelter, M.: Model-Driven Software Development Tutorial (2005),
 http://www.voelter.de/services /mdsd-tutorial.html

36. White, S.A., Lemus-Olalde, C.: Architectural Reuse in Software Development. ASME-
ETCE98 (1998)

37. Wong-Bushby, I., Egan, R., Isaacson, C.: A Case Study in SOA and Re-architecture at
Company ABC. HICSS (2006)

38. Zdun, U.: Concepts for Model - Driven Design and Evolution of Domain Specific
Language. In: International Workshop on Software Factories (2005)

A Closer Look at Database Replication Middleware
Architectures for Enterprise Applications�

J.E. Armendáriz-Iñigo1, H. Decker1, F.D. Muñoz-Escoı́1,
and J.R. González de Mendı́vil2

1 Instituto Tecnológico de Informática, Campus de Vera, 46022 Valencia, Spain
2 Universidad Pública de Navarra, Campus Arrosadı́a, 31006 Pamplona, Spain

{armendariz,hendrik,fmunyoz}@iti.upv.es, mendivil@unavarra.es

Abstract. Middleware-supported database replication is a way to increase perfor-
mance and tolerate failures of enterprise applications. Middleware architectures
distinguish themselves by their performance, scalability and their application in-
terface, on one hand, and the degree to which they guarantee replication consis-
tency, on the other. Both groups of features may conflict since the latter comes with
an overhead that bears on the former. We review different techniques proposed to
achieve and measure improvements of the performance, scalability and overhead
introduced by different degrees of data consistency. We do so with a particular
emphasis on the requirements of enterprise applications.

1 Introduction

Although middleware-based replication has been widely discussed in the literature for
quite some time [1,2,3], such architectures are only recently emerging as a promising
approach to raise the performance and availability of web services for enterprises oper-
ating across geographically distant sites [4]. Apart from the usual delay of technological
innovations to gain commercial appeal, this is mainly due to two factors: the lack of sup-
port from established DBMS vendors, and unsatisfactory solutions for the key challenge
of guaranteeing a sufficient degree of consistency and up-to-dateness of replicated data
for enterprise applications.

We are confident that the database industry will sooner or later buy into middleware
replication technology, since otherwise, the high availability and performance of repli-
cated servers equipped by different vendors would remain an untapped bounty. Hence,
we deal in this paper with the remaining issue, viz. the provision of adequate consis-
tency guarantees that are tuned to the requirements of enterprise applications, which
may vary from case to case.

There are two canonical alternatives to achieve database replication: by extending
the DBMS core code [5,6,7,8], or using a middleware layer [1,2,3,9,10,11]. The former
has an immediate performance advantage due to a low overhead, but is vendor-specific
and hence handicapped in terms of system interoperability, application portability and
migration to new versions or other installations [6,7]. The latter is vendor-independent,

� This work is supported by the Spanish government under research grants TIC2003-09420-CO2
and TIN2006-14738-C02.

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 69–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

70 J.E. Armendáriz-Iñigo et al.

hence it is straightforwardly interoperable, facilitates the portability of applications and
is easily migrated. It may compensate its higher overhead by an elegant use of built-in
SQL constructs, such that concurrency and transaction control is delegated back to where
it belongs, i.e., the DBMS core. Enterprise applications clearly benefit from vendor-
independent middleware solutions, on which we therefore shall focus in the remainder.

Given the DBMS core vs middleware tradeoff as highlighted above, overhead reduc-
tion is clearly the prime goal for middleware architectures. Early solutions have been
encumbered by concurrency control tasks that natively belong to the underlying DBMS,
and by the necessity to modify given enterprise applications in order to support the mid-
dleware’s replication management [1,12]. Both issues have rightfully been perceived as
burdens or even bugs, rather than features [9]. Further development has then brought
forward standardized application interfaces, usually based on JDBC, that offered pre-
defined procedures for web applications (e.g., automated form dialogues) to be called
through applications [2].

This move towards application independence is taken a step further by permitting
applications to execute any kind of statement. Concurrency control then is delegated
to the underlying DBMS while consistency management is left to a given replication
protocol, as in RJDBC [11] and C-JDBC [10]. However, both solutions suffer from scal-
ability problems, since an update statement must be executed at all available network
nodes before the next statement can be executed. Scalability is enabled in the MADIS
architecture [3], which realizes concurrency delegation exclusively by using SQL con-
structs, and in MIDDLE-R [2,9], which, apart from also using SQL statements, also uses
the write-ahead log to propagate updates.

Applications access the distributed system data transparently by way of transactions.
All accessible data are persistently stored in an underlying DBMS, the replication of
which is hidden from the applications’ interface. The transaction isolation level pro-
vided by the DBMS co-determines the degree of consistency obtainable in replicated
systems. Most commercial DBMSs provide Snapshot Isolation (SI) [13]. It relaxes se-
rializability and thus gains in performance, while concurrency anomalies that cannot
easily be worked around are avoided by weakening the SQL-92 standard’s definition
of isolation levels [13]. This clearly amounts to an immense advantage for web-based
applications, since read operations never get blocked with SI [14].

A de-facto standard notion for ensuring transaction correctness in replicated data-
bases is One-Copy Serializability (1CS) [15]. Essentially, it means that the interleaved
execution of transactions must be equivalent to some sequential execution. In [14,16],
a theory for achieving 1CS using SI has been developed. Moreover, the notion of SI
has been extended to Generalized SI (GSI) [14] and One-Copy SI (1CSI) [9], thereby
clarifying the notion of system snapshot in the context of replicated systems.

The overhead introduced by a middleware architecture is of course determined by
its design and implementation, i.e., by the underlying DBMS, the manner by which
messages are propagated, how transaction operations are intercepted and managed, etc.
However, besides such comparatively superficial technicalities, the overhead is perhaps
influenced most crucially by the deployed kind of replication strategy [17,18]. Replica-
tion is usually classified by the orthogonal distinctions of: eager or lazy update prop-
agation; executing updates in a dedicated “primary copy” node or permitting update

A Closer Look at Database Replication Middleware Architectures 71

execution everywhere in the network; the degree of communication among sites which
may be of constant or linear interaction; and, whether transactions terminate either vot-
ing or non-voting. These binary classification criteria span a space of replication pro-
tocols with combinations of properties that can be tailored to the specific needs and
requirements of various kinds of enterprise applications, that differ with regard to laten-
cies, abortion rates and overhead/performance tradeoff.

In this paper, we propose different transaction correctness criteria in replication ar-
chitectures that may be satisfied by given enterprise applications. Correlated to the over-
head introduced by the architecture, we also review different performance measures. In
particular, we review metrics proposed for MIDDLE-R and metrics developed by the
DBMS community such as TPC-W [19], which also serves as a benchmark for web
transactions. The workload for which the performance is measured is generated in the
framework of a controlled internet commerce environment that simulates the activities
of a transactional web-based enterprise server.

The rest of the paper is organized as follows: Section 2 paradigmatically describes
the main components of a prototypical middleware-based database replication architec-
ture. Its interaction with client applications is described in Section 3. System perfor-
mance is discussed in Section 4. Section 5 concludes the paper.

2 System Model

Figure 1 shows a typical generic configuration of a replicated database middleware ar-
chitecture. It is composed of N nodes which communicate among each other via mes-
sage exchanges. For that, they use a group communication subsystem (GCS), which
provides a membership service, i.e., knowledge about live and crashed nodes [20]. Ap-
plications submit transaction requests to the system. The database replication middle-
ware (DRM) intercepts these requests and manages the execution of remote transactions
at all DBMS replica. The replication protocol, embedded inside the DRM, coordinates
the execution of transactions at all nodes in order to ensure data consistency [9,14,15].
Concurrency control, however, is delegated to the DBMSs.

2.1 Protocols for Transaction Execution

Database replication protocols have been classified according to [17]: who can per-
form updates (primary copy [2] and update everywhere [9]) and the instant when a
transaction update propagation takes place (eager [9] or lazy [21]). In eager replica-
tion schemes, updates are propagated inside the context of the transaction. On the other
hand, lazy replication schemes follow the next sequence: update a local copy, commit
the transaction and propagate changes to the rest of available replicas. Data consistency
is straightly forward by eager replication techniques although it requires extra messages.
On the contrary, data copies may diverge on lazy schemes and, as there is no automatic
way to reverse committed replica updates, a program or a person must reconcile con-
flicting transactions. Regarding to who performs the updates, the primary copy requires
all updates to be performed on one copy and then propagated; whilst update everywhere
allows to perform updates at any copy but makes coordination more complex [22]. An-
other parameter considered for replication protocols is the degree of communication

72 J.E. Armendáriz-Iñigo et al.

Fig. 1. Sample node of a replicated database middleware architecture

among sites [22]: constant interaction [5], where a constant number of messages are
exchanged between sites for a given transaction, and linear interaction [15], where a
site propagates each operation of a transaction to the rest of sites. The last parameter is
how a transaction terminates [22]: voting, when an extra round of messages are required
to coordinate replicas such as the 2-Phase-Commit (2PC) [15] protocol or non voting,
when a site decides on its own whether a transaction commits or is rolled back, like the
certification process [14].

In fixed, tightly connected networks, eager update-everywhere replication is the pre-
ferred kind of protocol [17]. Transactions are firstly executed at the node which is close
to where they were requested. Updates are then regrouped and sent to the rest of nodes.
Once they are delivered, usually in total-order form, the commit phase is started, either
with some coordination among nodes (such as in the 2-Phase-Commit protocol (2PC)
[15]) or without node interaction but with a certification phase, i.e., a test that decides if
a transaction may or may not commit [7,9,14,15]. In loosely connected networks a sim-
ilar approach could be taken if all sites directly serve application transactions. However,
this replication technique must be enhanced by GCS multicast protocols with optimistic
delivery [23] in order to reduce the additional communication latency. In this environ-
ment, it could also be used a lazy primary-copy approach [17], since this ensures a
faster transaction completion. In general, it is always necessary to take care of possibly
conflicting transactions [24] and to re-attempt execution of successfully certified trans-
actions until they have been scheduled and committed [9]. This can be accomplished by
the DRM, along with schema modifications and stored procedures as described in [25].

2.2 Group Communication

As already indicated, virtual synchrony [20] is supported by a GCS which supports com-
munication and membership services. For the model sketched in Figure 1, we assume
a system with virtual synchrony, a communication service with reliable multicast for
message exchange, and a partial amnesia crash [26] failure model (this latter assump-
tion is convenient since it is very interesting to deal with node recovery after failure).

A Closer Look at Database Replication Middleware Architectures 73

The virtual synchrony assumes the notion of a view, the set of current active nodes,
which is provided by the membership service of GCS. Any change in the composition
of a view by entry or exit of a node is supposed to be reported to the recovery proto-
col (firing a view change event). We assume a primary component membership1 [27],
views installed by all sites are totally ordered (there are no concurrent views), and for
every pair of consecutive views there is at least one process that remains operational in
both views. Further, strong virtual synchrony will be used, to ensure that messages are
delivered in the same view they were multicast, and that two nodes exiting view V1 for
entering consecutive view V2 have delivered the same set of messages in V1 [20,28].

2.3 The Underlying Database System

At each node, the DBMS stores a physical copy of the replicated database. It executes
transactions as specified by the given replication protocol, guaranteeing the well-known
ACID transaction properties. With regard to a given node, a transaction is either local or
remote, i.e., its write set may originate from a transaction requested at some other node.
Moreover, the DRM may modify the database schema, so as to support the automated
storage of replication metadata, as well as the triggering of stored procedures to process
these metadata.

Instead of the previously mentioned, yet outdated default 2PC locking protocol, com-
mercial DBMSs nowadays usually support Snapshot Isolation (SI), i.e., a kind of multi-
version concurrency control [15]. An SI-controlled transaction always reads data from a
snapshot of the committed data as of the time the transaction started. It is never blocked
from attempting reads as long as its snapshot data is still valid. The writes (updates,
inserts and deletes) of a transaction T will also be reflected in this snapshot, to be con-
sulted again if T reads or updates the data another time. Updates by other transactions
active after T was initiated are invisible to T. However, a serializable isolation level can
be achieved by using SI, as shown in [14,16]. Different isolation levels may be achieved
by selecting different replication protocol strategy variants: 1CS [15] (for serializable)
and GSI [14], 1CSI [9] for SI. Thereby, they are classified into two families of replication
protocols and will be outlined in more detail in Section 3.

2.4 Replication Support

A by now tried-and-tested manner of reducing the overhead of replication protocols is
to store and process transaction metadata in the underlying DBMS. However, middle-
ware architectures differ in the way the transaction data are collected and transferred.
In MADIS, the transaction report is built by DRM-generated triggers and stored proce-
dures. Although this option is advantageous because it depends on nothing but standard
SQL, it involves more write accesses to the database than is necessary if the required
information is obtained from the write-ahead log, which is provided in most, if not all
DBMSs. This latter option reduces write operations, as observed in [2,9].

The latter paper also pointed out that replication protocols using certification may
suffer from aborts caused by the DBMS while applying the write set of already certified

1 We say that a view will satisfy the primary component membership if there are at least half of
the pre-configured nodes active in the system.

74 J.E. Armendáriz-Iñigo et al.

transactions. A remedy would be to detect conflicting local transactions. Below, we de-
scribe a technique for managing concurrency control which combines the simplicity of
using DBMS core support with maintaining the product independence of a middleware
solution. Instead of having to request and wait for the termination of transactions, con-
flicting transactions may be aborted immediately. By reducing the abortion delay, the
system becomes ready faster for processing other active transactions. We have imple-
mented and tested our approach in PostgreSQL. Our solution needs to scan the system’s
locking tables. Similar tables are used in virtually all DBMSs (e.g., the V$LOCK view in
Oracle 9i, the DBA LOCK in Oracle 10g r2, the sys.syslockinfo table of Microsoft
SQL Server 2000 - converted into a system view in SQL Server 2005 -, etc.), so that this
solution is easily portable to all of them, since only standard SQL constructs are used.

Serializability may be obtained also with SI [14], either by modifying the application
or considering the readset of transactions. As read-only transactions are only executed
at the site they are submitted to, we assume that they read data from a snapshot, and
hence do not need to be isolated with regard to update transactions. As a result, it seems
appropriate to design a mechanism that notifies write-write conflicts of transactions to
the replication protocol. As for conflict detection, the main advantage of our approach
is the use of the concurrency control support of the underlying DBMS. Only the sys-
tem’s locking tables need to be scanned for that, so that, again, seamless portability is
warranted, since only standard SQL constructs are used. Thus, the middleware is en-
abled to provide row-level control at each node (as opposed to the usual coarse-grained
table control), while all transactions (even those associated to remote write sets) are
subject to the underlying concurrency control support. Its implementation is based on
the following two elements:

– The database schema is enhanced by the stored function getBlocked(). It looks
up blocked transactions in the DBMS metadata (e.g., in the pg locks view of
the PostgreSQL system catalog). It returns a set of pairs consisting of the identi-
fiers of a blocked transaction and of the transaction that has caused the block. If
there is no conflict when this function is called, it returns the empty set. In short,
getBlocked() reads a system catalog table in which the DBMS keeps information
about transaction conflicts. Such a table is maintained by most DBMSs. Thus, this
function is easily portable to most of them. Moreover, these DBMSs only provide
read access to this system table. So, reading such views or tables does not compro-
mise the regular activity of the DBMS core nor the activity of other transactions.

– An execution thread per database is needed that cyclically calls getBlocked().
Its cycle is configurable and is commonly set to values between 100 and 1000 ms.
It runs on the middleware layer. Once this thread has received a non-empty set of
conflicting pairs of transactions, it may request the abortion of one of them. For this
purpose, each transaction has a priority level assigned to it. By default, it aborts the
transaction with smaller priority but takes no action if both transactions have the
same priority level.

This mechanism should be combined with a transaction priority scheme in the repli-
cation protocol. For instance, we might define two priority classes, with values 0 and
1. Class 0 is assigned to local transactions that have not started their commit phase.

A Closer Look at Database Replication Middleware Architectures 75

Class 1 is for local transactions that have started their commit phase and also for those
transactions associated to delivered write sets that have to be locally applied. Once a
conflict is detected, if the transactions have different priorities, then the one with the
lowest priority will be aborted. Otherwise, i.e., when both transactions have the same
priority, no action is taken and they remain in their current state until the lock is re-
leased. Similar, or more complex approaches might be followed in other replication
protocols that belong to the update everywhere with constant interaction class [18].

2.5 Replication Middleware

The DRM is the core of the middleware system. It is independent of the underlying
DBMS. In [3], we have described a Java implementation, to be used by client applica-
tions as a common JDBC driver. It facilitates the plugging and swapping of replication
protocols chosen according to given needs and requirements. DRM may act as an inter-
ceptor for applications the transactions of which are executed locally at the nearest alive
node, while monitoring remote update messages coming in via the GCS. For example,
when a commit statement is issued, an eager protocol will start the commit process
right away, interacting with the rest of the nodes by transferring the transaction up-
dates. Thereafter, a 2PC protocol or a certification process starts to globally commit the
transaction.

3 Middleware Layout for Enterprise Applications

The replication middleware architecture, as outlined in Section 2, is of generic character.
In this section, we are going to specialize its layout with regard to typical requirements
marked out by applications of enterprises. These enterprises are assumed to consist in a
topology of multiple branches and operating in different areas. Needless to say, the en-
terprise branches and operation areas are supposed to be distributed over geographically
disparate locations. In particular, we are going to touch upon application interfaces, load
balancing, fault tolerance and tailoring the middleware with regard to different degrees
of consistency, as required by different application profiles.

3.1 Interfaces for Communication and Coordination

Most middleware systems that comply with the model as characterized in section 2 ex-
port a standard JDBC interface [2,3,10,11]. Hence, applications that already exist do
not have to be re-programmed to become usable on top of the middleware. In partic-
ular, this means that they can remain completely unaware of the underlying replica-
tion, conforming to the ideal of full transparency. Systems such as MADIS, MIDDLE-R,
CJDBC and RJDBC merely act as interceptors for invocations performed by clients. Lo-
cal transactions are forwarded to the underlying DBMS by means of SQL statements.
Commit invocations initiate interaction with the remaining nodes. A Read One Write
All Available (ROWAA) approach is assumed, with eager update-everywhere replication
protocols [17].

Each node has to apply remote transactions coming from other nodes, which mainly
consist of writesets of committing transactions. Such remote transactions may abort

76 J.E. Armendáriz-Iñigo et al.

current active local transactions in case the latter causes any conflict. Then, the middle-
ware must notify local transactions about that. The amount of such transaction abortions
strongly depends on the degree of consistency as required by the application and on the
deployed replication protocol. These abortions have to be done transparently, so that the
application perceives them as database rollbacks instead of protocol-driven aborts.

3.2 Load Balancing

Transactions may be redirected to the least loaded node or, more generally, where net-
work conditions are optimal. The node to which the transaction is (re-)directed and ini-
tially executed is called the local replica. Locality of data access supports the decrease
of transaction response time. That, however, also depends on the chosen replication
protocol (we shall come back on this in Subsection 3.4). Anyway, read operations are
always performed on the local node, and no interaction with remote nodes is needed.

Enterprise applications can be classified as services for either internal or external
purposes. Internal applications typically are intranet enterprise applications, e.g., IT-
based collaboration between different business units, or knowledge management, which
is open for internal use but hidden to the outside world. Typical external applications
are extranet services, provided via an enterprise web portal to customers and clients. A
good intranet replication policy for intranet application is to replicate the database at
each site. Such configurations can be likened to peer-to-peer applications. On the other
hand, for data replication of extranet enterprise services means that external users access
a virtual database which does not belong to their own site. Thus, extranet users behave
as clients of a virtual server which actually is a transparently distributed system the high
availability, performance, fault tolerance and dependability of which is supported by a
transparent replication architecture. This has been outlined in some more detail in [3].

3.3 Fault Tolerance and Recovery

It is important that recovery of crashed or disconnected nodes is fast and does not block
the whole system [29]. This permits reducing the workload of alive nodes, as more
nodes will recover the replicated database state and will be able to attend new incom-
ing transactions. Structurally the same situation is faced with new nodes joining the
distribution topology on an ad-hoc basis. Most database replication approaches include
a recovery protocol for crashed nodes. In our model architecture, applications may be
redirected to an alive node in case its local replica fails. As long as the application
is served in a primary component, it will be able to continue its execution. Thus, the
high availability of application data is assured. Moreover, thanks to virtual synchrony,
a transaction may finally commit even if the serving node of that application crashes
during its execution.

3.4 Consistency Levels

Enterprise applications cover a very wide range of different scenarios: Examples can be
given that range from grocery chain websites, over web collaboration between customer
and e-service centers, to online flight booking and scheduling. A common denominator,

A Closer Look at Database Replication Middleware Architectures 77

however, is that they all share the need to work with consistent, up-to-date data. How-
ever, consistency requirements may vary from application to application. For example,
web-based flight booking is in need of accurate 24/7 up-to-dateness of data about avail-
able flights and seats transactional access with different levels of data consistency. On
the other hand, the reporting service applications of interactive data warehousing of
grocery chains certainly will not need to take into account the latest updates of the day
for their quarterly or annual stock-keeping statistics. With regard to choosing, plugging
and swapping of appropriate replication protocols for adapting to changing consistency
requirements. This has been looked at in more detail in [3].

Applications may manipulate stored data by SQL statements, including stored pro-
cedures. The set of data items read or written by a stored procedure can be anticipated
at schema specification time. In particular, the related accesses may be adjusted so as
to guarantee a serializable behavior, which clearly is more advantageous than to rely
at execution time on the SI provided by the DBMS. Hence, for each stored procedure,
a dedicated node can be determined as the owner of that procedure at the time it is
compiled. With the knowledge about which data are accessed upon execution of the
stored procedure, its owner node can anticipate control strategies and execution plans
so as to avoid unnecessary conflicts. This has been looked at in more detail in [2]. In
general, however, the data access patterns of user-driven applications are ad-hoc, i.e.,
unknown in advance. Hence, special attention has to be paid to intersecting read- and
writesets of transactions in order to achieve a given level of consistency. The following
item points distinguish three characteristic and often encountered levels of consistency
requirements, to be adopted for different enterprise applications with corresponding
consistency requirements.

– 1CS. This is the strongest correctness criterion for replicated databases. Replication
is transparent to the execution of a transaction. Its interleaved execution among
other transactions in the system is equivalent to a serial execution of the transac-
tions in a centralized database. This was introduced in [15] and it supposed that all
underlying DBMS were implemented using 2PL.

This data consistency level is appropriate for applications interested in reading
the latest version of data, ensuring that no other transaction will modify the value
read until the transaction commits. However, this isolation level does not prevent
missing concurrent insertions that satisfy the “WHERE” clause in a “SELECT” state-
ment, thus allowing phantom reads.

– GSI. This concept has been proposed recently [14], in order to provide a suitable
extension of conventional SI for replicated databases. In GSI, transactions may use
older snapshots instead of the latest snapshot required in SI. In [14], an impossibility
result is stated which justifies the use of GSI in database replication: “there is no
non-blocking implementation of SI in an asynchronous system, even if databases
never fail”. In a non-blocking replication protocol, transactions can start at any time
without restriction or delay (even those delays produced by group communication
primitives).

This data consistency level is appropriate for generating dynamic web content.
It is typically generated by a combination of a front-end web server, an applica-
tion server and a back-end database. The possibly dynamic content of the web site

78 J.E. Armendáriz-Iñigo et al.

is stored in the database of the site’s host server. The application server provides
methods that implement the business logic of the application. As part of that, the
application typically accesses the database. The three servers (web, application and
database server) may all execute on a single machine, or each one of them may
execute on a separate machine or on a cluster of machines, or various combinations
thereof.

– 1CSI. Simultaneously to the GSI definition, 1CSI was introduced in [9]. It can be
viewed as the counterpart of 1CS with serializable SI. A transaction uses the “latest”
system snapshot which may imply blocking certain read operations as they are not
going to see the latest snapshot. A new snapshot version is installed in the system as
soon as the transaction installing the new version is firstly committed at any node.
Hence, one of the main advantages of SI, viz. non-blocking read operations, is lost.

4 Performance

What makes the use of a given database replication middleware attractive for user appli-
cations is its performance. We do not pursue DBMS-core solutions any further, although
they will always tend to be somewhat better [7]. But the advantage of our middleware
solution is to be independent of the underlying database and to be easily portable to
other DBMSs.

The standard way to measure the performance of an application is its transaction
response time, i.e. how long it takes to commit a transaction in the system. Measuring
the behavior of the system may be done by checking the scalability and overall response
time for our application. It is easy to see that the performance of the solution will depend
on the kind of applications considered as benchmarks, such as the TPC-W [19] standard
benchmark.

4.1 Scalability Through Response Time

We may analyze the scalability and overall performance of the algorithms and the imple-
mentation we propose. Moreover, we may study the overhead introduced by the middle-
ware and the GCS. It is important to emphasize that the absolute values of the results are
only meaningful to a certain degree. They could be improved by simply using faster ma-
chines or by using a different DBMS. The important aspect of these results is the trends
they show in terms of behavior as the number of sites and the load in the system increases.

4.1.1 Comparison with Traditional Distributed Locking. A first question that needs
to be addressed is whether the middleware we propose really solves the limitations
of conventional replication algorithms (e.g., those described in [15]). Gray et al. [17]
showed that these conventional algorithms do not scale and, in particular, that increas-
ing the number of replicas would increase the response time of update transactions and
produce higher abort rates. We have compared the scalability in terms of response time
of our solution with the standard distributed locking implementation of a commercial
product, Oracle. The test scenario is fixed to a model of update transactions with the
same and fixed number of updates and repeating this pattern of transaction as the num-
ber of sites increases [2].

A Closer Look at Database Replication Middleware Architectures 79

4.1.2 Throughput Scale-out. The main motivation for this work is to provide a replica-
tion algorithm that can scale in a cluster based system. Some approaches [2,9,24] have to
execute all update transactions at all sites since they do not have any additional knowl-
edge about the database system. As a result, adding new sites in an update intensive
environment might help for fault-tolerance, but cannot be used to scale up the system.
Using alternative approaches [1], it may be more feasible achieve both fault-tolerance
and scalability. Hence, this experiment analyzes how the throughput scales up when we
increase the number of sites. It will be very interesting to run three sets of tests: read only,
write only, and a mixture of both workloads. The scale-out for a given number of nodes
(which is varied in determined range) is obtained as dividing the maximum throughput
that can be achieved in this setting by the maximum throughput in a single-site system.

4.1.3 Response Time Analysis. This is pretty similar to the previous point. The same
set of transactions acts as a benchmark and we analyze the response time behavior
by increasing the load, and determine at which throughput the system saturates (i.e.,
response times deteriorate).

4.1.4 Communication Overhead. When using group communication primitives, the
system built can only scale as much as the underlying communication tool. One of
the typical problems of conventional replication algorithms is that they easily overload
the network by generating too many messages (e.g., distributed locking generates one
message per operation per transaction per site; a 10 site system running transactions
of 10 operations at 50 transactions per second generates 5,000 messages per second).
Hence 2PC protocols require two multicast messages per transaction whilst certification-
based protocols need only one message.

4.2 Transactional Web E-Commerce Benchmark TPC-W

TPC-W [19] is a standard tool proposed by the research and industrial community to
measure the performance of DBMSs. It simulates the behavior of users accessing an
online bookstore where they search for and buy books. TPC-W has been used by [7,9,14]
so as to measure the performance of their different replicated data solutions which are
implemented over SI DBMS replicas. TPC-W has different purchase behavior options, but
the selection criteria of these options are exclusively based on randomly generated data.

However, although characterizing consumer behavior is a difficult task, the way con-
sumers behave cannot be said to be totally defined by a random pattern. That is why
marketing research has tried to describe consumer behavior patterns so as to help firms
and practitioners to develop better marketing strategies. Nevertheless, consumer behav-
ior online does not necessarily mimic that observed at physical stores, which has been
the one traditionally analyzed. There are important differences between physical and
virtual stores that make consumers behave differently. For instance, the amount and
quality of the information that is available at each channel, the perceived risk or the
possibility of using or not personal purchase lists are not the same at these two shop-
ping environments [30,31,32]. The amount of information available online is said to
be extremely high, but this information is always visual, neither tactile nor from the
sense of smell [31,33]. So, for products such as towels, in which softness is a valued

80 J.E. Armendáriz-Iñigo et al.

characteristic, online shopping seems not to be the best shopping option. Thus, a con-
sumer purchasing a towel online will probably show a different behavior than the one
he would have had at a physical store — it would be logical to think that he could be
more loyal to some brand he had previously purchased.

TPC-W is a transactional web benchmark designed to evaluate e-commerce systems.
It specifies a workload that simulates the activities of an online bookstore. Three sep-
arate components take part in the interaction: The System Under Test, SUT, comprises
all components which are part of the application being simulated; the Remote Browser
Emulator, RBE drives the TPC-W workloads creating an Emulated Browser, EB, for each
user interacting with the system; and the Payment Gateway Emulator, PGE, represents
an external system which authorizes payment of funds.

TPC-W specifies 14 different web pages which must be implemented in the SUT.
Moreover it defines the schema of the database where data will be stored. There are
described 8 tables: CUSTOMER, ORDER, ADDRESS, COUNTRY, ORDER LINE, CC XACTS,
ITEM and AUTHOR.

An EB emulates the communication between the customers and the system. The
interaction is done through sessions, which are a set of consecutive requests to execute
some function. The session duration is controlled by a User Session Minimum Duration
(USMD) time, defined as the minimum duration for which a session must last. Between
two requests, the EB waits for a period of time, called Think Time.

After each interaction the EB must decide which of the navigation options will be
chosen. In the TPC-W specification the probabilities of these navigation options are
well defined for each of the pages. TPC-W provides three diverse patterns of behavior
for the EBs, called web mixes, varying the ratio of read-only transactions vs. update
transactions. The Browsing Mix presents the 95% of read-only transaction as opposed
to the 5% of update transactions. The Shopping Mix specifies 80% vs. 20% and the
Ordering Mix 50% vs. 50% respectively.

The workload can be adjusted by modifying the values of the mean think time and
the number of EBs which take part in the simulation. The size of the database tables is
calculated in function of the number of items that the system offers and the number of
EBs that participates in the interaction, in order to maintain the scalability of the system.

The TPC-W primary metrics are the Web Interactions Per Second (WIPS) and system
cost per WIPS, $/WIPS, calculated using the Shopping Mix. There are also defined an-
other two secondary metrics, corresponding with the Browsing Mix, WIPSb, and with
the Ordering Mix, WIPSo. TPC-W establishes a response time requirement for each type
of web interaction. At least 90% of each type of web interaction must be returned in the
time specified.

During the session, the item selection (that guides the TPC-W requests) can be done
from three different webs or by clicking at promotional items:

– The Best Seller Web Interaction: it shows the 50 most popular items for a concrete
subject among the 3333 most recent orders sorted by descending number of ordered
items. The item is selected using a uniform random distribution.

– The New Products Web Interaction: it shows the list of the 50 newest products for
a concrete subject sorted by descending release date. The item is selected from the
list as before.

A Closer Look at Database Replication Middleware Architectures 81

– The Search Result Web Interaction: it shows the list of items which match the cri-
teria given on the previous page, Search Request Web Interaction. There the user
selects a search type and defines a search string. TPC-W chooses the search type
from a uniform distribution over the values author, title and subject. The search
string is filled in function of the selected search type so that a specific match rate
is guaranteed. This is achieved by using similar generation functions in the search
string and in the field when the database is populated.

– The Promotional Items: the promotional items are 5 items whose images are shown
on the top of some pages.

5 Conclusion

Middleware database replication architectures are becoming increasingly attractive for
enterprise applications, due to their independence of the underlying DBMS. To a large
extent, that independence facilitates the modularity, maintenance, migration and porta-
bility of applications. Multiple copies of application data are stored at distributed sites
and are accessed transparently by way of transactions. Hence, data locality, availabil-
ity, fault-tolerance and performance are increased, at the cost of maintaining replicated
data consistency. However, that may introduce an undue overhead. A focal point of this
paper has been the minimization of that overhead.

Existing applications face the problem of having to adapt themselves to these ar-
chitectures. Some applications even have to be completely rewritten [1], while others
may remain the same [2,3,10,11], thanks to a JDBC interface. However, an issue of
which application designers and users are not sufficiently taking into account is the re-
quired degree of consistency. We have reviewed different levels of data consistency that
depend to a significant extent on the isolation level offered by the underlying DBMS:
serializable or SI.

Another important aspect considered in this paper is the measurement of the over-
head as introduced by replication middleware architectures. A key indicator for the
overhead is measured by the transaction response time. That is parameterized by the
kind of application and the desired degree of data consistency. That, in turn, is influ-
enced, if not determined, by the chosen replication protocol. We have reviewed two
different approaches for measuring the overhead introduced by a middleware architec-
ture. The first one is based on measuring the response time compared to a centralized
solution and its scalability. The second one consists in defining an e-commerce book-
store application and run the well-known TPC-W benchmark. The first alternative may
fit a given application very well but it does not give any indication about how attractive
it may or may not fit to other applications. The second approach is not very attractive
either. Although it offers a rich environment for emulating many web service applica-
tions, it does not reflect the entire range of web service or application server require-
ments [19]. Moreover, the extent to which an application can achieve the results enabled
by a middleware is highly dependent on how closely TPC-W approximates the customer
application. The relative performance of systems derived from this benchmark does not
necessarily hold for other workloads or environments. This is to say that extrapolations
to any other environment are not recommended.

82 J.E. Armendáriz-Iñigo et al.

References

1. Irún, L., Muñoz, F., Decker, H., Bernabéu-Aubán, J.M.: COPLA: A platform for eager and
lazy replication in networked databases. In: ICEIS’03, vol. 1, pp. 273–278 (2003)

2. Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: MIDDLE-R: Consistent
database replication at the middleware level. ACM Trans. Comput. Syst. 23, 375–423 (2005)

3. Armendáriz, J.E., Decker, H., Muñoz, F.D., Irún, L., de Juan, R.: A middleware architecture
for supporting adaptable replication of enterprise application data. In: Draheim, D., Weber,
G. (eds.) TEAA 2005. LNCS, vol. 3888, pp. 29–43. Springer, Heidelberg (2006)

4. Gao, L., Dahlin, M., Nayate, A., Zheng, J., Iyengar, A.: Improving availability and perfor-
mance with application-specific data replication. IEEE Trans. Knowl. Data Eng. 17, 106–120
(2005)

5. Carey, M.J., Livny, M.: Conflict detection tradeoffs for replicated data. ACM Trans. Database
Syst. 16, 703–746 (1991)

6. Kemme, B., Alonso, G.: Don’t be lazy, be consistent: Postgres-R, a new way to implement
database replication. In: Abbadi, A.E., Brodie, M.L., Chakravarthy, S., Dayal, U., Kamel, N.,
Schlageter, G., Whang, K.Y. (eds.) VLDB, pp. 134–143. Morgan Kaufmann, San Francisco
(2000)

7. Wu, S., Kemme, B.: Postgres-R(SI): Combining replica control with concurrency control
based on snapshot isolation. In: ICDE, pp. 422–433. IEEE-CS, Los Alamitos (2005)

8. Holliday, J., Steinke, R.C., Agrawal, D., Abbadi, A.E.: Epidemic algorithms for replicated
databases. IEEE Trans. Knowl. Data Eng. 15, 1218–1238 (2003)

9. Lin, Y., Kemme, B., Patiño-Martı́nez, M., Jiménez-Peris, R.: Middleware based data replica-
tion providing snapshot isolation. In: SIGMOD Conference (2005)

10. Cecchet, E., Marguerite, J., Zwaenepoel, W.: C-JDBC: Flexible database clustering middle-
ware. In: USENIX Annual Technical Conference, FREENIX Track, USENIX, 9–18 (2004)

11. Esparza-Peidro, J., Muñoz-Escoı́, F., Irún-Briz, L., Bernabéu-Aubán, J.: Rjdbc: a simple
database replication engine. In: Proc. of the 6th Int’l Conf. Enterprise Information Systems
(ICEIS’04) (2004)

12. Armendáriz, J., González de Mendı́vil, J., Muñoz-Escoı́, F.: A lock-based algorithm for con-
currency control and recovery in a middleware replication software architecture. In: HICSS,
p. 291a. IEEE-CS, Los Alamitos (2005)

13. Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A critique
of ANSI SQL isolation levels. In: SIGMOD Conference, pp. 1–10. ACM Press, New York
(1995)

14. Elnikety, S., Pedone, F., Zwaenopoel, W.: Database replication using generalized snapshot
isolation. In: SRDS, IEEE-CS, Los Alamitos (2005)

15. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading (1987)

16. Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., Shasha, D.: Making snapshot isolation
serializable. ACM Trans. Database Syst. 30, 492–528 (2005)

17. Gray, J., Helland, P., O’Neil, P.E., Shasha, D.: The dangers of replication and a solution. In:
SIGMOD Conference, pp. 173–182. ACM Press, New York (1996)

18. Wiesmann, M., Schiper, A., Pedone, F., Kemme, B., Alonso, G.: Database replication tech-
niques: A three parameter classification. In: SRDS, pp. 206–217 (2000)

19. TPC-W: Transaction processing performance council (2006), Accessible in URL,
http://www.tpc.org

20. Chockler, G., Keidar, I., Vitenberg, R.: Group communication specifications: a comprehen-
sive study. ACM Comput. Surv. 33, 427–469 (2001)

http://www.tpc.org

A Closer Look at Database Replication Middleware Architectures 83

21. Petersen, K., Spreitzer, M., Terry, D.B., Theimer, M., Demers, A.J.: Flexible update propa-
gation for weakly consistent replication. In: SOSP, pp. 288–301 (1997)

22. Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Understanding replication
in databases and distributed systems. In: ICDCS, pp. 464–474 (2000)

23. Rodrigues, L., Miranda, H., Almeida, R., Martins, J., Vicente, P.: The globdata fault-tolerant
replicated distributed object database. In: Shafazand, H., Tjoa, A.M. (eds.) EurAsia-ICT
2002. LNCS, vol. 2510, pp. 426–433. Springer, Heidelberg (2002)

24. Armendáriz, J., Juárez, J., Garitagoitia, J., de Mendı́vil, J.R.G., Muñoz-Escoı́, F.: Implement-
ing database replication protocols based on O2PL in a middleware architecture. In: IASTED
DBA, pp. 176–181 (2006)

25. Muñoz, F.D., Pla, J., Ruiz, M.I., Irún, L., Decker, H., Armendáriz, J.E., de Mendı́vil, J.R.G.:
Managing transaction conflicts in middleware-based database replication architectures. In:
SRDS, pp. 401–410. IEEE Computer Society Press, Los Alamitos (2006)

26. Cristian, F.: Understanding fault-tolerant distributed systems. Commun. ACM 34, 56–78
(1991)

27. Ricciardi, A., Schiper, A., Birman, K.P.: Understanding partitions and the “no partition”
assumption. In: Fourth Workshop on Future Trends of Distributed Systems, IEEE Computer
Society Press, Los Alamitos (1993)

28. Jiménez-Peris, R., Patiño-Martı́nez, M., Alonso, G.: Non-intrusive, parallel recovery of repli-
cated data. In: SRDS, pp. 150–159. IEEE-CS, Los Alamitos (2002)

29. Kemme, B., Bartoli, A., Babaoglu, Ö.: Online reconfiguration in replicated databases based
on group communication. In: DSN, pp. 117–130. IEEE-CS, Los Alamitos (2001)

30. Burke, R., Harlam, B., Kahn, B., Lodish, L.: Comparing dynamic consumer choice in real
and computer-simulated environments. Journal of Consumer Research 19, 71–82 (1992)

31. Alba, J., Lynch, J., Weitz, B., Janiszewski, C., Lutz, R., Sawyer, A., Wood, S.: Interactive
home shopping: Consumer, retailer and manufacturer incentives to participate in electronic
marketplaces. Journal of Marketing 61, 38–53 (1997)

32. Otto, J., Chung, Q.: A framework for cyber-enhanced retailing: Integrating e-commerce re-
tailing with brick-and-mortar retailing. Electronic Markets 10, 185–191 (2000)

33. Degeratu, A., Rangasway, A., Wu, J.: Consumer choice behavior in online and traditional su-
permarkets. the effects of brand name, price, and other search attributes. International Journal
of Research in Marketing 17, 55–78 (2000)

Using Rules and R2ML for Modeling Negotiation
Mechanisms in E-Commerce Agent Systems�

Costin Bădică1, Adrian Giurca2, and Gerd Wagner2

1 Software Engineering Department, University of Craiova,
Bvd.Decebal 107, Craiova, 200440, Romania

2 Internet-Technology Department,
Brandenburg University of Technology at Cottbus,

Walther Pauer Str. 2, 03046 Cottbus, Germany

Abstract. With the spread of e-commerce on a global scale, the development
of truly open semantic descriptions of negotiation mechanisms for agent systems
generated a lot of interest in the research community. This paper proposes the
use of the REWERSE rule-markup language R2ML for semantic modeling of
negotiation mechanisms to enable agents to engage in more flexible and open
negotiations. Rules are developed on top of an ontology of negotiation concepts
and define a lingua franca for all software agents participating in negotiation.

1 Introduction

Global information networks are described as open collaborative environments host-
ing intelligent and autonomous services that are able to dynamically discover each
other and engage in business transactions, possibly involving automated negotiations.
E-commerce is seen as a key service of modern information society and therefore, the
ability of software agents to discover remote markets and engage in commercial transac-
tions governed by market mechanisms unknown in advance, is of primary importance.

We understand automated negotiations as a process by which a group of software
agents communicate with each other to reach a mutually acceptable agreement on some
matter [11]. In this paper we focus our attention on auctions – a particular form of
negotiation that spread during the last years with the advent of the Internet and the
Web. Auctions are negotiations where resource allocations and prices are determined
by bids exchanged between participants according to a given set of rules [15].

In automated negotiations (including auctions) it is important to distinguish between
negotiation protocols (or mechanisms) and negotiation strategies. The protocol com-
prises public “rules of encounter" between negotiation participants by specifying the
requirements that enable them to interact and negotiate. The strategy defines the private
behavior of participants aiming at achieving their desired outcome. This behavior must
be consistent with the protocol and is chosen to optimize participant welfare ([26]).

� Work of A. Giurca and G. Wagner was partially funded by European Commission and by the
Swiss Federal OÆce for Education and Science within the 6th Framework Programme projects
REWERSE (IST-2004-506779) cf. http:��www.rewerse.net.

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 84–99, 2007.
c� Springer-Verlag Berlin Heidelberg 2007

badica_costin@software.ucv.ro

{Giurca, G.Wagner}@tu-cottbus.de

Using Rules and R2ML for Modeling Negotiation Mechanisms 85

A key aspect that generated a lot of interest is the development of a truly open seman-
tic description of negotiation mechanisms [2,1,17,16,19,18]. As our literature overview
indicates, we are still quite far from the vision of software agents needing only little
compiled knowledge to enable “sensing" the negotiation mechanism and “tuning" their
strategy accordingly. As an attempt to narrow this gap, we propose the use of R2ML
markup language for semantic modeling of negotiation mechanisms in agent systems.
Our proposal builds over existing works [27,2,1] on rule modeling of agent auctions
and therefore it is expected to cover at least the auction types discussed there.

Before proceeding let as note that the use of semantic markup languages for model-
ing negotiation mechanisms is not entirely new; several approaches have already been
proposed in the literature ([17,16,19,18]).

The proposal for formalizing negotiations introduced in [18] goes beyond the generic
software framework of [2] and implemented in [1]. Its authors suggest the use of an
ontology for representing negotiation protocols. Whenever an agent is admitted to ne-
gotiation it also obtains a specification of the negotiation mechanism in terms of the
shared ontology. The ontology approach introduced in [18] is taken further in [19] by
investigating how the ontology can be used to tune the negotiation strategy of partici-
pant agents. Note that authors of [19] point out that the ontology approach is still far
from the vision where agents need only little hard-coded knowledge about the negoti-
ation mechanism and this is due to the limitations of ontology languages to capturing
explicitly the semantics of the rules that govern the negotiation. In this paper we address
this issue thus making our work di�erent from existing related works [19,18].

The open environment for automated negotiations specifically targeted to auctions
([16,17]) comprises: i) the auction reference model – ARM and ii) the declarative auc-
tion specification language – DAL. Note that, while not explicitly using rules, a DAL
specification models in fact the auction flow using a rule-based approach. DAL uses the
following constructs: views, validations, transitions and agreement generators ([16]).
Views are analogous to visibility rules, validations are analogous to bidding rules, tran-
sitions are analogous to update rules and agreement generators are analogous to clear-
ing rules. Finally, DAL provides also an explicit, implementation-level separation of the
specification of auction flow from the auction data. For this purpose, a DAL specifica-
tion comprises a set of SQL queries that provide access to the market data. While SQL
has a declarative semantics and it is useful for the implementation side of DAL, we
believe that this feature is less significant as concerning the portability of the language,
as compared with the rule-based representation using R2ML.

The paper is structured as follows. Section 2 briefly presents the agent negotiation
model and proposes a vocabulary of negotiation concepts. Section 3 discusses a taxon-
omy of negotiation rules and applies it to English auctions. Section 4 shows how sample
rules can be mapped to R2ML constructs and formulates general criteria of such a map-
ping. Last section concludes and points to future work.

2 Negotiation Model and Vocabulary

The starting point of our work is the rule-based framework for enforcing specific ne-
gotiation mechanisms proposed by [2]. Note that details of its implementation using

86 C. Bădică, A. Giurca, and G. Wagner

JADE [5] and JESS [8] including initial experimental results for English auctions were
reported in [1]. So, our work can be also seen as an attempt to provide a portable R2ML
representation of the auction mechanism that could be reused by that implementation.

Authors of [2] sketched a software framework for implementing agent negotiations
that comprises: (1) negotiation infrastructure, (2) generic negotiation protocol and (3)
taxonomy of declarative rules. The negotiation infrastructure defines roles of negotia-
tion participants (eg.buyer or seller in an auction) and of a negotiation host. Participants
exchange proposals within a negotiation locale managed by the host.

According to the generic negotiation protocol ([2]), negotiation is seen as the process
of exchanging proposals (or bids) via a common space (also known as market [16,17])
that is governed by an authoritative entity – the negotiation host (or market maker).
Status information describing negotiation state and intermediary information is auto-
matically forwarded by the host to all entitled participants according to the information
revealing policy of that particular negotiation ([2,1]).

Negotiation rules are used for enforcing the negotiation mechanism. Rules are or-
ganized into a taxonomy: rules for participants admission to negotiations, rules for
checking the validity of proposals, rules for protocol enforcement, rules for updating
the negotiation status and informing participants, rules for agreement formation and
rules for controlling the negotiation termination ([2,1]).

We model the basic negotiation vocabulary with the class diagram from Figure 1.

Participant

Good

Negotiation

timeReceived

price

Proposal

ActiveProposal

Seller Buyer{disjoint, complete}

1

1..*

transacts ** registered

1

1

submits

ValidProposal

value

increment

participant

receivedTime

Bid

Fig. 1. An excerpt of the negotiation vocabulary

This vocabulary corresponds to an OWL [22] ontology that is used by agents
involved in negotiations. Participant, Seller, Buyer, Negotiation, Good, Proposal, Valid-
Proposal, ActiveProposal, and Bid are OWL classes. transacts is an OWL object prop-
erty corresponding to the many-to-many association between classes Participant and
Good, and registered is an OWL object property corresponding to the inverse func-
tional association between classes Participant and Negotiation. Note that this vocabu-
lary addresses the Platform-Independent Model1 of a business system and therefore it
is independent of the specific technological platform used to implement it.

1 The term platform-independent model (PIM) is most frequently used in the context of the
Model Driven Architecture (MDA) approach which corresponds the Object Management
Group (OMG) vision of Model Driven Engineering (MDE). The main idea is that it should be
possible to use a model transformation language (MTL) to transform a Platform-Independent
Model (PIM) into a Platform-Specific Model (PSM).

Using Rules and R2ML for Modeling Negotiation Mechanisms 87

3 Rules in Agent Negotiation

The aim of this section is to discuss the main types of rules needed to parameterize a
negotiation mechanism with a focus on auctions. Our approach is exemplified with a
sample set of rules that we have devised for describing single-item English auctions.
We have chosen English auctions because they are a non-trivial and easy to understand
auction mechanism that became popular because of the establishment of many online
auction houses like ����.

In order to make this presentation independent of a particular rule representation
formalism, we have chosen to express our rules in an informal pseudo-code notation.
The description is supplemented with a discussion of the intended semantics of the rules
that govern a typical single-item English auction.

Technically, English auctions are single-item, first-price, open-cry, ascending auc-
tions ([10],[26]). In an English auction there is a single item sold by a single seller and
many buyers bidding against one another for buying the item until the auction termi-
nates. Usually, there is a time limit for ending the auction, a seller reservation price that
must be met by the winning bid for the item to be sold and a minimum value of the
bid increment. A new bid must be higher than the currently highest bid plus the bid
increment in order to be accepted. All the bids are visible to all the auction participants,
while seller reservation price is private to the auction.

3.1 Categories of Negotiation Rules

Based on analysis performed in [2,28,27] and our own experience [1] we have con-
cluded that the following categories of rules are necessary for configuring a negotiation
mechanism (auction in particular): bidding rules, information rules and clearing rules
(terminology is borrowed from [28,27]). Rules are activated when certain events occur
during the negotiation (eg.when a participant proposal is received by the host or when
a given time period without any bidding activity is observed).

Bidding Rules. These rules are responsible for handling proposals submitted by negoti-
ation participants to determine if these proposals are correct according to the syntactical
and semantical requirements of the negotiation mechanism.

This is a two-step process. Firstly, it involves checking if a proposal is valid – i.e.
if the proposal is syntactically correct (for example if it specifies an amount to be paid
and a transacted product). This check is performed by rules for proposal validity.

Secondly, the process involves checking if the bid is in accordance with the seman-
tical requirements of the negotiation mechanism. This check is performed by rules for
protocol enforcement. For example: i) posting rules check the conditions when a partic-
ipant is allowed to submit a bid; ii) improvement rules check if a participant’s proposal
is an improvement over its own previous proposal or over the proposal that is currently
revealed by the negotiation; iii) withdrawal rules check if and when a proposal can be
withdrawn (for example a proposal can be active only for a fixed amount of time or
until it is explicitly withdrawn by a participant).

Information Rules. The negotiation host is essentially a data processor. It is respon-
sible with processing proposals submitted by participants, with updating the state of

88 C. Bădică, A. Giurca, and G. Wagner

the negotiation process and with informing participants according to the information
revealing policy of the negotiation. Information rules govern the policies for generating
all this intermediate information that is necessary for running the negotiation. Typically,
this information includes negotiation state information (eg.negotiation stage or round,
currently highest price, etc.) and information revealed to participants.

For example: i) update rules specify how negotiation data (including negotiation
parameters or negotiation stage) is updated in case certain events occurred; ii) visibility
rules specify what negotiation information is visible to which participants; iii) display
rules specify if and how a specific information about the negotiation should be notified
to (some of) the participants.

Clearing Rules. The negotiation goal is to produce one or more deals between the
negotiation participants. Clearing rules are responsible with detecting and computing
negotiation deals and controlling negotiation life-cycle.

For example: i) agreement formation rules determine when an agreement can be
reached and what is the corresponding set of deals made; ii) termination rules specify
when the negotiation terminates.

Rule Activation. Rule activation is triggered by the occurrence of certain events during
the negotiation. Usually, the activation of bidding rules is triggered when the negoti-
ation host receives a new proposal. However, information and clearing rules can be
triggered by other events, as well, including: lack of bidding activity for a given time,
timer events, admission of a new proposal, certain updates of the negotiation state (like
changing the round), etc. Note that by combining negotiation activities using associated
triggering events and conditions may result in a great variety of negotiations.

3.2 Intended Semantics of Negotiation Rules for English Auctions

In this section we describe a sample set of negotiation rules for single-item English
auctions. Rules are written using an intuitive pseudo-code notation, while their intended
interpretation is described in natural language.

Bidding Rules for English Auctions handle proposals submitted by negotiation par-
ticipants and check their correctness according to the English auction mechanism.

VALIDITY rule checks if a proposal is well formed, i.e. if it specifies transacted good
and amount to be paid and if it comes from a registered participant (seller or buyer). In
case of success the proposal is recorded as valid together with the time it was received
by the negotiation host – submission time.

VALIDITY
IF

S is a participant registered with negotiation AND
S transacts good A AND
A new proposal Pr was submitted by S AND
S has role R � �buyer� seller� AND
Proposal Pr contains amount to be paid P

THEN
Proposal Pr is valid AND
Submission time T is recorded with proposal Pr

Using Rules and R2ML for Modeling Negotiation Mechanisms 89

Posting rules check if a valid proposal can be posted depending on the type of pro-
posals that were previously posted by the other participants. POSTING-BUYER rule
specifies that a buyer participant can post a proposal whenever there is a matching
o�er already posted by a seller participant. POSTING-SELLER rule specifies that
the seller must be the first participant that posts a proposal. Therefore the seller is
called market initiator. Every negotiation mechanism usually specifies a market initia-
tor that is responsible with the initiation of a negotiation process. Posting rules col-
lectively specify that in an English auction the participant with role seller must be
the first to submit a proposal (with the intention to sell) and only then participants
with role buyer will submit their proposals (usually called bids, with the intention to
buy).

POSTING-BUYER
IF

There is a valid proposal Pr of a participant with role buyer on good A AND
There is an active proposal of a participant with role seller on good A

THEN
Proposal Pr is posted

POSTING-SELLER
IF

There is a valid proposal Pr of the participant with role seller on good A AND
There are no active proposals on good A

THEN
Proposal Pr is posted

Improvement rules check if a valid proposal can be posted depending on the con-
tent of proposals that were previously posted. IMPROVEMENT-BUYER enforces a
new valid proposal to specify a price higher than the currently highest bid plus a give
increment. ACTIVATE-SELLER just activates a valid bid posted by the seller (note
that this rule was added to preserve the symmetry of treating buyer and seller
proposals).

IMPROVEMENT-BUYER
IF

Negotiation is on good A AND
Bid increment is Inc AND
Currently highest bid is B AND
Proposal Pr on good A with amount to be paid P was posted by this buyer AND
P � B � Inc

THEN
Proposal Pr is active

ACTIVATE-SELLER
IF

Proposal Pr was posted by this seller
THEN

Proposal Pr is active

90 C. Bădică, A. Giurca, and G. Wagner

Note that posting and improvement rules actually check dynamic constraints of the
negotiation mechanism, i.e. what sequences of proposals are allowed. Also note that a
proposal that passed the validity tests is called valid, a proposal that passed the post-
ing tests is called posted and a proposal that passed the improvement tests is called
active.

Information Rules for English Auctions specify the processing applied to an active
proposal. This usually results in updates of the negotiation state and notifications sent
by negotiation host to negotiation participants.

Update rules specify the necessary updates of the negotiation state when a new active
proposal is posted. UPDATE-BUYER rule performs the update of the currently high-
est bid after a new active proposal was posted by a buyer participant (note that rule
IMPROVEMENT-BUYER only checks the buyer proposal, but does not update the ne-
gotiation state). UPDATE-SELLER rule initializes the negotiation state when an active
proposal with an o�er was posted by a seller participant.

UPDATE-BUYER
IF

There is an active proposal Pr posted by participant S with role buyer AND
Proposal Pr has price P and was received at time T AND
Currently highest bid is B

THEN
Currently highest bid becomes P and was submitted by S at time T

UPDATE-SELLER
IF

There is an active proposal Pr posted by participant with role seller AND
Proposal Pr has price P and refers to good A AND

THEN
Negotiated good are set to A AND
Seller reservation price is initialized to P AND
Currently highest bid is initialized to a default value (0) AND
Termination time window is initialized to a default value

INFORM rule specifies that whenever the currently highest bid is updated, all the ne-
gotiation participants must be notified accordingly. This notification contains the value
of the highest bid, the identity of the submitter and the time when it was submitted (ac-
tually received by the negotiation host).

INFORM
IF

Currently highest bid has been updated
THEN

Notify accordingly all the negotiation participants

Visibility rules specify what negotiation information is disclosed to which partici-
pants, and what negotiation information is private to the negotiation.

Using Rules and R2ML for Modeling Negotiation Mechanisms 91

VISIBILITY-SELLER-PROPOSAL rule specifies that good, submission time and
participant name of an active proposal submitted by a seller are public to all buyer
participants, while the price is private to the unique seller participant.

VISIBILITY-SELLER-PROPOSAL
IF

There is an active proposal submitted by participant S with role seller AND
This proposal is on good A and was recorded at time T

THEN
S , A and T are visible to all participants

VISIBILITY-BUYER-PROPOSAL rule specifies that all the parameters of an active
proposal submitted by a buyer (i.e. participant name, price, good and submission time)
are public to all negotiation participants.

VISIBILITY-BUYER-PROPOSAL
IF

The currently highest bid is B and is on good A AND
The currently highest bid was submitted by a participant S at time T

THEN
S , A, T and B are visible to all participants

Clearing Rules for English Auctions determine negotiation outputs and control nego-
tiation termination.

AGREEMENT-FORMATION rule specifies that whenever agreement formation is
triggered, if the currently highest bid is greater than the seller reservation price, an
agreement is formed between the buyer that submitted the highest bid and the seller.

AGREEMENT-FORMATION
IF

The currently highest bid is B and was submitted by buyer S 1 AND
There is an active proposal of seller S 2 with price P AND
Negotiation is on good A AND
B � P

THEN
An agreement of S 1 with S 2 to transact good A at price P1 is formed

TERMINATION rule dictates auction termination whenever a given period of bid-
ding inactivity is observed.

TERMINATION
IF

Termination time window is W AND
Active proposal that generated currently highest bid was recorded at time T a AND
Current time is T c AND
T c � T a � W

THEN
Negotiation is declared terminated AND
Negotiation participants are notified accordingly

92 C. Bădică, A. Giurca, and G. Wagner

4 Representing Negotiation Rules in R2ML

Representing negotiation rules in a global information network (eg. an agent environ-
ment) requires a commonly agreed rule interchange format. This format must be able
to support di�erent rule languages within a single representation framework shared by
all parties.

General purpose rule interchange formats, such as RuleML [21] and R2ML [20],
address the Platform-Independent Model level (PIM) of a software or business system.
One of their goals is to support a PSM2 to PSM rule interchange via the PIM level.
Expressing negotiation rules at PIM level is a significant advantage since the business
system does not require any conceptual changes when it is implemented in di�erent
specific technological platforms.

RuleML Initiative [21] aims at providing such a general purpose format. The SWRL
[3] rule language tries to combine the rule concept from RuleML with the knowledge
representation support of OWL [22]. However, both languages have limitations regard-
ing the representation of well known concepts from software engineering: data types,
operation calls, etc that are usually needed in real applications. Moreover, none of them
supports Event-Condition-Action (ECA) rules that are basic kind of rules in agent ne-
gotiations (as seen in the previous section of this paper). The first ideas of a general rule
language that will support not only the power of logic programming concepts, but also
the widely used object oriented programming paradigm come from 2003 (see [23]).
Following this work, proposal of R2ML rule markup language was recently launched
[20]. R2ML supports ECA rules and provides markup for rules written in various rule
languages including: Prolog, F-Logic [9], SQL, OCL [12], Jena [7], Jess [8], ILR [4],
RuleML [21], SWRL [3].

Let us note that our negotiation rules are reaction rules (ECA rules) that follow the
event-condition-action model. Therefore, we start with a brief description of the R2ML
model of ECA rules and then we provide details of our proposed mapping.

4.1 R2ML ECA-Rules

A R2ML reaction rule is a statement of programming logic that specifies the execution
of one or more actions in the case of a triggering event occurrence and if its conditions
are satisfied. Post-conditions may be optionally required to be satisfied after the action
execution. Reaction rules therefore have an operational semantics (formalizing state
changes, e.g., on the basis of a state transition system formalism). The execution e�ect
of reaction rules may depend on the rules order (note that the order is defined by the
rule execution mechanism or by the rules representation).

The R2ML Events Metamodel specifies the core concepts required for dynamic be-
havior of rules and provides the infrastructure for more detailed definition of this behav-
ior. Basic properties of an R2ML event expression are: startDateTime, duration (defines
a value specification of the temporal distance between two time expressions that specify
time instants) and occurDateTime (a derived property given by the addition of duration

2 PSM stands for Platform-Specific Model i.e. a business system level that is dependent of the
specific technological platform used to implement it.

Using Rules and R2ML for Modeling Negotiation Mechanisms 93

to the existent start date time). For the purpose of encoding the agent negotiation rules
we utilize only message event expressions. A message event expression is an atomic
event described by two properties: i) sender which is the same with the actor (inherited
from ActionEventExpr) and ii) receiver, an URI reference describing the receiver of the
event. See [20] for more details on the R2ML event model.

4.2 Mapping Examples

This section is devoted to the description of the mapping to R2ML of agent negotiation
rules presented in Section 3. Because of space limitation, the mapping is illustrated by
means of few examples involving R2ML representations of vocabulary, rules, events,
conditions and actions.

As R2ML is a rule-based language (other examples are Jess [8], JBoss Rules [6], Or-
acle Business Rules [14]), it provides the concept of rule set. Recall that our negotiation
rules are based on the vocabulary described in Section 2. Vocabularies can be referred
in R2ML rule sets and, moreover, for simplicity of implementation, R2ML provides its
own markup for vocabularies. At the rule set level a specific vocabulary for the entire
set of rules can be encoded.

For example, the Bid class from our vocabulary can be represented as:

The registered association is represented as:

<r2mlv:Class r2mlv:ID="v:Bid">

<r2mlv:Attribute r2mlv:ID="v:value">

<r2mlv:range>

<r2mlv:Datatype r2mlv:ID="xs:positiveInteger"/>

</r2mlv:range>

</r2mlv:Attribute>

<r2mlv:Attribute r2mlv:ID="v:increment">

<r2mlv:range>

<r2mlv:Datatype r2mlv:ID="xs:decimal"/>

</r2mlv:range>

</r2mlv:Attribute>

<r2mlv:Attribute r2mlv:ID="v:receivedTime">

<r2mlv:range>

<r2mlv:Datatype r2mlv:ID="xs:time"/>

</r2mlv:range>

</r2mlv:Attribute>

<r2mlv:ReferenceProperty r2mlv:ID="v:participant">

<r2mlv:range>

<r2mlv:Class r2mlv:ID="v:Participant"/>

</r2mlv:range>

</r2mlv:ReferenceProperty>

</r2mlv:Class>

<r2mlv:ReferenceProperty r2mlv:ID="v:registered">

<r2mlv:domain>

<r2mlv:Class r2mlv:ID="v:Participant"/>

</r2mlv:domain>

<r2mlv:range>

94 C. Bădică, A. Giurca, and G. Wagner

Notice that ����	 is the standard namespace notation for R2ML vocabulary3 and 	

is a user-defined notation for his specific namespace of concepts4.
We detail the mapping of the VALIDITY rule as example. The reader may consult Ap-

pendix 5 for the complete R2ML markup of another example rule – IMPROVEMENT-
BUYER.

The triggering event of this rule is the submission of a new proposal by a registered
participant. We consider this event to be atomic i.e with no duration. This is represented
in R2ML by a
������	������������:

01 <r2ml:triggeringEvent>

02 <r2ml:MessageEventExpression r2ml:sender="http://www.example.org/eshop"

03 r2ml:startTime="2006-04-21T09:00:00"

04 r2ml:duration="P0Y0M0DT0H0M0S"

05 r2ml:eventType="e:submitProposal">

06 <r2ml:arguments>

07 <r2ml:ObjectVariable r2ml:name="N" r2ml:classID="v:Negotiation"/>

08 <r2ml:ObjectVariable r2ml:name="S" r2ml:classID="v:Participant"/>

09 <r2ml:ObjectVariable r2ml:name="Pr" r2ml:classID="v:Proposal"/>

10 </r2ml:arguments>

11 </r2ml:MessageEventExpression>

12 </r2ml:triggeringEvent>

Note that object variables � and �� are instantiated by matching with the content of
the incoming event and they are already bound when rule conditions are evaluated.

The conditions part of the rule is a conjunction of three atoms and it can be expressed
in R2ML as follows:

13 <r2ml:conditions>

14 <r2ml:ReferencePropertyAtom r2ml:referencePropertyID="v:registered">

15 <r2ml:subject>

16 <r2ml:ObjectVariable r2ml:name="S"/>

17 </r2ml:subject>

18 <r2ml:object>

19 <r2ml:ObjectVariable r2ml:name="N" r2ml:classID="v:Negotiation"/>

20 </r2ml:object>

21 </r2ml:ReferencePropertyAtom>

22 <r2ml:ReferencePropertyAtom r2ml:referencePropertyID="v:transacts">

23 <r2ml:subject>

24 <r2ml:ObjectVariable r2ml:name="S"/>

3 The R2ML vocabulary schema URL is
/		(�**�)'��
��
�����	�0�	����		������*,�12*3�4*5��������'*������)��

4 For illustration purposes the vocabulary can be found at http:��www.example.org�ecommerce�.
���
	�*
���	��	��
*���������'�

<r2mlv:Class r2mlv:ID="v:Negotiation"/>

</r2mlv:range>

</r2mlv:ReferenceProperty>

http://oxygen.informatik.tu-cottbus.de/R2ML/0.4/Vocabulary/r2mlv.xsd
http://www.example.org/ecommerce/agents/negotiation/vocabulary
http://www.example.org/ecommerce/agents/negotiation/vocabulary

Using Rules and R2ML for Modeling Negotiation Mechanisms 95

25 </r2ml:subject>

26 <r2ml:object>

27 <r2ml:ObjectVariable r2ml:name="A" r2ml:classID="v:Good"/>

28 </r2ml:object>

29 </r2ml:ReferencePropertyAtom>

30 <r2ml:AttributionAtom r2ml:attributeID="v:price">

31 <r2ml:subject>

32 <r2ml:ObjectVariable r2ml:name="Pr" r2ml:classID="v:Proposal"/>

33 </r2ml:subject>

34 <r2ml:dataValue>

35 <r2ml:DataVariable r2ml:name="P" r2ml:datatypeID="xs:positiveInteger"/>

36 </r2ml:dataValue>

37 </r2ml:AttributionAtom>

38 </r2ml:conditions>

First atom (lines 14–21) is a R2ML reference property atom that models the condi-
tion “S is a participant registered with negotiation N". This atom is true if participant
denoted by variable S" is registered with the current negotiation denoted by variable N".

The second atom (lines 22–29) is also a reference property atom describing the con-
dition “S transacts good A".

The third atom (lines 30–37) is a R2ML attribution atom implementing the condition
“Proposal Pr has price P". The execution model consists in computing the value of the
attribute price" in the context of the object variable Pr" (the proposal).

The reader may notice that the condition “S has role R � �buyer� seller�" is already
implemented at the vocabulary level (classes Seller" and Buyer" are a complete partition
of Participant").

Since the action part of the rule (“Submission time T is recorded with proposal
Pr") denotes an update that invokes a “recording operation", it will go into an R2ML
invoke action expression. The action receives as argument a R2ML attribute function
term that evaluates to the value of the attribute 	����������	�� of proposal ��.
Note that this corresponds to an UML-like operation call ��������������������
�������������	���. The resulting R2ML markup of the action is:

39 <r2ml:producedAction>

40 <r2ml:InvokeActionExpression r2ml:operationID="a:recordSubmissionTime">

41 <r2ml:arguments>

42 <r2ml:AttributeFunctionTerm r2ml:attributeID="v:timeReceived">

43 <r2ml:contextArgument>

44 <r2ml:ObjectVariable r2ml:name="Pr" r2ml:classID="v:Proposal"/>

45 </r2ml:contextArgument>

46 </r2ml:AttributeFunctionTerm>

47 </r2ml:arguments>

48 </r2ml:InvokeActionExpression>

49 </r2ml:producedAction>

The VALIDITY rule has also a postcondition – ”Proposal Pr is valid”. This postcondition corre-
sponds to a R2ML object classification atom:

63 ������(��	��
��	��
%

67 ������8�9��	����������	��
&	�� ���������� !"#��5����-��(����#%

96 C. Bădică, A. Giurca, and G. Wagner

6� ������8�9��	5������� �����
���"#-�#*%

6: �*�����8�9��	����������	��
&	��%

64 �*�����(��	��
��	��
%

4.3 General Mapping Criteria

Business rules (including those presented in Section 3) are not usually captured using a formal
representation. Instead, they are natural language descriptions based on core ontological concepts
(eg. variable and class) and have the usual meaning of IF ... THEN programming constructs. It
is the role of the rule engineer to map them onto a formal representation. Below we describe the
general mapping criteria of such a formalization using R2ML:

1. Rule variables are mapped onto object variables or data variables according to their values
types:

– Object variables, if they instantiate classes;
– Data variables, if they instantiate datatypes;

2. UML properties are mapped onto di�erent kinds of atoms according to their ranges:

– Attributes i.e. UML properties that have data as values are mapped onto attribution
atoms or attribute function terms depending of the context of usage. For example the
UML expression -��(����"- is mapped onto the attribution atom from lines 29–36.
See also the attribute function term from lines 41–45 in the example.

– Object properties i.e. UML properties that have objects as values are mapped onto
R2ML reference property atoms or reference property function terms depending of the
context of usage. For example, the reference property atom from lines 21–28 encodes
the UML expression ;�	��
���	�"&;

3. Actions are mapped onto one of:

– InvokeActionExpression, corresponding to an operation call;
– AssignActionExpression, corresponding to assignment of values to di�erent UML

attributes;
– CreateActionExpression, corresponding to a constructor-call;
– DeleteActionExpression, corresponding to a destructor-call;

4. Because the negotiation rules are triggered by instantaneous events (like request-response of
a message), events are mapped onto the subclass of R2ML message events that represents
atomic events (events without duration).

In Appendix 5 we present another complete example expressed in R2ML for the IMPROVEMENT-
BUYER rule.

5 Conclusions and Future Work

This paper proposes the use of R2ML rule-markup language for expressing rule-based representa-
tions of agent negotiation mechanisms. Our proposal is demonstrated with an example comprising
an R2ML rule model of single item English auctions.

As future work we plan to: (i) analyze how the R2ML representation of negotiation mecha-
nisms can be implemented using a rule engine in a system for agent negotiation; (ii) asses the
generality of this proposal by applying it to other price negotiations.

Using Rules and R2ML for Modeling Negotiation Mechanisms 97

References

1. Bădică, C., Bădiţă, A., Ganzha, M., Iordache, A., Paprzycki, M.: Rule-Based Framework for
Automated Negotiation: Initial Implementation. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.)
RuleML 2005. LNCS, vol. 3791, pp. 193–198. Springer, Heidelberg (2005)

2. Bartolini, C., Preist, C., Jennings, N.R.: A Software Framework for Automated Negotiation.
In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.) Software Engineering for
Multi-Agent Systems III. LNCS, vol. 3390, pp. 213–235. Springer, Heidelberg (2005)

3. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. In: W3C Member, submission
(May 2, 2004), /		(�**�:����*;��������
;�,2

4. The ILOG Rule Language. /		(�**���������*
5. JADE: Java Agent Development Framework. /		(�**9��������	��	�
6. JBoss Rules (Drools). /		(�**�����������
7. Jena The Semantic Web Framework. /		(�**9�
��������������
�	*
8. Jess, Sandia Lab., /		(�**/��<����������
�������*9���*
9. Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-Oriented and Frame-Based

Languages. Journal of the ACM 42(4), 741–943 (1995)
10. Laudon, K.C., Traver, C.G.: E-commerce. business. technology. society, 2nd edn. Pearson

Addison-Wesley, London (2004)
11. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for negotiation

in electronic commerce. In: Sierra, C., Dignum, F.P.M. (eds.) Agent Mediated Electronic
Commerce. LNCS (LNAI), vol. 1991, pp. 19–33. Springer, Heidelberg (2001)

12. Object Constraint Language (OCL), v2.0. http:��www.omg.org�docs�ptc�03-10-14.pdf
13. Object Management Group (OMG), /		(�**��������
14. Oracle Business Rules.

/		(�**�����������*	��/
����'*(�����	�*���*����
���������*

�
��)�/	��

15. McAfee, R.P., McMillan, J.: Auctions and bidding. Journal of Economic Literature 25(2),
699–738 (1987)

16. Rolli, D., Luckner, S., Gimpel, A.: A Descriptive Auction Language. Electronic Mar-
kets 16(1), 51–62 (2006)

17. Rolli, D., Eberhart, A.: An Auction Reference Model for Describing and Running Auctions.
In: Internationale Tagung Wirtschaftsinformatik, Bamberg, Germany, pp. 289–308 (2005)

18. Tamma, V., Phelps, S., Dickinson, I., Wooldridge, M.: Ontologies for Supporting Negotiation
in E-Commerce. In: Engineering Applications of Artificial Intelligence, vol. 18, pp. 223–238.
Elsevier, Amsterdam (2005)

19. Tamma, V., Wooldridge, M., Dickinson, I.: An Ontology Based Approach to Automated Ne-
gotiation. In: Padget, J.A., Shehory, O.M., Parkes, D.C., Sadeh, N.M., Walsh, W.E. (eds.)
Agent-Mediated Electronic Commerce IV. Designing Mechanisms and Systems. LNCS
(LNAI), vol. 2531, pp. 219–237. Springer, Heidelberg (2002)

20. R2ML - The REWERSE I1 Rule Markup Language.
/		(�**�)'��
��
�����	�0�	����		������*��������7*=>"
���*?

21. The Rule Markup Initiative, RuleML. /		(�**�����������
22. Patel-Schneider, P.F., Horroks, I.: OWL Web Ontology Language Semantic and Abstract

Syntax., /		(�**�:����*�334*8�2
23. Wagner, G.: Seven Golden Rules for a Web Rule Language. Invited contribution to the Trends

& Controversies section of IEEE Intelligent Systems 18(5) (2003)
24. Wagner, G., Giurca, A., Lukichev, S.: R2ML: A General Approach for Marking up Rules.

Dagstuhl Seminar Proceedings 05371. In: Bry, F., Fages, F., Marchiori, M., Ohlbach, H.
(eds.) Principles and Practices of Semantic Web Reasoning (2005)

http://www.w3.org/Submission/SWRL/
http://www.ilog.com/
http://jade.cselt.it2
http://www.drools.org
http://jena.sourceforge.net/
http://herzberg.ca.sandia.gov/jess/
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.omg.org
http://www.oracle.com/technology/products/ias/business_rules/index.html
http://www.oracle.com/technology/products/ias/business_rules/index.html
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/6
http://www.ruleml.org
http://www.w3.org/2004/OWL

98 C. Bădică, A. Giurca, and G. Wagner

25. Wagner, G., Giurca, A., Lukichev, S.: A Usable Interchange Format for Rich Syntax Rules
Integrating OCL, RuleML and SWRL. In: Proc. RoW2006, Edinburgh, UK, May 22nd
(2006)

26. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons, Chichester
(2002)

27. Wurman, P.R., Wellman, M.P., Walsh, W.E.: Specifying Rules for Electronic Auctions. AI
Magazine 23(3), 15–23 (2002)

28. Wurman, P.R., Wellman, M.P., Walsh, W.E.: A Parameterization of the Auction Design
Space. Games and Economic Behavior 35(1�2), 271–303 (2001)

Appendix A

R2ML markup for IMPROVEMENT-BUYER rule:

<r2ml:ReactionRule r2ml:id="IR-BUYER001">

<r2ml:triggeringEvent>

<r2ml:MessageEventExpression r2ml:sender="www.example.org/eshop"

r2ml:startTime="2006-04-21T09:00:00"

r2ml:duration="P0Y0M0DT0H0M0S" r2ml:eventType="s:submitProposal">

<r2ml:arguments>

<r2ml:ObjectVariable r2ml:name="S" r2ml:classID="v:Buyer"/>

<r2ml:ObjectVariable r2ml:name="Pr" r2ml:classID="v:Proposal"/>

</r2ml:arguments>

</r2ml:MessageEventExpression>

</r2ml:triggeringEvent>

<r2ml:conditions>

<r2ml:ReferencePropertyAtom r2ml:referencePropertyID="v:registered">

<r2ml:subject>

<r2ml:ObjectVariable r2ml:name="S"/>

</r2ml:subject>

<r2ml:object>

<r2ml:ObjectVariable r2ml:name="N" r2ml:classID="v:Negotiation"/>

</r2ml:object>

</r2ml:ReferencePropertyAtom>

<r2ml:ReferencePropertyAtom r2ml:referencePropertyID="v:transacts">

<r2ml:subject>

<r2ml:ObjectVariable r2ml:name="S"/>

</r2ml:subject>

<r2ml:object>

<r2ml:ObjectVariable r2ml:name="A" r2ml:classID="v:Good"/>

</r2ml:object>

</r2ml:ReferencePropertyAtom>

<r2ml:DatatypePredicateAtom r2ml:datatypePredicateID="swrlb:greaterThan">

<r2ml:dataArguments>

<r2ml:AttributeFunctionTerm r2ml:attributeID="v:price">

<r2ml:contextArgument>

<r2ml:ObjectVariable r2ml:name="Pr"/>

</r2ml:contextArgument>

</r2ml:AttributeFunctionTerm>

<r2ml:DataOperationTerm r2ml:operationID="op:numeric-add">

<r2ml:arguments>

<r2ml:AttributeFunctionTerm r2ml:attributeID="v:value">

<r2ml:contextArgument>

<r2ml:ObjectVariable r2ml:name="B" r2ml:classID="v:Bid"/>

</r2ml:contextArgument>

</r2ml:AttributeFunctionTerm>

<r2ml:AttributeFunctionTerm r2ml:attributeID="v:increment">

<r2ml:contextArgument>

<r2ml:ObjectVariable r2ml:name="B" r2ml:classID="v:Bid"/>

</r2ml:contextArgument>

</r2ml:AttributeFunctionTerm>

</r2ml:arguments>

Using Rules and R2ML for Modeling Negotiation Mechanisms 99

</r2ml:DataOperationTerm>

</r2ml:dataArguments>

</r2ml:DatatypePredicateAtom>

</r2ml:conditions>

<r2ml:producedAction>

<r2ml:InvokeActionExpression r2ml:operationID="a:assert">

<r2ml:arguments>

<r2ml:ObjectVariable r2ml:name="Pr"/>

</r2ml:arguments>

</r2ml:InvokeActionExpression>

</r2ml:producedAction>

<r2ml:postcondition>

<r2ml:ObjectClassificationAtom r2ml:classID="v:ActiveProposal">

<r2ml:ObjectVariable r2ml:name="Pr"/>

</r2ml:ObjectClassificationAtom>

</r2ml:postcondition>

</r2ml:ReactionRule>

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 100–111, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dealing with Scalability in an Event-Based
Infrastructure to Support Global Software Development

Rubby Casallas, Oscar González, and Nicolás López

University of Los Andes, Department of Systems and Computing Engineering, Bogotá,
Colombia

{rcasalla,o-gonza1,ni-lopez}@uniandes.edu.co

Abstract. Scalability is a challenging issue in the context of an infrastructure
based on asynchronous events to support integration and cooperation between
distributed applications. Furthermore, if an infrastructure of this kind supports
the execution of processes in a global software development environment, we
have to deal with an enormous amount of Internet-scale events passing through
the infrastructure diminishing performance. In this paper, we present an
approach to treat this problem based on a network of interconnected nodes. At
any given moment, each node executes a process while maintaining the scope
of the local events and propagating only the events needed to synchronize
broader processes. To support cooperation between applications, we use an
ECA rules mechanism, which we have extended to enable the infrastructure to
identify a process executing in a node, as an application that can cooperate with
other processes using a similar mechanism.

Keywords: Event-based Middleware, Scalability, Monitoring systems,
Application Integration and Cooperation, Asynchronous Events.

1 Introduction

In a Global Software Development (GSD) scenario, many difficulties arise caused by
the geographical dispersion of several teams. These teams perform diverse activities
simultaneously to accomplish a common goal. The ways in which these activities
have to be coordinated and synchronized depend on business processes that should be
defined and managed.

Each process can be supported by a variety of different distributed applications, or
at least, by different instances of the same application at different places. In this
context, necessarily, a schema to integrate the applications involved has to materialize
the high-level business rules. This integration has to preserve the intention of the
business rules: this includes the exchange of information and the actions executed to
produce the expected results. We need to provide enterprise application architectures
with integration mechanisms that support complementary processes and update
information automatically to offer an integral vision of business processes and the
consistency of information throughout these applications.

We have developed a distributed, event-driven infrastructure and an integration
mechanism based on Event Condition Action (ECA) rules, called Eleggua [7]. This

 Dealing with Scalability in an Event-Based Infrastructure to Support GSD 101

infrastructure is currently under usage in a software house [11] that faces the
problems of global software development1; this house has clients and development
teams in 4 countries and over 300 developers. Throughout this experience, we have
overcome many difficulties in the integration process, beginning with the definition of
business rules up to implementation on Eleggua, deployment, and testing. One
important issue has emerged related to the scalability of a highly distributed
asynchronous event-based middleware even though Eleggua is an appropriate solution
for the automation of actions that represent application cooperation in a real world
context.

One of the main reasons for congestion in an event-based integration is the traffic
of events through the whole geographically disperse infrastructure. However, in a
GSD context, some processes are local to a site and need to coordinate only with one
or two other local processes in other sites. This means that, by definition, the process
that launches each event can limit its scope.

The different levels of activities executed within a process provide a delimitation
of their scope. In the same way that there are, in organizations, local domain groups
that perform local processes and general groups that perform widespread processes,
the events that occur within the processes have a local or a broad range.

In addition to the scalability issue, the management and monitoring of the
infrastructure is a very complex task, because of the integration of applications and
the high volume of distributed data.

In this paper, we propose a solution to the scalability problem. The solution takes
advantage of the fact that there are local and general business processes. The
administrator can configure the scope of events based on the definition of the business
processes. We have extended Eleggua to manage the scope of events and the diverse
network configurations of nodes that have to communicate to synchronize processes.
Additionally, we extended the Eleggua monitor to guarantee the administrator a
visibility of both local and general state of the infrastructure. J2EE technology is the
base of the proposed solution.

The organization of this paper is as follows: the second section presents some basic
concepts of the Eleggua middleware and an example scenario useful to illustrate both
the problem and the solution. The third section enumerates the requirements we have
to satisfy to guarantee scalability. The fourth section presents our proposed solution.
The fifth section briefly explains the technologies used to implement the solution. The
final section mentions some works related to ours and finally, gives some conclusions
and illustrates some possible future works.

2 Background

This section presents some basic concepts of Eleggua and then, we present an
example scenario to illustrate the needs in a global software development context.

Systems based on event generation, observation and notification are a widely used
architectural style for distributed, loosely coupled systems in a variety of domains
[16]. On top of an Event Notification Service (ENS), we defined a mechanism

1

 The project is supported and partially financed by the "Instituto Colombiano para el
Desarrollo de la Ciencia y la Tecnología Francisco José de Caldas" - COLCIENCIAS.

102 R. Casallas, O. González, and N. López

supported by Event-Condition-Action rules as a strategy to achieve cooperation
between applications. Eleggua is a middleware that we have developed as part of a
research project1 [7] [8]. It uses asynchronous event communication at an Internet-
scale and the execution of cooperation rules that automate actions that correspond to
high-level business processes.

An Eleggua node has two main responsibilities: to offer basic functionality of a
publish/subscribe ENS (asynchronous messaging, event generation and event
processing) and to execute cooperation rules. A cooperation rule is associated to how
an application produces events as a result of the interaction of users and how other
applications process and react to the reception of these events.

For each external application, needed to support a business activity, we pro-
vide a Cooperation Proxy (CP) component. A CP is responsible of the subscription/
generation to events of interest to the application and of the execution of rules
required to enable the cooperation of the application within the infrastructure. Figure
1 shows, in a simplified way, an Eleggua node with three external applications, their
Cooperation proxies and the relation of these with the event notification service.

Fig. 1. An Eleggua Node

2.1 Example Scenario

Our example relates to a software testing process. Figure 2 shows the definition of a
very simplified testing process. There are four main activities: unit, integration, load
and stress, and usability testing. In an independent way, various teams have to
perform unit testing for each software component. Once unit testing is finished for all
components, integration testing is the next activity executed. Finally, teams perform,
simultaneously usability testing, and load and stress testing.

In our example, we can assume that the testing process is accomplished by two
geographical disperse teams. Each team is responsible for the execution of some of
the activities and uses its own applications to perform these activities (see fig. 3). We
need to manage the interaction between the sites to maintain the integrity and
completeness of the general process.

 Dealing with Scalability in an Event-Based Infrastructure to Support GSD 103

Fig. 2. A Testing Process Definition

Fig. 3. A Testing Process Execution

When the process starts, each team has to test independently its own components.
Thus, there are two instances for the unit testing activity, one for each team. Then,
when all unit-testing activities are finished, an integration testing activity initializes
on a single site. Once the previous testing activity finishes successfully, an instance of
the usability testing activity launches on a site, and an instance of the load and stress-
testing activity launches simultaneously on the other site.

Finally, one of the sites, determined by business conditions, consolidates the results
of the activities to continue development of the software. Each site should work
independently with its own resources to accomplish an activity with a specific
purpose, but once the activity is finished, one of the sites must synchronize the
general process.

An Eleggua node enables the integration and cooperation of individual applications
supporting activities of a business process. For instance, in our example scenario,
there can be many applications supporting the tasks performed by developers during a
unit testing activity: an application to run the test suites, another to register the defects
found, if any, and another to plan the correction of the defects. Using ECA rules, we
can define the cooperation between these applications. For example, a cooperation
rule can guarantee that, when a defect is found, it is planned automatically a task to
correct it. Figure 4 shows the elements involved in the execution of an ECA rule.

The cooperation proxy of the application responsible of registering defects
publishes an event called “defectAssign”. Each time a user registers a defect, the
cooperation proxy, which is observing the application, generates an instance of the
“defectAssign” event. The ENS notifies the event to each application that previously

104 R. Casallas, O. González, and N. López

Fig. 4. Elements in an ECA rule

subscribed to it. In the example, the cooperation proxy for the planning tool receives
the event and executes a rule associated to it. This rule creates a task for the correction
of the defect with the information in the event. Consequently, the user responsible of
the correction will have a new task planned.

An Eleggua node executes on a local network; nevertheless, users access most of
the external applications via Internet. The performance of an Eleggua node depends
on the amount of events passing through the diverse components of the node. On a
single process site, over five applications can interact; they exchange events defined
on over 40 cooperation rules such as the one described previously. Daily over 300
users interact with these applications passing over a 1000 events.

When the number of events increases, due to a growth in users, applications or
both, there is a delay in the communication, diminishing the performance. This
scalability problem is in part consequence of the fact that there is a single dispatching
event component on each ENS of a node.

3 Requirements for Scalability

This section presents the requirements to achieve scalability in the context of our
event-based infrastructure.

3.1 Specific Requirements

According to the scenario presented, above the infrastructure should offer services to
achieve scalability, these are:

1. Support the decomposition and synchronization of business processes to execute
them on separate nodes.

2. Limit the scope of events according to the process that generates it and the
processes interested on it.

 Dealing with Scalability in an Event-Based Infrastructure to Support GSD 105

3. Provide an Internet-scale communication mechanism between nodes that
overcomes the security issues of local nodes.

4. Assure the integrity of the general process.
5. Monitor and control each node to offer a view of the whole process, i.e., a

consolidation of the individual state of the nodes into a bigger picture.

4 Proposed Solution

Our approach is to use Eleggua nodes to support independent processes. Each node
acts as a logically integrated application; this application interacts with other nodes
using a global cooperation proxy. Figure 5 exemplifies an Eleggua network consisting
of three Eleggua nodes; each node has its global cooperation proxy (shaded) that
communicates with proxies to form the Eleggua network.

The following subsections present how our solution fulfills each requirement.

Fig. 5. An Eleggua network

4.1 Processes Synchronization

The basic strategy to limit the amount of events handled by an Eleggua network is to
restrict the scope of events according to business processes. Event propagation is
limited to the node executing the process where the event occurs, and is only
propagated outside if it is necessary to processes executing on other nodes.

As we stated before, cooperation rules achieve the cooperation between
applications. Each rule is a set of actions executed because of the occurrence of an
event. Each Eleggua node executes local processes for an organization. A LAN
network supports the communication between the components of a node. An event-
notification-service is in charge of asynchronous messaging. We define the scope of
an event as local if only components on one node produce and consume it. In contrast,
we define the scope of an event as broad if components on one node produce it and
components on various different nodes consume it. Business users defining the
cooperation rules establish the scope of the events.

106 R. Casallas, O. González, and N. López

Cooperation rules responsible for the cooperation between processes instead of
between applications produce broad events. We have added services to our ENS to
achieve the propagation of events according to their type. These services enable the
ENS to identify the scope of events and to behave consequently. In the case of broad
events, the ENS propagates these outside the node to the neighbor nodes that are
interested in the occurrence of the event. This interest is not part of the event; the
business rules define it and the nodes are configured to have this information.

In fact, we use the same mechanisms of ECA rules to implement the new services,
i.e., each node has its own global cooperation proxy. This new special proxy has to:

− subscribe to broad events produced within its node but consumed outside,
− propagate broad events to neighbors which require it
− subscribe to broad events produced outside
− react to reception of broad events

Fig. 6. A cooperation rule between two Eleggua nodes

For instance, in our example, the process in charge of the integration tests cannot
start until the termination of each instance of unit testing processes. Let assume that
the application that supports unit testing has a service to enable the user to indicate
that the unit testing activity finished successfully. Using the ECA rules mechanism
the infrastructure observes the user action and generates an event
“UnitTestingFinished”. The cooperation proxy of the unit testing application
publishes the “UnitTestingFinished” event. The global cooperation proxy of the node
where the unit testing activity is running subscribes to the event and has a cooperation
rule related to this event. The associated action in the rule identifies all the outside
neighbors interested in the event and sends it to each node. In our example, the
notification reaches the global cooperation proxy of the integration testing activity.
Let us assume that the application supporting integration testing has a cooperation
rule that will be activated when an event is received notifying the termination of a unit
testing activity. The action of this rule verifies if every unit testing activity is finished
to continue the process. Figure 6 illustrates this behavior.

 Dealing with Scalability in an Event-Based Infrastructure to Support GSD 107

4.2 Network Topology

The system administrator is in charge of configuring the topology for communication
of an Eleggua network according to the business processes. The limits of LAN/WAN
networks should determine the boundaries of local nodes. Nodes that exchange
information according to the business process should be neighbors. The result is a
graph as arbitrary as the relations between the activities in a business process are. We
need to define the responsibilities of synchronization in the same way that we need to
define the decomposition of the processes.

The global cooperation proxy of each node has to publish and subscribe to broad
events. Furthermore, the global cooperation proxy has to have the cooperation rules
needed for the synchronization. As we mentioned previously, when a global
cooperation proxy receives a broad event, the associated rule starts by identifying the
interested neighbors. This is easily done, because during the configuration task, a
component of the system was in charge of registering this information on the node. In
other words, each Eleggua node has a reference to the node responsible for the
synchronization of the general process. Additionally it stores information about its
neighbors, and the events it publishes and subscribes.

4.3 Fault Tolerance

Each Eleggua node stores the events produced locally and the trace of the broad
events propagated outside. If a failure of an Eleggua node occurs, broad events not
propagated during that time are stored. Once the administrator solves the problem, the
first task of the node is notifying these pending events.

If a node fails, all the others can continue to work in an independent manner. The
general process can wait until the administrator restores its state. Eventually, the
administrator can recover general consistency.

4.4 Process Monitoring

The most important requirement to monitor an Eleggua network is to offer the
administrator a view of the state of the participating nodes. The main requirement for
the monitor of a single node is to offer a high-level view of its state. Within a node,
we achieve this requirement by showing the administrator the general state of a rule.
If something goes wrong, the user can easily identify the source of the problem and
from there, understand the causes and make a decision.

Each Eleggua node has its own monitor component. This component has in charge
the consolidation of the current state and communication with the general monitor. A
set of sensors enables the monitor component, on each node, to notify the state of
execution of the rules. The general monitor receives a notification about a problem.
Based on the network topology, the general monitor updates the general state view of
the process.

The node specific monitoring system has distributed components that communicate
with a monitoring client using channels independent from those used by Eleggua.
This monitoring system has an approach based on collecting monitoring information
on demand from the components of the distributed event middleware. To achieve this,
it uses non-intrusive monitoring components for queries that involve high volumes of

108 R. Casallas, O. González, and N. López

data; synchronous monitoring of each component of the distributed event middleware;
and the distributed event middleware for asynchronous notifications of critical
process errors.

5 Implementation

Eleggua has been implemented using J2EE technology [14]. We are using JBoss as
the application server. Besides the application server, we use some other standards
such as JMS, JBoss AOP, JBossRemoting, Javagroups, and Peer to Peer technology.

We have implemented the node ENS using JMS (Java Message Service) [2]; JMS
is a messaging standard that enables application components based on the J2EE to
create, send, receive, and read messages. JBossMQ is the JMS provider used in our
implementation.

Aspects are used to generate events, specifically, JBossAOP [17], the JBoss
solution to implement the aspect-oriented programming paradigm. JBossAOP enables
us to intercept any calls to the API of an external application.

A peer-to-peer mechanism enables the communication of nodes in the Eleggua
network. This architecture enables sharing of computational resources using direct
exchange without a central party involved. In peer-to-peer systems, all components
are equivalent in functionality and tasks executed. This architecture facilitates fault
tolerance maintaining acceptable performance and connectivity without the need of a
centralized global server [1].

We are using JBossRemoting to achieve the communication among Eleggua nodes
[10] [12]. This framework permits remote communication both synchronic and
asynchronic. JBossRemoting supports several protocols like RMI, HTTP, Multiplex,
etc; it uses multicast or JNDI for remote discovering services.

The other technology in use is Javagroups [3] to perform the multicasting over
independent channels used to monitor the system. Using Javagroups it is possible to
create and manage a group of distributed processes that communicate by means of
message exchange. Javagroups is based on IP multicast extended to offer services for
management of groups [4].

6 Related Work

This section briefly reviews some known Event Notification Systems that have
elements to tackle the scalability issue. JEDI is an event-based generic infrastructure
that supports a workflow management system called OPSS (ORCHESTRA Process
Support System) [9]. Siena is an internet-scale event Notification service [5]. The key
idea of Siena, related to scalability, is the use of a data model to represent events, as
the basis for optimizing notification delivery. Hermes is a middleware system for
design and execution of activity-based applications in distributed environments [13].
ELVIN is a generic service middleware designed for distributed systems [15].

We now discuss three basic aspects for each system to appreciate the similarities
and differences with ours: network topology, event scope and communication.

 Dealing with Scalability in an Event-Based Infrastructure to Support GSD 109

Network Topology. Refers to how servers are interconnected. JEDI uses dispatching
servers (DSs) to communicate applications. An Active Object represents one
application in the system. The topology of the DSs is hierarchical; each DS
propagates subscriptions to its ancestor. A DS propagates events to its ancestor, its
descendents and every Active Object that declared interest for it.

Differing from JEDI, Siena adopted a general graph as network topology where the
communication is peer-to-peer. Hermes defines event channels (brokers)
interconnected in a topology based on a routing network. Hermes distributes brokers
arbitrarily. The system uses hash tables and routing algorithms to deal with the
scalability requirement.

An Eleggua Network can adopt any topology, this has as main advantage that it
reflect business needs. However, the administrator has to perform some verification to
avoid cycles.

Event Scope. Refers to the level of notification associated to an event, which can be
local or broad domain. The scope determines how each system routes and propagates
events to increase performance. For some solutions, this refers to sending routing
information with the event, applying filters, or executing ECA rules.

SIENA tries to maximize the expressive power of the data model to define filters
and patterns on events. A filter is a set of attributes and relationships between the
values of the attributes. Patterns are sequences of filters joined by a temporal
sequence of notifications. By means of the filters and patterns, SIENA can guarantee
that only interested nodes will receive messages reducing traffic over the network.

HERMES implements an algorithm of content-based routing [6]. The events are
filtered as close to their sources as possible to reduce the bandwidth and increase
scalability. Each channel supports requests <message, destiny>, i.e., it is possible to
send events between channels. Each channel receives the messages and applies its
own filters.

ELVIN includes characteristics such as security, internationalization, and adaptable
transport protocols. Similarly to HERMES, the system was extended to provide
content-based routing.

Analogous to other solutions, we identified the necessity of sending the minimum
information between nodes. The basic difference resides on the fact that the scope of
events is associated to the business process definition.

Communication. Refers to the communication between event servers and the
information exchanged between them. The architecture of Hermes consists of two
main components: event clients and brokers. The communication between the clients
is done using an xml protocol. A routing topology based on communication peer-to-
peer interconnects the brokers. The routing network guarantees the availability of the
system in case of failure of one or more brokers. Each channel maintains a set of
application objects to help deciding with which other nodes to route the information.

ELVIN defines events as pairs <attribute, value> using a subscription language
based on predicates. The publishers of events can request information about the
subscriptions to their events. ELVIN enables a reduction of costs in communication
because events publishers do not send events without subscriptions.

110 R. Casallas, O. González, and N. López

In the same way than in Hermes, our solution defines a peer-to-peer architecture to
guarantee the independence and a minimum level of failure tolerance of the Eleggua
nodes supporting each process. We additionally consider the need for communication
protocols between nodes without interfering with the security policies of the
organizations.

7 Conclusions and Future Work

In this paper, we presented some considerations for scaling an event-based
middleware to an Internet context. Our solution is composed of distributed Eleggua
nodes that represent the distribution of the process. Each node treats events on its
local domain while specific communication among nodes consolidates the general
process. Each node performs particular processes at a given moment. The logic for
synchronization of those processes resides on the special cooperation proxies of the
nodes.

We have defined a strategy to scale users and tools to support the decomposition of
the processes in a global scenario. The definition of an Eleggua network that
interconnects nodes and a mechanism limits the scope of events to manage local and
broader events enables the scalability of the infrastructure to an Internet-scale. Broad
events provide the information to synchronize processes in execution over different
nodes. The most relevant result of our investigation is the integration of several
approaches and technologies to achieve a useful solution to a concrete problem.

However, we have many works in progress related to our solution. Some of them
are extensions to the infrastructure to facilitate the configuration, testing and
monitoring of the network. Our main line of research is the integration between a
workflow management system and our infrastructure. As we mentioned in the paper,
the administrator must manually configure the nodes, the definition and instantiation
of each business process could generate this configuration. On this same line of work,
the monitor should represent the state of the process according to the instantiation
performed.

References

1. Androutsellis-Theotokis, S., Spinellis, D.: A Survey of Peer-to-Peer Content Distribution
Technologies. ACM Computing Surveys 36(4), 335–371 (2004)

2. Barcia, R.: JMS Application Architectures. Published on TheServerSide.com (2003)
3. Bela, B.: Adding Group Communication to Java in a Non-IntrusiveWay Using the

Ensemble Toolkit, tech. rep., Dept. of Computer Science, Cornell University (November
1997)

4. Bela, B.: JavaGroups - Group Communication Patterns in Java. Technical report, Dept. of
Computer Science,Cornell University (July 1998)

5. Carzaniga, A., Rosenblum, D., Wolf, A.: Design and Evaluation of a Wide-Area Event
Notification Service. ACM Transactions on Computer Systems 19(3), 332–383 (2001)

6. Carzaniga, A., Wolf, A.: Content-based networking: A new communication infrastructure.
In: Workshop, N.S.F. (ed.) NSF Workshop on an Infrastructure for Mobile and Wireless
Systems, Scottsdale, AZ, October 2001 (2001)

 Dealing with Scalability in an Event-Based Infrastructure to Support GSD 111

7. Casallas, R., Lopez, N., Correal, D.: Eleggua: An Event Infrastructure for Application
Cooperation. Lecture Notes in Informatics, vol. P-70, pp. 109–123. Springer, Heidelberg
(2005)

8. Casallas, R., Acero, C., Lopez, N.: From high level business rules to an implementation on
an event-based platform to integrate applications. In: proceedings of the International
EDOC Workshop on Vocabularies, Ontologies and Rules for The Enterprise (VORTE
2005), September 20, 2005, Enschede, The Netherlands (2005)

9. Cugola, G., Di Nitto, E., Fuggeta, A.: The Jedi event-based infrastructure and its
application to the development of the opss wfms. IEEE Transactions on Software
Engineering, 27(9) (2001)

10. Elrod, T., Haynie, J., Sigal, R., Suconic, C.: JBossRemoting. JBoss Group Available on
http://labs.jboss.com/portal/jbossremoting

11. Heinsohn Software House. (Last visited: June 2006), Web site:
 http://www.heinsohn.com.co/

12. Mazzitelli, J.: Introducing JBoss Remoting. Published by ONJava (February 2005)
13. Pietzuch, P.: Hermes: A Scalable Event-Based Middleware. A dissertation submitted for

the degree of Doctor of Philosophy. Queens’ Collage, University of Cambridge (2004)
14. Roman, Ambler, S., Jewell, T.: Mastering Enterprise Java Beans, 2nd Edition, Copyright

2002 by The Middleware Company
15. Segal, B., Arnold, D., Boot, J., Henderson, M., Phelps, T.: Content based routing with

elvin4. In: Proceedings of the AUUG2K Conference (2000)
16. Silva, R., De Souza, C., Redmiles, D.: The design of a configurable, extensible and

dynamic notification service. In: Proceedings of the 2nd International Workshop on
Distributed Event-Based Systems (DEBS’03) (June 2003)

17. The JBoss, A.O.P.: Group.: JBoss AOP - Aspect-Oriented Framework for Java, JBoss
AOP Reference Documentation. (2006), Available online http://labs.jboss.com/portal/
jbossaop/docs/1.5.0.GA/docs/aspect-framework/ reference/ en/ html/index.html

Models and Tools for SOA Governance

Patricia Derler1 and Rainer Weinreich2

1 Paris-Lodron University of Salzburg, Austria
2 Johannes Kepler University of Linz, Austria

patricia.derler@sbg.ac.at, rainer.weinreich@jku.at

Abstract. Organizations are moving rapidly towards Service-Oriented
Architectures (SOAs). Benefits include cost reduction through reuse, bet-
ter integration through standardization, and new business opportunities
through agility. The successful implementation of an SOA requires not
only protocols and technologies like SOAP and WSDL but also support
for the processes of creating, validating and managing services in an en-
terprise. Tools for SOA governance and management are evolving to be
the heart of enterprise SOAs. We present an approach for supporting
SOA governance activities. Notable aspects of our approach are an ex-
tensible model for describing service metadata of arbitrary service types
(not only Web services), the concept of service proposals for the process
of service specification and service creation, a service browser for service
reuse, and support for service evolution through information about ser-
vice versioning, service dependencies and service installations.

Keywords: Service-Oriented Architecture (SOA), SOA governance, ser-
vice metadata, service repository, service life cycle.

1 Introduction

Organizations are adopting Service-Oriented Architecture (SOA) as the cen-
tral principle for structuring their enterprise-wide software system architectures.
SOA is both a business strategy and an architectural principle [1]. The busi-
ness strategy aligns the software infrastructure with the business processes of
the organization by modeling business processes as high-level services. From the
architectural viewpoint, SOA is a means of partitioning the functionality of a
software system into reusable and composable software components (services).

The frequently mentioned benefits of an SOA include cost reduction through
cross-organizational reuse of services, agility through alignment with business
processes, new business opportunities through agility, independent development
through separation of concern, better scalability through isolation, and integra-
tion of legacy systems through the additional service layer [4]. The last aspect is
especially attractive, since existing legacy systems can be wrapped and reused
by services instead of being replaced.

Typically, the term SOA goes hand in hand with Web services [5]. Web service
specifications such as SOAP [17], WSDL [18], UDDI [13], the WS-* family [3],

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 112–126, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Models and Tools for SOA Governance 113

and BPEL [19] are important prerequisites for business to business (B2B) and
enterprise application integration (EAI).

For this reason, the focus of much work in this area has been (and still is)
on Web services and related standards. However, standards for interoperability
are not sufficient for realizing the benefits of SOA. In addition, activities for
creating, validating, deploying and managing services need to be supported.
Therefore, approaches for SOA governance and management are emerging [4].

We present an approach for supporting the specification, reuse, creation, de-
ployment and evolution of enterprise services. The approach is based on an
extensible model for service metadata and includes tools for describing services,
creating service proposals, browsing and searching a service repository, and ana-
lyzing service dependencies. The approach is the result of analyzing the require-
ments of the IT infrastructures of cooperating financial institutions in Austria.

2 Overview

This paper is structured as follows: In Section 3 we describe the organizational
processes and system structure for which we developed our approach; this in-
cludes a description of service-related artifacts and their relationships. In Section
4 we describe the process for identifying, specifying, creating, developing and de-
ploying enterprise services; this section gives an impression of various activities
and roles and presents a typical service life cycle. Section 5 contains an overview
of our model and shows how the requirements and the processes described in the
previous sections are represented in the model. In Section 6 the developed tools
are described along with how selected activities and processes that are impor-
tant in a typical service life cycle are supported. Section 7 contains a discussion
of our approach. In Section 8 we comment on related work. Finally, the paper
concludes with a summary and a description of the main points in Section 9.

3 Organizational Processes and System Structure

The presented models and tools were developed for a particular organization in
the financial domain. The organization provides and manages the IT infrastruc-
ture of financial institutions (banks, insurance companies) and cooperates with
other IT organizations and departments in this domain. For this purpose, the
organization develops and deploys services.

As the following description shows, the system structure and requirements are
generally applicable to many commercial organizations and the example is fairly
typical for the application of a service-oriented approach.

To explain the processes involved in creating, deploying, hosting, and manag-
ing services, we need to elaborate on service development and service operation.

For a number of institutions, the organization develops and deploys appli-
cations and services which it operates in its own computing center. Those ap-
plications and services might use services operated by partner institutions, and
services operated by the organization itself might be used by applications and

114 P. Derler and R. Weinreich

services of partner institutions (B2B integration). In addition, services developed
by the organization might also be operated by partner organizations and vice
versa. This leads to rather complex application and service relationships that
need to be managed. Important questions include the following:

(q1) Which services are available?
(q2) Where is a service deployed?
(q3) Which organization is the service provider?
(q4) Who is responsible for service development and evolution?
(q5) Which other services does a service need?
(q6) Which (external) applications and services depend on a service?

The first question (q1) focuses on service (re)use and is important during ser-
vice specification and development. The questions about service dependencies
(q5 and q6) are especially important for service evolution and release manage-
ment. They help to determine how customers and partners are affected by a new
version and which clients are affected (q3 and q4): a customer who simply uses
a service might need to update his software (depending on compatibility issues);
while a partner who operates a service needs to be informed that a new version
is available (q2).

The system structure of the organization contains typical elements of an SOA.
Business logic and processes are distilled into services that typically integrate
legacy systems. In this context, a huge part of the organization’s business rules
are implemented on a mainframe and can be used via Customer Information
Control System (CICS) [6] transactions, which are encapsulated resource adap-
tors that are used via transaction codes (TRACOS). The mapping from services
to CICS transactions is an important aspect during service definition and design
and is supported by our approach.

From a development and release management perspective, it is interesting
to describe how products are structured and how services are packaged. Prod-
ucts consist of clients and services and are the units of release planning. Service
modules are the units of deployment and versioning. Services are typically imple-
mented using J2EE. Some of the services are published as Web services. Aside
from typical Web service clients using WSDL and SOAP, clients can also be
implemented in Java accessing the services via IIOP; this is typically the case
for Java web clients.

4 Service Life Cycle

This section describes part of a service life cycle, in particular activities and roles
from service identification to deployment. Three roles that participate in the life
cycle are the product manager, the service developer, and the administrator.

The product manager determines customer requirements, specifies a service
for the business logic needed and is responsible for associating the service with
a product. The developer is responsible for implementing the service and de-
cides how the service is structured on a technical level, which might include the

Models and Tools for SOA Governance 115

Fig. 1. Service identification, creation and deployment

assignment of a service to a service module. After the development, a service
enters a multistage testing and release process.

Figure 1 shows the process in more detail. First, the requirements for the new
software are collected by the product manager (1), who organizes the required
functionality into services and clients. During specification, the product manager
checks whether a service with the required functionality already exists. If an
appropriate service is found, this task is complete (3). If no appropriate service
is found, the product manager creates a service proposal and assigns it to an
existing product (2). The product manager might also propose already existing
services that could or must be used for implementing the new functionality.

The created service proposals are forwarded to the development team for
the specified product. The development team decides whether to reject, accept
or modify a proposal (4). If a proposal is accepted (5), the service enters the
development process. The process of service creation can also start with the
service developer creating a service without a service proposal (5). This is usually
the case for general services that are used in multiple products.

After development has started, the service can be assigned to a service module
(6) and details of a service are defined. Examples include contact information,
details of a particular service implementation, the service interface, an informal
description, the planned release date, dependencies on other services or libraries,

116 P. Derler and R. Weinreich

properties, and required resources (7). After the development of the service is
finished and all information about a service is stored, the service can be installed
as part of a service module (8).

A service module is first installed in a test zone by the service administrator. If
the tests are successful, the service module is rolled out to the service operators,
where it is tested with production data in the integration zone.

Finally, the service module and its services are deployed to the production
zone. Since an operator might host services for different customers, a service
module is installed and tested in an integration zone for each customer before it
moves to the production zone.

5 Model

Figures 2-5 show simplified parts of the model for service metadata. The model
consists of eight main areas. The central elements describing proposals, products,
services, service implementations, libraries and policies are depicted in Figure 2.
Elements for describing properties, resources, dependencies and installations can
be found in Figure 3 and Figure 5; Figure 4 shows an example for properties.

Fig. 2. Proposals, Products, Services, and Libraries

Proposals. Proposals can be created for services and clients (ServiceProposal,
ClientProposal) or for the usage of services or libraries (UsageProposal). A pro-
posal contains information about the proposed client, service, or library and
status information that indicates whether the proposal has been accepted, real-
ized or rejected.

Products. A product consists of clients and service modules. A service module
contains one or more services. The version of a service module defines the version

Models and Tools for SOA Governance 117

of all contained services. Different versions of a service are part of different
service modules, which indicates that the service module is the smallest unit
of deployment. If a service needs to be deployed and versioned separately, it
can be packaged into a separate service module. A service module has an owner
attribute that defines the organization responsible for service development and
maintenance. The attribute deactivationDate shows how long the service module
and its services are supported by the service producer. A service element might
have one or more associated tags, which can be used for browsing and searching
services in the repository.

Libraries. The Library element is used to model the relationship of services to
other software artifacts that are not services. Libraries are software components
that are not reusable via a network connection like services; instead, they are
typically bound to the service (or service module) that uses the library. A library
might represent an adapter to an external resource like a CICS transaction. The
LibraryKind defines the properties and resources that are required to define a
specific library. For example, a special instance of a LibraryKind describes CICS
transactions.

Service implementations. The service implementation element describes how
a particular service is implemented. In our case, a service can be implemented
as a Web service, an EJB service or a JMS service. A service can have zero or
more service implementations.

Policies. Policies define the access level and quality of service indicators for an
SOA resource. A user name defines the person, user group or company and a
role indicates the access or quality-of-service level. Policies can be defined on the
level of products, service modules, clients or services.

Properties, resources, and contacts. Services and service implementations
have various properties and resources. For example, a service property could
describe the security mechanism for accessing the service. The documentation
for a service is a typical service related resource while the EJB home interface
of an EJB Service is a resource of the service implementation.

We chose a generic mechanism to store properties and resources of model
classes. The model classes Property and Resource describe kinds of properties
and resources (see Figure 3). Concrete values for properties and resources are
stored in PropertyInstances and ResourceInstances. Properties and resources are
connected to many classes in the model. The attribute datatype for a property

Fig. 3. Properties, Resources and Contacts

118 P. Derler and R. Weinreich

Fig. 4. Property Example

and the attribute resourcetype for a resource enable the validation of resources
and properties. The attributes min occurence and max occurence define how
many instances of a property or resource are required and allowed. Property-
Values define possible values for the property. The contact element is used for
describing persons responsible for specific products, clients and services.

An example for a property is the security mechanism which is used for the
authentication of a service and the authorization of the usage of a service (see
Figure 4). Possible values for the security mechanism are the Username Token
[24] which authenticates the service consumer with a username and optionally
a password to the service provider, the Kerberos Token [25], a generated token
for authentication which is used by Windows, or custom binary security to-
kens. Those security mechanisms are stored as PropertyValues for the Property
security mechanism. To show which security mechanism a service uses, a Proper-
tyInstance with the chosen security mechanism is associated with the service. An
example for a resource is the WSDL-File which is usually part of the description
of a web service. In our example, the CustomerSearchService is implemented as
a web service and this web service (CustomerSearchWebService) is associated
with a resource instance containing a link to the actual WSDL file.

Instances (installations). Service modules and clients can be installed for dif-
ferent customers and operating zones. The operating zone can be test, integra-
tion or production. Installing a service means creating an instance in our model.
Instances are also created for other elements, like clients, service modules, and
service implementations (see Figure 5). Instance elements contain installation-
specific information like the JNDI name of an EJB service.

The status of a service is derived from the installation location of the service
module. If the service module is installed in a test zone, the service status changes
to test ; if the module is installed in the production zone, the status changes to
production; if a new version of an existing service is created, the status of the
old version is changed to deprecated.

Models and Tools for SOA Governance 119

Fig. 5. Dependencies and Instances

Dependencies. Services can be used by other services and by clients. A De-
pendency is defined between two elements where one element is used by another
one; one element provides information, the other one consumes this information
(see Figure 5). On a more detailed level, dependencies can be defined for service
implementations; on a less detailed level, dependencies can be defined for service
modules. The model imposes no restrictions on the direction of the dependen-
cies and allows incorrect dependencies such as a service using a client. Currently,
such constraints have to be checked at the application level.

6 Tools

We provide two main tools, the Service Repository Console and the Service
Browser, that are based on the model described in Section 5 and support the
life cycle activities described in Section 4. Both tools were implemented on the
basis of the Eclipse platform. This means that they can be used as standalone
applications but can also be integrated into a software development environment.

The Service Repository Console is used for creating service proposals and
service descriptions, for specifying service relationships, and for defining service
installations. The Service Repository Console is depicted in Figure 6. The tool
offers multiple views showing service proposals, services and service installations.
The main area (see (2) in Figure 6) shows detailed information about the element
selected in a view and can also be used for editing the element.

The Service Browser can be used for searching and browsing the service repos-
itory and for investigating service details, service relationships and service status.
The browser, shown in Figure 7, offers a view for browsing products and ser-
vices, a search view for searching services according to various criteria, a view
for browsing the structure of a particular product, and a view for browsing
client-to-service and service-to-service dependencies.

In the following, we illustrate the usage of the tools in the service life cycle
presented in Section 4.

120 P. Derler and R. Weinreich

Fig. 6. Service Repository Console

Fig. 7. Service Browser

The process is typically started by the product manager, who is responsible
for defining a product and for determining product requirements, product de-
velopment and other product related tasks through the complete product life
cycle. The product manager can define products, clients and services using the

Models and Tools for SOA Governance 121

repository console, specify new services and new clients, and propose their real-
ization by creating service and client proposals (see (1) in Figure 6). The product
manager can also define dependencies on existing services and thus propose the
services that should or might be used by the new service. The icons of the
displayed service proposals show whether the proposal is a client or a service
proposal and whether it has been processed, accepted or rejected. The product
manager can create a proposal from an existing, similar service or client. This
activity is supported by the repository console. To find appropriate services, the
product manager can use the service browser depicted in Figure 7. He can also
use the service browser to study the existing services and their dependencies in
more detail.

The proposals and their states can be viewed by the development team. If
the team decides to implement a service, they must create a new service entity
in the repository. Services can be created from a proposal or directly without
a proposal. Services without proposals are typically created if the product has
been restructured or if internal services are needed. If a service is created on
the basis of a service proposal, the state of the proposal is automatically set to
accepted. The proposal already contains suggested elements and dependencies
on the new service. This information is automatically transferred to the service
metadata and can be modified and extended by the service developer. At this
stage, the service is already part of the repository and assumes the state de-
velopment. Using this feature, other product managers and developers can keep
track of planned services and release dates. The developer can also define service
modules as the units of versioning and deployment and assign services to service
modules, as shown in (2) in Figure 6. During development, the metadata of a
service is continually extended. In particular, the actual dependencies, proper-
ties and resources of the chosen service implementation are provided. If a service
is completely described, it can be released for installation in the test zone.

The Service Repository Console is also used for managing information about
service installations (see (3) in Figure 6). The installations are organized by
products and show the installed service modules along with version, location
(operator), and installation zone. Installations can also be queried using the
Service Browser. Together with the information about service dependencies, this
information can be used to check which clients and services are affected when
updating a service or when releasing a new version of a service.

7 Discussion and Further Work

We decided to create a very generic model. Properties and resources are stored as
instances of the Property and Resource model elements; this facilitates adding
and removing properties and resources without changing the model; only the
data must be changed. Dependencies have also been modeled in a generic way.
Dependencies can exist pairwise between services, clients, service modules and
service implementations. The advantage of this approach is flexibility. The draw-
back is that certain constraints are not enforced by the model; for example,

122 P. Derler and R. Weinreich

incorrect dependencies, such as a service using a client, must be prevented by
the tools. Other approaches would be to specify such constraints using the Ob-
ject Constraint Language (OCL) [20] in the model or to split the model into a
metamodel and a model. Classes like Property and Resource could be elements
of the metamodel and the concrete instances of a property such as the security
mechanism could be elements of the model (i.e., the metamodel instance). This
would lead to a richer but also heavier and more complex model with the advan-
tage that more semantic information would be expressed in the model and the
disadvantage that the model must be changed when data changes or new prop-
erties are needed. In our approach, all special model elements and constraints
were implemented by the tools on the basis of the generic model.

Currently, the tools provide support for various activities in a service life cycle.
For example: Services can be specified with service proposals; service proposals
can be accepted or rejected; services can be added to products; dependencies on
other services can be described and analyzed; services can be installed only if they
are completely described. This means that the tools provide passive support for
service governance activities by providing and validating useful information and
by offering context-dependent functionality for the various roles and activities.
The tools currently provide no active support for modeling a specific process or
notifying specific users in case of process- or state-specific events. The latter could
be realized through a notification mechanism (publish/subscribe) that informs
users in case of changes. Additional useful and partly necessary enhancements
include role-based authentication and authorization.

Since the tools are implemented as plug-ins, they can be integrated in an
Eclipse-based workplace or development environment. Additional integration
with development tools would be desirable. For instance, deployment information
could be generated out of service metadata and parts of the service metadata
(e.g., the class name of a service implementation) could be derived automatically
from the development environment.

In Section 3, we posed 6 important questions that need to be answered for a
successful SOA implementation. In the following, we outline how these questions
are answered by our approach. Available services (q1) are described in the service
element of the model and the Service Repository Console and the Service Browser
offer lists with filter and grouping options to browse those services. The Instance
concept of the model describes deployed services (q2) and attributes of those
service instances hold information about the location of a service. The Service
Repository Console provides a view containing a list of deployed services for
each product. The person responsible for service development and evolution
(q4) is described in the owner attribute of the service module element in the
model. This information can be viewed and edited in the Service Repository
Console. Dependencies between internal and external services and applications
(q5 and q6) are modeled by the Dependency concept of the model. The Service
Repository Console offers a list of services, dependent services and clients and
required services. The Service Browser provides a graphical representation of the
dependencies. The role of a service in a relationship (q3) is modeled in the role

Models and Tools for SOA Governance 123

attribute in the Dependency concept. When creating a dependency between two
elements in the Service Repository Console, this role attribute must be defined.

8 Related Work

Web Service Distributed Management (WSDM) [11] by OASIS comprises two
sets of specifications: management using Web services (MUWS) and manage-
ment of Web services (MOWS). The first specification addresses the use of Web
services as the foundation of a distributed management framework [21]. The use
of Web services for creating a governance or management infrastructure is not
the focus of our approach. The second WSDM specification, MOWS, concen-
trates on managing Web services themselves, which usually means controlling
and monitoring Web services as resources. This also differs from our approach,
since we focus on controlling and governing the process of establishing a service-
oriented architecture, which includes the process of developing a service, but not
controlling the service itself. In fact, a service management approach is com-
plimentary to governing service life cycle activities and might provide valuable
information for governance activities. Both approaches are needed to successfully
install an SOA governance framework.

The Common Information Model (CIM) [12] by the Distributed Management
Task Force (DMTF) describes managed elements across an enterprise, includ-
ing systems, networks and applications [21]. CIM contains a metamodel and
generically managed object classes. The purpose of CIM is to integrate different
management approaches and to allow the exchange of management information
between systems throughout the network. DMTF does not intend to support the
reuse of services and the governance of service life cycle activities.

The MNM Service Model [9][10] is a reference model for service management.
The model is intended to describe a typical service life cycle. The life cycle phases
described include design, negotiation, provisioning, usage and deinstallation. The
model includes typical roles participating in the service life cycle, such as user,
customer and client. It also identifies typical interactions and life cycle activities,
such as contract management, problem management, security management, us-
age, customer care and change management. The interactions and activities are
not described in detail, however; their refinement is stated as an open research
issue. The MNM Service Model is intended to provide a conceptual model for
describing the relationship of artifacts, roles and activities in the service life cy-
cle. It can be used to analyze service-oriented solutions and architectures and
as a conceptual model for implementing governance and management processes.
It is not intended for storing actual service-related information or as a basis for
governance and management tools.

UDDI [13] is a specification for (Web) service registries. It provides a stan-
dardized API for publishing and discovering services and defines registry entries.
UDDI supports especially Web services through tModel registry entries. UDDI
can be used to implement private and public registries. A public registry is a
global directory for business services and is intended to support global service

124 P. Derler and R. Weinreich

reuse. A private registry supports service reuse within one organization and the
establishment of business-to-business transactions with selected partners. The
main goal of UDDI is service advertisement and discovery. Its primary aim is
not governance of service life cycle aspects such as service definition, implemen-
tation and evolution, though it could be used to store certain information for
such activities. Contrary to service repositories described below, a UDDI reg-
istry stores only information that is needed for service (re)use, not for service
development and maintenance.

Manolescu and Lublinsky [14] describe service repositories as a solution for the
problem of finding service information and for supporting design, implementa-
tion, testing and reuse of services. They identify roles using the repository, such
as service developer, service designer, architects and infrastructure specialists.
The repository is intended to support the inception, design, implementation,
deployment, enhancements, versions and discovery of services with the goal of
reuse. Dependency management, versioning and change notification are men-
tioned as functionalities that should be supported by a service repository. This
is an indication that service repositories are seen as a central element for SOA
governance and reuse.

A number of commercial registries/repositories exist. Most of them are based
on UDDI, some on ebXML. Examples include Systinet 2 [7], Centrasite [8] by
Software AG, X-Registry by Infravio [16] and the SUN Service Registry by
SUN Microsystems [23]. The functionality typically provided by such commercial
approaches includes service discovery, dependency management, change notifi-
cation, authentication and identity management, policy management, and fed-
eration with other repositories. In some areas the functionality clearly exceeds
the functionality provided by our approach, including features such as security
(authentication) and change notification. Some features are similar, like support
for service description, service discovery and dependency management. Some
registries like the Sun Service Registry support phased deployment to differ-
ent zones, which is also supported by our approach. Some products support
additional features such as impact analysis and support for tracking and analyz-
ing processes. Competing standards for repository interoperability are emerg-
ing. Examples include the Governance Interoperability Framework (GIF) [2]
and SOALink [22]. Noteworthy features of our approach are support for product
management, versioning and evolution, IDE and workplace integration, a rich
user interface, different kinds of services, and implicit state tracking of services.
The last feature implicitly derives the life cycle status of a service (development,
test, active, deprecated, etc.) from the metadata provided. The status of a ser-
vice cannot be changed if not the all elements of required information have been
provided to advance the service to the next state in the life cycle.

9 Conclusion

We have presented an approach for supporting service reuse and service life cycle
activities. The approach is based on a generic model for describing SOA artifacts

Models and Tools for SOA Governance 125

in the various stages of the service life cycle. The model contains elements for
describing client and service proposals initiated by the product manager. These
proposals are eventually transformed to client and service descriptions and in-
stances. The model also contains elements for products and service modules,
which are used for representing the units of product management and the units
of versioning and deployment, respectively. Two tools are presented that use a
service repository that is based on the model presented. The Service Repository
Console is used for creating service proposals and service descriptions, for spec-
ifying service relationships, and for defining service installations. The Service
Browser is used for searching and browsing the service repository and for inves-
tigating service details, service relationships and service status. The tools can be
used for service reuse and for coordinating and governing the activities of prod-
uct managers, developers and administrators. Together the repository and the
tools represent an important step towards SOA governance and management.

Acknowledgments. The presented approach was developed as part of a joint
project of the Software Competence Center Hagenberg (SCCH) and the GRZ-IT
Center Linz. Both authors were members of the SCCH project team. We wish to
thank Hermann Lischka, Thomas Kriechbaum and Johannes Mayr from the GRZ
IT Center Linz and Thomas Ziebermayr from the SCCH for their cooperation
and support.

References

1. Borges, B., Holley, K., Arsanjani, A.: Service-Oriented Architecture. WebServices
Journal 4(9) (2004)

2. Systinet: Governance Interoperability Framework (2006), Retrieved June 29, 2006,
from http://www.systinet.com/products/gif/overview

3. Motahari Nezhad, H.R., Benatallah, B., Casati, F., Toumani, F.: Web service in-
teroperability specifications. IEEE Computer 39(5), 24–32 (2006)

4. McGovern, J., Ambler, S.W., Stevens, M., Linn, J., Sharan, V., Jo, E.K.: A Practi-
cal Guide to Enterprise Architecture. Prentice Hall PTR, Englewood Cliffs (2003)

5. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice-Hall, Englewood Cliffs (2005)

6. IBM: Customer Information Control System (2006), Retrieved June 26, 2006, from
http://www-306.ibm.com/software/htp/cics/

7. Systinet: Systinet 2 Overview. (2006), Retrieved June 26, 2006, from
http://www.systinet.com/products/systinet 2

8. Software AG: Software AG brings governance to SOA (2006), Retrieved June 26,
2006, from
http://www.softwareag.com/Corporate/Solutions/soa governance/
default.asp

9. Garschhammer, M., Hauck, R., Kempter, B., Radisic, I., Roelle, H., Schmidt, H.,
Hegering, H.-G., Langer, M., Nerb, M.: Towards Generic Mananagement Concepts:
a Service Model Based Approach. In: 7th IEEE/IFIP Symposium on Integrated
Network Management, Seattel, Washington, USA (2001)

http://www.systinet.com/products/gif/overview
http://www-306.ibm.com/software/htp/cics/
http://www.systinet.com/products/systinet_2
http://www.softwareag.com/Corporate/Solutions/soa_governance/default.asp
http://www.softwareag.com/Corporate/Solutions/soa_governance/default.asp

126 P. Derler and R. Weinreich

10. Garschhammer, M., Hauck, R., Kempter, B., Radisic, I., Roelle, H., Schmidt, H.:
The MNM Service Model - Refined Views on Generic Service Management. Journal
of Communications and Networks 3(4) (2001)

11. OASIS: OASIS Web Service Distributed Management (WSDM) (2006), Retrieved
June 26, 2006, from http://www.oasis-open.org/

12. DTMF: Common Information Model (CIM) Standards (2006), Retrieved June 26,
2006, from http://www.dmtf.org/standards/cim/

13. OASIS: OASIS Universal Description, Discovery and Integration (2006), Retrieved
June 26, 2006, from http://www.uddi.org/

14. Manolescu, D., Lublinsky, B.: SOA Enterprise Patterns - Services, Orchestration
and Beyond (DRAFT). To by published by Morgan-Kaufman Publishers in 2007
(2006), Retrieved 29, 2006, from http://orchestrationpatterns.com/

15. Brauer, B., Kline, S.: SOA Governance: A Key Ingredient of the Adaptive Enter-
prise. HP & Systinet White Paper (2005), Retrieved June 20, 2006, from
http://www.systinet.com/resources/white papers/

16. Infravio: X-Registry Platform Overview (2006), Retrieved June 26, 2006, from
http://www.infravio.com/products/

17. W3C: SOAP Version 1.2 Part 1: Messaging Framework. W3C Recommendation 24
June 2003 (2006), Retrieved June 28, 2006, from
http://www.w3.org/TR/soap12-part1/

18. W3C: Web Services Description Language (WSDL) 1.1. W3C Note 15 March
2001(2006), Retrieved June 28, 2006, from http://www.w3.org/TR/wsdl/

19. OASIS: Web Services Business Process Execution Language, Version 2.0. Commit-
tee Draft, 17th May, 2006 (2006), Retrieved June 28, 2006 from
http://www.oasis-open.org/

20. OMG: Object Constraint Language (2006), Retrieved June 28, 2006, from
www.omg.org/docs/ptc/05-06-06.pdf

21. Papazoglou, M.P., van den Heuvel, W.-J.: Web Services Management: A Survey.
IEEE Internet Computing (2005), (November/December 2005)

22. Soa Link Organization: SoaLink (2006) Retrieved June 29, 2006, from
http://www.soalink.com/

23. Sun Microsystems: Effective SOA Deployment using an SOA Registry Repository,
A Practical Guide (2005), Retrieved June 29, 2006, from
http://www.sun.com/products/soa/registry/

24. OASIS: Web Services Security Username Token Profile 1.1. OASIS Standard
Specification, 1st February, 2006 (2006), Retrieved October 28, 2006, from
http://www.oasis-open.org/committees/download.php/16782/
wss-v1.1-spec-os-UsernameTokenProfile.pdf

25. OASIS: Web Services Security Kerberos Token Profile 1.1. OASIS Standard
Specification, 1st February, 2006 (2006), Retrieved October 28, 2006, from
http://www.oasis-open.org/committees/download.php/16788/
wss-v1.1-spec-os-KerberosTokenProfile.pdf

http://www.oasis-open.org/
http://www.dmtf.org/standards/cim/
http://www.uddi.org/
http://orchestrationpatterns.com/
http://www.systinet.com/resources/white_papers/
http://www.infravio.com/products/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl/
http://www.oasis-open.org/
www.omg.org/docs/ptc/05-06-06.pdf
http://www.soalink.com/
http://www.sun.com/products/soa/registry/
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf

Generating Systems from

Multiple Levels of Abstraction

Martin Girschick, Thomas Kühne, and Felix Klar

Technische Universität Darmstadt, Germany
{girschick,kuehne}@informatik.tu-darmstadt.de

felix@klarentwickelt.de

Abstract. We describe our prototype implementation for Architecture
Stratification supporting system descriptions at multiple levels of ab-
straction for developing complex software systems. Our tool transforms
both model and code fragments in parallel using refinement transforma-
tions which are specified with a combination of “Story-Driven-Modeling”
and Java code. Multi-level editing is enabled by allowing additive modi-
fications at lower abstraction levels that are retained on re-generation.

We present a case study illustrating the application of a number of de-
sign patterns and show how our approach can be used to tie in a generic
framework by automatically generating the corresponding glue code.

1 Introduction

Large and complex systems cannot be adequately captured with a single de-
scription only. If the level of abstraction is high—so that an overall architecture
can be recognized—too little can be said about important details of the system.
If the level of abstraction is low—so that these details can be examined—it is
difficult to see high-level structures among the low-level details.

Architecture Stratification [1], therefore, uses multiple system descriptions at
the same time, each fully specifying the system at a given level of abstraction.
Thus, single levels do not only present an optimal mix of overview and detail for
various stakeholders, but also separate and organize a system’s extension points,
patterns, and cross-cutting concerns.

In this paper we briefly introduce the stratification approach and our current
implementation, a plugin for the Fujaba CASE tool (section 2). We then demon-
strate the utility of our current implementation by means of a small case study
(section 3). Subsequently, we discuss issues of enabling multi-level editing in a
stratified architecture (section 4) and, finally, address related and future work
(sections 5 & 6) before concluding in section 7.

2 Architecture Stratification

Most model-driven approaches and supporting tools interpret the transformation
from a source model to executable code as a monolithic step. Only a few tools ac-
tually support this transformation as a series of model-to-model transformations
(see section 5).

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 127–141, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

128 M. Girschick, T. Kühne, and F. Klar

In [2] Atkinson and Kühne introduce the concept of Architecture Stratification
in which a system is described on several levels of abstractions. Each level (called
a stratum) introduces additional concepts to a software system until the most
concrete stratum describes the final system. Note that each stratum describes
the entire system, with respect to the level of abstraction it addresses. Concep-
tually, editing of all strata is possible at all times and changes in one stratum are
propagated both upwards and downwards along corresponding refinement rela-
tions within the stratified architecture. Our current research, however, focuses
on the downward propagation using model transformations.

While we are currently describing systems with UML class diagrams plus
associated code, this does not exclude other forms of behavior specification or
the use of domain-specific languages. One can easily imagine a gradual trans-
formation of a system description in a domain-specific language at the top-level
stratum into a specification expressed in a standard language (such as the UML)
for which standard code generation techniques exist.

2.1 Refinement Annotations

We guide, and in fact trigger, model transformations by annotating models with
so called “refinement annotations” which are linked to corresponding “refinement
transformations”. As these transformations typically need to consider multiple
model elements at a time and sometimes even need information that is not
present in the model, the corresponding annotations feature “links” to other
model elements (e.g., enumerating the observers for a given subject in the context
of the Observer pattern [3]), and can be further parameterized using basic types
(e.g., a string specifying the name of a class that will be generated).

We chose a notation for refinement annotations similar to UML collaborations
used within UML class diagrams. Both notations share the need to specify which
elements form a structure and what role the referenced elements play. In our case,
we need to designate which element(s) should be involved in a single refinement
transformation, which element(s) are to be used as a parameter to the transfor-
mation, and what their corresponding role is. Compared to stereotypes which
are commonly used to guide transformations, our refinement annotations enable
much more explicit control and use a visual approach to specifying transforma-
tion parameters. Obviously, our notation is less space efficient than stereotypes,
but we support a “collapsed” presentation mode that is visually as non-intrusive
as stereotypes.

Our prototype tool supporting Architecture Stratification has been imple-
mented as a plugin—called SPin (Stratification PlugIN)— for the CASE tool
Fujaba [4]. It supports the introduction and parameterization of annotations us-
ing an annotation editor. Once a model is completely annotated, the user may
use the context menu of an annotation to initiate the corresponding transforma-
tion process. Further automation steps, such as a persistent selection of a set of
annotations to be unfolded for a particular stratum and the recursive unfolding
of strata until the most detailed level has been reached, are not yet implemented
but will be supported in future versions of SPin.

Generating Systems from Multiple Levels of Abstraction 129

2.2 Refinement Transformations

Refinement transformations, triggered by an unfolding of an annotation, are
completely user defined. SPin only provides the machinery for transformation
rule authors to create transformation rules and stratum designers to make use
of the transformations. The transformation rules themselves are part of a trans-
formation rule library, which can be extended dynamically while the Fujaba
environment is being used.

Transformations may be specified using a visual Story Driven Modeling (SDM)
[4] approach based on graph transformations and/or Java code, which in combi-
nation results in a maximum of flexibility but also limits the automatic support—
e.g., regarding tracebility—the system may currently provide (see also section 6).

In order to facilitate the creation of new transformation rules, SPin pro-
vides wizard-like functionality, automatically creating necessary elements for
the transformation specification: After entering the transformation name and
further data, SPin generates the body of an SDM diagram, which is responsible
for checking the applicability of the transformation rule. This check is speci-
fied using Fujaba’s SDM graphical notation for pattern matching, which is more
self-explanatory and easier to maintain than Java code.

In addition to the graphical notation, however, SDM diagrams can also contain
source code fragments (see the next section for an example). Of course, the
transformation rule author is not only able to fill in the main transformation
part, but also free to completely change and amend the generated transformation
specification template. Once the transformation rule has been completed, it can
be exported to the transformation rule library.

3 Case Study

In the following we demonstrate Architecture Stratification and our correspond-
ing prototype tool by applying three well-known design patterns [3] and by
generating “glue” code, tying a general visualization framework into a main
application in order to add automatic visualization support.

3.1 System Description

Our case study concerns the simulation of the quality control aspects of an
assembly line. The most abstract stratum is shown in Figure 1 and represents a
high-level view on the system’s structure. The system has a main quality control
unit (QualityControl) that must be accessible as a singleton instance, hence
the corresponding annotation. It controls an assembly line that consists of a
variable number of control stations (ControlStation). The method process
checks a given item passed to it by the single instance of class QualityControl.
Items are represented by the abstract class Item and the concrete classes Nut
and Screw. Adding a new item at the beginning of the assembly line shifts the
existing items to the next control station (QualityControl.processOne).

Each control station is attached to a tester which checks the current item. For
each tested item, a test report (ItemTest) is created. Testers come in two kinds:

130 M. Girschick, T. Kühne, and F. Klar

manual testers (here, Human) that are able to perform very complex tests, and
automatic testers, e.g., industry-robots that are specialized for testing a single
property of an item (here, Scale and Extensometer). The purpose of class
ItemFactory is to create objects of type Screw and Nut in a random fashion,
in order to test the quality control features. All mentioned methods already
contain Java code which represents the application specific functionality for this
(comparatively high) level of abstraction.

elementObserver

0..*

has

notifyLocation

Scale

element

Observer

0..1

processes
0..1

0..1

Float : length
Float : diameter

Screw

Float: weight
String : color

String : ID

Item

ManualTester AutomaticTester

0..*

Void :)Item:item(processOne
Void:)ControlStation:cs (addControlStation

collapsed

QualityControl

1

Boolean:)Item:item (process
)Tester:t(ControlStation

String: ID

ControlStation

Item :)(createRandomItem

Float :)Float:reference (getRandomFloat
Integer:)Integer:max(getRandomInt

Screw :)(createRandomScrew
Nut :) (createRandomNut

Integer : serialNumberCounter
{"gray","yellow","green","red"} = StringArray: COLORS

ItemFactory

Extensometer

CollectionView

collection

 {ordered}has

worksAt

Visitor

kickOffVisitor

abstractVisitor

concreteVisitor

concreteVisitor

concreteVisitorHuman

Float : innerDiameter

Nut

collapsed

collapsed

ItemTest

Singleton

Void:)Item:item (testItem
Boolean:)Float:ref, Float:actual (isWithinTolerance

String: ID

Tester

concreteObserver

Singleton

Fig. 1. Case Study: Most Abstract Stratum

3.2 Annotations

Both QualityControl and ItemFactory are annotated with a Singleton refine-
ment annotation to make sure that only one instance of these classes exists
respectively.

The Visitor annotation defines which product hierarchy (see the link element
to Item) is inspected by which measurement facilities (the leafs of the Tester
hierarchy, see the link abstractVisitor). The three concreteVisitor links designate
the methods that need to receive an implementation in a stratum lower down
the hierarchy. Finally, link kickOffVisitor defines the method that shall invoke
the visitor.

The Observer annotation defines Tester to be an observer of ControlStation.
Link notifyLocation defines the method which triggers update notifications to
attached observers, whereas state refers to the state to be observed.

Annotation CollectionView is special in the sense that it refers to another an-
notation (see section 3.4) and in the sense that it does not represent a standard

Generating Systems from Multiple Levels of Abstraction 131

pattern application but is responsible for attaching a generic visualization frame-
work to the system. This way, we obtain a rather fancy visualization of our
sample system (almost) for free.

3.3 Generic Visualization Framework

Attaching a framework, which supports some subsystem functionality, to an ap-
plication usually involves creating “glue code” which somehow connects the ap-
plication to the framework. We have created a simple visualization framework in
order to demonstrate how to use Architecture Stratification for integrating such
supporting frameworks. Our sample framework is specialized to visualize collec-
tions of objects. The observer pattern is used to observe changes on this collec-
tion. When a new object is added to the collection, its visual representation is also
added to the visualization and a new observer instance is created in order to watch
for changes within the added object so that they can be visualized accordingly.

There is no need to specify which attributes exist within the visualized object.
Our framework uses (Java-) introspection1 to determine all attributes and their
associated values and renders them in a table format. In addition, the class
name is used to load a representing icon, if available, which is shown within the
visualization. If an attribute named “color” is found, the icon also reflects the
current “color” of the object.

By using introspection we offer a simple, generic solution to visualize object
attributes. Note, however, that this technique has two disadvantages: First, in-
trospection is not very efficient and may slow down an application considerably.
Second, more complex data structures, e.g., with nested objects, cannot be ren-
dered adequately by just using generic strategies.

Yet, these shortcomings are a phenomenon of the particular approach used
for the visualization framework. All it takes to address them is an alternative
approach to tying in a less autonomous version of the framework into the ap-
plication. Instead of using a set of refinement annotations (CollectionView being
one of them), which straightforwardly map the application to the framework
which then uses introspection, it is of course possible to generate specialized
code that specifically renders some object properties and others not. We are
currently working on parameterized refinement transformations to better con-
trol the visualized information and make it more efficient at the same time.

3.4 Refining the System

There are several alternatives to start refining the most abstract stratum of
Figure 1, but let us begin by unfolding annotation CollectionView. The associ-
ated refinement transformation first creates a new Observer annotation. In the
final system it is responsible for updating the visualization when new objects
are added to the collection. Based on its collection link the “Collection View”
annotation unfolds to a new Observer annotation with three links:
1 Incorrectly, referred to as “reflection” by the corresponding Java API.

132 M. Girschick, T. Kühne, and F. Klar

– notifyLocation, referencing the addControlStation method within class
QualityControl.

– state, referencing a freshly created association between QualityControl and
ControlStation, named lastItemOfControlStations.

– concreteObserver, referencing the CollectionVisualizer class, which is part
of the already existing visualization framework and is therefore included
using a “reference” stereotype.

Subsequently, the “Collection View” transformation checks for an elementOb-
server link, referring to an Observer annotation. If this exists (as in our example),
the transformation adds a second concreteObserver link to it, linking it to the
class ElementVisualizer, which is also part of the visualization framework. If
no link named elementObserver is found, the transformation will search for links
state and notifyLocation which are used to parameterize a new Observer annota-
tion. The link concreteObserver will again refer to the class ElementVisualizer.

Finally, class QualityControlVisualizerStartup is created so that it may
set up the visualization framework and attach it to the quality control system.

Fig. 2. Excerpt of Visitor Refinement Transformation

In addition to the two visible annotation links, shown in Figure 1, annotation
CollectionView contains three string parameters, which may only be inspected
with the annotation editor. They define the labels of three buttons, which are
shown below the visualization. The refinement transformation generates the re-
spective code fragments, which create the buttons and add them to the visualiza-
tion window. A stratum designer will eventually also have to provide appropriate
behaviour for each button into the generated code. Following our philosophy to
enable editing on all strata, this additional code is maintained so that it is re-
tained on re-generation, i.e., re-application of the CollectionView transformation
rule. We will elaborate on this functionality in section 4.

Generating Systems from Multiple Levels of Abstraction 133

What remains to be done, in order to completely refine the system description
to its most detailed level, is to unfold both Singleton and the Visitor annotation.
The latter is associated with a refinement transformation that nicely illustrates
how transformations involving iteration over model elements can still rather
concisely be captured using Fujaba’s Story driven modelling (see Figure 2). The
transformation’s first activity matches the annotation links element and kickOf-
fVisitor, then the necessary model elements are created (omitted for brevity from
Figure 2). The next two activities create the visit... methods: The bottom
left-hand side activity iterates over all concreteVisitor links, executing for each
the bottom right hand side activity (of which we will see a detailed version in
section 4). After all visit... methods have been created, the annotation is
removed from the diagram, resulting in the final system structure as shown in
Figure 3.

0..1

0..1

0..1

0..*

has

0..1 0..1

0..*

1

0..*

holds

Void :)Item:item (processOne

ControlStation :) (getLastItemOfControlStations
QualityControl :) (get

Void :)ControlStation:cs (addControlStation

Void :) (notifyObservers
Object :) (getState

) (QualityControl

collapsed

QualityControl

lastItemOfControlStations

Boolean :)Item:item (process
Void :) (notifyObservers

Object :) (getState
)Tester:t (ControlStation

String : ID

ControlStation
processes

{ordered}has
Void :)ItemVisitor:visitor (accept

Float : weight
String : color

String : ID

Item

Void :)Subject:controlStation (update
Void :)Item:item (testItem

Boolean :)Float:ref,Float:actual (isWithinTolerance

Item : itemObservedFromControlStation
String : ID

Tester

worksAt

AutomaticTester

collapsed

Scale

collapsed

Extensometer

Void :)ItemVisitor:visitor (accept

Float : length
Float : diameter

Screw

Void :)ItemVisitor:visitor (accept

Float : innerDiameter

Nut

collapsed

collapsed

ItemTestVoid :)Item:item (visitItem

Void :)Screw:screw (visitScrew
Void :)Nut:nut (visitNut

ItemVisitor

«interface»

Void :)Subject:controlStation (update

Observer

«interface»

«reference»

collapsed

collapsed

CollectionVisualizer

«reference»

ObjectVisualizer

«reference»

collapsed

null = ItemFactory : singleton
Integer : serialNumberCounter
{"gray","yellow","green","red"} = StringArray : COLORS

ItemFactory

Void :)StringArray:argv (main
) (QualityControlVisualizerStartup

QualityControlVisualizerStartup

Void :)Screw:screw (visitScrew
Void :)Nut:nut (visitNut

Void :)Item:item (visitItem

Human

ManualTester

Boolean :)Observer:observer (detach
Boolean :)Observer:observer (attach

Void :) (notifyObservers
Object :) (getState

Subject

«reference»

Fig. 3. Case Study: Most Detailed Stratum

3.5 Generating the System

Once the most detailed stratum has been obtained by unfolding refinement an-
notations, Fujaba’s codegenerator may be used to generate the executable code.
This involves converting all model-related constructs (classes, associations, etc.)
into plain Java code and combining it with the code that has been accumulated
by all strata refinements.

Note that the most abstract stratum already contains code that defines the
behavior for a simple system at this (high) level of abstraction. The methods
process and processOne belong in this category, as they contain the application

134 M. Girschick, T. Kühne, and F. Klar

specific code which cannot be generated automatically. In lower strata this code
is enhanced to support functionality, such as observer notification.

It is important to point out that our approach allows generating code without
compromising the need to add hand-written code. In addition to modifying ex-
isting code, refinement transformations create code blocks which are later filled
with custom code by the developer. Examples for such code blocks are the be-
havior for the visualization buttons and the implementation of the visit...
methods of the Visitor pattern. The absence of such code blocks—which allow
stratum designers to fill in behavior that cannot possibly be generated—will be
the rule rather than the exception. Only transformations as simple as those im-
plementing the Singleton pattern, will be executable without further assistance
by stratum designers. How to support the persistence of stratum designer sup-
plied code blocks, i.e., how to make them survive future regeneration steps, is
the subject of the following section.

4 Multi-level Editing

...

Fig. 4. Transformation with Hook Spots

According to Architecture Stra-
tification, the most abstract
stratum already contains a sim-
plified system description in-
cluding its behavior. Figure 4
shows these user-supplied code
and model fragments using the
color green.

As the system is refined in
lower level strata, however, ad-
ditional classes and code have
to be provided. Some of this
code can be generated by the
refinement transformations di-
rectly (e.g., the “Singleton” im-
plementation). Figure 4 shows
such parts in dark blue. Note
that generated elements (dark
blue) or user-supplied elements
(green) at one stratum will be
treated as predefined/old elements (bright orange) at the stratum below.

A simple example for the user-supplied (green) category are the visit...
methods (see classes Human and Scale in Figure 3). These are relatively easy to
deal with, since they are uni-colored green, i.e., their method bodies contain new
code only. In general, methods may contain a mixture of old (orange), generated
(blue), and new code (green). Consider the lower circle in Figure 4 which starts
with a generated fragment (cogwheel symbol) followed by a green user supplied
fragment (open padlock symbol) ending with an orange colored fragment (closed
padlock symbol) which has been transferred from a stratum above.

Generating Systems from Multiple Levels of Abstraction 135

4.1 Preserving New Parts

Even with a straightforward case, such as the Visitor methods, one still needs
to take measures to prevent the new methods from being overridden upon re-
generation steps. If a new unfolding of the Visitor annotation (e.g., since the
original system or the refinement transformation rule was changed) creates new
visit... stubs, we do not want to loose the existing method bodies. Three main
strategies exist for dealing with this problem:

Free Editing. Any change in a stratum is possible and supported by making
all such edits persistent. If a re-generation occurs, its resulting elements must
change only those (orange & blue) parts in a stratum, which are controlled by
the stratum above.

This approach has a certain appeal as it allows full control at each stratum
without loosing edits upon re-generation. This, of course, only works if one does
not allow editing of orange parts, or finds a strategy to communicate any oper-
ations on orange parts to the stratum above.

Despite the fact that this strategy would have been very difficult to imple-
ment with the current Fujaba version (which does not support multiple projects
(strata) at a time and is not yet well-equipped to support consistency updates
between strata), there is another good reason against such an “anarchistic” ap-
proach to stratum modification: If any of the refinement transformation rules
have to be changed, e.g., since a supporting technology—such as a certain mid-
dleware solution—changes, the “free edits” in all strata below this point are
potentially subject to change. Even with a good traceability mechanism in place
(which would be able to locate all such parts) and an interactive scheme (allowing
one to adapt the “free edits” to the new situation) one still faces a maintenance
challenge. As there is no way to restrict the edits, these may aggravate the main-
tenance challenge by exhibiting more dependencies on provided elements in their
stratum than strictly necessary.

No Editing. A solution to the problem outlined above is to disallow any edit-
ing in a stratum (except the top stratum) and to provide any extra parts in
parameters of refinement annotations. This ensures full top-down re-generation
without any danger of loosing extra (green) parts. However, this implies that,
e.g., the visit... methods need to be written as code snippets supplied to the
Visitor annotation. This is not only artificial, as the code cannot be written in
its natural context, but also gets more difficult when dealing with a mixture of
existing, generated, and extra code.

Constrained Editing Based on the above observations we chose a compro-
mise and restrict editing to a few, well-known parts in a stratum. These parts
are identified by the refinement transformations and, possibly, by the stratum
above. Consider Figure 5, which shows how we exploit Fujaba’s SDM feature
that enables users to provide code (or alternative ways of describing behavior)
within blocks of activity diagrams. The upper part of Figure 5 shows a method

136 M. Girschick, T. Kühne, and F. Klar

body that has been split into two blocks on purpose (see the next paragraph be-
low). The lower part shows the result after a refinement transformation, which
inserted a number of new code bits (blocks generated.1 & generated.2) and sup-
plied the block generated.2 with two user definable pre- and post code blocks.
This way, a designer may insert any appropriate code at this stratum and can be
sure that these additions will not be lost upon re-generation. Any extra (green)
blocks are saved in addition to the standard Fujaba model and are retrieved once
a re-generation occurs.

new.1

original.1

original.2

refinement

generated.2.pre

generated.1

generated.2

generated.2.post

original.1

original.2

Fig. 5. Code Block Cate-
gories

The green new.1 block has been inserted by the
refinement step not because the refinement transfor-
mation rule author has foreseen the need to provide
extra code (as with the pre- & post -blocks), but since
the original method at the stratum above contained
a block transition between original.1 and original.2.
This way, a stratum designer can induce the creation
of free-editing blocks and, hence, add to the ones al-
ready created by the refinement transformation.

Since the green parts designate areas of variability
(just like “hot spots in frameworks” [5]) and fill in
parts as predetermined by the stratum above (just
like “hook methods” in the design pattern “Template
Method” [3]) we call them hook spots. Note that while
our implementation currently supports such green
parts for code fragments only, they are, in general,
also applicable for any other modeling element types,
e.g., classes and associations.

4.2 Completing the Case Study

We can now describe how to use hook spots to com-
plete the case study from section 3. Of particular in-
terest is the update method of Tester (see Figure 3),
since it contains a mixture of generated and custom
extra code. This method needs to react to notification
messages from subject ControlStation, i.e., test an
item whenever it has arrived at a control station. Fig-
ure 6 shows the generated update method, featuring
a first (blue) part which a) makes sure that the sub-
ject can be accessed, b) that indeed a change in the
control station occurred, and c) sets up two variables
for further use. The second (green) part then has to
be implemented by a stratum designer and will be retained upon re-generation.

The visitor refinement transformation supports hook spots for the method
referenced by kickOffVisitor and for all visit... methods of concrete visitor

Generating Systems from Multiple Levels of Abstraction 137

classes. The transformation code is called for each concreteVisitor link, adding
the necessary visit... methods (including the respective hook spots) to the
linked classes.

Tester::update (controlStation: ControlStation): Void

// add your code here
// TODO: do something with the updated value

// GENERATED CODE, DON'T EDIT!

Item oldValue = currentItemObservedFromControlStation
currentItemObservedFromControlStation = newValue;

return;
if (newValue == currentItemObservedFromControlStation)
Item newValue = controlStation.getCurrentItem();

return;
if (controlStation == null)
// GENERATED CODE, DON'T EDIT!

Fig. 6. Observer Hook Spot

A third example for hook spots can be
found in the framework integration annota-
tion CollectionView: The current implemen-
tation of our visualization framework uses
Java Swing as the GUI toolkit. If the im-
plementation were adapted, e.g., in order
to support the Eclipse SWT toolkit, then
parts of the generated “glue code”, which
are responsible for creating and adding the
buttons, would need to be modified. As
these orange code blocks are maintained
by the refinement transformation, they can
easily be exchanged leaving the green user-
supplied code blocks (containing the action
code for the buttons) unchanged.

5 Related Work

Most tools for model-driven development specialize on generating code from
a model or migrating models in one modeling language to another, i.e., they
specialize on exogenous transformations [6]. Tools that support model refactor-
ings can—according to [6]—be classified as supporting horizontal endogenous
transformations, whereas Architecture Stratification realizes vertical endogenous
transformations. In other words, refactorings maintain the same level of abstrac-
tion whereas architecture stratification creates different levels of abstraction ex-
pressed in the same modeling language. Only few tools provide basic support for
defining vertical endogenous transformations as well. The following paragraphs
shortly describe related commercial and academic tools, comparing them with
our approach.

Together Architect2 provides an extendable template-based mechanism for
defining patterns, which can then be applied to class diagram elements. In con-
trast to SPin, however, these transformations are executed in a step by step
fashion, whereas SPin automates the transformation process and will eventu-
ally support fully automated refinement from top to bottom. Together Archi-
tect follows a purely generative approach and hence neither supports SPin’s
re-generation facility nor its hook spot approach to protect user edits from being
overridden.

OptimalJ3 from Compuware is a Java-oriented model driven development en-
vironment specialized to generate J2EE applications. Similar to SPin, it supports

2 http://www.borland.com/us/products/together/
3 http://www.compuware.com/products/optimalj/

http://www.borland.com/us/products/together/
http://www.compuware.com/products/optimalj/

138 M. Girschick, T. Kühne, and F. Klar

adding editable regions (so called “free blocks”) in the source code which are re-
tained upon re-generation. Generated source code fragments are automatically
locked and cannot be edited. Although model-to-model transformations are sup-
ported, true multi-level modeling in the style of Architecture Stratification is not
available. OptimalJ imposes a rather guided development process on its users,
which first have to select a type of application and then have to complete the
model templates created by OptimalJ. The transformation process then gener-
ates the code and other needed artifacts. This approach is useful, if the needed
application types are supported by OptimalJ, but fails if requirements dictate
alternative solutions.

Similar to SPin, the model transformation framework “Mercator” [7] also uses
UML class diagrams and corresponding model annotations to control transfor-
mations. It follows the UML standard for profiles, and hence uses UML stereo-
types for annotations. Our notation, similar to UML collaborations, is more
expressive, directly indicating all involved elements in a visual fashion. Merca-
tor provides both model to model and model to code transformation but does
currently not offer the capability to add user provided code.

The “Bidirectional Object-Oriented Transformation Language” (BOTL) [8]
also uses stereotypes as annotations. The pattern matching process in the source
model is similar to ours whereas the generation of elements in the target model is
always specified visually. Although this is also possible with SPin using Fujaba’s
SDM graph transformation scheme, our experience has been that Java code often
enables a more direct and concise definition of transformations. Automatic code
generation within BOTL is planned but not implemented yet.

The MDA tool ArcStyler4 follows the MDA approach where a platform-
independent model (PIM) is completely parameterized and then transformed
to a new platform-specific model (PSM). If this approach is used in a staged,
incremental manner, it very much resembles the abstraction level stratification
approach of SPin. ArcStyler defines transformations using “cartridges”, UML
stereotypes may be used to guide the transformation process. In addition so
called marks are used to allow further parameterization of the model. Transfor-
mations are defined using the script language JPython, which is similar to our
Java code definitions, however, less than the SDM capabilities that are available
in Fujaba and SPin. This is supplemented by the so called “blueprints” which are
similar to model templates. ArcStyler features protected code fragments, similar
to SPin’s code blocks. However, the latter offer more flexibility by supporting a
mixture of existing, generated, and extension code fragments within the same
method.

Microsoft’s vision for MDSD is based on domain-specific languages (DSLs)
instead of UML. So called “Software Factories” [9] are presented as an ex-
tension to integrated development environments and add support for DSLs
and model transformations. Both techniques share the ability to define cus-
tomization points. However, the “variability points” of Software Factories only
add to the domain-specific behavior of frameworks, which need to (pre-)exist.

4 http://www.interactive-objects.com/

http://www.interactive-objects.com/

Generating Systems from Multiple Levels of Abstraction 139

Software Factories are supposed to support advanced ways of performing multi-
level modeling with a grid of models in the future, but many of the details and
the implementation status remain unclear.

Czarnecki et al. propose the novel concept of “staged configuration” for feature
modeling [10]. This multi-layered modeling approach exhibits some similarities
to stratification. The annotations within a stratum can be compared to the fea-
tures which can be selected in staged configurations. While annotations allow
more flexibility, staged configurations are easier to create and use as the fea-
tures are limited to a defined set and less complex than arbitrary refinement
transformations.

Almeida et al. approach system design through multiple levels of abstraction,
not dissimilar to Architecture Stratification [11]. They present a number of “de-
sign operations” for describing the transformations between abstraction levels.
They, however, are not concerned with an automated transformation process, as
the selection of elements plus the invocation of transformations are performed
manually.

None of the above mentioned approaches support Fujaba’s Story-Driven-
Modeling feature [12], which is not only very useful for the semi-graphical spec-
ification of refinement transformation rules as usable in SPin, but also provided
us with the basis for creating hook spots that survive re-generation steps.

6 Future Work

Although the rule library is user extensible, the utility of SPin would be increased
if it already came with a rich set of ready-to-use rules. We plan to extend the
library with further refinement transformation rules concerning other areas like
security patterns, aspects and the integration of more complex frameworks.

Employing stratification in its intended form with SPin is currently hindered
by the fact that only manual, stepwise initiations of transformations are sup-
ported. In order to fully automate the generation of a complex system from a
simple system, it is necessary to automate the process of unfolding annotations.
This also includes the specification of the order in which annotations are to be
unfolded. Annotations exhibit natural dependencies and lend themselves to gen-
erate levels of system concerns [1]. It is therefore the task of the stratum designer
to select which of the annotations are addressed at each specific abstraction level.
As a result, future versions of SPin will provide a configuration system, allowing
users to specify and store their annotation processing orders.

The current approach to specify refinement transformations with imperative
instructions, including unconstrained Java code, implies that there is no easy
way to automate traceability, e.g., supporting forward updates or backward-
navigation. We are therefore investigating the usage of graph rewriting ap-
proaches [13], e.g., Triple Graph Grammars [14], to automatically maintain
consistency links between adjacent strata. Such bi-directional refinement trans-
formations would also represent an attractive facility for reverse engineering,
i.e., starting from a complex system and simplifying the system by either using

140 M. Girschick, T. Kühne, and F. Klar

refinement transformations in the “reverse” direction or specifying and applying
dedicated “abstraction transformations”.

We plan to expand on our synchronized model and code transformation ap-
proach by looking at more sophisticated code transformations, i.e., strengthen
the support for more involved code transformations. We will, moreover, provide
hook spots for general model elements, over and above code fragments.

7 Conclusion

In this paper we have demonstrated the utility of Architecture Stratification,
and our SPin prototype tool supporting it, by means of a small case study.

The basis of creating a hierarchy of abstraction levels, all individually describ-
ing the intended system, are model transformations. The corresponding SPin re-
finement transformations are user-definable, typically by using a convenientmix of
SDM (for pattern matching and creation of model elements) and Java (for an un-
constrained definition of transformations). Their usage is indicated by employing
a concise—collaboration-like—notation for refinement annotations that enables
transformation parameters to be specified both visually (through labeled links to
any modeling element, including attributes and methods) and non-visually
(through primitive parameter types entered into corresponding dialogs).

The creation of new transformation rules using SPin is heavily assisted by a
number of convenient utilities, such as support for modifying method bodies, el-
ement creation, and synchronization with the UML metamodel. SPin also allows
immediate testing and application of newly created annotations and associated
refinement transformations.

Of particular value is our approach of transforming both model elements and
associated code in sync with each other. We can thus obtain a fully specified,
complex system by starting from a simple system and applying a succession of
refinement steps. Such refinement steps may involve refinement annotation that
in turn unfold into further refinement annotations. It was thus possible to tie
in a generic visualization framework to an application with minimal effort and
minimal conceptual pollution of the top-level stratum.

We have furthermore presented a useful compromise for multi-level editing,
ranging between anarchistic “free-editing” and obstructive “no editing”, based
on the concept of hook spots which enable controlled amendments to both model
elements and code. The combination of transformation-defined and stratum de-
signer inducible hook spots provides a scheme that is a) implementable within
the current limitations of our plugin environment Fujaba and b) more than suf-
ficient for providing extra information at lower strata.

Despite the limitations of the current Fujaba version, i.e., the lack of support
for multiple projects (strata) and, consequently, missing support for maintain-
ing consistency between model contents (strata elements), we have managed to
draw on its fine parts, e.g., Story-Driven-Modeling for pattern matching and an
adaptable UML metamodel for supporting refinement annotations, to create a
prototype supporting Architecture Stratification.

Generating Systems from Multiple Levels of Abstraction 141

As a result our concepts and tool support go some way towards helping to
deal with the complexity of today’s applications. By capturing recurring software
aspects by reusable transformation rules, such systems can be built faster and
more reliably.

References

1. Atkinson, C., Kühne, T.: Aspect-Oriented Development with Stratified Frame-
works. IEEE Software 20(1), 81–89 (2003)

2. Atkinson, C., Kühne, T.: Separation of Concerns through Stratified Architectures.
In: Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, Springer, Heidelberg (2000)

3. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Object-Oriented Software Architecture. Addison-Wesley, Reading (1994)

4. Nickel, U., Niere, J., Zündorf, A.: The FUJABA Environment. Technical report,
Computer Science Department, University of Paderborn (2000)

5. Pree, W.: Meta patterns - a means for capturing the essentials of reusable object-
oriented design. In: Tokoro, M., Pareschi, R. (eds.) proceedings of the ECOOP,
Bologna, Italy, pp. 150–162. Springer, Heidelberg (1994)

6. Mens, T., Czarnecki, K., Gorp, P.V.: A taxonomy of model transformations. In:
Bezivin, J., Heckel, R., (eds.): Language Engineering for Model-Driven Software
Development. Number 04101 in Dagstuhl Seminar Proceedings, Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany (2005)

7. Witthawaskul, W., Johnson, R.: An object oriented model transformer framework
based on stereotypes. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.)
UML 2004. LNCS, vol. 3273, Springer, Heidelberg (2004)

8. Marschall, F., Braun, P.: Model transformations for the MDA with BOTL. In:
Proceedings of the Workshop on Model Driven Architecture: Foundations and Ap-
plications, CTIT Technical Report TR-CTIT-03-27, University of Twente (2003)

9. Greenfield, J., Short, K.: Software factories: assembling applications with patterns,
models, frameworks and tools. In: OOPSLA ’03: Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, New York, NY, USA, pp. 16–27. Addison-Wesley, Reading (2003)

10. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature mod-
els. In: Nord, R. (ed.) Proceedings of the Third Software Product-Line Conference,
September 2004. LNCS, Springer, Heidelberg (2004)

11. Almeida, J.P., Dijkman, R., Pires, L.F., Quartel, D., van Sinderen, M.: Abstract
interactions and interaction refinement in model-driven design. In: Ninth IEEE In-
ternational EDOC Enterprise Computing Conference (EDOC’05), Twente, Nether-
lands, September 19-23, 2005, pp. 273–286. IEEE Computer Society Press, Los
Alamitos (2005)

12. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph
Rewrite Language based on the Unified Modeling Language and Java. Technical
report, AG-Softwaretechnik, Fachbereich 17, Universität Paderborn (1999)

13. Königs, A.: Model transformation with triple graph grammars. In: Briand, L.C.,
Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, Springer, Heidelberg (2005)

14. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Proceedings of the 20th International Workshop on Graph-Theoretic Concepts in
Computer Science, London, UK, pp. 141–163. Springer, Heidelberg (1994)

Using Mobile Architecture Modeling and

Simulation for Enterprise Applications�

Volker Gruhn and Clemens Schäfer

Chair for Applied Telematics/e-Business
University of Leipzig, Germany

{gruhn,schaefer}@ebus.informatik.uni-leipzig.de

Abstract. Mobility–be it physical device mobility or logical code mobil-
ity–also influences enterprise application architectures. In this paper we
show how mobile software architectures can be modeled in a way that the
emergent behavior (availability, response times) of such a system can be
simulated by using an architectural model of the system and applying an
simulation approach where a network model and a user interaction model
are used for providing the contextual information. This approach can be
applied to service oriented systems and mobile applications like workforce
supporting systems, facilitating design decisions and predicting system
behavior at design time.

1 Motivation

More and more enterprises tend to mobilize parts of their information systems.
This is at least true for enterprises with sales personnel visiting (potential) cus-
tomers at customer sites or with field services, who are responsible for repairing
and maintaining infrastructure of any kind. Mobilizing trends in industry can be
observed for business-to-business applications as well as for business-to-consumer
applications [18].

However, it has to be considered that design and implementation of mobile
solutions are risky and a number of mobile business cases did not work properly
in the past [17]. Reasons for failed mobile solution projects are missing knowledge
about the business processes to be supported, low level of integrations between
software systems and telecommunication infrastructure, and wrong distribution
of software components and data. Current trends in enterprise applications focus
on explicit separation of interfaces from implementations, which is quite the
essence of the Service Oriented Architecture approach: Complex systems are
built by means of building blocks (e.g. services) which are composed in order to
create new functionality. This composition is done by loose coupling, allowing
changes in the system quite easily.

If the idea of loose coupling is driven forward more radically, the application
of mobile paradigms is allowed as well. Why should it not be possible to execute
� The chair for Applied Telematics / e-Business has been endowed by Deutsche

Telekom AG.

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 142–157, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Using Mobile Architecture Modeling and Simulation 143

a certain service on a client device instead of the host system, if the service
composition facility provides the necessary flexibility, and the client’s device has
enough computational power to run the service locally. Such dynamic reconfigu-
rations of loosely coupled parts of the system during runtime can lead to better
performance and better overall utilization of available computing power.

The idea of distributing code and data among computational nodes also gains
in importance as large companies aim at restructuring and distributing their
centralized infrastructure in order to decrease their vulnerability and remain
able to work even if their staff members cannot use the fixed infrastructure in
central offices anymore. The question of how to distribute code and data and to
which extent migration of code should be allowed is not trivial. The sole possi-
bility of distribution code and data and the existing technical capabilities are no
guarantee for success, because distribution highly affects the Quality of Service:
Availability and performance of such a system depend on the distribution pat-
terns applied and the characteristics of the underlying communication networks.
This problem is being solved in the area of mobile computing by using archi-
tecture description and simulation for mobile systems. In this paper, we present
this approach and show how it can be applied to enterprise applications.

Previous works [2] showed, that is it generally possible to derive architectural
patterns for mobile commerce applications from a classification of device mobil-
ity, user mobility and service connectivity. However, deeper analysis shows that
also the architecture of a system has to be taken into account if the fitness-
for-purpose of the system shall be determined. Modeling the architecture of
mobile distributed systems (sometimes such an architecture is called mobile ar-
chitecture) using a domain-specific architecture description language (ADL) is
considered as an useful approach [4], since the influence of mobility emphasizes
the necessity to examine functional properties of software architectures as well
as non-functional properties. This corresponds to the fact that “mobility repre-
sents a total meltdown of all stability assumptions ... associated with distributed
computing” [15], which subsumes the problems software engineers have to face in
practice when they build mobile distributed systems. Examples for these prob-
lems are network structures, which are no longer fixed and where nodes may
come and go, communication failures due to lost links over wireless networks, or
restricted connectivity due to low bandwidth of mobile communications links.
These all have in common that they affect the emergent non-functional properties
of a system like performance, robustness, security, or Quality of Service. Besides
non-functional properties, these intrinsic challenges of mobile systems may also
affect the functional aspects of a system, since a mobile system may have to
provide extra functionality (like replication facilities or caching mechanisms) in
order to ensure usability in situations where the aforementioned problems oc-
cur. With our ADL Con Moto (Italian for “with motion”) we propose a language
which enables system developers to address these issues during the early stages
of system development in order to allow them to make appropriate design choices
for the mobile system.

144 V. Gruhn and C. Schäfer

2 Introduction

Mobile systems show complex emergent behavior due to the combination of soft-
ware aspects with telecommunication issues and the therefore eroding
stability assumptions. In order to determine whether a mobile system fulfills
non-functional requirements like response time or availability of service, a quite
complex model of the system is needed.

1. The model must reflect the system’s physical structure, comprising physical
components (devices) and physical connectors (communication links, net-
work topology) as well as the properties of these items like bandwidth or
bandwidth distribution and computational resources, since e.g. a (mobile)
service might take more time being executed on a mobile client compared to
the execution on a server.

2. The logical structure of the system must be modeled in detail, comprising
information about software components, their dependencies and deployment
on the physical components and the possible changes in the deployment
structure.

3. The model has to reflect the dynamics of the system, i.e. the behavior of the
logical components, their interactions and the exchanged information.

4. Finally, user interaction with the system must be expressed, specifying how
many users are existing and how these users interact with the system.

These aspects show that the challenge in modeling mobile system lies in the
need to find an appropriate level of abstraction, since over-simplification will
cause meaningless analysis results; however, too detailed models are not practical
during the design process. Any modeling approach should remain as abstract and
as free from technological implementations of real mobile systems as possible;
nevertheless, realistic assumptions about the technological implementation of a
mobile system are sometimes necessary to yield feasible simulation results.

The remainder of this paper is structured as follows. First, an overview about
related work is given. Next, our approach for modeling mobile systems using Con
Moto is presented. After depicting an example system and simulation results for
this system, results are discussed.

3 Related Work

ADLs in general have been a topic of research in previous years. The necessity
for modeling non-functional properties in architecture description has been rec-
ognized by Shaw and Garlan [16]. The classification work of Medvidovic and
Taylor [9] presents a sound compilation of properties of existing ADLs. From
their work it becomes obvious, that none of the ADLs presented there is suitable
for modeling dynamic aspects of mobile systems. In the past, this fact lead to
the development of mobile ADLs which have recently been presented. The Arch-
Ware project with its π-ADL [13] is one result of these efforts. Another mobile
ADL can be found in the works of Issarny et al. [6]. Both present an ADL for

Using Mobile Architecture Modeling and Simulation 145

mobile systems based on Milner’s π-calculus [10]. These two ADLs have in com-
mon that they are able to model the dynamics of mobile systems, which is due
to their theoretical foundation in the π-calculus. Although they vary in terms of
elaboration and tool support, the fundamental difference—from the perspective
of this paper—is the treatment of non-functional properties, which is absent in
the π-calculus ADL approach. Issarny et al. address non-functional properties in
their work, but the treatment of non-functional properties is bound to a global
conformance condition, which must hold for a predefined set of non-functional
properties assigned to components and connectors, and does not allow the com-
position of non-functional properties, which is novel in our approach. Besides the
design of mobile ADLs there is other research in the area of non-functional prop-
erties of software systems. This work is mainly based on the Lamport’s TLA+
language [7], which is a logic for specifying and reasoning about concurrent and
reactive systems. Zschaler [19] presents a specification of timeliness properties of
component based systems, but these as well as the underlying work of Aagedal
[1], where the integration of TLA+ approach into architectural description is
proposed, are not regarded further in our context, since the models in TLA+
lack the support for mobility. Other approaches based on Markov Chains and
process algebras (e.g. the work of Hermanns and Katoen [5]) are not promising
for out purposes, since these fall short of the support for mobility.

4 Approach

Our overall goal is the assessment of Quality-of-Service parameters of a mobile
system already at design time. Formal approaches like model checking can be
used to prove certain properties of a system, e.g. that a given system is deadlock-
free. Unfortunately, such properties are usually less relevant in the designers
daily work. Therefore, we strive to answer questions like e.g. “will a transaction
complete in less than two seconds in at least 98% of all cases”. To answer such
questions by simulation, a rather complex model of the system is needed: Besides
the architecture of the mobile system we also need to specify which communi-
cation networks the system uses and how many users interact in which ways
with the systems, since our desired result is influenced by all these dimensions.
Therefore, all these aspects have to be modeled in a Con Moto model, which
will act as basis for later simulation.

The core architectural model is made from a behavioral and a structural spec-
ification of the system. This is due to the fact that in addition to the obviously
existing structural model of mobile systems their behavior influences evolvement
of the architecture and thus has to be modeled as well. Together with instanti-
ation information, the simulator can create instances of the architectural model
for simulation purposes. During simulation, communication network structures
will be provided for the system as they are modeled in the network model.
By applying user interactions by instantiating the Usage Patterns, the modeled
system can evolve in the simulator and the evaluation results can be calculated.

146 V. Gruhn and C. Schäfer

In the following, we will present the different aspects of this model and exemplify
their use by showing an example.

4.1 Behavioral Model

Mobile systems have to react to external conditions; the dynamically changing
configuration is inherent to mobile systems. Therefore it makes sense to base
architectural modeling on a behavioral model, assuming that structural aspects
like components or connectors can be seen as constraints for the behavioral model
of the system.

Like other ADLs for mobile systems [13], we build our behavioral model on
π-calculus. π-Calculus [11] is a process algebra with explicit support for mobility.
It is based on communication primitives which allow the exchange of processes
or communication nodes among processes. However, π-calculus in its full beauty
offers features which are not necessary for our approach. Since we build a simula-
tion environment, only constructs which reflect typical programming situations
are used; others are discarded for the sake of simplicity. Such a restriction has
also been performed by the work of Pierce and Turner: with Pict [14] they present
a π-calculus-based programming language, where they also omit some features
of core-π-calculus, slightly reducing expressive power, but removing nondeter-
minism and making it appropriate for programmers.

As shown in Table 1, Con Moto provides different constructs for modeling
processes: The output action allows the communication of an object over a so-
called Pin in Con Moto (in π-calculus, the pins are called names). Other than in
Pict, we only allow the synchronous output like in π-calculus, since we decouple
in- and output by means of connectors.

Similar to Pict, we restrict π-calculus’s replication prefix to input statements.
Hence we do not allow the replication of processes; nevertheless, new processes
can be created together with input operations, which is a quite realistic assump-
tion, as it allows the easy creation of processes which respond to input data. The
choice operator as a source for nondeterminism is omitted, but a if/then/else
construct is added.

Modeling behavior includes that messages exchanged by processes need to
be implemented in Con Moto. Usually, abstractions of real-world messages are
used in such situations: Only that portion of a message is modeled, which is
absolutely necessary to reflect the message’s impact on control flow and behavior
of the system. In Con Moto, we also specify meta-information about the size of

Table 1. Notation

π-Calculus Con Moto

xy out(x,y) synchronous output
x(y) in(x,y) input
e1 | e2 par e1, e2 parallel composition
(νx)e new x; e channel creation
!x(y).e rep in(x,y) e replicated input

Using Mobile Architecture Modeling and Simulation 147

messages, because in simulation situations the real-world size of such objects is
necessary for supporting non-functional properties, since these meta information
can be used e.g. by the network part of the model to calculate transmission times
et cetera.

4.2 Structural Model

Having identified the processes as basis for the model of a mobile system, struc-
tural information needs to be added since a solely behavioral view is unappropri-
ate. Therefore, a structural model of the mobile system is set up. The challenges
are twofold: on the one hand we need an abstraction which allows us to set up a
decomposition of a mobile system and on the other hand we need some decision
on what the smallest entity of mobile code is.

Structural aspects have been considered in all ADLs so far. It is commonly
accepted, that an structural model comprises components, connectors and config-
urations. The components are the locus computandi : Calculations are preformed
on the components, whereas connectors model the communication relationships
among components. Configuration can be seen as the state of a system and
represents all interconnections between components by means of connectors.

Components. For modeling mobile systems we have to clarify the notion of
components and connectors. In Con Moto, we distinguish between physical com-
ponents and logical components. Physical components are devices like PDAs or
servers, are constrained in their resources (memory size, CPU power etc.) and
act as execution environment for logical components. Logical components, in
contrast, model software components. They do not have resource constraints
in our understanding and can occur as components and component instances,
where the first ones are stateless and the latter ones are stateful. In order to
allow communication, physical as well as logical components have ports, which
are aggregations of ports and pins, allowing the interconnected processes to
communicate.

Connectors. In Con Moto there are two different kinds of connectors, namely
physical connectors and logical connectors. Logical connectors are used for com-
munication between logical components and are ideal: They have an unbounded
bandwidth and zero latency. In contrast, physical connectors connect physical
components and are not ideal, having a limited bandwidth and a latency time
greater than zero.

Logical connectors can be embedded in physical connectors. This is necessary,
if logical components on different physical components shall communicate. The
logical connector between the two connected logical components is embedded in
the physical connector between the two physical components, which act as the
execution environments for the two logical components.

148 V. Gruhn and C. Schäfer

Mobility. Components are the smallest entity of mobile code in Con Moto. We
assume that the component should be the element which is mobile. We do not
take the extreme view of Mascolo et al. that every line of code is potentially
mobile [8], because we aim at modeling enterprise application systems, where
this assumption would be unrealistic.

We allow logical components as well as logical component instances to be
communicated among processes. The same is true for logical connectors. This
allows us to cover all kinds of mobility which are shown in the work of Fuggetta
et al. [3]:

– Client-server, where a data file f is transferred from a node nu to a node np.
A program p executes on node np and the results are transferred to node nu.
The client on node nu controls the operation. This is the situation as shown
in our example and typical for enterprise applications, e.g. applications in
Service Oriented Architecture style.

– Remote evaluation, where a program p is transferred from node nu to node
np, and executed there. Results are returned to nu. The client controls the
operation. Using Con Moto, this can be expressed by sending a logical com-
ponent (which is the program p) to the computing node.

– Code-on-demand. Data file f and program p are transferred to nu and exe-
cuted there. The user demanding the code controls the operation.

– Mobile agents. Program p is transferred to nf and executed there. Results
are transferred to nu. The agent itself controls the operation.

Configuration. It is obvious that configurations of mobile systems evolve over
time, since components can connect and disconnect to other components due
to their behavior. For mobile systems, however, developers usually express con-
straints on the possible configurations which might occur. By means of deploy-
ment diagrams like in UML 2.0 [12], developers of systems can express where
components are deployed, hence which logical components are placed on which
physical components. However, to be able to express constraints for configu-
ration evolvement, this is not sufficient. Besides expressing an initial state of
the deployment, there should be the possibility of expressing where components
may be deployed during runtime, because then and only then runtime checks
are possible whether the configuration of an mobile system evolves correctly.

Architectural Connection. Architectural connection, i.e. the way how com-
ponents are connected to each other by means of connectors, is a crucial as-
pect for mobile systems, since here all imponderabilities of mobility arise. For
realistic systems, there may be many and complex dependencies among logi-
cal components leading to many logical connections. Physical connections are
fewer: usually only a small number of physical connectors connect the physical
components.

In our system, logical connections must be embedded in physical connections;
logical connections hence cannot be ideal–there is no synchronicity or parallelism.
In order to allow different communication protocols like synchronous calls (e.g.

Using Mobile Architecture Modeling and Simulation 149

Remote Procedure Calls, Service Invocations) and asynchronous communication
(events), our approach using pins where processes can exchange information is
sufficient. Nevertheless, when a system is modeled on a quite high-level basis,
there is the requirement for provides- and uses- interfaces and for services.

In order to provide a general basis, we introduce in Con Moto the possibility of
ports which can consist of other ports and pins. By expressing binding rules, high-
level ports can be connected and by resolving the port hierarchy and subsequent
application of binding rules various pins will be connected.

5 Example System

For illustration purposes we will use a simple example system. This example
system is a mobile client/server system. The users of the mobile system carry
mobile devices, which are connected to a server via mobile communication links;
in our example, we provide either an GPRS link, which has a rather low band-
width, and an UMTS (3G) link, which has a higher bandwidth. There are three
software components in the example system: a user interface component (UI) is
deployed on the mobile devices; a database component (DATA) is deployed on
the server. The actual business logic of our system is captured in the component
BUSINESS, which is a mobile component and thus can be deployed either on
the server or on the mobile devices. When the user invokes a service of the UI
component, a request is sent to the BUSINESS component (either on the mobile
device or on the server). This component itself invokes a service of the DATA
component before it returns its calculation results to the UI component. The
structure of the example system is shown in Figure 1.

DATA

MOBILE

SERVER

UI

BUSINESS

deploy

deploy

deploy

depends

depends

UMTS / GPRS

deploy

Fig. 1. Example system

150 V. Gruhn and C. Schäfer

5.1 Modeling in Con Moto

At the end of this paper, the Con Moto code, which is actually a document in
an XML dialect, of the described example is shown. The section <physical-
components> declares two hardware components, namely MOBILE and SERVER.
For both, their CPU power is set and the possible connections to the net-
work (which ends up in physical connectors during simulation) are defined. The
<network- access> for MOBILE allows connection either to UMTS or GPRS
network, the SERVER can only connect to the WAN.

The actual network model is given in the section <network-config>. Here,
the network types UMTS, GPRS and WAN are defined. For all these network
types, the bandwidth is specified (10.0, 2.0 and 1000.0 kBit/s). Latency times are
not given in this example for the sake of simplicity. An additional network node
named backbone is also given. All network connections via UMTS, GPRS and
WAN automatically connect to this backbone, allowing to address any device
from any other device which is connected to the network, i.e. physical compo-
nents can communicate when they have connected to the network. This is a
model similar to the internet and reflects the communication relationships in
Service Oriented Architectures. For the UMTS and GPRS nodes in the network
we define that these nodes are equally distributed, which is necessary information
if during simulation the number of network nodes is increased.

By introducing ports and port hierarchies in the section <connection> it is
possible to have complex ports which act as an method provider interface or
method invoker interface and hence represent published and used service defini-
tions. By specifying macros for ports a certain behavior can be implemented in
the port definition and easily be reused in the actual process definition. In the ex-
ample, the invocation of a service is modeled as a macro in port methodInvoker.
Since port methodsProvider has an extendable process which provides the coun-
terpart for this macro, method invocation, waiting for execution and returning
of a method result can be specified in π-calculus using in and out command
on pins. In the processes in definition of the logical components, however, these
macros and processes can be reused, yielding a code which is structurally equiv-
alent to code in an imperative programming environment.

The logical components DATA, BUSINESS and UI are specified in the section
logical-components. For the components BUSINESS and UI startup processes
are defined, which execute when the components are deployed. During these
processes, lookups of components (BUSINESS in case of UI and DATA in case
of BUSINESS) are performed and logical connections to the components are
established.

For implementing services on components, the processes of the methodPro-
vider ports are extended, such that the action which is to be undertaken after
a service has been called is implemented in processes on the logical compo-
nents. On DATA the service getData sets a size of the return package of 100
bytes and blocks the CPU for 100 milliseconds. This return package size is
used by the simulator to calculate the transmission time through the network.

Using Mobile Architecture Modeling and Simulation 151

On BUSINESS the service getInfo makes a call to getData before a return pack-
age size of 5000 bytes is set and the CPU is blocked for 500 milliseconds.

5.2 Simulation

We have simulated the example system using our Con Moto simulator for user
counts ranging from 10 to 150, respective 10 to 150 MOBILE devices. The users
use the system as modeled by a Poisson-process with an arrival rate of 10 per
hour. The simulation has been performed for an time resolution of 1 millisecond.
Figure 2 shows the simulation result, meaning that starting with 90 users the
system gets increasingly congested and the response times of the services at the
UI component increase drastically. Differences can be seen in the response times
of GPRS and UMTS, which is due to the higher bandwidth of UMTS compared
to GPRS.

0

10000

20000

30000

40000

50000

60000

70000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Users

E
la

p
s

e
d

 T
im

e
 (

m
s

)

GPRS Max

UMTS Max

Fig. 2. Simulation result

6 Discussion

In this paper we have described how mobile systems can be modeled using the
Con Moto approach with the goal of determining Quality of Service parameters
during design time by means of a simulation approach. By basing an architectural
description on π-calculus and making a clear distinction between logical and
physical components and connectors, modeling of mobile systems on a quite high
level is possible with feasible effort. First simulation results on an toy example
system, which structurally resembles an enterprise application system built in a
service oriented style, show that the general approach is promising and can be
applied to enterprise application systems. Nevertheless, further formalization of
the approach is necessary and subject to ongoing work.

152 V. Gruhn and C. Schäfer

Areas of further work are the discussion of models for physical communica-
tion channels. So far, we assume just a constant bandwidth and latency time,
but more complex models of modeling transmission characteristics of communi-
cation channels are necessary for realistic simulation results. The area of user
interaction with a mobile system is also part of further investigation, since not
only the stochastic processes for user behavior need careful consideration–also
the question how to derive user interaction patterns suitable from simulation
from business process models is interesting. Ongoing work is the creation of an
environment allowing designers specifying Con Moto models not only in XML-
documents but also by means of more comfortable editors. Finally, evaluation
of the approach by comparing simulation results to real-world measurements is
a future task.

7 Example Code

<system>
<connection>

<port-role name="in" />
<port-role name="out" />

<port-role name="methodsInvoker"
extends-role="out" >
<ports name="methodInvoker" />

</port-role>

<port-role name="methodInvoker" >
<pin name="call" />
<pin name="return" />

<macro>
<parameter name="argument" />
<result name="result" />
<pi>
out(call, argument);
in(return, result);

</pi>
</macro>

</port-role>

<port-role name="methodsProvider"
extends-role="in" >
<ports name="methodProvider" />

</port-role>

<port-role name="methodProvider" >
<pin name="invoke" />
<pin name="response" />

Using Mobile Architecture Modeling and Simulation 153

<process>
<pi>
object arg, result;
rep in(invoke, arg) {

<extension-point />
out(response, result);

}
</pi>

</process>
</port-role>

<bind-rule>
<scope>

<from>methodsInvoker</from>
<to>methodsProvider</to>

</scope>
<bind>

<from>methodsInvoker.methodInvoker</from>
<to>methodsProvider.methodProvider</to>

</bind>
</bind-rule>

<bind-rule>
<scope>

<from>methodInvoker</from>
<to>methodProvider</to>

</scope>
<bind>

<from>methodInvoker.call</from>
<to>methodProvider.invoke</to>

</bind>
<bind>

<from>methodInvoker.response</from>
<to>methodProvider.return</to>

</bind>
</bind-rule>

</connection>

<network-config>
<passive-node name="backbone" />

<active-node name="UMTS">
<multiplicity>0.5</multiplicity>
<auto-link>

<node>backbone</node>
<bandwidth>10.0</bandwidth>

</auto-link>
</active-node>

154 V. Gruhn and C. Schäfer

<active-node name="GPRS">
<multiplicity>0.5</multiplicity>
<auto-link>

<node>backbone</node>
<bandwidth>2.0</bandwidth>

</auto-link>
</active-node>

<active-node name="WAN">
<multiplicity>unbounded</multiplicity>
<auto-link>

<node>backbone</node>
<bandwidth>1000.0</bandwidth>

</auto-link>
</active-node>

</network-config>

<logical-components>
<component name="DATA">

<port type="methodProvider"
name="getData">
<extend-process>
<pi>

result.size = 100;
useCpu(100);

</pi>
</extend-process>

</port>
</component>

<component name="BUSINESS">
<size>200</size>

<start-process>
<pi>
PhysComp remoteHW =

lookupPhysComp("SERVER");
LogComp remoteSW =

remoteHW.lookupLogComp("DATA");
connect(this.getData,

remoteSW.getData);
</pi>

</start-process>

<port type="methodInvoker"
name="getData" />

Using Mobile Architecture Modeling and Simulation 155

<port type="methodProvider"
name="getInfo" >
<extend-process>
<pi>

object res;
object par;
res = getData(par);
result.size = 5000;
useCpu(500);

</pi>
</extend-process>

</port>
</component>

<component name="UI">
<port type="methodInvoker"

name="getInfo" />

<start-process>
<pi>
PhysComp remoteHW =

lookupPhysComp("SERVER");
LogComp remoteSW =

remoteHW.lookupLogComp("BUSINESS");
connect(this.getInfo,

remoteSW.getInfo);
</pi>

</start-process>

<pin name="action">
<process>
<pi>

object dummy;
rep in(action, dummy) {
getInfo(dummy);

}
</pi>

</process>
</pin>

</component>
</logical-components>

<physical-components>
<component name="MOBILE">
<memory>unbounded</memory>
<cpu>10</cpu>

<network-access>
<xor>
<type>UMTS</type>

156 V. Gruhn and C. Schäfer

<type>GPRS</type>
</xor>

</network-access>

<logical-component-deployment>
<name>UI</name>
<instance>on-start</instance>

</logical-component-deployment>

<logical-component-deployment>
<name>BUSINESS</name>
<instance>client-controlled</instance>

</logical-component-deployment>

</component>

<component name="SERVER">
<memory>unbounded</memory>
<cpu>1000</cpu>

<network-access>
<type>WAN</type>

</network-access>

<logical-component-deployment>
<name>BUSINESS</name>
<instance>on-start</instance>

</logical-component-deployment>

<logical-component-deployment>
<name>DATA</name>
<instance>on-start</instance>

</logical-component-deployment>
</component>

</physical-components>

</system>

References

1. Aagedal, J.Ø., Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo (2001)

2. Book, M., Gruhn, V., Hülder, M., Schäfer, C.: A Methodology for Deriving the
Architectural Implications of Different Degrees of Mobility in Information Systems.
In: Fujita, H., Mejri, M. (eds.) New Trends in Software Methodologies, Tools and
Techniques, IOS Press, Amsterdam (2005)

3. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding Code Mobility. IEEE Trans-
actions on Software Engineering 24(5), 342–361 (1998)

Using Mobile Architecture Modeling and Simulation 157

4. Gruhn, V., Schäfer, C.: Architecture Description for Mobile Distributed Sys-
tems. In: Proceedings of the Second European Workshop on Software Architecture
(EWSA 2005), pp. 239–246. Springer, Heidelberg (2005)

5. Hermanns, H., Katoen, J.-P.: Performance Evaluation:= (Process Algebra + Model
Checking) × Markov Chains. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 59–81. Springer, Heidelberg (2001)

6. Issarny, V., Tartanoglu, F., Liu, J., Sailhan, F.: Software Architecture for Mobile
Distributed Computing. In: Proceedings of the Fourth Working IEEE/IFIP Con-
ference on Software Architecture (WICSA’04), Oslo, Norway, pp. 201–210. IEEE
Computer Society Press, Los Alamitos (2004)

7. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Reading (2002)

8. Mascolo, C., Picco, G.P., Roman, G.-C.: A fine-grained model for code mobility.
In: ESEC/FSE-7: Proceedings of the 7th European software engineering conference
held jointly with the 7th ACM SIGSOFT international symposium on Foundations
of software engineering, London, UK, pp. 39–56. Springer, Heidelberg (1999)

9. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software En-
gineering 26(1), 70–93 (2000)

10. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

11. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

12. OMG. Unified Modeling Language (UML) Specification: Superstructure, Version
2.0 (formal/05-07-04)

13. Oquendo, F.: π-ADL: An Architecture Description Language based on the Higher-
Order Typed π-Calculus for Specifying Dynamic and Mobile Software Architec-
tures. ACM Software Engineering Notes 29 (2004)

14. Pierce, B.C., Turner, D.N.: Pict: A programming language based on the pi-calculus.
In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction:
Essays in Honour of Robin Milner, MIT Press, Cambridge (2000)

15. Roman, G.-C., Picco, G.P., Murphy, A.L.: Software Engineering for Mobility: A
Roadmap. In: Proceedings of the Conference on the Future of Software Engineering,
pp. 241–258. ACM Press, New York (2000)

16. Shaw, M., Garlan, D.: Formulations and Formalisms in Software Architecture. In:
van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 307–323.
Springer, Heidelberg (1995)

17. Türker, C.: Mobilität und Informationssysteme. Technical Report 422, ETH
Zürich, October (2003)

18. Wichmann, T., Stiehler, A.: Process Optimisation with Mobile Solutions. Berlecon
Research (March 2004)

19. Zschaler, S.: Formal specification of non-functional properties of component-based
software. In: Bruel, J.-M., Georg, G., Hussmann, H., Ober, I., Pohl, C., Whittle, J.,
Zschaler, S. (eds.) Workshop on Models for Non-functional Aspects of Component-
Based Software (NfC’04) at UML conference 2004, September 2004 (2004)

An UML-Based Approach for Validation of

Software Architecture Descriptions

Mohamed Hadj Kacem1,3, Mohamed Jmaiel1,
Ahmed Hadj Kacem2, and Khalil Drira3

1 University of Sfax, Laboratory ReDCAD-ENIS, B.P. 3038 Sfax, Tunisia
mohamed.hadjkacem@fsegs.rnu.tn

2 University of Sfax, Laboratory MIRACL B.P. 1088, 3018 Sfax, Tunisia
3 LAAS-CNRS, 7 Avenue du Colonel Roche 31077 Toulouse, France

Abstract. UML became a standard for modeling distributed architec-
tures. The development process produces models representing architec-
ture according to different views and different abstraction levels. These
models must be valid and coherent together, so the architecture descrip-
tion and its evolutions have to be logical and interpretable. This paper,
proposes to define intra and inter profile validations rules enabling one
to define the basic elements of each profile, to minimize the modeling
errors and to ensure the architecture conformity to its meta-model.

1 Introduction

Current applications are more and more distributed, large and complex. Such
applications are generally composed of a significant number of networked soft-
ware entities, cooperating to provide user required services. This complexity is
related to the great geographical and structural dispersion of the various parts
constituting the application. It is also related to hardware and software hetero-
geneity, the network extension and the necessary and permanent system software
requirement evolution. In order to answer the needs of the software, various pro-
gramming paradigms were proposed. But needs remain important for design
support that helps mastering architectural complexity.

In order to face this complexity, the OMG proposed the Model Driven Architec-
ture [1]. In the MDA approach, all descriptions are considered as models. MDA ap-
pears to be one of the most likely approaches for providing satisfactory answers to
these new requirements [2]. In this approach,models constitute the layer necessary
to provide the abstraction level required today. MDA approach recommends using
UML for model development.Thanks to its version 2.0,UML became a widely used
standard for architecture design and modeling. However, even with this intention
to be general with various diagrams offered, UML cannot cover all the descrip-
tion requirements. UML offers a mechanism of extensibility based on profiles [2].
A UML profile allows the customization and the adaptation of UML to deal with
specific fields that cannot be represented with UML in its original basic notation.

Our research work fits in this context and consists in proposing modeling solu-
tions in conformance with the MDA approach. Our research consists in providing

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 158–171, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An UML-Based Approach for Validation 159

modeling solutions allowing to guide and assist design activities of the dynamic ar-
chitecture. Our approach consists in extending UML2.0 notation to describe dy-
namic software architecture. We define three UML profiles. The first, the struc-
tural profile, which extends component diagrams and allows basic elements of an
architecture to be designed; as well as connections that associate them. The sec-
ond, the dynamic profile, which extends the first profile and allows to describe
transformation rules of an architecture in terms of addition and/or suppression
of components and/or connections (reconfiguration rules). The third, the coor-
dination profile, which extends activity diagrams and describes the coordination
between various reconfiguration rules. Moreover, to get models correct by design,
we define a validation approach based on intra-profile and inter-profile rules. Intra-
profile rules allow checking the specification coherence compared to its profile.
Inter-profile rules allow assisting the passage from a profile to another.

The rest of this paper is organized as follows. In the second section, we present
the related work. We present in the third section, a general overview of our three
profiles. We define intra and inter-profile rules in order to validate the model and
to assist architects to make the passage from one profile to another. In the fourth
part, we describe extensions we implement on top of FUJABA. In the fifth part,
we present our conclusion and current and future prospects.

2 Related Work

Considering the complexity and the cost of distributed architectures, a new
orientation of research works consists in exerting checking and validation tasks
of conceptual models before deeply advancing in the development process [3],
[4]. There are principally two approaches adopted and used: the meta-modeling
approach, and the UML verification through formal methods.

2.1 The Meta-modeling Approach

MOF (Meta-Object Facility) [5] is a set of interfaces allowing to define the syn-
tax and semantics of a modeling language. It was created by the OMG in order to
define meta-models and their corresponding models. Four levels characterize this
meta-modeling standard. The M0 level is the real data level, composed of infor-
mation that we wish to model. This level is often regarded as being the real world.
If we describe the information contained in the M0 level, this activity gives birth
to a model belonging to M1 level. A UML model belongs to the M1 level. The
M2 level is composed of models definition languages, also called meta-models. A
meta-model defines the model structure. The M3 level defines the elements used
to specify meta-models. It defines basic concepts allowing the representation of
lower levels as well as itself. In the MOF, the model validation is done with the
lower level model. The meta-model concept is fundamental. It not only helps to
reduce the notation ambiguities and inconsistencies, but it also constitutes a pre-
cious advantage for designers. The major disadvantage of MOF compared to our
objectives is that it does not offer passage rules from a model to another.

160 M. Hadj Kacem et al.

2.2 UML Verification Through Formal Methods

The objective of this research orientation [6], [7] is to propose a formal base for
UML models. It proposes translation of a subset of UML diagrams into various
formal languages such as Z [8], [9], B [10], LOTOS [11], PROMELA [12]. These lan-
guages offer a formal base that is more solid than UML. Moreover, they have some
integrated tools allowing an automatic error detection (simulators, proof obliga-
tion, ...). The objective of this approach is to formally express various elements of
diverse diagrams as well as intra-diagram relations. This translation gives seman-
tics to diagrams. It also gives a formal technique offered by associated tools.

Dupuy and al. [13] propose a method with a support tool for generating for-
mal specifications from informal object-oriented notations. This work consists of
translating an UML application, described with the Rose toolkit, into Z specifi-
cations. It is focused on the generation of basic operations and their preconditions
from a class diagram. More complex operations are not considered. The method
is not dedicated to a specific domain.

Kim and al. [9] present a formal Object-Z model of the UML State Machine.
They encapsulate the abstract syntax and the static and dynamic semantics for
each individual model constructed as a single Object-Z class. To formalize the
dynamic semantics, a denotational semantics of the construction is given first
ignoring detailed operational sequences. Based on this denotational semantics,
an operational (execution) semantics is then defined in terms of (Object-Z) class
operations and invariants constraining the operation sequences. The timed refine-
ment calculus is used to define the operation sequences within Object-Z. Finally,
integrity consistency constraints with other models constructed are formalized
in terms of invariants defined in the state machine.

Varro and al. [12], [14] propose the VIATRA framework. It is the core of
a transformation-based verification and validation environment for improving
the quality of systems designed using the UML by automatically checking con-
sistency, completeness, and dependability requirements. In VIATRA, the static
syntax of a modeling language is specified in the form of UML class diagrams
and formalized by typed, attributed and directed graphs. They present a tool
for model checking dynamic consistency properties in arbitrary well-formed in-
stance models of any modeling language defined visually by meta-modeling and
graph transformation techniques.

Latella and al. [15] present a translation from a subset of UML Statechart
Diagrams into PROMELA. They defined a base translation which allows for the
automatic verification of UML Statechart Diagrams. The basic notion in the
UML Statechart Diagrams, can be dealt with in a clean and modular way by
defining a deduction system for modeling completion steps. Compton and al. [16]
present a toolset which can validate both static and dynamic aspects of a model
defined with UML. This toolset is based on the semantic model using Abstract
State Machines (ASM). Based on the schema for generating ASM specifications
for a UML model, their approach allows to build a toolset helping software
developers find errors during their early stages of software development.

An UML-Based Approach for Validation 161

Apvrille and al. [11] propose a UML profile called TURTLE. The profile pro-
poses a coupling between UML1.5 notation and formal language RT-LOTOS. It
gives a formal semantics to associations between UML classes. It defines tem-
poral operators of non deterministic time type and offers facilities of temporal
constraints validation. Formal semantics of this profile is given by the transla-
tion in the formal language RT-LOTOS and simulated and checked by using the
model checker RTL.

These works constitute the most interesting used for checking UML models.
They propose, on the one hand, the UML diagrams transformation towards a
formal language, and on the other hand, they transform UML diagrams into a
formal language and then reason about the resulted specifications. These works
generally offer tools allowing automating the transformation and checking pro-
cess. According to this study, we noted that the suggested approaches consider
only object oriented models. Generally, few diagrams are considered. Some other
works tried to deal with static and dynamic aspects as well. However, they re-
stricts their interest to object oriented approaches.

3 The Validation Approach

In our approach [17], [18], the architecture modeling is conducted following three
steps. The first step describes the structural aspect in terms of components
and connections. The second step describes the dynamic aspect in terms of
reconfiguration rules allowing the architecture evolution to be modeled. The
third step describes the application order of reconfiguration rules. These three
steps are in link and the passage from a stage to another is conditioned by
applicability of rules.

We propose in the sequel, a framework for validating the generated specifi-
cations according to their profiles. Our approach offers intra-profile validation
rules allowing to check coherence between a specification and its profile. These
rules are used to facilitate the identification of possible inconsistencies, to detect
and correct specification errors and to ensure thus the specification conformity
compared to its profile. Our approach also offers inter-profile validation rules
allowing to assist the architect to make the passage from an aspect to another.
These rules allow to reduce the errors and to automate the passage process. We
describe in the following, some of these rules.

3.1 Intra-profile Validation

As described in equation (1), our model is defined by three profiles “Structural-
Profile”, “DynamicProfile”, “CoordinationProfile” and by inter-profile rules.

Model
def
=<StructuralProfile,DynamicProfile, CoordinationProfile, RinterProf >

(1)

162 M. Hadj Kacem et al.

3.1.1 The Structural Aspect
The structural profile defines component types used in the system and types
of connections linking these components. It also defines architectural properties
which must be satisfied by all configurations belonging to the architectural style.
This profile extends the UML2.0 component diagrams. As depicted in figure 1
(a), the structural profile is described by a set of concepts allowing to describe
the architecture structure. To describe the structural aspect, we propose a new
notation depicted by figure 1 (b).

Structural Profile

OCL

« Guards » « StructuralProfile »

« StructuralName »

1

1

1

« StructuralFeature »

Constraint

Connector

Port

Interface

2..* 1..*

0..*

1..*

+/required +/provided

0..*0..*

ConnectorKind

Delegation

Component

enumeration

h
a
s

Assembly « Guards »

« StructuralFeature »

« StructuralName »

expressed

Fig. 1. (a)The Structural Profile and (b)The Structural Notation

– Meta-model rules

As described in equation (2), a “StructuralProfile” is composed of a “Struc-
turalName”, a “StructuralFeature”, a “Guards” and a set of intra-profile
rules. The “Guards” part is expressed by zero or several constraints de-
scribed using OCL.

StructuralProfile
def
=< StructuralName,StructuralFeature,Guards,Rintra >

(2)

The “StructuralFeature” is composed of two or several “Components” and
one or several “Connectors” (3). A “Component” can be composed of zero
or several “Components” and it contains one or several “Ports”.

StructuralFeature
def
= < Component, Connector > /

Component = {Cp1, Cp2, ..., Cpn} With n ≥ 2 and
Connector = {Ct1, Ct2, ..., Ctm} With m ≥ 1

(3)

A “Connector” establishes the link between two “Components” via two
“Ports” and it can be of “Assembly” (4) or of “Delegation” type (5).

An UML-Based Approach for Validation 163

A “Port” must have an “Interface” of required and/or provided type. The
Interface type is given by the “TypeI ” function.

∀ Ct ∈ Connector/ TypeC(Ct) = assembly ⇒
∃ Cp1, Cp2 ∈ Component �
∃ P1 ∈ PortComp(Cp1) and ∃ P2 ∈ PortComp(Cp2) �
∃ I1 ∈ InterfacePort(P1) and
∃ I2 ∈ InterfacePort(P2) and
TypeI(I1) �= TypeI(I2) and (I1, I2) = Ct

(4)

∀ Ct ∈ Connector /Type(Ct) = delegation ⇒
∃ Cp1, Cp2 ∈ Component and
∃ P1 ∈ PortComp(Cp1) and
∃ P2 ∈ PortComp(Cp2) and
∃ I1 ∈ InterfacePort(P1) and
∃ I2 ∈ InterfacePort(P2) and
TypeI(I1) = TypeI(I2) and (I1, I2) = Ct

(5)

– Model rules

Other rules independent of the profile can be also added in order to better
specify an architecture. These rules are related to the specification.
A “Component” (6) and a “Connector” (7) in an architecture are each iden-
tified by one name. The Component name is given by the “NameComp”
function and the Connector name is given by the “NameConnect” function.

∀ Cp1, Cp2 ∈ Component � NameComp(Cp1) �= NameComp(Cp2) (6)

∀ Ct1, Ct2 ∈ Connector � NameConnect(Ct1) �= NameConnect(Ct2) (7)

A “Port” is identified by one name within a “Component”. Within a “Port”,
an “Interface” is identified by one name (8). The interface name is given by
the “NameI ” function. The “PortComp” function gives the list of the ports
within same Component.

∀ Cp ∈ Component /
∀ P, ∈ PortComp(Cp) and
∀ I1, I2 ∈ InterfacePort(P) and
NameI(I1) �= NameI(I2)

(8)

3.1.2 The Dynamic Aspect
The dynamic profile allows to describe the various reconfiguration rules allowing
to describe architecture evolution in terms of creation and removal of compo-
nents and connections. This profile extends UML2.0 component diagrams. It is
described by a set of concepts allowing to describe the dynamic of a software ar-
chitecture depicted by figure 2 (a). To describe the dynamic aspect, we propose
the new notation depicted by figure 2 (b).

164 M. Hadj Kacem et al.

Dynamic Profile

« DynamicFeature »

« Require & Delete »

« Insert »

« Require & Preserve »

« ReconfigurationRuleName »

« ReconfigurationRule »

OCL

expressed

« Guards »

Constraint

Connector

Port

Interface

1..* 0..*

0..*

1..*

+/required +/provided

0..*0..*

ConnectorKind

Delegation

Component

enumeration

h
a
s

Assembly

1..*

« Guards »

« ReconfigurationRuleName »

« require & delete » « require & preserve » « insert »

1

1

1

1

1
1

Fig. 2. (a) The Dynamic Profile and (b) The Dynamic Notation

– Meta-model rules
As described in equation (9), a “DynamicProfile” is defined by a set of “Re-
configurationRules”. Each “ReconfigurationRule” is defined by a “Reconfig-
urationRuleName”, by the “DynamicFeature”, by the “Guards” and by the
Intra-profile rules (9).

DynamicProfile
def
= < ReconfigurationRuleName,DynamicFeature,

Guards,Rintra >
(9)

The “Guards” is expressed by zero or several OCL constraints (10).
Guards

def
= {C1, C2, ..., Cn}/

|Guards| ≥ 0 and
∀i ∈ {1, ..., n} � Ci is an OCL constraint

(10)

The “ReconfigurationRule” is represented by “Components”, “Connectors”,
“Ports” and “Interfaces” instances. A “DynamicFeature” is composed of a
“Require&Delete”, “Require&Preserve” and “Insert” parts (11).

DynamicFeature
def
= < Require&Delete,Require&Preserve, Insert > (11)

The “Require&Delete”, “Require&Preserve” (12) and “Insert” parts are
composed, each one, of zero or several “Component” instances and zero or
several “Connector” instances.

Require&Preserve
def
= < IComponent, IConnector > /

IComponent = {ICp1, ICp2, ..., ICpn} With n ≥ 2 and
IConnector = {ICt1, ICt2, ..., ICtm} With m ≥ 1

(12)

An UML-Based Approach for Validation 165

Coordination Profile

« ReconfigurationRuleNode »

1..*

« CoordinationName »

« CoordinationFeature »

1
« CoordinationProfile »

1

DecisionNodeInitialNode

ControlNode

FinalNode

1..*

1 1..* 1..*

Link

1..*

SynchronousNode

1..*

« CoordinationName »

« CoordinationFeature »

Fig. 3. (a) The Coordination Profile and (b) The Coordination Notation

– Model rules

Other independent profile rules can be also added in order to better specify
the architecture evolution.
The “Component” instance name is post fixed by : NameComp. A “Com-
ponent” (13) and a “Connector” instance (14) are identified by only one
name.

∀ ICp1, ICp2 ∈ IComponent � NameComp(ICp1) �= NameComp(ICp2) (13)

∀ ICt1, ICt2 ∈ IConnector � NameConnect(ICt1) �= NameConnect(ICt2)
(14)

3.1.3 The Coordination Aspect
The description of the structural aspect and the dynamic aspect is necessary but
insufficient to describe the architecture evolution. For that, we add the coordi-
nation profile in order to describe the organization and the sequence between
various reconfiguration Rules described on the dynamic aspect. This profile, as
depicted by figure 3 (a), is based on UML2.0 notation and extends activity
diagrams. To describe the coordination aspect, we use the UML2.0 notation
proposed by activity diagrams depicted by figure 3 (b).

– Meta-model rules

As described in equation (15), a “CoordinationProfile” is defined by a “Co-
ordinationName”, a “CoordinationFeature” and intra-profile rules (15).

CoordinationProfil
def
=< CoordinationName, CoordinationFeature,Rintra >

(15)

166 M. Hadj Kacem et al.

A “CoordinationFeature” is composed of one or several “Reconfiguration
RuleNodes”, one or several “ControlNodes” and one or several “Links” (16).

CoordinationFeature
def
= < ReconfigurationRuleNode, ControlNode, Link > /

ReconfigurationRuleNode = {Rop1, Rop2, ..., Ropn}
With n ≥ 1 and
ControlNode = {Rn1, Rn2, ..., Rnk}
With m ≥ 1 and
Link = {L1, L2, ..., Lk} With k ≥ 1

(16)

A “ControlNode” is composed of an “InitialNode”, one or several “Deci-
sionNodes”, one or several “SynchronousNodes” and one or several “FinalN-
odes” (17).

ControlNode
def
=<InitialNode,DecisionNode, SynchronousNode, F inalNode>/

InitialNode = In
DecisionNode = {Dn1, Dn2, ..., Dnl} With l ≥ 1 and
SynchronousNode = {Sn1, Sn2, ..., Snk} With k ≥ 1 and
FinalNode = {Fn1, Fn2, ..., Fnh} With h ≥ 1

(17)

– Model rules
Other independent profile rules can be added in order to better specify the
coordination between various reconfiguration Rules.
A “ReconfigurationRuleNode” exists only in one occurrence and is identified
by a single name. The “Link” establishes a link either between a “Reconfig-
urationRuleNode” and a “ControlNode”, or between a “ControlNode” and a
”ControlNode”, or between a “ControlNode” and a “ReconfigurationRuleN-
ode” (18).

∀ L ∈ Link� ∃ Ropni, Ropnj ∈ ReconfigurationRuleNode and
∃ Rcnn, Rcnm ∈ ControlNode / ⇒
(Ropni, Ropnj) = L With i �= j or
(Ropni, Rcnn) = L or
(Rcnn, Rcnm) = L With n �= m or

(18)

A “CoordinationFeature” always starts with only one “InitialNode” and it
ends with one or several “FinalNodes”.
A “ReconfigurationRuleNode” can have only one “Link” in input and only
one “Link” in output. A “InitialNode” admits only one “Link” in output and
zero “Link” in input. A “FinalNode” admits only one “Link” in input and
zero “Link” in output. “DecisionNodes” and “SynchronousNodes” admit one
or several “Links” in input and one or several “Links” in output.

3.1.4 The Meta-modeling Validation
For the intra-profile validation, we used, as depicted by figure 4, the MOF ap-
proach. In the meta-model level, we define our three profiles: structural, dynamic
and the coordination profile. For each profile, we define a set of rules defined ac-
cording to the meta-model. On the model level, we define the three aspects: the

An UML-Based Approach for Validation 167

Model

Meta-Model

M1

M2Dynamic Profile Coordination Profile

Structural Aspect Coordination Aspect

meta-model Rules

Model Rules

Structural Profile

XML Schema XML Schema XML Schema

XML FileXML File XML FileXML FileXML File

Dynamic Aspect

Fig. 4. The meta-modeling validation

structural, the dynamic and the coordination aspects. For each aspect, we define
a set of rules defined according to the model. Based on the MOF approach, the
model is validated according to its meta-model.

In this intention, we defined for each profile an XML schema which trans-
lates the M2 level of the MOF approach and implements the meta-model rules.
Then, and for each profile, different XML files will be generated. One file for the
structural aspect, several files for the dynamic aspect according to the number
of the reconfiguration rules and one file for the coordination aspect. These files
are generated automatically thus ensuring their conformity compared to their
XML Schema.

3.2 Inter-profile Validation

In addition to the intra-profile validation, we define, as depicted by figure 5, a
second validation type, the inter-profile validation. This rule-based validation,
allows to assist architects and to automate the passage from the structural profile
towards the dynamic profile and from the dynamic profile towards the coordi-
nation profile.

Dynamic Profile Coordination ProfileRs v d Rd v cStructural Profile

Fig. 5. The Inter-Profile relations

3.2.1 Structural Towards Dynamic

– Each “Component” instance in the “DynamicFeature” part corresponds to
a “Component” in the “StructuralFeature” part.

– Each “Connector” instance in the “DynamicFeature” part corresponds to a
“Connector” in the “StructuralFeature” part.

168 M. Hadj Kacem et al.

FUJABA

Graph
transformation

Code
generator

Graphical
Editor

Plug-in
Control

Structurel
Aspect

Dynamic
Aspect

Coordination
Aspect

Plug-in
Architecture

XML
generator

XML
validator

Fig. 6. Our FUJABA extension

– Each “Port” instance in the “DynamicFeature” part corresponds to a “Port”
in the “StructuralFeature” part.

– Each “Interface” instance in the “DynamicFeature” part corresponds to an
“Interface” in the “StructuralFeature” part.

3.2.2 Dynamic Towards Coordination

– Each “ReconfigurationRuleNode” in the “CoordinationFeature” part cor-
responds to a “ReconfigurationRule” in the “DynamicFeature” part after
elimination of parameter names.

– Each “ControlNode” in the “CoordinationFeature” part is specified by one
or several OCL constraints in the “Guards” of “ DynamicFeature” part.

4 Implementation

We extended the FUJABA tool in order to support our approach. FUJABA [19],
[20] is free, open source and allows modifying the source code and adding plug-in
allowing to integrate our profiles and to validate our specifications. It supports
UML2.0 notation.

As depicted by figure 6, the plug-in that we implemented and integrated in
FUJABA offers three functions: the notation integration, the XML generator and
the XML validator. It allows, to implement and to integrate our new notations
in the FUJABA. As depicted in the appendix, our plug-in allows to translate
the graphical notation and to generate automatically, the XML files allowing
to describe the graphical specification with the new notations. Our plug-in also
ensures the validation of the generated XML files. It ensures that the document
is well-formed and it ensures the validation of XML file compared to its XML
Schema according to the MOF approach.

An UML-Based Approach for Validation 169

5 Conclusion

Our research consists in extending UML2.0 notation to describe dynamic soft-
ware architecture. We define the structural, dynamic and the coordination pro-
files allowing to describe the software architecture. We proposed in this pa-
per an approach allowing to validate a software architecture compared to its
meta-models. We proposed a rule-based validation approach. Our approach of-
fers intra-profile and inter-profile validation rules allowing designers to validate
a software architecture. The intra-profile rules allow checking the specification
coherence compared to its profile and the inter-profile rules allow assisting the
passage from a profile to another. Our approach supports the MDA technique
and offers extensions to FUJABA tool and was tested with two case studies: the
patients monitoring system and the co-operative review system.

Once we obtained a valid specification in accordance with the intra-profile and
the inter-profile rules, we translate the generated XML files into the Z language
according to a defined grammar. We currently work on the verification aspect.
We seek to verify essentially two properties: the architecture consistency which
consists in proving the existence of at least a possible architecture configuration.
The conformity which consists in proving that the architectural style is preserved
when reconfigurations are applied.

References

1. OMG: MDA guide version 1.0.1, document number: omg/2003-06-01. OMG docu-
ment (2003)

2. Lopes, D., Hammoudi, S., Bézivin, J., Jouault, F.: Generating transformation defi-
nition from mapping specification: Application to web service platform. In: Pastor,
Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 309–325. Springer,
Heidelberg (2005)

3. Bouabana-Tebibel, T., Belmesk, M.: Formalization of UML object dynamics and
behavior. In: SMC’05: Proceedings of the IEEE International Conference on Sys-
tems, Netherlands, 10-13 October, pp. 4971–4976. IEEE Computer Society Press,
Los Alamitos (2004)

4. Astesiano, E., Reggio, G.: Towards a well-founded UML-based development
method. In: SEFM’03: 1st International Conference on Software Engineering and
Formal Methods, Brisbane, Australia, 22-27 September 2003, p. 102 (2003)

5. OMG: Meta object facility (MOF) specification (version 1.3). OMG document,
Object Management Group: 2001-03-08 (2000),
ftp://ftp.omg.org/pub/docs/formal/00-04-03.pdf

6. Legeard, B., Peureux, F., Utting, M.: Automated boundary testing from Z and B.
In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 21–40.
Springer, Heidelberg (2002)

7. Abrial, J.-R.: B#: Toward a Synthesis between Z and B. In: Bert, D., Bowen, J.P.,
King, S. (eds.) ZB 2003. LNCS, vol. 2651, pp. 168–177. Springer, Heidelberg (2003)

8. France, R.B., Bruel, J.-M., Larrondo-Petrie, M., Shroff, M.: Exploring the seman-
tics of UML type structures with Z. In: FMOODS ’97: Proceeding of the IFIP
TC6 WG6.1 international workshop on Formal methods for Open Object-Based Dis-
tributed Systems, pp. 247–257. Chapman and Hall, Ltd., London, UK, UK (1997)

ftp://ftp.omg.org/pub/docs/formal/00-04-03.pdf

170 M. Hadj Kacem et al.

9. Kim, S.-K., Carrington, D.A.: A formal model of the UML metamodel: The UML
state machine and its integrity constraints. In: Bert, D., Bowen, J.P., Henson, M.C.,
Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 497–516. Springer,
Heidelberg (2002)

10. Laleau, R., Mammar, A.: An Overview of a Method and its Support Tool for
Generating B Specifications from UML Notations. In: ASE ’00: Proceedings of the
15th IEEE international conference on Automated software engineering, p. 269.
IEEE Computer Society Press, Washington, DC, USA (2000)

11. Apvrille, L., Courtiat, J.-P., Lohr, C., de Saqui-Sannes, P.: TURTLE: A Real-
Time UML Profile Supported by a Formal Validation Toolkit. IEEE Trans. Softw.
Eng. 30, 473–487 (2004)

12. Csertan, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varro, D.: VIATRA:
Visual automated transformations for formal verification and validation of UML
models. In: ASE ’02: Proceedings of the 17th IEEE international conference on
Automated software engineering, Edinburgh, Scotland, UK, 23-27 September 2002,
pp. 267–270. IEEE Computer Society, Los Alamitos (2002)

13. Dupuy, S., Ledru, Y., Chabre-Peccoud, M.: An overview of RoZ: A tool for inte-
grating UML and Z specifications. In: Wangler, B., Bergman, L.D. (eds.) CAiSE
2000. LNCS, vol. 1789, pp. 417–430. Springer, Heidelberg (2000)

14. Schmidt, A., Varro, D.: CheckVML: A tool for model checking visual modeling
languages. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003 - The Unified
Modeling Language. Modeling Languages and Applications. LNCS, vol. 2863, pp.
92–95. Springer, Heidelberg (2003)

15. Latella, D., Majzik, I., Massink, M.: Automatic verification of a behavioural subset
of UML statechart diagrams using the SPIN model-checker. Formal Aspects of
Computing 11, 637–664 (1999)

16. Shen, W., Compton, K., Huggins, J.: A toolset for supporting UML static and
dynamic model checking. In: COMPSAC’02: Proceedings of the 26th International
Computer Software and Applications Conference on Prolonging Software Life: De-
velopment and Redevelopment, pp. 147–152. IEEE Computer Society Press, Wash-
ington, DC, USA (2002)

17. Hadj Kacem, M., Miladi, M.N., Jmaiel, M., Hadj Kacem, A., Drira, K.: Towards a
UML profile for the description of dynamic software architectures. In: COEA’05:
The International Conference on Component-Oriented Enterprise Applications, Er-
furt, Germany. Lecture Notes in Computer, pp. 25–39 (2005)

18. Hadj Kacem, M., Jmaiel, M., Hadj Kacem, A., Drira, K.: Describing dynamic
software architectures using an extended UML model. In: SAC’06: The 21st Annual
Symposium on Applied Computing, Track - Model Transformation, ACM SIG
Proceedings. Dijon, France, April 23-27, 2006, vol. 2, pp. 1245–1249. ACM Press,
New York (2006)

19. Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, M.: The Fujaba real-time
tool suite: Model-driven development of safety-critical, real-time systems. In: Proc.
of the 27th International Conference on Software Engineering (ICSE), St. Louis,
Missouri, pp. 670–671. ACM Press, New York (2005)

20. Kohler, H.J., Nickel, U., Niere, J., Zundorf, A.: Integrating UML diagrams for
production control systems. In: ICSE’00: Proceedings of the 22nd international
conference on Software engineering, pp. 241–251. ACM Press, New York, NY, USA
(2000)

An UML-Based Approach for Validation 171

Appendix. The conformity between the proposed notation and XML file of the
structural profile.

4

25

3

6

1

<StructuralFeature>
<Component>
 <NameComponent NameComponent="Event_Service"/>

</Component>

<Port>
<NamePort NamePort="Event_Service.p1"/>
 <Interface Type="Required">

<NameInterface NameInterface="Event_Service.p1.P"/>
 </Interface>

 </Port>

2

<ProjectName ProjectName="PMS"/>
 <StructuralProfil>
 <StructuralName StructuralName="Style Architectural PMS"/>

1

</StructuralFeature>

<Connector Type="Assembly">
<NameConnector NameConnector="SE.p1.P_TO_Pat.p1.P"/>
</Connector>

5

<Guards>

</Guards>

<Constraint>Event_Service->size() <= 3 and Event_Service->size()>0 </Constraint>
 <Constraint>Event_Service->forAll(Event_Service.nurse->size() <5 and Event_Service.patient->size()<15) </Constraint>
 <Constraint>Patient->forAll(Patient.event_Service->size()=1) </Constraint>
 …

6

 <Port>
<NamePort NamePort="Event_Service.p2"/>
 <Interface Type="Required">

<NameInterface NameInterface="Event_Service.p2.N"/>
 </Interface>

 </Port>

 <Port>
<NamePort NamePort="Event_Service.p3"/>
 <Interface Type="Provided">

<NameInterface NameInterface="Event_Service.p3.S"/>
 </Interface>

 </Port>

 <Port>
<NamePort NamePort="Event_Service.P4"/>
 <Interface Type="Provided">

<NameInterface NameInterface="Event_Service.P4.T"/>
 </Interface>

 </Port>

<Connector Type="Assembly">
<NameConnector NameConnector="SE.p2.N_TO_Inf.p1.N"/>
</Connector>

<Connector Type="Assembly">
<NameConnector NameConnector="Pat.p2.S_TO_SE.p3.S"/>
</Connector>

<Connector Type="Assembly">
<NameConnector NameConnector="Inf.P2.T_TO_SE.P4.T"/>
</Connector>

<Connector Type="Assembly">
<NameConnector
NameConnector="Pat.P3.M_TO_Inf.P3.M"/>

<Connector Type="Assembly">
<NameConnector NameConnector="Inf.P4.R_TO_Pat.P4.R"/>
</Connector>

Integration of an Action Language

Via UML Action Semantics

Claudius Heitz, Peter Thiemann, and Thomas Wölfle

Institut für Informatik, Universität Freiburg
Georges-Köhler-Allee 079, 79110 Freiburg, Germany

cheitz@informatik.uni-freiburg.de
thiemann@informatik.uni-freiburg.de

thomas.woelfle@interactive-objects.com

Abstract. Transformations play a central role in MDA. A desirable
goal of MDA is to obtain the complete source code by model transfor-
mations. Currently, it is hard to achieve this goal using UML models
because UML’s standard graphical notation alone cannot express the
detailed behavior of operations and transitions. Action languages are a
means of addressing this shortcoming.

The paper investigates different means of integration of action lan-
guages in an MDA development environment. The focus is on tool in-
teroperability and on the amenability of the representation of the action
language to model transformations. We identify UML Action Semantics
as a promising candidate representation for action languages and im-
plement an integration of ABL, an action language for business logic,
using this approach. This integration achieves 100% code generation for
a small example, but our evaluation shows that the use of UML Action
Semantics is not the most practical approach.

Keywords: UML Action Language, UML Action Semantics, Model
Driven Architecture (MDA), model to code transformation, behavioral
modeling.

1 Introduction

A central point of MDA, the Model Driven Architecture [11], is to specify soft-
ware with models and use model transformations to generate a large part of the
source code. UML, the Unified Modeling Language, is the OMG’s language of
choice for modeling. Unfortunately, UML’s notation is not sufficiently detailed
to fully define the behavior of operations and transitions. Examples for the re-
quired degree of detail are attribute assignment, link creation, and the operation
call. Thus, a UML model with standard graphical notation cannot completely
specify the behavior of a software system so that model transformations cannot
generate 100% of the source code. But the latter is a desirable goal of MDA be-
cause the current practice to insert target code fragments in generated code has
its problems. Although techniques (like protected areas) exist for managing such

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 172–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Integration of an Action Language 173

code fragments, they come with many disadvantages: the code breaks abstrac-
tion, it requires knowledge about the transformation and the target platform,
and changes in the model can break the code.

In UML 1.5, the OMG introduced Action Semantics [14] to facilitate the
complete description of behavior. While UML Action Semantics provides the
required facilities up to a certain degree, it is also not without problems (see
Section 7 for a discussion). Certainly, UML Action Semantics is too low-level to
be suitable as a programming language for defining operations.

Consequently, action languages have been conceived as high-level program-
ming languages for defining operations in UML Class Diagrams or transitions in
UML State Machines. Currently, there are about 15 different action languages,
which are often proprietary extensions of UML which are not interoperable: it is
hardly possible to interchange the action language parts of models between dif-
ferent tools because the action languages are all different and they are integrated
with UML in different ways.

The facilities to integrate action languages in UML have different properties
concerning tool interoperability and the amenability to model transformations
of the representation of the action language. Both are core points in the MDA
approach and thus important to consider. Section 4 compares two integration
paths and discusses their properties.

As a result of this discussion, we have chosen to represent actions in the
model with UML Action Semantics, while presenting the developer a newly de-
fined action language ABL (Action Language for Business Logic). In this setup,
we demonstrate with an example that 100% code generation is feasible. We
implemented this integration in a prototypical extension of ArcStyler. The im-
plementation shows that the chosen integration via UML Action Semantics is
currently not the most practical approach. The main reason is the low level na-
ture of UML Action Semantics that makes some transformations very awkward.

The rest of the paper proceeds as follows. Section 2 considers the require-
ments of an integration of an action language in UML and an MDA development
environment. Section 3 contains a brief introduction to UML’s UML Action Se-
mantics as a participant in one possible integration path. Section 4 presents two
facilities to integrate action languages in UML and compares them. Section 5 in-
troduces the action language ABL. Section 6 explains the transformations in the
implementation for UML Action Semantics. Section 7 contains a final, detailed
discussion of the pros and cons of using UML Action Semantics for integrating
an action language. Section 8 reviews related work and Section 9 concludes.

2 Requirements for an Integration

An MDA development environment is a set of interoperable tools that support
the use of models throughout the lifecycle of the software development. A key
feature is the ability to transform higher-level models (specifications) into lower-
level ones (e.g., code) without human intervention. The range of transforma-
tions includes the generation of source code, tests, and build support. Thus, any

174 C. Heitz, P. Thiemann, and T. Wölfle

additional kind of model in an MDA development environment has to be judged
by its amenability to transformation.

A modeling language integrated with an action language also needs tool sup-
port. A good integration should be interoperable, i.e., it should not depend on
any particular tool implementation. Hence, models that contain action language
fragments should be readable by other tools and (in the best case) even the
transformations should be interchangeable. An integration may support inter-
operability at three different levels.

A flat integration includes actions in a representation the structure of which
is not obvious to other tools. For example, the action language code may be a
comment string in the model. Such a choice enables a minimum level of inter-
operability. Other tools can read UML models containing actions and process
everything except the action language parts. A transformation may render ac-
tions inconsistent with the rest of the model.

In a structured integration other tools can parse the action language parts.
This alternative requires the choice of a standardized syntax for representing
the action language. After parsing, the action language parts are amenable to
transformation in this approach.

Semantic integration is the third level of interoperability. In addition to the
structured integration, there is a predefined semantics for the standardized syn-
tax. This choice facilitates editing the action language parts and perform names-
pace and type checks, at the price of requiring a compiler for the representation
of action languages.

Hence, the requirements for integrating the action language in UML and an
MDA environment are:

– A representation of the action language in the model that enables one of
the three integration levels; in the best case a semantic integration with full
control over the representation of action languages.

– A representation that is amenable to transformations, without requiring ex-
tensions to the transformation framework.

3 Background: UML Action Semantics

Action Semantics was incorporated in UML 1.5 with the explicit goal of specify-
ing an abstract syntax for defining low-level fine-grained behavior of operations
on instances of UML Class Diagrams. At the time of designing the UML Ac-
tion Semantics some action languages already existed (ASL[4], OAL[1,7], Kabira
AS[6]), which had to be amenable to transformation to UML Action Semantics.
Hence, the following properties of UML Action Semantics:

– possibly parallel execution of actions, driven by data dependencies and or-
dered by explicit control dependencies,

– no restrictions concerning the type system (static or dynamic typing),
– no predefined primitive data types and primitive functions,
– flexible messaging system (synchronous or asynchronous),

Integration of an Action Language 175

– no predefined JumpActions but facilities to define any kind of control
transfer,

– flexible handling of collections.

An UML Action Semantics model consists of actions connected by data-flow
and control-flow dependencies. Each action comes with a number of InputPins
and OutputPins through which the action communicates with its environment.
A data-flow dependency exists if an InputPin of an action connected to an Out-
putPin of another action. A DataFlow element models this connection1. There
is no fan-in but fan-out is admissible. An action executes after all its InputPins
have values and afterwards its result is available through its OutputPins.

All actions that have their inputs available may execute, possibly in parallel.
The only ordering that must be observed is due to data-flow dependencies or to
explicit control-flow dependencies expressed by separate ControlFlow elements
in the model. Both kinds of dependencies together must form a directed acyclic
graph. The idea is to prevent overspecification and to enable scheduling for
optimization purposes.

4 Integration Paths

There are two main approaches to integrating an action language in UML and an
MDA development environment. The first approach is to put an action language
code fragment in the body of a UML ProcedureExpression. The second approach
transforms actions into UML Action Semantics as an abstract syntax.

A UML ProcedureExpression is an uninterpreted textual statement2. Accord-
ing to the semantics, a ProcedureExpression can be evaluated in a context, possi-
bly return values, or change the values of its environment. It may contain action
language code as a string and thus corresponds to a flat integration. The inte-
gration is neither structured nor semantic because it cannot be assumed that
every tool comes with a parser for the action language.

This approach is fully compatible with the UML specification and takes only
little effort to implement. Without a parser for the action language, a model
transformation cannot analyze the structure of the actions and, thus, cannot
transform them in a nontrivial way.

Turning to the second approach, UML Action Semantics offers all constructs
necessary to represent the semantics of an action language in UML. Every tool
that supports UML 1.5 or higher should be able to parse UML Action Semantics.
Transformations may directly access the parsed action representation and trans-
form it into a target language. Hence, a representation of an action language
using UML Action Semantics is amenable to transformation.

1 In UML 2.0, the DataFlow element does not exist anymore. OutputPins can be
connected directly to InputPins.

2 UML 1.5 [14], p. 2-90. In UML 2.0 [16] the respective element is called OpaqueEx-
pression. See UML 2.0 superstructure, p. 97.

176 C. Heitz, P. Thiemann, and T. Wölfle

The model elements in UML Action Semantics are already connected with
respective elements in the rest of the UML model (e.g., Attributes, Associa-
tions, Operations, Classifier). Like the rest of UML, UML Action Semantics is
defined in MOF and has a semantics described in natural language. Hence, the
integration using UML Action Semantics is a semantic integration as defined in
Section 2.

The use of UML Action Semantics might also improve interoperability by
serving as a common internal representation for actions across different action
languages. Each action language would come with a transformation to UML
Action Semantics and a common backend would generate code for different target
platforms from there. Alternatively, an interpretive approach could be used to
execute actions directly.

For our prototype, we have chosen the integration path via UML Action
Semantics because we were aiming for a semantic integration, we hoped for
the interoperability promise inherent in adhering to a standard, and we wanted
to exploit the existence of the UML Action Semantics metamodel. This choice
has turned out to be unsatisfactory in a number of respects which we summarize
in Section 7.

5 ABL, the Action Language for Business Logic

ABL is our proposal for an action language for business logic. Many aspects of
ABL are inspired by Java, which is a language commonly used for implementing
enterprise systems. Its description is included mainly to shed some light on the
source language of our translation to UML Action Semantics, which is covered
in Section 6. Hence, we only consider parts of the language with significant
differences to Java.

5.1 Types and Variables

As ABL is geared at defining the behavior of operations from a class diagram, the
language has no syntax to define types (e.g., classes, interfaces, enumerations),
attributes, or operations. The class diagram must provide definitions for all those
and ABL accesses them through the standard (package qualified) UML notation.

Local variable are considered as attributes of operation activations. Their dec-
laration syntax extends Java’s variable declarations with adornments to specify
orderedness, uniqueness, and multiplicity.

[ordered][unique] classifier [multiplicity] var [initializer]

A classifier from the model (or a primitive type) specifies the type of the
variable, the ordered and unique adornments modify the type accordingly, and
multiplicity is a multiplicity specification in UML 2 syntax restricted to the
numbers 0, 1, and *. The default multiplicity is [0..1].

A variable (or attribute) reference in an expression may be indexed (starting
from 0) to extract only some of the variable’s values. For example,

Integration of an Action Language 177

var[0..7] // extract the first eight values (at most)
var[1..*] // all but the first value
var[5] // at most one value

None of these expressions fails if the indices are out of range, they just return the
selected elements. Assuming the declaration T[*] var, the first two expressions
have type T[*] and the third one has type T[0..1].

There is no type constructor for arrays. Unidimensional arrays can be ex-
pressed through the multiplicity specification of a variable. Multidimensional
arrays must be constructed indirectly via an intermediate class with a sequence-
valued attribute.

5.2 Assignment Compatibility

Assignment compatibility is derived from the generalization relation among
model elements and from the additional multiplicity, ordering, and uniqueness
adornments. It is defined as the overloaded subtyping relation ≤. We start with
multiplicities, which are ordered as follows

[a..b] ≤ [c..d] if c ≤ a and b ≤ d

where a, b, c, d ∈ N ∪ {∗} with a ≤ b and c ≤ d with the latter defined by

a ≤ b if a, b ∈ N ∧ a ≤ b or b = ∗

Let A(m, o, u) denote an adorned type with base type A, multiplicity m,
isOrdered flag o, and isUnique flag u. Define the subtype ordering by

A(m, o, u) ≤ A′(m′, o′, u′) if A ≤ A′ and m ≤ m′ and o ≤ o′ and u ≤ u′

where o, u ∈ {true, false} with true ≤ false.
Type casts are quite important in ABL. Because of the adornments, there is a

greater chance that a computed value cannot be assigned directly to an attribute
or passed as a parameter.

5.3 Links

The assignment operators (=, +=, -=) also create and destroy links. The left hand
side of such an operator must be the role name of the target end of an association.
An unqualified identifier refers to an association in which the receiver object of
the operation (e.g., this) can participate at the source end. If the left hand side

ShoppingCart Item
contents

cart item

Fig. 1. Shopping cart

178 C. Heitz, P. Thiemann, and T. Wölfle

is a navigation expression, the last part of the navigation denotes the target end
of an association where the object returned by the initial part of the expression
can participate in a source role.

The right hand side denotes an object to which a link is created or destroyed.
For illustration, consider the situation in the diagram in Figure 1 and sup-

pose the ShoppingCart class has an operation addItem (Item it). Here is its
implementation in ABL, which assumes an attribute total in ShoppingCart:

item += it; // link item to shopping cart
total += it.unitCost * it.quantity; // compute the total attribute

ABL only supports binary associations where the association end at the nav-
igation target has a role name.

There is a for-each loop to iterate over a collection and execute the loop body
for each element of the collection. Any variable, attribute, or association end
may serve as the source for a collection. For example, an operation to check the
total cost of a shopping cart may be implemented by

checkTotal = 0;
for (Item it in item) {
checkTotal += it.unitCost * it.quantity;

}
if (checkTotal != total) { ...}

5.4 Create

Many programming languages have a problem with meeting the restrictions im-
posed by UML’s multiplicities. For example, it is not possible to create two
objects which partake in a 1:1 association in a mainstream programming lan-
guage because each implementation has to pick an order in which the objects
are created so that the first created object always violates the 1:1 constraint on
the association. UML addresses this problem by essentially ignoring the lower
multiplicity and always allowing 0 participants at an association end.

ABL has a create statement that groups the creation of objects and links in
an atomic operation. Here is an example use, which assumes a 1:1 association
hasAddress between Person and Address :

create {
Person p = new {firstname= "Gustav", lastname= "Gans"};
Address a = new { street= "Mainstr. 54"

, postcode= "64400"
, town= "Mahlbruch"};

p.hasAddress += a;
}

Create does not open a new scope so that p and a are accessible afterwards.

Integration of an Action Language 179

Code written in ABL
(Action Language
of Business
Logic)

Code written in
another action
language

UML Model

UML Action Semantics

ABL
Compiler

Code of a target
language e.g. Java

Code of another
target language
e.g. C#

Other
Compiler

MDA Tool
ArcStyler

Other
MDA Tool

UML Class Diagram

required transformations
to support interoperability

transformations implemented
in our prototype

UML State

Fig. 2. Transformations for integration

6 Transformations

The integration of an action language in an MDA development environment
using UML Action Semantics requires a number of transformations as illustrated
in Figure 2:

1. from the action language to UML Action Semantics,
2. from UML Action Semantics back to the action language,
3. from UML Action Semantics into a target language.

We investigate each of these transformations with ABL as the action language
and Java as target language. The last subsection evaluates a small example.

6.1 From ABL to UML Action Semantics

For the transformation into UML Action Semantics the parser framework
ANTLR3 serves as a foundation for creating the lexer, the parser, the type checker,
and the transformation. The parser first builds an ABL-specific abstract syntax
tree, performs namespace and type checking, and generates UML Action Seman-
tics elements as specified by an attribute grammar [5]. To perform the namespace
and type check, the compiler accesses the structural part of the model (Classifier,
Attributes, Operation definitions, . . .) through a JMI interface [3].

Practical Experiences. The transformation into UML Action Semantics is
awkward because of the complexity and generality of UML Action Semantics.
The required DataFlows and ControlFlows result in fairly complicated attribu-
tions in the attribute grammar.

3 http://www.antlr.org

http://www.antlr.org

180 C. Heitz, P. Thiemann, and T. Wölfle

ClassCastException : JumpAction

LOGICAL_NOT : PrimitiveFunction

:ReadIsClassifiedObjectAction

:AddVariableValueAction

aCustomer : Variable

:ApplyFunctionAction

aPerson : Variable :ReadVariableAction

:ConditionalAction

Customer : Class:HandlerAction

:JumpHandler

:ControlFlow :OutputPin

:OutputPin

:OutputPin

:DataFlow

:DataFlow

:DataFlow

:InputPin

:InputPin :InputPin:Clause

function

clause

test

variable

result

result

value

testOutput

body

argument

classifier

variable

successor

predecessor

result

body

assignment of
variable

class cast
exception

predefined types
and primitive functions

Fig. 3. UML Action Semantics model for the ABL type cast

In addition, UML Action Semantics can express some constructs of ABL only
in a contorted way. As a simple example, the semantics of the model element
CreateObjectAction does not include a call to a constructor. Hence, the “new”
operator and the “create” statement require an explicit call of their constructor.

As a more severe example, UML Action Semantics does not have an action
corresponding to a Java-style type cast operations which is also present in ABL.
One candidate for representing a cast is UML Action Semantics’s ReclassifyOb-
jectAction. However, this action changes the type of the object, unlike a cast
which only checks the type and throws an exception if the type does not fit the
expectations. Expressing the cast operation in UML Action Semantics requires
a structure of 14 elements: a JumpAction for the exception that is connected
through a ConditionalAction with a ReadIsClassifiedObjectAction. Figure 3 il-
lustrates this structure with the translation of

Customer aCustomer = (Customer) aPerson;

where aPerson has type Person which is a supertype of Customer.

Conclusion. The transformation from ABL to UML Action Semantics is pos-
sible. But as UML UML Action Semantics is very general and sometimes does
not offer the adequate constructs, the transformation is not straightforward and
leads to a large UML Action Semantics model.

Integration of an Action Language 181

6.2 From UML Action Semantics to Action Language

This transformation is important in two respects. First, as UML models are
saved in their abstract syntax, there must be a transformation to recreate the
action language syntax to facilitate further editing of the model. Clearly, editing
the abstract syntax of UML Action Semantics is not appropriate.

Second, interchanging models between different tools with different action
languages should not deprive the user from editing the model. Here the idea is
to use UML Action Semantics as the common interchange format between action
languages.

Unfortunately, none of the existing action languages can express all constructs
of UML Action Semantics directly. Hence, it is not realistic to expect a tool to
transform arbitrary UML Action Semantics models into its action language. As
most existing action languages are less expressive than UML Action Semantics
and differ from each other, it can be assumed that interoperation is currently
not achievable. One possible solution would be to require each action language
to be capable to represent every valid UML Action Semantics model. However,
this requirement is counterproductive because action languages should be DSLs
where full generality is often unnecessary.

In summary, UML Action Semantics is not suitable as an exchange format
between different action languages. Hence, the transformation from UML Action
Semantics in ABL or another action language is currently not helpful. However,
it remains desirable to have an adequate concrete syntax for editing the models.

6.3 From UML Action Semantics to Java

In our prototype the transformation from UML Action Semantics to Java takes
a UML model as input that contains UML Action Semantics elements. A trans-
formation from a model into a target language requires a tool that is capable
to perform model to text transformations. We use ArcStyler, a state of the art
MDA tool, for performing the model to code transformation. It offers a facility
to develop individual transformations from models with arbitrary MOF based
metamodels into arbitrary target languages. ArcStyler’s transformation engine
takes a UML 1.5 model and generates the code for Class and Interface definitions
as well as the whole body of Operations if they have a connected specification
in UML Action Semantics.

First, we explore the feasibility of a general transformation from UML Action
Semantics to Java. Then, we take a more pragmatic point and describe our
implemented translation.

General Feasibility. While it is clearly feasible to implement an interpreter
for UML Action Semantics that works on a generic object implementation (like
an OCL interpreter; of course, a compiler might be done on similar grounds), it
would be much harder to write a compiler that deals directly with native objects
because there are actions in UML Action Semantics that do not have a direct
Java counterpart.

182 C. Heitz, P. Thiemann, and T. Wölfle

For example, the CreateObjectAction can create objects with more than one
Classifier; the DestroyObjectAction that destroys objects; the ReclassifyObjec-
tAction can change the type of a given object at run time; a ConditionalAc-
tion, which has two or more Clauses and no clear ordering between them (with
predecessor- / successorClause links) and the isDeterminate flag being false, ex-
ecutes an arbitrary Clause whose testAction results in true. Java can express
none of these behaviors directly.

Pragmatic Approach. The source of many problems is that the transfor-
mation to Java is a many-to-one mapping because a Java expression, say, can
cover the behavior of multiple elements of UML Action Semantics. Often, two or
three elements in UML Action Semantics translate to one Java expression. The
transformation engine has to navigate over Pins, DataFlow and ControlFlow
elements to identify Java statements and expressions and to determine their ex-
ecution order. Such a transformation is difficult to implement for an arbitrary
UML Action Semantics model. Hence, our prototype transformation searches for
patterns generated by the ABL compiler and translates them to Java.

For example, the transformation assumes that every ApplyFunctionAction for
primitive functions like +, -, * or / has either one or two InputPins. The most
complex pattern of UML Action Semantics elements that the transformation
must recognize is the 14 element structure resulting from the translation of
ABL’s type cast operator.

To express primitive functions and jumps of an action language, the spe-
cific semantics of the UML Action Semantics elements PrimitiveFunction and
JumpAction have to be defined by a UML Profile. However, UML 1.5 has no
standard mechanism to import UML Profiles in model transformations. Our pro-
totype transformation assumes the Profile of the ABL compiler, which introduces
an unfortunate coupling between two tools which could be kept separate.

Finally, our transformation assumes that the model contains only a subset
of all possible UML Action Semantics elements. For example, the transforma-
tion cannot transform a DeleteObjectAction or a ReclassifyObjectAction into
Java.

Conclusion. The transformation that we implemented in ArcStyler performs
a model to code transformation from UML Action Semantics to Java. Because
UML Action Semantics has a number of constructs that cannot be expressed
directly, the transformation is limited to specific patterns drawn from a sub-
set of the UML Action Semantics. Furthermore, the model to code transfor-
mation needs to have implicit knowledge of the PrimitiveFunctions and the
JumpAction types that the ABL compiler uses, to facilitate the transformation
of PrimitiveFunctions and JumpActions into Java without using a UML Profile.
Hence, the transformation is only applicable to UML Action Semantics struc-
tures generated by the ABL compiler. This choice is pragmatically viable, but
it does not reach the goal of interoperability between different tools and action
languages.

Integration of an Action Language 183

6.4 Evaluation of an Example

We implemented two of the three transformations described above in our pro-
totype: the transformation from ABL to UML Action Semantics using ANTLR
and the transformation from UML Action Semantics to Java using ArcStyler.
We have tested our prototype with a small example that is delivered together
with ArcStyler: the Shapes sample. It illustrates the basic modeling capabili-
ties of ArcStyler and uses plain Java as its target language. We extend the UML
model by implementing the given operations in ABL and by adding some further
operations. Together with ArcStyler’s capabilities to generate the infrastructure
code we are able to generate the complete source code for the extended Shapes
sample.

7 On the Choice of UML Action Semantics

The choice of using UML Action Semantics for our integration has a number
of advantages but there are also severe limitations. The advantages are the ex-
istence of the standardized metamodel written in MOF, the (mostly) defined
semantics, the tight connection with the UML model, and sufficient expressive-
ness for almost all action languages.

But the generality and the complex metamodel also lead to problems. First,
there are neither publicly available tools that implement UML Action Semantics,
nor tools that can generate UML Action Semantics models from a description in
an action language. There is neither an execution engine nor a model compiler.
But as UML Action Semantics is an OMG standard there is a chance that
someday there are tools that implement this standard.

Second, an implementation of UML Action Semantics is difficult because it
has a complex metamodel with about 60 metaclasses. UML Action Semantics is
very general to offer the necessary constructs for all kinds of action languages
and thus has a lot of metaclasses and features, for example for sending messages,
flexible jumps, or concurrent execution.

Third, while most of the semantics UML Action Semantics is informally de-
fined, any model using it still requires an additional Profile for JumpActions
and primitive functions a. Hence, UML models with UML Action Semantics
parts cannot be used in different tools because these tools cannot automatically
import the required UML Profiles.

Fourth, UML Action Semantics lacks some actions to conveniently express the
constructs of existing languages in a natural way. The most glaring example is
the lack of a facility to express a type cast. This lack leads to bloated translations
and to unreadable UML Action Semantics models.

Fifth, the flexibility of UML Action Semantics blows up the model and makes
it difficult to formulate transformations. Because of its fine granularity and low
level of abstraction, UML Action Semantics often needs many elements to rep-
resent one ABL construct, so that a general transformation from arbitrary UML
Action Semantics to a given language can get very complicated. Furthermore,

184 C. Heitz, P. Thiemann, and T. Wölfle

the low level of abstraction does not offer any benefit in our project because the
transformation into Java has to reduce this granularity again.

8 Related Work

Other researchers also see problems with the suitability of UML Action Se-
mantics for modeling the detailed behavior in a UML model. At the time of
standardization of UML Action Semantics, Clark, Evans, Moore, Venkatesh and
Weigert had severe doubts of the suitability of UML Action Semantics [12].
They raise points very similar to the problems identified in our work, for exam-
ple the low level of abstraction, the problems for interchanging the models, and
the effort required to implement UML Action Semantics. The research group
OMEGA that defined the action language OMAL, evaluated different possibili-
ties to integrate OMAL in UML. They dismissed UML Action Semantics right
away on the grounds that “it is rather big and there is no tool support for it.”
[17].

In the following we give an overview on five representative action languages
(out of about 15). None of the tools that support these action languages trans-
form them into UML Action Semantics. They either store the action language
code as a string in a ProcedureExpression or they use other non-standard ways
for integration.

The Action Specification Language [4] developed by Kennedy Carter can be
used in their tool iCCG. ASL procedures can return more than one value. This
is compatible with UML where an Operation or a Method can have an arbitrary
number of out Parameters (but only one return Parameter). ASL can model the
identity of an object explicitly by identifying attributes.

Kabira Inc. developed Kabira AS[6] for ObjectSwitch Design Center. Its syn-
tax is similar to C++. Furthermore, it is possible to call C++ functions from
Kabira, or even include C++ code in-line.

Accelerated Technology, formerly Project Technology, developed the “Object
Action Language” [1,7] (OAL) for their UML tool BridgePoint. OAL is dynam-
ically typed and has an implicit casting between reals and integers. It does not
allow an attribute to hold an object reference.

OMAL, the “OMEGA Action Language” is developed by OMEGA4, an
IST5 research project for “Correct Development of Real-Time Embedded Sys-
tems”. It is an imperative language and uses a subset of OCL as expression
language [18]. OMAL offers the possibility to declare variables of the “event
type” as global.

Muller, Studer, Jezequel, and Fondement et. al. developed the action language
Xion [10] for their tool Netsilon, a tool for model-driven developing web applica-
tions. Xion serves for modeling the business logic and query expressions in the
HTML-part and is based on OCL, but with a concrete syntax very similar to
Java. The developers of Xion used it also at the meta-model level [9].
4 IST-2001-33522, http://www-omega.imag.fr
5 http://cordis.europa.eu/ist/

http://www-omega.imag.fr
http://cordis.europa.eu/ist/

Integration of an Action Language 185

9 Conclusion

There are several possibilities for integrating an action language into UML and
an MDA development environment. We investigate an integration using UML
Action Semantics as an abstract syntax for the action language ABL. The trans-
formation from ABL into UML Action Semantics is complex, but possible.

A main advantage is that UML Action Semantics is already defined in the
UML metamodel and should thus be supported by standard-compliant tools.
UML Action Semantics can also be fully integrated with the rest of the model
(Classifiers, Attributes, AssociationEnds and Operations). However, there are a
number of serious drawbacks (detailed in Section 7) with UML Action Semantics.

In summary, UML Action Semantics is only partly suitable for an integration
of ABL and other action languages in UML. Interoperability at the expected
and desired level is not possible. The effort to implement UML Action Semantics
does not pay back as there is no extraordinary benefit from using UML Action
Semantics.

It is an open research question how to integrate an action language in UML
in a way that other tools can use it directly.

Acknowledgment. Interactive Objects provided an inspiring environment for
this work.

References

1. Accelerated Technology: Object Action Language Manual. deliverd in the demo
version of Nucleus BridgePoint 6.1 (2004),
http://www.acceleratedtechnology.com

2. Interactive Objects Software GmbH Freiburg. ArcStyler Platform Guide for
Version ArcStyler 5.5 (2006), http://www.interactive-objects.com/ data/
downloads/ArcStyler DOC/doc/Platform Guide.pdf

3. Java Community Process JSR-000040: Java Metadata Interface API Specification
1.0 Final Release (2002), http://java.sun.com/products/jmi/reference/api/

4. Kennedy Carter: UML ASL Reference Guide, ASL Language Level 2.5, Manual
Revision D. (2003) Available at the OMG:
http://www.omg.org/cgi-bin/apps/doc?ad/03-03-12.pdf

5. Knuth, D.: Semantics of context-free languages. Math. Syst. Theory (1968)
6. Kabira Technologies, Inc.: ObjectSwitch 3.2, Developer’s Guide,

http://www.kabira.com
7. Stephen, J., Mellor, M.J.: Balcer: Executable UML, A Foundation for the Model-

Driven Architecture, 1st edn. Addison-Wesley, Reading (2002)
8. Mellor, S.J., Scott, K., Weise, A.U.u.D.: MDA Distilled - Principles of Model Driven

Architecture. Addison-Wesley, Reading (2004)
9. Muller, P.-A., Studer, P., Jézéquel, J.-M.: Model-driven generative approach for

concrete syntax composition. In: Proc. of OOPSLA Workshop on Best Practices
for Model-Driven Development, Vancouvers (October 2004)

10. Muller, P.-A., Studer, P., Fondement, F., Bezivin, J.: Platform independent Web
application modeling and development with Netsilon in Software and System Mod-
eling 00, 1–19 (2005),
http://www.irisa.fr/triskell/publis/2005/Muller05g.pdf

http://www.acceleratedtechnology.com
http://www.interactive-objects.com/data/downloads/ArcStyler_DOC/doc/Platform_Guide.pdf
http://www.interactive-objects.com/data/downloads/ArcStyler_DOC/doc/Platform_Guide.pdf
http://java.sun.com/products/jmi/reference/api/
http://www.omg.org/cgi-bin/apps/doc?ad/03-03-12.pdf
http://www.kabira.com
http://www.irisa.fr/triskell/publis/2005/Muller05g.pdf

186 C. Heitz, P. Thiemann, and T. Wölfle

11. Object Management Group: Model Driven Architecture (MDA) (2001),
http://www.omg.org/cgi-bin/apps/doc?ormsc/01-07-01.pdf

12. Object Management Group: Review of the Response to OMG RFP ad/98-11-01
Action Semantics for the UML, Revised Submission (2001),
http://www.omg.org/cgi-bin/apps/doc?ad/01-06-16.pdf

13. Object Management Group: XMLMetadata Interchange (XMI) Specification
(2002), http://www.omg.org/cgi-bin/apps/doc?formal/02-01-01.pdf

14. Object Management Group: Unified Modeling Language Specification Version 1.5
(2003), http://www.omg.org/cgi-bin/apps/doc?formal/03-03-01.pdf

15. Object Management Group: Object Constraint Language (OCL) Specification,
Version 1.1 (2003), http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-14.pdf

16. Object Management Group: Unified Modeling Language Specification, Superstruc-
ture Version 2.0 (2005),
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04.pdf

17. Ileana Ober. Action specification in OMEGA, Omega-Milestone
IST/33522/WP2.2/M2.2.1, Revision 3-a4 (March 2004),
http://www-omega.imag.fr/doc/d1000092 5/ASv03-a4-public.pdf

18. Marcel Kyas, Joost Jacob, Ileana Ober, Iulian Ober, Angelika Votintseva: OMEGA
syntax for users. Omega Deliverable D2.2.3 Annex 1. January 2005 (2005),
http://www-omega.imag.fr/doc/d1000346 2/
WP22-D223-346-V2-D223-Annex-1-OMEGAsyntax.pdf

http://www.omg.org/cgi-bin/apps/doc?ormsc/01-07-01.pdf
http://www.omg.org/cgi-bin/apps/doc?ad/01-06-16.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/02-01-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/03-03-01.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-14.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04.pdf
http://www-omega.imag.fr/doc/d1000092_5/ASv03-a4-public.pdf
http://www-omega.imag.fr/doc/d1000346_2/WP22-D223-346-V2-D223-Annex-1-OMEGAsyntax.pdf
http://www-omega.imag.fr/doc/d1000346_2/WP22-D223-346-V2-D223-Annex-1-OMEGAsyntax.pdf

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 187–201, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Software Product Lines, Service-Oriented Architecture
and Frameworks: Worlds Apart or Ideal Partners?

Andreas Helferich, Georg Herzwurm, Stefan Jesse, and Martin Mikusz

Universität Stuttgart, Chair of Information Systems (Business Software),
Breitscheidstr. 2c, 70174 Stuttgart, Germany

{Helferich,Herzwurm,Jesse,Mikusz}@wi.uni-stuttgart.de

Abstract. Service-oriented Architectures and Software Product Lines are two
concepts that currently get a lot of attention in research and practice. Both
promise to make the development of flexible, cost-effective software systems
and support high levels of reuse. But at the same time they are quite different
from one another: while Software Product Lines focus on one producer alone
developing a set of systems based on a common platform (often in the embed-
ded systems-domain), most proponents of Service-oriented Architecture pro-
pose systems consisting of loosely coupled services or company-wide infra-
structures including a variety of systems that are loosely coupled using services.
In any case, the services are usually developed by various companies (e.g. SAP
develops services for their platform itself, but explicitly allows other companies
to develop and sell their services for the platform, too). Focus of this paper is
the comparison of these concepts and the concept of component frameworks
and show where they differ and analyze if they are mutually exclusive or (at
least partially) complementary.

Keywords: Software Product Lines, Service-oriented Architecture, Enterprise
Component Platforms, Business Component Frameworks.

1 Introduction

Service-oriented Architectures (SOA) and Software Product Lines are two concepts
that currently get a lot of attention in research and practice: a large number of authors
(e.g. [1], [2], [3]) claims that these concepts help in realizing the large-scale reuse that
since the NATO-conference on Software Engineering in 1968 promises to make soft-
ware development more efficient and at the same time improve the quality of the
resulting software. Component Frameworks are another concept that has received
quite some attention, and some of the research done on business components that
could be traded on component market places and integrated into frameworks [4] is
complementary to the other concepts, as will be shown.

The focus of this paper is the comparison of Software Product Lines, Component
Frameworks and SOA. Specifically, to show where they differ and analyze if they are
mutually exclusive or (at least partially) complementary. Therefore, we describe
Software Product Lines in Section 2, Component Frameworks and Business Compo-
nents in Section 3, SOA in Section 4 before comparing them using defined criteria in

188 A. Helferich et al.

Section 5. Our conclusions in Section 6 answer the question if the concepts are mutu-
ally exclusive or mutually beneficient.

2 Software Product Lines

Over the last few years, Software Product Lines have developed into an approach to
Software Engineering that is not only theoretically appealing, but actually in wide-
scale use in practice [1]. Exploiting commonalities between different systems is at the
heart of Software Product Line Engineering. Therefore, different products of one
domain (also referred to as problem space or application range, e. g. operating sys-
tems for mobile telephones or software support of the sales department) are viewed as
a family and not as single products. According to the Software Engineering Institute
at Carnegie Mellon University, Software Product Lines are defined as “set of soft-
ware-intensive systems sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are developed from
a common set of core assets in a prescribed way“(cf. [1], p. 5). The main elements of
a Software Product Line are the product line architecture and the individual products
which are part of the product line. The product line architecture describes the individ-
ual products, their common components and the differences between the products of
the family (cf. [5]). These commonalities and differences are described using the core
concept in Software Product Line Engineering: variability. Variability describes the
variations in (functional as well as non-functional) features along the product line:
features are either a commonality or a variation [6].

Different process models exist for the development process of product lines, e. g.
those described in [8], [9] or [10]. Common to them is that the product line develop-
ment process is modeled along the structure of a product line. Just as the product line
consists of product line architecture and product line members, the development proc-
ess also consists of the process of the development of the product line architecture and

S
co

pi
ng

Implementation
Core Assets

ArchitectureDomain Analysis

Product Line Infrastructure

System Analysis System Design
System

ImplementationNew
Requirements

Information on
existing systems

Domain Engineering

Application Engineering

Product
Line

Member

Fig. 1. The Product Line Engineering Process (modified from [7])

 Software Product Lines, Service-Oriented Architecture and Frameworks 189

the development process of product line members. The development of the product
line architecture is called domain engineering and the development of the product line
members application engineering. Figure 1 shows the complete process.

2.1 Scoping

Scoping precedes Domain Engineering and Application Engineering. It is the process
during which it is determined what to develop, i.e. which products will be part of the
product line and what the commonalities and variabilities will be. At the same time –
and maybe even more important – it is also determined what not to develop, i.e. the
product line is bound on several levels building upon each other [11]:

• Product Portfolio Scoping – this aims at determining the range of products
that shall be supported. This is mainly driven from market inputs and pro-
vides the basis for the actual domain scoping.

• Domain Scoping – this aims at identifying major functional areas (domains)
that are relevant to the engineering of the product line and provides the basis
for scoping the asset base or product line infrastructure.

• Asset Scoping – this aims at defining the precise functionality reusable com-
ponents should support.

Currently, no single scoping approach addresses all three levels. One of the most
comprehensive scoping approaches is the PuLSE-Eco approach [2].

2.2 Domain Engineering

Domain engineering consists of three steps: domain analysis, architectural design and
domain implementation. During domain analysis, the analysis of the application scope
of the product line that started with the scoping is continued and a requirements
analysis is carried out for the complete product line. Common features among and
differences between the products are defined and the so-called variation points are
defined. Variation points are those system parts where the products differ from one
another (see [9], pg. 20). A summary of variation points and their modeling and im-
plementation is given in [12] (cf. pp. 13 and pp. 109).

Following domain analysis, the product line architecture is designed. The product
line architecture provides the framework for reusable components. This framework
describes visible properties of the components and the relations between them (cf.
[5]). Reusable components are designed in the last step of domain engineering, during
domain implementation. These components represent the base for the products of the
product line. Together with test cases or scenarios, documentation and models they
form the so-called core assets (cf. [13]).

2.3 Application Engineering

After Domain Engineering is finished, the members of the Software Product Line are
developed in the second main part of Software Product Line Engineering called Appli-
cation Engineering. During application engineering, the individual products are imple-
mented according to the results of scoping and domain engineering. Three phases can be
distinguished: system analysis, system design and system implementation.

190 A. Helferich et al.

During system analysis the requirements on the respective product gathered during
domain analysis are further particularized, especially focusing on differences between
variable requirements on the individual products. For every single product, those
requirements are disregarded which this product does not have to fulfill. Then, the
architecture of this product is derived from the product line architecture. The follow-
ing steps are carried out: architecture pruning, architecture extension, conflict resolu-
tion, and architecture assessment (cf. [5], pp. 262). Next, product-specific components
are implemented, using the possibilities of core asset varieties and all product specific
components. Finally, the adapted core assets are tested and integrated into the de-
signed product (cf. [9]).

3 Component Frameworks

3.1 Introduction

The term framework is defined in a number of ways; Mattsson [14] provides an ex-
tensive overview of existing definitions. Common to most of them is the understand-
ing that a framework is basically a software-architecture that is meant to be reused. A
framework usually consists of the design of the architecture as well as the implemen-
tation (with the source code available) of a number of functions. Johnsson and Foote
for example define a framework as “… a set of classes that embodies an abstract de-
sign for solutions to a family of related problems, and supports reuse at a larger
granularity than classes” ([15], p. 2). An important function of a framework is defin-
ing basic rules and services for the interplay of the components belonging to the sys-
tems that are built using this framework.

3.2 Classification and Framework Architecture

Frameworks can be classified by the reuse techniques used to extend them, which
range from white box frameworks to black box frameworks to component frame-
works. White box frameworks rely on inheritance and overwriting of methods in
order to achieve extensibility. Therefore, it is necessary to have intimate knowledge
of the structure and behavior of the framework [16], [17]. A black box framework
provides classes, which can be directly initiated or parameterized since they already
contain application logic [16]. Component frameworks are a special case of black box
frameworks. Extensibility is here supported by defining interfaces for components
that can be deployed independently and plugged into the framework via composition
[17].

Turowski’s BCArch (Business Component Architecture) provides a generic archi-
tecture of component based enterprise applications that consists of [18]:

• a component system framework providing application invariant generic ser-
vices close to middleware (e.g. printing or saving),

• an component application framework providing services for the business
software domain (e. g. mechanisms for domain specific conflict handling)
and

• business components themselves providing specialized services in this domain.

 Software Product Lines, Service-Oriented Architecture and Frameworks 191

Hardware

Middleware

Operating System

Application

Component System Framework

Component Application Framework

Business Component

Fig. 2. BCArch (modified from [18])

.

Fig. 3. Specification of Business Components (from [4])

192 A. Helferich et al.

Frameworks thus provide for higher-level reuse than class libraries since the
framework provides not only components, but also the architecture describing and
defining the interplay between the components [19]. Schryen [19] points out that the
components that are part of the framework are intended to be primarily reused to-
gether, and adds that this relieves developers from implementing a large number of
supporting functions (e.g. event management) so that they can focus on implementing
the functionality required by the end user.

3.3 Specification of Business Components

Frameworks explicitly include the possibility of components developed by a third
party to be integrated. Since that component will often be supplied without access to
the source code, i.e. as a black box component, the specification is of great impor-
tance. As Keiblinger et al. point out, such a specification has to provide a “complete,
unequivocal and precise description of its external view” [4]. Figure 3 shows the
different levels they identified as necessary for the specification to be complete, un-
equivocal and precise

4 Service-Oriented Architecture (SOA)

“SOA is a conceptual business architecture where business functionality, or applica-
tion logic, is made available to SOA users, or consumers, as shared, reusable services
on an IT network. ‘Services’ in an SOA are modules of business or application func-
tionality with exposed interfaces, and are invoked by messages.” [20]

A SOA is essentially a collection of services. These services communicate with
each other. The communication can involve either simple data passing or it could
involve two or more services coordinating some activity. Component-based develop-
ment proceeds by composing software systems from pre-fabricated components (often
third-party black-box software). A typical component-based system architecture com-
prises a set of components that have been purposefully designed and structured to
ensure that they fit together (i.e. have pluggable interfaces) and have an acceptable
match with a defined system context. Service-oriented development on the other hand
proceeds by integrating disparate heterogeneous software services from a range of
providers [21]. A SOA is a means of designing software systems to provide services
to either end user applications or other services through published and discoverable
interfaces.

4.1 Introduction

A typical SOA comprises a service requestor, a service provider and a service broker
(registry) that interact through standard messaging protocols (e.g. HTTP and SOAP)
that support the publishing, discovery and binding of services. However, the diverse
nature of software systems means that it is unlikely that systems will be developed
using a purely service or component-based approach [22]. Rather, a hybrid model of
software development where components and services co-exist in the same system is
likely to emerge. One of the main goals in setting up a Service-oriented Architecture
is the reuse of component-based software. But although one might, based on many

 Software Product Lines, Service-Oriented Architecture and Frameworks 193

articles and papers about Service-oriented Architecture, assume that by going towards
a Service-oriented Architecture, reuse will automatically fall into place this is not the
case. Organizational issues hold back a reuse ethic, as well as interoperability prob-
lems, poor internal communication, and lack of organizational standards [23].

4.2 Key Elements of a Service-Oriented Architecture

A Service-oriented Architecture comprises several key elements. Its elements work
together to more closely link business needs with IT. The following list covers the
essential ingredients of an SOA [20]:

• Conceptual SOA vision – An SOA is a business concept, which includes
clearly defined business, IT and architectural goals.

• Services – An SOA enfolds all possible services in the organization
alongside a service design model to assure reusability, interoperability and
integration across all business processes and technology platforms. Services
are indeed the central artifact of a Service-oriented Architecture.

• Enabling technology – The technology must ensure, that your services
operate reliably and securely in support of the stated business objectives

• SOA governance and technologies – The SOA governance model defines
the various governance processes, organizational roles, standards and
policies adhered to in the conceptual architecture

• SOA metrics – The SOA metrics include Service-Level-Agreements (SLAs)
for individual services, as well as usage metrics, business and return on
investment metrics as well as process metrics

• Organizational and behavioral model

Generally, systems based on an SOA have many users and providers, where certain
users also act as providers to other users. Most SOA- systems are considerably more
complex than the one in Figure 4, which illustrates the most basic SOA architecture,
but they all follow the same basic principles.

Fig. 4. Basic SOA architecture

194 A. Helferich et al.

4.3 Basic and Architectural Principles of a Service Oriented Architecture

There are several guiding principles that define the ground rules for development,
maintenance, and usage of the SOA. The guiding principles cover [24]:

• Reuse, granularity, modularity, composability, componentization, and
interoperability,

• Compliance to standards (both common and industry-specific),
• Services identification and categorization, provisioning and delivery, and

monitoring and tracking.

The following specific architectural principles for design and service definition
focus on specific themes that influence the intrinsic behavior of a system and the style
of its design. They are derived from the guiding principles and cover [3]:

• Service Encapsulation - Accessing functionality through some well-defined
interface, the application beeing seen as a black box to the user,

• Service Loose coupling - Services maintain a relationship that minimizes
dependencies and only requires that they maintain an awareness of each
other,

• Service contract - Services adhere to a communications agreement, as
defined collectively by one or more service description documents,

• Service abstraction - Beyond what is described in the service contract,
services hide logic from the outside world,

• Service reusability - Logic is divided into services with the intention of
promoting reuse,

• Service composability - Collections of services can be coordinated and
assembled to form composite services,

• Service autonomy – Services have control over the logic they encapsulate,
• Service statelessness – Services minimize retaining information specific to

an activity,
• Service discoverability – Services are designed to be outwardly descriptive

so that they can be found and assessed via available discovery mechanisms.

4.4 Outlook on Service-Oriented Architecture

SOA is the IT industry's latest attempt to promote the concept of component reusability
in the development, integration, deployment and maintenance of enterprise applica-
tions. But up until today there is not even clear distinction between Service-oriented
Architecture and Web Services established. Web services, in the form of SOAP-based
inter-application connections, has been the headliner, while SOA — a body of applica-
tion architecture and design concepts — has largely been viewed as a side effect of
Web services. Since 2005, a critical mass of application architects and vendors are
focusing more deeply on the foundational design value of SOA, bringing SOA to the
forefront of the discussion and positioning SOAP as one (very important) way to ac-
cess services, along with message-oriented middleware and other protocols [25].

 Software Product Lines, Service-Oriented Architecture and Frameworks 195

The trend toward Service-oriented Architecture is growing. A Yankee Group survey
of 473 enterprise decision-makers revealed that 75 percent of the participating enter-
prises planned to invest in Service-oriented Architecture technology in 2005. Gartner
predicts that, by the end of 2009, Service-oriented Architecture will play a dominant
role in new application projects. The increasing demand for SOA will have a structural
impact on application outsourcing services, inducing companies to integrate SOA into
their outsourcing strategies and make way for this new wave of development. [26]

5 Comparison of the Concepts

Having presented Software Product Lines, Component Frameworks, and Service-
Oriented Architecture, we will now compare these concepts and investigate the com-
monalities and differences between the concepts, before discussing if and how they
can be combined to mutually benefit each other. To facilitate the comparison, we use
the following criteria:

• Goal: what exactly is the concept trying to achieve?
• Defining features: what are the characteristics of the concept that are at its

heart?
• Technical methods and elements: which Software Engineering methods and

elements are used to develop systems in this concept?
• Organizational methods and elements: how is software development organ-

ized according to this concept and which are the key steps in the develop-
ment process?

• Field of application: in what kinds of software is this concept primarily ap-
plied?

• Reuse methods and entities: all three concepts have reuse in one way or an-
other as their goal, but the methods and entities that are reused differ sub-
stantially.

• Abstraction level: which is the primary unit of analysis for the reuse? Not
only methods and entities, even the abstraction level differs significantly.

• Examples: To illustrate the concepts, some examples for real-world applica-
tion of each concept are presented here.

Table 1 provides an overview of the comparison using these criteria, whereas the
in-depth comparison follows in remainder of this section.

Common primary goal of all three concepts is software reuse. But looking at the
goals more carefully, one notices important differences: For Software Product Lines,
exploiting the commonalities between related products is the actual goal. To achieve
this, rather extensive analyzing and planning processes for the whole set of systems to
be developed are performed. After that, the common architecture and the so-called
core assets are developed in a generic way (domain engineering), before the systems
belonging to the product line are developed (application engineering). Neither archi-
tecture nor core assets are to be reused outside the Software Product Line. The goal of
frameworks is quite similar to that of Software Product Lines, but unlike in a Soft-
ware Product Line, the systems which are to be developed using this products are not
explicitly defined and planned. Instead, there is a comparably rough definition of the

196 A. Helferich et al.

Table 1. Comparison of the Concepts

Criteria Software Product
Lines

Component Frameworks Service-oriented Archi-
tecture

Goal Planned exploitation
of commonalities
within related systems

Provide a collection of
functions that provide a
basis for developing
applications

Use of services of fine
granularity within (enter-
prise) system landscapes

Defining features Variability; Family of
related systems based
on common architec-
ture

Components with an
underlying architecture
common to them

No common architecture,
services are encapsulated
and loosely coupled

Technical meth-
ods and elements

 Variation points and
mechanisms, scoping,
application engineer-
ing, domain engineer-
ing

System frameworks,
application frameworks,
system components,
business components

 Reliance on generally
accepted standards, addi-
tional service registration
and authentication ser-
vices

Organizational
methods and
elements

Two life cycle-model:
first domain engineer-
ing to develop the
assets to be reused,
then application engi-
neering to derive the
actual systems

Development for reuse
(for component); devel-
opment with reuse (from
component)

Development as well as
hosting of the services can
be distributed, only the
light-weight interface and
some additional services
(registry, authentica-
tion,…) are provided

Reuse methods
and entities

Reuse of all kinds of
assets (components,
test cases, analysis &
design models), but
only within the prod-
uct line

Depends on the kind of
the framework: white
box-reuse, black-box
reuse; but only within
the domain

Services (simple ones or
those composed of several
services) are physically
reused

Abstraction level System within a fam-
ily

Common architecture
and components

Services

Field of applica-
tion

Primarily Embedded
Systems

Primarily Information
Systems

Primarily Information
Systems

Examples Nokia cell phones,
Cummins diesel en-
gines

System framework:
CORBA ;Application
framework: IBM San
Francisco

Harvard Medical School
and its hospital affili-
ates

systems that could be developed using the framework. Following this definition, the
common functions (or services) needed to develop the actual systems are developed.
After this, the framework can be used/sold as a basis for other companies to develop
the actual applications (e.g. a system framework acting as middleware), whereas for a
Software Product Line, the same company would develop the systems that are part of
the product line (possibly using components provided by a third party). The idea be-
hind Service-oriented Architecture is quite the opposite compared to Software
Product Lines: rather small services are developed (potentially totally independent
from each other), published in a registry (e.g. using the Standards WSDL and UDDI)
and can then be used by anyone within a company or even world-wide (the so-called

 Software Product Lines, Service-Oriented Architecture and Frameworks 197

service consumer). As Dietzsch [16] points out, this kind of reuse is physical rather
than logical: the same entity provides the service, not a copy of the entity (a reused
component is a copy of the original component used in another piece of software, the
service is reused by sending a request to the very same service over the net-
work/Internet). It is also important to point out that such a service does not have to be
part of a system, but can just as well stand alone or be a connector between two inde-
pendent systems.

Another difference is the fact that whereas Software Product Lines are mainly fo-
cused on Intra-Business Reuse, meaning that enterprises focus on internal reuse of
components in another product, the focus of Service Oriented Architecture is the
reuse of component-based software on a larger scale. The creation of SOA-compliant
component-based software (e.g. Modules or Components in Enterprise Resource
Planning Software like SAP) seems to become a popular business model for compa-
nies, e.g. sub-suppliers to SAP’s ERP-system, that mainly focus on the creation of
reusable component-based software but also for bigger companies, enabling them to
sell inhouse developed SOA compliant component-based software. Problem is that
although big companies have the ability and manpower to create and distribute com-
ponent-based software they are afraid to do so since they don’t want to distribute their
business logic inherent in the component-based software to other companies working
in the same business sector.

The defining features of the concept of Software Product Lines is variability (and
vice versa commonality) as defined by the common and application-specific parts of
the systems that are part of the Software Product Line, this includes defining a com-
mon architecture. Having a common architecture is the defining feature of a frame-
work: here, this architecture is at the heart of the concept: to provide a framework for
the development of certain systems. This shows the basic difference between a
framework and a class library: the framework is intended to be reused as a whole,
whereas a class library often contains a large number of more or less unrelated
classes. This common architecture is lacking SOA, one could even say that the lack of
a common architecture (since the service could be used by anyone as part of his/her
system with its specific architecture) is one of the defining features together with the
services being encapsulated and loosely coupled.

The technical methods and elements that are typical for the concepts are another
criterion we used: for Software Product Lines, variation points and variation mecha-
nisms and the distinction between scoping, domain engineering and application engi-
neering are the defining technical methods and elements. While variation points and
variation mechanisms provide the opportunity to efficiently handle the differences
between the members of a product line, scoping, domain engineering and application
engineering are distinct phases in the development process where special methods for
Software Product Line Engineering are used (see for example [1] for details). The
different kinds of frameworks and components, i.e. system vs. application frame-
works, system vs. business components and the methods and elements used in com-
ponent-based system-development in general are the typical technical methods and
elements of frameworks. Since SOA is a concept that is rather independent of the
development platform/language to be used, the reliance on the architectural principles

198 A. Helferich et al.

mentioned in Section 4 need to mentioned here. Additionally, standards such as
UDDI and WSDL are important and absolutely necessary elements of SOA.

Organizational methods and elements: Unlike the technical methods and elements,
the organizational methods and elements define the way software development is
organized. For Software Product Lines, the key question here is how domain engi-
neering and application engineering are organized: basically, they are separate devel-
opment cycles with application engineering depending on the results of domain
engineering. This could for example lead to separate teams could be responsible for
domain and application engineering. Another possibility would also include a separate
team for domain engineering, but a member of this team being part of each applica-
tion engineering teams. For an in-depth discussion of possible ways to organize Soft-
ware Product Line Engineering see [27], but basically all possibilities have their own
advantages and disadvantages and their suitability depends on the organization of the
company as a whole. Frameworks are quite similar to Software Product Lines, some
authors (e.g [28]) even use the same terminology. One important difference is that the
company developing the framework is quite often not the company developing the
applications, which is usually not the case for Software Product Lines. For Service-
oriented Architectures, it is more difficult to make any statements concerning the
organization since every service could be developed independently of all other ser-
vices. But this implies a decentralized organization with no centralized coordinating
unit, since there is no common architecture behind. For a company reorganizing their
own infrastructure in a Service-oriented Architecture-based way, there probably will
be such a centralized unit, but they might very well use services that have been
provided by third parties that were not coordinated by this unit. The reliance on addi-
tional services such as a service registry and services for identification or authentica-
tion implies separate centralized organizational units providing these services to all
other services.

The reuse methods and entities differ quite substantially: in a Software Product
Line, all kinds of assets are reused, not only code, but also specifications, models (e.g.
in UML), test cases and (end user) documentation, but only within the Software Prod-
uct Line. In Service-oriented Architecture, the services are the main reuse entity, and
interestingly, the services are physically and not only logically reused.

Thereby, logical reuse is present, if a component is replicated and delivered by the
manufacturer to the application developer. By physical reuse however, the service is
invoked by remote call on demand. In this case the service, e.g. a single-sign-on Web
Service, is hosted by the manufacturer of the software.

This is not the case for frameworks, where architecture and components are reused
within the domain for which the framework was developed, but the reuse is logical,
not physical. Additionally, the reuse can be either white box or black box (via compo-
sition in the case of component frameworks regarded here) [16], which is not the case
for SOA.

Taking organizational methods and elements on the one hand and the reuse meth-
ods and elements on the other hand, one gets the matrix shown in Table 2.

 Software Product Lines, Service-Oriented Architecture and Frameworks 199

Table 2. Organizational Level of Reuse

Phase within the
two-lifecycle
model

Software Product Lines Service-oriented Archi-
tecture

Component Frame-
works

Development for
reuse

within organization within organization /
outside the organization

within organization

Development with
reuse

within organization outside the organization within organization /
outside the organiza-
tion

Closely related to the reuse entity is the abstraction level: all considerations for a

Software Product Line are based on the product line as a unit of analysis, all decisions
on another level (product, component or even function) are derived from the utility on
the product line level. For a component framework, the common architecture and the
components are the main units of analysis and as the levels of specification presented
in Section 3 imply, these components should not be too small, otherwise the effort of
specifying the component might be bigger than the benefit from reusing it. As the
name Service-oriented Architecture already implies, single services are the main unit
of analysis in this concept, since a service can theoretically stand alone.

The fields of application, i.e. the kinds of software where the concepts are most
commonly use are embedded systems for Software Product Lines and (enterprise)
information systems for Service-oriented Architecture and frameworks. Therefore, it
is not surprising that the examples for the application of the concepts are taken from
these domains: Cummins diesel engines and Nokia cell phones are just two examples
taken from the Software Product Line Hall of Fame [29]. CORBA and IBM’s San
Francisco framework are two examples for frameworks (e.g. [16]). An SOA example
for consolidating services is Harvard Medical School and its hospital affiliates, who
radically streamlined their business processes around the sharing of medical data by
building a SOA involving about 25 categories of Web services shared between 400
different departments with 14,000 employees. Seattle’s 17-hospital Providence Health
System is leveraging Web services to link its in-house legacy systems into a single
patient portal, permitting online bill paying among other services[30].

6 Conclusion

The three concepts discussed in this paper, Software Product Lines, component
frameworks and Service-oriented Architecture are in no way mutually exclusive, but
share a number of characteristics. And where they differ, they sometimes actually
complement each other, for example: while Software Product Lines do not focus on
components being marketable or developed in different organizations, this is not ex-
plicitly excluded. And Knowledge gained in research on Business Component Speci-
fication (e.g. in [31], [4], [32] and [33]) can be beneficial for specifying the compo-
nents used in a Software Product Line, since the company developing the Software
Product Line may decide not to develop all components itself. This knowledge
can also be used in combination with research on description of services in a

200 A. Helferich et al.

Service-oriented Architecture, while some of the research on authentication of web
services could be used for frameworks, where components developed by third parties
may (or may not) comply with their specifications.

These are just starting points for research into combining these concepts, but we
think this research could be very beneficial for Enterprise Component Platforms,
since such a platform shares characteristics (and therefore problems) with all three
concepts.

References

1. Clements, P., Northrop, L.: Software product lines: practices and patterns. Addison-
Wesley, Boston, MA, London (2002)

2. Schmid, K.: Planning Software Reuse - A Disciplined Scoping Approach for Software
Product Lines. Fraunhofer IRB, Stuttgart (2003)

3. Erl, T.: Service-oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, New Jersey, Munich (2005)

4. Keiblinger, A., Turowski, K., Zaha, J.M.: Component Market Specification Demand and
Standardized Specification of Business Components. In: 1st Int Workshop ”Component
Based Business Information Systems Engineering”, Geneva, Switzerland (2003)

5. Bosch, J.: Design and use of software architectures. Addison-Wesley, Harlow (2000)
6. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain Analysis

(FODA) Feasibility Study. Software Engineering Institute CMU/SEI-90-TR-21 (1990)
7. Muthig, D.: Produktlinien - Einstieg. Website of the Kompetenzzentrums Software Engi-

neering checked (June 15, 2006) http://www.software-kompetenz.de/?2246
8. Bayer, J., et al.: PuLSE: A Methodology to Develop Software Product Lines. In: Proceed-

ings of the 5th Symposium on Software Reusability, pp. 122–131 (1999)
9. Weiss, D.M., Lai, C.T.R.: Software product-line engineering: a family-based software de-

velopment process. Addison-Wesley, Reading, MA, Bonn (1999)
10. Muthig, D.: A light-weight approach facilitating an evolutionary transition towards soft-

ware product lines. PhD Thesis, Fraunhofer-IRB Verlag, Stuttgart (2002)
11. Schmid, K.: Scoping Software Product Lines - An Analysis of an Emerging Technology.

Software Product Lines: Experience and Research Directions. In: Proceedings of the First
Software Product Line Conference (SPLC1), pp. 513–532. Kluwer Academic Publishers,
Dordrecht (2000)

12. Böckle, G., Knauber, P., Pohl, K., Schmid, K. (eds.): Software-Produktlinien: Methoden,
Einführung und Praxis. Dpunkt, Heidelberg (2004)

13. McGregor, J.D.: Testing a Software Product Line, Technical Report, CMU/SEI-2001-TR-
022, Software Engineering Institute, Carnegie Mellon University (2001)

14. Mattsson, M.: Object-Oriented Frameworks: A Survey of Methodological Issues. Research
Paper LU-CS-TR:96-167. Lund University, Department of Computer Sc. (1996)

15. Johnson, R.E., Foote, B.: Designing reusable Classes. Journal of Object-Oriented Pro-
gramming 1(2), 22–35 (1988)

16. Dietzsch, A.: Systematische Wiederverwendung in der Software-Entwicklung. PhD thesis,
Deutscher Universitäts-Verlag, Wiesbaden (2002)

17. Fayad, M., Schmidt, D.C., Johnson, R.E.: Building application frameworks: object-
oriented foundations of framework design. Wiley, New York (1999)

18. Turowski, K.: Fachkomponenten: komponentenbasierte betriebliche Anwendungssyteme.
Magdeburg (2001)

 Software Product Lines, Service-Oriented Architecture and Frameworks 201

19. Schryen, G.: Komponentenorientierte Softwareentwicklung in Softwareunternehmen. PhD
Thesis, Deutscher Universitäts-Verlag, Wiesbaden (2001)

20. Marks, A., Bell, M.: Service-Oriented Architecture: A Planning and Implementation Guide
for Business and Technology. John Wiley & Sons, New Jersey (2006)

21. Cerami, E.: Web Services Essentials - Distributed Applications with XML-RPC, SOAP,
UDDI & WSDL. O’Reilly, Beijing (2002)

22. Kotonya, G., Rashid, A.: A Development Strategy for Minimising Risks in Component-
Based Development. In: 27th Euromicro Conference: Workshop on Component-Based
Software Engineering, Warsaw, Poland, pp. 12–21. IEEE Computer Society Press, Los
Alamitos (2001)

23. Broy, M., Denert, E.: Software Pioneers. Contributions to Software Engineering. Springer,
New York (2002)

24. Balzer, Y.: Improve your SOA project plans. IBM (2004), http://www-
128.ibm.com/developerworks/webservices/library/ws-improvesoa/

25. Heffner, R.: Trends 2005: Service-Oriented Architecture And Web Services. Forester Re-
search (2004)

26. Bissonnette, J.-F.: Service-Oriented Architecture: Changing the Landscape of Application
Outsourcing, http://www2.cio.com/consultant/report3358.html

27. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering. Springer,
Heidelberg (2005)

28. Schmietendorf, A., Dimitrov, E., Dumke, R.: Enterprise JavaBeans - Komponentenbasierte
Software-Entwicklung. Mitp, Bonn (2002)

29. Software Engineering Instute at Carnegie Mellon University: Product Line Hall of Fame
last checked (July 11, 2006) http://www.sei.cmu.edu/productlines/plp_hof.html

30. Halamaka, J.: SOA Executive Forum in New York. New York (2005)
31. Ackermann, J.: Zur Spezifikation der Parameter von Fachkomponenten. In: 5th Work-

shops Komponentenorientierte betriebliche Anwendungssysteme, Augsburg, pp. 47–154
(2003)

32. Fettke, P., Loos, P.: Specification of Business Objects. In: Mezini, M., Aksit, M., Unland,
R. (eds.) Proc. NetObjectDays 2002, Erfurt, Germany, pp. 62–75 (2003)

33. Hildenbrand, T., Korthaus, A.: A Model-Driven Approach to Business Software Engineer-
ing. In: 8th World Multi-Conference on Systemics, Cybernetics and Informatics, pp. 74–
79 (2004)

Modeling the Effect of Application Server

Settings on the Performance of J2EE Web
Applications

Gábor Imre, Tihamér Levendovszky, and Hassan Charaf

Budapest University of Technology and Economics
{gabor,tihamer,hassan}@aut.bme.hu

Abstract. The performance of a web application is affected by several
factors. In this paper, the effects of two configurable software settings of
J2EE application servers are discussed: the maximum size of the thread
pool and the maximum size of the connection queue. Previous work has
shown that both tuning parameters have a considerable impact on the
performance metrics, and both of them should be taken into account
when constructing a performance model of a web application. This pa-
per presents a queueing network-based performance model that is able
to capture the effect of the connection queue limit. New performance
measurements which can help improving this model are also presented.

Keywords: performance modeling, queueing networks, web applica-
tions, thread pool, connection queue.

1 Introduction

At the early stage of the Internet, the Web was mainly used to display static
content. As the Web became more and more widespread, several companies re-
alized that web applications that are able to provide dynamic content can offer
a strong support for their activities. Managing business processes, the improper
performance of a web application can cause serious financial loss to a com-
pany. The performance-related requirements of an Internet application are often
recorded in a Service Level Agreement (SLA). SLAs can specify an upper limit
for the average response time, a lower limit for availability, while the application
guarantees a certain throughput level.

To meet the performance requirements of Service Level Agreements, the per-
formance metrics of a system under given conditions can be obtained in two
ways. The first method is load testing: the performance of the system is mea-
sured for all feasible client load, for all possible values of system parameters. The
other method is to establish an analytical performance model of the system. This
model can be solved using different techniques and an estimation of the relevant
performance metrics can be provided this way. The main advantage of this latter
option over load testing is that the definition, parametrization, and evaluation
of a performance model has relatively low cost. In contrast to the several hours

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 202–216, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Modeling the Effect of Application Server Settings 203

or even days of an exhaustive load testing, a performance model can provide the
necessary results for all values of the parameters and client load in some seconds.

The performance metrics depend on several factors, such as hardware, soft-
ware, network, and client workload. This paper focuses on the settings of the
application server software that serves the HTTP requests of the browsers. More
precisely, the performance of a test web application is measured under different
client load with different values of two parameters of the application server.
These tuning parameters are the maximum size of the thread pool, and the
maximum size of the HTTP connection queue. To understand the meaning of
these parameters, consider Fig. 1.

Fig. 1. The connection queue and the thread pool

In a J2EE application server, the accepted HTTP connections are placed into
a connection queue. The size of the connection queue is limited by an adjustable
parameter of the given application server. When this limit is reached, it is denied
to serve the request. The threads in the thread pool take connections from the
queue and serve the requests. The server can decide to create more threads (i.e.
increase the size of the thread pool), but cannot exceed a certain configurable
maximum. When the maximum thread pool size is reached, however, the requests
are not dropped, as long as they find free space in the connection queue. The
policy for adding new threads is typically based on the state of the connection
queue.

The limit for the size of the thread pool is necessary for controlling the memory
usage of the applications. When the memory requirements of serving a request
is known, the maximum memory usage of a web application can be set to fit in
the physical memory in order to prevent thrashing because of the size limit of
the thread pool. It is important to mention that not all the application servers
allow manipulating both of the settings. With IBM WebSphere [1] for example
only the thread pool size is configurable. With JBoss [2] or Sun Java System
Application Server [3] both parameters can be set.

The rest of this paper is organized as follows. Section 2 reviews the related
work. Section 3 contains the process of the performance measurement, Sect. 4
provides a review on the proposed performance model and discusses the errors
of the model. Finally, conclusions are drawn.

204 G. Imre, T. Levendovszky, and H. Charaf

2 Related Work

Several papers and research projects are engaged in studying how the various
configurable parameters affect the performance of web applications. Two ap-
proaches for evaluating the impact of these parameters are presented in [4] and
in [5]. They use statistical methods, hypothesis testing in order to retrieve the
software parameters that influence the performance. [5] investigates the average
response time only, while [4] also takes the throughput and the probability of
rejecting a request into consideration.

Some industry-standard benchmarks address standardizing the evaluation of
application servers. In the field of Java 2 Enterprise Edition, SPECjAppServer [6]
(formerly ECPerf)is the most popular benchmark. TPC-W [7] is a benchmark
that is not tied to any particular implementation technology. Both benchmarks
specify they own test application, and contain a driver that generates the client
load and measures the performance. Furthermore, SPECjAppServer includes
the implementation of the benchmark application as well. The main difference
between the benchmark applications of TPC-W and SPECjAppServer is that
the former one uses the database tier heavier, while the latter one stresses the
EJB container.

Performance measurements can serve as the basis for performance modeling
and prediction. In the past few years several techniques and methods have been
proposed to address this goal. A group of them are based on queueing net-
works [8], or extended or layered versions of queueing networks. These methods
establish a queueing network model of the system. By solving this model with
analytical methods or simulation, the prediction of performance metrics is pos-
sible. Some of the proposed methods generate a queueing network model of the
system based on its UML model [9] [10]. In [11], a queueing model for multi-tier
internet applications is presented, where queues represent different tiers of the
application. The model faithfully captures several aspects of web applications,
like caching and concurrency limits at the tiers. The maximum size of the con-
nection queue, as presented earlier, can be considered a concurrency limit of the
web tier in this model, but it cannot handle the maximum size of the thread
pool.

Another group of performance modeling techniques uses Petri nets or gener-
alized stochastic Petri nets, such as [12]. Petri nets can represent blocking and
synchronization aspects much more than queueing networks, which are more
suitable for modeling resource contention and scheduling strategies. A powerful
combination of the queueing network and the Petri net formalism is presented
in [13]. Using queueing Petri nets, the authors successfully model the perfor-
mance of a web application, considering the maximum size of thread pools.
Their model, however, does not take the maximum size of the connection queue
into account.

[14] and [15] are the first papers to best of our knowledge, where the authors
show that the limits configured both for the connection queue and the thread
pool have a considerable effect on the performance. The results computed by
the performance model proposed in [14] and [15] do not fit accurately to the

Modeling the Effect of Application Server Settings 205

measured data in some cases. The measurements presented in this paper aim to
help finding the possible causes of this inaccuracy.

3 The Performance Measurement

The test web application is intentionally designed to be very simple, such that
no factors other than the settings of the application server can influence the
performance. It can serve one type of HTTP requests, and is implemented with
a Java servlet. On processing a request, it loads the processor, and periodically
inserts sleep() calls. This emulates typical web applications, which use the pro-
cessor of the machine that hosts the web container and calls services on other
machines (e.g. a database server) in a synchronous way, which blocks the caller
thread. The number of computations and the total sleep time can be defined
as parameters of the request. After processing a request, the web application
generates a small HTML file (of approximately 10 kilobytes) as a response.

The application server (Sun Java System Application Server Enterprise Edi-
tion 8.1) runs on a PC with Windows XP, and a 3 GHz Pentium 4 Hyper-
Threading processor and 1 GB memory. The emulation of the browsing clients
is performed by an open source load tester, JMeter, which runs on another PC,
with similar hardware. The two machines are connected via a 100 Mbit/s LAN.

Each test takes 30 minutes, during which the virtual clients send their requests
to the server. Each virtual client inserts an exponentially distributed thinking
time between its requests with mean 4 seconds. The virtual clients are started
gradually, in a 40 seconds interval. The system reaches a steady state after 2
minutes in terms of average response time and throughput. Between two test
runs, the application server is restarted because the new settings have to be
reloaded. The values of the two investigated tuning parameters and the numbers
of the emulated clients during the individual measurements are summarized in
Table 3. We intentionally do not cover here connection queue values that are
greater than the number of clients (i.e. no dropping of requests), since for those
cases, our performance model in [14] and [15] proved to be accurate.

During each measurement, the following metrics were registered:

– The average response time of the requests, measured at the clients. This
includes the network time of sending the request and receiving the response,
but this time it is negligible, since these files are small, moreover, the client
and the server are on the same local network. This is verified by comparing

Table1.Number of clients and values of the tuning parameters during the measurements

Maximum size of the Maximum size Number of
connection queue of the thread pool emulated clients

50 5,10,20,30,40,44,48,50,60,70,100 10, 20,..., 100

80 40,70,90,200 10, 20,...,140

206 G. Imre, T. Levendovszky, and H. Charaf

the client side response time to the response time measured at the server
side. The two values differ less than 5 percent, thus, the time of the server
side processing dominates the client side response time in our experiments.

– The throughput of the system, which is the number of served requests in a
second.

– The rate of requests that are dropped by the server.
– The processor and memory usage of the server and the machine running

the clients. We found that the memory usage does not reach the 80% of the
available physical memory on either of the machines. The processor usage
on the client machine never reaches 60 percent, therefore, it cannot be a
bottleneck in our measurements.

The results of the measurement are analyzed in a qualitative manner in [14].
Hence, we only apply a quantitative analysis in the following section.

4 The Performance Model

In this section, we briefly review a queueing model of the performance as pro-
posed in [14] and [15] and validate it against the results of the measurements.
To specify a queueing system, it is necessary to identify the following parame-
ters. The distribution of the interarrival time (the think time introduced by the
virtual clients) is exponential with mean 4 seconds (Z). The exact distribution
of the service time is unknown, but to keep our model simple, we will assume
an exponential distribution with mean 0.14 seconds (S) based on measurements
using one virtual client. The service rate μ is defined as 1/S. The number of
servers is one, the population size (K) is equal to the number of virtual clients.
The system capacity (B), i.e. the maximum number of requests in the system
is equal to the maximum size of the connection queue, because a request in the
connection queue remains there until the request is served.

Using these parameters, our queueing system can be described using Kendall
notation: M/M/1/B/K, where M stands for memoryless, a well-known property
of the exponential distribution. The first M means that the distribution of the
interarrival times is exponential, the second M means that the service demand
of one request is also exponentially distributed. The ′1′ means that the system
has one server, B means the capacity limit of the server, and K is the population
size.

4.1 Solving the Model

The solution of the M/M/1/B/K queueing system is based on birth-death pro-
cesses which are special Markov chains in which the transitions are restricted
to the neighboring states only. Figure 2 shows the state transition diagram of a
general (i.e. not specific to the M/M/1/B/K system) birth-death process with
a finite number of states.

It can be used to model a queueing system with the state Si meaning that
there are i requests at the server. The new requests arrive with rate λi and

Modeling the Effect of Application Server Settings 207

Fig. 2. A general birth-death process with finite number of states

they are served with rate μ. It can be shown (see [16]) that for the steady-state
probability that there are k requests at the server (pk), the equation

pk =
λ0λ1 . . . λk−1

μ1μ2 . . . μk
p0, k = 1, 2, . . . , n (1)

holds. Because the system must be in one of the states,
n∑

k=0
pk = 1, which gives

p0 =
1

1 +
∑n

k=1
∏k−1

j=0 [λj/μj+1]
. (2)

In the case of the M/M/1/B/K queueing system, the number of possible
states is min(B, K), because the server cannot have more requests than its
capacity limit, or the number of clients. The service rate is independent from
the state, therefore

μk = μ = 1/S, k = 1, . . . , min(B, K) . (3)

The arrival rate on the other hand is state dependent, hence if k number of
requests are at the server, only K − k clients can send new requests, with a rate
of 1/Z, therefore

λk =
K − k

Z
, k = 0, . . . , min(B, K) − 1 . (4)

Combining 1 and 2 with 3 and 4 suggests the solution of the M/M/1/B/K
queueing system:

pk = p0
K!

(K − k)!(μZ)k
, k = 1, . . . , min(B, K) (5)

p0 =

⎡

⎣
min(B,K)∑

k=0

K!
(K − k)!(μZ)k

⎤

⎦

−1

. (6)

Based on these results, all other performance metrics are easy to compute,
using some basic results of queueing theory. The requests are dropped, when the
system reached its capacity B, hence, the error rate e = pB. The throughput
of the system (X) can be calculated based on the Utilization Law which states
X = U/S, where U is the utilization of the server i.e. the probability that the
server is busy, so U = 1 − p0. And finally, we obtain the average response time

208 G. Imre, T. Levendovszky, and H. Charaf

from Little’s Law (R = N/X), where N is the average number of request in the
system, that is:

N =
B∑

k=0

k ∗ pk . (7)

The performance metrics obtained from this model are compared to the mea-
sured values in Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, and Fig. 8. Because of
the great number of cases, we only depict 4 cases in order to keep the di-
agrams clear: 50 connection queue with 40 and 60 threads, and 80 connec-
tion queue with 70 and 90 threads. With these values we can observe thread
limit values both greater and less than the maximum size of the connection
queue.

The throughput values obtained from the model are the same for the two
cases and fit quite well to the measured values, irrespectively of the number of
the allowed threads. (See Fig. 3 and Fig. 4.) This is due to the fact that the
maximum throughput is determined by the saturation of the server’s processor:
1/S = 1/0.14 = 7.1.

Fig. 3. Comparing the model with the measured data - throughput with 50 ConnQ

Regarding Fig. 5 and Fig. 6, one can see that the rate of unsuccessful requests
depends on the number of the maximum thread number. With thread numbers
higher than the size of the connection queue, the error rate is higher. The results
provided by the performance model are closer to the measurements with lower
thread number.

Modeling the Effect of Application Server Settings 209

Fig. 4. Comparing the model with the measured data - throughput with 80 ConnQ

Fig. 5. Comparing the model with the measured data - error rate with 50 ConnQ

210 G. Imre, T. Levendovszky, and H. Charaf

Fig. 6. Comparing the model with the measured data - error rate with 80 ConnQ

Fig. 7. Comparing the model with the measured data - response time with 50 ConnQ

The dependency on the thread numbers can be observed, with respect to the
response times as well. Figure 7 and Fig. 8 show that with thread numbers lower
than the maximum size of the connection queue, the measured response time is
higher and is quite close to the values obtained from the model.

Modeling the Effect of Application Server Settings 211

Fig. 8. Comparing the model with the measured data - response time with 80 ConnQ

Fig. 9. Comparing all the response times with 50 ConnQ

212 G. Imre, T. Levendovszky, and H. Charaf

Fig. 10. Comparing all the response times with 80 ConnQ

Figure 9 and Fig. 10 discover a remarkable phenomenon: most of the config-
urations in which the maximum number of threads is less than the connection
queue provide about the same response times which is quite close to the val-
ues predicted by the model. While the configurations with more threads allowed
than the connection queue, decline from the predicted values to a significant and
yet similar extent. There is only a small number of the possible configurations
(e.g. 48 threads) in which the response time is between the two main curves.

4.2 Error of the Model

In the solution of the model, the calculation of the probability of k requests at
the server (pk) plays a key role. For this reason we carried out additional mea-
surements during which the timestamps belonging to the arrival and departure
of requests were registered. In this way it was possible to calculate the rate of
time of having k requests at the server, as an estimate for the probabilities. We
compared these results for the 100 Threads, 50 ConnQ and for the 30 Threads,
50 ConnQ configurations against the pk probabilities predicted by the model,
to obtain more details about how our model deflects from the measured results.
With 10 clients, as Fig. 11 depicts, the probabilities are almost the same for 100
and 30 threads, and they do not differ significantly from the model values. This
meets our expectations, since the response times are the same in these three
cases. Similar results can be observed for 20 and 30 clients.

Modeling the Effect of Application Server Settings 213

Fig. 11. Comparing the model with the measured data - probability of k requests at
the server with 10 clients

Fig. 12. Comparing the model with the measured data - probability of k requests at
the server with 40 clients

The first remarkable error of the model appears at 40 clients, depicted in
Fig. 12. This may be surprising, since the average response time predicted by
the model matches quite well at this client number. However the distribution of
the number of clients at the server is completely different in the reality and in the
model. The measured values are more close to a uniform distribution, while the

214 G. Imre, T. Levendovszky, and H. Charaf

Fig. 13. Comparing the model with the measured data - probability of k requests at
the server with 70 clients

model predicts a normal-like distribution. The match for the average response
time can be explained that the mean number of clients at the server is about the
same for all three cases (11.83, 11.3, 11.82, respectively). Similar behavior can be
observed for 50 and 60 clients as well.

For 70, 80, 90 and 100 clients, based on the average response times, a signifi-
cant difference is expected between the cases with 100 and 30 thread pool size,
and it is expected that the model is closer to the 30 thread case. The measure-
ments confirm this, see e.g. Fig. 13. The most salient difference can be observed
at the probability of having 50 clients (i.e. the connection queue is full).

It is obvious that an improved performance model should consider the thread
pool size as well. For this reason we tried to enhance our model with a method of
modeling multiple threads as proposed in [17]. This enhanced model, however,
was not able to follow the measured values either. Thus, we concluded that some
implementation details of the application server or the Java Virtual Machine
(JVM) cause the observed behavior of the system. To verify our assumption,
we implemented a simple web container in Java which allowed configuring the
observed parameters. Repeated measurements on our own web container running
on the same JVM did not show the deflection depending on the thread pool size.
Hence, we can state that an implementation of the application server causes the
inaccuracy of the model.

5 Conclusions

This paper presented the results of a performance measurement that focused on
two settings of the J2EE application server. A performance model was validated
against the results of several measurements. We tried to obtain more details
related to the fact that our simple performance model is not precise for all the

Modeling the Effect of Application Server Settings 215

configurations. We have the following important conclusions. The deviation from
the model happens when the number of the allowed threads and the number of
clients is greater than the maximum size of the connection queue. The absolute
number of the maximum thread pool size does not play any role, only relative
to the connection queue limit: note that with the connection queue sized at
50, 60 threads caused a declination, but with 80 connection queue, even the 70
threads configuration provided the results predicted by the model. Measuring the
distribution of number of clients at the server provided two important results.
Firstly, even in configurations where the average response time is accurately
predicted by the model, the pk probabilities of the model can be quite different
from the measured values. Secondly, with clients and threads of higher number
than the connection queue, the most important difference between the model
and the reality appears at the probability of the connection queue being full.
With our own developed web container, we have proven that application server-
specific implementation details should be considered to construct an improved
model. Hence, our future work will focus on investigating the source code of the
Sun Java System Application Server to reveal the cause of the observed behavior
and finding the way to model it.

Acknowledgement

Part of this work was funded by the National Office for Research and Technol-
ogy project number NKFP 2/009/04, and the Péter Pázmány program RET-
06/2005. Furthermore, the authors would like to thank EU INFSO-50883
(EGEE) program for support.

References

1. Home page of IBM WebSphere Application Server:
http://www-306.ibm.com/software/webservers/appserv/was/

2. Home page of JBoss Application Server:
http://www.jboss.org/products/jbossas

3. Home page of Sun Java System Application Server:
http://www.sun.com/software/products/appsrvr/index.xml

4. Sopitkamol, M., Menascé, D.A.: A method for evaluating the impact of software
configuration parameters on e-commerce sites. In: WOSP ’05. Proceedings of the
5th international workshop on Software and performance, pp. 53–64. ACM Press,
New York (2005)

5. Bogárdi-Mészöly, Á., Imre, G., Charaf, H.: Investigating factors influencing the
response time in J2EE web applications. WSEAS Transactions on Computers 4,
179–183 (2005)

6. Home page of SPECjAppServer: http://www.spec.org/osg/jAppServer/
7. Home page of TPC-W: http://www.tpc.org/tpcw/
8. Kleinrock, L.: Theory, Volume 1, Queueing Systems. Wiley-Interscience, Chichester

(1975)

http://www-306.ibm.com/software/webservers/appserv/was/
http://www.jboss.org/products/jbossas
http://www.sun.com/software/products/appsrvr/index.xml
http://www.spec.org/osg/jAppServer/
http://www.tpc.org/tpcw/

216 G. Imre, T. Levendovszky, and H. Charaf

9. Cortellessa, V., D’Ambrogio, A., Lazeolla, G.: Automatic derivation of software
performance models from case documents. Performance Evaluation 45(2-3), 81–
105 (2001)

10. Cortellessa, V., Mirandola, R.: Deriving a queueing network based performance
model from uml diagrams. In: WOSP ’00. Proceedings of the 2nd international
workshop on Software and performance, pp. 58–70. ACM Press, New York (2000)

11. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An analytical
model for multi-tier internet services and its applications. SIGMETRICS Perform.
Eval. Rev. 33(1), 291–302 (2005)

12. Bernardi, S., Donatelli, S., Merseguer, J.: From uml sequence diagrams and stat-
echarts to analysable petri net models. In: WOSP ’02. Proceedings of the 3rd
international workshop on Software and performance, pp. 35–45. ACM Press, New
York (2002)

13. Kounev, S., Buchmann, A.: Performance modelling of distributed E-Business ap-
plications using queuing petri nets. In: ISPASS’03. Proc. of the 2003 IEEE In-
ternational Symposium on Performance Analysis of Systems and Software. IEEE
Computer Society Press, Los Alamitos (2003)

14. Imre, G., Bogárdi-Mészöly, Á., Charaf, H.: Measuring and modelling the effect of
application server tuning parameters on performance. In: 4th Slovakian-Hungarian
Joint Symposium on Applied Machine Intelligence, Herl’any, Slovakia, pp. 471–482
(2006)

15. Imre, G., Bogárdi-Mészöly, Á., Charaf, H.: Performance modelling of a J2EE web
application considering application server tuning parameters. In: Proceedings of
MicroCAD 2006 International Scientific Conference, University of Miskolc, Miskolc,
Hungary, pp. 115–121 (2006)

16. Jain, R.: The Art of Computer Performance Analysis. John Wiley & Sons, Chich-
ester (1991)

17. Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative system
performance: computer system analysis using queueing network models. Prentice-
Hall, Inc. Upper Saddle River, NJ, USA (1984)

Possibilities for Advanced Dissemination and

Durable Storage of Scientific Data on the Grid

Rutger Kramer

Data Archiving and Networked Services
The Hague, The Netherlands
rutger.kramer@dans.knaw.nl

Abstract. Data Archiving and Networked Services (DANS) is a new
organisation in The Netherlands responsible for the archival and dissem-
ination of scientific datasets for the humanities and social sciences. It is
currently building a distributed storage system and web interface called
EASY for efficient ingest and publishing of datasets for reuse in any type
of setting; in scientific as well as in enterprise environments. Recently,
DANS was invited to be a part of the VL-e project in which a grid envi-
ronment is being set up. This opportunity presented us with a new range
of possibilities both in the realm of digital durable storage and advanced
dissemination. This paper gives an overview of how basic grid features
can help keep data accessible for an indefinite amount of time, how the
application of data mining and statistical analysis on a grid architecture
can provide researchers and analists with new information and what our
plans are to eventually implement all of these ideas.

1 Introduction

Data Archiving and Networked Services (DANS) is a new organisation, founded
by the Royal Academy of Arts and Sciences and the Netherlands Organisation
for Scientific Research in June of 2005. Its main responsibilities are to archive all
available research data created in the humanities and social science fields, and
to set up a data infrastructure that will enable anyone to reuse existing data.

Data submitted to DANS is generally static in nature and represents, together
with publications, the end result of a research project. The actual datasets will
usually not be modified or updated any further.

Apart from data experts working on its core archival task, DANS has a small
Research and Development team working on software that will enable us to find
new ways and use new technologies that can be used to archive and disseminate
research data.

At the moment, our development team is working on the implementation
of the Electronic Archiving SYstem or EASY, which will enable researchers to
deposit and retrieve scientific datasets for reuse. Researchers can upload data
files through a web interface and provide a minimal amount of metadata to
describe its contents. As soon as the data experts have checked the data for
completeness and correctness, it will be published on the web site. We aim to

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 217–225, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

218 R. Kramer

provide open access to as many datasets and as many people as possible, in effect
releasing datasets into the public domain.

Data that is deposited into the EASY system has to be maintained and kept
accessible for an indefinite amount of time, as the reusability of the datasets
has an indeterminable expiration date. Economic data that may have a limited
added value today (except for the research project for which it was collected),
may be invaluable in fifty years time. Moreover, the added value of individual
datasets can be limited since they are generally created with the sole purpose of
answering research question posed in one project. Adapting datasets for use in
other projects can be a daunting task for researchers working in the humanities
and social science fields, because of the fact that, in general, these researchers lack
the skills to restructure or reformat an existing dataset to fit their own needs.
Creation of a clear data infrastructure, i.e. making clear to researchers where
data relevant for their projects can be found, and making that data accessible
and instantly usable for them, is just as important as actually getting the data
and keeping it safe.

Making data accessible for researchers can be accomplished in a number
of ways, one of which is providing data mining functionality on the data we
archive. Because of the fact that DANS works for a number of disciplines,
ranging from psychology to archaeology, our archives contain a wide variety
of datasets. By linking individual, heterogeneous datasets (from within one dis-
cipline or across discipline boundaries), new data can be generated so that, for
instance, trends, similarities and correlations can be discovered or confirmed.
For example, datasets describing archaeological finds on two different locations
could be cross-referenced to see whether there is a similarity in found items
or stark differences in the finds. As another example, can the combination of
a dataset describing macro-economical trends and data on the use of ICT in
schools provide relevant new information on the sensitivity of the modernisation
of education to economic prosperity?

For this to work, we have to be able to (automatically) link datasets that
may be in entirely different, undocumented formats and which will generally be
created in the context of different universes of discourse.

2 Requirements Surrounding EASY

Although the archival task may seem as simple as storing the data in an orderly
fashion, this is not the case. A number of problems arise when dealing with the
long term storage of digital material which can be categorized under the term
Digital Longevity[1].

2.1 Digital Longevity

Digital longevity issues are recognised by data archives as well as scientists and
governing bodies as a genuine threat to the prolonged availability of digital

Possibilities for Advanced Dissemination and Durable Storage 219

material. The medium on which the data is stored is susceptible to deteriora-
tion, be it on floppy, hard drive or CD-ROM. Outside influences such as mag-
netic fields, prolonged exposure to dry or humid conditions, and normal wear
and tear greatly diminish the life expectancy of the medium. But files are not
only threatened by the deterioration of the physical medium. The usability of
the data is directly linked to the expected lifespan of the application used to
create or open the files. A textbook example in this case is the large number
of WordStar files that have been created during the early and mid 1980s. Be-
cause WordStar has been replaced by more popular word processing applications
years ago, and the actual application used to create and view the files will not
run on current computers and Operating Systems, it is becoming harder and
harder to access these files. Old WordPerfect documents can still be opened
with modern word processing software, but lose a lot of original markup dur-
ing the conversion to a newer format. Although one can argue that popular
formats can always be made accessible one way or another, the costs involved
in making it actually happen are ever increasing. It starts getting real diffi-
cult with unpopular file formats used by custom made software or generated by
old hardware. Even if a specification of the file format is available somewhere,
you will need to write new software to parse the data to be able to eventually
use it.

There are three strategies available to ensure accessibility of files stored in long
term storage repositories: emulation, hardware conservation and migration [2].
In short, you can either provide the user with the environment needed to access
the file, or you can constantly update the files to the newest available formats.
Both approaches have their own specific application domain: if functionality
is paramount you emulate or use the original hardware, if the data itself is
paramount you migrate.

2.2 Advanced Dissemination and Data Infrastructure

Dissemination of the archived datasets poses another challenge. If the digital
longevity problems with respect to digital media are taken care of, we can guar-
antee that whatever a researcher puts into the archive can always be taken out
again. Solving the software format problem will even make the data usable for
longer periods of time. This leaves us with the responsibility of creating a data
infrastructure for the humanities and social sciences in which researchers are able
to find, retrieve, link and analyze data using new methods and technologies. If
we don’t offer advanced dissemination functionality, chances are that the new
data infrastructure will hardly be used by researchers. Examples of advanced
dissemination functionality we are currently investigating are:

– Linking and cross-referencing different datasets to provide data mining ca-
pabilities.

– Format-on-demand: a researcher should be able to download a dataset in any
(popular) data format he or she wishes, so that he or she can immediately
start using it in his or her favourite software environment.

220 R. Kramer

– On-line analysis: before downloading a dataset, a researcher should be able to
ascertain the usability of a dataset by performing relatively simple analytical
operations (such as statistical analysis) on the data. For this, we intend to
use the NESSTAR[3] application for social science data.

3 Current Situation

We’re currently in the first phase of the implementation of the EASY system
that will not only serve as a digital durable archive, but will also be the basis
for the new data infrastructure. EASY will be released during the last quarter of
2006. From then on, researchers will be able to deposit and download scientific
data. In order to avoid problems of scale and especially durability, we chose to
develop our own storage solution.

3.1 Storage Solution

In order to store datasets and their accompanying metadata in a digitally durable
fashion, we have designed and implemented our own data repository system we
dubbed AIPStore1.

AIPStore stores the data without making any assumptions about the nature,
format or contents of the dataset or the metadata. The only requirement is that
the metadata is provided in XML form, but any metadata format (i.e. the tags
used in the XML document) will do. It constructs an AIP out of the file data,
metadata and AIP management data (for instance, creation date, categorisation,
etc.) and stores this container-like construct directly on the file system.

3.2 Distributed Storage

AIPStore is designed to operate as a cluster of autonomous servers. We have
decided on a distributed architecture because of the following reasons:

Storage Capacity Scalability. Although it is not yet possible to fully estimate
the amount of data that needs to be stored by the system, we expect that
during the first year of operations the submitted data will reach the 20 Terabyte
mark. If this trend it to continue in the following years, we will need to add
extra resources to be able to store all of this data. By applying a distributed
storage system architecture of autonomous nodes, adding more resources will be
as simple as starting a new node instance.

Shorter Response Times. Because of the fact that the metadata is spread
out over autonomous nodes, queries can be distributed over these nodes. Each
node will have an index built on their own domain. By distributing the query
over all of the nodes, and combining the end results in one place, the response
times for queries can be kept small.
1 AIP stands for Archival Information Package, a concept borrowed from the Open

Archival Information System (OAIS)[4] framework.

Possibilities for Advanced Dissemination and Durable Storage 221

Lots of Copies Keeps Stuff Safe (LOCKSS). By applying the ideas of the
LOCKSS[5] system, i.e. keeping multiple copies of one data file on several physi-
cal locations, the chances of a file completely vanishing are minimised. Whenever
one of the copies gets corrupted or deleted due to malhandling, hardware failure
or disasters, spare copies will be available instantly.

3.3 The DBMS Alternative

There are numerous database systems that can provide the functionality men-
tioned above. Open Source as well as commercial packages can take care of
scalability and replication without us having to write a single line of code. So,
why not use a DBMS to take care of these problems, and at the same time
benefit from all the additional functionality database systems have to offer?

One of the key factors of durable long term storage is to minimize dependencies
on systems and formats. Storing files and metadata in a database introduces an
additional technical layer around the actual bytestream. In short, we need to
have sufficient knowledge of the format in which a DBMS stores our files in
order to be able to retrieve the bytestreams from the DBMS, even when the
DBMS is no longer available for use. If we were to store our repositories in, for
example, a PostgreSQL database and for whatever reason technical support for
this DBMS is no longer available, getting to our data in case of serious system
malfunction would be very difficult, as we would have to disassemble the actual
database files.

Since we want to avoid dependencies on proprietary or hard to disassemble
software formats, we decided to implement a storage solution that is based on
filesystem storage and build functionality like querying, updating and replication
around it. This way, the files would always be accessible through the file system,
even if the management software would cease to be supported.

4 Possibilities for Grid Enabling AIPStore

The design of AIPStore was originally not intended to run with, on or alongside
a grid. The distributed nature of AIPStore would have to handle all of the
scalability issues we would encounter. This all changed when we were invited to
be a participant of the Virtual Laboratories for the e-sciences project (VL-e)[6],
in which the so called Big Grid is being built. Being a part of VL-e meant that
we could use far more advanced storage technology to archive a multitude of
datasets, and offered us a virtually unlimited amount of storage space.

4.1 Longevity on the Grid

However, we can only employ the grid as a storage alternative if it potentially
offers the same functionality currently built into our own software, i.e. redun-
dancy and scalability. As it turns out, grid storage offers some very interesting
possibilities for durable long term storage:

222 R. Kramer

Inherent Redundant Storage. Redundant file storage is a well known feature
of data grids and can be employed to enforce the LOCKSS principle.

Migration to New Media. To the end user, the exact location where a file is
stored is not important. Internally, the Storage Resource Broker decides where a
file is stored. As the grid evolves, i.e. as new storage systems come available and
old systems are removed from the grid, data migration strategies are automat-
ically employed to ensure that no files will be lost. These migration activities
effectively solve the durability problems concerning deteriorating media[7].

Mass Migration Capabilities. Whenever a file format becomes obsolete, the
original files need to be migrated to a more up to date format. As the number
of files to be managed by DANS is yet unknown but is assumed to run into the
hundred thousands, migrating all of these files - even in batch - can take up
an enormous amount of time. Using a cluster of worker nodes will drastically
shorten the time needed to convert files.

On the Fly Conversion. Although it is not a standard feature of grid systems,
the Global Grid Forum[8] is researching and designing a Data Format Description
Language which could lead to the generic storage of files in an intermediate
XML file format. The DFDL Working Group specifically states in its charter
that they are focussing on the definition language itself, not to create a generic
data representation language[9]. Moreover, the granularity the working group
is aiming for in describing data elements within a file format is too small to
be effectively used for any kind of generic representation of complex dataset
formats.

However, datasets come in a variety of flavours including ASCII tables or raw
sensor data. If the DFDL-WG activities culminate in a standard for data format
description, it can be used (as the basis for) the description and documentation
of the information available in these kinds of single-purpose files. Moreover,
providing an XML based data definition together with the actual data can help
in building applications to automatically convert from a random proprietary
format to a more popular and well known format.

Metadata Storage and Categorisation (MCS). The MCS outlined in [10]
is exactly what is needed for metadata storage. It supports searching and a
hierarchical organisation structure, and support for multiple metadata formats.
This last feature is indispensable for an archive working with data originating
from different scientific disciplines. Although descriptive metadata in a general
purpose format like Dublin Core (DC)[11] must be used across collections to
enable search features, essential information for actual reuse must be available in
discipline-specific metadata formats, such as the Data Documentation Initiative
(DDI)[12] format for social science data.

Possibilities for Advanced Dissemination and Durable Storage 223

4.2 Advanced Dissemination

Grid technology can also enable us to implement important features for ad-
vanced dissemination. The results of the DFDL-WG will provide us with ways
to automatically annotate complex file formats, which can lead to automatic
cross-referencing and linking. Using a DFDL, we can specify in a uniform man-
ner where the values or variables are located within data files. Although variable
names may not be uniform across individual datasets, the system can propose
possible matches between variables using fuzzy-matching of variable names or
trend similarities between value ranges.

Both annotating the data files and subsequently searching for similarities are
projects that will take up enormous amounts of time. Whether the annotation
process can be automated must be researched further, but the matching process
definitely can be automated. A single worker node can be assigned the task to
find similarities between one dataset and several (if not all) others. Distributing
the work on several datasets over more than one worker node will accelerate the
process of finding all possible relations between all of the datasets variables.

5 Moving to the Grid

At the time we were offered to work with the grid, the AIPStore system was not
yet fully functional. Because of the proposed change in direction, further develop-
ment of the system as it was originally conceived has been postponed until more
is known about the technical ramifications of a possible grid implementation.

What has become apparent is that moving the AIPStore functionality over to
the grid is not straight forward. Since anyone should be able to download and
use the datasets, and not just researchers known to the grid user administration,
a proxy system must be placed between the grid and the end-user that will act
on the grid on his or her behalf. Moreover, a couple of requirements leading to
the final design of AIPStore are yet to be mapped onto grid technology. Most
importantly, storage of the metadata in XML because of its inherent durability,
and a search and browse interface for this XML encoded metadata. We already
foresee possibilities to solve these issues, but before a full fledged solution is in
place we will not be able to commit entirely to the grid.

Instead, we are working on a gradual transition towards a fully grid based sys-
tem. At first, AIPStore will mirror all its data on the grid for added redundancy.
When we have enough experience with storing data on the grid, infrequently
used datasets will be ’swapped out’ of AIPStore and permanently stored on the
grid. Frequently used datasets will remain in AIPStore as well as on the grid in
order to ensure timely availability of popular datasets. After that, we will go into
the metadata storage problem. We will be looking into the possibility of basing
the metadata storage back-end of MCS on XML, or looking for possibilities of
regularly exporting the metadata database to XML for long term storage.

In the end, access to the grid will always be mediated by a proxy system, but
all of the data and metadata should be stored on the grid itself.

224 R. Kramer

6 Future Work

We will be taking EASY and the AIPStore system on-line during the last quarter
of 2006. The software itself will be released under an Open Source license during
the first quarter of 2007. This software will include the basic functionality to
archive and retrieve datasets from a digital durable repository.

From then on, we will be working on the advanced dissemination functionality.
We will collaborate with data specialists and endusers on the design and imple-
mentation of mining systems and the linking of heterogenous datasets. Both the
transition onto the grid and the implementation of automatic conversion systems
start around May of 2007.

7 Conclusion

In this paper I gave an overview of DANS and its goals and purposes. The
fact that data has to be stored for an indefinite amount of time is leading in
the development of our own archival system EASY. We managed to implement
some known best practices of digital durable storage in our AIPStore system.

The problems surrounding digital longevity that we as a data archive are fac-
ing are not new and are not confined to the realm of scientific data management.
Any information intensive organization will have to have some policy on how to
manage data, be it ad hoc or with Document Management Systems.

If an organization wants to keep old documents or data accessible, they will
have to migrate their data at some point in time; not only from one medium
to another, but also from old format to new format. As the amount of data an
organization uses and generates grows, migrating the stockpile of information
becomes an evermore cumbersome, time intensive and expensive task.

Grid infrastructures already incorporate a lot of functionality that can safe-
guard data for longer periods of time. By implementing a small amount of extra
services (mass migration, conversion on-the-fly, etc.) the grid could be turned
into a real digital safe haven for files. So far, the grid is the only platform on
which the digital longevity problem can be sufficiently tackled for large amounts
of data, be it production data, surveys, scientific data or everyone’s personal
digital photo album.

The VL-e project has offered us a unique opportunity to use the potential
of grid technology. Virtually unlimited disk space, inherent replication and dis-
tributed computing power are resources that we are in need of to achieve our
goals of providing long term access to data and building a data infrastructure
enabling researchers to find new uses for existing research data and combining
data from different datasets to retrieve new information.

Although much of the requirements of digital durable storage are met by
current grid technology, a simple transfer of our current system to the grid is not
possible. We will employ a gradual transition strategy based on an architecture
in which our existing AIPStore system will act as a proxy and a cache to the
grid’s resources.

Possibilities for Advanced Dissemination and Durable Storage 225

Eventually, we will aim for a fully grid based implementation of both the
digital durable storage of datasets and the advanced dissemination functionality,
both of which will be released under an open source license.

Acknowledgements. Many thanks to Jeff Templon and David Groep of the
National Institute for Nuclear Physics and High Energy Physics (NIKHEF) in
the Netherlands for inviting us to take part in the VL-e project and acting as
guides to the world of grid computing.

References

1. Ross, S., Gow, A.: Digital Archaeology: Rescuing Neglected and Damaged Data
Resources (February 1999) (2006-05-22),
http://www.ukoln.ac.uk/services/elib/papers/supporting/pdf/p2con.pdf

2. Lee, K.-H., Slattery, O., Lu, R., Tang, X., McCrary, V.: The State of the Art and
Practice in Digital Preservation. Journal of Research of the National Institute of
Standards and Technology (January-February 2002) (2006-05-22),
http://nvl.nist.gov/pub/nistpubs/jres/107/1/j71lee.pdf

3. (2006-07-21) http://www.nesstar.org/
4. Reference Model for an Open Archival Information System (OAIS), CCSDS 650.0-

B-1 Blue Book (January 2002) (2006-07-21),
http://public.ccsds.org/publications/archive/650x0b1.pdf

5. (2006-07-21) http://www.lockss.org/lockss/Home
6. (2006-07-21) http://www.vl-e.nl/
7. Moore, R.: Preservation Environments. In: 21st IEEE/12th NASA Goddard Con-

ference on Mass Storage Systems and Technologies (MSST2004) (April 2004)
8. (2006-07-21) http://www.gridforum.org
9. (2006-07-21) http://forge.gridforum.org/sf/docman/do/downloadDocument/

projects.dfdl-wg/docman.root.administrative/doc5387/1
10. Deelman, E., Singh, G., Atkinson, M.P., Chervenak, A., Chue, N.P., Chue Hong,

C., Kesselman, S., Patil, L.P., Su, M.: Grid-Based Metadata Services. In: 16th
International Conference on Scientific and Statistical Database Management (SS-
DBM04) (June 2004)

11. (2006-07-21) http://www.dublincore.org/
12. (2006-07-21) http://www.icpsr.umich.edu/DDI/

http://www.ukoln.ac.uk/services/elib/papers/supporting/pdf/p2con.pdf
http://nvl.nist.gov/pub/nistpubs/jres/107/1/j71lee.pdf
http://www.nesstar.org/
http://public.ccsds.org/publications/archive/650x0b1.pdf
http://www.lockss.org/lockss/Home
http://www.vl-e.nl/
http://www.gridforum.org
http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.dfdl-wg/docman.root.administrative/doc5387/1
http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.dfdl-wg/docman.root.administrative/doc5387/1
http://www.dublincore.org/
http://www.icpsr.umich.edu/DDI/

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 226–240, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Developing Realistic Approaches for the Migration of
Legacy Components to Service-Oriented Architecture

Environments

Grace Lewis and Dennis B. Smith

Carnegie Mellon University, Software Engineering Institute, 4500 Fifth Ave., Pittsburgh,
PA 15213, USA

{glewis,dbs}@sei.cmu.edu

Abstract. This article addresses the problem of the migration of legacy
components to Service-Oriented Architecture (SOA) environments. It focuses
on the development of a realistic strategy for performing such a migration,
taking into account the business needs of the organization and the technical
content of the organization’s existing systems portfolio. It highlights the
challenges of building an SOA-based system and presents development issues
from three perspectives: the application developer, the infrastructure developer,
and the service provider. Because there is a current trend of organizations that
are leveraging the value of their legacy systems by exposing all or parts of it as
services within an SOA environment, the concerns and needs of the service
provider are presented in greater detail. SMART, a method for making
decisions on the migration of legacy assets as services within SOA
environments is presented.

Keywords: service-oriented architecture, SOA, services, Web Services,
migration, modernization, legacy.

1 Introduction

Service-oriented architecture (SOA) has become an increasingly popular mechanism
for achieving interoperability between systems. Because it has characteristics of loose
coupling, published interfaces, and a standard communication model, SOA enables
existing legacy systems to expose their functionality as services, presumably without
making significant changes to the legacy systems. Migration to services has been
achieved within a number of domains, including banking applications, electronic
payment applications, and development tools, showing that the promise is beginning
to be fulfilled [1] [2] [3] [4].

This article outlines the basic concepts of SOA at different levels of detail. Goals,
challenges, and common misconceptions about the SOA approach are presented. The
four pillars of SOA-based systems development are introduced as a way to address
SOA challenges. Finally, the Service Migration and Reuse Technique (SMART) is
presented as a method for determining the feasibility of migrating legacy components
to an SOA environment.

 Developing Realistic Approaches for the Migration of Legacy Components 227

2 SOA Basics

2.1 Basic SOA Concepts

Services are reusable components that represent business tasks, such as customer
lookup, account lookup, or credit card validation. Services can be globally distributed
across organizations and reconfigured to support new business tasks. They are
reusable in the sense that they can be used by many business processes. They usually
provide coarse-grained functionality, such as customer lookup as opposed to finer
grained functionality such as customer address lookup.

More formally, a service is a coarse-grained, discoverable, and self-contained
software entity that interacts with applications and other services through a loosely
coupled, synchronous or asynchronous, message-based communication model.

SOA is a way of designing systems composed of services that are invoked in a
standard way. SOA is an architectural style, but it is not a system architecture, and it
is not a complete system. In this architectural style, an SOA-based system is
composed of services, applications that use services, and an SOA infrastructure that
connects applications to services. This will be further explained in Section 2.3.

2.2 Goals of SOA Adoption

Common goals for the adoption of SOA are to eliminate redundancy, assemble new
functionality from existing services, adapt systems to changing needs, and leverage
legacy investments.

To illustrate the goal of eliminating redundancy, it is common to find that in
traditional stove-piped system environments there is often duplicate functionality
across systems. For example, three applications may have their own customer lookup
functionality. A service with equivalent functionality can be implemented and used by
all three applications. This translates into cost-efficiency because there is a single
point of maintenance and can now be used by other applications that require this
functionality without any additional development.

An example of assembling functionality from existing services can be illustrated
by an Order Processing application that uses a set of services to implement part of its
functionality. If the organization decides to go into the education business, a series of
services already used by the Order Processing application would be available, such as
Customer Lookup and Credit Check. The organization could move more quickly into
its new line of business and the new services created specifically to support the
education line of business, such as Room Reservation, could also be used by other
applications.

The ability to adapt to changing needs is because in an SOA approach services are
accessed by applications in a standard way through the selected SOA infrastructure.
Therefore, as long as the interface remains stable, the logic supporting the services
can change as needed and not have an effect on existing applications.

Finally, an SOA approach is an attractive option to expose functionality in legacy
systems. By allowing access to the legacy system thorough a standard service
interface, the details of connecting to the legacy system are the responsibility of the

228 G.A. Lewis and D.B. Smith

SOA infrastructure and the service interface and not of the applications. As a result,
the legacy platform diversity is transparent to the applications.

2.3 Building Blocks of SOA-Based Systems

An SOA-based system consists of 1) services, 2) applications that discover and use
services, 3) and an SOA infrastructure that connects applications to services, as
shown at a very high level in Figure 1. In this context, the SOA Infrastructure
provides a standard communication mechanism between applications and services.
Each application invokes the services in the same way. Each service provides an
interface that is invoked through a data format and protocol that is understood by all
the potential clients of that service.

Application

X

Service
A

SOA Infrastructure

Enterprise
Information System

Application
Y

Application
Z

InternetInternet

External
System

Service
B

Service
C

Service
D

Internal UsersInternal Users

DiscoverySecurity
Development
Tools

Legacy or New
Code

Fig. 1. Components of an SOA-Based System

Infrastructure developers focus on providing a stable infrastructure that includes
standards, common services and development tools. The infrastructure supports the
protocol and data formats of the service's current and potential clients.

Tasks for infrastructure developers include:

• Selecting standards to implement as part of the infrastructure
• Developing a set of common infrastructure services for discovery,

communication, security, etc.
• Identifying and developing binding mechanisms to satisfy the largest set

of potential service users
• Providing tools for application and service developers
• Documenting and supporting the infrastructure

Application developers focus on the discovery, composition and invocation of
services, either statically at design time or dynamically at runtime. Key tasks for
application developers are:

 Developing Realistic Approaches for the Migration of Legacy Components 229

• Understanding the SOA infrastructure
• Discovering appropriate services to be incorporated into applications
• Retrieving and understanding service description documentation
• Invoking identified services in applications, including any data

conversions, error handling and availability handling
• Testing services for correctness in the context of the application being

developed

Service providers focus on the description and granularity of services so that
applications can easily locate and use them with acceptable Quality of Service (QoS).
Tasks include:

• Understanding requirements of potential service users
• Understanding SOA infrastructure
• Developing code that receives the service request, translates it into calls

into new or existing systems, and produces a response
• Describing and publishing the service
• Developing service initialization code and operational procedures

With the increasing popularity of software as a service, it is becoming common for
each of these components to be developed by different organizations. The tasks and
risks associated with the development of each will largely depend on the distribution
of the development effort across multiple organizations. If the three types of
components are developed within the same organization, the challenges are less.
However, if the development is distributed across multiple organizations, decisions
made locally by any one of these development groups can have an effect on the other
groups.

2.4 Basic SOA Operations

There are three basic operations that are required to support an SOA-based system.
These are:

1. Service discovery. Service repositories are queried for services with desired
characteristics. The complexity of a service repository varies from a simple
directory of services categorized by type to a more complex registry where
services are categorized according to a pre-defined ontology with QoS
information in addition to binding information. A service registry contains
basic information about available services, such as description, specification
(contract), documentation; and should include more additional information
such as classification, usage history, test results, and performance metrics.
The major challenges of service discovery are the proper description of and
the maintenance of the service repository.

2. Service composition. Services are integrated into applications to provide
portions of functionality. The major challenges of service composition are
input/output conversions and transaction management.

3. Service invocation. Services are invoked and the corresponding service code
is executed. A service can be invoked in several ways:

230 G.A. Lewis and D.B. Smith

• Service consumer directly invoke the service if its location is known
• Service consumer uses a discovery service to locate a service based

on a specific set of criteria. The discovery service returns the
location of the service so that it can be invoked by the consumer.

• Service consumer uses a service broker that passes the request to
one or more discovery services.

The major challenges of service invocation are dealing with service
availability and having robust exception handling in the event that services
are no longer available.

3 Common Misconceptions About SOA

SOA may currently be the best available solution for achieving interoperability,
agility, and other goals such as providing a technology upgrade path that preserves the
investment in legacy systems and simplifies deployment of new systems. However,
our experience from working with customers considering the adoption of SOA
suggests that they often have a variety of misconceptions that lead them to greatly
underestimate the effort required to successfully implement SOA-based systems.
These misconceptions are dangerous because they make organizations more
susceptible to vendor advertising and hype. In addition, these misconceptions are
often embraced by internal information technology (IT) organizations, leading them
to over-promise new capabilities, while underestimating the cost and effort required
for achieving even modest improvements.

3.1 It Is Easy to Develop Applications Based on Services

This is also stated as “just call some services and you’re done" and is obviously an
oversimplification of the development process in a service-based environment. There
are still many questions that need to be answered to successfully develop a service-
based application. We focus here on finding services, composing and using services.

Finding services can be done using a service repository. Such a repository contains
data about available services and can be part of any SOA implementation. For Web
Services this could be a UDDI repository. Developers can use the search capability to
find services and all the necessary information to invoke them. However, often the
search capability is not sufficient if it is limited to a simple keyword search or to
browsing by categories. Currently available repositories do not provide search for a
service by functionality. Such a capability may be provided in the future if ontological
service description approaches are added to service repositories [5]. Other challenges
are level of quality, completeness and trust of the contained information.

Composing services is also not as easy as it may seem at first. While it may be easy
to call one service for a specific function, such as validating a credit card or placing
an order, other situations require more complex interactions. When the results of
invoking service A must be fed into another service B, it is not likely that B can
process the result data from A directly. In most cases, it will be necessary to develop
glue code to transform the data into the correct format for B. This transformation may
be simply a syntactic transformation, but may also involve the application of complex

 Developing Realistic Approaches for the Migration of Legacy Components 231

algorithms. Examples include time zone conversions, coordinate transformations, or
translations between categories that do not match.

In the case of using services, it is possible that the functionality of the services does
not match the functionality needed. The best available service may have the wrong
granularity for the task at hand. If the service does too much, the developer needs to
add post-processing of service results to get the desired functionality. If the service
does too little, the developer has the choice between adding custom code in the
application or finding another service to provide the additional processing. Another
challenge is the determination of the resulting quality of service (QoS) characteristics,
such as performance, security, or reliability, once the application is put together [6].

3.2 It Is Easy to Compose Services Dynamically at Runtime

Currently, binding to services is usually done at design time. This is referred to as
static binding or fully-grounded binding. Discovery and composition of services are
done at design time such that the developer can discover the syntax and semantics of
the service before it is actually used. In the case of dynamic binding, discovery and
composition of services are done at runtime. This is currently a very complex and
poorly supported task.

In a very basic scenario of dynamic binding, service consumers retrieve the service
address from a registry before each call to the service. If there are several providers of
the same service the service consumer can choose at runtime which one to use. The
consumer can also rank providers based on QoS criteria, choose a preferred provider,
and use others as backup if the preferred service is not available.

More advanced automatic discovery and composition of new services at runtime
requires the use of ontologies to describe function and usage of services. Current
technologies have not advanced to a point where this is possible in production
environments [7]. A potential solution requires the use of a common ontology by
service providers and client applications within a domain. Given this shared ontology
it would still be necessary to develop components that can construct the right queries
for the discovery of services, compose services when there is not a single service that
provides the needed function, and then provide the right data to invoke the discovered
service. This is not an easy set of tasks to do at runtime.

3.3 SOA Is All About Standards and Standards Are All That Is Needed

This statement primarily applies in the context of Web Services because Web
Services are the main standards-based technology available today for SOA
implementation. This leads to a corollary misconception that SOA and Web Services
are the same, while the fact is that Web Services are only one potential approach to
implementing SOA.

Basic infrastructure standards that support the exchange of messages between
service consumer and provider are the most developed and mature of the Web Service
standards. Currently the majority of Web Services are based on WSDL Version 1.1
and SOAP Version 1.1, and these standards have been stable for a number of years.

232 G.A. Lewis and D.B. Smith

Being stable for years does not mean that the standards are complete. For example,
after adopting basic infrastructure Web Service standards, organizations building
services may find that these services still cannot communicate information effectively
with other services due to different design decisions and flexibility in the standards.
The WS-I Basic Profile was constructed to provide better interoperability across
implementations using basic infrastructure standards [8].

In addition, revisions to standards are likely in any area undergoing rapid advances
in technology. This is certainly the case with Web Service standards. A new version
of WSDL is currently under development. As this and other updated standards are
released and become part of Web Service infrastructure products, there will likely be
issues regarding the compatibility of services based on old and new versions. As an
example, the SOAP 1.2 primer lists all the differences with SOAP 1.1. Just in
additional or changed syntax there are 15 differences. While these changes are
beneficial because they make the specification clearer and more robust, valid SOAP
1.1 messages may be invalid under SOAP 1.2 because of elements that are required in
SOAP 1.2 but optional in SOAP 1.1. As a result, once tools and libraries start
supporting SOAP 1.2, existing applications and services will have to make the move
as well in order to continue operation.

Standards for service composition and cross-cutting concerns are less mature—and
far less stable—than basic infrastructure standards. Currently, there are a number of
competing proposals and standards for service composition and cross-cutting
concerns that conflict and overlap. Examples of closely related capabilities that are
being independently developed (and therefore are competing) include WSCL and
WS-Coordination in the field of service composition. Regarding these less mature
areas of Web Services, the old saying sums it up, “the best thing about standards is
that there are so many to choose from.” There is hope, however, that Web Service
standards will evolve such that they can be combined, as in the case of WS-Security
that can use SAML assertions in security token references.

3.4 Other Common Misconceptions

This list of misconceptions is not exhaustive and its intention is not to discourage the
adoption of SOA. In fact, there are many success stories that prove it is a viable and
real option. We have focused on those that are prevalent in the expectations of SOA
customers. We hope that by recognizing these misconceptions, organizations can
better understand and evaluate the promises of vendors and improve their own
internal SOA expectations and planning processes. Other popular misconceptions
include the views that

• SOA provides the complete architecture for a system
• Legacy systems can be easily integrated into an SOA environment
• SOA is all about technology
• The use of standards guarantees interoperability among services in an

SOA environment
• It is easy to develop services anybody can use
• Services can only be business services
• Testing applications that use services is no different than testing any other

application

 Developing Realistic Approaches for the Migration of Legacy Components 233

4 Pillars of SOA-Based Systems Development

It is common to view SOA-based systems development as a technical problem with a
technical solution. However, successful SOA-based systems development requires
attention to four pillars as illustrated in Figure 2. These are each outlined briefly in the
following subsections.

S
trateg

ic
A

lig
n

m
en

t
SOA Design Principles

SOA-Based Systems
Development

T
ech

n
o

lo
g

y
E

valu
atio

n

S
O

A

G
o

vern
an

ce

C
h

an
g

e o
f

M
in

d
set

Fig. 2. Pillars of SOA-Based Systems Development

4.1 Strategic Alignment

Any successful SOA strategy has to be aligned with business goals. The high level
business goals dictate the focus of an SOA implementation. For example, a goal to
increase information available to business customers will focus on intuitive portals
and creation of services related to customer information. A goal of integrating new
business partners will focus on a flexible SOA infrastructure, a strong service
repository, and clear guidelines for composition. A goal of maximizing security may
lead to a proprietary SOA infrastructure.

Services are identified through a top down analysis of business processes, a
bottom-up legacy system inventory, or a combination of the two. High priority
services are selected based on their relationship to critical business goals.

SOA implementation starts with pilot projects that provide high impact and visibility
with the lowest risk. Successful pilot projects will potentially lead to projects that
integrate a single business unit, to projects that integrate multiple business units, to
potentially a virtual enterprise where all applications are built based on services [9].

4.2 SOA Governance

Governance has been rated as the main inhibitor of SOA adoption [10]. A well-
defined governance model is essential for SOA success and needs to answer such
questions as:

234 G.A. Lewis and D.B. Smith

• What is the process for determining what services to create?
• What is the process for evolving, and changing services if there are many

consumers of the service?
• Many business services are common across several lines of business in an

enterprise. Who "owns" these common services?
• Who owns the actual data if more than one service is using it?
• What is the resolution mechanism if there are conflicting requirements or

change requests for shared services?
• What happens if the same (or similar) service is being developed by more

than one service provider?
• What mechanisms, tools and policies are used for maintaining and

monitoring deployed services?
• How are enterprise-wide policies enforced across various services both

internal as well as external to the organization?
• Who owns and maintains the shared repository of services in an

organization?
• How are service level agreements (SLA) defined and enforced between

service consumers and providers?

4.3 Technology Evaluation

Because an SOA implementation may use a number of technologies in novel contexts,
it is important to evaluate whether a specific set of technologies is appropriate for the
task at hand. All technologies work well within a specific context and under certain
conditions. For example, Web services work well for asynchronous communication
over the Internet. In a business environment these conditions are very common.
However, this may not be the case in a military tactical command and control
environment where high performance and availability requirements prevail. A formal
evaluation process that can allow organizations to experiment with technologies
before they are inserted into organizations is necessary. This process must consider
the context in which the technology will be used in order to make the right decisions.

Lewis outlines an approach for context based technology assessments that can be
appropriate for SOA technology evaluations [11]. This process evaluates technologies
within the context that they will be used. It includes hands-on experimentation with
the technology for a greater understanding of its implications, as well as early
competence development of the people conducting the experiments. An integral part
of this process is the use of TechChecks (formerly known as model problems) to
verify claims about different technologies and approaches. The approach involves (1)
formulating hypotheses about the technology, and (2) examining these hypotheses
against very specific criteria through experimentation. In this way the hypotheses are
either sustained or refuted. The TechCheck approach has the advantage of producing
very efficient and representative experiments that not only evaluate technologies
within the context of their future use, but also generate hands-on competence with the
technologies.

 Developing Realistic Approaches for the Migration of Legacy Components 235

4.4 Awareness of a Different Mindset

There are a unique set of challenges in building SOA-based systems. These
challenges require a different development approach that deals with the characteristics
of SOA-based systems. Although it is difficult to generalize, some of the contrasts of
SOA systems versus traditional systems are presented in Table 1.

Table 1. Differences between Traditional Systems Development and SOA-Based Systems
Development

Traditional Systems Development SOA-Based Systems Development
Tight coupling between system components Loose coupling between applications

and services
Shared semantics at design time In the future, semantics ideally

enable dynamic discovery and
execution of services

Known set of users and usage patterns Potentially unknown service users
and usage patterns

System components all within the same
organization

Multiple organizations providing and
supporting system components

These differences impact the way software is developed throughout the life cycle.

For example:
• During requirements, it is important to have close ties to business process

modeling and analysis. In addition there is the need to anticipate potential
requirements from unknown users

• During architecture and design, it is important to have technology evaluations
and to perform explicit tradeoff analyses

• Implementation decisions will be impacted by emerging standards and may
require simulation of the deployment environment

• Testing requires a strong emphasis on exception handling, and requires all
users to be online

• Maintenance requires more sophisticated impact analyses and greater
coordination of release cycles

5 Migration of Legacy Component to SOA Environments

Enabling a legacy system to interact within an SOA environment, such as a Web
services-based architecture, is sometimes relatively straightforward. However,
characteristics of legacy systems, such as age, language, and architecture, as well as
of the target SOA environment, can complicate the task. This is particularly the case
during migration to highly demanding and proprietary SOA environments such as
those with strong requirements for security or performance. In these cases, it may not
be immediately obvious how best to use legacy code—or even whether to use it.
Migrations to SOA environments will likely rely less on semi-automated migration,
and more on careful analysis of the feasibility and magnitude of the effort involved.

236 G.A. Lewis and D.B. Smith

There is a need for a systematic process that addresses a wide range of considerations
in order to achieve consistent results in making decisions regarding the migration of
legacy components.

The Service Migration and Reuse Technique (SMART) assists organizations in
analyzing legacy capabilities for use as services in an SOA environment. SMART
gathers information about the migration context, potential services, legacy
components, and the target SOA environment, to produce a service migration strategy
as its primary product [12]. SMART also produces other outputs that are useful to an
organization whether or not it decides on migration. SMART inputs and outputs are
depicted in Figure 3.

SMARTSMARTSMART

Goals
Requirements
Legacy System

• Architecture
• Design
• Code
• Cost, effort, risk
• History

Target SOA
• Constraints
• Architecture
• Standards
• Infrastructure services

Input

Goals
Requirements
Legacy System

• Architecture
• Design
• Code
• Cost, effort, risk
• History

Target SOA
• Constraints
• Architecture
• Standards
• Infrastructure services

Input

Migration Issues
Stakeholder List
Critical Business
Processes
Service Table
Component Table
Target SOA Description
Comp-Service Options
Migration Alternatives
Migration Strategy

Output

Migration Issues
Stakeholder List
Critical Business
Processes
Service Table
Component Table
Target SOA Description
Comp-Service Options
Migration Alternatives
Migration Strategy

Output

Fig. 3. SMART Inputs and Outputs

SMART consists of five major activities, each divided into several tasks. The
activities and generalized process and information flows of SMART are depicted in
Figure 4. Information-gathering activities for the first three activities are directed by
the Service Migration Interview Guide (SMIG). The SMIG contains questions in
approximately 60 areas that directly address the gap between the existing and target
architecture, design, and code, as well as questions concerning issues that must be
addressed in service migration efforts. Use of the SMIG assures broad and consistent
coverage of the factors that influence the cost, effort, and risk involved in migration to
services.

5.1 Establish Migration Context

The goal of this activity is to understand the business and technical context for
migration, identify stakeholders, and select candidate services for migration. The
outcome of this activity is either a reasonable set of services to be considered in the
migration analysis or a decision that the legacy system is not a good candidate for
migration because a reasonable set of services could not be identified.

 Developing Realistic Approaches for the Migration of Legacy Components 237

Establish
Migration
Context

Describe
Existing

Capability

Describe
Target SOA

State

Analyze the
Gap

Develop
Migration
Strategy

Fig. 4. SMART Activities

Understanding the migration context includes understanding the rationale, goals
and expectations for migration to an SOA environment; and any programmatic
constraints such as schedule and budget for migration. It also includes gaining an
understanding of the system at a high level, to start identifying potential services that
could be mined from the legacy system.

Identifying stakeholders to involve in the process is important because these
become sources of information for the rest of the activities. It is useful to at least
identify who is driving and paying for the effort, who knows what about the legacy
system, and to understand the demand or need for potential services.

Once the system is understood at a high level and there is an initial idea of what
services can be migrated from the legacy system and potential service needs, the next
step is to select candidate services for the migration analysis. The selection process
can be summarized as:

• Identify business and migration goals
• Identify key business processes that support these goals and can use

functionality from the legacy system
• Identify common steps/tasks in these processes or threads
• Select a number of the steps as candidate services

If it is not possible to make a connection between goals, services, and legacy
functionality, then the legacy system might not be a good candidate for migration.

5.2 Describe Existing Capability

The goal of this activity is to obtain descriptive data about the components of the
legacy system targeted for migration. Basic data solicited during this activity includes
the name, function, size, language, operating platform, and age of the legacy
components. Technical personnel are questioned about the architecture, design
paradigms, code complexity, level of documentation, module coupling, interfaces for
systems and users, and dependencies on other components and commercial products.
In addition, data about the relative quality and maturity of legacy components is

238 G.A. Lewis and D.B. Smith

gathered, including outstanding problems, change history, user satisfaction, and
likelihood of meeting longer term needs. Historical cost data for development and
maintenance tasks is collected to calculate effort and cost estimates. During the
Analyze the Gap activity, it will be determined if code analysis or architecture
reconstruction activities will be necessary. This activity also starts to gather
information that will indicate how much effort will be needed for these analyses.

5.3 Describe Target SOA State

The goal of this activity is to gather enough information about the Target SOA in
order to understand the requirements and constraints that it will place on services. The
information gathered is used to answer to provide the following understanding:

• Identify how services would interact with each other and the SOA
environment

• Identify the impact of specific technologies, standards, and guidelines for
service development

• Determine target SOA implementation state
• Understand QoS expectations and execution environment for services
• Understand support requirements once services are in production

The characteristics of the target SOA will affect decisions about whether legacy
components can be reused. The degree to which a legacy component is inconsistent
with these characteristics will influence the overall migration costs.

5.4 Analyze the Gap

The goal of this activity is to identify the gap between the existing state and the future
state and determine the level of effort and cost needed to convert the legacy
components into services. SMART uses several sources of information to support the
analysis activity. The issues, problems, and data gathered as the SMART team
investigates the available components, required services, and target SOA form one
source of information. A second, optional source of information is the use of code
analysis and architecture reconstruction tools to analyze existing source code. Where
documentation is insufficient or where there is uncertainty about code characteristics
such as dependencies on commercial products or between portions of the code, tool
analysis is very helpful. This option can also be used with great effect to survey
representative portions of the code to verify other opinions and judgments.

5.5 Develop Migration Strategy

The final activity of SMART is the selection of a strategy to achieve the migration
goal the development and presentation of the migration strategy. In many cases, the
migration strategy may involve multiple steps, such as an initial wrapping, followed
by restructuring of the application (now service) into appropriate layers, and finally
by modification to use other services. Example elements of a strategy include

 Developing Realistic Approaches for the Migration of Legacy Components 239

• Identities of specific components to migrate
• Recommendations regarding the ordering of migration efforts
• Specific migration paths to follow (simple wrapping vs. rewriting of code)
• Identification of increments that lead to increasing capability
• Suggestions regarding organization(s) best equipped to lead the migration

effort
• Suggested coordination with related efforts, such as SOA infrastructure builds

or data consolidation

There may be more than one viable alternative to achieve the migration goal. These
alternatives may vary along many dimensions, such as the components selected for
migration, the sequencing of migration activities, the use of external services, and the
types of modifications made to the code.

The final migration strategy is prepared in two forms: a Migration Strategy
Presentation for management and a Migration Strategy Report with detailed findings
and steps. This latter step is optional if all that is required is a high-level analysis of
migration feasibility. It should be clear that the strategy is a preliminary analysis of
the feasibility but the briefing is not intended to replace system engineering activity.

6 Summary

SOA offers significant potential for leveraging investments in legacy systems by
providing a modern interface to existing capabilities, as well as exposing legacy
functionality to a greater number of users. The SOA approach accomplishes this by
promoting assembly of applications from existing services, platform and language
independence, reuse of services through loose coupling, and easy service upgrade due
to separation of service interface from implementation.

An SOA-based system consists of 1) services, 2) applications that discover and use
services, 3) and an SOA infrastructure that connects applications to services. An end-
to-end engineering approach for SOA requires addressing the unique challenges, risks
and technical issues of these three different development perspectives. In particular,
the service provider that is designing reusable services requires a different approach,
skill set, and mindset than in traditional development. There will be a bigger
stakeholder community because services are typically reused at organization and sub-
organization level. Often, the challenges provided by this fact alone, cause the cost of
exposing legacy system functionality as services to be higher than actually replacing
the system with a new SOA-based system. Therefore, there is a need for detailed
analysis to determine the feasibility of exposing legacy functionality as services. This
analysis has to include the identification of needs of the target SOA, a clear
distinction between the needs that can be satisfied by the legacy system and those that
cannot be satisfied, and a systematic analysis of changes that need to be made to fit
into the target SOA.

SMART analyzes the viability of reusing legacy components as the basis for
services by answering these questions:

240 G.A. Lewis and D.B. Smith

• What services make sense to develop?
• What components can be mined to derive these services?
• What changes are needed to accomplish the migration?
• What migration strategies are most appropriate?
• What are the preliminary estimates of cost and risk?

With this information, an organization can then make decisions regarding the
migration path to a service-oriented environment.

References

1. Polmann, M., Schonefeld, M.: An Evolutionary Integration Approach using Dynamic
CORBA in a Typical Banking Environment. In: Presented at the Case Studies Workshop
of the Sixth European Conference on Software Maintenance and Reengineering, Budapest,
Hungary (March 11-13, 2002)

2. Radha, V., Gulati, V., Thapar, R.: Evolution of Web Services Approach in SFMS – A
Case Study. In: Proceedings of the IEEE International Conference on Web Services
(ICWS’04), July 6-9, 2004. IEEE Computer Society Press, Los Alamitos (2004)

3. Zhang, J., Chung, J., Chang, C.: Migration to Web Services Oriented Architecture – A
Case Study. In: Proceedings of the 2004 ACM Symposium of Applied Computing,
Nicosia, Cyprus, March 14 -17. ACM Press, New York (2004)

4. Chung, S., Young, P., Nelson, J.: Service-Oriented Software Reengineering: Bertie3 as
Web Services. In: Proceedings of the 2005 IEEE International Conference on Web
Services (ICWS’05), Orlando, FL, USA, July 11-15, 2005. IEEE Computer Society Press,
Los Alamitos (2005)

5. Metcalf, C., Lewis, G.: Model Problems in Technologies for Interoperability: OWL Web
Ontology Language for Services (OWL-S), Software Engineering Institute, Carnegie
Mellon Unversity, Pittsburgh, PA (2006)

6. Milanovic, N., Malek, M.: Current Solutions for Web Service Composition. In: Internet
Computing, vol. 8(6). IEEE Computer Society Press, Los Alamitos (2004)

7. Metcalf, C., Lewis, G.: Model Problems in Technologies for Interoperability: OWL Web
Ontology Language for Services (OWL-S), Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA (2006)

8. Web Services Interoperability Organization. Basic Profile Version 1.1 (2004), Available at
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

9. Schulte, R.: Meeting the Challenges of SOA Adoption, Keynote at the SOA in Action
Virtual Conference (November 2006)

10. InfoWorld. SOA Trend Survey (2006)
11. Lewis, G., Wrage, L.: A Process for Context-Based Technology Evaluation, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2005)
12. Lewis, G., Morris, E., O’Brien, L., Smith, D., Wrage, L.: SMART: The Service-Oriented

Migration and Reuse Technique, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA (2005)

A Generic Constraints-Based Framework for

Business Modeling

Min Li and Christopher J. Hogger

Department of Computing
Imperial College London

SW7 2AZ
United Kingdom

{minli,cjh}@doc.ic.ac.uk

Abstract. The potential benefits of logic-based modeling methods en-
courage business organizations to construct models offering flexible
knowledge representation supported by correct and effective inference.
However, owing to the problems of encoding expertise, the ambiguities
in business concept formulation and the diversity of possible evaluation
methods, there is no clear consensus on how best to apply logic-based
formalization to informal or semi-formal business modeling. Our work
aims to build a formal generic model framework comprised of sub-models
that formulate distinct core aspects of business. The framework employs
logical constraints to represent and compute the key relations among
business entities, and offers scope for clarifying the semantics of other
existing frameworks by translating them into this one. The paper out-
lines our framework and presents a synthetic case study to illustrate its
nature and operation.

Keywords: business modeling, logical constraints, business concepts
formulation.

1 Introduction

A business model embodies the logic underlying the operation of business or-
ganizations. It should enable one to understand and predict ”how a business
company is organized, what it sells, how it delivers products and services, how
it adds value” [1]. Undoubtedly, business models are playing an ever more im-
portant role in the competitive, dynamic and increasingly uncertain economic
society. However, owing to the problems of encoding expertise, the ambiguities
in business concept formulation and the diversity of possible evaluation meth-
ods, there is currently no clear consensus on how best to formalize concepts that
may be articulated only informally or semi-formally within the business commu-
nity. This paper describes our attempt to represent some of these concepts in
the declarative but executable framework of logic programming, including con-
straint logic programming. Our aim is to do this at a level of abstraction capable
of representing sufficient concepts to enable useful model instances to be built

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 241–254, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

242 M. Li and C.J. Hogger

and evaluated whilst at the same time not becoming so overwhelmed with detail
and specificity that we forfeit generality and transparency.

While most existing research on business modeling concentrates upon very
specific business domains, our interest is in conceptual and logical aspects of busi-
ness in general. Our ultimate aim is to achieve a generic model which provides
a semantic basis, and hence a means of comparison, for the many specialized
modeling frameworks already existing.

To pursue this aim we survey some existing frameworks for business modeling
and seek to capture their common essentials in our generic model. Starting with
some instance of the generic model, modelers can then further instantiate and
elaborate this to create their own more specific and detailed models. We outline
the functions evolved in each sub-model and describe how they contribute to the
overall model. In particular, we illustrate the representations and executions of
business plans and constraints with simple examples. The contributions of this
paper can be summarized as follows:

– a decomposition of the notion of a ”business” into four separable bodies
of logical constraints-covering, respectively, schedule, artifacts, finance and
human organization-and a fifth body of meta-constraints expressing business
rules intended to cohere the other four;

– a generic, transparent and executable scheme for representing business plans
and constraints having a simple and well-defined semantics and exploiting
the computational power of constraint logic programming.

– a simple and fully automatic simulator to simulate a typical business proce-
dure, displaying required information and data through dynamically gener-
ated business assets.

In section 2 we discuss some related work. Section 3 outlines overall structure
of our own model. We explain how business plans and constraints are represented
and executed in sections 4 and 5 respectively. Section 6 outlines design and im-
plementation considerations for simulating holistic business procedure. Finally,
in section 7 we review the work undertaken, and our future intentions for the
framework.

2 Related Work

It is evident that expressive power and logical transparency are key factors for a
business company in choosing their models. Chen [2] in AIAI presented research
on formal enterprise modeling using a supporting tool named KBST-BM. How-
ever, it aims from an engineering perspective at a relatively lightweight logical
framework in lacking strong logical formalization of key business concepts and
relationships. Gordijn [3] proposed an ontology-based conceptual model named
e3value, focusing on modeling conceptualization and ontology of e-business.
Loucopoulos [4] advocated the management of shared knowledge and the use of a
conceptual modeling paradigm to support enterprise changes. Osterwalder [5] [6]
summarized the conceptual business modeling method and presented Business

A Generic Constraints-Based Framework for Business Modeling 243

Modeling Ontology (BMO). His work connects with ours especially in relation to
the components of business models, providing a good starting point in extracting
the business essentials for our generic framework.

More generally, there exists a growing research community which is focusing
on defining and classifying business concepts, analyzing business components,
developing business representation tools [7], [8], [9], and [10]. We share a simi-
lar motivation with them in business conceptualization. Recently the Business
Rules Team carried out a standard called ”Semantics of Business Vocabulary and
Business Rules (SBVR)” [11], which provides possibilities to share the meaning
and semantics of business vocabulary and rules. SBVR is independent of any
model-driven architecture and is intended to provide a common bridge between
business and business models.

When investigating business modeling, it is inevitable to refer to what might
be termed the ”software engineering” imperatives of business analysis and de-
sign. Early approaches to this included Structured Analysis [12], [13] and the
Vienna Definition Method [14]. Structured analysis is a general method for both
business modeling and system modeling. It combines hierarchical data flow di-
agrams, sum-of-product data specification, local functionality specification and
subsequently, entity-relationship diagrams. It further defines several analysis-
level artifacts which together form the structured specification for models. The
method provides a general bridge between business modeling and the general
philosophy of disciplined software engineering. By comparison, VDM is a partic-
ular program development method based on formal specification. It begins with
a very abstract specification and develops this into an implementation. Each
step involves data reification and operation decomposition. Data reification de-
velops abstract data types into more concrete data structures, while operation
decomposition develops the (abstract) implicit specifications of operations and
functions into algorithms that can be directly implemented in a computer lan-
guage of choice. The design of our own framework was somewhat inspired by the
ideas of VDM. We started from an abstract level of business concepts and their
inter-functions, and then effectively performed reification and decomposition to
reach a layer of acceptable detail.

More specialized frameworks exist to address particular aspects of the busi-
ness modeling task. The ARIS language and tool set [15] employs so-called event
process chains to capture and standardize business processes, facilitating the
tasks of analyzing and re-designing them. The nearest correlate of these event
process chains in our own framework is our plan structure and associated tem-
poral constraints. Another example is Form-Oriented Analysis [16] applicable
to businesses employing submit-response protocols, e.g. as seen in many web-
based business applications. The interactions are modeled in a structure called
form chart which effectively formalizes a finite-state machine. Through this ar-
tifact it becomes possible to elicit, in a reverse-engineering style, a semantically
well-defined specification and structuring of the logic underlying the business.

However, the task of ascertaining the nature and rationale of any given en-
terprise through the use of systematic software engineering methodologies has

244 M. Li and C.J. Hogger

not so far been our main focus. Our work could perhaps best be compared with
the development of expert system shells, whose main contribution was to estab-
lish workable representations and reasoning systems capable of accommodating
the rationales of arbitrary application domains, after those rationales had been
elicited and shaped by domain specialists and software engineers. In short, our
framework offers logical formulations and reasoning mechanisms constituting a
generic approach to business modeling aiming to provide a high-level, transpar-
ent and flexible means of expressing the diverse entities and constraints typically
encountered in business.

3 Model Structure

3.1 Defining the Model

A business model can be comprehended as an abstract expression of the busi-
ness logic of an enterprise. The business model design translates a strategy into
a business model blueprint. Then it has to be financed through internal and ex-
ternal funding after finally being implemented into an actual business enterprise
[5]. By analyzing the existing definitions of ”business” and ”business model” [1],
[2] and [5], we give our summarized definition of ”business model” as follows:

A company’s business model is a conceptual model that consists of a set of
functional elements and their inter-functional relationships, representing a com-
pany’s logic of business and profit making.

Here, the logic of business and profit making refers to the mechanism by which
a company offers value to customers and the structure of the firm and the part-
ner networks for creating, marketing and delivering this value and relationship
capital to generate profitable and sustainable revenue streams [5].

3.2 Model Decomposition

In principle, the business of an enterprise can be formulated as a purely declar-
ative theory expressing various business entities, their properties, inter-relation-
ships and controls [17]. Achievable goals of the enterprise can then be identified
with logical consequences of the theory, and derivations of those goals can be in-
terpreted as particular simulations of the enterprise. However, such a theory may
turn out to be highly non-deterministic in practice. A more practical approach
is to replace parts of that theory by business plans which, though still expressed
declaratively, are inherently more deterministic to the extent that they embody
some preconceived commitments to the control and interdependence of events.

We decompose our conceptualization of a business model into five sub-models
in a general manner: the business plan model, the artifacts model, the organiza-
tional model, the financial model and the business rule model. We will describe
these in more detail in sub-section 3.3. Concretely, they consist primarily of log-
ical constraints, interpreted as business requirements. For each of the first four,
its constraints refer only to the particular entities associated ”naturally” with
it. For instance, the organization model would not normally contain constraints

A Generic Constraints-Based Framework for Business Modeling 245

referring to financial assets as well as to artifacts such as physical assets. By
contrast, the business rule sub-model has a more global character, containing
constraints that typically refer to entities within the other four, its purpose be-
ing to integrate the overall logic of the enterprise and cohere the other four at the
same time . An example of a business rule is the constraint that ”this product
can be sold in this period only to customers in these territories owing to licensing
restrictions”. It is not difficult to understand that this sample rule contains the
requirements at least from organization and artifacts sub models.

Figure 1 shows the five sub-models, indicating the central role of the business
rule model in cohering the other four. Its effect is to induce dependence between
these other four, since their constraints must be satisfiable not only locally to
themselves but also globally to the holistic business architecture.

Business plan model

Artifacts model

Financial modelOrganization model Business rule model

Fig. 1. A rule-centric business model framework

All these sub-models need to be further detailed and decomposed, as we shall
outline and discuss in section 6.

3.3 Sub-model Features

The business plan model serves chiefly to constrain the temporal flow of actions
performed as the business proceeds and, in order to anchor such constraints,
it includes also a set of business plans each comprising a set of actions. Each
action expresses some event that variously consults, manipulates or relates es-
sential entities such as artifacts, finance or personnel, and is tagged by temporal
parameters expressing the period over which the action is undertaken.

A plan is treated as a repeatable pattern of activity, so that multiple instances
of it may arise as the business proceeds. We refer to each such instance as a
process. Our representation of plans in this paper is mainly adapted from that
used in [17], [18] and [19] and is described in section 4.

The organization model contains constraints expressing relationships between
the participants engaged in the business. Participants include internal human

246 M. Li and C.J. Hogger

resources and also external participants such as suppliers, customers and part-
ners in other businesses.

The artifacts model constrains the non-human resources handled by the busi-
ness. These resources may be physical in nature, such as materials and com-
ponents used in manufacturing, or bureaucratic such as electronic records and
communications. The constraints typically express, at the least, the attribute
schemas of such entities but may also go further by specifying their concrete
instances. The detailing of artifacts and their assumed constraints can be pur-
sued using a variety of logical design frameworks. These include description logics
[20] exploiting key relations such as ”contains” - e.g. ”this artifact contains these
sub-artifacts” - and ”is a” - e.g. ”a house is an instance of a building”.

The financial model constrains the financial aspects of the business, including
its costs, profits and revenue streams. One existing method of formulating these
constraints would be through the e-business value model proposed Gordijn et
al [3].

The business rule model is the key part of the whole structure, cohering
and interacting with the other four. It behaves effectively as their meta-theory,
expressing the higher-level policies devised by senior managers or other strategy
handlers.

4 Business Plans

As noted above, the business plan model describes sets of business actions and
the temporal constraints imposed upon them. It derives from a simpler precursor
described in [17] which modeled a business as a collection of plans, each of
these being a logic program representing some set of actions together with some
control imposed over that set. The output of the model, whether by inference
or simulation, simply comprised the logical consequences of the union of the
plans. The current framework is process-oriented, permitting each plan to spawn
multiple processes.

Figure 2 shows one plan among many in a model we have recently built
of a simple tool-hire company. This plan describes the logic of seeking in the
company’s records an existing, but as yet unprocessed, customer request for
a tool of some specified type and, if finding such a request, duly processing
it. Provided the request is acceptable, in that the tool type is known to the
company’s current inventory, the plan seeks a corresponding physical tool within
its current stock. If such a tool is found then it is hired to this customer; otherwise
some such tool must be already hired out to some previous customer, in which
case the plan reserves it for the current customer. In either case the company
incurs some administrative expense which the plan records.

Each ”action” clause in a plan is a meta-declaration having an inner term,
such as hire(request, tool, hiring, t4), which is interpreted as an object-level
predicate whose meaning is defined by some logic program held in a separate
component of the model called the action knowledge base (AKB). The arguments
of the predicate are treated in the implementation as ontological variables. Like

A Generic Constraints-Based Framework for Business Modeling 247

 % plan "toolhire"

action(toolhire, 1, acquire(request, toolrequest, outcome1, t1)).
action(toolhire, 2, yes(outcome1), testacceptable).

action(testacceptable, 1, copy(inventory, t2)).
action(testacceptable,2,acceptable(request,inventory, tool), tryhire).

action(tryhire, 1, acquire(tool, any, outcome2, t3)).
action(tryhire, 2, yes(outcome2), dohire, doreserve).

action(dohire, 1, hire(request, tool, hiring, t4)).
action(dohire, 2, hireadmincost(expense, t5)).
action(dohire, 3, recordexpense).
action(dohire, 4, publish(hiring, nc, t6)).

action(doreserve, 1, reserve(request, reservation, t7)).
action(doreserve, 2, reserveadmincost(expense, t8)).
action(doreserve, 3, recordexpense).
action(doreserve, 4, publish(reservation, nc, t9)).

control(toolhire, seq).
control(tryhire, seq).
control(testacceptable, seq).
control(dohire, seq).
control(doreserve, seq).

Fig. 2. A tool-hire plan

action(tryhire, 2, yes(outcome2), dohire, doreserve), some ”action” clauses are
conditional in nature, diverting control to one or other constructs.

Figure 3 explains the relations implicated within plans, blocks and actions.
Simply to put, these three objects have very similar structures in form except
that if we use tree structures to express their relations, they are denoted by dif-
ferent types of nodes in a tree. A single plan node is denoted by the root node,
a whole plan refers to the sub-tree originated from the corresponding root. The
leaf nodes represent the atomic actions we mentioned above. The mid-nodes de-
note exactly what we call functional blocks. What worth mentioning is that the
arc arrows across the sibling relations indicate the sequential order of the cor-
responding executions, while being concurrent without these arrows. We do not
spell out here the entire grammar and surface syntax of the plan language. The
essential point is that a plan establishes relations between variables as defined
in the AKB.

From the operational viewpoint, execution of the model consists of spawning
and running processes generated from the plans. Each process is an instance
of a plan having its own binding environment for its variables. The temporal
variables become bound to the times at which their associated actions are per-
formed. Spawning and advancement of processes is controlled by constraints in
the business rule model. In the present example, these constraints are such that
processes are first executed to build up the company’s stock of tools and to
initialize such things as accounts and pricelists, after which customer request

248 M. Li and C.J. Hogger

Function block Function block

Plan1 Plan2

Function block

Function blockFunction blockFunction block

action actionaction actionactionaction action

Fig. 3. A tree structure to indicate some plan semantics

processes then follow. As these get underway, other processes are spawned to
deal with these requests in a concurrent but suitably-coordinated manner. The
assets of the business are represented separately as structures incorporating pre-
served bindings of selected process variables. They function as one of the means
by which processes interact and exchange resources, and they survive in the run-
time environment after their originating processes have terminated. The model
includes provisions for controlling the rights that processes have to access and
modify existing assets.

5 Representing and Executing Business Constraints

An additional and significant control over processes’ behavior and outcomes is
the use of separately defined constraints over their ontological variables. These
constraints are defined by, variously, Prolog programs or finite-domain constraint
logic programs. They are an important means of expressing business require-
ments, constraining such aspects as the attributes of assets and the scheduling of
process actions. They are operated on by a constraint evaluator running concur-
rently with the software that drives the spawning and progression of processes.
The model supports a number of modes for coordinating constraint evaluation
with process execution, the default mode being that which re-evaluates the con-
straints whenever a process action binds or further instantiates any ontological
variable. However, the power of finite-domain CLP allows other modes, such as
that in which constraints are evaluated (as far as they can be) in advance of
process execution, for instance to restrict the possible time schedules. Figure 4
shows a simpler plan named p1 for a manufacturing company, and will be used
to illustrate the role of the constraints.

Here, p1 starts by performing two tasks concurrently. Each one stocks and
then ships a raw product. Raw product a is stocked by stockist s1 from provider

A Generic Constraints-Based Framework for Business Modeling 249

 action(p1, 1, stock).
action(p1, 2, make(m1, c, [a, b], (st5, et5))).
action(p1, 3, test (ts1, c, (st6, et6))).
action(p1, 4, dispatch(d1, ds1, c, t7)).
action(p1, 5, service).

action(stock, 1, stock_a).
action(stock, 2, stock_b).

action(stock_a, 1, stock(s1, pr1, a, t1)).
action(stock_a, 2, ship(sh1, a, (st2, et2))).

action(stock_b, 1, stock(s2, pr2, b, t3)).
action(stock_b, 2, ship(sh2, b, (st4, et4))).

action(service, 1, sell(sd1, c1, d, t8)).
action(service, 2, serve(sd2, c1, d, (st9, et9))).

control(p1, seq).
control(stock, con).
control(stock_a, seq).
control(stock_b, seq).
control(service, seq).

Fig. 4. A simple manufacturing plan

pr1 at t1, and then shipped by shipper sh1 during the period extending from
start-time st2 to end-time et2. A similar treatment is applied to raw product
b. After this, the raw products are made into c by manufacturer m1 from st5
to et5. Before c is dispatched by d1 to ds1 at time t7, it is tested by ts1 from
st6 to et6. Concurrently with the above, other actions are executed which sell a
product d from sd1 to customer c1 at t8 and then provide a service by sd2 for
that product from st9 to et9.

Any required constraint is identified by a logical goal of the form rel(Args)
where rel is defined in a separate rulebase of business requirements. Args typ-
ically comprises ontological variables belonging to one or more processes. De-
pending on the definition for rel, the effect of the constraint on any one of these
variables may be to restrict the variable’s binding to a particular value or to
restrict it to a particular finite domain of possible values. The ultimate inten-
tion of the business requirements is to ensure that its assets (which term we use
in a very general sense) are generated, scheduled and managed in the manner
desired. Not all constraints need to be declared explicitly. Basic temporal con-
straints are implicit in that we have, for instance, start < end for any temporal
pair (start, end) in an action.

For the above plan, explicitly declared constraints and their associated defi-
nitions might appear in the requirements rulebase as shown in Figure 5.

The first two constraints require that the time spent in shipping a shall not
exceed 3 time units and that in shipping b it shall not exceed 2, the possible time
values being restricted to a given finite domain. They reside in the business plan
model. The third constraint requires that the final product d be sold to customer
c1 only if c1 is within a specified list cl1. This constraint refers to both an artifact

250 M. Li and C.J. Hogger

constraint (const1, max_duration(st2, et2, 3)).
constraint (const2, max_duration(st4, et4, 2)).
constraint (const3, to_customer(d, c1, cl1)).
..
max_duration(S, E, D):- domain ([S, D, E], 1, 1000), E-S<D.
to_customer(P, C, C_List) :-
 sell_to(P, C),
 is_member(C, [cust1, cust2, cust4, …]).
is_member(X, [X|_]).
is_member(X, [_|T]):- is_member(X, T).

Fig. 5. Constraints relating to the manufacturing plan

and a human resource, and resides in the business rule model. From a technical
viewpoint it does not matter how constraints are distributed among the various
sub-models, which are just an aid to conceptualization. The implementation
treats all the constraints as a global whole requiring to be satisfied.

In this example the constraints apply only to variables in processes spawned
from plan p1. When constraints are required to apply across variables from differ-
ent plans, disambiguation is achieved by variable annotation as in, for example,
constraint(const14, max duration(et2/p1, et6/p4, 5)), which restricts the sepa-
ration between the ending of some action in p1 and the ending of some action in
another plan p4. At runtime the constraint is applied to the Cartesian product 1
X 4 where 1 and 4 contain all the binding environments for the currently-active
processes spawned by p1 and p4 respectively. As indicated earlier, process ex-
ecution and constraint evaluation need to be operated correlatively, but not
necessarily synchronously.

6 Design and Implementation Considerations

The manufacturing plan p1 introduced in section 4 will have evolved from un-
derlying analysis of the target business and some suitable design process. Here
we shall simply outline some of the considerations involved.

We started by defining a two-dimensional structure for the model as described
in Figure 6. In this structure each construct is conceptually shown as being in
a specific layer and as being in a specific tree. A layer describes horizontal rela-
tionships between different sub-models, or sibling-relationships within the same
sub-model. Entities which are announced in the same layer largely means that
they are supposed to be discussed at the same conceptual level. A tree describes
vertical relationships of constructs within a specific category. Commonly, tree
structure is used to describe the affiliation dependency between different busi-
ness concepts.

Figure 6.b shows three constructs named artifacts (in the artifacts sub-model),
role-holder (in the organization sub-model) and financial aspects (in the financial
sub-model). As explained in 6.a, the boxes in the graph denote the top-level

A Generic Constraints-Based Framework for Business Modeling 251

Financial
AspectsArtifacts

Role-holder

Role-holder

CustomerAgentOperatorProvider

Distributor BrokerManufacturer Inventor Supplier

Hypo-relations

Functional relation

Constructs

Business actions

a. Symbol notation b. Top layer structure

c. Tree structure of ‘role-holder’

Fig. 6. The 2-D structure in the generic model

constructs, and the arrows denote ”related to”. At this stage, the attributes of
each construct are also decided. For example, the attributes of role-holder could
be represented by the predicate

role−holder(Parent, Child, Entity type, Act on, Affected by, Constraints)
Each abstract construct has a tree structure in which the hyper-relations

indicate the sub-elements that the construct contains or the instances it has. The
tree structure for role-holder might be as shown in figure 6.c. This tree reveals its
second-layer constructs as provider, operator, agent and customer and its third
layer constructs as manufacturer, inventor, supplier, distributor and broker.

We can apply an general business scenario in the second layer to develop
aspects of how this business is presumed to operate, as depicted by Figure 7.
First, a provider supplies an operator with the raw materials; then the operator
uses the materials to produce its products. The operator sells its products to
customers and provides services either by itself or by distributing it to an agent.
Customers buy products and services from operator/ agent. During this business
procedure, the provider, the operator and the agent can earn profit through their
business activities.

At this stage constraints can be formulated to govern the business processes, as
outlined in section 5. For instance, we might choose the constraint that ”provider
p distributes any product in domain [p1, p2, ...] to any agent in domain [a1, a2,
...]”. Execution of an action such as distribute(p, product, agent) is achieved in
the model by calling a definition of distribute. Whatever bindings that definition

252 M. Li and C.J. Hogger

Provider

Services

Products

Agent

Custom er

Operator

supply

servedistibute

sell

buy

Profit

earn

Fig. 7. Description of a simple business scenario

Fig. 8. An automatic business simulator: processes and assets output

yields for the variables, only those bindings that also satisfy this independently-
asserted constraint will be accepted by the model.

We have developed an automatic simulator which can simulate a simple whole
business procedure (rather that a single business transaction or process) by
recording corresponding information possibly required by business analyzer or
modeler. Originated from dealing with very simple business functions, our sev-
enth version of simulator can do quite a lot jobs so far including system and
user-defined constraints handling, parameters adjustment, full automation, the

A Generic Constraints-Based Framework for Business Modeling 253

concurrency supporting of processes and so on. Figure 8 is a snapshot of the run-
ning business simulator. The left window displays the system-spawned business
processes and their associated bindings recording how business runs, the right
window outputs the business assets information exhibiting the business status
at a specific time point. More functional extensions of the business simulator are
underway.

Both the description of business plan and the simulation of our business model
are implemented in SICStus Prolog 3.12.2 in Windows XP Professional on a
Pentium IV 3.2 GHz CPU with 1.0 GB of RAM. SICStus is efficient and robust
on this platform for handling large amounts of data and source code, besides
supporting constraint processing with several powerful constraint solvers. The
data we are processing are from both simple pseudo-business cases and a real
business case from a tool hire company.

7 Discussions and Conclusions

We have illustrated a simple but expressive generic framework for representing
and executing business models. It is generic in that it does not prescribe the par-
ticular entities, actions, variables or constraints to be used, but instead provides
their general syntax, organization and means of implementation.

As practitioners in the AI and computational logic community, our work has
so far focused on shaping the core logical content of our model and on producing
viable execution schemes for it. Our aim has not been to produce a mature
methodology for the general task of analyzing businesses and evolving robust
designs for the models. Instead, we are working at a different level, seeking to
establish a clear logical framework into which the results of such analysis and
designs would be mapped. Our motivation in this is, in part, to achieve greater
simplicity than that afforded by many other attempts to reduce business to
logic, which typically resort to quite specialized logical languages lacking mature
implementations. By committing to Prolog with constraint programming we
benefit from a well-established formalism in which to implement our ideas. The
other motivation, which flows from this simplicity, is to be able to devise schemes
for systematically translating models in those other logic-based frameworks, e.g.
BMO, into our own framework. The advantage in this is that the latter inherits
the well-established and clean semantics for logic programs.

Every business plan of the kind we have described can be rewritten as a
locally-stratified normal-clause program, as can the constraint definitions and the
action knowledge base. Then, the meaning of any business model B formulated
in our framework is a set of computable atomic consequences constituting the
minimal stable model Δ(B) of all the normal-clause material to which B has been
rewritten. This Δ(B) provides the semantics for any business model formulated
in frameworks translatable to our own. It represents all the atomic outcomes
obtainable by running an implementation of that business model. This paper
does not afford sufficient scope for detailing this semantic scheme further, but
we intend to develop and publish it presently.

254 M. Li and C.J. Hogger

References

1. Gill, H.: The Case for Enterprise Business Model Management. DM Review (2000)
2. Chen-Burger, Yun-Heh, Robertson, D.: Automating Business Modeling. Book Se-

ries of Advanced Information and Knowledge Processing. Springer, Heidelberg
(2004)

3. Gordijn, J., Akkermans, H.: Value-based requirements engineering: exploring in-
novative e-commerce ideas. Requirements Engineering 8(2), 114–134 (2003)

4. Loucopoulos, P., Kavakli, V.: Enterprise Knowledge Management and Conceptual
Modelling. In: Chen, P.P., Akoka, J., Kangassalu, H., Thalheim, B. (eds.) Concep-
tual Modeling. LNCS, vol. 1565, pp. 123–143. Springer, Heidelberg (1999)

5. Osterwalder, A.: The business Model Ontology- a proposition in a design science
approach. PhD thesis. In: Institut d’ Informatique et Organisation, University of
Lausanne, Ecole des Hautes Etudes Commerciales HEC, Lausanne, Switzerland.
173 pages (2004)

6. Osterwalder, A., et al.: Clarifying Business Models: Origins, Present, and Future
of the Concepts. Communications of AIS 15 (2005)

7. Afuah, A., Tucci, C.: Internet Business Models and Strategies. McGraw Hill,
Boston (2003)

8. Alt, R., Zimmermann, H.: Introduction to Special Section - Business Models. Elec-
tronic Markets 11(1), 3–9 (2001)

9. Fox, M.S., Gruninger, M.: Enterprise Modeling. AI Magazine 19(3), 109–121 (1998)
10. Hamel, G.: Leading the revolution. Harvard Business School Press, Boston (2000)
11. Business Rules Team: Semantics of Business Vocabulary and Business Rules

(SBVR). In: W3C Workshop on Rule Languages for Interoperability(2005)
12. Ross, D.T.: Structured Analysis: A Language for Communicating Ideas. IEEE

Trans. Soft. Eng. 3(1) (January 1977)
13. Yourdon, E.: Modern Structured Analysis. Yourdon Press, Englewood Cliffs, New

Jersey (1989)
14. Bjorner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-

Language. LNCS, vol. 61. Springer, Heidelberg (1978)
15. Scheer, A.W.: ARIS Business Process Modelling, 3rd edn. Springer, New York,

Inc., New Jersey (2000)
16. Draheim, D., Weber, G.: Form-Oriented Analysis. Springer, Heidelberg (2004)
17. Hogger, C.J., Kriwaczek, F.R.: Constraint-guided enterprise portals. In: Proc. of

6th Int. Conf. on Enterprise Information Systems, pp. 411–418 (2004)
18. Hogger, C.J., Kriwaczek, F.R.: Extracting reusable knowledge from portal activity.

WSEAS Transactions on Computers 4(2), 83–89 (2005)
19. Hogger, C.J., et al.: A flexible constraint-based portal architecture. In: Proc. of 16th

Int. Conference on Computer Applications in Industry and Engineering [CAINE-
2003], International Society for Computers and Their Applications, Las Vegas,
Nevada, USA, November 11-13, pp. 1–6 (2003)

20. Baader, F., et al.: The Description Logic Handbook: Theory, Implementation, Ap-
plications. Cambridge University Press, Cambridge (2003)

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 255–269, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Experimenting with the Expressive Power of an
Enterprise Architecture Framework∗

Francisca Losavio1, Dinarle Ortega2, María Pérez3, and Martha González4

1 Centro ISYS, LaTecS, Facultad de Ciencias, Universidad Central de Venezuela, Caracas
flosav@cantv.net

2 Departamento de Computación, Universidad de Carabobo, Valencia, Venezuela
dortega@uc.edu.ve

3 Departamento de Procesos y Sistemas, Universidad Simón Bolívar, Caracas, Venezuela
movalles@usb.ve

4 Université de Versailles, Versailles, France
martha.gonzalez@prism.uvsq.fr

Abstract. Enterprise Architecture (EA) frameworks are used to model an
enterprise organization; they attempt to fill the gap between the business model
and the computer application model. In particular they can be used to model
aspects of Enterprise Application Integration (EAI). Considering several known
general frameworks discussed in this work, a new framework, called EAIF is
presented, to unify different concepts and terminology concerning enterprise
systems architecture and integration. EAIF, expressed in UML, extends the
Brown´s integration model for CASE technology, refining each abstraction
level into the backward, forward and upward integration views of Sandoe´s
recent approach of enterprise integration. EAIF helps documenting and
detecting inconsistencies in the definition of business processes, services
adapted to these processes and mechanisms implementing these services. The
main goal of this work is to evaluate the applicability of EAIF as an EA
framework and experiment its expressive power with two enterprise systems as
case studies.

Keywords: enterprise architecture, enterprise architecture integration,
integration model, integration view.

1 Introduction

EAI (Enterprise Application Integration) is defined as the process of integrating
Information Systems (IS) and/or existing applications. Enterprise Systems (ES) are
proposed as integrated IS covering most of the enterprise business processes [25]. The
term framework is defined as a set of assumptions, concepts, values, and practices
that constitutes a way of viewing reality [22] and the term EAI refers to the plans,

∗ This research has been supperted by the Consejo de Desarrollo Científico y Humanístico

(CDCH) of the Universidad Central de Venezuela, MODABAC project, No. 03-00-5281-
2005 and by the Alma Mater OPSU program.

256 F. Losavio et al.

methods and tools aimed at modernizing, consolidating, integrating and coordinating
IS within an enterprise, where standards play an important role [16]. In this work, a
framework considers a minimal set of architectural elements that characterize any
enterprise application, hence involving adaptability or genericity aspects.

In order to fill the gap between the business processes and the computer
application implementation, several frameworks modeling different aspects of
business applications have been proposed: [6], [21], [22], [29], [34], [35], [36]. Most
of these, called Enterprise Architecture (EA) frameworks, can also be considered for
EAI modeling. EAIF (Enterprise Application Integration Framework), defined in this
work, is a framework for enterprise architecture that can be used in particular to
model the different integration views of EAI. The motivation was to provide
guidelines to quickly design an initial architecture for the software system, derived
from the business architecture (mostly expressed by business processes and rules);
an instrument that can be used to define a process that has to be automated, the
functionality (service) and the architectural reusable solution to accomplish the
service with a certain degree of quality [14]. EAIF is independent of specific
methodologies and technologies and it has been defined in previous works [13], [14],
[15], [23], with the main idea of unifying terminology and characterizing the EA
domain. It is an extension of the Brown’s Conceptual Model of Integration (BCMI)
for CASE technology [3]. The process and services levels of BCMI were extended
with the three integration views proposed by Sandoe [25]: the backward, forward
and upward views. However, the mechanisms level was found independent from
these views [13]. EAIF also adds to BCMI a people level, concerning the human
factors and it is specified in UML [20] as a conceptual class diagram, enriched with a
detailed textual specification. It can be used as a tool to document and identify
precisely central aspects of integration or other processes, functionalities and
reusable architectural solutions (style, pattern, …), at different levels of granularity if
required.

The present work on one hand studies advantages and disadvantages of EAIF with
respect to main EA frameworks, which are briefly presented and compared [15]. On
the other hand, its main goal is to study the expressive power of EAIF using two
enterprise systems. A set of features is defined to evaluate the expressiveness
(adaptability or degree of genericity) of EAIF. These features can be easily reused to
evaluate other frameworks related with the EA modeling. To increase legibility, the
EAIF UML class diagram has been complemented with a complete textual
specification to facilitate the instantiation process [23], but for lack of space it will not
be presented here.

Two ES from different domains were selected as cases studies according to the
underlying integration technology. The first one, SPIN, is a CORBA-based integrated
environment for scientific computation. It provides backward and forward services for
backward and forward processes, within an academic research organization [9].
The collaborative environment is considered a forward service and its adminis-
tration represents the backward service. The second one is a J2EE-based Customer

 Experimenting with the Expressive Power of an Enterprise Architecture Framework 257

Telemarketing ProcessTelemarketing Process

use

are_driven

are_driven
CASE tools

Architecture

Backward
Processes

Forward
Processes

Upward
Processes

Services

Backward
Services

Forward
Services

Upward
Services

Customer Service ProcessCustomer Service Process

Retail Sales ProcessRetail Sales Process

Production Planning
Process
Production Planning
Process

Customer Experience
Management Systems

Customer Relationship
Management Systems

Business to Business
Systems

Business to Consumer
Systems

Executive
Information Systems

Knowledge
Management Systems

Decision Support
Systems

Manufacturing Process Manufacturing Process

Transaction
Processing Systems

Enterprise Resource
Planning Systems

Hardware DataBase Communication

Mechanisms

Information TechnologyInformation Technology

1
Is_implemented_by

0..*

1.. *

Broker Reflection Reactor Wrapper
Facade

Acceptor
Connector

Extension
Interface

Architectural

adaptation

Legacy Systems

Software Development
Process
Software Development
Process

1

are_driven
People

Patterns

Processes

Software

*

drive

drive

drive

guidelines

functionality

services_people_role

processes_people_role

mechanisms_ people_role

*

Financial and Accounting
Process

Financial and Accounting
Process

Financial and Accounting
Process

Sales and Marketing
Process
Sales and MarketingSales and Marketing
Process

Human Resources
Process
Human Resources
Process

Sales and Marketing
Management Process
Sales and Marketing
Management Process

Financial Report
Process
Financial Report
Process

Applicant Tracking
Process
Applicant Tracking
Process

Design

1..*

1..*

1..*

1..*

1..*

1..*

Web Sales ProcessWeb Sales Process

Fig. 1. EAIF UML Class Diagram

Relationship Management System, called J-énesis, for customer retention and loyalty.
It follows an upward/forward process within a training organization and provides
forward services [1].

This paper is structured as follows, besides this introduction: Section 2 presents a
review and comparison of EA frameworks, including EAIF. Section 3 presents the
two cases studies and their EAIF instantiation. Finally, Section 4 presents the features
used in the evaluation, the results and the conclusion.

2 EA Frameworks

This section presents an overview of EAIF and a comparison with six EA
frameworks. The common points and limitations are discussed.

258 F. Losavio et al.

2.1 EAIF Overview

EAIF is a framework for enterprise architecture that can be used to model integration.
It provides organized and unified definitions of the EA elements related with people,
processes, services and mechanisms [13], [15] and it is specified in UML [20].
Historically, in the 90’s decade, the software engineering community proposed
several approaches for integrated CASE environments. EAIF is presented as an
extension of BCMI [3] with the Sandoe’s backward, forward and upward integration
views [25].

Brown proposes a conceptual model (three-tier framework) composed by different
abstraction levels, to describe the integration of the tools constituting a CASE
environment. The central level corresponds the services (functionality of the CASE
environment) offered to the final users. The third level represents the mechanisms
used to implement the services. The first and more abstract level corresponds to the
organizational process providing guidelines (goals in terms of steps, tasks and
constraints) for selecting the services offered by the CASE system. The relation
between the services and the mechanisms levels is an implementation relation. A
service can be implemented by several mechanisms. The relation between the process
and services levels is an adaptation relation [13].

In order to synthesize the different integration trends, three integration views are
proposed by Sandoe in 2001 [25], to allow software integration in an incremental
way. The Backward Integration (BI) view refers to the integration of the internal
organizational processes. The Forward Integration (FI) view refers to the integration
of those organizational processes related to entities which are external to the
organization, such as clients, partners and suppliers. The Upward Integration (UI)
view means the integration of those organizational processes related to decision
making. In our approach, these three views are used to extend the BCMI tiers. The
Process and Services levels of the Brown’s framework are refined into the Sandoe’s
Backward, Forward and Upward views. The BCMI mechanisms level was found
independent from these views [13]. Figure 1 presents the UML class diagram of
EAIF. In order to reduce complexity, only the class, relationship and role names are
shown. Notice that the navigability of the associations is bidirectional and that only a
limited range of very well known processes, services and mechanisms is shown, to
abridge the presentation.

1. The Processes Level. In order to refine this level, the most commonly used
organizational processes are described for each integration view. Notice that each
business process has its own goals and constraints, and it depends directly from
the specific functionality that is required by the computational system. Business
processes are the activities, procedures, and rules required to complete the
business tasks, independently of any information technology used to automate or
support them.

2. The Services level. Some examples of BCMI services belonging to the three
integration views are presented in Figure 1. They are represented by typical IS
supporting the organizational processes.

 Experimenting with the Expressive Power of an Enterprise Architecture Framework 259

3. The Mechanisms Level. According to Brown, two types of components are
considered at this level: architecture and technology. Hence, a brief review on
software architecture and information technology used for integration (see [14])
will be given before presenting the extension of the mechanisms level.
a) The architectural styles considered for EAI are classical: layers to separate

data, business logic and user interface; repository for data; event-based and
implicit invocation for communications. This separation of concerns can be
achieved through a middleware layer to get interoperability and flexibility to
changes. In general, the architectural patterns and design patterns underlying
EAI solutions are: Broker, Microkernel, Reflection, Wrapper Façade,
Component Configurator, Interceptor, Extension Interface, Mediator and
Publisher/Subscriber [4], [8], [26], [27].

b) The Information Technology (IT) is defined as a set of resources available
for managing changes and to provide support to people in the development
of the activities related to an organization [12], [17], [25]. Some examples of
resources considered at this level are: Hardware, Software, Database and
Communication Technology.

2.2 Related Work

This section compares EAIF with other widely accepted enterprise architecture
frameworks [15]. They are often used to model EAI when integrating a new
application into an ES.

Zachman’s framework. It allows a way of conceptualizing how the specific
architecture that an organization might create can be integrated into a unique scheme
[22], [36]. The overviews that allow managers to understand how everything within
their organization fits together are generally called architectures. It is an analytical
model or classification scheme that organizes descriptive representations in two
dimensions. It does not describe an implementation process and it is independent of
specific methodologies. The vertical dimension describes the perspectives of the
stakeholders (Planner, Owner, Designer, Builder, Sub-contractor). The bottom row of
the framework represents the “real world”, the actual running elements of the
organization. The horizontal dimension describes the relevant aspects or abstractions
for each perspective. These abstractions (Data, Function, Network, People, Time and
Motivation) are based on the widely asked questions “what”, “how”, “where”, “who”,
“when”, “why”. To answer these questions artifacts are produced, linking
perspectives and aspects. The abstraction levels of the framework are established by
the stakeholder roles.

This framework is historically one of the first approaches to EA modeling [29],
[35]. The strong point is that it can be used to analyze any business object or
enterprise portion.

Whitten’s framework. It is specific for the development of different types of IS and
it specializes the Zachman’s framework. Stakeholders and activities for software
development play a central role [34]. It provides a unifying scheme describing the

260 F. Losavio et al.

information system architecture, into which various people with different perspectives
can organize and view the fundamental building blocks of information systems. The
framework’s perspectives are: business drivers, technology drivers, stakeholders,
project and process management. These four perspectives contribute to the
development of the information system. This framework emphasizes the classical
activities of the information system development life cycle which can be customized.

Stojanovic’s framework. It defines an integrated, effective, and flexible approach
consolidated in a component-based framework providing comprehensive concepts,
models, rules, methods and guidelines as a support for advanced enterprise systems
development [29]. It provides a rich specification approach for defining not only
behavioral and structural aspects of complex enterprise systems, but also significant
human and organizational aspects. It offers an integrated view of the system through
various viewpoints which evolve coordinately through time, using a consistent
component-based way of thinking. It is based on the Reference Model of Open
Distributed Processing (RM-ODP) [10] standardization efforts and on the
Component-Based Development (CBD) approach [31]. The RM-ODP specification of
a system consists of five viewpoints: Enterprise, Computational, Information,
Engineering and Technology. Each viewpoint is an abstraction of the whole system
focusing on a specific area of concern. The framework proposes three models to
define various aspects of complex systems. These models are: Enterprise Architecture
Model (related to the enterprise viewpoint), System Architecture Model (related to the
computational and information viewpoints) and Distribution Architecture Model
(related to the engineering viewpoint). The models are component-oriented,
considering the component independent from the technology, as the integration point
of business and system concerns. The aim is to provide a complete system
specification, from concept to deployment, in a rigorous and consistent way. Such an
integrated framework will ensure that the capabilities of distributed components are
appropriately positioned in the context of the organizational structures, policies,
business processes and roles. This framework, coupled with accompanying tools,
should facilitate specification and building of enterprise systems that can withstand
various technology and business changes, favoring flexibility.

Cummins’ framework. It depicts the enterprise integration process from a
management viewpoint in four different domains: users, business process,
applications and infrastructure [6]. It focuses on the notion of Enterprise Integration
Architecture (EIA) to establish a set of characteristics that the enterprise must posses
to perform software integration. The goal of EIA is to manage the business process
with workflow management facilities so that the processes are visible and
manageable.

TOGAF framework. The Open Group Architectural Framework (TOGAF) is a
generic framework to build different IT architectures frameworks, for example
Zachman’s framework can be expressed using TOGAF [21]. It provides a
comprehensive approach to the design, planning, implementation, and governance of
the enterprise information architecture.TOGAF considers four kinds of architectures

 Experimenting with the Expressive Power of an Enterprise Architecture Framework 261

as subsets of the Enterprise Architecture: Business, Data, Application and
Technology. The combination of Data and Application architectures is also referred
as the Information System Architecture. It provides a highly detailed Architecture
Development Method (ADM), centered on requirements, that is tailored to the
organization's needs and is then employed to manage the execution of architecture
planning activities. This method is independent from tools and technologies. The
TOGAF ADM graphic is dynamic; a set of circles representing the progression
through the phases of the ADM and the architecture models is used and created
during the phases of the enterprise architecture development (see figure 6).

Comparison of the frameworks
Common points:

• They model the whole enterprise architecture considering also software
integration aspects

• Abstraction levels: people or human aspects, processes, services or
information systems supporting the processes, mechanisms (architecture and
technology) implementing the services

• Independent from a specific software development process. Notice that
Whitten’s framework considers classical methods for information systems
development

• Independent from the technology
• Lack of methods to build the enterprise architecture. In general all the

frameworks, excepting TOGAF, are concentrated on the artifacts and not on
the description of the process to produce these artifacts.

The main limitation found was the lack of standard notation in the specification of the
frameworks, even if the use of standards is suggested now, within an MDA approach
[7], [19]. In response to this lack of standards, EAIF is specified in the UML notation,
ensuring flexibility to changes and extensions. Another point in favor of EAIF is the
reusability issue of the architectural patterns involved in the architectural mechanism
specification, which can be very fine grained, if required for example to define
explicitly an precisely the architectural patterns involved. This abstraction level,
which is very important to model integration, is not considered in details in the other
frameworks. Finally EAIF includes the backward, upward and forward integration
views to enrich the framework semantics.

3 Case Studies: Description and EAIF Instantiation

In this section two case studies are described. They were developed according to
different integration mechanisms, CORBA and J2EE, respectively.

3.1 CORBA Compliant Scientific Programming System Case Study

SPIN (Scientific Programming on the InterNet), is a scalable, integrated and
interactive set of tools for scientific computations on distributed and heterogeneous

262 F. Losavio et al.

environments [9], a collaborative environment allowing the access to remote
resources, such as: computing resources (supercomputers, computer clusters,
workstations and metacomputers), data resources (databases, directories and data
services), computing services and high-performance libraries. The goal of SPIN is to
provide the following advantages: platform independence, flexible parameterization,
incremental capacity growth, portability and interoperability by the use of the Java
[30], and CORBA technologies [18], preservation of technology investments and web
integration. The potential users of a tool such as SPIN are a scientist’s community
which needs to implement numerical models using effective methods facilitating the
data processing, after the study (modeling and discretization) of the scientific
problem.

Processes. SPIN can be used by the scientists requiring the execution of numerical
codes. In this case the SPIN’s user interface allows: introducing the parameters
required by the code, executing the code and receiving results (forward processes).
SPIN allows also building new applications from predefined components ("building
blocks"); the construction of new software is seen as part of the activities of the
development process (backward process). These components are then shared via the
Internet (forward process). SPIN’s tools allow also maintenance activities (backward
process).

Services. The following backward services are identified: directory facilities, servers’
configuration information, resource management, tasks edition, execution services,
data distribution facilities, matrix manipulation services and wrapping services to use
the legacy systems.

Architecture. It follows a layers style. The architecture considers two main features:
the interaction with the users, which has been defined in terms of interactive agents,
according to the PAC or Mediator-based architecture [5], and the distribution of the
software components on a heterogeneous environment following the CORBA
specification. The three-tier architecture is composed by the Client side to manage the
interaction aspects between the users and the computing services, the Middleware to
manage the access to remote resources, the Server side containing the high-
performance computing resources. The main architectural patterns and design patterns
used were: facade, strategy, adapter, broker [4], [8], [26].

Information Technology. The JavaTM language and Java SwingTM components were
used for communication with the user interface and the middleware. The C++
language was used for the development of the wrappers objects and the ORBacus, an
ORB compliant to the CORBA specification version 2.3.1.

EAIF Instantiation with SPIN. Notice that the specification is a detailed view of
the UML class diagram (see figure 1), to facilitate the instantiation process. We have
presented it in a textual form to abridge the presentation. Some of the instantiated
classes can be seen in figure 2, showing a SPIN backward process. It is important to
point out that all the activities of the processes performed by the SPIN’s users can be
specified using EAIF, even if some of these are not supported or partially supported

 Experimenting with the Expressive Power of an Enterprise Architecture Framework 263

by explicit services (for example the activities part of a forward process, not shown
here to abridge the presentation “test and code optimization”, related to the
structural_unit_name=“add a new function to the library” and “read problem
statement”, “build the mathematical model”, both related to the
structural_unit_name=“elicitate problem’s requirements”). However, since these
activities are considered preconditions to other services, the EAIF application is
useful to recommend their implementation as an extension of the SPIN services.

In what follows, the J2EE case study is presented.

Fig. 2. Instantiation of the EAIF Software Development Process class

3.2 CRM Case Study with J2EE

The Customer Relationship Management (CRM) approach is a widely used business
strategy and it is still evolving. It is centered on the customer and its relation with the

SPIN_backward_process class extends Software Development Process
process_model_ name = “library maintenance”
process_model: Process_model_elements02
process_strategy = “iterative”

Process_model_elements02 class instantiates Process_model_elements
structural_unit_of_process_model: Array of
structural_unit_of_process_model02[1]=“step”
table_of_process_model_elements: Array_of_structural_unit
where
table_of_process_model_elements [1] =
 (structural_unit_name = “add a new function to the library”

structural_unit_activity: Array [1..2] of Activity where
structural_unit_activity [1] = (“add function description”,…)

 structural_unit_activity [2] = (“update library”,…)
structural_unit_input: Array [1..2] of Input where

 structural_unit_input [1] = (“new function code”, ”description”)
 structural_unit_input [2] = (“new function code”, “catalog”)

structural_unit_produc t= Array [1..2] of Product where
structural_unit_product [1] = (“optimized function code

description”)
 structural_unit_product [2] = (“updated library”)

structural_unit_resource: Array [1..2] of Resource where
 structural_unit_ resource [1] = (“hardware”, “software”)
 structural_unit_ resource [2] = (“hardware”, “updating tools”)

structural_participant: SPIN_people02)

SPIN_people02 class instantiates People
role = “System Administrator”
goals = “Maintenance activities”

264 F. Losavio et al.

organization [33]. CRM addresses all the customer touch points, such as face-to-face,
Internet, or phone [25]. It integrates sales, marketing and service strategies. It helps to
establish collaborative relationships with customers on a long-term basis, using
information technology as such as, databases, data warehouses, and data mining.

In general, CRM solutions consider three phases [32]: - Acquisition: the
organization acquires new customers. The organization competes to provide better
product/service according to the customer needs. - Enhancement: it increases sales per
customer. It gives good supplies at low cost. It has built-in pricing flexibility. -
Retention and Loyalty: it requires customer knowledge to build service adaptability
and use incentives to retain customers, such as the creation of new products. The
ability to retain customers is a major determining factor.

J-énesis is a CRM application for the customer retention and loyalty phase. It
offers through Internet, registration services for different software courses; products
and services offered consider customer needs (profiles) [1]. Java 2 Platform
Enterprise Edition (J2EE) [31] is used as the integration mechanism.
Processes - marketing (provide data on software courses, customers’ profiles and
customer retention and loyalty strategies for marketing decision making; it is
considered an upward process), - customer service (provide customer satisfaction
using the information about products, services and customers’ profile; it is a forward
process), - facilities to gain customer knowledge to build service adaptability, deliver
new products that meet current customers´ needs and create and transmit incentives to
retain customers; it is also a forward process.

Services
• Collect, recall and update customer profile: personal information, preferences,

capabilities, and markets and business environment data. These operations must
be efficient, accurate and attractively presented to the user.

• Collect, recall and update software courses: information on software courses and
services according to the customer’s profile. These operations must be efficient,
reliable and attractive.

• Collect, recall and update customer retention strategies: to deal with
encouragement strategies to maintain customer loyalty. These operations must be
efficient, reliable and attractively presented to the user.

• Historic: all transactions are stored in databases for further analysis purposes. It
favors changeability.

• Subscribe/unsubscribe software courses: this service allows customer to
subscribe/unsubscribe software courses according to the customer’s
requirements. It favors changeability.

Note that all the above are forward services. J-énesis does not support a call center
service. The users of J-énesis are: customer, customer service analyst and marketing
analyst.

Architecture. According to a layers style, it is a three-tier architecture: user interface,
data and business logic. Some of the design patterns used are Persistent Data

 Experimenting with the Expressive Power of an Enterprise Architecture Framework 265

Manager and Observer [24]. From the above requirements, the quality properties that
must be supported by the overall architecture are: changeability, efficiency, reliability
for data and business logic components; attractiveness is required for the user
interface component.

Information Technology. The J2EE platform [31], the java web server is Tomcat
4.0.x [2], the following J2EE 1.3 APIs were used: JDBC 2.0 (Java Data Base
Connectivity) for database connectivity between the Java and MySQL; Java Servlets
2.3 extends the functionality of a Web server, generating dynamic content (HTML
and XML) with Java Server Pages (JSP)1.2 and JavaMail 1.2 and interacting with
web clients using Hypertext Transfer Protocol (HTTP), the Simple Object Access
Protocol (SOAP) as protocol for communication between applications. SOAP is
platform independent, language independent, based on XML, the JavaTM language to
develop the application. The EAIF instantiation with J-énesis for the Marketing
Management Process is presented in figure 3.

EAIF instantiation with the J-énesis case study. Notice that for this application, the
subclass Marketing Management Process of class Sales and Marketing Management
Process is instantiated as an upward process. The EAIF instantiation allows specify
the complete process performed by a training organization, even if some of the
processes are not supported by explicit J-énesis services, since an automatic process
is not provided by J-énesis, for example, the process “Marketing_upward_process”.
However, since this process is required by the business activity in the organization,
the EAIF process instantiation can be used to recommend the implementation of
additional support services. In general, we observed that the information related to
the application must be available and domain experts’ support is highly
recommended. The goal is to avoid the modeling of unreal situations.

4 EAIF Evaluation

After having experimented on the applicability of EAIF in section 3, we proceed to
state some key aspects that will outline our results. These aspects or features are
selected using a feature analysis technique [11] whose main activities are: Select the
framework to evaluate, decide the required features of the item being evaluated, agree
on a scoring system that can be applied to all the features, analyze and interpret the
results, present the results.

4.1 Features for the EAIF Evaluation

The framework to be evaluated is EAIF (see Section 2). The required features are
defined in Table 2. Notice that the set of features defined for this evaluation can be
easily reused to evaluate other frameworks related with the enterprise integration.

Analysis of the results. With respect to the Precise and Repeatable features, they are
considered independent of the case study. EAIF provides low support (2) for the
Precise feature because the EAIF semantics could be improved using a formal
specification language. At present, EAIF has no automatic formal tools support; in
consequence it provides low support (2) for the Repeatable feature. For Completeness
and Readability, the scores were the same for both applications. In practice, even if

266 F. Losavio et al.

Fig. 3. Instantiation of the EAIF Marketing Management Process class, for J-énesis

Marketing_upward_process class extends Marketing Management Process
process_model_name = “Marketing model”
process_goal = “this process manages the information related with software
courses, customer profile and customer retention and loyalty strategies”
process_model: Process_model_elements01
process_strategy = “provide response and effective assistance to clients
according to retention strategies and maintain information related with
customers and courses”
Process_model_elements01 class instantiates Process_model_elements
structural_unit_of_process_model: Array of
structural_unit_of_process_model01[1]=“step”
table_of_process_model_elements: Array_of_structural_unit where
table_of_process_model_elements [1] =

(structural_unit_name = “analyze customer and software courses
information for customer service analyst”
structural_unit_activity: Array [1..3] of Activity where

structural_unit_activity [1] = (“study on customers data”,…
… … …

structural_unit_input: Array [1..3] of Input where
 structural_unit_input [1] = (“data of customers”)

… … …
structural_unit_produc t= Array [1..3] of Product where

structural_unit_product [1] = (“data of customers updated”)
… … …

structural_unit_resource: Array [1..3] of Resource where
 structural_unit_ resource [1] = (“decision tool”)

… … …
structural_participant: J-énesis_process_people01)

table_of_process_model_elements [2] =
(structural_unit_name = “establish customer retention strategies for
customer service analyst”
structural_unit_activity: Array [1..5] of Activity where

 structural_unit_activity [1] = (“identify customers’ needs”,…)
… … …

structural_unit_input: Array [1..5] of Input where
structural_unit_input [1] = (“information of customer needs”,

“selection criteria”)
… … …

structural_unit_product= Array [1..5] of Product where
structural_unit_product [1] = (“document with list of customer’s

needs”)
… … …

structural_unit_resource: Array [1..5] of Resource where

 Experimenting with the Expressive Power of an Enterprise Architecture Framework 267

Table 2. Feature list

Features Definition
Extensibility New elements can be added by specialization or by

aggregation/composition at the lowest level of the
framework

Completeness All the elements of the application are represented by
the framework

Readability It has a consistent and clear structure and documentation
to ease its usage

Precision It has a non ambiguous semantic definition for each
element of the framework

Repeatability Each activity of the instantiation process can be
reproduced to obtain similar results

The scale used to express the degree of adaptation of EAIF is presented in Table 3.

Table 3. Score applied for the features

Scale
point

Definition of scale point

1 No support. Fails to recognize it. The feature is not supported by EAIF
2 Low support. The feature is supported indirectly by EAIF
3 Full support. The feature appears explicitly in the feature list of the EAIF. All

the aspects of the feature are covered
0 The feature could not be evaluated

lacking of automated tools is a drawback, we found that the instantiation of the
framework was quite easy with the guidelines provided by the textual specification,
providing full support for readability. Nevertheless, it is clear that two case studies are
not enough for completeness, and that further experimentation should be performed.
Finally, extensibility could not be checked because there was no need to add new
features to EAIF, all the elements could be modeled easily. However, since it is
expressed in UML, extensions can be easily incorporated.

5 Conclusion

EAIF is an EAI framework, specified in UML, complemented with a textual
specification and guidelines to facilitate its applicability. This work is the result of a
doctoral project on EAI. Two running applications, derived from previous research
projects, have been considered to experiment the applicability of this framework. In
this work the instantiation of EAIF with backward/forward (SPIN) and
upward/forward (J-ENESIS) integration applications as case studies is presented: a
CORBA-based integrated environment for numerical computations and a J2EE-based
CRM system for customer retention and loyalty, respectively. According to the
evaluation with the case studies, EAIF is Complete and Readable; however the
Extensibility issue could not be proved because no new elements were added, but the
use of UML will facilitate this issue. For the features Precise and Repeatable which
are independent from the case study, EAIF provided little support since formal

268 F. Losavio et al.

semantics and automation are missing. However, the class specification could be
easily followed as a guideline. It is obvious that the EAIF maturity will improve as
more case studies will be considered. Finally, the set of features defined for this
evaluation can be easily reused to evaluate other frameworks related with the
enterprise architecture and integration. A strong point of experimenting with EAIF
has been to point out some weaknesses of the applications studied: processes not
supported by services, services without well defined processes. These aspects reflect
faults in the early phases of software design. In this sense, EAIF is a useful tool to
detect and document such faults, even if its purpose is not the organization itself.

Future work will focus on the formalization of the specification, the development of
supporting tools and the specification of EAIF as a Platform Independent Model
(PIM), according to a Model Driven Architecture (MDA) approach.

References

1. Acuña, G., Rodríguez, R.: Desarrollo de un Framework para Soluciones CRM en la Fase
de Fidelización del Cliente. License Thesis, Universidad de Carabobo, Venezuela (2003)

2. APACHE, Apache Software Foundation, The Jakarta Project, Copyright 1999-2002
(2002), http://jakarta.apache.org/tomcat/tomcat-4.0-doc/index.html

3. Brown, A., Carnery, D., Morris, E., Smith, D., Zarrella, P.: Principles of Case Tool
Integration, Software Engineering Institute. Oxford University Press, Oxford (1994)

4. Buschmann, F., Meunier, R., Rohnert, H., Peter, S., Michael, S.: A System of Patterns.
John Wiley & Sons Ltd., New York (1996)

5. Coutaz, J.: Formal Methods in Human-Computer Interaction. In: Software Architecture
Modelling: Bridging Two Worlds Using Ergonomics and Software Properties. Formal
Approaches to Computing Information Technology, ch. 3, pp. 49–73. Springer, Heidelberg
(1998)

6. Cummins, F.: Enterprise Integration. Wiley Computer Publishing, Chichester (2002)
7. Frankel, D., Harmon, P., Mukerji, J., Odell, J., Owen, M., Rivitt, P., Rosen, M., Soley, R.:

The Zachman Framework and the OMG’s Model Driven Architecture, white paper,
Business Process Trends (2003)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Massachusetts (1995)

9. González, M.: Application de Techniques Orientées-Objet pour le Calcul Réparti de Haute
Performance. PhD Thesis, Université Pierre et Marie Curie (Paris VI), Paris – France
(September 2002)

10. ISO/IEC 10746-1, International Standard Organization, Information Technology, Basic
Reference Model of Open Distributed Processing (1998)

11. Kitchenham, B., Linkman, S., Law, D.: DESMET: A method for Evaluating Software
Engineering Methods and Tools, Technical Report (TR96:09), Department of Computer
Science, Keele University, pp. 1–67 (1996) [ISSN 13 53-7776]

12. Laudon, K., Laudon, J.: Management Information Systems, 8th edn. Prentice Hall,
Englewood Cliffs (2004)

13. Losavio, F., Ortega, D., Pérez, M.: Modeling EAI. In: Proceedings of the XXII
International Conference of the Chilean Computer Science Society (SCCC 2002), pp. 195–
203. IEEE Computer Society Press, Copiapo, Atacama, Chile (2002)

 Experimenting with the Expressive Power of an Enterprise Architecture Framework 269

14. Losavio, F., Ortega, D., Pérez, M.: Towards a Standard EAI Quality Terminology. In:
XXIII International Conference of the Chilean Computer Science Society (SCCC 2003),
pp. 119–129. IEEE Computer Society Press, Chillán, BÍO-BÍO, Chile (2003)

15. Losavio, F., Ortega, D., Pérez, M.: Comparison of EAI Frameworks. Journal Object of
Technology 4(4), 93–114 (2005), http://www.jot.fm/issues/issue,www.jot.fm

16. McKeen, J., Smith, H.: New Developments in Practice II: Enterprise Application Integration.
Communications of the Association for Information Systems 8, 451–466 (2002)

17. O’Brien, J.: Management Information Systems, 6th edn. McGraw-Hill, New York (2004)
18. OMG, Object Management Group Inc.: The Common Object Request Broker Architecture

and Specification (1998), ftp://ftp.omg.org/pub/docs/formal/98-02-01.ps.gz
19. OMG, Object Management Group Inc.: 2001. MDA® Specifications (2001) Copyright

1997-2004, http://www.omg.org/mda/specs.htm
20. OMG, Object Management Group Inc.: Unified Modeling Language (UML), version 1.5

(2003) http://www.omg.org/cgi-bin/doc?formal/03-03-01
21. Open Group, TOGAF as an Enterprise Architecture Framework (2003)

 http://www.opengroup.org/architecture/togaf8-doc/arch/p1/enterprise.htm
22. O’Rourke, C., Fishman, N., Selkow, W.: Enterprise Architecture Using the Zachman

Framework. Thomson Course Technology (2003)
23. Ortega, D.: Integración de aplicaciones empresariales, Doctoral Thesis, Universidad

Central de Venezuela, Caracas (2006)
24. Rogers, G.: Framework-Based Software Development in C++. Prentice-Hall, Englewood

Cliffs (1997)
25. Sandoe, K., Corbitt, G., Boykin, R.: Enterprise Integration, California State University,

Chico. John Wiley & Sons, Inc, Chichester (2001)
26. Schmidt, D., Stal, M., Rhonert, H., Buschmann, F.: Pattern-Oriented Software

Architecture, vol. 2. John Wiley & Sons, Ltd. Chichester (2001)
27. Shaw, M., Garlan, D.: Software Architecture, Perspectives on an Emerging Discipline.

Prentice Hall, Upper Saddle River, New Jersey (1996)
28. Sowa, J.F., Zachman, J.A.: Extending and Formalizing the Framework for Information

Systems Architecture. IBM Systems Journal 31(3), 276–291 (1992)
29. Stojanovic, Z., Dahanayake, A.: Components and Viewpoints as Integrated Separations of

Concerns in System Designing. In: Workshop on Aspect-Oriented Design (in conjunction
with the 1st International Conference on AOSD), Enschede (2002)

30. SUN, Sun Microsystems: IDL/Java Language Mapping. Technical Report orbos/97-02-01
(1997)

31. Szyperski, C.: Component Software. Beyond Object-Oriented Programming, 2nd edn.
Addison Wesley, Reading (2002)

32. Tiwana, A.: The Essential Guide to Knowledge Management. Prentice Hall, Englewood
Cliffs (2001)

33. Turban, E., Rainer, R., Potter, R.: Introduction to Information Technology, 3rd edn. John
Wiley & Sons, Inc., Chichester (2005)

34. Whitten, J., Bentley, L., Dittman, K.: Systems Analysis and Design Methods, 6th edn.
McGraw-Hill Irwin, New York (2004)

35. Zachman, J.A.: A Framework for Information Systems Architecture. IBM Systems
Journal 26(3) (1987) IBM Publication G321-5298

36. Zachman, J.A.: This document is a response to the OMG BRWG RFI Version # 1b
Copyright, 2003. Excerpted from The Zachman Framework for Enterprise Architecture: A
Primer for Enterprise Engineering and Manufacturing (2003),

 http://www.zachmaninternational.com

AP1: A Platform for Model-Based

Software Engineering�

Christof Lutteroth

Department of Computer Science
The University of Auckland

38 Princes Street, Auckland 1020, New Zealand
lutteroth@cs.auckland.ac.nz

Abstract. This paper gives an overview of the AP1 system, which is a
platform for model-based CASE tools. AP1 is a set of libraries and tools
that support different activities in the software development process,
with a focus on the development of enterprise applications. It addresses
some key problems of software development, like the storage and man-
agement of artefacts, their creation and modification, and the generation
of artefacts from other artefacts. AP1 is based on several novel concepts,
e.g. an RDB-based event-driven architecture, robust user interfaces and
a generator model that offers a particularly high degree of type-safety.
Due to an open architecture AP1 makes it easy to create new CASE-tools
that immediately take advantage of its functionality.

1 Introduction

Many studies have shown that CASE tools have the potential to improve the
efficiency and quality outcome of large software projects. It is therefore not sur-
prising that a lot of work has been done in this field during the last three decades.
However, adoption of CASE tools in industry has been slow, and the desired pos-
itive effects have not always been achieved [1]. There are many CASE tools, and
most of them are not being used in industry. This is because companies trying to
adopt CASE technology have to overcome different hurdles, like a steep learn-
ing curve due to technological complexity, and the need to integrate the new
technology with existing resources [2]. CASE systems are enterprise applications
and therefore face the same challenges as other enterprise applications, one of
them being integration. Over the years, the problem of integration of different
CASE tools has been addressed by many standards. But most of them – even
big, government supported initiatives like the Portable Common Tool Environ-
ment (PCTE) [3] – have failed to gain widespread acceptance. This shows that
integration of CASE technology is a complex problem that cannot be solved
just by standardization. Despite the huge amount of work that has already been
done, it is an area of ongoing research, and in need of new ideas and solutions.
� This work has been funded by AARN Innovation Ltd and the Foundation for Re-

search, Science and Technology of New Zealand under grant number AARN0501.

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 270–284, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

AP1: A Platform for Model-Based Software Engineering 271

In this paper we present the AP1 system, which is a platform for model-based
CASE tools. It offers the different essential parts that most CASE-tools need
and thereby integrates the tools that make use of it. It is not the only system
that aims to achieve this goal; there are quite a lot of others, e.g. [3]. But the
architecture of AP1, which supports integration on different levels and using
different approaches, is novel and mitigates many of the typical CASE issues.

Before we look into the internals of the AP1 system, we want to discuss some
of the concepts and terms used in this paper in Sect. 2, and describe some of the
issues motivating AP1 in Sect. 3. Then we will give a general overview of AP1’s
architecture in Sect. 4. In the following sections, we will look at its different parts
in more detail: at the repository in Sect. 5, and at the generic editor in Sect. 6.
The paper concludes with Sect. 7.

2 Terminology

We want to clarify certain terms and concepts which are relevant for this paper
but are sometimes unclear or used differently. When talking about model-based
software engineering, we mean that software engineering is done on a level of
abstraction that is adequate for specifying the functionality of a system without
taking into account implementation details. We concentrate on information re-
lating to the requirements of a system, and, if necessary, also to its design. For
example, we might have to specify what data should be stored in a system, but
not how the system utilizes hardware resources in order to do so.

Model information can exist in different representations. For example, this
information could be represented as text, as in in 4GLs, as graphics, as in in
diagrams, or in other less human readable forms, e.g. binary code. Dealing with
model information does not enforce a particular representation, however, some
kinds of representations are more suitable for certain purposes than others.

When using models, we have to distinguish different levels of structural infor-
mation. A model is basically a data type that allows us to specify data which
adheres to certain constraints. This data, however, can in turn serve as another
model description for other data. In this paper we want to use only three lev-
els of structural information: the metamodel, which describes how types can
be specified, models which are types defined by the metamodel, and model in-
stances, which are data following the constraints of a particular model. Some-
times all three levels are referred to as models, and metamodels end up being
called ”metametamodels”, which inevitably leads to meta-confusion.

Integration of models has different aspects: a syntactic and a semantic one.
Syntactic integration means that we end up using the same metamodel for mod-
els, so that the structure of the models is defined in the same terms. This means
that we can access the models in the same manner. The structure of the models
can, however, be different. Sematic integration means the we understand not
only the structure of the models but also their meaning, and that this under-
standing is manifested in the system. Semantic integration can be expressed,
for example, in mapping information relating the models to each other or to a

272 C. Lutteroth

common “supermodel”, or operations that can sensibly make use of more than
one of the models. Syntactic integration is usually much easier to achieve.

3 Motivation

AP1 is motivated by some important requirements of CASE. In this section we
want to outline what these requirements are and why they are so important. In
the following sections we will describe in more detail how these requirements are
targeted in AP1.

One of the main obstacles in CASE adoption is the complexity of CASE
systems. This has been shown by several studies, e.g. [4,5], and is known to
be a major cost factor when CASE technology is introduced in an industrial
environment [2]. The costs of training can double the costs initially spent on
CASE technology, and the usually steep learning curve can lead to an initial
loss of efficiency after CASE adoption. CASE tools were frequently abandoned
before a gain in efficiency could manifest. Other research points out that aspects
of usability are a very important factor for the actual CASE usage [6], and that
there is actually a discrepancy between the functionality developers want and
the one implemented in tools [7], leaving the users dissatisfied. Therefore, one
of the main goals of AP1 is to reduce complexity as much as possible, and to
provide useful functionality without neglecting usability.

Another very important requirement for a CASE tool is the ability to integrate
with other tools [8]. Integration and customization of CASE technology to the
needs of a company can be another significant cost factor because it frequently
requires the help of external consultants [2]. In order to produce the desired
outcome, the tools in a software project often have to be combined, with outputs
of tools forming the input of other tools. Together these tools form a tool chain.
Heterogeneity of tools represents a major obstacle to this. Furthermore, it is
not unusual that tools prescribe a certain software development process, which
has to be adopted in order to benefit from its use [1]. This means that the
decision to adopt a particular CASE technology can have a strong impact on
the whole software development process. This problem can be mitigated if CASE
technology offers a high degree of customizability, so that tools can be adapted
to fit the desired process, and not the other way around. Unfortunately, support
for integration and customizability rather add to the complexity of a system, so
that these requirements are antagonistic to the aim of reducing complexity. We
designed AP1’s architecture so that it emphasizes support for integration and
customizability, and try to solve the dilemma between complexity and lack of
customizability with new, simplified user interface concepts.

4 Architectural Overview

Figure 1 gives an overview of the architecture of the AP1 system. The whole
system is based on a repository, which is implemented on a RDBMS. The repos-
itory contains the metamodel, models and model instances, i.e. it stores all the

AP1: A Platform for Model-Based Software Engineering 273

Fig. 1. Architectural overview of the AP1 system. The dark shapes represent compo-
nents that are part of AP1, the light shapes components that can be built on top of
it.

data used during the software development process. Besides the artefacts which
are directly relevant for software development, it also stores information about
changes in the data, access control information and AP1’s configuration. The
repository manages and protects the artefacts of software projects, and offers
a notification mechanism that informs CASE tools about data changes. CASE
tools can be implemented on top of the repository, taking advantage of its data
management capabilities. This is reasonable because all CASE tools, no matter
how specialized their functionality, need to manage their input and their output.
CASE tools can access the repository either directly through the interface of the
RDBMS, or through an object-oriented API. The repository supports data and
control integration.

On top of the repository, AP1 provides a generic editor, which is an application
for editing, analysis and processing of artefacts. The generic editor makes use
of the repository’s notification mechanism and provides generic views and basic
operations for visualization and modification of models and model instances.
The generic editor has an open architecture, which can be extended by plug-ins
and configured through the repository. Plug-ins can implement new views, new
operations and new data transformations. This makes it is possible to efficiently
implement CASE functionality as plug-ins with a high degree of reuse. The
generic editor supports presentation integration.

Besides data management, modification and visualization, AP1 supports data
transformation by providing its own model of generators. The model is stored
in the repository and the operations necessary for generation are part of the
generic editor. Transformation and generation of artefacts is a very common
function of CASE technology, and plays an important role in the integration
of different models. Integration can be achieved by generating an instance of
one model from an instance of another, with the domain knowledge about how
the two models are related being programmed into the generator. Consequently,
the generator model supports semantic data integration. This model is out of

274 C. Lutteroth

the scope of this paper; information about its underlying concepts can be found
in [9]. Having means for syntactic and semantic data and control integration,
AP1 provides means to model software development processes, e.g. along the
lines of the procedures described in [10], paving the way for process integration.

AP1’s architecture is similar to the integration framework architecture de-
scribed in [11]. The repository of AP1 corresponds to the object management
system in the integration framework, and the repository API to the integration
agent. The generic editor corresponds to the common user interface component.
The difference is that tools in the integration framework interact with the object
management system through the integration agent, and with the user through
the common user interface; i.e. all tools are framed by these two layers. AP1
allows tools to access the repository directly, and also allows them to have their
own user interface. Its architecture is that of a layered platform where tools
can be based on lower or higher layers, resulting in a lower or higher degree of
integration, respectively.

5 The Repository

Several approaches have been proposed for the implementation of a shared repos-
itory for CASE tool integration. Some systems, e.g. the one described in [12],
use relational DB technology. Other ones, e.g. PCTE [3], use object-oriented
databases. And many recent approaches favour the use of XML database sys-
tems, e.g. as presented in [13]. All these approaches have advantages and disad-
vantages, which we will discuss with regard to AP1.

AP1 uses a relational DBMS for the repository. As already described in [12],
this has the following advantages: RDBMS are a very mature technology that is
widely used and highly reliable. They rely on the simple and theoretically sound
relational data model (RDM). RDBMS offer a well-understood, well-known and
standardized interface through the language SQL, which allows powerful oper-
ations to be specified at a high level of abstraction. A RMDB is able to check
and enforce various constraints on a DB, and its functionality can usually be
extended in various ways, e.g. by triggers, stored procedures and user-defined
functions. Furthermore, there exist a plethora of applications supporting the cre-
ation, use and maintenance of a RDB, such as DB administration tools, backup
and replication tools, application generators, and interfaces to various program-
ming languages. Most RDBMS inherently support TCP/IP networking, so that
a repository built on this technology can be accessed remotely. Furthermore,
modern RDBMS offer rich features for efficient, highly concurrent transaction
processing and security, e.g. encryption and access control. All these advantages
can be leveraged by AP1. In comparison, object-oriented and XML-based DB
technology are not as mature, much more complicated and less well supported.
However, using a RDBMS also has disadvantages, and it is a challenge for AP1
to overcome these. The disadvantages are also described in [12] and include an
impedance mismatch between the relational data model and the more complex

AP1: A Platform for Model-Based Software Engineering 275

data structures required for CASE, possible performance penalties when these
data structures are accessed, and a lack of built-in advanced features like ver-
sion management. In the following we want to address these shortcomings and
describe how they can be solved.

The biggest problem arising when using a RDBMS for the repository seems to
be the impedance mismatch between the relational data model and the complex
data structures used for CASE. Storing such data structures in a RDB usually
results in fragmentation: the data has to be spread over several normalized tables
and usually comprises several rows, which have to be reconnected by joins in
order to yield the original data. The schema of the DB depends heavily on
the multiplicities in the represented data structure and can vary significantly,
e.g. new tables can be necessary when representing many-to-many relationships.
This fragmentation, the variance in schema structure and the need to reassemble
data increase the complexity of the system significantly and possibly reduce its
performance. AP1 solves this problem by providing an object-oriented API on
top of the database, which allows to access the data in the repository in a
much more convenient manner using the parsimonious data model. This API is
written in the C# language and can therefore be used on all platforms that offer
a common language runtime (CLR) for the .net platform. Applications accessing
the repository can either access the RDB directly, using SQL, or use the API for
more convenience.

As mentioned, one of the common objections against the use of RDBMS
technology for repositories is performance. However, in our experiments this
was not a problem. AP1 uses the Firebird DBMS [14], which uses multiversion
concurrency control [15]. This means that the DBMS uses different versions of a
DB in order to prevent readers and writers blocking each other. One also has to
note that the additional resources used by a modern RDBMS are well-invested:
relations between data can be navigated bidirectionally, and the RDMBS is able
to automatically check and enforce referential integrity.

5.1 The Parsimonious Data Model

The parsimonious data model (PDM), which is described in [16], is a very simple,
formally well-defined data model, which relies – similar to the relational data
model – on sets and relations. It basically consists of three concepts, which can be
represented visually like in the diagram in Fig. 2: entity types, relation types and
roles. Figure 2 shows a simple model for data about customers, which can have
several addresses, each address consisting of a street name and a house number,
and several orders. The circles, with the labels on them that start with upper
case letters, represent entity types, which are sets of values. The connections
between the circles represent relation types between the entity types. The lower
case labels that can be put at the ends of the connections represent roles, i.e.
identifiers for the connections between entity types and relation types. Roles
can be used to navigate in a PDM: if you have an element of type Customer,
then accessing role ”addresses” will yield all elements of type Address which
are associated with that particular customer. The data elements of an entity

276 C. Lutteroth

Fig. 2. Example of a PD model

Fig. 3. Example of mapping between the PDM and RDM

type are called its instances, and the connections that can be made between
instances according to a relation type are called links. Note that the same entity
type can be represented in a diagram more than once, e.g. for avoiding crossing
connections.

The PDM also provides notions for multiplicities and inheritance. For exam-
ple, in Fig. 2 a customer can have an arbitrary number of orders, but each order
belongs to exactly one customer. However, multiplicities and inheritance are op-
tional constraints and need not be taken into account unless the designer wishes
to do so. The PDM abstracts from low-level implementation details like tables,
normalization, foreign keys and joins, and the repository API takes care of the
mapping between the PDM and the RDM. This mapping is done on the basis of
mapping rules, e.g. the one illustrated in Fig. 3, which make sure that the PDM
is represented optimally.

In order to integrate different models syntactically, a parsimonious data meta-
model is used. This metamodel, which is illustrated in Fig. 4, makes it possible
to represent PDMs as PDM instances. In order to utilize the metamodel, the
repository API provides functionality for reflection: existing models in the RDB
can be introspected and read as PDM instances, and PDM instances of the
metamodel can be manifested in the RDB through intercession. Compared to
other metamodels, our metamodel is very simple, as it is symmetrical and com-
prises only very few entity types. The metaobject facility (MOF) [17], which is
the metamodel for UML, comprises, in its core, a dozen interconnected classes
and a variety of other related concepts. The parsimonious data metamodel is
no less expressive, allowing universal definition of data types and relationally
complete access, but decomposes more complex concepts into a small num-
ber of well-understood primitives. E.g. the fact that the relation types in our

AP1: A Platform for Model-Based Software Engineering 277

Fig. 4. The PD metamodel of the AP1 system. Entity instances are associated to other
entity instances indirectly by a pair of roles, forming binary relation types.

metamodel are binary does not impose any limits on the PDMs: each n-ary re-
lation type can easily transformed into an additional entity type and n binary
relation types.

iRM [18] is a repository similar to AP1’s, which is based on the MOF. Like
AP1, iRM provides data management capabilities and reflection functionality
for introspection and intercession of types. However, the store for metadata is
separated from the data store, and thus data and metadata are not as tightly
integrated. Applications can access iRM through an API, or through a non-
standard relational query language similar to SQL. Despite this, iRM does not
leverage existing RDBMS technology, but instead implements its own DBMS.
Thus, data integration based on RDBMS standards is not supported.

5.2 Data and Control Integration

Data interchange is an important issue for CASE tool integration. If there are
several repositories, it has to be possible to import and export models and model
instances. AP1 uses SQL scripts for import and export. In order to support
smooth integration of DBs and prevent key collisions when integrating data into
the repository, non-primitive values are identified by universally unique iden-
tifiers (UUIDs) [19], also known as globally unique identifiers (GUIDs). These
artificial identifiers are sufficiently small (128 bit) and can be efficiently pro-
cessed and generated on the fly. If a command in an SQL script fails during an
import operation because the command tries to create something that already
exists in the database, it is clear that the element in the DB is the same as the
one in the script, and the command can be safely ignored. Note that the SQL
scripts used for import and export have a highly regular structure, even more so
than XML, so that very high compression of these scripts is possible.

Another important part of AP1 is the caching and messaging architecture in
the implementation of the repository API. Entity instances and links between
them, as well as entity types and roles, are cached as objects in memory and
updated whenever they are changed in the DB. Consequently, each application
using the repository via the repository API enjoys the performance boost of an
up-to-date read cache. Writes are done directly to the database (write-through),
and whenever a change occurs, this change is logged in the database. Then, con-
nected repository API components are notified by an event sent by the DBMS,
and can consequently update their cache. As a side-effect, a change log is created
which can be used for undo/redo and version management. The repository API

278 C. Lutteroth

allows applications to subscribe to events connected to the objects in the cache:
e.g. an application can be notified when a link is deleted or added to an instance.
This mechanism forms the basis of AP1’s control integration, since applications
are able to communicate with others just by writing to the repository. It is il-
lustrated for AP1’s generic editor in Fig. 8, which will be further explained in
the next section.

The fact that SQL is such an established standard is an important factor for
data integration. The schema used for AP1 is extensible and straightforward,
so it is not hard to integrate existing relational data. The repository can be ac-
cessed through SQL, which makes it easier to integrate AP1 with other platforms
and CASE tools. Even if tools access the repository directly, the mechanisms for
notification and change management will still work. The repository also con-
tains the program code of data operations, so that they can be used by other
applications for functional integration. Data operations directly manipulate the
database, which makes it possible to read their results just using SQL.

6 The Generic Editor

The generic editor can be seen as an open IDE or workbench, with an extensible
plug-in architecture similar to that of popular IDEs like Eclipse [20] or MS
Visual Studio [21]. It provides the basic means to view, edit, import and export
model instances, invoke operations on those instances, and transform instances
of one model into instances of another. In principle, modern IDEs can perform
similar tasks, given a set of suitable plug-in extensions. But the way the generic
editor of AP1 integrates its different components into its user interface is very
different from the ones commonly used in IDEs. Most IDEs use an accumulative
approach in which extensions bring their own user interface (UI) for input and
output, creating their own sometimes very unique style of integration. With the
addition of many extensions, this can easily result in a complex, heterogeneous,
possibly cluttered UI, which is hard to access and understand. In contrast to
this, AP1 aims at conceptual integration of different functionalities, by moving
input, output and even the UI itself into the repository. In the following we will
discuss this in more detail.

Figure 5 shows a screenshot of the generic editor with two work panels. Both
panels use the default view, which can be used to view and edit any PD model
instance. The dark text elements represent entity instances, and the light text
elements represent roles. In the first line of the work panel at the top we see
an entity instance representing the PD metamodel: it has the name “PD meta-
model” and is of type “PD model”. In the line below we see that from this
instance role “entity types” can be accessed, which has multiplicity 0..*. If we
navigate from instance “PD metamodel” via that role, we reach two instances
of type “Entity type”, which are linked to “PD metamodel”: instance “Type
Entity type”, which is the instance representing the type “Entity type”, and
instance “Type Role”, which is the instance representing the type “Role” (see
Fig. 4 and the description in the previous section). The role in the last line in the

AP1: A Platform for Model-Based Software Engineering 279

Fig. 5. Screenshot of the generic editor

top work panel refers to an inheritance relation: type “PD model” is a subtype
of type “Object”, and therefore an instance of type “Object” can be reached by
navigating this role. The tree view supports elision, i.e. by clicking on the plus
sign to the left of an instance the accessible roles of that instance and the in-
stances connected through them become visible. The work panel at the bottom
of the screenshot shows instance “Type Entity type” in more detail. Symbols
on the left of an instance indicate certain properties of that instance or the link
it is connected with. The padlock symbol, for example, indicates that a link is
permanent and cannot be changed.

Another feature in the user interface of the generic tree view is the ability to
invoke operations directly on the model. In common IDEs it is often not clear
how to invoke a particular functionality: the user interfaces of the common IDEs
are usually very rich and heterogeneous, with numerous buttons, menus and
specialized panels. The functionality is spread out over all these different user
interface elements. By contrast, operations in AP1 have a single superparame-
ter (see also [16]), which comprises all information relevant for their invocation.
Operations are associated with their superparameter type and invoked through
its instances. Therefore, any operation can be invoked by simply editing an
instance of its superparameter type and setting appropriate parameter values.
Once such an instance is available, the operation can be invoked in the generic
view through the instance’s context menu, as illustrated in the screenshot in
Fig. 6. This provides a very structured and homogeneous approach for the in-
vocation of functionality. Specialized ways for editing superparameter instances
can be realized by different views.

Robustness is the property of user interfaces to prevent data inconsistency
in an application, despite a user not handling the application correctly. [22]

280 C. Lutteroth

Fig. 6. Invocation of operations in the generic editor

Fig. 7. Typed drag&drop in the generic editor

describes various ways for improving the robustness of a user interface, and the
generic editor leverages most of them. For example, all information in the user
interface of the generic editor is typed and handled in a type-safe manner. We
can drag and drop instances in the default view from one place to another in
order to create new links, but it is only possible to drop instances onto roles that
suit their types, as illustrated in the screenshot in Fig. 7. Many constraints, like
referential integrity, are enforced by the RDBMS; and since the user interface
of the generic editor only reflects the state of the database, violations of those
constraints in the user interface cannot occur. All operations invoked by the user
are encapsulated in transactions, so that they cannot interfere with the actions
of other users, and their effects become only visible after they were successfully
completed.

AP1: A Platform for Model-Based Software Engineering 281

6.1 Customizability

The generic editor is basically a configurable frame for different views on the
repository. As indicated in Fig. 5, it provides a workspace which can be arbi-
trarily divided into non-overlapping work panels, each of which can provide a
different editable or non-editable view onto the repository. The generic editor
can be customized in various ways, e.g. by adding work panels or plug-ins for
views and operations. All configuration information is part of the repository, and
customization can therefore easily be done by editing the corresponding model
instance. In contrast to this, common IDEs usually have to provide complex,
nested configuration dialogues, which do not scale well and become cluttered
with increasing number of features.

The storage of configuration information in the repository and its accessibil-
ity over a network have another positive effect on extensibility and maintenance:
extensions and updates can be deployed centrally and activated dynamically
for each user. A feature for dynamic extensibility of IDEs and its benefits have
been described in [23], and AP1’s repository can be leveraged in a similar way.
The idea is that components of the system are themselves stored in the repos-
itory, with the repository acting as an application server. Because the code for
operation and view plug-ins is bound dynamically, new plug-ins become acces-
sible immediately for every user. But in contrast to [23], our approach is not
only used for plug-ins. The program that starts the generic editor performs a
simple bootstrapping process: it checks if there is a new version of the generic
editor available in the repository, and if so, caches it locally and runs it. If a
component of the generic editor is updated while the generic editor is running
on client machines, this is immediately detected by the clients through AP1’s
notification mechanism. The clients will finish their pending transactions, load
the new version of the updated component, and restart themselves automati-
cally. Because all state information is stored in the repository, the client will
restart in exactly the same state as it was terminated, with the user possibly
not even noticing the update. After the restart, the only difference is that the
local memory cache of the generic editor is empty, and its version is up-to-date.
This feature, which is also known as hot-deployment, reduces the influence of
maintenance on productivity to a minimum.

6.2 Distributed Synchronous Collaboration

[24] describes possibilities and benefits of the integration of features for collabo-
rative work into an IDE. This approach, which includes the integration of chat,
IM and screen sharing, has been implemented for the Eclipse IDE [25]. Inter-
estingly, in AP1 many of these features come naturally as a side-effect: chat
and IM are nothing but a list of text messages in the repository that are edited
collaboratively, and all changes done in the repository can be followed live by
all users. Even better: while the very nature of screen sharing is that several
users see exactly the same screen, users of AP1 have the possibility to choose
the view that suits their purpose best. Like in [25], data can easily be associ-
ated with other data, e.g. chats about bugs with parts of the source code. In

282 C. Lutteroth

Customer

id

Address

id

street_name

house_no

C_to_A

customer

address

Customer Address
street name

1

house no

1

address

String

Int

Fig. 8. Data synchronization between the RDB (bottom), the PDM API (middle) and
CASE tools like the generic editor (top)

the same way, AP1 has the potential to facilitate other collaborative tasks like
bug tracking and code review. Synchronous collaboration, e.g. pair program-
ming, can effectively improve code quality, and there is evidence that this works
even in distributed environments [26]. AP1 can support this in a similar way
to Sangam [27], which is an Eclipse plug-in that replicates certain input events
of an IDE on several clients. But Sangam can only replicate some events and
conflicts with parts of Eclipse’s functionality that have not been designed with
synchronous collaboration in mind. AP1 supports distributed synchronous col-
laboration inherently and for all events affecting the repository. Possible future
work is to investigate how different views for different collaborators can benefit
distributed synchronous collaboration tasks, like distributed pair programming.

Figure 8 illustrates how the synchronization between the repository and the
applications built on top of it works, considering as example the generic editor.
At the bottom, the DB is depicted, which contains tables with all the data in
the repository. When a table is changed, a trigger is fired: it logs the change into
the DB and informs each connected PDM API component, illustrated above the
DB, about the change, using an event mechanism that sends event messages over
DB network connections. The PDM API component offers a PDM interface with
event notification and a read cache. When an event is sent by the DB, a PDM API

AP1: A Platform for Model-Based Software Engineering 283

component decodes the event information and determines if it affects the PDM
objects in the cache. Events are forwarded to the corresponding event handlers
of those objects. The generic editor, depicted at the top of the figure, represents
cached PDM instances in the views of its user interface. A view receives the
events from its underlying PDM objects and can react to any change.

7 Conclusion

AP1 provides powerful features and novel concepts for the implementation of
model-based CASE tools. Its architecture is, to the best of our knowledge,
unique. In contrast to most other similar systems, its repository is based on
a RDBMS which forms the self-contained core of the system. Additional func-
tionality is added in layers on top of the RDBMS, such as an API that supports
the more abstract PD model and an extensible user interface framework. All
layers emphasize ease of integration and customizability. Currently we are work-
ing on an extension for meta-CASE functionality similar to [28,12], so that new
views for different types of diagrams can be created directly.

References

1. Albizuri-Romero, M.B.: A retrospective view of CASE tools adoption. SIGSOFT
Softw. Eng. Notes 25(2), 46–50 (2000)

2. Huff, C.C.: Elements of a realistic CASE tool adoption budget. Commun.
ACM 35(4), 45–54 (1992)

3. Anderson, M., Bird, B.: An evaluation of PCTE as a portable tool platform. In:
Proceedings of the Software Engineering Environments Conference, pp. 96–100
(1993)

4. Iivari, J.: Why are CASE tools not used? Commun. ACM 39(10), 94–103 (1996)
5. Kemerer, C.F.: How the learning curve affects CASE tool adoption. IEEE Soft-

ware 9(3), 23–28 (1992)
6. Lending, D., Chervany, N.L.: The use of CASE tools. In: SIGCPR ’98. Proceedings

of the 1998 ACM SIGCPR Conference on Computer Personnel Research, pp. 49–58.
ACM Press, New York (1998)

7. Maccari, A., Riva, C.: On CASE tool usage at Nokia. In: ASE 2002. Proceedings
of the 17th IEEE International Conference on Automated Software Engineering,
pp. 59–68. IEEE Computer Society Press, Los Alamitos (2002)

8. Kapsammer, E., Reiter, T., Schwinger, W.: Model-based tool integration - state
of the art and future perspectives. In: CITSA 2006. Proceedings of the 3rd Inter-
national Conference on Cybernetics and Information Technologies, Systems and
Applications (2006)

9. Draheim, D., Lutteroth, C., Weber, G.: A type system for reflective program gen-
erators. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676, Springer,
Heidelberg (2005)

10. Bosua, R., Brinkkemper, S.: Realisation of an integrated software engineering en-
vironment through heterogeneous CASE-tool integration. In: Proceedings of the
Conference on Software Engineering Environments, pp. 152–159. IEEE Computer
Society Press, Los Alamitos (1995)

284 C. Lutteroth

11. Wybolt, N.: Perspectives on CASE tool integration. SIGSOFT Softw. Eng.
Notes 16(3), 56–60 (1991)

12. Gray, J., Ryan, B.: Integrating approaches to the construction of software engi-
neering environments. In: Proceedings of the Eighth Conference on Software En-
gineering Environments, pp. 53–65. IEEE Computer Society Press, Los Alamitos
(1997)

13. Maruyama, K., Yamamoto, S.: A CASE tool platform using an XML representa-
tion of java source code. In: SCAM ’04. Proceedings of the 4th IEEE International
Workshop on Source Code Analysis and Manipulation, pp. 158–167. IEEE Com-
puter Society Press, Los Alamitos (2004)

14. The Firebird Foundation (Firebird RDBMS), http://www.firebirdsql.org/
15. Bernstein, P.A., Goodman, N.: Multiversion concurrency control -theory and algo-

rithms. ACM Trans. Database Syst. 8(4), 465–483 (1983)
16. Draheim, D., Weber, G.: Form-Oriented Analysis - A New Methodology to Model

Form-Based Applications. Springer, Heidelberg (2004)
17. Object Management Group: Meta Object Facility (MOF) Core Specification Ver-

sion 2.0 (2006)
18. Petrov, I., Jablonski, S.: An OMG MOF based repository system with querying

capability – the iRM project. In: Proceedings of iiWAS’04 (2004)
19. Internet Engineering Task Force (IETF) Network Working Group: RFC4122: A

Universally Unique IDentifier (UUID) URN Namespace (2005)
20. D’Anjou, J.: The Java Developer’s Guide to Eclipse. Addison-Wesley Professional,

Reading (2004)
21. Skibo, C.: Working with Visual Studio 2005. Microsoft Press, Redmond, Washing-

ton (2006)
22. Draheim, D., Lutteroth, C., Weber, G.: Robust content creation with form-oriented

user interfaces. In: Proceedings of CHINZ 2005 – 6th International Conference of
the ACM’s Special Interest Group on Computer-Human Interaction, pp. 2005–
2006. ACM Press, New York (2005)

23. Yap, N., Chiong, H., Grundy, J., Berrigan, R.: Supporting dynamic software tool
integration via web service-based components. In: ASWEC 2005. Proceedings of
the Australian Software Engineering Conference, pp. 160–169. IEEE Computer
Society Press, Los Alamitos (2005)

24. Cheng, L.T., de Souza, C.R., Hupfer, S., Patterson, J., Ross, S.: Building collabo-
ration into IDEs. Queue 1(9), 40–50 (2004)

25. Cheng, L.T., Hupfer, S., Ross, S., Patterson, J.: Jazzing up Eclipse with collabora-
tive tools. In: eclipse ’03. Proceedings of the 2003 OOPSLA Workshop on Eclipse
Technology Exchange, pp. 45–49. ACM Press, New York (2003)

26. Baheti, P., Gehringer, E., Stotts, D.: Exploring the efficacy of distributed pair
programming. In: XP/Agile Universe 2002. Proceedings of the Second XP Universe
and First Agile Universe Conference, pp. 208–220. Springer, Heidelberg (2002)

27. Ho, C.W., Raha, S., Gehringer, E., Williams, L.: Sangam: a distributed pair pro-
gramming plug-in for Eclipse. In: eclipse ’04. Proceedings of the 2004 OOPSLA
Workshop on Eclipse Technology Exchange, pp. 73–77. ACM Press, New York
(2004)

28. Zhu, N., Grundy, J., Hosking, J.: Pounamu: a meta-tool for multi-view visual lan-
guage environment construction. In: Proceedings of VL/HCC’04 IEEE Symposium
on Visual Languages and Human-Centric Computing. IEEE Press, Los Alamitos
(2004)

http://www.firebirdsql.org/

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 285–297, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A User-Oriented Design for Business Workflow Systems

Amir Pourabdollah, Tim Brailsford, and Helen Ashman

School of Computer Science and IT, The University of Nottingham
Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK

{axp,tjb,hla}@cs.nott.ac.uk

Abstract. This paper contains some of the major design considerations which
have been experienced through development of several workflow systems for
business organizations and offices. These considerations, which are raised from
both theoretical and practical sides, include the gathered requirements in a user-
oriented iterative design, the implied changes in software architecture to satisfy
these requirements and the developers’ experiences on how such workflow
systems can be easily adopted in typical office environments. More specifically,
feedbacks of 40 users about the desired functionalities of a workflow system
after using it has been compared with the initial requirements gathered before
the development. This comparison shows not only the essential users’
requirements from a workflow system, but also how some of the requirements
can be changed through a cyclic design. The contribution of this research is a
practical look at the designing implication of business workflow management
system, rather than a theoretical view.

Keywords: Workflow Management Systems, User-oriented Design.

1 Introduction

The design of sustainable enterprise applications requires many concerns on usability
issues. Iterative and user-centred development methods are known approaches to
make such systems more user-friendly and sustainable. In these methods, users of the
systems are not only those who have ordered a system (like in Waterfall Model of
software engineering [16]), but those who are highly involved in the design process.
Iteration here means that feedbacks from users about the designing software, as a
whole or as a part, are used to re-design the system. [7]

One of the important enterprise applications are workflow management systems.
Workflow management systems are being used to automate the sequence of actions or
steps used in a process. This automation doesn’t mean leaving computers to do tasks of
workflows (even if this is possible), but using computer systems to help human
resources to know and do the right action in the right time and the right place. In other
words, workflow automation is distinguished from task automation, and workflow
management systems are not about using computers to automate any individual task [4].

Workflow systems has two main areas of applications [14]:

a. Business/industrial processes automation, like office automation and
e-commerce. Some of the benefits of using automated workflows in these

286 A. Pourabdollah, T. Brailsford, and H. Ashman

fields are improvement in speed, quality, reliability and flexibility [9] (The
focus of this paper is on this part).

b. Knowledge-based systems, like knowledge representation and solution
processes. In the field of knowledge systems, workflows are highly combined
with concepts of knowledge. Some examples are the test steps and fault
detection [11]. Different user’s requirements with different design
consideration may be applied on this part, which are beyond the scope of this
paper.

While there are hundreds of pre-designed workflow management systems being
used, still many organizations need customized workflow applications to be specially
designed for them concerning their special needs [18]. This paper tries to show the
implications of user’s requirements on the development of a workflow system through
an iterative design and to show how such a design may address these requirements. It
also wants to show that experiences of developers may be used to predict
functionalities that the invoice user may not consider in the first stages but may
realize them later.

It is observable in the workflow literature that researchers are mostly emphasis on
the theory of workflow modelling and most of the efforts are devoted to technical
issues or abstracted workflow modelling [9]. This is while users may have different
class of concerns that may be missed in an abstracted software design. Through
development and implementation of several real-world workflow systems, we believe
that a main factor in making sustainable workflow system is an optimal balance
between technical and practical sides of development. This paper tries to share the
lesson learned when such a balance is targeted.

Another point that has been observed in organizations during this research is the
existence of changes in users’ expectations after deployment of workflow
management systems. This can be considered as a part of organizational changes
enabled by workflow systems [17].

2 Related Works

Workflow Management Coalition (WFMC) [19], is a main leading body in
establishing standards in the field of workflow modelling and management. The
WFMC reference model has been widely recognized and used in designing workflow
systems. WFMC has also a list of software systems in the market which are
completely or partially compatible with that reference model.

One of the main theoretical background in the workflow modelling is developed by
Will van der Aalst (like in [3]). His model is based on a well-known information flow
model known as Petri-nets (more in [13]). Workflow Patterns [1] is one of the
outcome of Aalst’s workflow model which can cover almost all theoretically possible
situations of information flow in a workflow management system.

ADEPT [10] is a complementary framework that tries to cover more theoretical
and practical sides of workflow modelling by providing more possible concepts and
actions in such systems, like systematic addressing the pre-planned exceptions in
order to adequately capture real-world processes (e.g. forward and backward jumps),
ad-hoc derivations from the pre-modelled workflows, covering inter-workflow

 A User-Oriented Design for Business Workflow Systems 287

dependencies, advanced user interface, and some trends to optimize enterprise-wide
communications. Rollback is another systematic concept that has been added to the
workflow model, which has not completely covered by classic models. ADEPT has
been used as a basis in other development research projects like AristaFlow [6].

Management of workflow systems while spreading them to enterprise-wide
applications can raise some other concerns in software architecture that again may not
be fully addressed in the classical models or in the commercial products [5, 8]. End-
user access tools, workflow modelling tools, workflow instant management and
project planning tools are different fields in the optimization of a workflow
management system in order to make the product more sustainable in such scales.

As mentioned, different stakeholders in workflow community, i.e. academics,
vendors, organizations and users, can raise different expectation from a workflow
management system. Through adaptation of these stakeholders’ expectations, some
researches verifiy that the general results meet data from theoretical side [12], while
interestingly some others believe that the theoretical side of current workflow
products are quite unprepared to meet the practical users’ demands [5]. We believe
that this balance must be reassessed independently for each certain workflow
application by making users as the centre of the design. This is why the development
process of a workflow management system (which is itself a workflow) is another
subject of research. Although little works has been devoted on this area, a reference
workflow application development model has been introduced in [18], which is built
on real-world experiences. In this model, the involvement of empirical studies,
gathering users’ requirements, business process modelling and workflow modelling
into the design process has been studied.

Although it is observed that the details of the user-desired functionalities or
features of such systems are not interested points for researchers, authors of [4] have
shared some detailed experiences in implementing a workflow management system.
The studied features in that work, which may consequently imply design principles,
include explicit process definition tools, process enactment facilities, tracing tools,
monitoring and reporting tools. The lesson they learned in their experiences are close
to our results. The user’s feedback on using the system was not uniformly enthusiastic
in their research and they experienced negative feelings when users were presented
with electronic version of their previous paper forms. Another negative users’
feedback mentioned in their work is about the workflow definition tools when users
need to redefine or modify the workflow. This problem comes back to this fact that
many workflow definition tools or definition languages (like WPDL [19] or XRL [2])
may need certain level of computer knowledge which normal users may not have. The
later point can raise many usability issues that may be addressed by introducing
graphical or textual workflow definition tool. In the field of textual tools, easy process
description language which are close to natural languages (like in [14, 15]) can help
users in these issues.

The encountered problems that developers of workflow systems have experienced
are almost same in nature. A good set of those problems has been counted in [18], like
isolation of technical from organizational aspects, development without prototyping,
unsuitable transfer of paper works to automatic processes and server performance in
enterprise-wide applications.

288 A. Pourabdollah, T. Brailsford, and H. Ashman

3 Methodology

The method used in this research includes gathering initial users’ requirements, using
these requirements in the software architecture design, and gathering users’ feedbacks
after short-term and long-term operational phase. The development method follows
the iterative design, in which the users are highly and actively involved in a cyclic
process to test the system and share their views with the developers. The developers
are also asked to validate the implementing system by the users’ views. The details of
this iteration have not been described in this paper, but the implications and learnt
lessons caused by such iterations have been counted.

This method has been used in four offices of different types with different types of
business: (1) TV production process in a TV program production organization. (2)
Office works of a government-affiliated charity to help homeless people (3) Business
processes of a multimedia advertisement company; and (4) Workflow of an
international conference management company.

A total number of 40 active users in those four businesses have been selected for
answering two similar questionnaires before and after using the system. The first set
of questionnaires has been answered by them before starting development and the
second set has been answered after having long-term (2 years) experience in using the
developed system. It is also noticeable that none of these users have any previous
experience with a real computerized workflow system.

4 Gathering Initial Requirements

In the initial step, general requirements of top users (or managers) are very important
to be gathered. Managers in this step are usually interested to replace their manual
system with a computerized workflow system, because they have some
understandings about benefits of such systems. These main requirements include:

a. They usually have set of graphical flowcharts that need to be fed into new
system as the raw material of workflow definition. However, these flowcharts
must be re-engineered in many cases.

b. The system must be able to direct users to do what they are supposed to do,
regarding to the workflow definition.

c. From a managerial point of view, the system must be able to show and trace
history of processes on each case, and to show details of each user’s actions to
certain class of users.

The above general requirements have been studied more deeply by the developers
and system designers to reach to the detailed specification. After more discussions
and brain-storming sessions, some more specifications of the system have been shared
between developers and users, like:

a. The system must have enough flexibility to accept frequent changes on the
workflow.

b. There may be several workflows in a single organization, with or without
gateways between them, while a single system is supposed to manage them
together.

 A User-Oriented Design for Business Workflow Systems 289

c. There may be several differences between the workflow designed for manual
system, and those who must be used in the computerized one.

d. There may be some data forms that the users are supposed to fill before
passing the subject to the next point.

e. The existence of a messaging system between users while passing the subject
seems necessary. This can also be classified in public or private messages.

f. If a user wants to withdraw an already passed subject, the system must
provide necessary draw-back mechanisms.

g. The workflow is defined for applying on positions (or jobs) of the users, not
to users themselves. Each user may have different position in each workflow
case.

5 Functionalities and Implications

Based on the requirement described in the last section, the main functionalities that
need early design concerns have been extracted as different ‘forms’ in the system’s
user interface. These are as listed below:

5.1 Ready-to-Study Cases Form

A form is needed to design that contains all of the cases that the current user is
supposed to do, or in other words, those which are waiting to be studied by the current
user and passed to the next one. This will look like the “inbox” folder in email clients.
It also must contain the detailed information about the previous study which has been
done on the subject by another (or same) user. For studying a case, the user may or
may not fill a data form or message to the next user. Also a confirmation about the
next destination of the subject will be shown to the user before passing the subject.

5.2 Sent-Items Form

A form is needed to be designed that shows a part of sent-items which are not passed
to a third party. These items are exactly those who are able to comeback to the ready-
to-study cases form, if the user wishes to do so. There may be repeated items with
different destination, if the current user has passed a subject through a distribution
node. In these cases, drawing one of them back means withdrawal of all of them, and
having them in the ready-to-study case as a single item.

5.3 History and Current-Status Forms

These two forms must be designed, preferably within a single user interface, to show
where were and where are the moving subjects in the defined workflow. This has
more importance from a managerial point of view to trace and investigate the stops
and movements of the subjects. In some cases, these two forms may show the move
of subjects from a workflow to another, if the system provides such inter-workflow
jumps.

290 A. Pourabdollah, T. Brailsford, and H. Ashman

5.4 Workflow Definition/Change Interface

This form must provide the functionalities to design, review, change and update the
workflow definition by certain class of users. There are two possible methods about
how to manipulate the workflow definition: Textual or graphical. In the textual mode,
a workflow definition language has been used. This has been called PDL (Process
Definition Language) and it is a very simple language, similar to structured English
and can be read and understood by normal users. A parser converts line of PDL to a
set of SQL statements that can be used to define or change the data in the definition
layer of the database. More details on PDL and its implementation can be found
in [14].

5.5 Workflow-Bypassing Form

For escaping from happening deadlocks, or for addressing many practical issues that
may happen in offices, some certain class of users must have access to this form,
which is designed to bypass the defined workflow. It provides the facility that the user
can pass a subject from the current node to some other node that the defined workflow
doesn’t allow it directly. This may practically include jumping over nodes, or taking a
subject away from a certain node or acting on behalf of a user.

5.6. Drawing-Back Form

As a part of exception handling, draw-back forms are necessary to be designed. These
forms will help to have limited control on sent-items to draw them back into ready-to-
study forms.

6 The System Architecture

Concerning the above features, the main items about the system architecture have
been concluded as:

a. The system is based on client-server architecture with a central database. The
centralized database has been selected considering the size and scope of the
workflows and organizations.

b. The information stored in database includes two abstracted layers, named
“definition” and “execution” layers. This abstraction also complies with the
WFMC reference model [19] when two different gateways are considered for
definition and execution. “Definition” is the lower layer which contains all
information about the definition of a workflow, and “execution” is the upper
layer which contains all information about workflow cases and all processes
which have been done on each task by users through the defined workflow in
the lower layer. Although these two layers are dependant, this abstraction
gives the system more flexibility in terms of accepting the workflow
changes.

c. The required flexibility of system in terms of accepting the frequent
workflow definition changes must consider keeping the execution layer

 A User-Oriented Design for Business Workflow Systems 291

information (which may be based on old definition data) always safe,
integrated, valid and usable. This must be done by predicting database
support to these changes.

d. The system may ask users to fill a data form associated to each node, when
they want to pass a subject on that node. This implies having sub-databases
for manipulating data in each data form. This also implies conjunction of the
workflow database with a document management system.

e. The method of converting drawn graphical flowcharts to the information
stored in the definition layer is an important stage. Some kinds of process
engineering expertise need in this conversion, since a complete
understanding of the organization and its process is necessary, as well as
understanding of the future plan for computerizing the system. This implies
graphical flow-charting tools and/or special language parsers to joint to the
whole system. The next section explains this conversion in more details.

6.1 Database Design

We have reached to this conclusion that an optimal and smart database design has a
very important role in making the final system reliable and sustainable. This starts
from the main developers’ question on “how to convert workflow graphs to data”.
Standardized graphs that are in use for describing workflows can be redrawn in UML
standard activity diagrams [3] like the sample in figure 1. The database design is
based on looking at a workflow graph as a combination of three main elements: boxes
(nodes), arrows (links), and columns (groups).

Group 1 Group 2 Group 3

Node 1

Node 3 Node 4

Node 5

Node 2

R
ef

.
1

Ref. 2

Ref. 3

Ref. 4 R
ef

.
5

Fig. 1. A sample workflow graph

292 A. Pourabdollah, T. Brailsford, and H. Ashman

These types of graphs show the flow of operation that can be done on each subject.
The rounded rectangles are processes, the diamonds are decision points and the
arrows show the references. It will be shown that all processes and decisions are
subclasses of “Nodes”.

Based on the mentioned abstraction of definition and execution layers, Figure 2
shows the main elements in the database design and the required sets of tables.

Node Id WF Id Group Id Form Id Description
Nodes

Reference Id Orig Node Id Term Node Id Description Id Valid
References

Group Id Description
Groups

Subject Id Group Id User Id
Subject Users

Description Id Description
References Descriptions

Log Id Subject Id User Id Reference Id Date/Time Notes/Att. Done
Logging

Subject Id Description
Subjects

WF Id Description
WFs

Form Id Description Privilage
Data Forms

User Id Description
Users

Fig. 2. The core of database tables design

6.2 Workflow Definition Set

The workflow definition set consists of the following tables:

a. Workflows: Used when a single management system needs to be employed
for several workflows.

b. Groups: This table is for storing information of involved groups.
c. Nodes: As it can be seen from a workflow graph, there are 4 types of boxes:

Start (no input), Action (single output), Distribution, (multiple outputs with
same result), Decision (multiple outputs with multiple results) and Stop (no
output). Instead of dealing with these various types, a single multi-purposed
“node” can be defined; each will be modelled as a record in Nodes table.
Their type will be identified in the system by the configuration of incoming
and outgoing references.

d. References: For modelling each arrow in the workflow graph. Then starting
nodes are those with no matching records in Reference table based on their
originating node identifier. Multiple records in Reference table with same
originating node identifier and different terminating node identifier means
decision node, and so on.

 A User-Oriented Design for Business Workflow Systems 293

6.3 Flexibility and Integrity of Workflow Changes

To provide enough flexibility to workflow changes while keeping all old execution
layer information safe and usable (integrity), a proved solution is to keep all old
records in nodes tables as “shadowed” records (called invalid mode, equivalent to a
Boolean field in nodes table called ‘valid’). Because Nodes table is dependant to
Reference table, there will be no need to apply any validation algorithm on Reference
table.

6.4 Workflow Execution Set

There will be another set of tables in the execution layer. They will be used for
defining the case, the available users to the system, the involved user to each case and
execution records. The details are as follows:

a. Subjects: This table will store a unique identifier and a name or description
for each subject. There will be some application-dependant fields in this
table.

b. Users: Regardless of the subjects of a specified workflow, the system should
know about the users of the system, which this table stores them.

c. Subject Users: For establishing many-to-many relationship between
subjects and users, this is a crossing table between the above two tables and
the Groups table in the definition table set. This table tells the system that
which user has which role in which subject. From a practical point of view,
each user of the system can role differently for each subject.

d. Logging: This table contains real records of what is happening when users
are dealing with subjects, according to rules of the defined workflow. It will
not only contain the past records of what happened before, but also what are
currently waiting to be done. A Boolean field (called “Done”) represents
either the relevant action has happened or waits to happen. The design is
based on that a new record in this table is created when it is expected to
happen, not when it happened. In this view all the identifiers are about the
sender, not the receiver. This view can be changed to opposite one in
developing the final application, but it is not recommended because one may
not store both past and current task lists from a single table.

7 A Research on User’s Requirements

A number of 40 users from different organizations have been selected for this
research and they have been asked to answer a questionnaire. It is noticeable that none
of these users have a real experience with computerized workflows before this
research. This has been done just before designing the general specifications. The
research has been repeated with the same questionnaire for 40 active users (including
3 replaced persons) after 2 years of the first user trials. During these two years the
system was operational had been used actively by these users.

The result has been summarized in table 1.

294 A. Pourabdollah, T. Brailsford, and H. Ashman

Table 1. Results of a comparative research among 40 users

Issue Options
Stage 1
(before)

Stage 2
(after)

a. No restriction: Such systems are to
answer the informational requirements
of users, not to restrict them

14 5

b. Passive: Such systems must show the
users what to do, but not restrictive

15 12

1. How do you like
the workflow
system to limit the
users in their office
works

c. Active: Such systems must limit the
users to do their office works in the
right direction

11 23

a. Should be impossible 9 2
b. Users can always withdraw unwanted
passing

21 12
2. The desired
method for
withdrawal of a
subject after being
passed

c. Users an withdraw unwanted passing
only if the next user hasn’t pass it

10 26

a. Show all the sent items 15 13
b. Show those who are ready to study
by the next user

25 27
3. The interface for
the studied cases
(sent items) must:

c. Highly restricted to special users 0 0
a. Show all the history 15 21
b. Show what the current user has done 22 14

4. Access to the
history of subjects’
passing c. Highly restricted to special users 3 5

a. Show all the current stop points for a
subject

16 28

b. Show those who are for this user 19 4

5. Access to the
current status of
subjects

c. Highly restricted to special users 5 8
a. Essential 5 26
b. Good 31 10

6. Tools for
workflow
definition and
changes

c. Redundant 4 4

a. Essential 12 8
b. Good 25 24

7. Graphical tools
for workflow
manipulation c. Redundant 3 8

c. Must be impossible 18 7
a. Highly restricted to special users 12 19

8. Possibility of
workflow
bypassing b. Must be available in some extent to

all users
10 14

8 Discussion and Lessons Learnt

a. Answers to question 1 about the desired level of general restrictive behaviour
of workflow systems shows how restriction can be accepted and even been
satisfied by the users, when it is used in a right direction. The point is that the

 A User-Oriented Design for Business Workflow Systems 295

general understandings of restrictive behaviour of computer systems to users
are shaped when the system limits them to do what they are supposed to, but
in a well-designed workflow system, this can be converted to satisfaction if
they find the system allowing them what they are supposed to do and
denying them otherwise.

b. The mechanism for withdrawal of the passed subjects (question 2) are mostly
desired to be applicable in all situations, whether the next user has assed the
subject to a third party or not. This look has been moderated in the second
stage. People now mostly like to have withdrawal capabilities if the next user
has not passed the subject anywhere. This is partly because of practical
problems that may be caused by free withdrawal method.

c. Answers to question 3 about “sent-items” folder are almost same in both
stages. Users like to have a folder called “sent items” but they mostly like it
to contain the ready-to-study items, not all items. This is because they have
option on seeing the history of each subject using history screen, but in sent-
items screen they prefer to see those items which they can withdraw them.

d. Answers to question 4 about history page have been changed between two
stages. This shows that users imagined that it is enough if they know what
themselves have done in the past about a certain subject, but after
experiencing the system, they feel more interested to know al the history
about it. This partly shows how users need as much information as possible
for decision making.

e. Similarly, the above conclusion can be said about answers to question 5
about the current status of subjects.

f. Answers to question 6 about workflow definition tools show how important
are the existence of these tools. People in stage 1 had no clear idea about
how frequent are the changes on the workflow definitions, or may think that
such a changes are easy to apply without specific tools. This view has been
corrected in the second stage.

g. Graphical tools for workflow manipulation (question 7) were an attractive
idea for users in stage 1, but not so much in stage 2. This shows that in a
busy office, users may have not enough time to use a graphical tool, or the
textual information had enough functionality for them rather than using a
graphical tool.

h. The answers to question 8 about the possibility of bypassing subjects show
more restrictive views of users in stage 1 than in stage 2. This also shows
that the practical situation that they may encountered in the past has guided
them to consider more flexibility of the system in terms of workflow
bypassing, at least for certain class of users.

9 Conclusion

The main contribution of this research is sharing some experiences through
development of an operational business workflow system. Observing a gap between
theoretical modelling and real-world practical problems, we tried to balance between
these two sides by more focus on the details of desired workflow features. These

296 A. Pourabdollah, T. Brailsford, and H. Ashman

experiences also shows how the users’ requirements before and after using a system
can be re-used in iterative designing stages and how the architecture of a system must
obey them. The role of developers in predicting future users’ requirements has also
been focused, so the users’ wishes can approach to the developers’ ideas. Finally, it is
believed that this approach can give more operational sustainability to a working
management system.

Acknowledgments. The authors would like to thank Dr. Michael Hartley in the
Malaysian Campus of the University of Nottingham for his valuable guidance through
this research.

References

1. van der Aalst, W.M.P., Hofstede, A.H.M.T., Kiepuszewski, B., Barros, A.P.: Workflow
Patterns. Distributed Parallel Databases 14, 5–51 (2003)

2. van der Aalst, W.M.P., Verbeek, H.M.W., Kumar, A.: Xrl/Woflan: Verification of an
Xml/Petri-Net Based Language for Inter-Organizational Workflows. In: Proceedings of
the 6th Informs Conference on Information Systems and Technology (CIST-2001), pp.
30–45 (2001)

3. van der Aalst, W.M.P., Hee, K.v.: Workflow Management. MIT Press, Cambridge (2004)
4. Abbott, K.R., Sarin, S.K.: Experiences with Workflow Management: Issues for the Next

Generation. In: Proceedings of the 1994 ACM conference on Computer supported
cooperative work. ACM Press, Chapel Hill, North Carolina, United States (1994)

5. Alonso, G., Agrawal, D., Abbadi, A.E., Mohan, C.: Functionality and Limitations of
Current Workflow Management Systems (submitted to IEEE Expert 1997)

6. AristaFlow: Next Generation Enterprise Process Management: Component-Oriented
Development of Adaptive Process-Oriented Enterprise Software Retrieved 10/2006, from
http://www.aristaflow.de/

7. Baecker, R.M., Nastos, D., Posner, I.R., Mawby, K.L.: The User-Centered Iterative Design
of Collaborative Writing Software. In: Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM Press, Amsterdam, The Netherlands (1993)

8. Bussler, C.: Enterprise-Wide Workflow Management. IEEE Concurrency 7, 32–43 (1999)
9. Choenni, S., Bakker, R., Baets, W.: On the Evaluation of Workflow Systems in Business

Processes. Electronic Journal of Information Systems Evaluation (2003)
10. DBIS: Adept - Next Generation Workflow Technology (2006) Retrieved 10/2006, from

http://www.informatik.uni-ulm.de/dbis/
11. Garnemark, A.: Workflow and Knowledge Management (M.Sc. Thesis), University of

Goteborg, Department of Informatics, pp. 31–43 (2002)
12. Lousa, M., Sarmento, A., Machado, A.: Expectations towards the Adoption of Workflow

Systems: The Results of a Case Study. In: Proceedings of the 6th International Workshop
on Groupware. IEEE Computer Society, Los Alamitos (2000)

13. Peterson, J.L.: Petri Nets. ACM Computer Survey 9, 223–252 (1977)
14. Pourabdollah, A.: A User-Friendly Process Description Language Used in Creating

Database Model of Workflows, M.Sc. Thesis, The University of Nottingham, Malaysia
Campus (2004)

15. Pourabdollah, A., Hartley, M.: Gathering Unstructured Workflow Data into Relational
Database Model Using Process Definition Language. In: Proceedings of the 24th IASTED
international conference on Database and applications. ACTA Press, Innsbruck, Austria
(2006)

 A User-Oriented Design for Business Workflow Systems 297

16. Royce, W.W.: Managing the Development of Large Software Systems. In: Proceedings,
IEEE WESCON, pp. 1–9. IEEE Computer Society Press, Los Alamitos (1970)

17. Sarmento, A., Machado, A.: Impact Evaluation of Organisational Changes Enabled by
Workflow Systems. In: Proceedings of the 6th International Workshop on Groupware
(CRIWG’00), p. 134 (2000)

18. Weske, M., Goesmann, T., Holten, R., Striemer, R.: A Reference Model for Workflow
Application Development Processes. In: SIGSOFT Software Engineering Notes, vol. 24,
pp. 1–10 (1999)

19. WFMC: The Workflow-Management-Coalition (2006) Retrieved 8/2006, from
 http://www.wfmc.org/

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 298–310, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Olympic Agents

Nikolaos Skarmeas1, Christos KK Loverdos2, Katerina Tsiara3,
Alexandros Bassakidis4, Aris Tzoumas4, and Dimitris Livas4

1 Avaca Technologies S.A., L. Katsoni 40, Athens, GR-114 71, Greece
2 Dept of Informatics & Telecommunications, University of Athens, Greece

3 National Technical University of Athens, Greece
4 OTENET S.A., Kifisias Ave. 109 & Sina Str., Athens, GR-151 24, Greece

nskarmeas@avaca.gr, loverdos@di.uoa.gr, tsiara@telecom.ntua.gr,
alexbas@hq.otenet.gr, atzoum@otenet.gr, Dimitris.Livas@otenet.gr

Abstract. We present an agent-oriented middle-tier architecture deployed
during the realisation of the Athens 2004 Olympics results internet
broadcasting. The system involved the online processing of messages (XML in
nature) and their publishing to the www.athens2004.com internet site. Those
messages were containing the Games intermediate and final results and were
originated from the Olympic venues. For the accomplishment of this task a
number of systems and applications needed to be integrated. Also the domain
posed some unique problems regarding the fact that for the first time in the
history of the Games a real time approach for broadcasting results was deployed
and furthermore due to the reliability and performance requirements of the
system. Various enterprise application integration patterns were used in
conjunction with an agent oriented design approach. Asynchronous
intercommunicating agents were deployed for realizing the architectural
components of the system.

Keywords: Enterprise application integration, agent systems, pattern oriented
software construction, service oriented architectures.

1 Introduction

We present an agent-oriented middle-tier architecture deployed during the realisation
of the Athens 2004 Olympics results internet broadcasting. During the 2004
Olympics, for the first time in the history of the Games a real-time broadcasting of
results for the Internet was introduced. The company (ATOS Origin) which was TV
broadcasting the results of the Games was broadcasting the same information as an
XML based real-time message feed.

The task addressed was the processing and transformation of the XML messages
into HTML fragments which were published to the Athens 2004 official portal and a
mobile systems operator.

The application had a number of strict requirements. Messages were real-time and
they were transmitted by the ATOS platform at a rate up to 20 msgs/sec. Due to the
high frequency of the messages, the system should be efficient enough to allow

 Olympic Agents 299

Agent System
(Feed Processing)

Content Management

Mobile Operator
Broadcasting

(Imode)

ATOS Origin
Broadcasting System

VENUES

Fig. 1. The overall scenario

concurrent processing of them. In addition to this, due to the large number of athletic
events, the message specification was quite extensive. All information eventually
published to the site was sent via this messaging infrastructure (Figure 1). The
different types of messages were about 1200. Also, the real-time processing nature of
the messages differed. There were message that needed immediate consideration (for
example the messages containing the current score of a running basketball game
which was updated every few seconds) and messages that could be postponed for a
short period of time (final result messages, medal lists etc). The application should be
structured in such away in order to allow for a generic and configurable modeling and
processing of the messages.

Because the real-time broadcasting of the results over the Internet was introduced
for the first time in the history of the Games, message structure was due to change
frequently, reflecting changes to the Olympic committee specifications. Changes were
even introduced during the Olympics. For instance, there were situations that two
Athletes were to share a gold medal. If that case had not been predicted, the message
structure would have to be altered during the games. Therefore the system should be
able to adapt quickly to such changes without disrupting the overall performance and
operation.

The overall system design was addressed from the multi-agent system perspective
[1] in conjunction with a pattern-oriented approach [2],[3],[4],[5]. Various design
patterns were identified for structuring the system. Furthermore, the constituent parts
introduced were modeled as agents, communicating with asynchronous messages.
Those system components should be as low coupled as possible in order to facilitate
changes. We designed a generic agent architecture [6] to realize them. This
architecture allowed dynamic reconfiguration of the overall system in order to deal
with the uncertainty of the incoming message structure.

300 N. Skarmeas et al.

The architecture used, also addressed the issue of Enterprise Application
Integration. Because the application had to interface with various external systems
(content management etc) and be the integration bus, the component oriented nature
of the application allowed the modular and dynamic expansion of the system without
affecting the rest of the modules.

The result was a middleware system which mediated the whole broadcasting of the
results of the Olympics to the Internet site www.athens2004.com. It proved quite
successful and allowed the Internet spectators to follow the results in real time.

The rest of the paper introduces some of the design patterns identified during the
system design (Section 2), the general agent architecture (Section 3) and how this was
deployed to implement the patterns. Then some extra considerations are presented
(Section 4) and finally some discussion and conclusions were included (Section 5).

2 Architectural Design Patterns

Due to great complexity of the application, there was the need to approach the
problem in a generic way. During the design of the system a number of architectural
patterns were identified. Those patterns were then implemented with an agent-
oriented approach in order to produce loosely coupled components. The outcome of
this pattern-agent marriage allowed us to deal with the unanticipated evolution of the
requirements, to reduce the complexity of the implementation and to increase its
adaptability. This section discusses those patterns with reference to the problems
addressed.

2.1 Asynchronous Messaging

Messages arrived from the venues in an asynchronous fashion. The application
received the incoming messages and forwarded it to its internal components for
further processing. The internal components processed the incoming information
and produced their output asynchronously. The incoming messages were in XML
format. They had the header/body structure (figure 2) in the fashion of KQML [7] and
FIPA [8].

(2) Body

(1) Header

Fig. 2. Message structure

(1) Header: It identified system and communication level information like the
Olympic event it referred to (basketball, swimming, athletics etc), the time of the
message, the venue it originated from, the language, the internal system ID which
produced the message, the type of the message (start list, final result, intermediate
result, medals, weather, news etc) and other essential meta-information.

 Olympic Agents 301

The header was mostly used for the filtering and routing of the message.
(2) Body: It contained the message content i.e. the actual event results. A result
message, for example would contain the sequence of xml elements containing the
athletes (in terms of their system IDs), the time information they scored, their position
etc. An example of such a message taken from a real message fragment simplified for
presentation purposes is included below (figure 3):

<Message Category="Results" Origin="A" Serial="1" Discipline="Basketball"
Gender="M" Event="400" Phase="A" Unit="01" Venue="Venue" Type="C73" Version="1"
Language="ENG" Date="20011004" Time="110000000">

<Event >
<Venue Code="GRG"/>
<Event_Date_Time> <Date Value="19960803" Weekday="SAT"/><Time
Value="22:00:04" /></Event_Date_Time>

</Event>
<Game Home="YUG" Visitor="USA">

<Scores>
<Score Type="Qualifying" Home="8" Visitor="8"/>
….

</Scores>
<Attendance Value="34600"/>

</Game>
<Teams>

<Team NOC="YUG">
<Athlets Type="PLR">

</Team>
</Teams>

Header

Body

</Message>

<Athlete ID="0000000001" Bib="1" Captain="C"
LineUp="Y">

<Statistics MIN="30:22" FG="4" FG_A="7"…/>
</Athlete>
…

</Athlets>
<Officials>

<Official ID="0000001" Function="COA"/>
…

</Officials>
<Statistics >

<Statistic Type="TEA" FL="0" TO="0"/>…
</Statistics >

Fig. 3. An example message structure

The difference in messages was expressed at a first level by differences on the
header. For instance, the discipline (Basketball) and message type (C73=Final
Result). At the second level by the different content. The content was mostly
determined by the discipline and message type. The combination of those two
amounted to over 1200 distinct message types.

2.2 Active Message Boards and Content Based Routing

As mentioned above, one of the main problems that needed to be addressed was the
existence of a large number of message types whose specification and structure might
change during the application development and even the course of the Games.
Hardwiring message information would cause major problems as there was the

302 N. Skarmeas et al.

implicit requirement to be able to update the components of the system dynamically
without disrupting the system’s operation.

To accomplish this functionality an active message board was introduced [6]. The
role of the message board is to accept incoming messages and route them to domain
specific components. The routing can be either based on the processing of the headers
or be “content based” via processing of the message body.

The message board keeps knowledge of the messages each component is interested
in. This knowledge is realized in terms of “active filters” which are code segments
reflecting the components’ preferences (figure 4). Thus, the message board becomes
aware of a new component by registering an active filter for the component. Each
filter is basically a function which returns the address of the corresponding
component:

F(Message) -> Component Address

In the particular implementation, the address was the JNDI name i.e. the object
reference handle in the J2EE platform, of the component. The active filters were
applied to the incoming messages and the later were forwarded to the component
whose filter succeeded.

Components could register and un-register dynamically, allowing on the fly
changes on the routing of the messages. For example, when a change happened, we
could fix the component and replace the previous version. Dynamic routing, allowed
to not hardwire any routing knowledge to the application making it fully
customizable.

This approach was also useful in Enterprise Application Integration applications in
general since it provides a generic mechanism for integrating loosely coupled
components.

Active Filter Storage

Address Filter

Address Filter

Address Filter

Message Queue

Components
(Processing Agents)

Active Message
Board

Fig. 4. The active message board architecture

 Olympic Agents 303

2.3 Chain of Command

Messages received from the venues had to be transformed eventually to html
fragments and published to the Olympics Internet site. The overall transformation was
split into phases with each phase implemented by a relevant component. The overall
structure was that of a pipeline (figure 5). The output of each component’s processing
was the input to the next. More specifically, each incoming message was initiating a
thread of execution, i.e. a “chain of command process”. This thread of execution had
an internal processing information structure which included the original message and
the results of its transformation step by step. This internal state was asynchronously
communicated between the components.

1. Reception 2. Storage 5. Publishing3. Extension 4. Transformation

Internal Information

Fig. 5. The chain-of-command of message processing

After the original message reception (Step 1), Step 2 involved the storage of the
incoming message and the generation of the internal representation. During step 3, the
XML messages were going through intermediate transformations which enriched their
content (internal representation) with extra information (figure 6). The messages, for
example, contained only athlete’s ID and their credential were filled in using database
stored information. Therefore we needed to extend the xml with the additional
information. That agent was pattern matching on the incoming xml and was inserting
the missing elements.

XML Fragment

Extensions

Content
Filtering
Agent

Fig. 6. Content Extension agent

The next stage of the transformation (step 4) involved XML/XSL processing in
order to produce the final output. This step was used in conjunction with the final step
which involved the communication with the external systems via a special set of
adaptors.

304 N. Skarmeas et al.

2.4 Adaptors and SOA: Interfacing with External Systems

In the spirit of the EAI approach in order to interface with the external systems, a set
of adaptors was created. The transformed XML messages had to be communicated to
the external systems involved in the overall project. Specifically, the most significant
systems were a content management system (Vignette [9]) for publishing the content
to the www.athens2004.com web site and an external application, publishing content
to a mobile phone operator. These systems were providing web services interface.
The adaptors were acting as the interfaces to the external systems dealing with the
communication and information representation differences.

Message
Queue

Communication &
Transformation
Modules

Active
Message

Board

Selection
Mechanism

Vignette
API
(SOAP)

Fig. 7. External system adaptors

The routing of the messages to the appropriate adaptor(s) was performed via the
active message mechanism. Internally the adaptor had a message selector for selecting
the appropriate action (figure 7). This mechanism is similar to the active message
board presented above and allowed the easy reconfiguration of the interaction with
the external systems.

2.5 Priority Queues

Messages, as mentioned above, had different priorities. Messages of real time
processing nature had higher priority than final result messages. Therefore a “queue
selector” was introduced (between steps 1 and 2 in figure 5) which allowed for

Fig. 8. Priority Queues

 Olympic Agents 305

selectively placing messages in queues for further processing (figure 8). For example,
messages depicting scores for active events had their own queue and they were
getting priority over medal messages.

3 The Agent Architecture

The overall system was modeled as an agent system [6]. It received messages
asynchronously (by the ATOS platform), performed complex transformations,
generated subsequent information and communicated it to external systems. The agent
system was designed using the patterns described above. Effectively, it was made
adaptive to changes of its external environment (reflected via changes to the incoming
XML messages) and reconfigurable at run-time. The overall agent architecture is
illustrated in figure 9.

Message
Queue

Feed
Receiver

Persistent
Agent

Transformation
Agent

Real-Time
Event Agent

Adaptors

Dispatcher

Fig. 9. The overall architecture

One of the main characteristics of this architecture is that the internal components
of the agent system were also modeled as agents, thus recursively replicating the
active message board pattern (as described in Section 2.2). Components for example,
were implemented as message boards with subcomponents themselves.

In more detail, the system architecture consisted of the following components:

Feed Receiver Agent: It was a Servlet-based component which listened to an http
port for incoming messages. Messages were received asynchronously and forwarded
to the Dispatcher Agent for further processing. The feed receiver utilized the internal
queue system (Section 2.5) for prioritizing the incoming messages.

306 N. Skarmeas et al.

In addition, the feed receiver employed a finite state machine implementation for
controlling the communication buffer with the ATOS Origin results broadcasting
system. The control mechanism depended on the internal state of the agent and
manipulated the buffer accordingly. For example, if the agent entered a pending state,
the feed receiver stopped consuming messages. As soon as the agent returned to the
active state the processing of the messages resumed. The state transition was
implemented using active rules in a DSL (Domain Specific Language) designed for
this purpose [10]. We could temporarily “blind” the incoming xml connection from
ATOS to occasionally perform internal maintenance (i.e. reconfiguring or redeploying
an agent), a feature which proved quite useful during the games.

Dispatcher Agent: After the feed receiver received the message it forwarded it to the
Dispatcher Agent. Forwarding was performed using the priority queues. The
Dispatcher Agent was responsible for the orchestration of the subsequent processing. It
monitored the processing of the messages and forwarded them to the appropriate
internal agent. It performed the combined functionality of the chain of command and
the active message board patterns. The component agents it was communicating with
were:

• Persistency Agent, deployed for the persistent storage of the messages.
• Real-time Pool Agent, responsible for the processing of the real-time active

events.
• Transformation Agents, which performed the transformation whose output was

further forwarded to the corresponding external system adaptors.
• Adaptor Agents, being the interface components to the external systems.
• Monitoring and Profiling Agents, responsible for collecting information

regarding the execution of the system.

Persistency Agent: The persistency agent is responsible for storing the messages in
the database and performing a preliminary processing of them. Depending on the type
of the message different type of processing was needed. The internal processing was

Active Filter Storage

Address Filter

Address Filter

Address Filter

Handler

Active Message
Board

Parser

Fig. 10. The persistency agent architecture

 Olympic Agents 307

performed by particular “handlers”. The following figure illustrates the internal
architecture of the persistency agent. Internally it follows the message board pattern,
the “handlers” being the sub-components of the board. For each incoming message
the appropriate handler is invoked (via the message board selection mechanism) for
further processing and storing the message (figure 10).

Real-time pool agent: This agent was actually a pool of agents monitoring the real-
time execution of the active events (figure 11). An instance of this agent type, the
event agent, was actually active for as long as a particular event took place. It
maintained the state of the event and the incoming messages forced it to update its
state. It generated intermediate xml messages which were actually forwarded by the
dispatcher to the transformation agent. For example, during a basketball match the
score updates were received by that agent which would eventually update the score
html fragment.

The routing to “real-time pool agent” was based on the “message category” of the
message header, which signified the real-time nature of the message. Further
forwarding to the sub-component was made by matching the message type and the
event discipline.

Fig. 11. The Current Event Agent Internal Architecture

Transformation Agent: This agent is responsible for transforming the message and
generating the final fragment which will be forwarded to the external system(s). It
also performs a transformation from the internal knowledge representation of the
agent application to the external’s system representation. It was actually responsible
for Steps 3 and 4 of the Chain of Command (Section 2.3).

Adaptor agent: The result of the transformation is communicated to the external
systems. The adaptor agent was the integration plugs to the external systems and their
purpose was to hide any protocol and representation differences to those. For
example, the content interface to the content management systems was a set of web
services; therefore the adaptors were performing SOA calls to this system.

308 N. Skarmeas et al.

4 Additional Considerations

4.1 Implementation Platform

The platform was implemented as a J2EE application using the IBM Websphere
application server and an IBM DB2 database. The agents were implemented as
message driven beans. The communication among the components was asynchronous,
using the JMS mechanism, accomplishing thus high throughput for processing the
incoming messages. The communication with the external systems was accomplished
via web-services. In addition, a number of open source technologies were deployed
for various aspects of the system. For example, Castor was used for binding XML
messages to objects.

4.2 Logging

A crucial part of this category of systems (real-time information processing and
content generation) is the logging and monitoring functionality. A special agent was
developed for monitoring the incoming message processing and administering them.
Figure 12 illustrates the monitoring agent architecture:

The agent is logging incoming messages and trace information via TCP/IP. The
TCP/IP stream is used to real-time monitor the incoming messages through all the

Fig. 12. The Logging platform

 Olympic Agents 309

phases of its processing. Each agent component, as soon as it finishes processing,
sends a message to inform the logging agent about the success of its processing or for
any failures that occurred. The overall logging functionality was assisted by the fact
that the chain of command processing was adopted.

A special graphical console application to visualize the message flow was
implemented. Users could connect via this console to the logging agent and monitor
the stream. In addition, this agent offered message administration functionality (via an
extra graphical console). It allowed us to search over the history of messages and to
possibly re-feed them, if there was such a need.

5 Summary and Conclusions

In this paper we presented the architecture and the approach for the implementation of
the backend real-time Internet broadcasting system of the Athens 2004 Olympics. The
application was generating the content of the www.athens2004.com web site.

We used design patterns and an agent-based approach to design and implement an
Enterprise Application Integration system. This architectural approach offered a high
degree of system flexibility without sacrificing performance. Just for the reference,
the application was receiving messages up to the rate of 20 msgs/sec. For the
broadcasting of the real-time active events, generated content was just a couple of
seconds later than the TV broadcasting. The site (www.athens2004.com) is currently
not available. However, the content generated by the presented system, was visited by
75 million unique users (5.2 million distinct users per day) from all over the world,
amounting to a total of 800 million page views during the Olympic Games period.

The re-configurability of the system proved quite useful because during the games
we managed to hot-fix various issues without disrupting the overall operation of the
system. Also due to the mixture of patterns and agents the approach is also of interest
from the software engineering point of view.

Currently, we are looking in applying this architecture to other applications and
extending this architecture by adding other patterns as well. For example, we are
looking at workflows instead of chain of command, as such systems have become
more mature for production purposes quite recently.

Acknowledgements. We would like to thank for their contribution of the overall effort
of this work Elias Drakopoulos, Nikos Dialektakos, Marios Koumanos, Christos
Tsakiris, Kostis Panagiotopoulos, Panagiotis Tzagkarakis, Nikos Theodoropoulos,
Giorgos Ploumpis, Tomas Conte, Francois Darfouille, Nicola Leclerc, Panos Pissaris,
Predrac Nincovic, Aggelos Apostolatos, Giannis Giannoudovardis. We would also like
to thank Otenet S.A. for allowing the publication of this material.

References

1. Huhns, M., Singh, M.: Readings in Agents. Morgan Kaufmann, San Francisco (1998)
2. Silva, A., Delgado, J.: The Agent Pattern: A Design Pattern for Dynamic and Distributed

Applications. In: Proceedings of the EuroPLoP’98, Third European Conference on Pattern
Languages of Programming and Computing, Irsee, Germany (1998)

310 N. Skarmeas et al.

3. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions,
Gregor Hohpe, Bobby Woolf. Addison-Wesley Professional (2003)

4. Patterns of Enterprise Application Architecture, Martin Fowler. Addison-Wesley
Professional (2002)

5. Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.): MICAI 2004. LNCS
(LNAI), vol. 2972. Springer, Heidelberg (2004)

6. Skarmeas, N., Clark, K.L.: Component Based Agent Construction. International Journal on
Artificial Intelligence Tools 11(1), 139–163 (2002)

7. Finnin, T., Labrou, Y., Mayfield, J.: KQML as an agent communication language,
Software Agents. MIT Press, Cambridge (1997)

8. Foundations of Intelligent Agents (FIPA), Agent Communication Language. Technical
Report - FIPA Consortium (2001), http://www.fipa.org/

9. Vignette, Content Management Solutions, http://www.vignette.com/agent
10. Loverdos, C.K.K., Saidis, C., Sotiropoulou, A., Theotokis, D.: Pluggable Services for

Tailorable eContent Delivery. In: Bellahsène, Z., Patel, D., Rolland, C. (eds.) OOIS 2002.
LNCS, vol. 2425, Springer, Heidelberg (2002)

Relating Requirements to a User Interface

Architecture for a Rich Enterprise Web
Application

Rajanikanth Tanikella, Gilberto Matos, Grace Tai, and Brad Wehrwein

Siemens Corporate Research,
Princeton NJ, USA

{rajanikanth.tanikella,gilberto.matos,brad.wehrwein}@siemens.com
graceyuantai@googlemail.com

Abstract. Over the past few years, the demand for richer user inter-
faces and fast performance for web applications has also had its effect on
enterprise web UI development. Solutions such as rich thin client frame-
works and rich internet application (RIA) frameworks have emerged,
alongside technologies like AJAX and Adobe Flex. At Siemens Corpo-
rate Research, our recent experience in developing a scalable enterprise
web application with an agile methodology, however, has indicated that
implementation decisions are often made without fully understanding the
implications that the desired UI concept and look and feel have on the
implementation. This paper presents a conceptual UI architecture and,
for each aspect of the architecture, examines the types of requirements
that should be gleaned from the various UI requirements documents.
We make recommendations to help bridge the gap between user inter-
face design specifications and user interface architectural specifications,
including impacts on implementation-level architecture.

Keywords: web application, rich internet application, presentation
layer, UI architecture, web engineering, agile development.

1 Introduction

Larry Constantine suggests that “In concept, perhaps, usability is the bailiwick
of usability specialists. In practice, however, developers of various stripes make
the vast majority of the myriad decisions that shape and determine the ulti-
mate usability of software-based products.” When software developers who are
untrained in the parlance of human-computer interaction are made to translate
UI concepts directly into code, it is no wonder that “Much software is designed
and built with little consideration for how it will be used and how it can best
support the work its users will be doing.” [1]

In recent years, the Software Engineering Department at Siemens Corporate
Research has personally experienced the increased demand for web applications
that offer the sort of user experience associated with rich-client applications.

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 311–325, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

312 R. Tanikella et al.

We have seen the benefit of close collaboration between user interface design-
ers, architects, and UI implementers in the realization of such applications. We
have also felt the impact of the absence of that close collaboration, when UI re-
quirements are not properly discovered and discussed between these parties: The
implementation headaches that surface from a lack of higher level guidance; the
lack of awareness (on the part of various stakeholders) of the complexity that can
exist in the UI architecture; and the difficulty of expressing the effort involved in
making what may seem like simple changes to a UI. Our motivation for writing
this paper is to stress the importance of planning the UI architecture, formalize
a description of what is meant by the term “UI architecture,” and provide fellow
UI developers with a means of reasoning and negotiating about requirements
that will affect this architecture.

In this paper we introduce a conceptual architecture that can help software
developers reason about a user interface design in order to build a model of a user
interface that is closer to their own domain of expertise. We use this conceptual
UI architecture to help guide the software developer from a set of explicit and
implied requirements expressed by UI concept documentation to a set of high-
level architectural requirements that begin to direct decision making in the early
stages of development. We go on to provide practical recommendations on how to
better ascertain the implied requirements that must be discovered and addressed
in order to fully realize the intended level of usability envisioned by the UI
designers.

1.1 Terminology

Let us introduce a few terms which we will be using throughout this paper. We
use the term user task or task to indicate a single, well-defined goal the end user
is trying to achieve–for example, creating a new instance of object X. Designers
strive to match the user interface to a user’s mental model of the task.

The task-related organization of the interaction is referred to in this paper
as the UI concept. It describes how various elements–selections from menus,
form-fillin elements, dialog-boxes, etc–are used to present the interaction in a
comprehensible, memorable and convenient manner relevant to the user tasks
[2]. The UI concept is guidance to be applied to all use cases in the application.

A well-known UI concept both on the web and in desktop applications is the
wizard-driven workflow. It organizes interactions as a linear sequence of subtasks.
The interface guides the user through the subtasks, one step at a time. Each step
presents only the interaction details needed for that subtask. “Next” and “Back”
buttons provide a way to reach the next and previous subtasks.

We define user gesture as an action the user takes upon a user interface ele-
ment. Examples are keyboard input, mouse clicks, mouse hovering, and dragging
and dropping.

A term often heard in conjunction with user interface design is look and feel.
The ubiquity of the term captures an intuitive notion of the appearance of an
interface. As we will discuss, this could serve to disguise the complexity of the
requirements involved in implementing user interfaces. In our usage, we indicate

Relating Requirements to a User Interface Architecture 313

a distinction between look and feel. Look refers to the appearance of the view in
all its states, while feel refers to the quality of the interactions and overall user
experience.

2 Structure of the UI Architecture

When we speak of UI architecture we are referring to the portions of the web
application that provide the user a visual interface by which to interact with
the web application. This constitutes instances of the View and the Controller
in the well known Model-View-Controller pattern. A concrete implementation
of the UI architecture consists of artifacts that are delivered to the end user’s
web browser (e.g. HTML, CSS, and JavaScript files), the intermediate artifacts
that generate them (e.g. JSP or PHP files), server-side UI logic (as opposed to
application business logic) and other supporting software.

We can represent the conceptual UI architecture of a web application as com-
prising several pieces, which we refer to as aspects. These aspects are illustrated
and described below.

Fig. 1. Conceptual aspects of a presentation layer for rich web applications

View Structure

The View Structure organizes everything that needs to be rendered in order to
provide the user with a view of the system and a way to interact with it. It
defines relationships between elements that make it possible for other aspects
to fulfill their respective purposes. Specifically, the View Structure is used by
the User Interaction Aspect to manipulate the user interface, and by the Skin
to present these elements in a usable and attractive way. Elements in the View

314 R. Tanikella et al.

Structure are an answer to the question “what needs to be made available to
the user to enable her to achieve her task?” Commonalities among actions and
tasks drive the structuring of the elements.

Skin

The Skin is the most visible aspect of a web application’s UI. It comprises the
visual properties of the elements that are displayed to the user. This includes
colors, fonts and styles, and layout, but excludes the screen elements themselves.
Elements in this aspect are an answer to the question “How should elements in
the View Structure appear to the user?” Because appearance is a concept that is
easy to grasp and discuss, the Skin is arguably the simplest aspect with respect
to requirements.

User Interaction

This aspect comprises features for receiving user input and propagating it to
appropriate parts of the UI architecture. Events detect by this aspect are mapped
to either the User Support or Navigation Support. This is the only aspect that
may affect change in the View Structure. For this reason it is the interface by
which other aspects in the UI architecture update what the user sees. Elements
in this aspect are an answer to the question “how are the elements in the View
Structure actually used to accomplish the user’s goal?” As such, any requirement
that relates to the effect of a user gesture will pertain to this aspect.

Navigation Support

The Navigation Support Aspect receives event information from the User In-
teraction Aspect, processes the information to determine navigation state and
notifies one or more of the following: User Interaction Aspect, Web Application
Infrastructure, and UI State. In general this aspect deals with how logical se-
quences of user gestures combine to accomplish a specific task via the UI. Aside
from standard workflow logic, this layer provides support for multiple concurrent
tasks for a single user. Requirements that relate to how a user gesture affects
the state of the application will affect this layer.

User Support

The User Support Aspect enables a richer user experience by providing the user
with visual guidance and support for specific UI interactions. Requirements that
address accessibility, navigation guidance and contextual cues apply to this layer.
In general, this layer deals with the type of interactions that do not invoke the
Navigation Support. As such, these types of requirements will not impact the
user workflow.

Relating Requirements to a User Interface Architecture 315

UI State

The UI State provides a memory of state that is independent of core business
logic but is often required by rich interface elements. The persistence of this
memory may live for any interval of time. The User Interaction, User Support,
and Navigation Support aspects depend on this memory to store and provide UI
information. For this reason, requirements upon these aspects might affect the
UI State. The requirements as a whole should also provide an understanding of
how long UI data may need to be persisted and what is the most appropriate
way for data to be identified.

Web Application Infrastructure

This aspect provides the primary runtime support for the presentation layer. It
is tasked with connecting the UI architecture to the user (via the web browser,
for example) and to the other architectural constructs that are outside of the
UI architecture (e.g. the core business logic.) It is an area of large-scale reuse
primarily in the form of commercial off-the-shelf components. As such, it drives
many subsequent architectural decisions. Depending on the choice of implemen-
tation technology, different breadth and depth of runtime support for the UI
architecture may be available, accompanied by various constraints. Unlike the
other more conceptual aspects, the Web Application Infrastructure is a more
obvious proxy for the implementation technologies. These technologies tend to
impose requirements and constraints independent of the user needs.

2.1 Requirements of the Different Aspects of the UI Architecture

User interface specialists have a number of tools at their disposal for conveying
their designs. Documents that assist a UI designer in analyzing and managing
design can be valuable for communicating the state of the design to team mem-
bers and other stakeholders. At different stages of the software design cycle, these
stakeholders need to know different things about the design. Concept maps, wire-
frames, storyboards, flow maps, detailed mockups and functional specifications
each in turn provide different types of information [3]. Together, these sorts of
documents convey the UI concept. At the point of constructing the conceptual
software architecture, what information from UI design artifacts can support the
UI architect in that task?

Our experience has been that, in the absence of a dialog between UI design-
ers, software architects and implementers, the deeper architectural implications
of these design documents can be easily missed, making it difficult to discern at
the outset the lower level requirements for implementing these designs. From the
top down the requirements given by UI designers can become progressively less
detailed for implementers. In many instances the Skin may be very well defined.
Requirements for the UI Interaction Aspect may be reasonably well described,
but many details needed to inform its implementation-level architecture might
not be addressed. For the Navigation and User Support and UI State, these

316 R. Tanikella et al.

design documents might do little to help provide detailed implementation-level
requirements for developers. This is the portion of the architecture most in need
of detailed requirements for the achievement of an extensible, maintainable sys-
tem. Once fixed, changes to requirements that impact these aspects are very
difficult and costly to make.

The apparent misalignment in the type of details provided by the UI designers
and those needed by the implementers is even more paradoxical in light of the
commonality in the approach to the requirement analysis: The UI designers start
analyzing the requirements relevant to the deeper aspects of UI architecture very
early in their work. However, their output often takes the form of static, “skin-
related” wireframes, without explicitly specifying the details needed for the User
Support, User Interaction and Navigation Support Aspects.

In the following sections we look at the aspects of this conceptual UI architec-
ture and consider what clues in the UI design documents can be used to build
these aspects in a manner that can clarify issues at implementation time.

2.2 View Structure

A reasonable start point for requirements gathering is with the View Structure:
What elements are needed to enable the end user to accomplish a given task?
What data needs to be presented? What data needs to be manipulated? What
should the user use in order to manipulate the data? Although wireframe dia-
grams are primarily considered a description of a UI’s layout, they sufficiently
indicate the list of basic elements needed to present a given use case (albeit in a
static way.)

But merely listing basic UI elements for a given task misses the point. Part
of the richness of a user interface comes from the aggregation of basic elements–
data entry widgets, buttons, and the like–into structures that match the user’s
semantic model of the task, and indicate well-defined relationships between those
basic elements. (Let us call these aggregations composite elements.)

For example, a “list view” (see Fig. 2a) was a frequently occurring construct
in one project. It lists a set of objects and their attributes, and allows the user
to add, edit, and delete objects from the list. This description, together with its
wireframe, suggests that a list view consists of a table, some checkboxes, and
some buttons, each with a specific purpose.

This visual pattern was repeated in a number of wireframes. The obvious
relationship that emerged was that these basic elements belong together. They
are a “part of” the list view composite element.

However, just because things appear together in a wireframe does not mean
they are strictly parts of a composite element. Many wireframes contained a list
view collocated with primary and secondary navigation elements (see Fig. 2b.)
The wireframes do not make the relationship between the navigation elements
and the list view clear. But the UI concept does: User interactions upon the
primary and secondary navigation elements affect which list of objects is shown
in the list view. Therefore their relationship is a “cause-effect” relationship.

Relating Requirements to a User Interface Architecture 317

Fig. 2. (a) depicts a wireframe of a list view. A number of basic elements–text labels,
check boxes, buttons, etc.–are composed to form a single composite View Structure
element. (b) depicts a wireframe of a list view in context with primary and secondary
navigation elements.

This is a looser structural relationship than the “part of” relationship between
elements of the list view.

Which leads us to this note of caution: Hints provided by the UI concept for
the View Structure should not be confused with hints provided for other aspects.
In this example, the relationship between the secondary navigation and the list
view composite element are of a functional nature that is more appropriately
discussed in the User Interaction Aspect. They are collocated because one influ-
ences the other. The implication for the View Structure is that the user needs
both of these elements to be available at the same time for this particular task.

There may be additional structural features that do not become apparent
until one considers requirements of the User Interaction aspect. If elements are
labeled with nouns, one might think of descriptive or state variants as adjectives.
Think of an “enabled button,” or a “selected object” (as opposed to one that is
not selected.)

In summary, the View Structure should be concerned with making clear which
basic elements are a part of which composite elements, and what of these need
to be presented together. These composite elements, in turn, should represent
abstractions from the user’s semantic model of the task. View Structure require-
ments can be driven by:

– Identifying repeating (and potentially reusable) structural patterns, i.e. ag-
gregations of basic elements

– Identifying the relationships between basic elements within a composite el-
ement. Even within a composite element there can be causal relationships.
Keep in mind that such functional relationships–how one element influences
another–are not a part of this architectural aspect.

– Identifying relationships between different elements. Again, keep in mind
that we are looking for the “what,” not the “how.”

– Identifying descriptive or state variants for these elements. Note that these
might also suggest additional requirements upon the UI State and Skin.

– Identifying outliers.

318 R. Tanikella et al.

If the requirements gathering process is an iterative one, identifying outliers
might involve comparing each instance of a pattern with patterns that have
already been identified.

2.3 Skin

The Skin conveys all of the “look” and possibly part of the “feel.” For each View
Structure element for which it is applicable, the Skin requirements should specify
its appearance. Bear in mind that the different states in which a View Structure
element can exist (“enabled,” “disabled,” “selected,” etc.) suggest requirements
on the Skin.

The Skin can be discussed as a declarative aspect since, in most cases, the ap-
pearance of the UI gets mapped to attributes of the View Structure. Appearance
is generally non-reactive.

There are, however, cases where code artifacts primarily targeting Skin (such
as CSS) might play a more reactive role in conveying “feel.” In such cases the
aforementioned distinction between look and feel is important: Lumping look
and feel together and making assumptions about their required interconnectivity
leads to superficial requirements specifications. These fail to uncover important
issues that need to be addressed where the quality of interaction is concerned.
Requirements regarding the look of an application have very little direct influence
on the other aspects of the architecture, while requirements regarding the feel
potentially do. The implementation of feel primarily involves User Interaction,
and User Support Aspects, and less frequently the Skin.

2.4 User Interaction Aspect

Features of this aspect connect user gestures upon elements in the View Structure
to actions the system should take in order to achieve a designated outcome. This
outcome may or may not result in changes to the application state. One side
effect should always be that the UI provides an indication to the user that her
input has been accepted and is being/has been processed.

One thing that is implied is that there is a mapping between user gestures
and stimuli to the system to issue forth an appropriate result. This mapping is
essentially the web application’s way of “understanding” a user’s request.

The task of understanding a user gesture is complicated by recently added
user gestures that add to the richness of the interface. Traditionally, web appli-
cations did not recognize dragging and dropping gestures, or right-mouse-button
clicks. These were reserved for the web browser itself. However, emerging AJAX
libraries are making such gestures available to web application developers. This
can dramatically increase the complexity of implementing constructs in the User
Interaction Aspect.

A less obvious aspect worthy of note is that a user gesture’s mapping may
target any of a number of architectural constructs: It may impact elements in
the View Structure, interact with other elements in the User Interaction Aspect,
make requests of the User Support features, save or retrieve UI state, request
navigation, or trigger core business logic.

Relating Requirements to a User Interface Architecture 319

Once View Structure elements have been identified, the cause-effect relation-
ships are the starting point for requirements elicitation for this aspect: What
user gesture upon View Structure element A causes an effect upon architectural
element B?

Analysis of the cause-effect relationship between the secondary navigation
element and the list view might proceed as follows: Suppose the UI concept
indicated that selecting an element from the secondary navigation should provide
the user with a list view of the corresponding object. This suggests a number of
requirements for a number of aspects:

– The elements of the secondary navigation must be responsive to user gesture.
This specifies the cause. As such, it is a requirement on the User Interaction
Aspect. (Note that there may be multiple gestures assigned to an element.)

– For each (structural) element in the secondary navigation there is an asso-
ciated list view. This is a requirement on the View Structure.

– There is a distinction between elements in the secondary navigation that are
selected and those that are not. This is a requirement on the View Structure.

– If the aforementioned selection state has a visual distinction, then that con-
stitutes a requirement on the Skin.

– If the selected navigation element needs to be remembered, then it con-
tributes requirements upon the UI State Aspect.

– The user gesture upon the secondary navigation maps to the action of pre-
senting the appropriate list view. This specifies the effect, and is therefore a
requirement on the User Interaction Aspect.

It also leaves open questions: Can multiple elements within the secondary
navigation be selected? Where does the selected list view come from? (The fact
that the cause of the interaction is from a secondary navigation element suggests
that the Navigation Support Aspect might be involved.)

To generalize from these examples, requirements for the User Interaction As-
pect can be exposed by considering each element in the View Structure keeping
the following questions in mind:

– What are the cause-effect relationships between its component parts?
– Is it involved in any cause-effect relationships with other elements?
– What user gestures does the element respond to?
– For each gesture

• What is the intended target(s) in the high-level UI architecture?
• What data does it provide to the target for processing?
• How does the gesture provide that data to the target?
• For each target, is there an expected response?

Keep in mind that this analysis will likely add to the list of requirements for
other aspects of the UI architecture as well.

320 R. Tanikella et al.

2.5 Navigation Support

The Navigation Support aspect provides the mechanisms for determining the
next “place” to which to navigate in an application–the next step in the cur-
rent user task. The most ostensible source of requirements for this aspect come
from storyboards or flow maps that indicate navigation sequences [3]. However,
requirements for deeper navigation capabilities (as opposed to a mere indication
of how state transitions map to destinations) are driven primarily by the UI con-
cept. Therefore, elements in this aspect must take into consideration the type
of workflow logic illustrated in the UI concept, as well as what interactions or
events affect change in the UI. For example, is the navigation concept sequential
or non-sequential? Does the workflow contain optional sub-workflows that may
affect the main workflow in some way? Are these presented in a single window
or multiple communicating windows? Will events that are not initiated by the
user affect the navigation logic?

Other pieces of information that complicate matters include the consideration
of multiple windows, concurrency of workflows, and interaction between concur-
rent or embedded workflows. While the UI State aspect is concerned with how
to use contextual information to store and identify information, the Navigation
Support aspect is more focused on using these clues to correctly determine the
next destination. Thus, once the requirements for the Navigation Support As-
pect are agreed upon, design decisions made at this level are likely to generate
functional requirements for the UI State Aspect, in terms of data structures that
should be stored there. These requirements are not qualitatively different from
the requirements that the UI State already handles, but represent a refinement
which is straightforward to add.

Requirements on this aspect might also suggest requirements upon the User
Interaction and User Support Aspects. To support wizard-driven workflows, for
instance, the User Interaction and User Support Aspects would need to allow for
a sequential set of actions by the user and conditional enabling of UI elements. On
the other hand, for embedded workflows, the User Interaction Aspect may need
to support multiple windows and the transfer of information from one window
to another; the User Support Aspect may need to help the user understand how
each embedded workflow relates to the main workflow; both of these may in turn
suggest further requirements on the View Structure Aspect. Since the Navigation
Support Aspect affects most of the other UI aspects, it should be one of the first
pieces of the UI architecture to be explored and defined.

2.6 User Support

The emergence and evolution of so-called “Web 2.0” functionality, AJAX and
related technologies is highlighting improved richness of user experience in web
applications. One important aspect of this is the increased interactivity that
provides guidance and support to the user.

User Support functions cover a wide range of needs, from customizing the
contents of the navigation tree according to specific user access rights, to

Relating Requirements to a User Interface Architecture 321

widget-specific tool tips, to providing inline help without impacting the user
workflow. Looking at both web-based and native applications, the user support
area is a critical component of competitive differentiation in the UI area.

This aspect is distinct from the Navigation Support which deals with the
completion of actions/steps that directly lead to a change of state for some
artifacts handled by the application. In contrast, User Support only deals with
the level of support needed for the completion of one user gesture, and generally
does not result in changes to application state.

Seen in another light, requirements on the Navigation Support Aspect tend to
be functional requirements. User Support, as a look and feel enhancement, tends
to be described by nonfunctional requirements (e.g., relating to usability.) The
implementation of User Support functionality is not likely to be encapsulated in
a standalone set of components, or a logical implementation layer. Rather, such
requirements are likely to be orthogonal to UI elements.

Other requirements that should be discussed for this aspect are contents of
tool tips, object-dependent context menus, progress or completion indicators,
conditional enabling of widgets, indicators of the “droppability” of an object
that is being dragged, etc. Each of these are important productivity features
which are likely to increase in importance as web application UIs mature.

Since the support role of this layer is generally a passive one, it is likely
that requirements for this layer receive less attention than those of features that
actually achieve a user’s goal. But elements in the User Support are intimately
related to View Structure elements (by definition they are “in support of” those
elements), and are triggered by mechanisms of the User Interaction Aspect. As
such, it is natural that requirements for this aspect should be elicited alongside
requirements for the View Structure and User Interaction Aspects. Furthermore,
User Support requirements will, in turn, result in additional requirements for
these aspects. However, let us reiterate the warning: This commingling should
not result in a blurring of the architectural distinctions between them.

2.7 UI State

The UI State Aspect is responsible for maintaining the state of its user interface.
Every piece of information that other UI aspects provide to the View Structure is
ultimately stored and retrieved from the UI State. This aspect does not contain
business logic, nor does it affect the underlying application state maintained
in the Web Application Infrastructure. Although the concept of remembering
information is straightforward, the complexity of this layer lies in the ability
to define and maintain different spaces of information based on a number of
possible constraints. These constraints help to indicate the proper context for
storing data.

The proper context may be defined by the time interval in which the data
must be remembered, the user or users to whom the data may be specific, the
differentiating factor for data related to multiple instances of a UI element, or
the sharing of data across multiple windows. As the user interacts with the ap-
plication, this context ensures that the experience is consistent regardless of the

322 R. Tanikella et al.

resulting View Structure, concurrent user workflows, multiple-window interac-
tions or multiple user sessions.

Time intervals that are commonly supported in web applications are the du-
ration of single HTTP request, or a user’s logged-in session. The boundaries of
these intervals are well understood. However, with richer web applications, the
desire for more intelligent interface elements can lead to time boundaries that
may complicate implementation. For example, one requirement might state that
for a given wizard-driven workflow, the last step in the wizard that was viewed
must be maintained across user sessions until the workflow is completed or aban-
doned. This information must therefore be uniquely identifiable across multiple
user sessions. Achieving a unique identifier requires having an early concept of
what types of data will last in similar time spaces, and devising a proper naming
convention accordingly.

Now, take the last example and combine it with another requirement that
states for each user, multiple instances of this particular wizard-driven workflow
can be run concurrently. This introduces a new kink to the time space originally
defined for storing the last-visited page. The naming convention that was devised
must now additionally support the differentiation of the last-visited page of one
instance of the workflow from that of another. This is crucial for the integrity of
your UI State. When such changes are made to the UI concept, it is important
to determine whether this layer is also affected.

In general, the trend in providing richer functionality in web applications adds
complexity to this layer. If a web application supports multiple-user interactions
or multiple windows with some form of interaction, there must be consideration
for defining separate and shared memory spaces. Furthermore, as richer interac-
tions are described, we see an increase in UI State data, as well as in increase
in the portion of that residing closer to the client-side and further from the core
business logic.

2.8 Web Application Infrastructure

It is often not so easy to discuss how the Web Application Infrastructure is
impacted by the UI concept. Clearly the Web Application Infrastructure is a
very implementation-sensitive aspect. The semantic gap between a conceptual
UI architecture and such an implementation-specific aspect is a difficult one to
bridge.

In our experience, requirements upon this aspect are rather subtly suggested
by the UI concept. How does a task decompose into parts? How reusable are these
parts? How much interactivity can exist between these parts? How receptive are
these to other stimuli (e.g. unsolicited events)? These questions are examples
of things that can be taken for granted in describing the UI concept, but pose
potentially difficult solutions to achieve in implementation. By considering these
deeply architecturally relevant questions we can begin bridging the gap from the
conceptual side.

From the implementation side, the availability of commercial off-the-shelf
packages presents a compelling way to save on development costs. Whereas the

Relating Requirements to a User Interface Architecture 323

notion of allowing a choice of technology to dictate high-level architectural con-
cerns may seem to fly in the face of some software engineering principles, the
capabilities and liabilities of technology choices are a principle architectural con-
straint. All but the simplest components have a presumed architectural pattern
that is difficult to violate. If the architecture you design conflicts with the archi-
tecture assumed by a component, you will be shifting effort and resources toward
integration. In [4], Bass et. al. provide a useful discussion about detecting and
dealing with the architectural implications of OTS components.

3 Recommendations for Requirements Gathering

Based on our experiences, there are several points with respect to requirements
gathering that we would like to be takeaways from this paper. These are pre-
sented below in order of importance.

The best way to refine UI requirements is to support and encourage
closer collaboration between UI/HCI designers and implementers

One of the most valuable facets of agile methodologies, especially in comparison
to plan-driven approaches, is their flexibility in the face of changing requirements.
Having the UI designers work closely with the implementers in developing the
UI concept along-side the conceptual architecture allows the two to mature in
synch, rather than requiring significant rework to either. A shared boundary ob-
ject, such as a storyboard as described in [5], allows both parties to bring their
expertise and point of view into a discussion. The subtle implications that a UI
concept has upon the UI architecture (even at a high level) can be exposed and
discussed in a manner that does not stray significantly from the comfortable
languages of either the UI designers or the implementers. The outcomes of this
activity might be two separate documents specifying two different aspects of the
system–the UI concept, and the UI architecture–but they will be well synchro-
nized and of greater use later in the software lifecycle than if they are developed
independently, one as a consequence of the other. In the event that the UI con-
cept is beyond what can be created with the given resources/technologies/time
constraints, then such a close collaboration offers the most expedient way to
pinpoint that fact early on in the project time line. In this way each expertise
can inform the other, and both views of the system can be enhanced for it.

Consider requirements in the deeper parts of the UI architecture
before addressing requirements in less architecturally relevant parts

Only within the context of the capabilities and constraints of the deeper portions
of the UI architecture can we form a realistic notion of how implementable the UI
concept is. Failing to detect the mismatch between the requirements suggested
by a rich UI concept and the capabilities and (perhaps more importantly) the
constraints of the Web Application Infrastructure risks either increasing the

324 R. Tanikella et al.

effort of implementation significantly, or failing to adequately realize the UI
concept. The later this mismatch is detected the greater the likely effort required
to correct it. In the very least, an architectural treatment of the UI provides a
basis for the realistic estimation of the effort involved in such a change.

Treat the organization and structure of the UI architecture with the
same respect as that of the overall system architecture

It is a well-established practice in software engineering to document the system
architecture of a software system upfront ahead of the start of development. From
that view of the system, where the UI is likely referred to as a single component
described in a high level manner, everything seems in perfect order; the trusty
MVC pattern and its derivatives provide the basic structure for the UI, and at
such a high level view no more detail is needed. Especially with respect to com-
plex rich client-side interactions (User Interaction and User Support Aspects)
this is not sufficient, as the functionality required by these aspects alone may
warrant equating the UI to its own application. In these cases, especially in long
term or large-scale projects with expectations of maintenance, it is recommended
to approach the architectural design of the UI with similar diligence.

Mind the gap between the conceptual and the implementation
architectures

The View Structure, User Interaction Aspect, User Support, and Skin are heavily
related to each other. Part of what makes it difficult to distinguish them is that
they can be heavily commingled in an implementation. However, allowing that
commingling to suggest that these are not in fact distinct parts of an architecture
risks coupling them in a way that ignores the separation of their concerns. This
results in software that is difficult to comprehend, maintain, modify, and extend.

4 Conclusion

Companies continue to push the envelope of web development and redefine what
users can do with their web applications. The success of the early purveyors
of the so-called “Web 2.0” was largely due to its ability to provide a user ex-
perience approaching that of non-web-based applications, to which users have
been accustomed for a long time. As richer user experience becomes an increas-
ingly important product differentiator, software developers are hard-pressed to
keep learning new technologies at the same unrelenting pace. Moreover, as tool
vendors increase the number of offerings targeting these developers, one thing
will remain the same: Developers, not UI specialists, will continue to bear the
load of complex issues involved in developing the UIs of enterprise web appli-
cations, supporting and organizing conclusions drawn from analysis of the UI
concept documentation, and addressing a need to more seriously consider the
demands of bleeding-edge rich thin enterprise web applications (not to mention
implementing, maintaining and extending them!).

Relating Requirements to a User Interface Architecture 325

The key to successful decision-making is communication in all facets of the
software development process. In this paper we have discussed a specific instance
of communication–that between UI designers and implementers–with the hope of
helping to bridge the gap between their respective conceptual languages. Toward
that end, we have outlined a conceptual architecture for rich web-based UIs. We
intend for this architecture to help provide a mental framework for reasoning
about UI requirements. Based on our own experiences, we have highlighted the
portions of that architecture that shoulder the brunt of delivering a rich user
experience. We have also suggested practical measures to aid in the elicitation
of requirements for these aspects from analyzing UI design artifacts.

Although using this conceptual architecture can go quite a way toward or-
ganizing the development of user interfaces in a rich web application, it would
still remain to elaborate a more detailed implementation architecture. However,
even more so than in traditional web applications, the number of ways to map
these conceptual elements to elements in a run-time view or a code view of an
implementation architecture is quite varied. Conceptual elements will likely map
to implementation elements in any of a number of languages. These elements,
in turn, map to run-time elements that may reside on the client, the server, or
cooperating elements on both. Even the nature of a user gesture has grown more
complex: Whereas in traditional web applications the only architecturally sig-
nificant user gestures were those that resulted in HTTP requests and responses,
rich web applications offer a great deal more sophistication.

It is clear that this increase in sophistication suggests the need for clearer
guidance in decision-making related to fleshing out an implementation architec-
ture from the conceptual architecture presented here. We identify this as a topic
for further study.

References

1. Constantine, L., Lockwood, L.: Software For Use. Addison Wesley, New York (1999)
2. Schneiderman, B.: Designing the User Interface. Addison-Wesley, Reading (1998)
3. Fulcher, R., Glass, B., Leacock, M.: Boxes and Lines over Bullets and Arrows: De-

liverables that Clarify, Focus, and Improve Design. In: Presented at Usability Pro-
fessionals’ Association Annual Conference, Orlando Florida (2002) Available online:
http://www.leacock.com/deliverables/

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison
Wesley, New York (2003)

5. Gunaratne, J., Hwong, B., Nelson, C., Rudorfer, A.: Using evolutionary prototypes
to formalize product requirements. In: Presented at Workshop on Bridging the Gaps
II: Bridging the Gaps Between Software Engineering and Human-Computer Inter-
action, ICSE 2004, Edinburgh, Scotland (2004)

http://www.leacock.com/deliverables/

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 326–340, 2007.
© Springer-Verlag Berlin Heidelberg 2007

FJM2 - A Decentralized JMS System

Ruey-Shyang Wu1, Kuo-Jung Su1, Fengyi Lin2, and Shyan-Ming Yuan1

1 Department of Computer Science
National Chiao Tung University, Hsinchu , Taiwan, R.O.C.
{ruey,is85061,smyuan}@cis.nctu.edu.tw

2 Department of Accounting Information Systems,
Chihlee Institute of Technology, Taipei, Taiwan, R.O.C.

O100@mail.chihlee.edu.tw

Abstract. With the growth of internet, the requirement for the communication
and message exchanges between programs becomes more and more important.
The Message-Oriented Middleware (MOM), such as Java Message Service
(JMS), could not only greatly reduce the technical learning curve for
programmers but also have some amazing characteristics: such as reliable,
secured, and event-driven. In the traditional client-server architecture, not only
the client side program has to maintain the resource for connections and
memory management, but also the server side has to send out several copies of
duplicated messages per amount of connected clients. It not only wastes the
system resource but also the network bandwidth. A system this paper developed
is Fast Java Messaging 2 (FJM2), it’s a enhancement version from Fast Java
Messaging (FJM). It creates a whole new JMS provider which is distributed,
high performance, reliable, and easy to use and deploy. While compared with
FJM, FJM2 adapts a more efficient communication protocol - Negative-
acknowledgment (NACK)-Oriented Reliable Multicast (NORM), and does not
adapt topic addressing. Moreover, FJM2 has the ability to work across WAN
environment to extend the system coverage, and could be adapted for more
different application scopes. It would benefit those who want to create a MOM
system based on Java and multicast protocol.

Keywords: Message Oriented Middleware, Multi-cast, Enterprise Application
Integration, Java Message Service.

1 Introduction

Network technology progresses very quickly in recent years. In wired environment,
the bandwidth today has already been improved to 1Gbps. On the other hand, in
wireless network, the 802.11n, which proposes some new physical transmission
technologies, has improved the transmission rate up-to 300Mbps. Therefore,
applications like digital home, VoD (Video on Demand) would no longer be a utopian
idea, but a reasonable application to the real world.

With the advancements of the physical networking technology, more and more
applications are trying to take the advantage of the network to establish a large-scale
system. However such systems have many development issues. They include higher

 FJM2 - A Decentralized JMS System 327

technical learning curve and difficult to debug, comparing with traditional
applications. To simplify developing effort, some kinds of distributed architectures,
like MOM (Message-Oriented Middleware), has been proposed. MOM is a
technology which hides the technical complexity from programmers to make system
developing become much easier and quickly to create a large-scale, reliable, and
secured applications. There are many MOM systems today, such as IBM WebSphere
MQ, TIBCO RV, JMS (Java Message Service) [8], etc. JMS is one of the most
popular and widely deployed systems in the world.

In the traditional client-server model, UNICAST transmission is widely used,
because it fits human’s instincts much well. It is also easier to debug and manage than
other transmission technology. However, there is only one destination at a time in
UNICAST transmission mode, so that if we want to broadcast a message to everyone
interesting about it, we have to send out several copies of the duplicated messages.
With the receivers growing, it would become a serious problem. In contrast to the
UNICAST, there is another technology named MULTICAST, which could have
multiple destinations for a message at a time. The management and debugging
process would be much more complicated than UNICAST and requires much more
software efforts because of multiple destinations capability. Moreover, the routing of
MULTICAST protocol is also a difficult course to solve. It is not only a technical
issue but also a policy issue to ISP (Internet Services Provider). Most of the existing
routers and gateways do not support these MULTICAST routing features, so that the
MULTICAST applications are usually constrained into LAN environment only. The
limitation causes MULTICAST applications to develop extra functions so that they
can exchange information when they are not in the same LAN.

To archive reliable service, the traditional solution is through positive ACK
(Acknowledge). It sends out a positive ACK to sender whenever receive any
messages. However, the ACK itself could be the performance bottleneck. It is the root
cause of the relative longer message latency which constrains the overall system
performance. In contrast, there is a technology called – NACK (Negative
Acknowledge). It sends out only the information about the lost messages to sender,
not positive acknowledges to every received messages to reduce both the number of
control message and the transmission latency. In a network environment with a lower
packet loss rate, the better performance we could gain through Negative
Acknowledge (NACK). In this paper, we will adopt the technology into the JMS
layers to improve data transmission. Unlike the traditional TCP-based JMS server, we
will use MULTICAST with NACK to create best performance JMS server.

The paper is organized as following: Section 2 shows the backgrounds. Section 3 has
whole design of FJM2. Section 4 introduces the protocol in FJM2. Section 5 shows the
performance evaluation. Finally, section 6 is the conclusion and future work.

2 Backgrounds

2.1 Java Message Service (JMS)

Java Message Service (JMS) [8] proposed by Sun Microsystems is a set of Java API
allows applications to read, write, and deliver messages. It defines only a common set

328 R.-S. Wu et al.

of application programming interfaces and associated semantics that allow programs
written in Java to communicate with each other via JMS architecture. JMS hides the
network complexity from application programmers to make it become much easier for
programmers to create large-scale, efficient, cross-platform and reliable messaging
applications.

Figure 1 shows the abstract of JMS programming model, JMS application could
play as a Message Producer or Consumer or even both of them at a time. And no
matter which role they are, they must create the Connection and Session object
instance through Connection Factory Object, and once Session object instance is
ready, they could create Message Producer or Consumer object instance through
Session object according to its requirement, and finally create the Message object
instance for delivery and notification. Message Producers usually deliver messages to
a specific Queue or Topic, and the JMS system would monitor such virtual
destination object and notify the registered Message Consumers.

Fig. 1. JMS Programming Model

2.2 FJM

FJM (Fast Java Messaging) [9] is a former reference design of FJM2. It is a JMS
system based on IP multicast protocol, negative acknowledgement and has a NACK
based flow control. FJM offers only the publisher/subscriber model of JMS and its
major objective is to provide a fast and reliable Java Message Service. There are
several key characteristics of FJM architecture:

 FJM2 - A Decentralized JMS System 329

1. It is a distributed system. There is no centralized management node in the
entire system.

2. It adapts NACK (Negative Acknowledgement) for message reliability. Under
NACK approach, subscribers send out NACK to publisher only when
message was lost.

3. It provides a NACK based flow control. When publisher receives NAK from
subscribers, it will slow down the message transmission rate to let subscriber
catch up with it. If publisher has not yet received any NAK message for a
period, it may speed up the transmission rate to gain a better throughput.

4. It has membership management and multicast-based leader election protocol.
While a new publisher or subscriber wants to join the system, it must first
communicate with a FJM daemon to get system information. Because the
FJM daemon is not dedicated to any participant, it is chosen from all the
existing Topic Managers based on the election protocol.

5. It has topic address binding. FJM binds up the topic by a specific multicast
group address to reduce software overhead.

2.3 Objective

Although FJM performance is good and it simplifies programming overhead, it still
has some disadvantages:

1. The performance of FJM is not good enough while adapting into 100Mbps
network environment. It requires at least 50 millisecond delay in inter
message gap.

2. The FJM cannot make the clients belonged to different subnet to
communicate. The UNLICAST protocol is limited in a LAN.

3. Programmer must be aware of the limitation described in (1), and a
reasonable delay must be applied into every message publish routine.

4. When the FJM member-ship changes, the FJM program would hang up and
consume the entire system resource. (CPU utilization is almost 100%)

5. Topic address binding would never benefit from the hardware dispatch for
(Address, Port) binding. Because most of the Ethernet adapters in the world
could only handle layer two (MAC Layer) protocols, while IP address is the
layer three, and port number is in the layer four. Even in the recent system-
on-a-chip (SoC) router design, layer four switching functionality is rarely
available and never be implemented in a full specification.

We will reduce the delay in FJM2 system. Application developers will on longer
notice the issues again. Besides, we develop a new addressing method to replace
Topic address to gain better performance.

3 FJM2 System Architecture

FJM2 is a pure Java system so it can be cross-platform. Its major objective is to
provide a de-centralized, reliable, efficient, multicast based Java Message Service
(JMS) with minimal configuration overhead. To provide the WAN traversal ability

330 R.-S. Wu et al.

for this multicast based system, Fast Java Message 2 Daemon (FJM2D) is proposed.
There is also a small web based administration program - FJM2Admin, which
provides FJM2D node list exchanging service. FJM2D could automatically
communicate with each other across the world to provide a large-scale coverage for
this multicast based FJM2 system.

3.1 FJM2 Architecture

Fast Java Messaging 2 (FJM2) is a Message Oriented Middleware (MOM) that
abstracts the complexity of network programming to shorten the time for a robust

Fig. 2. FJM2 Architecture Overview

Fig. 3. FJM2 Physical Architecture

 FJM2 - A Decentralized JMS System 331

network application development. The only thing that application developers need to
know is the set of JMS API. All the underlying technology is hidden as a black-box
called JMS. Programmers could even change the underlying products for better
performance or stability. Only few program modifications are needed. In other words
FJM2 does not only provide the solution for the rapidly development, but also have
the benefits of cross-platform or product characteristic.

Figure 3 shows a rough abstraction of the entire FJM2 physical architecture. Each
LAN can deploy a complete FJM2 environment. All applications in the same LAN
can communicate with each other. If one client wants to exchange message with
another that is at another LAN, the FJM2D can carry those messages to another LAN.
FJM2D is deployed at each LAN and connect to other FJM2Ds belonged to other
LANs. With properly configuration, each FJM2D can decide the destination of each
message; some message can be sent to another LAN, but some are not.

3.2 FJM2 Message Transmission Model

The FJM2 message transmission model is showed as Figure 4. The FJM2 publishers
and consumers can communicate with each other if they are in the same LAN.
However, if the message is needed by the consumers at another LAN, the FJM2D will
recognized it and carry them to another FJM2D. After received the message, the
FJM2D will multicast the message so that the FJM2 consumer will get the message.
In the architecture, we could realize:

1. It is unnecessary to have a centralized daemon to let FJM2 publishers and
consumers to communicate with each other inside LAN environment.

2. It is necessary to install a FJM2D on the edge gateway of the local network
to make it possible to forward the FJM2 message to another FJM2D.

3. FJM2-Admin serves only FJM2D and never communicates with FJM2
daemons directly, so that the configuration requirement could be minimized.

4. The communication protocol between FJM2 daemons (publishers and/or
subscribers) is a NORM protocol based on IP multicast and NACK.

Fig. 4. FJM2 Message Transmission Model

332 R.-S. Wu et al.

5. The communication protocol between FJM2 and FJM2D is a NORM
protocol based on IP multicast and NACK.

6. The communication protocol between FJM2D daemons is a NORM message
delivered by UNICAST.

7. The network behind FJM2D could be a different subnet.

3.3 FJM2 Message Publish Program Flows

Figure 5 shows the flows in FJM2 software components while publishing messages. It
does not include the procedure of message repair process. It is merely a general
program flow upon message publishing. It is unnecessary to determine a multicast
leader (Guide) as what FJM1 does. The FJM2 daemon could immediately enter
normal message handling procedures after startup. When the membership changes,
there is only a little redundant message and few incomplete cache would be occupied
in consumer/subscriber’s memory for a period of time. It would be free upon cache
expire. For the reason, the entire system overhead is much lower than the previous
FJM. It would be much easier for FJM2 to develop a stable messaging service than
FJM. Its flow is listed as followed:

1. Publisher creates a Message object instance and puts data into its body.
2. Publisher de-queue a NormDataMessage object instance from the message

pool. This object instance is the container for the message.
3. FJM2 segments the message to fit in the message payload that best fits in

current network environment. However, the segmentation here generates
only the marks about how the fragments should be taken.

4. FJM2 copys the segmented message into the NormDataMessage object
instance which de-queued from the pool in step (2). Finally, it will build up
the header for it.

Fig. 5. FJM2 Message Publish Program Flows

 FJM2 - A Decentralized JMS System 333

5. FJM2 en-queue the prepared NormDataMessage object instance into the
proper transmission queue according to its message priority, and makes a
copy of the message into the MessageCaches for a possible message repair
process that might be initialized later.

6. Each transmission queue has a dedicated stand-alone monitoring thread that
has a proper thread priority. When the queue is not empty, the thread would
de-queue a message from it and process a generic transmission routine

7. Once the transmission thread de-queue a message from the queue
successfully, it will send it out through the socket library.

3.4 FJM2 Message Subscribe/Consume Program Flows

Figure 6 shows the flows of FJM2 software components while subscribing/consuming
messages. It also includes the procedure of message repair process. It is unnecessary
to determine a multicast leader (Guide) and the registration processes those are
necessary in previous FJM. The FJM2 daemon could enter normal message handling
procedures immediately after startup. During the membership changes, the incomplete
message cache will be occupied in consumer or subscriber’s memory. It would be free
upon cache expire. So the entire system overhead is lower than FJM, and thus it
would be much easier for FJM2 to develop a stable messaging service than FJM. Now
let’s take a look at the flows:

1. Application receives a packet (symbol) from the network, and then put it into
the packet buffer.

2. Build a key for message cache from the header of the received packet, and
the use for the cache lookup. If there is a corresponding cache to this key, the
program flows to step (5). Otherwise, it will go to step (3).

3. Poll out a message container from the message pool. The message pool
would be selected according to the total message size recorded in header.

Fig. 6. FJM2 Message Subscribe/Consume Program Flows

334 R.-S. Wu et al.

4. Put the message container instance into the message cache.
5. Treat the object which is just fetch from message cache or polled from the

message pool as a NormDataMessage object.
6. Copy the data inside the packet buffer into the NormDataMessage object.
7. Check if the message is complete or not, if it’s true then flows into step (8).

Otherwise, program will go to step (10).
8. If the message is already a complete one, invoke onMessage(…) of all the

registered subscriber applications.
9. When onMessage(…) returns, reclaim the message object to the pool.
10. If the message is not yet complete, it would try to initialize NACK process. If

the NACK process is really necessary, it then flows into step (12).
Otherwise, go to step (11)

11. Although the message is incomplete, the NACK process is still not yet
necessary in this case. Then, FJM2 will terminate this receive event handle.

12. If the message is incomplete and it is time for NACK process, initializes
NACK process and enters NACK back-off state.

13. During NACK back-off state, the subscriber would monitor the NACK
appears on the network. If it matches the one recorded in its own NACK
items, it suppresses the NACK for that item. When back-off timeout occurs,
the program would enter NACK transmission state.

14. In NACK transmission state, the program would send out the NACK
message through socket library, and then enter hold-off state.

15. The hold-off state is the way to avoid repeated NACK message in a given
delay timeout.

16. When hold-off timeout occurs, the program would flows back to NACK
decision state to determine the next step is (11) or (12).

4 FJM2 Protocol

FJM2 is based on NORM protocol and improves performance than the previous FJM.
It also includes new features, such as WAN traversal capability and automatically
FJM2D self-configuration. FJM2 is a JMS implementation which is pure java
implementation to provide the best portability. It offers only publish /subscriber
messaging model through multicast protocol. Due to the distributed architecture of
FJM2, load balance can be achieved, and the message server is no longer the
bottleneck of the system. For the reason, it could reach a much better performance
than other central server systems.

4.1 NORM Protocol

Negative-acknowledgment (NACK) Oriented Reliable Multicast (NORM) [16]
Protocol is defined in RFC 3940, 3941. It’s designed to provide a reliable transport of
data from one or more senders to a group of receivers over an IP multicast network.
Its major objective is to provide an efficient, scalable, and robust bulk data transfer
over multicast network. It also supports distributed multicast session participation
with minimal coordination among senders and receivers.

 FJM2 - A Decentralized JMS System 335

A NORM protocol instance (NormSession) is defined within the context of
participants communicating connectionless packets over a network using pre-
determined addresses and host port numbers. Generally, the participants exchange
packets using an IP multicast group address, but UNICAST transport may also be
established or applied as an adjunct to multicast delivery. In the case of multicast, the
participating NormNodes will communicate using a common IP multicast group
address and port number that has been chosen via means outside the context of the
given NormSession.

Group communication scalability requirements lead to adaptation of negative
acknowledgment (NACK) based protocol schemes when reliability feedback is
required. NORM is a protocol centered on the use of selective NACKs to request
repairs of missing data. NORM provides for the use of packet-level forward error
correction (FEC) techniques for efficient multicast repair and optional proactive
transmission robustness. FEC-based repair can be used to greatly reduce the quantity
of reliable multicast repair requests and repair transmissions in a NACK-oriented
protocol. The principal factor in NORM scalability is the volume of feedback traffic
generated by the receiver set to facilitate reliability and congestion control. NORM
uses probabilistic suppression of redundant feedback based on exponentially
distributed random back-off timers. NORM dynamically measures the group's
roundtrip timing status to set its suppression and other protocol timers. This allows
NORM to scale well while maintaining reliable data delivery transport with low
latency relative to the network topology over which it is operating.

4.2 NORM Protocol in FJM2

In FJM2, we adapts Compact No-Code FEC scheme in the low level transport
protocol – NORM Protocol. It’s a Fully-Specified FEC scheme corresponding to FEC
Encoding ID 0. It does not require FEC encoding or decoding. Instead, each encoding
symbol consists of consecutive bytes of a source block of the object. The FEC
Payload ID consists of two fields, the 16-bit Source Block Number and the 16-bit
Encoding Symbol ID.

Figure 7 is the fec_payload_id format used for Compact No-Code FEC in FJM2, it
is one word smaller than Small Block, Systematic (“fec_id”=129). This is why choose
Compact No-Code FEC is due to performance consideration. Generic FEC
Encode/Decode is really a time consume process.

Fig. 7. Compact No-Code FFC(“fec_id”=0) ”fec_payload_id” Format

336 R.-S. Wu et al.

Table 1. Testing Environment

Item Description
CPU Intel Pentium M 740 (1.73 GHz)
Memory 1 Giga-Bytes SDRAM
Java Runtime Sun Microsystems 1.4.2_04
Java FEC Library Onion Networks Java FEC Library v1.0.3

Table 2. Performance Matrix

Symbol
Source Data

512 Bytes 1024 Bytes 1440 Bytes

1 Kbytes 0 ms 0 ms 0 ms
2 Kbytes 0 ms 0 ms 0 ms
4 Kbytes 0 ms 0 ms 0 ms
8 Kbytes 0 ms 0 ms 0 ms
16 Kbytes 1 ms 0 ms 0 ms
32 Kbytes 6 ms 2 ms 1 ms
64 Kbytes 35 ms 11 ms 7 ms

Therefore, in best case, Java FEC library could encode (1000 / 7 = 142.8) 64Kbytes

Message per second, while 100 Mbps = (100 / 8 * 1024 / 64 = 200) 64Kbytes Message
per second. And thus we could have a conclusion that while Java FEC is adapted, the
overall system would never exceed 100 * (142.8 / 200) = 71.4 Mbps.

The NACK Algorithm used in FJM2 is almost exactly the same as the one
described in NORM protocol, except the sender NACK process. Because in FJM2 we
adapt Compact No-Code FEC scheme as the symbol algorithm, sender NACK
suppress is meaningless to FJM2.The sender NACK algorithm in FJM2 is merely
sending out a repair symbol as soon as possible when the it got NACK message. It
still has the message symbol cache for this lost message, and there is no any timer
used in sender NACK process.

5 FJM2 Performance Analyses

5.1 Testing Environment

Java Runtime Version:

 IBMJRE - java version "1.4.2"
 Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2)

Table 3. Testing Environment

ID Processor Memory Operation Systems
PC1 Pentium M 740 (1.74GHz) 1 GB Windows XP Home SP2
PC2 Pentium 4-M 1.80GHz 512 MB Windows XP Professional SP2
PC3 Pentium®4 1.80Ghz 256 MB Windows 2000 Professional SP4

 FJM2 - A Decentralized JMS System 337

 Classic VM (build 1.4.2, J2RE 1.4.2 IBM Windows 32 build cn1420-
20040626 (JIT enabled: jitc))

WIN32 Compiler
 The tool-chain used in WIN32 test program is lcc-win32.

5.2 UDP Performance Benchmark on 100Mbps Ethernet Interface

Figure 8 shows the connection topology in this test. The test scenario starts from
launching program at PC1. After the test program launches at the PC1, it will generate
fixed-size message buffer with a randomly generated content. Then, it will try to send
the whole message in a single socket function to the receiver. After the receiver
receives the message, the receiver calculates the performance value without message
verification. In this test scenario, there are C and Java implementation. The result is
shown as Figure 9.

Fig. 8. 1-to1 performance test connection topology

Multicast 1-to-1 Brute-Force Throughput

(100Mbps Ethernet)

0

20

40

60

80

100

16 64 25
6

10
24

40
96

16
38
4

65
00
0

Message Size (Bytes)

T
h
ro
u
g
h
p
u
t
(M
b
p
s)

C

JAVA

Fig. 9. UDP Multicast Throughput on 100MB

After the performance test, Java could work almost as good as C under
100MbpsEthernet network. The throughput grows very fast in the range from 256 to
1024 Kbytes. The best performance is at the range from 1024 to 2048 Kbytes. The
best throughput under 100Mbps Ethernet is around 90Mbps.

338 R.-S. Wu et al.

5.3 One-to-Two Benchmark on 100MBps Ethernet Interface

Figure 10 shows the connection topology in this test. There are four JMS systems to
be tested: FioranoMQ 2006, SonicMQ v7.0, iBus//MessageBus 5.0, and our FJM2.
FioranoMQ and SonicMQ are server based products, while iBus and FJM2 are
multicast based. The test scenario is as followed:

1. Launch the test program. Then, follow the parameters to generate a fixed-
size message buffer with a randomly generated content.

2. The sender program would try its best to send out the whole message in a
single JMS function - publish(…)

3. The receiver program would be notified through the JMS callback function -
onMessage(…) to receive message, and then calculate the performance value
without message verification.

Fig. 10. JMS 1-to-2 Performance Test Connection Topology

JMS 1-to-2 Brute-Force Throughput (100Mbps Ethernet)

0

50

100

150

200

16 64 25
6

10
24

40
96

16
38
4

65
00
0

Message Size (Bytes)

T
h
ro
u
g
h
p
u
t
(M
b
p
s)

Fiorano

SonicMQ

iBus//MessageBus

FJM2

Fig. 11. JMS 1-to-2 Throughput on 100Mbps Ethernet

 FJM2 - A Decentralized JMS System 339

FJM2 obviously outperforms all the other JMS system while message size equals
or larger than 512 bytes, and more subscribers grows. SonicMQ outperforms all the
other JMS systems while message size is less than 512 bytes. Although
iBus/MessageBus is the only one multicast based on JMS system except FJMS, it has
a poor performance and serious problem on memory management.

6 Conclusion and Future Works

Publisher/Subscriber Model is a popular communication model in the world. Most of
existing JMS products adapt centralized rather than a distributed architecture.
Besides, most of them do not use pure Java implementation. They usually deploy a
native program for the critical section for performance reason and thus lost the ability
of cross-platform. Here, we introduction a possible method to implement a de-
centralized JMS system base on NORM protocol by pure Java.

From the benchmarks in this paper, we could conclude that FJM2 is a successful
design that has took a great advantage from multicast to have a dramatic performance
improvement when the number of receivers grows. On the other hand, when
compared with centralized design, FJM2 could be even better than centralized
products for several times. So, it also has a good performance value in 1-to-1
transmission. While compared to the existing multicast based JMS system – iBus,
FJM2 is very stable and every publisher or subscriber could dynamically join or leave
the topic and the action would not system to waste too much resource. However in
iBus, it has not only a memory management issue on rapidly message publishing, it
would even crash the topic publisher while any one of the subscribers leaves.

Acknowledgments. The Ministry of Education of the Republic of China partially
supported this work under grant nos. NSC94-2725-E009-006-PAE (Advanced
Technologies and Applications for Next-Generation Information Networks (II)) and
NSC94-2213-E009-026 (A Research on Next-Generation Massive Multiplayer
Virtual Environment Platform). We thank the anonymous reviewers and editors for
many useful comments.

References

1. The Institute of Electrical and Electronics Engineers, Inc., IEEE P802.11n./D1.0 Draft
Amendment to STANDARD [FOR] Information Technology-Telecommunications and
information exchange between systems-Local and Metropolitan networks-Specific
requirements-Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) specifications: Enhancements for Higher Throughput (March 2006)

2. Liang, D., Fang, C.-L., Yuan, S.-M., Chen, C., Jan, G.E.: A fault-tolerant object service on
CORBA. Journal of Systems & Software 48(3), 197–211

3. Yue-Shan, C., Kai-Chih, L., Ming-Chun, C., Shyan-Ming, Y.: Prototyping an Integrated
Information Gathering System on CORBA. Journal of Systems & Softwares 72(2), 281–
294

4. Armstrong, S., Freier, A., Marzullo, K.: Multicast Transport Protocol, RFC 1301
(February 1992)

340 R.-S. Wu et al.

5. Braudes, R., Zabele, S.: Requirements for Multicast Protocols. RFC 1458, (May 1993)
6. Whetten, B., Montgomery, T., Kaplan, S.: A High Performance Totally Ordered Multicast

Protocol. In: Proc. of Int’l. Workshop on Theory and Practice in Distributed Systems, pp.
33–57 (1995)

7. Obraczka, K.: Multicast Transport Protocols: A Survey and Taxonomy. IEEE
Communication Magazine (January 1998)

8. Sun Microsystems. Java Message Service, Version 1.1 (April 2002)
9. Chuan-Pao, H., Hsin-Ta, C., Yue-Shan, C., Tsun-Yu, H., Tzu-Han, K., Shyan-Ming, Y.:

FJM: A Fast Java Message Delivery Mechanism based on IP-Multicast. In: Third
International Conference on Communications in Computing (2002)

10. Ruey-Shyang, W., Shyan-Ming, Y., Anderson, L., Daphne, C.: iCell: Integration Unit in
Enterprise Cooperative Environment, Grid and Cooperative Computing, pp. 962 – 969
(2004/04)

11. Deering, S.: Host Extensions for IP Multicasting, RFC 1112 (August 1989)
12. Hsin-Ta, C., Shyan-Ming, Y.: An Enhanced Thread Synchronization Mechanism for Java.

Software – Practice and Experience 31(7), 667–695
13. Cain, B., Deering, S., Kouvelas, I., Fenner, B., Thyagarajan, A.: Internet Group

Management Protocol, Version 3, RFC 3376 (October 2002)
14. Quinn, B., Almeroth, K.: IP Multicast Applications: Challenges and Solutions, RFC 3170

(September 2001)
15. Fenner, B., Meyer, D. (eds.): Multicast Source Discovery Protocol (MSDP), RFC 3618

(October 2003)
16. Adamson, B., Bormann, C., Handley, M., Macker, J.: Negative-Acknowledgment

(NACK)-Oriented Reliable Multicast (NORM) Building Blocks, RFC 3941 (November
2004)

17. Java FEC Library: http://onionnetworks.com/developers
18. Modarres, M., Ardekani, M.B.: Enterprise support system architecture: integrating

DSS, EIS, and simulation technologies. International Journal of Technology
Management 31(1/2), 116–128 (2005)

Implementing Automated Analyses in an

Active Data Warehouse Environment Using
Workflow Technology

Michael Zwick, Christian Lettner, and Christian Hawel

Software Competence Center Hagenberg GmbH
Hauptstrae 99, 4232 Hagenberg, Austria

{michael.zwick,christian.lettner,chrisitan.hawel}@scch.at

Abstract. A major goal of active data warehouses is to automatically
perform analysis tasks. However, this goal is only insufficiently imple-
mented in current active data warehousing architectures. For end-users,
it is not possible to design and modify such automated analysis tasks,
as the needed tools are not seamlessly integrated into common business
intelligence environments. As analysis tasks can be modeled as workflows
in a natural way, we propose to use workflow technology to close this gap.
Furthermore, workflow engines provide a graphical user interface that can
be extended to allow end-users to assemble and manage complex analy-
sis tasks. A prototype that builds up the foundation for this new active
data warehousing architecture is implemented using Microsoft ExcelTM,
SQL Server 2005TM and Windows Workflow FoundationTM, providing
end-users with the environment to design automated analyses.

1 Introduction

Today, many organizations are using data warehouse (DWH) technology to sup-
port their decision making process. Data warehouses [1] serve as a central data
store loaded from operational systems and enable organizations to interactively
analyze huge amounts of data by allowing them to create different scenarios to
investigate a current business problem and subsequently choose the most suit-
able one. Traditionally, data warehouses are used to support non-routine decision
making tasks within the strategic decision making process (e.g. the decision to
set up a new brand or the decision to abandon a whole production process due
to severe deficiencies in output quality).

On the other hand, routine decision tasks are more likely to be found at
the tactical and operational level of an organization. They emerge from well
structured problems where generally accepted procedures can be applied [2]. For
example, failure ratio in manufacturing is monitored on a daily basis, in order to
detect problems early in the production process. Although these routine decision
tasks are well structured, they can be complex and may require detailed domain
knowledge (e.g. if the defects rise above certain thresholds a more detailed anal-
ysis has to be performed. The exact value of the threshold is only known by the
analyst himself and not stored in the DWH).

D. Draheim and G. Weber (Eds.): TEAA 2006, LNCS 4473, pp. 341–354, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

342 M. Zwick, C. Lettner, and C. Hawel

As these levels within the organization are more closely connected to the
daily business, the requirement for more accurate data along with more frequent
updates to the DWH emerges. Batches that update the DWH on a daily basis
can not be used anymore. In some cases, updated data needs to be made available
in the DWH as soon as an event occurs in an operational system (i.e. in real-
time). In general, the data must be available at right-time, which is specified
by the specific business demand. Right-time availability is defined by the rate of
information delivery needed for a certain analysis [3,4,5]. To meet this right-time
requirement, all major extract-transform-load (ETL) and enterprise application
integration (EAI) tool suppliers provide solutions today [6].

Another characteristic of routine decision tasks is that the same analyses
are repeated rather frequently. In conjunction with the clear scope that rou-
tine decision tasks comprise, these tasks are ideal candidates for automated
analysis. This automation of decision tasks is an essential goal of active data
warehousing [2], a goal that is barely addressed in current architectures. The
needed tools are not seamlessly integrated into common business intelligence en-
vironments, which prevents end-users from designing and modifying automated
analysis tasks. When the integration is accomplished, the results of automated
analysis can be used to immediate trigger actions in operational systems. This
implements the closed-loop that connects business intelligence with the opera-
tional systems [7].

An analysis can be perceived as a directed graph where each vertex represents
a partial analysis and each edge a condition which connects subsequent analyses.
A transition between two connected vertices (i.e. partial analysis) is performed,
if the corresponding condition holds. Such a graph exhibits all properties that
can be found in workflow systems [8]. Thus, we propose to implement an ADW
architecture for automated analyses based on workflow technology. In this paper
we describe why and how existing workflow technology can be used to automate
routine decision tasks and subsequently implement a prototype of our proposed
ADW architecture with off-the-shelf components.

The remainder of the paper is organized as follows: Chapter 2 provides an
overview about related work in the field of active data warehousing. Chapter 3
introduces the proposed ADW architecture. Chapter 4 introduces primitives
needed for defining analysis graphs. Chapter 5 motivates the use of workflow
engines for automated analyses and presents a prototype implementation using
an example taken from the quality assurance process of a sensor production line.
The discussion of the achieved results and an outlook to future work is presented
in Chapter 6. Finally, the conclusion is presented in Chapter 7.

2 Related Work

2.1 Combining DWH and BAM

In [9], the event-condition-action [10] model of business activity monitoring
(BAM) [4] is enhanced with the powerful analytic capabilities of data warehous-
ing. While the DWH provides access to the multidimensional cubes for complex

Implementing Automated Analyses in an Active DWH Environment 343

analyses, BAM implements the closed-loop using alerts or automated actions
triggered by a rule engine. A similar architecture is presented in [11]. However,
the main focus of [9,11] is on right-time integration and establishing the closed-
loop back into the operational systems, not on automating complex analyses
tasks.

2.2 Analysis Rules

To support automated analyses, [12,2] introduces analysis rules that emulate
the way an analyst inspects multidimensional data. Starting from a coarse-
grained root cube, the analyst creates several local cubes using OLAP operators
ROLLUP, DRILLDOWN, SLICE and INTERSECTION in a top-down manner.
Local cubes and OLAP operators together form the analysis graph, where cubes
represent the vertices and OLAP operators the edges of the graph. For each local
cube in the analysis graph the analyst has the alternative to trigger an action,
end the analysis or perform a more detailed analysis. This decision, applicable
at every vertex, together with the analysis graph and the event that triggers the
analysis graph, represents the semantics of the analysis rule. Each analysis rule
is defined for a dedicated dimension level, the primary dimension level of the
analysis rule which usually corresponds to an entity in the operational system
(OLTP system). The rule will be executed for a primary dimension level element
and the triggered action will be bound to the corresponding OLTP object of the
primary dimension level.

Figure 1 depicts the example analysis rule MonitorDefectiveProducts. At the
end of each quarter (the event), the rule analyzes the average number of de-
fective products along with the trend of the last three months, in order to
stop production of the corresponding product category in case the rate of de-
fective products is above a predefined threshold (10% in this example). The
primary dimension level for the rule is the dimension Product at the level Cat-
egory, denoted as Product[Category]. Transition 1 performs a slice through the
coarse-grained cube ”Defects” along the dimension Time to get to the cur-
rent quarter (in our case Q2). Then the average number of defects is evalu-
ated. If the defects are below 10% for a certain product category, no further
analysis is performed. If the defects exceed 10%, a more detailed analysis will
be performed by drilling down to the month level within the time dimension
Time[Month] (transition 2). Finally, the quarterly trend is analyzed by com-
paring the average numbers of defects for April, May and June. If the trend
points upwards, the action to suspend production of the corresponding product
categories will be triggered. If the trend points downwards, no action will be
performed.

In [12,2], a proof of concept for analysis rules is implemented using triggers
and SQL within an OracleTM database. As end-user support was not in the
scope of this work, design and modification of analysis rules needs a considerable
knowledge of SQL and the underlying framework.

344 M. Zwick, C. Lettner, and C. Hawel

P
ro
d
u
c
t
[C
a
te
g
o
ry
]*

P
ro
d
u
c
t
[C
a
te
g
o
ry
]*

P
ro
d
u
c
t
[C
a
te
g
o
ry
]*

Fig. 1. Analysis Graph MonitorDefectiveProducts

3 Proposed ADW Architecture

We propose an active data warehouse (ADW) architecture that extends the gen-
eral architecture introduced in [9] with analysis rules introduced in [2]. Figure 2
shows the resulting architecture.

The eight main components are:

1. The OLAP Recorder (OR), which records all OLAP queries executed by the
user with an ad-hoc analyses tool. It builds up a query history which can be
used to automatically generate analysis graphs.

2. The Analysis Graph Manager (AGM) is the glue that brings together DWH
and BAM. It manages analysis graphs, which are recorded interactively by
analysts using ad-hoc reporting tools or modeled directly with the Analysis
Graph Manager.

3. The Event Manager (EM) collects events, which trigger predefined analyses
in the ADW.

4. The Right-time Integrator (RTI) integrates the necessary data coming
from different source systems. It provides a consistent view suitable for the
analyses [9].

5. For each vertex in the analysis graph, the Rule Engine (RE) performs the
corresponding analysis. Based on the results, the Rule Engine determines
the next vertex in the analysis graph or triggers predefined actions.

6. The Semantic Model (SM) represents knowledge about processes, structures
and relationships within operational systems. This knowledge will be used
to evaluate decision points, trigger actions and provide explanations to the
end-user.

7. The Action Manager (AM) stores all actions that may be performed by the
ADW. Actions get triggered by an analysis graph and range from simple
mail notifications to specific transactions in the operational systems.

8. The Explanation Module (EXM) provides the end-user with all information
necessary to retrace the steps leading to the executed action.

Implementing Automated Analyses in an Active DWH Environment 345

Fig. 2. ADW architecture with analysis graphs

4 Primitives for Analysis Graphs

In general, end-users analyze OLAP cubes in a top-down manner. They start
from coarse-grained cubes, inspect measures along different dimensions and make
decisions based on the information they find in the data. Decisions taken by the
end-user can be categorized into performing a further analysis or performing an
action, in case the business problem has been solved. Within the first category,
two basic patterns can be identified immediately and used as primitives for
analysis graph specifictions: AnalysisStep and AnalysisLoop. The third primitive
Action is a generic placeholder which can be configured to implement the closed-
loop e.g. via notifications or source system transactions. Figure 3 shows the
identified AnalysisStep, AnalysisLoop and Action primitives.

The AnalysisStep primitive consists of two parts: a query part, to get all
necessary measures, and an evaluation part to model decisions taken by the end-
user. The AnalysisLoop primitive selects a set of dimension members where each
member is used to execute further analysis steps in the loop. Within the branches
and bodies, all primitives can be used recursively to define more complex analysis
graphs (indicated by the question marks in figure 3).

To make analysis graphs useable for end-users, definition and recording of
analysis graphs must be preformed automatically in the background. As this is
easily possible for the queries end-users execute, it becomes even more challeng-
ing recording the decisions taken during analysis. For example, the decision to
drill-down to a certain member may be affected by implicit and domain specific

346 M. Zwick, C. Lettner, and C. Hawel

Fig. 3. Analysis Graph Primitives

knowledge of the end-user which is not automatically recordable. To capture this
implicit knowledge, an adequate interaction has to take place between recorder
and end-user. Domain knowledge acquired in this way could be stored in the
semantic model depicted in figure 2.

5 Implementing Analysis Graphs Using Workflow
Engines

5.1 Motivation

To make analysis graphs available to the analysts, we propose to implement
analysis graphs based on workflow engines. As most workflow engines provide
graphical user interfaces, analysis graphs can be modeled and maintained easily
by the end-user. Design, modification and recording of analysis graphs within
the graphical user interface of the workflow engine must be seamlessly integrated
into the analyst’s familiar business intelligence environment. As manual decision
making generally includes a series of chronological decision steps, we think it
is easier for non-expert users to navigate and understand an analysis graph
modeled as workflow.

5.2 Example

In this section, we present an example that we used to implement a prototype
of an ADW for automating analyses using an off-the-shelf workflow engine (i.e.

Implementing Automated Analyses in an Active DWH Environment 347

Microsoft Workflow FoundationTM [13]). The example has been chosen from the
quality assurance process of a sensor production line. Within the production line,
sensors run through a series of production steps followed by several electrical and
optical tests. The results of these tests are collected and stored in the production
process database and then transferred to the DWH, which in turn is used to
continuously monitor and control the production process.

In the example, each time a sensor lot finishes testing, a notification is sent
to the test operator in charge if the number of defects rises above a certain
threshold. Figure 4 depicts the corresponding analysis graph CheckDefects as a
flow chart.

Step SelectTest selects the first test for a detailed analysis. Only tests for the
product type just finished are included. Within the first analysis step, the average
number of defects for the selected test is analyzed. Step Calculate4WeeksAverage
calculates the average number of defects based on the last 4 weeks. If the number
of defects in the current week is above the 4 weeks average value, SendBadAv-
erage is executed. If the number of current week defects is below the 4 weeks
average, the analysis continues with a detailed analysis on the trend. Step Calcu-
late3DayTrend calculates the trend of defects for the last three days. If the trend
points upward, SendBadTrend is performed. If not, SendGoodAverageAndTrend
sends a corresponding notification to the test operator in charge. Finally, condi-
tion HasNextTest repeats the analysis for all tests found in the DWH.

5.3 Implementation Overview

We implemented a prototype for the example described in the previous section
using

– Microsoft ExcelTM for recording end-user analyses,
– Windows Workflow Foundation Beta 2, a component of the upcoming .NET

3.0 Framework,
– SQL Server 2005TM Analysis Services as multidimensional OLAP Server and
– SQL Server 2005TM Notification Services for the implementation of the

Event- and Action-Manager.

On top of the presented ADW architecture in Chapter 3, Figure 5 shows the
architecture of the prototype implementation. In a first step, we concentrated on
the core components needed for automated analyses: the Event Manager (EM),
the Analysis Graph Manager (AGM), the Action Manager (AM) and the OLAP
Recorder (OR). The Rule Engine (RE) has been implemented within the AGM.

The Event Manager has been implemented using SQL Server 2005 Notification
Services. Its task is to generate an event in case a sensor lot finishes testing. In the
source system, finished sensor lots are marked by a finished flag. Changes on that
flag are tracked by triggers in the source system. The manager checks every 30
seconds whether the flag has changed for a certain sensor lot. If a newly finished
sensor lot is thereby detected, the manager starts the ETL process which loads
the new data into the DWH. After the ETL process succeeded, the manager

348 M. Zwick, C. Lettner, and C. Hawel

Fig. 4. Analysis Graph for CheckDefects

triggers all analysis graphs which are attached to this event. In our example the
analysis graph CheckDefects will be triggered.

The Analysis Graph Manager has been implemented using WWF. Each anal-
ysis graph is modeled as a separate workflow. Analyses are performed in the
vertices, while conditions are evaluated in the transitions of the workflow. If the

Implementing Automated Analyses in an Active DWH Environment 349

Fig. 5. Prototype architecture

execution of an analysis graph results in an action to be triggered, an event is
sent to the Action Manger. Section 5.4 provides a more detailed description of
the implementation of the AGM.

The Action Manager, like the Event Manager, has been implemented using
SQL Server 2005 Notification Services. The Action Manager evaluates the events
received from the AGM and delivers an alert to all subscribers of this event. In
our example, mail is used for notification.

So far, we implemented an OLAP-recorder (figure 6) that is capable of record-
ing all OLAP queries conducted by the end-user in Microsoft ExcelTM. The con-
dition which led to the decision to run a certain OLAP query has to be specified
textually by the end-user. Up to now, it is the task of a power-user to transform
the textually specified conditions to expressions that can be evaluated by the
computer. Based on the discussion above, this transformation may not be pos-
sible for all decision steps. As long as the needed information is not available in
a semantic model, the recorded analysis graph can not be executed in complete
automation.

5.4 Implementation Details of the Analysis Graph Manager

The AGM holds a set of analysis graphs implemented in WWF. Each analysis
graph is a composition of the three analysis graph primitives introduced in Chap-
ter 4. For each analysis graph primitive we implemented a custom activity using
the WWF framework. In order to allow WWF to evaluate analytical expres-
sions, we implemented the custom MDX activity. This activity is used within the

350 M. Zwick, C. Lettner, and C. Hawel

Fig. 6. OlapRecorder integrated into Microsoft ExcelTM

analysis graph primitives to process arbitrary MDX queries and navigate to sin-
gle cells returned from the queries. Access to the OLAP server is implemented
using the ADOMD.NET framework which in turn uses XML/A as its commu-
nication protocol.

Figure 7 shows the analysis graph CheckDefects as it is implemented in WWF.
When the graph is invoked by the Event Manager, the product type of the sensor
lot just finished as well as the current date and week are passed as parameters
to the analysis graph.

The AnlysisLoop activity LoopTests loops through all tests performed by the
just finished product type. The MDX query used has been recorded by the OLAP
recorder in Microsoft Excel and was populated with two parameters (product
type and current week) that are passed to the analysis graph. As you can see
in figure 8 and 9, the bind variables :1 and :2 are used therefore. Queries used
in AnalysisLoop activities return a set of tuples which can be processed in the
subsequent steps. The CurrentItem property of the AnylsisLoop activity gives
access to the current selected tuple.

Within LoopTests, the AnalysisStep activity AnalyseTest performs the de-
tailed analysis as described in section 5.3. The number of defects for the last 4
weeks is retrieved by 4 separate MDX activities. Figure 9 shows how the MDX
activity Defects3WeeksAgo is configured. The results from the MDX activities
are propagated to the AnalyseTest activity. There, the average number of defects
for the last 4 weeks is calculated in the Result property.

In the evaluation part of AnalyseTest the 4 weeks average is compared to the
current week defects. The right branch (current higher than 4 weeks average)

Implementing Automated Analyses in an Active DWH Environment 351

Fig. 7. WWF implementation for CheckDefects

contains an Action activity that sends a message to the responsible operator.
The left branch is comprised by another AnalysisStep activity labeled Analyse-
GoodAverage.

352 M. Zwick, C. Lettner, and C. Hawel

Fig. 8. MDX statement for LoopTests

Fig. 9. Configuration of activity Defects3WeeksAgo

6 Discussion

Providing analysts with the appropriate tools to design automated analyses
based on workflows has a series of advantages:

Implementing Automated Analyses in an Active DWH Environment 353

– the analyst will be released from routine decision tasks,
– analysis graphs can be specified in the same way manual decision making

takes place; the business problem does not have to be transformed into a
single complex statement,

– the workflow steps of an analysis graph are much more readable and main-
tainable as a single complex query,

– workflows make the analysts domain knowledge explicit,
– the domain knowledge of the analyst will be documented,
– design and modification of analysis graphs can be accomplished by the ana-

lyst himself using graphical editors and last but not least,
– through automation of routine analysis tasks, a continuous and proactive

monitoring of production processes is guaranteed.

The prototype presented in this paper builds up the fundamental architecture.
In contrary to [12,2], our approach strongly advocates to integrate end-users into
the definition process of analysis graphs. Further, we could not identify the need
for a dedicated primary dimension level as it is introduced in [12,2]. The main
reason therefore is, that we are not strongly binding actions for the OLTP system
to the corresponding dimension element in the DWH.

There are a lot of open issues for future work in this area. First, a practical
evaluation of the proposed approach is needed. Key aspects will be how end-users
cope with design and modification of analysis graphs and whether the approach
scales up well for real world applications. Other issues are how to automatically
transform recorded analysis into analysis graphs, how to identify and merge iden-
tical analysis graphs and which optimizations can be accomplished to improve
execution performance. Finally, specification of decision points by end-users will
likely become the most challenging issue. As decisions are also driven by im-
plict knowledge of end-users, the semantic model will probably become a central
component in the architecture. An interesting approacch to avoid the semantic
model would be to interrupt the execution of the analysis graph and prompt for
user interaction. How far this approach is viable for practical applications has
to be investigated.

7 Conclusion

Considering the tremendous amount of data that will be generated in future,
we believe automated analysis will become a key technology to integrate data
warehousing into the operational business. Compared to classical data ware-
houses, active data warehouses are used for day-to-day business tasks, which
affect a growing number of users. These new users are experts in there respec-
tive domain but typically no IT professionals and therefore need user-friendly
tool support.

To address these issues, we presented an approach for implementing auto-
mated analyses in ADW systems using workflow engines. An example taken
from the quality assurance process of a sensor production line was implemented
using Windows Workflow Foundation and SQL Server 2005.

354 M. Zwick, C. Lettner, and C. Hawel

Acknowledgement. The authors gratefully acknowledge support by the Aus-
trian Government and the State of Upper Austria in the framework of the Kplus
Competence Center Program.

References

1. Kimball, R., Ross, M.: The Data Warehouse Toolkit. Wiley Computer Publishing,
New York (2002)

2. Thalhammer, T., Schrefl, M., Mohania, M.: Active data warehouses: Complement-
ing olap with analysis rules. Data & Knowledge Engineering 39 (2001)

3. Agosta, L., Gile, K.: Real-time data warehousing: The hype and the reality. Tech-
nical report, Forrester Research (2004)

4. Dresner, H.: Business activity monitoring: Bam architecture. In: Gartner Sympo-
sium ITXPO (2003)

5. Nguyen, T.M., Tjoa, A.M.: Zero-latency data warehousing for heterogeneous data
sources and continuous data streams. In: Proceedings of the Fifth International
Conference on Information and Web-based Applications & Services (iiWAS 2003)
(September 2003)

6. NCR/Teradata: http://www.teradata.com/
7. Agosta, L.: How to tell if your data warehouse is active. Technical report, Giga

Research (2004)
8. Coalition, W.M.: Workflow management coalition terminology and glossary. Tech-

nical report, Workflow Management Coalition (1999)
9. Golfarelli, M., Rizzi, S., Cella, I.: Beyond data warehousing: What’s next in busi-

ness intelligence. In: Proceedings of the Seventh ACM International Workshop on
Datawarehousing and OLAP (DOLAP ’04), pp. 1–6. ACM Press, New York (2004)

10. McCarthy, D., Dayal, U.: The architecture of an active database management sys-
tem. In: Proceedings of the 1989 ACM SIGMOD International Conference on Man-
agement of Data, pp. 215–224. ACM Press, New York (1989)

11. Nguyen, T.M., Schiefer, J., Tjoa, A.M.: Sense & response service architecture
(saresa): An approach towards a real-time business intelligence solution and its
use for a fraud detection application. In: Proceedings of the Eighth ACM Interna-
tional Workshop on Datawarehousing and OLAP (DOLAP ’05), pp. 77–86. ACM
Press, New York (2005)

12. Thalhammer, T.: Schrefl: Realizing active data warehouses with off-the-shelf
database technology. Software: Practive and Experience 32(12), 1193–1222 (2002)

13. Microsoft: http://wf.netfx3.com/

http://www.teradata.com/
http://wf.netfx3.com/

Author Index

Ackermann, Jörg 25
Aier, Stephan 40
Altintas, N. Ilker 54
Armendáriz-Iñigo, J.E. 69
Ashman, Helen 285

Bădică, Costin 84
Bassakidis, Alexandros 298
Brailsford, Tim 285

Casallas, Rubby 100
Cetin, Semih 54
Charaf, Hassan 202

Decker, H. 69
Derler, Patricia 112
Dogru, Ali H. 54
Drira, Khalil 158

el Diehn I. Abou-Tair, Dhiah 16

Girschick, Martin 127
Giurca, Adrian 84
González de Mend́ıvil, J.R. 69
González, Martha 255
González, Oscar 100
Gruhn, Volker 142

Hadj Kacem, Ahmed 158
Hadj Kacem, Mohamed 158
Hawel, Christian 341
Heitz, Claudius 172
Helferich, Andreas 187
Herzwurm, Georg 187
Hogger, Christopher J. 241

Imre, Gábor 202

Jesse, Stefan 187
Jmaiel, Mohamed 158

Klar, Felix 127
Kramer, Rutger 217
Kühne, Thomas 127

Lettner, Christian 341
Levendovszky, Tihamér 202

Lewis, Grace 226
Li, Min 241
Lin, Fengyi 326
Livas, Dimitris 298
López, Nicolás 100
Losavio, Francisca 255
Loverdos, Christos KK 298
Lutteroth, Christof 270

Matos, Gilberto 311
Mikusz, Martin 187
Muñoz-Escóı, F.D. 69

Niere, Jörg 16

Offermann, Philipp 40
Ortega, Dinarle 255

Pérez, Maŕıa 255
Pourabdollah, Amir 285

Schäfer, Clemens 142
Schönherr, Marten 40
Schröpfer, Christian 40
Skarmeas, Nikolaos 298
Smith, Dennis B. 226
Su, Kuo-Jung 326

Tai, Grace 311
Tanikella, Rajanikanth 311
Thalheim, Bernhard 1
Thiemann, Peter 172
Tsiara, Katerina 298
Turowski, Klaus 25
Tzoumas, Aris 298

Wagner, Gerd 84
Wehrwein, Brad 311
Weinreich, Rainer 112
Wölfle, Thomas 172
Wu, Ruey-Shyang 326

Yuan, Shyan-Ming 326

Zwick, Michael 341

	Title Page
	Preface
	Organization
	Table of Contents
	Engineering Database Component Ware
	Towards Information Systems Engineering
	Database Components and Construction of Schemes
	Non-invasive Database Component Composition
	Collaborating Database Component Suites
	References

	An Architecture for Integrating Heterogeneous University Applications That Supports Monitoring
	Introduction
	Today's Universities Business and IT-System Requirements
	Heterogeneous Information Systems
	Business Processes
	IT-System Requirements

	Related Work
	System Integration at the Business Logic Level
	The Common Business Model

	Conclusion
	References

	On the Specification of Parameterizable Business Components
	Introduction
	Specification of Parameterizable Software Components
	Exemplary Component $WarehouseManagement$
	Specification Proposals for Parameterization Properties
	Specification on Terminology Level
	Specification on Task Level
	Specification on Interface Level
	Specification on Behavioral Level

	Related Work
	Summary
	References

	Implementing Non-functional Service Descriptions in SOAs
	Service Management as a Key Issue in SOAs
	Requirements for Non-functional Service Description
	Additional Description for Service Lifecycle Management
	QoS Guarantees

	Relevant Standards
	OWL-S
	WSMF/WSMO/WSML
	WSDL-S
	UML Profile for QoS

	Extending OWL-S for Non-functional Service Description
	Extensions for Service Lifecycle Management
	Extensions for QoS

	Prototyping a Service Management
	Architecture
	Methodology

	Conclusion
	References

	Industrializing Software Development: The “Factory Automation” Way
	Introduction
	Background and Related Work
	The “Software Factory Automation” Way
	Basic Definitions and Stakeholders
	The Software Factory Automation Model
	SFA Architectural Hyperframe

	Software Asset Model for Software Factory Automation
	Understanding Software Asset
	Software Asset Meta Model
	Working with Assets

	Setting up a Software Factory
	Conclusions and Future Work
	References

	A Closer Look at Database Replication Middleware Architectures for Enterprise Applications
	Introduction
	System Model
	Protocols for Transaction Execution
	Group Communication
	The Underlying Database System
	Replication Support
	Replication Middleware

	Middleware Layout for Enterprise Applications
	Interfaces for Communication and Coordination
	Load Balancing
	Fault Tolerance and Recovery
	Consistency Levels

	Performance
	Scalability Through Response Time
	Transactional Web E-Commerce Benchmark TPC-W

	Conclusion
	References

	Using Rules and R2ML for Modeling Negotiation Mechanisms in E-Commerce Agent Systems
	Introduction
	Negotiation Model and Vocabulary
	Rules in Agent Negotiation
	Categories of Negotiation Rules
	Intended Semantics of Negotiation Rules for English Auctions

	Representing Negotiation Rules in R2ML
	R2ML ECA-Rules
	Mapping Examples
	General Mapping Criteria

	Conclusions and Future Work
	References

	Dealing with Scalability in an Event-Based Infrastructure to Support Global Software Development
	Introduction
	Background
	Example Scenario

	Requirements for Scalability
	Specific Requirements

	Proposed Solution
	Processes Synchronization
	Network Topology
	Fault Tolerance
	Process Monitoring

	Implementation
	Related Work
	Conclusions and Future Work
	References

	Models and Tools for SOA Governance
	Introduction
	Overview
	Organizational Processes and System Structure
	Service Life Cycle
	Model
	Tools
	Discussion and Further Work
	Related Work
	Conclusion
	References

	Generating Systems from Multiple Levels of Abstraction
	Introduction
	Architecture Stratification
	Refinement Annotations
	Refinement Transformations

	Case Study
	System Description
	Annotations
	Generic Visualization Framework
	Refining the System
	Generating the System

	Multi-level Editing
	Preserving New Parts
	Completing the Case Study

	Related Work
	Future Work
	Conclusion
	References

	Using Mobile Architecture Modeling and Simulation for Enterprise Applications
	Motivation
	Introduction
	Related Work
	Approach
	Behavioral Model
	Structural Model

	Example System
	Modeling in Con Moto
	Simulation

	Discussion
	Example Code
	References

	An UML-Based Approach for Validation of Software Architecture Descriptions
	Introduction
	Related Work
	The Meta-modeling Approach
	UML Verification Through Formal Methods

	The Validation Approach
	Intra-profile Validation
	Inter-profile Validation

	Implementation
	Conclusion

	Integration of an Action Language Via UML Action Semantics
	Introduction
	Requirements for an Integration
	Background: UML Action Semantics
	Integration Paths
	ABL, the Action Language for Business Logic
	Types and Variables
	Assignment Compatibility
	Links
	Create

	Transformations
	From ABL to UML Action Semantics
	From UML Action Semantics to Action Language
	From UML Action Semantics to Java
	Evaluation of an Example

	On the Choice of UML Action Semantics
	Related Work
	Conclusion
	References

	Software Product Lines, Service-Oriented Architecture and Frameworks: Worlds Apart or Ideal Partners?
	Introduction
	Software Product Lines
	Scoping
	Domain Engineering
	Application Engineering

	Component Frameworks
	Introduction
	Classification and Framework Architecture
	Specification of Business Components

	Service-Oriented Architecture (SOA)
	Introduction
	Key Elements of a Service-Oriented Architecture
	Basic and Architectural Principles of a Service Oriented Architecture
	Outlook on Service-Oriented Architecture

	Comparison of the Concepts
	Conclusion
	References

	Modeling the Effect of Application Server Settings on the Performance of J2EE Web Applications
	Introduction
	Related Work
	The Performance Measurement
	The Performance Model
	Solving the Model
	Error of the Model

	Conclusions
	References

	Possibilities for Advanced Dissemination and Durable Storage of Scientific Data on the Grid
	Introduction
	Requirements Surrounding EASY
	Digital Longevity
	Advanced Dissemination and Data Infrastructure

	Current Situation
	Storage Solution
	Distributed Storage
	The DBMS Alternative

	Possibilities for Grid Enabling AIPStore
	Longevity on the Grid
	Advanced Dissemination

	Moving to the Grid
	Future Work
	Conclusion
	References

	Developing Realistic Approaches for the Migration of Legacy Components to Service-Oriented Architecture Environments
	Introduction
	SOA Basics
	Basic SOA Concepts
	Goals of SOA Adoption
	Building Blocks of SOA-Based Systems
	Basic SOA Operations

	Common Misconceptions About SOA
	It Is Easy to Develop Applications Based on Services
	It Is Easy to Compose Services Dynamically at Runtime
	SOA Is All About Standards and Standards Are All That Is Needed
	Other Common Misconceptions

	Pillars of SOA-Based Systems Development
	Strategic Alignment
	SOA Governance
	Technology Evaluation
	Awareness of a Different Mindset

	Migration of Legacy Component to SOA Environments
	Establish Migration Context
	Describe Existing Capability
	Describe Target SOA State
	Analyze the Gap
	Develop Migration Strategy

	Summary
	References

	A Generic Constraints-Based Framework for Business Modeling
	Introduction
	Related Work
	Model Structure
	Defining the Model
	Model Decomposition
	Sub-model Features

	Business Plans
	Representing and Executing Business Constraints
	Design and Implementation Considerations
	Discussions and Conclusions
	References

	Experimenting with the Expressive Power of an Enterprise Architecture Framework
	Introduction
	EA Frameworks
	EAIF Overview
	Related Work

	Case Studies: Description and EAIF Instantiation
	CORBA Compliant Scientific Programming System Case Study
	CRM Case Study with J2EE

	EAIF Evaluation
	Features for the EAIF Evaluation

	Conclusion
	References

	AP1: A Platform for Model-Based Software Engineering
	Introduction
	Terminology
	Motivation
	Architectural Overview
	The Repository
	The Parsimonious Data Model
	Data and Control Integration

	The Generic Editor
	Customizability
	Distributed Synchronous Collaboration

	Conclusion

	A User-Oriented Design for Business Workflow Systems
	Introduction
	Related Works
	Methodology
	Gathering Initial Requirements
	Functionalities and Implications
	Ready-to-Study Cases Form
	Sent-Items Form
	History and Current-Status Forms
	Workflow Definition/Change Interface
	Workflow-Bypassing Form
	Drawing-Back Form

	The System Architecture
	Database Design
	Workflow Definition Set
	Flexibility and Integrity of Workflow Changes
	Workflow Execution Set

	A Research on User’s Requirements
	Discussion and Lessons Learnt
	Conclusion
	References

	Olympic Agents
	Introduction
	Architectural Design Patterns
	Asynchronous Messaging
	Active Message Boards and Content Based Routing
	Chain of Command
	Adaptors and SOA: Interfacing with External Systems
	Priority Queues

	The Agent Architecture
	Additional Considerations
	Implementation Platform
	Logging

	Summary and Conclusions
	References

	Relating Requirements to a User Interface Architecture for a Rich Enterprise Web Application
	Introduction
	Terminology

	Structure of the UI Architecture
	Requirements of the Different Aspects of the UI Architecture
	View Structure
	Skin
	User Interaction Aspect
	Navigation Support
	User Support
	UI State
	Web Application Infrastructure

	Recommendations for Requirements Gathering
	Conclusion
	References

	FJM2 - A Decentralized JMS System
	Introduction
	Backgrounds
	Java Message Service (JMS)
	FJM
	Objective

	FJM2 System Architecture
	FJM2 Architecture
	FJM2 Message Transmission Model
	FJM2 Message Publish Program Flows
	FJM2 Message Subscribe/Consume Program Flows

	FJM2 Protocol
	NORM Protocol
	NORM Protocol in FJM2

	FJM2 Performance Analyses
	Testing Environment
	UDP Performance Benchmark on 100Mbps Ethernet Interface
	One-to-Two Benchmark on 100MBps Ethernet Interface

	Conclusion and Future Works
	References

	Implementing Automated Analyses in an Active Data Warehouse Environment Using Workflow Technology
	Introduction
	Related Work
	Combining DWH and BAM
	Analysis Rules

	Proposed ADW Architecture
	Primitives for Analysis Graphs
	Implementing Analysis Graphs Using Workflow Engines
	Motivation
	Example
	Implementation Overview
	Implementation Details of the Analysis Graph Manager

	Discussion
	Conclusion
	References

	Author Index

