
Chapter 21
Stochastic Frontier Analysis and Efficiency
Estimation

Christopher Cornwell and Peter Schmidt

Theoretically, a production function gives the maximum possible output with a
given set of inputs. This is different from its common regression counterpart, which
specifies the conditional mean of output. The production function defines a bound-
ary or “frontier”, deviations from which can be interpreted as inefficiency. The
econometrics of stochastic frontier analysis (SFA) provides techniques for mod-
elling the frontier concept within a regression framework so that inefficiency can be
estimated.

Obviously, the notion of a frontier can be extended to other representations of
technology. Further, with behavioral assumptions like cost minimization, allocative
inefficiency can be distinguished from the technical errors. We discuss ways to make
this distinction empirically, but in this chapter we concentrate primarily on the es-
timation of production frontiers and measures of technical inefficiency relative to
them.

The literature on SFA is now roughly 30 years old and surveys have appeared
periodically (Førsund, Lovell and Schmidt (1980), Schmidt (1985–86), Lovell and
Schmidt (1988), Bauer (1990) and Greene (1993)). In addition, the literature has
been given a textbook treatment by Kumbhakar and Lovell (2000). Aside from re-
viewing recent advances in SFA, this chapter differs from the earlier surveys in its
focus on the use of panel data and attention to questions of econometric and statis-
tical detail.

In general, the frontier specifications we consider are variants of the general
panel-data regression model:

yit = αt +x′itβ + vit −uit = αit +x′itβ + vit , (21.1)
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where yit is output for firm i (i = 1, . . . ,N) at time t (t = 1, . . . ,T ), xit is a
vector of inputs and vit is a random error. In contrast to vit , uit is a one-sided
error (uit ≥ 0), capturing the shortfall of yit from the frontier, (αt + x′itβ + vit),
The term “stochastic frontier” follows from the fact that the frontier specification
includes vit .

Defining αit = αt − uit , we have a model in which inefficiency is reflected in
differences between firms in the intercepts. Various special cases arise depending
on the restrictions placed on the αit . The early literature on SFA developed in a
pure cross-section (T = 1) context, where identification requires strong assump-
tions about the distributions of vi and ui. The application and extension of panel-
data econometrics to SFA grew out dissatisfaction with these assumptions. The first
panel frontiers treated inefficiency as a time-invariant firm effect, αi = α−ui. Esti-
mates of the αi can be obtained using standard panel techniques and converted into
estimates of inefficiency. The time-invariance restriction can substitute for the distri-
butional assumptions necessary for cross-section SFA. Later work on panel frontiers
introduced specifications for the αit that relax the time-invariance assumption, while
retaining the advantages of panel data.

21.1 Measurement of Firm Efficiency

In general, when we say that a firm produces efficiently, we mean this in both a
technical and allocative sense. Here our emphasis will be on technical efficiency, but
we will pay some attention to allocative efficiency as well, in both cases following
the canonical approach to the measurement problem developed by Farrell (1957).

A firm is technically efficient if it uses the minimal level of inputs given output
and the input mix or produces the maximal level of output given inputs. The first
definition is formalized in Farrell’s input-based measure,

I (y, x) = min[b : f (bx)≥ y] , (21.2)

where I indicates the proportion of x necessary to produce y, holding the input
ratios constant, and f is a standard, neoclassical (frontier) production function. This
measure is illustrated in Fig. 21.1, which depicts an inefficient firm producing output
yA with input vector xA. Technically efficient production occurs along the isoquant,
Isoq[L(yA)] = [x : I (yA, x) = 1], where L(y) = [x : (y, x) is feasible] is the input
requirements set. Because only bxA is required to produce yA, both inputs must be
scaled back by the factor (1−b) to achieve technical efficiency.

While this measure is used widely, its appeal diminishes when the input set is not
strictly convex (the isoquant is not everywhere downward sloping). For example,
the input vector xB is technically efficient according to the Farrell input measure,
although the same level of output could be produced with less of x1. In this case,
a distinction exists between the isoquant and the efficient subset, ES[L(yA)] = [x :
x ∈ L(yA), and x̃ ≤ x implies x̃ /∈ L(yA)], with ES[L(yA)] ⊆ Isoq[L(yA)]. In most
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Fig. 21.1 Farrell measures of technical efficiency

econometric specifications this distinction has no practical significance, because the
functional forms used in empirical work impose equivalence between the efficient
subset and the isoquant (Lovell (1993) and Greene (1993)).

Corresponding to the output-oriented definition of efficiency is Farrell’s output-
based measure,

O(y, x) = min

[
a : f (x)≥ y

a

]
. (21.3)

Holding inputs constant, 1/O gives the amount by which output could be expanded.
From the perspective of the output-based measure, the firm producing yA with xA in
Fig. 21.1 will also be technically efficient if it operates on Isoq[L(yA/a)].

Färe and Lovell (1978) showed that if f is homogeneous of degree r (r =
returns to scale), then y = f (bx) = br f (x) = a f (x) and a = br. Thus, I = O
only under constant returns. When technology is not homogeneous, there is no
straightforward interpretation of O in terms of I , a result that has some im-
plications for how technical efficiency is estimated (Atkinson and Cornwell
(1994a)).

A firm is allocatively inefficient when the marginal rate of substitution between
any two of its inputs is not equal to the corresponding input price ratio. This is true
of the firm using xA in Fig 21.1, instead of the cost-minimizing input vector x∗. Let
p be the input price vector corresponding to the isocost line through x∗. Then the
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(input-based) technical efficiency of the firm producing with xA is b = p′(bxA)/p′xA,
and since p′x∗ = p′xC, its allocative efficiency is the ratio p′xC/p′(bx). It follows
that total or cost efficiency of the firm is given by p′xC/p′xA, or the product of
technical and allocative efficiency.

21.2 Introduction to SFA

21.2.1 The Basic SFA Empirical Framework

We begin with the Farrell output-based technical efficiency measure in (21.3), which
relates observed output, yi, to the production frontier, f (xi; β ), as follows:

yi = ai f (xi; β ), 0 < ai ≤ 1 , (21.4)

The basic empirical framework for SFA is a regression specification involving a
logarithmic transformation of (21.4) that adds a random error term (vi), as in

lnyi = ln f (xi; β )+ vi−ui , (21.5)

where ui =− lnai ≥ 0 represents technical inefficiency and output is bounded from
above by the stochastic frontier f (xi; β )exp(vi). The output-based measure of tech-
nical efficiency is obviously recovered as exp(−ui).

Models like (21.5) were first introduced by Aigner, Lovell and Schmidt (1977)
and Meeusen and van den Broeck (1977). These papers expressed the view that
the frontier specification should be like any other regression function, which is to
say, stochastic. Thus, the vi serve the same purpose as any conventional regression
disturbance—to account for random unobserved factors.

The central econometric issue in models like (21.5) is how to treat the ui. With
cross-section data they are usually assumed to follow some non-negative distri-
bution, conditional on xi. Panel data afford the opportunity to view (21.5) as a
standard unobserved-effects model and avoid the distributional assumption. Other
issues, such as choosing a functional form and the specification for f (xi; β ), are
also important insofar as they affect the estimation of firm efficiency.

21.2.2 Stochastic vs Deterministic Frontiers

The earliest attempts to quantify production inefficiency treated the frontier as de-
terministic, ignoring the role of vi. The classic example of this approach is Aigner
and Chu (1968). Aigner and Chu calculated β as the solution to either the lin-
ear or quadratic programming problem, taking f (xi; β ) to be Cobb-Douglas, and
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computed technical inefficiency as deviations from the fitted frontier. By ignoring
vi, all deviations from the frontier were regarded as inefficiency. Further, because
there is no stochastic structure to these models, it does not make sense to talk about
the statistical properties of their approach.

Closely related to the Aigner–Chu procedure is the non-parametric program-
ming technique of data envelopment analysis (DEA). With DEA the goal is to
“envelop” the data with a quasi-convex hull. Since DEA is non-parametric, it is
robust to misspecification of the functional form for f (xi; β ). See Cooper, Seiford
and Zhu (2004) for a recent survey of DEA.

The analysis of a deterministic frontiers can be made statistical by treating ui ≡
yi− f (xi; β ) as random variables. A simple strategy is assume the ui are iid with
a constant mean μ and constant variance, and uncorrelated with xi. In the Cobb-
Douglas setup of Aigner and Chu, this recasts in problem as a regression of the
form

lnyi = α∗+
K

∑
k=1

βk lnxik−u∗i , (21.6)

where α∗ = (α − μ) and u∗i = ui− μ . Ordinary least squares (OLS) consistently
estimates α∗ and the βks, from which a “corrected” OLS (COLS) estimator of α
can be obtained:

α̂ = α̂∗+max
i

(−û∗i ) , (21.7)

where û∗i = ln yi− α̂∗ −∑k β̂k lnxik. Then, letting ûi denote the corrected residu-
als based on α̂ , technical efficiencies can be estimated as exp(−ûi). However, the
distribution of α̂ is unknown even asymptotically.

Likelihood-based approaches to (21.6) exist as well; for example, the solutions to
the Aigner–Chu linear (quadratic) programming problem is a maximum-likelihood
estimator (MLE) if the ui are exponential (half-normal) (Schmidt (1976)). Still, the
properties of these estimators remain unknown, because the range of yi depends
on β , violating one of the regularity conditions for the usual properties of MLEs
to hold.

Similarly, a statistical analysis of DEA is possible if assumptions are made about
the nature of the randomness in the data. One possibility that has been suggested is
to assume simply that the data points (yi, xi) are a random sample from the set of
feasible production points. Under this assumption, plus some regularity conditions
on the distribution of these points in the neighborhood of the frontier, the DEA
measure is a consistent estimator of the efficiency level of a given firm, and its rate
of convergence is known. The asymptotic distribution theory is rather complicated.
Bootstrapping is also possible, although there are some non-standard features of
the bootstrap that are necessary in this setting. For a survey, see Simar and Wilson
(2000).

We do not recommend deterministic frontiers. This is partly due to our philo-
sophical view of the nature of randomness in the world, and partly due to the relative
complexity of statistical inference in deterministic frontier models.
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21.2.3 Other Frontier Functions

Circumstances and objectives sometimes arise that make alternative representations
of technology a more desirable framework for efficiency analysis. These include
the presence of multiple outputs, exogeneity assumptions and interest in estimating
allocative efficiency.

Recently, it has become popular to accommodate multiple outputs through the
use of distance functions (e.g. Coelli and Perelman (1996), Morrison, Johnston and
Frengley (2000), and Atkinson, Cornwell and Honerkamp (2003)), which are di-
rectly related to the Farrell measures of technical inefficiency. For example, the
input distance function is defined as the maximum scale factor necessary to place x
on the boundary of L(y):

DI (y, x)≡max
λ

[
λ :

(
x
λ

)
∈ L(y)

]
, (21.8)

where y is a vector of outputs. The reciprocal of DI is just the Farrell input mea-
sure, which implies b in (21.2) is 1/λ . The empirical counterpart to (21.8) can be
expressed as

0 = lnDI (yi, xi)+ vi−ui , (21.9)

where ui = − ln bi. Estimation of the technology parameters can proceed as a
straightforward application of the generalized method of moments (GMM), since
standard assumptions about xi, vi and ui imply a set of moment conditions that
identify the model (see Atkinson, Cornwell and Honerkamp (2003)). Extracting es-
timates of the ui is possible with the methods described in the next section.

The most commonly adopted strategy for estimating technical and allocative
efficiency together is to adopt a cost function framework. One might also use a
cost function to accommodate multiple outputs or because it is more reasonable to
assume output is exogenous. The usual cost frontier specification is derived from
(21.2) as

C = g

(
y,

p
b

)
= min

bx

[(
p
b

)′
(bx) : f (bx) = y

]
=

1
b

g(y,p) , (21.10)

where C is observed cost, p is a vector of input prices and the last equality follows
from the fact that a cost function is linearly homogeneous in p. Equation (21.10)
leads to empirical models of the form

lnCi = lng(yi,pi)+ vi +ui , (21.11)

where ui = − lnbi. The ui in (21.11) measure cost efficiency, which will generally
include both technical and allocative distortions. Below we discuss how to distin-
guish between the two sources of error.
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21.2.4 SFA with Cross-Section Data

21.2.4.1 Estimating the Basic Stochastic Production Frontier

Estimation of (21.5) usually hinges on distributional assumptions for the vi and ui.
Such assumptions are required to estimate technical efficiency at the firm level with
cross-section data. The usual choices are vi |xi ∼ N(0, σ2

v ) and ui |xi ∼ N+(0, σ2
u )

(half-normal). Other possibilities for ui include exponential, truncated normal and
gamma, and evidence suggests that frontier estimates are not robust to the choice
(Schmidt and Lin (1984)). Given distributions for vi and ui and a functional form
selected for f (xi; β ), the standard approach is to estimate (21.5) by ML and is au-
tomated in popular econometric software such as Stata, TSP and Limdep. There is
also a COLS option for the stochastic frontier case in which the OLS estimator of
the intercept is corrected by a consistent estimator of E(ui), identified through the
higher-order moments of the OLS residuals.

In most cases, the whole point of the frontier estimation exercise is to compare
efficiencies at the firm level. Thus the focus of estimation ultimately is on the residu-

als, but no matter how they are computed, they represent ̂(vi−ui), not ûi. Estimation

of firm-specific efficiencies requires that ûi be extracted from ̂(vi−ui).
Jondrow, Lovell, Materov and Schmidt (1982) proposed an estimator for the ûi

based on E[ui |(vi− ui)] evaluated at ̂(vi−ui). Under the usual assumptions of the
model, consistent estimates of the technology parameters can be obtained via ML

or OLS, from which the ( ̂vi−ui) can be calculated. Although the Jondrow et al.
estimator is not consistent (because the variation associated with the distribution of
ui conditional on (vi− ui) is independent of N), there is no alternative consistent
estimator of firm-level efficiency when using cross-section data.

21.2.4.2 Estimating Technical and Allocative Efficiency

Schmidt and Lovell (1979) first demonstrated how to incorporate allocative distor-
tions by introducing errors in the first-order conditions for cost minimization. With
distributional assumptions for the allocative errors, they estimated the first-order
conditions along with the production frontier. Because Schmidt and Lovell adopted
the self-dual Cobb-Douglas functional form, their decomposition of cost efficiency
into technical and allocative components was straightforward.

A more typical framework for estimating technical and allocative efficiency
jointly is a cost system with the general form,

Ci = g(yi,pi)exp(vi +ui +ηi) (21.12)

sik = s(yi,pi)exp(ωik), (21.13)



704 C. Cornwell and P. Schmidt

where sik is the observed share of the kth input, s(·) is the optimal share im-
plied by Shephard’s lemma applied to the deterministic component of the cost
function, g(yi,pi), and ηi and ωik are random disturbances reflecting allocative
inefficiency.

There is an inherent econometric challenge in estimating (21.12) and (21.13)
with cross-section data, because of the relationship between the allocative errors.
Allocative inefficiency raises costs, so ηi must be one-sided, but allocative distor-
tions involve over- and under-utilization of inputs, so the ωik will be two-sided.
Further, ηi and ωik will be correlated with each other. Without relying on functional
form restrictions, or assuming the problem away by asserting independence between
ηi and ωik, estimation is complicated. Kumbhakar (1997) derived a general solution
to the problem, but his model is highly nonlinear in the terms representing alloca-
tive efficiency and therefore difficult to estimate. More optimistically, Atkinson and
Cornwell (1994b) show how panel data can obviate the problem entirely.

21.3 SFA with Panel Data

21.3.1 Models with Time-Invariant Inefficiency

The models we consider in this section are special cases of (21.1), with αit = αi =
α−ui, so that

yit = αi +x′itβ + vit . (21.14)

From the viewpoint of the panel-data literature, (21.14) is just a standard
unobserved-effects model. Unless otherwise noted, we maintain the following as-
sumptions for (21.14):

(A.1) E(vit |xo
i ,αi) = 0, t = 1, . . . ,T (21.15)

(A.2) E(viv′i |xo
i ,αi) = σ2

v IT (21.16)

where xo
i = (xi1, . . . ,xiT ) and vi is T × 1. Thus we generally treat the variables in

xit as strictly exogenous (which, in a production context, could perhaps be defended
using the argument of Zellner, Kmenta and Dreze (1966)) and require the vit to
be conditionally homoscedastic and serially uncorrelated. Approaches to estimating
(21.14) differ depending on what is assumed about the αi (ui).

From this point on, we will no longer make an explicit notational distinction
between a variable and its logarithm. To be consistent with most empirical specifi-
cations, we will assume y and x are measured in logs. Thus, (21.14) can be thought
of as a Cobb-Douglas production frontier. However, the form of f (xi; β ) is not
very important for how we proceed with estimation, as long as the unobserved ef-
fect/inefficiency is additive.
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21.3.1.1 Advantages of Panel Data

The use of panel data to fit production relationships dates back at least to Mundlak
(1961), who used repeated observations on farms to control for unobserved soil
quality and managerial ability that affect output and may be correlated with inputs.
In most applications outside the SFA literature, this is the primary motivation for
using panel data—to control for unobservables that may be correlated with xit .

The first use of panel data in SFA was by Pitt and Lee (1981), but not until
Schmidt and Sickles (1984) was the link between the frontier and panel-data lit-
eratures systematically established. They identified three advantages of panel data
for SFA. First, the assumption of independence between xi and ui invoked in cross-
section estimation can be relaxed. Second, specific distributional assumptions for
vi and ui, required in cross-section data to estimate efficiency at the firm level, can
be avoided. Third, firm-level efficiency can be estimated more precisely, and, in the
case where T →∞, consistently. There is one caveat, however. These benefits come
at the expense of another assumption—that inefficiency does not vary over time.
The longer the panel, the less sense this assumption makes.

21.3.1.2 Estimating the Basic Panel Frontier Model

It is common in the panel-data literature to say that estimation of (21.14) depends
on whether the αi are fixed or random. As argued originally by Mundlak (1978) and
emphasized by Wooldridge (2002), this terminology misses the point. Of course the
αi are random; the issue is whether they are correlated with xit . To take a fixed-
effects (FE) approach to estimation is to allow arbitrary correlation between xit and
αi. A random-effects (RE) specification generally denies this possibility, or allows
such correlation only in very specific ways. This point is especially important in the
SFA literature, where correlation between inputs and inefficiency (ui) is a concern.

To facilitate the review of estimator choices for (21.14), we rewrite the model
combining all T observations for a single firm:

yi = Xiβ + eT αi +vi , (21.17)

where yi and vi are vectors of length T , Xi is T ×K and eT is a T × 1 vector of
ones. We begin the review maintaining assumptions (A.1) and (A.2) and leaving
open the possibility that xit is correlated with ui. Under these two assumptions, the
asymptotically efficient procedure is the FE estimator,

β̂FE =
( N

∑
i=1

X′iMiXi

)−1 N

∑
i=1

X′iMiyi , (21.18)

where Mi = IT − eT (e′T eT )−1e′T is the familiar projection that transforms the data
into deviations from firm means (for example, yit− ȳi, ȳi = T−1 ∑t yit). The estima-
tor is easily computed as OLS of yit − ȳi on xit − x̄i.
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More asymptotically efficient estimators exist if correlation between xit and ui

can be ruled out. An assumption like

(A.3) E(ui |xo
i ) = μ , (21.19)

does this, where μ > 0 indicates that the ui are drawn from a one-sided distribution.
Notationally, we accommodate μ as in (21.6), by defining α∗ = (α − μ) and u∗i =
ui−μ . Then, (21.17) becomes

yi = Xiβ + eT α∗+ εi , (21.20)

where εi = vit −u∗i . Along with (A.3) it is also common to assume

(A.4) E(u2
i |xo

i ) = σ2
u , (21.21)

which implies E(εiε ′i )≡Ωi = σ2
v IT +σ2

u eT e′T . Under (A.1)–(A.4), the standard RE
estimator,

(
α̂∗

β̂

)

RE

=
[ N

∑
i=1

(eT , Xi)′Ω−1
i (eT , Xi)

]−1 N

∑
i=1

(eT , Xi)′Ω−1
i yi , (21.22)

is asymptotically efficient.

Calculating (21.22) is equivalent OLS of Ω−1/2
i Yi on Ω−1/2

i , where Ω−1/2
i = IT−

(1−ψ)Pi, ψ = [σ2
v /(σ2

v +T σ2
u )]1/2 and Pi = IT −Mi. The form of Ω−1/2

i implies a
“quasi-demeaning” of the data, (for example, yit− (1−ψ)ȳi), that subsumes the FE
transformation. Clearly, as T → ∞, ψ → 0 and β̂RE → β̂FE. Actual implementation
requires consistent estimators for σ2

v and σ2
u . There are a number of alternatives, but

the most popular follows Wallace and Hussain (1969) and estimates the variance
components using the FE and “between” residuals, which are obtained from OLS
of ȳi on x̄i.

Occasionally, the RE estimator is justified on the grounds that some of the vari-
ables of interest do not vary over time and such variables are swept away by the
FE transformation. This is not necessary because the coefficients of time-invariant
variables (say zi) can be estimated as OLS of (ȳi− x̄iβ̂FE) on zi. However, the es-
timated coefficients of zi will be consistent only if the time-invariant variables are
uncorrelated with ui. In this case, one would not use the RE estimator either, for the
same reason.

Hausman and Taylor (1981) offered a solution to this problem in the form of an
efficient instrumental-variables (IV) estimator that allows some variables in xit and
zi to be correlated with the ui. Letting X∗i = (Xi,Zi), their estimator can be written as

(
α̂∗

β̂

)

HT

=
[ N

∑
i=1

(eT , X∗i )
′Ω−1/2

i PAi Ω
−1/2
i (eT , X∗i )

]−1 N

∑
i=1

(eT , X∗i )
′Ω−1/2

i PAi Ω
−1/2
i yi , (21.23)
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where PAi is the projection onto the instrument set Ai = (MiXi,PiXi1,Zi1) and
(Xi1,Zi1) designates variables that are uncorrelated with ui. Identification requires
that there are at least as many variables in Xi1 as in Zi2. Assuming (A.1), (A.2), (A.4)
(appropriately modified to include zi) hold, along with the Hausman-Taylor orthog-
onality conditions, β̂HT is the efficient GMM estimator using the instruments in Ai.

Amemiya and MaCurdy (1986) show that more instruments are implied by the
assumption that Xi1 and Zi1 are uncorrelated with ui. Their efficient IV estimator has
the same form as (21.23), but uses the instrument set [MiXi,IT ⊗(xo

i1,zi1)]. Breusch,
Mizon and Schmidt (1989) further extend the Hausman-Taylor estimator under the
additional assumption that the correlation between Xi2 and ui is constant over time.
Regardless of the instrument employed, any estimator of the form given in (21.23)
can be carried out by applying the RE data transformation to (21.20) and estimating
the transformed regression by IV.

The assumptions that lead to more efficient estimators than β̂FE can be tested
using the well known methodology of Hausman (1978). A Hausman test of the
difference between β̂FE and β̂RE will provide evidence on whether the data support
(A.3). The restrictions embodied in the efficient IV estimators can be tested in a
similar fashion, or by using the GMM-based test of overidentification suggested by
Hansen (1982).

Finally, it is worth pointing out that most popular econometric software auto-
mates β̂FE and β̂RE, and the Hausman test of their difference. Some (for example,
Stata and Limdep) also contain procedures to compute the Hausman–Taylor and
Amemiya–McCurdy estimators. However, as we have discussed, all of these estima-
tors are easily implemented with standard OLS or IV packages after appropriately
transforming the data.

21.3.1.3 Firm-Specific Technical Efficiency Estimates

Given any consistent estimator β , firm-specific estimates of technical inefficiency
can be obtained using a COLS procedure as with a deterministic frontier. This in-
volves calculating

ûi = α̂− α̂i, α̂ = max
i

(α̂i) , (21.24)

normalizing the frontier in terms of the best firm in the sample. Then, the remaining
firms’ efficiency levels are estimated by exp(−ûi), which is consistent as T → ∞
(assuming β̂ is).

In the FE case, αi can be estimated as α̂i = ȳi− x̄i
′β̂FE , or by direct OLS estima-

tion of (21.17) in which the αi appear as coefficients of firm-specific dummy vari-
ables. The latter is cumbersome if the sample contains a large number of firms, but
some software packages (Stata and Limdep) offer this as an alternative to their reg-
ular FE procedure (OLS on demeaned data). Because the FE estimator of β is con-
sistent under relatively weak conditions, it is appealing as a basis for SFA. However,
its appeal diminishes if the empirical frontier specification includes time-invariant
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regressors. As we suggested earlier, the effects of these variables can be parsed out
of α̂i, but their estimated coefficients will be consistent only if the time-invariant
variables are uncorrelated with ui, and if that is the case the Hausman-Taylor esti-
mator is preferred.

We should point out that, while α̂ is consistent as T → ∞, it is biased upward
when T is fixed. This upward bias is due to the “max” operation, and is consequently
more severe the larger N is. In fact, Park and Simar (1994) show that consistency of
α̂ requires the condition that (lnN)/T 1/2 → 0, so that N cannot increase too fast as
T increases. The upward bias of α̂ in the fixed-T case causes a downward bias in
estimated efficiencies (that is, in the ûi). We will comment more on this issue when
we discuss inference on the inefficiencies.

A more difficult problem is distinguishing inefficiency from unobservable time-
invariant variables. The COLS procedure will overstate a firm’s inefficiency if there
are time-invariant unobservables, but the alternatives require more assumptions.
One example is Heshmati and Kumbhakar (1994), who deal with capital as a fixed
unobservable in a study of Swedish dairy farms. Their strategy is to assume that
(yit −x′itβ ) can be decomposed as (αi + vit +uit), with uit ≤ 0, and treat the αi as a
fixed firm effect (representing unobserved capital). In addition, they take the vit and
uit to be conditionally normal and half-normal, as in standard cross-section SFA.
They impose independence between xit and uit , and they also assume that the uit are
independent over time. The latter is a very unrealistic assumption. This approach
will likely understate inefficiency because any time-invariant component of ineffi-
ciency is eliminated with the fixed effects, and any persistent component will be at
least partially eliminated.

The RE specification accommodates time-invariant regressors, but care should
be taken in testing the assumptions that serve as a basis for estimation, whether the
estimator is RE or efficient IV. Residuals constructed from either estimator can be
used to estimate αi = α∗ − u∗i and carry out the COLS procedure in (21.24). If the
RE estimator is justified, an alternative is to use the best linear unbiased predictor
(BLUP) of u∗i ,

û∗i =
−σ̂2

u ∑t ε̂it

T σ̂2
u + σ̂2

v
, (21.25)

in the COLS procedure.
Finally, as the Heshmati and Kumbhakar (1994) example illustrates, it is also

possible to proceed with essentially the same assumptions as in the cross-section
case. The only advantage of panel data then is the added precision that comes from
repeated observations on each firm. Battese and Coelli (1988) typify this approach,
assuming the ui are truncated normal and the vit are normal, conditional on xo

i .
They estimate α , β and the parameters of the error distributions by ML. An ad-
vantage of this approach, if xit and ui are independent, is that the frontier intercept
α is estimated directly, without the need for the “max” operation in (21.24). Thus,
the estimated frontier is not normalized in terms of the best firm and the best firm
need not be defined as 100 percent efficient. Battese and Coelli showed how to
obtain firm-specific efficiency estimates by generalizing the Jondrow et al. (1982)
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decomposition for a panel-data setting. The Battese–Coelli procedure is usually
available in software packages that support ML estimation of the cross-section fron-
tier model.

Regardless of the method, the estimation of firm-specific technical inefficiency
is straightforward. However, inference regarding the ûi is not. This is especially
true for the COLS procedure; because of the “max” operation in (21.24), standard
distributional results do not apply. We take up the problem of inference in a separate
section below.

21.3.1.4 Explaining Firm Efficiency

Often one is interested not only in estimating efficiency levels, but also in deter-
mining whether observable firm characteristics can explain them. For example, one
might ask whether state-owned or privately owned enterprises differ in their effi-
ciency levels, or whether big firms are more efficient than small firms. Questions
like these can be addressed in the context of a stochastic frontier model in which the
distribution of technical inefficiency depends on such firm characteristics.

To be more explicit, we consider a stochastic frontier model like (21.1) above,
and now assume that the technical inefficiency term uit depends on some observed
variables zit , with the dependence expressed as uit(zit , δ). We treat these variables
as exogenous, so they can include inputs or functions of inputs, but they should not
be a function of output.

As a specific example, the model of Reifschneider and Stevenson (1991), Caudill
and Ford (1993) and Caudill, Ford and Gropper (1995) (hereafter, RSCFG) assumes
that uit is distributed as N(0,σit)+, where σit is a function of zit and δ. One possibil-
ity is σit = exp(z′itδ). Since the expected value of uit is proportional to σit , we have
parameterized the mean of technical inefficiency. However, since the variance of uit

is proportional to σ2
it , we have also parameterized its variance. As a result specifi-

cations of this type are also referred to as models of heteroskedasticity. Kumbhakar
and Lovell (2000) discuss models of heteroskedasticity in one place (Sect. 3.4) and
incorporating exogenous influences on efficiency in another (Chap. 7), but in our
view these are the same. We will discuss these models from the point of view of
explaining efficiency.

Many empirical analyses have proceeded in two steps. In the first step, one es-
timates the stochastic frontier model and firms’ efficiency levels, ignoring z. In the
second step, one tries to see how efficiency levels vary with z, perhaps by regress-
ing a measure of efficiency on z. It has long been recognized that such a two-step
procedure will give biased results. Since E(y |x,z) depends on both x and z, the
first-step regression of y on x will be biased by the omission of z, if x and z are
correlated. A more subtle point is that the calculation of the firm-specific inefficien-
cies depends on the variances of vit and uit . Ignoring the fact that the variance of
uit is not constant, these estimates will be under-dispersed. These points are dis-
cussed in Kumbhakar and Lovell (2000), page 119 and Chap. 7, and in Wang and
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Schmidt (2002), Sect. 2.3. Simulations reported in Wang and Schmidt indicate these
biases are very severe. Accordingly, we do not recommend two-step procedures.

The alternative to a two-step procedure is one-step estimation by ML. For ex-
ample, under the assumptions of the RSCFG model, the density for observation i, t
is well defined. The likelihood then follows from an additional assumption on the
independence, or form of dependence, over time at the firm level. This will be dis-
cussed in more detail below.

The literature contains several alternatives to the RSCFG setup described above.
One is the model employed by Kumbhakar, Ghosh and McGuckin (1991), Huang
and Liu (1994), and Battese and Coelli (1995) (hereafter, KGMHLBC), which
assumes that the distribution of uit is N(μit ,σit)+. So, compared to the RSCFG
specification, this model parameterizes the mean rather than the variance of the pre-
truncation normal distribution. Several possibilities have been suggested for the pa-
rameterization of μit , including μit = z′itδ and μit = μ · exp(z′itδ). The KGMHLBC
model is heavily used in empirical applications, in part because it is readily available
in the FRONTIER software (Coelli 1996). Another is the model of Wang (2002), in
which the distribution of uit is N(μit ,σ2

it )
+, and where μit and σit both depend on

zit . Wang’s model allows for non-monotonic effects of zit on uit and can be used to
test the adequacy of the simpler specifications.

We now return to the point made above about the nature of dependence over time.
The simplest assumption, and the one most commonly made, is that (conditional on
zi1, . . . ,ziT ) the uit are independent over time. Since the vit are also typically assumed
to be independent over time, the errors (vit−uit) are independent over time, and the
likelihood is just the product, over all i and t, of the density for observation i, t.
It is widely recognized that the independence assumption is unrealistic. It is less
widely recognized that the MLE assuming independence is consistent even if the
independence assumption is false. In this case, however, a non-standard (robust)
covariance matrix calculation is required for the estimates. This is a textbook point
in the more general panel-data context, and is discussed in the frontiers context by
Alvarez, Amsler, Orea and Schmidt (2004).

Some of the models reviewed in this section satisfy the scaling property that uit =
h(zit ,δ) · ũit , where ũit does not depend on zit . For example, the RSCFG model has
this property, with ũit distributed as N(0,1)+, and with the scaling function h(zit ,δ)
equal to the parameterized function σit . If the scaling property holds, Battese and
Coelli (1992) show how to construct the likelihood under the assumption that the
underlying random variable ũit is time-invariant (and hence just equals ũi). However,
no model currently exists that allows correlation over time in a less restricted form.

21.3.1.5 Inference Based on Estimated Efficiencies

One of the advantages of SFA (over approaches based on deterministic frontier spec-
ifications) is the ability to measure the uncertainty of efficiency estimates. In addi-
tion to providing point estimates of a firm’s level of efficiency, confidence intervals
and hypothesis tests can be constructed.
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First, consider an error-components setup with the vit assumed to iid normal and
the ui are iid truncated normal, conditional on xo

i , as in Battese and Coelli (1988).
They show that the ui conditional on (vi1− ui, vi2− ui, . . . ,viT − ui) have a normal
distribution truncated from below at zero. The mean and variance (before truncation)
of the normal distribution are given by (21.9) and (21.10) of Battese and Coelli; the
mean depends on the average residual for the firm. The suggested point estimate (or
prediction) for ui is the mean of the truncated distribution, as given by their (21.11).
However, we can also obtain confidence intervals for ui directly from this distri-
bution; for example, a 95 percent confidence interval for ui is given by the range
between the 2.5 and 97.5 percentiles of the truncated normal conditional distribu-
tion of ui. This possibility was first noted by Horrace and Schmidt (1996). Similar
methods apply for inefficiency defined as exp(−ui). Similar comments also apply
in the cross-sectional case when the method of Jondrow et al. (1982) is used to
estimate ui.

Matters are more complicated under weaker assumptions that prevail in most
panel settings. Recall the COLS estimator for ui given in (21.24). Standard results
give the joint distribution of the α̂i, and the difficult nature of the inferential problem
is due to the max operation. To emphasize this point, for the moment we will ignore
the possible inaccuracy of the max operation in picking the maximal population
intercept. Suppose that the maximal estimated intercept is α̂m, where m represents
a specific observation, and note that αm may or may not be the maximal intercept
in the population. Then, ûi = α̂m − α̂i and we can use standard methods to con-
struct a confidence interval for αm−αi. For example, if the vit are normal or if T
is large, confidence intervals would be based on the Student’s t or standard normal
distributions.

There is also an extensive literature on multiple comparison procedures. A
good general discussion is given by Hochberg and Tamhane (1987). These pro-
cedures allow the construction of simultaneous confidence intervals for the (N−1)-
dimensional vector of differences (αm−αi, i �= m). This is a “multiple comparison
with a control” (MCC) problem, since for the moment we are treating αm as a con-
trol, or standard of comparison, without being concerned about whether it is in fact
the maximal population intercept. Dunnett (1955) gives an easily computable solu-
tion to the MCC problem for the special case that the α j are equicorrelated, and rel-
evant tabulations are given in Hochberg and Tamhane (1987), Dunnett (1964), Dunn
and Massey (1965) and Hahn and Hendrickson (1971). Horrace and Schmidt (2000)
provide evidence that the equicorrelated assumption is very nearly met in some ap-
plications and discuss approximate solutions when it is not met. These confidence
intervals may encompass both positive and negative values because they do not as-
sume that αm is the maximal population intercept.

From the SFA perspective, we are interested in simultaneous confidence intervals
for the N-dimensional vector of differences (α −αi, i = 1, . . . ,N), where α is the
maximal intercept in the population rather than in the sample. This is a “multiple
comparison with the best” (MCB) problem which differs from the MCC problem
because it is not assumed that we know which observation corresponds to the max-
imal population intercept. This problem was solved by Edwards and Hsu (1983),
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who showed how MCB intervals could be constructed from MCC intervals. Other
relevant references include Hsu (1981, 1984), and a survey is given by Horrace and
Schmidt (2000). The MCB intervals give non-negative lower and upper bounds for
the differences ui = α −αi, and the lower bound equals zero for a subset of the
firms. The MCB intervals are wider than the corresponding MCC intervals because
they include uncertainty about which observation is best. Some empirical examples
of MCB intervals are given in Sect. 21.4.

Another possible method of inference based on the FE estimates is bootstrap-
ping. We will begin with a very brief discussion of bootstrapping in the general
setting where we have a parameter θ , and there is an estimator θ̂ based on a ran-
dom sample (z1, . . . ,zN). The following bootstrap procedure will be repeated many
times, say for b = 1, . . . ,B where B is large. For iteration b, construct “pseudo data”,

z(b)
1 , . . . ,z(b)

N , by sampling randomly with replacement from the original data. From
the pseudo data, construct the estimate θ̂ (b). The basic result of the bootstrap is that
under fairly general conditions the asymptotic (large-N) distribution of (θ̂ (b)− θ̂)
conditional on the sample is the same as the (unconditional) asymptotic distribu-
tion of (θ̂ −θ). Thus, for large N the distribution of θ̂ around θ is the same as the
bootstrap distribution of θ̂ (b) around θ̂ , which is revealed by the large number of
bootstrap draws.

We now consider the application of the bootstrap to the specific case of the FE
estimates. Our discussion follows Simar (1992). Define the residuals based on the
FE estimates of β and αi as v̂it = yit − α̂i− xit β̂FE . The bootstrap samples will be
drawn by resampling these residuals, because the vit are the quantities analogous to
the zis in the previous paragraph, in the sense that they are assumed to be iid, and
they are the observable versions of the vit . (The sample size N above corresponds to

NT .) So, for bootstrap iteration b = 1, . . . ,B, we calculate the bootstrap sample v̂(b)
it

and the pseudo data, yit = α̂i + xit β̂FE + v̂(b)
it . From these data we get the bootstrap

estimates of the inefficiencies, and the bootstrap distribution of these estimates is
used to make inferences about the actual inefficiencies.

We note that the estimates depend on the quantity maxi α̂ j. Since “max” is not a
smooth function, it is not immediately apparent that this quantity is asymptotically
normal, and if it were not the validity of the bootstrap would be in doubt. A rigorous
proof of the validity of the bootstrap for this problem is given by Hall, Härdle and
Simar (1995). They prove the equivalence of the following three statements: (i)
maxi α̂ j is asymptotically normal; (ii) the bootstrap is valid as T → ∞ with N fixed;
and (iii) there are no ties for maxi α̂i, that is, there is a unique index i such that
αi = maxi α j. There are two important implications of this result. First, the bootstrap
will not be reliable unless T is large. Second, this is especially true if there are near
ties for maxi α j , in other words, when there is substantial uncertainty about which
firm is best.

Simulation results reported in Kim (1999) are fairly pessimistic. The bootstrap
does not lead to very reliable inference on the individual firm efficiencies unless T
is very large, or the variance of vit is quite small.
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A final possibility for inference is to be a Bayesian. In a Bayesian analysis one
postulates a prior distribution for the parameters of the problem, and combines the
prior with the likelihood to obtain a posterior distribution upon which inference is
based. In models like those we consider here, and in fact in many other models, this
inference is done by drawing from the posterior distribution using Markov-Chain
Monte Carlo methods.

We will begin with a “Bayesian FE model”, due to Koop, Osiewalski and
Steel (1997). They postulate an “uninformative” prior for the parameters β , σ2

v
and αi. If the vit are iid normal, the mean of the posterior distribution of β is the
usual FE estimate, which explains the name of the model. Now consider the ineffi-
ciency terms u∗i = max j α j−αi or the inefficiencies exp(−u∗i ). An important point
is that an uninformative (flat) prior for the αi implies a flat prior for the u∗i , but a
(very) informative prior for exp(−u∗i ). In fact, the prior for exp(−u∗i ) is proportional
to [exp(−u∗i )]

−1, which very, very strongly favors low efficiencies. In a sense this is
the Bayesian counterpart to the downward bias of the efficiency estimates using FE
that was discussed in Sect. 21.3.1.3. Indeed, the empirical results given in Kim and
Schmidt (2000) show a strong similarity between inferences based on the Bayesian
FE results and inferences based on bootstrapping the FE estimates.

Koop, Osiewalski and Steel also discuss RE Bayesian models, in which a proper,
informative prior is used for the ui (not the u∗i ). In this model, we estimate absolute
rather than relative efficiency, and we treat β , σ2

v , the overall intercept α and the in-
efficiencies ui or exp(−ui) as parameters. They consider, for example, independent
exponential priors for the ui. Kim and Schmidt find, unsurprisingly, that the results
from a Bayesian analysis with exponential prior inefficiency are quite similar to the
results from classical MLE if an exponential distribution is assumed for inefficiency,
and the Battese–Coelli result is used to extract the efficiencies. If such results are
generally true, as they probably are, it suggests that it does not make much differ-
ence whether one is a Bayesian or not; it just matters how strong the assumptions
are that one is willing to make about the efficiency distribution. An interesting point
is that in this case it is probably easier to be a Bayesian, in a numerical sense, and it
also allows more flexibility in choice of distribution.

21.3.1.6 Estimating Technical and Allocative Efficiency

Recall the cost frontier and share equations given in (21.12) and (21.13), where
allocative inefficiency is reflected in a one-sided disturbance in the cost equation
(ηi) and a two-sided error in the share equations (ωik), while technical inefficiency
is represented solely through a one-sided cost equation error (ui). As we noted in
Sect. 21.2.4.2, the choices for estimating such a system of equations are to either
adopt a restrictive functional form, assume ηi and ωik are independent, or attempt
to estimate the specification proposed by Kumbhakar (1997). Although the latter
captures the salient features of the relationship between the ηi and ωik and does
not impose a functional-form restrictions, the specification is difficult to estimate
because it is highly nonlinear in the terms involving the allocative errors.
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An alternative to using error components is to model deviations from cost-
minimizing behavior in terms of parameters that scale prices. In this case, the firm
is assumed to minimize shadow cost, recognizing that although the input mix may
be incorrect when judged in terms of market prices, it can be seen as efficient when
related to shadow prices. The firm minimizes actual costs (is allocatively efficient)
only if the ratio of shadow prices equals the ratio of market prices. This parametric
approach was developed in a cross-section context by Lau and Yotopoulos (1971),
and later extended by Toda (1976), Lovell and Sickles (1983) and Atkinson and
Halvorsen (1984).

Atkinson and Cornwell (1994b) generalized the parametric approach to a panel
data setting. Reformulating (21.10) as a shadow cost-minimization problem, they
consider the estimation of a system of equations like

C∗it = g∗(yit ,p∗it)exp(vit +ui) (21.26)

s∗itk = s∗(yit ,p∗it)exp(ωitk), (21.27)

where p∗itk = φik pitk is a vector of shadow prices where the φik are parameters to be
estimated. Because allocative inefficiency is identified through the φik, the difficulty
of fully specifying the relationship between cost and share-equation allocative errors
is obviated. Further, the ωitk can be viewed (appropriately) as conventional random
errors.

From a panel-data perspective, the system in (21.26) and (21.27) is an
unobserved-effects model, where the effects appear as slope coefficients as well
as additive intercept terms. As Atkinson and Cornwell show, FE estimation of such
a model is straightforward. Firm-specific technical efficiency estimates can be con-
structed from the ûi using COLS. Estimates of φik indicate the relative over (φ̂ik < 1)
or under-utilization (φ̂ik > 1) of an input. Together, the ûi and φ̂ik can be translated
into an estimate of the potential cost savings from eliminating inefficiency.

21.3.2 Models with Time-Varying Inefficiency

While there are great benefits to treating efficiency as if it is time-invariant, time
invariance is a strong assumption, especially in longer panels. Now we relax this
assumption, explicitly taking up the the SFA model given in (21.1), where αt defines
the frontier intercept in period t. In the context of this model, the problem is simple
in principle. A firm’s level technical efficiency in each time can be estimated period
in COLS fashion as exp(−ûit), where

ûit = α̂t − α̂it , α̂t = max
i

(α̂it) . (21.28)

In practice, however, we cannot expect to identify the αit without placing some
additional structure on the frontier model. Different papers have restricted the αit in
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different ways. Below we consider the most widely utilized specifications as well as
some more recently proposed alternatives.

21.3.2.1 The Model of Cornwell, Schmidt and Sickles

Cornwell, Schmidt and Sickles (1990) (hereafter CSS) approached the problem
from the standpoint of a panel regression model with individual-specific slope coef-
ficients:

yit = x′itβ +w′itδi + vit , (21.29)

where wit is an L×1 vector of variables whose coefficients, δi, vary over i. Clearly,
(21.29) is a special case of the production frontier in (21.1) with αit = w′itδi. CSS
provide an empirical illustration based on the specification w′it = [1, t, t2] so that

αit = w′itδi = δi1 +δi2 t +δi3 t2 . (21.30)

Obviously if wit contains only a constant, (21.29) reduces to the usual unobserved
effects model, which is to say, the basic panel frontier with time-invariant technical
efficiency.

In addition to proposing a specification for αit , CSS extend the standard FE and
RE panel estimators to models like (21.29). To discuss these estimators, consider
the expression of (21.29) that combines all T observations on a single firm:

yi = Xiβ +Wiδi +vi , (21.31)

where Wi is a T ×L matrix. In addition, assume

(A.1′) E(vit |xo
i ,w

o
i ,αi) = 0, t = 1, . . . ,T (21.32)

(A.2′) E(viv′i |xo
i ,w

o
i ,αi) = σ2

v IT , (21.33)

parallel to (21.15) and (21.16) in Sect. 21.4.1.
As shown by CSS, the extension of the FE estimator in (21.18) is

β̂FE =
( N

∑
i=1

X′iMWiXi

)−1 N

∑
i=1

X′iMWiyi , (21.34)

where MWi = IT −Wi(W′
iWi)−1W′

i is a generalization of the demeaning projection,
Mi. Under (A.1′) and (A.2′), β̂FE is consistent and asymptotically normal, but note
that identification requires L≤ T .

The RE estimator in (21.22) can be likewise extended with the addition of as-
sumptions parallel to (21.19) and (21.21):

(A.3′) E(δi |xo
i ,w

o
i ) = δo (21.35)

(A.4′) E(δiδ′i |xo
i ,w

o
i ) = Δ . (21.36)
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After invoking (A.3′) and (A.4′) and writing δi as δo +ζi, (21.31) becomes

yi = Xiβ +Wiδo + εi

εi = Wiζi +vi. (21.37)

The RE estimator of β and δo is given by

(
β̂
δ̂o

)

RE

=
[ N

∑
i=1

(Xi, Wi)′Ω−1
i (Xi, Wi)

]−1 N

∑
i=1

(Xi, Wi)′Ω−1
i yi , (21.38)

where now Ωi = cov(εi) = σ2
u IT + WiΔW′

i. Consistent estimators of σ2
u and Δ are

provided in CSS. Under (A.1′)–(A.4′), β̂RE is asymptotically efficient, but this claim
hinges on (A.3′).

CSS also extended the Hausman–Taylor efficient IV estimator to the model with
individual-specific slope coefficients. This means partially relaxing (A.3′) and al-
lowing some of the variables in (Xi,Wi) to be correlated with δi. Assuming there are
enough orthogonality conditions to satisfy identification requirements, CSS show
that β and δo can be estimated as

(
β̂
δ̂o

)

HT

=
[ N

∑
i=1

(Xi, Wi)′Ω
−1/2
i PA∗i

Ω−1/2
i (Xi, Wi)

]−1

×
N

∑
i=1

(Xi, Wi)′Ω
−1/2
i PA∗i

Ω−1/2
i yi, (21.39)

where PA∗i
is the projection onto the transformed instrument set A∗i = Ω−1/2

i Ai and
Ai is the natural extension of the original Hausman and Taylor instrument set. Al-
though CSS do not pursue it, (21.39) encompasses extensions to the Amemiya–
MaCurdy and Breusch–Mizon–Schmidt estimators as well. The estimator in (21.39)
is the efficient GMM estimator under assumptions (A.1′), (A.2′), (A.4′) and the or-
thogonality conditions imposed by Ai. It is worth pointing out that, unlike in (21.23),
this efficient-GMM equivalence depends on the use of transformed instruments in
PA∗i

. Although the RE data transformation is more complicated in this case, in prin-

ciple β̂HT can be computed by premultiplying (21.38) by Ω−1/2
i and performing IV

using A∗i as instruments.
Firm-specific technical inefficiencies can be estimated using methods directly

analogous to those Sect. 21.3.1.3. In the FE case, this involves estimating the ele-
ments of δi either by OLS of yit − x′it β̂FE on wit or directly as coefficients of firm
dummies interacted with wit . Then compute the α̂it as w′it δ̂i and ûit as in (21.28).
Because the frontier intercept may vary from period to period, the temporal pattern
of technical efficiency will vary from firm to firm. Consider, for example, the CSS
specification of αit given in (21.30). Although α̂it will be quadratic in t for each
firm, α̂t may not be, which implies uit may not be either. The setup for estimating
technical efficiencies is essentially the same in the RE case, whether β and δo are
estimated by RE or or efficient IV. The only difference is the set of residuals used in
the calculations.
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21.3.2.2 The Models of Kumbhakar and Battese and Coelli

Kumbhakar (1990) and Battese and Coelli (1992) proposed time-varying efficiency
specifications of the form

uit = γ(t, θ)δi , (21.40)

where δi ≥ 0 is a scalar and γ(t, θ) is a scalar function of time and a vector of pa-
rameters, θ . Kumbhakar assumes γ(t, θ) = [1 + exp(bt + ct2)]−1, with θ = (b, c).
Depending on the values of b and c, the temporal pattern of inefficiency could be in-
creasing or decreasing, concave or convex. Battese and Coelli propose an alternative
model, γ(t, θ) = 1+η1(t−T )+η2(t−T )2, where θ = (η1, η2).

Because γ(t, θ) does not vary by firm in (21.40), the temporal pattern of techni-
cal efficiency is the same for all firms, in contrast to CSS. Also different from CSS,
Kumbhakar and Battese and Coelli couch their specifications in panel extensions of
the classic cross-section SFA model introduced in Sect. 21.2. Thus, estimation of
their models depends on distributional assumptions for δi and vit that impose inde-
pendence between efficiency and xit . Kumbhakar and Battese and Coelli derive the
MLEs for their respective models (treating the δi as truncated normal and vit as nor-
mal, conditional on xit) and show how to estimate firm-specific technical efficiencies
by extending Jondrow et al. (1982).

It is possible to estimate the models of Kumbhakar and Battese and Coelli under
weaker conditions than they imposed. For example, we could assume (A.4′) instead,
and integrate (21.40) into a RE panel regression model like (21.38) as follows:

yit = x′itβ − γ(t, θ)δo +[vit − γ(t, θ)(δi−δo)] . (21.41)

Such model can be estimated by nonlinear least squares and firm-specific technical
efficiencies obtained using the procedure in (21.28). All that is required is a simple
regression of firm-i residuals on γ(t, θ) to estimate (δi−δo). However, FE estima-
tion of (21.41) is econometrically more complicated because the unobserved effects
do not enter additively. This point will be discussed more fully in the next section.

Finally, the connection between specifications like (21.40) and those similar to
(21.30) is straightforward when we express the former in terms of αit . Suppose,
instead of (21.40), we asserted that αit = γ(t, θ)δi. So long as γ(t, θ) is positive
for all t, then αt = max j(α jt) = γ(t, θ)max j(δ j) and uit = γ(t, θ)[max j(δ j− δi)],
so that the αit and uit have the same temporal pattern, determined by the function
γ(t, θ), and this pattern is the same for all firms.

21.3.2.3 The Model of Ahn, Lee and Schmidt

The models presented in Sects. 21.4.1 and 21.4.2 allow technical inefficiency to
vary over time, but in a structured way. In this section we consider an alternative
model that was originally proposed by Kiefer (1980), and which was subsequently
applied to the frontiers problem by Lee and Schmidt (1993), and further analyzed by
Ahn, Lee and Schmidt (2001) and Han, Orea and Schmidt (2005). In this model the
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temporal pattern of inefficiency is arbitrary, but (as in (21.40) above) it is restricted
to be the same for all firms. The specification is

αit = λtδi , (21.42)

where the λt are parameters to be estimated. One can think of (21.42) as a special
case of (21.40) with γ(t, θ) represented by a set of time dummies. As such, an
advantage of (21.42) is that any parametric form such as Kumbhakar’s is a testable
special case. See, for example, Bai (2003).

The RE estimator of this model raises no new issues, but its FE estimator is
interesting. We consider assumptions similar to (A.1′) and (A.2′); that is, strict ex-
ogeneity of the regressors and the white noise property of the errors. Ahn, Lee and
Schmidt propose GMM estimators that impose the restrictions implied by these as-
sumptions. An surprising result is that the moment conditions based on the white
noise assumption are useful (result in an increase in asymptotic efficiency) even if
the errors are normal. This is certainly not the case in the usual linear regression
model without fixed effects. They also analyze the true FE estimator, defined by the
minimization of ∑i ∑t(yit − x′itβ −λtδi)2 with respect to β , λt and δi. The consis-
tency of this estimator requires the white noise assumption. Also, given the white
noise assumption, this estimator has a non-standard form for its covariance matrix,
and it is less efficient than the efficient GMM estimator, even if the errors are nor-
mal. Once again these are results that are not true in the linear regression model
without fixed effects.

Han, Orea and Schmidt (2005) extend this analysis to the case that λt is a para-
metric function of time and some parameters. Therefore they make possible a FE
analysis of models like those of Kumbhakar or Battese and Coelli (discussed in the
previous section). The essential results of Ahn, Lee and Schmidt extend to this case.
This means that a true FE analysis is possible, but it depends on a white noise as-
sumption, and it requires a non-standard calculation of the covariance matrix of the
estimates.

21.4 Applications

In this section we will discuss two empirical applications of the techniques that
this paper has described. References to additional applications can be found in the
survey papers listed in Sect. 21.1 above.

21.4.1 Egyptian Tile Manufacturers

First, we review the analysis of Egyptian tile manufacturers as originally conducted
by Seale (1985, 1990). The author personally collected data on a set of firms in the
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Fayoum region of Egypt, and was involved in, but did not supervise, the collection
of data in another region (Kalyubiya). The total sample consisted of 9 firms in the
Fayoum region and 16 in Kalyubiya. Data were collected over a 66-week period
in 1982–1983. This time period was divided into 3-week time intervals, so that the
maximum number of observations was 22. However, because firms did not produce
in all periods, the actual number of observations was not the same for all firms; that
is, the panel was unbalanced.

The firms make floor tiles using a rather simple technology: sand, cement and
water are mixed and pressed into tiles, which are dried in the sun. Three types of
tiles are made, and the firms do not produce other products. The capital of the firms
consists of a few types of machines: mixers, electric presses, manual presses and
polishers. There are only two skill categories of workers.

The original data were aggregated into measures of output, labor and capital. (Be-
cause the physical inputs are used in essentially fixed proportions to output, labor
and capital were the only inputs to be included in the production function.) Be-
cause of the relatively small number of output and input types, and because the data
were collected personally by the individual conducting the analysis, the aggregation
process is probably much less troublesome than in the typical production function
analysis.

The basic empirical results were generated in 1984 and 1985 and used the
methodology available at that time; namely, the MLE of Pitt and Lee (1981) and
the FE and RE estimators of Schmidt and Sickles (1984), suitably modified to ac-
count for the unbalanced nature of the panel. A Cobb-Douglas production function
was assumed. Hausman tests rejected the RE specifications, and so the focus was on
the FE treatment. The estimated coefficient of capital (machine hours) was positive
but insignificant, while the estimated coefficient of labor was insignificantly dif-
ferent from unity. Thus, for all practical purposes, estimated efficiency differences
reflect differences in output per worker-hour.

Firm efficiencies were estimated separately for the two areas, since they were
viewed as distinct markets. The estimates of technical efficiency ranged from 100
to 71 percent in the Fayoum area and from 100 to 56 percent in the Kalyubiya
area. This is a reasonable range given the costs of transporting output, and the least
efficient firms were located in small and remote villages where competition from
larger and more efficient firms was not a real threat.

Seale argues convincingly that his efficiency estimates do indeed reflect differ-
ences that one might interpret as inefficiency (as opposed to measurement error,
omitted inputs, etc.). For example, consider the following description of an inef-
ficient firm (Seale (1985, page 175)): “The organization of the firm could be im-
proved; the working area around the electric press is organized for three workers
only, while many tileries with an electric press are able to provide adequate space
for four workers to form tiles. The total working area, though large, is cluttered
with broken tiles and empty sacks, giving a general impression of disarray.” Fur-
thermore, Seale ranked the firms in terms of their apparent efficiency after his initial
visits to them, but before the data were collected and analyzed. His a priori rankings
were very similar to those from the statistical analysis. In fact, the rank correlation
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coefficient was 0.98 for the Fayoum region, in which he lived and supervised the
data collection effort, and 0.72 in Kalyubiya. This is fairly convincing evidence,
unfortunately of a type that we cannot expect generally to be available, that the
efficiency estimation exercise has been basically successful.

These data have subsequently been analyzed by a number of others, including
Horrace and Schmidt (1996, 2000) and Kim and Schmidt (2000). The following
results are from Kim and Schmidt. For reasons of space we will quote only the
results for one firm, number 4, which is the median-efficient firm based on the FE
estimates.

The FE estimates yield an efficiency level for firm 4 of 0.895. A set of 90 percent
MCB intervals give a confidence interval for firm 4 of [0.648, 1]. The “one” here
is exact—it is not the result of rounding. The usual percentile bootstrap gives a 90
percent confidence interval of [0.692, 0.940]. The Bayesian FE model gives a point
estimate (mean of the posterior distribution) of 0.812, which is somewhat lower, and
a 90 percent confidence interval (this is not a Bayesian word, but it is a Bayesian
calculation) of [0.688, 0.945]. Note the similarity of the Bayesian interval to the
interval from bootstrapping the FE estimates.

RE models give results that are relatively similar. For the half-normal MLE, the
point estimate of efficiency for firm 4 is 0.885 and a 90 percent confidence interval,
based on the Battese–Coelli method, is [0.787, 0.978]. For the exponential MLE,
we obtain 0.896 and [0.799, 0.984], and the Bayesian exponential model with an
uninformative prior for the exponential parameter yields 0.891 and [0.782, 0.986].

Kim and Schmidt argue that these results are optimistic, in the sense that the
choice of specific model is not too important, and the results are precise enough to
be of some potential use.

21.4.2 Indonesian Rice Farmers

Next, we turn to the analysis of Indonesian rice farmers. These data have been an-
alyzed by Erwidodo (1990), Lee and Schmidt (1993) and Horrace and Schmidt
(1996). The data contain information on 171 rice farms in Indonesia, for six grow-
ing seasons. They were collected by the Agro Economic Survey, as part of the Rural
Dynamic Study in the rice production area of the Cimanuk River Basin, West Java,
and obtained from the Center for Agro Economic Research, Ministry of Agriculture,
Indonesia. In particular, they were not collected as primary data by the individuals
later involved in the analysis, though Erwidodo was personally familiar with farm-
ing practices in the area. Time periods are growing seasons, of which there are two
per year; three of the six time periods are dry seasons and three are wet seasons. The
data were collected from six different villages that contain 19, 24, 37, 33, 22 and 36
farm families, respectively. This is a balanced panel in the sense that every family is
observed for the same six time periods.

Output is production of rough rice, in kilograms. The inputs include seed,
urea, tri-sodium phosphate (TSP), labor and land area. Erwidodo considered both
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Cobb-Douglas and translog specifications, but we will follow Lee and Schmidt and
discuss only results for the Cobb-Douglas specification; this does not make much
difference. Besides the inputs, the equation that is estimated also includes some
dummy variables, as follows. DP is a dummy variable equal to one if pesticides
are used, and zero otherwise. DV1 equals one if high-yielding varieties of rice are
planted, while DV2 equals one if mixed varieties are planted; the omitted category
represents traditional varieties. DSS equals one in the wet season and zero other-
wise. DR1, . . . , DR5 are dummy variables representing the six villages, and are
intended to control for differences in soil quality or other relevant factors across vil-
lages. Finally, DSIZE is a dummy variable equal to one if the land area is greater
than 0.5 hectare. Erwidodo included this variable while Lee and Schmidt did not,
but in fact it makes little difference to the efficiency estimation exercise. We will
report results only for the specification that does not include DSIZE. The data are
described in detail in Erwidodo (1990).

Erwidodo estimated the model using the standard panel-data techniques: OLS,
FE and RE estimators. The results based on the three methods are quite similar;
correspondingly, the appropriate Hausman test failed to reject the RE specification.
The estimated coefficients of the five input variables were all positive and significant
at the usual critical levels. The elasticities ranged from 0.47 for land area to 0.078
for TSP, using the RE estimates, and from 0.43 to 0.09 using the FE estimates.
Returns to scale were insignificantly different from unity. The coefficient estimates
of the dummies for rice variety and for wet season were significantly different from
zero, while the rest of the dummy variables were usually insignificant. The results
that were significant indicate that high-yielding rice varieties have higher yields
than traditional varieties, and that output is higher in the wet season than in the dry
season.

Erwidodo calculates measures of both technical and allocative inefficiency, but
we will discuss measures of technical inefficiency only. He calculates estimates of
technical inefficiency in three ways: (i) the simple FE calculation given in (21.24)
above; (ii) the RE calculation involving the best linear predictor, given in (21.25)
above; and (iii) the method of Battese and Coelli (1988). Thus in Erwidodo’s im-
plementation of method (iii), distributional assumptions are used in the separation
of inefficiency from noise even though they were not used in estimation. We should
also note that we might expect the FE results (i) to differ rather substantially from the
RE results (ii) or (iii) since in the FE regression we cannot include the time-invariant
village dummy variables, and thus differences across villages in soil quality or other
relevant time-invariant factors are not controlled.

Erwidodo actually reports his results only for method (iii). Battese and Coelli
assumed that ui is distributed as N(μ , σ2

u ) truncated below at zero. Erwidodo as-
sumed μ = 0 so that ui is half-normal. In this case var(ui) = σ2

u (π − 2)/π . The
usual variance components estimates that are part of the RE procedure yield an es-
timate of var(ui), and this can be converted into an estimate of σ2

u by multiplying it
by π/(π−2). It appears that Erwidodo used his estimate of var(ui) as an estimate of
σ2

u , neglecting the factor π/(π − 2), which made his technical inefficiency figures
too small. Horrace and Schmidt (1996) recalculation of Erwidodo’s results yields
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farm-specific inefficiency estimates ranging from 3.5 to 25.8 percent, with a mean
of 10.6 percent.

Using the same data, Lee (1991) calculates technical inefficiency measures based
on FE estimation and method (i) above. Technical inefficiency now ranges from zero
to 64.6 percent, with a mean of 56.7 percent. Estimation by RE and use of method
(ii) gives results that are very similar to those for the FE estimator; for example,
mean technical inefficiency is then 57.1 percent. These results are consistent with
Erwidodo’s report that FE and RE generated much higher levels of technical in-
efficiency that the Battese–Coelli method, but that all three methods give similar
rankings.

Clearly there are striking differences between these results. To interpret them, it
is interesting to look at the precision of the estimates, as reflected in the relevant
confidence intervals. These results are given in Horrace and Schmidt (1996, 2000)
and Kim and Schmidt (2000). As in the previous section, here we report the re-
sults only for the median firm, number 15. For this firm, the FE estimates give
an efficiency level of 0.554. The 90 percent MCB confidence interval is [0.300, 1]
and the percentile bootstrap interval is [0.398, 0.646]. The Bayesian FE model
gives a point estimate of 0.509 and a 90 percent interval of [0.383, 0.656]. Once
again the Bayesian FE estimates are similar to the classical FE estimates and the
bootstrap.

As we saw above, the RE efficiencies are much higher. For the half-normal MLE,
the point estimate of efficiency for firm 15 is 0.923 with a 90 percent confidence
interval of [0.792, 0.990]. For the exponential MLE, we obtain 0.935 and [0.834,
0.996], and for the Bayesian exponential model with uninformative prior on the
exponential parameter we get 0.935 and [0.823, 0.996].

Clearly these results are less precise than for the previous data set, and the choice
of technique matters more. Kim and Schmidt argue that this is a difficult data set
to analyze, because T is fairly small and because the variance of noise (v) is large
relative to the variance of inefficiency (u). In this case we can gain a lot of pre-
cision by putting more structure on the model, but unfortunately the choice of
what structure to impose influences the results more strongly. There is no obvi-
ous solution to this problem other than to analyze data that have more favorable
characteristics.

Lee (1991) and Lee and Schmidt (1993) have also applied the time-varying ef-
ficiency model of subsection 3.2.3 to the Erwidodo data. Compared to the simpler
model with time-invariant efficiency, this model does not make much difference in
the estimates of the technical parameters (regression coefficients) or in the average
level of inefficiency. It does yield an interesting temporal pattern of inefficiency (see
Fig. 8.1, page 251, of Lee and Schmidt), with significantly higher efficiency levels
in time periods t = 3 and t = 4 than in the other time periods. However, given the
confidence intervals reported in the previous paragraphs for the simpler model, it
might be argued that a model with less structure is the opposite of what is needed
for this application.
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21.5 Concluding Remarks

In this chapter, we have given given a broad survey of the stochastic frontier ap-
proach to efficiency measurement, with an emphasis on the use of panel data. While
a considerable number of details were discussed, we have tried to emphasize two
main points. The first main point is that it is really a misuse of words to discuss
the measurement of efficiency; properly, we should refer to estimation of efficiency.
The estimation of efficiency is essentially a statistical problem, in the sense that
the results are subject to uncertainty, and this is true whether traditional statistical
methods are used or not. There are two main advantages to an explicitly statistical
approach, such as is possible using stochastic frontier models. First, an accommo-
dation can be made to statistical noise. Second, measures of the uncertainty of the
results can be generated. Our empirical results in Sect. 21.6 show the importance of
this second point. Using a deterministic (non-statistical) model does not remove this
uncertainty; it only hides it.

Our second main point is that panel data are useful because they allow weaker
assumptions or greater precision under a given set of assumptions, than would be
possible with a single cross section. Most of the work so far on the use of panel data
for efficiency estimation has emphasized the possibility of weakened assumptions
and more flexible models. In retrospect, this may have been a mistake. Certainly we
should suspect that the usual trade-off between flexibility of the model and precision
of results applies. If efficiency estimates were more routinely reported along with
appropriate measures of the uncertainty associated with them, this trade-off could
be made more intelligently.
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