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Preface

The aim of this third, completely re-written, re-edited and considerably expanded,
edition of this book is to provide a general overview of both the basics and re-
cent, more sophisticated, theoretical developments in panel data econometrics. It
also aims at covering a number of fields of applications where these methods are
used for improving our knowledge and understanding of economic agents’ behav-
iors. Since the pioneering works of Edwin Kuh (1959), Yair Mundlak (1961), Irving
Hoch (1962), and Pietro Balestra and Marc Nerlove (1966), the pooling of cross sec-
tions and time series data has become an increasingly popular way of quantifying
economic relationships. Each series provides information lacking in the other, so a
combination of both leads to more accurate, reliable and informative results than
would be achievable by one type of series alone. Over the last three decades of the
last century, much fundamental work has been done: investigation of the properties
of different estimators and test statistics, analysis of dynamic models and the effects
of eventual measurement errors, etc.

The more recent years and in particular the ten years elapsed since the second
edition of this book have witnessed even more considerable changes. Indeed, our
ability to estimate and test nonlinear models have dramatically improved and issues
such as the unobserved heterogeneity in nonlinear models, attrition and selectivity
bias have received considerable attention. This explains why the number of chapters
dealing with such issues has increased in this third edition. Other recent and impor-
tant developments relate to the issue of unit roots and cointegration in long times
series panels as well as that of cross-sectional dependence that occur in particular in
spatial models, and else.

The first objective of this book, which takes up Parts I and II, is to give a com-
plete and state of the art presentation of these theoretical developments. Part I is
concerned with the basic fixed effects, random effects and random coefficients mod-
els, both linear and nonlinear; Part II deals with various extensions: dynamic models
with small T panels, dynamic models with large T panels, models with other sources
of endogeneity (measurement errors, simultaneity) and also provides an overview of
recent developments in several other directions: attrition and selection bias, pseudo-
panels, semi- and non-parametric methods, the Bayesian approach to panel data, the
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poolability of individuals, duration models and point processes, and count data mod-
els. The second objective of this volume is to provide insights into the use of panel
data in empirical studies. Since the beginnings, interest in panel data has mostly
been empirically motivated. Panel data methods have gained an increased impor-
tance over time and are now applied in a very large spectrum of economic studies.
Part III thus deals with studies in several major fields of applied economics, such as
foreign direct investments, production frontiers, linked employer-employee data, la-
bor supply, policy analysis and transitions on the labor market. Some of the chapters
in this third edition are revised versions of those already published in the previous
ones, while several others are completely new contributions. In this respect, we are
particularly happy to welcome aboard our new authors. Their input definitely helped
to substantially improve the contents of this volume.

The double emphasis of this book (theoretical and applied), together with the
fact that all the chapters have been written by well-known specialists in the field,
encourage us to hope that it has now become a standard reference textbook for
all those who are concerned with the use of panel data in econometrics, whether
they are advanced students, professional economists or researchers. The editors have
tried to standardize the notation, language, depth, etc. in order to present a coherent
book. However, each chapter is capable of standing on its own as a reference in its
own topic.

We must address our thanks to all those who have facilitated the creation of this
book: the contributors who produced quality work, then took part in an internal
refereeing process to ensure a high overall standard; Kluwer Academic Publishers,
who had the foresight to publish in a subject which, at the time of the first edition,
had a limited, but expanding, audience; and of course Springer which has become
our publisher by now. In particular, Cathelijne van Herwaarden, Herma Drees, Marie
Sheldon, Martina Bihn, Ruth Milewski and Isabelle George must be thanked for
their help in the realization of this volume. Also, the University of Paris–Val de
Marne in France; the Monash Research Fund and the Australian Research Council
in Australia, and the Budapest University of Economics and the Hungarian Research
Fund (OTKA) in Hungary must be thanked for having provided financial support to
the editors for the earlier editions. This third edition has benefited from generous
financial support provided by the Central European University and the University of
Paris-Val de Marne.

Budapest and Paris László Mátyás
January 2008 Patrick Sevestre
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CRESE, Université de Franche-Comté, 45D Avenue de l’Observatoire, 25030
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Fundamentals



Chapter 1
Introduction

Marc Nerlove, Patrick Sevestre and Pietro Balestra

1.1 Introduction

In his famous and influential monograph, The Probability Approach in Economet-
rics, Haavelmo (1944) laid the foundations for the formulation of stochastic econo-
metric models and an approach which has dominated our discipline to this day. He
wrote:

. . . we shall find that two individuals, or the same individual in two different time periods,
may be confronted with exactly the same set of specified influencing factors [and, hence,
they have the same y∗, . . . ], and still the two individuals may have different quantities y,
neither of which may be equal to y∗. We may try to remove such discrepancies by introduc-
ing more “explaining” factors, x. But, usually, we shall soon exhaust the number of factors
which could be considered as common to all individuals, and which, at the same time, were
not merely of negligible influence upon y. The discrepancies y−y∗ for each individual may
depend upon a great variety of factors, these factors may be different from one individual
to another, and they may vary with time for each individual (Haavelmo, 1944, p. 50).

And further that:

. . .we find justification for applying them [stochastic approximations] to economic phenom-
ena also in the fact we usually deal only with—and are interested only in—total or average
effects of many individual decisions, which are partly guided by common factors, partly by
individual specific factors. . . (Haavelmo, 1944, pp. 51 and 56)
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Marschak (1950, 1953) further amplified Haavelmo’s themes in his introduction
to Cowles Commission Monographs 10 and 14, observing that:

The numerous causes that determine the error incurred . . . are not listed separately; instead
their joint effect is represented by the probability distribution of the error, a random variable
(1950, p. 18) [which] . . . is called ‘disturbance’ or ‘shock,’ and can be regarded as the joint
effect of numerous separately insignificant variables that we are unable or unwilling to
specify but presume to be independent of observable exogenous variables. (1953, p. 12).

In this introduction we examine how the basic principle underlying the formulation
of econometric models has been carried forward in the development of econometric
models and methods for the analysis of panel data. We argue that while fixed effects
models may be appropriate in cases in which a population is sampled exhaustively
(e.g., data from geographic regions over time) or in which it is desired to predict
individual behavior (e.g., the probability that a given individual in a sample will de-
fault on a loan), random effects models are more consistent with Haavelmo’s view,
quoted above, that the “population” we model in econometrics consists not of an
infinity of individuals, in general; but of an infinity of decisions. This is not to say,
however, that fixed effects models may not be extremely useful as an analytic device.

Moreover, we shall argue, taking a leaf from Knight (1921), that what differenti-
ates the individuals, who make the decisions with which we are concerned, is largely
historical, the “three great accumulating funds of inheritance from the past, material
goods and appliances, knowledge and skill, and morale.” This view has important
implications for the relevance and appropriateness of many of the models and meth-
ods for the analysis of panel data which have been developed over the past 40 years.
We briefly review these developments here and conclude that not only are random
effects models most relevant and appropriate but that often our central analytical and
modelling concerns are also dynamic. Thus, the most fruitful developments in this
enormous literature have been those which deal with the central issues of history
and dynamics.

1.2 Data, Data-Generating Processes (DGP), and Inference

In most applications of statistical analysis in the so-called “hard” sciences, the pro-
cess by which the observed data are generated is transparent, having usually been
determined by the investigator by design. In contrast, in many applications in the
social sciences, especially in economics, the mechanism by which the data are gen-
erated is opaque. In such circumstances, estimation of the parameters of the statis-
tical or econometric model and the testing of specific hypotheses about it are only
half the problem of inference. Understanding the process by which the observations
at hand are generated is of equal importance. Were the data for example obtained
from a sample of firms selected by stratified random sampling from a census of all
firms in the United States in 2000? For example, were they obtained from regulatory
activity? In the case of time series, the data are almost always “fabricated” in one
way or another, by aggregation, interpolation, or extrapolation, or by all three. The
nature of the sampling frame or the way in which the data are fabricated must be
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part of the model specification on which parametric inference or hypothesis testing
is based. Nonparametric inference imposes fewer restrictions on the specification of
the DGP but incorporation of knowledge about the nature of the DGP is of equal
importance. Almost all the methodological papers in Parts 1 and 2 of this volume
focus primarily on problems of estimation and inference from a parametrically well-
specified model of how the observed data were generated and variously draw their
interest from different types of data and their DGPs. In this section we address the
issue of why the DGP matters in the context of a specific, although somewhat ab-
stract, example.

Suppose a longitudinal household survey in which the same households are ques-
tioned over time about their actions in, say, a number of consecutive months or
years and, initially, about various demographic and economic characteristics. These
households differ in various ways, some of which we observe and many which we
do not. Some of these differences are the result of their past behavior or past circum-
stances (path dependence), some are differences in tastes or other unobserved char-
acteristics which may be assumed to be permanent (individual heterogeneity), and
some are due to peculiarities not permanently associated with time or individual.1

What, in the context of these data, can be considered as random, what is the pop-
ulation from which we may consider the data a sample, and what is a parameter, and
what a random variable? These issues are central to an understanding of the DGP.

Statistical and, a fortiori, econometric analysis, are usually based on the idea
of sampling from a population in order to draw inferences for the underlying pop-
ulation. But what is the population from which economic data may be supposed
to be a sample? In his famous 1944 monograph, Haavelmo (1944, p. 56) wrote,
“. . . the class of populations we are dealing with does not consist of an infinity of
different individuals, it consists of an infinity of possible decisions which might
be taken . . . ”. In their recent text, Econometric Theory and Methods, Davidson and
MacKinnon (2004, pp. 30–31) make the same point: “In econometrics, the use of the
term population is simply a metaphor. A better concept is that of a data-generating
process, or DGP. By this term, we mean whatever mechanism is at work in the real
world of economic activity giving rise to the numbers in our samples, that is, pre-
cisely the mechanism that our econometric model is supposed to describe. A DGP
is thus the analog of a population in biostatistics. Samples may be drawn from a
DGP just as they may be drawn from a population. In both cases, the samples are
assumed to be representative of the DGP or population from which they are drawn.”

What is a random variable in this context and what is not? Whether or not a
particular variable can be considered a random draw from some population or not,
in principle can be decided by applying the principle of “exchangeability” intro-
duced by de Finetti (1930). In a nutshell, the idea, very Bayesian in flavor, is to ask
whether we can exchange two elements in a sample and still maintain the same sub-
jective distribution. Thus, in a panel study of households, are any two households in
the sample exchangeable without affecting the distribution, from which we imagine

1 In his paper, “Identifying the Hand of the Past: Distinguishing State Dependence from Hetero-
geneity”, Heckman (1991) argues that in general it is not possible to distinguish. The ability to do
so rests critically “on maintaining explicit assumptions about the way in which observables and
unobservables interact.”
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household observables and unobservables to be drawn? In a panel of state data, are
California and Maryland exchangeable without affecting the subjective distribution
of the state effects? It’s a dicey question – sometimes.

From the standpoint of a Bayesian there is no real distinction between a param-
eter and a random variable, but in this context we could say that a parameter is an
unobserved variable which affects the distribution of the random variables of the
model and is unaffected by the particular values such variables take on. It is what
we wish to estimate and about which we wish to make inferences. A related concept
is that of an exogenous variable. But note here that such an exogenous variable is
still a random variable and not a parameter.

In general, in the formulation of econometric models (i.e., the DGP for the pro-
cess yielding the particular set of data we want to “explain”) the distinction between
what can be observed and what is not is fundamental. Linear functions are often
used to describe such a DGP. To get more precisely to the issues posed by the for-
mulation of the DGP for a sample of economic data, we need to include several
observable variables. Suppose that we draw a random sample of N individuals over
T time periods; for example a household survey in which we collect observations
on the income, xit and consumption of household i, yit , for many households N, in
year t over a brief period T . From the survey we have observations on the pairs (xit ,
yit). Since the households are chosen at random for the survey, but the years over
which they are observed are not, the lists (xi1, yi1, . . . , xiT , yiT ), i = 1, . . . , N, are
exchangeable, but the order within each list is not.

Imagine we are estimating a consumption function and assume a linear relation-
ship subject to error:

yit = a+b xit + εit (1.1)

This would be the case, if for example, the joint distribution of variables could
be assumed normal and we were trying to estimate the mean of yit for a particular
year t conditional on xit . We might then write εit as

εit = μi +λ t +uit (1.2)

where εit is an unobserved random variable which is the sum of three effects, all of
which are also unobserved: λ t is a year effect, arguably nonrandom and therefore a
parameter to be estimated for each year, t; μi is a household effect, which, in view of
the way the observations are drawn, should surely be treated as random, and, finally,
uit is a random variable to represent all the rest.

We are far from done yet, however. The question remains as to what we should
assume about the observable variables, xit . They are clearly random variables jointly
distributed with the variable yit . If not subject to errors of measurement, an as-
sumption difficult to justify in the context of an economic survey, are they also
independent of, or at least uncorrelated with, the disturbances εit in (1.1)? This
question clearly affects not only what we can say about the DGP which generates
our observations, but also how many and what parameters must be considered. Let
us examine the regression with some care. Since λ t is not a random variable but a
parameter, consider it to be a constant for each t and add it to the constant a in the
regression equation (1.1):
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yit = a∗t +bxit +νit (1.3)

where

a∗t = a+λ t and

νit = μi +uit .

Suppose that (νi1, νi2, . . . , νiT ) is distributed with mean zero and variance–
covariance matrix Σ . If xit is strictly exogenous in the regression (1.3), which
means

E(νit |xi1, xi2, . . . , xiT ) = 0, ∀i and t , (1.4)

then (1.3) is the usual panel model. This means that b can be estimated by GLS
or ML with a dummy variable for each t. Weak exogeneity is a related concept,
introduced by Engle, Hendry and Richard (1983). In the context of the regression
(1.3), we say xit is weakly exogenous if νit is distributed independently of {xis, yis,
for all i and s≤ t−1}, if the marginal distribution of {xis, yis, for all i and s≤ t−1}
does not depend on any unknown parameters in Σ or on b or the λ ′s, nor does the
pdf of xit | {xis,yis, for all i and s≤ t−1}. If regression (1.3) satisfies the conditions
of strict exogeneity, the likelihood function for the whole sample of observations on
x and y factors into two pieces, one of which is the usual regression likelihood and
the other is a function of x but not of the parameters in Σ or b or the λ ′s. In that
sense we can treat the observations on x as fixed.

But is exogeneity, weak or strict, a reasonable assumption? Here is what
Wooldridge (2002, p. 252) says: “Traditional unobserved components panel models
take the xit as fixed. We will never assume the xit are nonrandom because potential
feedback from yit to xis for s > t needs to be addressed explicitly.”

The assumption that the explanatory variables in the regression are exogenous
is generally impossible. If the vector of explanatory variables includes any lagged
values of yit , either explicitly or implicitly, the strict or weak exogeneity is gener-
ally impossible. Any meaningful DGP describing individual economic behavior is
intrinsically dynamic in the sense that the “hand of the past,” whether as a result
of path dependence or of individual heterogeneity, is ever present. To put the point
more explicitly, if, among the observed variables are any initial conditions related to
past values of the observed yit ’s or to unobservables affecting present and past be-
havior, at least one of the components of xit must be correlated with εit . A Hausman
test will reject exogeneity of the x’s almost certainly. A rejection of exogeneity does
not, of course, imply that the unobserved components εit of the errors in (1.3) are
not random (RE) but fixed (FE).

Unfortunately, as Hsiao (2007) points out, this leaves the econometrician be-
tween Scylla and Charybdis: We’re damned if we do assume that the errors are
random, and damned if we don’t. Although the RE model avoids the classic inci-
dental parameters problem (Neyman and Scott, 1948), it is necessary in order to
obtain unbiased estimates to specify the conditional distribution of μi given the xit ,
and the μi are unobservable. As Heckman, quoted above, says, one must be willing
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to make “explicit assumptions about the way in which observables and unobserv-
ables interact.” But most econometricians are not willing to specify such interactions
as part of the DGP. Hence, the random effects are treated as parameters rather than
random variables. They are viewed as incidental parameters and the object is to get
rid of them without distorting the estimates of the structural parameters. There is
no universally accepted way of doing so in all contexts, especially not in explicitly
dynamic or nonlinear contexts, and, in our view no right way of doing so.

1.3 History and Dynamics

The fundamental fact about society as a going concern is that it is made up of in-
dividuals who are born and die and give place to others; and the fundamental fact
about modern civilization is that, as previously quoted from Knight (1921), it is de-
pendent upon the utilization of three great accumulating funds of inheritance from
the past, material goods and appliances, knowledge and skill, and morale. Besides
the torch of life itself, the material wealth of the world, a technological system of
vast and increasing intricacy and the habituations which fit men for social life must
in some manner be carried forward to new individuals born devoid of all these things
as older individuals pass out.

The moral of Knight’s characterization is that history is important and individuals
have histories. We illustrate our general view of the central principle involved using
a simple illustrative example drawn from a paper of Mátyás and Rahman (1992).

Let i index individuals and t time periods. Suppose the relationship we are inter-
ested in estimating is

yit =
∞

∑
s=0

βsxi,t−s + εit . (1.5)

The variable xit is assumed to be exogenous and distributed independently of the
true disturbances εit for all finite subsets of the t-index set. We also assume, despite
our previous injunction, that

E(εit) = 0, ∀i, t (1.6)

E(εitεi′t ′) = σ2
ε for i = i′ and t = t ′

= 0 otherwise .

To guarantee some stability in the relationship we are interested in estimating, we
must also assume some convergence properties for the sequence of distributed lag
weights. Although stronger than necessary, assume they are square-summable:

∞

∑
s=0

β 2
s < ∞ . (1.7)

Of course, as Mátyás and Rahman note, (1.5) is not estimable with a finite amount
of data. Indeed, the time dimension is likely to be very short. Instead, we truncate:
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yit =
k

∑
s=0

βsxi,t−s +
∞

∑
s=k+1

βsxi,t−s + εit ≡
k

∑
s=0

βsxi,t−s + μi + εit . (1.8)

Equation (1.8) is in the form of a frequently used random effect model, except
that now the individual-specific effects are interpreted in terms of the past histories
of each individual in the panel prior to the time when observation begins. Moreover,
the assumption that xit is stochastic, although exogenous, is not innocuous. The
implications are:

First, interpreting μi as fixed, nonstochastic, is not appropriate. If you accept
Haavelmo’s view that the class of populations which we imagine (1.8) reflects, con-
sists of decisions rather than identifiable specific individuals, then, in principle, we
should not even condition on μi. However, an exception to this rule is if, for the
particular sample of individuals we have drawn (now we can specifically identify
each), we want to predict future values of yit for that individual.

Second, since the xit are themselves considered to be stochastic, for each in-
dividual their values over time will in general be correlated. There may also be
correlations among xit’s for different values of i if different individuals have some
characteristics in common. But we neglect this possibility here. It follows that μi

and the values xit observed are correlated. Suppose, for example,

xit = ρixi,t−1 +ωit , (1.9)

where | ρi |< 1 and E(ωit) = 0, E(ωitωi′t ′) = σ2
i , i = i′ and t = t ′, and E(ωitωi′t ′) = 0,

i �= i′ or t �= t ′, for all i and t. Let S = {0, 1, . . . , K} be the set of indices for which,
given i,xit is observed (normally k will be chosen much less than K). Since

E(xit) = 0 (1.10)

and E(xitxi,t−τ) =
ρτ

i

1−ρ2
i

σ2
i , (1.11)

it follows that xit , t ∈ S, will be correlated with μi, and the correlation will depend
on how close to the beginning of the sample period the observation on xit is taken:

E(xiτ μi) =
∞

∑
s=k+1

βs E(xiτ xi,t−s) =
σ2

i

1−ρ2
i

∞

∑
s=k+1

βsρ
|τ−s|
i , (1.12)

for τ ∈ S. Clearly, this makes the likelihood of the sample much more difficult to
determine and introduces some of the parameters, namely βs, into the relationship
between the individual-specific disturbances in (1.8) and the observed past values
of the explanatory exogenous variable (we would perhaps be willing to regard σ2

i
and ρi as nuisance parameters).

The important point about this admittedly unrealistic example is that it shows that
an entirely new set of questions must be considered. In particular, the error which
we make by treating μi as independent of the observed values of xit now depends
in a complex way on the way in which the distributed lag parameters of interest
interact with the nuisance parameters σ2

i and ρi. Indeed, matters become even more
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interesting when we note that the unconditional variance of xit is σ2
i /(1−ρ2

i ), so
that, in general the greater σ2

i the greater is the signal to noise ratio in (1.8), on
the one hand, but, ceteris paribus, the greater is the dependence between xiτ and
μi, especially for τ near the beginning of the observation period. Other questions
we must ask ourselves are: How can we optimally rid ourselves of the nuisance
parameters? How badly does a method, which is based on the assumption that μi

and the observed xiτ are uncorrelated, approximate the true ML estimates? What
constitute appropriate instruments in considering alternative methods to ML? And
so forth.

Consider now an autoregressive model:

yit = αyi,t−1 + x′itβ + μi + εit , i = 1, . . . , N, t = 1, . . . , T . (1.13)

If only semi-asymptotics on N is considered (T finite), we need not assume |α |< 1.
On the other hand, the process generating the initial observations is very important.
As suggested above, this means that the individuals’ past history with respect to
both the observed variables x and the latent variables ε becomes crucial.

We can rewrite (1.13) as

yit = α t yi0 +
t

∑
j=0

α jx′i,t− jβ +
1−α t

1−α
μi +νit (1.14)

where

νit =
t−1

∑
j=0

α jεi,t− j .

Thus, each observation on the dependent variable yit can be written as the sum of
four terms:

The first, α t yi0, depends on the initial values which, as long as T is finite, do
influence the behavior of any estimators. Moreover, there is no good reason (as
in Balestra and Nerlove, 1966) to assume that these are fixed (to condition upon
their values) and independent of individual specific effects. Indeed, unless there is
something special about the initial date of observation, there is no justification for
treating the initial observation differently from subsequent observations or from the
past, but unobserved, previous values.

The second term in (1.14) depends on the current and past values of the exoge-
nous variables x ′it . The form that this dependence takes depends not only on the
dynamics of the model, but also on the way in which individuals’ past histories
differ (Knight, 1921).

The third term depends on remaining individual specific effects which are as-
sumed to be orthogonal to the individual’s past history.

Finally, the last term is a moving average in past values of the remaining distur-
bances, which may also be written:

νit = ανit + εit t ≥ 1

νit = 0 t = 0 .
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Conditioning on the initial observations implies that they can be treated as fixed
constants independently of μi and νit . They need not be independent of any of
the lagged values of the explanatory x’s which are included. But if any truncation
within-sample occurs, the truncation remainder will be part of the individual specific
disturbance, as shown above, and thus the initial values of the endogenous variable
are not independent of the disturbance and cannot be treated as fixed.

This point can be made in another way (following Chap. 8): Write the cross
section of initial observations as a function of past x’s, μi, and εi0,

yi0 = f (x′i,0,x
′
i,−1, . . . , μi, εi0) . (1.15)

The problem is now related to whether or not we choose to regard μi as fixed or
random. If μi is fixed and thus independent, cross-sectionally, of εi0, and if x′i,t− j
j = 0, 1, . . ., are cross-sectionally exogenous, then the yi0 can be conditioned on.
They are still, however, random variables. But, if the μi are random variables, the
yi0 are not exogenous. This shows that in a dynamic context fixed effects versus error
components assumptions make a big difference. Our preceding argument suggests
that the error components assumption is the more appropriate.

In this case, the literature suggests a variety of different assumptions about the
initial observation leading to different optimal estimation procedures and implying
different properties for suboptimal estimates. One line takes the generating pro-
cess of the initial observations to be different from that of subsequent observations.
Anderson and Hsiao (1982), for example, suggest a general form

yi0 = k0 + k1μ1 + k2εi0 . (1.16)

If k1 = k2 = 0, the initial observations are fixed and identical. If k0 = k1 = 0 and
k2 �= 0, the yi0 are random variables independent of the disturbances in (1.13). If
k0 = 0, k1 = 1/(1−α) and k2 = 1/(1−α2)1/2 the individual autoregressive pro-
cesses which generate the y’s are stationary, and so forth.

But, although convenient, it is not very reasonable to suppose the initial obser-
vation to be generated by a mechanism much different than that which generates
subsequent observations. Bhargava and Sargan (1983) suggest

yi0 = k0 + x∗
′

i0γ + k1μi + k2εi0 , (1.17)

where the x∗
′

i0 are exogenous variables, possibly different from x ′i0 but quite possi-
bly correlated with subsequent observed x ′it’s and where γ may or may not equal
β . This formulation obviously encompasses the stricter assumption that the same
mechanism generates yi0 and subsequent yit’s and allows the exogenous variables
themselves to be generated by other independent dynamical systems.

Assuming fixed effects in a dynamic framework and estimating them as if
they were constants (or eliminating them by taking deviations from individual
means) together with the autoregressive coefficient α leads to inconsistent esti-
mates of the latter. This was noted in Nerlove (1971), Nickell (1981) and proved
by Sevestre and Trognon (1985). Although yi,t−1 and εit are uncorrelated, their
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respective individual means are correlated with each other, with εit and with yi,t−1.
Instrumental variable methods have been proposed to get around this problem (e.g.,
Balestra and Nerlove, 1966), but as shown in Nerlove (1971), they can result in
very erratic estimates if the instruments themselves have relatively low explanatory
value.

Conditioning on the initial values of the endogenous variable also leads to trou-
blesome problems. As noted in Nerlove (1971), the estimates of α appear to be
inconsistent even when an error components model is assumed and σ2

μ and σ2
ε

are estimated together with other parameters of the model. This was proved in
Trognon (1978). Bhargava and Sargan (1983) show that this does not happen when
the likelihood function is unconditional, i.e., when it takes into account the den-
sity function of the first observation, e.g. as determined by (1.17) and assumptions
about the k’s, γ , and the densities of μi and εi0. Our opinion on this matter is that
it is most plausible and appropriate to assume that the mechanism which gener-
ates the initial observation is highly similar, if not identical, to that which generates
subsequent observations. If observations on past values of the exogenous variables
are not generally available, it would be preferable to model their independent de-
termination rather than to assume their joint effect, x∗

′
i0γ , to be fixed constants. At

least, such an approach would be more consistent with Haavelmo’s views as quoted
above.

When the solution to the likelihood equations is not on a boundary and when
the likelihood function is locally concave at such a solution, the solution with the
largest value is consistent, asymptotically efficient, and root-N asymptotically nor-
mally distributed with variance-covariance matrix equal the inverse information ma-
trix. Provided the marginal distribution of the initial values yi0, can be correctly
specified, the unconditional density of yiT , . . . , yi0, conditional only on the values
of observed exogenous variables, gives rise to a likelihood function which has an
interior maximum with probability one. If the marginal density of the initial values
is misspecified, ML estimates are no longer consistent.

It is not, in fact, difficult to obtain the unconditional likelihood function once the
marginal distribution of the initial values is specified. The problem is a correct spec-
ification of this distribution. Suppose that the dynamic relationship to be estimated
is stationary so that |γ|< 1. Consider (1.14) for yi0 and the infinite past:

yi0 =
∞

∑
j=1

γ jβxi− j +
1

1− γ
μi + vi0 where vit = γ vit−1 + εit . (1.18)

(Recall that all variables are expressed as deviations from their overall means). If
β = 0, so that the relationship to be estimated is a pure autoregression, the vector
of initial values y0 = (y10, . . . , yN0) has a joint normal distribution with means 0

and variance–covariance matrix (
σ2

μ
(1−γ)2 + σ2

ε
(1−γ2) )IN . The unconditional likelihood

is therefore
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log L(γ, σ2
μ , σ2

ε |y11, . . . , yNT ;y10, . . . , yN0)

=−NT
2

log(2π)− NT
2

log(σ2)− N
2

log(ξ )− N(T −1)
2

log(η)

− 1
2σ2 ∑

i
∑

t

(
y∗it − γ y∗it−1

)2− N
2

log

(
σ2

μ

(1− γ)2 +
σ2

ε
1− γ2

)

−
[

1
2

(
σ2

μ

(1− γ)2 +
σ2

ε
1− γ2

)]

∑
i

y2
i0. (1.19)

where y∗it is obtained by applying the standard GLS transformation to yit . To max-
imize, express σ2

μ , σ2
ε , ξ and η in terms of ρ . For given ρ in the interval [0,1),

concentrate the likelihood function with respect to σ2 and γ . This is a little more
complicated than the usual minimization of the sum of squares in the penultimate
term because γ enters the final term as well. Then do a gradient search on ρ .

When β �= 0, things are more complicated still. Various alternative specifications
considered in the literature are reported and analyzed in Chap. 8.2 Considerable
simplification, however, can be obtained if, following Nerlove (1971), we are willing
to assume that xit follows a well-specified common stationary time series model for
all individuals i.

With these general principles in mind, we now turn to a review of other method-
ological developments that are considered in this volume. Indeed, since the early
work of Mundlak (1961) and Balestra and Nerlove (1966), panel or longitudinal data
have become increasingly important in econometrics, and methods for the analysis
of such data have generated a vast literature much of which has been summarized in
the first two editions of this volume. In the last ten years there has been an extraor-
dinary further growth, captured here in eleven completely new chapters and fifteen
significantly revised chapters which appeared in the earlier editions.

1.4 A Brief Review of Other Methodological Developments

The most common model for the analysis of panel data is the linear model in which
explanatory variables are taken to be exogenous, that is independent of the distur-
bances in the equation or, in the case of the random coefficients model, of the dis-
tributions of the coefficients. When the coefficients (except for the constant term)
in the linear relationship with which we describe the data are assumed to be con-
stant, it is usual to distinguish between fixed effects and error components models.

2 One interesting possibility discussed there is to choose yi0 a linear function of some observed
individual specific time invariant exogenous variables and a disturbance which is decomposed as
the sum of the individual specific disturbances μi and a remainder. The first-order equations for
maximizing the likelihood then take on a simple recursive form when β = 0, and permit other sim-
plification when β �= 0. But if we knew some individual specific time invariant observed variable
influenced behavior why not incorporate them directly in the equation to be estimated?
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In the case of the former, the intercepts are assumed to vary across individuals at
the same point in time and, possibly, over time for all individuals taken together.
In the case of the latter, the variations are assumed to be random and uncorre-
lated both with the observed explanatory variables and the latent disturbance in the
equation.

A considerable quantity of interesting mathematics has been developed for both
types of models. A number of different projection matrices exist, which take devi-
ations between the raw observations and various means, across individuals, across
time periods, over all, and of various means from other means. These projections
can be used to define different possible estimators in fixed effects models or the
spectral decomposition of the disturbance variance–covariance matrix in the case of
error components models. A principal result is then the demonstration, first noted by
Maddala (1971), that the Generalized Least Squares (GLS) estimators of the slope
parameters in the error components case are a weighted combination of estimators
in the fixed effects case (the so-called “between” and “within” distinction among
possible estimators). See Chaps. 2 and 3.

An important distinction is made between fully asymptotic theory in which the
limiting properties of estimators are analysed when both the number of time peri-
ods and the number of individuals goes to infinity and semi-asymptotic theory in
which the number of individuals (or the number of time observations) is assumed to
increase without bound, that is, asymptotics in only one of two dimensions. Clearly,
in the case of random effects models, the moments of the distribution of the effect
whose dimension is not increased in the calculation cannot be semi-asymptotically
consistently estimated.

As long as the model is not dynamic, that is, does not contain a distributed lag,
lagged values of the dependent variable, or the equivalent stock or state variable,
the GLS estimators of these coefficients have the usual good small sample and
asymptotic properties, The problem, then, is that the elements of the disturbance
variance–covariance matrix are unknown. Since consistency of the variance com-
ponents estimates depends on the asymptotics assumed, the usual justification for
a two-stage procedure (feasible GLS or FGLS) based on first-stage consistent es-
timates of the variances and covariances of the panel model disturbances does not
clearly apply. Indeed, in some cases the FGLS may not even be consistent.

Various interesting extensions of both the fixed effects and error components
linear models have recently been made and are presented in this volume. They
deal with:

(a) random coefficient models (Chap. 6) and spatial models (Chap. 19). These
are important and rapidly expanding fields. Indeed, allowing behaviors to vary ran-
domly across individuals can be an attractive way to account for heterogeneity. Also,
the existence of spatial dependence should clearly not be ignored when dealing with
regional or industry-level data where assuming the “individuals” to behave indepen-
dently from each other is clearly a strong assumption;

(b) linear models with random regressors and the Chamberlain (1984) approach
(Chaps. 4 and 5). As emphasized in the previous section, it is indeed heroic to as-
sume the absence of correlation between the individual effects and the regressors,
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in particular. Instrumental variables estimators may then be a useful tool in such a
context. The chapter devoted to the Chamberlain approach shows that one important
advantage of this approach is to permit a unified treatment of both fixed effects and
random effects models in such a context.

(c) data with measurement errors and simultaneous equation models (Chap. 10).
Inconsistencies resulting from the simultaneity of individuals’decisions are quite
well-known and the treatment of such an issue does not need any long justifica-
tion. Griliches (1986) persuasively argues the need to understand and model the
processes generating errors in economic data in the estimation of economic rela-
tions. Griliches and Hausman (1986) provide a pioneering application to panel data.
Moreover, problems associated with measurement errors are more important than
they might seem at first, because of the increasing importance of so-called “pseudo
panel” data (Chap. 11) and the application of measurement error models to the anal-
ysis of such data as if they were true panel data. For many types of problems true
panel data are not available, but rather several cross sections at different points in
time are. For example, surveys of consumer expenditures based on a sample of in-
dividual households are made every few years in the UK or the US. Surveys to
determine unemployment and labor force participation are made monthly on the ba-
sis of a rotating sample. Pseudo panel methods for treating such data are described
in Chap. 11. These methods go back to Deaton (1985) who proposed dividing the
sample into “cohorts” sharing common demographic, socio-economic, or historical
characteristics, then treating the “cohort” averages as observations on “representa-
tive” individuals in a panel. Because each “cohort” observation is based on a sample
of the true population cohort, the averages, treated as observations, contain sampling
errors. Thus, Deaton proposed that the observations be considered as measurements
of the “true” values with errors.

What should we make of this approach from the standpoint of the fundamental
issues of history and dynamics? It goes without saying that we want to make use
of whatever data is available in an appropriate way. The question is what do the
cohort averages mean and how should relationships among them be interpreted?
Deaton’s cohorts and his proposed treatment of cohort averages is similar to the no-
tion of a representative economic agent, introduced by Alfred Marshall in the last
century, and in widespread theoretical use today. Kirman (1992) has given a detailed
critique of the concept and many of his points apply in the present context. Essen-
tially, relationships among averages, or for representative individuals, are often not
interpretable directly in terms of individual behavior since the relationships among
the aggregates is often a result of the aggregation. Another way of saying the same
thing is that the aggregate relationships are reduced forms from which the under-
lying structural relations (at the individual level) will not generally be identifiable.
This is particularly the case when differences among individuals are historical to a
significant degree and when the relationships of interest are dynamic. To the extent
that the cohort-defining variables succeed in classifying individuals together who
share common histories and exhibit common forms of (dynamic) behavior, the use
of pseudo panel data as if they were true panel data subject to sampling error will be
successful. But to the extent that unobserved heterogeneity in either respect remains,
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the relationships obtained from pseudo panel data may not permit identification of
the underlying structure of interest.

(d) dynamic models are considered in Chaps. 8 and 9. As we have argued above,
most relationships of interest are likely to be dynamic and the past histories of
individuals are almost always important determinants of current behavior. While
Chap. 8 considers the case where the number of periods of observation is finite,
Chap. 9 considers the situation where this number of periods can be seen as large
enough to consider a T -asymptotics; stationarity of the DGP and the existence of
cointegation relationships between variables have to be considered. Let us go back
for a while to the former context (finite T ). The GLS estimates in an error com-
ponents setting are obtained by transforming the observations to weighted sums of
Between and Within variances and covariances, using appropriate weights based on
the two distinct characteristic roots of the variance–covariance matrix of the residu-
als uit = μi + εit . The covariance matrix of the disturbances can be expressed as

σ2Ω = σ2(ρ(IN⊗ JT )+(1−ρ)INT})
= σ2(ρ(IN⊗ JT )+(1−ρ)(I N⊗ IT ))
= σ2(IN⊗ (ρJT +(1−ρ)IT )) . (1.20)

where σ2 = σ2
μ + σ2

ε , ρ = σ2
μ/σ2 and its distinct roots are ξ = (1−ρ)+ T ρ and

η = (1−ρ). Applying this transformation to the dynamic error components spec-
ification in (1.13) and replacing η

ξ = 1
θ 2 = λ , the normal equations to be solved for

the GLS estimates become:
(

Wyx +λByx

Wyy−1 +λByy−1

)
=
(

Wxx +λBxx Wx,y−1 +λBx,y−1

Wy−1,x +λBy−1,x Wy−1,y−1 +λBy−1,y−1

)
γ . (1.21)

In this case, the calculated RSS/NT estimates not σ2 but ησ2. As Maddala
(1971) points out, the GLS estimates with λ = 1

θ 2 can be considered members of a
more general class of estimators obtained through different choices of λ . Let γ̂(λ )
be the estimator of γ obtained by solving the above equations for an arbitrary value
of λ . Sevestre and Trognon (1985) show that for the case in which β = 0, the purely
autoregressive case, the following inequality holds:

γ̂(0) ≤ γ ≤ γ̂(θ 2)≤ γ̂(1)≤ γ̂(∞) (1.22)

i.e., Within ≤ γ ≤ GLS≤ OLS≤ Between .

Remarkably, therefore, the GLS estimate is inconsistent in this case. The problem
is that the lagged dependent variable is correlated even with the transformed dis-
turbance. Since γ̂(λ ) is a continuous function of λ , there exists a value λ ∗ in the
interval [0, θ 2] for which γ̂(λ ) = γ . In an earlier paper, Sevestre and Trognon (1983)
have derived this value. They also show that when β �= 0, the estimate γ̂(λ ) behaves
almost the same as in the purely autoregressive case. Since the λ ∗ estimate is con-
sistent when there are no exogenous variables, it remains so when there are. The
trick is to obtain a consistent estimate of λ ∗ which can be accomplished by finding
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an appropriate instrumental variable for y−1. Even in this case the results depend
heavily on the distribution of the estimate of λ ∗.

In the dynamic error components model, not only are the OLS pooled regression
estimates, the fixed effects or Within estimates, and the Between estimates inconsis-
tent, but so are the GLS estimates using the true value of ρ . However, the method of
instrumental variables may be used to obtain a feasible member of the λ -class of es-
timates which is consistent. Unfortunately, this estimate may have a very large vari-
ance. The method of choice in most cases is Maximum Likelihood (ML), provided,
of course, that associated computational difficulties can be resolved. But even when
the matrix of observed regressors is assumed to be nonstochastic, the properties of
ML estimators may no longer be fully optimal asymptotically. Although consistent
ML estimates of the coefficients of observed exogenous and of the nonspecific resid-
ual variance can be obtained either in the asymptotic or the semi-asymptotic sense,
consistent ML estimates of the individual specific residual variance cannot be ob-
tained except in the semi-asymptotic sense. In the dynamic case, however, maximum
likelihood based on the likelihood function conditional on the initial observation, or
more generally the state, can yield inconsistent estimates (Trognon, 1978).

Other developments covered by specific chapters in this third edition consist of
the semi-parametric and non-parametric methods that can be used for analyzing
panel data (Chap. 14), the Bayesian approach to panel data analysis (Chap. 15), and
the question of the poolability of individuals in a panel (Chap. 16).

Chapters 7, 12, 13, 17 and 18 deal with latent variables and other forms of non-
linear models in a panel data context. Two points are worth making in this respect:
First, it is frequently more difficult to see how elements of individual heterogeneity
should be introduced, in contrast to the simple way in which such heterogeneity is
introduced in equations (whether linear or not) in terms of disturbances. In these
non-linear models, even in the case in which all the explanatory variables are truly
exogenous, failure to take account of heterogeneity may result in bias, not merely
inefficiency, whereas no bias results in the linear case.

The solution in principle is to formulate a model in terms of the probability of
individual observations and then to “integrate out” the heterogeneity factors if these
can be parametrically specified. In practice, of course, this is rarely possible analyt-
ically and may even be extremely difficult computationally. Methods of simulated
moments (see McFadden, 1989, and Chap. 13, below) are of considerable utility in
this connection.

An important application of latent variables models (which are largely highly
nonlinear) is to selection bias and incompleteness in panel data (Chap. 12). In the
case of selection bias, a rule other than simple random sampling determines how
sampling from the underlying population takes place. Ignoring the nature of the se-
lectivity mechanism may seriously distort the relationship obtained with respect to
the true underlying structure. Heckman (e.g., 1990, and references cited therein) has
pioneered in this analysis. The greatest problem in panel data in this connection is
attrition (sometimes resolved through partial rotation which has its own problems).
The probability of nonresponse increases when the same individual is repeatedly
sampled. In Chap. 12, it is shown that the crucial question is whether the observed
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values in the sample can be considered as the result of a simple random drawing or
whether, on the contrary, they are “selected” by some other rule, random or not. In
the case of simple random selection, standard estimation and inference are appro-
priate, and we say the selection rule is ignorable. On the other hand, if selection is
nonrandom with respect to factors reflecting heterogeneity, that is correlated with
them, standard techniques yield biased estimates and inferences. In this case the se-
lection rule must be explicitly modelled to correct for selection biases. The authors
of Chap. 12 show how this can be done for both and for random effects models.
Because consistent estimation in the case of a non-ignorable selection rule is much
more complicated than in the ignorable case, several tests are proposed to check
whether the selection rule is ignorable.

There are other key methodological chapters in this third edition. These include
chapters on the use of simulation techniques for estimating panel models (Chap. 13),
on the Generalized Method of Moments for count variable models (Chap. 18) and a
long chapter on duration models and point processes (Chap. 17).

Finally, Part III of this third edition contains a number of surveys about possible
applications of the above methods. Applications of panel data are very diverse, de-
pending, of course, on the availability of such data in specific substantive contexts.
This volume contains new chapters on foreign direct investment (Chap. 20), linked
employer–employee data (Chap. 22) and policy analysis (Chap. 24). This third part
also contains revised versions of previously published chapters about production
frontiers and productive efficiency (Chap. 21), labor supply (Chap. 23), labor market
transitions (Chap. 25) and a fully updated version of the software review (Chap. 26).
In addition to surveying important substantive areas of research these chapters are
particularly useful in illustrating our message.

Obviously, panel data (or pseudo panel data) are essential if we want to estimate
dynamic relationships at an individual or disaggregated level. As soon as the fo-
cus is on dynamics, historically generated heterogeneity becomes a central issue.
Models of factor demand (labor and capital investment) reveal the crucial role of
expectations. In this connection it is interesting to note the special impact of het-
erogeneity on expectations. Panel data provide a unique opportunity to study expec-
tation formation and to test various hypotheses about expectation formation (See
e.g., Nerlove, 1983, Nerlove and Schuermann, 1995). Often, however, panel data
do not contain direct observations on expectations but, as is typically the case with
time series data, only on other variables affected by expectations. In this case, we
formulate a model of expectation formulation and infer indirectly the parameters of
both the behavioral and the expectational model. To see how heterogeneity plays a
critical role, it is useful to consider two simple examples: adaptive expectations and
rational expectations.

Suppose that the model we wish to estimate is

yit = αx∗it +uit i = 1, . . . , N; t = 1, . . . , T , (1.23)

where expectations are adaptative:

x∗it = βx∗i,t−1 +(1−β )xi,t−1 + vit . (1.24)
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Even if the disturbances in the behavioral equation (1.23) are i.i.d. random variables,
it is unlikely that past history and past experience will play no latent role in the
determination of current expectations, not fully taken into account by x∗i,t−1. Thus,
write

vit = μi + εit , (1.25)

where the individual specific effects are likely to be correlated with past xit’s and
also, presumptively, with past uit’s and x∗it ’s. The usual transformation of (1.23) and
(1.24) then yields

yit = βyi,t−1 +α(1−β )xi,t−1 +αμi +αεit +uit −βui,t−1 . (1.26)

Not only do the usual difficulties, discussed above, arise because of the correlation
between yi,t−1 and μi, but the third term of the disturbance is serially correlated.
Moreover, if the individual specific disturbances, μi, are correlated with past xit’s,
the lagged values of these will no longer serve as instruments.

Still more interesting things happen in the case of rational expectations. In this
case (1.24) is replaced by

x∗it = E(xit |Ωi,t−1) , (1.27)

where Ωi,t−1 is the set of information available to the i-th individual at the time
when his expectations are formed. In principle, Ωi,t−1 not only contains that in-
dividual’s own past history, but also observations on aggregates of individuals, and
may include knowledge of the way in which individual decisions interact to produce
aggregates. For example, supppose

zt =
N

∑
i=1

yit . (1.28)

Then, for the i-th individual,

Ωi, t−1 = {yi, t−1, . . . ; xi, t−1 . . . ; zt−1, . . .} . (1.29)

Rational expectations imply

yit = αE(xit |Ωi,t−1)+uit = αE(xit | yi, t−1, . . . ; xi, t−1, . . .)+uit . (1.30)

Now if the value of xit faced by each individual is a function, peculiar to that indi-
vidual, of zt :

xit = fi(zt) , (1.31)

which may also be stochastic, then

E(xit |Ωi, t−1) = E( fi(zt) |Ωi, t−1) . (1.32)

So, for example, if
xit = γzt +δit , (1.33)
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then
E(xit |Ωi,t−1) = γE(zt |Ωi,t−1)+E(δit |Ωi,t−1) . (1.34)

The last term on the right hand side of (1.34) will not generally be zero. Suppose
it is. Such a simplification does not essentially affect the nature of the difficulties
involved. Then

yit = αγE(zt |Ωi, t−1)+uit = αγE

(
N

∑
i=1

yit |Ωi, t−1

)

+uit = αγ
N

∑
i=1

E(yit |Ωi, t−1)+uit .

(1.35)
Hence, if uit = θi +νit ,

E(yit |Ωi, t−1) = αγ
N

∑
i=1
{αγE(yit |Ωi, t−1)}+

N

∑
i=1

E(θi |Ωi, t−1), i = 1, . . . , N .

(1.36)
Equation (1.36) are N equations for each t, which, in principle, can be solved for the
N values

E(yit |Ωi,t−1)

in terms of the contents of Ωi,t−1 for all N individuals and the sum of expectations

λt−1 =
N

∑
i=1

E(θi |Ωi,t−1) .

In general
E(yit |Ωi,t−1) = a1gi(Ωi,t−1)+a2λ t−1 .

Then we can replace the left hand side of (1.34) by

x∗it = a1

N

∑
i=1

gi(Ωi,t−1)+a2Nλ t−1 . (1.37)

So (1.23) becomes

yit = αa1

N

∑
i=1

gi(Ωi,t−1)+αa2Nλt−1 +uit . (1.38)

It follows that the appropriate equation now contains a specific time-varying,
individual-nonspecific, effect in addition to θi and νit . This effect is correlated with
the element in Ωi,t−1 since it is an expectation conditional on Ωi,t−1. Finally, it can
be seen that the parameters of gi,a1, and a2 and α are not generally separately
identifiable. The bottom line is that, if one believes in rational expectations, one is
in deep trouble dealing with panel data.

Unless future values of the exogenous variables are in the information set Ωi,t−1

when expectations are formed, all of the applications discussed in Part III have this
problem.
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1.5 Conclusion

In this introductory chapter we have tried to bring out the following points:

(a) One of the main reasons for being interested in panel data is the unique possi-
bility of uncovering disaggregate dynamic relationships using such data sets.

(b) In a dynamic context, one of the primary reasons for heterogeneity among indi-
viduals is the different history which each has.

(c) If the relevant “population” is, following Haavelmo, the space of possible de-
cisions, different past histories take the form of individual specific random
variables which are generally correlated with all of the variables taken as
explanatory, not just the lagged values of the endogenous variable. The former
therefore cannot be conditioned upon in the usual way.

(d) Finally, although the adaptive expectations model does not introduce any new
complications, rational expectations introduce a time specific, individual non-
specific, component in the error component formulation, as well as a fundamen-
tal failure of identifiability.

Panel data econometrics is one of the most exciting fields of inquiry in
econometrics today. Many interesting and important problems remain to be solved,
general as well as specific to particular applications. We hope that this volume is the
place to start.
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Chapter 2
Fixed Effects Models and Fixed
Coefficients Models

Pietro Balestra and Jayalakshmi Krishnakumar

As noted in the introductory chapter, the simplest and most intuitive way to account
for individual and/or time differences in behaviour, in the context of a panel data
regression problem, is to assume that some of the regression coefficients are al-
lowed to vary across individuals and/or through time. The regression coefficients
are unknown, but fixed parameters. When these are allowed to vary in one or two
dimensions, we speak of a fixed effects model (or fixed coefficients model).

It is useful, in this context, to distinguish between two types of regression coef-
ficients: the intercept and the slope parameters. When only variations in the inter-
cept are considered, the resulting regression problem is called a covariance model
(or dummy variable model). Among the early proponents of such models in eco-
nomics, one can cite Mundlak (1961), Hoch (1962), Kuh (1963) and Nerlove (1965).
This model is discussed at length in Sect. 2.1 (for the case in which only individ-
ual variations occur) and in Sect. 2.2 (for the case in which both individual and
time variations appear). The hypothesis of spherical disturbances which is typically
maintained in such models is abandoned in Sect. 2.3, where different variance–
covariance structure of the residuals are considered. Particular attention is paid to
the problems of serial correlation and heteroscedasticity. Finally, some extensions
(including variations of the slope parameters) are taken up in the last Section.
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L. Mátyás, P. Sevestre (eds.), The Econometrics of Panel Data, 23
c© Springer-Verlag Berlin Heidelberg 2008



24 P. Balestra and J. Krishnakumar

2.1 The Covariance Model: Individual Effects Only

2.1.1 Specification

In this model, the intercept is allowed to vary from individual to individual, while
the slope parameters are assumed to be constant in both the individual and time
dimensions.

Consider, by contrast, the case in which all the parameters, including the intercept,
are constant. Given a panel sample of N individuals over T periods, the basic linear
regression equation takes the form:

yit = α0 +β1x1it + . . .+βKxKit + εit , i = 1, . . . ,N; t = 1, . . . ,T

= α0 + x′itβ + εit (2.1)

where yit is the observation on the dependent variable (for individual i at time t),
x′it is the K row vector of the explanatory variables, εit is a non-observable random
term, β is the K column vector of the slope parameters and α0 is the intercept.

When different intercepts are permitted for the N individuals, the model becomes:

yit = αi + x′itβ + εit (2.2)

which is the basic (individual effect only) covariance model. The term covariance
model is used with reference to the standard analysis of variance layout, which does
not consider explicitly any explanatory variables. When the standard analysis of
variance effects are combined with those of explanatory variables, the term covari-
ance model is used.

Let us write down the model for the full sample. First, the T observations for
individual i can be expressed conveniently in the following matrix form:

yi = eT αi +Xiβ + εi (2.3)

where yi is the T ×1 vector of the yit , eT is the unit vector of size T , Xi is the T ×K
matrix whose t-th row is x′it and εi is the T × 1 vector of errors. Next, stacking the
individuals one after the other, we have:

⎡

⎢
⎢
⎣

y1

y2

. . .
yN

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

eT 0 . . . 0
0 eT . . . 0

. . .
0 0 . . . eT

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

α1

α2

. . .
αN

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

X1

X2

. . .
XN

⎤

⎥
⎥
⎦ β +

⎡

⎢
⎢
⎣

ε1

ε2

. . .
εN

⎤

⎥
⎥
⎦

y
(NT×1)

DN
(NT×N)

α
(N×1)

X
(NT×K)

ε
(NT×1)

or more simply:
y = DNα +Xβ + ε . (2.4)
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The matrix DN contains a set of N individual dummies, and has the following
Kronecker product representation:

DN = IN⊗ eT .

It can easily be verified that the following properties hold:

(i) DNeN = eN ⊗ eT = eNT (exhaustivity)
(ii) D′NDN = T IN (orthogonality)

(iii) DND′N = IN⊗ eT e′T = IN⊗ JT

(iv) 1
T D′Ny = [ȳ1, . . . , ȳN ]′, 1

T D′NX = [x1, . . . ,xN ]′

where ȳi = 1
T ∑

t
yit is the individual mean, x ′i = 1

T ∑
t

x ′it is the K× 1 vector of the

individual means of the explanatory variables and, by definition, JT = eT e′T is the
unit matrix of order T .

Expression (2.4) represents the basic covariance model (in the case of indi-
vidual effects only). To complete its specification, we adopt the following set of
assumptions:

A1: The explanatory variables are non-stochastic, independent of the errors, and
such that the NT × (N +K) matrix Z = [DN X ] has full column rank;

A2: The random terms εit are independent, homoscedastic (variance σ2) with
zero mean.

Note that assumption A1 implies NT > N + K (which is satisfied, for large N
whenever T ≥ 2), but also requires that the columns of X be linearly independent
from those of DN . For this to be the case, the matrices Xi must not contain the con-
stant term (an obvious restriction) nor a column proportional to it (which precludes
any variable, such as years of schooling, that is constant for a given adult individual,
although varying from individual to individual).

2.1.2 Estimation

Given assumptions A1 and A2, the OLS estimators of all the regression coefficients
in model (2.4) are BLUE. Collecting the regression coefficients in the vector γ , γ ′ =
[α ′β ′], and all the explanatory variables (including the N dummies) in the matrix
Z = [DN X ], the OLS estimator is γ̂ = (Z′Z)−1Z′y. The actual computation of γ̂
requires the inversion of the (N + K)× (N + K) matrix Z′Z, which for large N, is
not an attractive operation. Instead, the technique of partitioned regression can be
used, which involves the inversion of just a (K×K) matrix.

Using the results of partitioned regression or equivalently those of the Frisch–
Waugh–Lovell theorem, these estimators (and other relevant statistics) can be ex-
pressed as:

β̂ = (X ′WNX)−1X ′WNy (2.5)

α̂ = (D′NDN)−1D′N(y−X β̂ ) =
1
T

D′N(y−X β̂ ) (2.6)
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SS = y′WNy− β̂ ′X ′WNy (2.7)

σ̂2 = SS/(NT −N−K) (2.8)

V (β̂ ) = σ2(X ′WNX)−1 (2.9)

V (α̂) =
σ2

T
IN +

1
T

D′NXV (β̂ )X ′DN
1
T

(2.10)

where WN = INT − DN(D′NDN)−1D′N = INT − 1
T DND′N = INT − IN ⊗ 1

T JT is an

idempotent matrix of order NT and rank NT −N, also called the within projector
(see the Appendix to this chapter).

The estimator given in (2.5) and the corresponding SS in (2.7) can also be ob-
tained by OLS on the transformed model

y∗ = X∗β + ε∗ , (2.11)

where y∗ = WNy and X∗ = WNX . The transformation WN is very simple: the trans-
formed variables are simply the original variables expressed as deviations from the
individual mean (the details are given is the Appendix). Therefore, the it-th equation
corresponding to (2.11) is:

(yit − ȳi) = β1(x1it − x̄1i)+ . . . +βK(xKit − x̄Ki)+ ε∗it
= (x ′it − x ′i )β + ε∗it (2.12)

However, it should be remembered that, when working with transformed vari-
ables, the actual number of degrees of freedom is NT −N−K and not NT −K (as
the above regression wrongly suggests), since in order to transform the variables, the
N individual means must be computed, resulting in the loss of N degrees of free-
dom. Hence, when using a computer program on the transformed data, the variances
given by the program must be adjusted accordingly.

If the transformed model is used, the estimators of the αi and their respective
variances and covariances can be obtained from (2.6) and (2.10), i.e.:

α̂i = yi− x ′i β̂

V (α̂i) =
1
T

σ2 + x ′i V (β̂ )xi

Cov(α̂i, α̂ j) = x ′i V (β̂ )x j

There are other ways to eliminate the individual effects, but, when properly han-
dled, they give rise to exactly the same estimator obtained previously, namely β̂ .
Take the case of the popular first-difference transformation:

y∗it = yit − yi,t−1 t = 2, . . . ,T
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or the less known deviation from the mean of the preceding observations:

y∗it = yit −
1

t−1

t−1

∑
s=1

yis t = 2, . . . ,T

These two examples are special cases of the transformation y∗i = A′yi, y∗ = (IN⊗
A′)y, where A′ is a (T −1)×T matrix of full rank orthogonal to eT : A′eT = 0. For
the two examples, the matrix A′ takes the following form (respectively):

A′ =

⎡

⎢
⎢
⎣

−1 1
−1 1

. . .
−1 1

⎤

⎥
⎥
⎦ and A′ =

⎡

⎢
⎢
⎣

−1 1
−1/2 −1/2 1

. . .
− 1

T−1 −
1

T−1 −
1

T−1 . . . 1

⎤

⎥
⎥
⎦

These transformations seem to offer an advantage, since they do not require any
adjustment for degrees of freedom (the actual number of observations on the trans-
formed variables available for estimation being the required (NT −N). However,
they introduce serial correlation (as in the first difference transformation) or het-
eroscedasticity (as in the second example) in the transformed model:

y∗ = X∗β + ε∗ V (ε∗) = σ2(IN⊗A′A) = σ2V .

Hence OLS estimation is no longer BLUE.
Fortunately, the situation is one in which the pure GLS estimator is applicable

(the variance–covariance matrix of ε∗ being known up to a scalar multiple). This
estimator is given by:

β̂GLS = (X∗
′
V−1X∗)−1X∗

′
V−1y∗

=
[
X ′(IN⊗A(A′A)−1A′)X

]−1
X ′(IN⊗A(A′A)−1A′)y

In the Appendix it is shown that for any A such that A′eT = 0, A(A′A)−1A′ =
IT − 1

T eT e′T , and consequently IN ⊗A(A′A)−1A′ = WN . The pure GLS estimator is

thus equal to β̂ .
Actually the usual covariance estimator also belongs to this class, with A′ com-

posed of orthogonal rows (as in the second example above) but with unit length, so
that A′A = IT−1 and V (ε∗) = σ2IN(T−1). Consequently OLS can be applied directly
to the transformed model and no correction for degrees of freedom is required. Such
a matrix A′ is obviously not unique. But if A′ is chosen as in the second example
above but with normalized rows, the transformation is given by:

y∗it =

√
t−1

t

(

yit −
1

t−1

t−i

∑
s=1

yis

)

t = 2, . . . ,T

This particular matrix A′ is called by Arellano (1995) the backward orthogonal de-
viations operator. Upon reverting the order of both rows and columns of A′, one
obtains the forward orthogonal deviations operator defined by:
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y∗it =

√
T − t

T − t +1

(

yit −
1

T − t

T

∑
s=t+1

yis

)

t = 1, . . . ,T −1

2.1.2.1 Consistency

Given the double dimension of panel data, asymptotic behavior can be studied in
three different ways:

• Case 1: N fixed, T −→ ∞;
• Case 2: T fixed, N −→ ∞;
• Case 3: N,T −→ ∞.

The appropriate choice depends on the nature of the problem. For instance, if
the N individuals refer to geographical region (i.e. the States in the U.S.), Case 1 is
clearly indicated. The same would be true if N represents the number of the different
industrial sectors in a given economy. However, if the individuals are a random
sample from a large population (as is often the case in panel data models, with N
large and T quite small), the relevant asymptotic is depicted in Case 2.

In all cases, the covariance estimator of the slope parameters (also called the
within estimator) is consistent, under the usual regularity conditions. However, for
the intercepts the situation is quite different. When N grows, the number of parame-
ters αi to be estimated becomes larger and larger. Therefore, the αi can be estimated
consistently only when N is fixed and T goes to infinity (Case 1). If, however, the
true situation is the one corresponding to Case 2, the consistency problem of the
individual effects can be circumvented by assuming that they are random variables
rather than fixed parameters (see the chapter on error components models).

2.1.3 Inference

Under the normality assumption, the usual t-tests and F-tests can be performed. In
particular, if one wishes to test the hypothesis αi = α j (for some i and j, i �= j)
against the alternative αi �= α j, the quantity

(α̂i− α̂ j)/
√

V̂ (α̂i− α̂ j)

is distributed, under the null hypothesis, as a t-variable with NT −N−K degrees of
freedom.

An interesting question can be asked: are there any individual effects at all? The
null hypothesis (of no individual effects) is in this case

α1 = α2 = . . . = αN = α0

and the corresponding model (called the constrained model) is (2.1) with
NT − (K +1) degrees of freedom. Let SSc be the sum of squared residuals of this
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constrained model. The unconstrained model is (2.4) or, equivalently (2.11), with
NT −N−K degrees of freedom (and SS the corresponding sum of squares). Then,
the quantity

(SSc−SS)/(N−1)
SS/(NT −N−K)

is distributed as an F-variable with (N − 1) and (NT −N −K) degrees of free-
dom. An F-test is therefore appropriate. The number of degrees of freedom in the
numerator above is N− 1 and not N, since testing that the N coefficients αi are all
equal is the same as testing that the N−1 differences αi+1−αi, i = 1, . . . ,N−1, are
all zero.

2.2 The Covariance Model: Individual and Time Effects

2.2.1 Time Effects Only

The treatment of time effects is analogous to that of individual effects. It would
actually be the same if the observations were ordered by time first and then by
individuals. However, it should be kept in mind that we maintain here the same
ordering of the observations as in the preceding section.

Briefly stated, the time effect model is

yit = λt + x ′itβ + εit , (2.13)

where to avoid confusion (and to permit the combination of time effects with indi-
vidual effects) we use the symbol λ to designate a time varying intercept. For the
full sample, the model becomes:

y = DT λ +Xβ + ε (2.14)

where DT is a NT ×T matrix of time dummies and λ is the T ×1 vector of varying
intercepts. In this case, the transformed model is a deviation from the time-means
model (with NT −T −K degrees of freedom), i.e.:

(yit − ȳt) = (x ′it − x̄ ′t )β + ε∗it (2.15)

where ȳt = 1
N

N
∑

i=1
yit (the time-mean). Estimation and inference proceed as in the case

of individual effects.
Written in full, the set of time dummies is:

DT =

⎡

⎢
⎢
⎣

IT

IT

. . .
IT

⎤

⎥
⎥
⎦= eN ⊗ IT
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with the following properties:

(i) DT eT = eN ⊗ eT = eNT

(ii) D′T DT = NIT

(iii) DT D′T = eNe′N ⊗ IT = JN ⊗ IT

(iv) 1
N D′T y = [ȳ1, . . . , ȳT ]′ .

Finally, the deviation from the time-means matrix, called WT , is:

WT = INT −DT (D′T DT )−1D′T = INT −
1
N

DT D′T = INT −
1
N

(JN ⊗ IT ) .

2.2.2 Time and Individual Effects

It would seem natural, in order to allow for generic individual and time effects,
to include in the regression equation a full set of individual dummies and a full
set of time dummies. However, this way of proceeding raises an identification
problem. Not all the N coefficients αi and the T coefficients λt are identifiable,
since the columns of the matrix [DN DT ] are perfectly collinear (the sum of the
first columns, DNeN = eNT , is exactly equal to the sum of the last T columns,
DT eT = eNT ).

It can be shown that the rank of [DN DT ] is exactly equal to N +T −1. Therefore,
for identification, one column must be disregarded. This can be done arbitrarily,
without affecting the result. Any set of (N + T −1) linearly independent combina-
tions of the columns of [DNDT ] will do. However, for the sake of symmetry, we
prefer to delete one individual dummy (say the last) and one time dummy (again
the last) and add the overall constant. Calling DN−1 and DT−1 the sets of N−1, and
T −1 dummies respectively and α∗ and λ∗ the associated vectors of coefficients, the
saturated individual and time effects covariance model can be written as:

y = eNT c+DN−1α∗+DT−1λ∗+Xβ + ε . (2.16)

The value taken by the intercept for observation (i, t) can be easily read from the
Table 2.1:

For the OLS estimation of (2.16), the Assumption A1 of the preceding section
must be amended in the sense that now the matrix

[eNT DN−1 DT−1 X ]

Table 2.1 Values of the intercept

�
�t

i
i < N i = N

t < T c+α∗i +λ∗t c+λ∗t
t = T c+α∗i c
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must be of full column rank (equal to N + T − 1 + K). For this to be the case, the
matrix X must not (as before) contain variables that assume constant values for
each individual, nor (and this is peculiar to time effect models) admit variables that
take a constant value for each time period (like, for instance, a price variable in a
demand equation which is the same, at time t, for all individuals). Assumption A2
in obviously maintained.

Collecting all the dummies (including the overall constant) in the matrix D =
[eNT DN−1 DT−1] and calling γ ′ = [c α ′∗ λ ′∗] the vector of associated parameters,
(2.16) can be put in the following compact way:

y = Dγ +Xβ + ε (2.17)

which is formally analogous to (2.4) of the individual effect model (with just D
and γ replacing DN and α). Using again the properties of partitioned regression, the
following results hold:

β̂ = (X ′WNT X)−1X ′WNT y (2.18)

γ̂ = (D′−1D′(y−X β̂ )) (2.19)

SS = y′WNT y− β̂ ′X ′WNT y (2.20)

σ̂2 = SS/(NT −N−T +1−K) (2.21)

V (β̂ ) = σ2(X ′WNT X)−1 (2.22)

V (γ̂) = σ2(D′D)−1 +(D′D)−1D′XV (β̂ )X ′D(D′D)−1 (2.23)

where WNT = INT −D(D′D)−1D′ is an idempotent matrix of order NT and rank
NT − N − T + 1, also called the within projector (for both individual and time
effects).

Alternatively, one can apply OLS to the model transformed by WNT , i.e.

y∗ = X∗β + ε∗ (2.24)

where y∗ = WNT y and X∗ = WNT X . What does this transformation represent? Can it
be given as easy an interpretation as in the simple individual effects model? The an-
swer is yes, but the algebra involved is somewhat complicated and better left for the
Appendix. There it is shown that WNT is composed of four separate transformations:

WNT = INT − IN⊗
1
T

JT −
1
N

JN ⊗ IT +
1

NT
JNT (2.25)

the first being the identity transformation, the second the individual-mean trans-
formation, the third the time-mean transformation and the last the overall-mean
transformation. Therefore, the within transformation consists in subtracting from
the original variables both the individual and time-means and in adding the overall-
mean. The transformed model, accordingly, has the following simple expression:

(yit − ȳi− ȳt + ȳ) = (x ′it − x̄′i− x̄ ′t + x̄′∗it ) (2.26)
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If the main interest lies in the slope parameters, then the transformed model
should be used. It involves the inversion of a K × K matrix, while the dummy
variable specification requires the inversion of a matrix of order N + T − 1 + K.
Remember, however, that the exact number of degrees of freedom is NT −N−T +
1−K and not just NT −K (requiring an adjustment for degrees of freedom when a
regression package is used on the transformed data). From the transformed model,
using (2.19) and (2.23), one can retrieve the coefficients c,α∗ and λ∗, as shown
below. But the computational cost may be too high. If one needs to estimate the
intercept parameters (and their variances), it might be wise to use dummy variables.

For the sake of completeness (omitting the tedious details), the estimators of the
various intercept parameters are given hereafter:

ĉ = (yN + yT − y)− (x ′N + x ′T − x ′)β̂
α̂∗i = (yi− yN)− (x ′i − x ′N)β̂ i = 1, . . . ,N−1
λ̂∗t = (yt − yT )− (x ′t − x ′T )β̂ t = 1, . . . ,T −1

These results offer a neat interpretation that sheds some light on the identification
problem. The parameter α∗i measures the fixed effect of individual i as deviation
from the omitted individual effect; similarly, λ∗t measures the fixed effect of period
t as deviation from the omitted time dummy; finally, the two omitted individual and
time effects are included in the constant c, as deviation from the overall-mean. It is
also possible to get exact analytical expressions for all variances and covariances,
but, given their limited practical usefulness, they are not reported here.

It should be stressed, as a final point, that all the covariance estimators, given
Assumptions A1 and A2, are BLUE. The consistency properties are similar to the
ones discussed in Sect. 2.1.2. We thus have:

• Case 1: N fixed, T −→ ∞: only αi’s can be estimated consistently;
• Case 2: T fixed, N −→ ∞: only λt’s can be estimated consistently;
• Case 3: N,T −→ ∞: a random effects approach is advisable as the number of

parameters tends to infinity (see the next chapter).

The estimators of slope parameters are consistent in all the three cases.

2.2.3 Inference

In the present general covariance model, three interesting hypotheses may be tested:

– the absence of individual and time effects (α∗ = 0 and λ∗ = 0):
– the absence of time effects (α∗ free and λ∗ = 0);
– the absence of individual effects (α∗ = 0 and λ∗ free).

Assuming normality, these are F-tests. Denoting by:

– SS the sum of squares of the unrestricted covariance model ((2.17) or equivalently
(2.26));



2 Fixed Effects Models and Fixed Coefficients Models 33

– SSN the sum of squares of the individual dummy variables model ((2.4) or
equivalently (2.12));

– SST the sum of squares of the time dummy model ((2.14) or equivalently (2.15));
– SSc the sum of squares of the constant intercept regression model ((2.1));

the appropriate statistics for the three tests are, respectively:

F1 =
(SSc−SS)/(N +T −2)

SS/(NT −N−T +1−K)

F2 =
(SSN −SS)/(T −1)

SS/(NT −N−T +1−K)

F3 =
(SST −SS)/(N−1)

SS/(NT −N−T +1−K)

with degrees of freedom appearing, as deflators, in the numerator and denominator.
Before ending this section, let us mention that there is no particular problem

regarding prediction in the fixed effect model and it is carried out in the usual manner
taking into account the specific effect estimates.

2.3 Non-spherical Disturbances

2.3.1 What Variance–Covariance Stucture?

When the assumption of homoscedastic and independent errors (A2) is abandoned
in favour of a more general variance–covariance structure for the residuals, the vari-
ous estimators presented in the preceding pages are no longer BLUE (although they
remain unbiased). Yet efficiency can be achieved by GLS or maximum likelihood
techniques.

What is a typical variance–covariance structure in a panel data context? Two
different types of correlation must now be considered: serial correlation, as in tra-
ditional time series analysis, and correlation among individuals. A general way of
looking at this problem (given the adopted ordering of the observations) is to define
the variance–covariance structure at the individual level, i.e.

E(εiε ′j) = Ai j ,

where Aii is the variance–covariance matrix of the errors of individual i (a positive
definite matrix) and Ai j, i �= j, is the covariance matrix between the residuals of
individual i and individual j. Then, for the full sample, the variance–covariance
matrix of ε takes the following form:

V (ε) = E(ε ε ′) = [Ai j] i, j = 1, . . . ,N .

with A ji = A′i j.
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Several special cases are worth noting.

(a) Serially Independent Errors
In this case:

Ai j = σi jIT ⇒V (ε) = Σ ⊗ IT ,

where Σ = [σi j] is the (constant) contemporaneous variance–covariance matrix.
This specification was adopted by Zellner (1962) in his famous seemingly un-
related regression problem.

(b) Individual Independence
This case, characterized by

Ai j = 0, i �= j ⇒V (ε) = diag(A11, . . . ,ANN) ,

covers all types of heteroscedasticity and serial correlation at the individual
level.

(c) Block-homoscedasticity
It is an important special case of individual independence with in addition

Aii = A ∀ i =⇒V (ε) = IN ⊗A .

When A = c1IT + c2eT e′T , where c1 and c2 are positive scalars, we have the
(individual effect only) error component specification, studied in later chapters.
In Sect. 2.3.3 below, we analyze in some details the case of serial correlation.
(A being the variance–covariance matrix of a stationary stochastic process).

(d) Block-equicorrelation
It is defined by

{
Aii = A ∀ i
Ai j = B i �= j

=⇒V (ε) = IN⊗ (A−B)+ eNe′N ⊗B

with A positive definite, B non negative definite and such that A−B is positive
definite. The special situation:

A = (c1 + c3)IT + c2eT e′T (2.27)

B = c3IT

(with c1,c2,c3 positive scalars) corresponds to the full (both individual and time
effects) error component specification.

2.3.2 Two General Propositions for Fixed Effects Models

Let us now go back to the basic covariance model, which we write as

y = Lγ +Xβ + ε (2.28)
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where L represents a set of fixed effect dummies, either DN for individual effects
only), or DT (for time effects only) or D (for both effects) and γ is the vector
of associated parameters. In such a model, the choice of an appropriate variance–
covariance structure naturally depends on the type of problem considered and very
little can be said a priori. However, two general properties can be established, con-
cerning on one hand the relevance of the within transformation and, on the other,
the efficiency of the within estimator.

(a) The Within Transformation
In the case of spherical disturbances, the BLUE of β can be obtained directly
by OLS on the transformed model

y∗ = X∗β + ε∗ (2.29)

where y∗ = Wy and X∗ = WX with W = I−L(L′−1L′). The simplicity of this
transformation and its numerical advantages have been pointed out before. Yet,
do these benefits carry over in a more general context characterised by a non-
spherical variance structure? In other words, is it possible to apply first the
within transformation and then use GLS? The answer is contained in the fol-
lowing proposition:

Proposition 2.1. The GLS estimator of β in (2.28) is numerically equivalent to
the GLS estimator of β in (2.29) using the same variance-covariance matrix
V (ε), for any observable X and y, if and only if V (ε)L = LC, for some non-
singular C.

For the proof of this proposition (and Proposition 2.2 below) see Aigner and
Balestra (1988, Appendix).

It is easy to verify that the condition of Proposition 2.1 is satisfied in two
interesting cases: (i) when L = DN and V (ε) = Σ⊗ IT (since (Σ⊗ IT )DN =
Σ⊗eT = (IN⊗eT )Σ = DNΣ) and (ii) when L = DT with a block-equicorrelated
covariance structure (since [IN⊗(A−B)+eNe′N⊗B]DT = eN⊗(A−B)+NeN⊗
B = eN ⊗ (A+(N−1)B) = DT (A+(N−1)B)).

(b) The Efficiency of the Within Estimator
The following proposition holds.

Proposition 2.2. In the presence of fixed effects, the usual within estimator o f
β is BLUE if and only if V (ε)W = λW for some positive scalar λ .

An important situation in which the condition of this proposition is met occurs
when the variance–covariance structure is of the error-component type (see the
next chapter). Suppose that only individual effects are considered, i.e., L = DN

and V (ε) = IN⊗A, A = c1IT + c2eT e′T . Since W in this case is equal to WN , we
successively obtain:

V (ε)WN = IN ⊗A− IN⊗ 1
T AeT e′T

= IN ⊗A(IT − 1
T eT e′T )

= IN ⊗ c1(IT − 1
T eT e′T )

= c1WN
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The reader can easily verify that the same is true when L = D and the variance–
covariance structure is of the general (both individual and time effects) error-
component type.

An important conclusion emerges: fixed and random effects are two different al-
ternative ways of considering heterogeneity in behaviour. They cannot be combined.
The fixed effect model is particularly appropriate if we are interested in inferring on
the behaviour of a specific set of N individuals and especially if the population con-
sists only of these individuals (for example if the ‘individuals’ represent the different
regions within a country and the sample covers all of them).

2.3.3 Individual Fixed Effects and Serial Correlation

Serial correlation is a common feature of time series data. How can it be handled in
the context of a fixed effect model? Is it possible to recapture some of the computa-
tional advantages of the spherical case?

To answer these questions, let us reconsider the individual fixed effect model,
(2.4), with serially correlated errors. The simplest possible scheme is an AR(1) pro-
cess defined by

εit = ρεit−1 +uit , | ρ |< 1

with uit a pure White Noise (with variance σ2). Notice, and this is a crucial feature,
that the parameters ρ and σ2 are assumed to be the same for all individuals. In such
a case, V (εi) = σ2A, with A a (T × T ) matrix with typical element ast = ρ |t−s|/
(1−ρ2). Furthermore, Cov(εi,ε j) = 0, i �= j, and consequently V (ε) = σ2(IN⊗A).
It will be recognised that the variance–covariance matrix of this problem is char-
acterised by block-homoscedasticity. Therefore, the estimating procedure outlined
below is valid not only for the AR(1) process but also for any ARMA process
(with constant parameters across individuals) and indeed for any positive definite
matrix A.

In this general setting, the BLUE of β can be obtained in two easy steps.
The first step consists in reducing the dimensionality of the problem by elimi-

nating the individual dummies. As shown in Proposition 2.1, the usual within trans-
formation works only under very special conditions, which are not satisfied here.
But another easy transformation is available which works in all cases. It suffices
to express each variable (both the dependent variable and each explanatory vari-
able) as deviation from the weighted individual mean. For individual i, the weighted
individual mean of the dependent variable is defined as

yw
i = e′T A−1yi/e′T A−1eT (2.30)

and similarly for each explanatory variable. We shall denote by (xw
i )′ the 1×K

vector of the weighted means of these variables.
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The second step is to set up the generalized regression problem

ỹi = X̃iβ + ε̃i ⇐⇒ ỹ = X̃β + ε̃ (2.31)

where ỹi and X̃i are the variables expressed as deviations from the weighted indi-
vidual mean and treat it as if the variance–covariance matrix of the errors is the
same as that of the original problem (i.e. σ2(IN ⊗A)). Two estimation procedures
are available:

– either the GLS formula is used, leading to the estimator

β̂ =
(
∑X ′

i A−1X̃i
)−1 ∑X ′

i A−1ỹi

– or OLS is applied, after having transformed ỹi and X̃i by P,(y∗i = Pỹi, X̃∗i = PX̃i)
for P such that PAP′ = I.

This two-step procedure also provides at no extra cost the BLUE estimators of
the individual intercepts. These are simply given by:

α̂i = yw
i − (xw

i )′ β̂

As an illustration, for the AR(1) process, the weighted individual mean is
given by:

e′T A−1yi

e′T A−1eT
=

yi1 + yiT +(1−ρ)
T−1
∑

t=2
yit

2+(T −2)(1−ρ)

and P is the known Prais/Winsten transformation leading to:

y∗it =
√

1−ρ2ỹit t = 1
= ỹit −ρ ỹit−1 t ≥ 2

The above result for the AR(1) process is derived in a different manner by
Bhargava Franzini and Narendranathan (1982). These authors also propose an adap-
tation of the Durbin–Watson serial correlation test for the individual effect model
and discuss the problem of the estimation of the parameter ρ .

For the general case in which A is an unknown positive difinite matrix, a feasible
GLS procedure can be implemented. The model is first estimated by the standard
covariance method (or within transformation). From the computed residuals ε̂i, a
consistent estimator of A (when N −→ ∞) is given by:

Â =
1
N ∑ε̂iε̂ ′i .
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2.3.4 Heteroscedasticity in Fixed Effects Models

The two most common cases of departure from spherical disturbances are serial
correlation and heteroscedasticity. We have just seen how to handle the first one
in an appropriate manner. In this section we will see how heteroscedasticity across
observations can be specified and dealt with in the context of a fixed effect model.

In particular, the availability of panel data will enable us to estimate the variances
for some simple specifications of heteroscedasticity and thus apply the feasible GLS
procedure. However, in a general setting, only corrections à la White/Newey-West
can be recommended for want of adequate estimators for the variances parameters.

We will successively look at several cases going from a simple formulation to
more complicated ones.

(a) Individual heteroscedasticity only
Here we will assume different variances for different individuals, constant over
time with zero covariances. Thus:

E(ε2
it) = σ2

i ∀ t; i = 1, . . . ,N
E(εiε ′i ) = σ2

i IT ≡Vi

and
E(εε ′) = diag(Vi)≡�⊗ IT

where�= diag (σ2
i ).

This is a special case in which the condition of Proposition 2.1 is satisfied.
Hence one can apply feasible GLS on the within transformed equation using
�̂⊗ IT whose elements can be consistently estimated by

σ̂2
i =

1
T ∑

t
ε̂∗2it

with ε̂∗it = y∗it − x∗′it β̂w, the within transformed residual.
(b) Time-wise heteroscedasticity only

Here we assume that the variances are different from one time period to another
but constant over individuals for a given time period. Again zero covariances
are assumed between different individuals. Therefore

E(ε2
it) = σ2

t ∀ i; t = 1, . . . ,T
E(εiε ′i ) = diag(σ2

t )≡ Λ

and
E(εε ′) = IN ⊗Λ

This is a special case of block homoscedasticity where the covariance matrix
can be expressed as IN ⊗A. Hence we can follow the procedure described in
Sect. 2.3.3 by taking deviations from the weighted means and applying feasible
GLS. Consistent estimation of variances is given by:
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σ̂2
t =

1
N ∑

i
ε̂∗2it

(c) Both individual and time-wise heteroscedasticity
This is a combination of (a) and (b), maintaining zero covariances among dif-
ferent observations. We have:

E(ε2
it) = σ2

it , i = 1, . . . ,N; t = 1, . . . ,T
E(εitε js) = 0 i �= j or t �= s or both

In this case there is no general feasible GLS estimator possible. Only the
usual OLS/within estimators are available whose variance can be consistently
estimated by applying the White correction:

V (β̂w) = (X∗′X∗)−1

(

∑
i

∑
t

x∗it ε̂∗2it x∗′it

)

(X∗′X∗)−1

If a specific structure is suspected for the occurrence of heteroscedasticity,
say

σ2
it = h(a0 +a1z1it + . . .+apzpit)

with z1, . . . ,zp being observed variables (which may or may not overlap with
the x ′s), then the usual two step procedure can be followed. First, estimate the
auxiliary regression by OLS:

h−1(ε̂∗2it ) = a0 +a1z1it + . . .+apzpit + vit

and estimate σ2
it as

σ̂2
it = h(â0 + â1z1it + . . .+ âpzpit)

Then perform GLS (weighted least squares) by running OLS on

yit

σ̂it
=

αi

σ̂it
+

x ′it
σ̂it

β +
εit

σ̂it

(d) General block heteroscedasticity
Here individuals are assumed to be independent, each having its own variances–
covariance matrix. Thus

E(εiε ′i ) = Aii

and
E(εiε ′j) = 0 i �= j

As in (c) above, no feasible GLS procedure is available in this case. The only
solution consists in correcting the variance of the within estimator as follows:
(Newey-West type correction (cf. Arellano (1987))
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V (β̂w) = (X∗′X∗)−1

(

∑
i

X∗i ε̂∗i ε̂∗′i X∗′i

)

(X∗′X∗)−1

where ε̂∗i = y∗i −X∗i β̂w is the within residual vector of individual i.

2.4 Extensions

2.4.1 Constant Variables in One Dimension

The generic fixed individual effect considered in Sect. 2.1 may be the result of some
factors (such as sex, years of schooling, race, etc.) which are constant through time
for any individual but vary across individuals. If observations are available on such
variables, we may wish to incorporate them explicitly in the regression equation.
The model may thus be written as:

yit = q′iδ + x ′itβ + εit (2.32)

where the row-vector q′i now contains the observations on the variables which are
constant for individual i, including the constant term, and δ si the associated vector
of coefficients. We shall assume that there are m such variables, in addition to the
constant. The vector x ′it , as before, contains K explanatory variables, varying in both
dimensions.

Collecting the T observations for individual i, we get

yi = (q′i⊗ eT )δ +Xiβ + εi (2.33)

and finally, stacking the N individuals, we obtain the full model

y = (Q⊗ eT )δ +Xβ + ε (2.34)

where Q is the N× (m+1) matrix whose i-th row is q′i.
Next, we note that the columns of (Q⊗ eT ) are linear combinations of the

columns of the matrix of individual dummies. In fact:

(Q⊗ eT ) = (IN⊗ eT )(Q⊗1) = DNQ

From this, we draw the following conclusions:

(i) if m + 1 > N, the parameter vector δ is not identifiable. The slope parameters
β can still be estimated by the covariance method (using the within transfor-
mation) in an unbiased and consistent way;

(ii) if m+1 = N, the matrix Q is square. Assuming that it is non-singular, then:

– the BLUE estimator of β in (2.34) is the covariance estimator;
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– the BLUE estimation of δ in (2.34) is a linear non-singular transformation
of α̂ (the coefficient vector of the N individual dummies), i.e.:

α̂ = Qδ̂ ⇐⇒ δ̂ = Q−1α̂

(iii) if m + 1 < N, the covariance estimator of β is no longer BLUE (but it is still
unbiased). This is so because the dummy variable model and model (2.34) are
related by the definition α = Qδ . When m + 1 < N, a total of N−m− 1 re-
strictions are imposed on the vector α . Ignoring these restrictions on α is like
estimating a model with some additional extraneous variables, which produces
unbiased but inefficient estimates. One can test the validity of such restrictions
by the usual F-test. The constrained model is, in this case, model (2.34), while
the unconstrained model is the individual dummy variables model.

From the above discussion it in clear that when constant individual variables
are explicitly introduced in the regression equation there is no room for dummy
variables (at least in an easily interpretable way).

The same argument applies when the model is extended to include variables that
vary in time, but that are constant for all individuals (such as prices). Consider the
regression equation:

yit = c+q∗′i δ ∗+ p′tη + x ′itβ + εit (2.35)

where q∗i is the same vector as qi but without the constant (with m components) and
p′t is the row-vector of n variables (without the constant) that are the same for all
individuals at time t. For the full sample we have:

y = eNT c+(Q∗ ⊗ eT )δ ∗+(eN⊗P)η +Xβ + ε (2.36)

where P is the T ×n matrix whose t-th row is p′t . Again it can be shown that:

(i) for identification of δ ∗ and η the necessary order conditions are m < N and
n < T ;

(ii) the covariance estimator of β is unbiased and consistent in all cases;
(iii) when model (2.36) is just identified (m + n = T + N−2), the covariance esti-

mator of β is BLUE;
(iv) when m+n < T +N−2, it is like imposing some restrictions on the coefficients

of the dummy variables.

2.4.2 Variable Slope Coefficients

In the covariance model, only the intercepts are allowed to vary across individuals
and/or through time, while the slope parameters are kept constant. However, there
are situations in which the slope parameters themselves may exhibit a pattern of
variation.
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Consider, for instance, the case in which all regression coefficients are individual
specific:

yit = αi + x ′itβi + εit = z′itγi + εit (2.37)

where x ′it si a (1×K) vector of explanatory variables, z′it = [1 x ′it ] and γ ′i = [αi β ′i ].
With the usual notation, for individual i we write

yi = eT αi +Xiβi + εi = Ziγi + εi (2.38)

and, analogously for the full sample:

y = DNα + X̃β + ε = Z̃γ + ε (2.39)

where α ′ = [α1, . . . ,αN ],β ′ = [β ′1, . . . ,β ′N ],γ ′ = [γ ′1, . . . ,γ ′N ] and X̃ and Z̃ are the
following block-diagonal matrices:

X̃ =

⎡

⎢
⎣

X1 0
. . .

0 XN

⎤

⎥
⎦ Z̃ =

⎡

⎢
⎣

Z1 0
. . .

0 ZN

⎤

⎥
⎦

of order, respectively, NT ×NK and NT ×N(K + 1). This is a special case of a
SUR model (cf. Zellner (1962)) with independent errors across observations and
equations (individuals in this context).

Given assumption A2, the BLUE estimator of γ in (2.39) is the OLS estimator.
Simple algebra shows that the OLS estimator for the full sample boils down to the
OLS estimator of each individual regression, (2.38), separately. Calling SSi the sum
of squared residuals of the i-th regression problem, the total sum of squares for the
full model, denoted by SS, is simply the sum of the SSi with N(T −K−1) degrees
of freedom. Note that the rank condition for the identification of the γi is that each
matrix Zi be of full column rank K +1 (which requires that T > (K +1)).

A test of homogeneity in behavior (all γi being equal to a common vector γ0) can
now be easily performed. The constrained model is the pooled model (with constant
coefficients), i.e.,

y = Zγ0 + ε (2.40)

where Z′ = [Z′1, . . . ,Z
′
N ]. Its sum of squares is denoted by SSc (with NT −K − 1

degrees of freedom). Then, under normality, the following quantity

(SSc−SS)/(N−1)(K +1)
SS/N(T −K−1)

is distributed as an F-variable with (N− 1)(K + 1) and N(T −K− 1) degrees of
freedom. An F-test is therefore appropriate.

When the model contains a constant term, an appropriate question to be asked
is whether all the slope parameters are constant. In such a case, all intercepts are
allowed to vary freely across individuals and the constrained model is the individual
dummy variable model, whose sum of squares is denoted by SSN , with NT −N−K
degrees of freedom. Then the quantity
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(SSN −SS)/(N−1)K
SS/N(T −K−1)

is distributed as an F-variable with (N−1)K and N(T −K−1) degrees of freedom.
In a similar way we can treat the case of time-dependent slopes (which boils

down to OLS estimation period by period). We just write down, for future reference,
the corresponding equations (for N > K +1):

yit = z′itλt + εit

yi = ˜̃Ziλ + εi

y = ˜̃Zλ + ε

where
λ ′ = [λ ′1, . . . ,λ ′T ]

˜̃Zi =

⎡

⎢
⎣

z′i1
. . .

z′iT

⎤

⎥
⎦ T ×T (K +1)

˜̃Z′ =
[

˜̃Z′1 . . . ˜̃Z′N
]

The most general approach in the case of fixed effects is to consider both individ-
ual and time variations in the coefficients. It is very tempting to write the model as:

y = Z̃γ + ˜̃Zλ +Zδ + ε (2.41)

with Z′ = [Z′1, . . . ,Z
′
N ], but for the same reason as in the covariance model the matrix

of explanatory variables [Z̃ ˜̃Z Z] is not of full column rank. In fact it is easy to see
that the rank of this NT × (K + 1)(N + T + 1) matrix is at most equal to (K + 1)
(N + T − 1), since Z̃(eN ⊗ IK+1) = Z and ˜̃Z(eT ⊗ IK+1) = Z. Therefore 2(K + 1)
restrictions (at least) must be imposed on the regression coefficients. There are many
different ways to do this.

One can, as Hsiao (1986) suggests, minimize the sum of squares in (2.41) subject
to the 2(K +1) restrictions

N

∑
i=1

γi = 0,
T

∑
t=1

λt = 0 ,

or more simply (as was done in the covariance model), one could eliminate one
vector γi (say the last, and the corresponding K + 1 last columns of Z̃) and one
vector λt (again the last, and the corresponding K +1 last columns of ˜̃Z) and apply
OLS. This amounts to using directly the two above restrictions in model (2.41)
together with a slight reparameterisation of the coefficients. In all cases, however,
the necessary order condition for identification (NT > (K + 1)(N + T − 1)) must
be met.
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2.4.3 Unbalanced Panels

Up to this point, our attention has focused entirely on genuine (or balanced) pan-
els, a situation in which N individuals are observed over the same T time periods.
When the number of observations is not the same for all individuals we speak of
an unbalanced panel. In the present subsection we briefly discuss the incidence of
unbalancedness on the estimation of fixed effect models.

When only individual fixed effects are considered, no particular new problem
arises. The model can still be represented as in (2.4), except that now the matrix
DN of individual dummies does not have a nice Kronecker-product representa-
tion. Nonetheless, using the standard results of partitioned regression, it can eas-
ily be established that the deviation from the individual mean transformation (as
in the balanced case) is the right transformation to be used in order to obtain the
BLUE of β .

The story is quite different when both individual and time effects are deemed im-
portant. The difficulty stems from the fact that in this context the date of any single
observation matters. Although it is always possible to work out the transformation
that eliminates all fixed effect (the interested reader may consult in this respect the
article by Wansbeek and Kapteyn( 1989)), the procedure is too complicated for prac-
tical purposes. By far the easiest approach to this problem is to set up a regression
equation containing, in addition to the explanatory variables, the overall constant
N− 1 individual dummies and T ∗ − 1 time dummies (T ∗ being the set of all dates
available in the sample).

Appendix: Matrix Algebra for Balanced Panels

In this Appendix we collect the basic orthogonal projectors which appear in panel
data analysis and highlight their relationships and properties.

To make this expository note self confined (and useful for future reference) we
recall the following notations:

es is the unit (column) vector of order s (whose elements are all equal to unity);
Js = ese′s is the unit matrix of order s× s;
yit is the observation on a relevant variable for individual i (i = 1, . . . ,N) at time
t(t = 1, . . . ,T );
yi is the (T ×1) vector of observations for individual i;
y is the (NT ×1) vector of all observations : y′ = [y′1, . . . ,y

′
N ];

y = 1
NT ∑

i
∑
t

yit is the overall mean;

yi = 1
T ∑

t
yit is the individual mean;

yt = 1
N ∑

i
yit is the time mean.
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The Basic Projectors

We consider a linear transformation of the vector y : y∗ = My, where M is one of
the orthogonal projectors commonly used in panel data analysis. The matrix M is
idempotent (and symmetric) and can be viewed as the matrix of the idempotent
quadratic form y′My = y∗′y∗.

We distinguish four cases.

Case 1: Just the overall effect

(1.a) The overall mean transformation: y∗it = y. It replaces each observation with the
overall mean. The associated orthogonal projector is:

BNT = 1
NT eNT e′NT = 1

NT JNT

= 1
N eNe′N ⊗ 1

T eT e′T = 1
N JN ⊗ 1

T JT (rankBNT = 1)

(1.b) The deviation from the overall mean transformation: y∗it = yit − y. Associated
projector: DBNT = INT −BNT (rank = NT −1)

Case 2: Individual effects only

(2.a) The individual mean transformation, also called (individual ) between trans-
formation: y∗it = yi
Associated projector: BN = IN ⊗ 1

T eT e′T = IN ⊗ 1
T JT (rank = N)

(2.b) The deviation from the individual mean transformation, also called (individ-
ual) within transformation: y∗it = yit − yi
Associated projector: WN = INT −BN (rank = NT −N)

Case 3: Time effects only

(3.a) The time mean transformation, also called (time) between transformation:
y∗it = yt
Associated projector: BT = 1

N eNe′N ⊗ IT = 1
N JN ⊗ IT (rank = T )

(3.b) The deviation from the time mean transformation, also called (time) within
transformation: y∗it = yit − yt
Associated projector: WT = INT −BT (rank = NT −T )

Case 4: Both individual and time effects

The (overall) within transformation: y∗it = yit − yi− yt + y
Associated projector: WNT = INT −BN−BT +BNT (rank = (N−1)(T −1))

To check that each projector defined above does indeed perform the right trans-
formation can be done easily using the selection vector s′it = (EN

i )′ ⊗ (ET
t )′, where

EN
i is the i-th elementary vector of order N (and similarly for ET

t ). When applied to
y, s′it selects the observation yit : s′it y = yit . We illustrate the procedure for the projec-
tor WNT (from which all other cases can easily be derived). We obtain successively:
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y∗it = s′it y
∗ = s′itWNT y = s′it y− s′itBNy− s′itBT y+ s′itBNT y

= yit −
[
(EN

i )′ ⊗ 1
T

e′T

]
y−
[( 1

N
eN

i

)′
⊗ (Et

T )′
]

y+
[

1
N

e′N ⊗
1
T

e′T

]
y

= yit −
1
T

e′T yi−
1
N ∑

i
(Et

T )′yi +
1

NT
e′NT y

= yit − yi− yt + y

The Within Transformations and Dummy Variables

It is straightforward to verify that WN and WT are related to their respective sets of
dummy variables in the following way:

• WN = I−DN(D′NDN)−1D′N DN = IN⊗ eT N individual dummies
• WT = I−DT (D′T DT )−1D′T DT = eN ⊗ IT T time dummies

For WNT the situation is more delicate. We cannot use the full set of N+T dummy
variables, since the matrix [DN DT ] is not of full rank. This can be seen by noting
that the sum of the first N columns (DNeN = eNT ) is equal to the sum of the last
T columns (DT eT = eNT ). Therefore we have to choose just N + T − 1 linearly
independent columns of [DN DT ] or any non-singular transformation of them (the
result being invariant to any non singular transformation). To establish the result in
the simplest way, we choose to keep the full set of time dummies (DT ) and add N−1
linearly independent combinations of the columns of DN , i.e. D∗ = DNA, with A an
N× (N− 1) matrix of full rank. Since D∗ must also be linearly independent when
associated with DT , the combination to avoid is DNeN . To ensure this, we choose,
in A, (N−1) columns orthogonal to eN : A′eN = 0. We then define the matrix

D = [D∗ DT ]

Now we observe that the columns of D∗ are orthogonal to those of DT , D′∗DT =
A′D′NDT = A′(eN⊗ e′T ) = A′eNe′T = 0, so that:

D(D′D)−1D′ = D∗(D′∗D∗)
−1D′∗+DT (D′T DT )−1D′T

= DNA(A′D′NDNA)−1A′D′N +BT

=
1
T

DNA(A′A)−1A′D′N +BT

Next we note that eN(e′NeN)−1e′N + A(A′−1A′ = IN (since the matrix F = [eNA]
is non singular and therefore I = F(F ′F)−1F ′ = eN(e′NeN)−1e′N + A(A′A)−1A′ and
consequently
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D(D′D)−1D′ =
1
T

DnD′N −
1

NT
DNeNe′ND′N +BT

= BN −
1

NT
eNT e′NT +BT = BN −BNT +BT

This establishes that:
WNT = I−D(D′D)−1D′

A final remark: the three within projectors WN ,WT ,WNT have the property of
eliminating all constant effects of the appropriate type (individual, time, or both).

Relationships Between the Different Projectors

For Cases 1 to 3, we have defined for each case two matrices, call them M1 and M2,
which have the following three properties:

• they are idempotent (and symmetric): MiMi = Mi i = 1,2;
• they are mutually orthogonal: MiMj = 0 i �= j;
• their sum is the identity matrix: M1 +M2 = I.

For Case 4, the situation requises some careful attention. We do indeed have
four idempotent matrices (WNT ,BT ,BN ,BNT ), but they do not share the last two
properties. In order to get a decomposition fulfilling the three properties, we rewrite
WNT as:

WNT = INT − (BN−BNT )− (BT −BNT )−BNT

and define the four idempotent matrices:

M1 = BN −BNT (deviation of the individual mean from the overall mean)
M2 = BT −BNT (deviation of the time mean from the overall mean)
M3 = BNT (the overall mean)
M4 = WNT (the overall within transformation)

It is now easy to verify that :

MiMi = Mi all i
MiMj = 0 i �= j
∑Mi = I.

Properties of the Decomposition

Suppose that s idempotent matrices of order n, Mi i = 1, . . . ,s, satisfy the above three
conditions and define the following positive definite matrix:

A = ∑
i

λiMi λi > 0 λi �= λ j
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Then:

1. The scalars λi are eigenvalues of the matrix A with multiplicity ri = rank (Mi)
2. | A |= Πiλ ri

i
3. A−1 = ∑

i
λ−1

i Mi

4. QAQ = I for Q = ∑
i

λ−1/2
i Mi.

To prove these results is extremely simple. For result (1), it suffices to post-
multiply A successively by M1,M2, . . .. Since AMi = λiMi, the columns of Mi are
eigenvectors of A associated with λi. Given that there are ri linearly independent
columns in Mi (ad noting that ∑ri = n), the multiplicity of λi is exactly equal to ri.
Result (2) follows from the fact that the determinant of a matrix is equal to the prod-
uct of its eigenvalues. Finally, result (3) and (4) are verified by simple multiplication
(AA−1 = I and QAQ = I).

The usefulness of these results is that the variance–covariance matrix of standard
error component models can be expressed in the form of matrix A.
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Chapter 3
Error Components Models

Badi H. Baltagi, László Mátyás and Patrick Sevestre

3.1 Introduction

As discussed in the previous chapters, the disturbances of an econometric model
include all factors affecting the behavior/phenomenon under study that the econo-
metrician cannot explicitly specify, because the relevant statistical information
either does not exist or is not accessible. This is the so-called unobserved hetero-
geneity. As an example, factors such as personal ability, adaptability, work dili-
gence, etc. do have an impact on employees’ wage profile but are generally not
observed (see Chap. 22 on this). As long as they can be assumed not to vary over
time, they can be accounted for through individual effects. Such individual effects
also allow us to account for unobserved factors affecting, for example, firms be-
havior (regarding their investments in general and their foreign direct investment
in particular, their labor demand, and/or their production efficiency; see Chaps. 20
and 21 below). Indeed, firms’ environment as well as their managers’ behavior im-
pact upon their efficiency and employment/investment decisions whilst they are not
fully observed.

As already stressed in the first chapters, one of the major advantages of panel data
is that their “double dimension” enables us to account for these unobservable fac-
tors as long as they can be considered fixed over time. The main difference between
the fixed effects models considered in the previous chapter and the error compo-
nents models considered here is the assumption made about those individual effects.
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e-mail: matyas@ceu.hu

Patrick Sevestre
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The basic assumption underlying the error components model is the absence of
correlation between the individual effects and the regressors of the model. Although
this (quite restrictive) assumption can be relaxed (see Chap. 4 in particular), we shall
stick to it in this chapter as the error components model can be considered as one of
the pillars of panel data econometrics.

3.2 The One-Way Error Components Model

3.2.1 Definition/Assumptions of the Model

The one-way error components model can be written as:

yit = β0 +
K

∑
k=1

βkxit +uit , i = 1, . . . , N and t = 1, . . . , T (3.1)

with
uit = αi + εit .

The disturbances uit are decomposed into two components, αi and εit , which ex-
plains the model’s name. αi represents the individual effects, accounting for un-
observable factors affecting y and which do not vary over time; εit represents the
other variables influencing y but which vary both over time and individuals. Both
are assumed to be independently distributed across individuals.1 Another impor-
tant assumption underlying the error components model is the strict exogeneity of
regressors, which implies:

E(αi | xi1, xi2, . . . , xiT ) = 0, ∀i

E(εit | xi1, xi2, . . . , xiT ) = 0, ∀i, t

Moreover, αi and εit are both assumed to be serially uncorrelated and homoske
dastic:

V (αi | xi1, xi2, . . . , xiT ) = σ2
α , ∀i

Cov(εit , εit ′ | xi1, xi2, . . . , xiT ) = δtt ′σ2
ε , ∀i, t, t ′

Cov(αi, εit | xi1, xi2, . . . , xiT ) = 0, ∀i, t.

Given the assumption stating the absence of correlation between the regressors and
the individual effects, the latter do not affect the conditional expectation of y but do
impact its variance. Indeed, given the above assumptions, one has:

E(yit | xi1, xi2, . . . , xiT ) = β0 +
K

∑
k=1

βkxit

1 See Chap. 18 for a specific framework in which such a correlation across individuals can (must)
be assumed.
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and

Cov(yit , yit ′ | xi1, xi2, . . . , xiT ) = Cov(uit , uit ′ | xi1, xi2, . . . , xiT )

=
{

σ2
α +σ2

ε if t = t ′

σ2
α if t �= t ′ .

The presence of the individual effects in the disturbances thus induces, for each
individual, some serial correlation across periods. It is worthwhile noticing that this
serial correlation does not depend on the time interval between two observations,
contrary to the usual pattern of serial correlation in time-series models.

Stacking all the observations related to the individual i, one can write:

yi

(T ×1)
= Xi

(T × (k +1))
× β

((k +1)×1)
+ ui

(T ×1)
(3.2)

where yi = (yi1,yi2, . . . ,yiT )
′

represents the vector of observations of the dependent
variable for the ith individual; Xi the matrix of observations of the explanatory vari-
ables (including the constant term) and ui the vector of the disturbances for this
individual. Given the assumptions defining this model, the vector of the disturbance
terms has the following properties:

E(ui | xi1, xi2, . . . , xiT ) = 0, ∀i

V (ui | xi1, xi2, . . . , xiT ) = A, ∀i

with:

A
(T ×T )

=

⎛

⎜
⎜
⎜
⎜
⎝

σ2
α +σ2

ε σ2
α . . . σ2

α
σ2

α σ2
α +σ2

ε . . . σ2
α

. . . .. . . . . .

. . . .. . . . . .
σ2

α σ2
α . . . σ2

α +σ2
ε

⎞

⎟
⎟
⎟
⎟
⎠

= σ2
ε IT +σ2

α JT

where IT is the identity matrix of order T and JT is a square (T ×T ) matrix of ones.
The pattern of this matrix clearly shows the existence of a serial correlation as-

sociated with the individual effects; magnitude of which is independent of the time
span between the time periods under consideration.

Stacking then the whole set of individual vectors of observations, y = (y11,

y12, . . . , y1T , . . . , yN1, yN2, . . . , yNT )
′
, such that the slower index is i and the faster

index is t, one can write the model as:

y
(NT ×1)

= X
(NT × (k +1))

× β
((k +1)×1)

+ u
(NT ×1)

(3.3)
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with:

E(u | x1, x2, . . . , xK) = 0

V (u | x1, x2, . . . , xK) = σ2
ε Ω

where:

σ2
ε Ω

(NT, NT )
=

⎛

⎜
⎜
⎜
⎜
⎝

E(ε1ε ′
1) E(ε1ε ′

2) . . . E(ε1ε ′N)
E(ε2ε ′

1) E(ε2ε ′
2) . . . Eε2ε ′N)

. . . .. . . . . .

. . . .. . . . . .

E(εNε ′
1) E(εNε ′

2) . . . E(εNε ′N)

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

A 0 . . . 0
0 A . . . 0

. . . .. . . . . .

. . . .. . . . . .
0 0 . . . A

⎞

⎟
⎟
⎟
⎟
⎠

= IN ⊗A

= σ2
ε [INT +(σ2

α/σ2
ε ) (IN⊗ JT )]

i.e., using the Within and Between matrix transforms notations:2

V (u) = σ2
ε [WN +((σ2

ε +T σ2
α)/σ2

ε )BN ] .

The nullity of all off-diagonal blocks in Ω just corresponds to the assumed indepen-
dence across individuals.

The error components model then appears as a rather common regression model
with a particular pattern of serial correlation in the disturbances. The well-known
result that the OLS estimator of the coefficients is still unbiased and consistent but
inefficient then applies. It is also much well-known that the GLS estimator has better
properties in this context.

3.2.2 The GLS Estimator

3.2.2.1 Definition

Recall that in a model where the variance–covariance matrix of the disturbances is
proportional to Ω, the GLS estimator of the coefficients is given by:

β̂gls = (X ′Ω−1X)−1X ′Ω−1y.

2 WN = INT − (IN ⊗ JT /T ) and BN = IN ⊗ JT /T .
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Given the particular structure of Ω,3 this estimator can be written as:

β̂gls = (X ′WNX +θX ′BNX)−1(X ′WNy+θX ′BNy)

where WN and BN are respectively the Within and Between operatorst and

θ =
σ2

ε
σ2

ε +T σ2
α

.

The GLS estimator then combines the Within and Between variation of the ob-
servations. It does so in an optimal way as it can be shown that GLS corresponds to
the minimum variance linear unbiased estimator among all the estimators combin-
ing the Within and Between variation. In other words, the value of λ that minimizes
the variance of:

β̂ (λ ) = (X ′WNX +λX ′BNX)−1(X ′WN y+λX ′BN y)

is just equal to λ = σ2
ε /(σ2

ε +T σ2
α) = θ .

Then, if we knew the value of Ω (or, equivalently, that of θ ), computing the GLS
estimator would be very simple as it is well-known that GLS can be interpreted as
OLS on the transformed model:

Ω−1/2 y = Ω−1/2 X β +Ω−1/2 u ,

which, in this particular case, just amounts to:

yit +(
√

θ −1)yi = [x
′
it +(

√
θ −1)x

′
i ] β + εit +(

√
θ −1)ε i

where ȳi = ∑
t

yit , etc.

3.2.2.2 Properties

Given the assumptions stated above, the GLS estimator is unbiased and efficient. Its
variance is given by:

V (β̂gls) = σ2
ε (X ′Ω−1X)−1

= σ2
ε (X ′WNX +

σ2
ε

σ2
ε +T σ2

α
X ′BNX)−1 .

Moreover, if the disturbances are normally distributed, the GLS estimator is also
normally distributed:

3 Because the spectral decomposition of Ω is given by WN + ((σ2
ε + T σ2

α )/σ2
ε )BN = WN +

(1/θ)BN , one gets Ω−1 = WN +θBN .
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β̂gls ∼ N (β , σ2
ε (X ′WX +

σ2
ε

σ2
ε +T σ2

α
X ′BX)−1).

This estimator is consistent for N going to infinity, with finite T , under the same
assumptions as above4 and if the variance–covariance matrices of the regressors are
bounded both in the Between and Within dimensions, i.e., if:

plimN→∞
X ′BNX

N
= BN

xx , a finite positive definite matrix

and,

plimN→∞
X ′WNX

N
= W N

xx , a finite positive definite matrix.

If moreover, the terms αi and εit in the disturbances are independently and identi-
cally distributed, the GLS estimator is asymptotically efficient and its asymptotic
distribution (when N → ∞ but T is fixed) is given by:

√
N(β̂gls−β ) ∼ N (0 , σ2

ε (W N
xx +θBN

xx)
−1) .

Along the same lines, and with assumptions adapted from the above ones, it is
possible to show that the GLS estimator is also consistent when both N and T tend
to infinity. Its asymptotic distribution is then given by:

√
NT (β̂gls−β ) ∼ N (0 , σ2

ε (W NT
xx )−1)

with

plimN,T→∞
X ′WNX

NT
= W NT

xx , a finite positive definite matrix.

Indeed, when T tends to infinity, θ tends to 0 and β̂gls converges to the Within

estimator β̂w described below. It is then obvious that the GLS estimator’s variance–
covariance matrix does not depend on the Between variation of the regressors.

Thus, the GLS estimator exhibits good properties, both in finite samples and
asymptotically. Unfortunately, it relies on unknown parameters, namely the variance
of the individual effects σ2

α and that of the idiosyncratic element, σ2
ε that appear in

θ = σ2
ε /(σ2

ε + T σ2
α). In order to compute a “feasible-GLS” estimator, one then

has to estimate first the variance components σ2
α and σ2

ε in order to get in turn an
estimate of θ .

4 More rigorously, the “Error components-GLS” estimator remains consistent even when one
mis-specifies the variance–covariance matrix of the disturbances. If the true matrix is given by
V (u) = σ2

ε Σ �= σ2
ε Ω, the GLS estimator is consistent as long as the matrix X ′Ω−1ΣΩ−1X / N,

converges towards a positive definite matrix. But the variance–covariance matrix of the GLS esti-
mated coefficients is clearly inconsistent in this case.
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3.2.3 The Feasible GLS Estimator

3.2.3.1 Definition

The Feasible-GLS estimator definition is very close to that of true GLS except for
the fact that Ω is replaced by a consistent estimator Ω̂:

β̂fgls = (X ′Ω̂−1X)−1X ′Ω̂−1y

= (X ′WNX + θ̂X ′BNX)−1(X ′WN y+ θ̂X ′BN y)

with

θ̂ =
σ̂2

ε
σ̂2

ε +T σ̂2
α

.

3.2.3.2 Variance Estimation

There are several ways to estimate the unknown variances σ2
α and σ2

ε . However,
the most commonly used approach is that proposed by Swamy and Arora (1972).
It consists of using the residual variances associated with the regression stated in
the Within and Between dimensions of the observations. Let us first consider the
former, i.e., the regression based on the Within transformation of the equation:

yit − yi = [x
′
it − x

′
i ]β + εit − ε i .

That is, in matrix form,
WN y = WN X β +WN ε .

In this model:
V (WN ε) = σ2

ε WN .

As we know from Kruskal’s theorem, even though the variance–covariance matrix
of the disturbances is not scalar, OLS on this model is still the BLUE of β . As a
consequence, the natural estimator of the variance σ2

ε is given by:

σ̂2
w =

ε̂ ′wε̂w

rank(Mwx)

=
ε̂ ′wε̂w

N(T −1)− kw

with

ε̂w = WN y−WN X β̂w

= (WN −WN X(X ′WN X)−1X ′WN )y
= (WN −Pwx)y
= Mwxy

which is exactly the residual from the Within regression.
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It is quite easy to show that this estimator is unbiased. Indeed,

E(ε̂ ′WN ε̂) = trace[E(ε̂ ′wε̂w)]
= trace[E(ε ′Mwxε)]
= E[trace(Mwxεε ′)]
= trace(Mwx).E(εε ′)

= trace[Mwx.σ2
ε Ω]

= σ2
ε × trace[Mwx(WN +(1/θ)BN)]

= σ2
ε × trace[Mwx]

= σ2
ε × trace[WN −Pwx]

= σ2
ε × (N(T −1)− kw)

where kw is the number of regressors in the Within regression. As a consequence,

E(σ̂2
w) = E[

ε̂ ′wε̂w

N(T −1)− kw
]

= σ2
ε .

It is worthwhile to note that caution must be exercised when computing this vari-
ance using software packages. Indeed, when estimating the Within regression with
OLS on transformed data, the usual software packages will generally consider that
there are NT observations and kw estimated coefficients. The number of degrees of
freedom considered in the computations of variances will then be (NT − kw). This
is not correct as the true number of degrees of freedom should account for the in-
dividual effects that are implicitly estimated when doing a Within regression. The
correct number of degrees of freedom should be N(T −1)− kw (i.e., the rank of the
WN operator).

Once this potential problem of degrees of freedom is correctly accounted for, the
residual variance of the Within regressions provides a consistent estimator of σ2

ε
(when N → ∞,T being finite as well as when N and T → ∞).

Proceeding along the same lines, one can show that the residual variance of the
Between regression, i.e. the variance resulting from applying OLS to the model:

BN y = BN Xβ +BN u

allows to get a consistent estimate of σ2
α +σ2

ε /T . Indeed, let us consider the residu-

als of this regression: ûb = BN y−BN X β̂b = Mbxy (computed on NT observations),
one can show that

E(σ̂2
b ) = E[

û ′bûb

T (N− kb)
]

= σ2
α + σ2

ε /T.
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Here again, one must pay attention to the degrees of freedom. Using NT
observations, the software will generally set the number of degrees of freedom to
NT − kb where kb is the number of regressors in the Between regression while the
correct number of degrees of freedom is equal to T (N − kb), due to the T times
repetition of the individual means. On the other hand, if the Between regression is
computed on the sample of the N individual means, i.e. if one estimates the model

yi = xiβ +ui i = 1, . . . , N

the residual variance then directly provides a consistent estimate of σ2
α + σ2

ε /T

E(σ̂2
b ) = E[ ∑i û

2
i

N− kb
]

= σ2
α + σ2

ε /T .

Then, a consistent estimate of θ can easily be computed as:

θ̂ =
σ̂2

w

T σ̂2
b

=
σ̂2

ε
̂σ2

ε + T σ2
α

.

There are many other ways to estimate the variances.5 However, Maddala and
Mount (1973) have shown that the choice of a particular method to estimate
these variances does not impact significantly on the properties of the estimated
coefficients in the second step of the Feasible-GLS estimator (see also Taylor
(1980)).

This does not mean that replacing the true value θ by an estimate θ̂ does not
have any consequence. Although it does not affect the asymptotic properties of the
feasible GLS estimator, it does have some influence on its finite sample properties.
Indeed, while the GLS estimator is unbiased, the Feasible GLS is not, except under
very particular circumstances (see Taylor (1980)).

3.2.3.3 Properties

As just stated above, the Feasible-GLS estimator of the error components model is,
as any other Feasible-GLS estimator, biased in finite samples

E(β̂fgls) = E[(X ′Ω̂−1X)−1X ′Ω̂−1y]

= β +E[(X ′Ω̂−1X)−1X ′Ω̂−1u]
�= β .

Indeed, the dependence between Ω̂ and the disturbances u impairs the nullity of the
second term in the above expectation and thus induces a bias for β̂fgls. However,

5 See Wallace and Hussain (1969), Amemiya (1971), Swamy and Arora (1972).
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Taylor (1980) has shown that when the disturbances are normally distributed, β̂fgls

is unbiased as long as the variances σ2
α and σ2

ε are estimated via the Between
and Within regressions (cf. supra) and that N ≥ k + 5 and T ≥ 2. Moreover, while
we know that, in an econometric model with unknown heteroskedasticity or serial
correlation, the true variance of the feasible-GLS estimator of the coefficients is,
in general, unknown, Taylor (1980) has nevertheless provided the formula of the
variance–covariance matrix of the Feasible-GLS estimator of the error components
model assuming normality of the disturbances and N ≥ k + 10 and T ≥ 2. Unfor-
tunately, the expression of this variance is quite complex and its real computation
not easy. However, an interesting by-product of this result is that Taylor (1980) has
shown that this Feasible-GLS estimator is often more precise than the other esti-
mators available for the error components model. But a further drawback of this
estimator is that, in finite samples, it is not distributed as a Normal, even when the
disturbances are.

The “unsatisfactory” finite sample properties of the feasible-GLS estimator are
quite “classical”. Also “classical” are its good asymptotic properties: it is asymptot-
ically equivalent to the GLS estimator as long as N tends to infinity (whatever T ).
Then, under the error components assumptions and assuming that X ′Ω̂−1X/N con-
verges to a finite positive definite matrix, the Feasible-GLS estimator is consistent
for N tending to infinity, T finite.6 Its asymptotic distribution is then given by

√
N(β̂fgls−β ) ∼ N (0 , σ2

ε (BN
xx +θW N

xx)
−1) .

Indeed, the Feasible-GLS estimator is asymptotically equivalent to the GLS one. It
is then asymptotically efficient. Those properties remain valid when both N and T
go to infinity. In particular,

√
NT (β̂fgls−β ) ∼ N (0 , σ2

ε (W NT
xx )−1) .

Then, under the assumptions stated above (which include the strict exogeneity of all
regressors), the Feasible-GLS estimator provides very reliable parameter estimates,
at least if the individual dimension of the sample is large enough.

3.2.4 Some Other Estimators

GLS and Feasible-GLS thus combine in an optimal way the Within and Between
variance of the observations. However, this does not preclude other ways to estimate
an error components model. Indeed, comparing those different estimators to each
other may be helpful in identifying possible mis-specification errors.

6 cf. footnote 4.
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3.2.4.1 The OLS Estimator

OLS on the pooled data yields:

β̂ols = (X ′X)−1X ′y . (3.4)

Under the assumptions which we considered earlier in this chapter, this estimator is
unbiased and its variance for any linear regression is given by

V (β̂ols) = σ2
ε (X ′X)−1X ′ΩX(X ′X)−1 .

When N tends to infinity but T remains finite, the OLS estimator is consistent. If the
error components αi and εit are i.i.d., OLS is asymptotically distributed as a Normal

√
N(β̂ols−β ) ∼ N (0 , σ2

ε (BN
xx +W N

xx)
−1(W N

xx +θBN
xx)(B

N
xx +W N

xx)
−1) .

But one has to notice that while OLS is still consistent when both N and T go to
infinity, its asymptotic variance is unbounded in this case (e.g. see Trognon (1993)).

3.2.4.2 The Between Estimator

This estimator just amounts to applying OLS to the model written in terms of indi-
vidual means

yi =
K

∑
k=1

βkxki +ui , with ui = αi + ε i, i = 1, . . . , N .

Using the above defined Between operator BN , the model can be written, in matrix
form, as,

BN y
(NT ×1)

= BN X
(NT × kb)

× β
(kb×1)

+ BN u .
(NT ×1)

It is worth mentioning here that the latter way of writing the model induces T repe-
titions of the model written in the former way, i.e. in terms of the individual means.
However, writing the model in such a matrix form allows a more systematic way of
presenting the Between estimator. This is just given by:

β̂B = (X ′BN X)−1X ′BN y . (3.5)

which means that the Between estimator makes use of the Between individual varia-
tion of the observations only, hence giving a full weight to “permanent” differences
across individuals.
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Under the assumptions stated above, this estimator is unbiased and its variance is

V (β̂B) = σ2
ε (X ′BN X)−1X ′BN ΩBN X(X ′BN X)−1

= (σ2
ε +T σ2

α)(X ′BN X)−1.

Moreover, it is consistent when N goes to infinity, but T remains finite as well as
when both N and T go to infinity. Its asymptotic distribution (for N →∞) is normal

√
N(β̂B−β ) ∼ N (0 , σ2

α(BN
xx)
−1) .

However, as the OLS estimator, the Between estimator does not have a finite vari-
ance when N and T go to infinity.

3.2.4.3 The Within Estimator

This estimator, also called “covariance estimator”, or “fixed effects estimator”, is
OLS applied to the model written in differences from individual means

yit − yi = (x
′
it − x

′
i )β + εit − ε i

In matrix form

WN y
(NT ×1)

= WN X
(NT × kw)

× β
(kw×1)

+ WN ε .
(NT ×1)

The Within estimator then writes as

β̂W = (X ′WN X)−1X ′WN y . (3.6)

This method thus makes use of the Within-individual variation of the observations
only. This can be seen as a drawback which discards a large part of the information
contained in the raw data. Indeed, in most panels, the differences across individu-
als is often larger than that “Within-individuals”. Moreover, as the above formula
clearly shows, this estimator is identical to the one obtained under the assumption
that the individual effects are fixed, and not random. As a consequence, the con-
stant term as well as the coefficients of the explanatory variables which are con-
stant over time cannot be estimated using this method. Indeed, let us consider the
model

yit = Xitβ +Zic+ εit ;

the Within estimator amounts to discarding the Zi variables from the model, due to
the “Within transformation”:

yit − yi = (x ′it − x ′i )β + εit − ε i .
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One can solve this problem by applying OLS to

yi− x ′i β̂W = Zic+ui .

Under the assumptions considered since the beginning of this chapter, β̂W is unbi-
ased and its variance is given by

V (β̂W ) = (X ′WNX)−1X ′WNΩWNX(X ′WNX)−1

= σ2
ε (X ′WNX)−1 .

This estimator is consistent, both when N goes to infinity, with finite T and when
N and T simultaneously go to infinity. The corresponding asymptotic distributions
are normal √

N(β̂W −β ) ∼ N (0 , σ2
ε (W N

xx)
−1)

and √
NT (β̂W −β ) ∼ N (0 , σ2

ε (W NT
xx )−1)) .

It is remarkable that when both N and T go to infinity, the asymptotic distribution
of the Within estimator is identical to that of the GLS estimator (this is because
limT→∞ θ = limT→∞ σ2

ε /(σ2
ε +T σ2

α) = 0). As a consequence, the Within estimator
is asymptotically efficient in this case.

3.2.4.4 Reinterpreting Usual Estimators: The λ -type Estimators

All the estimators considered until now make use of either the Between variance
of the observations, their Within variance, or both. It is then quite natural to group
those estimators together, within a class, that may be called “λ − class” estimators,
defined as (see Maddala (1979)):

β̂ (λ ) = [X ′WN X +λX ′BN X ]−1(X ′WN y+λX ′BN y)

= [X ′(WN +λBN )X ]−1X ′(WN +λBN )y

where λ is a scalar such that,

– if λ = 0, β̂ (λ ) = β̂W ; one gets the Within estimator;
– if λ = θ , β̂ (λ ) = β̂gls; one gets the GLS estimator;

– if λ = θ̂ , β̂ (λ ) = β̂fgls; one gets the Feasible-GLS estimator;

– if λ = 1, β̂ (λ ) = β̂ols; one gets the OLS estimator;
– if λ = ∞, β̂ (λ ) = β̂B; one gets the Between estimator.

3.2.4.5 The Maximum Likelihood Estimator

Making the additional assumption that both the individual effects αi and the idiosyn-
cratic disturbances εit are normally distributed as N(0, σ2

α) and N(0, σ2
ε ) respec-

tively, it is also possible to resort to the maximum likelihood principle to estimate
the error components model. The log-likelihood attached to this model is given by
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ln(L) =− NT
2

ln(2π)− NT
2

ln(σ2
ε )+

N
2

ln(
σ2

ε
σ2

ε +T σ2
α

)

− 1
2σ2

ε
(y−Xβ ) ′Ω−1(y−Xβ )

=− NT
2

ln(2π)− NT
2

ln(σ2
ε )+

N
2

ln(θ)

− 1
2σ2

ε
(y−Xβ ) ′Ω−1(y−Xβ )

with Ω−1 = WN +θ BN . Maximizing this log-likelihood with respect to β , σ2
ε and

θ does not yield closed form expressions, given the non-linearity in θ . However,
one can make use of the first order conditions with respect to β and σ2

ε :

∂ ln(L)
∂β

=− 1
σ̂2

w
X ′Ω−1(y−X β̂ ) = 0

∂ ln(L)
∂σ2

ε
=− NT

2σ̂2
ε

+
1

σ̂4
ε
(y−X β̂ ) ′Ω−1(y−X β̂ ) = 0

in order to concentrate the likelihood. Indeed, from the above equations, we get

β̂MLE = (X ′Ω−1X)−1X ′Ω−1y

and

σ̂2
εMLE =

1
NT

(y−X β̂MLE) ′Ω−1(y−X β̂MLE) = 0 .

Then, following Breusch (1987), one can concentrate the likelihood, i.e., substitute
β̂ and σ̂2

ε for their true values β and σ2
ε so that the likelihood now only depend on

one unknown parameter, θ :

ln(L) =−NT
2

(1+ ln(2π))− NT
2

ln[(y−X β̂ ) ′(WN +θBN )(y−X β̂ )]+
N
2

ln(θ) .

Conditionally on β , maximizing this log-likelihood with respect to θ leads to

θ =
(y−Xβ ) ′W (y−Xβ )

(T −1)(y−Xβ ) ′B(y−Xβ )
.

Then, an iterative procedure can be set up: taking the Within estimator β̂W as the
departure estimate of the procedure, one can estimate θ using the above formula by
replacing β̂W for β and then going back to estimating β by β̂MV as defined above.
Breusch (1987) has shown that the sequence of the θ̂( j)’s obtained at each iteration
( j) of the procedure forms a monotonic sequence, so that this procedure should lead
to a global maximum.
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Given the assumptions made, these estimators are consistent when only N → ∞
and also when both N and T → ∞. Moreover, β̂MV has an asymptotic Normal
distribution, identical to that of the GLS estimator (cf. Trognon (1993).

3.2.5 Prediction

Suppose we want to predict y for the ith individual, S periods ahead. For the
model given in (3.3), knowing the variance–covariance structure of the disturbances,
Goldberger (1962) showed that the best linear unbiased predictor (BLUP) of yi,T+S is

ŷi,T+S = X ′
i,T+Sβ̂gls +ϖ ′Ω−1

σ2
ε

ûgls for s � 1

where ûgls = y−X β̂gls and ϖ = E(ui,T+S u). Note that for period T +S

ui,T+S = αi + εi,T+S

and ϖ = σ2
α(li⊗ eT ) where li is the ith column of IN , i.e. li is a vector that has 1 in

the ith position and zero elsewhere and eT is defined in (2.3). In this case

ϖ ′Ω−1

σ2
ε

=
σ2

α
σ2

ε
(l ′i ⊗ e ′T )[WN +(σ2

ε /(σ2
ε +T σ2

α))BN ] =
σ2

α
(σ2

ε +T σ2
α)

(l ′i ⊗ e ′T )

since (l ′i ⊗e ′T )BN = (l ′i ⊗e ′T ) and (l ′i ⊗e ′T )WN = 0. The typical element of ϖ ′Ω−1

σ2
ε

ûgls

becomes ( T σ2
α

(σ2
ε +T σ2

α )
)ûi,gls where ûi,gls = ∑T

t=1 ûit,gls/T .

Therefore, the BLUP for yi,T+S corrects the GLS prediction by a fraction of the
mean of the GLS residuals corresponding to that ith individual (see Taub (1979)).
Baillie and Baltagi (1999) consider the practical situation of prediction from the
error components model when the variance components are not known. They de-
rive both theoretical and simulation evidence as to the relative efficiency of four
alternative predictors:

(i) an ordinary predictor, based on the optimal predictor given above, but with
MLEs replacing population parameters,

(ii) a truncated predictor that ignores the error components correction, given by the
last term above, but uses MLEs for its regression parameters,

(iii) a misspecified predictor which uses OLS estimates of the regression parame-
ters, and

(iv) a fixed effects predictor which assumes that the individual effects are fixed pa-
rameters that can be estimated.

The asymptotic formula for MSE prediction are derived for all four predictors.
Using numerical and simulation results, these are shown to perform adequately in
realistic sample sizes. Both the analytical and sampling results show that there are
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substantial gains in mean square error prediction by using the ordinary predictor
instead of the misspecified or the truncated predictors, especially with increasing
ρ = σ2

α/(σ2
α +σ2

ε ) values. The reduction in MSE is about ten fold for ρ = 0.9 and
a little more than two fold for ρ = 0.6 for various values of N and T . The fixed
effects predictor performs remarkably well being a close second to the ordinary
predictor for all experiments. Simulation evidence confirm the importance of taking
into account the individual effects when making predictions. The ordinary predictor
and the fixed effects predictor outperform the truncated and misspecified predictors
and are recommended in practice.

3.3 More General Structures of the Disturbances

The previous model can be generalized in several ways, by allowing for more gen-
eral types of serial correlation as well as for possible heteroskedasticity. Let us first
consider the two-way error components model, i.e., the model with both individual
and time specific effects in the disturbances.

3.3.1 The Two-Way Error Components Model

The two-way error components model allows for specific time effects (λt) account-
ing for unobserved factors assumed to affect all individuals in a similar way at a
given point in time.

3.3.1.1 Definition/Assumptions of the Model

This model can be written as
yit = x ′itβ +uit

with
uit = αi +λt + εit ,

or, in vector form for all observations

y = Xβ +u

with
u = α⊗ eT +(eN⊗ IT )λ + ε

where λ is the random vector of time effects (T ×1).
As in the previous model we assume that α , λ and ε are mutually independent,

with 0 means and variance–covariance matrices
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E(αα ′) = σ2
α IN , E(λλ ′) = σ2

λ IT E(εε ′) = σ2
ε INT .

Since the individual and time effects are incorporated in the model through the
error structure, our main interest has to focus, as earlier, on the covariance matrix of
the disturbance terms

E(uu ′) = σ2
α(IN⊗ JT )+σ2

λ (JN ⊗ IT )+σ2
ε INT

= σ2
ε Ω .

3.3.1.2 The GLS Estimator

If we want to use the GLS estimator, as in the case of the one-way error components
model, we need the inverse of the covariance matrix Ω. Starting from Ω and using
its spectral (eigen value) decomposition

Ω−1 = WNT +
σ2

ε
σ2

ε +T σ2
α

BN +
σ2

ε
σ2

ε +Nσ2
λ

BT +
σ2

ε
σ2

ε +T σ2
α +Nσ2

λ

JNT

NT
.

Now the GLS estimator is

β̂gls = [X ′(WNT +θBN +θ1BT +θ2
JNT

NT
)X ]−1X ′(WNT +θBN +θ1BT +θ2

JNT

NT
)y

where

θ =
σ2

ε
σ2

ε +T σ2
α

,

θ1 =
σ2

ε
σ2

ε +Nσ2
λ

,

θ2 =
σ2

ε
σ2

ε +T σ2
α +Nσ2

λ
.

It would seem that this estimators is not very operational. However, one can get GLS
as an OLS regression by transforming the equation as follows:

(WNT +
√

θBN +
√

θ 1BT +
√

θ 2
JNT

NT
)y

= [yit − (1−
√

θ)yi− (1−
√

θ 1)yt +(1−
√

θ −
√

θ 1 +
√

θ 2)y

The small sample properties of the GLS estimator in this model are clearly the same
as for the model with only individual effects. So the GLS remains unbiased and
BLUE. When only N goes to infinity but T stays finite, the GLS is also consistent
and has an asymptotic distribution given by
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√
N(β̂gls−β )∼ N(0 ,σ2

ε (W̃ N
xx +

σ2
ε

σ2
ε +T σ2

α
BN

xx)
−1) ,

as long as

lim
N→∞

X ′X
N

= T N
xx is a finite positive definite matrix

as well as

lim
N→∞

1
N

X ′WNT X = W̃ N
xx ,

and where BN
xx is defined as in the one-way error components model.

In the case where both N and T → ∞, the GLS is consistent and its asymptotic
distribution is √

NT (β̂gls−β )∼ N(0,σ2
ε W NT

xx
−1) .

under the hypotheses

lim
N&T→∞

1
NT

X ′X = T NT
xx

is a finite positive definite matrix,7 and

lim
N&T→∞

1
NT

X ′WNT X = W̃ NT
xx is also positive definite.

Despite its good properties, the GLS estimator is unfortunately of very limited
use in practice as we do not know the variance components, so that we must use the
Feasible-GLS estimator.

3.3.1.3 The Feasible-GLS Estimator

The first problem to be solved in estimating the model by Feasible-GLS is to find
appropriate estimators for the variance components. The starting point could be the
error term u and its decomposition, but because we cannot observe it directly we
need to estimate it. These estimates can be based on different consistent estima-
tors of the error components model. The necessary expected values to identify the
unknown variances are

E(u2
it) = σ2

α +σ2
ε +σ2

λ

E((
1
T ∑

t
uit)2) = σ2

α +
1
T

σ2
ε +

1
T

σ2
λ

E((
1
N ∑

i
uit)2) =

1
N

σ2
α +

1
N

σ2
ε +σ2

λ

so the variance components estimates are

7 This hypothesis implies that the limits of 1
NT X ′BNX , 1

NT X ′BT X and 1
N2T 2 X ′JNT X are also finite.
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σ̂2
α =

T
T −1

(
1
T ∑i(∑t ûit)2

N−K
− ∑i ∑t û2

it

NT −K

)

σ̂2
λ =

N
N−1

(
1
N ∑t(∑i ûit)2

T −K
− ∑i ∑t û2

it

NT −K

)

σ̂2
ε = ∑i ∑t û2

it

NT −K
− σ̂2

α − σ̂2
λ

or in another form

T σ̂2
α + σ̂2

ε =
û ′BNû
N−K

Nσ̂2
ε + σ̂2

ε =
û ′BT û
T −K

σ̂2
ε =

û ′WNT û
(N−1)(T −1)−K−1

where the û residual vector can be obtained by any consistent estimation of the
model. The above variance components estimators are consistent under the usual
conditions. However, if T is finite (N → ∞) the estimators of σ2

λ are, of course,
inconsistent.

3.3.1.4 The OLS and Within Estimators

When only N → ∞, the OLS estimator is not necessarily consistent, even if we
suppose that both

lim
N→∞

1
N

X ′X = T N
xx

and

lim
N→∞

1
N

X ′WNT X = W̃ N
xx

are finite positive definite matrices (see Trognon (1993)). However, when N and
T → ∞ the OLS estimator becomes consistent, but unfortunately, its asymptotic co-
variance matrix may not be finite if either limN→∞

1
NT X ′BNX �= 0 or limN→∞

1
NT X ′BT

X �= 0.
Now let us turn our attention to the Within estimator. It is clear from the decom-

positions of the error terms that the projection matrix WNT nullifies (similarly as in
the case of the one-way model) the individual and time effects. This means that we
can get an estimator of model by transforming all the variables with WNT and apply
the OLS. We can get this estimator by transforming all variables of the model such
as y

WNT y = [yit − yi− yt + y] ,

and then use the OLS estimator.
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As earlier the Within estimator is unbiased, have a normal distribution and a
covariance matrix

V (β̂W ) = σ2
ε (X ′WNT X)−1

As seen, in the asymptotic case the GLS and the Within estimators are asymptot-
ically equivalent, but in the semi–asymptotic case (N only goes to infinity) the GLS
remains more efficient than the within estimator.

3.3.1.5 One-Way Versus Two-Way Error Components

This section investigates the consequences of under-specifying or over-specifying
the error components model. Since the one-way and two-way error components
models are popular in economics, we focus on the following two cases:

(1) Under-Specification Case: In this case the true model is two-way

uit = αi +λt + εit i = 1, . . . , N; t = 1, . . . , T (3.7)

while the estimated model is one-way

uit = αi + εit (3.8)

with αi ∼ N (0, σ2
α),λt ∼ N (0, σ2

λ ) and εit ∼ N (0, σ2
ε ) independent of each other

and among themselves. Knowing the true disturbances u ′ = (u11, . . . , u1T , . . . , uN1,
. . . , uNT ), the Best Quadratic Unbiased (BQU) estimators of the variance compo-
nents for the one-way model are given by

σ̂2
ε = u ′WN u/ trace(WN) and T σ̂2

α + σ̂2
ε = u ′BN u/ trace(BN)

Using this fact, one can easily show, (see Baltagi and Li (1991b)) that

E(σ̂2
ε ) = trace[ΩWN/N(T −1)] = σ2

ε +σ2
λ , (3.9)

which is biased upwards by σ2
λ . Similarly,

E(T σ̂2
α + σ̂2

ε ) = trace[ΩBN/N] = T σ2
α +σ2

ε +σ2
λ , (3.10)

which is also biased upwards by σ2
λ . Substituting E(σ̂2

ε ) from (3.9) in the left-hand-
side of (3.10), one gets E(σ̂2

α) = σ2
α . This shows that knowing the true disturbances,

the BQU of σ2
ε for the misspecified one-way model is biased upwards, while the

BQU of σ2
α remains unbiased.

In practice, the true disturbances are not known and may be replaced by the one–
way within residuals ûW = y−X β̂W where β̂W is the one–way within parameters
estimates. In this case

σ̃2
ε = û ′WWNûW /N(T −1)

and one can easily show that plim σ̃2
ε = σ2

ε +σ2
λ .
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Similarly, substituting ûW for u in T σ̂2
α + σ̂2

ε we get

σ̃2
α = û ′W BN ûW /NT − σ̃2

ε /T

and one can show that plim σ̃2
α = σ2

α . This shows that even if the true disturbances
are replaced by the within residuals, the misspecified one-way estimator of σ2

ε re-
mains inconsistent, while that of σ2

α is consistent.
(2) Over–Specification Case: In this case, the true model is one-way, given by
(3.8), while the estimated model is two-way, given by (3.7). Knowing the true dis-
turbances, the BQU estimators of the two-way model are given by

σ̂2
ε = u ′WNT u/(N−1)(T −1) (3.11)

T σ̂2
α + σ̂2

ε = u ′BNu/(N−1) (3.12)

Nσ̂2
λ + σ̂2

ε = u ′BT u/(T −1) (3.13)

(see Amemiya (1971)), where WNT ,BN and BT are defined as above. Therefore,

E(σ̂2
ε ) = [ΩWNT ]/(N−1)(T −1) = σ2

ε (3.14)

E(T σ̂2
α + σ̂2

ε ) = [ΩBN ]/(N−1) = T σ2
α +σ2

ε (3.15)

E(Nσ̂2
λ + σ̂2

ε ) = [ΩBT ]/(T −1) = σ2
ε . (3.16)

Substituting (3.14) in the left-hand-side of (3.15) and (3.16), we get E(σ̂2
α) = σ2

α
and E(σ̂2

λ ) = 0. This shows that if the true disturbances are known, the BQU esti-
mators of σ2

α , σ2
λ and σ2

ε for the misspecified two-way model remain unbiased. If

the uit’s are replaced by the two-way within residuals ûW = y−XβW where β̂W is
the two–way within regression estimates given by β̂W = (X ′WNX)−1X ′WN y, then
one can show, see Baltagi and Li (1991b), that

plimN,T→∞σ̃2
ν = plimN,T→∞û ′WWNT ûW /(N−1)(T −1)

= plimN,T→∞trace[ΩWNT /(N−1)(T −1)] = σ2
ν

Similarly, from (3.12) and (3.13), one can show that plimN,T→∞ σ̃2
α = σ2

α and
plimN,T→∞ σ̃2

λ = 0.
This shows that if the uit’s are replaced by the two-way within residuals the

misspecified two-way variance components estimates remain consistent.
Prucha (1984) showed that as long as the estimator of σ2

ε is consistent and the
estimators of the other variance components σ2

α and σ2
λ go to a finite probability

limit, as N and T both go to ∞, then the corresponding feasible GLS estimator of
β is asymptotically equivalent to the true GLS estimator. This condition is satisfied
for the overspecified model but not for the underspecified model.

Deschamps (1991) investigated the consequences of a misspecified error com-
ponents model on the estimated variances of the regression coefficients. In par-
ticular, Deschamps (1991) considered the under-specified case where some error
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components are improperly omitted (even though their variances are nonzero),
and the remaining variance components are consistently estimated. In this case,
Deschamps (1991) shows that the true variances of the estimated regression coeffi-
cients are always underestimated in the misspecified model. For the underspecified
one–way error components model, with omitted time effects, this inconsistency is
unbounded, unless the matrix of regressors satisfies very restrictive assumptions.

3.3.2 Serial Correlation in the Disturbances

The classical error components disturbances assume that the only correlation over
time is due to the presence in the panel of the same individual over several peri-
ods. This equicorrelation coefficient is given by correl (uit , uis) = σ2

α/(σ2
α +σ2

ε ) for
t �= s. Note that it is the same no matter how far t is from s. This may be a restric-
tive assumption for economic relationships, like investment or consumption, where
an unobserved shock this period will affect the behavioral relationship for at least
the next few periods. This type of serial correlation is not allowed for in the sim-
ple error components model. Ignoring serial correlation when it is present results
in consistent but inefficient estimates of the regression coefficients and biased stan-
dard errors. This section introduces serial correlation in the εit . We illustrate how
one can estimate an autoregressive process of order one AR(1), as in the Lillard and
Willis (1978) study on earnings.

3.3.2.1 The AR(1) Process

Lillard and Willis (1978) generalized the error components model to the serially cor-
related case, by assuming that the remainder disturbances (the εit) follow an AR(1)
process. In this case αi ∼ i.i.d.(0, σ2

α), whereas

εit = ρεi,t−1 +ηit (3.17)

| ρ | < 1 and ηit ∼ i.i.d.(0, σ2
η). The αi are independent of the εit and εi0 ∼

(0, σ2
η/(1− ρ2)). Baltagi and Li (1991a) derived the corresponding Fuller and

Battese (1974) transformation for this model. First, one applies the Prais-Winsten
(PW) transformation matrix

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1−ρ2)1/2 0 0 · · · 0 0 0
−ρ 1 0 · · · 0 0 0
· · · · · · · · ·
· · · · · · · · ·
0 0 0 · · · −ρ 1 0
0 0 0 · · · 0 −ρ 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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to transform the remainder AR(1) disturbances into serially uncorrelated classical
errors. For panel data, this has to be applied for N individuals. The transformed
regression disturbances are in vector form

u∗ = (IN⊗C)u = (IN⊗CeT )α +(IN⊗C)ε

Using the fact that CeT = (1 − ρ)ιϕ ′
T , where ιϕ ′

T = (ϕ,e ′T−1) and ϕ =√
(1+ρ)/(1−ρ), one can rewrite this as

u∗ = (1−ρ)(IN⊗ ιϕ
T )α +(IN⊗C)ε

Therefore, the variance–covariance matrix of the transformed disturbances is

Ω∗ = E(u∗u∗′) = σ2
α(1−ρ)2[IN ⊗ ιϕ

T ιϕ ′
T ]+σ2

η(IN⊗ IT )

since (IN⊗C)E(εε ′)(IN⊗C ′) = σ2
η(IN⊗ IT ). Alternatively, this can be rewritten as

Ω∗ = d2σ2
α(1−ρ)2[IN ⊗ ιϕ

T ιϕ ′
T /d2]+σ2

η(IN⊗ IT )

where d2 = ιϕ ′
T ιϕ

T = ϕ2 +(T −1) or equivalently,

Ω∗ = σ2
κ (IN⊗ ιϕ

T ιϕ ′
T /d2)+σ2

η(IN⊗ (IT − ιϕ
T ιϕ ′

T /d2))

where σ2
κ = d2σ2

α(1−ρ)2 +σ2
η . Therefore

ση Ω∗−1/2 = (ση/σκ)(IN⊗ ιϕ
T ιϕ ′

T /d2)+(IN⊗ (IT − ιϕ
T ιϕ ′

T /d2))

= IN⊗ IT −θκ(IN⊗ ιϕ
T ιϕ ′

T /d2)

where θκ = 1− (ση/σκ).
Premultiplying the PW transformed observations y∗ = (IN ⊗C)y by ση Ω∗−1/2

one gets y∗∗ = ση Ω∗−1/2y∗. The typical elements of y∗∗ = ση Ω∗−1/2y∗ are given by

(y∗i1−θκ ϕβi, y∗i2−θκ βi, . . . , y∗iT −θκ βi) ′

where βi = [(ϕy∗i1 + ∑T
2 y∗it)/d2] for i = 1, . . . , N. The first observation gets special

attention in the AR(1) error components model. First, the PW transformation gives
it a special weight

√
1−ρ2 in y∗. Second, the Fuller and Battese transformation also

gives it a special weight ϕ =
√

(1+ρ)/(1−ρ) in computing the weighted average
βi and the pseudo-difference. Note that

(i) if ρ = 0, then ϕ = 1, d2 = T, σ2
κ = σ2

1 and θκ = θ . Therefore, the typical element
of y∗∗it reverts to the familiar (yit − θ ȳi.) transformation for the one-way error
component model with no serial correlation.

(ii) If σ2
α = 0, then σ2

κ = σ2
η and θκ = 0. Therefore, the typical element of y∗∗it reverts

to the PW transformation y∗it .
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The Best Quadratic Unbiased (BQU) estimators of the variance components are
given by

σ̂2
η = u∗′(IN⊗ (IN⊗ ιϕ

T ιϕ ′
T /d2)u∗/N(T −1)

and σ̂2
κ = u∗′(IN⊗ ιϕ

T ιϕ ′
T /d2)u∗/N

of σ2
η and σ2

κ respectively.
Baltagi and Li (1991a) suggest estimating ρ from Within residuals ε̃it as ρ̃ =

∑N
i=1 ∑T

t=1 ε̃i, t ε̃i, t−1/∑N
i=1 ∑T

t=2 ε̃2
i, t−1. Then, σ̂2

η and σ̂2
κ are estimated by substituting

OLS residuals û∗ from the PW transformed equation using ρ̃ . Using Monte Carlo
experiments, Baltagi and Li (1997) found that ρ̃ performs poorly for small T and
recommended an alternative estimator of ρ which is based on the autocovariance
function Qs = E(uitui, t−s). For the AR(1) model, it is easy to show that Qs = σ2

α +
σ2

η ρs. From Q0, Q1 and Q2, one can easily show that ρ +1 = (Q0−Q2)/(Q0−Q1).
Hence, a consistent estimator of ρ (for large N) is given by

ρ̂ =
Q̃0− Q̃2

Q̃0− Q̃1
−1 =

Q̃1− Q̃2

Q̃0− Q̃1

where Q̃s = ∑N
i=1 ∑T

t=s+1 ûit ûi,t−s/N(T − s) and ûit denotes the OLS residuals. σ̂2
η

and σ̂2
κ are estimated by substituting OLS residuals û∗ from the PW transformed

equation using ρ̂ rather than ρ̃ .
Therefore, the estimation of an AR(1) serially correlated error components model

is considerably simplified by

(i) applying the PW transformation in the first step, as is usually done in the time-
series literature, and

(ii) subtracting a pseudo-average from these transformed data in the second step.

3.3.2.2 Kmenta’s Approach

(1) The Common ρ Case
In this case the disturbances are assumed to follow a first order autoregressive pro-
cess with the same ρ but different variances for different cross sections, i.e.,

uit = ρui,t−1 +ηit (3.18)

with ηit ∼ N(0, σ2
η i) and ui0 ∼ N(0, σ2

η i/(1− ρ2)). The estimation method pro-
posed is to correct for serial correlation in the first step and heteroskedasticity in the
second step. This is accomplished by estimating ρ by ρ̂ = ΣΣ ûit ûi, t−1/ΣΣ û2

i, t−1
with ûit denoting the OLS residuals on the pooled model. Next, the Prais–Winsten
transformation is applied, i.e., y∗it = yit − ρ̂yi, t−1 for t = 2, . . . , T , and y∗i,1 = (1−
ρ̂2)1/2yi,1 with a similar transformation on the Xit ’s. y∗it is regressed on the X∗it ’s
and the residuals û∗it’s are formed. Estimates of the variances are obtained as
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σ̂2
η i = Σ û∗2it /(T −K) for i = 1, 2, . . . , N, and y∗∗it = y∗it/σ̂η i and X∗∗it ’s are formed.

Finally y∗∗it is regressed on the X∗∗it ’s. This procedure when iterated until conver-
gence will lead to maximum likelihood estimates.
(2) The Varying ρ Case
Kmenta (1986) also suggested to consider cases where the serial correlation can
vary across individuals

uit = ρiui, t−1 +ηit (3.19)

with ηit defined above.
Maintaining the assumption of independence across individuals, the N ρi’s are

then estimated by ρ̂i = Σ ûit ûi, t−1/Σ û2
i, t−1 for i = 1, 2, . . . , N, and the remaining

steps are the same as above.
Kmenta (1986) also considered the situation where some correlation may exist

between individuals. In this case

E(uitu jt) = σi j for i, j = 1, 2, . . . , N ,

and E(εitε jt) = φi j with σi j = φi j/(1− ρiρ j). The variance–covariance matrix is
now Ω = [σi jVi j] where

Vi j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ρ j ρ2
j · · · ρT−1

j

ρi 1 ρ j
...

ρ2
i 1
...

. . . ρ j

ρT−1
i · · · ρi 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Estimates of the ρi’s and φi j’s are obtained as before with φ̂i j = Σe∗it e
∗
jt/(T −K).

Rather than applying GLS which inverts and NT ×NT matrix, Kmenta (1986) sug-
gests running GLS on the transformed model, i.e., using (y∗, X∗) as follows:

β̂ = (X∗
′
Φ̂−1X∗)−1(X∗

′
Φ̂−1y∗)

where Φ̂ = φ̂ ⊗ IT , φ̂ = [φ̂i j]. φ̂ is N×N and if N is larger than T , which is the usual

case in economics, this φ̂ is singular. Also, β̂ is not GLS since the Prais–Winsten
transformation does not give the right first element of Vi j for i �= j. Kmenta suggests
ignoring the first observation, i.e., applying Cochrane–Orcutt. The transformation
would be correct in this case but we lose N observations, one for each cross section.
This could be a lot of observations lost for panels with large N.

3.3.3 Two-Way Error Components vs Kmenta’s Approach

The usual error components model as well as the Kmenta technique allow for se-
rial correlation, but in the usual error components model this serial correlation is
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constant across time, whereas it decays over time with the Kmenta technique. In its
most general case, the Kmenta technique allows for correlation among the differ-
ent cross sections, whereas the error components technique assumes a lot of inde-
pendence among the α’s, λ ’s and ε’s. Moreover, the usual error components model
has homoskedastic disturbances, whereas the Kmenta technique has heteroskedastic
ones. Also, the Kmenta technique estimates a lot of auxiliary parameters, for e.g.,
N σ ’s and one ρ in the case of the common rho method, N σ ’s and N ρ’s in case
of the varying rho method, and N(N + 1)/2 σ ’s and N ρ’s in the cross-sectionally
correlated time-wise autoregressive case. In the fixed effects model, one estimates
(N− 1) α’s and (T − 1) ε’s, but in the two-way random effects model, one only
estimates three variances.

The advantages of both methods are the gains from pooling a larger data set
and more variation to explain the underlying economic relationship. However, as
usual in economics, the true structure of the disturbances is not known, and the
researcher may be at a disadvantage if the wrong error structure is chosen. Given
this background, Baltagi (1986) posed the following basic question: Under the best
possible situation of applying one technique of pooling, how does the other tech-
nique perform? This question is relevant given the wide use of the Kmenta and
the error components techniques and their easy accessibility on computer. The per-
formance of these methods is compared by means of Monte-Carlo experiments.
First, data are generated with both serially correlated and cross-sectionally het-
eroskedastic disturbances and both the Kmenta and the familiar variance com-
ponents methods are applied. Next, data are generated with error components
disturbances, and again both techniques of estimation are applied. For N = 25 and
T = 10, Baltagi (1986) shows that the error components procedure is more robust
to this kind of misspecification than the Kmenta technique. This result should be
tempered by the fact that N is large and T is small. This means, that, in the Kmenta
case, one is estimating a lot of a auxiliary parameters with a short time series. If T
is large and N is small, the Kmenta technique is expected to perform better. Most
panels in economics, however, are of the type where N is much larger than T . Also,
the Monte-Carlo results show that the error components Feasible GLS estimators
differ from each other when the model is misspecified. Negative estimates of the
variance components and non–stationary ρ’s occur when the model is misspecified.
Finally, OLS performs better than the wrong Feasible GLS estimator, but worse
than the correct Feasible GLS estimator. Note that a robust variance–covariance
matrix for the OLS estimator under the Kmenta model was proposed by Beck and
Katz (1995).

3.3.4 Heteroskedasticity in the Disturbances

The standard error components model assumes that the regression disturbances are
homoskedastic with the same variance across time and individuals. This may be a
restrictive assumption for panels, where the cross-sectional units may be of varying
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size and as a result may exhibit different variation. For example, when dealing with
different size countries or firms, one should expect to find heteroskedasticity in the
disturbance terms. Assuming homoskedastic disturbances when heteroskedasticity
is present will still result in consistent estimates of the regression coefficients, but
these estimates will not be efficient. Also, the standard errors of these estimates
will be biased and one should compute robust standard errors correcting for the
possible presence of heteroskedasticity. In this section, we relax the assumption of
homoskedasticity of the disturbances and introduce heteroskedasticity through the
αi as first suggested by Mazodier and Trognon (1978). Next, we suggest an alter-
native heteroskedastic error components specification, where only the εit are het-
eroskedastic. We derive the true GLS transformation for these two models. We also
consider two adaptive heteroskedastic estimators based on these models where the
heteroskedasticity is of unknown form. These adaptive heteroskedastic estimators
were suggested by Li and Stengos (1994) and Roy (2002).

Mazodier and Trognon (1978) generalized the homoskedastic error components
model to the case where the αi are heteroskedastic, i.e., αi ∼ (0, σ2

αi) for i =
1, . . . , N, but εit ∼ i.i.d.(0, σ2

ε ). In vector form, α ∼ (0,Σα) where Σα = diag[σ2
αi]

is a diagonal matrix of dimension N ×N, and ε ∼ (0, σ2
ε INT ). . . .. Therefore, the

resulting variance–covariance of the disturbances is given by

Ω = diag[σ2
αi]⊗ JT +diag[σ2

ε ]⊗ IT

where diag[σ2
ε ] is also of dimension N×N. This can be rewritten as follows

Ω = diag[τ2
i ]⊗ JT

T
+diag[σ2

ε ]⊗ (IT −
JT

T
)

with τ2
i = T σ2

αi +σ2
ε . In this case,

σε Ω−1/2 = (diag[σε/τi]⊗
JT

T
)+WN

Hence, y∗ = σν Ω−1/2y has a typical element y∗it = yit −θiyi where θi = 1− (σε/τi)
for i = 1, . . . , N.

Baltagi and Griffin (1988) provided Feasible GLS estimators including Rao’s
(1970, 1972) MINQUE estimators for this model. Phillips (2003) argues that this
model suffers from the incidental parameters problem and the variance estimates of
αi (the σ2

αi) cannot be estimated consistently, so there is no guarantee that Feasible
GLS and true GLS will have the same asymptotic distributions. Instead, he suggests
a stratified error components model where the variances change across strata and
provides an EM algorithm to estimate it. It is important to note that Mazodier and
Trognon (1978) had already suggested stratification in a two-way heteroskedastic
error component model. Also, that one can specify parametric variance functions
which avoid the incidental parameter problem and then apply the GLS transfor-
mation described above. As in the cross-section heteroskedastic case, one has to
know the variables that determine heteroskedasticity, but not necessarily the form.
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Adaptive estimation of heteroskedasticity of unknown form has been suggested for
this model by Roy (2002). This follows similar literature on adaptive estimation for
cross-section data.

Alternatively, one could keep the αi homoskedastic with αi ∼ i.i.d.(0, σ2
α) and

impose the heteroskedasticity on the εit , i.e., εit ∼ (0, σ2
ε i) (see problem 88.2.2 by

Baltagi (1988) and its solution by Wansbeek (1989)). In this case, one obtains

Ω = E(uu ′) = diag[σ2
α ]⊗ JT +diag[σ2

ε i]⊗ IT

which can be rewritten as

Ω = diag[T σ2
α +σ2

ε i]⊗
JT

T
+diag[σ2

ε i]⊗ (IT −
JT

T
)

and

Ω−1/2 = diag[1/τi]⊗
JT

T
+diag[1/σε i]⊗ (IT −

JT

T
)

and y∗ = Ω−1/2y has a typical element

y∗it = (ȳi/τi)+(yit − ȳi)/σε i .

Upon rearranging terms, we get

y∗it =
1

σε i
(yit −θiȳi) where θi = 1− (σε i/τi)

Estimators for this one-way random effects model with unequal error variances and
no regressors has been studied extensively in the statistics literature, see Rao, Kaplan
and Cochran (1981) for a good review.

One can argue that heteroskedasticity will contaminate both αi and εit and it is
hard to claim that it is in one component and not the other. Randolph (1988) gives
the GLS transformation for a more general heteroskedastic model where both the αi

and the εit are assumed heteroskedastic in the context of an unbalanced panel. In this
case, the var(αi) = σ2

αi and E(εε ′) = diag[σ2
it ] for i = 1, . . . , N and t = 1, . . . , Ti.

More recently, Li and Stengos (1994) considered the case where αi ∼ i.i.d.
(
0,σ2

α
)

and E [εit |x ′it ] = 0 with Var [εit |x ′it ] = γ (x ′it)≡ γit . So that the heteroskedasticity is on
the remainder error term and it is of an unknown form.

Therefore σ2
it = E

[
u2

it |x ′it
]
= σ2

α +γit and the proposed estimator of σ2
α is given by

σ̂2
α =

N
∑

i=1

T
∑

t �=s
ûit ûis

NT (T −1)

where ûit denotes the OLS residual. Also,
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γ̂it =

N
∑
j=1

T
∑

s=1
û2

jsKit, js

N
∑
j=1

T
∑

s=1
Kit, js

− σ̂2
α

where the kernel function is given by Kit, js = K

(
x ′it−x ′js

h

)
and h is the smoothing

parameter. These estimators of the variance components are used to construct a fea-
sible adaptive GLS estimator of β which they denote by GLSAD. The computation
of their Feasible GLS estimator is simplified into an OLS regression using a re-
cursive transformation that reduces the general heteroskedastic error components
structure into classical errors, see Li and Stengos (1994) for details.

Roy (2002) considered the alternative heteroskedastic model E [αi|x ′i ] = 0 with

Var
[
αi|x ′i

]
= ω

(
x ′i
)
≡ ωi

with x ′i =
T
∑

t=1
x ′it/T and vit ∼ i.i.d.

(
0, σ2

v

)
. So that the heteroskedasticity is on the

individual specific error component and it is of an unknown form. Roy (2002) used
the usual estimator of σ2

v which is the MSE of the Within regression, and this can
be written as

σ̂2
ε =

N
∑

i=1

T
∑

t=1
[(yit − yi.)− (x ′it − x ′i )βW ]2

N (T −1)− k

where βW is the fixed effects or within estimator of β . Also

ω̂i =

N
∑
j=1

T
∑

t=1
û2

jtKi., j.

N
∑
j=1

T
∑

t=1
Ki., j.

− σ̂2
ε

where the kernel function is given by

Ki., j. = K

(
x ′i − x ′j

h

)

Using these estimators of the variance components, Roy (2002) computed a Feasible
GLS estimator using the transformation derived by Baltagi and Griffin (1988). This
was denoted by EGLS.

Both Li and Stengos (1994) and Roy (2002) performed Monte Carlo experi-
ments based on the simple regression model with one regressor. They compared the
following estimators:
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(1) OLS;
(2) Fixed effects or within estimator (Within);
(3) the conventional GLS estimator for the one way error components model that

assumes the error term uit is homoskedastic (GLSH); and
(4) their own adaptive heteroskedastic estimator denoted by (EGLS) for Roy (2002)

and (GLSAD) for Li and Stengos (1994).

Li and Stengos (1994) found that their adaptive estimator outperforms all the
other estimators in terms of relative MSE with respect to true GLS for N = 50,100
and T = 3 and for moderate to severe degrees of heteroskedasticity. Roy (2002)
also found that her adaptive estimator performs well, although it was outperformed
by fixed effects in some cases where there were moderate and severe degrees
of heteroskedasticity. Recently, Baltagi, Bresson and Pirotte (2005) checked the
sensitivity of the two proposed adaptive heteroskedastic estimators under misspec-
ification of the form of heteroskedasticity. In particular, they ran Monte Carlo ex-
periments using the heteroskedasticity set up of Li and Stengos (1994) to see how
the misspecified Roy (2002) estimator performs. Next, they used the heteroskedas-
ticity set up of Roy (2002) to see how the misspecified Li and Stengos (1994) es-
timator performs. They also checked the sensitivity of these results to the choice
of the smoothing parameters, the sample size and the degree of heteroskedasticity.
Baltagi, Bresson and Pirotte (2005) found that in terms of loss in efficiency, mis-
specifying the adaptive form of heteroskedasticity can be costly when the Li and
Stengos (1994) model is correct and the researcher performs the Roy (2002) esti-
mator. This loss in efficiency is smaller when the true model is that of Roy (2002)
and one performs the Li and Stengos (1994) estimator. The latter statement is true
as long as the choice of bandwidth is not too small. Both papers also reported
the 5% size performance of the estimated t-ratios of the slope coefficient. Li and
Stengos (1994) found that only GLSAD had the correct size while OLS, GLSH and
Within over-rejected the null hypothesis. Roy (2002) found that GLSH and EGLS
had the correct size no matter what choice of h was used. Baltagi, Bresson and
Pirotte (2005) found that OLS and GLSAD (small h) tend to over-reject the null
when true no matter what form of adaptive heteroskedasticity. In contrast, GLSH,
EGLS and Within have size not significantly different from 5% when the true model
is that of Roy (2002) and slightly over-reject (7–8%) when the true model is that of
Li and Stengos (1994).

3.4 Testing

As in any other econometric context, the properties of the estimators considered
in this chapter rely on the validity of the assumptions made. It is then essential to
check whether these assumptions can be considered as validated, or if they must be
rejected. A first question to answer is whether there exist individual effects at all
or not.
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3.4.1 Testing for the Absence of Individual Effects

Several tests have been proposed in the literature in order to check for the absence
of individual (random) effects. We shall limit ourselves to three of them, which
present the advantage of being quite simple to implement, and which nevertheless
have rather good properties.

3.4.1.1 The Analysis of Variance / Fisher’s Test

A first way of checking for the absence of individual effects consists of testing for
the nullity of their variance σ2

α :

H0 : σ2
α = 0

against H1 : σ2
α �= 0.

This test is very easy to implement as long as we have run the Within and Between
regressions from which we get the estimated residual variances σ̂2

w (= σ̂2
ε ) and

σ̂2
b = σ̂2

α + σ̂2
ε /T . Under the normality assumption,

(N(T −1)− kw)
σ̂2

w

σ2
ε

is distributed as a χ2 with (N(T −1)− kw) degrees of freedom, and

(N− kb)
σ̂2

b

σ2
α +σ2

ε /T
= (N− kb)

T σ̂2
b

T σ2
α +σ2

ε

is also distributed as a χ2 but with (N−kb) degrees of freedom. As a consequence,

σ2
ε

T σ2
α +σ2

ε

T σ̂2
b

σ̂2
w

→ F(N− kb , N(T −1)− kw) .

Then, under the null hypothesis, H0 : σ2
α = 0, we have:

T σ̂2
b

σ2
ε

→ F(N− kb , N(T −1)− kw) .

Consequently, one will reject H0 when this statistics is larger than the fractile of
the Fisher distribution with (N− kb , N(T − 1)− kw) degrees of freedom. Simply
stated, if T times the Between regression individual variance (computed over N
observations) is larger than the residual variance of the Within regression, one must
reject the absence of individual effects: such effects do exist.
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3.4.1.2 The Lagrange Multiplier Test

Breusch and Pagan (1979) have proposed to use the Lagrange multiplier test to
check for the absence of individual effects. Their idea is that, when there are no
such effects, the disturbances of the model are completely idiosyncratic. In that
situation, the variance of the disturbances should not significantly differ from that
of their individual means (ε i), once the necessary correction of the scale effect for
the variance of a mean has been made. Then, under such an assumption, the statistics

g =
NT

2(T −1)

[
∑N

i=1(T ε̂ i)2

∑N
i=1 ∑T

t=1 ε̂2
it

−1

]2

is asymptotically distributed as a χ2 with 1 degree of freedom. Consequently, if this
statistics, computed from the OLS regression residuals is greater than 3.84 (when
testing at 5%), one will reject the null of absence of individual specific effects. In
the opposite case, one should accept this assumption.

3.4.1.3 Honda’s Test

A drawback of the above test as proposed by Breusch and Pagan (1979) is that
this is a two-sided test, while a variance should be either null or positive. In order
to circumvent this problem, Honda (1985) has suggested a very simple one-sided
test that just amounts to consider the square root of the Breusch–Pagan statistics.
He showed that, under the null of absence of individual effects, this square root is
distributed as a normal. Then, one should reject the null hypothesis as soon as the
statistics

g =

√
NT

2(T −1)

[
∑N

i=1(T ε̂ i)2

∑N
i=1 ∑T

t=1 ε̂it
2
−1

]

is greater than 1.64. This test then leads to reject the null a bit more often than the
Breusch–Pagan test would do.

3.4.2 Testing for Uncorrelated Effects: Hausman’s Test

One of the most disputable assumptions underlying the error components model is
the absence of correlation between the regressors and the individual effects. Indeed,
in many circumstances, this is a quite untenable assumption. It is then important
to check for the validity of this assumption as such a correlation would lead to the
inconsistency of most of the estimators of the error components model,8 with the no-
table exception of the Within estimator. Since the latter is based on a transformation

8 The OLS, Feasible-GLS and Between estimators are biased and inconsistent when only N → ∞.
Feasible-GLS remain consistent when both N and T → ∞.
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that discards the individual effects from the model, this makes the assumption of
their uncorrelation with the regressors irrelevant to the unbiasedness and consis-
tency of this estimator.

Hausman (1978) has suggested a test that exploits the fact that a couple of esti-
mators may be defined in such a way that one (β̂ (1)) is consistent both under H0

and H1 while the other one (β̂ (2)) is consistent and efficient only if H0 is true and
inconsistent otherwise. Then, getting close estimates β̂ (1) and β̂ (2) is an indication
that H0 is true while getting very different estimates β̂ (1) and β̂ (2) must be seen as
an indication that H0 is not validated. More specifically, Hausman has shown that
under H0.

QH = (β̂ (1) − β̂ (2)) ′[ ̂

V (β̂ (1)) − ̂

V ( β̂ (2))]−1(β̂ (1) − β̂ (2))

is asymptotically distributed (when N → ∞) as a Chi-Squared with dim(β ) degrees
of freedom. If QH is larger than the fractile of the χ2

(dim(β )) distribution, one must
reject H0; while this assumption is accepted otherwise.

In our current context, we can choose the Within estimator as β̂ (1) while the
Feasible-GLS estimator is the choice to be made for β̂ (2). Then, the statistics to be
computed is given by

QH = (β̂w − β̂fgls) ′[
̂

V (β̂w) − ̂

V ( β̂fgls)]−1(β̂w − β̂fgls) .

If QH is greater than the fractile of a χ2
(kw) where kw is the number of regressors in

the Within regression, one should reject H0: the absence of correlation between the
regressors and the individual effects must be rejected. As a consequence, while the
Within estimator is consistent, the Feasible-GLS nor the other estimators (OLS and
Between) are consistent in this case.

It is worthwhile noticing that this test can also be conducted in alternative ways.
Indeed, Hausman and Taylor (1981) have shown that one can answer the same ques-
tion by comparing

Qfgls,b = (β̂b − β̂fgls) ′[
̂

V (β̂b) −
̂

V ( β̂fgls)]−1(β̂b − β̂fgls)

or, alternatively

Qw,b = (β̂b − β̂w) ′[̂V (β̂b) + ̂

V ( β̂w)]−1(β̂b − β̂w) .

to a χ2
(kw). Indeed, these three statistics are (Qs N → ∞) numerically identical.

3.4.3 Testing for Serial Correlation

In this section, we address the problem of jointly testing for serial correlation and
individual effects. Baltagi and Li (1995) derived three LM statistics for an error
components model with first-order serially correlated errors. The first LM statistic
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jointly tests for zero first-order serial correlation and random individual effects. The
second LM statistic tests for zero first-order serial correlation assuming fixed indi-
vidual effects, and the third LM statistic tests for zero first-order serial correlation
assuming random individual effects. In all three cases, Baltagi and Li (1995) showed
that the corresponding LM statistic is the same whether the alternative is AR(1) or
MA(1).

Let us assume the disturbances to follow a one-way error components model
where αi ∼ i.i.d.(0, σ2

α) and the remainder disturbance follows a stationary AR(1)
process: εit = ρεi, t−1 + ηit with | ρ |< 1, or an MA(1) process: εit = εit + λεi, t−1

with | λ |< 1, and εit ∼ i.i.d.(0, σ2
ε ). The joint LM test statistic for Ha

1 : σ2
α = 0;

λ = 0 is the same as that for Hb
1 : σ2

α = 0; ρ = 0 and is given by

LM1 =
NT 2

2(T −1)(T −2)
[A2−4AB+2T B2]

where û denote OLS residuals, A = [û ′(IN⊗JT )û/(û ′û)]−1 and B = (û ′û−1/û ′û).
This is asymptotically distributed (for large N) as χ2

2 under Ha
1 .

Note that the A2 term is the basis for the LM test statistic for H2: σ2
α = 0 assum-

ing there is no serial correlation (see Breusch and Pagan, 1980 or Sect. 4.1.2). In
fact, LM2 =

√
NT/2(T −1)A is asymptotically distributed (for large N) as N(0,1)

under H2 against the one-sided alternative H ′
2 ; σ2

α > 0. Also, the B2 term is the
basis for the LM test statistic for H3: ρ = 0 (or λ = 0) assuming there are no indi-
vidual effects (see Breusch and Godfrey, 1981). In fact, LM3 =

√
NT 2/(T −1)B is

asymptotically distributed (for large N) as N(0,1) under H3 against the one-sided al-
ternative H ′

3 ; ρ (or λ ) > 0. The presence of an interaction term in the joint LM test
statistic, emphasizes the importance of the joint test when both serial correlation and
random individual effects are suspected. However, when T is large the interaction
term becomes negligible.

Also, Baltagi and Li (1995) derived two extensions of the Burke, Godfrey and
Termayne (1990) AR(1) vs MA(1) test from the time-series to the panel data litera-
ture. The first extension tests the null of AR(1) disturbances against MA(1) distur-
bances, and the second the null of MA(1) disturbances against AR(1) disturbances
in an error components model. These tests are computationally simple requiring
only OLS or Within residuals.

3.4.4 Testing for Heteroskedasticity

Verbon (1980) derived a Lagrange multiplier test for the null hypothesis of ho-
moskedasticity against the heteroskedastic alternative αi ∼

(
0, σ2

αi

)
and εit ∼(

0, σ2
εi

)
. In Verbon’s model, however, σ2

αi
and σ2

εi
are, up to a multiplicative

constant, identical parametric functions of time invariant exogenous variables Zi,
i.e., σ2

αi
= σ2

α f (Ziθ2) and σ2
εi

= σ2
v f (Ziθ1) . Lejeune (1996) on the other hand,

dealt with maximum likelihood estimation and Lagrange multiplier testing of a
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general heteroskedastic one-way error components regression model assuming that
αi ∼

(
0, σ2

αi

)
and εit ∼

(
0, σ2

εit

)
where σ2

αi
and σ2

εi
are distinct parametric functions

of exogenous variables Zit and Fi, i.e., σ2
εi

= σ2
ε hε (Zitθ1) and σ2

αi
= σ2

α hα (Fiθ2).
In the context of incomplete panels, Lejeune (1996) derived two joint LM tests
for no individual effects and homoskedasticity in the remainder error term. The
first LM test considers a random effects one-way error components model with
αi ∼ i.i.d.

(
0, σ2

α
)

and a remainder error term that is heteroskedastic εit ∼N
(
0, σ2

εit

)

with σ2
εit

= σ2
ε hε (Zitθ1) . The joint hypothesis H0; θ1 = σ2

α = 0, renders OLS the
restricted MLE. Lejeune’s second LM test considers a fixed effects one-way error
components model where αi is a fixed parameter to be estimated and the remainder
error term is heteroskedastic with εit ∼N

(
0, σ2

εit

)
and σ2

εit
= σ2

ε hε (Zitθ1) . The joint
hypothesis is H0; αi = θ1 = 0 for all i = 1, 2, .., N. This again renders OLS to be the
restricted MLE.

Holly and Gardiol (2000) derived a score test for homoskedasticity in a one-way
error components model where the alternative model is that the αi’s are indepen-
dent and distributed as N(0, σ2

αi
) where σ2

αi
= σ2

α hα (Fiθ2). Here, Fi is a vector of
p explanatory variables such that Fiθ2 does not contain a constant term and hα is a
strictly positive twice differentiable function satisfying hα(0) = 1 with h ′α(0) �= 0
and h ′′α (0) �= 0. The score test statistic for H0; θ2 = 0, turns out to be one half the ex-
plained sum of squares of the OLS regression of (ŝ/s̄)− ιN against the p regressors
in F as in the Breusch and Pagan test for homoskedasticity. Here ŝi = û ′i

JT
T ûi and

s = ∑N
i=1 ŝi/N where û denote the maximum likelihood residuals from the restricted

model under H0; θ2 = 0. This is a one-way homoskedastic error components model
with αi ∼ N(0, σ2

α).
In the spirit of the general heteroskedastic model of Randolph (1988) and

Lejeune (1996), Baltagi, Bresson and Pirotte (2006) derived a joint Lagrange multi-
plier test for homoskedasticity, i.e., H0; θ1 = θ2 = 0. Under the null hypothesis, the
model is a homoskedastic one-way error components regression model. Note that
this is different from Lejeune (1996), where under his null, σ2

α = 0. Allowing for
σ2

α > 0 is more likely to be the case in panel data where heterogeneity across the in-
dividuals is likely to be present even if heteroskedasticity is not. The model under the
null is exactly that of Holly and Gardiol (2000) but it is more general under the alter-
native since it does not assume a homoskedastic remainder error term. Next, Baltagi,
et al. (2006) derived an LM test for the null hypothesis of homoskedasticity of the
individual random effects assuming homoskedasticity of the remainder error term,
i.e., θ2 = 0 | θ1 = 0. Not surprisingly, they get the Holly and Gardiol (2000) LM test.
Last but not least, Baltagi et al. (2006) derived an LM test for the null hypothesis
of homoskedasticity of the remainder error term assuming homoskedasticity of the
individual effects, i.e., θ1 = 0 | θ2 = 0. Monte Carlo experiments showed that the
joint LM test performed well when both error components were heteroskedastic, and
performed second best when one of the components was homoskedastic while the
other was not. In contrast, the marginal LM tests performed best when heteroskedas-
ticity was present in the right error component. They yielded misleading results if
heteroskedasticity was present in the wrong error component.
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3.5 Estimation Using Unbalanced Panels

The presentation of the estimation and testing methods made above was assuming
a balanced sample, i.e. that all individuals in the sample are observed over the same
period of time. However, in practice, this is almost never the case. Some individuals
disappear from the sample, others come in, some of them are absent at some dates,
etc. Fortunately, all the methods above still apply with an unbalanced panel sets with
only minor changes. As an illustration, let us consider the Feasible-GLS estimator.
Following Baltagi (1985, 2005), one can write the corresponding regression as

yit +(
√

θ̂i−1)yi = [x ′it +(
√

θ̂i−1)x ′i ] β +uit +(
√

θ̂i−1)ui (3.20)

where

θ̂i =
σ̂2

ε
σ̂2

ε +Tiσ̂2
α

.

Then, the model transformation depends on the number Ti of observations of each
individual i. It is then no more possible to estimate the variances σ2

ε and σ2
α directly

from the Within and Between regressions.
However, the estimated residual variance from the Within regression, given by

σ̂2
w =

1
N
∑

i=1
Ti−N− kw

N

∑
i=1

T

∑
t=1

[(yit − yi)− (x ′it − x ′i )β̂ ]2

still provides an unbiased and consistent estimate of σ2
ε . On the contrary, it is no

more the case for the Between regression residual variance. The reason is that the
Between regression now relies on the individual means computed over Ti observa-
tions, which makes its disturbances become heteroscedastic. Indeed, we have

yi =
K

∑
k=1

βkxki +ui where ui = αi + ε i, i = 1, . . . , N (3.21)

with:
E( ui) = 0 but V ( ui) = σ2

α +σ2
ε /Ti .

The consequence of this heteroscedasticity is the (obvious) inconsistency of the
residual variance as an estimate of σ2

α +σ2
ε /Ti .However, the Between estimator of

the coefficients (β ) is still unbiased and consistent in this case and thus, one can
consistently estimate σ2

α by:

σ̂2
α =

1
N− (K +1)

N

∑
i=1

[(yi− x ′i β̂B)2− 1
Ti

σ̂2
w].

Other ways to proceed by generalizing the procedures proposed by Wallace
and Hussain (1969), Amemiya (1971), Swamy and Arora (1972) along the lines
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suggested in Baltagi and Chang (1994) can be adopted as an alternative. Then, once
estimates of σ̂2

α and σ̂2
ε are obtained, it is easy to transform the model as described

above to get the Feasible-GLS estimator.
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Chapter 4
Endogenous Regressors and Correlated Effects

Rachid Boumahdi and Alban Thomas

4.1 Introduction

There are several situations in econometric modeling where consistency of
parameter estimates is questionable because some explanatory variables may be cor-
related with the model disturbances. Hence the fundamental exogeneity assumption
for the regressors may not be supported by the data, with two implications. First,
the source of this correlation might be investigated upon to propose possible correc-
tions. Second, alternative but consistent estimators may be proposed.

One of the most well-known source of endogenous regressors is the case of
simultaneous equations models, in which some of the regressors in a given equa-
tion are the dependent variables in others and consequently are correlated with the
disturbances of the equation under consideration. Another cause of correlation be-
tween explanatory variables and model disturbances is when the former are subject
to measurement errors. Chapter 9 provides a detailed treatment of simultaneity and
measurement error issues in the case of panel data.

There is however an important reason why regressors may be endogenous in
the context of panel data. As discussed in the preceding chapters, accounting
for individual unobserved heterogeneity is usually done by incorporating random
individual-specific effects to the usual idiosyncratic disturbances of the model. Con-
sequently, regressors must be uncorrelated with these individual effects as well for
consistent estimates to be obtained. This assumption of no-correlation has been
widely criticized by many authors, among which Mundlak (1978).
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Consider for example an agricultural production model (crop yield response
function) where output depends on a set of inputs (labor, fertilizer, etc.). It is likely
that variables outside the scope of farmer’s decisions are also impacting the final
crop output: soil characteristics (slope, water reserve, etc.) and climatic conditions.
Land marginal productivity as represented by soil characteristics is often very diffi-
cult to observe with precision, and is often supposed to be part of the farm specific
effect. But because farmer’s input choice is likely to depend on land productivity,
observed input levels are likely to be correlated with the farmer specific effect. This
is especially true for fertilizer and water inputs, whose application levels are likely to
be negatively correlated with systematic soil fertility and permanent water reserve,
respectively.

Another popular example is the case of an individual earning function (wage
equation), where the logarithm of the wage rate is explained by variables related
to occupation, experience, and education. However, expected marginal productivity
of a worker depends on individual ability, which is partly unobserved. In particu-
lar, individual ability may positively influence working wages, as well as education
level of the individual. If the latter is an explanatory variable in the wage equation
while being partly correlated with unobserved ability, individual effects (unobserved
ability) may then be correlated with regressors.

This chapter addresses the issue of correlated effects, and endogenous regressors
in the case of panel data. We present the main estimation and testing procedures em-
ployed in a single-equation, linear panel-data context. Starting with a brief overview
of error structures and model transformations (fixed effects, first and quasi differ-
ences), we present Instrumental Variable (IV) and Generalized Method of Moments
(GMM) procedures for consistent and efficient estimation of static models. We de-
vote a particular section to augmented linear models with time-invariant regressors
and show how to identify model parameters. Estimation of this kind of models
with IV or GMM is discussed, and we compare in particular the efficiency of these
estimators, depending on the validity of a no-conditional-heteroskedasticity assump-
tion. A way to measure instrument relevance in the context of panel data models esti-
mated by instrumental-variables procedures is presented, based on single-parameter
information. Estimation by Instrumental Variable of models including time-varying
regressors only is also the subject of a section, where endogenous regressors can be
of any nature (time-varying only or not). As dynamic panel data models will be the
subject of Chap. 8, we do not deal with the vast literature on the subject, that has
emerged since the seminal work of Anderson and Hsiao (1982) and Arellano and
Bond (1991). We conclude this chapter by a brief presentation of unbalanced panel
data models with correlated effects and endogenous regressors, including nested
error component models.

4.2 Estimation of Transformed Linear Panel Data Models

Consider the linear panel data model:

yit = xitβ +uit , i = 1, . . . ,N ; t = 1, . . . ,T, (4.1)
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where x′it is a K× 1 vector regressors depending on individual i and time t except
the first column of xit which is a vector of ones. The error term uit may contain
unobserved individual heterogeneity components, as in the one-way error
component specification, uit = αi + εit . We assume for most of the chapter that the
sample is balanced, i.e., each cross-sectional unit has the same number of non miss-
ing observations (T ). The case of unbalanced panels will be briefly discussed in
Sect. 4.7.

As discussed in Chaps. 2 and 3, a conditional (fixed effects) or a random effects
approach will lead to similar results asymptotically under standard assumptions,
among which exogeneity of the xit s. On the other hand, when the correlation be-
tween uit and some xit s in (4.1) is not accounted for, Ordinary or Generalized Least
Squares estimators are not consistent. In this case, an easy way to cope with such
endogeneity is simply to filter out this component. Such a strategy is applicable to a
variety of error structures, as we now see.

4.2.1 Error Structures and Filtering Procedures

We present here basic transformations for eliminating the unobserved individual
heterogeneity component in linear models. The motivation for such filtering in most
cases comes from endogeneity issues, and in particular the fact that regressors are
correlated with individual effects.

In most applications, the error component structure can be specified as a particu-
lar case of the following representation:

uit = αi +λt vi + εit , (4.2)

where αi and vi are unobserved heterogeneity terms, λt is a time effect, and εit is
i.i.d. across individuals and time periods. Let σ2

α , σ2
v and σ2

ε respectively denote the
variance of αi, vi and εit . The most important special cases are:

Case 1. (One-way error component model) λt = λ̄ ∀t.
Case 2. (Two-way error component model) vi = v̄ ∀i.
Case 3. (Cross-sectional dependence Type I) αi = ᾱ ∀i.

Case 1 is by far the most widely used specification. When λt is constant across
time periods, the error component structure reduces to αi + λ̄vi + εit ≡ α∗i + εit (the
one-way specification).

In case 2, λt can represent a trend function or simply consist of (non-monotonic)
time effects that impact all units in a similar way for a given time period. It may
however be of interest in applications to consider heterogeneous trends, where the
marginal impact of the common time shock θt is individual-specific; this is obtained
in case 3. In the general case of (4.2) where αi and vi are allowed to vary across units,
we have both heterogeneous intercepts and slopes on the time effects.

Let us examine model transformations to eliminate heterogeneous individual het-
erogeneity terms in each of the cases presented above.
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For case 1, the most common practice is to wipe out αi with the Within-group
(fixed effects) transformation, εit− ε̄i = (yit − ȳi)− (xit − x̄i)β , where ȳi denotes the
individual mean for unit i and variable yit . This equation provides a simple way of
obtaining consistent least squares estimation of β under the assumption of strong
exogeneity: E[(xit − x̄i) |εis] = 0 ∀s,∀t.

Alternatively, we may use the first-difference transformation Δuit = Δεit = Δyit−
Δxitβ = (yit − yi,t−1)− (xit − xi,t−1)β , and consistent estimation of β then obtains
under the assumption that E[Δxit |εit ,εi,t−1] = 0, a somehow weaker assumption than
above. In vector form, we can use the T × (T −1) submatrix LT for performing first
differences:

LT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0 0
−1 1 0 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · −1 1
0 0 0 · · · 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Using first differences introduces a moving-average serial correlation on the
transformed residual (Arellano and Bover, 1995). To remove such a correlation,
it is possible to use the Orthogonal deviation procedure:

y∗it =
√

T − t√
T − t +1

[

yit −
1

T − t

s=T

∑
s=t+1

yis

]

, (4.3)

i = 1, . . . ,N t = 1, . . . ,T −1.
Whatever the transformation considered, be it within-group (fixed effects), first

differences or orthogonal deviations, identification of parameter β is possible (ex-
cept the constant term) because it is assumed that xit is time-varying. First differ-
ences and deviations from individual means allow one to obtain the same informa-
tion because operators QT (for fixed effects) and LT (for first differences) span the
same column space, with QT = LT (L′T LT )−1L′T .

The choice between fixed effects and first differences, on the grounds of
efficiency, depends in practice on assumptions made on homoskedasticity assump-
tions as follows. Maintaining the strict exogeneity assumption E(εit |xi,αi) = 0, t =
1, . . . ,T , where xi = (xi1, . . . ,xiT ), if we further assume that E(εiε ′i |xi,αi) = σ2

ε IT

(no heteroskedasticity nor serial correlation), then fixed effects is the most efficient
estimator in the class of models satisfying these conditions. On the other hand, if we
replace the latter assumption by

E(ΔεiΔε ′i |xi,αi) = σ2
Δε IT−1, t = 2, . . . ,T,

then it can be shown that the first-difference estimator is more efficient. This is the
case when εit follows a random walk.

In case 2, filtering of both individual and time effects can be achieved by means
of a modified Within operator which simultaneously filters out time-invariant and
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time-varying only components. We will discuss such transformation in detail in the
section on time-varying only regressors below.

The model corresponding to case 3 was suggested by Holtz-Eakin, Newey and
Rosen (1988), Ahn, Lee and Schmidt (2001), Lillard and Weiss (1979). Unless λt is
constant across time periods, Within-group or first-difference transformations will
fail to filter out the unobserved individual heterogeneity component αi.

Define a new variable rt = λt/λt−1; substracting from the equation at time t its
expression lagged one period and premultiplied by rt , we have

yit − rtyi,t−1 = (xit − rtxi,t−1)β + εit − rtεi,t−1. (4.4)

The transformed model using the Quasi-differencing technique is now a nonlin-
ear equation with additional parameters to be estimated: rt , t = 2,3, . . . ,T . Interest-
ingly, parameters associated with time-invariant regressors become identified with
a nonlinear regression of (4.4). This is the only case of such identification for those
parameters in transformed models of the kind presented here.

Consider now the general case (4.1). To eliminate both effects αi and vi, it is nec-
essary to use a double-transformation: first differences, and then quasi-differences:

�yit − r̃t�yi,t−1 = (�xit − r̃t�xi,t−1)β +�εit − r̃t�εi,t−1, (4.5)

i = 1,2, . . . ,N, t = 3,4, . . . ,T , where

r̃t =�λt/�λt−1 = (λt −λt−1)/(λt−1−λt−2).

Such double transformation of the model has been suggested by Nauges and
Thomas (2003) in the dynamic panel data context. Wansbeek and Knaap (1999) use
a double first-difference transformation in the special case of a dynamic panel data
model with a random trend with λt = t (the random growth model, see Heckman
and Holtz (1989)).

In what follows, we will mostly be working with the one-way error component
model uit = αi + εit .

4.2.2 An IV Representation of the Transformed Linear Model

Most estimators for linear panel data models can be shown to derive from the fol-
lowing orthogonality condition in matrix form:

E
[
A′ (TU)

]
= 0 ⇔ 1

N
A′TY =

1
N

A′T Xβ , (4.6)

where A is a NT × L matrix of instruments and T is a NT ×NT matrix transfor-
mation operator. Let Q = INT −B and B = IN ⊗ (1/T )eT e′T denote the Within and
Between matrix operators respectively, where eT is a T vector of ones. The fixed ef-
fects estimator obtains with A = X and T = Q so that β̂W = (X ′QX)−1X ′QY because
Q is idempotent. In the one-way model, the GLS estimator obtains with A = X and
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T = Ω−1/2 so that β̂GLS = (X ′Ω−1X)−1X ′Ω−1Y , where the covariance matrix of
U = α + ε is:

Ω = θ 2
1 Q+θ 2

2 B, Ω−1 = (1/θ 2
1 )Q+(1/θ 2

2 )B, Ω− 1
2 = (1/θ1)Q+(1/θ2)B, (4.7)

where θ 2
1 = σ2

ε , θ 2
2 = σ2

ε +T σ2
α .

Under the strict exogeneity assumption and assuming that the error structure is
correctly represented, consistent estimates are obtained from moment conditions as
in (4.6). Therefore, most popular estimators for linear panel data models can be
represented in a IV form.

Depending on assumptions made on the error structure and the choice of the in-
strument matrix, estimators can be either inconsistent of inefficient, and it is there-
fore important to test for the validity of conditions underlying the construction of the
estimator. To disentangle model misspecification due to an invalid set of instruments
from an invalid transformation matrix, different specifications should be tested. Es-
timates constructed from either the same A but a different T , or the opposite, can be
used to form a series of specification tests.

As presented in Chap. 3, the Generalized Least Squares (GLS) estimator may
be selected on the grounds of efficiency in the case of the one-way linear panel
data model, if assumptions underlying the random-effects specification are valid (in
particular, strict exogeneity of the xit s). If however, E(αixit) �= 0, then GLS is not
consistent, and fixed effects (or any transformation filtering out unobserved individ-
ual effects) should be used instead.

A very simple specification test is the Hausman exogeneity test, constructed as
follows (Hausman, 1978). The null hypothesis to test is: H0 : E(x′itαi) = 0∀i,∀t, and
we have two estimators available. β̂1 (e.g., the GLS) is consistent are efficient under
the null, and inconsistent otherwise, while the fixed effects estimator β̂W is consis-
tent under the null and under the alternative, but is not efficient (under the null).

The Hausman test for linear panel data is based on the fact that, under H0, both
estimators should be asymptotically equivalent, β̂1 being more efficient. The test
statistic is

HT =
(

β̂W − β̂1

)′ [
Var(β̂W )−Var(β̂1)

]−1(
β̂W − β̂1

)
� χ2(K̃),

where K̃ is the column dimension of β̂W . Note that β̂1 and β̂W must have the same
dimension, i.e., parameters identified with the fixed effects procedure. Also, the

weighting matrix
[
Var(β̂W )−Var(β̂1)

]
is always semidefinite positive because β̂1

is more efficient than Within under the null.
Finally, concerning the interpretation of the number of degrees of freedom of

the test, the Within estimator is based on the condition E(X ′QU) = 0, whereas β̂1 is
based on a larger set of moment conditions. This is in fact the origin of the difference
in efficiency between both estimators. In the case of GLS, the set of conditions
is E(X ′−1U) = 0 ⇒ E(X ′QU) = 0 and E(X ′BU) = 0, and we therefore add K
additional conditions (in terms of B), which is the rank of X .
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It is important to note at this stage that both cases considered up to now are
rather polar (extreme) cases: either all of the explanatory variables are endogenous,
or neither of them is.

If we do not wish to maintain the assumption that all regressors are correlated
with individual effects, an alternative estimation method may be considered: Two-
Stage Least Squares (2SLS) or Instrumental Variable (IV) estimation. Recall that in
a cross-section context with N observations, the model would be:

Y = Xβ + ε, E(X ′ε) �= 0, E(A′ε) = 0, (4.8)

where A is a N×L matrix of instruments. If K = L, the orthogonality condition is
[
A′(Y −Xβ )

]
= 0 ⇔ (A′Y ) = (A′X)β , (4.9)

and the IV estimator is β̂ = (A′X)−1A′Y . If L > K, the model is over-identified
(L conditions on K parameters). For any matrix A, let P[A] = A(A′A)−1A′ be the
projection onto the column space of A. We can construct the quadratic form (Y −
Xβ )′P[A](Y −Xβ ) and the IV estimator is β̂ = (X ′P[A]X)−1(X ′P[A]Y ).

In the cross section context, instruments A originate outside the structural equa-
tion. In panel data models however, as we will see below, the advantage is that
instruments (not correlated with the individual effect) can be obtained directly. An-
other important difference in practice is that, when dealing with panel data, spherical
disturbances can no longer be assumed.

4.3 Estimation with Time-Invariant Regressors

4.3.1 Introduction

When considering estimation of a model with correlated effects, two arguments
are in favor of yet another estimation procedure than Fixed Effects. First, one can
sometimes obtain more efficient parameter estimates than the Within. Second, us-
ing the Within estimator does not enable us to estimate parameters associated to
time-invariant explanatory variables. Indeed, as the estimator is built upon differen-
tiating all variables with respect to individual means, then all variables which are
individual-specific are dropped from the equation to be estimated.

For these reasons, an estimation method based on instrumental variables is called
for. As we will show, Instrumental-Variables (IV) estimators yield more efficient es-
timators than the Within procedure, while allowing identification of all parameters
in the model. To motivate its use, we are going to present in this section an aug-
mented model, in which some of the explanatory variables may be endogenous,
and some regressors are not time-varying but only individual-specific. Including
individual-specific variables zi is indeed important from an empirical perspective,
as many samples contain important information on individuals, which does not vary
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over time (e.g., sex, education completed, place of residence if individuals have not
moved during the whole sample period).

Hausman and Taylor (1981) – hereafter HT – consider the following model:

yit = xitβ + ziγ +αi + εit , i = 1, · · · ,N; t = 1, · · · ,T, (4.10)

where εit is assumed to be uncorrelated with xit , zi and αi while the effects αi may
be correlated with some explanatory variables in xit and/or zi.

Stacking all NT observations we can write (4.10) as: Y = Xβ +Zγ +α +ε , where
Y is NT ×1, X is NT ×K, Z is NT ×G, ε and α are NT ×1 respectively. If X and
Z are uncorrelated with α , the Generalized Least Squares (GLS) estimator yields
consistent and efficient parameter estimates:

μ̂GLS =

[
1

θ 2
1

Φ′QΦ+
1

θ 2
2

Φ′BΦ

]−1[
1

θ 2
1

Φ′QY +
1

θ 2
2

Φ′BY

]

, (4.11)

where Φ = [X ,Z] and μ ′ = [β ′,γ ′]. This estimator may generally be found more sim-

ply computationally by first transforming X , Z and Y to Y ∗ = Ω− 1
2 Y, X∗ = Ω− 1

2 X

and Z∗ = Ω− 1
2 Z and then estimating β and γ from the Ordinary Least Squares

(OLS) regression of Y ∗ on X∗ and Z∗. The estimated variance–covariance matrix of
the GLS estimator δ̂GLS is:

V (μ̂GLS) = σ̂2
ε

[
1

θ̂ 2
1

Φ′QΦ+
1

θ̂ 2
2

Φ′BΦ

]−1

, (4.12)

where σ̂2
ε = θ̂ 2

1 = û
′
W ûW /(NT −K−G), θ̂ 2

2 = û
′
BûB/(N−K), ûW and ûB are the

within and the between residual respectively.

4.3.2 Instrumental Variable Estimation

Following HT, we partition X and Z as follows:

X = [X1,X2] and Z = [Z1,Z2],

where X1 is NT × k1, X2 is NT × k2, Z1 is NT × g1 and Z2 is NT × g2, so that the
model in matrix form is

Y = X1β1 +X2β2 +Z1γ1 +Z2γ2 +α + ε. (4.13)

HT distinguish columns of X and Z which are asymptotically uncorrelated with
α from those which are not. They assume, for fixed T and N → ∞, that

plim
1
N

(BX1)′α = 0, plim
1
N

(BX2)′α �= 0, plim
1
N

Z′1α = 0, plim
1
N

Z′2α �= 0.
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The way to estimate model (4.13) using an IV procedure is to rely on the
exogeneity conditions above to construct a matrix of instruments. However, the
method used differs from the standard one in simultaneous-equations literature. In
the latter, a single equation is often estimated, which incorporates some endogenous
variables among the regressors. All exogenous variables in the system are used as in-
struments, that is, exogenous variables not entering the equation of interest are also
accounted for. In our case however, all the information is already contained in the
single equation, meaning that we are able to construct instruments from variables in
(4.13) alone. To see this, note that we are looking for instrument variables not cor-
related with the individual effect α . There are three ways such instruments may be
found. First, exogenous variables X1 and Z1 are readily available because of the exo-
geneity conditions given above. Second, we may also obtain additional instruments
through transformations of the original exogenous variables, because such transfor-
mations will also be exogenous. Third, we may consider as well transformations of
endogenous variables, provided these transformations are not correlated with α .

An important aspect of panel data methods is that required transformations are
very easily obtained through the use of matrices Q and B defined before. Matrix B
calculates individual means of variables across all time periods, leaving the indi-
vidual component unchanged. Therefore BX1 is clearly applicable as an instrument,
whereas BX2 would not be, because endogeneity in X2 comes through the individual
component which is correlated with α . The Q matrix operates differentiation from
individual means, filtering out the individual component. Therefore, QX1 and QX2

are also valid instruments, although the original X2 variable is endogenous.
These considerations led HT to propose an IV estimator for a model correspond-

ing to our (4.14). Their instrument matrix AHT is the following:

AHT = (AHT
1 ,AHT

2 ),

where AHT
1 = (QX1, QX2) and AHT

2 = (BX1, Z1). We can show that:

P[AHT] = AHT(AHT′AHT)−1AHT′ = P[AHT
1 ] +P[AHT

2 ]. (4.14)

To compute the efficient HT estimator we transform (4.13) by premultiplying
it by Ω− 1

2 , so that the error term will have a diagonal covariance matrix. Using
HT instruments AHT

1 = (QX1, QX2) and AHT
2 = (BX1, Z1), the IV estimator can be

written as:

μ̂IV =

[
1

θ 2
1

Φ′P[AHT
1 ]Φ+

1

θ 2
2

Φ′P[AHT
2 ]Φ

]−1[
1

θ 2
1

Φ′P[AHT
1 ]Y +

1

θ 2
2

Φ′P[AHT
2 ]Y

]

, (4.15)

and its variance–covariance matrix is

Var(μ̂IV) = σ̂2
ε

[
1

θ 2
1

Φ′P[AHT
1 ]Φ+

1

θ 2
2

Φ′P[AHT
2 ]Φ

]−1

. (4.16)
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Breusch, Mizon and Schmidt (1989) -hereafter BMS- show that this is equivalent
to using the alternative instrument matrices AHT, CHT and DHT defined as follows

AHT = (AHT
1 , AHT

2 ), AHT
1 = (QX1,QX2), AHT

2 = (BX1,Z1)
or CHT = (CHT

1 , CHT
2 ), CHT

1 = (Q), CHT
2 = (X1,Z1)

or DHT = (DHT
1 , DHT

2 ), DHT
1 = (QX1,QX2), DHT

2 = (X1,Z1).

We will not enter into too much detail about these equivalences (see BMS, 1989
for more). Note however that the superiority of IV over Within estimators is easily
seen, as far as the estimation of parameters β is concerned. The fixed effects pro-
cedure amounts to using the Q matrix as a single instrument. As it is well known
that an IV estimator is more efficient when we add instruments, it is clear that the
Hausman–Taylor estimator is more efficient than the Within estimator, since it en-
tails (BX1,Z1) as additional instruments.

A final difficulty with IV estimators concerns estimation of variance components,
because endogeneity of some regressors will yield inconsistent estimates of σ2

α and
σ2

ε if the standard Feasible GLS procedure is used. Hausman and Taylor (1981) de-
scribe a method for obtaining consistent estimates. Let η̂ denote the Within residual
averaged over time periods:

η̂ = BY −BX β̂W = (B−BX(X ′QX)−1X ′Q)Y
= Zγ +α +Bε−BX(X ′QX)−1X ′Qε. (4.17)

If the last three terms in the equation above are treated as zero-mean residuals, then
OLS and GLS estimates of γ will be inconsistent. However, consistent estimation is
possible if the columns of X1 provide sufficient instruments for the columns of Z2.
A necessary condition is that k1 � g2. The IV estimator of γ is

γ̂B =
[
Z′P[R]Z

]−1[
Z′P[R]η̂

]
, (4.18)

where R = (X1,Z1). Now, using parameters estimates β̂W and γ̂B, one forms the
residuals

ûW = QY −QX β̂W and ûB = BY −BX β̂W −Zγ̂B. (4.19)

These two vectors of residuals are finally used in the computation of the variance
components as follows.1

σ̂2
ε =

û′W ûW

NT −N
and σ̂2

α =
û′BûB

N
− 1

T
σ̂2

ε

4.3.3 More Efficient IV Procedures

The Hausman–Taylor IV procedure has proved very popular, because of its relative
computational simplicity and intuitive appeal. Since then however, there has been

1 For details, see Hausman and Taylor (1981), p. 1384.



4 Endogenous Regressors and Correlated Effects 99

several improvements along its lines which led to more efficient estimation
procedures.

The instruments used by Hausman and Taylor require only minimal exogeneity
assumptions on variables, i.e., BX1 and Z1 are not correlated with the individual ef-
fect. As a consequence, this estimator may not be the most efficient if exogeneity
conditions can be made more restrictive. Amemiya and MaCurdy (1986) – hereafter
AM – suggested a potentially more efficient estimator by assuming that realiza-
tions of X1 are not correlated with α in each time period, i.e., for all t = 1, . . . ,T
and N → ∞ they assume that plim(1/N)x′1itαi = 0. Consequently, we may not
only use BX1 as an instrument for individual i at time t, but also the whole series
(x1,i1,x1,i2, . . . ,x1,iT ). AM define the following NT ×T k1 matrix:

X∗1 = vec
{

eT ⊗ x′1,i

}
=
{

eT ⊗ x′1,1, . . . ,eT ⊗ x′1,N

}
, where x1,i = (x1,i1, . . . ,x1,iT )′,

which is such that QX∗1 = 0 and BX∗1 = X∗1 . Their instrument matrix is AAM =
(AAM

1 ,AAM
2 ), where AAM

1 = (QX1,QX2) and AAM
2 = (X∗1 ,Z1). An equivalent esti-

mator obtains by using the matrix CAM = (CAM
1 ,CAM

2 ), where CAM
1 = (QX1,QX2)

and CAM
2 = [(QX1)∗,BX1,Z1], (QX1)∗ is constructed the same way as X∗1 above.

These authors suggest that their estimator is at least as efficient as Hausman–
Taylor if individual effects are not correlated with regressors X1 for each time period.

Note that the AM estimator differs from HT estimator only in its treatment of
X1. In fact, AHT

1 = AAM
1 and CAM

2 = ((QX1)∗,BX1,Z1) differs from AHT
2 = (BX1,Z1)

only by using (QX1)∗. In other words, HT use X1 as two instruments namely QX1

and BX1 whereas AM use each such variable as T +1 instruments: (QX1)∗ and BX1.
Finally, a third IV method was described in BMS. Following these authors, if

the variables in X2 are correlated with effects only through a time-invariant compo-
nent, then (QX2) would not contain this component and (QX2)∗ is a valid instru-
ment. Their estimator is thus based on the following instrument matrix : ABMS =
(ABMS

1 ,ABMS
2 ), where ABMS

1 = (QX1,QX2) and ABMS
2 = [(QX1)∗,(QX2)∗,BX1,Z1].

The estimated variance–covariance matrix of the IV estimator δ̂IV has the same
form as in (4.16), where σ̂2

u = û
′
IVûIV/(NT −K−G) and ûIV is the IV residual.

The Hausman test statistic can be used to check for the vality of the alternative
IV estimators described above. The HT-IV estimator can first be compared with
the fixed effects, to check that exogeneity assumption on X1 and Z1 are valid? If
this is the case, then the more efficient procedures of AM-IV and BMS-IV can be
compared with HT-IV to check that additional assumptions described above are
supported by the data. See Cornwell and Rupert (1988) for an illustration of these
test procedures.

4.4 A Measure of Instrument Relevance

It may be interesting in practice to investigate the performance of instruments in
terms of efficiency of IV estimators on an individual-regressor basis. Cornwell and
Rupert (1988) and Baltagi and Khanti-Akom (1990) have investigated efficiency
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gains of instrumental variable estimators by fitting a wage equation on panel data
and applying the methods proposed by HT, AM and BMS. Cornwell and Rupert
(1988) found that efficiency gains are limited to the coefficient of time-invariant
endogenous variables Z2.

However, Baltagi and Khanti-Akom (1990) using the canonical correlation co-
efficient for comparing different sets of instrumental variables found that efficiency
gains are not limited to the time-invariant variable. They also show that the geo-
metric average of canonical correlations increases as one moves from HT to AM,
and then from AM to BMS. In fact, the canonical correlations only measure instru-
ment relevance for the group of endogenous regressors taken as a whole, but cannot
be used to measure how a particular group of instruments affects relevance for one
endogenous regressor as opposed to another.

More recently, Boumahdi and Thomas (2006) have extended the method pro-
posed by Shea (1997) and Godfrey (1999) to the case of panel data. This method
allows for measuring instrument relevance for separate endogenous regressors. Fol-
lowing Shea (1997) and Godfrey (1999), we consider estimation of a single param-
eter by rewriting the augmented model Y = Xβ +Zγ +α + ε as

Y = Mδ +α + ε = M1δ1 +M2δ2 + ε, (4.20)

where M = [X ,Z] and δ ′ = [β ′,γ ′], M1 is NT ×1 and M2 is NT × (K +G−1).
Define M1 = (INT − PM2)M1, M1 = (INT − PM̂2

)M̂1 and M̂j = PAMj, j = 1,2
where A is the matrix of instruments. In our panel data model, δ1 would for example
correspond to the first variable in Ω−

1
2 X2. These definitions imply that M

′
1M1 =

M
′
1M1. Using the same idea as in Shea (1997) and Godfrey (1999) in the case of a

linear multiple regression model, we can use as a measure of instrumental variable
relevance, the population squared correlation between M1 and M1 for the model:

ρ2
p = plim

(
M
′
1M1

)2

(
M
′
1M1

)
(M′

1M1)
= plim

M
′
1M1

M′
1M1

. (4.21)

In applied work, provided N tends to infinity, we can approximate plim
M
′
1M1/M′

1M1 by the following coefficient

R2
p =

M
′
1M1

M′
1M1

. (4.22)

It is not necessary in practice to compute the above expression, because the coef-
ficient R2

p is directly related to the estimated parameter standard errors. To see this,

consider the estimated variance of the first component of δ̂GLS and the correspond-
ing component in δ̂ IV:

V
(

δ̂ GLS
1

)
= σ̂2

ηGLS

(
M′

1M1

)−1
, V

(
δ̂ IV

1

)
= σ̂2

ηIV

(
M
′
1M1

)−1
.
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Then, R2
p can be written as

R2
p =

σ̂2
ηIV

V
(

δ̂ GLS
1

)

σ̂2
ηGLS

V
(

δ̂ IV
1

) =
M
′
1M1

M′
1M1

. (4.23)

Consequently, the measure of instrumental variable relevance can be directly ob-
tained by inspecting individual parameter (squared) standard errors.

4.5 Incorporating Time-Varying Regressors

Wyhowski (1994), Boumahdi and Thomas (1997) have extended the augmented
model by incorporating time-varying regressors, i.e., variables which are not
individual-specific, only time-period-specific. Think for example of a wage equa-
tion depending on individual-specific variables such as sex and education, and on
time-varying regressors such as unemployment rate, economy-wide growth rate,
etc. The intuition behind such a model would be that all individuals are affected
by macro-economic variables the same way on average. Consider the two-way error
component model as case 2 defined above:

uit = αi +λt + εit . (4.24)

The extended model we are considering is now the following:

yit = xitβ + ziγ +wtδ +αi +λt + εit , i = 1, · · · ,N; t = 1, · · · ,T, (4.25)

where x′it is a K×1 vector of time-varying explanatory variables, z′i is a G×1 vec-
tor of time-invariant explanatory variables, and w′t is a H× 1 vector of individual-
invariant explanatory variables. Unobserved effects αi and λt are assumed to have
zero mean and variances σ2

α and σ2
λ respectively. We assume further that E(εit) =

0, E(εitεis) = σ2
ε for t = s, E(εitεis) = 0 otherwise and E(αiεit) = E(λtεit) = 0∀i,∀t.

Stacking all NT observations we can write the model in a compact form as:

Y = Xβ +Zγ +Wδ +α +λ + ε. (4.26)

Let us introduce some notation for this model. As before, B is the Between ma-
trix transforming variables into their means across periods (individual means); we
now define B̄ as a matrix transforming a variable into its mean across individu-
als (time mean). Hence, BY is time-invariant and individual-specific, whereas B̄ is
time-varying and independent from individuals. Let

B = IN⊗
1
T

eT e′T , B̄ =
1
N

eNe′N ⊗ IT ,

Q = INT −B− B̄+ J, J =
1

NT
eNT e′NT = BB̄.
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The new matrix Q allows to differentiate a given variable according to both its time
and individual means. The J operator performs the total mean of a variable, i.e., JX
is a NT ×1 matrix with the same argument 1

NT ∑N
i=1 ∑T

t=1 Xit . With this notation, the
variance–covariance matrix of the error term U reads:

Ω = θ 2
1 S1 +θ 2

2 S2 +θ 2
3 S3 +θ 2

4 J, (4.27)

where θ 2
1 = σ2

ε , θ 2
2 = σ2

ε + T σ2
α , θ 2

3 = σ2
ε + Nσ2

λ , θ 2
4 = σ2

ε + Nσ2
λ + T σ2

α ,
S1 = IT N − S2 − S3 − J, S2 = B− J, S3 = B̄− J, SkSl = 0 and JJ′ = J for l �= k
and k, l = 1,2,3.

It is easy to show that2

Ω−1 = (1/θ 2
1 )S1 +(1/θ 2

2 )S2 +(1/θ 2
3 )S3 +(1/θ 2

4 )J, (4.28)

and
Ω−

1
2 = (1/θ1)S1 +(1/θ2)S2 +(1/θ3)S3 +(1/θ4)J. (4.29)

If we assume that X ,Z and W are uncorrelated with α and λ , then model param-
eters can be estimated by GLS as follows:

ν̂GLS =

[
3

∑
k=1

1

θ 2
k

Ψ′SkΨ

]−1[ 3

∑
k=1

1

θ 2
k

Ψ ′SkY

]

, (4.30)

where Ψ = [X ,Z,W ] and ν ′ = [β ′,γ ′,δ ′].

4.5.1 Instrumental Variables Estimation

Following HT and Wyhowski (1994) we allow for correlation between a subset of
(X ,Z,W ) and (α,λ ), and we partition X ,Z and W as follows:

X = (X1, X2, X3, X4), Z = (Z1, Z2) and W = (W1, W2).

Their dimensions are denoted as follows: k1,k2,k3,k4,g1,g2,h1 and h2 for X1,X2,X3,
Z1,Z2, W1 and W2 respectively. Furthermore, we assume that X1 is not correlated
with α and λ , X2 is correlated with α but not λ , X3 is correlated with λ but not α ,
X4 is correlated with both λ and α .3

However, Z1 and W1 are assumed uncorrelated with α and λ respectively. In other
words and following Wyhowski (1994), we assume that, for T fixed and N −→ ∞:

plim(S2X1)′α = 0, plim(S2X3)′α = 0, plim(S2Z1)′α = 0,

and, for N fixed and T −→ ∞:

plim(S3X1)′λ = 0, plim(S3X2)′λ = 0, plim(S3W1)′λ = 0.

2 We can also show that Ω = σ2
ε INT +T σ2

α +Nσ2
λ .

3 Boumahdi and Thomas (1997) have considered another partition of X ,Z and W .
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Under this assumption, we can use as an appropriate instrument set:

AHT = (AHT
1 ,AHT

2 ,AHT
3 ),

where AHT
1 = (S1X), AHT

2 = (S2X1,S2X3,S2Z1) and AHT
2 = (S3X1,S3X2,S3W1).

Then the HT estimator can be written as:

ν̂IV =

[
3

∑
k=1

1

θ 2
k

Ψ′P[AHT
k ]Ψ

]−1[ 3

∑
k=1

1

θ 2
k

Ψ′P[AHT
k ]Y

]

, (4.31)

where AHT
k is the matrix of instruments. The order condition for existence of the

estimator can be obtained by counting instruments and parameters to be estimated.
For parameters γ we must have:

K + k1 + k3 +g1 ≥ K +G or k1 + k3 ≥ g2,

and for parameters δ , we must have:

K + k2 +h1 ≥ K +H or k1 + k2 ≥ h2,

where K = k1 + k2 + k3 + k4, G = g1 +g2 and H = h1 +h2.
Now, if we assume that plim(S2X1)′α = 0 and plim(S2X3)′α = 0, ∀t = 1, . . . ,T ,

and following AM, X1 and X3 can be used as two instruments: (S1X1,S1X3) and
X∗1 ,X∗3 . X∗1 is the NT × T k1 matrix defined as in the one-way AM case presented
above, and

X∗3 = vec
{

eT ⊗ x′3,i

}
=
{

eT ⊗ x′3,1, . . . ,eT ⊗ x′3,N

}
, where x3,i = (x3,i1, . . . ,x3,iT )′.

Furthermore, if we assume that plim(S3X1)′λ = 0 and plim(S3X2)′λ = 0 for
each i, i = 1, . . . ,N, then X1 and X2 can be used as two instruments (S1X1,S1X2) and
X0

1 ,X0
3 , where

X0
1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1,11 X1,21 . . . X1,N1
...

...
...

...
X1,1T X1,2T . . . X1,NT

X1,11 X1,21 . . . X1,N1
...

...
...

...
X1,1T X1,21 . . . X1,N1

. . . . . . . . . . . .

...
...

...
...

. . . . . . . . . . . .

X1,11 X1,21 . . . X1,N1
...

...
...

...
X1,1T X1,2T . . . X1,NT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and X0
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x2,11 x2,21 . . . x2,N1
...

...
...

...
x2,1T x2,2T . . . x2,NT

x2,11 x2,21 . . . x2,N1
...

...
...

...
x2,1T x2,21 . . . x2,N1

. . . . . . . . . . . .

...
...

...
...

. . . . . . . . . . . .

x2,11 x2,21 . . . x2,N1
...

...
...

...
x2,1T x2,2T . . . x2,NT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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In this case, the AM instruments can be defined as follows:

AAM = (AAM
1 ,AAM

2 ,AAM
3 ),

where AAM
1 = (S1X)= AHT

1 , AAM
2 = [AHT

2 ,(S̄X1, S̄X3)∗] and AAM
3 = [AHT

3 ,(S̃X1, S̃X2)0],
S̄ = INT −S2− J and S̃ = INT −S3− J. The order condition for γ becomes:

K + k1 + k3 +g1 +(T −1)(k1 + k3)≥ K +G or T (k1 + k3)≥ g2,

and for parameters δ , we must have:

K + k2 +h1 +(N−1)(k1 + k2)≥ K +H or N(k1 + k2)≥ h2.

Now, and following BMS, if X2, X4 are correlated with the individual effect α
only through a time-invariant component, and if (X3, X4) are correlated with the time
effect λ only through a individual-invariant component, the BMS-like instruments
are equivalent to the expanded instruments sets:

ABMS = (ABMS
1 ,ABMS

2 ,ABMS
3 ),

where ABMS
1 = (S1X) = AHT

1 = AAM
1 , ABMS

2 = [AAM
2 ,(S̄X2, S̄X4)∗] and ABMS

3 =
[AAM

3 ,(S̃X3, S̃X4)0]. The order condition for these instruments is T (k1 + k3)+ (T-1)
(k2 + k4)≥ g2 for γ and N(k1 + k2)+(N−1)(k3 + k4)≥ h2 for δ .

In order to compute ν̂IV, we must first estimate parameters θ 2
1 ,θ 2

2 and θ 2
3 . To do

this, we can use a consistent estimate of β , δ and γ , and estimates of the variance
components derived from these estimators will be used below for estimating ϕ̂IV.
We can summarize the complete procedure as follows:

• Compute the within estimator β̂W = (X ′S1X)−1(X ′S1Y ) and form the vector of
residuals ûw = S1Y −S1X β̂W to compute

θ̂ 2
1 = σ̂2

ε = (û′wûw)/(N−1)(T −1)−K. (4.32)

• Regress S2Y − S2X β̂W on PA2 Z to get a consistent estimate γ̂IV and form the
residuals vector û2 = S2Y −S2X β̂W −S2Zγ̂IV. We can show that for fixed T and
N −→ ∞:

plim (û′2û2/N) = θ 2
2 .

• Regress S3Y−S3X β̂W on PA3 Z to get a consistent estimate δ̂IV and form vector of
residuals û3 = S3Y−S3X β̂W−S3W δ̂I . We can show that for fixed N and T −→∞:

plim (û′3û3/T ) = θ 2
3 .

4.6 GMM Estimation of Static Panel Data Models

The way to deal with correlated effects using an IV procedure is to construct
orthogonality conditions from the model residual and instruments such as those
presented above (HT, AM, BMS), those instruments being assumed uncorrelated
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with the disturbances (at least asymptotically), and asymptotically correlated with
explanatory variables. Consistent parameter estimates are then obtained under the
assumption that the model is correctly specified (i.e., that orthogonality conditions
are valid), by minimizing a quadratic form in orthogonality conditions (moment
restrictions). Depending on the way this criterion is constructed, we obtain either ei-
ther the Instrumental Variables (IV) under various forms, or the Generalized Method
of Moments estimator (GMM, see Hansen (1982)). We now turn to the application
of GMM estimation to linear panel data models.

4.6.1 Static Model Estimation

We consider here the general form of Instrumental Variable and GMM estimators
for the static model introduced above, Y = Xβ + Zγ +U , or in a compact form,
Y = Φμ +U where Φ = (X ,Z) and μ ′ = (β ′,γ ′). Let E(A′iUi) = 0 denote a L set of
orthogonality conditions in vector form, where Ai, i = 1,2, . . . ,N is a T×L matrix of
instruments. For a fixed T and N→∞, the empirical counterpart of the orthogonality
conditions is (1/N)∑N

i=1 A′iUi.
Consider estimating by Generalized Least Squares (GLS) the following equation:

A′Y = A′Xβ +A′Zγ +A′U = A′Φμ +A′U, (4.33)

i.e., by minimizing

min
1
N

U ′A

[
Var

(
1
N

A′U

)]−1 1
N

A′U. (4.34)

Letting V denote the variance–covariance matrix of (1/N)A′U , the resulting
estimator can be written as

μ̂ = (Φ′AV−1A′Φ)−1Φ′AV−1A′Y

Suppose we do not wish to make assumptions on the structure of the variance
matrix V , e.g., disturbances may exhibit serial correlation (in the time dimension)
and/or heteroskedasticity. Then the estimator above can be computed using an ini-
tial estimate for V , V̂ = (1/N)∑N

i=1 A′iÛiÛ ′
i Ai, where Ai is the (T,L) matrix of obser-

vations about the instrumental variables for the i-th individual and Ûi is a (T,1)
initial consistent estimate of Ui, i = 1, . . . ,N. This estimator is the GMM (Gen-
eralized Method of Moments) under its optimal form, and its exploits the fact
that the variance–covariance matrix of Ui is block-diagonal (no correlation across
individuals).

It is well known that if the disturbances are both homoskedastic and not serially
correlated, so that

Var(A′U) = E[A′Var(U |A)A]+Var[A′E(U |A)A] = σ2E(A′A)−1
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since E(U |A) = 0 and Var(U |A) = σ2
U I, then the “best” instrumental variables

estimator (i.e., GLS applied to model) is given by (see Gourieroux and Monfort,
1989):

μ̂IV =
[
Φ′A(A′A)−1A′Φ

]−1 Φ′A(A′A)−1A′Y

For panel data however, this is unlikely to be the case because of individual
unobserved heterogeneity, and the variance–covariance matrix of error terms is
Ω = IN ⊗ Σ where Σ = σ2

α eT e′T + σ2
ε IT is a T × T matrix. Suppose a prelimi-

nary estimate of Ω is available, Ω̂ = IN ⊗Σ
(
σ̂2

α , σ̂2
ε
)
, a simple version of this being

Ω̂ = IN⊗ 1
N ∑N

i=1 ÛiÛ ′
i . Replacing Ω by Ω̂ so that

plimN→∞
1
N

A′ΩA = plimN→∞
1
N

N

∑
i=1

A′iΩ̂Ai = V,

we obtain the Three-Stage Least Squares estimator:

μ̂3SLS =
[
Φ′A
(
A′ΩA

)−1
A′Φ
]−1

Φ′A
(
AΩA′

)−1
A′Y .

It is easy to see that the GMM and the 3SLS are equivalent under the condition
of no conditional heteroskedasticity, see Ahn and Schmidt (1999):

E
(
A′iUiU

′
i Ai
)

= E
(
A′iΣAi

)
∀i = 1, . . . ,N.

Note that this condition is weaker than the condition that E(UiU ′
i |Ai) = Σ . If the no-

conditional heteroskedasticity condition is not satisfied, then GMM is more efficient
than 3SLS.

Assuming this conditional holds, 2SLS estimators can also be proposed. A first
version of the Two-Stage Least Squares (2SLS) estimator is obtained by premulti-
plying the model by Ω−1/2 and then applying instruments A. This is the form used
by HT, AM and BMS:

μ̂IV1 =
[
Φ′Ω−1/2A(A′A)−1A′Ω−1/2Φ

]−1
Φ′Ω−1/2A(A′A)−1A′Ω−1/2Y

This estimator is based on the two conditions:

E
(

A′iΣ−1/2Ui

)
= 0, E

(
A′iΣ−1/2UiU

′
i Σ−1/2Ai

)
.

Ahn and Schmidt (1999) shows that the 3SLS and the 2SLS estimator above are
equivalent asymptotically if a consistent estimate is used for Σ4 and if there exists a
nonsingular and non-random matrix B such that Ω−1/2A = AB (or equivalently, that
Σ−1/2Ai = AiB ∀i = 1,2, . . . ,N).

A second version of the 2SLS estimator is denoted Generalized Instrumental
Variables (GIV, see White (1984)), which uses directly Ω−1/2A as instruments:

4 They are numerically equivalent if the same, consistent estimate is used.



4 Endogenous Regressors and Correlated Effects 107

μ̂GIV =
[
Φ′−1A

(
A′−1A

)−1
A′−1Φ

]−1
Φ′−1A

(
A′−1A

)−1
A′−1Y.

Although the two 2SLS estimators seem different, they are equivalent in a
panel-data context when the error component structure is of the form Ω above.
Again, a preliminary estimate of Σ is required to implement these 2SLS estimation
procedures.

4.6.2 GMM Estimation with HT, AM and BMS Instruments

In the Instrumental-Variable context with Hausman–Taylor, Amemiya–MaCurdy
or Breusch–Mizon–Schmidt instruments described above, we assume an error-
component structure and also that endogeneity is caused by correlated effects, either
E(X ′α) �= 0 or E(Z′α) �= 0. In any case, it is maintained that E(X ′ε) = E(Z′ε) = 0.
With GMM, we can consider different exogeneity assumptions related to α or ε ,
producing different orthogonality conditions. Apart from the difference between
random and fixed effect specifications (instruments correlated or not with α),
we can also consider strictly or weakly exogenous instruments if explanatory in-
struments are correlated with ε . These different cases are described by Ahn and
Schmidt (1999), to which we refer the reader for more information.

Consider the case of strict exogeneity: E(Xisεit) = E(Ziεit) = 0, ∀i,∀t. The ques-
tions we address are the following: is it possible to obtain a more efficient estima-
tor than IV with either HT, AM or BMS, by exploiting more moment conditions?
And does this efficiency depend on the assumption made on the assumed variance–
covariance structure?

The first result is that, under the No conditional heteroskedasticity assumption,
HT, AM and BMS–2SLS estimators are equivalent to the GMM estimator. From the
discussion above, this implies that GMM is more efficient with the same instrument
set (and a consistent variance–covariance matrix) than the original version of HT,
AM and BMS–2SLS estimators, if this NCH condition is not valid.

Ahn and Schmidt (1995) and Arellano and Bover (1995) note that, under the strict
exogeneity assumption, more moment conditions can be used, to improve efficiency
of the estimator. The strict exogeneity assumption is E(di ⊗ εi) = 0, where di =
(xi1, . . . ,xiT ,zi), implying E[(LT ⊗di)′ui] = E(L′T εi⊗di) = 0.

Arellano and Bover (1995) therefore propose a GMM estimator obtained by re-
placing (in vector form) QT Φi by LT ⊗ di in the HT, AM or BMS list of instru-
ments. This leads to (T − 1)(kT + g)− k additional instruments, which may cause
computational difficulties if T is large. They however also show that under the error-
component structure Σ, both sets of instruments provide the same 3SLS (or 2SLS
version 1, μ̂IV1) estimator.5 Consequently, if in addition the No conditional het-
eroskedasticity assumption is valid, then the 3SLS (or 2SLS version 1, μ̂IV1) with
HT, AM or BMS instruments will be asymptotically equivalent to GMM with the
augmented set of instruments.

5 Asymptotically only, if different estimates of Σ are used.
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Im, Ahn, Schmidt and Wooldridge (1999) consider cases where the no conditional
heteroskedasticity assumption holds when the Arellano–Bover set of instruments is
used, and Σ is left unrestricted. They show that the 2SLS estimator version 2 (μ̂IV2)
using BMS instruments is equivalent to the 3SLS estimator using Arellano–Bover
instruments, but that this equivalence does not hold for HT or AM instruments. To
solve this problem, Im, Ahn, Schmidt and Wooldridge (1999) propose to replace
the fixed effects operator QT by QΣ = Σ−1−Σ−1eT (e′T Σ−1eT )−1e′T Σ−1, such that
QΣ eT = 0, and modifying the matrix of instruments appropriately. This modified
3SLS estimator would be asymptotically equivalent to an efficient GMM estimation
is the NCH condition holds.

4.7 Unbalanced Panels

In the preceding sections we have discussed estimation methods for panel data mod-
els when all cross-sectional units are observed for all time periods. In practice, miss-
ing observations are often encountered for a given cross-sectional unit and for a
given time period. In this case, we have what we call an incomplete panel and the
standard estimation methods are not applicable. Fuller and Battese (1974) suggest
to add in the list of regressors a set of dummy variables, one for each missing obser-
vation. However, as noted by Wansbeek and Kapteyn (1989), this often implies that
the number of regressors would increase dramatically (possibly, with the sample
size), and in many empirical studies this becomes computationally impractical.

Wansbeek and Kapteyn (1989) consider a two-way unbalanced error component
specification for the fixed and random effects models. In the first case (fixed effects)
they suggest a new expression for within operator, which generalizes the operator
Q given in Sect. 4.2.6 For the second case (random effects), they propose to use the
quadratic unbiased and Maximum Likelihood estimators.

More recently, Baltagi and Chang (1994) have considered a one-way error
component model with unbalanced data. Using a Monte Carlo simulation ex-
periment, they compare several estimation methods including the Analysis Of
Variance (ANOVA), Maximum Likelihood (ML), Restricted Maximum Likelihood
(REML), Minimum Norm Quadratic Estimation (MINQUE) and Minimum Vari-
ance Quadratic Estimation (MINQUE).

In their simulation and the empirical illustration they propose, they show that
in general, better estimates of the variance components do not necessarily imply
better estimates of the regression coefficients. Furthermore, MLE and MIVQUE
perform better than the ANOVA methods in the estimation of the individual vari-
ance component. Finally, for the regression coefficients, the computationally simple
ANOVA methods perform reasonably well when compared with the computation-
ally involved MLE and MIVQUE methods.

When the data have a sufficient degree of disaggregation, more than two dimen-
sions of data variation are generally available. One can think for instance of a sample

6 See Wansbeek and Kapteyn (1989), p. 344.
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of observations on firms (level 1) belonging to a particular industry (level 2), within
a region (level 3). In this case, several time-invariant heterogeneity components can
be introduced in the linear panel data model, giving rise to multi-way error com-
ponents models. In the nested specification, each successive component in the error
term is nested within the preceding component. In the non-nested case, error compo-
nents are independent of each other, and transformation techniques similar to those
employed in the two-way error component model are applicable.

As operator matrices for performing Between and Within transformations under
any hierarchical structure are straightforward to construct, fixed effects and GLS
estimators are generally available for such models (see, e.g., Antweiler (2001)). In
the unbalanced panel data case however, the required algebra to obtain expressions
for the Feasible GLS estimator in particular, is more difficult to handle.

Baltagi, Song and Jung (2001) propose a fixed-effects representation and a spec-
tral decomposition of a three-way unbalanced error component model, leading to
a Fuller–Battese scalar transformation for this model. They proceed by investigat-
ing the performance of ANOVA, Maximum Likelihood and MINQUE estimators of
variance components in the unbalanced nested error component model. ANOVA
estimators for variance components are BQU (Best Quadratic Unbiased) in the
balanced case only, and are only unbiased in the unbalanced case. Monte Carlo
experiments reveal that ANOVA methods perform well in estimating regression co-
efficients, but ML and MINQUE estimators are recommended for variance compo-
nents and standard errors of regression coefficients. They do not deal with the case
of endogenous regressors or correlated effects, beyond the obvious possibility to ob-
tain consistent estimates using fixed effects. The fact that exogenous variables may
be available for different levels in the hierarchical structure of the data, leads to a
wide variety of possible instruments. For example, if firm-specific individual effects
are correlated with decision variables of the firms, price variables at an upper level
(county, region) may be used as instruments.

Davis (2002) proposes a unifying approach to estimation of unbalanced multi-
way error components models, as well as useful matrix algebra results for construct-
ing (Between, Within) transformation matrices. The recurrence relations proposed
in the paper allow for direct extension to any number of error components. There are
but few empirical applications in the literature using multi-way unbalanced panels,
see Davis (2002) and Boumahdi and Thomas (2006) for examples.

For example, the three-way unbalanced error component model is

Y = Xβ +u, u = Δ1α +Δ2γ +Δ3λ + ε, (4.35)

where α = (α1, . . . ,αL)′, γ = (γ1, . . . ,γH)′ and λ = (λ1, . . . ,λT )′.
Matrices Δk,k = 1,2,3 are constructed by collecting dummy variables for the

relevance of a given observation to a particular group (l,h, t), and have dimension
N×L, N×H and N×T respectively.

Letting PA = A(A′A)+A′ and QA = I−PA where + denotes a generalized inverse,
the fixed effects transformation matrix is shown to be QΔ = QA−PB−PC, where
Δ = [Δ1,Δ2,Δ3] and
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PA = I−Δ3(Δ′3Δ3)+Δ′3, QA = I−PA,

PB = QAΔ2(Δ′2QAΔ2)+Δ′2QA, QB = I−PB,

PC = QAQBΔ1
[
Δ′1(QAQB)Δ1

]+ Δ′1QAQB, QC = I−PC.

Under the exogeneity assumption E(X ′QΔε) = 0, the fixed-effects estimator is
consistent:

β̂ =
(
X ′QΔX

)−1
X ′QΔY. (4.36)

Assume instruments W are available such that E(W ′QΔε) = 0; then a consistent
IV estimator can be constructed as

β̂ =
(
X ′PQW X

)−1
X ′PQWY, (4.37)

where PQW = QΔW (W ′QΔW )−1 W ′QΔ.
As mentioned above in the one-way unbalanced case, application of IV proce-

dures require consistent estimation of the variance–covariance matrix, as well as an
instrument matrix consistent with the unbalanced nature of the sample. Formulae for
estimating variance components can be found in Baltagi, Song and Jung (2001) and
Davis (2002), although estimation should be adapted along the lines of Hausman
and Taylor (1981) because of endogenous regressors. For instrument matrices, the
HT specification is directly applicable because it only contains Within transforma-
tions and variables in levels. However, the AM and BMS IV estimators suffer from
the same difficulty as in the one-way unbalanced case: they are more problematic
to adapt because of missing observations in X∗1 and (QX)∗ matrices. It is not clear
whether the usual procedure to replace missing values by zeroes in those matrices
produces severe distortions (bias, inefficiency) or not.
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Chapter 5
The Chamberlain Approach to Panel Data:
An Overview and Some Simulations

Bruno Crépon and Jacques Mairesse

5.1 Introduction

In this paper, we present the general approach proposed by Chamberlain (1982 and
1984) for the analysis of panel data. Although the 1984 article examines nonlinear
models such as probit or logit models for panel data, we only cover here, but in
details, the case of linear regression models. However, much of the approach which
is applicable in this case, as well as much of the intuition that can be gained from it,
applies also to non linear models.

Let us consider the linear regression model of the dependent variable y on K
explanatory variables x observed for a balanced panel of N individuals (for example
firms) and T periods (for example years):

yit = ∑
k

x(k)
it bk + vit = ∑

k

x(k)
it bk + μi +uit , t = 1, . . . ,T, i = 1, . . . ,N (5.1)

The Chamberlain approach or method provides a general unifying framework en-
compassing both the ideal case of reference of “Non Correlated Errors” (NCE) in
which the regressors x in model (5.1) can be assumed to be uncorrelated with both
the unobserved individual effects μ and the idiosyncratic disturbances u (i.e., with
the overall disturbance v), and the paradigmatic case in panel data econometrics of
“Correlated Effects” (CE) in which the regressors x are possibly correlated with the
individual effects μ but are still assumed to be uncorrelated with the idiosyncratic
disturbances u (see Mundlak, 1961). It allows to take into account different impor-
tant types of specification errors other than the existence of correlated effects, in the
form of correlations or covariances between the regressors x and both disturbances
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μ and u (or v). The variables x, for example, can be affected by random errors of
measurement, or they can include lags of the dependent variable y.

The Chamberlain method consists in a first stage in constructing the set (or a sub-
set) of relations between the moments of the variables x and the unknown parameters
b, which are implied by the correlations or covariances between the regressors and
the disturbances. In a second stage it uses these relations, or estimating equations,
to implement Minimum Distance estimators, or so called Asymptotic Least Squares
(ALS) estimators, and obtain consistent and possibly asymptotically efficient esti-
mates of the b′s. The Chamberlain method is thus basically a method of moments;
and it is in fact very close to the generalized methods of moments (GMM) as applied
to panel data, for which it provides a different, deeper understanding and a possible
alternative.

In Sect. 5.2, we present the first stage of the Chamberlain method, consist-
ing itself of two steps. We first define the so called Chamberlain’s matrix Π =
E(y

i
x′i)E(xix

′
i)
−1 of dimension (T,KT ), providing a summary of the panel data.1

We then derive the Chamberlain estimating equations, which are the basic relations
existing between the parameters b of (primary) interest to be estimated and the co-
efficients of Π, or equivalently, and often more simply, the relations between the b′

s and the coefficients of E(y
i
x′i) and E (xix

′
i), that is the covariance matrices of y and

the x′s across all T periods. We explicitly consider these estimating equations in spe-
cific cases of major interest, corresponding to different types of specification errors
imposing restrictions on the form of E(vix

′
i),the covariance matrix of the disturbance

v and the x’s across all T periods. In this section, we also explain how additional re-
strictions arising from specific assumptions on the form of the covariance matrix
E[viv

′
i] of the disturbances can be used to improve the efficiency of the Chamberlain

method estimators. We also provide an extended view of the Chamberlain method
which applies to more general models than the regression model (5.1).

In Sect. 5.3, we present the second stage of the Chamberlain method, consisting
in applying the Asymptotic Least Squares (ALS) to obtain consistent and asymptot-
ically normal estimators of the parameters b’s of primary interest, as well as parame-
ters of secondary interest characterizing possible specification errors in model (5.1).
We explain how to implement the asymptotically efficient or optimal ALS estimator
and perform specification tests. We also explain how the ALS estimating equations
can be manipulated and some parameters eliminated without loosing consistency
and asymptotic efficiency in estimating the remaining parameters.

In Sect. 5.4, we show how in particular the ALS estimating equations can be
reformulated as orthogonality conditions in the panel data GMM framework, and we
demonstrate explicitly the asymptotic equivalence between the Chamberlain method
and GMM in general and in some of the specific cases of interest.

In the last Sect. 5.5, we present some simulation results illustrating the small
sample properties of both the Chamberlain method and the GMM estimators in some
of the specific cases of interest previously considered.

1 y
i
, vi and xi are column vectors of dimension (T,1) and dimension (KT,1) respectively. See

Sects. 5.2.1 and 5.2.2 below.
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The Appendices A, B, C, D and E (respectively Sect. 5.6 to 5.10) provide details
on various technical points. They can be skipped by readers who only want to
have an overall understanding of the Chamberlain method and its equivalence with
GMM. In Appendix A, we show how the Chamberlain approach can be extended to
simultaneous linear equations models and to vector autoregression models (VAR)
on panel data, and how it can deal also with endogenous attrition. In Appendix B,
we show how the Chamberlain estimating equations, written in matrix format in the
text, can also be written in a vector format for practical estimation. In Appendix
C, we show how the Chamberlain estimating equations can be rewritten in order
to eliminate auxiliary parameters (or parameters of secondary interest), while pre-
serving asymptotic consistency and efficiency of the estimators of the parameters
of (primary) interest. In Appendix D, we show that the usual basic panel estimators
(Random Effects, Within and First Differences) are asymptotically equivalent to the
Chamberlain and GMM estimators. In Appendix E, we provide important details
on the design and calibration of the simulation experiments presented in the text
(Sect. 5.5).

5.2 The Chamberlain Π Matrix Framework

5.2.1 The Π Matrix

The Chamberlain method is basically a method of moments; it uses the restrictions
on the moments of the variables implied by the modeling assumptions to estimate
the parameters of interest. In a first stage, the moments of the variables are com-
puted up to the second order forming a set of summary statistics for the data, which
can be considered as estimated auxiliary parameters. In a second stage the para-
meters of interest are estimated on the basis of their relations with these estimated
auxiliary parameters, using Minimum Distance or Asymptotic Least Squares (ALS)
estimators.

An important feature of the Chamberlain method, as usually presented, is that
it summarizes the set of second order moments (variances and covariances) of the
dependent and explanatory variables, which is central to the analysis, by the so
called Chamberlain Π matrix. The Π matrix is defined in terms of the coefficients of
the linear predictors of the dependent variable at each period given all explanatory
variables at all periods. Precisely, if there are T years and K explanatory variables x,
the Π = [πt, j] matrix is of dimension T ×KT and is obtained by stacking one above
the other the row vectors of dimension 1×KT of the coefficients of the T separate
year regressions such as

yit = πt,1x(1)
i1 + · · ·+πt,T x(1)

iT +πt,T+1x(2)
i1 + · · ·+πt,KT x(K)

iT +wit (5.2)

with
E(witx

(k)
is ) = 0, ∀s, t,k. (5.3)
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If we define y′
i
= (yi1, . . . ,yiT ) and x′i = (x(1)

i1 , . . . ,x(1)
iT , . . . ,x(K)

iT ) we can also write

Π = E(y
i
x′i)E(xix

′
i)
−1. (5.4)

It must be noted that (5.2) with the covariance restriction (5.3) is not a linear regres-
sion model strictly speaking, but simply expresses the linear projection of y on all
lagged, present and future x ’s.2

As a simple illustration, let us take the example of a regression model for a panel
of only two years (T =2), with only one explanatory variable (K=1) and the usual
error components structure

yit = xitb+ μi +uit , t = 1,2, i = 1, . . . ,N.

Consider first the simplest standard case that we call “Non Correlated Errors”
(NCE), in which it is assumed that

E [μixis] = E [uitxis] = 0, ∀t,s.

In this case, the parameter of interest b can be consistently estimated by simply
using the pooled OLS estimator or the error components GLS estimator. However,
it is also possible to compute the Π matrix by considering the two separate year
regressions with both x1 and x2 as explanatory variables. In each year regression
the true coefficient of the contemporaneous x (π11 or π22) is equal to the parameter
b and the other coefficient of the lagged or future x (π21 or π12) is zero. Thus the
“true” Π matrix is [

π11 π12

π21 π22

]
=
[

b 0
0 b

]
= b

[
1 0
0 1

]
.

We thus can expect that the unrestricted Π matrix, as estimated in the first stage,
will also look roughly diagonal (and with roughly equal diagonal coefficients). How-
ever, this may not be so striking in practice, if the individual πt,s coefficients are not
estimated precisely enough, that is if the sample is not large enough in the individ-
ual dimension and if the year x’s (x1 and x2) are more or less collinear (which is
often likely when these variables are in absolute level or defined as ratio of different
variables). In the second stage of the Chamberlain method, we can retrieve a consis-
tent estimate b̂ of b from the estimated π̂t, j by applying Asymptotic Least Squares
(ALS) to the four “estimating equations” π11 = b, π12 = 0, π21 = 0, π22 = b, or in
vector form

(π11,π12,π21,π22)′ = b(1,0,0,1)′.

The ALS estimator is defined precisely in the next Sect. 5.3. It is more effi-
cient than the pooled OLS estimator, and also more efficient than the usual error
components GLS estimator, under general conditions in which vit has not an error

2 The linear projection is generally denoted by E∗(yit |x(k)
iτ ;τ = 1, . . . ,T ; k = 1, . . . ,K) with a ∗ to

distinguish it from the conditional expectation E(yit |x(k)
iτ ;τ = 1, . . . ,T ; k = 1, . . . ,K), which has no

a priori reason to be linear in the x’s. We do not, however, use this notation here.
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component structure and is heteroscedastic and serially correlated.3 One can also
test formally whether the Π matrix has the right pattern, by an asymptotic χ2 test
“measuring” the distance between the unrestricted first stage estimate of Π and its
restricted second stage estimate.4

Let us consider next the other standard case of “Correlated Effects” (CE) in which
the explanatory variable is correlated with the individual effects μi but not with the
error terms uit

E [uitxis] = 0, ∀t,s E [μixis] �= 0.

In this case, the linear projection of the individual effects μi on the x’s is no longer
zero. It can be written as

μi = δ1xi1 +δ2xi2 + w̃i

with, by definition, E(w̃ixit) = 0.
Hence, in this case, the “true” Π matrix has the following distinctive pattern:

[
π11 π12

π21 π22

]
=
[

δ1 +b δ2

δ1 δ2 +b

]
=
[

δ1 δ2

δ1 δ2

]
+
[

b 0
0 b

]

where the off-diagonal coefficients will have to be equal within the same columns
for a panel with more than two years (T > 2).5 As in the NCE case, such a distinctive
pattern may be recognizable on the Π matrix as estimated in the first stage, although
in general practice this pattern will be badly blurred.

Applying ALS to the four estimating equations

(π11,π12,π21,π22)′ = b(1,0,0,1)′+δ1(1,0,1,0)′+δ2(0,1,0,1)′

provides a consistent estimator of b, our parameter of primary interest, as well as
a consistent estimator of the δ ’s. The coefficients δ ’s are usually called “nuisance
parameters”, but we will prefer to consider them here as parameters of secondary
interest, since they characterize the relation of the unknown individual effects and
the known explanatory variables. The ALS estimator is more efficient under gen-
eral conditions than the usual Within estimator performed on the deviations of the
variables from their individual means, that is by simply using pooled OLS on the
within transformed regression of yit − yi. on xit − xi. (see Appendix D: Equivalence
between Chamberlain’s, GMM and usual panel data estimators).

3 The usual error components GLS estimator is optimal under the assumption that μi and uit are
homoscedastic and uit is serially uncorrelated.
4 Note also that we may allow b to vary over time and test for its constancy.
5 Note that the model with Correlated Effects is identified as soon as we have a panel: T > 1, and
even if we allow the b coefficients to vary over time.
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5.2.2 Relations Between Π and the Parameters of Interest

In this subsection, we generalize the two previous examples. We present the basic re-
lations which the model implies between the second order moments of the variables
y and x [i.e., E(y

i
x′i) and E (xix

′
i)] and the parameters of both primary interest and

secondary interest, and we show how these relations can be rewritten as restrictions
on the Π matrix.

Consider the linear regression model with K explanatory variables for a balanced
panel of N individuals observed on T periods or years:

yit = ∑
k

x(k)
it bk + vit = ∑

k

x(k)
it bk + μi +uit , t = 1, . . . ,T, i = 1, . . . ,N (5.5)

where the b’s are the parameters of primary interest. A central idea of the Chamberlain
approach is to view this panel data model as a system of T stacked year equations.

Defining the two (T ×1) column vectors y
i

and vi by y′
i
= (yi1, . . . ,yiT ) and

v′i = (μi +ui1, . . . ,μi +uiT ) respectively, and the two (KT ×1) and (K×1) column

vectors by x′i = (x(1)
i1 , . . . ,x(1)

iT , . . . ,x(1)
i1 , . . . ,x(K)

iT ) and b′ = (b1, . . . ,bK) respectively,
we can more compactly rewrite the (5.5) as

y
i
= M(b)xi + vi (5.6)

where M(b) = (b1, . . . ,bK)⊗ IT is a (T ×KT ) matrix. Also denoting by Φ = E [vix
′
i]

the (T ×KT ) covariance matrix between the disturbances vi and explanatory vari-
ables xi, we can derive the following moments relations

E
(

y
i
x′i
)

= M(b)E
(
xix

′
i

)
+Φ. (5.7)

Introducing now the matrix Π = E(y
i
x′i)E(xix

′
i)
−1 and denoting by Ψ the (T×KT)

matrix E(vix
′
i)E(xix

′
i)
−1 = ΦE(xix

′
i)
−1 of the coefficients of the linear projection of

the disturbances vi on the explanatory variables xi, we can also write equivalently

Π = M(b)+Ψ. (5.8)

The equations (5.5) or (5.6), or the moments relations (5.7) or (5.8), simply ex-
press an arbitrary decomposition of y into one part corresponding to the explanatory
variables x and another one to the disturbances v. Giving them an econometric con-
tent (i.e., being able to test them as a regression model and to identify and estimate
the b parameters of primary interest) requires imposing restrictions between the v’s
and the x’s. In the Chamberlain method these stochastic restrictions can take differ-
ent forms in terms of the Φ or Ψ matrices. The simplest case is the basic one of Non
Correlated Errors (NCE) which assumes that Φ = Ψ = 0.
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More generally, let us consider that the (T ×KT ) covariance matrix Φ of vi and
xi can be parameterized by a set of (additional) parameters β of secondary interest.6

As long as the dimension of β is not too large (less than KT 2−K), this implies the
following set of restrictions between the moments of the variables y

i
and xi

E(y
i
x′i) = M(b)E(xix

′
i)+Φ(β ), (5.9)

which can be rewritten as

Π = M(b)+Φ(β )E(xix
′
i)
−1. (5.10)

The core of the Chamberlain method is to derive estimates of the b and β param-
eters from the estimates of the Π matrix by applying Asymptotic Least Squares
(ALS) to (5.10).7 In the case, however, in which the matrix Ψ can be parameterized
more conveniently in terms of parameters of secondary interest δ than the matrix
Φ in terms of parameters of secondary interest β , estimates of the b and δ param-
eters can be obtained from the estimated Π matrix alone by applying ALS to the
equations

Π = M(b)+Ψ(δ ). (5.11)

In this case, which is that of Correlated Effects (CE), the relations (5.11) take the
form of a direct restriction on Π, and Π summarizes all the relevant information
brought by the second order moments of the variables, with no need for the estimates
of E(xix

′
i).

In general, we have to rely on estimating equations such as (5.9) or (5.10) and
to use estimates of E(xix

′
i) or those of its inverse, which implies some additional

complications compared with the more simple implementation of the ALS when
the estimating equations can take the form of a direct restriction on Π as in (5.11).
These complications are sometimes neglected or ignored, as we shall indicate in
Sect. 5.3. Note that when Φ can be conveniently parameterized, usually Ψ cannot
(and vice versa). The Correlated Effects case, which we are going to consider in
more detail in the next subsection, is an exception where Φ and Ψ have the same
structure where all T coefficients in a given column are equal to the corresponding
β or δ coefficients. Note that in order to be able to identify fully the model (5.5)
as specified, it is necessary to have at least one subset of the estimating equations
(5.11) or (5.10) that can be solved for (b,δ ) or (b,β ) as a function of Π alone,
or Π and E (xix′i). A necessary (but not sufficient) condition for identification is
that the dimension of the estimated parameter is less than the number of estimating

6 A (T ×KT ) matrix can always be parameterized by its KT 2 coefficients. What we mean here is
that it can be parameterized more parsimoniously.
7 Note that it is equivalent to take (5.9) instead of (5.10) as estimating equations, with the only
difference of using the estimated covariance matrix of y and x rather than the estimated Π matrix.
The Π matrix has the advantage of being directly expressed in the set up of the regression model
under analysis, with coefficients having the dimension of the regression coefficients (and not of
covariances). But as we shall see it may be more convenient to rely on equations (5.9).
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equations. Thus, as the number of equations (5.10) or (5.11) is KT 2 and the size of
parameter b is K, the dimension of β or δ must be less than KT 2−K.8

The parameterization of the T ×KT matrix Φ(β ) or Ψ(δ ) in the estimating
equations (5.10) and (5.11) is essential in the implementation of the Chamberlain
method. It expresses specific assumptions on the econometric specification of the
model, some of which can be tested by the econometrician, while the others are
maintained. In the following Sect. 5.2.3, we present four most important cases of
such assumptions which can be combined together and are often considered in prac-
tice. While in general, most of the interest is devoted to the estimation of the b′s, the
β ′s or δ ’s can receive an interesting interpretation in terms of errors of specification,
allowing to test if the model corresponds to one given econometric specification or
to another one. Actually, depending on the modeling of Φ(β ) or Ψ(δ ), there is of-
ten a trade-off between the accuracy of the estimation of b on the one hand, and
its consistency and robustness to errors of specification in the other hand. Imposing
more restrictions on the matrices Φ(β ) or Ψ(δ ), that is parameterizing them with a
smaller vector β or δ , yields some efficiency gain in the estimation of b. Conversely,
the estimation of b to given errors of specification is more robust when imposing less
restrictions on these matrices. In the simulation exercise presented in Sect. 5.5, we
show that this can be indeed a crucial trade-off in small or midlle size panel data
samples.

5.2.3 Four Important Cases

Let us consider the form of the estimating equations and of the restrictions on the
Π matrix in four important usual cases: that of Correlated Effects (CE), Errors in
Variables (EV), Weak Simultaneity (WS) and Lagged Dependent Variables (LDV).
We consider them separately, but they can be combined together easily. These ex-
amples are also treated in more detail in Appendix B: Vector representation of the
Chamberlain estimating equations.

5.2.3.1 Correlated Effects

In the case of correlated effects we assume that the past, present and future values of
the explanatory variables x are not correlated with the (time varying) idiosyncratic
disturbance uit , but that they can be correlated with the individual effects μi. This
implies that the Φ and the Ψ matrices have the same pattern with equal within-

8 Note that when the estimating equations take the form of (5.11), identification of b and δ depends
on the particular form of M(b) and Ψ(δ ). When they take the form of (5.10) or that of (5.9),
identification of b and β depends on the form of M(b) and Φ(β ), but also on E (xix′i), and requires
some specific conditions on E (xix′i). See in the next subsection the cases of Errors in Variables
(EV) and Weak Simultaneity (WS).
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column coefficients, and thus can be parameterized by KT parameters β or δ .9 We
can simply write

Φ(β ) = E ((μil)x′i) = lE (μix′i) = lβ ′

Ψ(δ ) = E ((μil)x′i)E (xix
′
i)
−1 = lE (μix′i)E (xix

′
i)
−1 = lδ ′

(5.12)

where l is the (T ×1) vector of 1’s, β is the (KT ×1) vector of the covariances of μi

and the x’s, and δ is the (KT ×1) vector of the coefficients of the linear projection
of μi on the x’s.

5.2.3.2 Errors in Variables

In the case of errors in variables we assume that the true model is

y
i
= M(b)x∗i + vi, i = 1, . . . ,N

but that instead of x∗ we only observe

xi = x∗i + ei

where the true x∗i and the errors of measurement ei are uncorrelated. We also assume
for simplicity that the x∗’s are strictly exogenous (i.e., uncorrelated with the overall
disturbance v) and that the errors of measurement themselves e are also uncorrelated
with the v′s. Denoting the covariance matrix of the measurement errors by Ve =
E(eie

′
i), we can then write

Φ = E
[
(vi−M(b)ei)x′i

]
=−M(b)Ve (5.13)

and
Ψ =−M(b)VeE

(
xix
′
i

)−1
.

To identify the model it is necessary to make some simplifying assumptions
on Ve. It is usually considered that measurement errors are serially uncorrelated
(or so called “white noise”). We show in Appendix B that in this case the ma-
trix Φ = −M(b)Ve in (5.13) has the simple form of the juxtaposition of K diag-
onal matrices, with (KT ) possibly different diagonal coefficients. It follows from
equation (5.9) that the parameters b are identifiable as long as for each k there

is at least one l and two periods (s, t), with s �= t, such that E
(

x(k)
it x(l)

is

)
�= 0.

Note, however, that the KT diagonal elements of the matrix Φ = −M(b)Ve are

of the form ∑K
l=1 blCov

(
e(k)

it ,e(l)
it

)
, and thus it is only these KT functions of the

KT (K +1)/2 parameters Cov
(

e(k)
it ,e(l)

it

)
which are identifiable, not the individual

9 Note that this corresponds simply to the fact that the linear projection of the disturbances vit on
the x’s is the linear projection of the individual effects μi on the x’s, and hence does not depend on
t. Likewise Cov(vit xis) = Cov(μixis) depends on s, not on t.
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Cov
(

e(k)
it ,e(l)

it

)
. This is why it is usually assumed that the measurement errors

are not only serially uncorrelated, but also uncorrelated with each other, implying

∑K
l=1 blCov

(
e(k)

it ,e(l)
it

)
= bkE

(
e(k)2

it

)
, and thus allowing the estimation of the mea-

surement errors variances E
(

e(k)2
it

)
, and not only the estimation of the parameters

of interest b’s.
By contrast to Φ and E(y

i
x′i), Ψ and Π have a complicated pattern, involving

leads and lags of the different x’s, and they cannot be directly parameterized,
irrespective of E (xix

′
i)
−1:

Π = M(b)+Ψ = M(b)[I−VeE
(
xix
′
i

)−1]. (5.14)

It is easy to see that Correlated Effects and Errors in Variables can be considered
jointly. Note that Correlated Effects alone take care of possible measurement errors
that are constant over time.

5.2.3.3 Weak Simultaneity

“Weak Simultaneity” (WS), as we prefer to call it here, corresponds to the case of
predetermination, or weak exogeneity, of the x variables, or of some of them. It
allows for lagged effects of the y variable and possibly for contemporaneous two-
ways effects by not assuming that the past and present idiosyncratic disturbances or
shocks uis can affect the current x’s, but it assumes that future shocks do not. Note
that we can equivalently say that past x ’s are uncorrelated with the current shocks
uis. In this case, the identifying restrictions are

E (uisxit) = 0 for s > t (5.15)

and the matrix Φ has the characteristic pattern of a repeated upper triangular matrix
which can be parameterized by (KT (T +1)/2) parameters of secondary interest β .
As previously, the parameterization of Ψ, and hence of Π follows from that of Φ
and involves E (xix

′
i)
−1 .

Equations (5.15) are enough for identification when the explanatory variables x
are correlated over time. To see this, we can assume for simplicity that K = 1, and
write equations (5.9) for the couples of (s, t) indexes with s > t. We have E (yisxit) =
bE (xisxit)+ E (uisxit) = bE (xisxit) , showing that the parameter b will be identified
as long as there is at least one (s, t), with s > t, such that E (xisxit) �= 0.

Weak Simultaneity is usually combined with Correlated Effects. As considered
here, it assumes either that the unobserved individual effects μi are uncorrelated
with the x’s or that they are equal to zero (i.e., μi = 0).

In the case of Correlated Effects and Weak Simultaneity (CEWS), the identifying
restrictions (5.15) become

[E (visxit)−E (vis−1xit)] = E ((uis−uis−1)xit) = 0 for s > t +1.
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Assuming for simplicity as above that K = 1, we see that the parameter b will be
identified as long as there is at least one (s, t) with s > t + 1 such that we have
E ((xis− xis−1) xit) �= 0. This will fail, however, when the x’s follow a random walk,
or will not work well if they are very persistent (strongly autocorrelated).

Note finally that the case of Weak Simultaneity includes the possibility of errors
in variables, if we assume that they are serially uncorrelated.

5.2.3.4 Lagged Dependent Variables

Let us also explicitly consider the case of an autoregressive model, in which Weak
Simultaneity and Correlated Effects naturally arise from the presence of lagged de-
pendent variables among the explanatory variables. Assuming a first order autore-
gressive model to keep computation simple, we can write it as:

yit = αyit−1 +∑
k

x(k)
it bk + μi +uit

or in a vector format as:

y
i
= αy

i(−1) +M (b)xi + μil +αyi0l1 +ui

where y′
i(−1) = (0,yi1, . . . ,yiT−1), l is the (T ×1) vector (1,1,...,1) and l′1 =

(1,0, . . . ,0). Using the (T ×T ) matrix L such that y
i(−1) = Ly

i
(i.e., such that all

the coefficients of the first subdiagonal are 1 and all the others are zeros), we can
also write

[I−αL]y
i
= M (b)xi + μil +αyi0l1 +ui. (5.16)

Assuming that the x’s can also be correlated with the fixed effect μi as well as
with the initial (unknown) yi0, but not with the shocks uit , and denoting respectively
by ∑T

s=1 ζ
s
xis the projection of yi0 on xi, and ∑T

s=1 δ sxis the projection of μi on xi,
we directly obtain from (5.16) the following set of estimating equations in term of
the Π matrix and of the parameters of primary and secondary interest α,b,δ and
λ = αζ

[I−αL]Π = M (b)+ lδ ′+ l1λ ′. (5.17)

Although they involve the Π matrix alone, these equations do not take the form
of direct restrictions on Π (as in the Correlated Effects case), but of a more general
implicit function f (Π,θ) = 0, where θ ′ = (α,b,δ ,λ ). They can also be transformed
in terms of direct restrictions by left-multiplying them by [I−αL]−1, but this leads
to more complex nonlinear relations between Π and the different parameters of
interest.
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5.2.4 Restrictions on the Covariance Matrix of the Disturbances

The restrictions on the Π matrix considered so far arise from assumptions on the
covariances between the overall disturbances vi and the xi’s, by imposing a given
structure to the matrices Ψ or Φ and allowing them to be more or less simply pa-
rameterized. We have not made any assumptions on the structure of the covariance
matrix Σ = E(viv

′
i) of these disturbances. The Chamberlain method estimators of the

parameters of primary interest b and of secondary interest δ or β (and their stan-
dard errors) are thus robust to non constant year variances and to any kind of serial
correlation in these disturbances.10

However, we may be interested in making some simplifying assumptions on the
form of Σ. For example we may want to test that vi has (indeed) a pure error compo-
nent structure μi +uit , or that its time varying component uit is not homoscedastic, or
that it is not serially uncorrelated, but generated by an autoregressive (AR) or mov-
ing average (MA) process. Such assumptions also give rise to restrictions on the
covariances matrices of y

i
and xi, and hence can be used to improve the efficiency

of the estimators.
More precisely, consider the case when Σ can be expressed in terms of additional

parameters λ (of dimension less than T (T + 1)/2, the number of individual year
variances and covariances in Σ). We can write the following relations:

Σ(λ ) = E[viv
′
i] = E[(y

i
−M(b)xi)(yi

−M(b)xi)
′]

= E[y
i
y′

i
]−M(b)E[xiy

′
i
]−E[y

i
x′i]M(b)′+M(b)E[xix

′
i]M(b)′.

(5.18)

Denoting the residual of the projection of y
i
on xi by wi = y

i
−Πxi and its covari-

ance matrix by Vw = E(wiw
′
i), we can also write

Σ(λ ) = Vw +Φ(β )E[xix
′
i]
−1Φ(β )′ (5.19)

or

Σ(λ ) = Vw +Ψ(δ )E[xix
′
i]Ψ(δ )′ (5.20)

The previous relations (5.18) are of course equivalent to the relations (5.19) or
(5.20), but the later relations are probably a better way to write them. If we can
assume that the y’s and x ’s are normally distributed (or approximately so), we know
that the estimates of Π, E(xix

′
i) and Vw are independent (or approximately so).

In principle these two sets of relations have a similar status to that of the previous
covariance conditions (5.10) and (5.11). Both sets impose restrictions between the
parameters of interest b, β or δ , and λ , and the coefficients of Π and covariances

10 The way in which the Φ or Ψ matrices are parameterized may imply, however, some a priori re-
strictions on the covariance matrix of the disturbances. Note that if the overall disturbances include
additional disturbance terms uncorrelated with the x’s, their covariance matrix is modified, while
the parameterization of Φ and of Ψ remains unchanged. Random (uncorrelated) coefficients, for
example, can be the source of such additional disturbances.
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of y
i

and xi (to be estimated in the first stage of the Chamberlain method). Both can
be used as estimating equations for the parameters of interest in the second stage
ALS.11

In practice, however, important differences must be noted. First, one may not be
willing to impose any structure on the covariance matrix of the disturbances Σ, be-
cause one is not confident or simply not interested in doing so.12 Second the restric-
tions on Σ are more complicated. They necessarily involve the moments E(xix

′
i) and

E(y
i
y′

i
) (or Vw) in addition to the Π matrix, and they are nonlinear in the parameters

of interest. In Appendix C: Manipulation of equations and parameters in the ALS
framework, we show that the nonlinearity problem can be partially overcome if we
proceed in three stages instead of two (that is if we impose the restrictions on Σ only
in a third stage).

5.2.5 A Generalization of the Chamberlain Method

In this section we provide an extended view of the Chamberlain methodology which
applies to more general models than the basic regression setting just considered. In
Appendix A: An extended view of the Chamberlain method, we show how it applies
more specifically to simultaneous equations models, vector autoregressions (VAR),
and endogenous attrition models.

Assuming it is linear in its disturbances, an econometric model can always be
written as a set of stochastic equations expressing these disturbances vi in terms of
the variables z′i = (y′

i
,x′i) ,without making an explicit distinction between the depen-

dent and explanatory variables y
i

and xi. We can thus write:

vi = vi(zi,θ) = A(θ)zi +d with
E (vi) = 0 and E(viv

′
i) = Ω(θ),

leading to the following moment conditions or estimating equations:

A(θ)E
(
zi

)
+d = 0

Ω(θ) = A(θ)E
(
ziz
′
i

)
A(θ)′+dd′

(5.21)

11 The parameterization of Σ(λ ) of Σ will usually be linear. This is the case for example when the
disturbances have an error component structure, and when the time varying disturbances follow
an MA process. However in some interesting cases the parameterization may be non linear: for
example, when the time varying disturbances follow an AR(1) process uit = ρuit−1 + wit , where
wit is a white noise. However, in this situation the model can be transformed by the quasi-difference
operator [I−ρL] into an autoregressive regression, leading to the estimating equations [I−ρL]Π =
[I−ρL]M (b)+Φ(β )E (xix

′
i)
−1 where Φ

(
β
)

is now the parameterization of the covariance matrix

E [wix
′
i] and the variance matrix Σ = E(wiw

′
i) can be linearly parameterized.

12 On the contrary, one may be particularly interested in the serial correlation structure of the
dependent variable per se without being willing to make any assumption on the Π matrix. In this
case, we have M(b) = Π with Φ(β ) = Ψ(δ ) = 0, so that Vw = Σ(λ ) are the only equations to be
considered.
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where A is a matrix parameterized by a vector of parameters θ of (primary and
secondary) interest, d is a vector of constants, usually period or year constants, and
Ω is the covariance matrix of the disturbances also parameterized by θ .

Writing a model in such a general form usually involves many parameters with
very little substantive content, in which we are not really interested. For example,
in all the cases considered so far, the matrix E(xix

′
i) of second order moments of the

explanatory variables is unconstrained and implicitly parameterized by its KT (KT +
1)/2 individual elements. The problem is thus how to eliminate the set, or only a
subset, of parameters θ s of secondary interest, in such a way that it does not affect
the efficiency of the ALS estimator for the remaining subset of parameters θ p. The
intuitive solution is to solve for θ s in an appropriate subset of equations, as function
of the θ p and the moments of the variables; then to substitute them in the remaining
equations, so that they only include θ p and the moments; and finally to proceed to
the estimation on these equations.

It can be shown that the ALS estimators of the parameters of interest on the
transformed and reduced set of equations can be as efficient as those on the full
set of equations, as long as the numbers of eliminated parameters and eliminated
equations are equal (Crépon, Kramarz and Trognon, 1998). This result can be very
useful in practice. For example, one can get rid of all the constant terms d in the
equations (as long as there are no constraints on them) by discarding the first order
conditions and centering the variables at their overall means, or at their period or
year means. The reduced set of moment conditions simply becomes:

Ω(θ) = A(θ)E(ziz
′
i)A(θ)′ −A(θ)E(zi)E(z′i)A(θ)′ (5.22)

= A(θ)Vzi
A(θ)′ (5.23)

where Vzi
= E

(
ziz
′
i

)
−E
(
zi

)
E
(
z′i
)
.

An even more obvious case is when the parameters to be eliminated are separately
entering one equation only. Then one has simply to drop such equations. We can
thus discard all the equations corresponding to the matrix E(xix

′
i) of second order

moments of the explanatory variables, if the model does not imply any restrictions
involving it (contrary, for example, to the VAR model we consider in Appendix A).
Likewise, we can eliminate the equations corresponding to the matrix E(y

i
y′

i
) of

the second order moments of the dependent variable if no restrictions are made on
the covariance matrix E(viv

′
i) of the disturbances (contrary to what we do in the

previous Sect. 5.2.4 and again in the case of the VAR model in Appendix A).

5.2.6 The Vector Representation of the Chamberlain
Estimating Equations

In practice, in order to apply Asymptotic Least squares (ALS) to the Chamberlain
estimating equations, we have to write these equations in vector form rather than
in matrix form. A systematic method to do this is to apply a “Vec” operator, which
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simply stacks one above the others the columns of a matrix. This operator has some
convenient properties that makes such transformations easy and powerful. If A =
(c1 · · ·cK), by definition

Vec(A) =

⎛

⎜
⎝

c1
...

cK

⎞

⎟
⎠ , (5.24)

and it can be shown in particular that if the matrix A of dimension L×K is the
external product (v1v′2) of the two column vectors v1 and v2 of dimension L and
K respectively, then the column vector Vec(A) of dimension LK is equal to the
Kronecker product of v1 by v2: Vec(A) = Vec(v1v′2) = v2⊗ v1.

In Appendix B we recall some other properties of this operator and apply them to
show that the vector representation of the four important specifications of the linear
regression model (5.5) considered in Sect. 5.2.3, can take the general form:

π−H(m)γ = 0, (5.25)

where π = Vec(Π′) is the column vector of the matrix Π stacked by rows, γ is the
parameter column vector of parameters of primary and secondary interest, and H is
a matrix function of m, where m and the dimension of H vary with the specification.
While the matrix H is constant in the case of Correlated Effects (CE), it depends on
m = E(xix

′
i) in the cases of Errors in Variables (EV) and of Weak Simultaneity (WS).

In the case of a Lagged Dependent Variable (LDV) specification, H is a function of
m = π itself, implying an implicit relation between π and γ .

5.2.7 The Estimation of Matrix Π

The auxiliary parameters entering the Chamberlain estimating equations are the mo-
ments of the variables, or are functions of them as the coefficients of Π; they are also
functions of the covariance matrix Vw of the residuals wi of the linear projection of
y

i
on xi, if restrictions are imposed on the serial correlation of the disturbances. We

not only have to estimate these moments, but also the asymptotic variances of their
limiting distribution, since these variances play an important role in the practical im-
plementation of ALS estimators in the second stage of the Chamberlain method. As
we shall see in the next Sect. 5.3, they are necessary to compute consistent estima-
tors for the standard errors of the estimated parameters of interest, and they are also
needed in order to compute the optimal (efficient) ALS estimators and to perform
specification tests.

The estimation of the moments and their asymptotic variances is straightforward.
Using the notation z′i = (y′

i
,x′i), we want to estimate the vector of moments m =

E(mi) and its covariance matrix Vm = Var(mi), where mi =Vec(ziz
′
i) = (zi⊗ zi), or

more precisely mi = D(zi⊗ zi), D being a selection matrix which keeps only the
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different cross-products from Vec(ziz
′
i).

13 The expectation m and covariance Vm in
the population are estimated by the corresponding empirical mean m̂ and covariance
V̂m̂ in the sample:

m̂ =
1
N

N

∑
i=1

mi and V̂m̂ =
1
N

N

∑
i=1

(mi− m̂)(mi− m̂)′.

Direct application of the weak law of large numbers and of the central limit theo-
rem tells that under very general conditions m̂ is a consistent estimator of m = E (mi)
with a normal asymptotic distribution of covariance V m̂, which is itself consistently

estimated by V̂ m̂ :

m̂
P−→ E (mi) with

√
N(m̂−E (mi))

D−→ N(0,V m̂) and V̂ m̂
P−→V m̂.

5.2.7.1 Estimation of Matrix Π Alone

The vector π (= vec (Π′)), formed by stacking the column vectors of the transposed
matrix Π, can be directly estimated as the vector of coefficients in the overall system
of the T stacked year regressions of y

i
on IT ⊗ x′i:

y
i
= (IT ⊗ x′i)π +wi.

The Generalized Least Squares (GLS) estimator π̂ of π is given by

π̂ = (IT ⊗ x′i)′(IT ⊗ x′i)
−1

(IT ⊗ x′i)yi

= IT ⊗ xix
′
i
−1

y
i
⊗ xi

(5.26)

where a bar over an expression h(zi) stands for the empirical mean over the sample
(i.e., h(zi) = 1/N ∑i h(zi)).14 This estimator follows asymptotically a normal distri-
bution and its asymptotic covariance matrix Vπ̂ is equal to:

Vπ̂ = [IT ⊗E(xix
′
i)
−1]E(wiw

′
i⊗ xix

′
i)[IT ⊗E(xix

′
i)
−1]. (5.27)

13 Using the operator Vech for a symetric matrix, one can also write mi = Vech(ziz
′
i). See

Appendix B.
14 Note that the GLS estimator π̂ is identical to the estimator obtained by stacking as a column
vector the T separate OLS estimators of the row vectors of coefficients (πt.) in the T separate year
regressions yit=πt.xi + wit (or (5.2)), since these T separate regressions have the same regressors
xi. The GLS asymptotic covariance matrix Vπ̂ in the case of homoscedastic errors also coincides
with the corresponding asymptotic covariance matrix estimated on the basis of the T separate OLS
estimators. However, it is also consistently estimated in the case of heteroscedastic errors (see
below), while the latter is not.
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Vπ̂ can be consistently estimated by V̂π̂ obtained by replacing in (5.27) the expec-

tations E(xix
′
i)
−1 by the sample averages xix

′
i
−1

and the errors wi by the estimated
residuals ŵi = y

i
− (IT ⊗ x′i)π̂ .

V̂π̂ is robust to the heteroscedasticity of the errors wi (White 1980). Note, how-
ever, that the middle term E(wiw

′
i⊗ xix

′
i) in the expression of Vπ̂ includes moments

of the fourth order, which can be poorly estimated. Under the assumption of ho-
moscedasticity, this term simplifies to:

E(wiw
′
i⊗ xix

′
i) = E(E(wiw

′
i|xi)⊗ xix

′
i) = E(wiw

′
i)⊗E(xix

′
i) ,

and Vπ̂ also simplifies to:

V c
π = E(wiw

′
i)⊗E(xix

′
i)
−1 , (5.28)

which now involves only moments of the second order that can be more precisely
estimated.

5.2.7.2 Joint Estimation of Matrix Π and Other Relevant Moments

The Chamberlain estimating equations, as we have seen in Sects. 5.2.2–5.2.4, often
include, in addition to the coefficients of matrix Π, other relevant moments such
as E(xix

′
i) in the cases of the Error in Variables and Weak Simultaneity specifi-

cations, and E(wiw
′
i) when simplifying assumptions are imposed on the structure

of covariance matrix of the disturbances. In such cases, the column vector of all
auxiliary parameters to be estimated in the first stage of the Chamberlain method
is not only π but πe = (π ′,m′w,m′x)

′
where mw =Vec(E(wiw

′
i) = E(wi ⊗wi) and

mx =Vec(E(xix
′
i) = E(xi⊗ xi).

While mx can be directly estimated by the corresponding sample average m̂x, this
is not so for mw since the residuals wi are not observed and have first to be estimated
themselves as ŵi = y

i
− (IT ⊗ x′i)π̂ . However, the estimator computed by simply

taking the sample average of the Kronecker product of the estimated residuals: m̂w =
ŵi⊗ ŵi has the same asymptotic limiting behavior as if these residuals were exactly
known. It can thus be shown that π̂e = (π̂ ′, m̂′w, m̂x)

′
has the following asymptotic

joint normal distribution:

√
N

⎛

⎝
π̂−π
ŵi⊗ ŵi−mw
xi⊗ xi−mx

⎞

⎠ D−→ N

⎛

⎝0,

⎛

⎝
V11

V21 V22

V31 V23 V33

⎞

⎠

⎞

⎠

with

V11 = Vπ̂ as in (5.27),
V21 = E

[
wiw

′
i⊗ (wix

′
iE(xix

′
i)
−1)
]
,
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V31 = E
[
xiw

′
i⊗ (xix

′
iE(xix

′
i)
−1)
]
,

V22 = E [wiw
′
i⊗ (wiw

′
i)]−mwm′w,

V32 = E [xiw
′
i⊗ (xiw

′
i)]−mxm′w,

V33 = E [xix
′
i⊗ (xix

′
i)]−mxm′x.

As indicated before for V11 = Vπ̂ , all the asymptotic covariance matrices Vsl in-
volve moments of the fourth order and thus can be poorly estimated. However, also
as before, their expression can be substantially simplified under the assumption that
the distribution of the residuals wi conditional on xi is homoscedastic and normal.
Under this assumption, the covariance matrix V11 of π̂ is the one given in (5.28),
and V22 is only function of the moments of second order in mw, while V21, V31 and
V23 are zero matrices. Likewise, if the normality assumption can be extended to the
explanatory variables x, V33 can be expressed as a similar function of the moments
of second order in mx.

5.3 Asymptotic Least Squares

5.3.1 ALS Estimation

The Chamberlain second stage estimators are based on the so called Minimum
Distance method (Malinvaud, 1970, Chamberlain, 1982) or also known as the
Asymptotic Least Squares method (Gourieroux, Monfort and Trognon, 1985). This
method applies to situations in which the nθ parameters of (primary and secondary)
interest θ to be estimated are related by ng estimating equations to nμ auxiliary pa-
rameters μ , which have already been consistently estimated. From now on in Sects.
5.3 and 5.4, we shall usually speak of the parameter θ and the parameter μ and we

shall note, whenever needed, their true values by θ 0 and μ0, the assumption being

that these true values verify exactly the ng estimating equations g(θ 0,μ0) = 0.

5.3.1.1 Basic Result

Let μ̂ be a consistent and asymptotically normal estimator of the auxiliary parame-
ter μ , computed in a first stage on a sample of size N, and let Vμ̂ be its asymptotic

covariance matrix Vμ̂ , that is
√

N(μ̂ − μ0) D−→ N(0,Vμ̂). The principle of the ALS

method is to choose a θ̂ such that estimating equations g(θ̂ , μ̂) are as close as pos-
sible to zero. Since the dimension ng of g is usually larger than that nθ of θ , it is
impossible to have exactly g(θ̂ , μ̂) = 0 and hence θ̂ is computed by minimizing a
weighted quadratic sum of the g’s.

More precisely, defining θ̂(S) as:

θ̂(S) = Arg minθ

{
g(θ , μ̂)′SNg(θ , μ̂)

}
, (5.29)
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where S = (SN)N=1,...,∞ is a sequence of weight matrices possibly depending on
the sample, and assuming that the weight matrix SN converges in probability at the
rate N to a given matrix S0 and that the functions g verify some identifiability and
regularity conditions,15 it can be shown that θ̂(S) is a consistent and asymptotically
normal estimator of the true parameter θ 0, that is:

√
N(θ̂(S)−θ 0) D−→ N(0,Vθ̂(S))

with

Vθ̂(S) =
[

∂g′

∂θ
S0

∂g
∂θ ′

]−1 ∂g′

∂θ
S0

∂g
∂ μ ′

Vμ̂
∂g′

∂ μ
S0

∂g
∂θ ′

[
∂g′

∂θ
S0

∂g
∂θ ′

]−1

. (5.30)

In this formula, the partial derivative matrices ∂g
∂θ ′ and ∂g

∂ μ ′ are evaluated at θ 0,μ0.

A consistent estimator V̂θ̂(S) can be obtained by computing them at θ̂ , μ̂ and by

replacing Vμ̂ by a consistent estimator V̂μ̂ . Obviously the choice of the weight ma-
trix affects the asymptotic behavior of the ALS estimator. In Sect. 5.3.2, we show
that there exists an optimal choice such that the corresponding ALS estimator is
asymptotically efficient.

5.3.1.2 Application to the Chamberlain Approach

The implementation of ALS is simplified when the estimating equations are linear
in the parameter of interest θ and thus the objective function is a simple quadratic
function of θ . This applies in the Chamberlain framework when the restrictions
on the Π matrix implied by the modeling assumptions can be written in a vector
form as:

π0 = H(m0)θ 0 (5.31)

where m0 is a vector of second order moments of the variables. As shown in
Sect. 5.2.6 and Appendix B, this applies in particular for the four main specifica-
tions of correlated effects, errors in variables, weak simultaneity and lagged depen-
dent variable and their combinations.

When this is the case, we can derive the following explicit expression for the
solution θ̂ (S) of (5.29):

θ̂(S) = [H(m̂)′SNH(m̂)]−1H(m̂)′SN π̂ = P(SN , m̂)π̂. (5.32)

15 The regularity conditions are that g is twice continuously differentiable and that ∂g′
∂θ S0

∂g
∂θ ′ is

invertible when evaluated at the true θ 0. The identifiability condition is that g(θ ,μ0) = 0 implies

θ = θ 0. This condition requires that ng ≥ nθ .
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The implementation of ALS is further simplified when the H matrix is constant,
as in the case of the correlated effects specification. In this case, the asymptotic
covariance matrix of θ̂ (S) given by (5.30) simply becomes:

Vθ̂(S) = [H ′S0H]−1H ′S0Vπ̂ S0H[H ′S0H]−1 = P(S0)Vπ̂ P(S0)′. (5.33)

To obtain both θ̂ and a consistent estimator Vθ̂(S) of its covariance matrix, it is thus

enough to know π̂ and a consistent estimator of its covariance matrix Vπ̂ .16

If the H matrix is not a constant, as in the case of three other specifications, the
formula defining Vθ̂(S) is more complicated:

Vθ̂(S) = P(S0,m
0)V (π̂, m̂)P(S0,m

0)′ (5.34)

where instead of simply being Vπ̂ , the matrix V (π̂, m̂) is

V (π̂, m̂) =
{[

I− ∂Hm0

∂m
θ 0
]

Vπ̂,m̂

[
I− ∂Hm0

∂m
θ 0
]}

. (5.35)

In the case of errors in variables or weak simultaneity where m is E(xix
′
i), it is thus

necessary to compute the empirical second order moments in xix
′
i in addition to π̂

to obtain θ̂(S). But it is also necessary to compute the covariance matrices of these
estimators, which involves moments of the fourth order, in order to estimate the
asymptotic covariance Vθ̂(S). Neglecting this complication and using formula (5.33)
instead of (5.34) will result in a biased estimator for the asymptotic covariance Vθ̂(S).

5.3.2 The Optimal ALS Estimator

The asymptotic properties of the different ALS estimators θ̂(S) depend on their

limiting weight matrix S0. If W = ∂g
∂ μ ′Vμ

∂g′
∂ μ is invertible, there is an optimal choice

S∗0 = W−1 leading to an asymptotically efficient estimator (meaning that for any
weight matrix S0 different from S∗0, there exists a symmetric positive matrix Δ such
that: Vθ̂(S0) = Vθ̂(S∗0)

+Δ ).17 The asymptotic covariance matrix for the optimal ALS

estimator θ̂(S∗) thus simplifies as follows:

16 Note that the formulas of (5.32) and (5.33) giving θ̂ and Vθ̂(S) are the formulas of the
weighted least squares estimator of θ 0 (with weight matrix SN ) in the linear regression model
π̂ = H(m̂)θ 0 + ε providing a first order approximation to the estimating equations (5.31), with

ε =− ∂H(m0)
∂m (θ 0)(m̂−m0)+(π̂−π0).

17 The condition that W = ∂g
∂ μ ′Vμ

∂g′
∂ μ requires that there is no solution to the equation (∂g′/∂ μ)v =

0, which, in turn, requires that the dimension of μ exceeds or equal that of g : nμ ≥ ng.
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Vθ̂(S∗0) =
[

∂g′

∂θ
S∗0

∂g
∂θ ′

]−1

=

⎡

⎣∂g′

∂θ

[
∂g
∂ μ ′

Vμ
∂g′

∂ μ

]−1
∂g
∂θ ′

⎤

⎦

−1

. (5.36)

When the Chamberlain estimating equations take the form of (5.31): π0 = H(m0)θ 0

and if the matrix H is constant as in the case of the correlated effects specification,
the asymptotic covariance matrix of the optimal ALS estimator simplifies further as:

Vθ̂(S∗0) =
[
H ′V−1

π̂ H
]−1

. (5.37)

Note that in the case the optimal ALS estimator is the Generalized Least Squares
estimator of θ in the linear regression equation π̂ = Hθ + ε (see footnote 16 in the
preceding Sect. 5.3.1.2).

5.3.2.1 Implementation of the Optimal ALS Estimator

The practical implementation of the optimal ALS estimator θ̂(S∗) is actually very
similar to that of the Generalized Least Square estimator. Since the optimal weight
matrix is generally unknown being a function of the true parameter θ 0 (and of
the variance of the estimated auxiliary parameter μ̂ ), it has to be generally per-

formed in two steps. In the first step a consistent ALS estimate θ̂ is computed using
an arbitrary weight matrix (and the consistent estimates of μ̂ and V̂μ̂ already ob-

tained). In the second step, this estimate and the previous estimates of μ̂ and V̂μ̂

are used to derive a consistent estimator Ŝ∗0 =
[

∂g
∂ μ ′ (θ̂ , μ̂)V̂μ

∂g′
∂ μ (θ̂ , μ̂)

]−1
of the op-

timal weight matrix S∗0 and compute the estimator θ̂(Ŝ∗0). Since Ŝ∗0 converges in
probability to S∗0, the estimator θ̂(Ŝ∗0) obtained in this second step is asymptotically
efficient.

It is not always necessary to implement a two step procedure in the context of the
Chamberlain framework. When the estimating equations take the form π0 = f (θ 0)
the covariance matrix of π̂ is already the W matrix and there is no need for a first
step, and the asymptotic covariance matrix of the optimal θ̂ (S∗0) is given directly by
the following expression which generalizes (5.37):

Vθ̂(S∗0)
=
[

∂ f ′

∂θ
V−1

π̂
∂ f
∂θ ′

]−1

. (5.38)

One advantage of the ALS is its flexibility in allowing nested estimation and test-
ing. Let us assume that θ 0(of dimension nθ ) is itself subject to restrictions and can
be expressed more parsimoniously in terms of a parameter γ0 (of smaller dimension

nγ < nθ ) as: θ 0−q(γ0) = 0. Two estimation procedures are possible: a direct one in
which the estimation of γ is performed on the basis of the set of estimating equations
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g(q(γ0),μ0), and an indirect one in which an estimated θ̂ is obtained as previously
and then used as an auxiliary parameter to estimate γ on the basis of the reduced set

of estimating equations: θ 0−q(γ0) = 0. It can be shown that the direct and indirect
estimators of γ are asymptotically equivalent if the optimal ALS is implemented in
both cases.

5.3.2.2 Finite Sample Properties of the Optimal ALS Estimator

The optimal properties of the two step ALS estimator are asymptotic ones with the
sample size N. In practice they may require a very large sample size N to hold
precisely enough. Simulation experiments (performed in the related GMM context
by Arellano and Bond, 1991, on small samples of size N = 100) tend to show that the
one step estimators may be practically as good as the two steps optimal estimator.
Moreover, these simulation experiments indicate that the estimated standard errors
of the one step estimators are satisfactory, while the estimated standard errors of the
two steps estimators can be downward biased. These results have been confirmed in
the context of nonlinear models by Bertscheck and Lechner (1995).

Such poor performance is related to the estimation of the optimal weight matrix.
This matrix is the inverse of W = ∂g

∂ μ ′Vμ
∂g′
∂ μ . Note that W (not its inverse) enters in

(5.30) from which the standard errors of the first step estimates are obtained. Thus,
the problem is twofold: to have a good estimator of W and to have a good estima-
tor of its inverse. The reason why W may be poorly estimated is that it involves
moments of the fourth order which, for a sample of a given size, are less precisely
estimated than moments of second order. W inverse can also be poorly estimated
even if W is not, since a small error in W can lead to a magnified error in its inverse.
This happens when W is “badly conditioned”, that is when the “condition number”
of this matrix is high, where the condition number of matrix A is defined as:

c(A) = ||A||.||A||−1 =
max (eigenvalues of A)
min (eigenvalues of A)

.18

A limiting case is when W is not invertible (and the condition number is infinite).
This can happen when the number of observations is not large enough relatively

to the size of W . In the case where W = V̂π̂ = [IT ⊗E(xix
′
i)
−1

][E(wiw
′
i⊗ xix

′
i)][IT ⊗

E(xix
′
i)
−1], W is invertible only if (wi⊗ xi)(wi⊗ xi)

′ is also invertible, which re-
quires N to be larger than KT 2 (i.e., the dimension of the column vector wi⊗ x).
For example, if T = 10 and K = 2 the number of observations N must be greater
than 200.

18 The condition number is always greater than one. Large values indicate that in the computa-

tion of the inverse of a matrix A + E the relative error
∥
∥
∥(A+E)−1−A−1

∥
∥
∥/
∥∥A−1

∥∥ can be high

compared with the relative error ‖E‖/‖A‖ (see Stewart, 1973). The condition number is an upper
bound for this relative error.
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5.3.3 Specification Testing in the ALS Framework

Generally, the number of estimating equations ng is much larger than the dimension
nθ of the parameter of interest θ . A specification test of the model based on the
fact that the equations must be verified at the true θ 0 (i.e., a test for overidentifying
restrictions) can be implemented. The intuition behind the test is to check whether an
appropriately weighted quadratic form of the residuals in the estimating equations is
small, implying that these residuals are all small indeed. More precisely, under the
null hypothesis that the estimating equations are compatible (i.e., ∃ θ 0 / g(θ 0,μ0) =
0), it can be shown that the weighted quadratic form of the residuals ζ (S) converges
in distribution towards a χ2 with (ng−nθ ) degrees of freedom

ζ (S) = Ng(θ̂(S), μ̂)
[
V (g(θ̂(S), μ̂))

]−
g(θ̂(S), μ̂) P−→ χ2(ng−nθ ), (5.39)

where [V (g(θ̂(S), μ̂))]− is a generalized inverse of the asymptotic covariance matrix
of the residuals of the estimating equations at the estimated values of the parameters,
θ̂ and μ̂ .19 Note that [V (g(θ̂(S), μ̂))]− is not the given weight matrix S used in the

estimator θ̂ , except when S = S∗ is the optimal weight matrix (as explained below in
Sect. 5.3.3.1). Thus, when implementing the optimal ALS in a two step procedure,
the objective function for the first step is not a valid test statistic; it is only valid in
the optimal ALS. In order to perform the test after the first step one has to recompute
the objective function using [V (g(θ̂(S), μ̂))]− instead of S.

It is also important to note that the test statistics ζ (S) are asymptotically equivalent
under the null hypothesis for all weight matrices S.20 Therefore, the asymptotic
properties of the tests does not depend on whether an arbitrary ALS estimator or the
optimal one has been used.

5.3.3.1 Andrews’ Problem

The actual implementation of the specification test in (5.38) raises a difficult prob-
lem, known as Andrews’ problem (Andrews, 1985). The covariance matrix V of the
residuals has the following form

V (S,W ) = V (g(θ̂(S), μ̂))

=
[

I− ∂g
∂θ ′

[
∂g′
∂θ S ∂g

∂θ ′

]−1 ∂g′
∂θ S

]
W

[
I− ∂g

∂θ ′

[
∂g′
∂θ S ∂g

∂θ ′

]−1 ∂g′
∂θ S

]′

19 V is the asymptotic covariance matrix of the residuals g(θ̂(S), μ̂) multiplied by
√

N, and there-
fore the proper covariance matrix of the residuals is V/N. This is why the test statistic ζ (S) is
written with a factor N.
20 This means that the difference between any two test statistics (ζ (S1)−ζ (S2)) converges towards
zero in probability. See Gourieroux and Monfort (1989), and also Newey (1985) for a related issue
on specification tests in GMM.
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with W = ∂g
∂ μ ′Vμ

∂g′
∂ μ . By construction, this is the covariance matrix of the pro-

jection of the vector g(θ 0, μ̂) (whith asymptotic covariance matrix W ) on the space

orthogonal to the subspace generated by the columns of the matrix ∂g
∂θ ′ , i.e.,

[

I− ∂g
∂θ ′

[
∂g′

∂θ
S

∂g
∂θ ′

]−1 ∂g′

∂θ
S

]

g(θ 0, μ̂)

in the metric defined by the weight matrix S. Clearly this is not an invertible matrix.
Thus it is necessary to compute the weight matrix used in the test as a generalized
inverse of V . The Andrews’ problem arises from the fact that the V matrix is not
known and has to be estimated, and from the non continuity of the generalized
inverse operation. It results that a generalized inverse of a consistent estimator of V
is not necessarily a consistent estimator of a generalized inverse V−.

One way to solve this problem is to find a specific generalized inverse of
V̂ (g(θ̂(S), μ̂)) which is a continuous function of θ̂ , μ̂ and of V̂μ̂ . There are two
cases in which this can be done. The first is when the test is based on the optimal
ALS estimator. The second corresponds to a re-formulation of the test based on a
reduced form of the estimating equations.

1. It can be shown that the optimal weight matrix W−1 used to implement
the optimal ALS estimator is a particular generalized inverse of the covariance
matrix V .21 Since Ŵ = ∂g

∂ μ ′ (μ̂, θ̂)V̂μ̂
∂g′
∂ μ (μ̂, θ̂) is a consistent estimator of W and

since the inverse is a continuous operator, Ŵ−1 is a consistent estimator of W−1.
Therefore the test can be implemented, by using the objective function of the opti-
mal ALS as a test statistic:

Ng(θ̂
∗
, μ̂)′S∗Ng(θ̂

∗
, μ̂) D−→ χ2(ng−nθ ) (5.40)

where θ̂
∗

is the optimal ALS estimator, and S∗N = Ŵ−1 the optimal weight matrix.
2. Assume that the parameter of interest θ can be solved out in terms of the aux-

iliary parameter μ using nθ of the ng estimating equations. After the elimination of
θ the remaining ng− nθ equations h(μ) = 0 must be verified at the true value μ

0
.

These equations h(μ0) = 0, are the direct expression of the overidentifying restric-
tions of the model and they can be simply tested with the statistic

Nh(μ̂)′
(

∂h
∂ μ

V̂ μ
∂h′

∂ μ

)−1

h(μ̂) D−→ χ2(ng−nθ ). (5.41)

21 We have to verify that: VW−1V = V. If we write V = [I−P]W [I−P]′, with P =
∂g
∂θ ′

[
∂g′
∂θ W−1 ∂g

∂θ ′

]−1 ∂g′
∂θ W−1, it is straightforward to see that [I−P]W = W [I−P]′. The result

then follows from the fact that [I−P] is a projector (idempotent), which implies [I−P]2 = [I−P] .
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It can be shown that this statistic is asymptotically equivalent to the previous test
statistics.22

5.4 The Equivalence of the GMM and the Chamberlain Methods

In this section we show how the extended view of the Chamberlain method given
in Sect 5.2.5 can be reinterpreted in terms of the Generalized Method of Mo-
ments (GMM). More precisely we show that the relations between the moments
and the parameters of interest used as the Chamberlain ALS estimating equations
can also be taken as orthogonality conditions which can be used to implement GMM
estimators.

Starting with the general linear model

vi = vi(zi,θ 0) = A(θ 0)zi,

and with
E(vi) = 0, and E(viv

′
i) = Ω(θ 0).

we can write in vector form the following moment conditions:

A(θ 0)E(zi) = 0
D[A(θ 0)⊗A(θ 0]E(zi⊗ zi) = D Vec (Ω(θ 0))

(5.42)

where the selection matrix D keeps only the elements of the symetric matrix on the
diagonal or below. Since these expressions are linear in the moments, they can be
equivalently written as orthogonality conditions

E(h(zi,θ 0)) = 0, (5.43)

where

h(zi,θ) =

⎛

⎝
A(θ)zi

D[A(θ)⊗A(θ)]zi⊗ zi−D Vec (Ω(θ))
.

⎞

⎠ (5.44)

5.4.1 A Reminder on the GMM

Before proceeding, we recall briefly the principle of GMM estimation. As just in-
dicated, GMM is based on the orthogonality conditions expressing that a given

22 In fact, it is one of them corresponding to the special choice of a weight matrix that only weights
the equations used to eliminate θ . The problem of the generalized inverse is solved here as in the
case of the optimal estimator, because it is possible to find a specific generalized inverse which is
a continuous function of the parameters and variances and therefore can be consistently estimated
by replacing these parameters and variances by their estimates.
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function h of the parameter θ and the variables z has a zero expectation at the
true value θ 0 of the parameter. The principle of estimation is to minimize a
quadratic form of the empirical counterpart of these orthogonality conditions with
respect to θ

θ̃ = θ̃(S) = Arg min
θ

[
1
N ∑

i
h(zi,θ)

]′
SN

[
1
N ∑

i
h(zi,θ)

]

,

where S = [SN ]N=1,...∞ is a sequence of weight matrices, and θ̃ = θ̃(S) is the result-
ing GMM estimator of θ .

Under some identifiability and regularity conditions on h, it can be shown that
whatever the choice of the sequence of weight matrices S, provided it converges in
probability to a weight matrix S0, the GMM estimator θ̃ converges in probability to
the true θ 0 and is asymptotically normally distributed, with an asymptotic covari-
ance matrix Vθ̃(S) of θ̃ depending on S0. More precisely, we have

√
N(θ̃ −θ 0)→ N(0,Vθ̃(S)),

with

Vθ̃(S) =
[
G(θ 0)

′S0G(θ 0)
]−1

G(θ 0)
′S0WS0G(θ 0)

[
G(θ 0)

′S0G(θ 0)
]−1

,

where G(θ) = E
(

∂h
∂θ ′ (zi,θ)

)
and W = V (h(zi,θ 0)) = E(h(zi,θ 0)h(zi,θ 0)

′).
This matrix Vθ̃(S) is a function of both G(θ 0) and W , which are unknown, but can
be estimated consistently by:

G̃(θ̃) =
1
N ∑

i

∂h(zi, θ̃)
∂θ ′

and W̃ =
1
N ∑

i
h(zi, θ̃)h(zi, θ̃)′.

As for the ALS (see Sect. 5.3.2), there is a special choice S∗0 of the limit of the
weight matrices S that makes the corresponding estimator optimal (based on the
same set of orthogonality conditions). This corresponds to S∗0 = W−1, the inverse
of the covariance matrix of the orthogonality conditions. In this case the asymptotic
covariance matrix of θ̃ becomes

Vθ̃(S∗0) =
[
G(θ 0)

′W−1G(θ 0)
]−1

.

Since the W matrix is unknown, the optimal GMM estimator cannot be directly im-
plemented. As for the ALS it is necessary to proceed in two steps and to compute
in a first step a consistent estimator W̃ based on a GMM estimator with an arbitrary
weight matrix. Note that the considerations concerning the small sample proper-
ties of the optimal ALS estimators also apply to the optimal GMM estimators (see
Sect. 5.3.2.2).
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5.4.2 Equivalence of the GMM and the Chamberlain Methods

Denoting Zi the vector formed by the independent elements of zi and
(
zi⊗ zi

)
, the

ALS estimating equations (5.41) and the GMM orthogonality conditions (5.42) can
be rewritten as:

B(θ 0)E(Zi)−C(θ 0) = 0

and
E(B(θ 0)Zi−C(θ 0)) = 0.

It is easy to see that if we use the same weight matrix S, both estimators are not only
asymptotically equivalent but also numerically identical. Indeed the ALS estimator
θ̂ = θ̂ (S) results from the minimization of

([

B(θ)
1
N ∑

i
Zi−C(θ)

]′
S

[

B(θ)
1
N ∑

i
Zi−C(θ)

])

and the GMM estimator θ̃ = θ̃ (S) from that of
(

1
N ∑

i
[B(θ)Zi−C(θ)]′S

1
N ∑

i
[B(θ)Zi−C(θ)]

)

.

The two estimators are identical, since the two objective functions are obviously the
same:

1
N ∑

i
[B(θ)Zi−C(θ)] = B(θ)

1
N ∑

i
Zi−C(θ).

It follows that the optimal estimators are also identical. Indeed, we can verify that
the optimal ALS weight matrix S∗ALS = [B(θ 0)V (Zi)B(θ 0)

′]−1 is obviously equal to
the optimal GMM weight matrix S∗GMM = [V (B(θ 0)Zi−C(θ 0))]

−1.
In practice, however, the optimal weight matrices S∗ALS and S∗GMM have to be

estimated, and this can be done in several ways. Numerical differences between the
optimal ALS and GMM estimators can thus arise in small samples. Let us mention
three reasons why this is actually happening. The first one is just a simple matter
of computation, while the other two are related to the different ways in which the
Chamberlain method and the GMM are implemented.

Assume that we dispose of a first step estimate θ̂ 1 = θ̃ 1 obtained with either
one of the two methods for a given weight matrix. The ALS optimal weight matrix
is computed as Ŝ∗ALS = [B(θ̂ 1)V̂ (Zi)B(θ̂ 1)

′]−1. For GMM, let us denote by R̃i the
residual of the orthogonality condition for the observation i: R̃i = B(θ̃ 1)Zi−C(θ̃ 1).
Since E(R̃i) = 0, there are two consistent estimators of the optimal GMM weight
matrix:

S̃∗1GMM = R̃iR̃
′
i

S̃∗2GMM = R̃iR̃
′
i− R̃i R̃

′
i =
(

R̃i− R̃i

)(
R̃i− R̃i

)′
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where a bar over an expression stands for its empirical mean over the sample. It is
usually S̃∗1GMM which is computed, while it is S̃∗2GMM which equals Ŝ∗ALS.

The results on the elimination of parameters of secondary interest presented in
Appendix C can be extended to the GMM.23 If the number of discarded orthogo-
nality conditions is the same as the number of eliminated parameters, there is no
loss of asymptotic efficiency in the estimation of the remaining parameters; if it is
larger, there is a loss of asymptotic efficiency, but consistency is preserved. Contrary
to the Chamberlain approach, the usual practice of GMM amounts to considering
orthogonality conditions which only involve the parameters of primary interest (and
implicitly eliminating the parameters of secondary interest). If all such orthogo-
nality conditions are taken into account, both the optimal Chamberlain and GMM
estimators are equivalent but not identical, since they are not computed on the basis
of the same weight matrix S. If only a subset of them is used (for example, the ones
corresponding to the most obvious valid instruments), the GMM estimator is less
efficient than the Chamberlain estimator.

The GMM always requires a two step estimation to implement the optimal esti-
mator. In the Chamberlain method this is not always the case. When the estimating
equations take the form of a direct linear restriction on π , the optimal weight matrix
is simply the inverse of the covariance matrix of the π estimator (see 5.37). It is also
important to note that in the Chamberlain approach it is possible to keep the same
weight matrix when considering a sequence of nested specifications, while in the
GMM case a weight matrix must be computed for each different specification. This
may be in practice an advantage of the Chamberlain approach.

5.4.3 Equivalence in Specific Cases

We have just shown the general equivalence of the Chamberlain and GMM estima-
tors when all restrictions on all (first and second order) moments of the variables
are considered. It is straightforward to see that the equivalence holds as well when
we only focus on the conditions involving the joint moments of the dependent and
explanatory variables, and any given subset of moment conditions. The ALS esti-
mators based on the estimating equations as written in Sect. 5.2.2 is

Π0 = M(b0)+Φ(β
0
)E
(
xix
′
i

)−1

or
E(y

i
x′i) = M(b0)E

(
xix
′
i

)
+Φ(β

0
)

which are clearly equivalent to the GMM estimators based on the orthogonality
conditions

E
[
y

i
x′i−M(b0)xix

′
i−Φ(β

0
)
]

= 0.

23 See Crépon, Kramarz and Trognon (1998).
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It may be of some interest to be more specific and illustrate the general equivalence
of the GMM and Chamberlain methods in the three important cases of Correlated
Effects, Errors in Variables and Weak Simultaneity.

5.4.3.1 Correlated Effects

Let us suppose for convenience that we only have one explanatory variable. Thus
we have T 2 estimating equations, or orthogonality conditions, for one parameter
of primary interest. We also have T parameters of secondary interest correspond-
ing to the correlated effects. From the expression of Φ given in Sect. 5.2.2 the T 2

orthogonality conditions can be written as

E
(

y
i
x′i−bxix

′
i− lβ ′

)
= 0,

where the β ’s are the covariances between the individual effects and the yearly
x’s. It is easy to see that since the T × T matrix Φ = lβ ′ is constant in columns,
premultiplying it by the (T −1)×T difference matrix Δ results in a (T −1)×T zero
matrix.24 Thus premultiplying the T 2 orthogonality conditions by Δ eliminates the T
parameters of secondary interest β , and gives (T −1)×T transformed orthogonality
conditions:

E(Δ
(

y
i
x′i−bxix

′
i

)
) = E((Δy

i
−bΔxi)x

′
i) = E((Δui)x

′
i) = 0.

This new set of orthogonality conditions simply expresses that the different year
x’s (in levels) can be used as instruments for the model after transforming it in
first differences. They are clearly equivalent to the original set of conditions, since
we have lost exactly T of them in eliminating the T parameters of secondary
interest β .

5.4.3.2 Errors in Variables

Assuming like in Sect. 5.2.3 that we have serially uncorrelated errors in variables
eit (but with possible varying variances E

(
e2

it

)
) and combining them with correlated

effects, the orthogonality conditions can be written as

E(y
i
x′i−bxix

′
i) =

⎡

⎢
⎢
⎢
⎣

β1 +λ1 β2 . . . βT

β1 β2 +λ2 βT
...

. . .
β1 β2 βT +λT

⎤

⎥
⎥
⎥
⎦

24 See footnote 48 in Sect. 5.8.2 for the definition of the difference matrix Δ.
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where βt = cov (μixit) as in the CE case, and λt =−bE
(
e2

it

)
. We have now 2T pa-

rameters of secondary interest, and we are thus looking for
(
T 2−2T

)
transformed

orthogonality conditions only involving the parameter of primary interest b. If we
transform the model in first differences, and consider the year levels of x as poten-
tial instruments, clearly the past values lagged by two years and more and the future
values are valid instruments, while the present values and the past values lagged by
only one year are not since

E (Δvitxis) = E (((uit −beit)− (uit−1−beit−1))(x∗is + eis))

= 0 if s �= t and s �= (t−1)

= −bE
(
e2

is

)
if s = t

= bE
(
e2

is

)
if s = (t−1)

We are thus obtaining (T −1)(T −2) = T 2− 3T + 2 orthogonality conditions
that involve only the parameter b, but we are still missing (T −2) of them. These can
be obtained by taking the second differences of the model, and instrumenting them
by the in–between year levels of x. Clearly we have E (Δvitxit) = −E (Δvit+1xit),
and thus

E ((vit+1− vit−1)xit) = 0.

These new (T −2) equations are by construction independent of the preceding ones.
The total set of T (T − 2) orthogonality conditions are those considered by

Griliches and Hausman (1986); they provide estimates as efficient as the ones of
the Chamberlain method which is based on the T 2 estimating equations and gives
estimates of both the parameter of primary interest and the 2T parameters of sec-
ondary interest.

5.4.3.3 Weak Simultaneity

In this case it is assumed that the current shocks are uncorrelated with the past values
of the explanatory variable x (although they may affect its present and future val-
ues). It is easy to see that the matrix Φ must be upper triangular (see Sect. 5.2.3.3).
Combining correlated effects and weak simultaneity, we have the T 2 orthogonality
conditions

E(y
i
x′i−bxix

′
i) =

⎡

⎢
⎢
⎢
⎣

β1 +λ11 β2 +λ12 . . . βT +λ1T

β1 β2 +λ22 βT +λ2T
...

. . .
β1 β2 βT +λT T

⎤

⎥
⎥
⎥
⎦

where there is now T (T +1)/2 parameters of secondary interest λst = cov (uis,xit)
for s ≤ t in addition to the T previous ones βt = cov (μixit) for correlated effects.
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However, in total, there are only (T (T +1)/2) + (T −1) parameters, since only
T of the (T +1) parameters βT ,λ1T , . . . ,λT T can be identified (from the T covari-
ances of y and the last year level xiT ), and we need T 2−T (T +1)/2− (T −1) =(
T 2−3T +2

)
/2 = (T −1)(T −2)/2 orthogonality conditions in terms of the pa-

rameter of interest only. These are exactly provided by instrumenting the model
transformed in first differences with past levels of x lagged by two years and more:

E(Δuitxis) = E(uitxis)−E(uit−1xis) = 0 if s < (t−1) .25

5.4.3.4 Restriction on the Covariance Matrix of the Disturbances

Finally, it is worthwhile to consider also the case in which assumptions can be made
about the covariance structure of the disturbances. Considering for example the case
in which we assume an error components structure, we know that:

E (visvit) = σ2
μ +σ2

utδt=s, (5.45)

where σ2
ut is the variance of the random shock uit at time t. This corresponds to

(T (T +1)/2) new equations, to (T +1) new parameters: σ2
μ ,σ2

u1, . . . ,σ2
uT , and thus

to ((T −2) (T +1)/2) supplementary orthogonality conditions in terms of the pa-
rameters of primary interest. We can derive them from the equations (5.45) by
writing:

E (vitvis) = E (vit−1vis) , if s < (t−1) ,

or:
E (Δuituis) = 0, if s < (t−1) ,

and thus:

E (Δuityis) = E (Δuit (bxis + μi +uis))

= bE (Δuitxis)+E (Δuit μi)+E (Δuituis) = 0, if s < (t−1) .

These new (T −1)(T −2)/2 orthogonality conditions are simply expressing that
the past values of y lagged by two years or more are valid instruments. The
(T −2) missing orthogonality conditions are less straightforward to derive (see
Ahn and Schmidt 1995). They can be deducted by writing E (Δuituit) = σ2

ut and
E (Δuituit−1) = σ2

ut−1, implying the (T −2) conditions:

E ((uit+1−uit−1)uit) = 0,

which can be rewritten as:

25 Note that if we can assume stationarity, we can obtain an additional set of orthogonality condi-
tions E(uit Δxis) = 0 for s < t−1. See last paragraph of Sect. 5.6.2, and Arellano and Bover (1995)
and Blundell and Bond (1998).
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bE ((uit+1−uit−1)xit)+E ((uit+1−uit−1)yit) = 0.

In the case of Weak Simultaneity, these additional orthogonality conditions are
nonlinear in the parameters of interest b, but in the case of both Correlated Effects
and Errors in Variables, they simply become:

E [(uit+1−uit−1)yit ] = 0,

expressing that the in–between year levels of y can be used as valid instruments for
the model transformed in second differences.

5.5 Monte Carlo Simulations

To give a feeling of how the Chamberlain method and the GMM perform in prac-
tice, we conducted some plausibly calibrated Monte-Carlo simulation experiments
(see Tables 5.1 and 5.2). We consider the consistency and efficiency of the differ-
ent estimators (see Tables 5.3–5.5), for simulated panel data samples of different
lenght (T = 3 and 6) and size (N = 100,400 and 1600), in different “scenarios” cor-
responding to two main types of specification errors: Correlated Effects and Errors
in Variables. We are also concerned with the consistency of the estimated standard
errors (see Tables 5.6–5.8) and the performance of specification tests (see Tables 5.9
and 5.10). But first of all, let us provide some indications necessary to understand
the design of the simulation experiments and thus the validity and limits of our re-
sults (for more details see Appendix E: Design of simulation experiments).

5.5.1 Design of the Simulation Experiments

Taking the simple linear regression model yit = αxit +(μi + uit) with only one ex-
planatory variable, we consider three basic “scenarios”. The first scenario is that of
Non Correlated Errors (NCE), in which the explanatory variable x is uncorrelated
with both disturbance terms μi and uit . The second one is that of Correlated Effects
(CE) where the variable x is correlated with the individual effect μi, but remains
uncorrelated with uit . The first scenario thus corresponds to the standard basic case,
while the second is usually regarded as more realistic since it takes advantage of
the avaibility of panel data to control for potential unobserved correlated individual
effects. Our third scenario combines the Correlated Effects and Errors in Variables
cases (CE + EV) and can be considered as even more realistic. It assumes that the
true explanatory variable x∗ in the model is not observed and that the observed
variable x is measured with a random measurement error, resulting in an additional
error term, say ϕit , in the model and implying a correlation of the current xit with the
current ϕit , but not with the future and past ϕis (s > t and s < t). We have also experi-
mented with a fourth scenario combining Correlated Effects and Weak Simultaneity
(CE + WS), as well as with scenarios with EV and WS only. These scenarios do
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not provide much more insight than the three considered here, and we do not report
their results.

We calibrated the experiments so that we can reproduce some of the features
found in real data sets, in particular when estimating production functions on firm
panel data, as in Mairesse (1990) and Griliches and Mairesse (1998), with y and
x measuring respectively the log of the firm labor productivity and the log of the
firm capital to labor ratio. Normalizing the (average) true value of the parameter of
primary interest α to be 0.5, we assume that the variances of the (simulated) ex-
planatory variable x and of the (simulated) disturbances (μi + uit) are of the same
order of magnitude, normalizing them to be both 1. We also assume that most of
the variability arises from the cross–sectional dimension of the data: that is, gen-
erating x as the sum of a between component ξi and a within component ξit , we
take Var(ξi) = 0.8 and Var(ξit) = 0.2, and similarly we choose Var(μi) = 0.8 and
Var(uit) = 0.2. Note that in addition we assume that the within component (ξit) of
x is highly serially correlated according to a first order autocorrelation process with
parameter 0.7, while we maintain the assumption that the usual errors uit are not
(auto)correlated. This implies that the past and future values of x can be used as
valid and effective instruments in the case of the CE and CE+EV scenarios. Next,
we calibrated the correlated effects and the errors in variables so that we obtain for
the true coefficient α of 0.5 an asymptotic upward bias of 0.2 in the cross–sectional
dimension (for the usual between estimator) and a downward bias of 0.2 in the
time series dimension (for the usual within estimator).26 Finally, we introduced a
fair amount of x related heteroscedasticity in the model by assuming that α is not
constant but randomly distributed across individuals (with mean 0.5 and standard
deviation 0.2), and thus adding to the model another disturbance term of the form
(αi−α)xit .27

For each of the three scenarios we experimented with six panels of different
length and size, covering a set of values comparable to those found in many empir-
ical studies. We combined two time spans: a short one (T = 3) and an average one
(T = 6), with three cross-section sizes: a small, a medium and a large one (N = 100,
N = 400, and N = 1600). For all eighteen resulting configurations we performed
one hundred Monte-Carlo replications, on the basis of which we can compare the
distributions of the different estimators.

For each simulated sample, in addition to the usual estimators (so called total,
between, within, first differences and long differences), we computed four types of
Chamberlain’s and GMM estimators. These estimators correspond to a sequence
of plausible specification errors that an econometrician, without knowing of course
the true model specification, might be willing to compute and compare. The first
three types of estimators match our three scenarios, being respectively based on the

26 These values are large but remain in the plausible set. Note that, since the (asymptotic) biases
of the different estimators are linear functions of these values, simulations with other values do not
add much to the analysis.
27 The relative amount of heteroscedasticity generated by this additional disturbance term may be
on the low side (see Mairesse, 1990). Note that this term is an additional source of serial correlation
in the disturbances, but does not affect the validity of the past and future values of x as instruments.
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assumptions of NCE, CE, and CE+EV specifications. The fourth type assumes a
CE+WS specification encompassing the first three ones.

These four types of Chamberlain’s and GMM estimators are based on four
sets of estimating equations or orthogonality conditions which are sequentially
nested They can thus be directly compared in terms of increasing robustness and
decreasing efficiency, and they allow for straightforward specification tests. The
CE+WS specification only requires the past x to be uncorrelated with the cur-
rent uit which implies (T − 1)(T − 2)/2 orthogonality conditions for α , that is
respectively 1 and 10 for T = 3 and T = 6. The CE+EV specification allows the fu-
ture x to be also uncorrelated with the current uit , which results in T (T −2) (equals
(T − 1)(T − 2)/2 + (T − 1)(T − 2)/2 + (T − 2)) orthogonality conditions for α ,
that is respectively 3 and 24 for T = 3 and T = 6. In the CE specification all the x
(present, past and future) are uncorrelated with uit which results in T (T −1) (equals
T (T −2)+T ) orthogonality conditions, that is respectively 6 and 30 for T = 3 and
T = 6. In the NCE specification all the x’s are also uncorrelated with the individual
effects μi which leads to T 2 (equals T (T −1)+T ) orthogonality conditions, that is
respectively 9 and 36 for T = 3 and T = 6.

For all four assumed specifications we have computed two Chamberlain estima-
tors: CHAM1 and CHAM2. CHAM1 is obtained using as weight matrix the inverse
of the covariance matrix of π estimated under the assumption of homoscedastic-
ity, while CHAM2 is based on the heteroscedasticity consistent estimated covari-
ance matrix of π .28 We have also computed the two comparable GMM estimators:
GMM1 and GMM2. GMM1 is the first step estimator using as weight matrix for
the orthogonality conditions the inverse of the second order moment matrix of the
appropriate instruments, while GMM2 is the corresponding optimal second step es-
timator.

To summarize the behaviour of our different estimators, we computed the means
and standard deviations of their observed distribution over the 100 Monte-Carlo
replications. The discussion of the consistency and efficiency to which we turn next
is mainly based on these summary statistics as given in Tables 5.2–5.5. For all sim-
ulated samples we also computed the asymptotic standard errors of the different
estimators and compared their means over the Monte-Carlo replications with the ob-
served standard deviations of the estimators (obtained from the Monte-Carlo repli-
cations).29 These results are shown in Tables 5.6–5.8. We also performed several
conditional and unconditional χ2 specification tests (of overidentifying restrictions)
for all four assumed specifications. The results are summarized in Tables 5.9 and
5.10, giving the number of rejections for the 5% significance level over the 100
replications.

28 CHAM2 is theoretically optimal for the NCE and CE specifications but not fully so for the
CE+EV and CE+WS specifications. For these two specifications the weight matrix V̂−1

π̂ is not
strictly the optimal one, since it does not account for the the fact that E(xix

′
i), the variance–

covariance matrix of the x′s, is estimated.
29 In fact we prefered to use the square roots of the means of the asymptotic variances rather than
the means of the square roots. However, this does not seem to make any difference.
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5.5.2 Consistency and Bias

The overall plausibility of our simulation design can be appreciated by compar-
ing the usual panel data estimates on the simulated data and those which we found
for real data sets and on which we largely based our calibration choices. Table 5.1
presents such estimates of the elasticity of capital parameter in a Cobb–Douglas pro-
duction function (with constant return to scale) for three samples of manufacturing
firms in France, Japan and the US. Table 5.2 shows, for our three scenarios and the
average period—medium size configuration (T = 6 and N = 400), the means over
the 100 Monte Carlo replications of the corresponding usual panel data estimates of
our parameter of interest α . The results are very similar for the other five sample
configurations.

The basic divergence between the cross-sectional and time series estimates, the
fact that the total and between regression estimates tend to be significantly larger
than the within, the first and long differences estimates, which is found in the three
country samples, is reproduced in the simulated samples when the CE and CE+EV
scenarios are enacted. The other revealing discrepancy among the group of time
series estimates, namely the fact that the first differences estimates tend to be lower

Table 5.1 Usual panel data estimates of a Cobb-Douglas production function∗

French, Japan and US Manufacturing (1967–1979)

Type of France Japan USA
Estimator N = 441 N = 845 N = 462

T = 13 T = 13 T = 13

Total 0.303 0.452 0.221
[0.009] [0.007] [0.007]
0.174 0.292 0.154

Between 0.313 0.469 0.222
[0.031] [0.023] [0.024]
0.192 0.326 0.163

Within 0.196 0.278 0.213
[0.011] [0.009] [0.008]
0.052 0.082 0.096

First differences 0.260 0.183 0.289
[0.014] [0.010] [0.009]
0.064 0.031 0.149

Long differences 0.163 0.359 0.178
[0.039] [0.029] [0.030]
0.038 0.151 0.073

In each cell, the first number is the estimated elasticity of capital, the second in brackets is the
estimated standard error and the third is the regression R2.
∗Log(Qit/Lit) = αLog(Cit/Lit)+ μi + uit , where Q is the deflated sales, L is the number of em-
ployees, and C is the gross book value adjusted for inflation.
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Table 5.2 Usual estimates for three different (true) specifications
Means and standard deviations for 100 replications Simulated samples for N = 400 and T = 6

Type of True specification
estimator NCE CE CEEV

Total 0.501 • 0.659 • 0.619
[0.052] [0.052] [0.052]
0.198 0.303 0.272

Between 0.501 • 0.674 • 0.673
[0.056] [0.057] [0.059]
0.211 0.333 0.323

Within 0.507 0.507 • 0.232
[0.032] [0.032] [0.028]
0.123 0.123 0.036

First differences 0.503 0.503 • 0.162
[0.046] [0.046] [0.036]
0.074 0.074 0.020

Long differences 0.503 0.503 • 0.289
[0.047] [0.047] [0.050]
0.186 0.186 0.071

In each cell the first number and second one in brackets are respectively the mean and standard
deviation of the estimated α for 100 replications, while the third number is the mean of the regres-
sion R2 for the 100 replications.
• Denotes that the estimator is inconsistent.

than the within and the long differences ones, which can clearly be seen for the
Japanese sample, is also exhibited by the CE+EV scenario.30 Note also, that the R2

of the different regressions for the simulated samples in this last scenario are rather
close to the corresponding R2 of the regressions for the real samples.

Going beyond the usual set of estimators, we can look at the consistency of the
more sophisticated Chamberlain and GMM estimators in Tables 5.3, 5.4 and 5.5.
These tables give the means and standard deviations of these estimators (as com-
puted from the Monte-Carlo replications) for the twelve combinations of
assumed specifications (NCE, CE, CE+EV, CE+WS) and true specifications (NCE,
CE, CE+EV). These tables are given for the three average period configurations
(T = 6). We do not report here the results for the three other configurations (T = 3),
but we find that the different estimators behave very similarly.

As expected, the Chamberlain and GMM estimators appear to be consistent when
they should be, that is when the assumed specification is the true one or when the
assumed specification encompasses the true one. On the other hand, these estimators
are biased when the assumed specification is wrong, that is when it is incompatible
with the true specification; these cases are marked with a bullet in the Tables.

30 These discrepancies among the usual panel data estimates of the production function are much
more pronounced when the returns to scale are not constrained to be one. See Mairesse (1990) for
more details.
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Table 5.3 Chamberlain’s and GMM estimates under four different specification assumptions for
three different (true) specifications
Means and standard deviations for 100 replications Simulated samples for N = 100 and T = 6

Assumed Type of True specification

specification estimator NCE CE CEEV

NCE CHAMB1 0.510 • 0.560 • 0.343
[0.061] [0.062] [0.057]

CHAMB2 0.498 • 0.551 • 0.334
[0.071] [0.075] [0.073]

GMM1 0.513 • 0.668 • 0.629
[0.089] [0.094] [0.094]

GMM2 0.504 • 0.606 • 0.497
[0.069] [0.075] [0.078]

CE CHAMB1 0.506 0.507 • 0.236
[0.068] [0.068] [0.059]

CHAMB2 0.497 0.497 • 0.231
[0.077] [0.077] [0.074]

GMM1 0.503 0.503 • 0.172
[0.097] [0.097] [0.078]

GMM2 0.498 0.498 • 0.205
[0.075] [0.075] [0.068]

CE+EV CHAMB1 0.510 0.510 0.415
[0.114] [0.115] [0.174]

CHAMB2 0.505 0.507 0.413
[0.120] [0.120] [0.197]

GMM1 0.500 0.495 0.275
[0.177] [0.178] [0.271]

GMM2 0.504 0.503 0.370
[0.122] [0.122] [0.211]

CE+WS CHAMB1 0.554 0.549 0.292
[0.303] [0.304] [0.385]

CHAMB2 0.555 0.545 0.311
[0.318] [0.317] [0.396]

GMM1 0.546 0.529 0.210
[0.369] [0.366] [0.398]

GMM2 0.562 0.548 0.287
[0.312] [0.308] [0.398]

• Denotes that the estimator is inconsistent. In each cell the first number is the mean and the second
the standard deviation of brackets are respectively the mean and standard deviation of α̂ over 100
replications.

Nevertheless, it can be seen that for the smaller samples (N = 100) large finite
sample biases show up in the two extreme cases in which the true specification is
CE+EV and the assumed ones are CE+EV and CE+WS. In the first case (CE+EV if
CE+EV) the means of the CHAMB1, CHAMB2, and GMM2 estimates are around
0.40, while in the second case (CE+EV if CE+WS) they are around 0.30. The means
of the GMM1 estimates are even lower about respectively 0.30 and 0.20 in these
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Table 5.4 Chamberlain’s and GMM estimates under four different specification assumptions for
three different (true) specifications
Means and standard deviations for 100 replications Simulated samples for N = 400 and T = 6

Assumed Type of True specification
specification estimator NCE CE CEEV

NCE CHAMB1 0.505 • 0.555 • 0.333
[0.031] [0.031] [0.030]

CHAMB2 0.504 • 0.555 • 0.325
[0.031] [0.033] [0.031]

GMM1 0.502 • 0.659 • 0.619
[0.052] [0.052] [0.052]

GMM2 0.504 • 0.571 • 0.409
[0.031] [0.034] [0.039]

CE CHAMB1 0.506 0.506 • 0.230
[0.032] [0.032] [0.028]

CHAMB2 0.505 0.505 • 0.229
[0.033] [0.033] [0.02]

GMM1 0.503 0.503 • 0.162
[0.046] [0.046] [0.036]

GMM2 0.505 0.505 • 0.217
[0.032] [0.032] [0.029]

CE+EV CHAMB1 0.512 0.512 0.481
[0.059] [0.059] [0.098]

CHAMB2 0.513 0.513 0.480
[0.063] [0.063] [0.104]

GMM1 0.526 0.527 0.422
[0.091] [0.091] [0.143]

GMM2 0.514 0.514 0.472
[0.062] [0.062] [0.104]

CE+WS CHAMB1 0.551 0.550 0.468
[0.175] [0.173] [0.282]

CHAMB2 0.549 0.549 0.461
[0.182] [0.181] [0.289]

GMM1 0.570 0.569 0.368
[0.211] [0.211] [0.354]

GMM2 0.551 0.550 0.453
[0.181] [0.180] [0.290]

• Denotes that the estimator is inconsistent. See Table 5.3

two cases. Although these estimators, given the small sample size configuration,
are extremely imprecise with computed dispersions across the 100 replications of
respectively 0.2 and 0.4 in the two cases, the t tests of departure from the true value
of 0.50 are quite significant.31

31 If α̂ and sα̂ are the mean and standard deviation of the distribution of the α̂ estimator computed
from R replications, then the standard deviation of the mean estimate α̂ is sα̂/

√
R and the t ratio

is
√

R(α̂ − 0.5)/sα̂ . Here, we have for example: t =
√

100(0.4− 0.5)/0.2 and t =
√

100(0.3−
0.5)/0.4, which are both roughly equal to −5.
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Table 5.5 Chamberlain’s and GMM estimates under four different specification assumptions for
three different (true) specifications
Means and standard deviations for 100 replications Simulated samples for N = 1600 and T = 6

Assumed Type of True specification

specification estimator NCE CE CEEV

NCE CHAMB1 0.502 • 0.553 • 0.330
[0.013] [0.013] [0.013]

CHAMB2 0.502 • 0.553 • 0.321
[0.014] [0.014] [0.013]

GMM1 0.503 • 0.662 • 0.622
[0.023] [0.023] [0.022]

GMM2 0.502 • 0.560 • 0.387
[0.014] [0.015] [0.016]

CE CHAMB1 0.502 0.502 • 0.226
[0.015] [0.015] [0.013]

CHAMB2 0.502 0.502 • 0.223
[0.015] [0.015] [0.014]

GMM1 0.501 0.501 • 0.161
[0.021] [0.021] [0.016]

GMM2 0.502 0.502 • 0.218
[0.015] [0.015] [0.014]

CE+EV CHAMB1 0.503 0.503 0.493
[0.027] [0.027] [0.049]

CHAMB2 0.503 0.503 0.492
[0.027] [0.028] [0.050]

GMM1 0.503 0.503 0.460
[0.050] [0.050] [0.076]

GMM2 0.503 0.503 0.491
[0.028] [0.028] [0.051]

CE+WS CHAMB1 0.522 0.522 0.506
[0.091] [0.090] [0.152]

CHAMB2 0.522 0.522 0.502
[0.093] [0.092] [0.149]

GMM1 0.516 0.516 0.442
[0.123] [0.121] [0.208]

GMM2 0.522 0.521 0.501
[0.094] [0.092] [0.152]

• Denotes that the estimator is inconsistent. See Table 5.3

It is reassuring to see, however, that for moderate sample sizes (N = 400) and
even more so for larger sample sizes (N = 1600), the finite sample biases have
largely vanished. Note though that in most cases of the CE+WS specification these
biases tend to remain statistically significant, given that they decrease more slowly
than the standard deviations. Note also that the behaviour of the GMM1 estimator
(as computed here) is different and less satisfactory than that of the other three
estimators.
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5.5.3 Efficiency and Robustness

The simulation results are also instructive from the perspective of the efficiency of
the different estimators as measured by their standard deviations computed over the
replications. These numbers are given in brackets in Tables 5.6–5.8 for all the cases
when the estimators are consistent, that is when the assumed specification encom-
passes the true specification or is the true one. We can thus compare them in various
ways, not only across the different estimators (for given samples sizes and assumed
specifications), but also across sample sizes, and across assumed specifications.

Looking first at the efficiency of the four estimators for given sample sizes and
assumed specification, we do not find any real surprise. We can first check that
CHAMB2, the (nearly) optimal Chamberlain estimator, and GMM2, the optimal
GMM estimator, are practically equivalent.32 This is an indication that taking the
covariance matrix E(xix

′
i) as known, in order to simplify the computation of the

Table 5.6 Simulated standard deviations and estimated standard errors of the GMM and Cham-
berlain estimators under four different specification assumptions for three different (true) specifi-
cations
Standard deviations and means of the estimated standard errors of the estimates for 100 replications
Simulated samples for N = 100 and T = 3 and 6

True NSE CE CEEV
specification
Assumed NSE CE CEEV CEWS CE CEEV CEWS CEEV CEWS
specification

T = 3 CHAMB1 [0.081] [0.111] [1.322] [33.24] [0.111] [1.351] [5.157] [3.161] [9.776]
(0.076) (0.116) (1.276) (50.11) (0.116) (1.245) (5.257) (3.091) (18.16)

CHAMB2 [0.087] [0.120] [1.349] [33.24] [0.122] [1.352] [5.157] [3.233] [9.776]
(0.071) (0.110) (1.253) (50.11) (0.111) (1.223) (5.257) (3.074) (18.16)

GMM1 [0.111] [0.128] [1.291] [33.24] [0.128] [1.340] [5.157] [3.144] [9.776]
(0.097) (0.135) (2.091) (8776) (0.135) (2.160) (53.83) (46.74) (577.0)

GMM2 [0.089] [0.119] [1.437] [33.24] [0.120] [1.487] [5.157] [7.124] [9.776]
(0.073) (0.114) (2.049) (8776) (0.114) (2.067) (53.83) (45.35) (577.0)

T = 6 CHAMB1 [0.061] [0.068] [0.114] [0.303] [0.068] [0.115] [0.304] [0.174] [0.385]
(0.052) (0.061) (0.098) (0.315) (0.061) (0.098) (0.312) (0.152) (0.360)

CHAMB2 [0.071] [0.077] [0.120] [0.318] [0.077] [0.120] [0.317] [0.197] [0.396]
(0.040) (0.049) (0.084) (0.292) (0.049) (0.084) (0.291) (0.128) (0.339)

GMM1 [0.089] [0.097] [0.177] [0.369] [0.097] [0.178] [0.366] [0.271] [0.398]
(0.091) (0.088) (0.175) (0.429) (0.88) (0.175) (0.426) (0.255) (0.472)

GMM2 [0.069] [0.075] [0.122] [0.312] [0.075] [0.122] [0.308] [0.211] [0.398]
(0.041) (0.052) (0.089) (0.320) (0.052) (0.089) (0.317) (0.140) (0.370)

For each estimator the first number (in brackets) is the standard deviation of the estimated α over
100 replications, and the second number (in parentheses) is the mean of the estimated standard
errors over the 100 replications.

32 They are strictly identical for the assumed specification CE+WS and T = 3, i.e., when there is
only one orthogonality condition and thus no weighting is involved.
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Table 5.7 Simulated standard deviations and estimated standard errors of the GMM and
Chamberlain estimators under four different specification assumptions for three different (true)
specifications
Standard deviations and the mean of the estimated standard errors of the estimates for 100 replica-
tions Simulated samples for N = 400 and T = 3 and 6

True NSE CE CEEV
specification
Assumed NSE CE CEEV CEWS CE CEEV CEWS CEEV CEWS
specification

T = 3 CHAMB1 [0.037] [0.059] [0.543] [1.858] [0.059] [0.540] [3.543] [1.468] [20.35]
(0.039) (0.059) (0.602) (2.497) (0.059) (0.598) (5.347) (1.854) (70.53)

CHAMB2 [0.038] [0.061] [0.549] [1.858] [0.060] [0.544] [3.543] [1.584] [20.35]
(0.038) (0.058) (0.600) (2.497) (0.059) (0.595) (5.347) (1.843) (70.53)

GMM1 [0.046] [0.065] [0.551] [1.858] [0.065] [0.545] [3.543] [1.463] [20.35]
(0.049) (0.068) (0.631) (13.06) (0.068) (0.625) (92.59) (9.708) (6958)

GMM2 [0.038] [0.060] [0.555] [1.858] [0.060] [0.545] [3.543] [2.812] [20.35]
(0.038) (0.058) (0.627) (13.06) (0.058) (0.621) (92.59) (9.608) (6958)

T = 6 CHAMB1 [0.031] [0.032] [0.059] [0.175] [0.032] [0.059] [0.173] [0.098] [0.282]
(0.028) (0.032) (0.053) (0.170) (0.032) (0.053) (0.170) (0.088) (0.267)

CHAMB2 [0.031] [0.033] [0.063] [0.182] [0.033] [0.063] [0.181] [0.104] [0.289]
(0.026) (0.031) (0.051) (0.167) (0.031) (0.051) (0.167) (0.085) (0.262)

GMM1 [0.052] [0.046] [0.091] [0.211] [0.046] [0.091] [0.211] [0.143] [0.354]
(0.046) (0.044) (0.090) (0.223) (0.044) (0.090) (0.223) (0.153) (0.367)

GMM2 [0.031] [0.032] [0.062] [0.181] [0.032] [0.062] [0.180] [0.104] [0.290]
(0.026) (0.031) (0.052) (0.172) (0.031) (0.052) (0.172) (0.088) (0.282)

See Table 5.6

Chamberlain estimator in the CE+EV and CE+WS cases may have no consequences
in practice.33 We can then verify that the two step estimator GMM2 is indeed more
efficient than the one step estimator GMM1 by a (somewhat limited) factor of about
1.5. Finally, we can observe that the CHAMB1 estimator, which would be optimal
in the case of homoscedastic errors, is in fact not less efficient than the more gen-
eral CHAMB2 estimator. This should be related to the relatively modest amount
of heteroscedasticity in our simulations, since the x related heteroscedasticity we
have introduced, although substantial in terms of parameter heterogeneity (with√

E(αi−α)2 = 0.2), appears small as compared to the overall variability of the
errors.34

Looking next at that the efficiency of our four Chamberlain and GMM estima-
tors with sample size, we know a priori that it should increase as

√
N, and this

is indeed verified in the simulations. In nearly all cases the standard deviations
are divided by a factor of about 2, when going from N = 100 to N = 400 and

33 Further experiments not reported here showed that significant differences between the fully opti-
mal Chamberlain estimators and the nearly optimal ones only occur in rather peculiar cases, where
we have to assume that the within component of x is much larger than the between component, and
is strongly correlated with the past values of the uit disturbances.
34 However, experimenting with twice as much x heteroscedasticity also did not show up in our
results.
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Table 5.8 Simulated standard deviations and estimated standard errors of the GMM and Cham-
berlain estimators under four different specification assumptions for three different (true) specifi-
cations
Standard deviations and the means of the estimated standard errors of the estimates for 100 repli-
cations Simulated samples for N = 1600 and T = 3 and 6

True NSE CE CEEV
specification
Assumed NSE CE CEEV CEWS CE CEEV CEWS CEEV CEWS
specification

T = 3 CHAMB1 [0.020] [0.029] [0.298] [0.404] [0.029] [0.294] [0.396] [0.598] [1.465]
(0.020) (0.029) (0.306) (0.393) (0.029) (0.304) (0.390) (0.601) (1.547)

CHAMB2 [0.021] [0.029] [0.296] [0.404] [0.029] [0.292] [0.396] [0.587] [1.465]
(0.019) (0.029) (0.305) (0.393) (0.029) (0.304) (0.390) (0.601) (1.547)

GMM1 [0.026] [0.034] [0.298] [0.404] [0.034] [0.294] [0.396] [0.600] [1.465]
(0.024) (0.034) (0.310) (0.406) (0.034) (0.308) (0.403) (0.813) (6.040)

GMM2 [0.021] [0.029] [0.297] [0.404] [0.029] [0.293] [0.396] [0.601] [1.465]
(0.019) (0.029) (0.309) (0.406) (0.029) (0.308) (0.403) (0.812) (6.040)

T = 6 CHAMB1 [0.013] [0.015] [0.027] [0.091] [0.015] [0.027] [0.089] [0.049] [0.152]
(0.014) (0.016) (0.027) (0.088) (0.016) (0.027) (0.088) (0.047) (0.153)

CHAMB2 [0.014] [0.015] [0.027] [0.093] [0.015] [0.028] [0.091] [0.050] [0.149]
(0.014) (0.016) (0.027) (0.088) (0.016) (0.027) (0.088) (0.046) (0.153)

GMM1 [0.023] [0.021] [0.050] [0.123] [0.021] [0.050] [0.121] [0.076] [0.208]
(0.023) (0.022) (0.045) (0.110) (0.022) (0.045) (0.110) (0.079) (0.206)

GMM2 [0.014] [0.015] [0.028] [0.093] [0.015] [0.028] [0.092] [0.051] [0.152]
(0.014) (0.016) (0.027) (0.088) (0.016) (0.027) (0.088) (0.048) (0.158)

See Table 5.6.

from there to N = 1600. Again exceptions are found in the extreme cases of the
CE+WS assumed specification for the short period samples (T = 3) for which the
standard deviations are very large (and probably not well measured with 100 repli-
cations). In contrast, the improvement in efficiency with the time dimension is not
a straightforward matter: it depends on the orthogonality conditions involved and
on the weight matrix used.35 Accordingly, it should vary with the assumed specifi-
cation, which we can see indeed. When moving from T = 3 to T = 6 the standard
deviations of the estimators are roughly divided by a factor of 1.5, 2, and 10 for
the NCE, CE and CE+EV specifications respectively. They are reduced by a fac-
tor which can be even much larger (from 10 to 100) when assuming the CE+WS
specification.

Last, but specially compelling, are the findings on the trade off between effi-
ciency and robustness. The differences of efficiency of the estimators across the
assumed specifications (for given true specifications) are of similar orders of mag-
nitudes as their observed differences of efficiency between the short and average
period samples (for given assumed and true specifications). In the case of the
longer samples (T = 6), the standard deviations are thus increased by a factor

35 It should also be remembered that inverting the covariance matrix of the orthogonality conditions
(or the covariance matrix of π) implies that T cannot be too large with regard to N.
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of about 2 when going from the assumptions of NCE or CE to the weaker one
of CE+EV, and increased again by a factor of about 3 when going to the even
weaker assumption of CE+WS. For the shorter samples (T = 3) these efficiency
factors are much larger, and they vary even more for the more extreme CE+WS
assumption.36 We thus have an efficiency factor between the NCE and CE specifi-
cations of roughly 1.5, and a factor between the CE and CE+EV specifications of
roughly 10 (!).37

It is worth pointing out that contrary to one’s first intuition, the loss of efficiency
when choosing the CE specification rather than the much stronger NCE specifica-
tion becomes negligible when T = 6, and remains moderate even when T = 3. The
explanation lies in the fact that the T additional orthogonality conditions (of the
NCE specification compared to the CE specification) are strongly interrelated, and
that in a way they cannot do “much more” than one such condition only.38 The cru-
cial issue when relying on estimators based on the CE specification is not efficiency
but the fact that the biases arising from other potential misspecifications such as
errors in variables or simultaneity can be greatly aggravated. This is indeed what
we can see, as already noted, when the true specification is CE+EV and not CE. On
the other hand, efficiency becomes an important consideration when the econome-
trician suspects that the true specification is indeed CE+EV or CE+WS and wants
to avoid such aggravated biases. In this situation efficiency can be an even more im-
portant problem than the present simulation results suggest, if the serial correlation
of x is very high, and thus if the past x’s are poor instruments for the changes in
the current x (see Griliches and Mairesse, 1998 and Blundell and Bond, 1998 and
2000).

5.5.4 Standard Errors

Besides discussing the relative efficiency of the estimators, it is also instructive to
ask whether they are efficient in absolute terms, that is whether they are precise
enough to ensure a satisfactory approximation of the parameters of interest. In other
words, are the standard deviations of the estimators sufficiently small? Since in prac-
tice the answer is mainly based on the estimated asymptotic standard errors of the
parameter estimates, it is interesting to ascertain that these standard errors are indeed
consistently estimated. This can be done by verifying that the means of the estimated

36 As already noted, in the EV+WS case, the short sample estimates can be extremely imprecise.
For T = 3, they are in fact based on only one orthogonality condition, and follow a Cauchy distri-
bution with infinite variance (!).
37 The observed efficiency factor between the CE+EV and CE+WS estimators varies very much
depending on the true specification and the sample size N. It is equal to about: 1.5 if N = 1600 and
the true specifications is NSE or CE, to about 3 if N = 1600 and the true specification is CE+EV,
and it ranges from 3 to 25 depending on the true specification if N = 100 or 400.
38 This is related to the fact that most of the variance in the x’s and the y is cross-sectional (“be-
tween”, not “within”).
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Table 5.9 General tests of specification based on the Chamberlain and GMM estimators under
four different specification assumptions for three different (true) specifications
Number of rejections out of 100 replications Simulated samples for N = 100, 400 and 1600 and
T = 3 and 6

N = 100 N = 400 N = 1600

Tests True specification True specification True specification

NSE CE CEEV NSE CE CEEV NSE CE CEEV

T = 3 NSE CHAM 24 • 30 • 82 7 • 33 • 100 11 • 91 • 100
GMM 4 • 10 • 56 7 • 28 • 100 10 • 90 • 100

CE CHAM 22 22 • 14 8 9 • 12 89 5 • 25
GMM 9 11 • 1 8 7 • 9 6 5 • 25

CEEV CHAM 12 12 8 9 9 5 1 2 9
GMM 8 7 4 7 7 3 1 2 8

CEWS CHAM – – – – – – – – –
GMM – – – – – – – – –

T = 6 NSE CHAM 84 • 90 • 99 18 • 45 • 100 6 • 96 • 100
GMM 0 • 1 • 12 3 • 19 • 100 4 • 96 • 100

CE CHAM 69 67 • 80 13 12 • 64 10 10 • 98
GMM 0 0 • 2 2 2 • 33 8 8 • 98

CEEV GHAM 44 44 58 10 9 18 10 10 5
GMM 2 1 0 4 3 4 8 8 2

CEWS CHAM 16 14 14 7 7 8 8 8 8
GMM 3 2 0 3 5 3 6 7 6

• Denotes the situations in which the null hypothesis is not true.

standard errors of the estimators, as computed over the replications, agree well, that
is within a margin of error, with the simulated standard deviations of the estima-
tors as obtained from the same replications. The mean standard errors are given in
parentheses under the standard deviations given in brackets in Tables 14.6–14.8.
When comparing these numbers, we must remember that they are themselves both
estimated over replications and known with a margin of error. Making simplify-
ing assumptions based on asymptotic normality, we can say that they are estimated
independently with an absolute standard error of σ/

√
2R where σ denotes their as-

sumed common mean value and R = 100 is the number of replications, that is with
a relative error of 1/

√
2R or about 7%. We thus can accept that they do not differ

significantly at the 5% significance level, if they do not differ by more than 20%
(that is approximately (1.96

√
2) times 7%). We shall also consider for simplicity

that the standard deviations of the estimators are satisfactorily small if they are less
than 0.1 in absolute value, that is if they provide an approximation of about 20% for
a coefficient of 0.5.

It is reassuring to see that in most cases the estimated standard errors and the
simulated standard deviations of the estimators are indeed quite close, and well
within the 20% margin. Again, as could be expected, the main exceptions arise
in the short samples (T = 3) for the estimators assuming the CE+WS specification,
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Table 5.10 Nested tests of specification based on the Chamberlain and GMM estimators under
four different specification assumptions for three different (true) specifications
Number of rejections out of 100 replications Simulated samples for N = 100, 400 and 1600 and
T = 3 and 6

N = 100 N = 400 N = 1600

Tests True specification True specification True specification

NSE CE CEEV NSE CE CEEV NSE CE CEEV

T = 3 CEEV CHAM 12 12 8 9 9 5 1 2 9
CEWS GMM 8 7 4 7 7 3 1 2 8
CE/ CHAM 22 22 • 14 8 9 • 12 89 5 • 25
CEWS GMM 9 11 • 1 8 7 • 9 6 5 • 25
CE/ CHAM 16 16 • 12 4 5 • 12 13 11 • 35
CEEV GMM 10 10 • 9 4 4 • 11 12 11 • 34
NSE/ CHAM 24 • 30 • 82 7 • 33 • 100 11 • 91 • 100
CEWS GMM 4 • 10 • 56 7 • 28 • 100 10 • 90 • 100
NSE/ CHAM 18 • 32 • 84 7 • 35 • 100 13 • 94 • 100
CEEV GMM 9 • 10 • 59 4 • 31 • 100 13 • 94 • 100
NSE/ CHAM 13 • 26 • 83 5 • 44 • 100 7 • 97 • 100
CE GMM 4 • 11 • 71 5 • 40 • 100 5 • 97 • 100

T = 6 CEEV CHAM 45 45 52 9 9 15 5 6 4
CEWS GMM 3 2 4 6 6 7 4 4 4
CE/ CHAM 66 64 • 77 14 13 • 65 10 10 • 98
CEWS GMM 2 2 • 11 4 4 • 43 9 9 • 98
CE/ CHAM 61 56 • 63 13 21 • 80 6 5 • 100
CEEV GMM 4 4 • 16 7 7 • 61 5 5 • 100
NSE/ CHAM 85 • 92 • 100 20 • 56 • 100 8 • 96 • 100
CEWS GMM 2 • 2 • 2 5 • 24 • 100 4 • 96 • 100
NSE/ CHAM 80 • 89 •100 19 • 63 • 100 2 • 98 • 100
CEEV GMM 1 • 7 • 34 5 • 39 • 100 0 • 98 • 100
NSE/ CHAM 63 • 84 • 99 14 • 71 • 100 1 • 100 • 100
CE GMM 2 • 11 • 39 6 • 53 • 100 1 • 100 • 100

• Denotes the situations in which the null hypothesis is not true.

and thus based on only one orthogonality condition. In this case the differences are
large for N = 100 and remain so for N = 1600.

It is also interesting to note that the estimated standard errors of the optimal
Chamberlain and GMM estimators CHAMB2 and GMM2 tend to be significantly
too optimistic for the longer and smaller samples (T = 6 and N = 100) and the NSE,
CE and CE+EV assumed specifications. This supports the findings by Arellano
and Bond (1991), who caution against the possible underestimation of the standard
errors of the optimal GMM estimator.39

39 Some further simulations seem to indicate that such finite sample under-estimation occurs when
the number of orthogonality conditions is large (or not small enough) compared to the size (N) of
the sample. When this happens, the GMM and Chamberlain estimators of the α parameter tend
also to suffer from sizeable finite sample bias (compared to the bias of the OLS estimator). See
Bound, Jaeger and Baker (1993).
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If we focus now on the absolute magnitude of the standard deviations of the
estimators, we get a clearcut picture, highlighting again the important trade off
between robustness and efficiency. The precision is acceptable for the estimators
assuming the NCE and CE specifications. By contrast, for the estimators assuming
the CE+WS specification, it is just acceptable only for the longer and larger samples
(T = 6 and N = 1600) and if the true specification is NCE or CE (but not CE+EV).
For the estimators assuming the CE+EV specification, the situation is haldway, their
precision becoming acceptable for the longer samples (T = 6), with the exception
of the case of the CE+EV true specification with N = 100.

5.5.5 Specification Tests

An important question that we also want to illustrate with our simulations, is the
performance of the specification tests used to decide whether the specification as-
sumed by the econometrician can be accepted or should be rejected. These are the
χ2 tests of overidentifying restrictions (presented in Sect. 5.3.3), which we have
implemented in the two different ways corresponding to the optimal Chamberlain
and GMM estimators. The Chamberlain type tests (denoted as CHAM) are based
on the whole set of

(
T 2
)

estimating equations, thus involving the Ns parameters
of secondary interest in addition to the parameter α of primary interest, and they
use the

(
T 2×T 2

)
CHAM2 weight matrix (i.e., the inverse of the heteroscedasticity

consistent Π covariance matrix estimate).40 The GMM type tests (denoted as GMM)
are based on a reduced set of

(
T 2−Ns

)
orthogonality conditions which are derived

from the full set of
(
T 2
)

estimating equations (or orthogonality conditions) by elim-
inating the Ns parameters of secondary interest, and they thus only involve here
the unique parameter α of primary interest. They use the

((
T 2−Ns

)
×
(
T 2−Ns

))

GMM2 weight matrix (i.e., the inverse of the orthogonality conditions covariance
matrix first step estimate).41

We consider both the general tests of the four assumed specifications (NCE),
(CE), (CE+EV) and (CE+WS), and the corresponding difference or nested tests of
one specification conditional on another (more general) one, that is (CE+EV) given
(CE+WS), (CE) given (CE+EV) or (CE+WS), (NCE) given (CE) or (CE+EV) or
(CE+WS).42 Tables 5.9 and 5.10 report on these general and difference tests, by

40 Ns is equal to 0, T, 2T and ((T (T +1)/2+(T −1)) respectively for the NCE, CE, CE+EV and
CE+WS assumed specifications.
41 While the CHAM tests correspond to Wald type tests of the restriction on Π, the GMM tests can
be viewed as Lagrange multiplier type tests. See also following footnotes 42 and 44.
42 The χ2 of the nested tests are simply computed as the differences of the χ2 of the corresponding
general tests. Our GMM tests are thus implemented with a different weight matrix for the null and
alternative hypotheses, while the CHAM tests are computed holding the weight matrix constant
for both hypotheses. It is usually considered to be better in practice (in finite samples) to hold the
weight matrix constant (as estimated under the null hypothesis, or the alternative hypothesis or
even a more general hypothesis). Note that the general specification tests can be simply viewed as
difference tests conditional on the alternative “specification” of the unrestricted Π matrix.
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giving the number of rejections obtained out of the 100 replications with a 5% sig-
nificance level. They do it for our eighteen configurations of true specifications and
sample sizes. The number of rejections is an estimate of the true size of the test (for
a 5% nominal size) when the tested specification is true (i.e., when it encompasses
the underlying true specification or is identical to it), and an estimate of the power
of the test when the tested specification is false. With 100 replications only, these
estimates of the tail probabilities of the tests statistics distribution cannot be very
accurate and they should be taken with some caution. They are nonetheless quite
suggestive.43

The most striking observation is that the CHAM tests tend to reject much more
frequently than the GMM tests in the small and medium size samples (N = 100
and N = 400). This could be expected, though perhaps not to such extent, since one
would expect that, loosely speaking, the CHAM weight matrices be “larger” than the
GMM ones (or the Π covariance matrix estimated with no restrictions be “smaller”
than the ones estimated with restrictions).44 For the large samples (N = 1600) the
two types of tests give quite similar results.

Another way to point out the same finding is to note that the true size of the
CHAM tests tends to be much higher in the smaller samples than the (5%) nominal
size (i.e., they overreject when the tested specification is true), while the perfor-
mance of the GMM tests is more satisfactory in this respect. However, and con-
versely, the power of the CHAM tests tend to be greater than that of the GMM tests
in the smaller samples. If we take the example of the test of the (CE) specification
in the longer period medium size sample (T = 6,N = 400), the percentages of re-
jection are respectively about 12% and 2% for the CHAM and GMM tests, when
the (CE) specification is correct (i.e., if the underlying true specification is (NCE)
or (CE)), and about 64% and 33% when it is not (i.e., if the underlying true spec-
ification is CE+EV). Note also in Table 5.10 that for this same example the power
of both tests goes up to respectively 80% and 61% when the (CE+EV) is rightly
assumed as the alternative hypothesis (instead of implicitly assuming the unre-
stricted Π matrix specification).45

If we want to summarize, the practical conclusion is that in small (and not so
small) samples the weighting can matter much for the specification tests, while it
seems to matter only little for the estimation of the parameters of interest. This
could also be expected, since (loosely speaking again) what matters for the tests is
the absolute magnitude of the weights, and for the estimation their relative magni-
tude. Of course more important than the weighting, and the choice between imple-

43 We have checked, however, in a number of cases, that the percentage of rejections do in fact
change very little when performing 1000 replications instead of 100.
44 It is known that when testing linear restrictions in the linear regression model, the χ2 statistics
are larger for the Wald tests than for the Lagrange multiplier tests, and hence that the former reject
more frequently the null hypothesis than the latter for a given significance level. See Berndt and
Savin (1977) and Breusch (1979).
45 The corresponding percentages of rejection when we perform 1000 replications instead of 100
are: 16 and 4 (instead of 12 and 2), 57 and 30 (instead of 64 and 33), and 71 and 57 (instead of 80
and 61).
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menting the Chamberlain method, or GMM in this respect, remains the validity and
relevance of the instruments, that is their exogeneity and their correlation with the
regressors.

5.6 Appendix A: An Extended View of the Chamberlain Method

In this Appendix we show how the generalization of the Chamberlain method pre-
sented in 5.2.5 applies to simultaneous equations models, vector autoregressions
(VAR) and endogenous attrition models.

5.6.1 Simultaneous Equations Models

Simultaneous equations models on panel data fit straightforwardly within the gen-
eral Chamberlain framework. Using the same notations as before, but considering

that we now have J dependent variables y with y′
i
=
(

y(1)
i1 , . . . ,y(1)

iT ,y(2)
i1 . . . ,y(J)

iT

)
,

these models can be writen as:

A11(θ)y
i
+A12(θ)xi = vi.

If we assume that no restrictions are made on the covariance matrices E(xix
′
i) and

E(viv
′
i) of the explanatory variables x and of the disturbances v, and applying the

result on the elimination of parameters and equations of Sect. 5.2.5, we need only
to focus on the moment conditions relative to the joint covariance matrix E(y

i
x′i)

of the y’s and x ’s. Assuming also for simplicity that the x’s are strictly exogenous,
(i.e., E(vix

′
i) = 0), and that the model is not underidentified (the matrices A11 and

A12 having appropriate structures), the relevant estimating equations for an efficient
estimation of the parameters of interest θ are the following:

A11(θ)E(y
i
x′i)+A12(θ)E(xix

′
i) = 0

or
A11(θ)Π+A12(θ) = 0.

5.6.2 VAR Models

Panel data Vector Autoregressive (VAR) models can also be considered in the
Chamberlain framework. The distinction between dependent and explanatory vari-
ables is no longer relevant, and we have a set of endogenous variables explained by
their past values. To keep notations simple, let us take the case of a stationary VAR
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model of order one for two variables xi and yi. We can write this model as:
{

yit = ϕyyyit−1 +ϕyxxit−1 +dy
t + μy

i +uy
it

xit = ϕxyyit−1 +ϕxxxit−1 +dx
t + μx

i +ux
it

t = 1, . . . ,T

where dy
t and dx

t are year constants; μy
i and μx

i are individual effects; uy
it and ux

it are
year varying disturbances.46 As in the case of the lagged dependent variable model
of Sect. 5.2.3.4, we can also rewrite it in matrix form as

(I−Φ⊗L)
(

y
i

xi

)
=
(

dy

dx

)
+
(

vy
i

vx
i

)

with (
vy

i
vx

i

)
= ζ ⊗ l1 + μ⊗ l +

(
uy

i
ux

i

)

where L is the lag matrix, Φ =
[

ϕyy ϕyx

ϕxy ϕxx

]
, ζ =

(
ζ y

i
ζ x

i

)
= Φ

(
yi0

xi0

)
, μ =

(
μy

i
μx

i

)
,

and l′1 = (1,0, . . . ,0). We are thus led to the same general formulations as (5.21)
or (5.22), by setting the A(θ) matrix equal to (I−Φ⊗L) , with variables centered
at their year means. With both y and x being endogenous, the model is not identi-
fied and restrictions have to be imposed for identification on the covariance matrix
Ω(θ) = E (viv

′
i) of the disturbances.

The usual identification assumption in VAR models is that the time varying errors
ux

it and uy
it are not serially correlated (but may be contemporaneously correlated).

The covariance matrix of the disturbances can then be written as:

Ω(θ) =

[
Vuy

i
E(uy

i ux′
i )

E(ux
i uy′

i ) Vux
i

]

+Vζ ⊗ l1l′1 +Vμ⊗ ll′+E
(
ζ μ ′
)
⊗ l1l′+E

(
μζ ′
)
⊗ ll′1

where Vuy
i
, Vux

i
and E(ux

i uy′
i ) are the (T ×T ) diagonal matrices of the time varying

variances of the disturbances ux
i , and uy′

i and of their covariances; Vμ and Vζ are the
two (2×2) symmetric covariance matrices of μx

i and μy
i and ζ x

i and ζ y
i , and E (ζ μ ′)

is the (2×2) matrix of their covariances.
For a total of 2T (2T +1)/2 = T (2T +1) estimating equations derived from

(5.22), we have thus (3T +14) parameters, that is four parameters of primary
interest in the Φ of lagged coefficients (ϕyy ϕyx ϕxy and ϕyy), and 3T + 10
parameters of secondary interest in the covariance matrix Ω of the disturbances.
These estimating equations are nonlinear (in the ϕ parameters), and the direct im-
plementation of ALS could be quite complicated.

46 An interesting non-stationary VAR model for panel data is proposed in Chamberlain (1982)
and in Holtz-Eakin, Newey and Rosen (1988), in which the error terms are of the form Ψt μi + uit

(i.e., with interactions between the individual effects μi and time effects Ψt), and in which the
coefficients ϕyy,ϕyx,ϕxy and ϕxx matrix may also be varying over time.
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There is actually a much better way to solve the problem. It is easy to see that
for each time period s, both yis and xis can be expressed as functions of the cur-
rent and past values of the idiosyncratic disturbances uy

is, . . .u
y
i1 and ux

is, . . . ,u
x
i1 and

the individual effects μy
i and μx

i , as well as the unknown initial observations yi0

and xi0. Therefore, under the maintained assumption of no serial correlation in the
time varying disturbances, their correlation with the future values of the residuals
is only a simple function of the 10 parameters of Vζ , Vμ and E (ζ ′μ). And thus the
residuals (vy

it−vy
it−1) and (vx

it−vx
it−1) of the model in first differences are not corre-

lated with the past values of the y and x variables lagged by two periods and more
(i.e., yit−2, . . . ,yi1 and xit−2, . . . ,xi1), and a subset of the estimating equations is more
simply:

E

((
Δvy

it
Δvx

it

)
(yis,xis)

)
= 0 ∀s < t−1.

This second set of estimating equations, derived in Holtz-Eakin, Newey and
Rosen (1988), has the advantage of eliminating all the parameters of secondary
interest and that of being linear in the parameters of primary interest. However,
it provides only 2(T −1)(T −2) estimating equations, and there are 2T (T +1)−
2(T −1)(T −2) = 8T − 4 equations lost for only 3T + 10 parameters eliminated.
It follows that the corresponding estimator is not the most efficient. The efficient set
of estimating equations is derived in Ahn and Schmidt (1995).

Arellano and Bover (1995) and Blundell and Bond (1998) show that assuming
stationarity adds additional estimating equations that can substantially improve effi-
ciency. Indeed, stationarity implies that the initial values yi0 and xi0 are themselves
functions of the parameters of primary interest, the individual effects and the infinite
number of idiosyncratic disturbances prior to the beginning of the sample, so their
covariances with the idiosyncratic disturbances for the period of observation can be
expressed as functions of the parameters of primary interest only.

5.6.3 Endogenous Attrition

The general Chamberlain framework can also be helpful in dealing with endogenous
attrition. For example, Abowd et al. (1995) consider the case of the simple first order
autoregressive model yit = ρyit−1 + μi + uit , which can also be written in vector
form as:

[I−ρL]y
i
= μil +ρyi0l1 +ui = vi.

The individuals i are firms, appearing and disappearing at individual dates bi and
di. The authors consider the general attrition processes compatible with what Rubin
(1976) calls data missing at random, where the probability of dying at date d given

the firm history y(d)
i =

(
yibi , . . . ,yidi

)
is equal to the probability given the latent vari-

able y∗i =
(
yibi , . . . ,yiT

)
, that is:
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P
(

di = d|y(d)
i

)
= P(di = d|y∗i ) . (5.46)

In this case, for firms appearing at a same date b, we can write

Ω(θ) = E
(
viv
′
i

)
= [I−ρL]E

(
y∗

i
y∗′

i

)
[I−ρL]′ (5.47)

= [I−ρL]
T

∑
d=1

P(di = d)E
(

y∗
i
y∗′

i
|di = d

)
[I−ρL]′

= [I−ρL]
T

∑
d=1

P(di = d)E
(

E
(

y∗
i
y∗′

i
|y(d)

i

)
|di = d

)
[I−ρL]′

= [I−ρL]
T

∑
d=1

P(di = d)E
(

fd

(
y(d)

i ,θ
)
|di = d

)
[I−ρL]′

where the probability density of dying at time d is a function fd

(
y(d)

i ,θ
)

of the firm

history y(d)
i and the unknown parameters θ .

Assuming normality, the conditional expectation E[ fd(y
(d)
i ,θ)|di = d] can be

written as gd [E(y(d)
i |di = d),E(y(d)

i y(d)′
i |di = d),θ ] showing that (5.47) can be taken

as estimating equations for the parameters θ and the set of additional auxiliary pa-

rameters {E(y(d)
i |di = d) and E(y(d)

i y(d)′
i |di = d), for d = 1, . . . ,T}.

5.7 Appendix B: Vector Representation of the Chamberlain
Estimating Equations

We show here how to write in a vector format the Chamberlain estimating equations
written in matrix form. After recalling the main properties of the Vec operator, we
use it to obtain the vector representation of the Chamberlain estimating equations
in the cases of the CE, EV and WS specifications and their combinations, as well
as in the cases of a lagged dependent variable specification and of the existence of
restrictions on the covariance matrix of the disturbances.

5.7.1 The Vec Operator

The Vec. operator transform a matrix into a vector by stacking one above the other
the different columns of the matrix. This operator has many properties, and we only
give here a few important ones (see Magnus and Neudecker, 1988, for a general
presentation).
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If A, B and C are three matrices of conforming size, we can write:

Vec(ABC) =
(
C′ ⊗A

)
Vec(B)

which also implies that

Vec(AB) =
(
Incol(B)⊗A

)
Vec(B) and Vec(BC) =

(
C′ ⊗ Inrow(B)

)
Vec(B).

If V1and V2 are two vectors of any size, we have also

Vec(V1V ′2) = Vec(V2⊗V1) .

and for two matrices A and B with the same number of columns, we have:

Vec(A)′Vec(B) = Tr(A′B) .

5.7.2 Correlated Effects

The estimating equations (see (5.12)) are in matrix form the following:

Π = b′ ⊗ IT + lc′ .

Taking the Vec operator after transposing the matrices leads to

π = Vec(Π′) = Vec(b⊗ IT )+(l⊗ IKT )c = Vec(b⊗ IT )+Gcec .

Writing b = ∑K
k=1 bklk, where (l1, . . . , lK) is the canonical base of RK , we obtain:

Vec(b⊗ IT ) = Vec
(
∑K

k=1 bklk⊗ IT
)

= ∑K
k=1 bkVec(lk⊗ IT )

= [Vec(l1⊗ IT )| · · · |Vec(lK⊗ IT )]b

The estimating equations can thus be written in vector form as:

π = [G0|Gce]
b
c

= Hceγ .

which is a most simple case since the matrix H is constant with only coefficients
equal to zero or equal to 1.

5.7.3 Errors in Variables

The estimating equations (see (5.14)) are in this case:

Π = b′ ⊗ IT
[
I−VeE(xix

′
i)
−1] .
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They depend on the specific parameterization of the covariance matrix Ve of the
measurement errors on the variables x.

Let us consider here the usual case where these errors are assumed to be serially
uncorrelated, but where they can be correlated with each other. Ve is thus the follow-
ing KT ×KT matrix Ve =

[
Σk,l
]

k,l=1,...,K where Σk,l is the covariance matrix of the
two T ×1 vectors of the measurement errors for the variables k and l. These errors
being non serially correlated, the matrices Σk,l are diagonal and can be written as:
Σk,l = Diag(σk,l,1, . . . ,σk,l,T ), leading to:

π = Vec(Π′) = Vec(b⊗ IT )−Vec
(
E(xix

′
i)
−1Ve [b⊗ IT ]

)

= G0b−
(
IT ⊗E(xix

′
i)
−1
)

Vec(Ve [b⊗ IT ])

In this expression, the product Ve [b⊗ IT ] has the form:

Ve [b⊗ IT ] =

⎡

⎢
⎣

∑K
l=1 blΣ1,l

...
∑K

l=1 blΣK,l

⎤

⎥
⎦=

⎡

⎢
⎢
⎣

Diagt=1,...,T

(
∑K

l=1 blσ1,l,t
)

...
Diagt=1,...,T

(
∑K

l=1 blσ1,l,t
)

⎤

⎥
⎥
⎦

=

⎡

⎢
⎣

Diagt=1,...,T (ζ1,t)
...

Diagt=1,...,T (ζK,t)

⎤

⎥
⎦= ∑K

k=1 ∑T
t=1lk⊗Dtζk,t

= Fevζ

where ζ ′ = (ζ11, . . . ,ζ1T , . . . ,ζK1, . . . ,ζKT ) with ζk,t = ∑K
l=1 blσk,l,t , and where lk is

the k th element of the canonical base of RK , and Dt is the matrix with all zero co-
efficients except the t th one of the diagonal which is equal to 1. Note that we cannot
identify all parameters, since the coefficients σk,l,t are only entering Ve [b⊗ IT ] via
ζk,t = ∑K

l=k blσk,l,t , and only these functions of the σk,l,t are identifiable.
We can thus write in vector form:

Vec(Ve [b⊗ IT ]) = ∑Vec(lk⊗Dt)ζk,t = Mevζ k = 1, . . . ,K t = 1, . . . ,T

and therefore also the estimating equations as:

π = G0b−
[
IT ⊗E(xix

′
i)
−1
]

Mevζ

[G0|Gev (E(xix
′
i))]
(

b
ζ

)
= Hev(E(xix

′
i))γ.

The expression of the covariance matrix, as given in (5.36) involves the gradi-
ent ∂Hθ/∂m′, with m being here= VecE(xix

′
i). Using the relation dVec(A−1) =

−A′−1⊗A−1dVec(A) (see Magnus and Neudecker, 1988), we can compute this gra-
dient as:
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∂Hθ 0/∂m′ =−(Φ(β )⊗ IKT )(E(xix
′
i)
−1⊗E(xix

′
i)
−1)

=−(Φ(β )E(xix
′
i)
−1)⊗E(xix

′
i)
−1

=−(Π0−b0′ ⊗ IT )⊗E(xix
′
i)
−1 .

5.7.4 Weak Simultaneity

The case of weak simultaneity is quite similar to that of errors in variables. The
relation between the parameters of interest and the auxiliary parameters includes
the second order moment matrix of the explanatory variables. Here the T ×KT
matrix Φ(β ) is formed of blocks of T ×T upper triangular matrices, and thus can
be written as:

Φ(β ) =
K

∑
k=1

∑
i≤ j

Mi j(k)βi, j,k ,

where the matrices Mi, j(k) have zero coefficients except in the k th T × T block
where the (i, j) coefficients are equal to one. We thus have:

Vec

(
Φ
(

β
)′)

=
K

∑
k=1

∑
i≤ j

Vec
(
Mi j(k)′

)
β

i, j,k
= Mwsβ .

and the estimating equations can be rewritten as:

π = G0b−
(
IT ⊗E(xix

′
i)
−1
)

Mwsζ

= [G0|Gws (E(xix
′
i))]
(

b
ζ

)
= Hws(E(xix

′
i))γ.

5.7.5 Combination of the Different Cases

The estimating equations in vector form, when combining the previous specification
errors, are easily obtained by juxtaposition of the matrices G0, Gce, Gev(E(xix

′
i)) and

Gws(E(xix
′
i)) in the preceding formulas. For example, in the case of both correlated

effects and errors in variables (EC+EV), we can write:

π =
[
G0|Gev

(
E(xix

′
i)
)
|Gce
]
⎛

⎝
b
ζ
c

⎞

⎠= Hce,ev(E(xix
′
i))γ .
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5.7.6 Lagged Dependent Variable

In the dynamic case, the estimating equations take the form:

[I−αL]Π = b′ ⊗ IT + l1λ ′+ lδ .

Applying the Vec operator after transposition of the matrices, we have:

π = [(L⊗ IKT )π]α +G0b+ l1⊗ IKT λ + l⊗ IKT δ

= [(L⊗ IKT )π|G0|l1⊗ IKT |l⊗ IKT ]

⎛

⎜
⎜
⎝

α
b
λ
δ

⎞

⎟
⎟
⎠= HLDV(π)γ.

5.7.7 Restrictions on the Covariance Matrix of the Disturbances

Let us give a last example in the cases of restrictions on the covariance matrix of
the disturbances (see Sect. 5.2.4). In such cases, when using the Vec. operator to
transform the estimating equations, one has to be careful to avoid the duplications
due to the symmetry of variance matrices. The vector transformation of a symmetric
matrix which picks up only the different elements of a matrix is referred as the Vech
operator. One can switch from one operator to the other by premultiplication of a
given matrix. Considering for example a symmetric matrix M of size L, one can
define two matrices DL and D+

L of size (L(L+1)/2)×L2 and L2× (L(L+1)/2)
respectively, such that Vech(M) = DL Vec(M) and Vec(M) = D+

L Vech(M).
In the frequent cases where the covariance matrix of the disturbances Σ is linear

in a parameter vector λ , it is possible using the Vech operator to write simply:

Vech(Σ(λ )) = Kλ .

Taking the most standard case of the error components model, we have Σ(λ ) =
σ2

BJ + σ2
W I, where σ2

B and σ2
W are the respective variances of the individual effects

μi and the idiosyncratic disturbances uit , I is the unity matrix and J the matrix all
the coefficients of which are equal to 1. We can write:

Vech
(
Σ
(
σ2

B,σ2
W

))
= [Vech(J) |Vech(I)]

(
σ2

B
σ2

W

)
,

or without assuming the constancy over time of the variances of the idiosyncratic
disturbances:
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Vech
(
Σ
(
σ2

B,σ2
W1

, . . . ,σ2
WT

))
= [Vech(J) |Vech(M1) | . . . |Vech(MT )]

⎛

⎜
⎜
⎜
⎝

σ2
B

σ2
W1

...
σ2

WT

⎞

⎟
⎟
⎟
⎠

where the Mt matrices have all their coefficients equal to zero except the t th diagonal
coefficient equal to 1.

5.8 Appendix C: Manipulation of Equations and Parameters
in the ALS Framework

ALS is a flexible method allowing the manipulation of equations and parameters
without loosing asymptotic efficiency. Provided some simple rules are observed,
one can change the way in which the estimating equations are written in order to
eliminate auxiliary parameters as well as some parameters of secondary interest,
while preserving the asymptotic properties of the estimators.

5.8.1 Transformation of the Estimating Equations

The estimating equations can be transformed without efficiency loss in the estima-
tion of the parameter of interest for a wide range of transformations. This is sum-
marized in the following result.

Let f be a function of the three arguments θ ,μ, and g where g ∈ Rng with values

in Rng , such that: f (θ ,μ,g) = 0⇔ g = 0 and ( ∂ f
∂g (θ 0,μ0,0) is invertible. Then the

optimal ALS estimator based on h(θ 0,μ0) = f (θ 0,μ0,g(θ 0,μ0)) = 0 has the same

asymptotic properties as the optimal ALS estimator based on g(θ 0,μ0) = 0.
This result has several implications. When the number of estimating equations

is equal to the dimension of the auxiliary parameter, these equations can be trans-
formed so that they take the form of a direct restriction μ0−h

(
θ 0)= 0. As already

explained, this has several advantages in the implementation of the optimal ALS
estimator (essentially that it does not require a two steps procedure).

Also, important computational simplifications arise when the estimating equa-
tions can be rewritten as a linear function of the parameter of interest such as
π0−H

(
m0
)

θ 0 = 0. Let us consider again the case of the autoregressive model. We
have seen in Sect. 5.2.3 that the estimating equations can be written linearly in terms
of the parameters of primary interest α and b, and secondary interest δ and λ , as

[I−αL]Π = M(b)IT + lδ ′+ l1λ ′.
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If we premultiply them by [I−αL]−1, we transform them in the form of a direct
restriction on π, but which is highly nonlinear in terms of the parameters of in-
terest. The two sets of equations are equivalent, but the first is more convenient to
deal with and provides an explicit expression for the estimator of the parameter of
interest.

5.8.2 Eliminating Parameters of Secondary Interest

The parameters of interest θ are often divided into a subset of parameters of primary
interest and a subparameter set of secondary interest.47 It may be convenient to only
estimate the first set, specially when they have a small dimension and the parameters
of secondary interest a high one. As already mentioned, this is possible by simply
eliminating the parameter of secondary interest in the estimating equations. Crépon,
Kramarz and Trognon (1998) show that the potential asymptotic efficiency of the
ALS estimator for the parameters of primary interest is unaffected, as long as the
number of estimating equations discarded in the elimination process is equal to the
number of the parameters of secondary interest.

More precisely, let θ p and θ s be the parameters of primary and secondary interest
of dimension nθ p

and nθ s
and let gp and gs be a partition of the estimating equations

of dimension ngp and ngs . Assume that ngs = nθ s
, and that the

(
ngs ×nθ s

)
square

matrix ∂gs
∂θ ′s

(θ 0,μ0) is invertible, then there exists a neigborhood N of (θ 0,μ0) and

a function ϕ of θ p and μ such that for (θ ,μ) in N, gp

(
θ p,θ s,μ

)
= 0 is equivalent

to θ s = ϕ
(

θ p,μ
)

. If θ̂ =
(

θ̂ p, θ̂ s

)
is the optimal ALS estimator based on the full

set of estimating equations

g
(

θ 0,μ0
)

= 0 (5.48)

and if θ̃ p is the optimal ALS estimator based on the restricted set of estimating
equations

h(θ 0
p,μ0) = gp(ϕ(θ 0

p,μ0),θ 0
p,μ0) = 0, (5.49)

then θ̃ p is asymptotically equivalent to θ̂ p.
Taking again the example of the autoregressive model, the 2KT parameters δ

and λ can be simply eliminated from the estimating equations by first differencing
them and then eliminating the first year estimating equation, i.e., by premultiplying

47 We prefer to speak of parameters of secondary interest rather than calling them nuisance param-
eters, since these parameters may have an interpretation.
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them successively by an appropriate (T − 1)× T matrix Δ and an appropriate
(T −2)× (T −1) matrix E1.48

Instead of using the KT 2 estimating equations to estimate the 2KT + K + 1
parameters, we use only KT 2− 2KT transformed equations to estimate the K + 1
parameters of primary interest without any loss of asymptotic efficiency.

The specification tests of Sect. 5.3.3 can also be implemented either on the re-
duced set of estimating (5.49) or on the whole set (5.48) including all the parameters.
Under the null hypothesis of correct specification, the corresponding statistics are
asymptotically equivalent. To see this consider the test statistics of (5.36), based
on the implementation of the optimal estimator. They are equivalent to the statis-
tics in (5.39) testing that the residual function of the auxiliary parameters is null
once all the parameters of interest have been eliminated (see end of Sect. 5.3.3).
But in both cases, the elimination can be chosen to end up with the same function
of the auxiliary parameters, so the test statitics are equivalent. They follow a χ2

distribution with degrees of freedom equal to the difference between the number of
equations used in the estimation and the number of estimated parameters.49

5.8.3 Recovering Parameters of Secondary Interest
Once Eliminated

Once the parameters of primary interest estimated, it is possible to obtain an
estimation of the parameters of secondary interest, potentially, as efficient as if this
parameter had been estimated directly. This is obtained by the solution of the fol-
lowing minimisation problem:

θ̃ s = Arg min
θ s

{g′(θ s, θ̃ p, μ̂)S∗g(θ s, θ̃ p, μ̂)}, (5.50)

with S∗ = W−1 =
[

∂g0

∂ μ ′Vμ
∂g0′

∂ μ

]−1

. Note that a simple replacement of θ p by θ̃ p in

the equations θ s = ϕ(θ p,μ) used to eliminate the parameter of primary interest

provides a consistent, but not efficient estimator θ #
s = ϕ(θ̃ p, μ̂) of θ s.

Let us consider the intermediate situation, in which the estimating equations take
the form

48 The (T −1)×T matrix Δ is defined as: Δ =

⎛

⎝
−1 1 0

0 −1 1

⎞

⎠. It transformes any T ×K matrix

m with m′ = (l′1, . . . , l
′
T ) into the (T − 1)×K matrix mΔ = Δm with m′Δ = (l′2− l′1, . . . , l

′
T − l′T−1).

The (T −2)× (T −1) E1 matrix is simply defined as E1 =

⎡

⎣
0 1

0 1

⎤

⎦.

49 This is another way to understand that this quantity has to be constant along the different efficient
estimation procedures that can be implemented: to keep efficiency the implicit restriction imposed
on the auxiliary parameters must remain the same.
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(
gs(θ ,μ)
gp(θ ,μ)

)
=
(

ϕ(θ p,μ)−θ s
h(θ p,μ)

)

The efficient estimator θ̃ s of the parameters of secondary interest solving (5.50) is
given by50

θ̃ s = ϕ(θ̃ p, μ̂)+W12W−1
22 h(θ̃ p, μ̂). (5.51)

This last equation clearly shows that the optimal estimator of θ s is generally differ-
ent from the estimator obtained by simple replacement θ #

s .
51

The covariance matrix of the estimators is given by the usual formula of (5.36).
It leads in this specific case to the expression

V (θ̃ p) =
[

∂h′
∂θ p

W−1
22

∂h
∂θ ′p

]−1

Cov (θ̃ p, θ̃ s) = V (θ̃ p)
[

∂ϕ ′
∂θ 2

+ ∂h′
∂θ 2

W−1
22 W21

]

V (θ̃ s) = W11−W12W−1
22 W21 + Cov (θ̃ p, θ̃ s)

′V (θ̃ p)
−1 Cov (θ̃ p, θ̃ s)

(5.52)

Let us give two examples in which recovering parameters of secondary interest
can be interesting.

1. Specification testing
Consider the case in which the set of estimating equations can be divided into two
subsets

g′ = (g′1,g
′
2) ∈ F(Rnθ → Rng1 × Rng2 ).

Assume we want to test for the compatibity of the first subset of estimating equations
g1with the second one. This can be done simply in the following way: introduce an
extra parameter δ 1 of dimension ng1 , and consider the new ALS problem given by
the estimating equations

g1(θ 0,μ0)−δ 0
1 = 0

g2(θ 0,μ0) = 0

The compatibility of g1 with g2 can be reformulated as the assumption δ 1 = 0. So a
test statistic can be computed as

ζ12 = Nδ̂
′
1

(
V̂

δ̂ 1

)−1
δ̂ 1.

50 The solution of the previous problem is given by: θ̃ s = ϕ(θ̃ p, μ̂)− (S11)−1S12h(θ̃ p, μ̂), and

we have the relation S−1
11 S12 = −W12W−1

22 from the formula of block inversion (see Magnus and
Neudecker 1988)
51 Note, however, that when the residuals h(θ̃ 2, μ̂) are zero, i.e., when the parameters of primary

interest are just identified, we have θ̃ 1 = θ #
1. Another case when these estimators are the same is

when the matrix W12 = 0.
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It is possible to use different procedures to estimate the parameters of the model.
First eliminate δ 1 from the set of estimating equations and so estimate θ using
g2(θ ,μ) = 0. This provides a “robust” estimator θ̃ 2 of θ 2. It is then straightforward

to implement the test. This requires only to recover an estimator δ̃ 1 of δ 1 using
(5.51), and the asymptotic covariance matrix using (5.52). Note that it is possible to
test individually the compatibility with the initial set of estimating equations g2 of
each equation in g1. This means simply to test that a specific component, δ 1 = 0.
Note also, that once the appropriate set of estimating equations has been selected, it
is straightforward to recover an estimate of θ 2 as efficient as if it had been directly
estimated on the whole set of selected estimating equations. This is simply done
through another ALS step in which θ̃ 2 and θ̃ 1 are estimators of auxiliary parameters
μ0 = (μ0

1
,μ0

2
) = (θ 0

2,δ
0
1) to be constrained by

(
μ0

1

μ0
2

)(
H 0
0 I

)(
Ψ0

1
θ 0

2

)

where H selects in g1 the estimating equations to be removed for the estimation of
θ 2, and Ψ1 the subset of parameters in δ 1 not constrained to zero.

2. The autoregressive model
The previous device to eliminate and recover some parameters of secondary inter-
est can help to avoid nonlinear estimation. Consider the case of the autoregressive
model and the case where the correlation between disturbances is restricted. As
described in Sect. 5.2.4 this introduces a subset of nonlinear estimating equations.
Depending on the assumptions about the covariance between the explanatory vari-
ables and the disturbances, the usual set of estimating equations, restricting the π
matrix is of the form

[I−αL]π = M(b)IT +Ψ(δ ) (5.53)

or of the form
[I−αL]π = M(b)IT +Φ(β )E(xix

′
i)
−1.

Let us assume it is of the form of (5.53). When the correlation between the distur-
bances is restricted, i.e., the covariance matrix of vi can be written as a function of
the parameters λ of dimension less than T (T + 1)/2: E(viv

′
i) = Σ(λ ), some addi-

tional, but nonlinear, estimating equations are available.

[I−αL]Vw[I−αL]′+Ψ(δ )E(xix
′
i)Ψ(δ )′ = Σ(λ ). (5.54)

The direct introduction of these equations has several disadvantages discussed in
Sect. 5.2.4. A way to avoid this is to proceed in several steps. The covariance matrix
is first let totally free, hence, it is parameterized by T (T +1)/2, parameters say σ

E(viv
′
i) = Σ(σ) = ∑

k≤l

σklMkl ,
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where Mkl is the matrix which is zero except the elements (k, l) and (l,k) which are
one.

Thus we consider the set of estimating equations formed by (5.53) and

[I−αL]Vw[I−αL]′+Ψ(δ )E(xix
′
i)Ψ(δ )′ = Σ(σ) (5.55)

instead of (5.53) and (5.54), the only difference being that now E(viv
′
i) = Σ(σ),

instead of Σ(λ ).
The parameter σ can be eliminated from the set of estimating equations by

simply excluding the second order equations (5.55). A “robust to serial correla-
tion” and efficient estimator θ̃ = (α̃, β̃ , δ̃ ) of the parameter of primary interest

θ 0 = (α0,β 0,δ 0) can be obtained on the basis of the usual (5.53) restricting the
Π matrix. Following the previous methods, an efficient estimator σ̃ of the param-
eter of secondary interest σ can be obtained using (5.54). Now, as in the previous
example, we can use the total set of parameters (σ̃ , θ̃) as an estimator of an auxiliary
parameter μ0 = (σ0,θ 0) that can be further constrained to incorporate restrictions
on the covariance matrix.

The main advantage of this procedure is that, for a given set of estimating (5.53)
restricting the Π matrix, the estimation of the covariance matrix of the disturbances
is unrestricted. Thus, if the true covariance matrix has a distinctive pattern as that
coming from the error components model, we could in principle recognize it on its
estimate σ̃ . Notice that the specification test corresponding to the last ALS step is a
test of the restriction implied on the covariance matrix of the disturbances. Finally,
notice that the parameters of primary interest θ can be efficiently eliminated for
this last step, all the attention being devoted to the restrictions on σ . Once these
restrictions are imposed, (5.53) gives a simple way to recover an efficient ultimate
estimation of θ .

5.8.4 Elimination of Auxiliary Parameters

Auxiliary parameters can be eliminated when estimating equations do not restrict
them. Consider the case in which the auxiliary parameters can be divided into two
sets of subparameters: μ ′ = (μ ′

1
,μ ′

2
) and assume that μ2 enters only a subset g2 of

the estimating equations g′ = (g′1,g
′
2) that does not restrict it, i.e., the parameters

of interest θ can be divided into θ ′ =
(
θ ′1,θ ′2

)
and estimating equations take the

form: g1 (μ1,θ 1) = 0,g2 (μ1,μ2,θ 2) = 0 and ∂g2/∂θ ′2 invertible (this implies that
dim(g2) = dim(θ2)). Then the subset of estimating equations g2 can be dropped for
the optimal ALS estimation of the parameters of interest θ 1. This has the interesting
consequence that the auxiliary parameters do not need to be estimated.

A useful application arises in the Chamberlain approach when the analysis takes
into account a subset of explanatory variables but does not make any inference
about it. Consider the case in which the set of explanatory variables x can be di-
vided into two subsets x′ = [x′1,x

′
2]. We can decompose the Π matrix into two
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parts corresponding to the two subsets of coefficients of the linear projection of
the dependent variable on the whole set of explanatory variables Π = [Π1,Π2].
Consider a linear model as in Sect. 5.2.2. We can write Π = M (b) + Ψ, with
by definition Ψ = E∗ (vi|xi1,xi2) and decompose each matrix M (b) ,Ψ in two
parts: M (b) = [M (b1) ,M (b2)] and Ψ = [Ψ1,Ψ2] . These relations do not repre-
sent a model by themselves without a specific parameterization of the matrix Ψ (or
Φ = ΨE (xix

′
i)
−1) and an explicit form for M (b) . If we do not make any inference

about the variable x2, the matrix Π2 is unrestricted and the related equations can
be dropped. We are then left with the following equations: Π1 = M (b1) + Ψ1, or

Π1 = M (b1)+Φ1

[
E (xi1x′i1)−E (xi1x′i2)E (xi2x′i2)

−1 E (xi2x′i1)
]−1

, which lead to a

specific model with a parametrization of either Ψ1 (i.e., E∗ (vi |xi1−E∗ (xi1|xi2) ) or
Φ1 (i.e., E (vix

′
i1)).

5.9 Appendix D: Equivalence Between Chamberlain’s, GMM
and Usual Panel Data Estimators

The Random Effects and Correlated Effects models are respectively defined on the
basis of the following panel data equation

yit = ∑x(k)
it bk + μi +uit k = 1, . . . ,K

by assuming that x(k)
it is uncorrelated with both disturbances μi and uis, or by assum-

ing only that x(k)
it is uncorrelated with the idiosyncratic disturbance uis. The most

usual and well known estimators are the Generalized Least Squares (GLS) for the
Random Effects model, and the Within and the First Difference estimators for the
Correlated Effects model.

The GLS estimator b̂RE is computed using a consistent estimator Ω̂ of the covari-
ance matrix Ω of the overall disturbance vit = μi +uis

b̂RE =
(

x′iΩ̂−1xi

)−1
x′iΩ̂−1y

i

where xi =
[
x(1)

i |· · · |x(K)
i

]
. For every sequence of matrices Ω̂ converging in proba-

bility to Ω, we can approximately write:

√
N
(

b̂RE−b
)

=
(

x′iΩ−1xi

)−1√
N
(

x′iΩ−1vi

)
+op (1) .

The within estimator b̂CEW is simply computed as

b̂CEW =
(

x′iWxi

)−1
x′iWy

i
,
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where W = I− J/T .
The first difference estimator b̂CEΔ is computed as

b̂CEΔ =
(

(Δxi)
′

̂V (Δvi)
−1

(Δxi)
)−1

(Δxi)
′

̂V (Δvi)
−1(

Δy
i

)
.

for any consistent estimator ̂V (Δvi) of V (Δvi), and we can approximately write:

√
N(b̂CEΔ−b) =

(
(Δxi)

′V (Δvi)
−1 (Δxi)

)−1√
N(Δxi)

′V (Δvi)
−1 (Δvi)+op (1)

Our purpose here is to show that these usual estimators are special cases of the
more general Chamberlain estimators. Since we know that the Chamberlain method
and GMM are equivalent when based on the same second order moment restrictions
implied by the model, it is enough to to show that they are special cases of the GMM
estimator.

For both the Random Effects and Correlated Effects models, there is a matrix M,
such that the orthogonality conditions take the specific form

E (Xi⊗ (Mvi)) = 0 .

where Xi = Vec(xi). In the case of Random Effects M is the (T ×T ) identity
matrix IT , while in the Correlated Effects case, M is the ((T −1)×T ) difference
matrix Δ.52

The GMM estimator is the GLS estimator based on the orthogonality conditions
(

Xi⊗My
i

)
= Xi⊗ (Mxi)b+Xi⊗ (Mvi) .

It is thus defined as

.
b̂GMM =

[
X ′i⊗ (Mxi)

′W−1Xi⊗ (Mxi)
]−1

[
X ′i⊗ (Mxi)

′W−1Xi⊗
(

My
i

)]

where W = E
(
Xi⊗ (Mvi)X

′
i⊗ (Mvi)

′), and it is such that:

√
N
(

b̂GMM−b
)

=
[
X ′i⊗ (Mxi)

′W−1Xi⊗ (Mxi)
]−1

[
X ′i⊗ (Mxi)

′W−1
√

N
(

Xi⊗ (Mvi)
)]

.

Assuming that the disturbances are homoscedastic with respect to the explana-
tory variables, that is:

E
(
viv
′
i|Xi

)
= E

(
viv
′
i

)
= Ω ,

we can write more simply:

52 See the definition of the difference matrix Δ in the footnote 48 in Sect. 5.8.2.
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W = E
(
Xi⊗ (Mvi)X

′
i⊗ (Mvi)

′)= E
(
XiX

′
i

)
⊗Σ ,

with Σ = ME (viv
′
i)M′ = MΩM′. Denoting by e1 and e2 two random vectors, we can

also write:

X ′i⊗ e′i1W−1Xi⊗ ei2 = Vec
(

ei1X
′
i

)′
E (XiX

′
i)
−1⊗Σ−1Vec

(
ei2X

′
i

)

= Vec
(

E
(

ei1X
′
i

)
+op (1)

)′
Vec
(

Σ−1ei2X
′
iE (XiX

′
i)
−1
)

= tr

(
E
(

ei1X
′
i

)′
Σ−1ei2X

′
iE (XiX

′
i)
−1
)

+op (1)

= tr
(

X
′
iE (XiX

′
i)
−1 E

(
ei1X

′
i

)′Σ−1ei2

)
+op (1)

where E (XiX
′
i)
−1 E

(
ei1X

′
i

)′
is the vector of the coefficients of the linear pro-

jection of ei1 on Xi.If ei1 is in the subspace generated by the x’s, we thus have

X
′
iE (XiX

′
i)
−1 E

(
ei1X

′
i

)′
= e′i1, which leads to:

X ′i⊗ e′i1W−1Xi⊗ ei2 = e′i1Σ−1ei2 +op (1) .

It follows that the element (l,k) of the matrix
[
X ′i⊗ (Mxi)

′W−1Xi⊗ (Mxi)
]

X ′i⊗
(

Mx(l)
i

)′
W−1Xi⊗

(
Mx(k)

i

)
,

is equals to:
(

Mx(l)
i

)′
Σ−1
(

Mx(k)
i

)
+op (1) .

Similarly, we have: 53

X ′i⊗ (Mxi)
′W−1

√
N
(

Xi⊗ (Mvi)
)

=
√

N
(

x′iM
′Σ−1Mvi

)
+op (1) .

And we can thus write that:

√
N
(

b̂GMM−b
)

=
[
X ′i ⊗ (Mxi)

′W−1Xi⊗ (Mxi)
]−1

[
X ′i ⊗ (Mxi)

′W−1
√

N
(

Xi⊗ (Mvi)
)]

=
(

x′iM
′Σ−1 (Mxi)+op (1)

)−1√
N
(

x′iM
′Σ−1Mvi +op (1)

)

=
(

x′iM
′Σ−1Mxi

)−1√
N
(

x′iM
′Σ−1Mvi

)
+op (1)

53 Using the fact that E(Mvi) = 0 and V (M|vi) exists, and hence that
√

NMvi is bounded in pro-
bability and

√
NMvi = op(1).
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Assuming now that M is the identity matrix and Σ = Ω like in the Random Effects
model case, we have:

√
N
(

b̂GMM−b
)

=
(

x′iΩ−1xi

)−1√
Nx′iΩ−1vi +op (1)

=
√

N
(

b̂RE−b
)

+op (1) ,

showing that indeed in the case of homoscedasticity, the GLS estimator, the GMM
and the Chamberlain estimators are asymptotically equivalent.

In the case of the Correlated Effects model, M is the difference matrix, and we
have:

√
N
(

b̂GMM−b
)

=
(
(Δxi)

′
V (Δvi)

−1 (Δxi)
)−1√

N(Δxi)
′
V (Δvi)

−1 (Δvi)+op (1)

showing that the GMM and the Chamberlain estimators are asymptotically equiva-
lent to the First Difference estimator.

If, moreover, the disturbances uit are not serially correlated, that is if the co-
variance matrix Ω = σ2

BJ + σ2
W I, we have Σ = MΩM′ = σ2

W ΔΔ′, and M′Σ−1M =
σ−2

W Δ′ (ΔΔ′)−1 Δ. Noting that we have also Δ′ (ΔΔ′)−1 Δ = W , it follows that:54

√
N
(

b̂GMM−b
)

=
(

x′iWT xi

)−1√
Nx′iWT vi +op (1) =

√
N
(

b̂W −b
)

+op (1) ,

showing that in the case of Correlated Effects model, the GMM and Chamberlain
estimators are also asymptotically equivalent to the Within estimator when ui is
homoscedastic with respect to x and not serially correlated.

5.10 Appendix E: Design of Simulation Experiments

5.10.1 Generating Process of the Variable x

We generate the explanatory variable x as the sum of a between (or cross–sectional
or permanent) component ξi and a within (or time series or time varying) component
ξit . We suppose that the between component ξi is itself the sum of an exogenous sub-
component ξ e

i and a correlated one ξ c
i (i.e., correlated with the individual effect μi

in the regression model). We also assume that the within component ξit is the sum
of a true part ξ ∗it (serially correlated) and an error of measurement ξ f

it serially uncor-
related. These different components are generated by four normal and independent
random variables ηi, μi, ηit and ϕit with zero means and standard deviations σηi ,
σμi , σηit , σϕit . We can thus write:

54 Δ′ (ΔΔ′)−1 Δ is the projector on the subspace generated by the columns of Δ′. Given that Δ =
ΔIT = Δ(BT +WT ) = ΔWT , this subspace is included in Im(Wt) . Because both subspaces are of
dimension (T −1) , they are identical and thus Δ′ (ΔΔ′)−1 Δ = W.
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xit = ξi +ξit = (ξ e
i +ξ c

i )+
(

ξ ∗it +ξ f
it

)

ξ e
i = ηi, ξ c

i = λ μi

ξ ∗it = ∑l
τ=0 ωτ ηit−τ , ξ f

it = νϕit .

where the weights ωτ are such that ξ ∗it follows an autoregressive process of param-
eter ρ truncated after l years, and such that ∑l

τ=0 ω2
τ = 1, implying that the variance

of ξ ∗it and ηit are equal, i.e., V(ξ ∗it ) =V(ηit). These weights are thus equal to:

ωτ = ρτ

√
1−ρ2

1−ρ2(l+1) .

5.10.2 Regression Model

We consider the true regression model:

yit = αx∗it +(μi +uit) ,

where x∗it is the true (unobserved) value of x (i.e., x∗it = ξi+ ξ ∗it ), α is the parameter
of interest, and uit is another independent random normal variable of mean zero and
standard deviation σuit . The estimated regression can thus be written as

yit = αxit +(μi +(uit −ανϕit)).

The dependent yit can also be defined as the sum of a between component ζi and a
within component ζit :

yit = ζi +ζit ,

with

ζi = αξi + μi = α(ηi +λ μi)+ μi

ζit = αξ ∗it +uit = α
l

∑
τ=0

ωτ ηit−τ +uit .

The variances and covariances of the between and within components of the x
and y variables have the following form:

V(ξi) = σ2
ηi

+λ 2σ2
μi

Cov (ζi,ξi) = αV(ξi)+λσ2
μi

V(ζi) = α2σ2
ηi

+(1+αλ )2 σ2
μi

= α2V(ξi)+(1+2αλ )σ2
μi

V(ξit) = ω2
t σ2

ηi
+ v2σ2

ϕit

Cov (ζit ,ξit) = αω2
t σ2

ηi
= αV(ξit)−αν2σ2

ϕit

V(ζit) = α2ω2
t σ2

ηit
+σ2

uit
= α2V(ξit)+σ2

uit
−α2ν2σ2

ϕit
.
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The asymptotic biases BB and BW on the between and within regressions (OLS)
estimates of the α parameter are thus respectively:

BB = λ
σ2

μi

V (ξi)
BW =−αν2 σ2

ϕit

V (ξit)
.

We also introduce x-related heteroscedasticity in the regression model by assum-
ing that the slope coefficient α is itself randomly distributed across individuals. We
thus assume:

αi = α + γi ,

where γi is a normal random variable with mean zero and standard deviation σαi ,
independent from the other random variables generating x. The disturbance in the
regression thus becomes: ṽit = vit + γixit , and its covariance matrix conditional on x
can be written as

E(ṽiṽ
′
i|xit) = E(viv

′
i)+σ2

γi
.E
(
xix

′
i

)
.

5.10.3 Calibration of Simulations

We calibrate the simulations so that V (ξi) = σ2
μi

and V (ξit) = σ2
uit

= σ2
ϕit

. This also
implies the following relations between the variances of the random variables ηi and
the specification error parameters λ and ν :

σ2
ηi

= (1−λ 2)σ2
μi

σ2
ηit

= (1−ν2)σ2
uit

= (1−ν2)σ2
ϕit

and the between and within biases become

BB = λ BW =−αν2.

We also normalize the total variance of x to be equal to 1 and impose the shares
of the between and within variances to be respectively SB and SW = (1−SB) , that is:

V(xit) = V(ξi)+V(ξit) = 1
V(ξi) = SB

V(ξit) = SW = (1−SB) .

The precise value that we choose for the parameters are such as to reproduce
some of the basic features found in real panel data sets used to estimate firm pro-
duction functions as in Mairesse (1990), Mairesse (1990), Hall and Mairesse (1995
and 1996), and Griliches and Mairesse (1998). The true mean value of the param-
eter of interest is taken to be α = 0.5 and its standard deviation over individu-
als to be σαi = 0.2; the shares of the between and within variances of x are re-
spectively SB = 0.8 and SW = 0.2; the weights entering the definition of the true
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within component ξ ∗it of x are obtained with ρ = 0.7 and l = 5, that is w0 = 0.719,
w1 = 0.503, w2 = 0.352, w3 = 0.247, w4 = 0.173 and w5 = 0.121. The correlated
effect parameter λ is chosen equal to 0.2 so that BB = 0.2 and the errors in variables
parameter is chosen equal to

√
0.2/0.5 so that BW =−0.2.

5.10.4 Three Scenarios

Basically we consider the three scenarios of Non Correlated Errors (NCE), of Cor-
related Effects (CE) with a value of 0.2 for the between bias BB, and of Correlated
Effects and Errors in Variables (CE+EV), with a value of 0.2 for the between bias
BB and of −0.2 for the within bias BW . We investigate these three scenarios for six
combinations of cross–sectional and time series sample sizes: N = 100, 400, and
1600, and T = 3 and 6. For each of the eighteen (3×6) configurations of scenarios
and sample sizes, we performed 100 replications. We also experimented with 1000
replications but found only small differences in the results.

5.10.5 The Chamberlain and GMM Estimators

For each of the three true specifications (NCE), (CE) and (CE+EV), we assume these
three different specifications and also the Correlated Effects and Weak Simultaneity
specification (CE+WS). For each of the twelve combinations of true and assumed
specifications, we compute two Chamberlain estimators: CHAMB1 and CHAMB2
and two GMM estimators: GMM1 and GMM2.

The CHAMB1 and CHAMB2 estimators are based on estimating equations of
the form π0 = H

(
m0
)

θ 0. They differ in their weight matrices S1 and S2 which
are consistent estimates of the inverse of the variance matrices of π , respectively
assuming homoscedasticity and allowing for possible heteroscedasticity; i.e.,

plimS1 = V c−1
π̂ = [E(wiw

′
i)⊗E(xix

′
i)
−1]−1;

plimS2 = V−1
π̂ = [I⊗E(xix

′
i)
−1E(wiw

′
i⊗ xix

′
i)I⊗E(xix

′
i)
−1]−1.

The matrix S1 is non–optimal since we have introduced x related heteroscedasticity
in the model. The matrix S2 is optimal for the (NCE) and (CE) assumed speci-
fications (in which H

(
m0
)

= H). It is not “fully” optimal for the (CE+EV) and
(CE+WS) assumed specifcations, in which cases it is (in principle) necessary to
take into account the estimation of E (xix

′
i). The fully optimal weight matrix is a

consistent estimate of the inverse of the covariance matrix of estimating equations

involving the gradient D0 = ∂H(m)θ 0

∂m (m0).
The GMM1 and GMM2 estimators are based on orthogonality conditions that

take the form E(z′iε i) = 0, where zi is the appropriate matrix of instruments and
ε i stands for the residuals (ε i = vi) when assuming (NCE), and for their first
difference (ε i = Δvi) when assuming (CE), (CE+EV) and (CE+WS). The weight
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matrix used for GMM1 is W1 = zi
′zi
−1

while the weight matrix used for GMM2 is

W2 = z′iε̂ iε̂
′
izi
−1

, where the ε̂i are the first step estimated residuals. As suggested by
Arellano and Bond (1991), in the case of the (CE), (CE+EV) and (CE+WS) assumed
specifications, we could also have used for the first step weight matrix an estimate
of E(z′iDzi) with D = ΔΔ′ (where Δ is the (T − 1)T difference matrix and D is the
(T − 1)(T − 1) matrix such that its diagonal coefficients are equal to 2 and its first
upper and lower diagonal coefficients are equal to −1, and all other coefficients are
zero). D is the optimal weight matrix in the cases of Correlated Effects if the time
varying disturbances uit are homoscedastic and serially uncorrelated.

5.10.6 Standard Errors and Specification Tests

The standard errors are derived from the covariance matrix of the estimated
parameters which are computed using the following formulas:

CHAMB1 [H ′S1H]−1H ′S1S−1
2 S1H[H ′S1H]−1

CHAMB2 [H ′S2H]−1

GMM1 [G′W1G]−1G′W1W−1
2 W1[G′W1G]−1

GMM2 [G′W2G]−1

where G is the gradient of the orthogonality conditions with respect to the parameter
of interest, that is G = E (z′ixi) if (NCE), and G = E (z′iΔxi) if (CE), (CE+EV) and
(CE+WS).

The specification tests are implemented using the CHAMB2 and GMM2 estima-
tors. They are based on the following χ2 statistics:

CHAMB N
(

π̂−H (m̂) θ̂
)′

S2

(
π̂−H (m̂) θ̂

)

GMM N
(

z′iε̂ i

)′
W2

(
z′iε̂ i

)
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Chapter 6
Random Coefficient Models

Cheng Hsiao and M. Hashem Pesaran

6.1 Introduction

Consider a linear regression model of the form

y = βββ ′x+u, (6.1)

where y is the dependent variable and x is a K× 1 vector of explanatory variables.
The variable u denotes the effects of all other variables that affect the outcome of
y but are not explicitly included as independent variables. The standard assumption
is that u behaves like a random variable and is uncorrelated with x. However, the
emphasis of panel data is often on the individual outcomes. In explaining human
behavior, the list of relevant factors may be extended ad infinitum. The effect of
these factors that have not been explicitly allowed for may be individual specific
and time varying. In fact, one of the crucial issues in panel data analysis is how the
differences in behavior across individuals and/or through time that are not captured
by x should be modeled.

The variable intercept and/or error components models attribute the heterogeneity
across individuals and/or through time to the effects of omitted variables that are
individual time-invariant, like sex, ability and social economic background vari-
ables that stay constant for a given individual but vary across individuals, and/or
period individual-invariant, like prices, interest rates and widespread optimism or
pessimism that are the same for all cross-sectional units at a given point in time but
vary through time. It does not allow the interaction of the individual specific and/or
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time varying differences with the included explanatory variables, x. A more general
formulation would be to let the variable y of the individual i at time t be denoted as

yit = βββ ′itxit +uit , (6.2)

= β1it x1it + . . .+βkitxkit +uit ,

i = 1, . . . , N, and t = 1, . . . ,T. Expression (6.2) corresponds to the most general
specification of the panel linear data regression problem. It simply states that each
individual has their own coefficients that are specific to each time period. However,
as pointed out by Balestra (1996) this general formulation is, at most, descriptive.
It lacks any explanatory power and it is useless for prediction. Furthermore, it is
not estimable as the number of parameters to be estimated exceeds the number of
observations. For a model to become interesting and to acquire explanatory and
predictive power, it is essential that some structure is imposed on its parameters.

One way to reduce the number of parameters in (6.2) is to adopt an analysis of
variance framework by letting

βkit = βk +αki +λkt ,
N

∑
i=1

αki = 0, and
T

∑
t=1

λkt = 0, k = 1, . . . ,K. (6.3)

This specification treats individual differences as fixed and is computationally
simple. The drawback is that it is not parsimonious, and hence reliable estimates of
αki and λkt are difficult to obtain. Moreover, it is difficult to draw inference about the
population if differences across individuals and/or over time are fixed and different.

An alternative to the fixed coefficient (or effects) specification of (6.3) is to let
αki and λkt be random variables and introduce proper stochastic specifications. This
is commonly called the “random coefficients” model. The random coefficient spec-
ification reduces the number of parameters to be estimated substantially, while still
allowing the coefficients to differ from unit to unit and/or from time to time.

In Sect. 6.2 we introduce various types of random coefficients models and
suggest a common framework for them. In Sects. 6.3 and 6.4 we consider the funda-
mental issues of statistical inference of a random coefficients formulation using the
sampling approach. In Sect. 6.5 we consider a Bayesian approach. Section 6.6 con-
siders the generalization to a dynamic framework. Issues of testing for homogeneity
under weak exogeneity are discussed in Sect. 6.7. Discussions on random coeffi-
cients, simultaneous equation systems and cross-sectional dependence are provided
in Sects. 6.8 and 6.9. Conclusions are in Sect. 6.10.

6.2 The Models

Let there be observations for N cross-sectional units over T time periods. Suppose
the variable y for the ith unit at time t is specified as a linear function of K strictly
exogenous variables, xkit ,k = 1,2, . . . ,K, in the form1

1 The case where one or more of the regressors are weakly exogenous is considered in Sect. 6.6.
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yit =
K

∑
k=1

βkitxkit +uit , (6.4)

= βββ ′itxit +uit , i = 1 . . . ,N, t = 1, . . . ,T,

where uit denotes the random error term, xit is a K×1 vector of exogenous variables
and βββ it is the K× 1 vector of coefficients. The random coefficients approach as-
sumes that the coefficients βββ it are drawn from probability distributions with a fixed
number of parameters that do not vary with N and/or T. Depending on the type of
assumption about the parameter variation, we can further classify the models into
one of two categories: stationary and non-stationary random-coefficients models.

The stationary random-coefficients models regard the coefficients as having con-
stant means and variance-covariances. Namely, the K×1 vector βββ it is specified as

βββ it = βββ +ξξξ it , i = 1, . . . ,N, t = 1, . . . ,T, (6.5)

where βββ is a K×1 vector of constants, and ξξξ it is a K×1 vector of stationary random
variables with zero means and constant variance–covariances. For instance, in the
Swamy (1970) type random coefficient models,

βββ it = βββ +ααα i, i = 1, . . . ,N, t = 1, . . . ,T, (6.6)

and

E(ααα i) = 0, E(ααα ix′it) = 0, (6.7)

E(ααα iααα ′j) =
{

ΔΔΔ, if i = j,
0, if i �= j.

Hsiao (1974, 1975) considers the following type of model

βββ it = βββ +ξξξ it (6.8)

= βββ +ααα i +λt , i = 1, . . . ,N, t = 1, . . . ,T,

and assumes

E(ααα i) = E(λt) = 0, E
(
ααα iλ ′t

)
= 0, (6.9)

E
(
ααα ix′it

)
= 0, E

(
λtx′it

)
= 0,

E
(
ααα iααα ′j

)
=
{

ΔΔΔ, if i = j,
0, if i �= j,

E(λλλ tλλλ ′s) =
{

ΛΛΛ, if t = s,
0, if t �= s.

Alternatively, a time varying parameter model may be treated as realizations of a
stationary stochastic process, thus βββ it can be written in the form,

βββ it = βββ t = Hβ t−1 +ηηη t , (6.10)
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where all eigenvalues of H lie inside the unit circle, and ηηη t is a stationary random
variable with mean μμμ. Then the Hildreth and Houck (1968) type model is obtained
by letting H = 0 and ηηη t be i.i.d.; for the Pagan (1980) model, H = 0 and

ηηη t −μμμ = ηηη t −βββ = a(L)εt , (6.11)

where βββ is the mean of βββ t and a(L) is the ratio of polynomials of orders p and q in
the lag operator L(Lεt = εt−1) and εt is independent normal. The Rosenberg (1972,
1973) return-to-normality model assumes the absolute value of the characteristic
roots of H be less than 1 with ηηη t independently normally distributed with mean
μμμ = (IK−H)βββ .

The nonstationary random coefficients models do not regard the coefficient vec-
tor as having constant mean or variances. Changes in coefficients from one obser-
vation to the next can be the result of the realization of a nonstationary stochastic
process or can be a function of exogenous variables. When the coefficients are real-
izations of a nonstationary stochastic process, we may again use (6.10) to represent
such a process. For instance, the Cooley and Prescott (1976) model can be obtained
by letting H = IK and μμμ = 0. When the coefficients βββ it are functions of individ-
ual characteristics or time variables (e.g. Amemiya (1978), Boskin and Lau (1990),
Hendricks, Koenker, and Poirier (1979), Singh, Nagar, Choudhry and Raj (1976),
Swamy and Tinsley (1977) and Wachter (1976)) we can let

βββ it = ΓΓΓqit +ηηη it . (6.12)

While the detailed formulation and estimation of the random coefficients model
depends on the specific assumptions about the parameter variation, many types
of the random coefficients models can be conveniently represented using a mixed
fixed and random coefficients framework of the form (e.g. Hsiao (1990) and Hsiao,
Appelbe and Dineen (1992))

yit = z′itγ+w′itααα it +uit, i = 1, . . . ,N, t = 1, . . . , T, (6.13)

where zit and wit are vectors of exogenous variables with dimensions � and p respec-
tively, γ is an �×1 vector of constants, ααα it is a p×1 vector of random variables, and
uit is the error term. For instance, the Swamy type model ((6.6) and (6.7)) can be
obtained from (6.13) by letting zit = wit = xit ,γ = β , and ααα it = ααα i; the Hsiao type
model (6.8) and (6.9) is obtained by letting zit = wit = xit ,γ = βββ , and αααit = αααi +λλλt ;
the stochastic time varying parameter model (6.10) is obtained by letting zit = xit ,
w′it = x′it [H,IK ], γ = μμμ, and ααα ′it = λ ′t = [βββ ′t−1,(ηηη t−μμμ)′]; and the model where βββ it is
a function of other variables (6.12) is obtained by letting z′it = x′it⊗q′it , γ′ = vec(Γ),
wit = xit , αit = ηηη it , etc.

For ease of illustrating the fundamental issues involved in estimating a random
coefficients model we shall make the simplifying assumption that ααα it = ααα i and ααα i

are independently normally distributed over i with mean 0 and covariance ΔΔΔ, denoted
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by ααα i ∼ N(0,Δ).2 In other words, there are only individual-specific effects, ααα i, and
these individual-specific effects stay constant over time. Under this simplified as-
sumption, model (6.13) can be written in the stacked form

y = Zγ+Wα +u, (6.14)

where

y
NT×1

=

⎛

⎜
⎝

y1
...

yN

⎞

⎟
⎠ , yi

T×1
=

⎛

⎜
⎝

yi1
...

yiT

⎞

⎟
⎠ , u

NT×1
=

⎛

⎜
⎝

u1
...

uN

⎞

⎟
⎠ , ui

T×1
=

⎛

⎜
⎝

ui1
...

uiT

⎞

⎟
⎠ ,

Z
NT×�

=

⎛

⎜
⎝

Z1
...

ZN

⎞

⎟
⎠ , Zi

T×�
=

⎛

⎜
⎝

z′i1
...

z′iT

⎞

⎟
⎠ ,

W
NT×N p

=

⎛

⎜
⎜
⎜
⎝

W1 0 · · · 0
0 W2 · · · 0
...

. . .
0 WN

⎞

⎟
⎟
⎟
⎠

, Wi
T×p

=

⎛

⎜
⎝

w′i1
...

w′iT

⎞

⎟
⎠ , and ααα

N p×1
=

⎛

⎜
⎝

ααα1
...

αααN

⎞

⎟
⎠ .

(6.15)

We further assume that ααα and u are mutually independent with

E (u) = 0, and E
(
uu′
)

= C. (6.16)

6.3 Sampling Approach

Let
v = Wααα +u, (6.17)

then E (v) = 0 and
E
(
vv′
)

= W(IN⊗ΔΔΔ)W′+C = Ω. (6.18)

Model (6.14) can be viewed as a linear regression model of the form

y = Zγ+v, (6.19)

where the composite error term, v, has a nonspherical covariance matrix. From a
sampling point of view, the interest for model (6.19) will lie in (a) estimating the

2 A model allowing the coefficients to vary across individuals and over time is very difficult to
estimate. So far, most random coefficients models either assume ααα it = ααα i or ααα it = ααα t . Here we
shall only focus on the former. For the case of ααα it = ααα t , as in (6.10), one can employ Kalman filter
type procedures to obtain MLE and carry out predictions. For details see Hsiao (2003).
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mean coefficient vector γ, (b) estimating the covariance matrix of v, Ω, and (c)
predicting yit .

If ΔΔΔ and C are known, the best linear unbiased estimator of γ is the generalized
least squares (GLS) estimator

̂̄γ = (Z′Ω−1Z)−1(Z′Ω−1y), (6.20)

with covariance matrix

D = Cov (̂̄γ) = (Z′Ω−1Z)−1. (6.21)

If ΔΔΔ and C are unknown, we can apply a two step GLS estimator. In the first step
we estimate ΔΔΔ and C. In the second step we estimate γ by substituting the estimated
ΔΔΔ and C into (6.20) and treating them as if they were known. Provided ΔΔΔ and C can
be consistently estimated, the two step GLS will have the same asymptotic efficiency
as the GLS estimator.

Similarly, we can obtain the best linear unbiased predictor of yi f using the
formula

ŷi f = z′i f γ+E(υi f | v),

= z′i f γ+ Cov (υi f ,v)′ Var (v)−1v. (6.22)

Because γ and v are unknown, their estimated values, ̂̄γ and v̂ = y−Ẑ̄γ are substi-
tuted into (6.22) in practice.

Equations (6.20)–(6.22) provide a general principle for efficient inference of a
random coefficients model. To illustrate relations to a specific type of random co-
efficients model, we consider a Swamy type model (6.4), (6.6) and (6.7), assuming
that the regressors zit , are strictly exogenous.3

Under the assumptions of Swamy (1970), we have

Z = XA,W = X, γ = βββ , βββ i = βββ +ααα i, (6.23)

where

A
NT×K

= (IK ,IK , ..,IK)′ (6.24)

X
NT×K

=

⎛

⎜
⎝

X1 0
. . .

0 XN

⎞

⎟
⎠ , Xi

T×K
=

⎛

⎜
⎝

x′i1
...

x′iT

⎞

⎟
⎠ .

For simplicity, we also assume that uit is independently distributed across i and over
t with

E
(
u2

it

)
= σ2

i . (6.25)

3 For estimation of correlated random coeffcient model using the instrumental variables approach,
see Murtazashvili and Wooldridge (2007).



6 Random Coefficient Models 191

Then Ω is block diagonal, with the ith diagonal block equal to

ΩΩΩi = XiΔΔΔXXX ′i +σ2
i IT . (6.26)

Substituting (6.23)–(6.26) into (6.20), the best linear unbiased estimator of the
mean coefficient vector β is

̂̄β GLS =
(
A′X′Ω−1XA

)−1
A′XΩ−1y, (6.27)

=

(
N

∑
i=1

X′iΩ
−1
i Xi

)−1( N

∑
i=1

X′iΩ
−1
i yi

)

,

=
N

∑
i=1

Riβ̂i,

where

Ri =

[
N

∑
i=1

(
ΔΔΔ+Σβ̂i

)−1
]−1(

ΔΔΔ+Σβ̂i

)−1
, (6.28)

and
β̂i = (X′iXi)−1X′iyi, Σβ̂i

= V
(

β̂i

)
= σ2

i (X′iXi)−1. (6.29)

The last expression of (6.27) is obtained by repeatedly utilizing the identity relation,

(E+BFB′)−1 = E−1−E−1B(B′E−1B+F−1)−1B′E−1. (6.30)

It shows that the GLS estimator is a matrix weighted average of the least squares es-
timator for each cross-sectional unit (6.29), with the weights inversely proportional
to their covariance matrices. It also shows that the GLS estimator requires only a
matrix inversion of order K, and so it is not much more complicated to compute
than the sample least squares estimator.

The covariance matrix of the GLS estimator is

Cov
(
̂̄β GLS

)
=
(
A′X′Ω−1XA

)−1
=

[
N

∑
i=1

X′iΩ
−1
i Xi

]−1

=

[
N

∑
i=1

(
Δ+Σβ̂i

)−1
]−1

.

(6.31)

If both errors and ααα i are normally distributed, the GLS estimator of βββ is the maxi-
mum likelihood estimator (MLE) of βββ conditional on ΔΔΔ and σ2

i . Without knowledge
of ΔΔΔ and σ2

i , we can estimate βββ , ΔΔΔ and σ2
i , i = 1, . . . , N simultaneously by the max-

imum likelihood method. However, computationally it can be tedious. A natural
alternative is to first estimate Ωi then substitute the estimated Ωi into (6.27).

Swamy proposes using the least squares estimator of βββ i, β̂̂β̂β i = (X′iXi)−1X′iyi and
residuals ûi = yi−Xiβ̂i to obtain unbiased estimators of σ2

i , i = 1, . . . ,N, and ΔΔΔ.
Noting that

ûi = [IT −Xi(X′iXi)−1X′i]ui, (6.32)
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and
β̂̂β̂β i = βββ i +(X′iXi)−1X′iui, (6.33)

we obtain the unbiased estimators of σ2
i and ΔΔΔ as:

σ̂2
i =

û′iûi

T −K
, (6.34)

=
1

T −K
y′i[IT −Xi(X′iXi)−1X′i]yi,

Δ̂̂Δ̂Δ =
1

N−1

N

∑
i=1

(

β̂i−N−1
N

∑
j=1

β̂ j

)

(

β̂i−N−1
N

∑
j=1

β̂ j

)′
− 1

N

N

∑
i=1

σ̂2
i (X′iXi)−1. (6.35)

Just as in the error-components model, the estimator (6.35) is not necessarily non-
negative definite. In this situation, Swamy [also see Judge, Griffiths, Hill, Lütkepohl
and Lee (1985)] has suggested replacing (6.35) by

Δ̂̂Δ̂Δ∗ =
1

N−1

N

∑
i=1

(

β̂i−N−1
N

∑
j=1

β̂ j

)(

β̂i−N−1
N

∑
j=1

β̂ j

)′
. (6.36)

This estimator, although biased, is nonnegative definite and consistent when T tends
to infinity.

6.4 Mean Group Estimation

A consistent estimator of βββ can also be obtained under more general assumptions
concerning βββ i and the regressors. One such possible estimator is the Mean Group
(MG) estimator proposed by Pesaran and Smith (1995) for estimation of dynamic
random coefficient models. The MG estimator is defined as the simple average of
the OLS estimators, β̂̂β̂β i:

̂̄β MG = N−1
N

∑
i=1

β̂i. (6.37)

When the regressors are strictly exogenous and the errors, uit are independently dis-

tributed, an unbiased estimator of the covariance matrix of ̂̄β MG can be computed as

Ĉov
(
̂̄β MG

)
= N−1Δ̂̂Δ̂Δ∗,

where Δ̂̂Δ̂Δ∗ is given by (6.36). For a proof first note that under the random coefficient
model we have
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β̂̂β̂β i = βββ +++ααα i +ξξξ i,

where
ξξξ i = (X′iXi)−1X′iui,

and
̂̄β MG = βββ +++ ᾱαα +++ ξ̄ξξ ,,,

where ααα = 1
N ∑N

i=1 ααα i and ξξξ = 1
N ∑N

i=1 ξξξ i. Therefore

β̂ββ i−
̂̄β̄β̄β MG = (ααα i−ααα)+

(
ξξξ i−ξξξ

)
,

(
β̂ββ i−

̂̄β̄β̄β MG

)(
β̂ββ i−

̂̄β̄β̄β MG

)′
= (ααα i−ααα)(ααα i−ααα)′+

(
ξξξ i−ξξξ

)(
ξξξ i−ξξξ

)′

+(ααα i−ααα)
(

ξξξ i−ξξξ
)′

+
(

ξξξ i−ξξξ
)

(ααα i−ααα)′ ,

and

N

∑
i=1

E

[(
β̂ββ i−

̂̄β MG

)(
β̂ββ i−

̂̄β MG

)′]
= (N−1)Δ+

(
1− 1

N

) N

∑
i=1

σ2
i

(
X′iXi

)−1
.

But

Cov
(
̂̄β MG

)
= Cov(ααα)+Cov

(
ξξξ
)

,

=
1
N

ΔΔΔ+
1

N2

N

∑
i=1

σ2
i E
[(

X′iXi
)−1
]
.

Using the above results it is now easily seen that

E
[
Ĉov

(
̂̄β MG

)]
= Cov

(
̂̄β MG

)
,

as required.
Finally, it is worth noting that the MG and the Swamy estimators are in fact

algebraically equivalent for T sufficiently large.

6.5 Bayesian Approach

One can also derive the solutions for the model (6.14) from a Bayesian point of
view. The Bayes approach assumes that all quantities, including the parameters, are
random variables. Therefore, as part of the model, prior probability distributions
are introduced for the parameters. The prior distribution is supposed to express a
state of knowledge or ignorance about the parameters before the data is obtained.
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The model (6.14) with the assumption that γ is fixed and ααα i is random, can be
viewed as the state of knowledge about the parameters γ and ααα before the data are
obtained: The prior distributions of γ and α are independent. There is no information
on γ but there is information on ααα i, which is normally distributed with mean 0 and
covariance matrix ΔΔΔ. This prior information is combined with the model (6.14) and
data, y and z, to revise the probability distribution of γ and ααα, which is called the
posterior distribution. From this distribution inferences are made.

Formally, we assume that

A1. The prior distributions of γ and ααα are independent, that is,

p(γ,ααα) = p(γ) · p(ααα). (6.38)

A2. There is no information about γ,

p(γ) ∝ constant. (6.39)

A3. There is prior information about ααα,

ααα ∼ N(0,IN⊗Δ). (6.40)

Theorem 6.1. Suppose that, given γ and ααα ,

y∼ N(Zγ +Wα,C). (6.41)

Under A1–A3,
(a) the marginal distribution of y given γ is

y∼ N(Zγ,C+W(IN⊗ΔΔΔ)W′), (6.42)

(b) the distribution of γ given y is N(̂̄γ,D), where ̂̄γ and D are given by
(6.20) and (6.21), respectively.

(c) the distribution of ααα given y is N(α̂αα, D̃), where

α̂αα = {W′[C−1−C−1Z(Z′C−1Z)−1Z
′
C−1]W+(IN⊗ΔΔΔ−1)}−1 (6.43)

·{W′[C−1−C−1Z(Z′C−1Z)−1Z
′
C−1]y},

and

D̃ = {W′[C−1−C−1Z(Z′C−1Z)−1Z
′
C−1]W+(IN⊗ΔΔΔ−1)}−1. (6.44)

See Appendix A for a proof.
Recall that

βββ = Aβββ +ααα , (6.45)
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and therefore the Bayes estimator of βββ can be obtained by substituting the Bayes
estimators of βββ and ααα (6.27) and (6.43) into (6.45), namely:

β̂ββ
∗

= Â̄β GLS + α̂αα (6.46)

=
(

X′C−1X+ Δ̃ΔΔ
−1)−1(

X′C−1y+ Δ̃ΔΔ
−1

Â̄βββ GLS

)
,

where
Δ̃ΔΔ = IN⊗ΔΔΔ.

When E
(

uiu′j
)

= σ2
i IT if i = j, and 0 otherwise, as assumed by Swamy (1970), we

have

β̂ββ
∗
i =
[
Σ−1

β̂i
+ΔΔΔ−1

]−1 [
Σ−1

β̂i
β̂i +ΔΔΔ−1 ̂̄β GLS

]
, i = 1,2, . . . ,N (6.47)

where

β̂i = (X′iXi)−1X′iyi, and Σβ̂i
= V (β̂i) = σ2

i (X′iXi)−1. (6.48)

The Bayes estimator (6.47), is identical to the Lindley and Smith (1972) estimator
for a linear hierarchical model. This is to be expected since the Swamy type assump-
tions and the Lindley–Smith linear hierarchical model are formally equivalent.

The above estimator can also be written as

β̂ββ
∗
i = Hiβ̂i +(IK−Hi)

̂̄β GLS,

where

Hi =
[
Σ−1

β̂i
+ΔΔΔ−1

]−1
Σ−1

β̂i
= ΔΔΔ
(

ΔΔΔ+Σ β̂i

)−1
.

which shows that β̂ββ
∗
i is a weighted average of the OLS estimator, β̂i, and the Swamy

estimator of β̄ . Also, Ri defined by (6.28) can be written as

Ri =

(
N

∑
j=1

H j

)−1

Hi,

and hence

N−1
N

∑
i=1

β̂ββ
∗
i =

N

∑
i=1

Riβ̂i = ̂̄β GLS,

namely the simple mean of the Bayes estimators (which could be viewed as the
Bayes Mean Group estimator) is equal to the Swamy estimator of β̄ββ .

Remark 6.1. It is useful to put the random coefficients model in a Bayesian frame-
work because many of the estimators based on the sampling approach can also be
derived from the Bayes approach. For instance, as one can see from theorem 6.1(b)
conditional on ΔΔΔ and C, the Bayes estimator of γ for the model (6.14) is identical to
the GLS estimator of γ (6.20). Furthermore, a Bayesian framework makes it clear



196 C. Hsiao and M.H. Pesaran

the role of prior knowledge or ignorance about the parameter θ = (θ = (θ = (γ,ααα))) given y.
The parameters θθθ are treated as random variables and all probability statements are
conditional. Ignorance about θθθ would necessitate a specification of a diffuse prior
to θθθ , which is typically specified as

p(θθθ) ∝ constant.

On the other hand, information about θθθ would necessitate a specification of an
informative prior. The Swamy type random coefficients formulation of βββ i having
mean βββ and covariance ΔΔΔ is equivalent to specifying an informative prior for the
parameters βββ i.

Remark 6.2. Typically, we use the expected value of an i.i.d. random variable as a
predictor of the random variable. In panel data, we have two dimensions, a cross-
sectional dimension and a time series dimension. Even though ααα i is assumed inde-
pendently distributed across i, once a particular ααα i is drawn, it stays constant over
time for the ith cross-sectional unit. Therefore, it makes sense to predict ααα i, (for an
example, see Hsiao, Mountain, Tsui and Luke Chan (1989)). The Bayes predictor
of ααα i is different from the classical sampling approach predictor. For instance, for
the Swamy type model the sampling approach predictor of βββ i = βββ + ααα i defined
by (6.23) is the least squares estimator (6.48). The Bayes predictor of βββ i, given by
(6.46) or (6.47), is a weighted average between the least squares estimator of βββ i and
the overall mean βββ . In other words, the Bayes estimator of the individual coeffi-
cients βββ i “shrinks” the estimate of βββ i based on the information of the ith individual
(6.48) towards the grand mean βββ . An intuitive reason for doing so is because if the
actual differences in βββ i can be attributable to the work of chance mechanisms as
postulated by de Finetti’s (1964) exchangeability assumption, information about βββ i
can be obtained by examining the behaviour of others in addition to those of the ith
cross-sectional unit because the expected value of βββ i is the same as βββ j. When there
are not many observations (i.e. T is small) with regard to the ith individual, infor-
mation about βββ i can be expanded by considering the responses of others. When T
becomes large, more information about βββ i becomes available and the weight gradu-
ally shifts towards the estimate based on the ith unit. As T →∞, the Bayes estimator
approaches the least squares estimator β̂̂β̂β i.

Remark 6.3. The derivation of the posterior distribution and the Bayes estimators γ
and ααα of model (6.14) is based on known C and ΔΔΔ. When C and ΔΔΔ are unknown, in
principle, we can first assign a joint prior of βββ ,βββ , C and ΔΔΔ, and combine this with the
likelihood function to obtain the joint posterior distribution. This distribution then
has to be integrated with respect of C and ΔΔΔ. In practice, this is most complex to
execute. Lindley and Smith (1972), therefore, suggest to approximate the posterior
distribution of γ and ααα conditional on the modal value of ΔΔΔ and C. The modal
estimates of ΔΔΔ and C may be found by supposing γ and ααα known, and then replacing
γ and ααα in the results by their modes. The sequence of iterations typically starts

with assumed values of ΔΔΔ and C to calculate the mode of γ and ααα , say ̂̄γ
(1)

and α̂αα(1)
.
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Treating ̂̄γ
(1)

and α̂αα(1) as known, we can find the mode for ΔΔΔ and C, say Δ̂ΔΔ
(1)

and

C(1). The Δ̂ΔΔ
(1)

and C(1) are then used to find γ(2) and α̂αα(2)
, and so on.

For the Swamy type model (6.6) and (6.7) under the assumption that ΔΔΔ−1 has
a Wishart distribution with p degrees of freedom and matrix R∗, it is shown by
Lindley and Smith (1972) that the mode estimator of ΔΔΔ is

Δ̂ΔΔ =

{

R∗+
N

∑
i=1

(β̂ββ
∗
i −
̂̄βββ )(β̂ββ

∗
i −
̂̄βββ )′
}

/(N + p−K−2). (6.49)

6.6 Dynamic Random Coefficients Models

Because of the inertia in human behaviour or institutional or technological rigidity,
often a behavioural equation is specified with lagged dependent variable(s) appear-
ing as regressor(s). We will consider a dynamic model of the form

yit = ρiyi,t−1 +x′itβββ i +uit , i = 1,2, . . . ,N; t = 1,2, . . . ,T, (6.50)

where xit is a K×1 vector of exogenous variables, and the error term uit is assumed
to be independently, identically distributed over t with mean zero and variance σ2

i ,
and is independent across i. Let θθθ i = (ρi,βββ ′i)′. We assume that θθθ i is independently
distributed across i with

E (θθθ i) = θθθ =
(

ρ,βββ
′)′

, (6.51)

E
[
(θθθ i−θθθ)(θθθ i−θθθ)′

]
= ΔΔΔ. (6.52)

Rewrite θθθ i = θθθ +ααα i, (6.51) and (6.52) are equivalent to

E (ααα i) = 0, E
(
ααα iααα ′j

)
=
{

ΔΔΔ i f i = j,
0 i f i �= j.

(6.53)

Although we may maintain the assumption (6.9) that E (ααα ix′it) = 0, we can no longer
assume that E (ααα iyi,t−1) = 0. Through continuous substitutions, we have

yi,t−1 =
∞

∑
j=o

(ρ +αi1) jx′i,t− j−1(βββ +ααα i2) (6.54)

+
∞

∑
j=o

(ρ +αi1) jui,t− j−1.

It follows that E(ααα iyi,t−1) �= 0.
The violation of the independence between the regressors and the individual ef-

fects ααα i implies that the pooled least squares regression of yit on yi,t−1, and xit will
yield inconsistent estimates of θθθ , even for T and N sufficiently large. Pesaran and
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Smith (1995) have noted that as T → ∞, the least squares regression of yit on yi,t−1

and xit yields a consistent estimator of θθθ i,θ̂θθ i. They suggest a mean group estimator
of θθθ by taking the average of θ̂θθ i across i,

̂̄θ̄θ̄θ MG =
1
N

N

∑
i=1

θ̂i. (6.55)

The mean group estimator is consistent when both N and T → ∞. In finite T, θ̂θθ i

for θθθ i is biased to the order of 1/T . (Hurwicz (1950), Kiviet and Phillips (1993))
and the limited Monte Carlo appears to show that the mean group estimator can
be severely biased when T is very small (Hsiao, Pesaran and Tahmiscioglu 1999).
However, under the assumption that yi0 are fixed and known and ααα i and uit are
independently normally distributed, as discussed in Sect. 6.5 we can implement the
Bayes estimator of θ̂θθ i conditional on σ2

i and ΔΔΔ,

�
θθθ B =

{
N

∑
i=1

[
σ2

i (W′
iWi)−1 +ΔΔΔ

]−1

}−1 N

∑
i=1

[
σ2

i (W′
iWi)−1 +ΔΔΔ

]
θ̂i, (6.56)

where here Wi = (yi,−1,Xi) with yi,−1 = (yi0,yi1, . . . ,yiT−1)′. This Bayes estimator
is a weighted average of the least squares estimator of individual units with the
weights being inversely proportional to individual variances. When T →∞, N →∞,
and N/T 3/2→ 0, the Bayes estimator is asymptotically equivalent to the mean group
estimator (6.55) (Hsiao et al. 1999).

In practice, the variance components, σ2
i and ΔΔΔ are rarely known. The Monte

Carlo studies conducted by Hsiao et al. (1999) show that by following the approach
of Lindley and Smith (1972) in assuming that the prior-distributions of σ2

i and ΔΔΔ are
independent and are distributed as

P(ΔΔΔ−1,σ2
1 , . . . ,σ2

n ) = W (ΔΔΔ−1|(rR)−1,r)
N

∏
i=1

σ−2
i , (6.57)

yields a Bayes estimator almost as good as the Bayes estimator with known ΔΔΔ and
σ2

i , where W (.) represents the Wishart distribution with scale matrix, rR, and de-
grees of freedom r (e.g. Anderson (1984)).

The Hsiao et al. (1999) Bayes estimator is derived under the assumption that the
initial observation yi0 are fixed constants. As discussed in Anderson and Hsiao (1981,
1982), this assumption is clearly unjustifiable for a panel with finite T . However,
contrary to the sampling approach where the correct modelling of initial obser-
vations is quite important, the Hsiao et al. (1999) Bayesian approach appears to
perform fairly well in the estimation of the mean coefficients for dynamic random
coefficient models as demonstrated in their Monte Carlo studies.

Remark 6.4. Model (6.50) has not imposed any constraint on the coefficient of the
lag dependent variable, ρi. Often an investigator would like to impose the stability
condition |ρi| < 1. One way to impose the stability condition on individual units
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would be to assume that ρi follows a Beta distribution on (0,1). For a Bayes estima-
tor under this assumption see Liu and Tiao (1980).

6.7 Testing for Heterogeneity Under Weak Exogeneity

Given the importance of heterogeneity, it is very important to test for it. There
are at least three different categories of tests available: (i) direct tests of parame-
ter equality of the type used by Zellner (1962) in a SURE framework; (ii) Hausman
(1978) type tests of the difference between two estimators of θ (or its subset); or
(iii) Swamy (1970) type tests based on the dispersion of individual slope estimates
from a suitable pooled estimator. The first type of test is generally applicable when
N is relatively small and T sufficiently large. Here we shall examine types (ii) and
(iii), and assume that N and T are sufficiently large.

The Hausman method can be used in cases where it the two estimators are con-
sistent under the null of homogeneity, whilst only one of them is efficient. Also,
under the alternative hypothesis the two estimators converge to different values.

Denote the efficient estimator by subscript “e” and the inefficient but consistent
estimator (under the alternative hypothesis) by the subscript “c”. Then we have

V (θ̂θθ c− θ̂θθ e) = V (θ̂θθ c)−V (θ̂θθ e). (6.58)

This is the result used by Hausman (1978) where it is assumed that θ̂θθ e is asymptoti-
cally the most efficient estimator. However, it is easily shown that (6.58) hold under
a weaker requirement, namely when the (asymptotic) efficiency of θ̂θθ e cannot be en-
hanced by the information contained in θ̂θθ c. Consider a third estimator θ̂θθ ∗, defined
as a convex combination of θ̂θθ c and θ̂θθ e

q′θ̂θθ ∗ = (1−δ )q′θ̂θθ e +δq′θ̂θθ c, (6.59)

where q is a vector of constants, and δ is a scalar in the range 0≤ δ ≤ 1. Since, by
assumption, the asymptotic efficiency of θ̂θθ e cannot be enhanced by the knowledge of
θ̂θθ c, then it must be that V (q′θ̂θθ ∗)≥V (q′θ̂θθ e), and hence the value of δ that minimises
V (q′θ̂θθ ∗), say δ ∗, should be zero. However, using (6.59) directly, we have

δ ∗ =
q′[V (θ̂θθ e)−Cov(θ̂θθ e,θ̂θθ c)]q

q′V (θ̂θθ c− θ̂θθ e)q
= 0, (6.60)

and hence q′[V (θ̂θθ e)−Cov(θ̂θθ e,θ̂θθ c)]q = 0. But, if this result is to hold for an arbitrary
vector q, we must have

V (θ̂θθ e) = Cov(θ̂θθ e,θ̂θθ c). (6.61)
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Using this in

V (θ̂θθ c− θ̂θθ e) = V (θ̂θθ c)+V (θ̂θθ e)−2 Cov(θ̂θθ e,θ̂θθ c),

yields (6.58) as desired.
In the context of testing for slope heterogeneity a number of different Hausman

type tests can be used.
One possibility would be to compare the pooled estimator of θθθ , defined by4

̂̄θ OLS =

(
N

∑
i=1

W′
iWi

)−1 N

∑
i=1

W′
iyi

with the mean group estimator ̂̄θ̄θ̄θ MG, defined by (6.55). When the focus of at-
tention is on the mean long run coefficients δδδ ∗ = E(βββ i/(1− ρi)), as in Pesaran,

Shin and Smith (1999) the heterogeneity test could be based directly on δ̂δδ
∗
OLS =

β̂ββ OLS/(1− ρ̂OLS) and δ̂δδ
∗
MG = N−1 ∑N

i=1 δ̂δδ
∗
i , where δ̂δδ

∗
i = β̂i/(1− ρ̂i). Under the null

of homogeneity the pooled and the mean group estimators are both consistent, al-
though only the mean group estimator is consistent under the alternative hypothesis
when lagged values of the dependent variables are included in the model.

Under the full homogeneity assumption (θθθ i = θθθ , σ2
i = σ2), the asymptotic vari-

ance matrices of the pooled and the mean group estimators (for a fixed N and a large
T ) are given by

Cov(
√

T ̂̄θ̄θ̄θ OLS) =
σ2

N

(

N−1
N

∑
i=1

ΨΨΨi

)−1

, (6.62)

and

Cov(
√

T ̂̄θ̄θ̄θ MG) =
σ2

N

(

N−1
N

∑
i=1

ΨΨΨ−1
i

)

, (6.63)

where ΨΨΨi = p limT→∞(W′
iWi/T ). Also we have

Cov(
√

T ̂̄θ̄θ̄θ OLS,
√

T ̂̄θ̄θ̄θ MG) =Cov(
√

T ̂̄θ̄θ̄θ OLS)

thus directly establishing that

Cov
[√

T
(
̂̄θ̄θ̄θ MG− ̂̄θ̄θ̄θ OLS

)]
=

σ2

N

⎧
⎨

⎩

(

N−1
N

∑
i=1

ΨΨΨ−1
i

)

−
(

N−1
N

∑
i=1

ΨΨΨi

)−1
⎫
⎬

⎭
,

which is a positive definite matrix, assuming that ΨΨΨi �= ΨΨΨ j, for some i and j.5 This
condition is generally satisfied when the model contains regressors with heteroge-
neous variances. The above results suggest the following statistic for testing the
homogeneity hypothesis:

h = NT
(
̂̄θ̄θ̄θ MG− ̂̄θ̄θ̄θ OLS

)′
V̂−1

(
̂̄θ̄θ̄θ MG− ̂̄θ̄θ̄θ OLS

)
,

4 Similar exercises can also be carried out using fixed or random effects estimators. But to keep
the exposition simple here we focus on pooled estimators.
5 For a proof see the Appendix in Pesaran, Smith and Im (1996).
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where

V̂ = σ̂2
MG

⎧
⎨

⎩
N−1

N

∑
i=1

(
W′

iWi

T

)−1

−
(

N−1
N

∑
i=1

W′
iWi

T

)−1
⎫
⎬

⎭
. (6.64)

and σ̂2
MG = 1

N ∑N
i=1 σ̂2

i . In computing h, one could also equally use σ̂2
OLS instead of

σ̂2
MG. Under the null hypothesis

H0 : ρi = ρ,βββ i = βββ , and σ2
i = σ2, for all i,

and for N and T sufficiently large we have

h
a
∼ χ2

K+1.

When the focus of the analysis is on the long run coefficients we first note that6

δ̂δδ
∗
OLS−δδδ ∗ =

(ρ̂OLS−ρ)δδδ ∗+(β̂ββ OLS−βββ )
(1− ρ̂OLS)

.

Therefore, under the homogeneity hypothesis, we have, for a large T

Cov
(√

T δ̂δδ
∗
OLS

)
=

σ2

N(1−ρ)2 D

(

N−1
N

∑
i=1

ΨΨΨi

)−1

D′, (6.65)

where D = (δδδ ∗,IK) is a K× (K +1). Similarly,

Cov
(√

T θ̂θθ
∗
MG

)
=

σ2

N(1−ρ)2 D

(

N−1
N

∑
i=1

ΨΨΨ−1
i

)

D′. (6.66)

To estimate (6.65), and (6.66), the unknown parameters σ2,ρ, and θθθ could be esti-
mated either from pooled or mean group estimators. Using the mean group estima-
tors, the test of the homogeneity or the long run coefficients can then be based on
the following Hausman-type statistic:

hδ ∗ = NT (1− ρ̂MG)2
(

δ̂δδ
∗
MG− δ̂δδ

∗
OLS

)′(
D̂MGV̂D̂′MG

)−1(
δ̂δδ
∗
MG− δ̂δδ

∗
OLS

)
,

where D̂MG = (δ̂δδ
∗
MG,IK), and V̂ is given by (6.64). In general D̂MGV̂D̂′MG is of full

rank. Under the null hypothesis, for large N and T, hδ ∗ ∼ χ2
K .

There are two major concerns with the routine use of the Hausman procedure
as a test of slope homogeneity. It could lack power for certain parameter values, as
it’s implicit null does not necessarily coincide with the null hypothesis of interest.
Second, and more importantly, the Hausman test will not be applicable in the case
of panel data models containing only strictly exogenous regressors (ρi = 0 in (6.50)
for all i) or in the case of pure autoregressive models (βββ i = 0 in (6.50) for all i). In

the former case, both estimators, ̂̄βββ OLS and ̂̄β̄β̄β MG, are unbiased under the null and

6 Recall that under homogeneity hypothesis δδδ ∗ = βββ/(1−ρ) and δ̂δδ
∗
OLS = β̂ββ OLS/(1− ρ̂OLS).
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the alternative hypotheses and test will have no power. Whilst, in the case of pure

autoregressive panel data models
√

NT
(
̂̄ρOLS− ρ̄

)
and

√
NT
(
̂̄ρMG− ρ̄

)
will be

asymptotically equivalent and the asymptotic variance of
(
̂̄ρMG− ̂̄ρOLS

)
is zero

under H0.
Phillips and Sul (2003) propose a different type of Hausman test where instead

of comparing two different pooled estimators of the regression coefficients (as
discussed above), they propose basing the test of homogeneity on the difference
between the individual estimates and a suitably defined pooled estimator. In the
context of the panel regression model (6.50), their test statistic can be written as

G =
(

θ̂̂θ̂θ N−τN ⊗ ̂̄θ̄θ̄θ OLS

)′
Σ̂−1

g

(
θ̂̂θ̂θ N−τN ⊗ ̂̄θ̄θ̄θ OLS

)
,

where θ̂̂θ̂θ N = (θ̂̂θ̂θ ′1, θ̂̂θ̂θ ′2, . . . , θ̂̂θ̂θ ′N)′ is an N (K +1)×1 stacked vector of all the N individ-
ual estimates, τN is a (N×1) vector of unity, and Σ̂ΣΣg is a consistent estimator of ΣΣΣg,

the asymptotic variance matrix of θ̂̂θ̂θ N − τττN ⊗ ̂̄θ̄θ̄θ OLS, under H0. Assuming H0 holds
and N is fixed, then G→d χ2

N(K+1) as T → ∞, so long as the ΣΣΣg is a non-stochastic
positive definite matrix.

As compared to the Hausman test based on ̂̄θ̄θ̄θ MG− ̂̄θ̄θ̄θ OLS, the G test is likely to
be more powerful; but its use will be limited to panel data models where N is small
relative to T . Also, the G test will not be valid in the case of pure dynamic models,
very much for the same kind of reasons noted above in relation to the Hausman test

based on ̂̄θ̄θ̄θ MG− ̂̄θ̄θ̄θ OLS. It can be shown in the case of pure autoregressive models
(βββ i = 0 in (6.50) for all i), Rank(ΣΣΣg) = N−1 and ΣΣΣg is non-invertible.

Swamy (1970) bases his test of slope homogeneity on the dispersion of individual
estimates from a suitable pooled estimator. Swamy’s test is developed for panels
where N is small relative to T , but allows for cross section heteroscedasticity. Based
on the Swamy’s (1970) work, Pesaran and Yamagata (2008) propose standardized
dispersion statistics that are asymptotically normally distributed for large N and T .
Consider a modified version of Swamy’s (1970) test statistic7

S̃ =
N

∑
i=1

(
θ̂θθ i− ˜̄θ̄θ̄θ WOLS

)′ W′
iWi

σ̃2
i

(
θ̂θθ i− ˜̄θ̄θ̄θ WOLS

)
(6.67)

7 Swamy’s (1970) statistic is defined by

Ŝ =
N

∑
i=1

(
θ̂θθ i− ̂̄θ̄θ̄θ WOLS

)′ W′
iWi

σ̂2
i

(
θ̂θθ i− ̂̄θ̄θ̄θ WOLS

)
,

where

̂̄θ̄θ̄θ WOLS =

(
N

∑
i=1

σ̂−2
i W′

iWi

)−1 N

∑
i=1

σ̂−2
i W′

iyi,

with σ̂2
i = T−1

(
yi−Wiθ̂θθ i

)′(
yi−Wiθ̂θθ i

)
. Swamy shows that under H0, Ŝ →d χ2

(N−1)(K+1) as

T → ∞ for a fixed N, and nonstochastic regressors.
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where σ̃2
i is an estimator of σ2

i based on ̂̄θ̄θ̄θ OLS, namely

σ̃2
i = T−1

(
yi−Wi

̂̄θ̄θ̄θ OLS

)′(
yi−Wi

̂̄θ̄θ̄θ OLS

)
, (6.68)

and ˜̄θ WOLS is the weighted pooled estimator also computed using σ̃2
i , namely

˜̄θ̄θ̄θ WOLS =

(
N

∑
i=1

W′
iWi

σ̃2
i

)−1 N

∑
i=1

W′
iyi

σ̃2
i

. (6.69)

Suppose for the model defined by (6.50), the following relation holds:

N−1/2S̃ = N−1/2
N

∑
i=1

zi +Op
(
T−1)+Op

(
N−1/2

)
, (6.70)

where

zi =

(
T−1/2u′iWi

)(
T−1W′

iWi
)−1 (

T−1/2W′
iui
)

u′iui/T
.

Since, under H0, zi→d χ2
K+1 as T →∞, it is reasonable to conjecture that up to order

T−1, E (zi) and υ2
z = Var(zi) are given by (K +1) and 2(K +1), respectively. Then,

supposing
E (zi) = (K +1)+O

(
T−1) ,

we can write

N−1/2
(

S̃− (K +1)
υz

)
= N−1/2

N

∑
i=1

(
S̃−E(zi)

υz

)
+Op

(√
N

T

)
+Op

(
T−1) ,

therefore

Δ̃ = N−1/2

(
S̃− (K +1)
√

2(K +1)

)

→d N (0,1)

as N and T → ∞ in no particular order, such that
√

N/T → 0.
Importantly, this test is valid when the Hausman type test or G test procedure

might fail to be applicable, as stated above. Moreover, this test procedure is expected
to have higher power than the Hausman type test, where the latter is applicable.

6.8 A Random Coefficient Simultaneous Equation System

The generalisation of a single equation random coefficients model to a simultaneous
equation system raises complicated issues of identification and estimation. To show
this let us consider a system of G equations

YiBi +XiΓΓΓi = Ui, i = 1, . . . ,N, (6.71)
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where Yi and Xi are the T ×G and T ×K matrices of endogenous and exogenous
variables, respectively, Ui is the T ×G matrices of errors, Bi and ΓΓΓi are the G×G
and K×G matrix of the coefficients of the endogenous variables and exogenous
variables, respectively. The reduced form, then, is of the form

Yi = −XiΓΓΓiB−1
i +UiB−1

i , (6.72)

= XiΠΠΠi +Vi,

where

ΠΠΠi = −ΓΓΓiB−1
i , (6.73)

Vi = UiB−1
i . (6.74)

Suppose that

Bi = B+ξξξ i, (6.75)

ΓΓΓi = ΓΓΓ+ααα i, (6.76)

where ξξξ i and ααα i are G×G and G×K matrices of random variables independently
distributed over i with means 0 and covariances ΦΦΦ and ΔΔΔ, defined by ΦΦΦ = E[(vec
ξξξ i) (vec ξξξ i)

′] and ΔΔΔ = E[(vec ααα i)(vec ααα i)′]. Then

E (ΠΠΠi) = −E[(ΓΓΓ+ααα i)(B+ξξξ i)
−1], (6.77)

�= ΓΓΓ B
−1

.

In other words, identification conditions of structural parameters cannot be derived

by assuming that when sample size approaches infinity, Π̂ΠΠ will converge to ΓΓΓ B
−1

.
In fact the assumption of (6.75) raises intractable difficulties at the levels of identi-
fication and estimation.

Kelejian (1974) has studied the problem of identification under (6.75) and (6.76).
His results imply that any feedback between the endogenous variables must be
avoided and that identifiability and interdependence exclude each other (also see
Raj and Ullah (1981)). In other words, for any one equation we may treat all the
other variables as predetermined. Therefore, for ease of analysis, instead of assum-
ing (6.75), we shall assume that

Bi = B, ∀ i, (6.78)

where B is a non-singular matrix with fixed elements.
The combination of (6.76) and (6.78) amounts to assuming a random coefficients

reduced form of (6.51), where ΠΠΠi =−ΓΓΓiB
−1 =−(ΓΓΓ+ααα i)B

−1
, and

E (ΠΠΠi) =−ΓΓΓB
−1

, (6.79)

Cov(ΠΠΠi) = [B−1′ ⊗ Ik]ΔΔΔ[B−1⊗ Ik] = ΔΔΔ∗. (6.80)
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Assume that Ui are independently distributed over time but are contemporaneously
correlated, then

Cov(Ui) = E[vec(Ui)vec(Ui)′] = Ci⊗ IT . (6.81)

Furthermore, we assume that Ui and ααα i are mutually independent and are indepen-
dent of Xi. Then the reduced form (6.72) can be written as

Yi = XiΠΠΠ+V∗i , (6.82)

where V∗i =−Xiααα iB̄−1 +UiB̄−1 and E (V∗i ) = 0,

Cov(V∗i ) = B̄−1′CiB̄−1⊗ IT +(IG⊗Xi)Δ∗(IG⊗X′t) (6.83)

= Qi, i = 1, . . . , N.

The GLS estimator of Π̄ΠΠ is then equal to Balestra and Negassi (1992)

vec(Π̂ΠΠGLS) =

[
N

∑
i=1

R̃−1
i

]−1[ N

∑
i=1

R̃−1
i vecΠ̂ΠΠi

]

, (6.84)

where

R̃i = Qi⊗ (X′iXi)−1 +ΔΔΔ∗, (6.85)

Π̂ΠΠi = (X′iXi)−1X′iYi. (6.86)

If B
−1′

CiB
−1

and ΔΔΔ∗ are unknown, a two-step GLS procedure can be applied. In the

first step, we estimate B
−1′

CiB
−1

and ΔΔΔ∗ by

B
−1′

ĈiB
−1 =

1
T −K

Ṽ∗′i Ṽ∗i , Ṽ
∗
i = Yi−XiΠ̂ΠΠi,

vec (ΔΔΔ∗) =
1

N−1

N

∑
i=1

[vec (Π̂ΠΠi−
�
ΠΠΠ)][vec (Π̂ΠΠi−

�
ΠΠΠ)]′,

�
Π =

1
N

N

∑
i=1

Π̂ΠΠi. (6.87)

In the second step, we estimate
�
ΠΠΠ using (6.84) by substituting ̂̃Ri for R̃i.

If our interest is in the structural form parameters B and ΓΓΓ, we can either solve for

B and ΓΓΓ from the reduced form estimate ̂̄ΠΠΠ, or we can estimate them directly using
instrumental variables method. Rewrite the first equation of the structural form in
the following way,

yi1 = Yi1β̄ ∗1 +Xi1γ∗i1 +ui1, (6.88)

= Zi1δδδ 1 +υ∗i1, i = 1, . . . ,N,
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where yi1 is the T × 1 vector of the first endogenous variables and Yi1 is the T × g
matrix of the other endogenous variables appearing in the first equation g ≤ G−
1,Xi1 is the T × k∗ matrix of included exogenous variables k∗ ≤ K, and β̄ ∗1 and
γ∗i1 are g× 1 and k∗ × 1 vectors of coefficients, respectively with γ∗i1 = [γ∗i1 + ααα∗i1],
and Zi1 = [Yi1,Xi1],δδδ ′1 = [β̄ ∗′1 , γ̄∗′1 ],v∗i1 = ui1 +Xi1ααα∗i1. Balestra and Negassi (1992)
suggest the following instrumental variables estimator

δ̂δδ 1 =

[
N

∑
i=1

Z′i1FiZi1

]−1[ N

∑
i=1

Z′i1Fiδ̂δδ i1

]

, (6.89)

where
δ̂δδ i1 = [Z′i1Xi(X′iXi)−1X′iZi1]−1Z′i1Xi(X′iXi)−1X′iyi1, (6.90)

and

Fi = Xi(X′i1ΔΔΔ1X′i1 +σ2
1 Ik∗)−1X′i, (6.91)

ΔΔΔ1 = E
(
ααα i1ααα ′i1

)
.

One can also derive the Bayes solutions for a simultaneous equations system of
the form (6.71), (6.76) and (6.78) using a method analogous to that of Sect. 6.4.
Considering one equation of (6.72) at a time, the results of sect. 4 can be applied
straightforwardly. Similar results for the system of (6.72) can also be derived if the
prior restrictions on ΠΠΠ are ignored. Of course, restricted reduced form estimators
can also be derived. The computation, though, can be laborious.

The results of Sect. 6.4 can also be used to derive a Bayes estimator for the
structural form (6.88) based on a limited information approach. Let

Yi1 = Ŷi1 + V̂i1, (6.92)

where Ŷi1 = XiΠ̂ΠΠi1, and Π̂ΠΠi1 = (X′iXi)−1X′iYi1. Substituting Ŷi1 for Yi1 in (6.88),
we have

yi1 = Ŷi1βββ
∗
1 +Xi1γ∗i1 +ηηη i1, (6.93)

where ηηη i1 = ui1 +V̂i1βββ
∗
1. Conditioning on Π̂ΠΠi1, we can treat Ŷi1 and Xi1 as the set of

exogenous variables. Equation (6.93) is of the form of the mixed fixed and random
coefficients model (6.14) and the Bayes estimators of βββ

∗
1,γ

∗
1 and γ∗i1 are given in

Sect. 6.4 (for detail see Hsiao, Appelbe and Dineen (1992)). Of course, one should
keep in mind that now the Bayes estimator is the conditional posterior mean given
the estimated ΠΠΠi1.

6.9 Random Coefficient Models with Cross-Section Dependence

In principle, the random coefficient model (6.14) can be easily adapted to allow
for dependence across the error terms, uit , i = 1,2, . . . ,N. But, without plausible re-
strictions on the error covariances the number of unknown parameters of the model
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increases at the rate of N2, which would be manageable only when N is relatively
small (typically 10 or less). To deal with the problem of cross section dependence
when N is large a number of different approaches have been advanced in the lit-
erature.8 In the case of spatial panels where a natural distance measure (or an im-
mutable ordering of cross section units) is available the dependence is tested and
modelled with “spatial lags”, using techniques familiar from the time series litera-
ture. Anselin (2001) provides a recent survey of the literature on spatial economet-
rics. A number of studies have also used measures such as trade or capital flows to
capture economic distance, as in Lee and Pesaran (1993), Conley and Topa (2002)
and Pesaran, Schuermann and Weiner (2004).

But, in the absence of suitable distance measures or natural orderings of the cross
section units a number of investigators have attempted to model the cross section
dependence using single or multiple factor residual models where uit is specified
in terms of a finite number of common factors. A convenient parameterization is
given by

uit =
σi√

1+δδδ ′iδδδ i

(
δδδ ′ift + εit

)
, (6.94)

where δδδ i is a s× 1 vector of individual-specific factor loadings, ft is an s× 1 vec-
tor of unobserved (latent) factors, and εit is an idiosyncratic error assumed to be
distributed independently across i, the unobserved factors, ft , and the observed re-
gressors, xit , with mean zero and a unit variance. Since the common factors are
unobserved, without loss of generality we also assume that ft ∼ (0,Is).

Under the above set up, and conditional on a given set of factor loadings, the
cross-correlations of the errors are given by

ρi j = ρ ji =
δδδ ′iδδδ j

(
1+δδδ ′iδδδ i

)1/2 (
1+δδδ ′jδδδ j

)1/2
. (6.95)

Complicated covariance structures can be accommodated by the residual factor for-
mulation through differences across factor loadings and by using a sufficiently large
number of factors. A random coefficient specification can also be assumed for the
factor loadings:

δδδ i = δ̄δδ +++ζζζ i, (6.96)

where δ̄δδ is a vector of fixed constants

E(ζζζ i) = 0,E
(
ζζζ if

′
t

)
= 0, (6.97)

E
(
ζζζ ix

′
it

)
= 0,E

(
ζζζ iααα

′
i

)
= 0,

E
(
ζζζ iζζζ i

′) =
{

ΔΔΔζ , if i = j,
0, if i �= j,

.

and Δζ is a non-negative definite matrix. The average degree of cross dependence,

defined by E (ρi j) for i �= j is governed by δ̄δδ and the distribution of ζζζ i. The average

8 Tests of error cross section dependence in the case of large panels are proposed by Pesaran (2004).
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cross section dependence will be zero if δ̄δδ === 000, and ζζζ i is symmetrically distributed.
Typically one would expect δ̄δδ � � �=== 000.

Examples of studies that have used the residual factor structure to model cross
section dependence include Holtz-Eakin, Newey, and Rosen (1988), Ahn, Lee and
Schmidt (2001), Coakley, Fuertes and Smith (2005), Bai and Ng (2004), Kapetanios
and Pesaran (2007), Phillips and Sul (2003), Moon and Perron (2004), and Moon,
Perron and Phillips (2007) and Pesaran (2006, 2007). The studies by Holtz-Eakin
et al. and Ahn et al. focus on single factor residual models and allow for time-
varying individual effects in the case of panels with homogeneous slopes where T
is fixed and N → ∞. Phillips and Sul (2003) suggest using SURE-GLS techniques
combined with median unbiased estimation in the case of first order autoregres-
sive panels. Coakley, Fuertes and Smith (2002) propose a principal components ap-
proach which is shown by Pesaran (2006) to be consistent only when the factors and
the included regressors are either asymptotically uncorrelated or are perfectly cor-
related. In the more general case Pesaran (2006) shows that consistent estimation of
the random coefficient models with a multi-factor residual structure can be achieved
(under certain regularity conditions) by augmenting the observed regressors with the
cross section averages of the dependent variable and individual-specific regressors,
namely

ȳt =
N

∑
j=1

w jy jt , and x̄it =
N

∑
j=1

w jx jt , (6.98)

for any set of weights such that

wi = O

(
1
N

)
,

N

∑
i=1

|wi|< K < ∞.

An obvious example of such a weighting scheme is wi = 1/N.9

6.10 Concluding Remarks

When the included conditional variables together with the conventional variable in-
tercept or error components (e.g. Hsiao (2003, Chap. 3)) cannot completely capture
systematic differences across cross-sectional units and/or over time, and the possi-
bility of adding additional conditional variables is not an option, either due to data
unavailability or the desire to keep the model simple, there is very little alternative
but to allow the slope coefficients to vary across cross-section units or over time.
If we treat all these coefficients as fixed and different, there is no particular reason
to pool the data, except for some efficiency gain in a Zellner’s (1962) seemingly
unrelated regression framework. Random coefficients models appear to be an at-
tractive middle ground between the implausible assumption of homogeneity across

9 Note that the non-parametric variance–covariance matrix estimator proposed in Pesaran (2006)
is robust to heteroscedastic and/or serially correlated idiosyncratic errors, εit .
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cross-sectional units or over time and the infeasibility of treating them all differently,
in the sense of being draws from different probability distributions. Other interme-
diate formulations could also be considered. For example, as argued by Pesaran,
Shin and Smith (1999), in the context of dynamic models it would be plausible to
impose the homogeneity hypothesis on the long-run coefficients but let the short-
run dynamics to vary freely across the cross-section units. In this Chapter various
formulations are surveyed and their implications discussed. Our review has been
largely confined to linear panel data models with stationary regressors. The anal-
ysis of random coefficient models with unit roots and cointegration is reviewed in
Breitung and Pesaran (2007) in this volume. Parameter heterogeneity in non-linear
panel data models poses fundamentally new problems and needs to be considered
on a case-by-case basis.

Appendix A: Proof of Theorem 1

To prove part (a) of the theorem, we write (6.41) in the form of (6.19) and (6.17).
Putting u∼ N(0,C) and ααα ∼ N(((000,,,IN ⊗ΔΔΔ) together with (6.17), the result follows.

To prove (b), we use Bayes’s theorem, that is

p(γ|y) ∝ p(y|γ)p(γ), (6.99)

where p(y|γ) follows from (6.42) and p(γ) is given by (6.39). The product on the
right hand side of (6.99) is proportional to exp{− 1

2 Q}, where Q is given by

Q = (y−Zγ)′[C+W(IN⊗Δ)W′]−1(y−Zγ) (6.100)

= (γ− ̂̄γ)′D−1(γ− ̂̄γ)+y′{Ω−1−Ω−1Z[Z′DZ]−1Z
′Ω−1}y.

The second term on the right hand side of (6.100) is a constant as far as the distri-
bution of γ is concerned, and the remainder of the expression demonstrates the truth
of (b).

To prove (c), we use the relations

p(ααα|y) =
∫

p(ααα ,,,γ|y)dγ (6.101)

=
∫

[p(γ|y,ααα)))dddγ]p(ααα|||yyy)

and

p(ααα,,,γ|y) ∝ p(y|α,α,α,γ)p(ααα,,,γ) (6.102)

= p(y|α,α,α,γ)p(ααα))) ···p(γ).

Under (6.38)–(6.40), the right hand side of (6.102) is proportional to exp{− 1
2 Q∗},

where Q∗ is given by
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Q∗ = (y−Zγ−Wααα)))′C−1(y−Zγ−Wα)+ααα ′(IN⊗Δ−1)ααα
= y′C−1y+ γ ′Z′C−1Zγ +ααα ′W′C−1Wααα
−2γ ′Z′C−1y−2ααα ′W′C−1y+2γ ′Z′C−1Wααα +ααα ′(IN⊗ΔΔΔ−1)ααα

= Q∗1 +Q∗2 +Q∗3, (6.103)

with

Q∗1 = {γ− (Z′C−1Z)−1[Z′C−1(y−Wααα)}′(Z′C−1Z)

·{γ− (Z′C−1Z)−1[Z′C−1(y−Wααα)]}, (6.104)

Q∗2 = {ααα− D̃W′[C−1−C−1Z(Z′C−1Z)−1Z
′
C−1]y}′D̃−1

·{ααα−−− D̃W′[C−1−C−1Z(Z′C−1Z)−1Z
′
C−1]y} (6.105)

and

Q∗3 = y′{C−1−C−1Z(Z′C−1Z)−1Z
′
C−1− [C−1−C−1Z(Z′C−1Z)−1Z

′
C−1]

·WD̃−1W′[C−1−C−1Z(Z′C−1Z)−1Z
′
C−1]}y. (6.106)

As far as the distribution of p(ααα ,,,γ|y) is concerned, Q∗3 is a constant. The conditional
distribution of γ given y and ααα is proportional to exp{− 1

2 Q∗1}, which integrates to 1.
Therefore, the marginal distribution of ααα given y is proportional to exp{− 1

2 Q∗2},
demonstrates (c).

Substituting (6.23)–(6.26) into (6.42) we obtain the Bayes solutions for the

Swamy type random coefficients model: (i) the distribution of βββ given y is N( ̂̄β ,β̄ ,β̄ ,D),
and (ii) the distribution of ααα given y is normal with mean

α̂αα = {X′[C−1−C−1XA(A′X′C−1XA)−1A′X′C−1]X+(IN⊗ΔΔΔ−1)}−1

·{X′[C−1−C−1XA(A′X′C−1XA)−1A′X′C−1]y}
= D̃{X′[C−1−C−1XA(A′X′C−1XA)−1A′X′C−1]y}, (6.107)

and covariance

D̃ = {X′[C−1−C−1XA(A′X′C−1XA)−1A′X′C−1]X+(IN⊗ΔΔΔ−1)}−1. (6.108)

Letting Δ̃ΔΔ = IN ⊗ΔΔΔ and repeatedly using the identity (6.30) we can write (6.108) in
the form

D̃ = [X′C−1X+ Δ̃ΔΔ
−1

]−1{I−X′C−1XA[A′X′C−1X(X′C−1X+ Δ̃ΔΔ
−1

)−1X′C−1XA

−A′X′C−1XA]−1A′X′C−1X[X′C−1X+ Δ̃ΔΔ
−1

]−1}

= [X′C−1X+ Δ̃ΔΔ
−1

]−1{I+X′C−1XA[A′X′(XΔ̃ΔΔX′+C)XA]−1

A′(X′C−1XΔ̃ΔΔ
−1− Δ̃ΔΔ

−1
) · [X′C−1X+ Δ̃ΔΔ

−1
]−1}

= [X′C−1X+ Δ̃ΔΔ
−1

]−1 + Δ̃ΔΔX′(XΔ̃ΔΔX′+C)−1XA[A′X′(XΔ̃ΔΔX′+C)−1XA]−1

·A′X′(XΔ̃ΔΔX′+C)−1XΔ̃ΔΔ. (6.109)
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Substituting (6.109) into (6.107) we have

α̃αα = [X′C−1X+ Δ̃ΔΔ
−1

]−1X′C−1y

−(X′C−1X+ Δ̃ΔΔ
−1

)−1(X′C−1X+ Δ̃ΔΔ
−1− Δ̃ΔΔ

−1
)A(A′X′C−1XA)−1A′X′C−1y

+Δ̃ΔΔX′(XΔ̃ΔΔX′+C)−1XA[A′X′(XΔ̃ΔΔX′+C)−1XA]−1A′X′[C−1

−(XΔ̃ΔΔX′+C)−1y− Δ̃ΔΔX′(XΔ̃ΔΔX′+C)−1XA[A′X′(XΔ̃ΔΔX′+C)−1XA]−1

·[I−A′X(XΔ̃ΔΔX′+C)−1XA](A′X′C−1XA)−1A′X′C−1y

= (X′C−1X+ Δ̃ΔΔ
−1

)−1X′C−1y−A(A′X′C−1XA)−1A′X′C−1y

+(X′C−1 + Δ̃ΔΔ
−1

)−1Δ̃ΔΔ
−1

A(A′X′C−1XA)−1A′X′C−1y

−Δ̃ΔΔX′(XΔ̃ΔΔX′+C)−1XA[A′X′(XΔ̃ΔΔX′+C)−1XA]−1A′X′(XΔ̃ΔΔX′+C)−1y

+Δ̃ΔΔX′(XΔ̃ΔΔX′+C)−1XA(A′X′C−1XA)−1A′X′C−1y

= (X′C−1X+ Δ̃ΔΔ
−1

)−1X′C−1y− Δ̃ΔΔX′(XΔ̃ΔΔX′+C)−1XAβ̂ββ . (6.110)
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Chapter 7
Parametric Binary Choice Models

Michael Lechner, Stéfan Lollivier and Thierry Magnac

7.1 Introduction

Binary dependent data are a common feature in many areas of empirical economics
as, for example, in transportation choice, the analysis of unemployment, labor sup-
ply, schooling decisions, fertility decisions, innovation behaviour of firms, etc. As
panel data is increasingly available, the demand for panel data models coping with
binary dependent variables is also increasing. Also, dramatic increases in computer
capacity have greatly enhanced our ability to estimate a new generation of models.
The second volume of this handbook contains several applications based on this
type of dependent variable and we will therefore limit this chapter to the exposition
of econometric models and methods.

There is a long history of binary choice models applied to panel data which can
for example be found in Arellano and Honore (2001), Baltagi (2000), Hsiao (1992,
1996, 2003), Lee (2002) or Sevestre (2002) as well as in chapters of econometrics
textbooks as for instance Greene (2003) or Wooldridge (2002). Some of these books
and chapters do not devote much space to the binary choice model. Here, in view of
other chapters in this handbook that address related nonlinear models (qualitative,
truncated or censored variables, nonparametric models, etc.), we focus on the para-
metric binary choice model and some of its semiparametric extensions. The binary
choice model provides a convenient benchmark case, from which many results can
be generalised to limited dependent variable models such as multinomial discrete
choices (Train, 2002), transition models in continuous time (Kamionka, 1998) or to
structural dynamic discrete choice models that are not studied here.
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We tried to be more comprehensive than the papers and chapters mentioned and
we provide an introduction into the many issues that arise in such models. We also
try not only to provide an overview of different models and estimators but also
to make sure that the technical level of this chapter is such that it can easily be
understood by the applied econometrician. For all technical details, the reader is
referred to the specific papers.

Before we discuss different versions of the binary choice panel data models,
define first the notation for the data generating process underlying the prototypical
binary choice panel model:

yit = 1{y∗it > 0} for any i = 1, . . . , N and t = 1, . . . , T,

where 1{.} is the indicator of the event between brackets and where the latent de-
pendent variables y∗it are written as:

y∗it = Xitβ + εit ,

where β denotes a vector of parameters, Xit is a 1×K vector of explanatory variables
and error terms εit stand for other unobserved variables. Stacking the T observations
of individual i,

Y ∗i = Xiβ + εi ,

where Y ∗i = (y∗i1, .,y
∗
iT ) is the vector of latent variables, Xi = (Xi1, .,XiT ) is the T ×K

matrix of explanatory variables and εi = (εi1, .,εiT ) is the T ×1 vector of errors.
We focus on the estimation of parameter β and of parameters entering the distri-

bution function of εit . We do not discuss assumptions under which such parameters
can be used to compute other parameters, such as causal effects (Angrist, 2001).
We also consider balanced panel data for ease of notation although the general case
of unbalanced panel is generally not much more difficult if the data is missing at
random (see Chap. 12).

As usual in econometrics we impose particular assumptions at the level of the la-
tent model to generate the different versions of the observable model to be discussed
in the sections of this chapter. These assumptions concern the correlation of the error
terms over time as well as the correlation between the error terms and the explana-
tory variables. The properties for various conditional expectations of the observable
binary dependent variable are then derived. We assume that the observations are
obtained by independent draws in the population of statistical units ‘i’, also called
individuals in this chapter. Working samples that we have in mind are much larger
in dimension N than in dimension T and in most cases we consider asymptotics in N
holding T fixed although we report on some recent work on large T approximations.
Time effects can then be treated in a determistic way. In this chapter we frequently
state our results for an important special case, the panel probit model where error
terms εi are assumed to be normally distributed.

In Sect. 7.2 of this chapter we discuss different versions of the static random
effects model when the explanatory variables are strictly exogenous. Depending
on the autocorrelation structure of the errors different estimators are available and
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we detail their attractiveness in each situation by trading-off their efficiency and
robustness with respect to misspecification. Section 7.3 considers the static model
when a time invariant unobservable variable is correlated with the time varying ex-
planatory variables. The non linearity of binary choice models makes it pretty hard
to eliminate individual fixed effects in likelihood functions and moment conditions,
because the usual ‘differencing out trick’ of the linear model does not work ex-
cept in special cases. Imposing quite restrictive assumptions is the price to pay to
estimate consistently parameters of interest. Finally, Sect. 7.4 addresses the impor-
tant issue of structural dynamics for fixed and random effects, in other words cases
when the explanatory variables include lagged endogenous variables or are weakly
exogenous only.

7.2 Random Effects Models Under Strict Exogeneity

In this section we set up the simplest models and notations that will be used in the
rest of the chapter. We consider in this chapter that random effects models defined
as in Arellano and Honore (2001) as models where errors in the latent model are
independent of the explanatory variables.1 This assumption does not hold with re-
spect to the explanatory variables in the current period only but also in all past and
future periods so that explanatory variables are also considered in this section to be
strictly exogenous in the sense that:

Fεt (εit |Xi) = Fεt (εit) , (7.1)

where Fεt (εit) denotes the marginal distribution function of the error term in period t.
When errors are not independent over time, it will also at times be useful to impose
a stronger condition on the joint distribution of the T errors terms over time, denoted

F(T )
ε (·):

F(T )
ε (εi|Xi) = F(T )

ε (εi) . (7.2)

Note that as in binary choice models in cross-sections, marginal choice probabilities
can be expressed in terms of the parameters of the latent model:

P(yit = 1|Xi) = E(yit = 1|Xi)
= E(yit = 1|Xit = xit) = 1−Fεt (−Xitβ ) . (7.3)

It also emphasizes that the expectation of a Bernoulli variable completely describes
its distribution.

1 One needs to assume independence between errors and regressors instead of assuming that corre-
lations are equal to zero because of the non-linearity of the conditional expectation of the dependent
variable with respect to individual effects.
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We already said that we would consider random samples only. Individual
observations are independent and if θ generically denote all unknown parameters
including those of the distribution function of errors, the sample likelihood function
is the product of individual likelihood functions:

L(θ) =
N

∏
i=1

Li(Yi|Xi;θ)

where Yi = (yi1, .,yiT ) is the vector of binary observations.

7.2.1 Errors are Independent Over Time

When errors are independent over time, the panel model collapses to a cross-
sectional model with NT independent observations and the maximum likelihood
estimator is the standard estimator of choice. The likelihood function for one obser-
vation is given by:

Li(Yi|Xi;θ) =
T

∏
t=1

[1−Fεt (−Xitβ )]yit Fεt (−Xitβ )(1−yit ) . (7.4)

Later it will be pointed out that even if true errors are not independent over time,
nevertheless the pseudo-maximum likelihood estimator (incorrectly) based on inde-
pendence – the so called ‘pooled estimator’ – has attractive properties (Robinson,
1982).

Let Φ(·) denote the cumulative distribution function (cdf) of the univariate zero
mean unit variance normal distribution, we obtain the following log-likelihood func-
tion for the probit model:

Li(Yi|Xi;β ,σ2, . . . ,σT ;σ1 = 1)

=
T

∑
t=1

yit lnΦ
(

Xitβ
σt

)
+(1− yit) ln[1−Φ

(
Xitβ
σt

)
].

Note that to identify the scale of the parameters, the standard error of the error
term in the first period is normalised to 1 (σ1 = 1). If all coefficients are allowed to
vary over time in an unrestricted way, then more variances have to be normalised.2

In many applications however, the variance of the error is kept constant over time
(σt = 1). For notational convenience this assumption will be maintained in the re-
mainder of the chapter.

2 See for example the discussion in Chamberlain (1984).
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7.2.2 One Factor Error Terms

7.2.2.1 The Model

Probably the most immediate generalisation of the assumption of independent errors
over time is a one-factor structure where all error terms are decomposed into two
different independent components. One is constant over time (ui) and is called the
individual effect, the other one being time variable (vit), but identically and in-
dependently distributed (iid) over time and individuals. Thus, we assume that for
i = 1, . . . , N and t = 1, . . . ,T :

εit = ui + vit , F(T )
v (vi1, . . . ,viT |Xi) =

T

∏
t=1

Fvt (vit) ;

F(T )
u,v (ui,vi1, . . . ,viT |Xi) = Fu(ui)

T

∏
t=1

Fvt (vit) .

The individual effect, ui, can be interpreted as describing the influence of time-
independent variables which are omitted from the model and that are independent of
the explanatory variables. Note that the one-factor decomposition is quite strong in
terms of its time series properties, because the correlation between the error terms of
the latent model does not die out when the time distance between them is increased.

To achieve identification, restrictions need to be imposed on the variances of
each error component which are denoted σ2

v and σ2
u . For example, variance σ2

v can
be assumed to be equal to a given value (to 1 in the normal case), or one can consider
the restriction that the variance of the sum of error terms is equal to 1 (σ2

u +σ2
v = 1).

It simplifies the comparison with cross section estimations. In this section, we do not
restrict σu and σv for ease of notation though such a restriction should be imposed
at the estimation stage.

7.2.2.2 Maximum Likelihood Estimation

The computation of the log-likelihood function is difficult when errors are not inde-
pendent over time or have not a one-factor structure since the individual likelihood
contribution is defined as an integral with respect to a T dimensional distribution
function. Assumptions of independence or one-factor structure simplify the compu-
tation of the likelihood function (Butler and Moffitt, 1982).

The idea is the following. For a given value of ui, the model is a standard binary
choice model as the remaining error terms vit are independent between dates and
individuals. Conditional on ui, the likelihood function of individual i is thus:

Li(Yi|Xi,ui;θ) =
T

∏
t=1

[
[1−Fv(−Xitβ −ui)]yit [Fv(−Xitβ −ui)]1−yit

]
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The unconditional likelihood function is derived by integration:

Li(Yi|Xi;θ) =
∫ +∞
−∞ Li(Yi|Xi,ui;θ) fu(ui)dui . (7.5)

The computation of the likelihood function thus requires simple integrations
only. Moreover, different parametric distribution functions for ui and vit can be
specified in this ‘integrating out’ approach. For instance, the marginal distribution
functions of the two error components can be different as in the case with a nor-
mal random effect and logistic iid random error.3 Also note that the random ef-
fect may be modelled in a flexible way. For example Heckman and Singer (1984),
Mroz (1999), and many others suggested the modeling framework where the sup-
port of individual effects of ui is discrete so that the cumulative distribution function
of ui is a step function. Geweke and Keane (2001) also suggest mixtures of normal
distribution functions.

For the special case of a T normal variate error, ui, the log-likelihood of the
resulting probit model is given by:

Li(Yi|Xi;θ) =

=
∫ +∞

−∞

{
T

∏
t=1

[

Φ
(

Xitβ +σuui

σv

)]yit
[

1−Φ
(

Xitβ +σuui

σv

)]1−yit
]}

φ(ui)dui,

(7.6)

where φ(·) denotes the density function of the standard normal distribution. In this
case, the most usual identification restriction is σ2

u +σ2
v = 1, so that the disturbances

can be written as:
εit = γui +

√
1− γ2vit ,

where ui and vit are univariate normal, N(0,1), and γ > 0. Parameter γ2 is the share
of the variance of the error term due to individual effects.

The computation of the likelihood function is a well-known problem in math-
ematics and is performed using gaussian quadrature. The most efficient method
of computation that leads to the so called ‘random effects probit estimator’ uses
the Hermite integration formula (Butler and Moffitt, 1982). See also the paper by
Guilkey and Murphy (1993) for more details on this model and estimator as well as
Lee (2000) for more discussion about the numerical algorithm.

Finally, Robinson (1982) and Avery, Hansen and Hotz (1983) show that the
pooled estimator is an alternative to the previous method. The pooled estimator is the
pseudo-maximum likelihood estimator where it is incorrectly assumed that errors
are independent over time. As a pseudo likelihood estimator, it is consistent though
inefficient. Note that the standard errors of estimated parameters are to be computed
using pseudo-likelihood theory (Gouriéroux, Monfort and Trognon, 1984).

3 As it can be found in STATA for instance.
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7.2.3 General Error Structures

Obviously, the autocorrelation structure implied by the one factor-structure is very
restrictive. Correlations do not depend on the distance between periods t and t ′. The
general model that uses only the restrictions implied by (7.1) and (7.2) poses, how-
ever severe computational problems. Computing the maximum likelihood estimator
requires high dimensional numerical integration. For example, Gaussian quadrature
methods for the normal model do not work in practice when the dimension of inte-
gration is larger than four.

There are two ways out of these computational problems. First, instead of com-
puting the exact maximum likelihood estimator, we can use simulation methods
and approximate the ML estimator by simulated maximum likelihood (SML). It re-
tains asymptotic efficiency under some conditions that will be stated later on (e.g.
Hajivassiliou, McFadden and Ruud (1996)). In particular, SML methods require
that the number of simulations tends to infinity to obtain consistent estimators.
As an alternative there are estimators which are more robust to misspecifications
in the serial correlation structure but which are inefficient because they are either
based on misspecified likelihood functions (pseudo-likelihood) or on moment con-
ditions that do not depend on the correlation structure of the error terms (GMM,
e.g. Avery, Hansen and Hotz (1983), Breitung and Lechner (1997), Bertschek and
Lechner (1998) and Inkmann (2000)). Concerning pseudo-ML estimation, we al-
ready noted that the pooled probit estimator is consistent irrespective of the error
structure. Such a consistency proof is however not available for the one-factor ran-
dom effects probit estimator.

Define the following set function:

D(Yi) =
{

Y ∗i ∈ R

T such that
0≤ y∗it < +∞ if yit = 1
−∞ < y∗it < 0 if yit = 0

}
(7.7)

The contribution of observation i to the likelihood is:

Li(Yi |Xi;θ) = E [1{Y ∗i ∈ D(Yi)}] (7.8)

In probit models, εi is distributed as multivariate normal N(0,Ω), Ω being a T ×T
variance–covariance matrix. The likelihood function is:

Li(Yi|Xi;θ) =
∫

D(Yi)
φ (T )(Y ∗i −Xiβ ,Ω)dY ∗i ,

where φ (T )(·) denotes the density of the T -variate normal distribution.
In the general case, the covariance matrix of the errors Ω is unrestricted (except

for identification purposes, see above). It is very frequent however to restrict its
structure to reduce the number of parameters to be estimated. The reason for doing
so is computation time, stability of convergence, occurrence of local extrema and the
difficulties to pin down (locally identify) the matrix of correlations when the sample
size is not very large. In many applications the random effects model discussed in
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the previous section is generalised by allowing for an AR(1) process in the time
variant error component (vit). Other more general structures however are feasible as
well if there are enough data.

We will see below how to use simulation to approximate the likelihood func-
tion by using Simulated Maximum Likelihood (SML). Another popular estimation
method consist in using conditional moments directly. They are derived from the
true likelihood function and are approximated by simulation (Method of Simulated
Moments or MSM). McFadden (1989) proposed to consider all possible sequences
of binary variables over T periods, Yω , where ω runs from 1 to 2T . Choice indica-
tors are defined as diω = 1 if i chooses sequence ω and is equal to 0 otherwise. A
moment estimator solves the empirical counterpart of the moment condition:

E

[
2T

∑
ω=1

Wiω [diω −Piω(θ)]

]

= 0 , (7.9)

where Piω(θ) = Li(Yω | Xi;θ) is the probability of sequence ω (i.e. such that
Yi = Yω). The optimal matrix of instruments Wiω in the moment condition is:

W ∗
iω =

∂ log[Piω(θ)]
∂θ

∣
∣
∣
∣
θ=θ0

,

where parameter θ0 is the true value of θ . In practice, any consistent estimator is
a good choice to approximate parameter θ0. The first of a two-step GMM proce-
dure using the moment conditions above and identity weights can lead to such a
consistent estimate. It is then plugged in the expression for W ∗

iω at the second step.
Even if T is moderately large however, the number of sequences ω is geometric

in T (2T ) and functions Piω(θ) can be very small. What proposes Keane (1994) is to
replace in (7.9) unconditional probabilities by conditional probabilities:

E

[
T

∑
t=1

1

∑
j=0

W̃it j (dit j−Pit j(θ))

]

= 0 ,

where dit j = 1 if and only if yit = j and where:

Pit j(θ) = P(yit = j | yi1, .,yit−1,Xi;θ)

=
P(yit = j,yi1, .,yit−1 | Xi;θ)

P(yi1, .,yit−1 | Xi;θ)

is the conditional probability of choice j conditional on observed lagged choices.
Finally, maximising the expectation of the log-likelihood function E log[Li(Yi |

Xi;θ)] is equivalent to solving the following system of score equations with respect
to θ :

E [Si(θ)]= 0 ,
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where Si(θ) = ∂ log[Li(Yi|Xi;θ)]
∂θ is the score function for individual i. It can be shown

that, in most limited dependent variable models (Hajivassiliou and McFadden,
1998):

∂
∂θ

Li(Yi | Xi;θ) = E [gi(Y ∗i −Xiβ )1{Y ∗i ∈ D(Yi)}]]

where:

gi(u) =
[

X ′i Ω−1u
Ω−1(uu′ −Ω)Ω−1/2

]

The score function can then be written as a conditional expectation:

Si(θ) = E [gi(Y ∗i −Xiβ ) |Y ∗i ∈ D(Yi) ] (7.10)

which opens up the possibility of computing the scores by simulations (Method of
Simulated Scores, MSS, Hajivassiliou and McFadden, 1998).

7.2.4 Simulation Methods

Simulation methods (SML, MSM, MSS) based on the criteria established in the
previous section consist in computing the expectation of a function of T random
variates. The exact values of these high dimensional integrals are too difficult to
compute and these expectations are approximated by sums of random draws using
laws of large numbers:

1
H

H

∑
h=1

f (εh)
P→

H→∞
E f (ε)

when εh is a random draw from a distribution. In the case of panel probit models, it
is a multivariate normal distribution function, N(0,Ω).

It is not the purpose of this chapter to review the general theory of simulation
(see Gouriéroux and Monfort (1996) and Geweke and Keane (2001)). We review the
properties of such methods in panel probit models only to which we add a brief ex-
planation of Gibbs resampling methods which borrow their principle from Bayesian
techniques.

7.2.4.1 The Comparison Between SML, MSM, MSS in Probit Models

The naive SML function is for instance:

1
H

H

∑
h=1

I {Y ∗i ∈ D(Yi)}

where I[Y ∗i ∈ D(Yi)] is a simulator. It is not continuous with respect to the pa-
rameter of interest however and this simulation method is not recommendable.
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What is recommended is to use a smooth simulator which is differentiable with
respect to the parameter of interest. The Monte Carlo evidence that the Geweke–
Hajivassiliou–Keane (GHK) simulator is the best one in multivariate probit models
seems overwhelming (see Geweke and Keane (2001) and Hajivassiliou, McFadden
and Ruud (1996), for a presentation).

The asymptotic conditions concerning the number of draws (H) and leading to
consistency, absence of asymptotic bias and asymptotic normality are more or less
restrictive according to each method, SML, MSM or MSS (Gouriéroux and Monfort,
1993). The method of simulated moments (MSM) yields consistent, asymptotically
unbiased and normally distributed estimators as N→∞ when H is fixed because the
moment condition (7.9) is linear in the simulated expression (or the expectation). In
Keane’s (1994) version of MSM where conditional probabilities are computed by
taking ratios, the estimator is only consistent when the number of draws tends to
infinity. Similarly, because a logarithmic transformation is taken, SML is not con-
sistent when H is fixed. Consistency is obtained when H grows at any rate towards
infinity (Lee, 1992). Furthermore, a sufficient condition to obtain asymptotically
unbiased, asymptotically normal and efficient estimates is

√
N/H → 0 as N → ∞

(Lee, 1992; Gouriéroux and Monfort, 1993).
It is the reason why some authors prefer MSM to SML. As already said, MSM

however requires the computation of the probabilities of all the potential paths with
longitudinal data although the less intensive method proposed by Keane (1994)
seems to work well in panel probit models (Geweke, Keane and Runkle, 1997). The
computation becomes cumbersome when the number of periods is large and there is
evidence that small sample biases in MSM are much larger than the simulation bias
(Geweke and Keane, 2001). Lee (1995) proposed procedures to correct asymptotic
biases though results are far from impressive (Lee, 1997; Magnac, 2000). The GHK
simulator is an accurate simulator though it may require a large number of draws
to be close to competitors such as Monte Carlo Markov Chains (MCMC) methods
(Geweke, Keane and Runkle, 1997). There seems to be a general consensus be-
tween authors about the deterioration of all estimators when the amount of serial
correlation increases.

Another way to obtain consistent estimators for fixed H is the method of sim-
ulated scores (MSS) if the simulator is unbiased. It seems that it is simpler than
MSM because it implicitly solves the search for optimal instruments. Hajivassiliou
and McFadden (1998) proposes an acceptance–rejection algorithm consisting in re-
jecting the draw if the condition in (7.10) is not verified. The simulator is not smooth
however and as already said a smooth simulator seems to be a guarantee of stability
and success for an estimation method. Moreover, in particular when T exceeds four
or five, it is possible for some individuals that the acceptance condition is so strong
that no draw is accepted. Other methods consist in considering algorithms either
based on GHK simulations of the score or on Gibbs resampling. Formulas and an
evaluation are given in Hajivassiliou, McFadden and Ruud (1996).4

4 Hajivassiliou and McFadden (1998) first propose to simulate the numerator and the denominator
separately. Of course, this method does not lead to unbiased simulation because the ratio is not
linear but, still, as simulators are asymptotically unbiased, those MSS estimators are consistent
whenever H tends to infinity. The authors furthermore argue that using the same random draws
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7.2.4.2 Gibbs Sampling and Data Augmentation

It is possible however to avoid maximisation by applying Gibbs sampling techniques
and data augmentation in multiperiod probit models (Geweke, Keane and Runkle,
1997; Chib and Greenberg, 1998; Chib, 2001). Though the original setting of Monte
Carlo Markov Chains (MCMC) is Bayesian, it can be applied to classical settings
as shown by Geweke, Keane and Runkle (1997). The posterior density function
of parameter θ given the data (Y,X) = {(Yi,Xi); i = 1, .,n} can indeed be used to
compute posterior means and variance–covariance matrices to be used as classical
estimators and their variance–covariance matrices.

To compute the posterior density p(θ | Y,X), we rely on two tools. One is the
Metropolis–Hastings algorithm which allows for drawing samples in any (well be-
haved) multivariate density function, the other is Gibbs resampling which allows to
draw in the conditional densities instead of the joint density function.

In the case of panel probit models, it runs as follows. First, let us ‘augment’ the
data by introducing the unknown latent variables Y ∗i = Xiβ + ε in order to draw
from the posterior density p(θ ,Y ∗ | Y,X) instead of the original density function.
The reason is that it will be much easier to sample into density functions conditional
on the missing latent variables. Second, parameter θ is decomposed into different
blocks (θ1, .,θJ) according to the different types of parameters in β or in Ω the
variance–covariance matrix.5

Let us choose some initial values for θ , say θ (0) and proceed as follows. Draw
Y ∗ in the distribution function p(Y ∗ | θ (0),Y,X) – it is a multivariate truncated nor-
mal density function – in a very similar way to the GHK simulator. Then draw a

new value for the first block θ1 in θ , i.e., from p(θ1 | Y ∗,θ (0)
−1 ,Y,X) where θ (0)

−1 is

constructed from parameter θ (0) by omitting θ (0)
1 . Denote this draw θ (1)

1 . Do similar
steps for all blocks j = 2, . . . ,J, using the updated parameters, until a new value
θ (1) is completed. Details of each step are given in Chib and Greenberg (1998). Re-
peat the whole step M times – M depends on the structure of the problem (Chib,
2001). Trim the beginning of the sample {θ (0), . . . ,θ (m)}, the first 200 observations
say. Then, the empirical density function of {θ (m+1), . . . ,θ (M)} is p(θ | Y,X). Once
again, this method is computer intensive with large samples and many dates. It is
however a close competitor to SML and MSS (Geweke and Keane, 2001).

7.2.4.3 Using Marginal Moments and GMM

Instead of working with the joint distribution function, the model defined by (7.8)
implies the following moment conditions about the marginal period-by-period dis-
tribution functions.6

for the denominator and the numerator decreases the noise. The other method based on Gibbs re-
sampling seems expensive in terms of computations using large samples though it is asymptocally
unbiased as soon as H tends to infinity faster than log(N).
5 See Chib and Greenberg (1998) to assess how to do the division into blocks according to the
identifying or other restrictions on parameter β or on matrix Ω.
6 The following section heavily draws from Bertschek and Lechner (1998).
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E[M(Y,X ;β0)|X ] = 0,

M(Y,X ;β ) = [m1(Y1,X ;β ), . . . ,mt(Yt ,X ;β ), . . . ,mT (YT ,X ;β )]′,
mt(Yt ,X ;β ) = Yt − [1−F(−Xtβ )] .

(7.11)

For the probit model the last expression specialises to mt(Yt ,Xt ;β ) = Yt −Φ(Xtβ ).
Although the conditional moment estimator (CME) based on these marginal mo-
ments will be less efficient than full information maximum likelihood (FIML), these
moment estimators have the clear advantage that fast and accurate approximation
algorithms are available and that they do not depend on the off-diagonal elements
of the covariance matrix of the error terms. Thus, these nuisance parameters need
not be estimated to obtain consistent estimates of the scaled slope parameters of
the latent model. At least, these estimators yields interesting initial conditions and
previous methods can be used to increase efficiency.

As in the full information case, there remains the issue of specifying the instru-
ment matrix. First, let us consider a way to use these marginal moments under our
current set of assumptions in the asymptotically efficient way. Optimal instruments
are given by:

A∗(Xi,θ0) = D(Xi,θ0)′Ω(Xi,θ0)−1 ;

D(Xi,θ) = E
∂M(Y,Xi,θ)

∂θ
|X = Xi ; (7.12)

Ω(Xi,θ) = E[M(Y,Xi,θ)M(Y,Xi,θ)′]|X = Xi . (7.13)

For the special case of the probit model under strict exogeneity the two other ele-
ments of (7.13) have the following form:

Dit(Xit ;β0) =−φ(Xitβ0)Xit

ωits(Xit ,β0) = [E(Yt −Φit)(Ys−Φis)|X = Xi] (7.14)

=
{

Φit(1−Φit) if t = s

Φ(2)
its −ΦitΦis if t �= s

(7.15)

where Φit = Φ(Xitβ0) and Φ(2)
its = Φ(2)(Xitβ0,Xisβ0,ρts) denotes the cdf of the bi-

variate normal distribution with correlation coefficient ρts. The estimation of the
optimal instruments is cumbersome because they vary with the regressors in a non-
linear way and depend on the correlation coefficients.

There are several different ways to obtain consistent estimates of the optimal in-
struments. Bertschek and Lechner (1998) propose to estimate the conditional matrix
nonparametrically. They focus on the k-nearest neighbour (k-NN) approach to esti-
mate Ω(Xi), because of its simplicity. k-NN averages locally over functions of the
data of those observations belonging to the k-nearest neighbours. Under regularity
conditions (Newey, 1993), this gives consistent estimates of Ω(Xi) evaluated at β̃N

and denoted by Ω̃(Xi) for each observation ‘i’ without the need for estimating ρts.
Thus, an element of Ω(Xi) is estimated by:
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ω̃its(Xi) =
N

∑
j=1

wi jtsmt(y jt ,Xjt ; β̃N)ms(yit ,Xit ; β̃N) , (7.16)

where wi jts represents a weight function. This does not involve an integral over a
bivariate distribution. For more details on different variants of the estimator and
how to implement it, the reader is referred to Bertschek and Lechner (1998). In their
Monte Carlo study it appeared that optimal (nonparametric) Conditional Moment
estimators based on moments rescaled to have a homoscedastic variance performed
much better in small samples. They are based on:

mW
t (Yt ,X ;β ) =

mt(Yt ,Xt ;β )
√

E[mt(Yt ,Xt ;β )2|X = Xi]
. (7.17)

The expression of the conditional covariance matrix of these moments and the con-
ditional expectation of the first derivatives are somewhat different from the previous
ones, but the same general estimation principles can be applied in this case as well.7

Inkman (2000) proposes additional Monte Carlo experiments comparing GMM es-
timators to SML with and without heteroskedasticity.

7.2.4.4 Other Estimators Based on Suboptimal Instruments

Of course there are many other specifications for the instrument matrix that lead to
consistent, although not necessarily efficient, estimators for the slope coefficients.
Their implementation as well as their efficiency ranking is discussed in detail in
Bertschek and Lechner (1998). For example they show that the pooled probit es-
timator is asymptotically equivalent to the previous GMM estimator when the in-
struments are based on (7.13) to (7.16) but the off-diagonal elements of Ω(Xi) are
set to zero. Avery, Hansen and Hotz (1983) also suggest to improve the efficiency
of the pooled probit by exploiting strict exogeneity in another way by stacking the
instrument matrix, so as to exploit that the conditional moment in period t is also
uncorrelated with any function of regressors from other periods.

Chamberlain (1980) suggests yet another very simple route to improve the ef-
ficiency of the pooled probit estimator when there are arbitrary correlations of the
errors over time which avoids setting up a ‘complicated’ GMM estimator. Since
cross-section probits give consistent estimates of the coefficients for each period
(scaled by the standard deviation of the period error term), the idea is to perform T
probits period by period (leading to T ×K coefficient estimates) and combine them
in a second step using a Minimum Distance estimator. The variance–covariance ma-
trix of estimators at different time periods should be computed to construct efficient
estimates at the second step although small sample bias could also be a problem
(Altonji Segal, 1996). In the case of homoscedasticity over time this step will be
simple GLS, otherwise a nonlinear optimisation in the parametric space is required.8

7 For all details, the reader is referred to Bertschek and Lechner (1998).
8 Lechner (1995) proposes specification tests for this estimator.



228 M. Lechner et al.

7.2.5 How to Choose a Random Effects Estimator
for an Application

This section introduced several estimators that are applicable in the case of random
effect models under strict exogeneity. In practice the question is what correla-
tion structure to impose and which estimator to use. Concerning the correlation
structure, one has to bear in mind that exclusion restrictions are important for
nonparametric identification and thus that explanatory variables should be suffi-
ciently variable across time in order to permit the identification of a very gen-
eral pattern of correlation of errors. For empirical applications of the estimators
that we have reviewed, the following issues seem to be important: small sample
performance, ease of computation, efficiency, robustness. We will address them
in turn.

With respect to small sample performance of GMM estimators, Monte Carlo
simulations by Breitung and Lechner (1997), Bertschek and Lechner (1998) and
Inkmann (2000) suggest that estimators based on too many overidentifying restric-
tions (i.e. too many instruments), like the sequential estimators and some of the
estimators suggested by Avery, Hansen and Hotz (1983) are subject to the typical
weak instruments problem of GMM estimation due to too many instruments. Thus
they are not very attractive for applications. The exactly identified estimators appear
to work fine.

‘Ease of computation’ is partly a subjective judgement depending on computing
skill and software available. Clearly, pooled probit is the easiest to implement, but
random effects ML is available in many software packages as well. Exact ML is
clearly not feasible for T larger than 4. For GMM and simulation methods, there is
GAUSS code available on the Web (Geweke and Keane (2001) for instance) but they
are not part of any commercial software package. The issue of computation time
is less important now that it was some time ago (Greene, 2002) and the simulation
estimators are getting more and more implementable with the increase of computing
power. Asymptotic efficiency is important when samples are large. Clearly, exact
ML is the most efficient one and can in principle be almost exactly approximated
by the simulation estimators discussed.

With respect to robustness, it is probably most important to consider violations
of the assumption that explanatory variables at all periods are exogeneous and re-
strictions of the autocorrelation structure of the error terms. We will address the
issue of exogeneity at the end of this chapter though the general conclusions are
very close to the linear case, as far as we know. Concerning the autocorrelation of
errors, pooled probit either in its pseudo-ML or GMM version is robust if it uses
marginal conditional moments. It is not true for the other ML estimators that rely on
the correct specification of the autocorrelation structure. Finally, GMM estimators
as they have been proposed here are robust against any autocorrelation. However,
they obtain their efficiency gains by exploiting strict exogeneity and may become
inconsistent if this assumption does not hold (with the exception of pooled probit,
of course).
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7.2.6 Correlated Effects

In the correlated effects (or unrelated effects) model, we abandon the assumption
that individual effects and explanatory variables are independent. In analogy with
the linear panel data case, Chamberlain (1984) proposes, in a random effect panel
data nonlinear model, to replace the assumption that individual effects ui are inde-
pendent of the regressors by a weaker assumption. This assumption is derived from
writing a linear regression:

ui = Xiγ +ηi (7.18)

where explanatory variables at all periods, Xi, are now independent of the redefined
individual effect ηi. This parametrization is convenient but not totally consistent
with the preceding assumptions: considering the individual effect as a function of
the Xi variables makes its definition depend on the length of the panel. However, all
results derived in the previous section can readily be applied by replacing explana-
tory variables Xit by the whole sequence Xi at each period.9

To recover the parameters of interest, β , two procedures can be used. The first
method uses minimum distance estimation and the so called π-matrix technique of
Chamberlain (Crépon and Mairesse, 1996). The reduced form:

y∗it = Xiγt +ηi + vit , (7.19)

is first estimated. The second step consists in imposing the constraints given by:

γt = γ +βet (7.20)

where et is an appropriate known matrix derived from (7.18) and (7.19).
The second procedure uses constrained maximum likelihood estimation by im-

posing the previous constraint (7.20) on the parameters of the structural model.
The assumption of independence between ηi and Xi is quite strong in the non-

linear case in stark contrast to the innocuous non-correlation assumption in the linear
case. Moreover, it also introduces constraints on the data generating process of Xi

if one wants to extend this framework when additional period information comes in
Honoré (2002). Consider that we add a new period T +1 to the data and rewrite the
projection as:

ui = Xiγ̃ +XiT+1γ̃T+1 + η̃i

By substracting both linear regressions at times T and T +1 and taking expectations
conditional on information at period T , it implies that:

E(XiT+1 | Xi) = Xi(γ− γ̃)/γ̃T+1

which is not only linear in Xi but also only depend on parameters governing the yit

process.

9 The so-called Mundlak (1978) approach is even more specific since individual effects ui are
written as a function of averages of covariates, 1

T ∑T
t=1 xit only and a redefined individual effect ηi.
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It is therefore tempting to relax (7.18) and admit that individual effects are a more
general function of explanatory variables:

ui = f (Xi)+ηi

where f (.) is an unknown function satisfying weak restrictions (Newey, 1994). Even
if the independence assumption between the individual effect ηi and explanatory
variables Xi is still restrictive – because the variance of ηi is constant for instance –
this framework is much more general than the previous one. What Newey (1994)
proposes is based on the cross section estimation technique that we already talked
about.

Consider the simple one-factor model where the variance of the individual-and-
period specific shocks is not period-dependent, σ2

v , and where the variance of ηi is
such that σ2

v +σ2
η is normalized to one. We therefore have:

E(yit | Xi) = Φ(Xitβ + f (Xi))

where Φ is the distribution function of a zero-mean unit-variance normal variate. It
translates into:

Φ−1(E(yit | Xi)) = Xitβ + f (Xi) (7.21)

By any differencing operator (Arellano, 2003) and for instance by first differencing,
we can eliminate the nuisance function f (Xi) to get:

Φ−1(E(yit | Xi))−Φ−1(E(yit−1 | Xi)) = (Xit −Xit−1)β (7.22)

The estimation runs as follows. Estimates of E(yit | Xi) at any period are first
obtained by series estimation (Newey, 1994) or any other nonparametric method
(kernel, local linear, smoothing spline, see Pagan and Ullah, 1998 for instance).
A consistent estimate of β is then obtained by using the previous moment condi-
tion (7.22).

A few remarks are in order. First, Newey (1994) proposes such a modeling frame-
work in order to show how to derive asymptotic variance–covariance matrices of
semi-parametric estimators. As it is outside of the scope of this chapter, the reader
is refered, for this topic, to the original paper. It can also be noted that as an es-
timate of f (Xi) can be obtained, in a second step, by using the equation in levels
(7.21). One can then use a random effect approach to estimate the serial correlation
of the random vector, vit . Finally, there is a nonparametric version of this method
(Chen, 1998) where Φ is replaced by an unknown function to be estimated, under
some identification restrictions.

7.3 Fixed Effects Models Under Strict Exogeneity

In the so-called fixed effect model, the error component structure of Sect. 7.2.2
is assumed. The dependence between individual effects and explanatory variables
is now unrestricted in contrast to the independence assumption in the random
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effects model. In this section, we retain the assumption of strict exogeneity that
explanatory variables and period-and-individual shocks are independent. We write
the model as:

yit = 1{Xitβ +ui + vit > 0} (7.23)

where additional assumptions are developed below.
As the conditional distribution of individual effects ui is unrestricted, the vector

of individual effects should be treated as a nuisance parameter that we should either
consistently estimate or that we should eliminate. If we cannot eliminate the fixed
effects, asymptotics in T are required in most cases.10 It is because only T obser-
vations are available to estimate each individual effect. It cannot be consistent as
N→∞ and its inconsistency generically contaminates the estimation of the parame-
ter of interest. It gives rise to the problem of incidental parameters (Lancaster, 2000).
The assumption that T is fixed seems to be a reasonable approximation with survey
data since the number of periods over which individuals are observed is often small.
At the end of the section however, we will see how better large T approximations
can be constructed for moderate values of T .

The other route is to difference out the individual effects. It is more difficult in
non-linear models than in linear ones because it is not possible to consider linear
transforms of the latent variable and to calculate within-type estimators. In other
words, it is much harder to find moment conditions and specific likelihood functions
that depend on the slope coefficient but do not depend on the fixed effects. In short
panels, ML or GMM estimation of fixed effects probit models where the individual
effects are treated as parameters to be estimated are severely biased if T is small
(Heckman, 1981a).

In the first sub- sections we discuss some methods that appeared in the litera-
ture that circumvent this problem and lead to consistent estimators for N → ∞ and
T is fixed. Of course, there is always a price to pay either in terms of additional
assumptions needed or in terms of the statistical properties of these estimators.

7.3.1 The Model

As already said, we consider (7.23) and we stick to the assumption of strict exo-
geneity of the explanatory variables:

Fεt (εit |ui,Xi1, . . . ,XiT ) = Fεt (εit |ui) . (7.24)

Using the error component structure of Sect. 7.2.2, we can reformulate this
assumption:

Fvt (vit |ui,Xi1, . . . ,XiT ) = Fvt (vit) . (7.25)

10 Not in all cases, the example of count data being prominent (Lancaster, 2000).
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Note that Fεt (εit |Xi1, . . . ,XiT ) �= Fεt (εit) and also note that the distribution of the
individual effect is unrestricted and can thus be correlated with observables. In most
cases we will also impose that the errors are independent conditional on the fixed
effect:

F(εi1, . . . ,εiT |ui,Xi1, . . . ,XiT ) =
T

∏
t=1

Fεt (εit |ui) (7.26)

F(vi1, . . . ,viT |ui,Xi1, . . . ,XiT ) =
T

∏
t=1

Fvt (vit).

There are two obvious difficulties with respect to identification in such a model.
First, it is impossible to identify the effects of time-invariant variables.11 It has se-
rious consequences because it implies that choice probabilities in the population
are not identified. We cannot compare probabilities for different values of the ex-
planatory variables. In other words, a fixed effect model that does not impose some
assumption on distribution of the fixed effects cannot be used to identify causal
(treatment) effects. This sometimes overlooked feature limits the use of fixed effects
models.12 What remains identified are the conditional treatment effects, conditional
on any (unknown) value of the individual effect.

The second difficulty is specific to discrete data. In general, the individuals who
stay all over the period of observation in a given state do not provide any informa-
tion concerning the determination of the parameters. It stems from an identification
problem, the so called mover-stayer problem. Consider someone which stays in state
1 from period 1 to T . Let vi be any value of the individual-and-period shocks. Then
if the individual effect ui is a coherent value in model (7.23) with staying in the state
all the time, then any value ūi ≥ ui is also coherent with model (7.23). Estimations
are thus implemented on the sub-sample of people who move at least once between
the two states (‘moving’ individuals).

7.3.2 The Method of Conditional Likelihood

The existence of biases leads to avoid direct ML estimations when the number of
dates is less than ten (Heckman, 1981a). In certain cases, the bias can consist in mul-
tiplying by two the value of some parameters (Andersen, 1970; Chamberlain, 1984;
Hsiao, 1996). This features makes this estimator pretty unattractive in large N, small
T type of applications. If the logit specification is assumed however, it is possible
to set up a conditional likelihood function whose maximisation gives consistent es-
timators of the parameters of interest β , regardless the length of the time period.

11 It is however possible to define restrictions to identify these effects, see Chaps. 4 and 5.
12 The claim that a parametric distributional assumption of individual effects is needed for the
identification of causal treatment effects is however overly strong. What is true is that the estimation
of the conditional distribution function of individual effects is almost never considered though it
can be under much weaker assumptions than parametric ones.
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Conditional logit: T periods

In the case where random errors, vit , are independent over time and are logistically
distributed, the sum yi+ = ∑T

t=1 yit , is a sufficient statistic for the fixed effects, in the
sense that the distribution of the data given yi+ does not depend on the fixed effect.
Consider the logit model:

P(yit = 1|Xi,ui) = F(Xitβ +ui) , (7.27)

where F(z) = exp(z)
1+exp(z) = 1

1+exp(−z)
The idea is to compute probabilities conditional on the number of times the indi-

viduals is in state 1:

Li(θ) = P

(

yi1 = δi1, . . . ,yiT = δiT | Xi,ui,
T

∑
t=1

yit = yi+

)

=
exp

(
T
∑

t=1
Xitβδit

)

∑
d∈Bi

exp

(
T
∑

t=1
Xitβdt

)

where

Bi =

{

d = (d1, . . . ,dT ) such that dt ∈ {0,1}and
T

∑
t=1

dt =
T

∑
t=1

yit

}

The set Bi differs between individuals according to the value of
T
∑

t=1
yit , i.e., the

number of visits to state 1. Parameter β is estimated by maximising this condi-
tional log-likelihood function. The estimator is consistent as N → ∞, regardless
of T (Andersen, 1970, Chamberlain, 1980, 1984, Hsiao, 1996). Nothing is known
about its efficiency as in general conditional likelihood estimators are not efficient.
Note that only the ‘moving’ individuals are used in the computation of the con-
ditional likelihood. Extensions of model (7.27) can be considered. For instance,
Thomas (2003) develops the case where individual effect are multiplied by a time
effect which is to be estimated.

The estimation of such a T−period model is also possible by reducing sequences
of T observations into pairs of binary variables. Lee (2002) develop two interesting
cases. First, the T periods can be chained sequentially two-by-two and a T = 2 con-
ditional model can be estimated (as in Manski, 1987 see below). All pairs of periods
two-by-two could also be considered. These decompositions will have an interest
when generalizing conditional logit, when considering semi-parametric methods or
more casually, as initial conditions for conditional maximum likelhood. It is why
we now review the T = 2 case.
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7.3.2.1 An Example: The Two Period Static Logit Model

The conditional log-likelihood based on the logit model with T =2 computed with
moving individuals is given by:

L = ∑
di=1

log
exp(Xi2β )

exp(Xi1β )+ exp(Xi2β )
+ ∑

di=0

log
exp(Xi1β )

exp(Xi1β )+ exp(Xi2β )
,

where for moving individuals, the binary variable di is:
{

di = 1 if yi1 = 0,yi2 = 1
di = 0 if yi1 = 1,yi2 = 0

Denote ΔXi = Xi2−Xi1. The conditional log-likelihood becomes:

L = ∑
i|di=1

log
exp(ΔXiβ )

1+ exp(ΔXiβ )
+ ∑

i|di=0

log
1

1+ exp(ΔXiβ )

which is the expression of the log-likelihood of the usual logit model:

P(di = 1|ΔXi) = F(ΔXiβ ) (7.28)

adjusted on the sub-sample of moving individuals. Note that the regressors do not
include an intercept, since in the original model the intercept was absorbed by the
individual effects.

7.3.2.2 A Generalization

The consistency properties of conditional likelihood estimators are well known
(Andersen, 1970) and lead to the interesting properties of conditional logit. This
method has however been criticized on the ground that assuming a logistic function
is a strong distributional assumption. When the errors vi1 and vi2 are independent,
it can be shown that the conditional likelihood method is applicable only when the
errors are logistic (Magnac (2004)). It is possible however to relax the indepen-
dence assumption between errors vi1 and vi2 to develop a richer semi-parametric or
parametric framework in the case of two periods. As above, pairing observations
two-by-two presented by Lee (2002) can be used when the number of periods is
larger.

The idea relies on writing the condition that the sum yi1 + yi2 = 1 is a sufficient
statistic in the sense that the following conditional probability does not depend on
individual effects:

P

(

yi1 = 1,yi2 = 0 | Xi,ui,
2

∑
t=1

yit = 1

)

= P

(

yi1 = 1,yi2 = 0 | Xi,
2

∑
t=1

yit = 1

)
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In that case, the development in the previous section can be repeated because the
conditional likelihood function depends on parameter β and not on individual ef-
fects. It can be shown that we end up with an analog of (7.28) where distribution
F(.) is a general function which features and semi-parametric estimation are dis-
cussed in Magnac (2004).

7.3.3 Fixed Effects Maximum Score

The methods discussed until Sect. 3.2.2 are very attractive under one key condi-
tion, namely that the chosen distributional assumptions for the latent model are cor-
rect, otherwise the estimators will be typically inconsistent for the parameters of the
model. However, since those functional restrictions are usually chosen for computa-
tional convenience instead of a priori plausibility, models that require less stringent
assumptions or which are robust to violations of these assumptions, are attractive.
Manski (1987) was the first to suggest a consistent estimator for fixed effects models
in situations where the other approaches do not work. His estimator is a direct ex-
tension of the maximum score estimator for the binary model (Manski, 1975). The
idea of this estimator for cross-sectional data is that if the median of the error term
conditional on the regressors is zero, then observations with Xiβ > 0 (resp. < 0) will
have P(y = 1 |Xiβ > 0) > 0 .5 (resp < 0.5). Under some regularity conditions this
implies that E {sgn(2yi−1)sgn(Xiβ )} is uniquely maximised at the true value (in
other words (2yi−1) and (Xiβ ) should have the same sign). Therefore, the analogue
estimator obtained by substituting expectations by means is consistent although not
asymptotically normal and converges at a rate N1/3 to a non-normal distribution
(Kim and Pollard, 1990). There is however a smoothed version of this estimator
where the sign function is substituted with a kernel type function, which is asymp-
totically normal and comes arbitrarily close to

√
N-convergence if tuning param-

eters are suitably chosen (Horowitz, 1992). However, Chamberlain (1992) shows
that it is not possible of attaining a rate of

√
N in the framework adopted by these

papers.
Using a similar reasoning as in the conditional logit model and using the assump-

tion that the distribution of the errors over time is stationary, Manski (1987) showed
that, conditional on X :

P(y2 = 1 |y2 + y1 = 1,X) > 0.5 if (X2−X1)β > 0

Therefore, for a given individual higher values of Xtβ are more likely to be as-
sociated with yt = 1. In a similar fashion as the cross-sectional maximum score
estimator, this suggests the following conditional maximum score estimator:

β̂N = argmax
β

N

∑
i=1

sgn(yi2− yi1)sgn[(Xi2−Xi1)β ]
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For longer panels one can consider all possible pairs of observations over time:

β̂N = argmax
β

N

∑
i=1

∑
s<t

sgn(yis− yit)sgn[(Xis−Xit)β ]

The estimator has similar properties than the cross-sectional M-score estimator,
in the sense that it is consistent under very weak conditions, but not asymptotically
normal and converges at a rate slower than

√
N. Kyriazidou (1995) and Charlier,

Melenberg and van Soest (1995) show that the same ‘smoothing trick’ that worked
for the cross-sectional M-score estimator also works for the conditional panel ver-
sion. Hence, depending on the choice of smoothing parameters, the rate of conver-
gence may come arbitrarily close to

√
N.

In practice, there are few applications of this estimator, since many difficulties
arise: the solution of the optimisation problem is not unique, and the optimisation
can be very complicated, because of the step function involved.

Other semi-parametric methods of estimation include Lee (1999) and Honoré and
Lewbel 2002). In the first paper, an assumption about the dependence between in-
dividual effects and explanatory variables allows for the construction of the method
of moments estimator which is root-N consistent and asymptotically normal. In the
second paper, another partial independence assumption is made as well as assump-
tions about the large support of one special continuous covariate. By linearizing the
model (Lewbel, 2000), one can return to the reassuring world of linear models and
difference out the individual effects. The reader is referred to the original papers in
both cases.

7.3.4 GMM Estimation

A possible solution to solving the problem posed by the presence of unobservable
individual effect is to propose moment conditions which will be approximately sat-
isfied provided that the individual effects are small, and estimators based on such
moments (Laisney and Lechner, 2002). Consider the moment condition for any
t = 1, . . . ,T :

E(yt |Xi,ui) = F(xitβ +ui)

When the individual effect is close enough to the value of ũ, the first order Taylor
approximation around u = ũ is exact, so we can write for any s, t = 1, . . . ,T :

U− ũ =
E[yt |X ,u ]−F(Xtβ + ũ)

f (Xtβ + ũ)
=

E[ys |X,u ]−F(Xsβ + ũ)
f (Xsβ + ũ)

Thus, for any s, t = 1, . . . ,T ;s �= t, the following function,

mts(y,X ;β ) =
yt −F(Xtβ − ũ)

f (Xtβ − ũ)
− ys−F(Xsβ − ũ)

f (Xsβ − ũ)
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has a conditional mean of zero at the true value of β , given X = Xi . It can be
used as the basis for (almost) consistent estimation of the panel probit model with
fixed effects close to ũ. Under standard regularity conditions, a GMM estimator of
the coefficients for the time varying regressors of the panel model based on these
moment functions is consistent (almost, given the Taylor approximation) and

√
N

asymptotically normal (Newey, 1993; Newey and McFadden, 1994).

7.3.5 Large-T Approximations

Finally, there are some new developments that are only briefly sketched here and that
rely on large-T approximations in parametric binary models. The inspiration comes
from Heckman (1981a) pioneering work. Monte Carlo experiments can indeed be
used to assess the magnitude of the bias of fixed effect estimators in binary probit
or logit models as it was developed in the previous section. This bias due to the
presence of incidental parameters is of order O(T−1) in panel probit and for values
around T = 10 the bias is found to be small (see also Greene, 2002).

A first direction for improving estimators is to assess and compute the bias
either analytically or by using jackknife techniques as proposed by Hahn and
Newey (2004). Under assumptions of independence over time of regressors and dis-
turbances, bias-corrected estimators can be easily constructed. Hahn and Kuesteiner
(2004) relax the assumption of independence over time by proposing another ana-
lytical correction of the bias and that could also apply to the dynamic case (see next
section).

The second direction relies on parameter orthogonalization. Inconsistency of
fixed effects estimators occurs because the number of useful observations to esti-
mate individual effects is fixed and equal to T and because there is contamination
from the inconsistency of individual effect estimates into the parameters of inter-
est. If, as in the Poisson count data example,13 parameters of interest and individual
effects can be factored out in the likelihood function (Lancaster, 2003) contamina-
tion is absent. Parameters are said to be orthogonal. These cases are not frequent
however. The pionnering work of Cox and Reid (1987) uses a weaker notion of in-
formation orthogonality. At the true parameter values, the expectation of the cross
derivative of the likelihood function w.r.t. the parameter of interest and the nuisance
parameters is equal to zero. The invariance of likelihood methods to reparametriza-
tions can then be used. The reparametrization which is interesting to use is the one
(if it exists) that leads to information orthogonality. If this reparametrization is per-
formed and if the nuisance parameters are integrated out in Bayesian settings, or
concentrated out in classical settings, the bias of the ML estimator is of order 1/T 2

instead of 1/T (in probability). For Probit (or other parametric) models, this method
is proposed by Lancaster (2003) in a Bayesian setting. General theory in parametric
non linear models in the Bayesian case is developed by Woutersen (2002). In the
classical case, the panel static probit model is studied in a Monte Carlo experiment

13 As described in Montalvo (1997) and Blundell, Griffith and Windmeijer (2002).
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as an example by Arellano (2003) and in a dynamic case by Carro (2003). They
show that for moderate T (4.6), the bias is small. It is smaller than the value for T
advocated by Heckman (1981a) though these values shall be theoretically validated
in each instance where it is applied, as always when using Monte Carlo experiments
about approximations.

7.4 Dynamic Models

In dynamic models where explanatory variables comprise lagged endogenous vari-
ables and other predetermined variables, we could further abandon the assumption
that individual-and-period shocks and explanatory variables are independent. We
distinguish again random and fixed effects models. This section is short not because
the subject is unimportant but because the main ideas are extensions of the strict
exogeneity case. There is one original issue however that we shall insist on, which
is the choice of initial conditions.

7.4.1 Dynamic Random Effects Models

There are many potential sources of dynamics in econometric models. Some sources
are easily dealt with in the framework of the last section: coefficients changing over
time, lagged values of the strictly exogenous explanatory variables, correlation of
random effects over time. There could also be true state dependence that is structural
dependence on the lagged dependent variable or feedback effects of dependent vari-
ables on explanatory variables. Those explanatory variables are thus predetermined
instead of strictly exogeneous. Most behavioral economic models using time-series
or panel data are likely to be dynamic in this sense.

There are various dynamic discrete models as introduced by Heckman (1981a).
The latent model that we study in this section, is written as:

y∗it = αyit−1 +Xitβ +ui + vit (7.29)

where individual effects ui or individual-and-period specific effects vit are or can be
dependent of explanatory variables yit−1 and Xit and/or the future of these variables.
It is in this sense that right-hand side variables are endogenous in this section. For
simplicity we here consider one lag only and that vit are independent of the past and
present of (yit−1,Xit).

As an alternative to this model (7.29), there is a class of models in which the
lagged latent variable, y∗it−1, is included among explanatory variables instead of
the binary variable yit . This type of dynamics is called habit persistence. Because
recursive substitution techniques can be used – the lagged latent variable is re-
placed recursively by their expression (7.29) – these habit persistence models can
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be transformed into static models where explanatory variables include lags of the
exogenous variables and where some care should be taken with the initial condition,
y∗i1. These types of models are discussed briefly in Heckman (1981b). Estimation of
the structural parameters in the case of binary choice is detailed in Lechner (1993).
Moreover, this framework does not accomodate weak endogeneity which is one of
the focus of this section.

7.4.1.1 Initial Conditions

When the lagged endogenous variable is present, there is an initial condition prob-
lem as in the linear case though it is more diffcult to deal with. Assuming for the
moment that there are no other explanatory variables, β = 0, the likelihood function
is written by conditioning on individual effects as in the previous section:

l(yiT , .,yi2,yi1 | ui) =
T

∏
t=2

l(yit | yit−1,ui)l(yi1 | ui)

It is obvious that one needs additional information for deriving l(yi1 | ui) that model
(7.29) is not providing. It is analogous to the linear case and the assumptions that
initial conditions are exogenous or that initial conditions are obtained by initializing
the process in the infinite past were soon seen to be too strong or misplaced. They
are generally strongly rejected by the data. Heckman (1981) proposed to use an
auxiliary assumption such as:

y∗i1 = θui + v0
i1 . (7.30)

The complete likelihood function is then obtained by integrating out, ui, as before.
Another route was suggested by Wooldridge (2002) or Arellano and Carrasco

(2003). Instead of using the complete joint likelihood function, they resort to the
following conditional likelihood function:

l(yiT , .,yi2 | yi1,ui) =
T

∏
t=2

l(yit | yit−1,ui) .

When integrating out ui, one now needs to choose the conditional distribution func-
tion f (ui | y1) which might be written as the auxiliary model which marries well
with the approach of Chamberlain seen above:

ui = θyi1 +ηi (7.31)

It should be noted that one loses information and that it is not immediately clear
whether restriction (7.30) is more restrictive than (7.31) in particular when other
explanatory variables are present in the model.
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7.4.1.2 Monte Carlo Experiments of Simulation Methods

In the literature, some papers report Monte Carlo experiments of random effects dy-
namic models estimated by simulation (Keane, 1994; Chib and Jeliazkov, 2002;
Lee, 1997). There seems to be a consensus on a few results. Estimates of the
autoregressive parameter seem to be downward biased while parameters of the
variance of random effects can be upward or downward biased according to the
model (Lee, 1997). Biases increase when serial correlation is stronger though it
can be counteracted by increasing the number of draws either for SML or MSM
as well as for Gibbs sampling. Biases also increase when the number of periods
increases. Misspecification of initial conditions introduces fairly large biases in the
estimation.

7.4.1.3 A Projection Method

For treating the weakly endogenous case, there has been an interesting sugges-
tion proposed by Arellano and Carrasco (2003). Let ωit = (yit−1,Xit) be the rele-
vant conditional information in period t that is grouped into the information set,
ω t

i = (ωit ,ω t−1
i ) where ω0

i is the empty set. Variables ω t
i summarize the relevant

past of the process until period t, that is the sequence of lagged endogeneous vari-
ables, explanatory variables and their lags and any other piece of information such
as instruments for instance. Assume that εit = ui + vit is such that:

εit | ω t
i � N(E(ui | ω t

i ),σ2
t )

where independence between vit and the information set ω t
i has been used. Thus,

it rules out serial correlation in the usual sense14 while allowing for feedback.
It thus constitutes a generalization of the setting of the projection method of
Chamberlain (1980) and Newey (1994) that we presented in the previous section.

The sequence of conditional means E(ui | ω t
i ) are related by the moment

conditions:

E(E(ui | ω t
i ) | ω t−1

i ) = E(ui | ω t−1
i ) (7.32)

Write now the conditional means:

E(yit | ω t
i ) = Φ

(
αyit−1 +Xitβ +E(ui | ω t

i )
σt

)

which translates into:

σt .Φ−1(E(yit | ω t
i )) = αyit−1 +Xitβ +E(ui | ω t

i )

14 Individual-and-period vit−1 is not included in ω t
i , only yit−1 is.
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The moment condition (7.32) is thus:

E(σt .Φ−1(E(yit | ω t
i ))− (αyit−1 +Xitβ ) | ω t−1

i ) =

= σt−1.Φ−1(E(yit | ω t−1
i ))− (αyit−2 +Xit−1β )

As before, some nonparametric estimates of E(yit |ω t
i ) can be obtained and plugged

in this moment condition.
As it is formally identifical to the approach proposed by Newey (1994), the same

remarks can be addressed to this approach. There may however be a curse of di-
mensionality coming in because the dimension of ω t

i is growing with the number
of periods. Arellano and Carrasco (2003) proposes simplifications and the reader is
referred to the original paper.

7.4.2 Dynamic Fixed Effects Models

Chamberlain (1985) extends the conditional logit method to the case where the
lagged endogenous variable is the only covariate (see also Magnac, 2000, for multi-
nomial and dynamic models where lags can be larger than 1). Sufficient statistics
are now a vector of three variables. On top of the sum of binary variables, the bi-
nary variables at the first and last period are added to the list. For instance, in the
case where only one lag is used, the smallest number of periods for identification is
equal to 4 and the useful information is contained in the intermediate periods from
t = 2 to T − 1. The main drawback of this method is that, in the logit case and in
the model with one lag, the sum of binary variables, the first and last values of the
binary variables are not sufficient statistics if other explanatory variables are present
in the model.

If explanatory variables are discrete, the idea proposed by Honoré and Kyriazidou
(2000) is to consider only the observations such that explanatory variables are con-
stant in the intermediate periods from t = 2 to T − 1. Conditional to the values of
these explanatory variables, the sum of binary variables, the first and last values
of the binary variables are now sufficient statistics. In order to accomodate contin-
uous variables, Honoré and Kyriazidou (2000) proposes to use observations such
that explanatory variables are approximately constant in the intermediate periods
from 2 to T −1. The statistics described above are approximately sufficient. Obser-
vations can be weighted according to the degree of such an approximation. Under
some conditions the estimator is consistent and asymptotically normal, but due to
the nonparametric part, its convergence rate is less than

√
N. Note also that this

construction rules out time dummies, which cannot by definition be similar in two
periods.
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nonlinear models”, in L. Mátyás and P.Sevestre (Eds.), The Econometrics of Panel Data, 2nd
ed., Dordrecht: Kluwer, 583–612, 1996.

Carro, J.M., 2003, “Estimating dynamic panel data discrete choice models with fixed effects”,
Working paper, CEMFI, 0304.

Chamberlain, G., 1980, “Analysis of covariance with qualitative data”, Review of Economic
Studies, 47: 225–238.

Chamberlain, G., 1984, “Panel Data”, in Z. Griliches and M.D. Intrilligator (Eds.), Handbook of
Econometrics, vol II, ch 22, Elsevier Science: Amsterdam, 1248–1318.

Chamberlain, G., 1985, “Heterogeneity, omitted variable bias and duration dependence”, in Longi-
tudinal Analysis of Labor Market Data, in J.J. Heckman and B. Singer (Eds.), Cambridge UP:
Cambridge.

Chamberlain, G., 1992, “Binary response models for panel data: Identification and information”,
Mimeo, Harvard University: Cambridge.

Charlier, E., B., Melenberg, and A., van Soest, 1995, “A smoothed maximum score estimator for
the binary choice panel model and an application to labour force participation”, Statistica Neer-
landica, 49: 324–342.

Chen, S., 1998, “Root-N consistent estimation of a panel data sample selection model”, unpub-
lished manuscript, Hong Kong university.

Chib, S., 2001, “Markov Chain Monte Carlo Methods: Computation and Inference”, in J. Heckman
and E. Leamer (Eds.), Handbook of Econometrics, V(57):3570–3649.

Chib, S., and E., Greenberg, 1998, “Analysis of multivariate probit models”, Biometrika,
85:347–61.

Chib, S., and I., Jeliazkov, 2002, “Semiparametric hierarchical bayes analysis of discrete panel data
with state dependence”, Washington University, working paper.

Cox, D.R., and M., Reid, 1987, “Parameter orthogonality and approximate conditional inference”,
Journal of the Royal Statistical Society, Series B, 49:1–39.



7 Parametric Binary Choice Models 243

Crépon, B., and J., Mairesse, 1996, “The chamberlain approach to panel data: An overview and
some simulation experiments”, in L. Matyas and P. Sevestre (Eds.), The Econometrics of Panel
Data, Kluwer: Amsterdam.

Geweke, J., M., Keane, and D.E., Runkle, 1997, “Statistical inference in the multinomial multi-
period probit model”, Journal of Econometrics, 80, 125–165.

Geweke, J.F., and M., Keane, 2001, “Computationally intensive methods for integration in econo-
metrics”, in J. Heckman and E. Leamer (Eds.), Handbook of Econometrics, V(56):3465–3568.

Gouriéroux, C., and A., Monfort, 1993, “Simulation-based inference: A survey with special refer-
ence to panel data models”, Journal of Econometrics, 59: 5–33.

Gouriéroux, C., and A., Monfort, 1996, Simulation-based Econometric Methods, Louvain: CORE
Lecture Series.

Gouriéroux, C., A., Monfort, and A., Trognon, 1984, “Pseudo-likelihood methods - Theory”,
Econometrica, 52: 681–700.

Greene, W., 2002, “The Bias of the fixed effects estimator in non linear models”, New York Uni-
versity: New York, unpublished manuscript.

Greene, W., 2003, Econometric Analysis, 5th ed., Prentice Hall: Englewood Cliffs.
Guilkey, D.K., and Murphy, J.L., 1993, “Estimation and testing in the random effects probit

model”, Journal of Econometrics, 59: 301–317.
Hahn, J., and G., Kuersteiner, 2004, “Bias reduction for dynamic nonlinear panel models with fixed

effects”, MIT unpublished manuscript.
Hahn, J., and W., Newey, 2004, “Jackknife and analytical Bias reduction for nonlinear panel data

models”, Econometrica, 72:1295–1319.
Hajivassiliou, V., and D., McFadden, 1998, “The method of simulated scores for the estimation of

LDV models ”, Econometrica, 66: 863–896.
Hajivassiliou, V., D., McFadden, and P., Ruud, 1996, “Simulation of multivariate normal rect-

angle probabilities and their derivatives. Theorical and computational results”, Journal of
Econometrics, 72: 85–134.

Heckman, J.J., 1981a, “The incidental parameters problem and the problem of initial conditions in
estimating a discrete time – discrete data stochastic process and some Monte-Carlo evidence,”
in C. Manski and D. McFadden (Eds.), Structural Analysis of Discrete Data, MIT Press, Cam-
bridge, MA, 179–195.

Heckman, J.J., 1981b, “Statistical models for discrete panel Data” in C. Manski and D. McFadden
(Eds.), Structural Analysis of Discrete Data, MIT Press, Cambridge, MA, 114:178.

Heckman, J.J., and B., Singer, 1984, “A method for minimizing the impact of distributional as-
sumptions in econometric models for duration data”, Econometrica, 52:271–320.
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Chapter 8
Dynamic Models for Short Panels

Mark N. Harris, László Mátyás and Patrick Sevestre

8.1 Introduction

The empirical analysis of economic behavior often entails specifying dynamic
econometric models; that is, models with lagged dependent variable(s) among the
regressors. As in time-series context, when the model is dynamic, standard esti-
mation methods based on least squares generally do not lead to estimators having
good properties. Indeed, for dynamic panel data models, methods such as OLS or
the Within estimators are not consistent. This results from the fact that, due to the
unobserved effects, the lagged dependent variable and the disturbance terms are
correlated.

Therefore one has to resort to alternative methods. The most commonly used ap-
proach is that of GMM, relying on a properly defined set of instrumental variables,
or equivalently, a set of orthogonality conditions (see Chap. 4). A large part of this
chapter is devoted to the presentation of a number of such consistent estimators. We
consider different sets of assumptions about the exogeneity of the regressors (other
than the lagged dependent variable), focusing in particular on their possible correla-
tion with the individual effects. We also consider maximum likelihood estimation,
although it is less frequently used in practice as its computation is typically much
more complex. Finally, besides the estimation of unknown parameters, hypothesis
testing is also considered.
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It is worth noting that, given the typical dimensions of most microeconomic panel
data sets, the focus of this chapter is on “short panels”, i.e., panels with a large num-
ber of observations on economic units (N) over a limited number of time periods
(T ).1 Moreover, some guidelines for practitioners are also given about the finite sam-
ple behavior of the proposed methods by summing up some available Monte Carlo
simulation evidence as well as a few other finite sample results (e.g., Kiviet, 1995).

8.2 The Model

Consider that the economic behavior of interest can be represented by the following
regression model

E (y |y−1,X ,α ) = δy−1 +Xβ +α, (8.1)

where y is the variable of interest. It is determined by: its past realisation, y−1; a
matrix of observed characteristics, X (typically including a constant term); and an
unobserved, or “individual”, effect, α .2 δ (a scalar) and β (a vector) are the un-
known coefficients to be estimated. Although X may contain both time-variant and
time-invariant observed characteristics, it will be implicitly assumed throughout this
chapter that it contains only the former.3 Note also, for ease of exposition, we as-
sume that the panel is balanced (each economic unit is observed over the same time
period).4 Due to the dimensions of typical panel data sets, we assume a random
effects approach throughout. However, we do not rule out the possibility of a corre-
lation between those random individual effects and the regressors, a situation which
is quite close to that associated with a fixed effects approach.

The sample regression function associated with the above model can be written
as

yit = δyi,t−1 + x ′itβ +αi + εit , i = 1, . . . ,N; t = 1, . . . ,T, (8.2)

where the αi’s are i.i.d. (0,σ2
α) and the εit’s are idiosyncratic error terms, also with

mean 0 and variance σ2
ε . Indeed, in microeconomic panels, it is convenient (and

most often relevant) to treat the cross-sectional observations as independent, identi-
cally distributed draws from the population of interest.

It is clear at this stage that, by definition of the model, the lagged endogenous
variable yi,t−1 is correlated with the random individual effects αi. Different sets of
assumptions can be made regarding the structure of the correlation of the other regres-
sors (X , the matrix stacked version of x ′it) with the individual effects αi and the error
terms, εit . Sticking to the error components framework we will first assume that

1 Other cases encountered in macroeconomics and finance, where the number of time periods is
large, are considered in Chap. 9.
2 Although we restrict the exposition to the case of just one lag of the dependent variable, most of
the methods can be suitably adapted to the case of additional lags.
3 Time invariant regressors do not cause any further complications per se, but they are eliminated
by transformations such as the Within and first-differencing.
4 Again, as long as the attrition is exogenous, all methods can be suitably adapted for unbalanced
panels.
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E (αi |xi1, . . . ,xiT ) = 0, (8.3)

and
E (εit |xi1, . . . ,xiT ,yi,t−1, . . . ,yi0,αi ) = 0, t = 1, . . . ,T, (8.4)

i.e., X is strictly exogenous.
However, one can also consider that in some situations, either the former or the

latter of these two assumptions, or even both, will not hold. Relaxing the former
leads to the “correlated effects model” while relaxing the latter can be done by
considering the regressors to be only weakly exogenous, or by assuming that they
are endogenous. Both of these cases will be considered in this chapter.

A last, but important, remark has to be made at this point. Treating the number
of time periods, T , as fixed has two notable implications which depart from what is
generally assumed in a time-series context: (1) the stationarity assumption (|δ|< 1)
is not necessary; and (2) the generating process of the initial observations, yi0, is
important. Indeed, the correlation of the lagged endogenous variable with the distur-
bances of the model partly depends on this generating process. In order to highlight
this dependence, let us rewrite the model, by successive backward substitution, as

yit = δt yi0 +
t−1

∑
j=0

δ jx ′i,t− jβ +
1−δt

1−δ
αi +

t−1

∑
j=0

δ jεi,t− j (8.5)

= δt yi0 +
t−1

∑
j=0

δ jx ′i,t− jβ +
1−δt

1−δ
αi +ηit .

Each observation on the endogenous variable can be written as the sum of four
variables. The first one, δt yi0, depends upon the initial values; the second one on
contemporaneous and past values of X ; the third one, 1−δt

1−δ αi, is proportional to the
unobserved individual effect; and the last one can be rewritten as an autoregressive
process with fixed initial values

ηit = δηi,t−1 + εit (8.6)

ηi0 = 0.

The generating process of the initial observations yi0, i = 1,2, . . . ,N, in particu-
lar their possible correlation with the individual effects αi, should not be ignored:
it affects the asymptotic properties of many estimators. Indeed, cov(yi,t−1,αi) =
δtcov(yi0,αi)+ 1−δt

1−δ σ2
α , which shows that this covariance clearly depends on the as-

sumption one makes about the initial observations. One could assume, for example,
that the initial observations yi0 are just fixed constants or, equivalently, that they are
independent of both αi and εit . According to this rather extreme assumption, their
data generating process is completely independent of that of any subsequent obser-
vation yit , for t = 1, . . . ,T . However, since the first date of observation of the sample
is often just the result of data availability, there is no real justification for such a
strong assumption. Conversely, one may consider that the process under study is
stationary and that all observations, whatever their date, obey the same process. If
the process is purely autoregressive, this amounts to
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yi0 =
αi

1−δ
+

εi0√
1−δ2

.

Here one has V (yit |xi1,xi2, . . . ,xiT ) = σ2
α/(1 − δ)2 + σ2

ε /(1 − δ2) and cov(yit ,
αi |xi1,xi2, . . . ,xiT ) = σ2

α/(1− δ), ∀t = 0,1, . . . ,T. In the general case where there
are exogenous regressors, one can set

yi0 = x ′i0γ∗+
αi

1−δ
+

εi0√
1−δ2

.

There are many other possible assumptions that can be made here. One that im-
plies a non-specified correlation between the initial observations and the individual
effects is

yi0 = x ′i0γ∗+φαi + εi0.

Here, the conditional variance of the initial observations is φ 2σ2
α + σ2

ε and their
covariance with the individual effects is φσ2

α .
Correctly specifying the generating process of the initial observations is critical

when one wishes to use maximum likelihood estimation. Indeed, a misspecification
in this respect would lead to inconsistent estimators in most situations (see Sect. 8.5
below as well as Nerlove (2002), or Alvarez and Arellano (2003), for a more detailed
treatment of maximum likelihood estimation of dynamic models).

8.3 The Inconsistency of Traditional Estimators

For the sake of simplifying notation, let us rewrite (8.2) in more compact form,
stacking over time and individuals and letting X∗ = [y−1,X ] and γ = [δ,β ′] ′

y = X∗γ +u, u = α + ε.

Following Maddala (1971), we know that the usual error components model es-
timators belong to a general class of estimators called the “λ-class” (see Chap. 3).
The λ-class estimators are computed using the OLS estimator on the transformed
model

(
WN +

√
λBN

)
y =
(

WN +
√

λBN

)
X∗β +

(
WN +

√
λBN

)
u, (8.7)

where WN and BN are the Within and Between matrix operators, as defined in
Chap. 2 and Chap. 3.

For each λ ∈ [0,∞] one obtains estimators δ̂(λ ) and β̂ (λ ). This class contains all
the classical estimators of the error components model such as the Within estimator
(if λ = 0), the OLS estimator (λ = 1), the GLS estimator

(
λ = θ 2

)
, the Between

estimator (λ = ∞), and so on. Almost all the λ -class estimators are (asymptotically
in N) biased in dynamic models. To shed some light on the structure of these biases
let us consider the simple AR(1) dynamic error components model (β = 0)
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yit = δyi,t−1 +αi + εit . (8.8)

As outlined above, this equation can be written as

yit = δt yi0 +
1−δt

1−δ
αi +

t−1

∑
j=0

δ jεi,t− j. (8.9)

To facilitate the asymptotic calculations we assume that the initial observations yi0

are i.i.d. variables characterized by their second moments E(y2
i0) and by their cor-

relation with αi;E (yi0αi). Hence, the asymptotic bias of any λ -class estimator de-
pends upon E

(
y2

i0

)
and E (yi0αi). Indeed, using the strong law of large numbers, the

asymptotic limit of the above estimators, δ∞ (λ ) = limN→∞ δ̂(λ ), depends on the
following quantities (Sevestre and Trognon, 1983, 1985)

plim
N→∞

1
NT ∑∑yi,t−1(αi + εit) =

1−δT

1−δ
E(yi0αi)+

T −1−T δ+δT

(1−δ)2 σ2
α

and

plim
N→∞

1
N ∑ ȳi,−1(αi + ε i) =

1−δT

1−δ
E(yi0αi)+

T −1−T δ+δT

(1−δ)2 (σ2
α +

1
T

σ2
ε ).

The complexity of the formula does not allow us to provide the full analytical ex-
pressions of the biases for all estimators here, but Sevestre and Trognon (1983,
1985) show that δ∞ (λ ) is an increasing function of λ such that

plim
N→∞

δ̂(0) < δ < plim
N→∞

δ̂
(
θ 2)< plim

N→∞
δ̂(1) < plim

N→∞
δ̂(∞) .

In other words, the Within estimator of the lagged dependent variable’s coefficient
under-estimates its true value (Nickell, 1981), whilst the Between and OLS estima-
tors over-estimate it. One can show that this ranking is inverted for the coefficients
of the X variables as long as these variables are positively autocorrelated (and that
these coefficients are positive); the opposite being true when any one of these con-
ditions is reversed. One particular exception to this ranking is worth noting: when
the initial observations are assumed to be fixed constants, or to be independent of
the individual effects and the εit’s, the GLS estimator is consistent (for N → ∞
but fixed T ), as is the Feasible-GLS one (on the assumption that the variances
σ2

α and σ2
ε have been consistently estimated). To get an idea of the biases of the

OLS and Within estimators, consider, for example, a purely autoregressive model,
such as (8.8), with T = 10, ρ = σ2

α/
(
σ2

α +σ2
ε
)

= 0.5 and δ = 0.9. For the Within
estimator, we get

plim
N→∞

δ̂(0)−δ =−0.080 if yi0 = αi + εi0,
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and
plim
N→∞

δ̂(0)−δ =−0.243 if yi0 =
αi

1−δ
+

εi0√
1−δ2

,

while for the OLS estimator we have

plim
N→∞

δ̂(1)−δ = 0.176 and plim
N→∞

δ̂(1)−δ = 0.095

for, respectively, the same two assumptions concerning yi0. Clearly, the magnitude
of the bias of the usual panel data estimators strongly depends on the assumptions
concerning the initial observations.

However, although biased in finite T samples, the Within estimator tends to have
a relatively small variance, especially when compared to consistent GMM-type esti-
mators. In Monte Carlo studies the Within estimator appears to remain within a very
tight, albeit biased, range: especially when compared to the often volatile perfor-
mance of consistent estimators. Kiviet (1995) makes use of this fact combined with
an approximation of the (small sample) bias of this estimator. What Kiviet (1995)
suggests is to use the Within estimator, but to subtract off the approximation of
its bias. In theory this yields an unbiased, or at least less biased, estimator with a
very robust performance. In Monte Carlo studies, this estimator does, indeed, per-
form well. In practice, the drawbacks of such a procedure are twofold: the standard
errors of the bias adjusted estimator are extremely complicated; and the bias ad-
justment term is a function of the true parameters in the model which are unknown
(Kiviet (1995) suggests using an initial consistent estimator, although this conflicts
with the idea of staying away from potentially volatile GMM-type estimators).

There is another simple alternative. From the above ranking of the λ -class esti-
mators, it is clear that there exists a value λ ∗ ∈ [0,θ 2] such that limN→∞ δ̂(λ ∗) = δ.
Sevestre and Trognon (1983) have shown that

λ ∗ =
Q(1−ρ)

(
1−δT

1−δ
E(yi0αi)

σ2 +Q(1−ρ +T ρ)
) , (8.10)

with
Q = (T −1−T δ+δT )/T (1−δ)2, ρ = σ2

α/(σ2
α +σ2

ε ).

The simple method of firstly estimating λ ∗ by a consistent estimator λ̂ ∗, then δ
by δ̂

(
λ̂ ∗
)

and β by β̂
(

λ̂ ∗
)

leads to a consistent two-step estimator. Unfortunately,

its finite and asymptotic distributions heavily depend on the distribution of λ̂
∗

: if

the initial estimates of the parameters involved in λ ∗ are poor, the resulting δ̂
(

λ̂ ∗
)

exhibits rather unsatisfactory behavior (Sevestre and Trognon, 1990).5

5 In general λ ∗ �= θ 2, which confirms the inconsistency of the GLS estimator in such a model.
Nevertheless, if E (yi0αi) = 0, then λ ∗ = θ 2 and this shows again that, in this particular situation,
the GLS estimator is consistent.
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8.4 IV and GMM Estimators

The most commonly used approach to estimating linear dynamic panel data models
is undoubtedly the GMM estimator. In a general setting, recall that this method
yields consistent estimators of models such as

y = X∗γ +u,

where X∗ is used to denote that some, or all, of the regressors are correlated with
the disturbances: E (u |X∗ ) �= 0; plim(X∗′u/NT ) �= 0; and where these disturbances
may exhibit some serial correlation or heteroskedasticity; V (u |X∗ ) = σ2Ω = Σ.6

Then, assuming the existence of a set of instrumental variables, Z, satisfying in par-
ticular the absence of any (asymptotic) correlation with u and a non-null (asymp-
totic) correlation with the regressors, X∗, it is well known that the following instru-
mental variables estimator

γ̂IV =
(

X∗′Z
(
Z ′Z
)−1

Z ′X∗
)−1

X∗′Z
(
Z ′Z
)−1

Z ′y (8.11)

=
(
X∗′PZX∗

)−1
X∗′PZy ,

with PZ = Z (Z ′Z)−1 Z ′, is consistent and has an asymptotic distribution
√

N (γ̂− γ)∼ N (0,V (γ̂)) ,

where

V (γ̂) =
(

plim
N→∞

X∗′PZX∗

N

)−1

×plim
N→∞

X∗′PZΣPZX∗

N
×
(

plim
N→∞

X∗′PZX∗

N

)−1

.

However, this is only efficient when the disturbances are i.i.d. (i.e., if Ω = I). If
they are heteroskedastic and/or serially correlated, one can improve the efficiency
by resorting to the linear GMM estimator

γ̂ =
(

X∗′Z
(
Z ′ΣZ

)−1
Z ′X∗

)−1
X∗′Z

(
Z ′ΣZ

)−1
Z ′y, (8.12)

assuming the form of Σ is known (which can happen in some cases; see Sect. 4.2.1
below). γ̂ is consistent and has an asymptotic distribution given by

√
N (γ̂− γ)∼ N (0,V (γ̂))

with

V (γ̂) =
(

plim
N→∞

X∗′Z(Z ′ΣZ)−1Z ′X∗

N

)−1

.

6 See Chap. 4.
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If Σ is unknown, it is possible to estimate the quantity (Z ′ΣZ) required to
construct the linear GMM estimator of (8.12) as

̂Z ′ΣZ =
1
N

N

∑
n=1

Z ′i ûiû
′
i Zi

where ûi is a vector of residuals obtained from a first step consistent estimator.
Note that all elements of X∗ that are exogenous with respect to u, implicitly

enter Z as their own instruments. Now, the main question is to find instruments,
Z, that satisfy the above conditions given the assumptions about the disturbances
including their possible correlations with the regressors. Similarly, in the discussions
that follow below, any elements of X∗ (or ΔX∗) that are exogenous with respect to
ε and α (or Δε)–that is the relevant error term(s) in the model–are (implicitly, or
explicitly) contained as their own instruments in Z.

8.4.1 Uncorrelated Individual Effects: The Original
Balestra–Nerlove Estimator and its Extensions

As outlined in the previous sections, problems arise in estimating an autoregres-
sive (or dynamic) panel data model with unobserved effects, due to the correlation
between the lagged dependent variable and these unobserved effects, αi. In their
seminal paper, Balestra and Nerlove (1966) proposed an instrumental variables ap-
proach to estimate such a model, relying on the assumption that X (or a subset of
X) is independent of both αi and εit .7 Then these variables, and their lags, can be
used as valid instruments. Following the above notation, the estimator suggested by
Balestra and Nerlove (1966) is an instrumental variables estimator with the follow-
ing set of instruments

Zi =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x̃ ′i0 x̃ ′i1
x̃ ′i1 x̃ ′i2
...

...

x̃ ′i,T−2 x̃i,T−1

x̃ ′i,T−1 x̃ ′iT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

where x̃it stands for the subset of X (possibly X itself) which contains the strictly
exogenous regressors and x̃i,t−1 their one-period lagged value.8 In other words, in a
GMM framework, the model is estimated using only the following 2× K̃ orthogo-
nality conditions,9 where K̃ is the number of strictly exogenous regressors

7 In fact, they assume E(Xi,t−τ εit) = 0, τ ≥ 0.
8 We assume that observations on y and X are available from t = 0 to T.
9 In fact, one could easily go to 2× K̃×T instruments by considering 2× K̃ separate orthogonality
conditions for each time period.
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E
(
x̃ ′ituit

)
= 0

and E
(
x̃ ′i,t−1uit

)
= 0,

recalling that uit = αi + εit .
One of the major drawbacks of this estimator, as of other instrumental variables

estimators, is its frequent empirical imprecision, even in large samples. There are
several solutions to this problem. One is to increase the number of orthogonality
conditions along the lines suggested by Hausman and Taylor (1981), Amemiya and
MaCurdy (1986) or Breusch, Mizon and Schmidt (1989).10 Indeed, assuming as in
Balestra and Nerlove (1966), that at least some of the regressors are both uncorre-
lated with the individual effects and strictly exogenous, any of the past, present or
future values of these regressors (or combinations of them, such as their individual
means and/or their difference from the individual means) can be used as instruments.
As an example, the following set of K̃×T 2 orthogonality conditions would be valid

E
(
x̃ ′iτ uit

)
= 0, t = 1, . . . ,T ; τ = 1, . . . ,T,

with K̃ being again, the number of strictly exogenous regressors. In the case where
the regressors would still be uncorrelated with the individual effects but only weakly
exogenous, then only their past values should be used as instruments.

8.4.2 Correlated Individual Effects

8.4.2.1 Model in First Differences – Instruments in Levels/First Differences

A commonly used approach to the estimation of dynamic panel data models where
some (or all) elements of X are possibly correlated with the individual effects, is
to write the model in first differences so that the individuals effects are, being time
invariant, discarded

Δyit = δΔyi,t−1 +Δx ′itβ +Δuit (8.13)

= δΔyi,t−1 +Δx ′itβ +Δεit . (8.14)

Using previous notation one can rewrite this model in matrix form as

Δy = ΔX∗γ +Δu

= ΔX∗γ +Δε

where the lagged endogenous variable, and possibly some other regressors, are
correlated with the disturbances, both in finite samples (E (Δu |ΔX∗ ) �= 0) and

10 Those estimators belong to the Generalized Instrumental Variables class of estimators where the
instrumental variables principle is applied to the transformed model Ω−1/2y = Ω−1/2Xβ +Ω−1/2u.
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asymptotically (plim(ΔX∗′Δu/NT ) �= 0) and where, because of the assumed error
components structure of the disturbances, Δε follows an MA(1) process, that is11

V (Δu |ΔX∗ ) = V (Δε |ΔX∗ ) = σ2
ε Ω (8.15)

with

Ω = IN ⊗

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 . . . 0
−1 2 −1 0 . . .

0
. . .

. . .
. . . 0

0 . . . −1 2 −1
0 . . . 0 −1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Applying OLS or any other basic estimator (such as the Within or Between estima-
tors) to this model, however, does not yield consistent estimators of the parameters,
given the correlation between yi,t−1 and εi,t−1. Then, one can use instrumental vari-
ables, or GMM, in this context too.

Balestra–Nerlove on First Differences

Let us first assume that the only cause of any potential endogeneity of X is through
its correlation with the individual effects; that is, conditionally on the individual
effects, X (or a subset, X̃ thereof) is strictly exogenous. Then, these regressors or
their first differences, are valid instruments for the model written in first differences.
In other words, one can estimate this model using the orthogonality conditions:

E (x̃itΔuit) = 0 and/or E(Δx̃itΔuit) = 0

and E(x̃i,t−1Δuit) = 0 and/or E(Δx̃i,t−1Δuit) = 0.

Assuming that the variables in X̃ are only weakly exogenous, only their past values
up to t−2 at most can be used as valid instruments

E (x̃i,t−2Δuit) = 0 and/or E(Δx̃i,t−2Δuit) = 0

and E(x̃i,t−3Δuit = 0 and/or E(Δx̃i,t−3Δuit) = 0.

As already mentioned, the small number (2K̃) of these orthogonality conditions
limits the efficiency of the resulting estimators. Increasing asymptotic efficiency
can be achieved by either taking into account the serial correlation of the distur-
bances induced by the first differencing operation and/or by using the whole se-
quence of x̃it , t = 0, . . . ,T as instruments, as long as they are strictly exogenous.

11 Although more general error structure in terms of heteroskedasticity and/or serial correlation
can also be allowed for (see below).
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A further option was pursued by Anderson and Hsiao (1982) to get additional
instruments/orthogonality conditions.

Anderson and Hsiao (1982) Estimators

As mentioned above, first differencing of the model leads to disturbances that follow
an MA(1) process assuming that the original ones were i.i.d. So yi,t−2 as well as
Δyi,t−2 (= yi,t−2− yi,t−3), are correlated with Δyi,t−1 (= yi,t−2− yi,t−3) but not with
Δuit (= Δεit = εit − εi,t−1), which is the disturbance of the transformed model, so
they are valid instruments. In addition to yi,t−2 and Δyi,t−2 one can still use X and/or
its lags, depending on whether these variables are strictly exogenous with respect to
ε or not. In terms of orthogonality conditions, one can write, in the former case

E (yi,t−2Δuit) = 0 and/or E (Δyi,t−2Δuit) = 0

and E (x̃itΔuit) = 0 and/or E (Δx̃itΔuit) = 0

or, alternatively, for the latter case

E(yi,t−2Δuit) = 0 and/or E(Δyi,t−2Δuit) = 0

and E(x̃i,t−2Δuit) = 0 and/or E(Δx̃i,t−2Δuit) = 0.

The interest of these estimators is twofold. First, their implementation is very sim-
ple. Second, they do not necessarily require X to be uncorrelated with the individual
effects.

However, in some instances, use of the instrument Δyi,t−2 yields inefficient esti-
mators (Arellano, 1989), suggesting that yi,t−2 is preferable. Indeed, Anderson and
Hsiao (1982) estimators in practice often appear to lead to rather erratic parameter
estimates due to their low efficiency (see, for example, Sevestre, 1984 and Arellano,
1989). Several reasons may explain this. First, due to the first differencing, this
method makes use of only the time variability of the observations which, at least
for micro datasets, is often much less important than the between-individuals vari-
ability. Also, linked to the first differencing of the data there is the problem of low
correlation between the instruments and the regressors (the so-called “weak instru-
ments” problem). Second, due to the lags involved, these estimators effectively re-
quire the first, second and third time periods respectively to be removed, when yi,t−2

and Δyi,t−2 are used as instruments. Given the often limited time dimension of the
panel, this reduces significantly the number of observations available for estimation.

Finally, as already mentioned, another reason for the often poor performance of
these estimators, is the low number of instruments used. Indeed, increasing the num-
ber of instruments (in a reasonable way, see below) is known to be favourable to the
behavior of the estimators. Moreover, it must also be mentioned that these estimators
do not explicitly take into account the serial correlation of the disturbances which
follow an MA(1) process after the model has been first differenced, although it can
be suitably adapted along the lines suggested above (and also below with regard to
the Arellano and Bond (1991) estimator).
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Arellano and Bond (1991) Estimator

Arellano and Bond (1991) proposed an estimator aimed at tackling the problems as-
sociated with the low number of instruments/orthogonality conditions and the serial
correlation in the disturbances of the first differenced model.

On the first point, Arellano and Bond (1991) show that there exist many more
instruments than those put forward by Anderson and Hsiao (1982). As an example,
consider the case of a panel with five periods of observations, t = 0,1, . . . ,4. For
each time period, the model can be written as

for t = 2: yi2− yi1 = δ(yi1− yi0)+(xi2− xi1) ′β + εi2− εi1

for t = 3: yi3− yi2 = δ(yi2− yi1)+(xi3− xi2) ′β + εi3− εi2

and for t = 4: yi4− yi3 = δ(yi3− yi2)+(xi4− xi3) ′β + εi4− εi3.

In period t = 2 the variable yi0 is a valid instrument since it is obviously correlated
with yi1− yi0 but not with εi2− εi1 (as long as the εit’s are serially uncorrelated).
Indeed, when t = 2, yi0 is nothing more than the instrument yi,t−2 proposed by An-
derson and Hsiao (1982). When t = 3, the instrument proposed by Anderson and
Hsiao (1982) is yi1. However, yi0 is also a valid instrument here since, given the
autoregressive nature of the model, it is correlated with yi2− yi1 while, given the
assumption of no serial correlation of the ε’s, it is not correlated with εi3− εi2. This
provides two instruments for estimating the model at time t = 3. Along the same
lines, when t = 4, the variables yi0, yi1 and yi2 are all valid instruments. The full set
of instruments is given by

Zi = (Z (y)
i ,Z (x)

i )

where

Z(y)
i =

⎛

⎜
⎜
⎜
⎝

yi0 0 . . . . . . 0 . . . 0
0 yi0 yi1 0 0 . . . 0

0 . . .
...

... . . . 0
0 . . . 0 0 yi0 . . . yiT−2

⎞

⎟
⎟
⎟
⎠

(8.16)

and where the set of instruments Z(x)
i is defined according to the assumptions

made about the exogeneity of X .12 Although it is rather common in practice to set

Z(x)
i = ΔX , one may augment the number of instruments based on X . For example,

assuming that, conditionally on the individual effects, X is strictly exogenous (i.e.,
X̃ = X), one can use

Z(x)
i =

⎛

⎜
⎜
⎜
⎝

x ′i0 . . . x ′iT 0 . . . 0 0 . . . 0

0 . . . 0 x ′i0 . . . x ′iT 0 . . . 0

0 . . . . . . 0 . . . 0

0 . . . . . . . . . 0 x ′i0 . . . x ′iT

⎞

⎟
⎟
⎟
⎠

(8.17)

12 Along the same lines one may easily redefine the correct set of X variables that can be used as
instruments depending on their correlation with α and ε .



8 Dynamic Models for Short Panels 261

whilst where they are only weakly exogenous, one could use

Z(x)
i =

⎛

⎜
⎜
⎜
⎝

x ′i0 0 . . . 0 . . . 0 0 . . . 0

0 x ′i0 x ′i1 0 . . . 0 0 . . . 0

0 . . . . . . 0 . . . 0

0 . . . . . . 0 x ′i1 . . . x ′iT−2

⎞

⎟
⎟
⎟
⎠

. (8.18)

The associated orthogonality conditions can be written as

E(yi,t−τ Δεit) = 0, t = 2, . . . ,T ; τ ≥ 2

and, depending on the assumptions regarding the exogeneity of X

E(xiτ Δεit) = 0, t = 1, . . . ,T ; τ = 1, . . . ,T

or
E(xi,t−τ Δεit) = 0, t = 2, . . . ,T ; τ ≥ 2.

Moreover, in order to further increase efficiency, Arellano and Bond (1991) propose
to account for the serial correlation of the disturbances in the first-differenced model.
Indeed, one can redefine the previously defined GMM estimator, equation (8.12),
except that y and X∗ are replaced by their first differences and Σ by

Ω = IN ⊗

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 . . . 0
−1 2 −1 0 . . .

0
. . .

. . .
. . . 0

0 . . . −1 2 −1
0 . . . 0 −1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (8.19)

such that the GMM estimator writes as

γ̂ = (ΔX∗′Z
(
Z ′ΩZ

)−1
Z ′ΔX∗)−1ΔX∗′Z

(
Z ′ΩZ

)−1
Z ′Δy. (8.20)

They also suggested a variant of this estimator which is robust to heteroskedasticity.
Let us denote Δ̂ui = (Δ̂ui2, Δ̂ui3, . . . , Δ̂uiT ) ′, the vector of residuals obtained from
using one of the previously presented consistent estimators–typically using (8.20) –
and Ψ the unspecified variance–covariance matrix of the disturbances Δu. Then, one
can consistently estimate Z ′ΨZ by

̂Z ′ΨZ =
1
N

N

∑
i=1

Z ′i Δ̂uiΔ̂u
′
i Zi.

The “robust” linear GMM estimator is then

γ̂r =
(

ΔX∗′Z(̂Z ′ΨZ)−1Z ′ΔX∗
)−1

(8.21)

×ΔX∗′Z(̂Z ′ΨZ)−1Z ′Δy.
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There is evidence that the standard errors of the robust two-step GMM variant of
this estimator are unreliable unless N is very large. Windmeijer (2005) however,
suggests a method for correcting this small-sample bias (see Sect. 8.6).

Unfortunately, as already mentioned regarding the Anderson and Hsiao (1982)
estimators, those suggested by Arellano and Bond (1991) also often suffer from a
lack of precision due to the first differencing of the model and the lack of correlation
of the instruments with the regressors. This may sometimes result in rather erratic
parameter estimates. Some alternatives do exist though, to circumvent this problem.

8.4.2.2 Model in Levels – Instruments in First Differences

As already mentioned in Chap. 4, there are several ways to tackle the problem of un-
observed effects being correlated with explanatory variables. As sketched out above,
the most common one, the Within transformation, does not work in the context of
dynamic models, nor does OLS on a first differenced model. Indeed, first differenc-
ing creates MA(1) disturbances for the transformed model, thus inducing a correla-
tion with the lagged dependent variable.

However, assuming that the covariance between the regressors X and the indi-
vidual effects is constant over time, the first differences of those regressors are un-
correlated with the unobserved effects. This makes them valid instruments as long
as they are also exogenous with respect to εit . Indeed, assuming that

cov(xit ,αi) = Γi , ∀t

and that, conditionally on the unobserved effects, X is strictly exogenous, one can
make use of the following instruments

Z(Δx)
i =

⎛

⎜
⎜
⎝

Δx ′i1 . . . Δx ′iT 0 . . . 0 0 . . . 0
0 . . . 0 Δx ′i1 . . . Δx ′iT 0 . . . 0
0 . . . . . . 0 . . . 0
0 . . . . . . 0 Δx ′i1 . . . Δx ′iT

⎞

⎟
⎟
⎠ (8.22)

while, if they are only weakly exogenous, we can use

Z(Δx)
i =

⎛

⎜
⎜
⎜
⎜
⎝

Δx ′i2 0 0 . . . 0 0 0

0 Δx ′i2 Δx ′i3 0
... 0

...
. . .

. . .
...

0 . . . 0 0 Δx ′i2 · · · Δx ′i,T−1

⎞

⎟
⎟
⎟
⎟
⎠

.

This corresponds to the following orthogonality conditions

E(Δx ′iτ uit) = 0, τ = 1, . . . ,T ; t = 1, . . . ,T

if the regressors are strictly exogenous, and
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E(Δx ′i,t− juit) = 0, j = 1, . . . , t−1, t = 2, . . . ,T

if those regressors are only weakly exogenous.
Moreover, under the assumption that the covariance between the lagged endoge-

nous variable and the individual effects is also constant over t (which amounts to
assuming stationarity of yit ), lagged values of the first difference of that lagged en-
dogenous variable are also valid instruments as they are in this case uncorrelated
with the disturbances.13

Indeed, as an example, let us consider again the simple case of a panel with five
periods of observations (t = 0,1, . . . ,4). The model can be written as

for t = 2 : yi2 = δyi1 + x ′i2β +αi + εi2

for t = 3 : yi3 = δyi2 + x ′i3β +αi + εi3

and for t = 4 : yi4 = δyi3 + x ′i4β +αi + εi4.

In period t = 2 the variable yi1− yi0 is a valid instrument since it is obviously cor-
related with yi1 but not with εi2 as long as the εit’s are serially uncorrelated and
that cov(yi1− yi0,αi) = 0 as long as the stationarity assumption is fulfilled since
in that case, cov(yi1,αi) = cov(yi0,αi) = σ2

α/(1− δ). Along the same lines, when
t = 3, yi2−yi1 is a valid instrument while yi1−yi0 also remains valid. This provides
two instruments for estimating the model at time t = 3.With t = 4 the variables
yi1− yi0,yi2− yi1 and yi3− yi2 are now all valid instruments, such that one could
also consider the following set of instruments

Zy
i =

⎛

⎜
⎜
⎜
⎜
⎝

Δyi1 0 0 . . . 0 0 0

0 Δyi1 Δyi2 0
... 0

...
. . .

. . .
...

0 . . . 0 0 Δyi1 · · · Δyi,T−1

⎞

⎟
⎟
⎟
⎟
⎠

.

That is
E(Δyi,t−1uit) = 0, t = 2, . . . ,T.

8.4.2.3 Other Transformations for Models with Correlated Individual Effects

Arellano and Bover Estimator

A drawback associated with first differencing of the model is the induced serial
correlation in the disturbances of the transformed model. This is why Arellano and
Bover (1995) suggested a transformation of the model that discards the individual
effects without inducing any serial correlation in the remaining disturbances. This
transformation, called forward orthogonal deviation, is defined by the (T − 1)×T
matrix

13 This argument closely follows that of Blundell and Bond (1998) discussed below.
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H∗ = diag[(T −1)/T, (T −2)/(T −1), (T −3)/(T −2), . . . ,1/2]×H+

with

H+ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1/(1−T ) 1/(1−T ) · · · 1/(1−T ) 1/(1−T ) 1/(1−T )
0 1 1/(2−T ) · · · 1/(2−T ) 1/(2−T ) 1/(2−T )
...

...
...

...
0 0 0 · · · 1 −1/2 −1/2
0 0 0 · · · 0 1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Applying this transformation to the vector ui of the disturbances (uit = αi + εit) for
the ith individual will result in a transformed vector u∗i of size (T −1) defined as

u∗i = H∗ui

with typical elements

u∗it = dt × (uit −
1

T − t
(ui,t+1 +ui,t+2 + . . .+uiT ))

= dt × (εit −
1

T − t
(εi,t+1 + εi,t+2 + . . .+ εiT ))

where dt = (T − t)/(T − t +1).
The interesting result here is that we have V (u∗i ) = σ2IT−1, i.e., the transformed

disturbance vector does not include the individual effects anymore and is, moreover,
serially uncorrelated. So, instrumental variable estimators of the H∗ transformed
model will not be subject to any loss of efficiency because of ignored serial correla-
tion. In particular, any set of predetermined variables (be they lagged values of y or
X) will constitute valid instruments.

Explicitly, the estimator suggested by Arellano and Bover (1995) first involves
transforming the system of T equations using the nonsingular transformation given
by Hi

Hi =
[

H∗

eT /T

]
(8.23)

where eT is a (column) vector of ones of size T . H∗ can be defined as above, or
indeed by any (T −1)× T matrix of rank (T −1) such that H∗eT = 0 : H∗ for
example, could also be the first (T −1) rows of the Within group operator or the first
difference operator, although interestingly, the estimator is invariant to the specific
choice of H∗. As the first (T −1) transformed errors

u+
i = Hiui =

[
H∗ui

ui

]
, (8.24)

are free of αi, all exogenous variables are valid instruments for these first equations.
Moreover, assuming serial independence of the disturbance terms εit , along the lines
of the Arellano and Bond (1991) estimator, the series (yi0,yi1, . . . ,yi,t−1) is also a
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valid instrument. This assumption however, requires more structure for H∗, which
now additionally has to be upper triangular (Arellano and Bover, 1995). This defines
the matrix of valid instruments to be

ZABov
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(X ′
i ,yi0) 0

(X ′
i ,yi0,yi1)

. . .
(X ′

i ,yi0, . . . ,yi,T−1)
0 X ′

i

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (8.25)

where X ′
i = (x ′i1, . . . ,x

′
iT ) as long as X is strictly exogenous. Stacking the Zi’s and

letting H = IN⊗Hi, the estimator is obtained by estimating the transformed model

Z ′Hy = Z ′HX̃γ +Z ′Hu (8.26)

by GLS using V (Z ′Hu) = Z ′HΣH ′Z.
As with previous estimators, the covariance of the transformed system ΣH =

HΣH ′ must be estimated from residuals obtained from a preliminary consistent
estimator of Hiui = û+

i . One option is Arellano and Bover (1995)

Σ̂H =
1
N ∑

i
û +

i û +′
i , (8.27)

which is an unrestricted estimator of ΣH . The restricted estimator under the usual
assumptions of the error components model is

Σ̂H = HΣ̂H ′ (8.28)

where Σ̂ = IN ⊗
(
σ̂2

α JT + σ̂2
ε IT
)

and σ̂2
α and σ̂2

ε are consistent estimators of σ2
α

and σ2
ε .

8.4.2.4 Wansbeek–Bekker Estimator

The approach suggested by Wansbeek and Bekker (1996) extends those of Anderson
and Hsiao (1982), Arellano (1989) and Arellano and Bond (1991), for example, such
that now both lags and leads (and linear combinations) of the dependent variable are
included in the instrument set. By defining the variable y from period t = 1 to t = T ,
the estimator considers linear functions of y+ as instruments, where y+ is the stacked
vector of observations defined from t = 0 to t = T for each individual. The linear
functions are defined by a ((T +1)×T ) matrix Ai, which yields A ′i y+ as the full
instrument set. Important restrictions are imposed on Ai such that

AieT = 0 and E
(
y ′+Aiε

)
= traceAiE

(
εiy

′
+
)

= 0 (8.29)

which respectively ensure elimination of the individual effects and consistency of
the estimator (εi is the T ×1 vector of disturbances εit for individual i).
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These conditions for Ai define its structure such that its rows must sum to zero,
as must each of its lowest T quasi-diagonal elements (in particular, the lower left el-
ement is zero). Ai is unspecified apart from the restrictions of (8.29); the estimator’s
variance is a function of Ai. The optimal value of Ai can be found by constrained
optimisation such that the estimator’s (scalar) variance is minimised whilst ensuring
that the appropriate restrictions hold (Wansbeek and Bekker, 1996). However, this is
done under the simplifying assumption that β = 0 although the estimator can be “op-
erationalised” to allow for exogenous variables as well (Harris and Mátyás, 2000).
In this instance, the full operational instrument set is defined as

ZWB =
(
A ′y+,X

)
. (8.30)

With known Ai and hence known Z, the (operational) estimator is a straightforward
application of the linear GMM estimator, using σ2

u (Z ′Z) as an approximation to the
variance of Z ′u. The asymptotic variance is given by

σ2
u

(
plim
N→∞

1
N

(
X∗′PZX∗

)−1
)

, (8.31)

where PZ = Z (Z ′Z)−1 Z ′, which, from (8.30) is a function of Ai. The optimal choice
of Ai is that which minimises (8.31), such that Ai conforms with its appropriate
restrictions. If one is only interested in the variance of the parameter vector (and
not covariances of particular elements of it), the optimal estimator can be obtained
by constrained optimisation, where Ai is that which minimises the trace of (8.31),
treating σ2

u as a constant, subject to the restrictions given by (8.29).
The list of valid instruments can also be expanded to include not only A ′y+, but

also A ′X+ for example, such that

ZWB+
=
(
A ′y+,A ′X+,X

)
. (8.32)

Again, the instrument set for these estimators can suitably be adopted for differ-
ent assumptions regarding the exogeneity of the elements of X . Despite some evi-
dence on the good performance of these estimators (Wansbeek and Bekker, 1996;
Harris and Mátyás, 2000, 2004), they are not yet commonly used in practice.

8.4.2.5 Combining Levels and Differences: The Blundell
and Bond System Estimator

Over the last decade the practice of estimating dynamic panel data models has
mainly consisted of using the GMM estimator suggested by Arellano and Bond
(1991) i.e., first differencing the model and using lagged levels of the endogenous
explanatory variable as instruments. From an empirical point of view though, the re-
sulting parameter estimates were often unsatisfactory: imprecise and not very robust
(for example, to a slight change in the instrument set). Blundell and Bond (1998)
have shown that one likely explanation for this is the lack of correlation between the
instruments (considered to be lagged values of the endogenous variable (e.g., yi,t−2
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and so on), and the regressors in the model once it has been first differenced. This is
the now well-known weak instruments problem.

Assume, for the sake of simplicity, that the sample consists of three periods
(t = 0,1,2), and that the model is a purely autoregressive one. The only valid in-
strument is yi,t−2 and the appropriate orthogonality condition is

E [yi0 (Δyi2−δΔyi1)] = 0.

The question arises of the correlation between the regressor Δyi1 and the instrument
yi0. Given the specification of the model, one can write

yi1 = δyi0 +αi + εi1

and

Δyi1 = (δ−1)yi0 +αi + εi1

= πyi0 +αi + εi1.

Blundell and Bond (1998) show that

plim
N→∞

π̂ = (δ−1)
q

(σ2
α/σ2

ε )+q
with q =

(1−δ)2

1−δ2 .

In other words, when δ → 1, or when the ratio σ2
α/σ2

ε → ∞, the correlation
between the instrument and the regressor tends to 0, which induces the erratic
behavior of the estimator. Blundell and Bond (1998) therefore suggest adding
supplementary orthogonality conditions, based on the additional assumption of
“quasi-stationarity” of yit . This assumption amounts to considering that the initial
observations yi0 are generated according to

yi0 = x ′i0ϕ +
αi

1−δ
+ εi0.

Indeed, under this assumption, one can write

E (Δyi1εi2) = 0

and, with a larger number of periods,

E (Δyi,t−1εit) = 0, t = 2,3, . . . ,T.

One can then instrument the model in levels by lagged first differences of yit , follow-
ing the suggestion made by Arellano and Bover (1995) for models with correlated
individual effects. Blundell and Bond (1998) then suggest a “system GMM” estima-
tor that consists of stacking the Arellano and Bond (1991) orthogonality conditions
with the above ones. In other words, one stacks the model “in levels” and that in
“first differences”

(
Δy
y

)
= δ
(

Δy−1

y−1

)
+
(

ΔX
X

)
β +
(

Δε
α + ε

)
,
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and estimate this system using GMM with the following set of instruments Z =
ZΔ and Zl , where the former correspond to the instruments for the model in first
differences, and the latter to those associated with the model in levels, such that

Zl
i =

⎛

⎜
⎜
⎜
⎜
⎝

Δyi2 0 . . . 0

0 Δyi3
...

...
. . . 0

0 . . . 0 Δyi,T−1

⎞

⎟
⎟
⎟
⎟
⎠

and in full

Zi =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z Δ
i 0 0 . . . 0

0 Δyi2 0 . . . . . .
... 0 Δyi3 0

...
...

...
. . . 0

0 0 . . . 0 Δyi,T−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Blundell and Bond (1998) provide some Monte-Carlo simulation results show-
ing that this procedure leads to a more efficient and robust estimator. Of course,
one could further consider extensions to such an approach: any of the valid instru-
ments previously described for the model in first differences are valid candidates
for ZΔ (although Blundell and Bond (1998) suggest using those given in Arellano
and Bond (1991)); and, depending upon the assumptions one is prepared to make
regarding the exogeneity of the X variables, further moment conditions based on
these, as suggested above, could also be used to further augment the instrument set.

8.4.2.6 Using Further Orthogonality Conditions: Ahn and Schmidt Estimator

It is generally considered that increasing the number of orthogonality conditions is
a way to improve the asymptotic efficiency of an estimator; an argument used by
Arellano and Bond (1991), for example. Along the same lines, Ahn and Schmidt
(1995, 1997, 1999) have shown that one can deduce supplementary orthogonality
conditions from some of the assumptions that define the dynamic error components
model.

Indeed, the assumption of absence of serial correlation of the εit disturbances
implies the following orthogonality conditions

E (εiT Δεit) = 0, t = 2, . . . ,T −1

that is

E
[(

yiT −δyi,T−1− x ′iT β
)(

Δyit −δΔyi,t−1−Δx ′itβ
)]

= 0, t = 2, . . . ,T −1.



8 Dynamic Models for Short Panels 269

Moreover, the homoskedasticity of εit allows one to write

E (yi,t−2Δεi,t−1− yi,t−1Δεit) = 0, t = 4, . . . ,T

that is

E[yi,t−2(Δyi,t−1−δΔyi,t−2−ΔX ′
i,t−1β )− yi,t−1(Δyit −δΔyi,t−1−ΔX ′

it β )] = 0,

t = 3, . . . ,T.

Estimation can now be undertaken using non-linear GMM techniques. However, the
asymptotic efficiency gain may not prove to be very important, and moreover, must
be weighed against the increased complexity of the estimation procedure.

8.4.3 Some Monte Carlo Evidence

An extensive amount of work has been undertaken analysing the small sample per-
formance of the GMM-type estimators (see, for example, Arellano and Bond, 1991,
Arellano and Bover, 1995, Kiviet, 1995, Judson and Owen, 1999, Harris and
Mátyás, 2004). With such a vast array of experimental evidence, results, of course,
vary quite dramatically depending on sample sizes (in N, T and the number of Monte
Carlo replications), parameter settings and the assumed data generating process (for
example, whether the model is strictly a simple autoregressive one, or not).

Notwithstanding these comments, in the majority of the studies simple IV estima-
tors that have the same number of instruments as endogenous variables, fare poorly
due to their lack of finite moments (Kinal, 1980). Typically, Arellano’s (1989) es-
timator tends to have much better performance than that of Anderson and Hsiao
(1982), as do the Arellano and Bond (1991) one(s), although often their relative
performance is quite close. A clear message is that in small T panels, GMM-
estimators using a large number of moment conditions (for example, the Arellano
and Bond (1991), Arellano and Bover (1995) and non-linear GMM estimators) can
all suffer, to a significant extent, from the resulting small-sample bias. Therefore,
if practitioners are using such estimators they should attempt to limit the number
of conditions so used. An estimator which appears to have an extremely robust
performance is the Balestra and Nerlove (1966) estimator, which is, moreover,
very simple to construct. Not only does this estimator perform well across nu-
merous settings (parameters, sample sizes) but has also been shown, in a Monte
Carlo setting, to perform very well when the true data generating process has been
seriously misspecified (Harris and Mátyás, 1996). Also evident from the numer-
ous Monte Carlo results is that as δ → 1, simple OLS (or FGLS) is the preferred
option.
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8.5 The Maximum Likelihood Estimator14

An alternative to GMM estimation is to use maximum likelihood techniques, as-
suming that both the individual effects αi and the idiosyncratic disturbances εit are
normally distributed. A simple way to estimate the model might be to consider the
likelihood of the observed sample for t = 1, . . . ,T , conditional on the initial obser-
vations yi0

LNT (δ,β ,σ2
α ,σ2

ε |y0,X) =−NT
2

ln2π− N
2

lndet(Ω)− 1
2 ∑

i
u ′i Ω−1ui

with

u ′i = (yi1−δyi0− x ′i1β , . . . ,yiT −δyi,T−1− x ′iT β )

Σ = σ2
ε [WN +(1/θ)BN ].

This was first explored in the seminal paper by Balestra and Nerlove (1966), with
a conditional likelihood function in which the initial observations were assumed to
be fixed; the main advantage of this assumption being that this leads to GLS-like
estimators, which are quite easy to compute. However, such ML estimators are, for
a wide range of combinations of the parameters, equal to the OLS estimator and
hence they are not consistent (Trognon, 1978).

This important drawback does not occur when the likelihood function takes into
account the density function of the first observations, i.e., when the likelihood func-
tion is unconditional (Bhargava and Sargan, 1983). To illustrate the unconditional
ML estimator, let us consider the following model

yit = δyi,t−1 + xi1
∗′β + zi

∗γ∗+αi + εit (8.33)

where, along the lines suggested by Bhargava and Sargan (1983), Chamberlain
(1982) or Blundell and Smith (1991), the initial values are assumed to be defined by

yi0 = ϕzi +ui0 . (8.34)

It is convenient to decompose the specific effect αi as in the following regression

αi = ψui0 +ζi ,

where ζi is independent of ui0. In this model, (ui0,ζi,εi1, . . . ,εiT ) are i.i.d. N(0,
diag(σ2

u ,σ2
ζ ,σ2

ε e ′T )) and the log-likelihood function is

14 For a detailed exposition of the application of maximum likelihood techniques to dynamic error
components models, see Nerlove (2002).
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LNT (δ,β ,γ,ψ,ϕ,σ2
u ,σ2

ζ ,σ2
ε ) =− N(T +1)

2
ln 2π − N

2
ln σ2

u −
1

2σ2
u

∑
i

u2
i0

− N
2

lndet(Ω)− 1
2 ∑

i
u∗′i Ω−1u∗i

with

u∗′i = (yi1−δyi0−βxi1− γzi−ϕui0, . . . ,yiT −δyi,T−1−βxiT − γzi−ϕui0)
ui0 = yi0−ϕzi.

The first order conditions are then as follows

a.
∂L
∂δ

=
1

σ2
ε

∑
i

yi,−1WN u∗i +
1

(σ2
ε +T σ2

ζ ) ∑
i

y ′i,−1BN u∗i = 0 (8.35)

b.
∂L
∂β

=
1

σ2
ε

∑
i

x ′i WN u∗i +
1

(σ2
ε +T σ2

ζ ) ∑
i

x ′i BN u∗i = 0

c.
∂L
∂γ

=
1

(σ2
ε +T σ2

ζ ) ∑
i

zie
′
T u∗i = 0

d.
∂L
∂ϕ

=
1

(σ2
ε +T σ2

ζ ) ∑
i

ui0e ′T u∗i = 0

e.
∂L
∂ψ

=
1

(σ2
ε +T σ2

ζ ) ∑
i

ϕzie
′
T u∗i +

1
σ2

u
∑

i
zi ui0 = 0

f .
∂L

∂σ2
ε

=−N(T −1)
2σ2

ε
+

1
2σ4

ε
∑

i
u∗′i WN u∗i = 0

g.
∂L

∂ (σ2
ε +T σ2

ζ )
=− N

(σ2
ε +T σ2

ζ )
+

1

(σ2
ε +T σ2

ζ )2 ∑
i

u∗′i BN u∗i = 0

h.
∂L

∂σ2
u

=− N
2σ2

u
+

1
2σu

4
∑

i
u2

i0 = 0 .

This set of equations implies that the ML estimators of ϕ and σ2
u are OLS estimators

on equation (8.34). If ûi0 is the residual of this equation, then the other ML estima-
tors are the solutions of (8.35), where ui0 has been replaced by ûi0 in u∗i . In other
words, the ML estimators of the model given by (8.33) and (8.34), are the combi-
nation of OLS estimation of (8.34) followed by ML estimation of (8.33), where the
unobservable ui0 is replaced by its estimator ûi0.

In the case where the initial observations are defined as

yi0 = ϕzi +κxi0 +ui0 (8.36)

but the model for other periods as given in (8.33) is unchanged, the variable xi0 does
not enter the autoregressive equation and the previous simplification disappears.
Nevertheless here, Sevestre and Trognon (1990) suggest an estimation technique
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equivalent to ML estimation based on the following extended autoregressive model

yit = δyi,t−1 + x ′itβ + γzi +ρxi0 +ψui0 +ζi + εit .

The ML estimator of δ, β , γ , ψ , σ2
ζ , σ2

u , σ2
ε on this auxiliary model are asymptoti-

cally equivalent to the ML estimator of the true model. If κ̂ is the OLS estimator of
κ on (8.36), a more efficient estimator is given by κ̂∗ = κ̂ + ρ̂∗/ψ̂∗, which is asymp-
totically efficient if ρ̂∗ and ψ̂∗ are the ML estimators of ρ and ψ in the auxiliary
model (see Sevestre and Trognon, 1990 and Blundell and Smith, 1991).

It appears that the unconditional ML estimator can be worked out in a very simple
way. Obviously, in the case when the disturbances are normal, such an ML proce-
dure yields the asymptotically most efficient estimator, but this good behavior is
also apparent in small samples too as evidenced by simulation studies (Sevestre and
Trognon, 1990).

8.6 Testing in Dynamic Models

8.6.1 Testing the Validity of Instruments

Many potential candidates have been presented so far that consistently estimate a
linear dynamic panel data model. Of course, an obvious question is which one to
use?, as in practice different choices can lead to vastly different parameter estimates
and inference (Lee et al., 1998). One can base judgment on the available Monte
Carlo evidence (see Sect. 4.3), but this is typically inconclusive. The concept of a
“good” instrument is twofold: exogeneity and relevance (one might also be con-
cerned with efficiency in practice, with computational complexity).

The assumption about the absence of any (asymptotic) correlation between the
instrumental variables and the disturbances is commonly tested using the Sargan
(Hansen) test (Sargan, 1958 and Hansen, 1982). This is dealt with in Chap. 4 and
as such, we do not dwell on this issue here. An issue to bear in mind here is that
for this (these) test(s) to be valid, any heteroskedasticity and/or serial correlation
present, must have been taken into account in estimation.

The other aspect of the choice of “good” instruments lies in the strength of
the correlation between the endogenous regressors and the instruments. Indeed,
the concept of relevance and of weak instruments in the dynamic linear panel
setting was considered by Blundell and Bond, (1998), who show that a small
correlation results in erratic parameter estimates. Moreover, there is a significant
amount of recent literature highlighting the deleterious effects of weak instru-
ments in general (see, for example Wang and Zivot, 1998, Woglom, 2001 and
Hahn and Hausman, 2002).

Almost inevitably, the discussion of instrument relevance has traditionally fo-
cussed on the correlation between the endogenous regressor(s) and the instru-
ment(s). This is the approach followed in Bound et al. (1995) and Shea (1997). Thus
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one could potentially choose across estimators, based on R2 and partial R2 statistics.
Such an approach is taken further by Poskitt and Skeels (2004) who, instead, de-
velop a procedure based on a measure of lack of correlation. This approach appears
preferable, as it is possible to develop the sampling distribution of the proffered
measure, such that standard inferential procedures can be utilised. Moreover, the
Poskitt and Skeels (2004) test statistic is readily computed using a set of auxiliary
regressions and can be extended to the case where there are multiple endogenous
regressors. This procedure, which has yet to be explicitly extended for use within a
panel data setting, could thus be used to statistically test for the presence of weak
instruments and, in conjunction with the Sargan test, be used to determine the most
appropriate IV estimator. Another way to determine the relevance of the instruments
is to compute canonical correlations (Mairesse et al., 1999).

8.6.2 Testing for Unobserved Effects

As shown in previous chapters, there are many ways to test for the presence of
unobserved effects. In the case of the dynamic panel model, it is possible to use
Hausman’s (1978) test statistic. If the regressors, except for the lagged endogenous
variable, are strictly exogenous and the εit disturbances are homoskedastic and se-
rially uncorrelated, then in the absence of any individual effects, i.e., under H0, the
OLS estimator is consistent and asymptotically efficient. However, as shown, it is in-
consistent when such effects exist. On the other hand, we have presented numerous
estimators which are consistent whether there are individual effects or not (denote
these generically γ̂ ∗). Thus in order to test for the presence of individual effects,
one may compute the following statistic15

QH = (γ̂ ∗ − γ̂OLS)
′
[
V̂ (γ̂ ∗)−V̂ (γ̂OLS)

]−1
(γ̂ ∗ − γ̂OLS)

Asymptotically under the null hypothesis, QH ∼ χ2
dim(γ) and the test rejects for large

values: OLS is inconsistent and one must include unobserved effects in the model
and apply consistent techniques. On the other hand, under H0, OLS can be safely
used.

However, it is rather unlikely in practice that all of the assumptions ensuring the
optimality of OLS in the absence of individual effects, are satisfied. When the dis-
turbances are heteroskedastic, one would use (Feasible) GLS instead of OLS as a
basis of comparison with GMM estimates. If the εit disturbances are serially corre-
lated, thus inducing a correlation with the lagged endogenous variable, one should
compare two different GMM estimators. One estimator would be consistent only in
the absence of individual effects (e.g., in the case where the εit generating process
is an MA(q), one might think of using lags of order q + 1 or more of the endoge-

15 In cases where the difference in variances appears to be non-invertible, one may resort to the
generalised inverse.
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nous variables as instruments; indeed, this is consistent under H0 but not under the
alternative). The other estimator might make use of strictly and doubly exogenous
variables as instruments (i.e., variables that are exogenous both with respect to the
individual effects and the εit disturbances).

8.6.3 Testing for the Absence of Serial Correlation in ε

The presence of serial correlation in εit will typically invalidate the use of lagged
values (and first differences of such) of the endogenous variable as instruments. So
in these circumstances, it is crucial to test for such serial correlation. Probably the
most widely used test here is that proposed by Arellano and Bond (1991), which is
based upon the model estimated in first differences. Let Δ̂ε be the vector of residuals
from the model in first differences, Δ̂ε−2 its second lag value, and Δ̂ε

∗
the reduction

of the vector Δ̂ε allowing computation of the product Δ̂ε
′
−2Δ̂ε

∗
.16 The test statistic is

m2 =
Δ̂ε

′
−2Δ̂ε

∗

ξ̂ 1/2

where

ξ̂ 1/2 =∑
i

Δ̂ε
′
i,−2Δ̂ε

∗
i Δ̂ε

∗′
i Δ̂ε i,−2

−2Δ̂ε
′
−2X∗∗

[
X∗′Z ′

(
̂σ2Z ′ΩZ

)−1
Z ′X∗

]−1

× X ′Z
(

̂σ2Z ′ΩZ
)−1

∑
i

Z ′i Δ̂ε iΔ̂ε
∗′

Δ̂ε i,−2

+ Δ̂ε
′
−2X∗∗V (γ̂)X∗′∗ Δ̂ε−2 ,

with X∗∗ similarly defined as the reduction of the regressors matrix X∗ = [y−1,X ] and
where, as before, γ̂ = [δ̂, β̂ ′] ′.

This test provides a measure of the importance of serial correlation of order 2
once the model is written in first differences. If the εit’s are serially uncorrelated,
those of the model, given by Δεit = εit − εit−1 follow an MA(1) process and thus,
are not correlated at order 2. On the contrary, if Δεit appears to be correlated of order
2, one can infer that the disturbances εit exhibit some serial correlation.

Arellano and Bond (1991) show that, under the null of no serial correlation in
Δεit at order 2, the m2 statistic is asymptotically distributed as a standard normal
variate. One rejects H0 of no serial correlation when m2 is less than −1.64.17

16 i.e., one discards, for each individual, the first two observations of the residual vector.
17 The test is one-sided as it is indeed unlikely that the distrurbances of the first differenced model
will exhibit positive serial correlation.
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One can again also appeal to the Sargan/Hansen statistic to test for serial
correlation in εit . First estimate the model in first differences so that the individ-
ual effects are discarded. Under the assumption of no serial correlation in εit , Δεit

follow an MA(1) process and, as shown above. the series yi,t−2,yi,t−3, etc. are valid
instruments for estimating this model. However, if the εit’s are serially correlated,
this series no longer constitutes a valid instrument set.

This implies that one can test H0 (εit is serially uncorrelated) against H1 by com-
paring the difference between Sargan/Hansen statistics corresponding to two instru-
ment sets: Z0 which contains the instruments defined by the series yi,t−2,yi,t−3, . . .
and Z1, where Z1 is an instrument set not dependent on the assumption of εit not be-
ing serially correlated. Indeed, to increase the test’s power, one might be more spe-
cific for H1 and test H0 against H1 with the latter hypothesizing, for example, that the
εit’s follow an MA(1) process. In this case, one would compare the Sargan/Hansen
statistics associated with Z0 as above, but with Z1 comprising of yi,t−3 as one of
the instruments (since this would be a valid choice even under H1). Denote the dif-
ference between the two Sargan/Hansen statistics by DQsh. Under the null this is
distributed as χ2

p0−p1
where p0 is the number of instruments in Z0 and p1 that in Z1.

8.6.4 Significance Testing in Two-Step Variants

Arguably the most frequently used approach in estimating dynamic panel data mod-
els, is to follow the approach of Arellano and Bond (1991), and in particular the
two-step GMM variant (popularity of these approaches may be due to the fact that
GAUSS code has long been made available by the authors, and now estimation can
be undertaken routinely in STATA and LIMDEP, for example).18 A major draw-
back to this approach though, is that the two-step standard errors have been shown
to be unreliable (Arellano and Bond, 1991; Blundell and Bond, 1998; Harris and
Mátyás, 2004 and others), so that often researchers base inference on the two-step
parameter estimates but using standard errors obtained in the first step. Essentially,
the problem arises as the standard expressions for the conventional asymptotic vari-
ances omit the extra variation in the efficient GMM weighting matrix, VN (γ̂1), which
is based on the one-step estimates, γ̂1 where

VN (γ̂1) =
1
N

N

∑
i=1

Z′i Δ̂ε1iΔ̂ε
′
1iZi

and where Δ̂ε1i are the residuals from the first-step GMM estimator.
The formula for the small sample bias corrected variance, V̂bc (γ̂2), of γ̂2 is rather

complicated and is given by Windmeijer (2005) as

18 There has also been a recent rise in the number of applications using the Blundell and
Bond (1998) estimator.
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V̂bc (γ̂2) = N
[
ΔX ′ZV−1

N (γ̂1)Z ′ΔX
]−1

+ND
[
ΔX ′ZV−1

N (γ̂1)Z ′ΔX
]−1

+N
[
ΔX ′ZV−1

N (γ̂1)Z ′ΔX
]−1

D ′

+DV̂ (γ̂1)D ′

where, using the notation D [., j] to denote all rows of the jth column of the matrix D

D [., j] =−
(
ΔX ′ZVN (γ̂1)Z ′ΔX

)−1 ΔX ′ZVN (γ̂1)×
[

− 1
N

N

∑
i=1

Z ′i
(
Δxi jΔε̂ ′1i +Δε̂1iΔx ′i j

)
Zi

]

V−1
N (γ̂1)Z ′Δε̂2

and xi j is the (T ×1) jth column of Xi. Monte Carlo experiments suggest this cor-
rection does indeed work well (Windmeijer, 2005). This approach of testing linear
restrictions in dynamic linear panel data models estimated using one- and two-step
GMM using linear moment conditions, is further developed in Bond and Windmeijer
(2005), who consider bootstrapped versions of this Wald test and the LM test (as well
as three other criterion-based tests).
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Sevestre P. (1984), Modèles dynamiques à erreurs composées, Ph.D. Dissertation, Université Paris
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Chapter 9
Unit Roots and Cointegration in Panels

Jörg Breitung and M. Hashem Pesaran

9.1 Introduction

Recent advances in time series econometrics and panel data analysis have focussed
attention on unit root and cointegration properties of variables observed over a rela-
tively long span of time across a large number of cross section units, such as coun-
tries, regions, companies or even households. Such panel data sets have been used
predominately in testing the purchasing power parity and output convergence, al-
though the panel techniques have also been adapted more recently to the analysis
of business cycle synchronization, house price convergence, regional migration and
household income dynamics. This paper provides a review of the theoretical litera-
ture on testing for unit roots and cointegration in panels where the time dimension
(T ), and the cross section dimension (N) are relatively large. In cases where N is
large (say over 100) and T small (less than 10) the analysis can proceed only un-
der restrictive assumptions such as dynamic homogeneity and/or local cross section
dependence as in spatial autoregressive or moving average models. In cases where
N is small (less than 10) and T is relatively large standard time series techniques
applied to systems of equations, such as the Seemingly Unrelated Regression Equa-
tions (SURE), can be used and the panel aspect of the data should not pose new
technical difficulties.

One of the primary reasons behind the application of unit root and cointegra-
tion tests to a panel of cross section units was to gain statistical power and to im-
prove on the poor power of their univariate counterparts. This was supported by
the application of what might be called the first generation panel unit root tests to
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real exchange rates, output and inflation. For example, the augmented Dickey and
Fuller (1979) test is typically not able to reject the hypothesis that the real exchange
rate is nonstationary. In contrast, panel unit root tests applied to a collection of
industrialized countries generally find that real exchange rates are stationary, thereby
lending empirical support to the purchasing power parity hypothesis (e.g. Coakley
and Fuertes 1997 and Choi 2001).

Unfortunately, testing the unit root and cointegration hypotheses by using panel
data instead of individual time series involves several additional complications.
First, panel data generally introduce a substantial amount of unobserved hetero-
geneity, rendering the parameters of the model cross section specific. Second, in
many empirical applications, particularly the application to the real exchange rates
mentioned above, it is inappropriate to assume that the cross section units are inde-
pendent. To overcome these difficulties, variants of panel unit root tests are devel-
oped that allow for different forms of cross sectional dependence.1 Third, the panel
test outcomes are often difficult to interpret if the null of the unit root or cointe-
gration is rejected. The best that can be concluded is that “a significant fraction of
the cross section units is stationary or cointegrated”. The panel tests do not provide
explicit guidance as to the size of this fraction or the identity of the cross section
units that are stationary or cointegrated. Fourth, with unobserved I(1) (i.e. integrated
of order unity) common factors affecting some or all the variables in the panel, it
is also necessary to consider the possibility of cointegration between the variables
across the groups (cross section cointegration) as well as within group cointegration.
Finally, the asymptotic theory is considerably more complicated due to the fact that
the sampling design involves a time as well as a cross section dimension. For exam-
ple, applying the usual Dickey–Fuller test to a panel data set introduces a bias that
is not present in the case of a univariate test. Furthermore, a proper limit theory has
to take into account the relationship between the increasing number of time periods
and cross section units (cf. Phillips and Moon 1999).

By comparison to panel unit root tests, the analysis of cointegration in panels is
still at an early stage of it’s developments. So far the focus of the panel cointegration
literature has been on residual based approaches, although there has been a number
of attempts at the development of system approaches as well. As in the case of panel
unit root tests, such tests are developed based on homogenous and heterogeneous
alternatives. The residual based tests were developed to ward against the “spurious
regression” problem that can also arise in panels when dealing with I(1) variables.
Such tests are appropriate when it is known a priori that at most there can be only
one within group cointegration in the panel. System approaches are required in more
general settings where more than one within group cointegrating relation might be
present, and/or there exist unobserved common I(1) factors.

Having established a cointegration relationship, the long-run parameters can
be estimated efficiently using techniques similar to the ones proposed in the case
of single time series models. Specifically, fully-modified OLS procedures, the

1 In fact the application of the second generation panel unit root tests to real exchange rates tend to
over-turn the earlier test results that assume the cross section units are independently distributed.
See Moon and Perron (2004) and Pesaran (2008).
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dynamic OLS estimator and estimators based on a vector error correction represen-
tation were adopted to panel data structures. Most approaches employ a homoge-
nous framework, that is, the cointegration vectors are assumed to be identical for all
panel units, whereas the short-run parameters are panel specific. Although such an
assumption seems plausible for some economic relationships (like the PPP hypothe-
sis mentioned above) there are other behavioral relationships (like the consumption
function or money demand), where a homogeneous framework seems overly re-
strictive. On the other hand, allowing all parameters to be individual specific would
substantially reduce the appeal of a panel data study. It is therefore important to
identify parameters that are likely to be similar across panel units whilst at the
same time allowing for sufficient heterogeneity of other parameters. This requires
the development of appropriate techniques for testing the homogeneity of a sub-set
of parameters across the cross section units. When N is small relative to T, stan-
dard likelihood ratio based statistics can be used. Groen and Kleibergen (2003) pro-
vide an application. Testing for parameter homogeneity in the case of large panels
poses new challenges that require further research. Some initial attempts are made in
Pesaran, Smith and Im (1996), Phillips and Sul (2003a) and Pesaran and Yamagata
(2008).

This paper reviews some recent work in this rapidly developing research area
and thereby updating the earlier excellent surveys of Banerjee (1999), Baltagi and
Kao (2000) and Choi (2006). The remainder of the paper is organized as follows:
Sect. 9.2 sets out the basic model for the panel unit root tests and describes the
first generation panel unit root tests. Second generation panel unit root tests are de-
scribed in Sect. 9.3, and a brief account of the small sample properties of the panel
unit root tests is provided in Sect. 9.5. General issues surrounding panel cointegra-
tion, including the problem of cross-section cointegration, are discussed in Sect. 9.6.
Residual-based and system approaches to testing for cointegration in panels are re-
viewed in Sect. 9.7 and 9.8; and estimation of the cointegration relations in pan-
els is discussed in Sect. 9.9. Panels with unobserved common factors, allowing for
cross-section cointegration, are reviewed in Sect. 9.10. Some concluding remarks
are provided in Sect. 9.11.

9.2 First Generation Panel Unit Root Tests

9.2.1 The Basic Model

Assume that time series {yi0, . . . , yiT} on the cross section units i = 1, 2, . . . , N are
generated for each i by a simple first-order autoregressive, AR(1), process

yit = (1−αi)μi +αiyi,t−1 + εit , (9.1)

where the initial values, yi0, are given, and the errors εit are identically, indepen-
dently distributed (i.i.d.) across i and t with E(εit) = 0, E(ε2

it) = σ2
i < ∞ and
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E(ε4
it) < ∞. These processes can also be written equivalently as simple Dickey–

Fuller (DF) regressions

Δyit =−φiμi +φiyi, t−1 + εit , (9.2)

where Δyit = yit−yi, t−1, φi = αi−1. In further developments of the model it is also
helpful to write (9.1) or (9.2) in mean-deviations forms ỹit = αiỹi, t−1 + εit , where
ỹit = yit −μi. The corresponding DF regression in ỹit is given by

Δỹit = φiỹi, t−1 + εit . (9.3)

The null hypothesis of interest is

H0 : φ1 = · · ·= φN = 0 , (9.4)

that is, all time series are independent random walks. We will consider two
alternatives:

H1a : φ1 = · · ·= φN ≡ φ and φ < 0

H1b : φ1 < 0 , · · · , φN0 < 0, N0 ≤ N .

Under H1a it is assumed that the autoregressive parameter is identical for all
cross section units (see, for example, Levin and Lin (1993, LL), and Levin, Lin and
Chu, 2002). This is called the homogeneous alternative. H1b assumes that N0 of the
N (0 < N0 ≤ N) panel units are stationary with individual specific autoregressive
coefficients. This is referred to as the heterogeneous alternatives (see, for example,
Im, Pesaran and Shin (2003, IPS). For the consistency of the test it is assumed that
N0/N → κ > 0 as N → ∞. Different panel testing procedures can be developed de-
pending on which of the two alternatives is being considered. The panel unit root
statistics motivated by the first alternative, H1a, pools the observations across the dif-
ferent cross section units before forming the “pooled” statistic, whilst the tests devel-
oped against the heterogeneous alternatives, H1b, operates directly on the test statis-
tics for the individual cross section units using (standardized) simple averages of
the underlying individual statistics or their suitable transformations such as rejection
probabilities. Despite the differences in the way the two tests view the alternative hy-
pothesis both tests can be consistent against both types of the alternatives. Also inter-
pretation of the outcomes of both tests is subject to similar considerations discussed
in the introduction. When the null hypothesis is rejected one can only conclude that
a significant fraction of the AR(1) processes in the panel does not contain unit roots.

9.2.2 Derivation of the Tests

The various first generation panel unit roots proposed in the literature can be ob-
tained using the pooled log-likelihood function of the individual Dickey–Fuller re-
gressions given by (9.2).
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�NT (φ ,θ) =
N

∑
i=1

{

−T
2

log2πσ2
i −

1

2σ2
i

T

∑
t=1

(Δyit +φiμi−φiyi, t−1)
2

}

, (9.5)

where φ = (φ1, . . . , φN)′, θi = (μi,σ2
i )′ and θ = (θ ′1, . . . , θ ′N)′. In the case of the

homogeneous alternatives, H1a, where φi = φ , the maximum likelihood estimator of
φ is given by

φ̂ (θ) =
∑N

i=1 ∑T
t=1 σ−2

i Δyit (yi,t−1−μi)

∑N
i=1 ∑T

t=1 σ−2
i (yi,t−1−μi)

2 . (9.6)

The nuisance cross-section specific parameters θi can be estimated either under the
null or the alternative hypothesis. Under the null hypothesis μi is unidentified, but as
we shall see it is often replaced by yi0, on the implicit (identifying) assumption that
ỹi0 = 0 for all i. For this choice of μi the effective number of time periods used for
estimation of φi is reduced by one. Under the alternative hypothesis the particular
estimates of μi and σ2

i chosen naturally depend on the nature of the alternatives
envisaged. Under homogeneous alternatives, φi = φ < 0, the ML estimates of μi

and σ2
i are given as non-linear functions of φ̂ . Under heterogeneous alternatives φi

and σ2
i can be treated as free parameters and estimated separately for each i.

Levin et al. (2002) avoid the problems associated with the choice of the estima-
tors for μi and base their tests on the t-ratio of φ in the pooled fixed effect regression

Δyit = ai +φyi, t−1 + εit , εit � i.i.d.(0, σ2
i ) .

The t-ratio of the FE estimator of φ is given by

τφ =

N
∑

i=1
σ̂−2

i Δy′iMeyi,−1

√
N
∑

i=1
σ̂−2

i

(
y′i,−1Meyi,−1

)
(9.7)

where Δyi = (Δyi1, Δyi2, . . . , ΔyiT )′, yi,−1 = (yi0, yi1, . . . , yi,T−1)
′, Me = IT − eT

(e′T eT )−1e′T , eT is a T ×1 vector of ones,

σ̂2
i =

Δy′iMi Δyi

T −2
, (9.8)

Mi = IT −Xi(X
′
iXi)

−1X′i, and Xi=(eT , yi,−1).
The construction of a test against H1b is less clear because the alternative consists

of a set of inequality conditions. Im, Pesaran and Shin (1995, 2003) suggest the
mean of the individual specific t-statistics2

2 Andrews (1998) has considered optimal tests in such situations. His directed Wald statistic that
gives high weights to alternatives close to the null (i.e. the parameter c in Andrews (1998) tends to
zero) is equivalent to the mean of the individual specific test statistics.
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τ̄ =
1
N

N

∑
i=1

τi , (9.9)

where

τi =
Δy′iMeyi,−1

σ̂i

(
y′i,−1Meyi,−1

)1/2
, (9.10)

is the Dickey–Fuller t-statistic of cross section unit i.3 LM versions of the t-ratios of
φ and φi, that are analytically more tractable, can also be used which are given by

τ̃φ =

N
∑

i=1
σ̃−2

i Δy′iMeyi,−1

√
N
∑

i=1
σ̃−2

i

(
y′i,−1Meyi,−1

)
, (9.11)

and

τ̃i =
Δy′iMeyi,−1

σ̃i

(
y′i,−1Meyi,−1

)1/2
, (9.12)

where σ̃2
i = (T −1)−1Δy′iMeΔyi. It is easily established that the panel unit root tests

based on τφ and τ̃φ in the case of the pooled versions, and those based on τ̄ and

τ̃ = N−1
N

∑
i=1

τ̃i (9.13)

in the case of their mean group versions are asymptotically equivalent.

9.2.3 Null Distribution of the Tests

To establish the distribution of τ̃φ and τ̃ , we first note that under φi = 0, Δyi = σivi =
σi(vi1, vi2, . . . , viT )′, where vi � (0,IT ) and yi,−1 can be written as

yi,−1 = yi0eT +σisi,−1 , (9.14)

where yi0 is a given initial value (fixed or random), si,−1 = (si0, si1, . . . , si,T−1)
′ ,

with sit = ∑t
j=1 vi j, t = 1, 2, . . . , T, and si0 = 0. Using these results in (9.11) and

(9.12) we have

3 The mean of other unit-root test statistics may be used as well. For example, Smith, Leybourne,
Kim and Newbold (2004) suggest to use the mean of the weighted symmetric test statistic proposed
for single time series by Park and Fuller (1995) and Fuller (1996, Sect. 10.1.3), or the Max-ADF
test proposed by Leybourne (1995) based on the maximum of the original and the time reversed
Dickey–Fuller test statistics.
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τ̃φ =

N
∑

i=1

(√
T−1v′iMesi,−1

v′iMevi

)

√
N
∑

i=1

(
s′i,−1Mesi,−1

v′iMevi

) , (9.15)

and

τ̃ = N−1
N

∑
i=1

√
T −1v′iMesi,−1

(v′iMevi)
1/2
(

s′i,−1Mesi,−1

)1/2
. (9.16)

It is clear that under the null hypothesis both test statistics are free of nuisance pa-
rameters and their critical values can be tabulated for all combinations of N and T
assuming, for example, that εit (or vit) are normally distributed. Therefore, in the
case where the errors, εit , are serially uncorrelated an exact sample panel unit root
test can be developed using either of the test statistics and no adjustments to the
test statistics are needed. The main difference between the two tests lies in the way
information on individual units are combined and their relative small sample per-
formance would naturally depend on the nature of the alternative hypothesis being
considered.

Asymptotic null distributions of the tests can also be derived depending on
whether (T,N)→ ∞, sequentially, or when both N and T → ∞, jointly. To derive
the asymptotic distributions we need to work with the standardized versions of the
test statistics

ZLL =
τφ −E

(
τφ
)

√
Var
(
τφ
) , (9.17)

and

ZIPS =
√

N [τ̄−E(τi)]√
Var(τi)

, (9.18)

assuming that T is sufficiently large such that the second order moments of τi and
τφ exist. The conditions under which τi has a second order moment are discussed
in IPS and it is shown that when the underlying errors are normally distributed
the second order moments exist for T > 5. For non-normal distributions the ex-
istence of the moments can be ensured by basing the IPS test on suitably trun-
cated versions of the individual t-ratios. (see Pesaran (2008) for further details).
The exact first and second order moments of τi and τ̃i for different values of T are
given in IPS (2003, Table 1). Using these results it is also possible to generalize
the IPS test for unbalanced panels. Suppose the number of time periods available
on the ith cross section unit is Ti, the standardized IPS statistics will now be given
by

ZIPS =

√
N
[
τ̄−N−1 ∑N

i=1 E(τiTi)
]

√
N−1 ∑N

i=1 Var(τiTi)
, (9.19)
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where E(τiTi) and Var(τiTi) are, respectively, the exact mean and variance of the

DF statistics based on Ti observations. IPS show that for all finite Ti > 6, ZIPS
d→

N (0,1) as N → ∞. Similar results follow for the LL test.
To establish the asymptotic distribution of the panel unit root tests in the case of

T → ∞, we first note that for each i

τi
d→ ηi =

∫ 1
0 W̃i(a)dW̃i(a)
∫ 1

0 W̃i(a)2da
,

where W̃i(a) is a demeaned Brownian motion defined as W̃i(a) =Wi(a)−
∫ 1

0 Wi(a)da
and W1(a), . . . , WN(a) are independent standard Brownian motions. The existence
of the moments of ηi are established in Nabeya (1999) who also provides numerical
values for the first six moments of the DF distribution for the three standard spec-
ifications; namely models with and without intercepts and linear trends. Therefore,
since the individual Dickey–Fuller statistics τ1, . . . , τN are independent, it follows
that η1, η2, . . . ηN are also independent with finite moments. Hence, by standard
central limit theorems we have

ZIPS
d−−−→

T→∞

√
N [η̄−E(ηi)]√

Var(ηi)
d−−−→

N→∞
N (0, 1) ,

where η̄ = N−1 ∑N
i=1 ηi. Similarly,

ZLL =
τφ −E(τφ )
√

Var(τφ )
d−−−−−→

(T,N)→∞
N (0, 1) .

To simplify the exposition the above asymptotic results are derived using a se-
quential limit theory, where T → ∞ is followed by N → ∞. However, Phillips and
Moon (1999) show that sequential convergence does not imply joint convergence
so that in some situations the sequential limit theory may break down. In the case
of models with serially uncorrelated errors, IPS (2003) show that the t-bar test is in
fact valid for N and T → ∞ jointly. Also as we shall see it is conjectured that the
IPS test is valid for the case of serially correlated errors as N and T → ∞ so long as
N/T → k where k is a finite non-zero constant.

Maddala and Wu (1999) and Choi (2001) independently suggested a test against
the heterogenous alternative H1b that is based on the p-values of the individual
statistic as originally suggested by Fisher (1932). Let πi denote the p-value of the
individual specific unit-root test applied to cross-section unit i. The combined test
statistic is

π =−2
N

∑
i=1

log(πi) . (9.20)

Another possibility would be to use the inverse normal test defined by
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ZINV =
1√
N

N

∑
i=1

Φ−1 (πi) , (9.21)

where Φ(·) denotes the cdf of the standard normal distribution. An important advan-
tage of this approach is that it is possible to allow for different specifications (such
as different deterministic terms and lag orders) for each panel unit.

Under the null hypothesis π is χ2 distributed with 2N degrees of freedom. For
large N the transformed statistic

π̄∗ =− 1√
N

N

∑
i=1

[log(πi)+1] , (9.22)

is shown to have a standard normal limiting null distribution as T,N → ∞,
sequentially.

9.2.4 Asymptotic Power of the Tests

It is interesting to compare the asymptotic power of the test statistics against the
sequence of local alternatives

H� : αi,NT = 1− ci

T
√

N
. (9.23)

Following Breitung (2000) and Moon, Perron and Phillips (2007) the asymptotic

distribution under H� is obtained as Z j
d→ N (−c̄θ j, 1), j =LL, IPS, where c̄ =

limN→∞ N−1 ∑N
i=1 ci and

θ1 =

√

E

(∫ 1

0
W̃i(a)2da

)
, θ2 =

E

(√∫ 1
0 W̃i(a)2da

)

√
Var(τi)

.

It is interesting to note that the local power of both test statistics depends on the
mean c̄. Accordingly, the test statistics do not exploit the deviations from the mean
value of the autoregressive parameter.

Moon et al. (2007) derive the most powerful test statistic against the local alter-
native (9.23). Assume that we (randomly) choose the sequence c∗1, . . . , c∗N instead of
the unknown values c1, . . . , cN . The point optimal test statistic is constructed using
the (local-to-unity) pseudo differences

Δc∗i
yit = yit − (1− c∗i /T

√
N)yi, t−1 for t = 1, . . . , T .

For the model without individual constants and homogeneous variances the point
optimal test results in the statistic
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VNT =
1

σ̂2

(
N

∑
i=1

T

∑
t=1

(Δc∗i
yit)2− (Δyit)2

)

− 1
2

κ2 ,

where E(c∗i )
2 = κ2. Under the sequence of local alternatives (9.23) Moon et al.

(2007, Theorem 7) derive the limiting distribution as

VNT
d→N

(
−E(cic

∗
i ), 2κ2) .

The upper bound of the local power is achieved with ci = c∗i , that is, if the local alter-
natives used to construct the test coincide with the actual alternative. Unfortunately,
in practice it seems extremely unlikely that one could select values of c∗i that are
perfectly correlated with the true values, ci. If, on the other hand, the variates c∗i are
independent of ci, then the power is smaller than the power of a test using identical
values c∗i = c∗ for all i. This suggests that if there is no information about variation
of ci, then a test cannot be improved by taking into account a possible heterogeneity
of the alternative.

9.2.5 Heterogeneous Trends

To allow for more general mean functions we consider the model:

yit = δ′idit + ỹit , (9.24)

where dit represents the deterministics and Δỹit = φiỹi, t−1 + εit . For the model with
a constant mean we let dit = 1 and the model with individual specific time trends
dit is given by dit = (1, t)′. Furthermore, structural breaks in the mean function can
be accommodated by including (possibly individual specific) dummy variables in
the vector dit . The parameter vector δi is assumed to be unknown and has to be
estimated. For the Dickey–Fuller test statistic the mean function is estimated under
the alternative, that is, for the model with a time trend δ̂̂δ̂δ′idit results from a regression
of yit on a constant and t (t = 1, 2, . . . , T ). Alternatively, the mean function can also
be estimated under the null hypothesis (cf. Schmidt and Phillips, 1992) or under a
local alternative (Elliott, Rothenberg and Stock, 1996).4

Including deterministic terms may have an important effect on the asymptotic
properties of the test. Let Δ̂̃yt and ̂̃yi,t−1 denote estimates for Δỹit = Δyit −E(Δyit)
and ỹi, t−1 = yi, t−1−E(yi, t−1). In general, running the regression

Δ̂̃yit = φ̂̃yi, t−1 + eit

does not render a t-statistic with a standard normal limiting distribution due to the
fact that ̂̃yi, t−1 is correlated with eit . For example, if dit is an individual specific

4 See, e.g. Choi (2002) and Harvey, Leybourne and Sakkas (2006).
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constant such that ̂̃yit = yit − T−1(yi0 + · · ·+ yi,T−1) we obtain under the null
hypothesis

lim
T→∞

1
T

E

{
T

∑
t=1

eit̂̃yi, t−1

}

=−σ2
i /2 .

It follows that the t-statistic of φ = 0 tends to −∞ as N or T tends to infinity.
To correct for the bias, Levin et al. (2002) suggested using the correction terms

aT (δ̂̂δ̂δ) = E

(
1

σ2
i T

T

∑
t=1

Δ̂̃yit
̂̃yi, t−1

)

(9.25)

b2
T (δ̂̂δ̂δ) =

Var

(
T−1

T
∑

t=1
Δ̂̃yit
̂̃yi, t−1

)

σ2
i E

(
T−1

T
∑

t=1

̂̃y
2
i, t−1

) (9.26)

where δ = (δ̂̂δ̂δ′1, δ̂̂δ̂δ′2, . . . ., δ̂̂δ̂δ′N)′, and δ̂̂δ̂δi is the estimator of the coefficients of the deter-
ministics, dit , in the OLS regression of yit on dit . The corrected, standardized statitic
is given by

ZLL(δ̂̂δ̂δ) =

[
N
∑

i=1

T
∑

t=1
Δ̂̃yit
̂̃yi, t−1/σ̂2

i

]
−NTaT (δ̂̂δ̂δ)

bT (δ̂̂δ̂δ)

√
N
∑

i=1

T
∑

t=1

̂̃y
2
i, t−1/σ̂2

i

.

Levin et al. (2002) present simulated values of aT (δ̂̂δ̂δ) and bT (δ̂̂δ̂δ) for models with
constants, time trends and various values of T . A problem is, however, that for un-
balanced data sets no correction terms are tabulated.

Alternatively, the test statistic may be corrected such that the adjusted t-statistic

Z∗LL(δ̂̂δ̂δ) = [ZLL(δ̂̂δ̂δ)−a∗T (δ̂̂δ̂δ)]/b∗T (δ̂̂δ̂δ)

is asymptotically standard normal. Harris and Tzavalis (1999) derive the small sam-
ple values of a∗T (δ̂̂δ̂δ) and b∗T (δ̂̂δ̂δ) for T fixed and N → ∞. Therefore, their test statistic
can be applied for small values of T and large values of N.

An alternative approach is to avoid the bias – and hence the correction terms –
by using alternative estimates of the deterministic terms. Breitung and Meyer (1994)
suggest using the initial value yi0 as an estimator of the constant term. As argued by
Schmidt and Phillips (1992), the initial value is the best estimate of the constant
given the null hypothesis is true. Using this approach the regression equation for a
model with a constant term becomes

Δyit = φ ∗(yi,t−1− yi0)+ vit .



290 J. Breitung and M. Hashem Pesaran

Under the null hypothesis, the pooled t-statistic of H0 : φ ∗ = 0 has a standard normal
limit distribution.

For a model with a linear time trend a minimal invariant statistic is obtained by
the transformation (cf. Ploberger and Phillips, 2002)

x∗it = yit − yi0−
t
T

(yiT − yi0) .

In this transformation subtracting yi0 eliminates the constant and (yiT − yi0)/T =
(Δyi1 + · · ·+ΔyiT )/T is an estimate of the slope of the individual trend function.

To correct for the mean of Δyit a Helmert transformation can be used

Δy∗it = st

[
Δyit −

1
T − t

(Δyi, t+1 + · · ·+ΔyiT )
]
, t = 1, . . . , T −1

where s2
t = (T − t)/(T − t +1) (cf. Arellano, 2003, p. 17). Using these transforma-

tions the regression equation becomes

Δy∗it = φ ∗x∗i, t−1 + vit . (9.27)

It is not difficult to verify that under the null hypothesis E(Δy∗it x
∗
i, t−1) = 0 and,

thus, the t-statistic for φ ∗ = 0 is asymptotically standard normally distributed (cf.
Breitung, 2000).

It is important to note that including individual specific time trends substantially
reduce the (local) power of the test. This was first observed by Breitung (2000)
and studied more rigorously by Ploberger and Phillips (2002) and Moon et al.
(2007). Specifically, the latter two papers show that a panel unit root test with in-
cidental trends has nontrivial asymptotic power only for local alternatives with rate
T−1N−1/4. A similar result is found by Moon, Perron and Phillips (2006) for the
test suggested by Breitung (2000).

The test against heterogeneous alternatives H1b can be easily adjusted for in-
dividual specific deterministic terms such as linear trends or seasonal dummies.
This can be done by computing IPS statistics, defined by (9.18) and (9.19) for the
balanced and unbalanced panels, using Dickey–Fuller t-statistics based on DF re-
gressions including the deterministics δ′idit , where dit = 1 in the case of a con-
stant term, dit = (1, t)′ in the case of models with a linear time trend and so on.
The mean and variance corrections should, however, be computed to match the na-
ture of the deterministics. Under a general setting IPS (2003) have shown that the
ZIPS statistic converges in distribution to a standard normal variate as N,T → ∞,
jointly.

In a straightforward manner it is possible to include dummy variables in the vec-
tor dit that accommodate structural breaks in the mean function (see, e.g., Murray
and Papell, 2002; Tzavalis, 2002; Carrion-I-Sevestre, Del Barrio and Lopez-Bazo,
2005; Breitung and Candelon, 2005; Im, Lee and Tieslau, 2005).



9 Unit Roots and Cointegration in Panels 291

9.2.6 Short-Run Dynamics

If it is assumed that the error in the autoregression (9.1) is a serially correlated
stationary process, the short-run dynamics of the errors can be accounted for by
including lagged differences

Δyit = δ′idit +φiyi, t−1 + γi1Δyi, t−1 + · · ·+ γi, piΔyi, t−pi + εit . (9.28)

For example, the IPS statistics (9.18) and (9.19) developed for balanced and un-
balanced panels can now be constructed using the ADF(pi) statistics based on the
above regressions. As noted in IPS (2003), small sample properties of the test can be
much improved if the standardization of the IPS statistic is carried out using the sim-
ulated means and variances of τi(pi), the t-ratio of φi computed based on ADF(pi)
regressions. This is likely to yield better approximations, since E [τi(pi)], for exam-
ple, makes use of the information contained in pi while E [τi(0)] = E(τi) does not.
Therefore, in the serially correlated case IPS propose the following standardized
t-bar statistic

ZIPS =

√
N
{

τ̄− 1
N ∑N

i=1 E [τi(pi)]
}

√
1
N ∑N

i=1 Var [τi(pi)]

d−−−−−→
(T,N)→∞

N (0, 1) . (9.29)

The value of E [τi(p)] and Var [τi(p)] simulated for different values of T and p, are
provided in Table 3 of IPS. These simulated moments also allow the IPS panel unit
root test to be applied to unbalanced panels with serially correlated errors.

For tests against the homogenous alternatives, φ1 = · · · = φN = φ < 0, Levin
et al. (2002) suggest removing all individual specific parameters within a first step
regression such that eit (vi, t−1) are the residuals from a regression of Δyit (yi, t−1) on
Δyi, t−1, . . . , Δyi, t−pi and dit . In the second step the common parameter φ is estimated
from a pooled regression

(eit/σ̂i) = φ(vi,t−1/σ̂i)+νit ,

where σ̂2
i is the estimated variance of eit . Unfortunately, the first step regressions are

not sufficient to remove the effect of the short-run dynamics on the null distribution
of the test. Specifically,

lim
T→∞

E

[
1

T − p

T

∑
t=p+1

eitvi, t−1/σ2
i

]

=
σ̄i

σi
a∞(δ̂̂δ̂δ) ,

where σ2
i is the long-run variance and a∞(δ̂̂δ̂δ) denotes the limit of the correction term

given in (9.25). Levin et al. (2002) propose a nonparametric (kernel based) estimator
for σ̄2

i
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s̄2
i =

1
T

[
T

∑
t=1

Δ̂̃y2
it +2

K

∑
l=1

(
K +1− l

K +1

)( T

∑
t=l+1

Δ̂̃yitΔ̂̃yi,t−l

)]

, (9.30)

where Δ̂̃yit denotes the demeaned difference and K denotes the truncation lag. As
noted by Phillips and Ouliaris (1990), in a time series context the estimator of the
long-run variance based on differences is inappropriate since under the stationary
alternative s̄2

i
p→ 0 and, thus, using this estimator yields an inconsistent test. In con-

trast, in the case of panels the use of s̄2
i improves the power of the test, since with

s̄2
i

p→ 0 the correction term drops out and the test statistic tends to −∞.
It is possible to avoid the use of a kernel based estimator of the long-run variance

by using an alternative approach suggested by Breitung and Das (2005). Under the
null hypothesis we have

γi(L)Δyit = δ′idit + εit ,

where γi(L) = 1− γi1L−·· ·− γi,piL
p and L is the lag operator. It follows that g̃t =

γi(L)[yit −E(yit)] is a random walk with uncorrelated increments. Therefore, the
serial correlation can be removed by replacing yit by the pre-whitened variable ŷit =
γ̂i(L)yit , where γ̂i(L) is an estimator of the lag polynomial obtained from the least-
square regression

Δyit = δ′idit + γi1Δyi, t−1 + · · ·+ γi,piΔyi, t−pi + εit . (9.31)

This approach may also be used for modifying the “unbiased statistic” based on the
t-statistic of φ ∗ = 0 in (9.27). The resulting t-statistic has a standard normal limiting
distribution if as T → ∞ is followed by N → ∞.

A related approach is suggested by Westerlund (2008). He suggests to test the
unit root hypothesis by running a modified ADF regression of the form

Δyit = δ′idit +φiy
∗
i, t−1 + γi1Δyi, t−1 + · · ·+ γi, piΔyi, t−pi + εit . (9.32)

where y∗i, t−1 = (σ̂i/s̄i)yi, t−1 and s̄2
i is a consistent estimator of the long-run vari-

ance, σ2
i . Westerlund (2008) recommends to use a parametric estimate of the long-

run variance based on an autoregressive representation. This transformation of the
lagged dependent variable eliminates the nuisance parameters in the asymptotic dis-
tribution of the ADF statistic and, therefore, the correction for the numerator of the
corrected t-statistic of Levin et al. (2002) is the same as in the case without short-run
dynamics.

Pedroni and Vogelsang (2005) have proposed a test statistic that avoids the spec-
ification of the short-run dynamics by using an autoregressive approximation. Their
test statistic is based on the pooled variance ratio statistic

Zw
NT =

T ci(0)
Nŝ2

i

,
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where ci(�) = T−1 ∑T
t=�+1

̂̃yit
̂̃yi, t−�, ̂̃yit = yit− δ̂̂δ̂δ′idit and ŝ2

i is the untruncated Bartlett
kernel estimator defined as ŝ2

i = ∑T+1
�=−T+1(1− |�|/T )ci(�). As has been shown by

Kiefer and Vogelsang (2002) and Breitung (2002), the limiting distribution of such
“nonparametric” statistics does not depend on nuisance parameters involved by the
short run dynamics of the processes. Accordingly, no adjustment for short-run dy-
namics is necessary.

9.2.7 Other Approaches to Panel Unit Root Testing

An important problem of combining Dickey–Fuller type statistics in a panel unit
root test is that they involve a nonstandard limiting distribution. If the panel unit root
statistic is based on a standard normally distributed test statistic zi, then N−1/2 ∑N

i=1 zi

has a standard normal limiting distribution even for a finite N. In this case no cor-
rection terms need to be tabulated to account for the mean and the variance of the
test statistic.

Chang (2002) proposes a nonlinear instrumental variable (IV) approach, where
the transformed variable

wi, t−1 = yi, t−1e−ci|yi, t−1|

with ci > 0 is used as an instrument for estimating φi in the regression Δyit =
φiyi, t−1 + εit (which may also include deterministic terms and lagged differences).
Since wi, t−1 tends to zero as yi, t−1 tends to ±∞ the trending behavior of the
nonstationary variable yi,t−1 is eliminated. Using the results of Chang, Park and
Phillips (2001), Chang (2002) showed that the Wald test of φ = 0 based on the
nonlinear IV estimator possesses a standard normal limiting distribution. Another
important property of the test is that the nonlinear transformation also takes ac-
count of possible contemporaneous dependence among the cross section units.
Accordingly, Chang’s panel unit root test is also robust against cross-section
dependence.

It should be noted that wi,t−1 ∈ [−(cie)−1, (cie)−1] with a maximum (minimum)
at yi, t−1 = 1/ci (yi, t−1 =−1/ci). Therefore, the choice of the parameter ci is crucial
for the properties of the test. First, the parameter should be proportional to inverse
of the standard deviations of Δyit . Chang notes that if the time dimension is small,
the test slightly over-rejects the null and therefore she proposes to use a larger value
of K to correct for the size distortions.

An alternative approach to obtain an asymptotically standard normal test statis-
tic is to adjust the given samples in all cross-sections so that they all have sums of
squares y2

i1 + · · ·+ y2
iki

= σ2
i cT 2 + hi, where hi

p→ 0 as T → ∞. In other words, the
panel data set becomes an unbalanced panel with ki time periods in the i’th unit.
Chang and Park (2004) calls this setting the “equi-squared sum contour”, whereas
the traditional framework is called the “equi-sample-size contour”. The nice fea-
ture of this approach is that it yields asymptotically standard normal test statistics.
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An important drawback is, however, that a large number of observations may be
discarded by applying this contour which may result in a severe loss of power.

Hassler, Demetrescu and Tarcolea (2006) have suggested to use the LM statis-
tic for a fractional unit root as an asymptotically normally distributed test statistic.
This test statistic is uniformly most powerful against fractional alternatives of the
form (1−L)dyit = εit with d < 1. Although usually panel unit root tests are used to
decide whether the series are I(1) or I(0), it can be argued that fractional unit root
tests also have a good (albeit not optimal) power against the I(0) alternative (e.g.
Robinson, 1994).

As in the time series case it is possible to test the null hypothesis that the series
are stationary against the alternative that (at least some of) the series are nonstation-
ary. The test suggested by Tanaka (1990) and Kwiatkowski, Phillips, Schmidt and
Shin (1992) is designed to test the hypothesis H∗

0 : θi = 0 in the model

yit = δ′idit +θirit +uit , t = 1, . . . , T , (9.33)

where Δrit is white noise with unit variance and uit is stationary. The cross-section
specific KPSS statistic is

κi =
1

T 2σ̄2
T, i

T

∑
t=1

Ŝ2
it ,

where σ̄2
T, i denotes a consistent estimator of the long-run variance of Δyit and Ŝit =

∑t
�=1

(
yi�− δ̂̂δ̂δ′idi�

)
is the partial sum of the residuals from a regression of yit on the

deterministic terms (a constant or a linear time trend). The individual test statistics
can be combined as in the test suggested by IPS (2003) yielding

κ̄ = N−1/2 ∑N
i=1 [κi−E(κi)]√

Var(κi)
,

where asymptotic values of E(κi) and Var(κi) are derived in Hadri (2000) and values
for finite T and N → ∞ are presented in Hadri and Larsson (2005).

The test of Harris, Leybourne and McCabe (2004) is based on the stationarity
statistic

Zi(k) =
√

T ĉi(k)/ω̂zi(k) ,

where ĉi(k) denotes the usual estimator of the covariance at lag k of cross section
unit i and ω̂2

zi(k) is an estimator of the long-run variance of zk
it = (yit− δ̂̂δ̂δ′idit)(yi, t−k−

δ̂̂δ̂δ′idi, t−k). The intuition behind this test statistic is that for a stationary and ergodic
time series we have E[ĉi(k)]→ 0 as k→∞. Since ω̂2

zi is a consistent estimator for the
variance of ĉi(k) it follows that Zi(k) converges to a standard normally distributed
random variable as k→ ∞ and k/

√
T → δ < ∞.
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9.3 Second Generation Panel Unit Root Tests

9.3.1 Cross-Section Dependence

So far we have assumed that the time series {yit}T
t=0 are independent across i.

However, in many macroeconomic applications using country or regional data it
is found that the time series are contemporaneously correlated. Prominent examples
are the analysis of purchasing power parity and output convergence.5 The literature
on modelling of cross section dependence in large panels is still developing and in
what follows we provide an overview of some of the recent contributions.6

Cross section dependence can arise due to a variety of factors, such as omitted
observed common factors, spatial spill over effects, unobserved common factors,
or general residual interdependence that could remain even when all the observed
and unobserved common effects are taken into account. Abstracting from common
observed effects and residual serial correlation a general specification for cross sec-
tional error dependence can be written as

Δyit =−μiφi +φiyi, t−1 +uit ,

where
uit = γ ′i ft +ξit , (9.34)

or
ut = Γ fΓ fΓ f t +ξξξ t , (9.35)

ut = (u1t , u2t , . . . , uNt)′, ft is an m× 1 vector of serially uncorrelated unobserved
common factors, and ξξξ t = (ξ1t , ξ2t , . . . , ξNt)′ is an N×1 vector of serially uncorre-
lated errors with mean zero and the positive definite covariance matrix ΩΩΩξ , and ΓΓΓ is
an N×m matrix of factor loadings defined by ΓΓΓ = (γ1, γ2, . . . , γN)′.7 Without loss
of generality the covariance matrix of ft is set to Im, and it is assumed that ft and
ξξξ t are independently distributed. If γ1 = · · · = γN , then θt = γ ′ft is a conventional
“time effect” that can be removed by subtracting the cross section means from the
data. In general it is assumed that γi, the factor loading for the ith cross section unit,
differs across i and represents draws from a given distribution.

Under the above assumptions and conditional on γi, i = 1, 2, . . . , N, the covari-
ance matrix of the composite errors, ut , is given by ΩΩΩ = ΓΓΓΓΓΓ′+ΩΩΩξ . It is clear that
without further restrictions the matrices ΓΓΓ and ΩΩΩξ are not separately identified. The
properties of ΩΩΩ also crucially depend on the relative eigenvalues of ΓΓΓΓΓΓ′ and ΩΩΩξ ,
and their limits as N → ∞. Accordingly two cases of cross-section dependence can

5 See, for example, O’Connell (1998) and Phillips and Sul (2003b). Tests for cross section inde-
pendence of errors with applications to output growth equations are considered in Pesaran (2004).
6 A survey of the second generation panel unit root tests is also provided by Hurlin and
Mignon (2004).
7 The case where ft and/or ξit might be serially correlated will be considered below.
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be distinguished: (i) Weak dependence. This cases arises if it is assumed that the
eigenvalues of ΩΩΩ are bounded as N → ∞. This assumption rules out the presence
of unobserved common factors, but allows the cross section units to be, for ex-
ample, spatially correlated with a finite number of “neighbors”. (ii) Strong depen-
dence. In this case some eigenvalues of ΩΩΩ are O(N), which arises when there are
unobserved common factors. When N is fixed as T → ∞ both sources of depen-
dence could be present. But for N → ∞ (and particularly when N > T ) it seems
only sensible to consider cases where rank(Γ)Γ)Γ) = m ≥ 1 and ΩΩΩξ is a diagonal ma-
trix. A general discussion of the concepts of weak and strong cross section depen-
dence is provided in Pesaran and Tosetti (2007) where it is shown that all spatial
econometric models considered in the literature are examples of weak cross section
dependence.

A simple example of panel data models with weak cross section dependence is
given by

⎡

⎢
⎣

Δy1t
...

ΔyNt

⎤

⎥
⎦=

⎡

⎢
⎣

a1
...

aN

⎤

⎥
⎦+φ

⎡

⎢
⎣

y1,t−1
...

yN, t−1

⎤

⎥
⎦+

⎡

⎢
⎣

u1t
...

uNt

⎤

⎥
⎦ (9.36)

or

Δyt = a+φyt−1 +ut , (9.37)

where ai = −φ μi and Δyt , yt−1, a and ut are N× 1 vectors. The cross-section cor-
relation is represented by a non-diagonal matrix

ΩΩΩ = E(utu′t), for all t ,

with bounded eigenvalues. For the model without constants Breitung and Das (2005)
showed that the regression t-statistic of φ = 0 in (9.37) is asymptotically distributed
as N (0, vΩ) where

vΩ = lim
N→∞

tr(ΩΩΩ2/N)
(trΩΩΩ/N)2 . (9.38)

Note that tr(ΩΩΩ) and tr(ΩΩΩ2) are O(N) and, thus, vΩ converges to a constant that
can be shown to be larger than one. This explains why the test ignoring the cross-
correlation of the errors has a positive size bias.

9.3.2 Tests Based on GLS Regressions

Since (9.37) can be seen as a seemingly unrelated regression system, O’Connell
(1998) suggests to estimate the system by using a GLS estimator (see also Flores,
Jorion, Preumont and Szarfarz, 1999). Let Ω̂ΩΩ = T−1 ∑T

t=1 ût û′t denote the sample
covariance matrix of the residual vector. The GLS t-statistic is given by
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tgls(N) =

T
∑

t=1
Δỹ′tΩ̂ΩΩ

−1
ỹt−1

√
T
∑

t=1
ỹ′t−1Ω̂ΩΩ

−1
ỹt−1

,

where ỹt is the vector of demeaned variables. Harvey and Bates (2003) derive the
limiting distribution of tgls(N) for a fixed N and as T → ∞, and tabulate its asymp-
totic distribution for various values of N. Breitung and Das (2005) show that if
ỹt = yt−y0 is used to demean the variables and T →∞ is followed by N →∞, then
the GLS t-statistic possesses a standard normal limiting distribution.

The GLS approach cannot be used if T < N as in this case the estimated covari-
ance matrix Ω̂ΩΩ is singular. Furthermore, Monte Carlo simulations suggest that for
reasonable size properties of the GLS test, T must be substantially larger than N
(e.g. Breitung and Das, 2005). Maddala and Wu (1999) and Chang (2004) have
suggested a bootstrap procedure that improves the size properties of the GLS
test.

9.3.3 Test Statistics Based on OLS Regressions

An alternative approach based on “panel corrected standard errors” (PCSE) is con-
sidered by Jönsson (2005) and Breitung and Das (2005). In the model with weak
dependence, the variance of the OLS estimator φ̂ is consistently estimated by

v̂ar(φ̂) =

T
∑

t=1
ỹ′t−1Ω̂ΩΩỹt−1

(
T
∑

t=1
ỹ′t−1ỹt−1

)2 .

If T → ∞ is followed by N → ∞ the robust t statistic trob = φ̂/

√
v̂ar(φ̂) is asymp-

totically standard normally distributed (Breitung and Das, 2005).
If it is assumed that the cross correlation is due to common factors, then the

largest eigenvalue of the error covariance matrix, Ω,Ω,Ω, is Op(N) and the robust PCSE
approach breaks down. Specifically, Breitung and Das (2008) showed that in this
case trob is distributed as the ordinary Dickey-Fuller test applied to the first principal
component.

In the case of a single unobserved common factor, Pesaran (2008) has suggested
a simple modification of the usual test procedure. Let ȳt = N−1 ∑N

i=1 yit and Δȳt =
N−1 ∑N

i=1 Δyit = ȳt− ȳt−1. The cross section augmented Dickey–Fuller (CADF) test
is based on the following regression

Δyit = ai +φiyi, t−1 +biȳt−1 + ciΔȳt + eit .
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In this regression the additional variables Δȳt and ȳt−1 are
√

N-consistent estimators
for the rescaled factors γ̄ ft and γ̄ ∑t−1

j=0 f j, where γ̄ = N−1 ∑N
i=1 γi. Pesaran (2008)

showed that the distribution of the regression t-statistic for φi = 0 is free of nuisance
parameters. To test the unit root hypothesis in a heterogenous panel the average of
the N individual CADF t-statistics (or suitably truncated version of them) can be
used. Coakley, Kellard and Smaith (2005) apply the CADF test to real exchange
rates of 15 OECD countries.

9.3.4 Other Approaches

A similar approach was proposed by Moon and Perron (2004) and Phillips and
Sul (2003a). The test of Moon and Perron (2004) is based on a principal components
estimator of m < N common factors f1t , . . . , fmt in (9.34). The number of common
factors can be consistently determined by using the information criteria suggested
by Bai and Ng (2002). Let V̂m = [v̂1, . . . , v̂m] denote the matrix of m orthonormal
eigenvectors associated with m largest eigenvalues of ΩΩΩ. The vector of common
factors are estimated as

f̂t = [ f̂1t , . . . , f̂mt ]′ = V̂′mΔyt .

As shown by Bai and Ng (2002), the principal component estimator f̂t yields a con-
sistent estimator of the factor space as min(N,T )→ ∞. Thus, the elements of the
vector (

IN − V̂mV̂′m
)

Δyt ≡QV̂m
Δyt , (9.39)

are consistent estimates of the idiosyncratic components ξit as N → ∞. Therefore,
by assuming that ξit is i.i.d., the pooled regression t-statistic

t∗MP =

T
∑

t=1
Δỹ′tQV̂m

ỹt−1

√
T
∑

t=1
ỹ′t−1QV̂m

ỹt−1

.

has a standard normal limiting distribution as (N, T → ∞) and lim infN,T→∞
logN/ logT → 0 (cf. Moon and Perron, 2004).

Hassler et al. (2006) suggest a simple correction for error cross-section depen-
dences that can be used to combine the p-values of individual specific unit root tests,
assuming that the correlation among the p-values is constant. The authors found that
the suggested combination of p-values yields reliable results even in cases where the
correlation is different among the cross-section units.
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9.4 Cross-Unit Cointegration

As argued by Banerjee, Marcellino and Osbat (2005) panel unit root tests may be
severely biased if the panel units are cross-cointegrated, namely if under the null
hypothesis (of unit roots) one or more linear combinations of yt are stationary. This
needs to be distinguished from the case where the errors are cross correlated without
necessarily involving cointegration across the cross section units. Under the former
two or more cross section units must share at least one common stochastic trend.
Such a situation is likely to occur if the PPP hypothesis is examined (cf. Lyhagen,
2000, Banerjee et al., 2005; Wagner, 2007).

The tests proposed by Moon and Perron (2004) and Pesaran (2008) are based on
the model

yit = (1−φi)μi +φiyi,t−1 + γi ft + εit , (9.40)

Under the unit root hypothesis, φi = 1, this equation yields

yit = yi0 + γis f t + sit ,

where

s f t = f1 + f2 + . . .+ ft ,

sit = εi1 + εi2 + . . .+ εit .

Clearly, under the null hypothesis all cross section units are related to the com-
mon stochastic component, s f t , albeit with varying effects, γi. This framework rules
out cross-unit cointegration as under the null hypothesis there does not exist a lin-
ear combination of y1t , . . . , yNt that is stationary. Therefore, tests based on (9.40)
are designed to test the joint null hypothesis: “All time series are I(1) and not
cointegrated”.

To allow for cross-unit cointegration Bai and Ng (2004) proposed analyzing the
common factors and idiosyncratic components separately. A simple multi-factor ex-
ample of Bai and Ng framework is given by

yit = μi + γ ′i gt + eit ,

Δgt = ΛgΛgΛgt−1 +vt ,

eit = ρiei, t−1 + εit ,

where gt is the m× 1 vector of unobserved components, vt and εit are stationary
common and individual specific shocks, respectively. Two different sets of null hy-
potheses are considered: Ha

0 :(testing the I(0)/I(1) properties of the common fca-
tors) Rank(ΛΛΛ) = r ≤m, and Hb

0 : (panel unit root tests) ρi = 1, for all i. A test of Ha
0

is based on common factors estimated by principal components and cointegration
tests are used to determine the number of common trends, m−r. Panel unit root tests
are then applied to the idiosyncratic components. The null hypothesis that the time
series have a unit root is rejected if either the test of the common factors or the test



300 J. Breitung and M. Hashem Pesaran

for the idiosyncratic component cannot reject the null hypothesis of nonstationary
components.8 As has been pointed out by Westerlund (2007a), replacing the unob-
served idiosyncratic components by estimates introduces an asymptotic bias when
pooling the t-statistic (or p-values) of the panel units which renders the pooled tests
in Bai and Ng (2004) asymptotically invalid. However, in a recent paper Bai and
Ng (2007) show that pooled panel unit root tests can still be applied to the estimated
idiosyncratic components if the tests are based on the pooled estimator of the largest
autoregressive root.

The implementation of the Bai and Ng procedure requires estimates of m and r
that might require very large N and T (e.g. Gengenbach, Palm and Urbain, 2006a).
Note also that the panel structure of the data does not enhance the power of testing
Ha

0 , which primarily depends on the time dimension. The cross section dimension
only helps in getting more precise estimates of the unobserved common factors.
As a result, in panels of typical sample sizes we cannot hope to learn much about
the order of integration by applying unit root or cointegration tests to the estimated
common factors. Since the low power of testing Ha

0 shrinks down the overall power
of the combined test procedure it is very hard in practice to establish the stationarity
of the variables even if N is extremely large.

To allow for short-run and long-run (cross-unit cointegration) dependencies,
Chang and Song (2005) suggest a nonlinear instrument variable test procedure. As
the nonlinear instruments suggested by Chang (2002) are invalid in the case of cross-
unit cointegration panel specific instruments based on the Hermit function of differ-
ent order are used as nonlinear instruments. Chang and Song (2005) showed that
the t-statistic computed from the nonlinear IV statistic are asymptotically standard
normally distributed and, therefore, a panel unit statistics against the heterogeneous
alternative H1b can be constructed that has an standard normal limiting distribution.

Choi and Chue (2007) employ a subsampling procedure to obtain tests that are
robust against a wide range of cross-section dependence such as weak and strong
correlation as well as cross-unit cointegration. To this end the sample is grouped
into a number of overlapping blocks of b time periods. Using all (T − b + 1) pos-
sible overlapping blocks, the critical value of the test is estimated by the respective
quantile of the empirical distribution of the (T − b + 1) test statistics computed.
The advantage of this approach is that the null distribution of the test statistic may
depend on unknown nuisance parameters. Whenever the test statistics converge in
distribution to some limiting null distribution as T → ∞ and N fixed, the subsample
critical values converge in probability to the true critical values. Using Monte Carlo
simulations Choi and Chue (2007) demonstrate that the size of the subsample test is
indeed very robust against various forms of cross-section dependence.

8 An alternative factor extraction method is suggested by Kapetanios (2007) who also provides
detailed Monte Carlo results on the small sample performance of panel unit root tests based on a
number of alternative estimates of the unobserved common factors. He shows that the factor-based
panel unit root tests tend to perform rather poorly when the unobserved common factor is serially
correlated.
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9.5 Finite Sample Properties of Panel Unit Root Tests

It has become standard to distinguish first generation panel unit root tests that are
based on the assumption of independent cross section units and second generation
tests that allow for some kind of cross-section dependence. Maddala and Wu (1999)
compared several first generation tests. For the heterogeneous alternative under con-
sideration they found that in most cases the Fisher test (9.20) performs similar or
slightly better than the IPS statistic with respect to size and power. The Levin and
Lin statistic (in the version of the 1993 paper) performs substantially worse. Similar
results are obtained by Choi (2001). Madsen (2003) derived the local power func-
tion against homogeneous alternatives under different detrending procedures. Her
Monte Carlo simulations support her theoretical findings that the test based on esti-
mating the mean under the null hypothesis (i.e. the initial observation is subtracted
from the time series) outperforms tests based on alternative demeaning procedures.
Similar findings are obtained by Bond, Nauges and Windmeijer (2002).

Moon and Perron (2004) compare the finite sample powers of alternative tests
against the homogeneous alternative. They found that the point-optimal test of
Moon, Perron and Phillips (2007) performs best and show that the power of this
test is close to the power envelope. Another important finding from these simu-
lation studies is the observation that the power of the test drops dramatically if a
time trend is included. This confirms theoretical results on the local power of panel
unit root tests derived by Breitung (2000), Ploberger and Phillips (2002) and Moon
et al. (2007).

Hlouskova and Wagner (2006) compare a large number of first generation panel
unit root tests applied to processes with MA(1) errors. Not surprisingly, all tests are
severely biased as the root of the MA process approaches unity. Overall, the tests
of Levin et al. (2002) and Breitung (2000) have the smallest size distortions. These
tests also perform best against the homogenous alternative, where the autoregressive
coefficient is the same for all panel units. Of course this is not surprising as these
tests are optimal under homogeneous alternatives. Furthermore, it turns out that the
stationarity tests of Hadri (2000) perform very poorly in small samples. This may
be due to the fact that asymptotic values for the mean and variances of the KPSS
statistics are used, whereas Levin et al. (2002) and IPS (2003) provide values for
small T as well.

The relative performance of several second generation tests have been studied
by Gutierrez (2003), and Gengenbach et al. (2006a), where the cross-section de-
pendence is assumed to follow a factor structure. The results very much depend on
the underlying model. The simulations carried out by Gengenbach et al. (2006a)
show that in general, the mean CADF test has better size properties than the test of
Moon and Perron (2004), which tends to be conservative in small samples. However
the latter test appears to have more power against stationary idiosyncratic compo-
nents. Since these tests remove the common factors, they will eventually indicate
stationary time series in cases where the series are actually nonstationary due to a
common stochastic trend. The results of Gengenbach et al. (2006a) also suggest that
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the approach of Bai and Ng (2004) is able to cope with this possibility although the
power of the unit test applied to the nonstationary component is not very high.

In general, the application of factor models in the case of weak correlation does
not yield valid test procedures. Alternative unit root tests that allow for weak cross
section dependence are considered in Breitung and Das (2005). They found that the
GLS t-statistic may have a severe size bias if T is only slightly larger than N. In
these cases Chang’s (2004) bootstrap procedure is able to improve the size prop-
erties substantially. The robust OLS t-statistic performs slightly worse but outper-
forms the nonlinear IV test of Chang (2002). However, Monte Carlo simulations
recently carried out by Baltagi, Bresson and Pirotte (2007) show that there can be
considerable size distortions even in panel unit root tests that allow for weak de-
pendence. Interestingly enough Pesaran’s test, which is not designed for weak cross
section dependence, tends to be the most robust to spatial type dependence.

9.6 Panel Cointegration: General Considerations

The estimation of long-run relationships has been the focus of extensive research
in time series econometrics. In the case of variables on a single cross section unit
the existence and the nature of long-run relations are investigated using cointegra-
tion techniques developed by Engle and Granger (1987), Johansen (1991, 1995) and
Phillips (1991). In this literature residual-based and system approaches to cointegra-
tion are advanced. In this section we review the panel counter part of this literature.
But before considering the problem of cointegration in a panel a brief overview of
the cointegration literature would be helpful.

Consider the ni time series variables zit = (zi1t , zi2t , . . . , zinit)
′ observed on the

ith cross section unit over the period t = 1, 2, . . . , T , and suppose that for each i

zi jt ∼ I(1), j = 1, 2, . . . ., ni .

Then zit is said to form one or more cointegrating relations if there are linear com-
binations of zi jt’s for j = 1, 2, . . . , ni that are I (0) i.e. if there exists an ni×ri matrix
(ri ≥ 1) such that

β ′i
ri×ni

zit

ni×1
= ξξξ it

ri×1
∼ I (0) .

ri denotes the number of cointegrating (or long-run) relations. The residual-based
tests are appropriate when ri = 1, and zit can be partitioned such that zit = (yit ,x′it)

′

with no cointegration amongst the ki × 1 (ki = ni − 1) variables, xit . The system
cointegration approaches are much more generally applicable and allow for ri > 1
and do not require any particular partitioning of the variables in zit .9 Another main
difference between the two approaches is the way the stationary component of

9 System approaches to cointegration analysis that allow for weakly exogenous (or long-run forc-
ing) variables has been considered in Pesaran, Shin and Smith (2000).
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ξξξ it is treated in the analysis. Most of the residual-based techniques employ non-
parametric (spectral density) procedures to model the residual serial correlation in
the error correction terms, ξξξ it , whilst vector autoregressions (VAR) are utilized in
the development of system approaches.

In panel data models the analysis of cointegration is further complicated by het-
erogeneity, unbalanced panels, cross section dependence, cross unit cointegration
and the N and T asymptotics. But in cases where ni and N are small such that
Σ N

i=1ni is less than 10, and T is relatively large (T > 100), as noted by Banerjee,
Marcellino and Osbat (2004), many of these problems can be avoided by applying
the system cointegration techniques to the pooled vector, zt = (z′1t , z′2t , . . . , z′Nt)

′. In
this setting cointegration will be defined by the relationships β ′zt that could contain
cointegration between variables from different cross section units as well as coin-
tegration amongst the different variables specific to a particular cross section unit.
This framework can also deal with residual cross section dependence since it allows
for a general error covariance matrix that covers all the variables in the panel.

Despite its attractive theoretical features, the ‘full’ system approach to panel
cointegration is not feasible even in the case of panels with moderate values of
N and ni. See Sect. 9.10 below for further details. In practice, cross section coin-
tegration can be accommodated using common factors as in the work of Bai and
Ng (2004), Pesaran (2006), Pesaran, Schuermann and Weiner (2004, PSW) and its
subsequent developments in Dees, di Mauro, Pesaran and Smith (2007, DdPS). Bai
and Ng (2004) consider the simple case where ni = 1 but allow N and T to be large.
But their set up can be readily generalized so that cointegration within each cross
section unit as well as across the units can be considered. Following DdPS suppose
that10

zit = ΓΓΓiddt +ΓΓΓi f ft +ξξξ it , (9.41)

for i = 1, . . . , N; t = 1, 2, . . . , T , and to simplify the exposition assume that ni = n,
where as before dt is the s× 1 vector of deterministics (1, t) or observed common
factors such as oil prices, ft is a m× 1 vector of unobserved common factors, ΓΓΓid

and ΓΓΓi f are n× s and n×m associated unknown coefficient matrices, ξξξ it is an n×1
vector of error terms.

Unit root and cointegration properties of zit , i = 1, 2, . . . , N, can be analyzed by
allowing the common factors, ft , and/or the country-specific factors, ξξξ it , to have unit
roots. To see this suppose

Δft = ΛΛΛ(L)ηηη t , ηηη t ∼ IID(0, Im) , (9.42)

Δξξξ it = ΨΨΨi (L)vit , vit ∼ IID(0, In) , (9.43)

where L is the lag operator and

10 DdPS also allow for common observed macro factors (such as oil prices), but they are not
included to simplify the exposition.
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ΛΛΛ(L) =
∞

∑
�=0

ΛΛΛ�
m×m

L�, ΨΨΨi (L) =
∞

∑
�=0

ΨΨΨi�
n×n

L� . (9.44)

The coefficient matrices, ΛΛΛ� and ΨΨΨi�, i = 1, 2, . . . , N, are absolute summable, so that
Var(Δft) and Var(Δξξξ it) are bounded and positive definite, and [ΨΨΨi (L)]−1 exists. In
particular we require that

||
∞

∑
�=0

ΨΨΨi�ΨΨΨ′
i�|| ≤ K < ∞ , (9.45)

where K is a fixed constant.
Using the familiar decomposition

ΛΛΛ(L) = ΛΛΛ(1)+(1−L)ΛΛΛ∗ (L) , and ΨΨΨi (L) = ΨΨΨi (1)+(1−L)ΨΨΨ∗
i (L) ,

the common stochastic trend representations of (9.42) and (9.43) can now be written
as

ft = f0 +ΛΛΛ(1)st +ΛΛΛ∗ (L)(ηηη t −ηηη0) ,

and
ξξξ it = ξξξ i0 +ΨΨΨi (1)sit +ΨΨΨ∗

i (L)(vit −vi0) ,

where

st =
t

∑
j=1

ηηη j and sit =
t

∑
j=1

vi j .

Using the above results in (9.41) now yields

zit = ai +ΓΓΓiddt +ΓΓΓi f ΛΛΛ(1)st +ΨΨΨi (1)sit

+ΓΓΓi f ΛΛΛ∗ (L)ηηη t +ΨΨΨ∗
i (L)vit ,

where11

ai = ΓΓΓi f [f0−ΛΛΛ∗ (L)ηηη0]+ξξξ i0−ΨΨΨ∗
i (L)vi0 .

In this representation ΛΛΛ(1)st and ΨΨΨi (1)sit can be viewed as common global and
individual-specific stochastic trends, respectively; whilst ΛΛΛ∗ (L)ηηη t and ΨΨΨ∗

i (L)vit are
the common and individual-specific stationary components. From this result it is
clear that, in general, it will not be possible to simultaneously eliminate the two
types of the common stochastic trends (global and individual-specific) in zit .

Specific cases of interest where it would be possible for zit to form a cointegrating
vector are when ΛΛΛ(1) = 0 or ΨΨΨi (1) = 0. Under the former panel cointegration exists
if ΨΨΨi (1) is rank deficient. The number of cointegrating relations could differ across
i and is given by ri = n−Rank [ΨΨΨi (1)]. Note that even in this case zit can be cross-
sectionally correlated through the common stationary components, ΛΛΛ∗ (L)ηηη t . Under
ΨΨΨi (1) = 0 for all i with ΛΛΛ(1) �= 0, we will have panel cointegration if there exists

11 In usual case where dt is specified to include an intercept, 1, ai can be absorbed into the deter-
ministics.
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n× ri matrices βi such that β ′i ΓΓΓi f ΛΛΛ(1) = 0. Notice that this does not require ΛΛΛ(1)
to be rank deficient.

Turning to the case where ΛΛΛ(1) and ΨΨΨi (1) are both non-zero, panel cointegra-
tion could still exist but must involve both zit and ft . But since ft is unobserved
it must be replaced by a suitable estimate. The global VAR (GVAR) approach of
Pesaran et al. (2004) and Dees et al. (2007) implements this idea by replacing ft

with the (weighted) cross section averages of zit . To see how this can be justified
first differencing (9.41) and using (9.43) note that

[ΨΨΨi (L)]−1 (1−L)
(
zit −ΓΓΓiddt −ΓΓΓi f ft

)
= vit .

Using the approximation

(1−L) [ΨΨΨi (L)]−1
≈

p

∑
�=0

ΦΦΦi�L
� = ΦΦΦi (L, p) ,

we obtain the following approximate VAR(p) model

ΦΦΦi (L, p)
(
zit −ΓΓΓiddt −ΓΓΓi f ft

)
≈ vit . (9.46)

When the common factors, ft , are observed the model for the ith cross-section unit
decouples from the rest of the units and can be estimated using the econometric
techniques developed in Pesaran et al. (2000) with ft treated as weakly exogenous.
But in general where the common factors are unobserved appropriate proxies for
the common factors can be used. There are two possible approaches, one could
either use the principal components of the observables, zit , or alternatively following
Pesaran (2006) ft can be approximated in terms of z̄t = N−1Σ N

i=1zit , the cross section
averages of the observables. To see how this procedure could be justified in the
present context, average the individual equations given by (9.41) over i to obtain

z̄t = Γ̄̄Γ̄Γddt + Γ̄̄Γ̄Γ f ft + ξ̄̄ξ̄ξ t , (9.47)

where Γ̄̄Γ̄Γd = N−1Σ N
i=1ΓΓΓid , Γ̄̄Γ̄Γ f = N−1Σ N

i=1ΓΓΓi f , and ξ̄̄ξ̄ξ t = N−1Σ N
i=1ξξξ it . Also, note from

(9.43) that

ξ̄̄ξ̄ξ t − ξ̄̄ξ̄ξ t−1 = N−1
N

∑
j=1

ΨΨΨ j (L)v jt . (9.48)

But using results in Pesaran (2006), for each t and as N→∞ we have ξ̄̄ξ̄ξ t−ξ̄̄ξ̄ξ t−1
q.m.→ 0,

and hence ξ̄̄ξ̄ξ t
q.m.→ ξ̄̄ξ̄ξ , where ξ̄̄ξ̄ξ is a time-invariant random variable. Using this result

in (9.47) and assuming that the n×m average factor loading coefficient matrix, Γ̄̄Γ̄Γ f ,
has full column rank (with n≥ m) we obtain

ft
q.m.→
(

Γ̄̄Γ̄Γ
′
f Γ̄̄Γ̄Γ f

)−1
Γ̄̄Γ̄Γ f

(
z̄t − Γ̄̄Γ̄Γddt − ξ̄̄ξ̄ξ

)
,
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which justifies using the observable vector {dt , z̄t} as proxies for the unobserved
common factors.

The various contributions to the panel cointegration literature will now be re-
viewed in the context of the above general set up. First generation literature on panel
cointegration tends to ignore the possible effects of global unobserved common fac-
tors, or attempts to account for them either by cross-section de-meaning or by using
observable common effects such as oil prices or U.S. output. This literature also
focusses on residual based approaches where it is often assumed that there exists
at most one cointegrating relation in the individual specific models. Notable con-
tributions to this strand of the literature include Kao (1999); Pedroni (1999, 2001,
2004); and more recently Westerlund (2005a). System approaches to panel coin-
tegration that allow for more than one cointegrating relations include the work of
Larsson, Lyhagen and Lothgren (2001), Groen and Kleibergen (2003) and Breitung
(2005) who generalized the likelihood approach introduced in Pesaran, Shin and
Smith (1999). Like the second generation panel unit root tests, recent contributions
to the analysis of panel cointegration have also emphasized the importance of al-
lowing for cross section dependence which, as we have noted above, could be due
to the presence of common stationary or non-stationary components or both. The
importance of allowing for the latter has been emphasized in Banerjee et al. (2004)
through the use of Monte Carlo experiments in the case of panels where N is very
small, at most 8 in their analysis. But to date a general approach that is capable of
addressing all the various issues involved does not exist if N is relatively large.

We now consider in some further detail the main contributions, beginning with a
brief discussion of the spurious regression problem in panels.

9.7 Residual-Based Approaches to Panel Cointegration

Under this approach zit is partitioned as zit = (yit , x′it)
′ and the following regressions

yit = δ′idit +x′itβ +uit , i = 1, 2, . . . , N , (9.49)

are considered, where as before δ′idit represent the deterministics and the k×1 vec-
tor of regressors, xit , are assumed to be I(1) and not cointegrated. However, the
innovations in Δxit , denoted by εit = Δxit −E(Δxit), are allowed to be correlated
with uit . Residual-based approaches to panel cointegration focus on testing for unit
roots in OLS or panel estimates of uit .

9.7.1 Spurious Regression

Let wit = (uit , ε ′it)
′ and assume that the conditions for the functional central limit

theorem are satisfied such that
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1√
T

[·T ]

∑
t=1

wit
d→ Σ1/2

i Wi(·) ,

where Wi is a (k + 1)× 1 vector of standard Brownian motions,
d→ denotes weak

convergence on D[0,1] and

Σi =

[
σ2

i,u σσσ i,uε

σσσ ′i,uε Σi,εε

]

.

Kao (1999) showed that in the homogeneous case with ΣΣΣi = ΣΣΣ, i = 1, . . . , N, and
abstracting from the deterministics, the OLS estimator β̂ converges in probability
to the limit ΣΣΣ−1

εε σσσεu, where it is assumed that wit is i.i.d. across i. In the hetero-
geneous case ΣΣΣεε and σσσεu are replaced by the means Σεε = N−1 ∑N

i=1 Σi,εε and
σσσεu = N−1 ∑N

i=1 σσσ i,εu, respectively (cf. Pedroni, 2000). In contrast, the OLS esti-
mator of β fails to converge within a pure time series framework (cf. Phillips 1987).
On the other hand, if xit and yit are independent random walks, then the t-statistics
for the hypothesis that one component of β is zero is Op(T 1/2) and, therefore, the t-
statistic has similar properties as in the time series case. As demonstrated by Entorf
(1997) and Kao (1999), the tendency for spuriously indicating a relationship among
yit and xit may even be stronger in panel data regressions as in the pure time series
case. Therefore, it is important to test whether the errors in a panel data regression
like (9.49) are stationary.

9.7.2 Tests of Panel Cointegration

As in the pure time series framework, the variables in a regression function can
be tested against cointegration by applying unit roots tests of the sort suggested
in the previous sections to the residuals of the estimated regression. Unfortunately,
panel unit root tests cannot be applied to the residuals in (9.49) if xit is (long-run)
endogenous, that is, if σσσεu �= 0. Letting T → ∞ be followed by N → ∞, Kao (1999)
show that the limiting distribution of the DF t-statistic applied to the residuals of a
pooled OLS regression of (9.49) is

(tφ −
√

N μK)/σK
d→ N (0, 1) , (9.50)

where the values of μK and σK depend on the kind of deterministics included in the
regression, the contemporaneous covariance matrix E(witw′it) and the long-run co-
variance matrix Σi. Kao (1999) proposed adjusting tφ by using consistent estimates
of μK and σK , where he assumes that the nuisance parameters are the same for all
panel units (homogenous short-run dynamics).

Pedroni (2004) suggest two different test statistics for the models with heteroge-
neous cointegration vectors. Let ûit = yit − δ̂̂δ̂δ′idit − β̂ ′i xit denote the OLS residual of
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the cointegration regression. Pedroni considers two different classes of test statis-
tics: (i) the “panel statistic” that is equivalent to the unit root statistic against
homogeneous alternatives and (ii) the “Group Mean statistic” that is analogous to
the panel unit root tests against heterogeneous alternatives. The two versions of the
t statistic are defined as

panel ZPt =

(

σ̃2
NT

N

∑
i=1

T

∑
t=1

û2
i, t−1

)−1/2( N

∑
i=1

T

∑
t=1

ûi, t−1ûit −T
N

∑
i=1

λ̂i

)

group-mean Z̃Pt =
N

∑
i=1

(

σ̂2
ie

T

∑
t=1

û2
i,t−1

)−1/2( T

∑
t=1

ûi,t−1ûit −T λ̂i

)

where λ̂i is a consistent estimator of the one-sided long run variance λi = ∑∞
j=1

E(eitei, t− j), eit = uit − δiui, t−1, δi = E(uitui, t−1)/E(u2
i, t−1), σ̂2

ie denotes the esti-

mated variance of eit and σ̃2
NT = N−1 ∑N

i=1 σ̂2
ie. Pedroni presents values of μp, σ2

p

and μ̃p, σ̃2
p such that (ZPt − μp

√
N)/σp and (Z̃Pt − μ̃p

√
N)/σ̃p have standard nor-

mal limiting distributions under the null hypothesis.
Other residual-based panel cointegration tests include the recent contribution of

Westerlund (2005a) that are based on variance ratio statistics and do not require
corrections for the residual serial correlations.

The finite sample properties of some residual based test for panel cointegration
are discussed in Baltagi and Kao (2000). Gutierrez (2003) compares the power of
various panel cointegration test statistics. He shows that in homogeneous panels
with a small number of time periods Kao’s tests tend to have higher power than
Pedroni’s tests, whereas in panels with large T the latter tests performs best. Both
test outperform the system test suggested by Larssen et al. (2001). Hlouskova and
Wagner (2007) compare various panel cointegration tests in a large scale simula-
tion study. They found that Pedroni’s (2004) test based on ADF regressions per-
forms best, whereas all other tests tend to be severely undersized and have very low
power in may cases. Furthermore, the system tests suffer from large small sample
distortions and are unreliable tools for finding out the correct cointegration rank.
Gengenbach et al. (2006b) investigate the performance of Pedroni’s tests in cross-
dependent models with a factor structure.

9.8 Tests for Multiple Cointegration

It is also possible to adapt Johansen’s (1995) multivariate test based on a VAR repre-
sentation of the variables. Let Λi(r) denote the cross-section specific likelihood-ratio
(“trace”) statistic of the hypothesis that there are (at most) r stationary linear combi-
nations in the cointegrated VAR system given by zit = (yit , x′it)

′. Following the unit
root test proposed in IPS (2003), Larsson et al. (2001) suggested the standardized
LR-bar statistic
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Λ̃(r) =
1√
N

N

∑
i=1

Λi(r)−E[λi(r)]√
Var[λi(r)]

,

to test the null hypothesis that r = 0 against the alternative that at most r = r0 ≥ 1.
Using a sequential limit theory it can be shown that Λ̃(r) is asymptotically standard
normally distributed. Asymptotic values of E[λi(r)] and Var[λi(r)] are tabulated in
Larsson et al. (2001) for the model without deterministic terms and Breitung (2005)
for models with a constant and a linear time trend. Unlike the residual-based tests,
the LR-bar test allows for the possibility of multiple cointegration relations in the
panel.

It is also possible to test the null hypothesis that the errors of the cointegration
regression are stationary. That is, under the null hypothesis it is assumed that yit , xit

are cointegrated with cointegration rank r = 1. McCoskey and Kao (1998) sug-
gest a panel version of Shin’s (1994) cointegration test based on the residuals of a
fully modified OLS regression. Westerlund (2005b) suggests a related test procedure
based on the CUSUM statistic.

9.9 Estimation of Cointegrating Relations in Panels

9.9.1 Single Equation Estimators

First, we consider a single-equation framework where it is assumed that yit and
the k× 1 vector of regressors xit are I(1) with at most one cointegrating relations
amongst them, namely that there exists a linear relationship of the form (9.49) such
that the error uit is stationary. As before it is assumed that zit = (yit , x′it)

′ is i.i.d.
across i, and the regressors, xit , are not cointegrated. We do not explicitly consider
deterministic terms like individual specific constants or trends as the asymptotic
theory applies to mean- or trend-adjusted variables as well.

It is assumed that the vector of coefficients, β , is the same for all cross-section
units, that is, a homogeneous cointegration relationship is assumed. Alternatively,
it may be assumed that the cointegration parameters are cross section specific
(heterogenous cointegration).

By applying a sequential limit theory it can be shown that the OLS estimator
of β is T

√
N consistent and, therefore, the time series dimension is more informa-

tive on the long-run coefficients than the cross-section dimension. Furthermore, is
important to notice that – as in the time series framework – the OLS estimator is
consistent but inefficient in the model with endogenous regressors.

Pedroni (1995) and Phillips and Moon (1999, p. 1085) proposed a “fully-
modified OLS” (FM-OLS) approach to obtain an asymptotically efficient estima-
tor for homogenous cointegration vectors. This estimator adjusts for the effects
of endogenous regressors and short-run dynamics of the errors (cf. Phillips and
Hansen, 1990). To correct for the effect of (long-run) endogeneity of the regressors,
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the dependent variable is adjusted for the part of the error that is correlated with the
regressor

y+
it = yit −σσσ ′i,εuΣΣΣ−1

i,εε Δxit . (9.51)

A second correction is necessary when computing the OLS estimator

β̂FM =

[
N

∑
i=1

T

∑
t=1

xitx′it

]−1[ N

∑
i=1

T

∑
t=1

(xit y
+
it −λi,εu)

]

, (9.52)

where

λλλ i,εu = E

(
∞

∑
j=0

εi, t− juit

)

.

The nuisance parameters can be estimated consistently using familiar nonparametric
procedures.

An alternative approach is the “Dynamic OLS” (DOLS) estimator suggested by
Saikkonen (1991). This estimator is based on the error decomposition

uit =
∞

∑
k=−∞

γ ′k Δxi, t+k + vit , (9.53)

where vit is orthogonal to all leads and lags of Δxit . Inserting (9.53) in the regression
(9.49) yields

yit = β ′xit +
∞

∑
k=−∞

γ ′k Δxi,t+k + vit . (9.54)

In practice the infinite sums are truncated at some small numbers of leads and lags
(cf. Kao and Chiang, 2000, Mark and Sul, 2003). Westerlund (2005c) considers
data dependent choices of the truncation lags. Kao and Chiang (2000) show that in
the homogeneous case with ΣΣΣi = ΣΣΣ and individual specific intercepts the limiting
distribution of the DOLS estimator β̂DOLS is given by

T
√

N(β̂DOLS−β ) d→ N (0,6σ2
u|ε ΣΣΣ−1

εε ) ,

where

σ2
u|ε = σ2

u −σ ′εuΣΣΣ−1
εε σεu .

Furthermore, the FM-OLS estimator possesses the same asymptotic distribution
as the DOLS estimator. In the heterogeneous case ΣΣΣεε and σ2

u|ε are replaced by

ΣΣΣεε = N−1 ∑N
i=1 ΣΣΣi,εε and σ2

u|ε = N−1 ∑N
i=1 σ2

i,u|ε , respectively (cf. Phillips and
Moon, 1999). Again, the matrix Σi can be estimated consistently (for T → ∞) by
using a nonparametric approach.

In many applications the number of time periods is smaller than 20 and, therefore,
the kernel based estimators of the nuisance parameters may perform poorly in such
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small samples. Pesaran et al. (1999) adapted a parametric model to estimate the
cointegration vector based on the error correction format

Δyit = φiyi, t−1 + γ ′i xit + vit , (9.55)

where for simplicity of exposition we have abstracted from deterministics and
lagged changes in yit and xit .12 It is assumed that the long-run parameters are iden-
tical across the cross section units, i.e., βi =−γi/φi = β for i = 1, . . . , N. Economic
theory often predicts the same cointegration relation(s) across the cross section
units, although is often silent on the magnitude of short-run dynamics, φi, across
i. For example, the long-run relationships predicted by the PPP, the uncovered inter-
est parity, or the Fisher equation are the same across countries, although the speed
of convergence to these long-run relations could differ markedly over countries due
to differences in economic and political institutions.13 For further discussions see,
for example, Pesaran (1997).

Letting ζit(β ) = yi, t−1−β ′xit , the model is rewritten as

Δ yit = φiζit(β )+ vit . (9.56)

Pesaran et al. (1999) have suggested an ML estimation method based on the con-
centrated likelihood function

Lc(β ) = c−
N

∑
i=1

T
2

log |σ̂2
i,v(β )| , (9.57)

where c is a constant, and

σ̂2
i,v(β ) =

1
T

T

∑
t=1

ṽit(β )2,

ṽit(β ) = Δyit −

⎛

⎜
⎜
⎝

T
∑

t=1
Δyitζit(β )

T
∑

t=1
ζit(β )2

⎞

⎟
⎟
⎠ζit(β ) .

Pesaran et al. (1999) suggested a Gauss–Newton algorithm to maximize (9.57). The
means of the error correction coefficients are estimated by the simple average of the
individual coefficients (or the ML estimates) of φi, i = 1, . . . , N. This estimator is
called the pooled mean group estimator.

12 Since there are no restrictions on the additional variables they can be concentrated out from the
likelihood function by replacing Δyit , yi, t−1 and xit by residuals obtained from regressions on the
deterministic terms and lagged differences of the variables, Δ zi, t−1, Δ zi, t−2, . . .
13 The problem of testing the slope homogeneity hypothesis in panels is reviewed in Hsiao and
Pesaran (2008).
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9.9.2 System Estimators

The single equation estimators have several drawbacks that can be avoided by using
a system approach. First, these estimators assume that all regressors are I(1) and not
cointegrated. If there are more than one cointegration relationships, then the matrix
ΣΣΣεε is singular and the asymptotic results are no longer valid. Second, the cointe-
gration relationship has to be normalized such that the variable yit enters with unit
coefficient. As has been argued by Boswijk (1995), this normalization is problem-
atical if the original coefficient of the variable yit tends to zero.

In the case of short panels with T fixed and N large, Binder, Hsiao and Pesaran
(2005) consider estimation and inference in panel vector autoregressions (PVARs)
with homogeneous slopes where (i) the individual effects are either random or
fixed, (ii) the time-series properties of the model variables are unknown a priori
and may feature unit roots and cointegrating relations. Generalized Method of Mo-
ments (GMM) and Quasi Maximum Likelihood (QML) estimators are obtained and
compared in terms of their asymptotic and finite sample properties. It is shown that
the asymptotic variances of the GMM estimators that are based on levels as well
as first-differences of the model variables depend on the variance of the individ-
ual effects; whereas by construction the fixed effects QML estimator is not subject
to this problem. Monte Carlo evidence is provided showing that the fixed effects
QML estimator tends to outperform the various GMM estimators in finite sample
under both normal and non-normal errors. The paper also shows how the fixed ef-
fects QML estimator can be successfully used for unit root and cointegration tests
in short panels.

In the case of panels with large N and T , Larsson and Lyhagen (1999), Groen and
Kleibergen (2003) and Breitung (2005) consider the vector error correction model
(VECM) for the k +1 dimensional vector zit = (yit ,x′it)

′ given by

Δzit = αiβ ′i zi, t−1 +wit , (9.58)

where wit = (uit , ε ′it)′ and once again we leave out deterministic terms and lagged
differences. To be consistent with the approaches considered above, we confine
ourselves to the case of homogenous cointegration, that is, we let βi = β for
i = 1, . . . , N. Larsson and Lyhagen (1999) propose a ML estimator, whereas the
estimator of Groen and Kleibergen (2003) is based on a nonlinear GMM approach.

It is well known that the ML estimator of the cointegration parameters for a
single series may behave poorly in small samples. Phillips (1994) has shown that the
finite sample moments of the estimator do not exist. Using Monte Carlo simulations
Hansen, Kim and Mittnik (1998) and Brüggemann and Lütkepohl (2005) found
that the ML estimator may produce implausible estimates far away from the true
parameter values. Furthermore the asymptotic χ2 distribution of the likelihood ratio
test for restrictions on the cointegration parameters may be a poor guide for small
sample inference (e.g. Gredenhoff and Jacobson, 2001).

To overcome these problems, Breitung (2005) proposed a computationally con-
venient two-step estimator, which is adopted from Ahn and Reinsel (1990). This
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estimator is based on the fact that the Fisher information is block-diagonal with re-
spect to the short and long-run parameters. Accordingly, an asymptotically efficient
estimator can be constructed by estimating the short and long-run parameters in sep-
arate steps. Suppose that the n× r matrix of cointegrating vectors is “normalized”
as β = (Ir, B)′, where Ir is the identity matrix of order r and B is the (n− r)× r
matrix of unknown coefficients.14 Then β is exactly identified and the Gaussian ML
estimator of B is equivalent to the OLS estimator of B in

z∗it = Bz(2)
i, t−1 +vit , (9.59)

where z(2)
it is the r×1 vector defined by zit = [z(1)

it

′
, z(2)

it

′
]′, and

z∗it = (ααα ′iΣΣΣ
−1
i ααα i)−1ααα ′iΣΣΣ

−1
i Δzit − z(1)

i, t−1 .

The matrices ααα i and ΣΣΣi can be replaced by
√

T -consistent estimates without affect-
ing the limiting distribution. Accordingly, these matrices can be estimated for each
panel unit separately, e.g., by using Johansen’s (1991) ML estimator. To obtain the
same normalization as in (9.59) the estimator for ααα i is multiplied with the r× r
upper block of the ML estimator of β .

Breitung (2005) showed that the limiting distribution of the OLS estimator of
B is asymptotically normal. Therefore, tests of restrictions on the cointegration pa-
rameters have the standard limiting distributions (i.e. a χ2 distribution for the usual
Wald tests).

Some Monte Carlo experiments were performed by Breitung (2005) to com-
pare the small sample properties of the two-step estimator with the FM-OLS and
DOLS estimators. The results suggest that the latter two tests may be severely
biased in small samples, whereas the bias of the two-step estimator is relatively
small. Furthermore, the standard errors (and hence the size properties of the t-
statistics) of the two-step procedure are more reliable than the ones of the semi-
parametric estimation procedures. In a large scale simulation study, Hlouskova and
Wagner (2007) found that the DOLS estimator outperforms all other estimators,
whereas the FM-OLS and the two-step estimator perform similarly.

9.10 Cross-Section Dependence and the Global VAR

As pointed out earlier an important limitation of the econometric approaches dis-
cussed so far is that they assume that all cross-section units are independent. In many
applications based on multi-country data sets this assumption is clearly unrealistic.

14 The analysis can be readily modified to take account of other types of exact identifying re-
strictions on β that might be more appropriate from the view-point of long-run economic theory.
See Pesaran and Shin (2002) for a general discussion of identification and testing of cointegrating
relations in the context of a single cross section units.
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To accommodate cross-dependence among panel units Mark, Ogaki and Sul (2004)
and Moon and Perron (2007) proposed a Dynamic Seemingly Unrelated Regres-
sion (DSUR) estimator. Their approach is based on a GLS estimator of the dynamic
representation (9.54) when there exists a single cointegrating relation between yit

and xit , and does not allow for the possibility of cross unit cointegration. Let

hit(p) =
(

Δx′i, t−p , . . . , Δx′i, t+p

)′
and hpt = (h1t(p)′, . . . , hNt(p)′)′. To correct for

endogeneity of the regressors, first yit and xit are regressed on hpt . Let ỹit and x̃it

denote the resulting regression residuals. Furthermore, define ỹt = (ỹ1t , . . . , ỹNt)
′

and X̃t = (x̃1t , . . . , x̃Nt)
′. The DSUR estimator of the (homogeneous) cointegration

vector is

β̂dsur =

(
T−p

∑
t=p+1

X̃′tΣ
−1
uu X̃t

)
T−p

∑
t=p+1

X̃′tΣ
−1
uu ỹt (9.60)

where ΣΣΣuu denotes the long-run covariance matrix of ut = (u1t , . . . , uNt)
′, namely

ΣΣΣuu = lim
T→∞

1
T

E

[(
T

∑
t=1

ut

)(
T

∑
t=1

u′t

)]

,

for a fixed N. This matrix is estimated by using an autoregressive representation of
ut . See also (9.53). An alternative approach is suggested by Breitung (2005), where
a SUR procedure is applied in the second step of the two-step estimator.

To estimate panel data regression models with a multifactor error structure
Pesaran (2006) proposed the common correlated effects (CCE) estimator. The basic
idea of this estimation procedure is to filter the individual-specific regressors by
means of cross-section averages such that the differential effects of unobserved com-
mon factors are eliminated. An extension of this analysis to non-stationary common
factors is provided in Kapetanios, Pesaran and Yamagata (2006). Also as shown by
Kapetanios (2007) the CCE estimator can be applied to a cointegrated panel data
regression. An empirical application to the analysis of house prices in the US is
provided in Holly, Pesaran and Yamagata (2007).

Bai and Kao (2005), Westerlund (2007b), and Bai, Kao and Ng (2007) suggest
estimators for the cointegrated panel data model given by

yit = β ′xit + γ ′i ft + eit (9.61)

where ft is a r× 1 vector of common factors and eit is the idiosyncratic error. Bai
and Kao (2005) and Westerlund (2007b) assume that ft is stationary. They suggest
an FM-OLS cointegration regression that accounts for the cross-correlation due to
the common factors. Bai et al. (2007) consider a model with nonstationary factors.
Their estimation procedure is based on a sequential minimization of the criterion
function

SNT (β , f1, . . . , fT , γ1, . . . , γN) =
N

∑
i=1

T

∑
t=1

(yit −β ′xit − γ ′i ft)2 (9.62)
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subject to the constraint T−2 ∑T
t=1 ft f ′t = Ir and ∑N

i=1 γiγ ′i being diagonal. The
asymptotic bias of the resulting estimator is corrected for by using an additive bias
adjustment term or by using a procedure similar to the FM-OLS estimator suggested
by Phillips and Hansen (1990).

A common feature of these approaches is that cross-section dependence can be
represented by a contemporaneous correlation of the errors, and do not allow for
the possibility of cross unit cointegration. In many applications it is more realistic
to allow for some form of dynamic cross-section dependence. A general model to
accommodate cross-section cointegration and dynamic links between panel units is
the panel VECM model considered by Groen and Kleibergen (2003) and Larsson
and Lyhagen (1999). As in Sect. 9.6, let zit denote a n-dimensional vector of times
series on the ith cross section unit. Consider the nN×1 vector zt = (z′1t , . . . , z′Nt)

′ of
all available time series in the panel data set. The VECM representation of this time
series vector is

Δzt = Πzt−1 +Γ1Δzt−1 + · · ·+ΓpΔzt−p +ut . (9.63)

For cointegrated systems rank(Π) < nN. It is obvious that such systems typically
involve a large number of parameters as the number of parameters increases with
N2. Therefore, to obtain reliable estimates of the parameters T must be considerably
larger than N. In many macroeconomic applications, however, the number of time
periods is roughly as large as the number of cross-section units. Therefore, a simple
structure must be imposed on the matrices ΠΠΠ, ΓΓΓ1, . . . , ΓΓΓp that yields a reasonable
approximation to the underlying dynamic system.

The Global VAR (GVAR) introduced by Pesaran, Schuermann and Weiner (2004)
and further developed in Dees et al. (2007) can be seen as a theory guided reduction
of the general dynamic model given by (9.41), (9.42) and (9.43). In the context of
this set up the individual cross section models in the GVAR can be approximated by
the VARZ∗(pi, pi) in zit and z∗it :

15

ΦΦΦi (L, pi)
(
zit −ΓΓΓiddt −ΓΓΓi f z∗it

)
= vit . (9.64)

for i = 1, 2, . . . , N, where dt are the observed common effects (such as intercepts,
time trends or oil prices), and z∗it is defined by

z∗it =
N

∑
j=1

wi jz jt .

The weights, wi j, j = 1, 2, . . . , N must satisfy the following conditions

wii = 0,
N

∑
j=1

wi j = 1, and
N

∑
j=1

w2
i j → 0, as N → ∞ ,

15 VARZ* represents a VAR model augmented with z∗it as weakly exogenous variables.
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and could be time varying. Typical examples of such weights are wi j = 1/(N−1),
for i �= j, trade weights or other measures of economic distance between the cross
section units. The estimation of (9.64) can proceed by treating the cross section av-
erages as weakly exogenous I(1) variables using standard time series cointegration
techniques developed, for example, in Pesaran et al. (2000). The assumption that z∗it
are weakly exogenous I(1), or long-run forcing, for zit , can be tested. For further
details see Pesaran et al. (2004). It turns out that this is a reasonable assumption for
all countries except for the U.S. where most of the variables should be treated as
endogenous.

9.11 Concluding Remarks

As this review shows the literature on panel unit roots and cointegration has been
expanding very rapidly; in part responding to the complex nature of the interactions
and dependencies that generally exist over time and across the individual units in
the panel. Observations on firms, industries, regions and countries tend to be cross
correlated as well as serially dependent. The problem of cross section dependence is
particularly difficult to deal with since it could arise for a variety of reasons; spatial
spill over effects, common unobserved shocks, social interactions or a combination
of these factors. Parameter heterogeneity and deterministics also pose additional
difficulties and how they are treated under the null and the alternative hypothesis
can affect the outcome of the empirical analysis.

Initially, the panel unit root and cointegration tests were developed assuming that
the errors of the individual equations are cross sectionally independent. These, re-
ferred to as the first generation tests, continue to form an important part of the liter-
ature, providing a theoretical basis for the more recent (second generation) develop-
ments that attempt to take account of the residual cross section dependence in panels
in the case of panels where the time dimension and the cross section dimension are
both relatively large. In the analysis of cointegration the hypothesis testing and es-
timation problems are also further complicated by the possibility of cross section
cointegration. These and other issues are currently the subject of extensive research.
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Chapter 10
Measurement Errors and Simultaneity

Erik Biørn and Jayalakshmi Krishnakumar

10.1 Introduction

This chapter is concerned with the problem of endogeneity of certain explanatory
variables in a regression equation. There are two potential sources of endogeneity in
a panel data model with individual and time specific effects : (i) correlation between
explanatory variables and specific effects (when treated random) and (ii) correlation
between explanatory variables and the residual/idiosyncratic error term.

The first case was extensively dealt with in Chap. 4 of this book and hence we
will not go into it here. In this chapter we are more concerned with a non-zero
correlation between the explanatory variables and the overall error consisting of
both the specific effect and the genuine disturbance term. One might call it double
endogeneity as opposed to the single endogeneity in the former situation.

In this chapter we consider two major causes of this double endogeneity encoun-
tered in practical situations. One of them is the presence of measurement errors in
the explanatory variables. This will be the object of study of Sect. 10.2. Another
major source is the simultaneity problem that arises when the regression equation
is one of several structural equations of a simultaneous model and hence contains
current endogenous explanatory variables. Sect. 10.3 will look into this problem in
detail and Sect. 10.4 concludes the chapter.

10.2 Measurement Errors and Panel Data

A familiar and notable property of the Ordinary Least Squares (OLS) when there
are random measurement errors (errors-in-variables, EIV) in the regressors is that
the coefficient estimators are inconsistent. In the one regressor case (or the multiple
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regressor case with uncorrelated regressors) under standard assumptions, the slope
coefficient estimator is biased towards zero, often denoted as attenuation. More se-
riously, unless some ‘extraneous’ information is available, e.g. the existence of valid
parameter restrictions or valid instruments for the error-ridden regressors, slope co-
efficients cannot (in general) be identified from standard data [see Fuller (1987,
Sect. 1.1.3)].1 This lack of identification in EIV models, however, relates to uni-
dimensional data, i.e., pure (single or repeated) cross-sections or pure time-series.
If the variables are observed as panel data, exhibiting two-dimensional variation, it
may be possible to handle the EIV identification problem and estimate slope coeffi-
cients consistently without extraneous information, provided that the distribution of
the latent regressors and the measurement errors satisfy certain weak conditions.

Briefly, the reason why the existence of variables observed along two dimen-
sions makes the EIV identification problem easier to solve, is partly (i) the repeated
measurement property of panel data, so that the measurement error problem can be
reduced by taking averages, which, in turn, may show sufficient variation to permit
consistent estimation, and partly (ii) the larger set of other linear data transforma-
tions available for estimation. Such transformations, involving several individuals
or several periods, may be needed to take account of uni-dimensional ‘nuisance
variables’ like unobserved individual or period specific heterogeneity, which are
potentially correlated with the regressor.

Our focus is on the estimation of linear, static regression equations from balanced
panel data with additive, random measurement errors in the regressors by means
of methods utilizing instrumental variables (IVs). The panel data available to an
econometrician are frequently from individuals, firms, or other kinds of micro units,
where not only observation errors in the narrow sense, but also departures between
theoretical variable definitions and their observable counterparts in a wider sense
may be present.

From the panel data literature which disregards the EIV problem we know that
the effect of, for example, additive (fixed or random) individual heterogeneity within
a linear model can be eliminated by deducting individual means, taking differences
over periods, etc. [see Baltagi (2001, Chap. 2) and Hsiao (2003, Sect. 1.1)]. Such
transformations, however, may magnify the variation in the measurement error com-
ponent of the observations relative to the variation in the true structural component,
i.e., they may increase the ‘noise/signal ratio’. Hence, data transformations intended
to ‘solve’ the unobserved heterogeneity problem in estimating slope coefficients
may aggravate the EIV problem. Several familiar estimators for panel data models,
including the fixed effects within-group and between-group estimators, and the ran-
dom effects Generalised Least Squares (GLS) estimators will then be inconsistent,
the bias depending, inter alia, on the way in which the number of individuals and/or

1 Identification under non-normality of the true regressor is possible, by utilizing moments of the
distribution of the observable variables of order higher than the second [see Reiersøl (1950)]. Even
under non-identification, bounds on the parameters can be established from the distribution of the
observable variables [see Fuller (1987, p. 11)]. These bounds may be wide or narrow, depending
on the covariance structure of the variables; see Klepper and Leamer (1984), Bekker et al. (1987),
and Erickson (1993).
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periods tend to infinity and on the heterogeneity of the measurement error process;
see Griliches and Hausman (1986) and Biørn (1992, 1996). Such inconsistency
problems will not be dealt with here. Neither will we consider the idea of construct-
ing consistent estimators by combining two or more inconsistent ones with different
probability limits. Several examples are given in Griliches and Hausman (1986),
Biørn (1996), and Wansbeek and Meijer (2000, Sect. 6.9).

The procedures to be considered in this section have two basic characteristics:
First, a mixture of level and difference variables are involved. Second, the orthogo-
nality conditions derived from the EIV structure – involving levels and differences
over one or more than one periods – are not all essential, some are redundant. Our es-
timation procedures are of two kinds: (A) Transform the equation to differences and
estimate it by IV or GMM, using as IVs level values of the regressors and/or regres-
sands for other periods. (B) Keep the equation in level form and estimate it by IV or
GMM, using as IVs differenced values of the regressors and/or regressands for other
periods. In both cases, the differencing serves to eliminate individual heterogeneity,
which is a potential nuisance since it may be correlated with the latent regressor vec-
tor. These procedures resemble, to some extent, procedures for autoregressive (AR)
models for panel data without measurement errors (mostly AR(1) equations with in-
dividual heterogeneity and often with exogenous regressors added) discussed, inter
alia, by Anderson and Hsiao (1981, 1982), Holtz-Eakin et al. (1988), Arellano and
Bond (1991), Arellano and Bover (1995), Ahn and Schmidt (1995), Blundell and
Bond (1998), and Harris et al. (2007).

If the distribution of the latent regressor vector is not time invariant and the sec-
ond order moments of the measurement errors and disturbances are structured to
some extent, a large number of consistent IV estimators of the coefficient of the
latent regressor vector exist. Their consistency is robust to potential correlation be-
tween the individual heterogeneity and the latent regressor. Serial correlation or
non-stationarity of the latent regressor is favourable from the point of view of iden-
tification and estimability of the coefficient vector.

The literature dealing specifically with panel data with measurement errors is
not large. The (A) procedures above extend and modify procedures described in
Griliches and Hausman (1986), which is the seminal article on measurement errors
in panel data, at least in econometrics. Extensions are discussed in Wansbeek and
Koning (1991), Biørn (1992, 1996, 2000, 2003), and Biørn and Klette (1998, 1999),
and Wansbeek (2001). Paterno et al. (1996) consider Maximum Likelihood anal-
ysis of panel data with measurement errors and is not related to the (A) and (B)
procedures to be discussed here.

10.2.1 Model and Orthogonality Conditions

Consider a panel data set with N (≥ 2) individuals observed in T (≥ 2) periods and
a relationship between y (observable scalar) and a (K×1) vector ξξξ (latent),
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yit = c+ξξξ ′it βββ +αi +uit , i = 1, . . . ,N; t = 1, . . . ,T, (10.1)

where (yit ,ξξξ it) is the value of (y,ξξξ ) for individual i in period t, c is a scalar constant,
βββ is a (K × 1) vector and αi is a zero (marginal) mean individual effect, which
we consider as random and potentially correlated with ξξξ it , and uit is a zero mean
disturbance, which may also contain a measurement error in yit . We observe

xit = ξξξ it + vit , i = 1, . . . ,N; t = 1, . . . ,T, (10.2)

where vit is a zero mean (K×1) vector of measurement errors. Hence,

yit = c+x ′it βββ + εit , εit = αi +uit − v ′it βββ . (10.3)

We can eliminate αi from (10.3) by taking arbitrary backward differences Δyitθ =
yit − yiθ , Δxitθ = xit −xiθ , etc., giving

Δyitθ = Δx ′itθ βββ +Δεitθ , Δεitθ = Δuitθ −Δv ′itθ βββ . (10.4)

We assume that (ξξξ it ,uit ,vit ,αi) are independent across individuals [which ex-
cludes random period specific components in (ξξξ it ,uit ,vit)], and make the following
basic orthogonality assumptions:

Assumption (A):

E(vituiθ ) = E(ξξξ ituiθ ) = E(αivit) = 0K1,

E(ξξξ iθ ⊗ v′it) = 0KK ,

E(αiuit) = 0,

i = 1, . . . ,N,

t,θ = 1, . . . ,T,

where 0mn denotes the (m×n) zero matrix and⊗ is the Kronecker product operator.
Regarding the temporal structure of the measurement errors and disturbances, we
assume either that

Assumption (B1): E(vitv
′
iθ ) = 0KK , |t−θ |> τ,

Assumption (C1): E(uituiθ ) = 0, |t−θ |> τ,

where τ is a non-negative integer, indicating the order of the serial correlation, or

Assumption (B2): E(vitv
′
iθ ) is invariant to t,θ , t �= θ ,

Assumption (C2): E(uituiθ ) is invariant to t,θ , t �= θ ,

which allows for time invariance of the autocovariances. The latter will, for instance,
be satisfied if the measurement errors and the disturbances have individual specific
components, say vit = v1i + v2it , uit = u1i + u2it , where v1i, v2it , u1i, and u2it are
independent IID processes.

The final set of assumptions relate to the distribution of the latent regressor
vector ξξξ it :
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Assumption (D1): E(ξξξ it) is invariant to t,

Assumption (D2): E(αiξξξ it) is invariant to t,

Assumption (E): rank(E[ξξξ ip(Δξξξ ′itθ )]) = K for some p, t,θ different,

Assumptions (D1) and (D2) hold when ξξξ it is stationary for all i [(D1) alone impos-
ing mean stationarity]. Assumption (E) imposes non-IID and some form of autocor-
relation or non-stationarity on ξξξ it . It excludes, for example, the case where ξξξ it has
an individual specific component, so that ξξξ it = ξξξ 1i +ξξξ 2it , where ξξξ 1i and ξξξ 2it are
independent (vector) IID processes.

Assumptions (A)–(E) do not impose much structure on the first and second order
moments of the uits, vits, ξξξ its and αis. This has both its pros and cons. It is possible
to structure this distribution more strongly, for instance assuming homoskedasticity
and normality of uit , vit , and αi, and normality of ξξξ it . Exploiting this stronger struc-
ture, e.g., by taking a LISREL of LIML approach, we might obtain more efficient
(but potentially less robust) estimators by operating on the full covariance matrix of
the yits and the xits rather than eliminating the αis by differencing. Other extensions
are elaborated in Sect. 10.2.7.

10.2.2 Identification and the Structure of the Second
Order Moments

The distribution of (ξξξ it ,uit ,vit ,αi) must satisfy some conditions to make identifi-
cation of βββ possible. The nature of these conditions can be illustrated as follows.
Assume, for simplicity, that this distribution is the same for all individuals and that
(A) holds, and let

C(ξξξ it ,ξξξ iθ ) = ΣΣΣξ ξ
tθ , E(ξξξ itαi) = ΣΣΣξ α

t , E(α2
i ) = σαα ,

E(vitv
′
iθ ) = ΣΣΣvv

tθ , E(uituiθ ) = σuu
tθ ,

i = 1, . . . ,N,

t,θ = 1, . . . ,T,

where C denotes the covariance matrix operator. It then follows from (10.1) and
(10.2) that the second order moments of the observable variables can be expressed as

C(xit ,xiθ ) = ΣΣΣξ ξ
tθ +ΣΣΣvv

tθ ,

C(xit ,yiθ ) = ΣΣΣξ ξ
tθ βββ +ΣΣΣξ α

t ,

C(yit ,yiθ ) = βββ ′ΣΣΣξ ξ
tθ βββ +(ΣΣΣξ α

t )′βββ +β ′ΣΣΣξ α
θ +σuu

tθ +σαα ,

i = 1, . . . ,N,

t,θ = 1, . . . ,T.
(10.5)

The identifiability of βββ from second order moments in general depends on
whether or not knowledge of C(xit ,xiθ ), C(xit ,yiθ ), and C(yit ,yiθ ) for all available
t and θ is sufficient for obtaining a unique solution for βββ from (10.5), given the

restrictions imposed on the ΣΣΣξ ξ
tθ s, ΣΣΣξ α

t s, σuu
tθ s, and σαα . The answer, in general,

depends on T and K. With no further information, the number of elements in
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C(xit ,xiθ ), and C(yit ,yiθ ) (all of which can be estimated consistently from corre-
sponding sample moments under weak conditions) equal the number of unknown
elements in ΣΣΣvv

tθ and σuu
tθ , which is 1

2 KT (KT +1) and 1
2 T (T +1), respectively. Then

σαα cannot be identified, and C(xit ,yiθ ) contains the only additional information

available for identifying βββ , ΣΣΣξ ξ
tθ , and ΣΣΣξ α

t , given the restrictions imposed on the lat-
ter two matrices.

Consider two extreme cases. First, if T = 1, i.e., if we only have cross-section
data, and no additional restrictions are imposed, there is an identification prob-
lem for any K. Second, if T > 2 and ξξξ it ∼ IID(μμμξ ,ΣΣΣξ ξ ), vit ∼ IID(01,K ,ΣΣΣvv),
uit ∼ IID(0,σuu), αi ∼ IID(0,σαα), we also have lack of identification in general.
We get an essentially similar conclusion when the autocovariances of ξξξ it are time
invariant and it is IID across i. From (10.5) we then get

C(xit ,xiθ ) = δtθ (ΣΣΣξ ξ +ΣΣΣvv),
C(xit ,yiθ ) = δtθΣΣΣξ ξβββ ,

C(yit ,yiθ ) = δtθ (βββ ′ΣΣΣξ ξβββ +σuu)+σαα ,

(10.6)

where δtθ = 1 for t = θ and = 0 for t �= θ , and so we are essentially in the same situ-
ation with regard to identifiability of βββ as when T = 1. The ‘cross-period’ equations
(t �= θ) then serve no other purpose than identification of σαα , and whether T = 1
or T > 1 realizations of C(xit ,xit), C(xit ,yit), and C(yit ,yit) are available in (10.6) is
immaterial to the identifiability of βββ , ΣΣΣξ ξ , ΣΣΣvv, and σuu. In intermediate situations,
identification may be ensured when T ≥ 2. These examples illustrate that in order
to ensure identification of the slope coefficient vector from panel data, there should
not be ‘too much structure’ on the second order moments of the latent exogenous re-
gressors along the time dimension, and not ‘too little structure’ on the second order
moments of the errors and disturbances along the time dimension.

10.2.3 Moment Conditions

A substantial number of (linear and non-linear) moment conditions involving yit ,
xit , and εit can be derived from Assumptions (A)–(E). Since (10.1)–(10.3) and As-
sumption (A) imply

E(xitx
′
iθ ) = E(ξξξ itξξξ ′iθ )+E(vitv

′
iθ ),

E(xit yiθ ) = E(ξξξ itξξξ ′iθ )βββ +E[ξξξ it(αi + c)],
E(yityiθ ) = c2 +E(α2

i )+βββ ′E(ξξξ itξξξ ′iθ )βββ +βββ ′E[ξξξ it(αi + c)]
+E[(αi + c)ξξξ ′iθ ]βββ +E(uituiθ ),

E(xitεiθ ) = E(ξξξ itαi)−E(vitv
′
iθ )βββ ,

E(yitεiθ ) = βββ ′E(ξξξ itαi)+E(α2
i )+E(uituiθ ),
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we can derive moment equations involving observable variables in levels and
differences:

E[xip(Δx′itθ )] = E[ξξξ ip(Δξξξ ′itθ )]+E[vip(Δv′itθ )], (10.7)

E[xip(Δy′itθ )] = E[ξξξ ip(Δξξξ ′itθ )]βββ , (10.8)

E[(Δxipq)yit ] = E[(Δξξξ ipq)ξξξ ′it ]βββ +E[(Δξξξ ipq)(αi + c)], (10.9)

as well as moment equations involving observable variables and errors/disturbances:

E[xip(Δεitθ )] = −E[vip(Δv′itθ )]βββ , (10.10)

E[yip(Δεitθ )] = E[uip(Δuitθ )], (10.11)

E[(Δxipq)εit ] = E[(Δξξξ ipq)αi]− E[(Δvipq)v′it ]βββ , (10.12)

E[(Δyipq)εit ] = βββ ′E[(Δξξξ ipq)αi]+E[(Δuipq)uit ], t,θ , p,q = 1, . . . ,T. (10.13)

Not all of the equations in (10.7)–(10.13), whose number is substantial even for
small T , are, of course, independent. Depending on which (B), (C), and (D) as-
sumptions are valid, some terms on the right hand side of (10.9)–(10.13) will van-
ish. Precisely, if T > 2, then (10.3), (10.5), and (10.10)–(10.13) imply the following
moment conditions, or orthogonality conditions (OC), on the observable variables
and the errors and disturbances

(B2), or (B1) with |t− p|, |θ − p|> τ, t �= θ
=⇒ E[xip(Δεitθ )] = E[xip(Δyitθ )]−E[xip(Δx ′itθ )]βββ = 0K1.

(10.14)

(C2), or (C1) with |t− p|, |θ − p|> τ, t �= θ
=⇒ E[yip(Δεitθ )] = E[yip(Δyitθ )]−E[yip(Δx ′itθ )]βββ = 0.

(10.15)

(D1), (D2) and (B2), or (B1) with |t− p|, |t−q|> τ, p �= q

=⇒ E[(Δxipq)εit ] = E[(Δxipq)yit ]−E[(Δxipq)xit ]βββ = 0K1.
(10.16)

(D1), (D2), and (C2), or (C1) with |t− p|, |t−q|> τ, p �= q

=⇒ E[(Δyipq)εit ] = E[(Δyipq)yit ]−E[(Δyipq)x
′
it ]βββ = 0.

(10.17)

The treatment of the intercept term c in constructing (10.16) and (10.17) needs
a comment. When the mean stationarity assumption (D1) holds, using IVs in dif-
ferences annihilates c in the moment equations, since then E(Δxipq) = 0K1 and
E(Δyipq) = 0. If, however, we relax (D1), which is unlikely to hold in many practical
situations, we get

E[(Δxipq)εit ] = E[(Δxipq)yit ]−E[Δxipq]c−E[(Δxipq)x ′it ]βββ = 0K1,

E[(Δyipq)εit ] = E[(Δyipq)yit ]−E[Δyipq]c−E[(Δyipq)x
′
it ]βββ = 0.

Using E(εit) = E(yit)− c−E(x ′it)βββ = 0 to eliminate c leads to the following modi-
fications of (10.16) and (10.17):
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(D1), (D2) and (B2), or (B1) with |t− p|, |t−q|> τ, p �= q,

=⇒ E[(Δxipq)εit ] = E[(Δxipq)(yit −E(yit))]−E[(Δxipq)(x
′
it −E(x′it))]βββ = 0K1.

(D1), (D2), and (C2), or (C1) with |t− p|, |t−q|> τ, p �= q,

=⇒ E[(Δyipq)εit ] = E[(Δyipq)(yit −E(yit))]−E[(Δyipq)(x
′
it −E(x′it))]βββ = 0.

To implement these modified OCs in the GMM procedures to be described below
for the level equation, we could replace E(yit) and E(xit) by corresponding global
or period specific sample means.

The conditions in (10.14)–(10.17) are not all independent. Some are redundant,
since they can be derived as linear combinations of other conditions.2 We confine
attention to (10.14) and (10.16), since (10.15) and (10.17) can be treated similarly.
When τ = 0, the total number of OCs in both (10.14) and (10.16) is 1

2 KT (T−1)
(T−2). Below, we prove that

(a) When (B2) and (C2), or (B1) and (C1) with τ = 0, are satisfied, all OCs in
(10.14) can be constructed from all admissible OCs relating to equations differ-
enced over one period and a subset of OCs relating to differences over two peri-
ods. When (B1) and (C1) are satisfied with an arbitrary τ , all OCs in (10.14) can
be constructed from all admissible OCs relating to equations differenced over
one period and a subset of OCs relating to differences over 2(τ+1) periods.

(b) When (B2) and (C2), or (B1) and (C1) with τ = 0, are satisfied all OCs in (10.16)
can be constructed from all admissible OCs relating to IVs differenced over one
period and a subset of IVs differenced over two periods. When (B1) and (C1)
are satisfied with an arbitrary τ , all OCs in (10.16) can be constructed from all
admissible OCs relating to IVs differenced over one period and a subset of IVs
differenced over 2(τ+1) periods.

We denote the non-redundant conditions defined by (a) and (b) as essential OCs.
Since (10.14) and (10.16) are symmetric, we prove only (a) and derive (b) by way
of analogy.

Since xipΔεitθ = xip(∑
t
j=θ+1 Δεi j, j−1), we see that if (hypothetically)

all p = 1, . . . ,T combined with all t > θ would have given admissible OCs,
(10.14) for differences over 2,3, . . . ,T−1 periods could have been constructed
from the conditions relating to one-period differences only. However, since (t,θ) =
(p, p−1),(p+1, p) are inadmissible, and [when (B2) holds] (t,θ) = (p+1, p−1)
is admissible, we have to distinguish between the cases where p is strictly outside
and strictly inside the interval (θ , t). From the identities

xipΔεitθ = xip(∑
t
j=θ+1 Δεi j, j−1) for p = 1, . . . ,θ−1, t +1, . . . ,T,

xipΔεitθ = xip(∑
p−1
j=θ+1 Δεi j, j−1 +Δεi,p+1,p−1 +∑t

j=p+2 Δεi j, j−1) for p = θ+1, . . . , t−1,

when taking expectations, we then obtain

2 This redundancy problem is discussed in Biørn (2000). Essential and redundant moment con-
ditions in AR models for panel data are discussed in Ahn and Schmidt (1995), Arellano and
Bover (1995), and Blundell and Bond (1998). A general treatment of redundancy of moment con-
ditions in GMM estimation is found in Breusch et al. (1999).
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Proposition 10.1.
A. When (B2) and (C2) are satisfied, then

(a) E[xip(Δεit,t−1)] = 0K1 for p = 1, . . . , t−2, t+1, . . . ,T ; t = 2, . . . ,T are
K(T−1)(T−2) essential OCs for equations differenced over one period.

(b) E[xit(Δεit+1,t−1)] = 0K1 for t = 2, . . . ,T−1 are K(T−2) essential OCs for equa-
tions differenced over two periods.

(c) The other OCs are redundant: among the 1
2 KT (T−1)(T−2) conditions in

(10.14), only a fraction 2/(T−1), are essential.

B. When (B1) and (C1) are satisfied for an arbitrary τ , then

(a) E[xip(Δεit,t−1)] = 0K1 for p = 1, . . . , t−τ−2, t +τ +1, . . . ,T ; t = 2, . . . ,T are
essential OCs for equations in one-period differences.

(b) E[xit(Δεit+τ+1,t−τ−1)] = 0K1 for t = τ +2, . . . ,T−τ−1 are essential OCs for
equations in 2(τ+1) period differences.

(c) The other OCs in (10.14) are redundant.

Symmetrically, from (10.16) we have

Proposition 10.2.
A. When (B2) and (C2) are satisfied, then

(a) E[(Δxip,p−1)εit ] = 0K1 for t = 1, . . . , p−2, p+1, . . . ,T ; p = 2, . . . ,T are K
(T−1)(T−2) essential OCs for equations in levels, with IVs differenced over
one period.

(b) E[(Δxit+1,t−1)εit ] = 0K1 for t = 2, . . . ,T−1 are K(T−2) essential OCs for equa-
tions in levels, with IVs differenced over two periods.

(c) The other OCs are redundant: among the 1
2 KT (T−1)(T−2) conditions in

(10.16), only a fraction 2/(T−1), are essential.

B. When (B1) and (C1) are satisfied for an arbitrary τ , then

(a) E[(Δxip,p−1)εit ] = 0K1 for t = 1, . . . , p−τ−2, p+τ+1, . . . ,T ; p = 2, . . . ,T are
essential OCs for equations in levels, with IVs differenced over one period.

(b) E[(Δxit+τ+1,t−τ−1)εit ] = 0K1 for t = τ +2, . . . ,T−τ−1 are essential OCs for
equations in levels, with IVs differenced over 2(τ+1) periods.

(c) The other OCs in (10.16) are redundant.

These propositions can be (trivially) modified to include also the essential and re-
dundant OCs in the ys or the Δys, given in (10.15) and (10.17).

10.2.4 Estimators Constructed from Period Means

Several consistent estimators of βββ can be constructed from differenced period
means. These estimators exploit the repeated measurement property of panel data,
while the differencing removes the latent heterogeneity. From (10.3) we obtain
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Δsȳ·t = Δsx̄
′·tβββ +Δsε̄·t , s = 1, . . . ,T−1; t = s+1, . . . ,T, (10.18)

(ȳ·t − ȳ) = (x̄·t − x̄)′βββ +(ε̄·t − ε̄), t = 1, . . . ,T, (10.19)

where ȳ·t = 1
N ∑i yit , ȳ = 1

NT ∑i ∑t yit , x̄·t = 1
N ∑i xit , x̄ = 1

NT ∑i ∑t xit , etc. and Δs de-
notes differencing over s periods. When (A) is satisfied, the (weak) law of large
numbers implies, under weak conditions [confer McCabe and Tremayne (1993,
Sect. 3.5)],3 that plim(ε̄·t) = 0, plim(x̄·t − ξ̄ξξ ·t) = 0K1, so that plim[x̄·t ε̄·t ] = 0K1
even if plim[ 1

N ∑N
i=1 xitεit ] �= 0K1. From (10.18) and (10.19) we therefore get

plim[(Δsx̄·t)(Δsȳ·t)] = plim[(Δsx̄·t)(Δsx̄
′·t)]βββ , (10.20)

plim[(x̄·t−x̄)(ȳ·t−ȳ)] = plim[(x̄·t−x̄)(x̄·t−x̄)′]βββ . (10.21)

Hence, provided that E[(Δsξ̄ξξ ·t)(Δsξ̄ξξ ·t)′] and E[(ξ̄ξξ ·t − ξ̄ξξ )(ξ̄ξξ ·t − ξ̄ξξ )′] have rank K,
which is ensured by Assumption (E), consistent estimators of βββ can be obtained
by applying OLS on (10.18) and (10.19), which give, respectively,

β̂ββ Δs =
[
∑T

t=s+1(Δsx̄·t)(Δsx̄·t)′
]−1[

∑T
t=s+1(Δsx̄·t)(Δsȳ·t)

]
, s = 1, . . . ,T−1,

(10.22)

β̂ββ BP =
[
∑T

t=1(x̄·t − x̄)(x̄·t − x̄)′
]−1[

∑T
t=1(x̄·t − x̄)(ȳ·t − ȳ)

]
. (10.23)

The latter is the ‘between period’ (BP) estimator. The consistency of these estima-
tors simply relies on the fact that averages of a large number of repeated measure-
ments of an error-ridden variable give, under weak conditions, an error-free measure
of the true average at the limit, provided that this average shows variation along the
remaining dimension, i.e., across periods. Shalabh (2003) also discusses consistent
coefficient estimation in measurement error models with replicated observations.
The latter property is ensured by Assumption (E). A major problem with these
estimators is their low potential efficiency, as none of them exploits the between
individual variation in the data, which often is the main source of variation.

Basic to these conclusions is the assumption that the measurement error has
no period specific component, which, roughly speaking, means that it is ‘equally
difficult’ to measure ξξξ correctly in all periods. If such a component is present, it will
not vanish when taking plims of period means, i.e., plim(v̄·t) will no longer be zero,

(10.20) and (10.21) will no longer hold, and so β̂ββ Δs and β̂ββ BP will be inconsistent.

10.2.5 GMM Estimation and Testing in the General Case

We first consider the GMM principle in general, without reference to panel data
and measurement error situations. Assume that we want to estimate the (K × 1)

3 Throughout plim denotes probability limits when N goes to infinity and T is finite.
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coefficient vector βββ in the equation4

y = xβββ + ε, (10.24)

where y and ε are scalars and x is a (1×K) regressor vector. There exists an instru-
ment vector z, of dimension (1×G), for x (G≥ K), satisfying the OCs

E(z′ε) = E[z′(y−xβββ )] = 0G1. (10.25)

We have n observations on (y,x,z), denoted as (y j,x j,z j), j = 1, . . . ,n, and define
the vector valued (G×1) function of corresponding empirical means,

gn(y,x,z;βββ ) = 1
n ∑n

j=1 z′j(y j−x jβββ ). (10.26)

It may be considered the empirical counterpart to E[z′(y−xβββ )] based on the sample.
The essence of GMM is to choose as an estimator for βββ the value which brings
the value of gn(y,x,z;βββ ) as close to its theoretical counterpart, 0G1, as possible. If
G = K, an exact solution to gn(y,x,z;βββ ) = 0G1 exists and is the simple IV estimator

βββ ∗ = [∑ j z′jx j]
−1[∑ j z′jy j].

If G > K, which is the most common situation, GMM solves the estimation problem
by minimizing a distance measure represented by a quadratic form in gn(y,x,z;βββ )
for a suitably chosen positive definit (G×G) weighting matrix Wn, i.e.,

βββ ∗GMM = argminβββ [gn(y,x,z;βββ )′Wngn(y,x,z;βββ )]. (10.27)

All estimators obtained in this way are consistent. A choice which leads to an
asymptotically efficient estimator of βββ , is to set this weighting matrix equal (or
proportional) to the inverse of (an estimate of) the (asymptotic) covariance matrix
of 1

n ∑n
j=1 z′jε j; see, e.g., Davidson and MacKinnon (1993, Theorem 17.3) and Harris

and Mátyás (1999, Sect. 1.3.3).
If ε is serially uncorrelated and homoskedastic, with variance σ2

ε , the appropriate
choice is simply Wn = [n−2σ2

ε ∑n
j=1 z′jz j]

−1. The estimator obtained from (10.27) is
then

β̂ββ GMM = [(∑ j x′jz j)(∑ j z′jz j)
−1(∑ j z′jx j)]

−1

× [(∑ j x′jz j)(∑ j z′jz j)
−1(∑ j z′jy j)], (10.28)

which is the standard Two-Stage Least Squares (2SLS) estimator. If ε j has an un-
specified heteroskedasticity or has a more or less strictly specified autocorrelation,
we can reformulate the OCs in an appropriate way, as will be exemplified below.
Both of these properties are essential for the application of GMM to panel data.

4 We here, unlike in Sects. 10.2.1–10.2.4, let the column number denote the regressor and the row
number the observation. Following this convention, we can express the following IV and GMM
estimators in the more common format when going from vector to matrix notation.
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To operationalize the latter method in the presence of unknown heteroskedasticity,
we first construct consistent residuals ε̂ j, usually from (10.28), which we consider

as a first step GMM estimator, and estimate Wn by Ŵn = [n−2 ∑ j z′j ε̂”2
jz j]

−1; see
White (1984, Sects. IV.3 and VI.2). Inserting this into (10.27) gives

β̃ββ GMM = [(∑ j x′jz j)(∑ j z′j ε̂2
j z j)

−1(∑ j z′jx j)]
−1

× [(∑ j x′jz j)(∑ j z′j ε̂2
j z j)

−1(∑ j z′jy j)]. (10.29)

This second step GMM estimator is in a sense an optimal GMM estimator in the
presence of unspecified error/disturbance heteroskedasticity.

The validity of the orthogonality condition (10.25) can be tested by the Sargan-
Hansen statistic [confer Hansen (1982), Newey (1985), and Arellano and Bond
(1991)], corresponding to the asymptotically efficient estimator β̃ββ GMM:

J = [(∑ j ε̂ ′jz j)(∑ j z′j ε̂2
j z j)

−1(∑ j z′j ε̂ j)]
−1.

Under the null, J is asymptotically distributed as χ2 with a number of degrees of
freedom equal to the number of overidentifying restrictions, i.e., the number of or-
thogonality conditions less the number of coefficients estimated under the null.

The procedures for estimating standard errors of β̂ββ GMM and β̃ββ GMM can be ex-
plained as follows. Express (10.24) and (10.25) as

y = Xβββ +εεε, E(εεε) = 0, E(Z′εεε) = 0, E(εεεεεε ′) = ΩΩΩ,

where y, X, Z, and εεε correspond to y, x, z and ε , and the n observations are placed
along the rows. The two generic GMM estimators (10.28) and (10.29) have the form

β̂ββ = [X′PZX]−1[X′PZy], PZ = Z(Z′Z)−1Z′,

β̃ββ = [X′PZ(ΩΩΩ)X]−1[X′PZ(ΩΩΩ)y], PZ(ΩΩΩ) = Z(Z′ΩΩΩZ)−1Z′.

Let the residual vector obtained from the former be ε̂εε = y−Xβ̂ββ and

SXZ = S′ZX =
X′Z

n
, SZZ =

Z′Z
n

, SεZ = S′Zε =
εεε ′Z
n

,

SZΩΩΩZ =
Z′ΩZ

n
, SZεεεεεεZ =

Z′εεεεεε ′Z
n

, SZε̂εεε̂εεZ =
Z′ε̂εεε̂εε ′Z

n
.

Inserting for y in the expressions for the two estimators gives

√
n(β̂ββ−βββ ) =

√
n[X′PZX]−1[X′PZεεε] = [SXZS−1

ZZ SZX ]−1
[

SXZS−1
ZZ

Z′εεε√
n

]
,

√
n(β̃ββ−βββ ) =

√
n[X′PZ(ΩΩΩ)X]−1[X′PZ(ΩΩΩ)εεε] = [SXZS−1

ZΩZSZX ]−1
[

SXZS−1
ZΩZ

Z′εεε√
n

]
,
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and hence

n(β̂ββ −βββ )(β̂ββ −βββ )′ = [SXZS−1
ZZ SZX ]−1[SXZS−1

ZZ SZεεεεεεZS−1
ZZ SZX ][SXZS−1

ZZ SZX ]−1,

n(β̃ββ −βββ )(β̃ββ −βββ )′ = [SXZS−1
ZΩZSZX ]−1[SXZS−1

ZΩZSZεεεεεεZS−1
ZΩZSZX ][SXZS−1

ZΩZSZX ]−1.

The asymptotic covariance matrices of
√

nβ̂ββ and
√

nβ̃ββ can then, under suitable reg-
ularity conditions, be written as [see Bowden and Turkington (1984, pp. 26, 69)]

aV(
√

nβ̂ββ ) = limE[n(β̂ββ −βββ )(β̂ββ −βββ )′] = plim[n(β̂ββ −βββ )(β̂ββ −βββ )′],

aV(
√

nβ̃ββ ) = limE[n(β̃ββ −βββ )(β̃ββ −βββ )′] = plim[n(β̃ββ −βββ )(β̃ββ −βββ )′].

Since SZεεεεεεZ and SZΩZ coincide asymptotically, we get, letting bars denote plims,

aV(
√

nβ̂ββ ) = [SXZS
−1
ZZ SZX ]−1[SXZS

−1
ZZ SZΩZS

−1
ZZ SZX ][SXZS

−1
ZZ SZX ]−1,

aV(
√

nβ̃ββ ) = [SXZS
−1
ZΩZSZX ]−1.

Replacing the plims SXZ , SZX , SZZ and SZΩZ by their sample counterparts, SXZ , SZX ,
SZZ and SZε̂ ε̂Z and dividing by n, we get the following estimators of the asymptotic

covariance matrices of β̂ββ and β̃ββ :

̂

V(β̂ββ ) =
1
n
[SXZS−1

ZZ SZX ]−1[SXZS−1
ZZ SZε̂εεε̂εεZS−1

ZZ SZX ][SXZS−1
ZZ SZX ]−1

= [X′PZX]−1[X′PZε̂εεε̂εε ′PZX][X′PZX]−1,

̂

V(β̃ββ ) =
1
n
[SXZS−1

Zε̂εεε̂εεZSZX ]−1 = [X′Z(Z′ε̂εεε̂εε ′Z)−1Z′X]−1 = [X′PZ(ε̂εεε̂εε ′)X]−1.

These are the generic expressions for estimating variances and covariances of the
GMM estimators (10.28) and (10.29). When calculating β̃ββ in practice, we replace
PZ(ΩΩΩ) by PZ(ε̂εεε̂εε ′) = Z(Z′ε̂εεε̂εε ′Z)−1Z′ [see White (1982, 1984)].

10.2.6 Estimation by GMM, Combining Differences and Levels

Following this general description of the GMM, we can construct estimators of βββ
by replacing the expectations in (10.14)–(10.17) by sample means taken over i and
minimizing their distances from the zero vector. There are several ways in which
this idea can be operationalized. We can

(i) Estimate equations in differences, with instruments in levels, using (10.14)
and/or (10.15) for (a) one (t,θ) and one p, (b) one (t,θ) and several p, or
(c) several (t,θ) and several p jointly.
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(ii) Estimate equations in levels, with instruments in differences, using (10.16)
and/or (10.17) for (a) one t and one (p,q), (b) one t and several (p,q), or (c) sev-
eral t and several (p,q) jointly.

In cases (i.a) and (ii.a), we obtain an empirical distance equal to the zero vector,
so no minimization is needed. This corresponds, formally, to the situation with ‘ex-
act identification’ (exactly as many OCs as needed) in classical IV estimation. In
cases (i.b), (i.c), (ii.b), and (ii.c), we have, in a formal sense, ‘overidentification’
(more than the necessary number of OCs), and therefore construct ‘compromise es-
timators’ by minimizing appropriate quadratic forms in the corresponding empirical
distances.

We now consider cases (a), (b), and (c) for the differenced equation and the level
equation.

(a) Simple period specific IV estimators

Equation in differences, IVs in levels. The sample mean counterpart to (10.14)
and (10.15) for one (t,θ , p) gives the estimator

β̂ββ p(tθ) = [∑N
i=1 zip(Δx′itθ )]−1[∑N

i=1 zip(Δyitθ )], (10.30)

where zip = xip or equal to xip with one element replaced by yip.
Equation in levels, IVs in differences. The sample mean counterpart to (10.16)
and (10.17) for one (t, p,q) gives the estimator

β̂ββ (pq)t = [∑N
i=1(Δzipq)x′it ]

−1[∑N
i=1(Δzipq)yit ], (10.31)

where Δzipq = Δxipq or equal to Δxipq with one element replaced by Δyipq. Using
(10.14)–(10.17) we note that

• When zip = xip (p �= θ , t) and Δzipq = Δxipq (t �= p,q), Assumption (B2) is nec-

essary for consistency of β̂ββ p(tθ) and β̂ββ (pq)t . If yip is included in zip (p �= θ , t),
and Δypq is included in Δzipq (t �= p,q), Assumption (C2) is also necessary for

consistency of β̂ββ p(tθ) and β̂ββ (pq)t .

• Assumptions (D1) and (D2) are necessary for consistency of β̂ββ (pq)t , but they are

not necessary for consistency of β̂ββ p(tθ).

Since the correlation between the regressors and the instruments, say between zip
and Δxitθ , may be low, (10.30) and (10.31) may suffer from the ‘weak instrument
problem’, discussed in Nelson and Startz (1990), Davidson and MacKinnon (1993,
pp. 217–224), and Staiger and Stock (1997). The following estimators may be an
answer to this problem.

(b) Period specific GMM estimators

We next consider estimation of βββ in (10.4) for one pair of periods (t,θ), utilizing as
IVs for Δxitθ all admissible xips, and estimation of βββ in (10.3), for one period (t),
utilizing as IVs for xit all admissible Δxipqs.
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To formalize this, we define the selection and differencing matrices

Ptθ =

⎡

⎢
⎢
⎢
⎢
⎣

((T−2)×T ) matrix
obtained by deleting from

the T -dimensional
identity matrix
rows t and θ

⎤

⎥
⎥
⎥
⎥
⎦

, Dt =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d21
...

dt−1,t−2

dt+1,t−1

dt+2,t+1
...

dT,T−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t,θ = 1, . . . ,T,

where dtθ is the (1×T ) vector with element t equal to 1, element θ equal to−1 and
zero otherwise, so that Dt is the are one-period [(T−2)×T )] differencing matrix,
except that dt,t−1 and dt+1,t are replaced by their sum, dt+1,t−1.5 We use the notation

yi· = (yi1, . . . ,yiT )′, Xi· = (xi1, . . . ,xiT )′,
yi(tθ) = Ptθ yi·, xi(tθ) = Ptθ Xi·, xi(tθ) = vec(Xi(tθ))′,
Δyi(t) = Dtyi·, ΔXi(t) = Dtxi·, Δxi(t) = vec(ΔXi(t))′,

etc. Here Xi(tθ) denotes the [(T−2)×K] matrix of x levels obtained by deleting
rows t and θ from Xi·, and ΔXi(t) denotes the [(T−2)×K] matrix of x differences
obtained by stacking all one-period differences between rows of Xi· not including
period t and the single two-period difference between the columns for periods t +1
and t − 1. The vectors yi(tθ) and Δyi(t) are constructed from yi· in a similar way.

Stacking y′i(tθ), Δy′i(t), xi(tθ), and Δxi(t), by individuals, we get

Y(tθ) =

⎡

⎢
⎣

y ′1(tθ)
...

y ′N(tθ)

⎤

⎥
⎦ , ΔY(t) =

⎡

⎢
⎣

Δy ′1(t)
...

Δy ′N(t)

⎤

⎥
⎦ ,

X(tθ) =

⎡

⎢
⎣

x1(tθ)
...

xN(tθ)

⎤

⎥
⎦ , ΔX(t) =

⎡

⎢
⎣

Δx1(t)
...

ΔxN(t)

⎤

⎥
⎦ ,

which have dimensions (N × (T−2)), (N × (T−2)), (N × (T−2)K), and (N ×
(T−2)K), respectively. These four matrices contain the IVs to be considered below.

Equation in differences, IVs in levels. Write (10.4) as

Δytθ = ΔXtθβββ +Δεεε tθ ,

where Δytθ = (Δy1tθ , . . . ,ΔyNtθ )′, ΔXtθ = (Δx1tθ , . . . ,ΔxNtθ )′, etc. Using X(tθ) as
IV matrix for ΔXtθ , we obtain the following estimator of βββ , specific to period (t,θ)
differences and utilizing all admissible x level IVs,

5 The two-period difference is effective only for t = 2, . . . ,T−1.
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β̂ββ x(tθ) =
[
(ΔXtθ )′X(tθ)

(
X′(tθ)X(tθ)

)−1
X′(tθ)(ΔXtθ )

]−1

×
[
(ΔXtθ )′X(tθ)

(
X′(tθ)X(tθ)

)−1
X′(tθ)(Δytθ )

]

=
[[

∑i(Δxitθ )x′i(tθ)

][
∑i xi(tθ)x

′
i(tθ)

]−1[
∑i xi(tθ)(Δx ′itθ )

]]−1

×
[[

∑i(Δxitθ )x ′i(tθ)

][
∑i xi(tθ)x

′
i(tθ)

]−1[
∑i xi(tθ)(Δyitθ )

]]
. (10.32)

It exists if X′(tθ)X(tθ) has rank (T−2)K, which requires N ≥ (T−2)K. This GMM
estimator, which exemplifies (10.28), minimizes the quadratic form:

(
1
N

X′(tθ)Δεεε tθ

)′( 1
N2 X′(tθ)X(tθ)

)−1( 1
N

X′(tθ)Δεεε tθ

)
.

The weight matrix (N−2X′(tθ)X(tθ))
−1 is proportional to the inverse of the (asymp-

totic) covariance matrix of N−1X′(tθ)Δεεε tθ when Δεεε itθ is IID across i, possibly with a

variance depending on (t,θ). The consistency of β̂ββ x(tθ) relies on Assumptions (B2)
and (E).

Interesting modifications of β̂ββ x(tθ) are:

(1) If var(Δεitθ ) = ωitθ varies with i and is known, we can increase the efficiency
of (10.32) by replacing x′i(tθ)xi(tθ) by x′i(tθ)ωitθ xi(tθ), which gives an asymptoti-

cally optimal GMM estimator.6 ∑i x′i(tθ)ωitθ xi(tθ) for unknown ωitθ proceeds as
in (10.29).

(2) Instead of using X(tθ) as IV matrix for ΔXtθ , as in (10.32), we may use

(X(tθ)
...Y(tθ)).

Equation in levels, IVs in differences. Write (10.3) as

yt = ceN +Xtβββ +εεε tθ ,

where eN is the N-vector of ones, yt = (y1t , . . . ,yNt)′, Xt = (x1t , . . . ,xNt)
′, etc. Using

ΔX(t) as IV matrix for Xt , we get the following estimator of βββ , specific to period t
levels, utilizing all admissible x difference IVs,

6 For a more general treatment of asymptotic efficiency in estimation with moment conditions, see
Chamberlain (1987) and Newey and McFadden (1994).
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β̂ββ x(t) =
[

X′t(ΔX′(t))
(
(ΔX′(t))(ΔX(t))

)−1
(ΔX(t))

′Xt

]−1

×
[

X′t(ΔX(t))
(
(ΔX(t))

′(ΔX(t))
)−1

(ΔX(t))
′yt

]

=
[[

∑i xit(Δx′i(t))
][

∑i(Δxi(t))(Δx′i(t))
]−1[

∑i(Δxi(t))x
′
it

]]−1

×
[[

∑i xit(Δx′i(t))
][

∑i(Δxi(t))(Δx′i(t))
]−1[

∑i(Δxi(t))yit

]]
. (10.33)

It exists if (ΔX(t))
′(ΔX(t)) has rank (T−2)K, which again requires N ≥ (T−2)K.

This GMM estimator, which also exemplifies (10.28), minimizes the quadratic form:

(
1
N

(ΔX(t))
′εεε t

)′[ 1
N2 (ΔX(t))

′(ΔX(t))
]−1( 1

N
(ΔX(t))

′εεε t

)
.

The weight matrix [N−2(ΔX(t))
′(ΔX(t))]

−1 is proportional to the inverse of the

(asymptotic) covariance matrix of N−1(ΔX(t))
′εt when εit is IID across i, possibly

with a variance depending on t. The consistency of β̂ββ x(t) relies on (B3), (D1), (D2),
and the validity of (E3) for all (p,q).

Interesting modifications of β̂ββ x(t) are:

(1) If var(εit) = ωit varies with i and is known, we can increase the efficiency
of (10.33) by replacing (Δxi(t))

′(Δxi(t)) by (Δxi(t))
′ωit(Δxi(t)), which gives an

asymptotically optimal GMM estimator. Estimation of ∑i(Δxi(t))
′ωit(Δxi(t)) for

unknown ωit proceeds as in (10.29).
(2) Instead of using ΔX(t) as IV matrix for Xt , as in (10.33), we may use

(ΔX(t)
...ΔY(t)).

If we replace assumptions (B2) and (C2) by (B1) or (C1) with arbitrary τ , we
must ensure that the IVs have a lead or lag of at least τ+1 periods to the regressor,
to ‘get clear of’ the τ period memory of the MA(τ) process. Formally, we then
replace Ptθ and Dt by7

Ptθ(τ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

matrix obtained by
deleting from

the T -dimensional
identity matrix

rows θ − τ, . . . ,θ + τ
and t− τ, . . . , t + τ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Dt(τ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d21
...

dt−τ−1,t−τ−2

dt+τ+1,t−τ−1

dt+τ+2,t+τ+1
...

dT,T−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t,θ = 1, . . . ,T,

and otherwise proceed as above.

7 The dimension of these matrices depends in general on τ .
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(c) Composite GMM estimators
We finally consider GMM estimation of βββ when we combine all essential OCs de-
limited by Propositions 10.1 and 10.2. We here assume that either (B1) and (C1)
with τ = 0 or (B1) and (B2) are satisfied. If τ > 0, we can proceed as above, but
must ensure that the variables in the IV matrix have a lead or lag of at least τ+1
periods to the regressor, to ‘get clear of’ the τ period memory of the MA(τ) process,
confer Part B of Propositions 10.1 and 10.2.

Equation in differences, IVs in levels. Consider (10.5) for all θ = t − 1 and all
θ = t−2. These (T−1)+(T−2) equations stacked for individual i read

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Δyi21
Δyi32

...
Δyi,T,T−1

Δyi31
Δyi42

...
Δyi,T,T−2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Δx′i21
Δx′i32

...
Δx′i,T,T−1

Δx′i31
Δx′i42

...
Δx′i,T,T−2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

βββ +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Δεi21
Δεi32

...
Δεi,T,T−1

Δεi31
Δεi42

...
Δεi,T,T−2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (10.34)

or, compactly,
Δyi = (ΔXi)βββ +Δεεε i.

The IV matrix, according to Proposition 10.1, is the ((2T−3)×KT (T−2)) matrix8

Zi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xi(21) 0 · · · 0 0 0 · · · 0

0 xi(32) · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
...

...
0 0 · · · xi(T,T−1) 0 0 · · · 0

0 0 · · · 0 xi2 0 · · · 0

0 0 · · · 0 0 xi3 · · · 0
...

...
...

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · xi,T−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10.35)

Let
Δy = [(Δy1)′, . . . ,(ΔyN)′]′, Δεεε = [(Δεεε1)′, . . . ,(ΔεεεN)′]′,

ΔX = [(ΔX1)′, . . . ,(ΔXN)′]′, Z = [Z′1, . . . ,Z
′
N ]′.

8 Formally, we here use different IVs for the (T−1)+(T−2) different equations in (10.4), with βββ
as a common slope coefficient.
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The GMM estimator corresponding to E[Z′i(Δεi)] = 0T (T−2)K,1, which minimizes

[N−1(Δεεε)′Z](N−2V)−1[N−1Z′(Δεεε)] for V = Z′Z, can be written as

β̂ββ Dx =
[
(ΔX)′Z(Z′Z)−1Z′(ΔX)

]−1 [
(ΔX)′Z(Z′Z)−1Z′(Δy)

]

=
[
[∑i(ΔXi)

′Zi] [∑i Z′iZi]
−1 [∑i Z′i(ΔXi)]

]−1

×
[
[∑i(ΔXi)

′Zi] [∑i Z′iZi]
−1 [∑i Z′i(Δyi)]

]
. (10.36)

It is possible to include not only the essential OCs, but also the redundant OCs when
constructing this GMM estimator. The singularity of Z′Z when including all OCs,
due to the linear dependence between the redundant and the essential OCs, may
be treated by replacing standard inverses in the estimation formulae by generalised
(Moore-Penrose) inverses. The resulting estimator is β̂ββ Dx, which is shown formally
in Biørn and Klette (1998).

If Δεεε has a non-scalar covariance matrix, a more efficient GMM estimator is
obtained for V = VZ(Δε) = E[Z′(Δεεε)(Δεεε)′Z], which gives

β̃ββ Dx =
[
(ΔX)′ZV−1

Z(Δε)Z
′(ΔX)

]−1 [
(ΔX)′ZV−1

Z(Δε)Z
′(Δy)

]
. (10.37)

We can estimate 1
N VZ(Δε) consistently from the residuals obtained from (10.37),

Δ̂εεε i = Δyi− (ΔXi)β̂ββ Dx, by means of [see White (1984, Sects. IV.3 and VI.2) and
(1986, Sect. 3)]

V̂Z(Δε)

N
=

1
N

N

∑
i=1

Z′i(Δ̂εεε i)(Δ̂εεε i)
′Zi. (10.38)

Inserting (10.38) in (10.37), we get the asymptotically optimal (feasible) GMM
estimator9

β̃ββ Dx =
[
[∑i(ΔXi)

′Zi][∑i Z′iΔ̂εεε iΔ̂εεε
′
iZi]

−1[∑i Z′i(ΔXi)]
]−1

×
[
[∑i(ΔXi)

′Zi][∑i Z′iΔ̂εεε iΔ̂εεε
′
iZi]

−1[∑i Z′i(Δyi)]
]
. (10.39)

These estimators can be modified by extending in (10.37) all xi(t,t−1) to

(xi(t,t−1)

...y′i(t,t−1)) and all xit to (xit

...yit), which also exploit the OCs in the ys.

Equation in levels, IVs in differences. Consider next the T stacked level equations
for individual i [confer (10.3)]

⎡

⎢
⎣

yi1
...

yiT

⎤

⎥
⎦=

⎡

⎢
⎣

c
...
c

⎤

⎥
⎦+

⎡

⎢
⎣

xi1
...

xiT

⎤

⎥
⎦βββ +

⎡

⎢
⎣

εi1
...

εiT

⎤

⎥
⎦ , (10.40)

9 It is possible to include the redundant OCs also when constructing this GMM estimator. Using
generalised (Moore-Penrose) inverses, the estimator remains the same.
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or, compactly,
yi = eT c+Xiβββ +εεε i.

The IV matrix, according to Proposition 10.2, is the (T ×T (T−2)K) matrix10

ΔZi =

⎡

⎢
⎣

Δxi(1) · · · 0
...

. . .
...

0 · · · Δxi(T )

⎤

⎥
⎦ . (10.41)

Let
y = [y′1, . . . ,y

′
N ]′, εεε = [εεε ′1, . . . ,εεε ′N ]′,

X = [X′1, . . . ,X
′
N ]′, ΔZ = [(ΔZ1)′, . . . ,(ΔZN)′]′.

The GMM estimator corresponding to E[(ΔZi)
′εi] = 0T (T−2)K,1, which minimizes

[N−1εεε ′(ΔZ)](N−2VΔ)−1[N−1(ΔZ)′εεε] for VΔ = (ΔZ)′(ΔZ),

can be written as

β̂ββ Lx =
[
X′(ΔZ)[(ΔZ)′(ΔZ)]−1(ΔZ)′X

]−1

×
[
X′(ΔZ)[(ΔZ)′(ΔZ)]−1(ΔZ)′y

]

=
[
[∑i X′i(ΔZi)] [∑i(ΔZi)′(ΔZi)]

−1 [∑i(ΔZi)′Xi]
]−1

×
[
[∑i X′i(ΔZi)] [∑i(ΔZi)′(ΔZi)]

−1 [∑i(ΔZi)′yi]
]
. (10.42)

If εεε has a non-scalar covariance matrix, a more efficient GMM estimator is ob-
tained for VΔ = V(ΔZ)ε = E[(ΔZ)′εεεεεε ′(ΔZ)], which gives

β̃ββ Lx =
[
X′(ΔZ)V−1

(ΔZ)ε(ΔZ)′X
]−1 [

X′(ΔZ)V−1
(ΔZ)ε(ΔZ)′y

]
. (10.43)

We can estimate 1
N V(ΔZ)ε consistently from the residuals obtained from (10.43), by

V̂(ΔZ)ε

N
=

1
N

N

∑
i=1

(ΔZi)
′ ε̂εε iε̂εε

′
i(ΔZi). (10.44)

Inserting (10.44) in (10.44), we get the asymptotically optimal (feasible) GMM
estimator

β̃ββ Lx =
[
[∑i X′i(ΔZi)]

[
∑i(ΔZi)′ ε̂εε iε̂εε

′
i (ΔZi)

]−1
[∑i(ΔZi)′Xi]

]−1

×
[
[∑i X′i(ΔZi)]

[
∑i(ΔZi)′ ε̂εε iε̂εε

′
i (ΔZi)

]−1
[∑i(ΔZi)′yi]

]
. (10.45)

10 Again, we formally use different IVs for different equations, considering (10.40) as T different
equations with βββ as a common slope coefficient.
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These estimators can be modified by extending all Δxi(t) to (Δxi(t)

...Δy′i(t)) in (10.41),
which also exploit the OCs in the Δys. Other moment estimators, which will not be
discussed specifically in the present EIV context, are considered for situations with
predetermined IVs in Ziliak (1997), with the purpose of reducing the finite sample
bias of asymptotically optimal GMM estimators.

10.2.7 Extensions: Modifications

All the methods presented so far rely on differencing as a way of eliminating the
individual effects, either in the equation or in the instruments. This is convenient for
the case where the individual heterogeneity has an unspecified correlation with the
latent regressor vector and for the fixed effects case. Other ways of eliminating this
effect in such situations are discussed in Wansbeek (2001). Their essence is to stack
the matrix of covariances between the regressand and the regressors and eliminating
these nuisance parameters by suitable projections. Exploiting a possible structure,
suggested by our theory, on the covariance matrix of the ξξξ its and αi across individu-
als and periods, may lead to further extensions. Additional exploitable structure may
be found in the covariance matrix of the yits. The latter will, however, lead to mo-
ment restrictions that are quadratic in the coefficient vector βββ . Under non-normality,
higher order moments may also, in principle, be exploited to improve efficiency, but
again at the cost of a mathematically less tractable problem.

In a random effects situation, with zero correlation between ξξξ it and αi, and hence
between xit and αi, differencing or projecting out the αis will not be efficient, since
they will not exploit this zero correlation. The GLS estimator, which would have
been the minimum variance linear unbiased estimator in the absence of measure-
ment errors, will no longer, in general, be consistent [see Biørn (1996, Sect. 10.4.3)],
so it has to be modified. Finally, if the equation contains strongly exogenous regres-
sors in addition to the error-contaminated ones, further moment conditions exist,
which can lead to improved small sample efficiency of the GMM estimators. An
improvement of small sample efficiency may also be obtained by replacing IV or
GMM by LIML estimation; see Wansbeek and Meijer (2000, Sect. 6.6).

10.2.8 Concluding Remarks

Above we have demonstrated that several, rather simple, GMM estimators which
may handle jointly the heterogeneity problem and the measurement error problem
in panel data, exist. These problems may be ‘intractable’ when only pure (single or
repeated) cross section data or pure time series data are available. Estimators using
either equations in differences with level values as instruments, or equations in levels
with differenced values as instruments are useful. In both cases, the differences may
be taken over one period or more.
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Even for the static model considered here, instruments constructed from the
regressors (xs) as well as from the regressands (ys) may be of interest. GMM
estimators combining both instrument sets in an optimal way are usually more pre-
cise than those using either of them. Although a substantial number of orthogonality
conditions constructed from differences taken over two periods or more are
redundant, adding the essential two-period difference orthogonality conditions to
the one-period conditions in the GMM algorithm may significantly affect the result
[confer the examples in Biørn (2000)].

Using levels as instruments for differences, or vice versa, as a general estimation
strategy within a GMM framework, however, may raise problems related to ‘weak
instruments’. Finding operational ways of identifying such instruments among those
utilizing essential orthogonality conditions in order to reduce their potential damage
with respect to inefficiency, is a challenge for future research.

10.3 Simultaneity and Panel Data

Simultaneous equation models (SEM) or structural models as they are also some-
times called, have been around in the economic literature for a long time dating back
to the period when the Econometric Society itself was formed. In spite of this long
history, their relevance in modelling economic phenomena has not diminished; if at
all it is only growing over time with the realisation that there is a high degree of
interdependence among the different variables involved in the explanation of any
socio-economic phenomenon.

The theory of simultaneous equations has become a must in any econometric
course whatever level it may be. This is due to the fact any researcher needs to
be made attentive to the potential endogenous regressor problem, be it in a single
equation model or in a system of equations and this is the problem that the SEM
theory precisely deals with.

At this stage it may be useful to distinguish between interdependent systems
i.e. simultaneous equations and what are called systems of regression equations or
seemingly unrelated regressions (SUR) in which there are no endogenous variables
on the right hand side but non-zero correlations are assumed between error terms of
different equations. We will see later in the section that the reduced form of a SEM
is a special case of SUR.

In a panel data setting, in addition to the simultaneous nature of the model which
invariably leads to non-zero correlation between the right hand side variables and
the residual disturbance term, there is also the possibility of the same variables be-
ing correlated with the specific effects. However unlike in the correlated regressors
case of Chap. 4 eliminating the specific effect alone does not solve the problem here
and we need a more comprehensive approach to tackle it. We will develop general-
izations of the two stage least squares (2SLS) and three stage least squares (3SLS)
methods that are available in the classical SEM case. These generalizations can also
be presented in a GMM framework, giving the corresponding optimal estimation in
this context.
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The most commonly encountered panel data SEM is the SEM with error com-
ponent (EC) structure. Thus a major part of this chapter will the devoted to this
extension and all its variants. Other generalizations will be briefly discussed at
the end.

10.3.1 SEM with EC

10.3.1.1 The Model

This model proposes to account for the temporal and cross-sectional heterogeneity
of panel data by means of an error components structure in the structural equations
of a simultaneous equation system. In other words, the specific effects associated
with pooled data are incorporated in an additive manner in the random element of
each equation.

Let us consider a complete linear system of M equations in M current endoge-
nous variables and K exogenous variables. We do not consider the presence of
lagged endogenous variables in the system. The reader is referred to the separate
chapter of this book dealing with dynamic panel data models for treatment of such
cases.

By a ‘complete’ system, we assume that there are as many equations as there
are endogenous variables and hence the system can be solved to obtain the reduced
form. Further, we also assume that the data set is balanced i.e. observations are
available for all the variables for all the units at all dates. Once again, the case of
unbalanced panel data sets is dealt with in a separate chapter of the book.

We write the M–th structural equation of the system as follows:11

y′itγ∗m + x′itβ ∗m +umit = 0, m = 1, . . .M (10.46)

where y′it is the (1×M) vector of observations on all the M endogenous variables for
the i-th individual at the t-th time period; x′it is the (1×K) vector of observations on
all the K exogenous variables for the i-th individual at the t-th time period; γ∗m and
β ∗m are respectively the coefficient vectors of y′it and x′it ; and umit is the disturbance
term of the m-th equation for the i-th individual and the t-th time period.

More explicitly,

y′it = [y1it . . .yMit ]; x′it = [x1it . . .xKit ];

β ∗
′

m = [β ∗1m . . .β ∗Mm]; γ∗
′

m = [γ∗1m . . .γ∗Km] .

11 Note that the constant term is included in the β vector, contrary to the introductory chapters, and
hence xit contains 1 as its first element.
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By piling up all the observations in the following way:

Y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

y′11
...
y′1T
...
y′NT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

; X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x′11
...
x′1T
...
x′NT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

; um =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

um11
...
um1T
...
umNT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

equation (10.46) can be written as:

Y γ ∗m +Xβ ∗m +um = 0, m = 1, . . .M (10.47)

Defining
Γ = [γ ∗1 . . .γ ∗M]; B = [β ∗1 . . .β ∗M]; U = [u1 . . .uM] ,

we can write the whole system of M equations as:

Y Γ+XB+U = 0 . (10.48)

Before turning to the error structure, we add that the elements of Γ and B satisfy
certain a priori restrictions, crucial for identification, in particular the normalisa-
tion rule (γ ∗ii = −1) and the exclusion restrictions (some elements of Γ and B are
identically zero).

Following an error components pattern, it is assumed that each structural equa-
tion error umit is composed of three components: an individual effect μmi, a time
effect εmt and a residual error νmit . Formally, we have:

Assumption 1:

umit = μmi + εmt +νmit , m = 1, . . . ,M

i = 1, . . . ,N

t = 1, . . . ,T . (10.49)

By denoting

l′T (1×T ) = [1 . . . 1]; μm =

⎛

⎜
⎝

μm1
...
μmN

⎞

⎟
⎠ ; εm =

⎛

⎜
⎝

εm1
...
εmT

⎞

⎟
⎠ ; νm =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

νm11
...
νm1T
...
νmNT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

the above decomposition (10.49) can be written for all the observations, as:

um = (IN⊗ lT )μm +(lN⊗ IT )εm +νm, m = 1, . . . ,M .
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Assumption 2:

E(μm) = 0; E(εm) = 0; E(νm) = 0 , m = 1, . . . ,M .

Assumption 3:

E(μmμ ′m′) = σμmm′ IN , m,m′ = 1, . . . ,M

E(εmε ′m′) = σεmm′ IT , m,m′ = 1, . . . ,M

E(νmν ′m′) = σνmm′ INT , m,m′ = 1, . . . ,M

Assumption 4:

E(μmε ′m′) = 0; E(μmν ′m′) = 0; E(εmν ′m′) = 0, ∀m,m′ .

We will also assume independence, two by two, among the different components
whenever required, and normality of their distribution for ML estimation.

Assumption 5:
The error components are independent of the exogenous variables.

From these assumptions, the covariance matrix between um and um′ , denoted as
Σmm′ , can be derived as:

Σmm′ = E(umu′m′) = σμmm′(IN⊗ lT l′T )+σεmm′(lNl′N⊗ IT )+σνmm′INT . (10.50)

The spectral decomposition of Σmm′ is given by (see Nerlove (1971))

Σmm′ = σ1mm′M1 +σ2mm′M2 +σ3mm′M3 +σ4mm′M4 (10.51)

where

σ1mm ′ = σνmm ′

σ2mm ′ = σνmm ′ +T σμmm ′

σ3mm ′ = σνmm ′ +Nσεmm ′

σ4mm ′ = σνmm ′ +T σμmm ′ +Nσεmm ′ (10.52)

and

M1 = INT −
1
T

(IN⊗ lT l′T )− 1
N

(lNl′N⊗ IT )+
1

NT
lNT l′NT

of rank m1 = (N−1)(T −1);

M2 =
1
T

(IN⊗ lT l′T )− 1
NT

lNT l′NT

of rank m2 = N−1;

M3 =
1
N

(lNl′N ⊗ IT )− 1
NT

lNT l′NT

of rank m3 = T −1;

M4 =
1

NT
lNT l′NT

of rank m4 = 1
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with
4

∑
i=1

Mi = INT ; MiMj = δi jMi .

Further, we note that

l′NT Mi = 0 , i = 1, 2, 3 ; l′NT M4 = l′NT .

By denoting

Σμ = [σμmm′ ] ,Σε = [σεmm′ ] ,Σν = [σνmm′ ] ,m,m′ = 1, . . . ,M,

relations (10.52) can be written in matrix form as:

Σ1 = Σν ;Σ2 = Σν +T Σμ ;Σ3 = Σν +NΣε ;Σ4 = Σν +T Σμ +NΣε .

Note that Σμ ,Σε and Σν are uniquely determined from Σ1,Σ2,Σ3,Σ4 and vice versa.
Finally, the variance–covariance matrix of the structural form can be verified

to be:

Σ = E((vec U)(vec U)′) =
4

∑
i=1

Σi⊗Mi (10.53)

with
Σi = [σimm′ ] m,m′ = 1, . . .M for i = 1, 2, 3, 4.

The inverse and determinant of Σ (useful for the estimation procedures of later
sections) are given by (see Baltagi (1981) or Balestra and Krishnakumar (1987)):

Σ−1 =
4

∑
i=1

Σ−1
i ⊗Mi ; | Σ | = Π4

i=1 | Σi |mi . (10.54)

10.3.1.2 The Reduced Form and the Identification Problem

By definition, the reduced form of a system of simultaneous equations is the solution
of the system for the endogenous variables in terms of the exogenous variables and
the disturbances. For our model, it is given by:

Y = XΠ+V

where
Π =−BΓ−1 ; V =−UΓ−1 .

By using the properties of vec, we can write

vec V = (−Γ−1′ ⊗ I) vec U

and thus we have:
E(vec V ) = 0
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and

Ω = E((vec V )(vec V )′)

= (−Γ−1′ ⊗ I)Σ(−Γ−1⊗ I)

=
4

∑
i=1

Γ−1′ΣiΓ−1⊗Mi

=
4

∑
i=1

Ωi⊗Mi

where
Ωi = Γ−1′ΣiΓ−1 , i = 1, 2, 3, 4.

It can be easily verified that each reduced form equation has a three components
error structure like any structural equation and the covariances across different re-
duced form equations are also of the same nature as those across different structural
equations. However, an important point in which the reduced form differs from the
structural form is that the right hand side variables of the former are uncorrelated
with the errors whereas it is not the case in the latter due to simultaneity.

Thus the reduced form is a seemingly unrelated regression (SUR) model with
error components. This model was originally proposed by Avery (1977) and is an
important extension of panel data specifications to systems of equations. Our re-
duced form is in fact a special case of such a model as the explanatory variables are
the same in each equation. Avery (1977) treated a more general case in which each
equation has its own set of explanatory variables. This interpretation of our reduced
form enables us to provide an interesting application of Avery’s model combining
SUR with error components (EC). We do not intend to go into the details of the
inference procedures for the reduced form for want of space. In general, both ML
and feasible GLS can be applied. Both are consistent, asymptotically normal and
equivalent. The reader is referred to Krishnakumar (1988) for detailed derivations.

In the context of any simultaneous equation model, it is important to consider
the problem of identification prior to estimation. In the case of the classical si-
multaneous equation model (with homoscedastic and non–auto–correlated errors),
there is abundant literature on identification (see, for instance, Koopmans (1953),
Fisher (1966), Rothenberg (1971), and Hausman and Taylor (1983)).

In our case of SEM with EC, as long as there are no a priori restrictions on the
structural variances and covariances (i.e. no ‘covariance restrictions’ in the termi-
nology of Hausman and Taylor), the identification problem is exactly the same as
that of the classical model. In other words, in such a situation, we can separate the
discussion on the identification of Γ and B from that of the Σi (s), i = μ , ε, ν . Thus,
we would have the same rank and order conditions of identifiability of the elements
of Γ and B, and the same definitions of under-identified, just-identified and over-
identified equations. Once the structural coefficients are identified, the identification
of the structural variance–covariance matrices is immediate, through the equations
relating them to the reduced form covariance matrices.
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Now, if we impose additional a priori restrictions on the structural variances and
covariances, then it is no longer possible to separate the equations relating (Γ,B)
to Π from those relating Σi(s) to Ωi(s), i = μ , ε, ν and one has to study the exis-
tence and uniqueness of solutions for the full system consisting of all the identifying
equations, given the prior restrictions. This has been done for the classical simul-
taneous equation model by Hausman and Taylor (1983). One can follow the same
approach for our model but one has to keep in mind the fact that, in the classical
case, there is only one Σ whereas in our case there are three of these sets of rela-
tions: ΩiΓ′

′−1Σi , i = μ , ε, ν .
One type of a priori covariance restrictions that do not need any particular analy-

sis is that either Σμ or Σε is identically equal to zero (i.e. only one specific effect is
present in the model) and hence is identified. Note that, in this case, the correspond-
ing Ω matrix (Ωμ or Ωε ) is also zero and the spectral decomposition of Σ (and Ω) is
reduced to two terms only.

10.3.1.3 Structural Form Estimation

Generalised Two Stage Least Squares

Let us consider a structural equation, say the m–th one and write it as:

ym = Ymγm +Xmβm +um , (10.55)

in which the normalisation rule (β ∗mm = −1) and the exclusion restrictions are al-
ready substituted. We assume that these are the only a priori information available.
Note that Ym and Xm denote the matrices of observations on the M∗

m included en-
dogenous and Km included exogenous right hand side variables respectively and γm

and βm denote their respective coefficients. By defining

Zm = [Ym Xm]; αm =
(

γm

βm

)
,

we can rewrite (10.55) as
ym = Zm αm +um (10.56)

and we recall (see (10.51)) that

E(um u′m ′) = Σmm ′ =
4

∑
i=1

σimm′Mi .

The endogenous right hand side variables of (10.55) are correlated with both the
individual effects and the residual error term. Hence classical methods like the OLS,
GLS, or within will all yield inconsistent estimators and an appropriate procedure
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is given by the IV method which typically consists in premultiplying the equation
in question by a matrix of valid instruments and then applying GLS to the trans-
formed equation.

In the classical case, the instrument for Zm is taken to be X (see, for instance,
Theil (1971)). In our case, it can be shown that, of all the transformations of X ,
say FX , the one which minimises the asymptotic variance–covariance matrix of
the resulting estimator of αm, is given by F = Σ−1

mm. In other words, any other
transformation would lead to an estimator with an asymptotic variance–covariance
matrix ‘greater’ than the one obtained using Σ−1

mm (‘greater’ is used to mean that
the difference would be positive definite). This result is based on Theorem 5 of
Balestra (1983). Its application to our model can be found in Krishnakumar (1988).

Therefore the optimal instrument for Zm is given by Σ−1
mmX and premultiplying

(10.56) by X ′Σ−1
mm, we get:

X ′Σ−1
mmym = X ′Σ−1

mmZmαm +X ′Σ−1
mmum . (10.57)

Applying GLS on (10.57), we obtain what we call the generalised two stage least
squares (G2SLS) estimator of αm:

α̂m,G2SLS =[Z′mΣ−1
mmX(X ′Σ−1

mmX)−1X ′Σ−1
mmZm]−1

×Z′mΣ−1
mmX(X ′Σ−1

mmX)−1X ′Σ−1
mmym (10.58)

Now, the above estimator is not feasible as Σmm is unknown. Hence we need a
prior estimation of the variance components. By analysis of variance (cf. Amemiya
(1971)) of the errors of the m–th structural equation, the following estimators of the
σimm(s) are obtained:

σ̃1mm =
1

(N−1)(T −1)
u′mM1um

σ̃2mm =
1

N−1
u′mM2um

σ̃3mm =
1

T −1
u′mM3um

σ̃4mm = σ̃2mm + σ̃3mm− σ̃1mm (10.59)

These formulae contain um which is also unknown. However, it can be estimated
as follows. Premultiplying (10.56) by the instrument M1X , we get:

X ′M1ym = X ′M1Zmαm +X ′M1um .

Note that, if the equation has an intercept, it gets eliminated by this transformation
and we will be left with:

X ′M1ym = X ′M1Z∗mα∗m +X ′M1um (10.60)

where Z∗m denotes the matrix of right hand side variables excluding the vector of
ones and α∗m the respective coefficients. That is, we have split Zm and αm as:
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Zm = [YmlNT X∗m] ; αm =

⎛

⎝
γm

am

bm

⎞

⎠

and redefined Z ∗m and α∗m as

Z ∗m = [Ym X ∗
m ] ; α ∗

m =
(

γm

bm

)
.

Performing GLS on (10.60), we obtain a consistent estimator of α∗m called the co-
variance or the within 2SLS estimator:

α̂∗m,cov2SLS = [Z∗
′

m M1X(X ′M1X)−1X ′M1Z∗m]−1Z∗
′

m M1X(X ′M1X)−1X ′M1ym (10.61)

The intercept is estimated as:

âm,cov2SLS =
1

NT
l′NT (ym−Z∗mα̂∗m,cov2SLS) .

From these estimators, we can predict um as:

ûm,cov2SLS = ym−Z ∗mα̂m,cov2SLS− lNT âm,cov2SLS .

Substituting ûm,cov2SLS for um in (10.59), we obtain σ̂imm, i = 1, 2, 3, 4 and Σ̂mm =
∑4

i=1 σ̂immMi, leading to the following feasible G2SLS estimator of αm:

α̂m,fG2SLS = [Z′mΣ̂−1
mmX(X ′Σ̂−1

mmX)−1X ′Σ̂−1
mmZm]−1

×Z′mΣ̂−1
mmX(X ′Σ̂−1

mmX)−1X ′Σ̂−1
mmym (10.62)

Before giving the limiting distribution of the above estimators, we just mention
that all our estimators are consistent. Another interesting point to note is that all the
three estimators—Cov2SLS, G2SLS, fG2SLS—have the same limiting distribution.
It is given by (see Krishnakumar (1988) for derivation):

(√
N (âm−am)√
NT (α̂∗m−α∗m)

)
∼ N

(
0,

(
σμmm +σεmm 0

0 σνmm(P̃′mR̃mP̃m)−1

))

where

P̃m =

⎛

⎝
1 0
0 Π∗m
0 H∗

m

⎞

⎠ ; R̃m =
(

1/(σμmm +σεmm) 0
0 1/(σνmm)R

)

with Π∗m being the coefficient matrix of X in the reduced form equations for Ym

except for the column of ones and H∗
m being a selection matrix such that X∗m = XH∗

m.
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Generalised Three Stage Least Squares

The extension from G2SLS to generalised 3SLS (G3SLS) can be done in two ways.
In what follows, we present both the ways and show that they yield asymptotically
equivalent estimators.

The reader will recall that the G2SLS method uses the instrument matrix Σ−1
mmX

for the m–th equation. Applying to each structural equation of the system, its corre-
sponding transformation given by Σ−1

mmX , m = 1, 2, . . . ,M, we obtain:

X ′Σ−1
11 y1 = X ′Σ−1

11 Z1α1 +X ′Σ−1
11 u1

...

X ′Σ−1
MMyM = X ′Σ−1

MMZMαM +X ′Σ−1
MMum

or
X̃ ′−1y = X̃ ′−1Zα + X̃ ′−1u (10.63)

where12

X̃ = I⊗X

D = diag [Σ11 . . . ΣMM]
Z = diag [Z1 . . . ZM]

α ′ = [α ′1 . . .α ′M]
u′ = [u′1 . . .u′M]
y′ = [y′1 . . .y′M]

Now, let us apply GLS to the transformed system (10.63) to obtain our first gen-
eralised 3SLS (G3SLS–I) estimator:

α̂G3SLS−I = [Z ′D−1X̃(X̃ ′D−1ΣD−1X̃)
−1

X̃D−1Z]
−1

× Z ′D−1X̃(X̃ ′D−1ΣD−1X̃)
−1

X̃ ′D−1y (10.64)

Note that this way of generalising is analogous to the way that classical 2SLS is
extended to 3SLS by Zellner and Theil (1962). However, there is also a second way
of approaching the problem, that we briefly present below.

Recall that our reason for choosing Σ−1
mmX as the instrument for Zm in the G2SLS

procedure was that it minimised the asymptotic covariance matrix of the resulting
coefficient estimator. Now, let us write the whole system as:

y = Zα +u

with
E(u) = 0 and E(uu′) = Σ

12 Note that this particular notation for D is valid only for this chapter.
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and find the best transformation F of (I⊗X) for choosing the instruments. By the
same reasoning as for G2SLS, we would get F = Σ−1. Using Σ−1(I ⊗X) as in-
struments and estimating α by GLS on the transformed system yields our second
G3SLS (G3SLS–II) estimator:

α̂G3SLS−II = [Z ′Σ−1X̃(X̃ ′Σ−1X̃)
−1

X̃ ′Σ−1Z]
−1

× Z ′Σ−1X̃(X̃ ′Σ−1X̃)
−1

X̃ ′Σ−1y (10.65)

Both these G3SLS estimators can be made feasible by replacing the variance
components present in Σ by their corresponding estimates given by analysis of
variance:

σ̂1mm′ =
1

(N−1)(T −1)
û′m M1 ûm′

σ̂2mm′ =
1

N−1
û′m M2 ûm′

σ̂3mm′ =
1

T −1
û′m M3 ûm′

σ̂4mm′ = σ̂2mm′ + σ̂3mm′ − σ̂1mm′ (10.66)

for m, m′ = 1, . . . M. Note that for the ûm(s), we can take:

ûm,cov2SLS = ym−Zmα̂m,cov2SLS

or
ûm,fG2SLS = ym−Zmα̂m,fG2SLS

or even
ûm,cov3SLS = ym−Zmα̂m,cov3SLS

where α̂m,cov3SLS is yet another 3SLS estimator obtained by using the instrument
matrix (I⊗M1X) for the system and estimating by GLS.

From the estimates of σ̂imm′ (s) given by (10.66), we form Σ̂ = ∑4
i=1 Σ̂i⊗Mi with

Σ̂i = [σ̂imm′ ], m,m′ = 1, . . . , M and use it in (10.64) and (10.65) to get the feasible
G3SLS estimators.

It is remarkable that due to the special structure of the error-components covari-
ance matrix, all these 3SLS estimators, namely the pure G3SLS-I, pure G3SLS-II,
cov3SLS, feasible G3SLS-I and feasible G3SLS-II, have the same limiting distribu-
tion given by:

(√
N (â−a)√
NT (α̂∗ −α∗)

)
∼ N

(
0,

(
Σμ +Σε 0

0 [Π̄′(Σ−1
ν ⊗R)Π̄]−1

))

where a is a (M × 1) column vector containing the intercepts of each equation
i.e. a′ = [a1 . . . aM] and α∗ is ((M − 1)M × 1) containing the other non-zero
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coefficients of each equation i.e. α∗′ = [α∗′1 . . . α∗′M ] and where Π̄ = diag ([Π∗mH∗
m]),

m = 1, . . . ,M.
Finally, let us note that, though we assume the presence of an intercept in each

equation, the above results can be easily generalised to the case in which some
equations have an intercept and others do not.

Error Components Two Stage Least Squares

This is an alternative method of estimating the parameters of a single structural
equation. This method is proposed by Baltagi (1981) and inspired from the feasible
Aitken procedure developed by Maddala (1971) for a single equation error compo-
nents model.

In this method, the structural equation in question say the m–th one, is
successively transformed by the matrices of eigenvectors associated with the dis-
tinct characteristic roots of Σmm and GLS is performed on a system comprising all
the three transformed equations. Before going further, let us introduce some more
notations. From Sect. 10.3.1.1 we know that the distinct eigenvalues of Σmm′ are
σ1mm′ ,σ2mm′ ,σ3mm′ and σ4mm′ . The matrices whose columns are the eigenvec-
tors associated with these roots are Q1 ,Q2 ,Q3 and lNT /

√
NT respectively where

Q1 = C2⊗C1 ,Q2 = C2⊗ lT /
√

T ,Q3 = lN/
√

N⊗C1 such that O′T = [l′T /
√

T C′1]
and O′N = [l′N/

√
N C′2] are orthogonal. Note that Q jQ′j are unique for j = 1, 2, 3

and Q′jQ j = Mj, j = 1, 2, 3.
Now, let us apply the transformations Q j, j = 1, 2, 3 to our structural equa-

tion (10.56):

Q jym = Q jZmαm +Q jum, j = 1, 2, 3 . (10.67)

It is easily verified that

E(Q jumu′mQ′j) =
{

σ jmmIm j for j = j′

0 for j �= j′

Thus the transformed errors have a scalar variance–covariance matrix but are still
correlated with the right hand side variables. Hence an IV technique is used with
Q jX as instruments for Q jZm. This gives:

α̂( j)
m,2SLS = [Z′mQ′jQ jX(X ′Q′jQ jX)−1X ′Q′jQ jZm]−1

× Z′mQ′jQ jX(X ′Q′jQ jX)−1 X ′Q′jQ jym, j = 1, 2, 3 (10.68)

These 2SLS estimators are in turn used to estimate the variance components:

σ̂ jmm =
1

m j
(Q jym−Q jZmα̂( j)

m,2SLS)′(Q jym−Q jZmα̂( j)
m,2SLS), j = 1, 2, 3

σ̂4mm = σ̂2mm + σ̂3mm− σ̂1mm (10.69)
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This is a generalisation of the Swamy and Arora (1972) method. The above pro-
cedure gives three different estimators of the same αm. Therefore, we can combine
all the three transformed equations of (10.67) together and estimate the whole sys-
tem by GLS. We have:

⎛

⎝
X ′Q′1Q1ym

X ′Q′2Q2ym

X ′Q′3Q3ym

⎞

⎠=

⎛

⎝
X ′Q′1Q1Zm

X ′Q′2Q2Zm

X ′Q′3Q3Zm

⎞

⎠αm +

⎛

⎝
X ′Q′1Q1um

X ′Q′2Q2um

X ′Q′3Q3um

⎞

⎠ . (10.70)

Using the Swamy and Arora estimates (10.69) of the variance components and
performing feasible GLS on (10.70), we get the error components two stage least
squares (EC2SLS) estimator:

α̂m,EC2SLS =
[

∑3
j=1

1
σ̂ jmm

Z′mQ′jQ jX(X ′Q′jQ jX)−1X ′Q′jQ jZm

]−1

(10.71)

×
[

∑3
j=1

1
σ̂ jmm

[Z′mQ′jQ jX(X ′Q′jQ jX)−1X ′Q′jQ jym]
]

(10.72)

It can be shown that the above estimator is a weighted average of the three 2SLS
estimators given in (10.68).

The limiting distribution of the EC2SLS estimator is the same as that of the
feasible G2SLS estimator.

Error Components Three Stage Least Squares

In this section, we present an extension of the EC2SLS method to the whole system.
We start with

y = Zα +u

and transform it successively by (IM⊗Q j), j = 1, 2, 3 to give:

y( j) = Z( j)α +u( j), j = 1, 2, 3 (10.73)

where y( j) = (IM⊗Q j)y ;Z( j) = (IM⊗Q j)Z ;u( j) = (IM⊗Q j)u and

E(u( j)u( j)′) = Σ j⊗ Im j, j = 1, 2, 3 .

Using X ( j) = (IM⊗Q jX) as instruments for Z( j) and applying GLS, we get:

α̂( j)
IVGLS = [Z( j)′{Σ−1

j ⊗PX( j)}Z( j)]−1 (10.74)

×[Z( j)′{Σ−1
j ⊗PX( j)}y( j)] j = 1, 2, 3

where for any matrix A, PA denotes the projection matrix A(A′A)−1A′.
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The unknown variance components are estimated by

σ̂ jmm′ =
1

m j
[Q jym−Q jZmα̂( j)

m,2SLS]′ [Q jym′ −Q jZm′ α̂
( j)
m′,2SLS] , j = 1, 2, 3

σ̂4mm′ = σ̂2mm′ + σ̂3mm′ − σ̂1mm′

Now, recognising once again that the same α is being estimated three times sep-
arately, we can combine all the three transformed systems of (10.73) and estimate
the global system by (feasible) IVGLS. The resulting estimator is called the error
component 3SLS (EC3SLS) estimator of α:

α̂EC3SLS =
[
∑3

j=1 Z( j)′(Σ̂−1
j ⊗PX( j) )Z( j)

]−1
(10.75)

×
[
∑3

j=1 Z( j)′(Σ̂−1
j ⊗PX( j) )y( j)

]
(10.76)

The above estimator also has the same interpretation as the EC2SLS one, in that
it is a weighted average of the three 3SLS estimators of (10.75) (see Baltagi (1981)
for further details).

Finally, the limiting distribution of the EC3SLS estimator can be shown to be the
same as that of the G3SLS estimators of the previous section and hence is asymp-
totically equivalent to them.

Full Information Maximum Likelihood

The full information maximum likelihood (FIML) procedure consists in maximis-
ing the log-likelihood function of the model with respect to the structural parameters
given the a priori restrictions. As in all constrained maximisation problems, there
are two ways of tackling it—(i) by maximising the corresponding Lagrangian func-
tion with respect to the same parameters and a set of multipliers associated with the
constraints; (ii) by substituting the constraints in the objective function and perform-
ing maximisation without constraints. In this section, we will briefly review both
the approaches. The reader will note that neither of them yield explicit analytical
solutions and hence both require numerical iterative procedures to arrive at the solu-
tion. Moreover, in the first approach adopted by Balestra and Krishnakumar (1987)
and Krishnakumar (1988), the a priori restrictions on the structural coefficients
are assumed to be any linear ones whereas in the second approach followed by
Prucha (1985), only the normalisation and exclusion restrictions are considered.

Recalling our structural model:

Y Γ+XB+U = 0.

and separating the intercept of each equation from the other terms, we can write:

Y Γ+ lNT a′+X∗B∗+U = 0
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or
lNT a′+Z∗Θ∗+U = 0

where

Θ∗ =
(

Γ
B∗

)
.

Note that in case only some equations have an intercept and others do not, the fol-
lowing procedure can be easily modified accordingly.

Now, the a priori restrictions on the coefficients can be written as (say we have
p of them): (

S0 0
0 S∗

)(
a

vec Θ∗

)
=
(

s0

s∗

)
(10.77)

These include the normalisation rule, the exclusion restrictions and any other
linear constraints. To these, we add the symmetry conditions for Σ j(s) written as:

C vec Σ j = 0 , j = μ ,ε ,ν . (10.78)

The log-likelihood function of the model can be written as follows, after a few
simplifications and rearrangements:

lnL = const − 1
2

4

∑
i=1

miln | Σi |+
1
2

NT ln | L′Θ∗ |2

− 1
2

tr(NTaa′+Θ′∗Z
′
∗lNT a′+al′NT Z∗Θ∗)Σ−1

4

− 1
2

tr
4

∑
i=1

Θ′∗Z
′
∗MiZ∗Θ∗Σ−1

i (10.79)

with L such that Γ = LΘ∗. Thus we have to maximise (10.79) with respect to
a, Θ∗, Σμ , Σε and Σν under the constraints (10.77) and (10.78).

Here again we will not describe the procedure in detail for brevity’s sake and the
reader is invited to consult Balestra and Krishnakumar (1987) for more information
on the algorithm to be implemented in order to obtain a numerical solution. We give
below the limiting distribution of the FIML estimator:

(√
T (âML−a)√
NT vec(Θ̂∗,ML−Θ∗)

)
∼ N

(
0,

(
Σμ +Σε 0

0 F [F ′(Σ−1
ν ⊗P∗)F ]−1F ′

))

where

P∗ =
(

Π′∗
I

)
R (Π∗ I)

When the a priori restrictions are only the normalisation and exclusions, we
have the same limiting distribution for the FIML as the one for the (feasible)
G3SLS. Hence, in this case, the FIML and the fG3SLS are of the same asymptotic
efficiency.
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As mentioned in the beginning of this section, there is a second approach to the
constrained maximisation problem which consists in replacing the constraints in the
objective function and then maximising the latter with no constraints. This has been
done by Prucha (1985) for our model for the case of the usual restrictions only and
is called the normal FIML (NFIML) estimator. The normal equations of the above
maximisation programme lead to an IV interpretation of the ML estimator which can
be used as an estimator–generating equation to form a general class of estimators
called the NFIMLA estimator (the subscript A indicates that the estimator can be
viewed as an approximation of the NFIML estimator). Further Prucha also shows
that under certain conditions, all members of the NFIMLA class are asymptotically
equivalent among themselves and to the NFIML estimator.

10.3.1.4 Asymptotic Comparisons of the Various Structural Estimators

In this section, we will summarise the different asymptotic equivalences mentioned
earlier and state a few more results regarding the just–identified case.

First, let us briefly recall the results that we already know in the case of the usual
restrictions. We have the asymptotic equivalence of the various 2SLS estimators
namely, the cov2SLS, fG2SLS and EC2SLS. Among the system methods, we have
the asymptotic equivalence of cov3SLS, fG3SLS-I, fG3SLS-II, EC3SLS and FIML
estimators.

Regarding the just-identified case, we will mention the important results without
deriving them. The reader is referred to the original works by Krishnakumar (1988)
and Baltagi (1981) for proofs.

When a single equation, say the m-th one, is just-identified:

(i) the indirect least squares estimators obtained using the covariance estimator of
Π, is exactly equal to the cov2SLS estimator;

(ii) the indirect least squares estimator obtained using the feasible GLS estimator
of Π has the same limiting distribution as the feasible G2SLS
estimator;

(iii) the EC2SLS estimator can be expressed as a weighted combination of three
indirect estimators of αm;

(iv) the three 2SLS estimators of (10.68) are respectively equal to the indirect least
squares estimators based on the between groups, between time periods and
within variations estimators of the reduced form;

(v) all these estimators—feasible G2SLS, cov2SLS, indirect estimators based on
Π̂cov or Π̂fGLS and EC2SLS—are asymptotically equivalent.

When the whole system is just-identified:

(i) fG3SLS-I reduces to fG2SLS whereas the fG3SLS-II does not;
(ii) fG3SLS-I, fG3SLS-II, fG2SLS and the indirect estimators are all asymptoti-

cally equivalent;
(iii) EC3SLS does not reduce to EC2SLS;
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(iv) EC3SLS and EC2SLS have the same limiting distribution and
(v) all these estimators—fG3SLS-I, fG3SLS-II, cov3SLS, fG2SLS, cov2SLS,

EC3SLS, EC2SLS—are asymptotically equivalent.

10.3.1.5 Small Sample Properties

There are essentially two ways of arriving at the small sample behaviour of econo-
metric estimators. One is by analytically deriving the exact distribution or an
approximation to it and the other is by ‘constructing’ the distribution through simu-
lations (also called Monte-Carlo experiments).

In the case of the reduced form, the unbiasedness of the various coefficient and
variance components estimators is proved without great difficulty (see Krishnakumar
(1988)). However, exact efficiency properties are yet to be established and so far
nothing is known.

In the case of the structural form estimators, things get very complicated. In the
classical simultaneous model, several authors have dealt with the problem of find-
ing the exact distributions of the two stage and three stage estimators. The reader
is invited to consult Phillips (1982) for more information in the classical case. In
the SEM with EC case, we have no result on the exact density functions of the
various structural estimators. However, we do have results on approximations to
finite sample moments using series expansions methods. These methods are used
even when we have the analytical expression of density functions since they yield
much less complicated expressions. In these methods, the estimator is developed
around its true value in a series of terms of orders decreasing in the powers of the
sample size. Then the series is truncated upto a desired order and the expectation
of the truncated series is calculated to get the bias upto that order. This procedure
has been applied to our model by Krishnakumar (1988), following the approach of
Nagar (1959), to get approximations for the bias of cov2SLS and fG2SLS estima-
tors. We will not go deeper into this aspect here. The results and derivations can be
found in Krishnakumar (1988).

Now, we turn to the second approach—the Monte-Carlo study. This method con-
sists in specifying a true model giving values for all the parameters, generating the
random elements and the observations on the exogenous variables, calculating the
endogenous variables and estimating the parameters using only the observations. By
running the procedure a number of times with different sets of observations (keeping
the true values unchanged), one can ‘construct’ the distribution curve of the estima-
tor and derive its mean, variance, mean square error and so on. These criteria can be
used to compare the performance of different estimation methods. In addition, the
whole exercice can be repeated for different sets of true values.

Baltagi (1984) carried out such a Monte-Carlo experiment for the SEM with EC,
in which he compared various least squares and IV estimators of a two-equation
structural model, keeping the same true values for the coefficients and changing
only the values of the variance components. In what follows, we will briefly review
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the main results concerning the structural form and the reduced form. For results re-
garding the variance components estimators, the reader is referred to Baltagi (1984).

First, the structural form results. The classical 2SLS has a smaller bias than the
EC2SLS but the EC2SLS has a lower root mean square error (RMSE) than the clas-
sical 2SLS. Better estimates of the structural variance components do not necessar-
ily imply better estimates of the structural coefficients. In general, 3SLS dominates
2SLS and EC3SLS dominates EC2SLS in RMSE though the superiority of EC3SLS
over EC2SLS does not hold for all the structural parameters. There is gain in per-
forming EC3SLS rather than classical 3SLS according to RMSE. Similar results are
also obtained if we use global criteria like the normalised mean square deviation
and the normalised mean absolute deviation which give a single indicator for the
combined performance of all parameter estimators.

Now, the reduced form results. Performing feasible GLS on each reduced form
equation is better than performing OLS or LSDV, according to RMSE. But, accord-
ing to the same criterion, feasible GLS on the entire system does not necessarily
produce better results than feasible GLS on each equation separately. Baltagi notes
that this could be due to the fact that there are only two equations in the model and
may not be so in larger models. Once again better estimates of the variance com-
ponents do not necessarily imply better feasible GLS estimates of coefficients. The
same results are maintained even according to global criteria.

Mátyás, and Lovrics (1990) investigate the small scale properties of 5 limited
information estimators for SEM with EC models by means of a Monte Carlo study.
They compare the OLS estimator, the within estimator, the pure G2SLS, and two
feasible G2SLS estimators (one with OLS as the first step and the other with within).
Their findings are as follows: The OLS estimator remains biased in all cases. But it
is still recommended for very small N and T (N < 10, T < 20) due to its stability as
the G2SLS/within 2SLS are unstable and have a large dispersion. For N < 10 and
T > 20 they favour the G2SLS/within 2SLS estimators and for a sufficient (N >
15− 20) as long as T > 5. There is practically no difference between the three
G2SLS (pure and the two feasible) estimators.

Baltagi and Chang (2000) study the relative performance of several estimators of
a two-equation SEM with unbalanced panel data. Among the single equation meth-
ods they compare 2SLS, W2SLS and the EC2SLS and among the system estimators
they look at 3SLS, W3SLS and EC3SLS. They observe that most of the results
obtained for the balanced case carry over to the unbalanced one.

10.3.2 Extensions

10.3.2.1 Simultaneous Equation Models with Correlated Specific Effects

In the SEM with EC discussed in the previous subsections, it was assumed that
the error components were uncorrelated with the exogenous variables. Cornwell
et al. (1992) extend our model to the case in which this assumption is dropped.
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They allow for the possibility of only some variables being correlated with the
error components (singly exogenous) while the others are independent of them (dou-
bly exogenous). Their model is specified as follows:

ym = Ymδm +Xmβm +Zmγm +αm + εm ,m = 1, . . . , M . (10.80)

A distinction is also made between time-varying exogenous variables (X) and
the time-invariant exogenous variables (Z) and only individual effects are present in
the model (i.e. we have only a two-components error term). Denoting,

Rm = [Ym Xm Zm] ; ξ ′
m

= [δ′m β ′
m

γ ′
m
] ,

we can write (10.80) as

ym = Rmξm +(αm + εm) , m = 1, . . . , M

The 2SLS proposed transforms the equation say the first one by Σ−
1
2

11 to get:

Σ−
1
2

11 y1 = Σ−
1
2

11 R1 ξ1 +Σ−
1
2

11 (α1 + ε1)

and use instruments of the form A = [QvX PvB] with different choices for B. Three
different choices are proposed the first one corresponding to the instrument set of
Hausman and Taylor (1981), the second one inspired from Amemiya and McCurdy
(1986) and the third based on Breusch (1987). The Three Stage Least Squares gen-
eralises the procedure for the whole model.

The authors also derive estimators in the case in which the nature of the cor-
relation between the exogenous variables and the specific effects may vary from
equation to equation. In other words, we may have an exogenous variable correlated
with the specific effect in one equation but uncorrelated with the specific effect in
another equation. In this case, the instrument set also varies across equations.

In case the specific effects are assumed to be fixed the authors show that the
model can be estimated by OLS after a within transformation.

10.3.2.2 Simultaneous Error Component Models with Censored
Endogenous Variables

Another recent extension is the inclusion of censored endogenous variables in a si-
multaneous EC model, by Vella and Verbeek (1999). Their model is a two–equation
system in which the first one is the primary focus and the second one is already in
the reduced form. For i = 1, . . . ,N; t = 1, . . . ,T we have:

y∗it = m1(xit ,zit ;θ1)+ μi +ηit (10.81)

z∗it = m2(xit ,zit ;θ2)+αi +νit (10.82)
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zit = h(z∗it ,θ3)
yit = k(y∗it)

where i indexes individuals (i = 1, . . . ,N), t time periods (t = 1, . . . ,T ), y∗it and
z∗it are latent endogenous variables with observed counterparts yit and zit ; m1 and
m2 denote general functions characterized by the unknown parameters in θ1 and
θ2, respectively. The mapping from the latent to the observed variables is through
the censoring functions h and k, h depending on another unknown parameter
vector θ3.

An error component structure is specified for the disturbance term of each equa-
tion (μi and ηit for (10.81) and αi and νit for (10.82)) with the components being
independent across individuals. Denoting εit = μi + ηit and uit = αi + νit , it is as-
sumed that

ui | Xi ∼ NID(0,σ2
α ιι ′2ν I),

E(εit | Xi,ui) = τ1uit + τ2ūi (10.83)

where ι is a vector of ones, ui is the T vector of uits for individual i, Xi =
[xi1, . . . ,xiT ]′ and ūi = T−1 ∑T

t=1 uit ; τ1 and τ2 are unknown constants. Equation
(10.83) reflects the endogenous character of z∗it .

Two variants are considered for the censoring mechanisms:
(1) z∗it is censored through h(·) and y∗it observed only for certain values of zi1, . . . ,
ziT i.e

yit = y∗it if gt(zi1, . . . ,zit) = 1

= 0 (unobserved) if gt(zi1, . . . ,ziT ) = 0

and
(2) z∗it is observed and only y∗it is censored through k(·).

The first model allows for a conditional moment estimation where (10.82) is first
estimated by ML and then (10.81) by conditional moment method after adding in
its right hand side the conditional expectation of its errors given the exogenous vari-
ables and the errors of (10.82), in order to take into account the endogeneity of zit .
For the second variant, a two step conditional ML approach is proposed by first es-
timating the second equation by ML as zit is observed and then the first equation by
conditional ML i.e. maximising the conditional likelihood given zi. Generalisations
to multiple endogenous variables are briefly mentioned.

The first method is applied to a model for analyzing the influence of the num-
ber of hours worked on the hourly wage rate keeping in mind the potential endo-
geneity of the former. Through this application the authors point out the usefulness
of the two step methods in a context where the maximum likelihood procedure is
impractical.
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10.4 Conclusion

To conclude we would like to make a few general remarks. First let us add a word
on the different uses of the same terminology and a possible confusion arising from
it, especially for students. As mentioned before, the problem of regressors corre-
lated with the error term (whatever component of it) results in inconsistent/biased
OLS/GLS estimates and one has to resort to IV/GMM methods. When data are in
a one-dimensional form, there is no room for confusion. However in a panel data
setting, the same terminology of ‘endogeneity of regressors’ may be used whether
it concerns correlation with specific effects or with the residual disturbance term.
Though it is correct to use the same name in both cases, the researcher has to check
what type of endogeneity she is faced with before adopting a solution. Some meth-
ods or transformations that are valid for one may not be valid for the other and
vice versa.

Again keeping the students in mind we would like to point out that the terms IV
and GMM can rightly be used in an interchangeable fashion as all IV estimators can
also be interpreted as GMM estimators using the corresponding moment conditions.
But one should understand how the same estimator can be obtained by both ways
especially for implementing the estimation methods in any software package which
may not explicitly have one or the other term in its commands.

We now turn to areas where research could be continued in this topic. First of
all, the reader would have noticed that we have not specially dealt with hypothesis
testing in our chapter. This is because the tests on various coefficients and variance
components are only asymptotic, based on the limiting distributions of the respec-
tive estimators and can be derived relatively easily as straightforward extensions of
their counterparts in the single-equation model. No exact results are available so far
on the distributions. This precisely leads us to one possible area for further theoret-
ical research namely, derivation of the exact distributions of the various estimators
developed above, or better approximations to the exact distribution than the asymp-
totic ones, especially for small samples, using recent techniques like bootstrap or
saddlepoint approximations.

Finally, regarding the practical implementation of the various IV methods, we are
happy to note that many of the above procedures have been included in the econo-
metric software available on the market. G2SLS, within-2SLS and EC-2SLS are
easily implemented in STATA which offers many estimation and inference possi-
bilities with panel data in general. Matrix manipulations are also convenient in this
programme which allows for easy and quick transformations of variables before en-
tering them in a regression. Other packages like TSP, LIMDEP and RATS have also
included panel data estimation possibilities. The reader is invited to go through the
chapter devoted to this topic in this volume for an excellent review of the different
options available.
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Chapter 11
Pseudo-Panels and Repeated Cross-Sections

Marno Verbeek

11.1 Introduction

In many countries there is a lack of genuine panel data where specific individuals
or firms are followed over time. However, repeated cross-sectional surveys may be
available, where a random sample is taken from the population at consecutive points
in time. Important examples of this are the Current Population Survey in the U.S.A.,
and the Family Expenditure Survey in the United Kingdom. While many types of
models can be estimated on the basis of a series of independent cross-sections in a
standard way, several models that seemingly require the availability of panel data
can also be identified with repeated cross-sections under appropriate conditions.
Most importantly, this concerns models with individual dynamics and models with
fixed individual-specific effects.

Obviously, the major limitation of repeated cross-sectional data is that the same
individuals are not followed over time, so that individual histories are not available
for inclusion in a model, for constructing instruments or for transforming a model
to first-differences or in deviations from individual means. All of these are often
applied with genuine panel data. On the other hand, repeated cross-sections suffer
much less from typical panel data problems like attrition and nonresponse, and are
very often substantially larger, both in number of individuals or households and in
the time period that they span.

In a seminal paper, Deaton (1985) suggests the use of cohorts to estimate a fixed
effects model from repeated cross-sections. In his approach, individuals sharing
some common characteristics (most notably year of birth) are grouped into co-
horts, after which the averages within these cohorts are treated as observations in
a pseudo panel. Moffitt (1993) and Collado (1997), in different ways, extend the
approach of Deaton to nonlinear and dynamic models. Alternative estimators for
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the model with individual dynamics, including the one proposed by Girma (2000),
are evaluated in Verbeek and Vella (2005). Alternative types of asymptotics are dis-
cussed in McKenzie (2004). In this chapter we shall discuss the identification and
estimation of panel data models from repeated cross sections. In particular, atten-
tion will be paid to linear models with fixed individual effects, to models containing
lagged dependent variables and to discrete choice models.

Models containing individual effects that are correlated with the explanatory
variables (“fixed effects models”) often arise naturally from economic theory, for
example in life cycle models where the individual effects represent marginal utility
of wealth (see, for example, Heckman and McCurdy (1980) or Browning, Deaton
and Irish (1985)). Individual dynamics also often follow from economic theory,
reflecting adjustment costs, habit persistence, or intertemporal optimization. Con-
sequently, from an economic point of view it is important to be able to estimate
dynamic models and models with fixed individual effects, even in the absence of
genuine panel data. While it is possible to estimate such models using repeated
cross-sections, we shall see below that such approaches typically require strong
identification conditions, which are often hard to test.

Estimation techniques based on grouping individual data into cohorts are iden-
tical to instrumental variables approaches where the group indicators are used as
instruments. Consequently, the grouping variables should satisfy the appropriate
conditions for an instrumental variables estimator to be consistent (including a rank
condition). This not only requires that the instruments are exogenous (in the sense
of being uncorrelated to the unobservables in the equation of interest), but also rele-
vant, i.e. appropriately correlated to the explanatory variables in the model. Loosely
speaking, the latter requirement means that cohorts are defined as groups whose
explanatory variables change differentially over time. Even if the instruments are ex-
ogenous and relevant, their large number and the fact that they may be only weakly
correlated with the explanatory variables they are supposed to instrument may im-
ply that the resulting estimators perform poorly because of the “weak instruments”
problem (see Bound, Jaeger and Baker (1995), or Staiger and Stock (1997)).

The structure of this chapter is as follows. In Sect. 11.2 we present the basic linear
model. Sect. 11.3 pays attention to linear dynamic models, while Sect. 11.4 briefly
discusses the estimation of binary choice models. Sect. 11.5 concludes. A related
survey can be found in Ridder and Moffitt (2007).

11.2 Estimation of a Linear Fixed Effects Model

We start with analyzing a simple linear model with individual effects given by

yit = x′itβ +αi +uit , t = 1, . . . ,T, (11.1)

where xit denotes a K-dimensional vector of explanatory variables, and β is the
parameter vector of interest. The index i refers to individuals and throughout this
chapter we shall assume that the available data set is a series of independent



11 Pseudo-Panels 371

cross-sections, such that observations on N individuals are available in each period.1

For simplicity, we shall assume that E{xituit}= 0 for each t.
If the individual effects αi are uncorrelated with the explanatory variables in xit ,

the model in (11.1) can easily be estimated consistently from repeated cross-sections
by pooling all observations and performing ordinary least squares treating αi + uit

as composite error term. This exploits the K moment conditions in

E{(yit − x′itβ )xit}= 0. (11.2)

However, in many applications the individual effects are likely to be correlated with
some or all of the explanatory variables, so that at least some of the moment con-
ditions in (11.2) are not valid. When genuine panel data are available, this can be
solved using a fixed effects approach which treats αi as fixed unknown parame-
ters. In other words, each individual has its own intercept term. For estimating β ,
this is equivalent to using the within-transformed explanatory variables xit − x̄i as
instruments for xit in (11.1), where x̄i = T−1 ∑T

t=1 xit . Obviously, when repeated
observations on the same individuals are not available, such an approach cannot
be used.

Deaton (1985) suggests the use of cohorts to obtain consistent estimators for β
in (11.1) when repeated cross-sections are available, even if αi is correlated with
one or more of the explanatory variables. Let us define C cohorts, which are groups
of individuals sharing some common characteristics. These groups are defined such
that each individual is a member of exactly one cohort, which is the same for all
periods. For example, a particular cohort may consist of all males born in the pe-
riod 1950–1954. It is important to realize that the variables by which cohorts are
defined should be observed for all individuals in the sample. This rules out time-
varying variables (e.g. earnings), because these variables are observed at different
points in time for the individuals in the sample. The seminal study of Browning,
Deaton and Irish (1985) employs cohorts of households defined on the basis of five-
year age bands subdivided as to whether the head-of-the-household is a manual
or non-manual worker. Blundell, Duncan and Meghir (1998) employ year-of-birth
intervals of 10 years, interacted with two education groups, Banks, Blundell and
Preston (1994) use five-year age bands, while Propper, Rees and Green (2001) use
7 date of birth groups and 10 regions to construct cohorts.2

If we aggregate all observations to cohort level, the resulting model can be
written as

ȳct = x̄′ctβ + ᾱct + ūct , c = 1, . . . ,C; t = 1, . . . ,T, (11.3)

where ȳct is the average value of all observed yit ’s in cohort c in period t, and simi-
larly for the other variables in the model. The resulting data set is a pseudo panel or
synthetic panel with repeated observations over T periods and C cohorts. The main

1 Because different individuals are observed in each period, this implies that i does not run from 1
to N for each t.
2 Some authors employ the term “cohorts” to specifically reflect year-of-birth groups. We use
“cohorts” in a broader sense, as groups of individuals (households, firms) sharing some common
characteristics (most often including year-of-birth).
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problem with estimating β from (11.3) is that ᾱct depends on t, is unobserved, and
is likely to be correlated with x̄ct (if αi is correlated with xit). Therefore, treating ᾱct

as part of the random error term is likely to lead to inconsistent estimators. Alterna-
tively, one can treat ᾱct as fixed unknown parameters assuming that variation over
time can be ignored (ᾱct = αc). If cohort averages are based on a large number of
individual observations, this assumption seems reasonable and a natural estimator
for β is the within estimator on the pseudo panel, given by

β̂W =

(
C

∑
c=1

T

∑
t=1

(x̄ct − x̄c)(x̄ct − x̄c)′
)−1 C

∑
c=1

T

∑
t=1

(x̄ct − x̄c)(ȳct − ȳc), (11.4)

where x̄c = T−1 ∑T
t=1 x̄ct is the time average of the observed cohort means for co-

hort c. The properties of this estimator depend, among other things, upon the type of
asymptotics that one is willing to employ. Deaton (1985) considers the asymptotic
properties of this estimator when the number of cohorts C tends to infinity. This re-
quires that the number of individuals N tends to infinity with (more or less) constant
cohort sizes. Moffitt (1993), on the other hand, assumes that C is constant while the
number of individuals tends to infinity. In this approach, cohort sizes tend to infinity,
asymptotically.

The estimators proposed by Moffitt (1993) are based on the idea that grouping
can be viewed as an instrumental variables procedure. To illustrate this, we shall
reformulate the above estimator as an instrumental variables estimator based on a
simple extension of (11.1). First, decompose each individual effect αi into a cohort
effect αc and individual i’s deviation from this effect. Letting zci = 1 (c = 1, . . . ,C)
if individual i is a member of cohort c and 0 otherwise, we can write

αi =
C

∑
c=1

αczci + vi, (11.5)

which can be interpreted as an orthogonal projection. Defining α = (α1, . . . ,αC)′

and zi = (z1i, . . . ,zCi)′ and substituting (11.5) into (11.1), we obtain

yit = x′itβ + z′iα + vi +uit . (11.6)

If αi and xit are correlated, we may also expect that vi and xit are correlated. Con-
sequently, estimating (11.6) by ordinary least squares would not result in consistent
estimators. Now, suppose that instruments for xit can be found that are uncorrelated
with vi + uit . In this case, an instrumental variables estimator would typically pro-
duce a consistent estimator for β and αc. A natural choice is to choose the cohort
dummies in zi, interacted with time, as instruments, in which case we derive linear
predictors from the reduced forms

xk,it = z′iδkt +wk,it , k = 1, . . . ,K, t = 1, . . . ,T, (11.7)
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where δkt is a vector of unknown parameters. The linear predictor for xit from this
is given by x̂it = x̄ct , the vector of averages within cohort c in period t. The resulting
instrumental variables estimator for β is then given by

β̂IV1 =

(
C

∑
c=1

T

∑
t=1

(x̄ct − x̄c)x′it

)−1 C

∑
c=1

T

∑
t=1

(x̄ct − x̄c)yit , (11.8)

which is identical to the standard within estimator based on the pseudo panel of
cohort averages, given in (11.4).

The instrumental variables interpretation is useful because it illustrates that alter-
native estimators may be constructed using other sets of instruments. For example,
if cohorts are constructed on the basis of age (year of birth), a more parsimonious
function of age can be employed in (11.5) rather than a full set of age dummies.
For example, zi may include functions of year of birth, rather than a set of dummy
variables. As argued by Moffitt (1993), it is likely that yit will vary smoothly with
cohort effects and, hence, those effects will be representable by fewer parameters
than a full set of cohort dummies. Further, the instrument set in (11.7) can be ex-
tended to include additional variables. Most importantly however, the instrumental
variables approach stresses that grouping data into cohorts requires grouping vari-
ables that should satisfy the typical requirements for instrument exogeneity and rel-
evance. Basically, the approach of Deaton (1985) assumes that the cohort dummies,
interacted with time dummies, provide valid instruments for all explanatory vari-
ables in the model (including the full set of cohort dummies). This requires that
the instruments are uncorrelated with the equation’s error term, and imposes a rank
condition stating that the instruments are “sufficiently” correlated with each of the
explanatory variables.

As mentioned above, the asymptotic behavior of pseudo panel data estimators
can be derived using alternative asymptotic sequences. In addition to the two di-
mensions in genuine panel data (N and T ), there are two additional dimensions: the
number of cohorts C, and the number of observations per cohort nc. We consider the
following possibilities, which are typical for most studies:

1. N → ∞, with C fixed, so that nc → ∞;
2. N → ∞ and C→ ∞, with nc fixed.
3. T → ∞, with N, C fixed (so that nc is also fixed);

McKenzie (2004) also considers asymptotic sequences where T → ∞ and nc → ∞.
Note that asymptotic theory is not meant as a guideline for how our estimators will
behave when we get more data. Rather, we appeal to asymptotic theory when some
dimension of the sample we already have is large enough for this to be appropriate.
Whether or not asymptotic theory provides a reasonable approximation of the finite
sample properties of pseudo panel data estimators is an empirical question, and
many papers present Monte Carlo studies to obtain some insight into this issue.

The following list provides an overview of the sample sizes used in several
important empirical papers.
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T C n̄c

Browning, Deaton and Irish (1985) 7 16 190
Banks, Blundell and Preston (1994) 20 11 354
Blundell, Browning and Meghir (1994) 17 9 520
Alessie, Devereux and Weber (1997) 14 5 >1000
Blundell, Duncan and Meghir (1998) 25 8 142
Propper, Rees and Green (2001) 19 70 80

For most applications either Type 1 or Type 2 asymptotics provides the most rea-
sonable choice, and in many cases type 1 asymptotics is (implicitly or explicitly)
employed. In the theoretical literature, Moffitt (1993) and Verbeek and Vella (2005)
employ type 1 asymptotics, while Deaton (1985), Verbeek and Nijman (1993) and
Collado (1997) employ Type 2 (with or without T → ∞). Under Type 1 asymp-
totics, the fixed effects estimator based on the pseudo panel, β̂W , is consistent for β ,
provided that

plim
nc→∞

1
CT

C

∑
c=1

T

∑
t=1

(x̄ct − x̄c)(x̄ct − x̄c)′ (11.9)

is finite and invertible, and that

plim
nc→∞

1
CT

C

∑
c=1

T

∑
t=1

(x̄ct − x̄c)ᾱct = 0. (11.10)

While the first of these two conditions is similar to a standard regularity condition,
in this context it is somewhat less innocent. It states that the cohort averages exhibit
genuine time variation, even with very large cohorts. Whether or not this condition
is satisfied depends upon the way the cohorts are constructed, a point to which we
shall return below.

Because ᾱct → αc, for some αc if the number of observations per cohort tends to
infinity, (11.10) will be satisfied automatically. Consequently, letting nc → ∞ and
using Type 1 asymptotics is a convenient choice to arrive at a consistent estimator for
β , see Moffitt (1993) and Ridder and Moffitt (2007). However, as argued by Verbeek
and Nijman (1992) and Devereux (2007), even if cohort sizes are large, the small-
sample bias in the within estimator on the pseudo panel may still be substantial.

Deaton (1985) proposes an alternative estimator for β that does not reply upon
having a large number of observations per cohort, using Type 2 asymptotics.3 A
convenient starting point for this estimator is the cohort population version of (11.3),
given by

yct = x′ctβ +αc +uct , c = 1, . . . ,C; t = 1, . . . ,T, (11.11)

3 As argued by McKenzie (2004), in many applications cohorts are defined by age groups and
hence a fixed number of cohorts is most likely to be of interest, which is inconsistent with Type 2
asymptotics. If C → ∞ with N → ∞, one needs to think of what this means for the distribution of
population cohort means as well as the distribution of individual observations around these means.
For example, it would be hard to argue that the covariance matrix on the right-hand side of (11.12)
below is independent of how many cohorts are distinguished. See Verbeek and Nijman (1992) for
more discussion and a Monte Carlo experiment that takes this issue into account.
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where the variables denote unobservable population cohort means, and where αc

is the cohort fixed effect, which is constant because population cohorts contain the
same individuals in each period. Now, x̄ct and ȳct can be considered as error-ridden
measurements of xct and yct . In particular, it is assumed that the measurement errors
are distributed with zero mean, independent of the true values, i.e.

(
ȳct − yct

x̄ct − xct

)
∼ IID

((
0
0

)
;

(
σ00 σ ′
σ Σ

))
, (11.12)

where the population cohort means are treated as fixed unknown constants. Although
Σ, σ and σ00 are unknown, they can easily be estimated consistently (for N or T
tending to infinity), using the individual data. Once estimates for Σ and σ are avail-
able, it is easy to adjust the moment matrices in the within estimator to eliminate
the variance due to measurement error (cf. Fuller, 1987). This leads to the following
errors-in-variables estimator

β̂D =

(
C

∑
c=1

T

∑
t=1

(x̄ct − x̄c)(x̄ct − x̄c)′ − τΣ̂

)−1

(11.13)

×
(

C

∑
c=1

T

∑
t=1

(x̄ct − x̄c)(ȳct − ȳc)′ − τσ̂

)

,

where Σ̂ and σ̂ are estimates of Σ and σ , respectively, and where τ = (T − 1)/T.
As discussed in Verbeek and Nijman (1993), the original estimator presented by
Deaton (1995) is characterized by τ = 1. However, eliminating the incidental param-
eters (in αc) first by within transforming the data, and working out the appropriate
moments, suggests τ = (T −1)/T, which leads to better small sample properties.

Under Type 1 asymptotics, the number of observations per cohort tends to in-
finity and both Σ and σ tend to zero, as well as their estimators. In this case β̂D

is asymptotically equivalent to β̂W . Accordingly, most empirical studies ignore the
errors-in-variables problem and use standard estimators, like β̂W , see, for example,
Browning, Deaton and Irish (1985), with an average cohort size of 190, or Blundell,
Browning and Meghir (1994), with cohort sizes around 500. Unfortunately, there
is no general rule to judge whether nc is large enough to use asymptotics based on
nc → ∞. Verbeek and Nijman (1992) analyze the bias in β̂W for finite values of nc.
Depending upon the way in which the cohorts are constructed, the bias in the stan-
dard within estimator may still be substantial, even if cohort sizes are fairly large. In
general, it holds that, for given nc, the bias is smaller if the cohorts are chosen such
that the relative magnitude of the measurement errors is smaller compared to the
within cohort variance of xct . In practice, however, it may not be easy to construct
cohorts in such a way. More recently, Devereux (2007) argues that cell sizes should
be much larger, possibly 2000 or more.

In addition to the sizes of the cohorts, the way in which the cohorts are con-
structed is important. In general, one should be equally careful in choosing cohorts
as in selecting instruments. In practice, cohorts should be defined on the basis of
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variables that do not vary over time and that are observed for all individuals in the
sample. This is a serious restriction. Possible choices include variables like age (date
of birth), gender, race, or region.4 Identification of the parameters in the model re-
quires that the reduced forms in (11.7) generate sufficient variation over time. This
requirement puts a heavy burden on the cohort identifying variables. In particular,
it requires that groups are defined whose explanatory variables all have changed
differentially over time.

Suppose, as an extreme example, that cohorts are defined on the basis of a vari-
able that is independent of the variables in the model. In that case, the true popu-
lation cohort means xct would be identical for each cohort c (and equal the overall
population mean) and the only source of variation left in the data that is not at-
tributable to measurement error would be the variation of xct over time. If these
population means do not change over time, all variation in the observed cohort aver-
ages x̄ct is measurement error and the errors-in-variables estimator β̂D does not have
a well-defined probability limit.

11.3 Estimation of a Linear Dynamic Model

An important situation where the availability of panel data seems essential to iden-
tify and estimate the model of interest is the case where a lagged dependent variable
enters the model. Let us consider a simple extension of (11.1) given by

yit = γyi,t−1 + x′itβ +αi +uit , t = 1, . . . ,T, (11.14)

where the K-dimensional vector xit may include time-invariant and time-varying
variables. When genuine panel data are available, the parameters γ and β can be
estimated consistently (for fixed T and N → ∞) using the instrumental variables
estimators of Anderson and Hsiao (1981) or, more efficiently, using the GMM esti-
mator of Arellano and Bond (1991). These estimators are based on first-differencing
(11.14) and then using lagged values of yi,t−1 as instruments.

In the present context, yi,t−1 refers to the value of y at t − 1 for an individual
who is only observed in cross-section t. Thus, an observation for yi,t−1 is unavail-
able. Therefore, the first step is to construct an estimate by using information on
the y-values of other individuals observed at t− 1. To do so, let zi denote a set of
time-invariant variables, including an intercept term. Now, consider the orthogonal
projection in cross-section t of yit upon zi,

E∗{yit |zi}= z′iδ0t , t = 1, . . . ,T, (11.15)

where E∗ denotes the orthogonal projection (for a given t). This is similar to the
reduced forms for xk,it in (11.7). Following Moffitt (1993), one obtains an estimate
of yi,t−1 as the predicted value from this regression, substituting the appropriate z

4 Note that residential location may be endogenous in certain applications.
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values for the individuals in cross-section t. That is,

ŷi,t−1 = z′iδ̂0,t−1, (11.16)

noting that δ̂0,t−1 is estimated from data on different individuals than those indexed
by i. In many circumstances it is convenient to think of zi as a vector of dummy
variables, corresponding to mutually exclusive cohorts, as in the previous section.
In this case, the orthogonal projection in (11.15) corresponds to the conditional
expectation and (11.16) corresponds to taking period-by-period sample averages
within person i’s cohort.

Now, insert these predicted values into the original model to get:

yit = γ ŷi,t−1 + x′itβ + εi,t , t = 1, . . . ,T ; (11.17)

where
εit = αi +uit + γ(yi,t−1− ŷi,t−1). (11.18)

No matter how ŷi,t−1 is generated, its inclusion implies that one of the explanatory
variables is measured with error, although the measurement error will be (asymp-
totically) uncorrelated with the predicted value.5 To see whether it would be useful
to estimate (11.17) by ordinary least squares, let us first of all make the assumption
that the instruments in zi are exogenous, so that

E{(αi +uit)zi}= 0, t = 1, . . . ,T. (11.19)

This excludes the possibility that there are cohort effects in the unobservables.
While this may appear unreasonable, this assumption is made in Moffitt (1993),
Girma (2000) and in a number of cases in McKenzie (2004). Under (11.19) it can
be argued that ŷi,t−1 and εi,t are uncorrelated, which is a necessary condition for
OLS applied to (11.17) to be consistent. In addition, consistency of OLS requires
that xit and εit are uncorrelated. This assumption may also be problematic, even in
cases where the explanatory variables are exogenous to begin with, i.e. even if

E{(αi +uit)xit}= 0, t = 1, . . . ,T. (11.20)

This is because xit is likely to be correlated with yi,t−1− ŷi,t−1.
Consider, for example, a case where high x-values in one period on average cor-

respond with high x-values in the next period. If the β coefficients are positive this
will generally imply that a high value for xi,t−1, which is unobservable, will result
in an underprediction of yi,t−1. On the other hand, xi,t−1 is positively correlated with
xit . Consequently, this will produce a positive correlation between εit and xit , result-
ing in an inconsistent estimator for β . This inconsistency carries over to γ unless
ŷi,t−1 is uncorrelated with xit . As a result, the estimator suggested by Moffitt (1993),
based on applying OLS to (11.17), is typically inconsistent unless there are either

5 Unlike the standard textbook measurement error examples.
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no time-varying exogenous regressors or the time-varying exogenous variables do
not exhibit any serial correlation (see Verbeek and Vella, 2005).

To overcome the problem of correlation between the regressors and the error
term in (11.17) one may employ an instrumental variables approach. Note that now
we need instruments for xit even though these variables are exogenous in the orig-
inal model. Because these instruments will have to satisfy a condition like (11.19),
a natural choice is to use the same instruments for xit as we did for yi,t−1. This
will also guarantee that the instruments are uncorrelated with the prediction error
yi,t−1− ŷi,t−1 in εit .

As before, when the instruments zi are a set of cohort dummies, estimation of
(11.17) by instrumental variables is identical to applying OLS to the original model
where all variables are replaced by their (time-specific) cohort sample averages. We
can write this as

ȳct = γ ȳc,t−1 + x̄′ctβ + ε̄ct , c = 1, . . . , C; t = 1, . . . ,T, (11.21)

where all variables denote period-by-period averages within each cohort. For this
approach to be appropriate, we need that ȳc,t−1 and x̄ct are not collinear, which re-
quires that the instruments capture variation in yi,t−1 independent of the variation in
xit . That is, the time-invariant instruments in zi should exhibit sufficient correlation
with the exogenous variables in xit and the (unobserved) lagged dependent variable
yi,t−1, while at the same time they should not be correlated with εit . Given these
stringent requirements, it is likely that in many applications the number of available
valid instruments is small. Verbeek and Vella (2005) provide more details on this
rank condition.

The pairwise quasi-differencing approach of Girma (2000) deviates from the
above estimation strategy in two respects, although it essentially makes the same
assumptions. First, the lagged value of y is not approximated by the lagged co-
hort average but by an arbitrarily selected observation from the cohort. Second, the
instruments are not the cohort dummies, but individual, or averaged, observations
from the cohort. As a result, Girma’s approach employs a noisy approximation to
the unobserved lagged values as well as noisy instruments. Although, under appro-
priate assumptions, this noise will cancel out asymptotically, there does not seem
to be any gain in using such an approach (see Verbeek and Vella (2005) for more
discussion).

The availability of appropriate instruments satisfying condition (11.19) may be
rather limited, because cohort effects in the unobservables are not allowed. It is
possible to include cohort fixed effects in the model in essentially the same way as
in the static case by including the cohort dummies zi in the equation of interest, with
time-invariant coefficients. This imposes (11.5) and results in

yit = γ ŷi,t−1 + x′itβ + z′iα +ηit , t = 1, . . . ,T, (11.22)

where
ηit = vi +uit + γ(yi,t−1− ŷi,t−1), (11.23)
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and E{zivi}= 0 by construction. This also allows us to relax (11.20) to

E{(vi +uit)xit}= 0, t = 1, . . . ,T. (11.24)

Under these conditions, one would estimate (11.22) by instrumental variables using
zi, interacted with time dummies, as instruments. Verbeek and Vella (2005) refer to
this as the augmented IV estimator noting that a time-varying α would make the
model unidentified. To achieve identification, we need to assume that ȳc,t−1 and x̄ct

exhibit time variation and are not collinear. This condition puts additional restric-
tions upon the relationships between the instruments zi and xit and yi,t−1. Among
other things, at least three cross-sections are needed to identify the model under
these assumptions.

Computation of this augmented IV estimator is remarkably simple if zi is a set of
cohort dummies. One simply aggregates the data into cohort averages, which gives

ȳct = γ ȳc,t−1 + x̄′ctβ +αc + η̄c,t , (11.25)

where αc = z′iα denotes a cohort-specific fixed effect. Applying OLS to (11.25)
corresponds to the standard within estimator for (γ,β ′)′ based upon treating the
cohort-level data as a panel, which is consistent under the given assumptions (and
some regularity conditions) under Type 1 asymptotics (N → ∞ with C fixed). The
usual problem with estimating dynamic panel data models (see Nickell (1981)),6

does not arise because under assumption (11.24) the error term, which is a within
cohort average of individual error terms that are uncorrelated with zi, is asymptot-
ically zero.7 However, it remains to be seen whether suitable instruments can be
found that satisfy the above conditions, because the rank condition for identification
requires that the time-invariant instruments have time-varying relationships with the
exogenous variables and the lagged dependent variable, while they should not have
any time-varying relationship with the equation’s error term. While this seems un-
likely, it is not impossible. When zi is uncorrelated with ηit , it is typically sufficient
that the means of the exogenous variables, conditional upon zi, are time-varying; see
Verbeek and Vella (2005) for more details. Under Type 2 asymptotics (N → ∞ with
C → ∞), we encounter similar problems as in the static case, and Collado (1997)
discusses how this is handled in the dynamic model, by extending the approach of
Deaton (1985). The resulting estimator is similar to the GMM-type estimators that
are applied with genuine panel data (Arellano and Bond, 1991), but where the mo-
ment matrices are adjusted to reflect the errors-in-variables problem (for finite nc).

Both Girma (2000) and McKenzie (2004) consider the linear dynamic model
with cohort-specific coefficients in (11.14). While this extension will typically only
make sense if there is a fairly small number of well-defined cohorts, it arises nat-
urally from the existing literature on dynamic heterogeneous panels. For example,

6 With genuine panel data, the within estimator in the dynamic model has a substantial bias for
small and moderate values of T .
7 Recall that, asymptotically, the number of cohorts is fixed and the number of individuals goes to
infinity.
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Robertson and Symons (1992) and Pesaran and Smith (1995) stress the importance
of parameter heterogeneity in dynamic panel data models and analyze the poten-
tially severe biases that may arise from handling it in an inappropriate manner. In
many practical applications, investigating whether there are systematic differences
between, for example, age cohorts, is an interesting question. Obviously, relaxing
specification (11.14) by having cohort-specific coefficients puts an additional bur-
den upon the identifying conditions. Further, note that using Type 2 asymptotics,
where the number of cohorts increases with sample size, does not make much sense
in these cases.

11.4 Estimation of a Binary Choice Model

In this section we briefly consider the estimation of a binary choice model on the ba-
sis of repeated cross-sections. In a binary choice model the outcome variable takes
on only two different values, coded as 0 and 1. For example, the dependent vari-
able could reflect whether or not a household owns a house, or whether or not an
individual has a paid job. The model of interest is given by

y∗it = x′itβ +αi +uit , t = 1, . . . ,T, (11.26)

where y∗it is a latent variable, and we observe

yit = 1 if y∗it > 0, (11.27)

= 0 otherwise.

With genuine panel data, popular parametric estimators for this model are the ran-
dom effects probit estimator and the fixed effects logit estimator. The first approach
assumes that the unobservables αi and uit are normally distributed and independent
of the explanatory variables in xit . The corresponding likelihood function takes into
account that different observations on the same individual are dependent. With re-
peated cross-sections, this dependence is zero by construction and the binary choice
probit model can be estimated as a pooled probit assuming αi +uit is N(0,1).

Estimation becomes more complicated if one wants to allow αi and xit to be
correlated, as in the fixed effects case. With genuine panel data, one option is to
explicitly model this correlation, as in the Chamberlain (1984) approach, who pro-
poses to parametrize the conditional expectation of αi given the exogenous variables
as a linear function of the xit ’s. That is,

E(αi|xi1, . . . ,xiT ) = x′i1λ1 + . . .+ x′iT λT , (11.28)

which allows us to write

αi = x′i1λ1 + . . .+ x′iT λT +ξi, (11.29)



11 Pseudo-Panels 381

where E(ξi|xi1, . . . ,xiT ) = 0. Substituting (11.29) into (11.26) produces

y∗it = x′i1πt1 + . . .+ x′iT πtT +ξi +uit , t = 1, . . . ,T, (11.30)

where πts = β + λs if s = t and πts = λs otherwise. Making distributional assump-
tions on ξi and uit (e.g. normality) allows the application of standard maximum
likelihood. However, when only repeated cross-sections are available, we do not ob-
serve the full history of the explanatory variables, as required in (11.29), and this
approach is not feasible. Collado (1998) shows how this model can be estimated
using cohort data, based on substituting the cohort specific means x̄c1, . . . , x̄cT into
(11.30). Using Type 2 asymptotics, with C→∞ and more or less fixed cohort sizes,
this introduces an errors-in-variables problem in the equation. However, under nor-
mality the covariances between the explanatory variables and the disturbances are
known functions of the variances of the measurement error (which can be identified
from the individual data). Collado (1998) derives the corresponding probability that
yit = 1, which can be used to estimate πt for each cross section t. Next, the structural
parameters β (and λ ) can be estimated using a minimum distance estimator. Note
that y∗it as well as yit are not aggregated to cohort averages in this approach.

An alternative approach is proposed by Moffitt (1993) and is based on estimating
the binary choice model by instrumental variables, where the cohort dummies (or
other functions of the variables that define cohorts) are used as instruments. As
before, this is based on Type 1 asymptotics (with C fixed and N→∞). Using (11.5),
write the latent variable equation as

y∗it = x′itβ + z′iα + vi +uit , t = 1, . . . ,T. (11.31)

Assuming, as before, that the cohort indicators, interacted with time, provide valid
instruments, we can estimate the binary choice model by instrumental variables.
This requires the assumption that vi + uit is normally distributed; see Ridder and
Moffitt (2007) for more details. Moffitt (1993) and Ridder and Moffitt (2007) also
discuss extensions to discrete choice models with a lagged dependent variable.

11.5 Concluding Remarks

In this chapter we have briefly discussed the problem of estimating panel data mod-
els from a time series of independent cross-sections. In particular, attention was paid
to the estimation of static fixed effects models, to dynamic models with individual
effects and to binary choice models.

The approach proposed by Deaton (1985) is to divide the population into a
number of cohorts, being groups of individuals sharing some common character-
istics, and to treat the observed cohort means as error-ridden measurements of
the population cohort means. The resulting estimator for the static linear model
with fixed effects is a corrected within estimator based on the cohort aggregates.
Moffitt (1993) extends the work of Deaton by considering a general instrumental
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variables framework, of which explicit grouping is a special kind. While both ap-
proaches assume that N → ∞ they differ in the assumptions about what happens
to the cohorts when N increases. In Deaton’s approach, the number of cohorts C
increases with N (with more or less constant cohort sizes), while in Moffitt’s ap-
proach, the number of cohorts (which is equivalent to the number of instruments) is
fixed and cohort sizes increase with N. In this latter approach, the errors-in-variables
problem disappears.

Both Moffitt (1993) and Collado (1997) consider the linear dynamic model,
based on different types of asymptotics. As argued by Verbeek and Vella (2005),
the fixed effects estimator based on the pseudo panel of cohort averages may pro-
vide an attractive choice, even when a lagged dependent variable is included in the
model. This deviates from the genuine panel data case, where the standard fixed ef-
fects estimator suffers from a substantial small-T bias in dynamic models. A Monte
Carlo experiment by Verbeek and Vella (2005) shows that the bias that is present in
the within estimator for the dynamic model using genuine panel data (see Nickell
(1981)), is much larger than what is found for similar estimators employed upon
cohort aggregates.

However, an important issue in both the static and dynamic models is the validity
and relevance of the instruments that are used to construct the cohorts. A neces-
sary condition for consistency of most estimators is that all exogenous variables
exhibit genuine time-varying cohort-specific variation. That is, the cohorts have ex-
ogenous variables that change differentially over time. While it is not obvious that
this requirement will be satisfied in empirical applications, it is also not easy to
check, because estimation error in the reduced form parameters may hide collinear-
ity problems. That is, sample cohort averages may exhibit time-variation while the
unobserved population cohort averages do not.
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Chapter 12
Attrition, Selection Bias and Censored
Regressions

Bo Honoré, Francis Vella and Marno Verbeek

12.1 Introduction

In micro-econometric applications issues related to attrition, censoring and non-
random sample selection frequently arise. For example, it is quite common in em-
pirical work that the variables of interest are partially observed or only observed
when some other data requirement is satisfied. These forms of censoring and selec-
tivity frequently cause problems in estimation and can lead to unreliable inference
if they are ignored. Consider, for example, the problems which may arise if one is
interested in estimating the parameters from a labor supply equation based on the
examination of a panel data set and where one’s objective is to make inferences for
the whole population rather than only the sample of workers. The first difficulty that
arises is that hours are generally only observed for individuals that work. In this
way the hours measure is generally censored at zero and this causes difficulties for
estimation as straightforward least squares methods, either over the entire sample
or only the subsample of workers, are not generally applicable. Second, many of
the explanatory variables of interest, such as wages, are also censored in that they
are only observed for workers. Moreover, in these instances many of these variables
may also be endogenous to labor supply and this may also create complications
in estimation. While panel data are frequently seen as a way to overcome issues re-
lated to endogeneity as the availability of repeated observations on the same unit can
allow the use of various data transformations to eliminate the cause of the endogene-
ity, in many instances the use of panel data can complicate matters. For example,
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in many cases different observations are not independent because of the presence
of individual or time-specific unobserved heterogeneity in the equation of interest,
which needs to be accounted for. This increases computational demands, particu-
larly in non-linear models. Also, when one has repeated observations on the same
unit it may be the case that some units exit from the data. This last complication is
known as attrition and this can further complicate estimation if this exit occurs in a
non-random manner.

The aim of this chapter is to present an overview of panel data models involv-
ing sample selection, endogenous explanatory variables, censoring and attrition and
discuss their estimation. We consider this chapter complementary to Verbeek and
Nijman (1996) in that we do not provide a discussion of the various forms of non-
response that can arise in panel data nor do we explore the issues related to ignor-
ability of non-response. Readers interested in these issues should refer to Verbeek
and Nijman (1996). Rather, in this chapter we choose to focus our attention on the
more important estimators for empirical work and also review the more recent inno-
vations in this literature. In doing so we focus not only on the standard parametric,
likelihood based, procedures for models with sample selectivity and censoring but
we also discuss the appropriate semi-parametric procedures which are available. In
the following two sections we present the general model and provide a heuristic
description of the issues related to selectivity and attrition. We then examine the
applicability of standard linear regression based on random or fixed effects proce-
dures for these models. Having established that these procedures are generally only
applicable under very restrictive conditions, we focus on the various available al-
ternative forms of estimation. Thus the subsequent sections deal with parametric
and semi-parametric estimation of various forms of the model based on different
distributional assumptions and different forms of censoring operating in the model.
The chapter concludes with a short summary of some empirical applications which
involve the use of panel data, sample selection, censoring or endogenous regressors.

12.2 Censoring, Sample Selection and Attrition

To discuss the models and estimators that we consider in this chapter we first present
a general model. We then impose restrictions on this model to produce special cases
of interest, and consider the various estimators which can be employed to estimate
the parameters of interest for these special cases. The general structure of the models
considered in this chapter is represented by the following system of simultaneous
equations:

y∗it = m1(xit ,zit ,yi,t−1;θ1)+uit , (12.1)

z∗it = m2(xit ,x1it ,zi,t−1;θ2)+ vit , (12.2)

zit = h(z∗it ;θ3), (12.3)

yit = y∗it if gt(zi1, . . . ,ziT ) = 1 , (12.4)

= 0 (or unobserved) otherwise ,
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where i indexes individuals (i = 1, . . . ,N) and t indexes time (t = 1, . . . ,T ); y∗it and
z∗it are latent endogenous variables with observed counterparts yit and zit ; xit and x1it

are vectors of exogenous variables; m1 and m2 denote general functions character-
ized by the unknown parameters in θ1 and θ2, respectively. While we will generally
focus on the case where we impose index restrictions on the conditional means, we
write the model in the more general form by employing the unknown functions m1

and m2 to capture possible non-linearities. The mapping from the latent variable
to its observed counterpart occurs through the censoring functions h and gt noting
that the former may depend on the unknown parameter vector θ3. We will gener-
ally focus on the case where h(.) is an indicator function producing the value 1 if
z∗it > 0, in which case there are no unknown parameters in the censoring process.
However, when we consider the available two-step estimators we will also consider
some popular alternative selection rules and these may involve the estimation of
additional parameters.

The function gt indicates that y∗it may only be observed for certain values of
zi1, . . . ,ziT . This includes sample selection where yit is only observed if, for exam-
ple, zit = 1 or, alternatively in the balanced subsample case, if zi1 = . . . = ziT = 1.
Alternatively, we will consider a special case of interest in which we replace the
censoring mechanism in (12.4) with

yit = y∗it · I(y∗it > 0) , (12.5)

where I(.) is an indicator function operator which produces the value 1 if event
(.) occurs and zero otherwise. The model which incorporates (12.4) as the cen-
soring or selection rule corresponds with the sample selection model. The model
with (12.5) as the censoring mechanism corresponds to the censored regression
model.

The above model is very general and nests many models of interest as special
cases. For example, it encompasses the static sample selection and censored regres-
sion models in which we only observe the dependent variable of primary interest
for some subset of the data depending on the operation of a specific selection rule.
The primary difference between these two, captured in the censoring processes, is
that the sample selection model allows for different factors driving the censoring,
z∗it , and the variation in y∗it . In this sense it is a double index model. In contrast, the
censored regression model imposes that a single index explains the latent variable
in the censoring decision and also the variation in y∗it . The difference between the
two is not only a statistical issue in that in many economic models for which panel
data estimation is applicable it is possible that the selection rule is based on a dif-
ferent process than that generating variation in the primary dependent variable of
interest.

The model also incorporates a potential role for dynamics in both the y equa-
tion and the censoring process. That is, while panel data are frequently seen as a
mechanism for eliminating unobservables which create difficulties in estimation, an
important feature and major attraction of panel data is that it provides the ability
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to estimate the dynamics of various economic relationships based on individual be-
havior. Clearly this is generally not possible with cross-sectional data. Some of the
estimators we discuss below provide some scope for estimating such relationships.

Note that an important feature of these models is related to identification. In many
of the models that we consider it is possible to obtain identification of the parameters
of interest by simply relying on non-linearities which arise from the distributional
assumptions. In general, this is not an attractive, nor frequently accepted, means
of identification. As these issues are frequently quite complicated we avoid such a
discussion by assuming that the elements in the vector x1it appear as explanatory
variables in the selection equation (12.2) but are validly excluded from the primary
equation (12.1). In this way the models are generally identified. Readers who are
particularly interested in identification should examine the cited papers for a more
detailed discussion.

A key aspect of any panel data model is the specification and treatment of its
disturbances. We write the respective equations’ errors as

uit = αi + εit (12.6)

vit = ξi +ηit (12.7)

which indicates that they comprise individual effects, αi and ξi, and individual
specific time effects, εit and ηit , which are assumed to be independent across
individuals. This corresponds to the typical one-way error components model.
Moreover, we allow the errors of the same dimension to be correlated across equa-
tions. In some instances we will assume that both the individual effects and the
idiosyncratic disturbances can be treated as random variables, distributed indepen-
dently of the explanatory variables. In such cases, we will often assume that the
error components are drawn from known distributions. For many empirical applica-
tions, however, these assumption are not appropriate. For example, one may expect
that some subset of the explanatory variables are potentially correlated with the one
or both of the different forms of disturbances. Accordingly, it is common to treat
the individual effects as fixed effects, which are potentially correlated with the inde-
pendent variable, and we will consider the available procedures for estimating un-
der such conditions. Second, while distributional assumptions are frequently useful
from the sake of implementation, for many applications they may not be appropriate.
As many of the procedures we examine are likelihood based any misspecification of
the parametric component may lead to the resulting estimators being inconsistent.
Thus, while we begin the analysis of each sub-model by making distributional as-
sumptions regarding the disturbances we will also examine some semi-parametric
estimators which do not rely on distributional assumptions. Finally, note that for
the majority of models the parameters of primary interest are those contained in the
vector θ1, the variance σ2

ε and, when appropriate, σ2
α . In some instances, however,

there may be interest in the θ2 vector.
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12.3 Sample Selection and Attrition

Before focussing on the estimation of the parameters described in the above model
it is useful to briefly discuss the problem of selection bias through (12.4), or
the difficulties which arise from the problems with the presence of censoring via
(12.5). It is also useful to consider the effect of sample attrition which captures
the process by which some observations disappear, potentially non-randomly, from
the sample over time. To illustrate these issues we will follow the discussion in
Vella (1998) for the cross-sectional case which is based on the original motivation
of Heckman (1974, 1979) and Gronau (1974). Assume that we are interested in
examining the determinants of the wages of females, y∗it , when we only observe
the wages of females who are working a positive number of hours. To determine
which factors influence wages we examine a panel data set of women where only
a sub-sample are engaged in market employment and report wages for each pe-
riod t. Moreover, assume that the sample comprises of three types; (i) those work-
ing and reporting wages for the entire period; (ii) those who fail to work for at
least one period but remain in the sample for the entire period; and (iii) those who
either work or do not work but do appear in the sample for the entire period.
First, the differences between the workers and non-workers determines whether
the issue of selection bias might arise. Second, the differences between those who
remain in the sample or disappear from the sample determines whether the prob-
lem of attrition bias occurs. To illustrate how these biases may arise let us char-
acterize each individual by both her endowments of observable and unobservable
characteristics.

First assume that the working sub-sample is chosen randomly from the popula-
tion. If the working sub-sample have similar endowments of characteristics as the
non-working sample there is no reason to suspect selectivity bias will be induced by
examining the working sample. That is, as the sample is randomly chosen the aver-
age characteristics, in terms of both observable and unobservables, of the working
sample should be similar to the average characteristics of the population. The same
is also true of attrition bias. That is, provided that individuals simply disappear from
the sample in a random manner there is no reason to expect that the attrition affects
the characteristics of the sample.

Let us now consider where the decisions to work or remain in the sample are no
longer determined by random processes. In this instance, depending on the nature of
these processes, the working and non-working samples that one observes potentially
have different characteristics from each other and may have different characteristics
from those who are no longer in the original sample. Sample selection bias arises
when some component of the work decision is relevant to the wage determining
process, while attrition bias results from the wage determining process not being
independent of the decision to remain in the sample. That is, when some of the de-
terminants of the work/attrition decisions are also influencing the wage. However, if
the relationship between each of these respective decisions and the wage is purely
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through the observables one can control for this by including the appropriate con-
ditioning variables in the wage equation. That is, one is able to control for these
potential biases by including the appropriate variables in the wage equation. Thus,
sample selection or attrition bias will not arise purely on the basis of differences in
observable characteristics.1

However, if we now assume the unobservable characteristics affecting the
work/attrition decisions are correlated with the unobservable characteristics affect-
ing the wage we generate a relationship between the work/attrition decisions and
the process determining wages. Controlling for the observable characteristics when
explaining wages is insufficient as some additional processes are influencing the
wage. That is, the process determining whether an individual works and the pro-
cess determining whether an individual remains in the sample are also affecting the
wage. If these unobservable characteristics are correlated with the observables then
the failure to include an estimate of the unobservables will lead to incorrect infer-
ence regarding the impact of the observables on wages. Thus a bias will be induced
due to the sample selection and attrition.

This discussion highlights that sample selectivity bias operates through unob-
servable elements, and their correlation with observed variables. More explicitly,
we can see that the presence of selection bias will be determined by the relationship
between the two composite errors. It is driven by the correlations between uit and
vit (or vi1, . . . ,viT ) and their components. Thus in the panel data case one can im-
mediately observe that there are two ways in which the model can be contaminated
with selectivity. First, there is the possibility that the individual effects are correlated
across equations. Second, there is the possibility that the idiosyncratic disturbances
are correlated across equations.

Attrition bias can also be seen as a special case of selection bias in that it arises by
the same underlying process. Namely, the unobservable components of the decision
to remain in the sample are correlated with the unobservable components of the
work or wage equations. In this case, however, one has less flexibility in modelling
the attrition as we will not observe the time varying determinants of attrition over
the entire sample.

In general, sample selection and attrition problems may arise when a rule other
than simple random sampling determines how sampling from the underlying pop-
ulation takes place. This selection rule may distort the representation of the true
population and consequently distort inferences based on the observed data using
standard methods. Distorting selection rules may be the outcome of self-selection
of economic agents, non-response decisions of agents or the consequence of the
sample survey process.

1 This assumes that the inclusion of these observables is considered appropriate in a wage equa-
tion. For example, lagged wages may affect sample selection or attrition, while lagged wages are
typically not included in a wage equation.
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12.4 Sample Selection Bias and Robustness
of Standard Estimators

One can easily illustrate the problems generated by the presence of attrition or selec-
tion bias by examining the properties of standard estimators for the primary equation
where we estimate only over the sample of uncensored observations. To do so con-
sider the simplest case of (12.1) where the dependent variable is written as a linear
function of only the exogenous explanatory variables:

yit = x′itβ +αi + εit , (12.8)

where we consider that each of the selection rules captured in (12.4) and (12.5) can
be written as zit = 1. In these instances one should consider that what corresponds to
the OLS estimation in the cross-section is OLS estimation over the pooled sample
for which y∗it is observed. To illustrate the problems with such pooled estimation of
(12.8) we can take expectations of (12.8) conditional upon yit being observed, which
gives

E(yit |xit ,zit = 1) = x′itβ +E(αi|xit ,zit = 1)+E(εit |xit ,zit = 1) , (12.9)

noting that the last two terms will in general have non-zero values, which are po-
tentially correlated with the x′s, due to the dependence between αi and ξi, and εit

and ξit . These terms will, in general, be non-zero whenever Pr{zit = 1|yit ,xit} is
not independent of yit . Accordingly, least squares estimation of (12.8) will lead to
biased estimates of β due to this misspecification of the mean.

This above result is well known in the cross-sectional case and is a restatement of
the results of Heckman (1979). In that paper the sample selection/censoring problem
is shown to be related to the misspecification of the conditional mean. Heckman
shows that to correct for this misspecification of the mean, an additional variable can
be included, constructed through the use of parameters from an auxiliary equation,
explaining the probability of censoring. However, given that in the panel data setting
we have repeated observations on the individual one might think that the availability
of panel data estimators which exploit the nature of the error structure might provide
some scope to eliminate this bias without the use of such a variable. Accordingly,
it is useful to discuss the properties of the standard fixed effects and random effects
estimators in the linear model when the selection mechanism is endogenous. Thus
we first consider estimation of (12.8) by the standard linear fixed effects or random
effects procedures.

To consider these estimators we first introduce some additional notation. Obser-
vations on yit are treated as available if zit = 1 and missing if zit = 0. We define
ci = ∏T

t=1 zit , so that ci = 1 if and only if yit is observed for all t. The first estimators
for β that we consider are the standard random effects estimators. Defining

λi = 1−
√

σ2
ε

σ2
ε +Tiσ2

α
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where Ti = ∑T
t=1 zit denotes the number of time periods yit is observed, the random

effects estimator based on the unbalanced panel (using all available cases) can be
written as

β̂U
RE =

(
N

∑
i=1

T

∑
t=1

zit(xit −λix̄i)(xit −λix̄i)′
)−1

×
(

N

∑
i=1

T

∑
t=1

zit(xit −λix̄i)(yit −λiȳi)

)

(12.10)

where x̄i = T−1
i ∑T

t=1 zixit and ȳi = T−1
i ∑T

t=1 ziyit denote averages over the available
observations. In some cases attention may be restricted to the balanced sub-panel
comprising only those individuals that have completely observed records. The re-
sulting random effects estimator is given by

β̂ B
RE =

(
N

∑
i=1

T

∑
t=1

ci(xit −λix̄i)(xit −λix̄i)′
)−1

×
(

N

∑
i=1

T

∑
t=1

ci(xit −λix̄i)(yit −λiȳi)

)

. (12.11)

Note that all units for which ci = 1 will have the same value for λi. Under appropriate
regularity conditions, these two estimators are consistent for N → ∞ if

E(αi + εit |zi) = 0 , (12.12)

where zi = (zi1, . . . ,ziT )′. This condition states that the two components of the er-
ror term in the model are mean independent of the sample selection indicators in zi

(conditional upon the exogenous variables). This appears to be a very strong con-
dition and essentially implies that the selection process is independent of both of
the unobservables in the model. One would suspect that for a large range of em-
pirical cases this is unlikely to be true and this does not appear to be an attractive
assumption to impose.

Given that the random effects estimator does not appear to be useful in the pres-
ence of selection bias it is worth focussing on the suitability of the fixed effects
estimators of β . For the unbalanced panel the estimator can be written as

β̂U
FE =

(
N

∑
i=1

T

∑
t=1

zit(xit − x̄i)(xit − x̄i)′
)−1

×
(

N

∑
i=1

T

∑
t=1

zit(xit − x̄i)(yit − ȳi)

)

, (12.13)

while the corresponding estimator for the balanced sub-panel is given by
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β̂ B
FE =

(
N

∑
i=1

T

∑
t=1

ci(xit − x̄i)(xit − x̄i)′
)−1

×
(

N

∑
i=1

T

∑
t=1

ci(xit − x̄i)(yit − ȳi)

)

. (12.14)

Under appropriate regularity conditions, consistency of these two estimators re-
quires that

E(εit − ε̄i|zi) = 0 , (12.15)

where ε̄i = T−1
i ∑T

t=1 zitεit . Clearly, this indicates that the estimation over the
subsample for which zit = 1 will produce consistent estimates if the random com-
ponent determining whether zit = 1 is eliminated in the fixed effects transformation.
That is, the unobservable component determining selection for each individual is
time-invariant. While this may be true in certain instances it is likely that in many
empirical examples such an assumption would not be reasonable as it imposes that
the selection process is independent of the idiosyncratic errors.

This discussion illustrates that the conventional linear panel data estimators
are inappropriate for the linear model with selection. The random effects esti-
mator essentially requires that selection is determined outside the model while
the fixed effects estimator imposes that, conditional on the individual effects, the
selection process is determined outside the model. While the fixed effects esti-
mator is more robust, it still is unsatisfactory for most empirical examples of
panel data models with selectivity. Accordingly, we now begin to examine a range
of estimators which handle the situation for which (12.12) and (12.15) are not
satisfied.

12.5 Tobit and Censored Regression Models

The first model considered can be fully described by a subset of the equations cap-
turing the general model outlined above. The model has the form

y∗it = m1(xit ,yi,t−1;θ1)+uit , (12.16)

yit = y∗it if y∗it > 0,

= 0 (or unobserved) otherwise. (12.17)

This considers a latent variable y∗it , decomposed into a conditional mean depending
upon xit and possibly a lagged observed outcome yi,t−1, and an unobserved mean
zero error term uit . The observed outcome equals the latent value if the latter is
positive and zero otherwise. This model is the panel data extension of the tobit type I
(under certain distributional assumptions) or censored regression model which is
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commonly considered in cross-sectional analyses. A special case, which we do not
consider here, arises when both yit and xit are unobserved if y∗it ≤ 0.

We now consider estimation of this standard censored regression model in
(12.16) and (12.17) under different sets of assumptions. The simplest case arises
when the lagged dependent variable is excluded from (12.16), and when εit is
assumed to be drawn from a normal distribution, independent of the explanatory
variables. We then consider the model where we allow for a lagged dependent vari-
able. As we will see the estimation is somewhat more difficult because one has to
incorporate the additional complications arising from the initial conditions. We then
proceed to a consideration of the model where we relax the distributional assump-
tions that we impose on the error terms.

12.5.1 Random Effects Tobit

First, we consider the static tobit model, given by

y∗it = m1(xit ;θ1)+uit ,

where the censoring rule is stated in (12.5)

yit = y∗it if y∗it > 0,

yit = 0 if otherwise. (12.18)

We also assume that uit has mean zero and constant variance, independent of
(xi1, . . . ,xiT ). In order to estimate θ1 by maximum likelihood we add an additional
assumption regarding the joint distribution of ui1, . . . ,uiT . The likelihood contribu-
tion of individual i is the (joint) probability/density of observing the T outcomes
yi1, . . . ,yiT , which is determined from the joint distribution of the latent variables
y∗i1, . . . ,y

∗
iT by integrating over the appropriate intervals. In general, this will imply

T integrals, which in estimation are typically to be computed numerically. When
T = 4 or more, this makes maximum likelihood estimation infeasible.

If the uit are assumed to be independent, we have that

f (yi1, . . . ,yiT |xi1, . . . ,xiT ;ϑ1) = ∏
t

f (yit |xit ;ϑ1) ,

where ϑ1 contains all relevant parameters (including θ1), which involves T one-
dimensional integrals only (as in the cross-sectional case). This, however is highly
restrictive. If, instead, we impose the error components assumption that uit =
αi + εit , where εit is i.i.d. over individuals and time, we can write the joint prob-
ability/density as
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f (yi1, . . . ,yiT |xi1, . . . ,xiT ;ϑ1) =
∞∫

−∞

f (yi1, . . . ,yiT |xi1, . . . ,xiT ,αi;ϑ1) f (αi)dαi

=
∞∫

−∞

[

∏
t

f (yit |xit ,αi;ϑ1)
]

f (αi)dαi, (12.19)

where f is generic notation for a density or probability mass function. This is a
feasible specification that allows the error terms to be correlated across different
periods, albeit in a restrictive way. The crucial step in (12.19) is that conditional
upon αi the errors from different periods are independent.

In principle arbitrary assumptions can be made about the distributions of αi and
εit . For example, one could assume that εit is i.i.d. normal while αi has a Student t-
distribution. However, this may lead to distributions for αi +εit that are nonstandard
and this is unattractive. Accordingly, it is more common to start from the joint distri-
bution of ui1, . . . ,uiT . We assume that the joint distribution of ui1, . . . ,uiT is normal
with zero means and variances equal to σ2

α +σ2
ε and cov{uit ,uis}= σ2

α , s �= t. This
is the same as assuming that αi is NID(0,σ2

α) and εit is NID(0,σ2
ε ). The likelihood

function can then be written as in (12.19), where

f (αi) =
1√

2πσα
exp

{

−1
2

(
αi

σα

)2
}

. (12.20)

and

f (yit |xit ,αi;ϑ1) =
1√

2πσε
exp

{

−1
2

(
yit −m1(xit ;θ1)−αi

σε

)2
}

if yit > 0

= 1−Φ
(

m1(xit ;θ1)+αi

σε

)
if yit = 0 , (12.21)

where Φ denotes the standard normal cumulative density function. The latter two
expressions are similar to the likelihood contributions in the cross-sectional case,
with the exception of the inclusion of αi in the conditional mean. The estimation
of this model is identical to estimation of the tobit model in the cross-sectional
setting except that we now have to account for the in clusion of the individ-
ual specific effect. As this individual effect is treated as a random variable, and
the disturbances in the model are normally distributed, the above procedure is
known as random effects tobit. Note that while we do not do so here, it would
be possible to estimate many of the models considered in the survey of cross-
sectional tobit models by Amemiya (1984) by allowing for an individual random
effect.
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12.5.2 Random Effects Tobit with Endogenous Explanatory
Variables

The discussion of the random effects tobit model in the previous section assumed
that the disturbances are independent of the explanatory variables. One useful exten-
sion of the model would be instances where some of the explanatory variables were
treated as endogenous. This is similar to the cross-sectional model of Smith and
Blundell (1986) who present a conditional ML estimator to account for the endo-
geneity of the explanatory variables.2 The estimator simply requires estimating the
residuals from the model for the endogenous explanatory and including them as an
additional explanatory variable in the cross-sectional tobit likelihood function. Vella
and Verbeek (1999) extend this to the panel case by exploiting the error components
structure of the model. We now present this case where we assume the endogenous
explanatory variable is fully observed. The model has the following form:

y∗it = m1(xit ,zit ;θ1)+αi + εit (12.22)

zit = m2(xit ,x1it ,zi,t−1;θ2)+ξi +ηit (12.23)

yit = y∗it · (y∗it > 0) (12.24)

The model’s disturbances are assumed to be generated by the following distribution:

(
αiι + εi

ξiι +ηi

)
|Xi∼ NID

((
0
0

)
,

(
σ2

α ιι ′+σ2
ε I σαξ ιι ′+σεη I

σ2
ξ ιι ′+σ2

η I

))

(12.25)

where ι is a T -vector of ones. Exploiting this joint normality assumption allows us
to write

E(uit |Xi,vi) = τ1vit + τ2v̄i , (12.26)

where τ1 = σεη/σ2
ε , τ2 = T (σαξ −σεη σ2

ξ /σ2
ε )/(σ2

η +T σ2
ξ ) and v̄i = T−1 ∑T

t=1 vit .
As the endogenous explanatory variable is uncensored the conditional distribu-

tion of the error terms in (12.22) given zi remains normal with an error components
structure. Thus one can estimate the model in (12.22) and (12.24) conditional on the
estimated parameters from (12.23) using the random effects likelihood function, af-
ter making appropriate adjustments for the mean and noting that the variances now
reflect the conditional variances.

Write the joint density of yi = (yi1, . . . ,yiT )′ and zi given Xi as:3

f (yi|zi,Xi;ϑ1,ϑ2) f (zi|Xi;ϑ2) , (12.27)

2 Rivers and Vuong (1988) consider the cross-sectional probit counterpart of the Smith and
Blundell (1986) procedure.
3 When (12.23) is dynamic with an exogenous initial value zio, (12.27) is valid if zio is included in
Xi. When the initial value is endogenous, we need to include zi0 in zi.
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where ϑ1 denotes (θ1,σ2
α ,σ2

ε ,σαξ ,σεη) and ϑ2 denotes (θ2,σ2
ξ ,σ2

η). We first esti-
mate ϑ2 by maximizing the marginal likelihood function of the zi’s. Subsequently,
the conditional likelihood function

∏
i

f (yi|zi,Xi;ϑ1, ϑ̂2) (12.28)

is maximized with respect to ϑ1 where ϑ̂2 denotes a consistent estimate of ϑ2. The
conditional distribution of yi given zi is multivariate normal with an error compo-
nents structure. The conditional expectation can be derived directly from (12.26),
substituting vit = zit −m2(xit ,x1it ,zi,t−1;θ2), while the covariance structure corre-
sponds to that of ν1i +ν2,it , where ν1i and ν2,it are zero mean normal variables with
zero covariance and variances

σ2
1 = V{ν1i}= σ2

ε −σ2
εη σ−2

η , (12.29)

σ2
2 = V{ν2,it}= σ2

α −
T σ2

αξ σ2
η +2σαξ σεη σ2

η −σ2
εη σ2

ξ

σ2
η(σ2

η +T σ2
ξ )

. (12.30)

These follow from straightforward matrix manipulations and show that the error
components structure is preserved and the conditional likelihood function of (12.22)
and (12.24) has the same form as the marginal likelihood function without endoge-
nous explanatory variables.4

The conditional maximum likelihood estimator can be extended to account for
multiple endogenous variables as the appropriate conditional expectation is easily
obtained as all endogenous regressors are continuously observed. Even if the re-
duced form errors of the endogenous regressors are correlated, provided they are
characterized by an error components structure it can be shown that the conditional
distribution of αi + εit also has an error components structure. Time-specific het-
eroskedasticity in εit does not affect the conditional expectations and can be incor-
porated by having σ2

1 vary over time. The model can also be estimated, along the
lines suggested above, over subsets of the data chosen on the basis of zit .

One obvious complication which arises in estimation of these models is that the
standard errors have to be adjusted for the estimation uncertainty in the correc-
tion terms. This is an example of the standard “generated regressor problem” even
though the second step is estimated by maximum likelihood. Vella and Verbeek
(1999) provide the formulae for the standard errors in this particular context but for
a more general treatment the reader is referred to Newey (1984).

In general the conditional maximum likelihood estimator cannot be employed
when zit �= z∗it . Thus the family of sample selection models considered below can-
not be estimated by conditional maximum likelihood. One interesting exception,

4 The algebraic manipulations are simplified if σ2
1 and σ2

2 replace the unconditional variances σ2
ε

and σ2
α in ϑ1. In this case, estimates for the latter two variances are easily obtained in a third step

from the estimates from the first stage for σ2
ξ and σ2

η , and the estimated covariances from the mean
function, using the equalities in (12.29) and (12.30).
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however, is when the primary equation is estimated over the subsample of individu-
als that have zis = z∗is, for all s = 1, . . . ,T.5 This follows from the result that the error
components structure is preserved when the reduced form dependent variables are
observed.

Due to the presence of endogeneity in this model it is clear that one needs to
carefully consider identification. In these models there is no non-linearity induced
in the correction terms, but the non-linearity of m1 or m2 will identify the model. In
the linear case, or if one does not want to rely on non-linearities for identification,
exclusion restrictions are required. More explicitly, for each endogenous explana-
tory variable we need one exclusion restriction in the primary equation, unless, as
before, the endogeneity can be restricted to be related to the time-invariant compo-
nents only (σεη = 0). This requires that x1it is nonempty and has elements validly
excluded from (12.22).

12.5.3 Dynamic Random Effects Tobit

The ability to estimate dynamic relationships from individual level data is an impor-
tant attraction of panel data. Accordingly, an extension to the above model which
involves the inclusion of a lagged dependent variable is of economic interest. Let
us now reconsider the random effects tobit model, and generalize the latent variable
specification to

y∗it = m1(xit ,yi,t−1;θ1)+αi + εit , (12.31)

with yit = y∗it if y∗it > 0 and 0 otherwise. Now consider maximum likelihood esti-
mation of this dynamic random effects tobit model, making the same distributional
assumptions as above. In general terms, the likelihood contribution of individual i
is given by (compare (12.19))

f (yi1, . . . ,yiT |xi1, . . . ,xiT ;ϑ1) =
∞∫

−∞

f (yi1, . . . ,yiT |xi1, . . . ,xiT ,αi;ϑ1) f (αi)dαi

=
∞∫

−∞

[
T

∏
t=2

f (yit |yi,t−1,xit ,αi;ϑ1)

]

f (yi1|xi1,αi;ϑ1) f (αi)dαi , (12.32)

where

f (yit |yi,t−1,xit ,αi;ϑ1)

=
1√

2πσε
exp

{

−1
2

(
yit −m1(xit ,yi,t−1;θ1)−αi

ση

)2
}

if yit > 0,

= 1−Φ
(

m1(xit ,yi,t−1;θ1)+αi

σε

)
if yit = 0.

5 A similar argument is exploited in Arellano et al. (1999).
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This is completely analogous to the static case and yi,t−1 is simply included as an
additional explanatory variable. However, the term f (yi1|xi1,αi;θ1) in the likelihood
function may cause problems. It gives the distribution of yi1 without knowing its
previous value but conditional upon the unobserved heterogeneity term αi.

If the initial value is exogenous in the sense that its distribution does not depend
upon αi, we can place the term f (yi1|xi1,αi;ϑ1) = f (yi1|xi1;ϑ1) outside the integral.
In this case, we can simply consider the likelihood function conditional upon yi1 and
ignore the term f (yi1|xi1;ϑ1) in estimation. The only consequence may be a loss of
efficiency if f (yi1|xi1;ϑ1) provides information about ϑ1. This approach would be
appropriate if the starting value is necessarily the same for all individuals or if it is
randomly assigned to individuals.

However, it may be hard to argue in many applications that the initial value yi1 is
exogenous and does not depend upon a person’s unobserved heterogeneity. In that
case we would need an expression for f (yi1|xi1,αi;ϑ1) and this is problematic. If
the process that we are estimating has been going on for a number of periods before
the current sample period, f (yi1|xi1,αi;ϑ1) is a complicated function that depends
upon person i’s unobserved history. This means that it is typically impossible to
derive an expression for the marginal probability f (yi1|xi1,αi;ϑ1) that is consistent
with the rest of the model. Heckman (1981) suggests an approximate solution to this
initial conditions problem that seems to work reasonably well in practice. It requires
an approximation for the marginal distribution of the initial value by a tobit func-
tion using as much pre-sample information as available, without imposing restric-
tions between its coefficients and the structural parameters in θ1. Vella and Verbeek
(1998, 1999) provide illustrations of this approach. Wooldridge (2005) suggests an
alternative approach that is based on considering the likelihood function conditional
upon the initial values yi1 and then making parametric assumptions about the distri-
bution of the unobserved effect conditional upon the initial value and any exogenous
explanatory variables, f (αi|yi1,xi1;ϑ1), rather than f (yi1|xi1,αi;ϑ1) f (αi). Because
the impact of the initial conditions diminishes if the number of sample periods T
increases, one may decide to ignore the problem when T is fairly large.

12.5.4 Fixed Effects Tobit Estimation

The fully parametric estimation of the tobit model assumes that both error compo-
nents have a normal distribution, independent of the explanatory variables. Clearly,
this is restrictive and a first relaxation arises if we treat the individual-specific ef-
fects αi as parameters to be estimated, as is done in the linear fixed effects model.
However, such an approach is generally not feasible in non-linear models. The log-
likelihood function for the fixed effects tobit model has the general form

logL =
N

∑
i=1

[
T

∑
t=1

log f (yit |xit ,αi;ϑ1)

]

, (12.33)
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where (as before)

f (yit |xit ,αi;ϑ1) =
1√

2πσε
exp

{

−1
2

(
yit −m1(xit ;θ1)−αi

σε

)2
}

if yit > 0

= 1−Φ
(

m1(xit ;θ1)+αi

σε

)
if yit = 0.

Maximization of (12.33) can proceed through the inclusion of N dummy variables to
capture the fixed effects or using an alternative strategy, described in Greene (2004),
which bypasses the large computation demands of including so many additional
variables.

This fixed effects tobit estimators is subject to the incidental parameter problem
(Neyman and Scott, 1948, Lancaster, 2000), and results in inconsistent estimators
of the parameters of interest if the number of individuals goes to infinity while the
number of time periods is fixed. It was generally believed that the bias resulting from
fixed effects tobit was large although more recent evidence provided by Greene sug-
gests this may not be the case. On the basis of Monte Carlo evidence, Greene (2004)
concludes that there is essentially no bias in the estimates of θ1. However, the esti-
mate of σε is biased and this generates bias in the estimates of the marginal effects.
Greene also concludes that the bias is small if T is 5 or greater.

Hahn and Newey (2004) suggest two approaches to bias reduction in fixed effects
estimation of non-linear models such as the fixed effects tobit model. The first proce-
dure is based on the use of jackknife methods and exploits the variation in the fixed
effects estimator when each of the observations are, in turn, separately deleted. By
doing so one is able to form a bias-corrected estimator using the Quenouille (1956)
and Tukey (1958) jackknife formula. For simplicity, let m1(xit ;θ1) = x′itβ and let

β̂(t) denote the fixed effects estimator based on the subsample excluding the obser-

vations for the tth wave. The jackknife estimator (β̂JK) is defined to be

β̂JK = T β̂ − (T −1)
T

∑
t=1

β̂(t)/T ,

where β̂ is the fixed effects estimator based on the entire panel. Hahn and Newey
note that the panel jackknife is not particularly complicated. While it does require
(T + 1) fixed effects estimations of the model one can employ the algorithm pro-
posed by Greene, discussed above, and the estimates of β̂ and α̂i can be used as
starting values.

The second procedure is an analytic bias correction using the bias formula ob-
tained from an asymptotic expansion as the number of periods grows. This is based
on an approach suggested by Waterman et al. (2000) and is also related to the ap-
proach adopted by Woutersen (2002). Note that while none of these authors examine
the fixed effect tobit model, preferring to focus mainly on discrete choice models,
the approaches are applicable. Hahn and Newey (2004) provide some simulation ev-
idence supporting the use of their procedures in the fixed effects probit model.
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12.5.5 Semi-parametric Estimation

As shown in Honoré (1992) is also possible to estimate the parameters of panel data
tobit models like (12.16) and (12.17) with no assumptions on the distribution of
the individual specific effects and with much weaker assumptions on the transitory
errors.

To fix ideas, consider a model with a linear index restriction, that is

y∗it = x′itβ +αi + εit ,

and

yit = y∗it if y∗it > 0,

yit = 0 otherwise.

The method proposed in Honoré (1992) is based on a comparison of any two time
periods, t and s. The key insight behind the estimation strategy is that if εit and εis are
identically distributed conditional on (xit ,xis) then

vist (β ) = max{yis,(xis− xit)
′β}−max{0,(xis− xit)

′β}
= max{αi + εis,−x′isβ ,−x′itβ}−max{−x′isβ ,−x′itβ}

and

vits (β ) = max{yit ,(xit − xis)
′β}−max{0,(xit − xis)

′β}
= max{αi + εit ,−x′itβ ,−x′isβ}−max{−x′itβ ,−x′isβ}

are also identically distributed conditional on (xit ,xis). This can be used to construct
numerous moment conditions of the form

E [(g(vist (β ))−g(vits (β )))h(xit ,xis)] = 0 (12.34)

If g is increasing and h(xit ,xis) = xis− xit , these moment conditions can be turned
into a minimization problem which identifies β subject to weak regularity condi-
tions. For example, with g(d) = d, (12.34) corresponds to the first-order conditions
of the minimization problem

min
b
imize E

[(
max{yis,(xis− xit)

′ b}

−max{yit ,−(xis− xit)
′ b}− (xis− xit)

′ b
)2

+ 2 ·1{yis < (xis− xit)
′ b}((xis− xit)

′ b− yis)yit

+ 2 ·1{yit <−(xis− xit)
′ b}(−(xis− xit)

′ b− yit)yis
]

which suggests estimating β by minimizing
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n

∑
i=1

∑
s<t

(
max{yis,(xis− xit)

′ b}

−max{yit ,−(xis− xit)
′ b}− (xis− xit)

′ b
)2

+ 2 ·1{yis < (xis− xit)
′ b}((xis− xit)

′ b− yis)yit

+ 2 ·1{yit <−(xis− xit)
′ b}(−(xis− xit)

′ b− yit)yis (12.35)

The objective function in (12.35) is convex in b, as are other objective func-
tions based on (12.34). This means that it is extremely easy to find the estimator
β̂ . [Charlier et al. (2000) consider a conditional moment conditions estimator based
on (12.34). This estimator is more efficient that then one obtained by minimizing
(12.35) but it is more difficult to calculate.

Honoré and Kyriazidou (2000) discuss estimators defined by a general g(d)
as well as estimators based on moment conditions that are derived under the
stronger assumption that the distribution of (εit ,εis) is exchangeable conditional
on (xit ,xis).

12.5.6 Semi-parametric Estimation in the Presence
of Lagged Dependent Variables

Honoré (1993), Hu (2002) and Honoré and Hu (2004) show how one can modify
the moment conditions in (12.34) in such a way that one can allow for lagged de-
pendent variables as explanatory variables. The specifics for this differs depending
on whether the lagged latent or the lagged censored variable is used, and the main
difficulty in this literature is that it is not easy to show that the moment conditions
are uniquely satisfied at the true parameter values.

12.6 Models of Sample Selection and Attrition

As discussed above the tobit model has the somewhat unattractive feature that the
index that explains the censoring also is required to explain the variation in the de-
pendent variable of primary interest. We now turn our attention to the estimation
of the model where the selection process is driven by a different index to that gen-
erating the dependent variable of primary interest. One might think, for example,
that the number of hours an individual works depends on some different factors
than those determining the work decision. At the very least one might think that the
weights on each of the factors differs across decisions. For the sake of simplification
we introduce the following form of the model
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y∗it = x′itβ +αi + εit , (12.36)

z∗it = x′itθ21 + x′1itθ22 +ξi + vit , (12.37)

zit = I(z∗it > 0), (12.38)

yit = y∗it · zit

where we again highlight that the vector x1it is nonempty (and not collinear with xit).
While this is sometimes seen as a controversial assumption we do not discuss the
merits of such an approach. Below, we also discuss the scope of introducing dynam-
ics into the primary equation.

12.6.1 Maximum Likelihood Estimators

Given that we can make distributional assumptions regarding the error components
it is natural to construct a maximum likelihood estimator for all the parameters in
(12.36) and (12.38). Consider the case where the individual effect is treated as a ran-
dom effect and the disturbances are all normally distributed. To derive the likelihood
function of the vectors zi and yi, we first write

log f (zi,yi) = log f (zi|yi)+ log f (yi) (12.39)

where f (zi|yi) is the likelihood function of a conditional T -variate probit model
and f (yi) is the likelihood function of a Ti-dimensional error components regression
model, where Ti = ∑t zit . The second term can be written as

log f (yi) =
−Ti

2
log2π− Ti−1

2
logσ2

ε −
1
2
(σ2

ε +Tiσ2
α)

− 1
2σ2

ε

T

∑
t=1

zit(yit − x′itβ )2− Ti

2(σ2
ε +Tiσ2

α)
(ȳi− x̄′iβ )2. (12.40)

The first term in (12.39) requires the derivation of the conditional distribution of the
error term in the probit model. From the assumption of joint normality and defining
πit = zit(αi + εit), the conditional expectation of vit = ξi +ηit is given by

E(ξi +ηit |πi1, . . . ,πiT ) =zit
σεη

σ2
ε

[

πit −
σ2

α
σ2

ε +Tiσ2
α

T

∑
t=1

πit

]

+
σαξ

σ2
ε +Tiσ2

α

T

∑
t=1

πit (12.41)

Using our distributional assumptions the conditional distribution of ξi + ηit given
πi1, . . . ,πiT corresponds to the unconditional distribution of the sum of three normal
variables eit +ω1i + zitω2i whose distribution is characterized by
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E(ω1i) = E(ω2i) = 0,E(eit) = cit

V (eit) = σ2
η − zitσ2

εη/σ2
ε = s2

t

V (ω1i) = σ2
ξ −Tiσ2

αξ (σ2
ε +Tiσ2

α)−1 = k1

V (ω 2i) = σ2
εη σ2

α σ−2
ε (σ2

ε +Tiσ2
α)−1 = k2

cov(ω 1i,ω 2i) =−σαξ σεη(σ2
ε +Tiσ2

α)−1 = k12,

where the other covariances are all zero and note that we do not explicitly add an
index i to the variances s2

t ,k1 and k2. Similar to the unconditional error components
probit model the likelihood contribution can be written as

f (zi|yi) =
∫ ∫ T

∏
t=1

Φ
(

dit
x′itθ 21 + x′1itθ 22 + cit +ω1i + zitω 2i

st

)

× f (ω1i,ω 2i)dω 1idω 2i

where dit = 2zit − 1 and f (., .) is the density of ω1i and ω2i. Using these various
expressions it is now possible to construct the complete likelihood function. Com-
putation of the maximum likelihood estimator requires numerical integration over
two dimensions for all individuals which are not observed in each period. Thus the
computational demands are reasonably high and as a result this approach has not
been proven to be popular in empirical work.

12.6.2 Two-Step Estimators

A shortcoming with the maximum likelihood approach outlined above is that the
model can be sometimes difficult to estimate due to its computational demands.
While there is relatively little experience of estimating such models in the panel set-
ting (see Keane et al., 1988, for an example) it is clear that the ML selection type
corrections in the cross-section setting is far less popular than the subsequently de-
veloped two-step estimators. To present the two-step estimators in the panel setting
we follow the approach of Vella and Verbeek (1999). In this case we again start with
the model presented in (12.36), (12.37) and (12.38). Note that although we focus
on estimating the above model we retain some degree of generality. This allows
us to more easily talk about extensions of the above model to alternative forms of
censoring. The approach that we adopt is a generalization of the Heckman (1979)
cross-sectional estimator to the panel data model. For the model that immediately
follows, the estimation procedure is also found in Ridder (1990) and Nijman and
Verbeek (1992).

To motivate a two-step estimator in this setting we begin by conditioning (12.36)
on the vector zi (and the matrix of exogenous variables Xi) to get

E(yit |Xi,zi0,zi) = x′itβ +E(uit |Xi,zi0,zi) . (12.42)
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If the mean function of (12.37) does not depend upon zi,t−1 and sample selection
only depends on the current value of zit , it is possible to condition only on zit and
not zi = (zi1 . . . .ziT ) and base estimators on the corresponding conditional moments
(see Wooldridge, 1995). In this case zi0 drops from the conditioning set. We assume,
as before, that the error terms in the selection equation vit = ξi +ηit exhibit the usual
one-way error components structure, with normally distributed components. That is

vi|Xi ∼ NID(σ2
ξ u′+σ2

η I) .

Note that while we do make explicit distributional assumptions about the distur-
bances in the main equation we assume

E(uit |Xi,vi) = τ1vit + τ2vi . (12.43)

Equation (12.43) implies that the conditional expectation E(εit |Xi,zi0,zi) is a linear
function of the conditional expectation of vit and its individual specific mean noting
that the τ ′s are parameters to be estimated. To derive the conditional expectation of
the terms on the right hand side of (12.43) we use

E(uit |Xi,zi0,zi) =
∫

[ξi +E(ηit |Xi,zi0,zi,ξi)] f (ξi|Xi,zi0,zi)dξi , (12.44)

where f (ξi|Xi,zi0,zi) is the conditional density of ξi. The conditional expectation
E(ηit |Xi,zi0,zi,ξi) is the usual cross-sectional generalized residual (see Gourieroux
et al., 1987, Vella, 1993) from (12.37) and (12.38), since, conditional on ξi, the
errors from this equation are independent across observations. The conditional dis-
tribution of ξi can be derived using the result

f (ξi|Xi,zi0,zi) =
f (zi,zi0|Xi,ξi) f (ξi)

f (zi,zi0|Xi)
, (12.45)

where we have used that ξi is independent of Xi and

f (zi,zi0|Xi) =
∫

f (zi,zi0|Xi,ξi) f (ξi)dξi (12.46)

is the likelihood contribution of individual i in (12.37) and (12.38). Finally

f (zi,zi0|Xi,ξi) =

[
T

∏
t=1

f (zit |Xi,zi,t−1,ξi)

]

f (zi0|Xi,ξi) , (12.47)

where f (zit |Xi,zi,t−1,ξi) has the form of the likelihood function in the cross-sectional
case. If we assume that f (zi0|Xi,ξi) does not depend on ξi, or any of the other er-
ror components, then zi0 is exogenous and f (zi0|Xi,ξi) = f (zi0|Xi). Thus we can
condition on zi0 in (12.46) and (12.47) and obtain valid inferences neglecting its
distribution. In general, however, we require an expression for the distribution of
the initial value conditional on the exogenous variables and the ξi. As stated above
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in the discussion of the random effects tobit model, the typical manner in which this
is done is to follow Heckman (1981) in which the reduced form for zi0 is approxi-
mated using all presample information on the exogenous variables.6

Thus the two-step procedure takes the following form. The unknown parame-
ters in (12.37) and (12.38) are estimated by maximum likelihood while exploiting
the random effects structure. Equation (12.44) is then evaluated at these ML esti-
mates by employing the expression for the likelihood function in an i.i.d. context,
the corresponding generalized residual, and the numerical evaluation of two one
dimensional integrals. This estimate, and its average over time for each individual
provide two additional terms to be included in the primary equation. The additional
parameters, corresponding to τ1 and τ2, can then be estimated jointly with β . Un-
der the null hypothesis of exogenous sample selection, τ1 = τ2 = 0, and there is
no need to adjust the standard errors. Thus the standard Wald test is a test of sam-
ple selection bias. However, in general the standard errors need to be adjusted for
heteroskedasticity, serial correlation, and for estimation of the correction terms.

As we noted above, the correction terms have been written to allow greater flex-
ibility with respect to the censoring process. We address this issue in the following
section. However, as the model in (12.36), (12.37) and (12.38) is perhaps the most
commonly encountered for panel data models with selectivity it is useful to see the
form of the correction terms. The first step is to estimate the model by random ef-
fects probit to obtain estimates of the θ ′2s and the variances σ2

ξ and σ2
η . We then

compute (12.44) and its individual specific average after inserting the following
terms

E(ηit |Xi,zi0,zi,ξi) = ditση

Φ
(

x′itθ21 + x′1itθ22 +ξi

ση

)

Φ
(

dit
x′itθ21 + x′1itθ22 +ξi

ση

) , (12.48)

where Φ denotes the standard normal density function, and

f (ξi|Xi,zi0,zi) =
∏T

t=1 Φ
(

dit
x′itθ21 + x′1itθ22 +ξi

ση

)
1

σξ
Φ
(

ξi

σξ

)

∫ ∞
−∞ ∏T

t=1 Φ
(

dit
x′itθ21 + x′1itθ22 +ξ

ση

)
1

σξ
Φ
(

ξ
σξ

)
dξ

, (12.49)

where dit = 2zit −1.
The model can be estimated by maximum likelihood if we make some addi-

tional distributional assumptions regarding the primary equation errors. If all error
components are assumed to be homoskedastic and jointly normal, excluding au-
tocorrelation in the time-varying components, it follows that (12.43) holds with
τ1 = σεη/σ2

ε and τ2 = T (σαξ − σεη σ2
ξ /σ2

ε )/(σ2
η + T σ2

ξ ). This shows that τ2 is
nonzero even when the individual effects αi and ξi are uncorrelated. In contrast, the
two-step approach readily allows for heteroskedasticity and autocorrelation in the

6 Note that apart from its dependence on ξi, the specification of f (zi0|Xi,ξi) can be tested separately
from the rest of the model.
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primary equation. Moreover, the assumption in (12.43) can easily be relaxed to, for
example:

E(uit |Xi,vi) = λ1t vi1 +λ2t vi2 + . . .+λTtviT . (12.50)

By altering (12.43) this approach can be extended to multiple sample selection rules.
With two selection rules, z1,it and z2,it , say, with reduced form errors v1,it and v2,it ,
respectively, (12.43) is replaced by

E(uit |Xi,v1,i,v2,i) = τ11v1,it + τ12v̄1,i + τ21v2,it + τ22v̄2,i . (12.51)

Computation of the generalized residuals, however, now requires the evaluation of
E{v j,it |Xi,z1,i,z2,i} for j = 1,2. Unless z1,i and z2,i are independent, conditional
upon Xi, the required expressions are different from those obtained from (12.44)
and (12.45) and generally involve multi-dimensional numerical integration.

While the two-step procedure is highly parameterized, many of the above as-
sumptions can be tested empirically. While relaxing normality in the reduced form
is typically computationally difficult, it is possible to test for departures from nor-
mality. It is also possible to test for serial correlation and heteroskedasticity using
conditional moment tests. Also, we assume that the variables in Xi are strictly exoge-
nous. This assumption excludes lagged dependent variables in the primary equation
as well as feedback from lagged values of y to current x’s. If components of Xi are
not strictly exogenous they should be included in z and excluded from the reduced
form.

12.6.3 Alternative Selection Rules

The discussion above frequently assumes that the selection rule is based on a binary
outcome and for this reason the selection process was based on the use of the random
effects probit likelihood function. However, just as in the cross-sectional case where
the selection rule has been extended to alternatives rather than just the binary case
(see Vella, 1993) it is useful to do so in the panel context. Two obvious, and practical,
extensions are the two following models. The first is the extension to panel data of
the Tobit type 3 model given by

y∗it = x′itβ1 +β2zit +uit ,

z∗it = x′itθ21 + x′1itθ22 + vit ,

zit = z∗it · I(z∗it > 0),
yit = y∗it · I(z∗it > 0).

In this case one sees that the primary equation may or may not have the censoring
variable as an endogenous explanatory variable and the censoring equation is cen-
sored at zero but observed for positive values. In our wage example discussed above,
the extension implies that we observe not only whether the individual works but also
the number of hours. We also allow the number of hours to affect the wage rate. For
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this model we would first estimate the censoring equation by random effects tobit.
We would then use these estimates, along with the appropriate likelihood contribu-
tion and tobit generalized residual, to compute (12.44) which are to be included in
the main equation. Note that due to the structure of the model the inclusion of the
correction terms accounts for the endogeneity of zit in the main equation.

A second model of interest is where the zit is observed as an ordinal variable,
taking values j for j = 1, . . . ,J, and where the values of yit are only observed for
certain values of j. In this case, where the dummies denoting the value of zit do
not appear in the model, we would conduct estimation in the following way. Es-
timate the censoring equation by random effects ordered probit and then compute
the corrections based on (12.44) accordingly. Then estimate the main equation over
the subsample for zit corresponding to a specific value and including the correction
terms. When one wishes to include the dummies denoting the value of zit as addi-
tional explanatory variable it is necessary to pool the sample for the different values
of zit and include the appropriate corrections.

12.6.4 Two-Step Estimators with Fixed Effects

A feature of the two-step estimator discussed above is their reliance on the assump-
tion that the individual effect is random variable and independent of the explanatory
variables. While the approach proposed by Vella and Verbeek (1999) is somewhat
able to relax the latter assumption it is generally difficult to overcome. For this rea-
son, as we noted above in the discussion of the censored regression model, it is
generally more appealing to treat the individual fixed component of the error term
as a fixed effect which may be correlated with the explanatory variables. We noted
above that the results of Hahn and Newey (2004) would allow one to estimate a fixed
effects tobit model and then perform the appropriate bias correction. Accordingly, it
would be useful to adopt the same approach in the sample selection model and this
has been studied by Fernandez-Val and Vella (2005). The basic model they study
has the form

y∗it = x′itβ +αi + εit , (12.52)

z∗it = x′itθ21 + x′1itθ22 +ξi +ηit , (12.53)

zit = I(z∗it > 0), (12.54)

yit = y∗it · zit , (12.55)

where the αi and ξi are individual specific fixed effects, potentially correlated with
each other and the explanatory variables, and the εit and ξit are random disturbances
which are jointly normally distributed and independent of the explanatory variables.
While Fernandez-Val and Vella (2005) consider various forms of the censoring func-
tion, such as described in the previous section, we focus here on the standard case
where the selection rule is a binary censoring rule.

The estimators proposed by Fernandez-Val and Vella (2005) are based on the
following approach. One first estimates the reduced form censoring rule by the
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appropriatefixedeffectsprocedure. In thecaseof thestandardselection rule thiswould
be fixed effects probit but in the case of tobit censoring rules or ordered selection rules
one would then use fixed effects tobit or fixed effects ordered probit respectively. Once
these estimates are obtained one uses the bias correction approaches outlined in Hahn
and Newey (2004) to adjust the estimates. With these bias corrected estimates one
then computes the appropriate correction terms which generally correspond to the
cross-sectional generalized residuals. One then estimates the main equation, (12.52),
by a linear fixed effects procedure and bias correct the estimates. Fernandez-Val and
Vella (2005) study the performance of this procedure to a range of models for al-
ternative forms of censoring. These include the static and dynamic binary selection
rule, and the static and dynamic tobit selection rule. They find that the Monte Carlo
evidence suggests these procedures are very effective in eliminating selectivity bias.
In instances where the adjustments were made to account for the endogeneity of the
explanatory variables the procedures were also effective.

12.6.5 Semi-parametric Sample Selection Models

Kyriazidou (1997) also studied the model in (12.52), (12.53), (12.54) and (12.55).
Her approach is semi-parametric in the sense that no assumptions are placed on
the individual specific effects αi and ξi and the distributional assumptions on the
transitory errors εit and ηit are weak.

It is clear that (θ21,θ22) can be estimated by one of the methods for estimation of
discrete choice models with individual specific effects, such as Rasch’s (1960, 1961)
conditional maximum likelihood estimator, Manski’s (1987) maximum score esti-
mator or the smoothed versions of the conditional maximum score estimator con-
sidered in Charlier et al. (1995) or Kyriazidou (1995). Kyriazidou’s insight into
estimation of β combines insights from the literature on the estimation of semi-
parametric sample selection models (see Powell, 1987) with the idea of eliminating
the individual specific effects by differencing the data. Specifically, to difference out
the individual specific effects αi, one must restrict attention to time periods sand t
for which y is observed. With this “sample selection”, the mean of the error term in
period t is

λit = E(εit |ηit >−x′itθ21− x′1itθ22−ξi,ηis >−x′isθ21− x′1isθ22−ξi,ζi)

where ζi = (xis,x1is,xit ,x1it ,αi,ξi). The key observation in Kyriazidou (1997) is that
if (εit ,ηit) and (εis,ηis) are independent and identically distributed (conditional on
(xis,x1is,xit ,x1it ,αi,ξi)), then for an individual i, who has x′itθ21 +x′1itθ22 = x′isθ21 +
x′1isθ22,

λit = E(εit |ηit >−x′itθ21− x′1itθ22−ξi,ζi)
= E(εis|ηis >−x′isθ21− x′1isθ22−ξi,ζi)
= λis. (12.56)
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This implies that for individuals with x′itθ21 + x′1itθ22 = x′isθ21 + x′1isθ22, the same
differencing that will eliminate the fixed effect will also eliminate the effect of sam-
ple selection. This suggests a two-step estimation procedure similar to Heckman’s
(1976, 1979) two-step estimator of sample selection models: first estimate (θ21,θ22)
by one of the methods mentioned earlier, and then estimate β by applying OLS to the
first differences, but giving more weight to observations for which (xit − xis)

′ θ̂21 +
(x1it − x1is) θ̂22 is close to zero:

β̂2 =

[
n

∑
i=1

∑
s<t

(xit − xis)
′ (xit − xis)K

(
(xit − xis)

′ θ̂21 +(x1it − x1is) θ̂22

hn

)

yityis

]−1

×
[

n

∑
i=1

∑
s<t

(xit − xis)
′ (xit − xis)K

(
(xit − xis)

′ θ̂21 +(x1it − x1is) θ̂22

hn

)

yityis

]

where K is a kernel and hn is a bandwidth which shrinks to zero as the sample size
increases. Kyriazidou (1997) showed that the resulting estimator is

√
n-consistent

and asymptotically normal. Kyriazidou (2001) shows how the same approach can
be used to estimate models when lagged dependent variables are included as ex-
planatory variables in (12.52) or (12.53).

As pointed out in Honoré and Kyriazidou (2000), the estimators proposed in
Honoré (1992) and Kyriazidou (1997) can be modified fairly trivially to cover static
panel data versions of the other tobit-type models discussed in Amemiya (1985).

12.6.6 Semi-parametric Estimation of a Type-3 Tobit Model

One paper which explores the semi-parametric estimation of panel data models with
a tobit type censoring rule is Lee and Vella (2006). To present this idea first consider
the cross-sectional estimator they propose.7 They consider the following model:

yi = x′iβ +ui, (12.57)

z∗i = x′itθ21 + x′1itθ22 + vi (12.58)

zi = max(0,z∗i ), si = I(zi > 0), (12.59)

(x′i, zi, siyi)′ is observed, i.i.d. across i , (12.60)

and impose the following mean independence assumption E(ui|vi,xi,si)=E(ui|vi,si).
The approach to obtain consistent estimates of β is to purge the (12.57) equation of
the component related to the selection equation (12.58) error. To do this they sug-
gest a Robinson (1988) type procedure in which they regress yi−E(yi|vi,si = 1)
on xi−E(xi|vi,si = 1) noting the inclusion of vi in the conditioning set eliminates

7 Semi-parametric estimation of the cross-sectional form of this model is also considered in Honoré
et al. (1997), Chen (1997) and Li and Wooldridge (2002).
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the source of the selection problem.8 The model is semi-parametric in that one
does not make distributional assumptions about the disturbances. Rather, one es-
timates the selection model (12.58) and (12.59) parameters by some appropriate
semi-parametric estimator and the estimates v̂i as zi− x1iθ̂21 − x′2iθ̂22 (if si = 1),
where the θ̂21 and θ̂22 denote the first step semi-parametric estimates. The expecta-
tions E(yi|vi,si = 1) and E(xi|vi,si = 1) can be estimated non-parametrically. Lee
and Vella (2006) argue that this approach can be extended to additional forms of
endogeneity and selectivity by simply including the appropriate reduced form resid-
ual(s) in the conditioning set. This type of estimator is useful in the two wave panel
context and Lee and Vella consider two models which adopt alternative strategies
for dealing with dynamics in the model. The first is where the lagged dependent
variable appears in the conditional mean and the model has the following form:

yit = yi,t−1βy + x′itβ +uit ,

z∗it = x′itθ21 + x′1itθ22 + vit

zit = max(0,z∗it), sit = I(zit > 0), t = 1,2,

(x′i1,x
′
i2, zi1,zi2, si1yi1,si2yi2)′ is observed, i.i.d. across i. (12.61)

The outcome equation can only be estimated over the subpopulation si1 = si2 = 1,
which poses a double selection problem. Thus one estimates over this subsam-
ple after subtracting off the component of the outcome equation related to the
two selection residuals. The mean independence condition assumption required is
E(ui2|vi1,vi2,xi2,yi1,si) = E(ui2|vi1,vi2,si) and one estimates

yi2−E(yi2|vi1,vi2) = [yi1−E(yi1|vi1,vi2)]βy +[xi2−E(xi2|vi1,vi2)]′β + ε

over the subsample corresponding to si1 = si2 = 1. Lee and Vella also consider the
treatment of dynamics through the inclusion of a time invariant individual fixed
effect αi. The main equation is static and is of the form:

yit = x′itβ +αi + εit .

The double selection problem arises if the first-differenced outcome equation is es-
timated to eliminate a time-constant error which is potentially related to xit’s:

Δyi = Δx′iβ +Δεi, Δyi ≡ yi2− yi1, Δxi ≡ xi2− xi1, Δεi ≡ εi2− εi1 .

The mean independence assumption required is E(Δεi|vi1,vi2,Δxi,si) = E(Δεi|vi1,
vi2,si) and one estimates

Δyi−E(Δyi|vi1,vi2) = [Δxi−E(Δxi|vi1,vi2)]′β + ε

over the subsample corresponding to si1 = si2 = 1.

8 The same estimator for the cross-sectional case was independently suggested in Li and
Wooldridge (2002).
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12.7 Some Empirical Applications

We conclude this chapter by discussing several empirical papers in which special
cases of the general model in (12.1), (12.2), (12.3) and (12.4) are implemented. In
each of these applications, economic agents select themselves into a certain state
(e.g. “working”, “union member”, or “participant in a social program”) and this
self-selection is likely to be endogenous. In most cases fully parametric estimators
are employed.

12.7.1 Attrition in Experimental Data

Hausman and Wise (1979) was one of the first studies to discuss the problem of
attrition bias in experimental or panel data. Their analysis was aimed at measuring
the effects of the Gary income maintenance experiment. In this experiment people
were exposed to a particular income/tax policy, and the effects of this policy on
monthly earnings were studied. Their sample consisted of 585 black males observed
before the experiment took place (t = 1). In the second period, a treatment (i.e.,
an income guarantee/tax rate combination) was given to 57% of them, the other
part was kept in the sample as a control group. So to analyze the effects of the
experiment, Hausman and Wise were able to compare the behavior of a treatment
group with that of a contemporaneously observed control group, as well as with
its own pre-experimental behavior. The problem with estimating the effects from
the experiment on earnings was that the second period suffered from high rates of
attrition. From the experimental group 31% dropped out of the sample, while almost
41% of the individuals in the control group were not observed at t = 2. Moreover, it
was thought likely that those individuals stay in the sample that benefit most from
the experiment, i.e., those individuals that experience an increase in earnings due to
the experiment. Obviously, such a self-selection is related to the unobservables in
the equation of interest, which makes a tobit-type model appropriate.

The model considered by Hausman and Wise (1979) is fairly simple, because it
is a fully-parametric two period model, where attrition (self-selection) only takes
place in the second period. For each individual a treatment dummy dit is defined,
which is equal to zero at t = 1 for all individuals and equal to one in period 2 for
those individuals that receive treatment. The model is then given by

y∗it = ditδ+ x′itβ +αi + εit , t = 1,2 , (12.62)

where δ measures the effect of the treatment (“the treatment effect”) and where xit

contains individual-specific exogenous variables, including an intercept or a time
trend. Because (by assumption) selection takes place in the second period only, the
selection equation can be described by a univariate probit model. In particular, it is
assumed that yit is observed if t = 1 and if zi2 = I(z∗i2 > 0) = 1, where
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z∗i2 = x′i2θ21 + x′1i2θ22 + yi2γ + v∗i2 . (12.63)

All error terms are assumed to be normally distributed, with mutual independence
of αi, εit and v∗i2. Note that, unlike before, (12.62) is not written as a reduced form
and includes the dependent variable from the primary equation. As long as γ = 0.
attrition depends upon the endogenous variable yi2 and OLS applied to (12.62) is
inconsistent. Because yi2 is not observed for those individuals with zi2 = 0, we sub-
stitute (12.62) into (12.62) to obtain the reduced form

z∗i2 = x′i2θ21 + x′1i2θ22 +(di2δ+ x′i2β )γ +(αi + εi2)γ + v∗i2 , (12.64)

or, after some appropriate redefinitions,

z∗i2 = w′i2θ2 + x′1i2θ22 + vi2 . (12.65)

The probit error term vi2 = (αi +εi2)γ +v∗i2 will be correlated with both αi and εi2 as
long as γ �= 0. Consequently, if one selects on participation in period 2 (zi2 = 1), this
may not only affect inferences for period 2, but also for period 1 (unless σ2

α = 0).
The likelihood contributions of the model consisting of (12.62) and (12.65) are

given in Hausman and Wise and are special cases of those considered in Sect. 12.6.1.
If specification (12.62) contains a time effect and a treatment dummy only, OLS
produces an estimate of the treatment effect of −0.06. Correcting for attrition bias
and applying maximum likelihood increases this effect to−0.11. If (12.62) contains
a number of additional explanatory variables, both approaches yield roughly the
same answer: −0.08. Consequently, Hausman and Wise conclude that within the
context of a structural model, some attrition bias seems to be present, but not enough
to substantially alter the estimate of the experimental effect.

In the Hausman and Wise model, it is assumed that selection into the experi-
ment is random. In many other cases, however, individuals are allowed to select
themselves into the experiment. Even in the absence of attrition this may lead to a
selection bias problem. See Heckman (2001) or Wooldridge (2002, Chap. 18) for
more discussion.

12.7.2 Real Wages Over the Business Cycle

Keynes (1936) believed that the movement of real wages over the business cycle was
countercyclical. A large number of empirical studies on this issue, based on macro
as well as micro data, have lead to a diversity of results. In an attempt to reconcile
these results, Keane et al. (1988) consider the question to what extent aggregation
bias (or selection bias) is able to explain the differences. Aggregation bias arises if
people going in and out of the labor force are not random. In that case, the average
wage changes over time due to a changing composition of the work force, even
though real wage levels are unaffected. If, for example, low-wage industries are
more cyclically sensitive, a countercyclical bias in the conclusion is expected.
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Keane et al. (1988) use panel data from the National Longitudinal Survey of
Young Men (NLS) over the period 1966–1981. The use of micro data has the ad-
vantage that a large part of the individual heterogeneity is observed. The model is
given by

y∗it = x′itβ1 +β2urt +αi + εit , (12.66)

where y∗it is the log of the (potentially unobserved) real hourly wage rate, and urt

denotes the national unemployment rate. The vector xit contains individual-specific
variables (education, experience, race, etc.), as well as a time trend. The parameter
β2 is the main parameter of interest: a positive β2 corresponds to a countercycli-
cal behavior in the wage, while a negative value indicates procyclical behavior. To
correct for the possibility of aggregation bias (selection bias), there is an additional
equation explaining employment, given by

z∗it = x′itθ21 + x
′
1,itθ22 +ξi +ηit . (12.67)

An individual is employed (and a wage rate is observed) if zit = I(z∗it > 0) = 1. Thus
we have

yit = y∗it · I(z∗it > 0) . (12.68)

Aggregation bias is procyclical if the covariance between the error terms in (12.66)
and (12.67) is negative. In that case, individuals with relatively high wages are more
likely to leave the labor market in case of increasing employment.

Keane et al. (1988) estimate two different specification of the model: one exclud-
ing individual-specific variables in (12.66) and (12.67) and one including a small
number of such variables. In addition, four different estimation strategies are used:
OLS without any corrections, maximum likelihood without individual effects in
(12.66) and (12.67), with random effects (along the lines discussed in Sect. 12.6.1)
and with fixed effects. Where needed, normality of the error components is assumed.
The OLS estimate for β2 of −0.0071 shows evidence of a procyclical behavior in
the wage. The addition of the extra regressors results in an estimate of −0.0096,
implying that the failure to control for observed heterogeneity leads to a counter-
cyclical bias. The estimates from the fixed effects model show insignificant unem-
ployment rate coefficients, implying an acyclic wage. The correlation coefficient
between ηit and vit is estimated to be −0.222. This result implies that the OLS
unemployment coefficient is procyclically biased. Finally, if a random effects speci-
fication is estimated, the unemployment rate coefficients are negative and significant
in both specifications. For the specification including observed heterogeneity the un-
employment rate coefficient of −0.0066 is still considerably below the OLS effect
of −0.0096. This indicates that a procyclical bias is still present, but weaker than
was indicated by the fixed effects model. The random effects results indicate a neg-
ative correlation of the transitory errors (the correlation coefficient between ηit and
vit is −0.252), but a positive correlation of the individual effects αi and ξi (with an
estimated correlation coefficient of 0.436). The resulting composite correlation is
virtually zero.
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The general conclusion from the results is that the failure to account for selection
effects, biases the behavior of the real wage in a procyclical direction. Apparently,
high-wage workers are more likely to become unemployed in a downturn.

12.7.3 Unions and Wages

Empirical studies of the union impact on wages typically attempt to estimate how
observationally equivalent workers’ wages differ in union and non-union employ-
ment. This is known as the “union effect”. However, as the unobserved factors that
influence the sorting into union and non-union employment may also affect wages
it is necessary to incorporate how the unobserved heterogeneity responsible for the
union/non-union decision is rewarded in the two sectors. Panel data studies of the
union effect generally control for this endogeneity through fixed effects or alterna-
tive instrumental variables estimators. These procedures are inflexible in their treat-
ment of worker heterogeneity as they generally assume the endogeneity is individual
specific and fixed. A preferable approach, adopted by Vella and Verbeek (1998), is
based on decomposing the endogeneity underlying union status into an individual
specific component and an individual/time specific effect.

Vella and Verbeek (1998) consider the following equations explaining (log) union
wages y1,it and (log) non-union wages y0,it ,

y j,it = x′j,itβ j +α j,i + ε j,it , j = 0,1 , (12.69)

where x j,it is a vector of characteristics, including time dummies. For a given indi-
vidual, we observe his wage in the union or the non-union sector. Selection into the
union sector is described by a random effects probit model of the form

z∗it = x′itθ21 + x
′
1,itθ22 + zi,t−1δ+ξi +ηit

zit = I(z∗it > 0). (12.70)

This is a dynamic model, implying that the probability of working in the union
sector is affected by the worker’s status in the previous year.

The random components are assumed to be i.i.d. drawings from a multivari-
ate normal distribution, where the effects from the different equations are poten-
tially correlated. The endogeneity of union status (zit) is driven by the correlations
between the components in (12.69) and (12.70). The wage equation is estimated
by OLS, fixed effects and by the two-step method described in Sect. 12.6.1, im-
posing that β j is identical across sectors (except for the intercept term). The
differences in the intercept capture the union effect. The data, taken from the Na-
tional Longitudinal Survey (Youth Sample), comprise a sample of full-time work-
ing males in the USA, who have completed their schooling by 1980 and who are
then followed over the period 1980–1987. This provides a balanced panel of 545
individuals.
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The estimates for the union effect vary widely across the different methods. The
OLS estimate is 0.146, corresponding to a union effect of about 15%. After cor-
recting for the endogeneity of union status, the estimated union effect increases to
0.214 or about 21%. However, the random effects contribute significantly, making
the union premium highly variable across individuals. Interestingly, the empirical
results indicate that the random effects are valued differently by sector. That is, it
is inappropriate to assume that the random components in (12.69) are identical for
both sectors ( j = 0 and j = 1). This is consistent with the idea that workers have
sector-specific skills.
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Chapter 13
Simulation Techniques for Panels: Efficient
Importance Sampling

Roman Liesenfeld and Jean-François Richard

13.1 Introduction

The recent years have witnessed an explosive growth in the use of simulation
techniques in econometrics made possible by impressive advances in computing
power. See e.g., the special issue of the Journal of Applied Econometrics Brown
et al. (1993) on “Econometric Inference using Simulation Techniques”. See also
Stern (1997) for a survey of simulation-based estimation with special emphasis
on multivariate probit models. Among the methods surveyed by Stern, one of
particular interest is the popular GHK simulator developed by Geweke (1991),
Hajivassiliou (1990) and Keane (1994) (see also Geweke et al. (1994) and Geweke
et al. (1997)). Börsch–Supan and Hajivassiliou (1993) compare the performance of
an acceptance-rejection method proposed by Stern (1992) with that of the GHK
technique. See Börsch–Supan et al., (1990) for an empirical application of the
GHK to a multiperiod-multinomial probit model of living arrangements for the el-
derly. Greene (2004) compares GMM estimations – as proposed by Bertschek and
Lechner (1998) – with simulated maximum likelihood for panel probit models al-
lowing for unobserved heterogeneity along the time dimension, with an application
to product innovation activity of German manufacturing firms (initially studied by
Bertschek (1995)). It is important to note that the simulation techniques proposed in
these papers are typically of low dimensions (either time or decision space) but can-
not easily deal with the much higher dimensions required to handle random effects
across individual units. This chapter is not aimed at providing a complete survey
of the relevant literature. Instead we will draw upon our own experience with the
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use of Monte-Carlo (hereafter MC) simulation techniques in classical and Bayesian
econometrics and will attempt to provide readers with an “helicopter tour”- of some
of their key features.

Moreover, we will largely focus our attention on a powerful high dimensional
simulation technique known as Efficient Importance Sampling (hereafter EIS) which,
as we shall discuss, is particularly well adapted to handling unobserved heterogene-
ity in large panel data sets. (Another important simulation technique known as Gibbs
sampling is presented in Chap. 15 and will, therefore, not be discussed here.) In par-
ticular, the full potential of EIS will be highlighted in the context of an empirical
application to a panel logit model with random effects along both dimensions (time
and individual). As we shall discuss further below, the EIS method allows for ef-
ficient evaluation of likelihood functions for non-linear panel data models in the
presence of unobserved heterogeneity along both dimensions, where the interaction
between individual and time random effects prevent factorizations into problems
of lower dimensionality. This is an important extension for conceptional as well as
practical reasons. By modeling unobserved heterogeneity across individual units in
the form of random effects, we can identify the impact of time invariant regressors.
On the practical side this possibility enables researchers to make informed choices
among fixed and random effects formulations of their model, instead of being forced
to select fixed effects by default.

The most important usage of MC-EIS techniques in modern econometrics is that
of a powerful numerical technique for the evaluation of high–dimensional (func-
tional) integrals which are analytically intractable. Therefore, in sharp contrast with
recent literature, we will insist upon separate treatment of the numerical and statis-
tical properties of “simulation estimators”. In a fundamental sense, MC simulation
estimators ought to be treated for what they are, i.e., numerical approximations to a
set of statistics of interest (whose statistical properties are to be separately discussed
and might themselves have to be numerically approximated).

This chapter is organized as follows: Random number generation is discussed in
Sect. 13.2; Importance Sampling and EIS is introduced in Sect. 13.3; Simulation
based inference techniques are surveyed in Sect. 13.4 with reference to panel data
models; their numerical properties are analyzed in Sect. 13.5; An empirical appli-
cation of EIS is presented in Sect. 13.6; Sect. 13.7 concludes; A technical appendix
details the implementation of EIS for large panel data sets up to a degree of details
allowing for customization to one’s specific application.

As for notation, we will use matched pairs of capital and lower case letters to
respectively denote random variables and realizations thereof. A superscript ∼ de-
notes random draws. A superscript – paired with a subscript S denotes arithmetic
sample means over S random draws.

13.2 Pseudorandom Number Generation

The cornerstone of any simulation based inference technique lies in the genera-
tion by computer of sequences of “pseudorandom” numbers. Following Devroye
(1986), we will assume the availability of a uniform [0,1] (linear congruential)
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pseudorandom number generator. See Fishman and Moore (1982, 1986) for a
statistical evaluation of congruential generators. Crude generators can be improved
upon by “(re)shuffling”, an option which is available in program libraries such as
IMSL (see the 1991 IMSL User’s Manual Stat/Library). See Press et al. (1986) for
a portable reshuffling subprogram in FORTRAN or C. See also Fishman (1996) for
a broad in-depth discussion of Monte Carlo simulation.

Sequences of pseudorandom numbers are in fact fully deterministic and uniquely
characterized by their length and initial “seed”. This fundamental property enables
us to reproduce at will any sequence of pseudorandom numbers. It follows that
regeneration of large sequences of pseudorandom numbers provides an efficient al-
ternative to their storage on disk since (re)generation typically is faster than swap-
ping. Also regeneration is the key to the technique of Common Random Numbers
(CRN’s) which plays an essential role in the design of simulation based inference
techniques and is discussed in Sect. 13.3.3 below.

Uniform pseudorandom numbers can be transformed into pseudorandom draws
from a broad range of distributions following techniques discussed, e.g. in Devroye
(1986), the most important of which are surveyed here.

13.2.1 Univariate Distributions

Let X denote a univariate random variable with distribution function
F(x | θ), where θ is a vector of preassigned parameters. For the ease of presen-
tation we will assume that X is a continuous random variable. Extensions to discrete
random variables are straightforward. At a high level of generality pseudorandom
draws of X are obtained by transformation of a sequence of independent uniform
[0,1] pseudorandom draws U ′ = (U1, . . . ,UK)

X = ξ (U ; θ) , (13.1)

where K is determined by an appropriate stopping rule and may itself be random.
The most commonly used (transformation) techniques are inversion, rejection (or
acceptance) and decomposition which are briefly described next. Additional details
and extensions, as well as other techniques can be found in Devroye (1986).

13.2.1.1 Inversion

The random variable U = F(X | θ) is uniformly distributed on [0,1]. Let F−1(·; θ)
denote the inverse of F for any given θ . It follows that the random variable

X = F−1 (U ; θ) (13.2)

when U is uniform on [0,1] has F for its distribution function. The technique of
inversion consists in generating sequences of uniform [0,1] pseudorandom draws
{Ui} and transforming them into sequences {Xi} by means of (13.2).
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Example 13.1. Let X be a Weibull random variable with parameters α > 0 and
β > 0. Its distribution function is

F (x | α,β ) = 1− exp(−βxα) . (13.3)

The transformation (13.2) is then given by

X =
[
− 1

β
ln(1−U)

]1/α
(13.4)

where V = 1−U is uniform on [0,1].

The inversion technique is easy to implement as long as an analytical expression
is available for F−1. However, it is generally inefficient in terms of computing time
relatively to more performant generation techniques combining fast rejection and
decomposition as described below. This is particularly relevant if F has to be numer-
ically inverted, in which case large scale simulation can become prohibitively time
consuming. In such cases we recommend initial tabulation of the inverse for the rel-
evant range of parameter values and subsequent numerical interpolation within the
core simulation algorithm. This is quite relevant since, as we shall discuss further
in Sect. 13.3.3 below, inversion though inefficient may be required in order to apply
the critical concept of Common Random Numbers.

13.2.1.2 Rejection (Acceptance)

Assume X has a density function f (x | θ) which is not easily amenable to “direct”
simulation (or for which direct simulation is relatively inefficient). For example,
Bayesians and also users of Gibbs sampling techniques (as described in Chap. 15)
frequently face situations where f is known only up to a proportionality factor.
In such cases f (x | θ) is given in the form of a “density kernel” ϕ(x | θ) whose
“integrating constant”

k (θ) =
∫ ∞

−∞
ϕ (x | θ)dx (13.5)

requires numerical evaluation. The rejection technique which does not require
knowledge of k(θ) is well adapted to such circumstances. It requires the construc-
tion of an “envelope” density function μ(x | θ) for which a generator is available
and which is such that

sup
x

[
ϕ (x | θ)
μ (x | θ)

]
= c(θ) < ∞ (13.6)

for all relevant θ ’s. If, in particular, the support of μ is infinite, condition (13.6)
requires that the tails of μ be not “thinner” than those of ϕ . It follows that normal
density functions with their “thin” tails cannot be used as envelope densities for
distributions with thicker tails such as student-t distributions, unless appropriate
truncation of the support is deemed acceptable.
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Under condition (13.6) the rejection technique runs as follows: to generate a
random draw of X ,

(a) generate a uniform U on [0,1];
(b) generate Z with density function μ(z | θ);
(c) If c(θ) ·μ(Z | θ) ·U > ϕ(Z | θ), then “reject” Z and return to step (a); otherwise
(d) X = Z (i.e., Z is “accepted”). It is straightforward to verify that

Pr (Z ≤ a | Z is accepted) = F (a | θ) (13.7)

i.e., that X has the required distribution. The unconditional probability of accep-
tance is given by

Pr (Z is accepted) = k (θ) · [c(θ)]−1 ≤ 1 . (13.8)

Devroye (1986) – see also Geweke (1994) – proposes to select optimized en-
velope density functions within a parametric class M = {m(x | α) ; α ∈ A} by
solving the following optimization problem

α∗ (θ) = arg min
α ∈ A

{
sup

x
[lnϕ (x | θ)− lnm(x | α)]

}
(13.9)

and choosing μ(x | θ) = m(x | α∗(θ)). The most performant generation algo-
rithms for common distributions often use rejection in combination with the
decomposition technique which is described next. Compound acceptance rates
in excess of 0.95 are not uncommon. See Devroye, (1986) for examples and
details.

We conclude this brief discussion of the rejection technique with two additional
comments. First, the application of the rejection principle greatly simplifies if the
random variable X can be obtained by means of a transformation X = δ(X∗; θ) of a
“standardized” random variable X∗ with a density kernel ϕ∗ which does not depend
on θ . Under such circumstances we only have to construct a single optimized enve-
lope function μ∗ for ϕ∗, notwithstanding the fact that the construction of Common
Random Numbers simplifies accordingly.

Second, the rejection algorithm as described above requires the evaluation of
ϕ(z | θ) for all draws, which can be computationally demanding. A performant
refinement of rejection is provided by the “squeeze” principle whose object is to
squeeze ϕ(z | θ) between a pair of functions a(z | θ) and b(z | θ) which are (much)
quicker to evaluate than ϕ itself (being, for example, piecewise linear). The squeeze
version of step (c) of the rejection algorithm runs as follows:

(c.1) c(θ) ·μ(Z | θ) ·U < a(Z | θ)⇒ “quick” acceptance of Z; else,
(c.2) c(θ) ·μ(Z | θ) ·U > b(Z | θ)⇒ “quick” rejection of Z; else,
(c.3) run step (c) of the rejection algorithm.

Elaborate implementations of the squeeze principle may require evaluation of ϕ
for less than 10% of the actual draws.
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13.2.1.3 Decomposition

A powerful technique for the construction of highly efficient generators consists in
the “decomposition” of a density kernel ϕ(x | θ) into a mixture of the form

ϕ (x | θ) =
k−1

∑
i=1

pi (θ)qi (x | θ)+ pk (θ)qk (x | θ) , (13.10)

where the qi’s for i : 1→ k−1 correspond to distributions that are obtained by sim-
ple transformations of uniforms on [0,1], such as sums or extremums of pairs of
uniforms. The qi’s often have non overlapping supports allowing for separate effi-
cient treatments of the central and tail areas of ϕ . The “remainder” density kernel qk

typically requires more demanding generation procedures but efficient decomposi-
tions result in low values for the remainder probability pk(θ). According to formula
(13.10) a draw of X proceeds in two steps:

(a) A discrete random indicator I ∈ {1,2, . . . ,k} is drawn according to the probabil-
ities {pi(θ)};

(b) Conditionally on I = i, X is drawn from the distribution with kernel qi(x | θ).

A continuous version of formula (13.10) is given by

ϕ (x | θ) =
∫

p(y | θ)q(x | y, θ)dy (13.11)

and can be used for such distributions as the student-t distribution (which is obtained
by a continuous mixture of a Normal distribution for x conditionally on y = σ−2 and
a gamma distribution for σ−1).

13.2.2 Multivariate Distributions

The generation of a multivariate random variable X is based upon recursive fac-
torizations of its density kernel ϕ(x | θ) into lower dimensional density kernels.
Two types of factorizations are discussed next: sequential (or recursive) factoriza-
tions and Gibbs factorizations. Factorizations of different types often are combined
together for the purpose of constructing a complete factorization of a multivari-
ate distribution into univariate components to which the techniques described in
Sect. 13.2.1 can be applied.

13.2.2.1 Sequential Factorizations

Sequential factorizations are typically used when the components of X = (X1, . . . ,
X p) are naturally (pre)-ordered, such as in the context of time series problems. The
density kernel of X is then factorized as
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ϕ
(
x1, . . . , xp | θ

)
=

p

∏
i=1

ϕi(xi | x(i−1), θ) , (13.12)

where x(0) = φ and x′(i−1) = (x′1, . . . , x′i−1) for i : 2 → p. For the ease of notation
preassigned (fixed) initial conditions are included in θ and randomized initial con-
ditions in X itself.

Let x̃ denote an arbitrary random draw of X . It is produced by sequential draws
of the Xi’s conditionally on θ and X (i−1) = x̃(i−1) according to the density kernels
ϕi(xi | x̃(i−1), θ) for i : 1→ p. In the context of Gourieroux and Monfort (1994), to
which we shall refer further below, such simulations are called “path simulations”.
Note that in the context of time series, models are generally formulated in sequen-
tial form and the joint density kernel ϕ(x | θ) is rarely explicitely given. In other
contexts the ordering of the components of X may be arbitrary and its actual choice
based upon considerations of numerical convenience. For example, random draws
of a multivariate Normal density are typically based upon a Cholesky decomposi-
tion of its covariance matrix for whatever ordering of its components is deemed to
be convenient.

As discussed further below, conditional independence assumptions play a central
role in the formulation of panel data models and can produce significant simplifica-
tions of formula (13.12). For example, in the context of the application discussed in
Sect. 13.6 below, x is partitioned into x′ = (λ ′, α ′) where λ ′ = (λ1, . . . ,λT ) denotes
time random effects and α ′ = (α1, . . . ,αN) individual random effects in a non–linear
panel model. Efficient numerical integration of x conditional on θ and the actual
sample y will be based upon a factorization of the form

ϕ
(
λ , α | θ , y

)
=

T

∏
t=1

ϕt(λt | λ (t−1), α , θ) ·
N

∏
i=1

ϕi (αi | θ , λ ) . (13.13)

Along similar lines, the concept of “exchangeable” distribution which is familiar
to Bayesians assumes that the xi’s are identically independently distributed with
density kernel q, conditionally on an unobserved common random component x0

with density kernel p. Therefore, it is based upon a factorization of the form

ϕ (x, θ) =
∫

p(x0 | θ)
P

∏
i=1

q(xi | x0, θ)dx0 . (13.14)

13.2.2.2 Gibbs Sampling

Gibbs sampling is extensively analyzed in Chap. 15 and is only briefly discussed
here for the sake of completeness and comparison. Gibbs sampling is based upon
the observation that a density kernel for the distribution of an arbitrary com-
ponent Xi conditional on θ and on all other components of X is trivially ob-
tained by regrouping all terms depending upon xi, in the expression of ϕ(x | θ).
Depending upon the circumstances, such density kernels can either characterize
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known distributions for which generators immediately are available or, in any
event, are amenable to simulation by application of the principles described in
Sect. 13.2.1.

Gibbs sampling is then based upon a Markov scheme as described in Chap. 15. It
offers the advantage that it is easily implementable for a broad range of applications.
It can, however, be inefficient as a large number of auxiliary draws are required in
order to produce draws from the actual distribution of X | θ .

13.3 Importance Sampling

While MC techniques have long been used to simulate the finite sample proper-
ties of a broad range of (“classical”) statistics, one of the most important numer-
ical development in recent years has been their increasing usage as a numerical
method for evaluating (large-dimensional) analytically intractable integrals. It is
hardly surprising that the initial impetus and many important developments on that
front came from Bayesian statisticians and econometricans who critically depend
upon the availability of efficient numerical procedures in order to evaluate posterior
moments and other quantities of interest to them. See the pioneering contribution
of Kloek and van Dijk (1978), or Geweke (1989, 1994) for more recent develop-
ments. The presentation which follows is based upon Richard and Zhang (2007).
See also Liesenfeld and Richard (2003a) for a non technical presentation of Impor-
tance Sampling and Liesenfeld and Richard (2003b,c) for applications of EIS within
the context of stochastic volatility models – including an explicit comparison with
Gibbs sampling.

13.3.1 General Principle

Assume one has to evaluate a functional integral of the form

G(δ) =
∫

S(δ)
g(x, δ) · p(x | δ)dx , (13.15)

where g is a function which is integrable w.r.t. a conditional density p(x | δ) with
support S(δ). The actual composition of x and δ largely is problem dependent. Let
θ , y and λ denote parameters, data and latent (unobservable) variables, respec-
tively. Important applications requiring the evaluation of integrals of the form given
is (13.15) are: (i) The Bayesian evaluation of posterior “odds” and/or moments for
which δ = y and x = (θ ,λ ); (ii) The classical evaluation of “marginalized” like-
lihood functions for which δ = (θ , y) and x = λ ; (iii) The classical evaluation of
Methods of Moments estimators for which δ = θ and x = (y, λ ).
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MC estimator of G(δ) in formula 13.15 is given by

ḠS;p (δ) =
1
S

S

∑
i=1

g(x̃i, δ) , (13.16)

where the x̃’s are i.i.d. draws from p(x | δ) and S denotes the number of draws.
The replacement of p by an alternative simulator with density μ calls for the fol-
lowing reformulation of G(δ)

G(δ) =
∫

g(x, δ) ·ω (x, δ) ·μ (x | δ)dx , (13.17)

where

ω (x, δ) =
p(x | δ)
μ (x | δ)

. (13.18)

Note that the expectation of ω(X ,δ) on μ equals one. The corresponding MC esti-
mate of G(δ), known as an “importance sampling” estimate, is given by

ḠS;μ (δ) =
1
S

S

∑
i=1

ω (x̃i, δ) ·g(x̃i, δ) , (13.19)

where the x̃i’s now are i.i.d. draws from μ(x | δ). The MC sampling variance of
ḠS;μ(δ) as an estimate of G(δ) is given by

V
[
ḠS;μ (δ)

]
=

1
S

{
EX
[
g2 (X , δ) ·ω2 (X , δ) | δ

]
−G2 (δ)

}
· (13.20)

μ(x | δ) is the actual importance sampling density used in the construction of the
EIS–MC estimates of the relevant integrals. (As we discuss in Sect. 13.4.2 below,
p is instrumental in the construction of μ).

We will assume here that p is a genuine density function in that it integrates to
one on its support S(δ). That assumption is routinely satisfied for classical infer-
ence procedures where p(x | δ) represents a sampling distribution. In contrast it is
frequently violated in Bayesian applications where p(x | δ) represents a posterior
density obtained by application of Bayes theorem which, therefore, often takes the
form of a density kernel whose integrating constant is unknown and is itself to be
numerically evaluated. Most quantities of interest are then ratios of integrals with
the integral of p itself in the denominator.

In most applications p(x | δ) will be a direct byproduct of the stochastic (sequen-
tial) specification of the model under consideration. We shall refer to it as an “ini-
tial sampler”. For example, in Dynamic Latent Variables models, p typically corre-
sponds to the marginal density of the latent process. See Hendry and Richard (1992)
for details. Another example of initial sampler will be presented in sect. 13.6 below.
Note that formulae (13.19) and (13.20) cover as special case that of the initial sam-
pler with the simplification that if μ ≡ p, then ω ≡ 1.
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Theoretically, an optimal choice μ∗ for μ would be one such that the product g ·ω
in formula (13.17) does not depend on x. That is to say, if there exists an operational
sampler μ∗(x | δ) and a “remainder” function g∗(δ) such that

g(x, δ) · p(x | δ) = μ∗ (x | δ) ·g∗ (δ) (13.21)

then G(δ) ≡ g∗(δ) and, furthermore, V
[
ḠS;μ∗(δ)

]
= 0 in which case a single draw

from μ∗ would produce the exact result. Note that when formula (13.21) holds, μ∗
corresponds to the posterior density of x given δ. Except for the simplest models μ∗
is generally not amenable to MC simulations. Furthermore, in high-dimensional
problems, it is often the case that the MC sampling variance V

[
ḠS;p(δ)

]
is so

large that accurate MC estimation of G(δ) using draws from the initial sampler
p would require prohibitively large numbers of draws. See, in particular, the com-
ments in McFadden (1989) as to the impracticability of simulated ML estimation
in the context of discrete response models, or Danielsson and Richard (1993) for
a striking example of the inaccuracy of naive MC estimates in the context of a
stochastic volatility model. A number of “acceleration” techniques are available
whereby the numerical accuracy of MC estimates can be enhanced, often at negligi-
ble increases in the cost of computations. See, e.g., Hendry (1984), Geweke (1988,
1994) or Davidson and McKinnon (1992). Nevertheless, these techniques consti-
tute at best a partial remedy to the initial selection of an “inefficient” MC sam-
pler and, under most circumstances, the only solution consists in the replacement
of the initial sampler p by a more efficient importance sampler μ , i.e. one which
is such that G(δ) can be accurately estimated with manageable number of draws.
The literature on importance sampling provides useful examples of efficient sam-
plers for specific classes of models. See Liesenfeld and Richard (2003a) for refer-
ences. Until recently, however, there did not exist a generic algorithm to construct
efficient importance samplers for (very) high-dimensional integrals of the type as-
sociated with high–frequency dynamic latent variable models (such as stochastic
volatility models) and/or large panel models. Generalizing earlier results obtained
by Danielsson and Richard (1993), Richard and Zhang (2007) proposed a generic
least squares algorithm for the automated construction of Efficient Importance Sam-
plers (EIS).

13.3.2 Efficient Importance Sampling

In this section we outline the general principle underlying EIS, refering the reader
to Richard and Zhang (2007) for additional details. The specific implementation of
EIS to panel data with unobserved heterogeneity will be presented in Sect. (13.6)
below. We now assume that the function g(x, δ) in (13.15) is strictly positive on
the support S(δ), which, for example, is the case in all applications where G(δ)
represents a likelihood function marginalized w.r.t. latent variables.
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The construction of an EIS starts with the selection of a parametric class of sam-
plers. Let M = {m(x | α); α ∈ A} denote such a class. Typically, M would include
parametric extensions of the initial sampler p designed to provide flexible approx-
imations to the product g · p in (13.15), that is to say better approximations than p
itself to the implicit posterior density μ∗(x | δ) in (13.21). Following (13.20), the
selection of an “optimal” sampler within M is tantamount to solving the following
optimization problem:

α∗ (δ) = argmin
α∈A

[V (α; δ)] , with (13.22)

V (α; δ) =
∫ φ 2 (x; δ)

m(x | α)
dx−G2 (δ) (13.23)

φ (x; δ) = g(x, δ) · p(x | δ) (13.24)

The variance V (α; δ) may be rewritten as

V (α, δ) = G(δ) ·
∫

h
[
d2 (x; δ, α)

]
·φ (x; δ)dx (13.25)

with

d (x; δ, α) = ln

[
φ (x; δ)

G(δ) ·m(x | α)

]
(13.26)

h(c) = e
√

c + e−
√

c−2 . (13.27)

This EIS optimization problem can be significantly simplified further. First, we can
replace m(x | α) in (13.26) by a density kernel k(x; α). Let χ(α) denote the inte-
grating constant of that kernel, so that

m(x | α) = χ−1 (α) · k (x; α) . (13.28)

Without loss of generality we then rewrite d(x; δ,α) as follows

d (x; δ, α) = [lnφ (x; δ)− γ− lnk (x; α)] , (13.29)

where γ = ln [G(δ)/χ(α)] does not depend on x and is treated as an (additional)
intercept in the optimization problem. Next, we note that if m(x | α) belongs to the
exponential family of distributions, then there exists an auxiliary reparametrisation
such that lnk(x; α) is linear in α , say

lnk (x; α) = c(x) ·α . (13.30)

Finally, an efficient sampler will obviously be one such that k(x; α) closely mimics
φ(x; δ), in which d(x; δ, α) is expected to be close to zero on average. Heuristi-
cally, this justifies replacing h(c) in (13.27) by c, its leading term in a Taylor series
expansion around zero. This amounts to approximating V (α; δ) in (13.22) by
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Q(α ; δ) =
∫

d2 (x; δ, α) ·g(x, δ) · p(x | δ)dx (13.31)

resulting in a simpler Generalized Least Squares (GLS) optimization problem. Let
α̂(δ) denote the GLS solution to that problem. A more formal justification for the
replacement of V by Q can be found in Richard and Zhang (2007) and follows from
the inequality

V (α̂ (δ) ; δ)≥V (α∗ (δ) ; δ)≥ h [Q(α̂ (δ) ;δ)] . (13.32)

An operational EIS implementation consists of solving first the simpler GLS prob-
lem and computing the two extreme bounds in (13.32) in order to assess whether ad-
ditional efficiency gains would justify solving the computationally more demanding
optimization problem in (13.25). Among all applications of EIS we have run over
the last few years, including the one discussed in Sect. 13.6 below, there has never
been one where the computation of α∗(δ) would have been justified. In practice,
both optimization problems will be approximated by their finite sample MC coun-
terparts. In particular, the MC version of the GLS optimization problem is given by

α̂R (δ) = arg min
α∈Aγ∈R

R

∑
j=1

[
lnφ
(
x̃ j; δ

)
− γ− lnk

(
x̃ j; α

)]2
g
(
x̃ j, δ

)
(13.33)

where
{

x̃ j; j : 1→ R
}

denotes i.i.d. draws from the initial sampler p(x | δ). Since, in
general, the MC sampling variance of g(x, δ) on draws from p is expected to be very
large (which is why EIS is needed!) it is advisable to delete g(x; δ) from (13.33) and
solving instead the LS problem. Note that, as typical within a LS framework, high
variance in the draws from p actually helps securing an accurate global solution in
(13.33).

In high–dimensional problems, the global optimization problem in (13.33) needs
to be replaced by a sequence of manageable lower dimensional optimization prob-
lems. Here, we just outline the principle of such factorizations, refering the reader
to Richard and Zhang (2007) for details and to Sect. 13.6 for a specific implemen-
tation. In line with (13.12), we assume that φ(x; δ) is factorized as

φ (x; δ) =
p

∏
i=1

φi(x(i); δ) (13.34)

with
φi(x(i); δ) = gi(x(i); δ) · pi(xi | x(i−1), δ) (13.35)

and the pi’s defining a (sequential) initial sampler. The importance sampler m(x | a)
is partitioned conformably into

m(x | a) =
p

∏
i=1

mi(xi | x(i−1); ai), ai ∈ Ai. (13.36)
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Let ki(x(i); ai) denote a kernel for mi, with χi(x(i−1); ai) denoting its integrating
constant (with respect to xi only), whence

mi(xi | x(i−1), ai) =
ki(x(i); ai)

χi(x(i−1); ai)
, (13.37)

with χi(x(i−1); ai) =
∫

ki(x(i); ai)dxi.

The key issue is that we can’t expect to be able to approximate φi(x(i); δ), whose
integral in xi, is not known, by m(xi | x(i−1), ai) which by definition integrates to
one. Instead we could try to approximate φi by a kernel ki(x(i); ai), subject to the
sole restriction that ki has to be analytically integrable with respect to xi, so that once
we have selected âi we have an analytical expression for χi. Obviously, by doing so,
χi is not accounted for in the ai LS optimization problem but, since it only depends
on x(i−1) it can be transfered back into the a i−1 LS optimization problem. In other
words, the step i optimization subproblem consists of approximating the product
φiχi+1 by a kernel ki, specifically

α̂ i,R (δ) = arg min
αi∈Aiγi∈R

R

∑
j=1

[
ln
[
φi(x̃(i), j; δ) ·χi+1(x̃(i), j; α̂ i+1,R (δ))

]

−γi− lnki(x̃(i), j; α i)
]2

(13.38)

for i : p→ 1 (with χp+1 ≡ 1), where {(x̃1, j, . . . , x̃p, j); j : 1→ R} denotes i.i.d. “tra-
jectories” drawn sequentially from {pi(xi | x̃(i−1), j; δ)}. An example of such a se-
quential EIS implementation in the context of panel data is presented in Sect. 13.6
below.

13.3.3 MC Sampling Variance of (E)IS Estimates

A frequent criticism raised against (E)IS is the possibility that the variance V (α; δ)
in formula (13.23) might not exist, typically because the approximating kernel
k(x; α) has thinner tails than the integrand φ(x; δ). This criticism calls for important
qualifications. Foremost, it applies to all MC methods relying upon approximations
of the integrand, including Gibbs and Metropolis-Hastings procedures. Actually, if
the variance of an IS estimate is infinite under a class M of auxiliary samplers, so
will be the variance of any other MC estimate relying upon the same class. While
this concern is addressed in the theoretical MCMC literature (see, e.g. Theorem 7.15
in Robert and Casella (2004)), the empirical MCMC literature largely ignores the
possibility that an MCMC estimate might be invalid as the result of inappropriate
selection of its auxiliary samplers.

Actually, Richard and Zhang (2007) propose a powerful test of the existence
of the variance of an EIS estimate. This test consists of estimating V (α; δ) in
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formula (13.23) under two alternative samplers. It is an immediate by-product of
the (E)IS evaluation and, most importantly, does not require any additional draws.
Traditional verifications of the existence of the variance are typically based upon a
very large number of draws in the hope of generating a very low probability ‘out-
lier’, which would destabilize the IS estimate. Such tests based upon the detection
of a very rare event are notoriously unreliable. It is worth noting that the above
mentioned test can also be applied to any other method relying upon auxiliary sam-
plers, allowing for a very effective and unified test of variance finiteness in MC
estimation.

13.3.4 GHK Simulator

The GHK simulator, to which we referred in our introduction, also belongs to a class
of importance samplers. It is specifically designed to numerically evaluate probabil-
ities of rectangles within a multivariate probit framework. It relies upon a triangular
decomposition of the covariance matrix to construct an importance sampler in the
form of a sequence of (conditional) univariate truncated Gaussian samplers (see,
e.g., Gourieroux and Monfort (1994) for details). GHK has been widely and suc-
cessfully applied to the numerical evaluation of likelihood functions for multivariate
probit models.

In contrast with the EIS method described above, GHK is not designed to han-
dle high-dimensional integrals nor does it includes an auxiliary optimization step
(the latter is by no means as critical as for EIS in view of the lower dimension-
ality). Actually, GHK and EIS serve complementary purposes and can usefully be
combined together to evaluate the likelihood of multivariate probit models with un-
observed heterogeneity across individual units (in addition to the other dimensions
handled by GHK). Specifically, in the context of formula (13.38), GHK would be
used to evaluate lower dimensional integrals (e.g. multivariate probits) embedded
in the expression of φi(·). That is to say GHK would be used to evaluate low-
dimensional inner integrals, while EIS would apply to (much higher-dimensional
outer integrals. Such an application goes beyond the objectives of the present chapter
but belongs to our research agenda. Also we intend to analyze in the future possibili-
ties of incorporating within GHK an EIS-optimization step to increase its numerical
efficiency.

13.3.5 Common Random Numbers

There was an important reason for carrying along δ as an argument in all expres-
sions from formula (13.15) onward: most (classical) simulation based inference pro-
cedures, some of which are discussed in Sect. 13.4 below, require the evaluation of
a function G(δ) to be maximized (minimized) in δ.
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As we replace G(δ) by its functional estimate ĜS(δ) an issue of smoothness
immediately arises. Independent MC estimation of G(δ) at neighboring values
of δ would result in excessive wiggling of ĜS(δ), even when the latter is accu-
rately estimated by EIS. This point is well recognized in the literature on simulated
estimators—see, e.g. McFadden (1989), Pakes and Pollard (1989); Gourieroux and
Monfort (1994)—where “smoothness” constitutes a critical condition for the vali-
dation of the asymptotic properties of these estimators. We will only consider here
the obvious numerical problems that excessive wiggling would create for the op-
timization of ĜS(δ). Though we might consider smoothing ĜS(θ) in the process
of optimization, a more direct remedy is available which takes advantage of the id-
iosyncrasies of pseudorandom number generation. The idea simply is that of reusing
the same uniform pseudorandom numbers for the estimation of G(δ) at different
δ’s, a technique which is known as that of “Common Random Numbers” (here-
after CRN’s). Let

{
x̃i j, i : 1→ S

}
denote the random draws of X used for the esti-

mation of ĜS(δ j). They can be obtained by transformation of a common sequence
{ũi; i : 1→ S} of uniform pseudorandom numbers, i.e.

x̃i j = ξ
(
ũi; δ j

)
. (13.39)

This procedure will induce high positive correlations between estimates of G(δ)
at neighboring values of δ. It will often suffice to secure sufficient smoothness for
numerical optimization to succeed. Numerical evaluation of the derivatives of ĜS(δ)
often remains delicate. Our own experience suggests using a “simplex” optimization
algorithm. If analytical derivatives are available for the integrand in formula (13.15),
MC estimates of the derivatives of G(δ) should be evaluated alongside with that of
G(δ) itself.

The application of formula (13.39) requires attention when rejection techniques
are being used as the actual number of uniform pseudorandom draws required to
produce x̃i j might vary with j. The simplest scenario is that when X is obtained by
transformation of a “standardized” random variable X∗ whose distribution does not
depend on δ, i.e. when

X = ξ1 (X∗; δ) and X∗ = ξ2 (U) . (13.40)

In such cases, we only have to generate (or regenerate at will) a single sequence
{x̃∗i } from which the x̃i j’s are obtained by means of the transformation ξ1 for all
relevant values of δ. If, on the other hand, X is obtained directly from U and re-
jection is involved, it becomes very difficult to effectively implement CRN’s. The
alternative is then to rely upon the inversion technique, as defined in (13.2). Since,
however, the inversion technique is typically much more time consuming than the
most performant rejection techniques, its use can significantly increase overall com-
puting time. Taking full advantage of the typical very low dimensionality of se-
quential EIS kernels, careful reliance upon numerical interpolation techniques can
usefully be considered – though such discussion goes beyond the objectives of
this chapter.
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13.4 Simulation-Based Inference Procedures

In this section we briefly discuss the use of MC integration in the context of three of
the most commonly used inference techniques: Maximum likelihood, (generalized)
Method of Moments and Bayesian posterior moments. Details of implementation
are highly problem dependent and will not be considered here.

13.4.1 Integration in Panel Data Models

There exists a growing number of panel data applications requiring multidimen-
sional integrations for which no analytical solutions are available and quadrature
(non–stochastic) rules are impractical. A few examples are listed below:

(a) Multinomial probit models involve integrals whose dimensionality equals the
number of alternatives minus one;

(b) The elimination of latent variables in nonlinear models also requires numerical
integration. The dimensionality of integration typically is that of the vector of
latent variables;

(c) Relatedly, the elimination of individual unobserved heterogeneity factors is also
done by integration. Though it is occasionally possible to find analytical solu-
tions under specific choices of distributions, numerical integration is required at
a higher level of generality;

(d) The evaluation of a likelihood function for panel data with missing observations
necessitates the computation of (multidimensional) integrals which, except for
special cases, has to be done numerically.

Note also that the application of Bayesian inference techniques to any of these
models generally requires additional (numerical) integrations with respect to the
parameters themselves. Such an application is discussed in Sect. 25.3 in the con-
text of Markov processes. Finally, there are numerous extensions of the models
specifically discussed in this handbook that would require (additional) numerical
integrations.

Simulation techniques are increasingly used to evaluate such integrals. A few
references of interest in the context of panel data models are Lerman and Manski
(1981), McFadden (1989), Pakes and Pollard (1989) or Börsch–Supan and Haji-
vassiliou (1993). These contributions and others have led to the development of
a number of simulation based inference techniques some of which are briefly de-
scribed below. See also Gourieroux and Monfort (1993) for a recent survey with
reference to panel data or Gourieroux and Monfort (1994) for an in-depth analysis
of simulation based econometric techniques.

Two key features characterize this line of work. Firstly, it often relies upon non
“efficient” Monte-Carlo procedures (in the numerical sense). Some of the comments
found in the literature as to the impracticability of MC likelihood evaluation – see,
e.g. McFadden (1989) – have to be qualified in that context. Secondly, it conflates
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“statistical” and “numerical” properties of simulation estimators, a point we will
address further in Sect. 13.5 below.

13.4.2 Simulated Likelihood

Within a likelihood framework, δ in formula (13.15) consists of observables y and
unknown parameters θ , while λ regroups all unobservables. The simplest case is
that where a “marginalized” likelihood has to be evaluated which is of the form

L
(
θ ; y
)

=
∫

f
(
y, λ | θ

)
dλ , (13.41)

where f denotes the joint density of all relevant variables, observables and unob-
servables. In most cases f takes the form of a product of component densities, e.g.
in the form of (13.12) or (13.13). Such factorizations may considerably simplify the
actual implementation of a simulation algorithm but will not be specifically consid-
ered here. Let L̂S(θ ; y) denote a functional MC estimator of L(θ ;y) obtained by MC
simulation. A simulated maximum likelihood (SML) estimator of θ is given by

θ̂ S

(
y
)

= argmax
θ

[
ln L̂S

(
θ ; y
)]

. (13.42)

An example of SML estimation using EIS with be presented in Sect. 13.6 below.
There are numerous important problems (such as discrete choice models) where

the likelihood function itself is not in the form of an integral but depends upon
integrals which have to be numerically evaluated. A general formulation of such
problems would take the following form

L
(
θ ; y
)

= h
(
G
(
y | θ

)
; y, θ

)
, with (13.43)

G
(
y | θ

)
=
∫

γ
(
y, λ | θ

)
dλ . (13.44)

Examples can be found, e.g. in Gourieroux and Monfort (1994), together with
extensions to simulated pseudo maximum likelihood estimation.

13.4.3 Simulated Method of Moments

There exist many excellent discussions of the Generalized Method of Moments
(GMM) and of the Simulated Method of Moments (MSM) in the recent literature.
The short presentation which follows draws upon Davidson and McKinnon (1993)
for GMM and Pakes and Pollard (1989) for MSM. See also McFadden (1989) or
Gourieroux and Monfort (1994). Let
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G(θ) =
∫

H
(
y, θ
)
· fY
(
y | θ

)
dy (13.45)

together with

H
(
y, θ
)

=
∫

h
(
y, λ ; θ

)
· fΛ
(
λ | y, θ

)
dλ (13.46)

denote a set of moments conditions assumed to be zero at the true value θ 0. The
empirical conditions associated with (13.45) are given by

NT

∑
j=1

H(y
j
, θ 0) = 0 , (13.47)

where {y
j
; j : 1→ NT} denotes the actual sample. (The “short hand” notation used

in (13.45) appears to suggest that the y
j
’s are i.i.d. with density fY (y | θ). Results are

also available for dependent y’s. See, e.g., Gallant (1987). Let Y ′ = (y
1
, . . . , y

NT
). A

GMM estimator of θ is given by

θ̂ (Y ) = argmin
θ

[
NT

∑
j=1

H(y
j
, θ)

]′
A(Y )

[
NT

∑
j=1

H(y
j
, θ)

]

, (13.48)

where A(Y ) is a symmetric positive definite matrix. The consistency of θ̂(Y ) obtains
under a broad range of conditions. Efficiency requires that

plim
NT→∞

A(Y ) = AVar

[
1√
NT

NT

∑
j=1

H(y
j
, θ 0)

]

:= A0 . (13.49)

The asymptotic variance of
√

NT θ̂(Y ) on condition (13.49) is given by

AVar
[√

NT θ̂ (Y )
]

=
(
D0A−1

0 D′0
)−1

, with (13.50)

D0 = plim
NT→∞

[
1

NT

NT

∑
j=1

∂H ′(y
j
, θ)

∂θ

]

θ=θ 0

. (13.51)

Let ĤS (y
j
, θ) denote a (convergent) MC estimator of H(y, θ). An MSM estimator

of θ is given by

θ̂ S (Y ) = argmin
θ

[
NT

∑
j=1

ĤS(y j
, θ)

]′
A(Y )

[
NT

∑
j=1

ĤS(y j
; θ)

]

. (13.52)

As discussed earlier it is important that CRN’s be used in drawing the λ ’s from
fΛ (λ | y, θ).
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13.4.4 Bayesian Posterior Moments

Let ν(θ) denote a prior density for the parameters of the marginalized likelihood
L(θ ; y), as definded in (13.41). The posterior density of θ is proportional to the
product of ν by L and its integrating constant is generally unknown. The posterior
density of a function h(θ) is given by

h∗ =

∫ ∫
h(θ) f

(
y, λ | θ

)
ν (θ)dλdθ

∫ ∫
f
(
y, λ | θ

)
ν (θ)dλdθ

. (13.53)

A convergent (E)IS estimator of h∗ is given by

ĥ∗S =

S

∑
i=1

ω(λ̃ i, θ̃ i, y)h(θ̃i)

S

∑
i=1

ω(λ̃ i, θ̃ i; y)

, (13.54)

where {(λ̃ i, θ̃ i); i : 1 → S} are i.i.d. draws from a sampler μ(λ , θ | y) and ω =
f ν/μ . Details are found e.g., in Geweke (1994).

Note that the evaluation of ĥ∗S only requires a single set of joint draws from μ . In
contrast, maximization of L̂S(θ ;y) in (13.42) requires a new set of (CRN) draws of
λ for each value of θ at which the likelihood has to be evaluated.

13.5 Numerical Properties of Simulated Estimators

There is a fundamental difference between the ways in which classical and Bayesian
econometricians evaluate the properties of simulated estimators. Bayesians treat the
actual sample y as fixed. The only source of randomness to be accounted for orig-
inates from the auxiliary MC sample. It follows, in particular, that Bayesians rou-
tinely assess the numerical accuracy of their MC estimates of quantities of interest,
e.g. in the form of MC standard deviations.

In contrast classical econometricians insist upon treating θ̂ S(y) as an estimate of
θ itself and, therefore, have to account for two independent sources of randomness:
the actual sample y and the auxiliary MC sample λ . We find three major drawbacks
to the classical analysis of simulated estimators:

(i) It confuses the issue of assessing the statistical properties of θ̂(y) as an estimate
of θ with that of evaluating the numerical accuracy of θ̂ S(y) as an MC estimate
of θ̂(y);

(ii) It complicates the analysis of simulation estimators since the two sources of
randomness apply at fundamentally different levels. Specifically, the statistical
properties of θ̂(y) are determined by data availability. In contrast, the numeri-
cal properties of θ̂ S(y) are fully controlled by the analyst and can be arbitrarily
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reduced either by increasing MC sample sizes and/or, more efficiently, by in-
creasing the efficiency of the simulation techniques (which is precisely what
EIS has been designed for).

(iii) It applies to situations where the observables y and the latent variables λ are
jointly simulated. However, as we argued above, integration of λ can often be
carried out much more efficiently by using EIS in which case numerical accu-
racy is typically far greater than statistical accuracy and conventional formulae
do not apply.

Nowhere is the problem more apparent than in the context of simulated ML es-
timators. The statistical properties of an ML estimator θ̂(y) are well understood
and follow from the application of a Central Limit Theorem (hereafter CLT) to the
derivatives of the logarithm of the likelihood function. In contrast MC estimation
applies to the likelihood function itself. Since integrals and logarithms do not com-
mute, it follows that θ̂ S(y) is an inconsistent estimator of θ for fixed S and comments
to that effect abound in the literature.

We propose instead to keep treating θ̂(y) as a statistical estimator of θ(y) and,

when θ̂(y) cannot be computed, to treat θ̂ S(y) as a numerical estimator of θ̂(y),
not of θ . Statistical inference then follows standard procedures. For example, we
already know that, under appropriate conditions,

√
NT
[
θ̂
(
y
)
−θ
] d→ N (0,V (θ)) , (13.55)

where NT is actual sample size and V (θ) is a covariance matrix to be estimated
by a matrix V̂ (y). When no analytical expressions are available for the likelihood
function, we can use MC simulation as a numerical device for computing approxi-
mations to θ̂(y) and V̂ (y). At this stage of the analysis, our sole problem is that of
assessing the numerical accuracy of these approximations which are to be treated
as functions of λ , given y.

For large S’s, we can apply standard techniques to obtain “asymptotic” MC sam-
pling distributions for θ̂ S(y)—here again y is kept fixed at its observed value. Under
conditions such as those found, e.g., in Geweke (1994), a CLT applies to L̂s(θ ; y)—
not to its logarithm—and to its derivatives. In particular,

√
S

[
∂ L̂S
(
θ ; y
)

∂θ
−

∂L
(
θ ; y
)

∂θ

]
d→ N

(
0,Ω

(
θ ; y
))

, (13.56)

where Ω(θ ; y) is a covariance matrix that can be estimated alongside with θ̂ S(y). It
follows that

√
S
[
θ̂ S

(
y
)
− θ̂
(
y
)] d→ N

(
0,P−1 (θ ; y

)
Ω
(
θ ; y
)

P−1 (θ ; y
)′)

(13.57)

with

P
(
θ ; y
)

= plim
S→∞

1
S

∂ 2L̂S
(
θ ; y
)

∂θ∂θ ′
. (13.58)
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Estimates of P(θ ; y) and Ω(θ ; y) can be obtained as byproducts of the simulation
runs.

In general, however, it is much easier to produce “finite sample” numerical co-
variance matrices. All that is required is to rerun the entire MC–ML algorithm under
different seeds for the λ ’s, producing thereby i.i.d. draws of θ̂ S(y) for a given y. Sim-
ilarly finite sample statistical covariance matrices can be obtained by simulation of
y for a given set of λ CRNs. (That is to say, the λ draws used for any particular y
and which, for reasons of numerical efficiency need to be conditional upon y, are to
be obtained by transformation of a fixed set u of canonical draws—see (13.39).)

In other words, once a MC simulation program has been produced to compute
simulated ML estimators for a specific problem, it is generally trivial to produce
separate estimates of numerical and statistical accuracy by embedding that program
into two distinct external simulation loops (one for λ (U) given y and the other for y
given U). Note that it is also possible to construct joint simulation of λ (U) and y to

produce a measure of the compound uncertainty of θ̂ S(y) as an estimate of θ .

13.6 EIS Application: Logit Panel with Unobserved
Heterogeneity

13.6.1 The Model

In the following, we discuss the application of EIS to the evaluation of the likelihood
of a panel logit model with unobserved heterogeneity, illustrating the full sequen-
tial implementation of the procedure. Other applications of EIS are, for example,
the estimation of various univariate and multivariate specifications of the stochastic
volatility model for financial returns by Liesenfeld and Richard (2003c), the estima-
tion of dynamic parameter-driven count-data models by Jung and Liesenfeld (2001)
and the estimation of stochastic autoregressive intensity processes for financial mar-
ket activities on a trade-by-trade basis by Bauwens and Hautsch (2003).

Consider the following model for the latent variable y∗ti for individual i and time
period t:

y∗ti = β ′zti + τi +λt + εti , i : 1→ N, t : 1→ T , (13.59)

where zti is a vector of explanatory variables and εti is an i.i.d. logistic variable
with zero mean and variance π2/3. τi represents individual random effects and is
assumed to be i.i.d. Gaussian with zero mean and variance σ2

τ . λt captures time
random effects and is assumed to follow a stationary autoregressive process

λt = ρ1λt−1 + · · ·+ρkλt−k +ηt , (13.60)

where ηt is an i.i.d. Gaussian variable with zero mean and variance σ2
η such that the

stationary mean of λt is zero and the stationary variance is σ2
λ = σ2

η/(1−ρ2
1 −·· ·−

ρ2
k ). It is assumed that the components εti, τi, and ηt are mutually independent. The
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observable variable is given by the dummy variable yti = I{y∗ti≥0} and the vector of
parameters to be estimated is θ = (β ′,στ ,ρ1, . . . ,ρk,σλ )′. Let λ = (λ1, . . . ,λT )′ and
τ = (τ1, . . . ,τN)′, then the likelihood function associated with y = (y11, . . . ,yT N)′

can be written as

L
(
θ ; y
)

=
∫

g
(
τ,λ ; θ ,y

)
p(τ,λ ; θ)dτdλ , (13.61)

with

g
(
τ,λ ; θ ,y

)
=

N

∏
i=1

T

∏
t=1

[
1

1+ exp{vti}

]1−yti
[

exp{vti}
1+ exp{vti}

]yti

(13.62)

p(τ,λ ; θ) ∝ σ−N
τ exp

[

− 1
2σ2

τ

N

∑
i=1

τ2
i

]

|Σλ |−1/2 (13.63)

·exp

[
−1

2
λ ′Σ−1

λ λ
]

vti = β ′zti + τi +λt , (13.64)

where Σλ denotes the stationary variance–covariance matrix of λ .
A natural MC estimator of this likelihood function for given values of θ and y is

given by

L̄S;p
(
θ ; y
)

=
1
S

S

∑
r=1

g(τ̃r, λ̃ r;θ ,y) , (13.65)

where {(τ̃r, λ̃ r); r : 1→ S} are i.i.d. draws from p(τ,λ ; θ). Since the natural sam-
pling density p directly obtained from the statistical formulation of the model, does
not incorporate critical information about the latent processes conveyed by the ob-
servations y, the natural estimator L̄S;p is highly inefficient. In fact, for all practical
purposes, a prohibitively large MC sample size would be required to obtain reason-
ably accurate estimates of L. Moreover, the implicit “posterior” density of (τ, λ )
is much tighter than its “prior” (the natural sampler), since the sample conveys sig-
nificant information on unobserved heterogeneity. Whence the “important” domain
of integration where g effectively contributes to the value of the integral is much
tighter than that implied by the natural sampler. Thus, the probability that a MC
draw (τ̃r, λ̃ r) hits exactly this region is almost zero and, hence, the natural MC esti-
mate L̄S;p is severely downward biased.

13.6.2 EIS Evaluation of the Likelihood

As discussed above (see formulae (13.34) to (13.37)), the global high–dimensional
EIS optimization problem (13.33) associated with L(θ ; y) has to be broken down
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into low-dimensional subproblems according to an appropriate factorization of the
integrand φ(τ,λ ; θ ,y) = g(τ,λ ; θ ,y)p(τ,λ ; θ). Since the empirical application
discussed below is based on a data set with N � T , the integrand will be factorized
into a product of N terms each of which depends upon a single τi and a remainder
(for T � N, one would instead factorize φ into T terms, each of which depends
upon a single λt)

L
(
θ ; y
)

=
∫

φ0 (λ ; θ)
N

∏
i=1

φi
(
τi,λ ; θ ,y

)
dτdλ , (13.66)

with

φi
(
τi,λ ; θ ,y

)
∝ σ−1

τ exp

[
− τ2

i

2σ2
τ

] T

∏
t=1

[
1

1+ exp{vti}

]1−yti

(13.67)

·
[

exp{vti}
1+ exp{vti}

]yti

,

φ0(λ ; θ) ∝ |Σλ |−1/2 exp

[
−1

2
λ ′Σ−1

λ λ
]

. (13.68)

According to this factorization, the global optimization problem associated with φ
can be factorized into subproblems each of which is related to a single component
φi (i : 0→ N) whose salient characteristics ought to be captured by a corresponding
efficient sampling density. Note that, even though the τi’s and λt’s are, according to
the assumptions of the statistical model, stochastically independent, φi introduces
interdependencies between these variables. In order to take this into account the
efficient sampler can be constructed as a sequence of sampling densities with an
unconditional density for λ and a sequence of conditional densities for τi | λ . The
resulting factorization of the efficient sampler is given by

m(τ,λ | α) = m0(λ ; α0)
N

∏
i=1

mi (τi | λ ; α i) , (13.69)

where m0 and {mi} are specified (as a natural choice) as parametric extensions of the
corresponding densities defining the natural sampler p, and α = (α ′0,α ′1, . . . ,α ′N)′

is a vector of auxiliary parameters. For any given value of α , the likelihood (13.66)
can be rewritten as

L
(
θ ; y
)

=
∫ φ0 (λ ; θ)

m0 (λ ; α0)

N

∏
i=1

[
φi
(
τi,λ ; θ ,y

)

mi (τi | λ ; α i)

]

m(τ,λ | α)dτdλ , (13.70)

and the corresponding MC estimate of the likelihood is given by

L̃S;m
(
θ ; y,α

)
= (13.71)

1
S

S

∑
r=1

φ0(λ̃ r (α0) ; θ)
m0(λ̃ r (α0) ; α0)

N

∏
i=1

φi(τ̃ir (αi) , λ̃ r (α0) ; θ ,y)

mi(τ̃ir (αi) | λ̃ r (α0) ; α i)
,
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where {[τ̃1r(α1), . . . , τ̃Nr(αN), λ̃ r(α0)]; r : 1→ S} are i.i.d. draws from the auxiliary
importance sampling density m(τ,λ |α).

As discussed above, the optimal sampling density mi requires constructing a
functional approximation ki(τi; λ ,α i) for φi(τi,λ ; θ ,y) with the requirement that its
integral with respect to τi (depending upon λ ) can be computed analytically. Specif-
ically, the function ki(τi; λ ,α i) serves as a density kernel for mi(τi|λ ; α i) which is
given by

mi (τi | λ ; α i) =
ki (τi; λ ,α i)

χi (λ ,α i)
, where χi (λ ,α i) =

∫
ki (τi; λ ,α i)dτi . (13.72)

Note that a good match between the φi’s alone and the ki’s would leave the sequence
of χi’s unaccounted for. But since the χi’s do not depend on the τi’s they can be
attached to the problem of matching φ0 by m0. Accordingly, the likelihood can be
rewritten as

L
(
θ ; y
)

=
∫ φ0 (λ ; θ)∏N

i=1 χi (λ ; ,α i)
m0 (λ ; α0)

N

∏
i=1

[
φi
(
τi,λ ; θ ,y

)

ki (τi; λ ; α i)

]

(13.73)

·m(τ,λ | α)dτdλ .

Taken all together, the sequential implementation of the global high–dimensional
EIS optimization problem requires solving a sequence of N + 1 low-dimensional
(weighted) LS problems of the form

α̂ i = argmin
α i

S

∑
r=1

{
lnφi(τ̃ir, λ̃ r; θ ,y)− ci (13.74)

− lnki(τ̃ir; λ̃ r,α i)
}2

gi(τ̃ir, λ̃ r; θ ,y)

for i : 1→ N and

α̂0 = argmin
α0

S

∑
r=1

{

ln[φ0(λ̃ r; θ)
N

∏
i=1

χi(λ̃ r, α̂ i)]− c0 (13.75)

− lnm0(λ̃ r; α0)

}2

,

where the weights {gi(τi,λ ; θ ,y); i : 1→ N} are given by the N terms of the outer
product of the function g(τ,λ ; θ ,y) given in (13.62) (the weight for the LS problem

(13.75) is by construction g0(·) = 1). {(τ̃1r, . . . , τ̃Nr, λ̃ r), r : 1→ S} are i.i.d. draws
from the natural sampler p, and the ci’s and c0 are unknown constants to be esti-
mated jointly with the α i’s and α0.

One iteration of the EIS optimization algorithm generally suffices to produce
a vastly improved importance sampler. Nevertheless, a small number of iterations
where the natural sampler p for the (weighted) LS problems is replaced by the
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previous stage importance sampler produces further efficiency gains. For such it-
erations to converge to a fixed value of auxiliary parameters α , which are expected
to produce the optimal sampler, it is necessary to use CRNs implying that all draws
for the τi’s and λ for any given sampling density are obtained from a fixed set of
standardized random numbers (see, Sect. (13.3.3)). Also, as discussed earlier, it is
generally preferable to set the LS weights in (13.74) equal to one in the first iteration.

Furthermore, observe that for the logit model with Gaussian random effects the
use of parametric extensions of p for the construction of the efficient sampler m
implies that the ki’s are Gaussian density kernels for the τi’s given λ , and m0 be
a multivariate Gaussian density for λ . Thus, the LS problems (13.74) and (13.75)
become linear in α i and α0. Moreover, note that in this case φ0 as well as the χi’s are
Gaussian kernels for λ allowing for a perfect fit in the LS problem (13.75) and for
an analytical construction of the efficient sampler m0 for λ . (For a full description
of the implementation of the efficient sampling procedure for the logit panel model,
see the Appendix.)

Finally, the MC likelihood estimate for any admissible value of θ and y based on
the optimal sampler is obtained by substituting {α i , i : 0→ N} by {α̂ i , i : 0→ N}
in equation (13.71). Based on the efficient sampling procedure, the ML parameter
estimates of θ are obtained by maximizing L̃S,m(θ ; y, α̂) with respect to θ , using
an iterative numerical optimizer. The convergence of such an optimizer requires the
use of CRNs in order to ensure that L̃S,m(θ ; y, α̂) is a smooth function in θ .

13.6.3 Empirical Application

We applied the EIS algorithm described above to the ML estimation of a panel
logit model for the union/non-union decision of young men. This application is
based upon the framework and dataset used in the study of Vella and Verbeek
(1998).

In particular, the reduced form model for the choice of individual i in period t of
a union or a non-union employment is assumed to be

y∗ti = β ′zti + γyt−1,i + τi +λt + εti , i : 1→ N, t : 2→ T, (13.76)

where the latent variable y∗ti represents the individual benefits of a union membership.
The observed union status is given by the dummy yti = I{y∗ti≥0}. As proposed by Vella

and Verbeek (1998) the union status is explained by individuals’ characteristics and a
set of industry dummies summarized in the vector zti and by the lagged union status
yt−1,i. The lagged union status is included to capture individuals’ propensity to remain
in the initially chosen status. For simplicity, we assume that the initial state y1,i is a
fixed non–stochastic constant for individual i. (A more sophisticated alternative to
handle this initial condition problem proposed by Heckman (1981) and followed by
Vella and Verbeek (1998) is to approximate the marginal probability of y1,i using all
information on the exogenous variables in period t = 1.) For the time random effect
λt we use a first–order autoregressive process.



444 R. Liesenfeld and J.-F. Richard

In contrast to this panel logit specification with random individual and random
dynamic time effects, Vella and Verbeek (1998) employ a corresponding probit
model with random individual and fixed time effects. Here a logit specification is
used just for computational convenience, but a substitution of the logistic distribu-
tion for εti by a normal distribution or any other suitable distribution requires only
minor modifications in the EIS algorithm. The use of random individual and fixed
time effects enables Vella and Verbeek (1998) to rely on standard integration pro-
cedures for one–dimensional integrals to evaluate the likelihood function, but their
procedure cannot be applied to evaluate the likelihood for random individual and
random dynamic time effects jointly. By applying EIS we can do the latter and com-
pare both approaches.

The data used to estimate the model are taken from the National Longitudinal
Survey (NLS Youth Sample) and contain observations on 545 males for the years
1980–1987 (for a detailed description of the data, see Vella and Verbeek (1998)).
The ML EIS estimates of the model based upon a simulation sample size S = 300
and three iterations of the efficient sampling algorithm are given in Table 13.1. Each
likelihood evaluation requires approximately 2 seconds on a Pentium 4, 3.06 GHz
personal computer for a code written in GAUSS. A full ML estimation requires ap-
proximately 122 BFGS iterations and takes of the order of 230 min. The parameter
estimates are numerically accurate, as indicated by the MC (numerical) standard er-
rors, which were computed from 20 ML estimations conducted under different sets
of CRNs.

The parameter estimates for the impact of the individuals’ characteristics and
the industry dummies on the probability of union membership are consistent with
those reported by Vella and Verbeek (1998). In particular, except for the variable
log(1 + experience), whose estimated impact is not significant, the signs of the
parameter estimates are all the same in both estimates. To make the values of
the parameter estimates from our logit specification comparable with those from
Vella and Verbeek’s probit specification, one can divide our parameter estimates by
(π2/3+ σ̂2

τ + σ̂2
λ )1/2. The result (not presented here) shows that the values are for all

parameters very close together. Furthermore, only for the variables health disabil-
ity, Lives in North East, and Entertainment our model estimate leads to different
conclusions with respect to statistical significance compared to Vella and Verbeek’s
estimate.

The estimate of the variance parameter of the random individual effects στ is
significantly greater than zero and its estimate of 1.77 indicates that 48.6% of to-
tal variation is explained by cross individual variation which is lower than the 57%
reported by Vella and Verbeek (1998). Furthermore, the estimate of the variance pa-
rameter σλ is 2.19 standard errors larger than zero and implies that 0.5% of the total
variance is explained by random time effects. Finally, observe that the autoregres-
sive coefficient is not significantly different from zero. Together with the fact that
lagged union status has a highly significantly positive impact on the probability of
union membership this indicates that the dynamics in the union/non-union decision
is dominated by an idiosyncratic component rather than by an aggregate common
component.
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Table 13.1 ML efficient sampling estimates of the panel logit model for union membership

Variable Estimate asy. std. error MC std. error

Constant −1.1912 1.2607 0.1373
Lagged union status 1.9685 0.1483 0.0565
log(1+experience) −0.2523 0.3075 0.0439
Years of schooling −0.0385 0.0595 0.0063
Married 0.3408 0.1430 0.0080
Black 1.2835 0.2722 0.0354
Hispanic 0.6267 0.2209 0.0280
Lives in rural area 0.0071 0.1901 0.0148
Has health disability −0.6448 0.1934 0.0123
Lives in North East 0.4194 0.2348 0.0229
Lives in south −0.0593 0.2164 0.0234
Lives in Northern Central 0.3996 0.2265 0.0159

Industry Dummies
Agricultural −1.4372 0.4450 0.0294
Mining −0.6509 0.4995 0.0355
Construction −1.1622 0.3498 0.0229
Manufacturing −0.5519 0.3044 0.0141
Transportation −0.2467 0.3547 0.0195
Trade −1.4442 0.3127 0.0169
Finance −3.0984 0.5065 0.0902
Business & repair service −2.0654 0.3880 0.0207
Personal service −2.0703 0.3936 0.0219
Entertainment −1.5235 0.4227 0.0324
Professional & related services −0.4990 0.3299 0.0149

Random Effects Parameters
στ 1.7735 0.1367 0.0777
σλ 0.1774 0.0809 0.0154
ρ1 −0.1124 0.5171 0.1690
Log-likelihood value −1303.71 2.1713

Note: Asymptotic standard errors are obtained from a numerical approximation to the Hessian. The
ML efficient sampling estimates are based on a MC sample sice of S = 300 and three iterations of
the construction of the efficient sampler.

13.7 Conclusion

Simulation based inference procedures have become a key component of the
micro– and macroeconometrician’s toolbox. This chapter was never meant to pro-
vide a systematic survey of the recent literature. As mentioned in the course of the
discussion, excellent surveys are available elsewhere (and often require more than
a single chapter!). See, in particular, Gourieroux and Monfort (1993, 1994). We
have attempted to selectively discuss issues which, based upon our own experience,
constitute the cornerstones of an efficient usage of MC simulation techniques, with
emphasis on efficient integration of random effects in panel models.
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Much of our discussion applies to classical and Bayesian procedures as well,
largely because we insist on interpreting MC integration as a numerical tech-
nique for constructing approximations to expression which depend upon (high-
dimensional) integrals for which no analytical expressions are available.

We find ourselves at odds with the recent (classical) literature on simulation
based estimation on two key counts.

Firstly, “natural” MC simulation is increasingly outdated and often utterly
impractical in applications requiring moderate to high–dimensional interdependent
integration (especially for “marginalized” likelihood evaluation). There exists an in-
creasing range of operational “acceleration” procedures, most prominently Efficient
Importance Sampling, which can produce considerable efficiency gains which gen-
erally far outweighs moderate increases in the cost of computations for any given
number of draws. Yet acceleration procedures are largely ignored by the classical
literature.

Secondly, one ought to draw a clear distinction between the statistical properties
of an estimator and the numerical accuracy of its simulated counterpart. Unsurpris-
ingly, the implementation of that key distinction greatly simplifies the conceptual
and practical analysis of simulation based estimators.
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13.8 Appendix: Implementation of EIS for the Logit Panel Model

Implementation of the efficient sampling procedure for the likelihood evaluation for
the panel logit model (13.59)–(13.60) starts with the selection of the class of density
kernels ki for the auxiliary samplers mi capable of approximating φi as defined in
(13.68). Since the natural sampler for τi is a constituent component of φi, a natural
choice for mi is, as mentioned above, a parametric extension of the natural sampler.
In our case, this leads to a Gaussian density kernel ki for τi | λ . In particular, the
following parametrization is used:

ki (τi; λ ,α i) = exp

{
−1

2

(
b′ivi + v′iCivi

)
− τ2

i

2σ2
τ

}
, (13.77)

where
bi = (b1i, . . . ,bTi)

′ , Ci = diag(ci) , ci = (c1i, . . . ,cTi)
′ (13.78)

vi = λ + τiι +Ziβ , with ι = (1, . . . ,1)′ , Zi =
(
z1i, . . . ,zTi

)′
, (13.79)

and the auxiliary parameters are α i = (b′i,c
′
i)
′. Note that under this parametrization

of ki the factor exp{−τ2
i /(2σ2

τ )} cancels out in the LS problems (13.74). In order
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to derive the conditional mean and variance of the Gaussian sampling density mi, it
is useful to rewrite ki as follows:

ki (τi; λ ,α i) = exp

{
−1

2

[(
1

σ2
τ

+ ι ′Ciι
)

τ2
i +
(
b′iι +2ι ′Ci�i

)
τi +b′i�i + �′iCi�i

]}
,

(13.80)

where �i = λ + Ziβ . Accordingly, the conditional mean and variance of τi|λ on mi

are obtained as

μi =−σ2
i

(
1
2

b′iι + ι ′Ci�i

)
and σ2

i =
σ2

τ
1+ ι ′Ciισ2

τ
. (13.81)

Integrating ki with respect to τi leads to the following form of the integrating con-
stant:

χi (λ ,α i) ∝ exp

{
−1

2

[
b′i�i + �′iCi�i−

μ2
i

σ2
i

]}
. (13.82)

which itself is a Gaussian density kernel for λ . Based on these functional forms, the
computation of an efficient MC estimate of the likelihood for the panel logit model
requires the following steps:

Step (1): Use the natural sampling density p to draw S independent realizations
of the latent processes (τ̃r, λ̃ r).

Step (2): Use these random draws to solve the sequence of N weighted (un-
weighted for the first iteration of importance sampling construction) LS problems
defined in (13.74). The ith weighted LS problem is characterized by the following
linear auxiliary regression:

T

∑
t=1

[ytiṽtir− ln(1+ exp{ṽtir})] = constant+(−b1i/2) ṽ1ir + · · ·+(−bTi/2) ṽTir

(13.83)
+(−c1i/2) ṽ2

1ir + · · ·+(−cTi/2) ṽ2
Tir +ξir ,

with weights:

gi(τ̃ir, λ̃ r; θ ,y) =
T

∏
t=1

[
1

1+ exp{ṽ1ir}

]1−yti
[

exp{ṽ1ir}
1+ exp{ṽ1ir}

]yti

, (13.84)

where ξir denotes the regression error term and {ṽtir; r : 1→ S} are the simulated
draws of vti.

Step (3): The function to be approximated by the Gaussian sampler m0 is given
by:

φ0 (λ ; θ)
N

∏
i=1

χi (λ i,α i) ∝ exp

{

−1
2

(

λ ′Σ−1
λ λ +

N

∑
i=1

[
b′i�i + �′iCi�i−

μ2
i

σ2
i

])}

,

(13.85)
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which has as mentioned above the form of a Gaussian kernel for λ . Accordingly,
the mean and variance-covariance matrix of λ on m0 are obtained as

μ
0

= Σ0

N

∑
i=1

[
σ2

i ci

(
c′iZiβ +

1
2

ι ′bi

)
− 1

2
bi−CiZiβ

]
(13.86)

Σ0 =

[

Σ−1
λ +

N

∑
i=1

(
Ci−σ2

i cic
′
i

)
]−1

. (13.87)

Use this sampling density m0 to draw S trajectories {λ̃ r(α̂0); r : 1 → S}. Condi-
tional on these trajectories, draw from the conditional densities {mi} characterized
by the moments (13.81) the vectors {τ̃r(α̂1, . . . , α̂N); r : 1→ S}. Based on the draws
{(τ̃r(α̂1, . . . , α̂N); λ̃ r(α̂0))} the efficient sampling estimate of the likelihood is cal-
culated according to (13.71).
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Chapter 14
Semi-parametric and Non-parametric Methods
in Panel Data Models

Chunrong Ai and Qi Li

14.1 Introduction

Common approach for modeling panel data {(yit ,xit), i = 1,2, . . . ,N; t = 1,2, . . . ,T}
involves postulating that the data generating process depends on a time invariant in-
dividual specific effect αi and some model parameters, and satisfies some statistical
restrictions. The individual effect αi is not observed and is assumed to be randomly
distributed across individuals. The model parameter may include finite dimensional
as well as infinite dimensional parameter. Estimation of the parameter of interest de-
pends on the statistical restrictions imposed on the data generating process and on
the relative values of N and T . Since many different restrictions can be imposed on
the data generating process and different restrictions often lead to different estima-
tion methods, the econometric literature on estimation of panel data models is large
and is scattered around various academic outlets. The aim of this handbook is to
provide a thorough survey of the vast literature on estimation of panel data models.
Within the general objective of the handbook, this chapter attempts to survey recent
development on estimation methods of a particular class of models: semiparamet-
ric and nonparametric panel data models. For discussions on parametric panel data
models, see Baltagi (2005) and Hsiao (2003).

A model is semiparametric or nonparametric if the model parameter includes
the infinite dimensional parameter. By this definition, the classical linear panel data
model

yit = x′itθo +αi +uit , i = 1,2, . . . ,N; t = 1,2, . . . ,T , (14.1)
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is a semiparametric model if the joint distribution of (xit ,αi,uit) is not parameter-
ized. In fact, by this definition, almost all panel data models that have been studied
in the literature, including those discussed in other chapters of this handbook, can
be classified as the semiparametric models. Thus, surveying the literature on this
general class of semiparametric and nonparametric models will duplicate the discus-
sions in the other chapters of the handbook. Our focus here is instead on a smaller
class of semiparametric and nonparametric panel data models that are not covered
by the other chapters. Specifically, we will survey the literature on: (1) partly lin-
ear or fully nonparametric panel data models and (2) panel data discrete choice and
censored regression models with unknown error distribution. We note that Arellano
and Honore (2001) reviewed the panel data discrete choice and censored regression
models. Although we will survey those same models, we will include more recent
results as well as various extensions to those models.

Throughout the chapter, we will use i = 1,2, . . . ,N to denote an individual and
t = 1,2, . . . ,T to denote time. T is small relative to N. We will restrict our discussion
to the balanced panel (i.e., T does not vary with i ) for the purpose of simplifying ex-
position. The methods we review here are easily applicable to the unbalanced panel.
We will use 1{A} to denote the indicator function that takes the value 1 if event A
occurs and the value 0 otherwise. sgn(·) is the sign function that takes the value 1
if ·> 0, the value 0 if · is zero, and the value −1 if · is negative. For each i, denote
xi = (xi1,xi2, . . . ,xiT ), yi = (yi1, . . . ,yiT ), and ui = (ui1, . . . ,uiT ). Finally, variables
with superscript ∗ denote the latent variables that are not always observed directly.

14.2 Linear Panel Data Model

14.2.1 Additive Effect

We begin with the classical linear panel data model given by (14.1), where the
individual effect enters the model additively and xit does not include the time-
invariant regressors, wi. The linear and the additive structure of the model allows
us to remove the individual effect through mean-differencing:

yit −
1
T

T

∑
s=1

yis = (xit −
1
T

T

∑
s=1

xis)′θo +uit −
1
T

T

∑
s=1

uis .

A common assumption for this model is that the explanatory variables satisfy the
following strict exogeneity condition:

Assumption 1 (Strictly exogenous regressors). E (ui|xi) = 0.
Under this condition, the coefficient on the time-variant regressors, θo, can be esti-
mated by the fixed effects (within) estimator given by

θ̂ = argmin
θ

N

∑
i=1

T

∑
t=1

(

yit −
1
T

T

∑
s=1

yis− (xit −
1
T

T

∑
s=1

xis)′θ

)2

.
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The fixed effects estimator θ̂ is consistent and asymptotically normally distributed
under some standard regularity conditions. The fixed effects estimator θ̂ is
inconsistent, however, if the model is misspecified. The model is misspecified, for
example, if the deterministic part x′itθo is incorrectly specified or if Assumption 1
is not satisfied. To avoid potential specifications, one can use more flexible spec-
ifications. For instance, Robinson’s (1988) partly linear function x′1itθo+ ho(x2it)
is more flexible than the linear function x′itθo; the additive nonparametric function
h1o(x1it)+ h2o(x2it) is more flexible than the partly linear function; and the nonpara-
metric function ho(xit) is the most flexible specification. All of these specifications
can be nested in the following general index model:

yit = v0(xit ,θo)+
m

∑
j=1

h j0(v j(xit ,θo))+αi +uit (14.2)

where v j(·) for j = 0,1, . . . ,m are known functions and h j0(·) = 0 for j = 1,2, . . . ,m
are unknown functions. The parameter of interest now includes the finite dimen-
sional parameter θo and the infinite dimensional parameter

ho(·) = (h1o(·), · · ·,hmo(·)) .

Identification of model (14.2) may require some restrictions on (θo,ho(·)). No-
tice that it is impossible to distinguish (hso(·),αi) from (hso(·)−μ ,αi + μ) for any
constant μ and for any s. Therefore, identification of the model parameter requires
some location restrictions such as h jo(0) = 0 for all j. Identification of the model
parameter may also require scaling restrictions when the function v j(x,θ) for some
j > 0 is homogenous of degree one in θ . To illustrate, consider the simpler model

yit = ho(x′itθo)+αi +uit .

Evidently we cannot distinguish (θo,ho(·)) from (θ̃o, h̃o(·)), with h̃o(·) = ho(·/μ)
and θ̃o = θoμ , for any nonzero constant μ . On the other hand, a scaling restriction
such as θ ′oθo = 1 or θo = (1,θ2o, . . . ,θko)′ if the first coefficient in θo is nonzero
distinguishes (θo,ho(·)) from (θ̃o, h̃o(·)) and hence should be imposed for identifi-
cation purpose. Finally, identification of the model parameter may require exclusion
restrictions when v j(x,θ) and vs(x,θ) for some s �= j are homogenous of degree one
in the regressors. To see this, consider

yit = h1o(x1it)+h2o(x2it)+αi +uit .

Clearly (h1o,h2o) is not distinguishable from (h1o + g(x3it),h2o− g(x3it)) for any
function g if x1it and x2it contain the common regressor x3it . In this case, an exclusive
restriction such as that x1it and x2it are mutually exclusive distinguishes (h1o,h2o)
from (h1o +g(x3it),h2o−g(x3it)) and hence must be imposed.

Suppose that the parameter of interest is identified up to some location restric-
tions. Under Assumption 1, a natural approach for estimating (θo,ho) would be
to apply the fixed effects estimation. The problem with this approach, however, is
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that ho is infinite dimensional and cannot be estimated from the finite data points.
One can use various nonparametric estimation techniques to estimate the unknown
function ho such as kernel, nearest neighbor and series method. Model (14.2) has an
additive structure. It is known that the nonparametric series approach is the most
convenient to estimate restricted nonparametric regression models such as addi-
tive, multiplicative and monotonic restrictions. Therefore, in this chapter we will
mainly focus on the series estimation method. For using kernel marginal integration
method to estimate additive models, see Linton and Nielsen (1995), Newey (1994),
and Tjostheim and Auestad (1994).

One can replace the unknown functions with finite dimensional series approx-
imations and then apply the fixed effects estimation to the model as if the finite
dimensional approximations are the correct specifications. Specifically, for each j,
let p j(·) = (p j1(·),q j2(·), . . . , p jk j(·))′ denote known basis functions that approxi-
mate h jo(·) in the sense that, for some constant vector π j of dimension k j×1 and a
scalar constant τ j > 0,

h jo(·) = p j(·)′π j +O(k−τ j
j ) = hk j j(·)+O(k−τ j

j ) .

The simplest series base function is the power series, {1,x,x2, . . .}. However, esti-
mation based on power series can be sensitive to outliers and, for this reason, the
power series is not typically used for nonparametric series estimation. Instead, the
piecewise local polynomial spline is the most commonly used base function in non-
parametric series estimation. An rth order univariate B-spline base function is given
by (see Chui (1992, Chap. 4))

Br(x|t0, . . . , tr) =
1

(r−1)!

r

∑
j=0

(−1) j
(

r
j

)
[max(0,x− t j)]

r−1 , (14.3)

where t0, . . . , tr are the evenly spaced design knots on the support of X , and a is
the distance between knots. When r = 2 (14.3) gives a piecewise linear spline, and
when r = 4, it gives piece-wise cubic splines (i.e., third order polynomials).

In finite sample applications, the approximating function hk j j(·) is obviously
finite dimensional, depending on k j unknown coefficients π j. If each h jo(·) is re-
placed by hk j j(·), the total number of unknown coefficients in the approximating
functions is k = k1 + . . . + km. Let dθ denote the dimension of θ and denote π =
(π ′1, . . . ,π ′m)′. Clearly, in order to estimate (θo,π), the total number of coefficients
to be estimated must be smaller than the sample size: k + dθ < NT . Moreover, the
approximating functions must satisfy the location restriction hk j j(0) = p j(0)′π j = 0.
Notice that it is always possible to choose p j(·) so that p j(0) = 0. Without loss of
generality, we will assume that the basis functions p j(·) satisfy p j(0) = 0. Hence,
there is no need to impose restriction on π j. Now treat each approximation p j(·)′π j

as if it is the correct specification of h jo(·). The fixed effects estimator (θo,π) is
given by

(
θ̂
π̂

)
= arg min

θ ,π j ,1≤ j≤m

N

∑
i=1

T

∑
t=1

[
yit − v0(xit ,θ)−∑m

j=1 p j(v j(xit ,θ))′π j−
1
T ∑T

s=1(yis− v0(xis,θ)−∑m
j=1 p j(v j(xis,θ))′π j)

]2

. (14.4)
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The unknown functions h jo(·) for j = 1, . . . ,m are estimated by ĥ j(·) = p j(·)′π̂ j.
Obviously, in order for the fixed effects estimator to be consistent, the approxima-
tion errors must shrink to zero as sample size goes to infinity. This can happen if

we require each k j goes to infinity as N → ∞ but at a slower rate so that
k j
N → 0.

Shen (1997), Newey (1997) and Chen and Shen (1998) show that both θ̂ and ĥ j(·),
j = 1,2, . . . ,m are consistent. They also show that, if k → ∞ at certain rate, the
estimator θ̂ is root-N consistent and asymptotically normally distributed, and any
smooth functional of ĥ j(·) for j = 1,2, . . . ,m, is asymptotically normally distributed.
Moreover, Shen (1997) shows that the usual covariance matrix of the fixed effects
estimator θ̂ is a consistent estimator of the asymptotic variance-covariance of θ̂ .
Denote δ = (θ ′,π ′)′ with δ̂ = (θ̂ ′, π̂ ′)′ and denote

l1(yi,xi,δ) =
T

∑
t=1

[
yit − v0(xit ,θ)−∑m

j=1 p j(v j(xit ,θ))′π j−
1
T ∑T

s=1(yis− v0(xis,θ)−∑m
j=1 p j(v j(xis,θ))′π j)

]2

. (14.5)

Denote

V̂ =

(
N

∑
i=1

∂ 2l1(yi,xi, δ̂)
∂δ∂δ′

)−1

×
(

N

∑
i=1

∂ l1(yi,xi, δ̂)
∂δ

∂ l1(yi,xi, δ̂)
∂δ′

)

×
(

N

∑
i=1

∂ 2l1(yi,xi, δ̂)
∂δ∂δ′

)−1

=

(
V̂θ V̂θπ

V̂πθ V̂π

)

.

Then, V̂ is the covariance matrix of the fixed effects estimator δ̂ if hk j j(·) is the

correct specification of h jo(·) for fixed value of k. V̂ is not the covariance matrix of

δ̂ when k→ ∞ because P;(·)′π̂; is not a root-N consistent estimator for h jo(·). But
the upper-left block V̂θ is a consistent estimator for the covariance matrix of θ̂ .

The fixed effects estimator δ̂ can be used for testing model specifications. For
example, applying the idea of Hong and White (1995), one can develop a consis-
tent test for the more restrictive model (14.1) against the general index model (14.2).
Specifically, let θ̃ denote the fixed effects estimator for model (14.1). The test statis-
tic is constructed by comparing the fitted values under both models:

λ̂ =
N

∑
i=1

T

∑
t=1

[

yit − x′it θ̃ −
1
T

T

∑
s=1

(yis− x′isθ̃)

]

∗
⎡

⎣
v0(xit , θ̂)+∑m

j=1 p j(v j(xit , θ̂))′π̂ j− x′it θ̃

− 1
T ∑T

s=1(v0(xis, θ̂)+∑m
j=1 p j(v j(xis, θ̂))′π̂ j− x′it θ̃)

⎤

⎦ .
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The asymptotic distribution of λ̂ can be established with techniques similar to those
developed in Hong and White (1995), Fan and Li (1996), and Li and Wang (1998).
Applying the same idea, one can also develop a consistent test for the partly
specified model (14.2) against the fully nonparametric panel data model:

yit = g(xit)+αi +uit , (14.6)

where g(·) is an unknown function satisfying g(0) = 0. Suppose that g(·) is approx-
imated by the basis functions q(xit) = (q1(xit), . . . .,qk(xit))′ in the sense that there
exist k×1 vector β and a constant τ > 0 such that

g(xit) = q(xit)′β +O(k−τ) .

Suppose that q(0) = 0 is satisfied, then one can estimate β by the following fixed
effects estimator:

β̃ = arg min
q(0)′β

= 0
N

∑
i=1

T

∑
t=1

[

yit −q(xit)′β −
1
T

T

∑
s=1

(yis−q(xis)′β )

]2

.

g(xit) is estimated by g̃(xit) = q(xit)′β̃ . The test statistic in this case is

λ̂ =
N

∑
i=1

T

∑
t=1

⎡

⎣
yit − v0(xit , θ̂)−∑m

j=1 p j(v j(xit , θ̂))′π̂ j−
1
T ∑T

s=1(yis− v0(xis, θ̂)−∑m
j=1 p j(v j(xis, θ̂))′π̂ j)

⎤

⎦∗

⎡

⎣
q(xit)′β̃ − v0(xit , θ̂)−∑m

j=1 p j(v j(xit , θ̂))′π̂ j−
1
T ∑T

s=1(q(xis)′β̃ − v0(xis, θ̂)−∑m
j=1 p j(v j(xis, θ̂))′π̂ j)

⎤

⎦ .

Again, the asymptotic distribution of the test statistic can be established with the
techniques developed in Hong and White (1995).

One drawback of the fixed effects estimation is that it cannot estimate the effect
of time-invariant regressors. In some applications, researchers may want to estimate
the effect of the time-invariant regressors. To do so, researchers may impose the
restrictions E (αi|xi,wi) = w′iφo and E (ui|xi,wi,αi) = 0, and then apply the random
effects estimation. The random effects estimator is consistent if both restrictions
are satisfied. The random effects estimator is inconsistent, however, if either or both
restrictions are not satisfied; particularly if E (αi|xi,wi) = w′iφo is not satisfied. Thus,
to avoid potential specification errors like this, it is better to leave the conditional
mean E (αi|xi,wi) = hm+1,o(xi,wi) unspecified and consider the following model

yit = v0(xit ,θo)+
m

∑
j=1

h jo(v j(xit ,θo))+hm+1,o(xi,wi)+(uit + εi) (14.7)

where εi = αi − hm+1,o(xi,wi). The unknown function hm+1,o(xi,wi) can be esti-
mated exactly the same way as other unknown functions. Let
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pm+1(x,w) = (pm+1,1(x,w), pm+1,2(x,w), . . . , pm+1,ko(x,w))′

denote known basis functions that for some km+1×1 vector πm+1 and some constant
τm+1 > 0 satisfying

hm+1,o(x,w) = pm+1(x,w)′πm+1 +O(k−τm+1
m+1 ) .

Suppose that the following stronger condition is satisfied:

Assumption 1’ (Strictly exogenous regressors). E (ui|xi,wi) = 0.
Replace the unknown functions with their approximations. Under Assumption 1’,
the random effects estimator is given by

(θ̃ , π̃, π̃m+1) = arg min
θ ,π j ,1≤ j≤m+1

N

∑
i=1

T

∑
t=1

[
yit − v0(xit ,θ)−

∑m
j=1 p j(v j(xit ,θ))′π j− pm+1(xi,wi)′πm+1

]2

.

The unknown functions h j(·) for j = 1, . . . ,m+1 are estimated by h̃ j(·) = p j(·)′π̃ j.
Again, under conditions similar to those of Shen (1997) and Newey (1997), it can
be shown that θ̃ is root-N consistent and asymptotically normally distributed, and
any smooth functional of h̃ j(·) for j = 1, . . . ,m+1, is asymptotically normally dis-
tributed. The asymptotic variance-covariance of θ̃ can be estimated consistently
by the usual random effects covariance matrix of θ̃ . Denote γ = (θ ′,π ′,π ′m+1)

′,

γ̃ = (θ̃ ′, π̃ ′, π̃ ′m+1)
′ and denote

l2(yi,xi,γ) =
T

∑
t=1

[

yit − v0(xit ,θ)−
m

∑
j=1

p j(v j(xit ,θ))′π j− pm+1(xi,wi)′πm+1

]2

.

Denote

Ṽ =

(
N

∑
i=1

∂ 2l2(yi,xi, γ̃ )
∂γ∂γ ′

)−1

×
(

N

∑
i=1

∂ l2(yi,xi, γ̃ )
∂γ

∂ l2(yi,xi, γ̃ )
∂γ ′

)

×
(

N

∑
i=1

∂ 2l2(yi,xi, γ̃ )
∂γ∂γ ′

)−1

=

(
Ṽθ Ṽθ1

Ṽ1θ Ṽ11

)

.

Then, Ṽ is the usual random effects covariance matrix of γ̃ and the upper-left block
Ṽθ is the covariance matrix of θ̃ .

Notice that h̃m+1(xi,wi) estimates the part of the individual effect that is corre-
lated with the explanatory variables. It can be used for testing specification such as
E (αi|xi,wi) = w′iφo. In principal, a test statistic based on

N

∑
i=1

(
h̃m+1(xi,wi)−w′iφ̃

)2
,
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where φ̃ is the random effects estimator of the coefficients on the time-invariant
regressors, can be constructed with techniques similar to those developed by Hong
and White (1995). The estimator h̃m+1(xi,wi), however, cannot be used for testing
the presence of individual effect. A kernel-based test has been proposed by Li and
Wang (1998) and implemented by Kniesner and Li (2002).

One potential criticism of model (14.7) is that the unknown function hm+1

depends on too many regressors. Unless researchers have a very large cross sec-
tional sample, practically this model cannot be estimated with high precision. An
alternative approach is to write E (αi|wi) = hoo(wi). With ηi = αi− hoo(wi) , the
model now becomes

yit = v0(xit ,θo)+
m

∑
j=1

h j(v j(xit ,θo))+hoo(wi)+(uit +ηi) . (14.8)

Now let po(w) = (po1(w), po2(w), . . . , poko(w))′ denote known basis functions that
for some ko×1 vector πo1 and some scalar τo > 0 satisfies

hoo(w) = po(w)′πo +O(k−τo
o ) .

Recall that l1(yi,xi,δ) is given in (14.5). Denote

l3(yi,xi,δ,πo) =
T

∑
t=1

[

yit − v0(xit ,θ)−
m

∑
j=1

p j(v j(xit ,θ))′π j− po1(wi)′πo

]2

.

The parameter θ and the unknown coefficient vector πo can be estimated jointly by
solving the following equations:

N

∑
i=1

∂ l1(yi,xi,θ ,π)
∂δ

= 0 ,

N

∑
i=1

∂ l3(yi,xi,θ ,π,πo)
∂πo

= 0 .

In other words, (θ ,π,πo) is the moment estimator solving the above moment con-
ditions. The unknown functions are estimated by h j(·) = p j(·)′π j, j = 0,1, . . . ,m.
Under some sufficient conditions, it can be shown that the estimator θ and h j(·)
are consistent and that θ is asymptotically normally distributed and its asymptotic
variance–covariance can be estimated consistently by the usual covaraince matrix
of θ , a corresponding submatrix of the usual covariance matrix of the moment esti-
mator (θ ,π,πo).

The strict exogeneity condition rules out endogenous regressors and predeter-
mined regressors such as the lagged dependent variables. This condition, however,
can be relaxed if instrumental variables are available. To demonstrate, consider
model (14.2) again. Now eliminating the individual effect by simple
time-differencing, we obtain
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yit − yis = v0(xit ,θo)+
m

∑
j=1

h jo(v j(xit ,θo))

−[v0(xis,θo)+
m

∑
j=1

h jo(v j(xis,θo))]+uit −uis .

Suppose that there exists the variables zits that satisfy

Assumption 2 (instruments). For all i and all s �= t, E (uit −uis|zits) = 0.
Suppose that Assumption 2 uniquely identifies the parameter of interest. Again,
we will replace the unknown functions with their approximations. In addition, we
will approximate the conditional expectation by finite number of unconditional ex-
pectations. Specifically, let rst(zits) = (rst1(zits), . . . ,rstkst (zits))′ denote known basis
functions that approximate any measurable and square integrable function of zits.
With h = (h1(·), . . . ,hm(·)), define

ρit(θ ,h) = yit − v0(xit ,θ)−
m

∑
j=1

h j(v j(xit ,θ)) .

Assumption 2 implies

E{[ρit(θo,ho)−ρis(θo,ho)]× rst(zits)}= 0 for any s �= t .

The above unconditional moment conditions do not uniquely identify the parame-
ter (θo,ho) because ho is infinite dimensional. But, when these unknown functions
are replaced by their approximations, we will assume that the following moment
conditions

E{(ρit(θo,hk)−ρis(θo,hk))× rst(zits)}= 0 for any s �= t ,

with hk = (p1(·)′π1, . . . , pm(·)′πm), uniquely identifies (θo,π). This identification
requires that the number of moment conditions ∑s �=t kst is larger than the num-
ber of coefficients to be estimated, k + dθ . Let R1i(θ ,π) denote the column vector
formed by

(ρit(θo,hk)−ρis(θo,hk))× rst(zits) for all s �= t .

Then, E{R1i(θ ,π)} = 0. The Generalized Method of Moments (hereafter GMM)
estimator based on these moment restrictions is given by

(θ̂ IV , π̂ IV ) = argmin
θ ,π

(
N

∑
i=1

R1i(θ ,π)

)′( N

∑
i=1

R1i(θ ,π)

)

.

The unknown functions are estimated by ĥIV
j = p j(·)′π̂ IV

j for all j. Ai and Chen

(2003, 2005) show that θ̂ IV is root-N consistent and asymptotically normally
distributed and its asymptotic variance-covariance matrix is estimated consistently
by the usual GMM covariance matrix of θ̂ IV . Recall that δ = (θ ′,π ′)′. Denote
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V̂ IV =

[(
N

∑
i=1

∂R1i(θ̂ IV , π̂ IV )
∂δ′

)′( N

∑
i=1

∂R1i(θ̂ IV , π̂ IV )
∂δ′

)]−1

×
(

N

∑
i=1

R1i(θ̂ IV , π̂ IV )×R1i(θ̂ IV , π̂ IV )′
)

×
[(

N

∑
i=1

∂R1i(θ̂ IV , π̂ IV )
∂δ′

)′( N

∑
i=1

∂R1i(θ̂ IV , π̂ IV )
∂δ′

)]−1

=

(
V̂ IV

θ V̂ IV
θπ

V̂ IV
πθ V̂ IV

π

)

.

Then, V̂ IV is the usual covariance matrix of the GMM estimator δ̂. The upper-left
block V̂ IV

θ is the covariance matrix of θ̂ IV .
For model (1.7), we assume that the instrumental variables zit satisfies the fol-

lowing assumption.

Assumption 3 (instruments). For all i and t, E (εi +uit |zit) = 0.
Let rt(zit) = (rt1(zit), . . . ,rtkt (zit))′ denote known basis functions that approximate
any measurable and square integrable function. Suppose that the number of mo-
ment conditions ∑t kt is larger than the number of coefficients k + dθ + km+1. Let
R2i(θ ,π,πm+1) denote the column vector formed by
(

yit − v0(xit ,θo)−
m

∑
j=1

p j(v j(xit ,θo))′π j− pm+1(xi,wi)′πm+1

)

× rt(zit) for all t .

Then, E{R2i(θ ,π)} = 0. The GMM estimator based on these moment restrictions
is given by

(θ̃ IV , π̃ IV , π̃ IV
m+1) = arg min

θ ,π,πm+1

(
N

∑
i=1

R2i(θ ,π,πm+1)

)′( N

∑
i=1

R2i(θ ,π,πm+1)

)

.

The unknown functions are estimated by h̃IV
j = p j(·)′π̃ IV

j for all j. Again, Ai and

Chen (2003, 2005) show that θ̃ IV is root-N consistent and asymptotically normally
distributed and its asymptotic variance–covariance is estimated consistently by the
usual GMM covariance matrix of θ̃ IV . Similar estimators also can be constructed
for model (14.8). See Das (2003) for further extensions.

14.2.2 Multiplicative Effect

The additive structure of the model above, though common in empirical work, is
restrictive in the sense that the model assumes that the marginal effects of the
explanatory variables are identical for all individuals with the same explanatory
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variable values. This restriction can be relaxed with a multiplicative individual
effect such as in the following model

yit = v0(xit ,θo)+
m−1

∑
j=1

h j(v j(xit ,θo))+αihm(vm(xit ,θo))+uit .

In this model, the marginal effects of the explanatory variables vary with individu-
als via the unknown function hm(·). We now illustrate how the estimators discussed
above are extended to models of this sort.

For identification purpose, the function hm(·) is assumed to satisfy the normal-
ization: hm(0) = 1. Because the individual effect is multiplicative, simple time-
differencing will not eliminate the individual effect. However, it is still possible to
solve for the individual effect from one period (t) and then substitute it into another
period (s < t) to obtain:

{

yit − v0(xit ,θo)−
m−1

∑
j=1

h j(v j(xit ,θo))−uit

}

hm(vm(xis,θo))

=

{

yis− v0(xis,θo)−
m−1

∑
j=1

h j(v j(xis,θo))−uis

}

hm(vm(xit ,θo)) .

Define

ρits(θ ,h) =

[

yit − v0(xit ,θ)−
m−1

∑
j=1

h j(v j(xit ,θ))

]

hm(vm(xis,θ)) .

Suppose that

E{ρits(θo,h0)−ρist(θo,ho)|zits}= 0 for all s �= t .

Let R3i(θ ,π) denote the column vector formed by

(ρits(θo,hk)−ρist(θo,hk))× rst(zits) for all s �= t .

Then, E{R3i(θ ,π)} = 0. The GMM estimator based on these moment restrictions
is given by

(θ̂ IV , π̂ IV ) = argmin
θ ,π

(
N

∑
i=1

R3i(θ ,π)

)′( N

∑
i=1

R3i(θ ,π)

)

.

The unknown functions are estimated by ĥIV
j = p j(·)′π̂ IV

j for all j. It follows from

Ai and Chen (2003, 2005) that θ̂ IV is root-N consistent and asymptotically normally
distributed and its asymptotic variance–covariance is estimated consistently by the
usual GMM covariance matrix of θ̂ IV .

The marginal effect of the time-invariant regressors can be estimated by simple
least squares. Substituting for the individual effect αi = ho(xi,wi)+ εi yields:
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yit = v0(xit ,θo)+
m−1

∑
j=1

h j(v j(xit ,θo))+ho(xi,wi)hm(vm(xit ,θo))

+εihm(vm(xit ,θo))+uit .

Suppose that E{uit |xi,wi} = 0 is satisfied. Then the coefficients θo and π =
(π ′0, . . . ,π ′m)′ can be estimated by the following nonlinear least squares:

(θ̂ , π̂) = argmin
N

∑
i=1

∑
t<s

{
yit − v0(xit ,θ)−∑m−1

j=1 q j(v j(xit ,θ))′π j

−[qm(vm(xis,θ))′πm]po(xi,wi)′πo

}2

.

The asymptotic properties of the estimator can be derived by applying the results of
Shen (1997).

14.3 Nonlinear Panel Data Model

A key structure of the linear panel data model, which is exploited by all of the
estimators reviewed above, is that the observed dependent variable is a linear func-
tion of the individual effect. This linear relationship allows us to eliminate the in-
dividual effect through simple time-differencing. It also allows us to estimate the
conditional mean E (αi|xi,wi) function under the condition that (xi,wi) is mean-
independent of (εi,uit) (εi = αi − E(αi|xi,wi)). If the observed dependent vari-
able is a nonlinear function of the individual effect, the individual effect cannot
be eliminated through simple time-differencing and E (αi|xi,wi) cannot be esti-
mated consistently under the mean-independence condition. Panel data limited and
qualitative dependent variable models are important examples where the observed
dependent variable is a nonlinear function of the individual effect. In these mod-
els, some “nonlinear-differencing” techniques are required to remove the individual
effect. The aim of the rest of this chapter is to review the “nonlinear-differencing”
techniques proposed in the literature. We first review the panel data censored regres-
sion model, also known as Type I Tobit model, then the panel data discrete choice
model, and lastly the panel data sample selection model, also known as Type II Tobit
model.

14.3.1 Censored Regression Model

We begin with the panel data censored regression model, which is given by

y∗it = x′itθo +αi +uit (14.9)

yit = max{0,y∗it}, i = 1,2, . . . ,N; t = 1,2, . . . ,T
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In this model, the latent dependent variable y∗it is linear in the individual effect αi,
but the observed dependent variable yit is nonlinear in αi, with the nonlinearity aris-
ing from censoring. A simple time-differencing of the observed dependent variable
does not remove αi. To see why simple time-differencing of the observed dependent
variables does not remove the individual effect, for any period t and at the true value
θo, write

yit − x′itθo = max{y∗it − x′itθo,−x′itθo}= max{αi +uit ,−x′itθo} .

Clearly, yit − x′itθo is the censored error term αi + uit , with −x′itθo as the censoring
value. Similarly, for any period s,

yis− x′isθo = max{αi +uis,−x′isθo}

is the censored error term αi + uis, with −x′isθo as the censoring value. Applying
simple time-differencing, we obtain:

yit − x′itθo− (yis− x′isθo) = max{αi +uit ,−x′itθo}−max{αi +uis,−x′isθo} .

The individual effect is clearly not eliminated by simple time-differencing.
From the point of view of estimating the unknown parameter θo, it is not neces-

sary to remove the individual effect at every data point. As long as the differenced
error term: max{αi + uit ,−x′itθo} −max{αi + uis,−x′isθo} has a zero conditional
mean given the explanatory variables, the parameter θo can be estimated consis-
tently by standard regression techniques. Unfortunately, the differenced error term
does not have a zero conditional mean when: (i) the error terms uit and uis, condi-
tional on the regressors and the individual effect, are not identically distributed or
(ii) the censoring values −x′itθo and −x′isθo are not identical. Thus, to obtain a con-
sistent estimator of θo, condition (i) and (ii) must not be satisfied. Condition (i) is
ruled out by the following condition:

Assumption 4. The error terms uit and uis, conditional on (xit ,xis,αi), are identi-
cally distributed.
Condition (ii) is satisfied by artificially censoring the observed dependent variables
so that both error terms are censored at the same value max{−x′itθo,−x′isθo}. Specif-
ically, define the artificially censored error terms as:

e(yit − x′itθo, x′isθo) = max{yit − x′itθo,−x′isθo}
= max{αi +uit ,−x′itθo,−x′isθo} ,

e(yis− x′isθo,x
′
itθo) = max{yis− x′isθo,−x′itθo}

= max{αi +uis,−x′itθo,−x′isθo} .

It then follows from Assumption 4 that e(yit − x′itθo,x′isθo) and e(yis− x′isθo,x′itθo),
conditional on the explanatory variables and the individual effect, are identically
distributed. This in turn implies that
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E{e(yit − x′itθo,x
′
isθo)− e(yis− x′isθo,x

′
itθo)|xit ,xis}= 0 . (14.10)

θo now can be estimated consistently from the conditional moment restriction
(14.10) by standard regression techniques such as GMM, provided some identifica-
tion condition is satisfied. Since (14.10) is obtained by applying simple
time-differencing after some nonlinear transformation of the observed dependent
variable, this approach is called “nonlinear-differencing”.

Although the true value θo can be estimated consistently from (14.10) by GMM,
estimation methods using zero conditional mean conditions are often more complex
than the methods using zero unconditional mean conditions. A simpler and better
approach is to find a convex objective function whose first order condition coincides
with some unconditional moment conditions implied by (14.10). For instance, the
objective function

A(θ0)
def= E{r(yit ,yis,(xit − xis)′θo)} ,

with

r(y1,y2,δ) =

⎧
⎪⎪⎨

⎪⎪⎩

y2
1/2−δy1− y1y2

(y1− y2−δ)2/2

if δ≤−y2 ;

if − y2 < δ < y1 ;

y2
2/2+δy2− y1y2 if y1 ≤ δi ;

satisfies the following unconditional moment condition

∂A(θ)
∂θ

|θ=θ0 = E
{
(e(yit − x′itθo,x

′
isθo)− e(yis− x′isθo,x

′
itθo))(xit − xis)

}
= 0 ,

which is obviously implied by (14.10). Given that r(y1,y2,δ) ≥ 0 for all (y1,y2,δ),
this suggests a nonlinear least squares estimator of θo:

θ̂ = argmin
θ

N

∑
i=1

∑
t<s

r
(
yit ,yis,(xit − xis)′θ

)
. (14.11)

Under some sufficient conditions, Honoré (1992) shows that θ̂ is consistent and
asymptotically normally distributed and its asymptotic variance-covariance is esti-
mated consistently by the usual nonlinear least squares covariance matrix of θ̂ :

V̂θ =

⎛

⎝
N

∑
i=1

∑
t<s

∂ 2r
(

yit ,yis,(xit − xis)′θ̂
)

∂δ2 (xit − xis)(xit − xis)′

⎞

⎠

−1

×

⎛

⎜
⎜
⎝

∑N
i=1

[
∑t<s

∂ r(yit ,yis,(xit−xis)′θ̂)
∂δ (xit − xis)

]

×
[

∑t<s
∂ r(yit ,yis,(xit−xis)′θ̂)

∂δ (xit − xis)′
]

⎞

⎟
⎟
⎠

×

⎛

⎝
N

∑
i=1

∑
t<s

∂ 2r
(

yit ,yis,(xit − xis)′θ̂
)

∂δ2 (xit − xis)(xit − xis)′

⎞

⎠

−1

.
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Notice that Assumption 4 implies that

E
{

ξ (e(yit − x′itθo,x
′
isθo))−ξ (e(yis− x′isθo,x

′
itθo))|xit ,xis

}
= 0 (14.12)

holds for any function ξ (·). Honoré’s (1992) estimator clearly does not use all
information. More efficient estimator can be constructed from (14.12). For some
integers k1 and k2, let q(u) = (q1(u),q2(u), . . . ,qk1(u))′ denote known basis func-
tions that approximate any square integrable function of u, and let p(xit ,xis) =
(p1(xit ,xis), p2(xit ,xis), . . . , pk2(xit ,xis))′ denote known basis functions that approx-
imate any square integrable function of (xit ,xis). Condition (14.12) implies

E{(q(e(yit − x′itθo,x
′
isθo))−q(e(yis− x′isθo,x

′
itθo)))⊗ p(xit ,xis)}= 0, for t > s

where ⊗ denotes the Kronecker product. Denote

ρ(yi,xi,θ) = vec

{
[q(e(yit − x′itθ ,x′isθ))−q(e(yis− x′isθ ,x′itθ))]⊗ p(xit ,xis),

t = s+1, . . . ,T ; s = 1,2, . . . ,T −1

}

.

The unknown parameter θo can be estimated by GMM:

θ̂ GMM = argmin
θ

(
N

∑
i=1

ρ(yi,xi,θ)

)′
Ω̂−1

(
N

∑
i=1

ρ(yi,xi,ϑ)

)

,

where Ω̂ is some known positive definite matrix, or by the empirical likelihood
method:

θ̂ EL = argmin
θ

max
λ

N

∑
i=1

ln(1+λ ′ρ(yi,xi,θ)) .

By allowing k1 and k2 to grow with sample size, Ai (2005) shows that θ̂ GMM is
consistent and asymptotically normally distributed and that it is efficient for model
(14.12). The asymptotic variance–covariance of θ̂ GMM is estimated consistently by
the usual GMM covariance matrix of θ̂ GMM. The asymptotic distribution of θ̂ EL also
can be derived with the techniques developed in Donald, Imbens, and Newey (2004).
A drawback of the GMM estimation is that the objective function may not be glob-
ally convex and may have many local minimizers. But this problem can be resolved
with Honoré’s (1992) estimator as the starting value.

Assumption 4 can be strengthened by requiring the error terms to satisfy the
conditional pairwise exchangeability condition:

Assumption 4’. The pair (uit ,uis) is identically distributed as (uis,uit) conditional
on (xit ,xis,αi).
This condition implies that

E
{

ξ
[
e(yit − x′itθo,x

′
isθo)]−ξ [e(yis− x′isθo,x

′
itθo)

]
|xit ,xis

}
= 0 (14.13)

for any odd function ξ (·). Since ξ (u) = u is an odd function, Honoré’s (1992)
estimator is still consistent under Assumption 4’. Other consistent estimators can
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be constructed analogously for arbitrary odd function. See Honoré and Kyriazidou
(2000) and Charlier et al. (2000) for details. Efficient GMM estimator for this model
can also be constructed in the same manner as for (14.12) by requiring that q(u) are
odd functions.

Under Assumption 4, Honoré’s (1992) estimator can be easily extended to the
following partially additive panel data Tobit model:

yit =
{

x0itθo +∑m
j=1 h j(x jit)+αi +uit , if the RHS > 0; and

0 otherwise,

where h j(·) are unknown functions. For identification purpose, we assume that the
unknown functions satisfy the location restriction h j(0) = 0 for all j and the exclu-
sive restriction that x1it , . . . ,xmit are mutually exclusive. Suppose that each h j(·) is

approximated by the linear sieve p
k j
j (·)′π j, where p

k j
j (·) is a vector of approximat-

ing functions satisfying p
k j
j (0) = 0. The unknown parameter θo and the coefficients

π = (π ′1, . . . ,π ′m)′ are estimated by

(θ̂ , π̂) = argmin
θ ,π

N

∑
i=1

∑
t<s

r(yit ,yis,(x0it − x0is)′θ +
m

∑
j=1

(p
k j
j (x jit)− p

k j
j (x jis))′π j) .

The unknown functions are estimated by ĥ j(·) = p
k j
j (·)′π̂ j. Ai and Li (2005) show

that the estimator (θ̂ , ĥ1, . . . , ĥm) is consistent and derive its asymptotic distribution.
The asymptotic variance–covariance of θ̂ is estimated consistently by the usual non-
linear least squares covariance matrix of θ̂ , which is the corresponding submatrix
of the nonlinear least squares covariance matrix of (θ̂ , π̂). The usual nonlinear least
squares covariance matrix of π̂ , however, should not be viewed as the estimator
for the asymptotic variance–covariance of π̂ because π̂ does not have a asymptotic
normal distribution.

By exploiting all moment conditions, efficient GMM estimator for this model
can be constructed in the same manner as for (14.12). Let xit denote the union of
x0it , . . . ,xmit . Denote

ρ(yi,xi,θ ,π) = vec

{
(A(yit ,xit ,xis,θ ,π)−A(yis,xis,xit ,θ ,π))⊗ p(xit ,xis)

t = s+1, . . . ,T ; s = 1, . . . ,T −1

}

where

A(yit ,xit ,xis,θ ,π) = q

(

e

[

yit − x′0itθ −
m

∑
j=1

p
k j
j (x jit)′π j,x

′
0isθ +

m

∑
j=1

p
k j
j (x jis)′π j

])

.

The unknown parameter θo is either estimated by GMM:

(θ̂ GMM, π̂ GMM) = argmin
θ ,π

(
N

∑
i=1

ρ(yi,xi,θ ,π)

)′
Ω̂−1

(
N

∑
i=1

ρ(yi,xi,θ ,π)

)
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or by empirical likelihood:

θ̂ EL = argmin
θ ,π

max
λ

N

∑
i=1

ln
(
1+λ ′ρ(yi,xi,θ ,π)

)
.

By allowing k1 and k2 to grow with sample size at certain rates, Ai and Li
(2005) show that θ̂ GMM is consistently and asymptotically normally distributed and

ĥ j = p
k j
j (·)′π̂ GMM

j is consistent. The asymptotic variance–covariance of θ̂ GMM is es-

timated consistently by the usual GMM covariance matrix of θ̂ GMM, which is the
corresponding submatrix of the usual GMM covariance matrix of (θ̂ GMM, π̂GMM).

Assumption 4 is weaker than the one we normally make for Tobit models. It
permits dependent data and allows for dependence of the error term on the ex-
planatory variables (e.g., heteroskedastic error). But it is still restrictive. It rules
out predetermined or endogenous explanatory variables, for example. To allow
for predetermined or endogenous explanatory variables, we must modify the non-
linear least squares and GMM procedures reviewed above. To illustrate, consider
the case of predetermined regressors first. Denote xit = (x′1it ,x

′
2it)

′ and decompose
θo = (θ ′1o,θ ′2o)

′ accordingly. Suppose that x2it is predetermined (e.g. lagged depen-
dent variable). Replace Assumption 4 with

Assumption 5. For any t > s, the error terms uit and uis, conditional on (x1it ,xis,αi),
are identically distributed.
This condition is obviously weaker than Assumption 4. To see why Assump-
tion 5 permits predetermined regressors, suppose that uit is independent of x1i =
(x1i1,x1i2, . . . ,x1iT ) and x t

2i = (x2i1,x2i2, . . . ,x2it). Then, for any s < t, (uit ,uis) is
independent of (x1i,x s

2i) and Assumption 5 is satisfied as long as uit and uis are
identically distributed.

The problem with the predetermined regressors is that the censoring value x′itθo

is correlated with uis. If both censoring values are used to censor both error terms,
the censored error terms will not have the same distribution. One way to resolve this
difficulty is to drop the predetermined regressors from x′itθo. Suppose that x′2itθ2o≥ 0
holds with probability one. Define:

ε(yit − x′itθo,x
′
1itθ1o,x

′
isθo) = max{yit − x′itθo,−x′1itθ1o,−x′isθo}

= max{αi +uit ,−x′1itθ1o,−x′isθo};
ε(yis− x′isθo,x

′
1itθ1o) = max{yis− x′isθo,−x′1itθ1o}

= max{αi +uis,−x′1itθ1o,−x′isθo} .

Assumption 5 and the condition x′2itθ2o ≥ 0 with probability one imply ε(yit − x′it
θo,x′1itθ1o,x′isθo) and ε(yis − x′isθo,x′1itθ1o) are identically distributed given
(x1it ,xis). This in turn implies:

E
{

ξ (ε(yit − x′itθo,x
′
1itθ1o,x

′
isθo))−ξ (ε(yis− x′isθo,x

′
1itθ1o))|x1it ,xis

}
= 0 (14.14)

for any function ξ (·). The parameter θo now can be estimated from the condi-
tional moment condition (14.14) by GMM or the empirical likelihood. Specif-
ically, let p(x1it ,xis) = (p1(x1it ,xis), p2(x1it ,xis), . . . , pk2(x1it ,xis))′ denote known
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basis functions that approximate any square integrable function of (xit ,xis). Con-
dition (14.12) implies

E{(q(ε(yit − x′itθo,x
′
1itθ1o,x

′
isθo))−q(ε(yis− x′isθo,x

′
1itθ1o)))⊗ p(x1it ,xis)}= 0 ,

for t > s

Denote

ρ(yi,xi,θ) = vec

⎧
⎪⎪⎨

⎪⎪⎩

[q(ε(yit − x′itθo,x′1itθ1o,x′isθo))−q(ε(yis− x′isθo,x′1itθ1o))]

⊗p(x1it ,xis),

t = s+1, . . . ,T ; s = 1,2, . . . ,T −1

⎫
⎪⎪⎬

⎪⎪⎭
.

The unknown parameter θo is either estimated by GMM:

θ̂ GMM = argmin
θ

(
N

∑
i=1

ρ(yi,xi,θ)

)′
Ω̂−1

(
N

∑
i=1

ρ(yi,xi,θ)

)

,

where Ω̂ is some known positive definite matrix, or by empirical likelihood:

θ̂ EL = argmin
θ

max
λ

N

∑
i=1

ln(1+λ ′ρ(yi,xi,θ)) .

The asymptotic distribution of θ̂ GMM can be derived exactly the same way as in
Honoré and Hu (2004), while the asymptotic distribution of θ̂ EL can be derived
exactly the same way as in Donald, Imbens, and Newey (2004).

The condition that x′2itθ2o ≥ 0 holds with probability one is critical for the above
estimator. This condition appears very restrictive. Fortunately in most applications,
the predetermined regressors are lagged dependent variables that are always non-
negative and usually have positive coefficients. In those applications, this condition
is imposed through restriction on the coefficients θ2 ≥ 0.

Next, consider the case where (x2it ,x2is) are endogenous. Let (zit ,zis) denote the
instrumental variables for (x2it ,x2is). Depending on the restrictions we impose on
the endogenous regressors, we may make one of the following two assumptions:

Assumption 6. The two terms (uit ,x2it ,x2is) and (uis,x2it ,x2is), conditional on(x1it ,
x1is, zit ,zis,αi), are identically distributed.

Assumption 6’. The error terms uit and uis, conditional on (x1it ,x1is,zit ,zis,αi), are
identically distributed.

Under Assumption 6, e(yit − x′itθo,x′isθo) and e(yis − x′isθo,x′itθo), conditional on
(x1it ,x1is,zit ,zis,αi), are identically distributed, implying that

E{ξ (e(yit − x′itθo,x
′
isθo))−ξ (e(yis− x′isθo,x

′
itθo))|x1it ,x1is,zit ,zis}= 0 (14.15)
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for any function ξ (·). Thus θo can be estimated consistently from the conditional
moment restriction (14.15) by GMM or empirical MLE. Notice that condition
(14.15) does not require that x′2itθ2o ≥ 0 and x′2isθ2o ≥ 0 hold with probability one.
If we require that x′2itθ2o ≥ 0 and x′2isθ2o ≥ 0 hold with probability one, we can drop
x2it and x2is from the censoring values and modify the censored error terms as:

υ(yit − x′itθo,x
′
1itθ1o,x

′
1isθ1o) = max{yit − x′itθo,−x′1itθ1o,−x′1isθ1o}

= max{αi +uit ,−x′1itθ1o,−x′1isθ1o} ;

υ(yis− x′isθo,x
′
1itθ1o,x

′
1isθ1o) = max{yis− x′isθo,−x′1itθ1o,−x′1isθ1o}

= max{αi +uis,−x′1itθ1o,−x′1isθ1o} .

Assumption 6’ implies

E

{[
ξ (υ(yit − x′itθo,x′1itθ1o,x′1isθ1o))

−ξ (υ(yis− x′isθo,x′1itθ1o,x′1isθ1o))

]

|x1it ,x1is,zit ,zis

}

= 0 (14.16)

for any function ξ (·). Again, θo can be estimated consistently from the condi-
tional moment restriction (14.16) by GMM or empirical MLE. The condition that
x′2itθ2o ≥ 0 and x′2isθ2o ≥ 0 hold with probability one is more restrictive then previ-
ous case since the endogenous regressors may have negative coefficients.

The ideas described above can be easily extended to the following dynamic latent
dependent variable model:

y∗it = ρoy∗it−1 + x′itθo +αi +uit (14.17)

yit = max{0,y∗it} .

To illustrate, suppose that xit is strictly exogenous. Note that this model differs from
other Tobit models in that the lagged latent dependent variable may not be observed.
First, we select a subsample in which yit−2 > 0 for some t. Then

yit−1−ρoyit−2− x′it−1θo = max{αi +uit−1,−ρoyit−2− x′it−1θo};
yit −ρoy∗it−1− x′itθo = max{αi +uit ,−ρoy∗it−1− x′itθo} .

It is reasonable to assume that the variable yit−2 is independent of uit−1 and uit .
y∗it−1 (and hence yit−1), on the other hand, is not independent of uit−1. Assume that
ρo > 0. Denote the censored error terms as

e(yit −ρoy∗it−1− x′itθo,ρoyit−2 + x′it−1θo,x
′
itθo)

= max{yit −ρoy∗it−1− x′itθo,−ρoyit−2− x′it−1θo,−x′itθo}
= max{αi +uit ,−ρoyit−2− x′it−1θo,−x′itθo};

e(yit−1−ρoyit−2− x′it−1θo,x
′
itθo)

= max{yit−1−ρoyit−2− x′it−1θo,−x′itθo}
= max{αi +uit−1,−ρoyit−2− x′it−1θo,−x′itθo} .
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Although the above censored error terms are identically distributed if uit and uit−1

are identically distributed, the first censored error term is not feasible since the
lagged latent dependent variable is not observed. One way to resolve this difficulty
is to impose the condition yit−1 > 0 so that the latent dependent variable is observed.
However, because uit is independent of, but uit−1 is not independent of, yit−1 > 0,
the constraint yit−1 > 0 imposes restriction on uit−1 but not on uit and, as a result,
the two censored error terms are not identically distributed. To ensure that both cen-
sored error terms are identically distributed, we must impose the same constraints
on uit−1 and uit . For instance, we can require that the errors to satisfy

min{αi +uit−1,αi +uit}= max{−ρoyit−2− x′it−1θo,−x′itθo} . (14.18)

This condition implies that

y∗it−1 ≥ max{0,ρoyit−2 + x′it−1θo− x′itθo} ≥ 0 and hence yit−1 > 0;

y∗it ≥ max{ρoyit−1 + x′itθo−ρoyit−2− x′it−1θo,ρoyit−1}> 0 .

Assumption 7. For any t, the error terms uit and uit−1, conditional on (yit−2 >
0,xit ,xis,αi), are identically distributed.

Under assumption 7, and conditional on

Aits = {yit−2 > 0,yit−1 ≥max{0,ρoyit−2 + x′it−1θo− x′itθo} and

yit ≥ max{ρoyit−1 + x′itθo−ρoyit−2− x′it−1θo,ρoyit−1} ,

e(yit − ρoyit−1 − x′itθo,ρoyit−2 + x′it−1θo,x′itθo) and e(yit−1 − ρoyit−2 − x′it−1θo,
x′itθo) are identically distributed. This leads to the following conditional moment
conditions:

E

{

1(Aits)×
[

ξ (e(yit−1−ρoyit−2− x′it−1θo,x′itθo))−
ξ (e(yit −ρoyit−1− x′itθo,ρoyit−2 + x′it−1θo,x′itθo))

]

|xit ,xis

}

= 0

for any function ξ (·). The parameter θo can now be estimated from the above con-
ditional moment restriction, and the asymptotic properties of the estimator can be
derived exactly the same way as in Hu (2002).

14.3.2 Discrete Choice Model

A key aspect of the “nonlinear differencing” technique developed for the Tobit
model is that the latent dependent variable is observed partly so that trimming can
be used to restore the symmetry of the distribution of the observed data. This trick
does not work for the panel data discrete choice model because the latent dependent
variable is not observed at all. A new “nonlinear differencing” approach must be
developed. In this subsection, we review those new “nonlinear differencing” tech-
niques. We begin with the panel binary choice model given by
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yit = 1
{

x′itθo +αi +uit > 0
}

, i = 1,2, . . . ,n; t = 1,2, . . . ,T (14.19)

where xit is a vector of time-varying explanatory variables, αi is an individual spe-
cific intercept, and uit is the error term. Notice that, for any two time periods t and
s, simple time-differencing gives:

yit − yis = 1
{

x,
itθo +αi +uit > 0

}
−1
{

x,
isθo +αi +uis > 0

}
.

Taking expectation, we obtain:

E{yit − yis|xit ,xis,αi}
= Pr(uit >−x,

itθo−αi|xit ,xis,αi)−Pr(uis >−x,
isθo−αi|xit ,xis,αi) .

Obviously, simple time-differencing does not eliminate the individual effect unless
x,

itθo = x,
isθo. Manski (1987), however, observes that, if the differenced probability

on the right hand side has the same sign as x,
itθo−x,

isθo, then (yit−yis) is positively
correlated with sgn(x,

itθo− x,
isθo). Based on this observation, Manski proposed a

maximum score estimator that maximizes the sample correlation:

θ̂ = arg max
θ ′θ=1

n

∑
i=1

∑
s<t

(yit − yis)∗ sgn((xit − xis)′θ) .

Clearly, Manski’s estimator is defined on the differenced data through sign func-
tion. Since sign function is nonlinear, this technique is still called as “nonlinear
differencing”.

To ensure that the differenced probability has the same sign as x,
itθo− x,

isθo, we
impose the following condition:

Assumption 8. For any t > s, the error terms uit and uis, conditional on (xit ,xis,αi),
are identically distributed.

Like Assumption 4 for the Tobit model, Assumption 8 is weaker than the one we
normally make for the binary choice model. For example, it does not require speci-
fying the error distribution and permit dependent data and heteroskedasticity. Under
some additional conditions and with some scale normalization on the parameter,
Manski (1987) shows that the maximum score estimator is consistent. However, his
estimator is not root-N consistent and is not asymptotically normally distributed.
The nonnormal asymptotic distribution of his estimator is the result of the nons-
mooth objective function. If the smoothing technique suggested by Horowitz (1992)
is used here, it can be shown that the resulting estimator is asymptotically normally
distributed, although the rate is still slower than root-N, (see Kyriazidou (1997) and
Charlier et. al. (1995) for details).

Extension of Manski’s idea to the following nonparametric panel data model

yit = 1{h(xit)+αi +uit > 0} , i = 1,2, . . . ,N; t = 1,2, . . . ,T (14.20)

where h(·) is of unknown form, is straightforward. Let pk(x)′π = p1(x)π1 + . . .+
pk(x)πk denote the approximation to h(x). Denote:
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π̂ = arg max
π ′π=1

n

∑
i=1

∑
s<t

(yit − yis)∗ sgn((pk(xit)− pk(xis))′π) .

and ĥ(x) = pk(x)′π̂ . Then using the techniques developed by Shen (1997) and
Manski (1987), it can be shown that ĥ(x) is consistent under both the sup and L2

norm.
Return to model (14.19). Like Assumptions 4, 8 rules out the predetermined ex-

planatory variables such as the lagged dependent variables. If the predetermined ex-
planatory variables are allowed for, the trick used by Honoré and Kyriazidou (2000)
can be used here to estimate model (14.19). Specifically, decompose x′itθo = x′1itθ1o +
x′2itθ2o. Suppose that x2it are the predetermined explanatory variables. Consider
three periods r < s < t. The insight of Honoré and Kyriazidou (2000) gives the
following estimator:

θ̂ = argmax
θ

n

∑
i=1

∑
r<s<t

(
K
(

x1is−x1it
σn

)
× (yis− yir)×

sgn((x1is− x1ir)′θ1 +(x2it − x2ir)′θ2)

)

where K(·) denotes the kernel function and σn denotes the bandwidth. Again, only
consistency of this estimator is proved by Honoré and Kyriazidou (2000).

For the nonparametric model (1.20) with h(x) = h1(x1)+h2(x2), let pk1
1 (x1)′π1 =

p11(x1)π11 + . . .+ p1k1(x1)π1k1 denote the approximation to h1(x1) and pk2
2 (x2)′π2 =

p21(x2)π21 + . . .+ p2k2(x2)π2k2 denote the approximation to h2(x2). Then, Honoré
and Kyriazidou’s (2000) idea gives the following estimator:

π̂ = argmax
θ

n

∑
i=1

∑
r<s<t

⎛

⎝
K
(

x1is−x1it
σn

)
× (yis− yir)×

sgn
[
(pk1

1 (x1is)− pk1
1 (x1ir))′ π1 +(pk2

2 (x2it)− pk2
2 (x2ir))′π2

]

⎞

⎠ .

Again, it can be shown that ĥ j(x) = pk
j(x)

′π̂ j is consistent.
The important question is whether we can achieve root-N consistency and asymp-

totic normality. Anderson (1970) answered this question by considering the Logit
version of model (14.19). His “nonlinear differencing” idea is based on a condi-
tional maximum likelihood approach. Define δi = ∑T

t=1 yit which takes values in
{0,1, . . . ,T} (since yit ∈ {0,1}). Also define δit = 1 if yit = 1, and δit = 0 otherwise.
Then the conditional likelihood estimator is given by

θ̂ = argmax
θ

n

∑
i=1

log

(
exp(∑T

t=1 yitx′itθ)
∑δi1+...+δiT =δi

exp(∑T
t=1 ditx′itθ)

)

,

where ∑δi1+...+δiT =δi
denotes sum over all possible combinations of (δi1, . . . , lδiT )

with ∑T
t=1 δit = δi (= ∑T

i=1 yit). Anderson showed that the conditional maximum
likelihood estimator is root-N consistent and asymptotically normally distributed.
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This “nonlinear differencing” idea is easily extended to the Logit version of model
(1.20), with

π̂ = argmax
π

n

∑
i=1

log

(
exp(∑T

t=1 yit pk(xit)′π)
∑δi1+...+δiT =δi

exp(∑T
t=1 δit pk(xit)π)

)

and ĥ(x) = pk(x)′π̂ . The consistency and the asymptotic normality of smooth func-
tionals of ĥ(x) can be proved exactly as in Shen (1997).

The “nonlinear differencing” idea for the Logit model also can be extended to
allow for the predetermined explanatory variables in the panel data Logit model. As
showed in Honoré and Kyriazidou (2000), at least three periods of data are required;
and the model parameter is estimated by:

θ̂ = argmax
θ

n

∑
i=1

∑
r<s<t

1{yir + yis = 1}K

(
x1is− x1it

σn

)
∗

log

(
[exp((x1ir− x1is)′θ1 +(x2ir− x2it)′θ2)]yir

1+ exp((x1ir− x1is)′θ1 +(x2ir− x2it)′θ2)

)
.

However, this estimator is not root-N consistent, it has the usual nonparametric
kernel estimation rate of convergence.

It is clear from the above discussions that the maximum score estimator is not
root-N consistent but it imposes the weakest restrictions on the distribution of the
error terms. On the other hand, the conditional maximum likelihood estimator is
root-N consistent but imposes the strongest assumption on the distribution of the
error terms. A natural question is were there exist other restrictions on the error
distribution that permit root-N consistent estimator for the model parameter. Un-
fortunately, Chamberlain (1993) gives a surprisingly negative answer to this ques-
tion. He showed that even if the errors are i.i.d. and independent of the explanatory
variables and the individual effects, the model parameter can be estimated root-N
consistently only in the Logit case. Hahn (2001) considers the semiparametric infor-
mation bound in dynamic panel Logit models with fixed effects. Hahn shows that
the conditional maximum likelihood estimator is not semiparametrically efficient
for models with only the lagged dependent variable. For more general models with
regressors include time dummies, Hahn shows that the semiparametric information
bound is singular, therefore, root-N consistent estimation is infeasible in more gen-
eral models. Therefore, to obtain a root-N consistent estimator, it is clear that some
additional assumptions must be imposed on the correlation between the explanatory
variables and the individual effect. Lee (1999) takes differences across individuals
in addition to the time-difference proposed by Manski (1987). Lee shows that the
resulting estimator is a root-N consistent semiparametric estimator that does not
depend on a smoothing parameter. Honoré and Lewbel (2002) require that there
exists a “special regressor”, which is continuous with bounded support and is in-
dependent of the individual effect and the error term. The role of this “special re-
gressor” is to pull the individual effect out of the nonlinear function. Specifically,
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write x′itθo = x1it +x′2itθ1o, where x1it is that “special regressor” and its coefficient is
normalized to unity for identification purpose, and x2it denote the predetermined
regressors. For any two periods r > s, let zis denote the instrumental variables
consisting of all predetermined variables up to time s. Under some conditions on
the special regressor, Honoré and Lewbel showed that

E

{
zis(yit −1{x1it > 0})

ft(x1it |x2it ,zis)

}
= zisx

′
2itθ1o +E{zisαi}, t = r,s

where ft denotes the conditional density of x1it conditional on (x2it ,zis). The individ-
ual effect now can be eliminated through simple time-differencing between period
r and period s, and hence the parameter can be estimated by simple instrumental
variable estimation. For details see Honoré and Lewbel (2002). Even when the pa-
rameters in a dynamic discrete choice model are not identified, it may be possible
to bound the parameters in a narrow region, see Honoré and Tamer (2005) for more
details on how to find the bounds for the parameters in dynamic discrete choice
panel data models.

14.3.3 Sample Selection Model

The panel data sample selection model is given by:

yit = dit(x′itθo +αi +uit), (14.21)

dit = 1{z′itβo + μi + εit > 0} ,

where xit and zit are explanatory variables, αi and μi are individual effects, and
uit and εit are the remainder error terms. This model consists of a binary selection
equation and a regression equation which is sometimes censored. Thus, it is more
complicated than the panel data binary choice model and the panel data Tobit model.
The coefficient βo can be estimated consistently by any of the methods described
above for the panel discrete choice model. But to estimate the coefficient θo, a new
differencing technique is needed. For any two periods t > s, note that, conditional
on dit = 1,dis = 1,xit ,zit ,xis,zis,αi,μi:

yit |dit=1,dis=1,xit ,zit ,xis,zis,αi,μi = x′itθo +αi +uit |dit=1,dis=1,xit ,zit ,xis,zis,αi,μi ,

yis|dit=1,dis=1,xit ,zit ,xis,zis,αi,μi = x′isθo +αi +uis|dit=1,dis=1,xit ,zit ,xis,zis,αi,μi .

If uit |dit=1,dis=1,xit ,zit ,xis,zis,αi,μi and uis|dit =1,dis=1,xit ,zit ,xis,zis ,αi,μi
are identically distributed,

then we have

E{ξ (yit − x′itθo)|dit = 1,dis = 1,xit ,zit ,xis,zis,αi,μi}
= E{ξ (yis− x′isθo)|dit = 1,dis = 1,xit ,zit ,xis,zis,αi,μi} ,
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for any function ξ (·). And the parameter θo can be estimated from the above
conditional moment restriction by standard regression techniques such as GMM.
The problem with this approach is that uit |dit=1,dis=1,xit ,zit ,xis,zis,αi,μi and uis|dit =1,

dis = 1,xit ,zit ,xis,zis,αi,μi are not identically distributed unless z′itβo = z
′
isβo. This

leads to the following estimator

θ̂ = argmin
θ ∑

i
∑
s<t

ditdisK

(
(zit − zis)′β̂

σn

)

[(yit − x′itθ)− (yis− x′isθ)]2

where β̂ is a consistent estimator of β , obtained by any techniques described above
for the panel binary choice model. Kyiazidou (1997) proves the consistency of θ̂
and derives its asymptotic distribution. Because this estimator uses a kernel weight
function, the estimator is not root-N consistent, it has the standard nonparametric
estimation rate of convergence.

If uit |dit=1,dis=1,xit ,zit ,xis,zis,αi,μi and uis|dit =1,dis=1,xit ,zit ,xis,zis,αi ,μi
satisfy the stronger

exchangeability condition, then we have

E{ξ (yit − x′itθo− yis + x′isθo)|dit = 1,dis = 1,xit ,zit ,xis,zis,αi,μi}= 0

for any odd function ξ (·). In this case, a new class of estimator can be obtained:

θ̂ξ = argmin
θ ∑

i
∑
s<t

ditdisK

(
(zit − zis)′β̂

σn

)

Ξ(yit − x′itθ)− (yis− x′isθ)].

The asymptotic distribution of the estimator θ̂ξ can be derived exactly the same way
as in Kyiazidou (1997).

Wooldridge (1995) also proposes some estimation methods that allow for the
unobserved effects in both the regression and selection equations to be correlated
with the observed variables and the error distribution in the regression equation to
be unspecified. Lee (2001) proposes a semiparametric first-difference estimator for
panel censored-selection models when the selection equation is of Tobit type. Also,
Lee’s estimator does not require smoothing.

14.4 Conclusion

In this chapter, we survey the large and growing literature on semiparametric and
nonparametric panel data models. Our survey indicates that substantial progress
has been made in semiparametric and nonparametric linear panel data models and
panel data Tobit models. The progress made in the area of panel discrete choice
and sample selection models, however, is less satisfactory, though considerable
scholarly work has been devoted to this area. Far less satisfactory progress has
been made in the applications of the techniques surveyed here to analyze real
data. Future research in this exciting area should be focused on developing root-N
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consistent estimator for the panel data discrete choice under some suitably conditions.
Once the root-N consistent estimator for the panel data binary choice model is de-
veloped, the root-N consistent estimator for the panel data sample selection models
should be easily constructed. Furthermore, applications of the existing techniques
must be encouraged.

Due to space limitation, we do not cover topics on bias reduction techniques
for nonlinear panel data models (Hahn and Newey (2004)), nor do we discuss
the general nonseparable panel data models with endogenous regressors consid-
ered by Altonji and Matzkin (2005), or the panel data Poisson and duration models.
See Blundell, Griffith and Windmeijer (2002), Das and Ying (2005), Horowitz and
Lee (2004), Lee (2004) and Van den Berg (2001) and the references therein for
discussions on nonlinear count and duration models.

Finally, our discussion on estimation of a nonparametric regression model with
fixed effects is based on the within transformation (and series approximation).
Baltagi and Li (2002) consider series estimation based on first-difference rather
than the within transformation. Carroll, Henderson and Li (2005) propose a
nonparametric kernel estimator based on first-differencing.
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Honoré, B. (1992). Trimmed LAD and least squares estimation of truncated and censored regres-

sion models with fixed effects, Econometrica, 60: 533–565.
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Chapter 15
Panel Data Modeling and Inference:
A Bayesian Primer

Siddhartha Chib

15.1 Introduction

In this chapter we discuss how Bayesian methods are used to model and analyze
panel data. As in other areas of econometrics and statistics, the growth of Bayesian
ideas in the panel data setting has been aided by the revolutionary developments in
Markov chain Monte Carlo (MCMC) methods. These methods, applied creatively,
allow for the sophisticated modeling of continuous, binary, censored, count and
multinomial responses under weak assumptions. The purpose of this largely self-
contained chapter is to summarize the various modeling possibilities and to provide
the associated inferential techniques for conducting the prior-posterior analyses.

The apparatus we outline in this chapter relies on some powerful and easily
implementable Bayesian precepts (for a textbook discussion of Bayesian meth-
ods, see Congdon (2001)). One theme around which much of the discussion is
organized is hierarchical prior modeling (Lindley and Smith (1972)) which al-
lows the researcher to model cluster-specifc heterogeneity (and its dependence on
cluster-specific covariates) through random effects and random-coefficients in var-
ious interesting ways. Another theme is the use of the general approaches of Al-
bert and Chib (1993) and Chib (1992) for dealing with binary, ordinal and cen-
sored outcomes. A third theme is the use of flexible and robust families of para-
metric distributions to represent sampling densities and prior distributions. A fourth
theme is the comparison of alternative clustered data models via marginal likeli-
hoods and Bayes factors, calculated via the method of Chib (1995). A final theme
is the use of MCMC methods (Gelfand and Smith (1990), Tierney (1994), Chib and
Greenberg (1995, 1996)) to sample the posterior distribution, to calculate the pre-
dictive density and the posterior distribution of the residuals, and to estimate the
marginal likelihood.
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Because implementation of the Bayesian paradigm is inextricably tied to MCMC
methods, we include a brief overview of MCMC methods and of certain basic results
that prove useful in the derivation of the conditional densities that form the basis
for model fitting by MCMC simulation methods. Methods for producing random
variates from a few common distributions are also included. After these preliminar-
ies, the chapter turns to the analysis of panel data models for continuous outcomes
followed by a discussion of models and methods for binary, censored, count and
multinomial outcomes. The last half of the chapter deals with the problems of an
endogenous covariate, informative missingness, prediction, residual analysis and
model comparison.

15.1.1 Hierarchical Prior Modeling

The Bayesian approach to panel data modeling relies extensively on the idea of
a hierarchical prior which is used to model the heterogeneity in subject-specific
coefficients and the distribution of the errors and the random effects. Suppose
that for the ith cluster (subject) in the sample we are interested in modeling the
distribution of yi = (yi1, . . . ,yini)

′ on a continuous response y. Also suppose that
Wi = (wi1, . . . ,wini)

′ is a ni× q matrix of observations on q covariates wit whose
effect on y is assumed to be cluster-specific. In particular, suppose that for the ith
subject at the tth time point one writes

yit = w ′
itβi + εit , i = 1,2, . . . ,N; t = 1,2, . . . ,ni (15.1)

or equivalently for all observations in the ith cluster

yi = Wiβi + εi, i = 1,2, . . . ,N

εi ∼ P

where βi is the cluster-specific coefficient vector and εi = (εi1, . . . ,εini) is the error
distributed marginally with mean zero according to the distribution P (to be modeled
below).

In the context of observational data, one is concerned about the presence of un-
observed confounders (variables that simultaneously affect the covariates wit and
the error εit). Under such endogeneity of the covariates, E(εi|Wi,βi) is not zero and
the cluster-specific effects are not identified without additional assumptions and the
availability of instruments. To make progress, and to avoid the latter situation, it is
common to assume that the covariates wit are strictly exogenous in the sense that
εi is uncorrelated with Wi and βi, which implies that εit is uncorrelated with past,
current and future values of wit , given βi, or in other words, that the distribution of εi

given (Wi,βi) is P. In the Bayesian context, this strict exogeneity assumption is not
required and analysis can proceed under the weaker sequential exogeneity assump-
tion wherein εit is uncorrelated with wit given past values of wit and βi. Most of our
analysis, in fact, is conducted under this assumption, although we do not make it
explicit in the notation. There are situations, of course, where even the assumption
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of sequential exogeneity is not tenable. We consider one such important case below
where a time-varying binary covariate (a non-randomly assigned “treatment”) is
correlated with the error. We show how the Bayesian analysis is conducted when an
instrument is available to model the marginal distribution of the treatment.

In practice, even when the assumption of sequential exogeneity of the covariates
wit holds, it is quite possible that there exist covariates ai : r× 1 (with an intercept
included) that are correlated with the random-coefficients βi. These subject-specific
covariates may be measurements on the subject at baseline (time t = 0) or other
time-invariant covariates. In the Bayesian hierarchical approach this dependence on
subject-specific covariates is modeled by a hierarchical prior. One quite general way
to proceed is to assume that

⎛

⎜
⎜
⎜
⎝

βi1

βi2
...

βiq

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
βi

=

⎛

⎜
⎜
⎜
⎝

a ′i 0 ′ · · · · · · 0 ′

0 ′ a ′i · · · · · · 0 ′
...

...
...

...
...

0 ′ 0 ′ · · · · · · a ′i

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
Ai

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

β11

β22
...
...

βqq

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
β

+

⎛

⎜
⎜
⎜
⎝

bi1

bi2
...

biq

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
bi

or in vector-matrix form
βi = Aiβ +bi

where Ai is a q×k matrix given as Iq⊗a ′i , k = r×q, β = (β11,β22, . . . ,βqq) is a k×1
dimensional vector, and bi is the mean zero random effects vector (uncorrelated with
Ai and εi) that is distributed according to the distribution Q. This is the second-stage
of the model. It may be noted that the matrix Ai can be the identity matrix of order q
or the zero matrix of order q. Thus, the effect of ai on βi1 (the intercept) is measured
by β11, that on βi2 is measured by β22 and that on βiq by βqq.

In the same way, the hierarchical approach can be used to model the distributions
P and Q. One way is to assume that each of these distributions belong to the (hier-
archical) scale mixture of normals family. Formally, to model the distribution of εi,
we could, for example, let

εi|σ2,λi,ΩΩΩi ∼Nni(0,σ2λ−1
i ΩΩΩi)

λi ∼ G

where ΩΩΩi is a positive-definite matrix depending perhaps on a set of unknown
parameters φ , σ2 is an unknown positive scale parameter, and λi is the random
scale parameter that is drawn independently across clusters from some distribution
G (say with known parameters). If for example, we assume that

G = G
(νG

2
,

νG

2

)

where G denotes the gamma distribution, then the distribution of εi marginalized
over λi is multivariate-t with density proportional to
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|Ω|1/2
(

1+
1

νσ2 ε ′Ω−1
i ε
)−(ν+ni)/2

.

Similarly, to model the random effects vector bi we could let

bi|ηi,D∼Nq
(
0,η−1

i D
)

ηi ∼ F

where D is a full matrix and ηi is a positive random variable drawn independently
across clusters from a distribution F .

The Bayesian hierarchical model is completed through the specification of prior
densities on all the non-cluster-specific coefficients. In general terms, we let

(β ,D,σ2,φ)∼ π

where π is some suitable parametric distribution. Interestingly, it is possible to
model the prior distribution in stages by putting a prior on the parameters (hyperpa-
rameters) of π . Note that the latter distribution is a prior distribution on parameters
from the different stages of the hierarchical model.

As another example of a hierarchical model, suppose that X1i is an additional
ni× k1 matrix of observations on k1 covariates whose effect on y is assumed to be
non-cluster-specific. Now suppose that the model generating yi is taken to

yi = X1iβ1 +Wiβ2i + εi, i = 1,2, . . . ,N (15.2)

where, as above, the distribution of the subject-specific β2i is modeled as

β2i = Aiβ2 +bi

with the remaining components of the model unchanged. In this hierarchical model,
if Ai is not the zero matrix then identifiability requires that the matrices X1i and Wi

have no covariates in common. For example, if the first column of Wi is a vector of
ones, then X1i cannot include an intercept. If Ai is the zero matrix, however, Wi is
typically a subset of X1i.

These two types of hierarchical Bayesian models play a large role in the Bayesian
analysis of clustered data. Notice that both models share the same form. This is seen
by inserting the model of the cluster-specific random coefficients into the first stage
which yields

yi = Xiβ +Wibi+εi , εi|σ2,λi, ΩΩΩi ∼Nni(0,σ2λ−1
i ΩΩΩi)

bi|ηi,D∼Nq
(
0,η−1

i D
)

λi ∼ G , ηi ∼ F

(β ,D,σ2)∼ π
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where in the first type of hierarchical model

Xi = WiAi

and in the second type of hierarchical model

Xi = (X1i WiAi) with β = (β1 β2) ,

as is readily checked. The latter model is therefore the canonical Bayesian hierar-
chical model for continuous clustered data.

15.1.2 Elements of Markov Chain Monte Carlo

The basic idea behind MCMC methods is quite simple. Suppose that π(ψψψ|y) ∝
π(ψψψ)p(y|ψψψ) is the posterior density for a set of parameters ψ ∈ ℜd in a par-
ticular Bayesian model defined by the prior density π(ψψψ) and sampling den-
sity or likelihood function p(y|ψψψ) and that interest centers on the posterior mean
η =

∫
ℜd ψπ(ψ|y)dψ . Now suppose that this integral cannot be computed analyti-

cally and that the dimension of the integration exceeds three or four (which essen-
tially rules out the use of standard quadrature-based methods). In such cases one
calculates the integral by Monte Carlo sampling methods. The general idea is to
abandon the immediate task at hand (which is the computation of the above inte-
gral) and to ask how the posterior density π(ψψψ|y) may be sampled. The reason for
changing our focus is that if we were to have the draws

ψψψ(1), . . . ,ψψψ(M) ∼ π(ψψψ|y) ,

from the posterior density, then provided the sample is large enough, we estimate
not just the above integral but also other features of the posterior density by tak-
ing those draws and forming the relevant sample-based estimates. For example, the
sample average of the sampled draws is our simulation-based estimate of the poste-
rior mean, while the quantiles of the sampled output are estimates of the posterior
quantiles, with other summaries obtained in a similar manner. Under suitable laws of
large numbers these estimates converge to the posterior quantities as the simulation-
size becomes large. In short, the problem of computing an intractable integral is
reduced to the problem of sampling the posterior density.

The sampling of the posterior distribution is, therefore, the central focus of
Bayesian computation. One important breakthrough in the use of simulation meth-
ods was the realization that the sampled draws need not be independent, that
simulation-consistency can be achieved with correlated draws. The fact that the sam-
pled variates can be correlated is of immense practical and theoretical importance
and is the defining characteristic of Markov chain Monte Carlo methods, popularly
referred to by the acronym MCMC, where the sampled draws form a Markov chain.
The idea behind these methods is simple and extremely general. In order to sam-
ple a given probability distribution, referred to as the target distribution, a suitable
Markov chain is constructed with the property that its limiting, invariant distribution,
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is the target distribution. Once the Markov chain has been constructed, a sample of
draws from the target distribution is obtained by simulating the Markov chain a large
number of times and recording its values. Within the Bayesian framework, where
both parameters and data are treated as random variables and inferences about the
parameters are conducted conditioned on the data, the posterior distribution of the
parameters provides a natural target for MCMC methods.

Markov chain sampling methods originate with the work of Metropolis,
Rosenbluth, Rosenbluth, Teller and Teller (1953) in statistical physics. A vital ex-
tension of the method was made by Hastings (1970) leading to a method that is
now called the Metropolis–Hastings algorithm (see Chib and Greenberg (1995) for
a detailed summary). This algorithm was first applied to problems in spatial statis-
tics and image analysis (Besag (1974)). A resurgence of interest in MCMC methods
started with the papers of Geman and Geman (1984) who developed an algorithm, a
special case of the Metropolis method that later came to be called the Gibbs sampler,
to sample a discrete distribution, Tanner and Wong (1987) who proposed a MCMC
scheme involving data augmentation to sample posterior distributions in missing
data problems, and Gelfand and Smith (1990) where the value of the Gibbs sampler
was demonstrated for general Bayesian problems with continuous parameter spaces.

The Gibbs sampling algorithm is one of the simplest Markov chain Monte Carlo
algorithms and is easy to describe. Suppose that for some grouping of the param-
eters into sub-blocks, say ψψψ1 and ψψψ2 (the extension to more than two blocks is
straightforward), the set of full conditional densities

π1(ψψψ1|y,ψψψ2) ∝ p(y|ψψψ1,ψψψ2)π(ψψψ1,ψψψ2) (15.3)

π2(ψψψ2|y,ψψψ1) ∝ p(y|ψψψ1,ψψψ2)π(ψψψ1,ψψψ2) (15.4)

are tractable (that is, of known form and readily sampled). Then, one cycle of the
Gibbs sampling algorithm is completed by sampling each of the full conditional
densities, using the most current values of the conditioning block. The Gibbs sam-
pler in which each block is revised in fixed order is defined as follows.

Algorithm: Gibbs Sampling

1. Specify an initial value ψψψ(0) = (ψψψ(0)
1 ,ψψψ(0)

2 ) :
2. Repeat for j = 1,2, . . . ,n0 +G.

Generate ψψψ( j)
1 from π1(ψψψ1|y,ψψψ( j−1)

2 )
Generate ψψψ( j)

2 from π2(ψψψ2|y,ψψψ( j)
1 )

3. Return the values {ψψψ(n0+1),ψψψ(n0+2), . . . ,ψψψ(n0+G)} .

To illustrate the manner in which the blocks are revised, consider Fig. 15.1 which
traces out a possible trajectory of the sampling algorithm under the assumption that
each block consists of a single component. The contours in the plot represent the
joint distribution of ψψψ and the labels “(0)”, “(1)” etc., denote the simulated values.
Note that one iteration of the algorithm is completed after both components are
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ψ1

ψ
2

(0)

(1)

(2)

(3)

Fig. 15.1 Gibbs algorithm: An illustrative sequence of three draws

revised. Also notice that each component is revised along the direction of the coor-
dinate axes. This feature is a source of problems if the two components are highly
correlated because then the contours become compressed and movements along the
coordinate axes tend to produce only small moves.

In some problems it turns out that the full conditional density cannot be sampled
directly. In such cases, the intractable full conditional density is sampled via the
Metropolis–Hastings (M–H) algorithm. For specificity, suppose that the full condi-
tional density π(ψψψ1|y,ψψψ2) is intractable. Let

q1(ψψψ1,ψψψ ′
1|y, ψψψ2)

denote a suitably chosen proposal density of making a transition from ψψψ1 to ψψψ ′
1,

given the data and the values of the remaining blocks (see for example Chib and
Greenberg (1995)). Then, in the first step of the jth iteration of the MCMC algo-

rithm, given the values ψψψ( j−1)
2 of the remaining block, the updated iterate of ψψψ1 is

drawn as follows.

Algorithm: Metropolis–Hastings for sampling an intractable π1(ψψψ1|y,ψψψ2)

1. Propose a value for ψψψ1 by drawing:

ψψψ ′
1 ∼ q1(ψψψ

( j−1)
1 , ·|y, ψψψ( j−1)

2 )
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2. Calculate the probability of move α(ψψψ( j−1)
1 ,ψψψ ′

1|y,ψψψ( j−1)
2 ) given by

min

{

1,
π(ψψψ ′

1|y,ψψψ( j−1)
2 )q1(ψψψ ′

1,ψψψ
( j−1)
1 |y,ψψψ( j−1)

2 )

π(ψψψ1|y,ψψψ( j−1)
2 )q1(ψψψ

( j−1)
1 ,ψψψ ′

1|y,ψψψ( j−1)
2 )

}

.

3. Set

ψψψ( j)
1 =

{
ψψψ ′

1 with prob α(ψψψ( j−1)
1 ,ψψψ ′

1|y,ψψψ( j−1)
2 )

ψψψ( j−1)
1 with prob 1−α(ψψψ( j−1)

1 ,ψψψ ′
1|y,ψψψ( j−1)

2 )
.

A similar approach is used to sample ψψψ2 if the full conditional density of ψψψ2 is
intractable. These algorithms are extended to more than two blocks in a straightfor-
ward manner (Chib (2001)).

15.1.3 Some Basic Bayesian Updates

We now summarize four results that appear in the development of the MCMC al-
gorithms for the various models that are discussed below. These results provide, for
the stated models, the posterior distribution of a set of parameters, conditional on
the other parameters of the model. The results are stated in some generality and are
specialized, as needed, in the subsequent discussion.

Result 15.1 Suppose that

yi = Xiβ +Wibi + εi , εi|σ2,λi ∼Nni(0,σ2λ−1
i ΩΩΩi) , i≤ N

bi|ηi,D∼Nq(0,η−1
i D)

β ∼Nk(β0,B0)

where yi = (yi1, . . . ,yini)
′ is a vector of ni observations on the dependent variable for

subject i. Then marginalized over {bi}

β |y,σ2,{λi} ,{ηi} ,ΩΩΩi,D∼Nk

{
β̂ ,B
}

(15.5)

where

β̂ = B

(

B−1
0 β0 +

N

∑
i=1

XiV−1
i yi

)

, (15.6)

B =

(

B−1
0 +

N

∑
i=1

X ′
i V
−1
i Xi

)−1

(15.7)

and
Vi = σ2λ−1

i ΩΩΩi +η−1
i WiDW ′

i (15.8)

Result 15.2 Suppose that

yi = Xiβ +Wibi + εi , εi|σ2,λi ∼Nni(0,σ2λ−1
i ΩΩΩi)

bi|ηi,D∼Nq(0,η−1
i D)



15 Panel Data Modeling and Inference 487

Then
bi|yi,β ,σ2,λi,ηi,D∼Nq

(
b̂i,Di

)
(15.9)

where
b̂i = σ−2λiDiW ′

iΩΩΩ
−1
i (yi−Xiβ ) (15.10)

and
Di = (ηiD−1 +σ−2λiW ′

iΩΩΩ
−1
i Wi)−1. (15.11)

Result 15.3 Suppose that

yi = Xiβ +Wibi + εi , εi|σ2, λi ∼Nni(0, σ2λ−1
i ΩΩΩi)

bi|ηi,D∼Nq(0,ηiD) , i≤ N

D−1 ∼Wq(ρ0,R0)

where WT (ρ,R) is the Wishart distribution with density

c
|W|(ν−T−1)/2

|R|ν/2
exp

{
−1

2
tr
(
R−1W

)
}

, |W|> 0,

c =

(

2ρT/2πT (T−1)/4
T

∏
i=1

Γ
(

ρ +1− i
2

))−1

is the normalizing constant and R is a hyperparameter matrix (Roberts (2001)). Then

D−1|{bi},y,ΩΩΩi,{λi} ,{ηi}= D−1|{bi},ηi ∼Wq (ρ0 +N,R) (15.12)

where

R =

(

R−1
0 +

N

∑
i=1

ηibib ′i

)−1

. (15.13)

Result 15.4 Suppose that

yi = Xiβ +Wibi + εi , εi|σ2,λi ∼Nni(0,σ2λ−1
i ΩΩΩi) , i≤ N

σ2 ∼I G

(
v0

2
,

δ0

2

)

where I G (a,b) is the inverse-gamma distribution with density π(σ2|a,b) ∝
(
σ2
)−a+1

exp
(
−b/σ2

)
. Then

σ2|y,β ,{bi} ,{λi} ∼I G

(
ν0 +∑ni

2
,

δ0 +δ
2

)
(15.14)

where

δ =
N

∑
i=1

λiei
′ΩΩΩ−1

i ei (15.15)
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and

ei = (yi−Xiβ −Wibi)

15.1.4 Basic Variate Generators

In the application of MCMC methods it often occurs that the simulation of the given
target distribution is reduced to a sequence of simulations from standard and familiar
univariate and multivariate distributions. With that in mind, we present simulation
routines for the distributions that are encountered in the sequel.

Gamma Variate: To obtain ψ from G (α,β ) with density proportional to
ψα−1 exp(−βψ), we draw θ from G (α,1) and set ψ = θ/β . A draw of a chi-
squared variate χ2

v with ν degrees of freedom is obtained by drawing from a
G (α/2,1/2) distribution.

Inverse-Gamma Variate: A random variable that follows the inverse-gamma dis-
tribution I G (α,β ) is equal in distribution to the inverse of random variable that
follows the G (α,β ) distribution. Therefore, an inverse-gamma variate is obtained
by drawing θ from G (α,β ) and setting ψ = 1/θ .

Truncated Normal Variate: A variate from

ψ ∼T N (a,b)(μ ,σ2) ,

a univariate normal distribution truncated to the interval (a,b), is obtained by
the inverse-cdf method. The distribution function of the truncated normal random
variable is

F(t) =

⎧
⎨

⎩

0 if ψ < a
1

p2−p1

(
Φ( t−μ

σ )−Φ( a−μ
σ )
)

if a < ψ < b
1 if b < ψ

(15.16)

where

p1 = Φ
(

a−μ
σ

)
; p2 = Φ

(
b−μ

σ

)

Therefore, if U is uniform on (0,1), then

ψ = μ +σΦ−1 (p1 +U(p2− p1)) (15.17)

is the required draw. Here Φ−1 is the inverse-cdf of the standard normal distribution
and can be computed by the method of Page (1977).

Multivariate Normal Vector: To obtain a random vector ψψψ from Nk(μ ,ΩΩΩ), we
draw θ from Nk(0,Ik) and set ψψψ = μ +Lθθθ where ΩΩΩ = LL ′.

Wishart Matrix: To obtain a random positive-definite matrix W from WT (v,R),
one first generates the random lower triangular matrix T = (ti j), such that
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tii ∼
√

χ2
v−i+1 and ti j ∼N (0,1)

Then the quantity
W = LTT ′L ′

where R = LL ′ is the required draw.

15.2 Continuous Responses

As discussed in Sect. 1.1, Bayesian hierarchical modeling of subject-specific coef-
ficients leads to the canonical model for unbalanced continuous outcomes

yi = Xiβ +Wibi+εi , εi|σ2,λi,ΩΩΩi ∼Nni(0,σ2λ−1
i ΩΩΩi)

bi|ηi,D∼Nq
(
0,η−1

i D
)

λi ∼ G , ηi ∼ F

(β ,D,σ2)∼ π

where yi = (yi1, . . . ,yini)
′ is the data on the ith individual over the ni time periods,

Wi is a set of variables whose effect bi is assumed to heterogenous, Xi is a set
of raw covariates or the matrix WiAi or (X1i WiAi) if the model is derived from
a hierarchical specification in which the heterogeneity depends on cluster-specific
covariates Ai.

There are many ways to proceed from this point. If G and F are degenerate at
one, we get the Gaussian-Gaussian model. If we assume that

G = G
(νG

2
,

νG

2

)

and
F = G

(νF

2
,

νF

2

)

then the distributions of εi and bi marginalized over λi and ηi are multivariate
student-t with νG and νF degrees of freedom, respectively. This model may be called
the Student–Student model. Other models are obtained by making specific assump-
tions about the form of ΩΩΩi. For example, if εi is assumed to to be serially correlated
according to say an ARMA process, then ΩΩΩi is the covariance matrix of the assumed
ARMA process. The distribution π is typically specified in the same way, regardless
of the distributions adopted in other stages of the model. Specifically, it is common
to assume that the parameters (β ,D,σ2) are apriori mutually independent with

β ∼Nk(β0,B0) ;σ2 ∼I G

(
v0

2
,

δ0

2

)
;D−1 ∼Wp(ρ0,R0)
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15.2.1 Gaussian–Gaussian Model

To see how the analysis may proceed, consider the model in which the distributions
of the error and the random-effects are both Gaussian. In particular, suppose that

εi|σ2 ∼Nni(0,σ2ΩΩΩi),

bi|D∼Nq(0,D) , i≤ N

where the matrix ΩΩΩi is assumed to be known. Under these assumptions the joint
posterior of all the unknowns, including the random effects {bi}, is given by

π(β ,{bi},D−1,σ2|y) = π(β ,{bi},D−1,σ2)
N

∏
i=1

f (yi|β ,bi,σ2)p(bi|D). (15.18)

Wakefield, Smith, Racine Poon and Gelfand (1994) propose a Gibbs MCMC ap-
proach for sampling the joint posterior distribution based on full blocking (i.e.,
sampling each block of parameters from their full conditional distribution). This
blocking scheme is not very desirable because the random effects and the fixed ef-
fects β tend to be highly correlated and treating them as separate blocks creates
problems with mixing (Gelfand, Sahu and Carlin (1995)).

To deal with this problem, (Chib and Carlin (1999)) suggest a number of reduced
blocking schemes. One of the simplest proceeds by noting that β and {bi} can be
sampled in one block by the method of composition: first sampling β marginalized
over {bi} and then sampling {bi} conditioned on β . What makes reduced blocking
possible is the fact that the conditional distribution of the outcomes marginalized
over bi is normal which can be combined with the assumed normal prior on β in the
usual way. In particular,

f (yi|β ,D,σ2) =
∫

f (yi|β ,bi,σ2)g(bi|D)dbi

∝ |Vi|−1/2 exp{(−1/2)(yi−Xiβ ) ′V−1
i (yi−Xiβ )} ,

where Vi = σ2ΩΩΩi +WiDW ′
i , which, from Result 15.1, leads to the conditional pos-

terior of β (marginalized over {bi}).
The rest of the algorithm follows the steps of Wakefield et al. (1994). In partic-

ular, the sampling of the random effects is from independent normal distributions
that are derived by treating (yi−Xiβ ) as the “data,” bi as the regression coefficient
and bi ∼N q(0,D) as the prior and applying Result 15.2. Next, conditioned on {bi},
the full conditional distribution of D−1 becomes independent of y and is obtained by
combining the Wishart prior distribution of D−1 with the normal distribution of {bi}
given D−1. The resulting distribution is Wishart with updated parameters obtained
from Result 15.3. Finally, Result 15.4 yields the full-conditional distribution of σ2.
In applying these results, λi and ηi are set equal to one in all the expressions.
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Algorithm: Gaussian–Gaussian Panel (Wakefield et al. (1994) and Chib and
Carlin (1999))

1. Sample

(a.) β |y,σ2,D∼Nk

(
β̂ ,B
)

(b.) bi|y,β ,σ2,D∼Nq
(
b̂i,Di

)
, i≤ N

2. Sample
D−1|y,β ,{bi} ,σ2 ∼Wq {ρ0 +N,R}

3. Sample

σ2|y,β ,{bi} ,D∼I G

(
ν0 +∑ni

2
,

δ0 +δ
2

)

4. Goto 1

15.2.1.1 Example

As an illustration, we consider data from a clinical trial on the effectiveness of two
antiretroviral drugs (didanosine or ddI and zalcitabine or ddC) in 467 persons with
advanced HIV infection. The response variable yi j for patient i at time j is the square
root of the patient’s CD4 count, a seriological measure of immune system health and
prognostic factor for AIDS-related illness and mortality. The data set records patient
CD4 counts at study entry and again at 2, 6, 12, and 18 months after entry, for the
ddI and ddC groups, respectively.

The model is formulated as follows. If we let yi denote a ni vector of re-
sponses across time for the ith patient, then following the discussion in Carlin and
Louis (2000), suppose

yi|β ,bi,σ2 ∼Nni(Xiβ +Wibi,σ2ΩΩΩi), ΩΩΩi = Ini

bi|D∼N2(0,D) , i≤ 467 , (15.19)

where the jth row of the patient i’s design matrix Wi takes the form wi j = (1, ti j), ti j

belongs to the set {0,2,6,12,18} and the fixed design matrix Xi is obtained by hori-
zontal concatenation of Wi , diWi and aiWi, where di is a binary variable indicating
whether patient i received ddI (di = 1) or ddC (di = 0), and ai is a binary variable
indicating if the patient was diagnosed as having AIDS at baseline (ai = 1) or not
(ai = 0).

The prior distribution of β : 6×1 is assumed to be N 6(β0,B0) with

β0 = (10,0,0,0,−3,0) , and

B0 = Diag(22,12,(.1)2,12,12,12) ,

while that on D−1 is taken to be Wishart W (R0/ρ0,2,ρ0) with ρ0 = 24 and
R0 = diag(.25,16). Finally, σ2 is apriori assumed to follow the inverse-gamma
distribution
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σ2 ∼I G

(
ν0

2
,

δ0

2

)
,

with ν0 = 6 and δ0 = 120 (which imply a prior mean and standard deviation both
equal to 30).

The MCMC simulation is run for 5000 cycles beyond a burn-in of a 100 cy-
cles. The simulated values by iteration for each of the ten parameters are given in
Fig. 15.2. Except for the parameters that are approximately the same, the sampled
paths of the parameters are clearly visible and display little correlation.

These draws from the posterior distribution are used to produce different sum-
maries of the posterior distribution. In Fig. 15.3 we report the marginal posterior
distributions in the form of histogram plots. We see that three of the regression pa-
rameters are centered at zero, that D11 is large and D22 (which is the variance of the
time-trend random effect) is small.

15.2.2 Robust Modeling of bi: Student–Student
and Student-Mixture Models

We now discuss models in which the error distribution of the observations in the ith
cluster is multivariate-t and the distribution of bi is modeled as multivariate-t or a
mixture of normals. To begin, consider the student-student model
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Fig. 15.2 Aids clustered data: Simulated values by iteration for each of ten parameters
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Fig. 15.3 Aids clustered data: Marginal posterior distributions of parameters based on 5000
MCMC draws

yi = Xiβ +Wibi + εi, εi|σ2,λi ∼Nni(0,σ2λ−1
i ΩΩΩi)

bi|ηi,D∼Nq(0,η−1
i D); i≤ N

λi ∼ G
(νG

2
,

νG

2

)
; ηi ∼ G

(νF

2
,

νF

2

)

β ∼Nk(β0,B0) ; σ2 ∼I G

(
v0

2
,

δ0

2

)
; D−1 ∼Wp(ρ0,R0)

This model is easily analyzed by including λi and ηi, i ≤ N, in the sampling. In
that case, we follow the Gaussian–Gaussian MCMC algorithm, except that each
step is implemented conditioned on {λi} and {ηi} and two new steps are added in
which {λi} and {ηi} are sampled. The quantities that go into forming the various
parameters in these updates are all obtained from the results of Sect. 1.3.

Algorithm: Student–Student Panel

1. Sample

(a) β |y,σ2,D,{λi} ,{ηi} ∼Nk

(
β̂ ,B
)

(b) bi|y,β ,σ2,D,λi,ηi ∼Nq
(
b̂i,Di

)
,
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2. Sample

(a)

λi|y,β ,{bi} ,σ2 ∼ G

(
νG +ni

2
,

νG +σ−2e ′iΩΩΩ
−1
i ei

2

)

,

(b)

ηi|bi,D∼ G

(
νF +q

2
,

νF +b ′i D
−1bi

2

)
, i≤ N

3. Sample
D−1|y,β ,{bi} ,σ2,{λi} ,{ηi} ∼Wq {ρ0 +N,R}

4. Sample

σ2|y,β ,{bi} ,D,{λi} ,{ηi} ∼I G

(
ν0 +∑ni

2
,

δ0 +δ
2

)

5. Goto 1

Another possibility is to assume that bi is drawn from a finite mixture of Gaussian
distributions. For example, one may assume that bi ∼ q1N (0,D1)+q2N (0,D2 =
ηD1) where η > 1 and q j is the probability of drawing from the jth component of
the mixture. Chen and Dunson (2003), for example, use a particular mixture prior in
which one of the component random effects variances can be zero, which leads to a
method for determing if the particular effect is random. Like any Bayesian analysis
of a mixture model, analysis exploits the hierarchical representation of the mixture
distribution:

bi|si = j ∼N (0,D j)
Pr(si = j) = q j , j = 1,2

where si = {1,2} is a latent population indicator variable. The MCMC based fitting
of this Gaussian-mixture model proceeds by sampling the posterior distribution

π(β ,{bi},D−1
1 ,σ2,{λi} ,η ,{si},q|y) = π(β ,{bi},D−1

1 ,σ2,

{λi} ,η ,{si}) f (y| β ,{bi},σ2,{λi})

= π(β )π(D−1)π(σ2)π(λ )π(q)
N

∏
i=1

f (yi|β ,bi,σ2,λi)p(bi|si,Dsi)p(si|q)p(λi)

where the prior on η is (say) inverse-gamma and that of q = (q1,q2) a Dirichlet
with density proportional to qm10−1

1 qm20−1
2 where the hyper-parameters m10 and m20

are known. This posterior density is sampled with some minor modifications of
the Student–Student algorithm. Steps 1 and 2 are now conditioned on {si}; as a
result Vi in the updates is replaced by Vsi = σ2λ−1

i ΩΩΩi +WiDsiW
′
i and Di by D∗si

=
(D−1

si
+ σ−2λiW ′

iΩΩΩ
−1
i Wi)−1. Step 3 is now the sampling of D−1

1 where the sum
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over the outer-product of the bi’s is replaced by ∑i:si=1 bib ′i +η−1 ∑i:si=2 bib ′i . Steps
4 and 5 are unchanged. Finally, two new steps are inserted: Step 6 for sampling
η and Step 6 for sampling q. Each of these steps is straightforward. In Step 6 we
sample η from an updated inverse-gamma distribution based on those bi that are
associated with population 2; the update is therefore from the model bi|η ,D1 ∼
N (0,ηD1), η ∼ IG(a0/2,b0/2) which leads to an inverse-gamma distribution. The
updated distribution of q in Step 7 is easily seen to be Dirichlet with parameters
m10+ m1 and m20 +m2, respectively, where m j are the total number of observations
ascribed to population j in that iteration of the MCMC sampling.

15.2.3 Heteroskedasticity

The methods described above are readily adapted to deal with heteroskedasticity in
the observation error process by parameterizing the error covariance matrix σ2ΩΩΩi.
Instead of assuming that εi|σ2 ∼Nni(0,σ2ΩΩΩi), we assume

εi|σ2
i ∼Nni(0,σ2

i Ini)

where σ2
i can be modeled hierarchically by assuming that

σ2
i |δ0 ∼ IG

(
ν0

2
,

δ0

2

)

δ0 ∼ G

(
ν00

2
,

δ00

2

)

a specification that appears in Basu and Chib (2003). In the first stage of this prior
specification, one assumes that conditioned on the scale of the inverse-gamma dis-
tribution, σ2

i is inverse-gamma and then the scale is in turn allowed to follow a
gamma distribution. The fitting of this model is quite similar to the fitting of the
Gaussian–Gaussian model except that σ2ΩΩΩi is replaced by σ2

i Ini in Steps 1 and 2,
ΩΩΩi is replaced by Ini in Steps 3 and 4 is modified and a new Step 5 is inserted for the
sampling of δ0.

Algorithm: Gaussian–Gaussian Hetroskedastic Panel (Basu and Chib (2003))

1. Sample

(a)

β |y,
{

σ2
i

}
,D∼Nk

(
β̂ ,B
)

(b)
bi|y,β ,

{
σ2

i

}
,D∼Nq

(
b̂i,Di

)
, i≤ N

2. Sample
D−1|y,β ,{bi} ,σ2 ∼Wq {ρ0 +N,R}



496 S. Chib

3. Sample

σ2
i |y,β ,{bi},D,δ0 ∼I G

(
ν0 +ni

2
,

δ0+ ‖ yi−Xiβ −Wibi ‖2

2

)

4. Sample

δ0|σ2
i ∼ G

(
ν0 +ν00

2
,

σ−2
i +δ00

2

)

5. Goto 1

15.2.4 Serial Correlation

To deal with the possibility of serial correlation in models with multivariate-t error
and random effects distributions we now assume that

εi|λi,φ ∼Nni(0,σ2λ−1
i ΩΩΩi)

where ΩΩΩi =ΩΩΩi(φ) is a ni×ni covariance matrix that depends on a set of p parameters
φ = (φ1, . . . ,φp). Typically, one will assume that the errors follow a low-dimensional
stationary ARMA process and the matrix ΩΩΩi will then be the covariance matrix
of the ni errors. In that case, φ represents the parameters of the assumed ARMA
process. The fitting of this model by MCMC methods is quite straightforward. The
one real new step is the sampling of φ by the M–H algorithm along the lines of Chib
and Greenberg (1994).

Algorithm: Student–Student Correlated Error Panel

1. Sample

(a)

β |y,σ2,D,{λi} ,φ ∼Nk

(
β̂ ,B
)

(b)
bi|y,β ,σ2,D,{λi} ,{ηi} ,φ ∼Nq

(
b̂i,Di

)
,

2. Sample

(a)

λi|y,β ,{bi} ,σ2,φ ∼ G

(
νG +ni

2
,

νG +σ−2e ′iΩΩΩ
−1
i ei

2

)

,

(b)

ηi|bi,D∼ G

(
νF +q

2
,

νF +b ′i D
−1bi

2

)
, i≤ N

3. Sample
D−1|y,β ,{bi} ,σ2,{ηi} ,φ ∼Wq {ρ0 +N,R}
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4. Sample

σ2|y,β ,{bi} ,D,φ ∼I G

(
ν0 +∑ni

2
,

δ0 +δ
2

)

5. Sample

φ |y,β ,{bi} ,D,σ2,{λi} ∝ π(φ)
n

∏
i=1

N
(
yi|Xiβ +Wibi,σ2λ−1

i ΩΩΩi
)

6. Goto 1

In the sampling of φ in the above algorithm we use the tailored proposal density
as suggested by Chib and Greenberg (1994). Let

φ̂ = argmax
φ

ln

{

π(φ)
n

∏
i=1

N
(
yi|Xiβ +Wibi,σ2λ−1

i ΩΩΩi
)
}

︸ ︷︷ ︸
g(φ)

be the conditional mode of the full conditional of φ that is found by (say) a few steps
of the Newton–Raphson algorithm, and let V be the symmetric matrix obtained by
inverting the negative of the Hessian matrix (the matrix of second derivatives) of
lng(φ) evaluated at φ̂ . Then, our proposal density is given by

q(φ |y,β ,{bi},D,σ2) = tp(φ |φ̂ ,V,ν)

a multivariate-t density with mean φ̂ , dispersion matrix V and ν degrees of freedom.
In this M–H step, given the current value φ , we now generate a proposal value φ ′
from this multivariate-t density and accept or reject with probability of move

α(φ ,φ ′|y,β ,{bi},D,σ2) = min

{

1,
g(φ ′)
g(φ)

tp(φ |φ̂ ,V,ν)
tp(φ ′|φ̂ ,V,ν)

}

If the proposal value is rejected we stay at the current value φ and move to Step 1 of
the algorithm. As before, by setting λi and ηi to one we get the Gaussian–Gaussian
version of the autoregressive model.

15.3 Binary Responses

Consider now the situation in which the response variable is binary (0,1) and the
objective is to fit a panel model with random effects. The classical analysis of such
models (under the probit link) was pioneered by Chamberlain (1980), Heckman
(1981) and Butler and Moffitt (1982).

Suppose that for the ith individual at time t, the probability of observing the
outcome yit = 1, conditioned on the random effect bi, is given by
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Pr(yit = 1|bi) = Φ(x ′itβ +w ′
itbi) ,

where Φ is the cdf of the standard normal distribution, and bi|D ∼Np(0,D) inde-
pendent of xit . Since the ni observations in the ith cluster are correlated, the joint
density of the observations yi = (yi1, . . . ,yini)

′ is

Pr(yi|β ,D) =
∫ { T

∏
t=1

[Φ(x ′itβ +w ′
itbi)]

y
it [1−Φ(x ′itβ +w ′

itbi)]1−yit

}

×N (bi|0,D)d bi

Under the assumption that the observations across individuals are independent, the
likelihood function of the parameters (β ,D) is the product of Pr(yi|β ,D). Although
methods are now available to evaluate this integral under some special circum-
stances, it turns out that it is possible to circumvent the calculation of the likeli-
hood function. The method relies on the approach that was introduced by Albert
and Chib (1993).

To understand the Albert and Chib algorithm, consider the cross-section binary
probit model in which we are given n random observations such that Pr(yi = 1) =
Φ(x ′i β ). An equivalent formulation of the model is in terms of latent variables z =
(z1, . . . ,zn) where

zi|β ∼N (x ′i β ,1), yi = I[zi > 0] ,

and I is the indicator function. Albert and Chib (1993) exploit this equivalence and
propose that the latent variables {z1, . . . ,zn}, one for each observation, be included
in the MCMC algorithm along with the regression parameter β . In other words, they
suggest using MCMC methods to sample the joint posterior distribution

π(β ,z|y) ∝ π(β )
N

∏
i=1

N (zi|x ′i β ,1)
{

I(zi > 0)yi + I(zi < 0)1−yi
}

where the term in braces in the probability of yi given (β ,zi) and is one for yi = 1
when zi > 0 and is one for yi = 0 when zi < 0. The latter posterior density is sampled
by a two-block Gibbs sampler composed of the full conditional distributions:

1. β |y,z
2. z|y,β .

Even though the parameter space has been enlarged, the introduction of the latent
variables simplifies the problem considerably. The first conditional distribution, i.e.,
β |y,z, is the same as the distribution β |z since knowledge of z means that y has no
additional information for β . The distribution β |z is easy to derive since the response
variable is continuous. The second conditional distribution, i.e., z|y,β , factors into
n distributions zi|yi,β and is easily seen to be truncated normal given the value of
yi. Specifically, if yi = 1, then

zi ∼T N (0,∞)(x
′
i β ,1) (15.20)
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a truncated normal distribution with support (0,∞), whereas if yi = 0, then

zi ∼T N (−∞,0](x
′
i β ,1) (15.21)

a truncated normal distribution with support (−∞,0). These truncated normal dis-
tributions are simulated by the method given in Sect. 1.4. For the case of (15.20), it
reduces to

x ′i β +Φ−1 [Φ(−x ′i β )+U
(
1−Φ(−x ′i β )

)]

and for the case (15.21) to

x ′i β +Φ−1 [UΦ(−x ′i β )
]
,

where U is a uniform random variable on (0,1). Hence, the algorithm proceeds
through the simulation of β given the latent data and the simulation of the latent
data given (y,β ).

Given this framework, the approach for the panel probit model becomes trans-
parent. For the ith cluster, we define the vector of latent variable

zi = Xiβ +Wibi + εi , εi ∼Nni(0,Ini)

and let
yit = I[zit > 0]

where zi = (zi1, . . . ,zini)
′, Wi is a set of variables whose effect bi is assumed to

heterogenous, Xi is a set of raw covariates or the matrix WiAi or (X1i WiAi) if the
model is derived from a hierarchical specification in which the heterogeneity de-
pends on cluster-specific covariates Ai. The MCMC implementation in this set-up
proceeds by including the {zit} in the sampling. Given the {zit} the sampling resem-
bles the steps of the Gaussian–Gaussian algorithm with zit playing the role of yit and
σ2λ−1

i ΩΩΩi = Ini . The sampling of zit is done marginalized over {bi} from the condi-
tional distribution of zit |zi(−t),yit ,β ,D, where zi(−t) is the vector zi excluding zit . It
should be emphasized that the simulation of these distributions does not require the
evaluation of the likelihood function.

Algorithm: Gaussian–Gaussian Panel Probit (Chib and Carlin (1999))

1. Sample

(a)

zit |zi(−t),yit ,β ,D ∝ N (μit ,vit)
{

I (zit < 0)1−yit + I (zit > 0)yit
}

μit = E(zit |zi(−t),β ,D)

vit = Var(zit |zi(−t),β ,D)

(b)

β |{zit},D∼Nk

(

B(B−1
0 β0 +

N

∑
i=1

X ′
i V
−1
i zi),B

)
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B = (B−1
0 +

N

∑
i=1

X ′
i V
−1
i Xi)−1; Vi = Ini +WiDW ′

i

(c)
bi|y,β ,D∼Nq

(
DiW ′

i (zi−Xiβ ),Di
)
, i≤ N

Di = (D−1 +W ′
i Wi)−1

2. Sample
D−1|y,β ,{bi} ∼Wq {ρ0 +N,R}

3. Goto 1

Because of this connection with the continuous case, the analysis of binary panel
data may be extended in ways that parallel the developments in the previous sec-
tion. For example, we can analyze binary data under the assumption that εi is
multivariate-t and/or the assumption that the random effects distribution is student-t
or a mixture of normals. We present the algorithm for the student–student binary
response panel model without comment.

Algorithm: Student–Student Binary Panel

1. Sample

(a)

zit |zi(−t),yit ,β ,D ∝ N (μit ,vit)
{

I (zit < 0)1−yit + I (zit > 0)yit
}

μit = E(zit |zi(−t),β ,D,λi)

vit = Var(zit |zi(−t),β ,D,λi)

(b) β |{zit},D{λi} ,{ηi} ∼Nk

(
β̂ ,B
)

(c) bi|zi,β ,D,λi,ηi ∼Nq
(
b̂i,Di

)

2. Sample

(a)

λi|y,β ,{bi} ,σ2 ∼ G

(
νG +ni

2
,

νG +σ−2e ′iΩΩΩ
−1
i ei

2

)

, i≤ N

(b)

ηi|bi,D∼ G

(
νG +q

2
,

νG +b ′i D
−1bi

2

)
, i≤ N

3. Sample
D−1|{zit} ,β ,{bi} ,{λi} ,{ηi} ∼Wq {ρ0 +N,R}

4. Goto 1
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The fact that this, and other model variants for binary responses, are handled
effortlessly is a testament to the flexibility and power of the Bayesian approach.

15.4 Other Outcome Types

15.4.1 Censored Outcomes

Given the discussion of the binary response models in the preceding section it should
not be surprising that the Bayesian approach to censored data would proceed in
much the same fashion. Consider then a Gaussian–Gaussian Tobit panel data model
for the ith cluster:

zi = Xiβ +Wibi + εi , εi ∼Nni(0,σ2Ini)
bi ∼Nq(0,D)

(β ,σ2,D)∼ π

where the observed outcomes are obtained as

yit = max{zit ,0}

This model is fit along the lines of the Gaussian–Gaussian model by adopting the
strategy of Chib (1992) wherein one simulates zit for those observations that are
censored from a truncated normal distribution, truncated to the interval (−∞,0). In
our description of the fitting method we let yiz be a ni×1 vector with ith component
yit if that observation is not censored and zit if it is censored. A new Step 1 is inserted
in which the latent zit are sampled conditioned on the remaining values of yiz in the
ith cluster, which we denote by yiz(−t); then in Step 2 the only change is that instead
of yi we use yiz; in Step 3 in the sampling of bi we replace the vector yi by the most
current value of yiz; Step 4 for the sampling of D−1 is unchanged; and in Step 5
dealing with the sampling of σ2 we use yiz in place of yi in the definition of δ.

Algorithm: Gaussian–Gaussian Tobit Panel

1. Sample

(a)

zit |yiz(−t),yit ,β ,σ2,D ∝ N (μit ,vit) I (zit < 0) if yit = 0

μit = E(zit |yiz(−t),β ,σ2,D)

vit = Var(zit |yiz(−t),β ,σ2,D)

(b)

β |yz,σ2,D∼Nk

(
β̂ ,B
)
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(c)
bi|yz,β ,σ2,D∼Nq

(
b̂i,Di

)
, i≤ N

2. Sample
D−1|yz,β ,{bi},σ2 ∼Wq {ρ0 +N,R}

3. Sample

σ2|yz,β ,{bi} ,D∼I G

(
ν0 +∑ni

2
,

δ0 +δ
2

)

4. Goto 1

Just as in the case of continuous and binary outcomes, this algorithm is easily
modified to allow the random effects have a student-t or a mixture of normals dis-
tribution and to allow the observation errors be student-t. Analysis of any of these
models is quite difficult from the frequentist perspective.

15.4.2 Count Responses

Bayesian methods are also effectively applied to panel data in which the responses
are counts. A framework for fitting such models under the assumption that the dis-
tribution of the counts, given the random effects, is Poisson is developed by Chib,
Greenberg and Winklemnann (1998). To describe the set-up, for the ith cluster

yit |β ,bi ∼ Poisson(λit)
ln(λit) = lnτit +x ′itβ +w ′

itbi

where the covariate vectors x ′it and w ′
it are the tth row of the matrices Xi and Wi,

respectively, and Xi are the raw covariates or the matrix WiAi or (X1i WiAi) if
the model is derived from a hierarchical specification in which the heterogeneity
depends on cluster-specific covariates Ai. The quantity τit which is one if each count
is measured over the same interval of time. This specification of the model produces
the likelihood function

f (y|β ,D) =
n

∏
i=1

∫
N (bi|0,D)p(yi|β ,bi)dbi (15.22)

where

p(yi|β ,bi) =
ni

∏
t=0

λ yit
it exp(−λit)

yit!
(15.23)

is the product of the Poisson mass function with mean λit .
The interesting aspect of the MCMC algorithm in this case is the sampling of

both β and {bi} by tailored M–H steps. This is because the full conditional distri-
butions in this model do not belong to any known family of distributions. At each
step of the algorithm, there are n + 1 M–H steps. It may appear that the computa-
tional burden is high when n is large. This turns out not to be case.
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Algorithm: Panel Poisson Chib, Greenberg and Winklemnann (1998))

1. Calculate the parameters (m0,V0) as the mode and inverse of the negative
Hessian of

logNk( β |β0,B0)+
N

∑
i=1

log p(yi|β ,bi)

propose β ′ ∼ T (β |m0,V0,ν) (the multivariate-t density) and move to β ′ with
probability

min

{
∏N

i=1 p(yi|β ′,bi)Nk(β ′|0,B)
∏N

i=1 p(yi|β ,bi)Nk(β |0,B)
T (β |m0,V0,ν)
T (β ′|m0,V0,ν)

,1

}

2. Calculate the parameters (mi,Vi) as the mode and inverse of the negative
Hessian of

logNq(bi|0,D)+ log p(yi|β ,bi)

propose b ′i ∼T (bi|mi,Vi,ν) and move to b ′i with probability

min

{
p(yi|β ,b ′i )Nq(b ′i |0,D)
p(yi|β ,bi)Nq(bi|0,D)

T (bi|mi,Vi,ν)
T (b ′i |mi,Vi,ν)

,1

}

3. Sample
D−1|y,β ,{bi},σ2 ∼Wq {ρ0 +N,R}

15.4.3 Multinomial Responses

Multinomial panel responses arise in several different areas and the fitting of this
model when the link function is assumed to be multinomial logit is exactly the same
as the algorithm for count responses. The only difference is that instead of the Pois-
son link function we now have the multinomial logit link. Let yit be a multinomial
random variable taking values {0,1, . . . ,J} and assume that

Pr(yit = j|β ,bi) =
exp
(

α j +x ′it jβ +w ′
it jbi

)

∑J
l=0 exp

(
αl +x ′itlβ +w ′

itlbi
)

where for identifiability α0 is set equal to zero. The joint probability of the outcomes
in the ith cluster, conditioned on the bi, is now given by

p(yi|β ,bi) =
ni

∏
t=1

Pr(yit = jt |β ,bi) (15.24)

where jt is the observed outcome at time t. The structure of the problem is seen to
be identical to that in the count case and the preceding algorithm applies directly
to this problem by replacing the mass function in (15.23) with the mass function
in (15.24).
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Chiang, Chib and Narasimhan (1999) develop an interesting variant of this model
in which the possible values that yit can take is not the same across clusters. Such a
situation arises when the multinomial outcomes are choices made by a subject (for
example choice of transportation mode or choice of brand of a product) and where
the assumption that the choice set is the same across subjects is too strong and must
be relaxed. The model discussed in the paper only appears to be fittable by Bayesian
methods. The paper includes a detailed example.

15.5 Binary Endogenous Regressor

In many applied studies, one is interested in the effect of a given (binary) covariate
on the response but under the complication that the binary covariate is not sequen-
tially randomly assigned. In other words, the assumption of sequential exogeneity is
violated. This problem has not been extensively studied in the literature but interest-
ingly it is possible to develop a Bayesian approach to inference that in many ways
is quite straightforward. For concreteness, suppose that in the context of the model
in (15.2) the last covariate in x1it (namely x12it) is the covariate of interest and the
model is given by

yit = x ′11itβ11 + x12itβ12 +w ′
itc2i + eit

where x1it = (x11it ,x12it) and x11it : k11×1. Assume that the covariates x11it and wit :
q×1 satisfy the assumption of sequential exogeneity but that x12it does not. Now let
zit : kz× 1 be time-varying instruments and suppose that the model generating the
endogenous covariate is

x12it = I
(
x ′11itγ +w ′

itd2i + zitδ+uit > 0
)

where (
eit

uit

)
∼N2

((
0
0

)
, ΩΩΩ =

(
ω11 ω12

ω12 1

))

and ω12 �= 0. Letting x∗12it = x ′11itγ +w ′
itd3i + zitδ+ui, the model is reexpressed as

(
yit

x∗12it

)

︸ ︷︷ ︸
y∗it

=
(

x ′11it x12it 0 ′ 0 ′

0 ′ 0 x ′11it zit

)

︸ ︷︷ ︸
X1it

⎛

⎜
⎜
⎝

β11

β12

γ
δ

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
β1

+
(

w ′
it 0 ′

0 ′ w ′
it

)

︸ ︷︷ ︸
Wit

(
c2i

d2i

)

︸ ︷︷ ︸
β2i

+
(

eit

uit

)

︸ ︷︷ ︸
εit

or as
y∗it = X1itβ1 +Witβ2i + εit
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where β1 is k1×1 with k1 = 2k11 +1+kz and β2i is 2q×1. If we assume that β2i as
before is modeled in terms of covariates ai : r×1 as

(
c2i

d2i

)
=
(

Iq⊗a ′i 0 ′

0 ′ Iq⊗a ′i

)(
β21

β22

)
+
(

b1i

b2i

)

or compactly as

β2i = Aiβ2 +bi

where β2 : k2×1 and k2 = 2qr, then we can rewrite the outcome vector for subject
i at time t as

y∗it = Xitβ +Witbi + εit

where

Xit = (X1it ,AiWit)

β = (β1,β2) : k×1, and k = k1 +k2. This is similar to the models that we have dealt
with except that this is a system of two equations for each (i, t) with the second
component of the outcome being latent. For the ith cluster the preceding model (in
conjunction with the standard assumptions about bi) is written as

y∗i = Xiβ +Wibi+εi , εi|λi,ΩΩΩ∼N2ni(0,λ−1
i {Ini ⊗ΩΩΩ})

bi|D∼N2q (0,D)

This model is fit along the lines of the binary panel by simulating {x∗12it}
ni
t=1 in y∗i

(these appear in rows 2, 4, 6, etc. in the vector y∗i ) from appropriate truncated nor-
mal distributions, according to the device of Albert and Chib (1993), marginalized
over bi. In our description of the fitting method given below it is to be understood
that y∗i contains the most recently simulated values of {x∗12it}

ni
t=1. A new step is the

sampling of (ω11,ω12). The best way of working with these parameters is to repa-
rameterize them to (σ2,ω12) where σ2 = ω11−ω2

12 and then assuming that prior
information on the transformed parameters is represented by the conditionally con-
jugate distribution

π(σ2,ω12) = I G

(
σ2|ν0

2
,

δ0

2

)
N
(
ω12|m0,σ2M0

)
(15.25)

Now conditioned on {x∗12it}i,t and {bi} it follows that

ỹit = ω12uit + vit (15.26)

where

ỹit = yit −x ′11itβ11− x12itβ12−w ′
itc2i ,

uit = x∗12it −x ′11itγ +w ′
itd2i + zitδ
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and
vit ∼ N(0,σ2)

The prior in (15.25) and the sampling model in (15.26) when combined by Bayes
theorem produce an updated distribution of (σ2,ω12) that is sampled in one block.
To see the details, we express the model in (15.26) for all M = ∑N

i=1 Ti observations
as

ỹ = ω12u+v

where v∼N (0,σ2IM). By simple calculations it is seen that the updated distribu-
tion of σ2 marginalized over ω12 is

I G

(

σ2|ν0 +M
2

,
δ0 +(ỹ−um0)

′ (IM +uM0u ′)−1 (ỹ−um0)
2

)

while that of ω12 conditioned on σ2 is

N
(

ω12|,Wσ−2 (M0m0 +u ′ỹ
)
,W = σ2 (M0 +u ′u

)−1
)

Algorithm: Gaussian–Gaussian Binary Endogenous Panel

1. Sample

(a)

x∗12it |(y∗i \x∗12it) ,x12it ,β ,D,ΩΩΩ∼∝ N (μit ,vit)
{

I (x∗12it < 0)1−x12it + I (x12it > 0)x12it
}

μit = E(x∗12it |(y∗i \x∗12it) ,x12it ,β ,D,ΩΩΩ)
vit = Var(x∗12it |(y∗i \x∗12it) ,x12it ,β ,D,ΩΩΩ)

(b)

β |y∗,ΩΩΩ,D∼Nk

(
β̂ ,B
)

(c)
bi|y∗,β ,D,ΩΩΩ∼Nq

(
b̂i,Di

)
, i≤ N

2. Sample
D−1|y∗,β ,{bi},σ2 ∼Wq {ρ0 +N,R}

3. Sample

(a)

σ2|y∗,β ,{bi} ,D∼

I G

(

σ2|ν0 +M
2

,
δ0 +(ỹ−um0)

′ (IM +uM0u ′)−1 (ỹ−um0)
2

)
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(b)

ω12|y∗,β ,{bi} ,σ2,D∼

N
(

ω12|,Wσ−2 (M0m0 +u ′ỹ
)
,W = σ2 (M0 +u ′u

)−1
)

4. Goto 1

15.6 Informative Missingness

It is possible to develop a range of panel data models in which the outcome on a
given subject at time t is potentially missing. Each individual at time t supplies two
observations: cit and yit . The variable cit is binary and takes the value 1 in which
case yit is observed or the value 0 in which case the observation yit is missing. The
two random variables are correlated due to the presence of common unobserved
random variables. The missigness mechanism is thus non-ignorable. To describe
the basic components of such a model, suppose yit is the outcome (which could be
continuous, discrete, or censored) and cit is an indicator variable of non-missigness.
As an example suppose that the variable cit is one if the individual is working and
0 otherwise and yit is a continuous variable indicating the person’s wage. Thus, the
variable yit is observed when cit is one; otherwise the variable yit is missing. Let c∗it
denote a continuous random variable that is marginally generated as

c∗it = x ′itγi + zitδi +ui

and let
cit = I (c∗it > 0)

where γi and δi are subject-specific coefficients and zit is an additional covariate
(the instrument). For simplicity we are assuming that the effect of each covariate is
subject-specific although this can be relaxed, much as we have done in the models
discussed previously. Also suppose that the outcome yit (under the assumption that
it is continuous) is marginally generated as

yit = x ′itαi + εit

where (
εit

uit

)
∼N2

((
0
0

)
,ΩΩΩ =

(
ω11 ω12

ω12 1

))

To complete the model, we specify the distribution of the heterogenous coefficients
with a hierarchical prior. Let βi = (α ′

i ,γ ′i ,δi)
′ and assume that

βi|β ,D∼N (Aiβ ,D)

where D is a full matrix. Under this latter specification, the two components of the
model are tied together not just by correlation amongst the errors but also by the
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dependence between αi and (γi,δi) as measured by the off-diagonal blocks D12 and
D13 of D. It is also assumed that the covariates xit and zit are observable even when
yit is missing (ie., when cit = 0).

We mention that a variant of this model is considered by Chib, Seetharaman
and Strijnev (2004). In that model yit is multinomial indicating choice amongst a
given set of brands in a particular category (say cola) and cit is a variable that indi-
cates whether purchase into the category occurs at shopping visit t; if the individual
does not purchase in the category then the brand-choice outcome is missing. They
describe the Bayesian MCMC fitting of the model and apply the model and the
algorithm to a scanner panel data set.

15.7 Prediction

In some problems one is interested in predicting one or more post-sample obser-
vations on a given individual. Specifically, for an individual in the sample, we are
interested in making inferences about the set of observations

yi f = (yini+1, . . . ,yini+s)

given sample data and a particular hierarchical Bayesian model. In the Bayesian
context, the problem of prediction is solved by the calculation of the predictive
density

f (yi f |y) =
∫

p(yi f |y,δi,θθθ)π(δi,θθθ |y)dδidθθθ

where δi denotes the set of cluster-specific unobserved random-variables (such as
zi in binary and censored response models and the random effects bi) and θθθ denote
the entire set of parameters. The predictive density is the density of yi f marginalized
over (δi,θθθ) with respect to the posterior distribution of (δi,θ).

This predictive density is summarized in the same way that we summarized the
posterior density of the parameters–by sampling it. Sampling of the predictive den-
sity is conducted by the method of composition. According to the method of compo-
sition, if f (y) =

∫
f (y|x)π(x)dx, and x(g) is a draw from π(x), then y(g) drawn from

f (y|x(g)) is a draw from f (y). Thus, a draw from the marginal is obtained simply
by sampling the conditional density f (y|x) for each value drawn from π(x).

The method of composition leads to an easily implementable procedure for calcu-
lating the predictive density in every panel data model that we have considered. For

example in the Gaussian-Gaussian model, given (β (g), σ2(g),b(g)
i ), the gth MCMC

draw on (β , σ2,bi), the gth draw from the predictive density is obtained by drawing

ε(g)
it ∼N (0,σ2(g)) , t = ni +1, . . . ,ni + s

and setting
y(g)

it = x ′itβ (g) +w ′
itb

(g)
i + ε(g)

it , t = ni +1, . . . ,ni + s

The resulting sample of draws are summarized in terms of moments, quantiles and
density plots.
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15.8 Residual Analysis

One approach to Bayesian residual analysis relies on the idea of “realized errors” in-
troduced by Zellner (1975) and studied more recently by Chaloner and Brant (1988)
and Albert and Chib (1995). The idea is to compute the posterior distribution of the
error and define a residual to be outlying if the posterior distribution is concentrated
on large values.

Consider for simplicity the Gaussian–Gaussian model for continuous responses.
In that case, the error conditioned on yit is given by

εit = yit −x ′itβ −w ′
itbi

and, therefore, the posterior distribution of εit is determined by the posterior dis-
tribution of β and bi. To obtain this posterior distribution, at each iteration of the
sampling, we compute the value

ε(g)
it = yit −x ′itβ (g)−w ′

itb
(g)
i

where {β (g),b(g)
i } are the gth sampled values. Then, the collection of values {ε(g)

it }
constitutes a sample from the posterior distribution π(εit |y). There are various ways
to summarize this posterior distribution in order to find outlying observations. One
possibility is to compute the posterior probability

Pr
(∣∣
∣
εit

σ

∣
∣
∣> k|y

)

where k is 2 or 3, and compare the posterior probability (computed from the sim-

ulated draws ε(g)
it /σ (g)) with the prior probability that the standardized residual is

bigger that k in absolute value. The observation is classified as on outlier if the ra-
tio of the posterior probability to the prior probability is large. Interestingly, similar
ideas are used in panel probit models as discussed by Albert and Chib (1995).

15.9 Model Comparisons

Posterior simulation by MCMC methods does not require knowledge of the
normalizing constant of the posterior density. Nonetheless, if we are interested in
comparing alternative models, then knowledge of the normalizing constant is es-
sential. This is because the standard and formal Bayesian approach for comparing
models is via Bayes factors, or ratios of marginal likelihoods. The marginal likeli-
hood of a particular model is the normalizing constant of the posterior density and
is defined as

m(y|M ) =
∫

p(y|M ,θθθ)π(θθθ |M )dθθθ , (15.27)



510 S. Chib

the integral of the likelihood function with respect to the prior density. If we have
two models Mk and Ml , then the Bayes factor is the ratio

Bkl =
m(y|Mk)
m(y|Ml)

. (15.28)

Computation of the marginal likelihood is, therefore, of some importance in
Bayesian statistics (DiCicio, Kass, Raftery and Wasserman (1997), Chen and Shao
(1998), Roberts (2001)). Unfortunately, because MCMC methods deliver draws
from the posterior density, and the marginal likelihood is the integral with respect
to the prior, the MCMC output cannot be used directly to average the likelihood. To
deal with this problem, a number of methods have appeared in the literature. One
simple and widely applicable method is due to Chib (1995) which we briefly explain
as follows.

Begin by noting that m(y) by virtue of being the normalizing constant of the
posterior density can be expressed as

m(y|M ) =
p(y|M ,θθθ ∗)π(θθθ ∗|M )

π(θθθ ∗|M ,y)
, (15.29)

for any given point θθθ ∗ (generally taken to be a high density point such as the
posterior mean). Thus, provided we have an estimate π̂(θθθ ∗|M ,y) of the posterior
ordinate, the marginal likelihood is estimated on the log scale as

logm(y|M ) = log p(y|M ,θ ∗)+ logπ(θθθ ∗|M )− log π̂(θ ∗|M ,y) . (15.30)

In the context of both single and multiple block M–H chains, good estimates of the
posterior ordinate are available. For example, when the MCMC simulation is run
with B blocks, to estimate the posterior ordinate we employ the marginal-conditional
decomposition

π(θθθ ∗|M ,y) = π(θθθ ∗1|M ,y)× . . .×π(θθθ ∗i |M ,y,ψψψ∗i−1)× . . .×π(θθθ ∗B|M ,y,ψ∗B−1) ,
(15.31)

where on letting ψψψ i = (θθθ 1, . . . ,θi) and ψψψ i = (θθθ i, . . . ,θB) denote the list of blocks
upto i and the set of blocks from i to B, respectively, and z denoting the latent data,
and dropping the model index for notational convenience, the typical term is of the
form

π(θθθ ∗i |y,ψψψ∗i−1) =
∫

π(θθθ ∗i |y, ψ∗i−1,ψψψ
i+1,z)π(ψψψ i+1,z|y,ψψψ∗i−1)dψψψ i+1dz

This is the reduced conditional ordinate. It is important to bear in mind that in
finding the reduced conditional ordinate one must integrate only over (ψψψ i+1,z) and
that the integrating measure is conditioned on ψψψ∗i−1.

Consider first the case where the normalizing constant of each full conditional
density is known. Then, the first term of (15.31) is estimated by the Rao–Blackwell
method. To estimate the typical reduced conditional ordinate, one conducts a MCMC
run consisting of the full conditional distributions
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{
π(θθθ i|y,ψψψ∗i−1,ψψψ i+1,z) ; . . . ; π(θ B|y,ψψψ∗i−1,θθθ i, . . . ,θθθ B−1,z) ;π(z|y,ψψψ∗i−1,ψψψ i)

}

(15.32)

where the blocks in ψψψ i−1 are set equal to ψψψ∗i−1. By MCMC theory, the draws on
(ψψψ i+1,z) from this run are from the distribution π(ψψψ i+1,z|y,ψψψ∗i−1) and so the re-
duced conditional ordinate is estimated as the average

π̂(θθθ ∗i |y,ψψψ∗i−1) = M−1
M

∑
j=1

π(θθθ ∗i |y,ψψψ∗i−1,ψψψ i+1,( j),z( j))

over the simulated values of ψψψ i+1 and z from the reduced run. Each subsequent
reduced conditional ordinate that appears in the decomposition (15.31) is estimated
in the same way though, conveniently, with fewer and fewer distributions appear-
ing in the reduced runs. Given the marginal and reduced conditional ordinates, the
marginal likelihood on the log scale is available as

log m̂(y|M ) = log p(y|M ,θ ∗)+ logπ(θθθ ∗|M )−
B

∑
i=1

log π̂( θ ∗i |M ,y,ψψψ∗i−1)

(15.33)

where p(y|M ,θ ∗) is the density of the data marginalized over the latent data z.
Consider next the case where the normalizing constant of one or more of the full

conditional densities is not known. In that case, the posterior ordinate is estimated
by a modified method developed by Chib and Jeliazkov (2001). If sampling is con-
ducted in one block by the M–H algorithm, then it can be shown that the posterior
ordinate is given by

π(θθθ ∗|y) =
E1 {α(θθθ ,θθθ ∗|y)q( θ ,θθθ ∗|y)}

E2 {α(θθθ ∗,θθθ |y)}

where the numerator expectation E1 is with respect to the distribution π(θθθ |y) and the
denominator expectation E2 is with respect to the proposal density of θθθ conditioned
on θθθ ∗, q(θθθ ∗,θθθ |y), and α(θθθ ,θθθ ∗|y) is the probability of move in the M–H step. This
leads to the simulation consistent estimate

π̂(θθθ ∗|y) =
M−1 ∑M

g=1 α(θθθ (g),θθθ ∗|y)q(θθθ (g),θθθ ∗|y)

J−1 ∑M
j=1 α(θθθ ∗,θθθ ( j)|y)

, (15.34)

where {θθθ (g)} are the given draws from the posterior distribution while the draws
θθθ ( j) in the denominator are from q(θθθ ∗,θθθ |y), given the fixed value θθθ ∗.

In general, when sampling is done with B blocks, the typical reduced conditional
ordinate is given by

π(θθθ ∗i |y,θθθ ∗1, . . . ,θθθ ∗i−1) =
E1
{

α(θθθ i,θθθ ∗i |y,ψψψ∗i−1,ψψψ i+1)qi(θθθ i,θθθ ∗i |y,ψψψ∗i−1,ψψψ i+1)
}

E2
{

α(θθθ ∗i ,θθθ i|y,ψψψ∗i−1,ψψψ i+1)
}

(15.35)
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where E1 is the expectation with respect to π(ψψψ i+1|y,ψψψ∗i−1) and E2 that with
respect to the product measure π(ψψψ i+1|y,ψψψ∗i )qi(θθθ ∗i ,θθθ i|y,ψψψ∗i−1,ψψψ i+1). The quantity
α(θθθ i,θθθ ∗i |y,ψψψ∗i−1,ψψψ i+1) is the usual conditional M–H probability of move. The two
expectations are estimated from the output of the reduced runs in an obvious way.

15.9.1 Gaussian–Gaussian Model

As an example of the calculation of the marginal likelihood consider the calculation
of the posterior ordinate for the Gaussian–Gaussian continuous response model. The
ordinate is written as

π(D−1∗,σ2∗,β ∗|y) = π(D−1∗|y)π(σ2∗|y,D∗)π(β ∗|y,D∗,σ2∗) ,

where the first term is obtained by averaging the Wishart density over draws on {bi}
from the full run. To estimate the second ordinate, which is conditioned on D∗, we
run a reduced MCMC simulation with the full conditional densities

π(β |y,D∗,σ2) ; π(σ2|y,β ,D∗,{bi}) ;π({bi}|y,β ,D∗,σ2) ,

where each conditional utilizes the fixed value of D. The second ordinate is now
estimated by averaging the inverse-gamma full conditional density of σ2 at σ2∗

over the draws on (β ,{bi}) from this reduced run. The third ordinate is multivariate
normal as given above and available directly.

15.9.2 Gaussian–Gaussian Tobit model

As another example, consider the Gaussian–Gaussian Tobit censored regression
model. The likelihood ordinate is not available directly but can be estimated by a
simulation-based approach. For the posterior ordinate we again utilize the decom-
position

π(D−1∗,σ2∗,β ∗|y) = π(D−1∗|y)π(σ2∗|y,D∗)π(β ∗|y,D∗,σ2∗) ,

where the first term is obtained by averaging the Wishart density over draws on {zi}
and {bi} from the full run. To estimate the second ordinate, which is conditioned on
D∗, we run a reduced MCMC simulation with the full conditional densities

π(β |yz,D∗,σ2) ; π({zi}|y,β ,D∗,σ2);

π(σ2|yz,β ,D∗,{bi}) ; π({bi}|yz,β ,D∗,σ2) ,

and estimate the second ordinate by averaging the inverse-gamma full conditional
density of σ2 at σ2∗ over the draws on (β ,{zi},{bi}) from this run. Finally, to
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estimate the last ordinate we also fix σ2 at σ2∗ and continue the reduced runs with
the full-conditional densities

π(β |yz,D∗,σ2∗) ; π({zi}|y,β ,D∗,σ2∗); π({bi}|yz,β ,D∗,σ2∗) ,

and average the multivariate normal density given in Step 1 of the MCMC algorithm
at the point β ∗.

15.9.3 Panel Poisson Model

As a last example of the calculation of the marginal likelihood, consider the panel
poisson model in which the full conditional of β is not of known form. Now the
posterior ordinate given the sampling scheme in the Panel count algorithm is de-
composed as

π(D−1∗,β ∗|y) = π(D−1∗|y)π(β ∗|y,D∗)

where the first ordinate is found by averaging the Wishart density over draws on
{bi} from the full run. The second ordinate is found by the method of Chib and
Jeliazkov (2001) as

π̂(β ∗|y,D∗) =
M−1 ∑M

g=1 α(β (g),β ∗|y,{b(g)
i })q(β ∗|y,{b(g)

i })
J−1 ∑J

j=1 α(β ∗,β ( j)|y,{b( j)
i })

where the draws in the numerator are from a reduced run comprising the full con-
ditional distributions of β and {bi}, conditioned on D∗ whereas the draws in the
denominator are from a second reduced run comprising the full conditional distri-
butions of {bi}, conditioned on (D∗,β ∗) with an appended step in which β ( j) is

drawn from q(β |y,{b( j)
i }). The log of the likelihood ordinate p(y|β ∗,D∗) is found

by importance sampling.

15.10 Conclusion

In this chapter we have illustrated how Bayesian methods provide a complete
inferential tool-kit for a variety of panel data models. The methods are based on
a combination of hierarchical prior modeling and MCMC simulation methods.
Interestingly, the approaches are able to tackle estimation and model comparison
questions in situations that are quite challenging by other means. We discussed ap-
plications to models for continuous, binary, censored, count, multinomial response
models under various realistic and robust distributional and modeling assumptions.
The methods are quite practical and straightforward, even in complex models set-
tings such as those with binary and count responses, and enable the calculation of
the entire posterior distribution of the unknowns in the models. The algorithm for
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fitting panel probit models with random effects is particularly interesting in that
it highlights the value of augmentation in simplifying the simulations and in cir-
cumventing the calculation of the likelihood function. Procedures for dealing with
missing data, predicting future outcomes and for detecting outliers have also been
discussed.

The methods discussed in this chapter, which have arisen in the course of a revo-
lutionary growth in Bayesian statistics in the last decade, offer a unified approach for
analyzing a whole array of panel models. The pace of growth of Bayesian methods
for longitudinal data continues unimpeded as the Bayesian approach attracts greater
interest and adherents.
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Chapter 16
To Pool or Not to Pool?

Badi H. Baltagi, Georges Bresson and Alain Pirotte

16.1 Introduction

For panel data studies with large N and small T , it is usual to pool the observations,
assuming homogeneity of the slope coefficients. The latter is a testable assumption
which is quite often rejected. Moreover, with the increasing time dimension of panel
data sets, some researchers including Robertson and Symons (1992), Pesaran and
Smith (1995), and Pesaran, Smith and Im (1996) have questioned the poolability of
the data across heterogeneous units. Instead, they argue in favor of heterogeneous
estimates that can be combined to obtain homogeneous estimates if the need arises.
Maddala, Trost, Li and Joutz (1997) on the other hand argue that the heterogeneous
time series estimates yield inaccurate estimates and even wrong signs for the coef-
ficients, while the panel data estimates are not valid when one rejects the hypothe-
sis of homogeneity of the coefficients. If one is after reliable coefficient estimates,
Maddala, Trost, Li and Joutz (1997) argue in favor of shrinkage estimators that
shrink the heterogeneous estimators towards the pooled homogeneous estimator.
Proponents of the homogeneous panel estimators have acknowledged the potential
heterogeneity among the cross-sectional units, but have assumed that the efficiency
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ERMES (UMR 7181, CNRS), Université Paris II and TEPP (FR 3126, CNRS), Institute for
Labor Studies and Public Policies, 12, place du Panthéon, 75230 Paris Cedex 05, France, e-mail:
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gains from pooling outweighed these costs; see Hsiao (2003) on the benefits of
panels. Clearly, in panel data sets with T very small, traditional homogeneous panel
estimators would appear the only viable alternative. But as T reaches 50 years of
post-war annual data, the choice no longer seems clear-cut.

In the context of dynamic demand for gasoline across 18 OECD countries over
the period 1960–1990, Baltagi and Griffin (1997) argued for pooling the data as
the best approach for obtaining reliable price and income elasticities. They also
pointed out that pure cross-section studies cannot control for unobservable coun-
try effects, whereas pure time-series studies cannot control for unobservable oil
shocks or behavioral changes occurring over time. Baltagi and Griffin (1997) com-
pared the homogeneous and heterogeneous estimates in the context of gasoline
demand based on the plausibility of the price and income elasticities as well as
the speed of adjustment path to the long-run equilibrium. They found consider-
able variability in the parameter estimates among the heterogeneous estimators,
some giving implausible estimates, while the homogeneous estimators gave sim-
ilar plausible short-run estimates that differed only in estimating the long-run
effects. Baltagi and Griffin (1997) also compared the forecast performance of
these homogeneous and heterogeneous estimators over 1, 5, and 10 years horizon.
Their findings show that the homogeneous estimators outperformed their hetero-
geneous counterparts based on mean squared forecast error. This result was repli-
cated using a panel data set of 21 French regions over the period 1973–1998 by
Baltagi, Bresson, Griffin and Pirotte (2003). Unlike the international OECD gasoline
data set, the focus on the inter-regional differences in gasoline prices and in-
come within France posed a different type of data set for the heterogeneity ver-
sus homogeneity debate. The variation in these prices and income were much
smaller than international price and income differentials. This in turn reduces
the efficiency gains from pooling and favors the heterogeneous estimators, espe-
cially given the differences between the Paris region and the rural areas of France.
Baltagi, Bresson, Griffin and Pirotte (2003) showed that the time series estimates for
each region are highly variable, unstable, and offer the worst out-of-sample fore-
casts. Despite the fact that the shrinkage estimators proposed by Maddala, Trost,
Li and Joutz (1997) outperformed these individual heterogeneous estimates, they
still had a wide range and were outperformed by the homogeneous estimators in
out-of-sample forecasts. In addition, Baltagi, Griffin and Xiong (2000) carried out
this comparison for a dynamic demand for cigarettes across 46 U.S. states over 30
years (1963–1992). Once again the homogeneous panel data estimators beat the het-
erogeneous and shrinkage type estimators in RMSE performance for out-of-sample
forecasts. In another application, Driver, Imai, Temple and Urga (2004) utilize the
Confederation of British Industry’s (CBI) survey data to measure the impact of un-
certainty on U.K. investment authorizations. The panel consists of 48 industries
observed over 85 quarters 1978(Q1) to 1999(Q1). The uncertainty measure is based
on the dispersion of beliefs across survey respondents about the general business
situation in their industry. Following Baltagi and Griffin (1997) and Pesaran and
Smith (1995), this paper questions the poolability of this data across different indus-
tries. The heterogeneous estimators considered are OLS and 2SLS at the industry
level, as well as the unrestricted SUR estimation method. Fixed effects, random ef-
fects, pooled 2SLS, and restricted SUR are the homogeneous estimators considered.
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The panel estimates find that uncertainty has a negative, non-negligible effect on in-
vestment, while the heterogeneous estimates vary considerably across industries.
Forecast performance for 12 out-of-sample quarters 1996(Q2) to 1999(Q1) are
compared. The pooled homogeneous estimators outperform their heterogeneous
counterparts in terms of RMSE.

Maddala,Trost,LiandJoutz(1997)appliedclassical,empiricalBayesandBayesian
procedures to the problem of estimating short-run and long-run elasticities of residen-
tial demand for electricity and natural gas in the U.S. for 49 states over 21 years
(1970–1990). Since the elasticity estimates for each state were the ultimate goal of
their study they were faced with three alternatives. The first is to use individual time
series regressions for each state. These gave bad results, were hard to interpret, and
had several wrong signs. The second option was to pool the data and use panel data
estimators. Although the pooled estimates gave the right signs and were more rea-
sonable, Maddala, Trost, Li and Joutz (1997) argued that these estimates were not
valid because the hypothesis of homogeneity of the coefficients was rejected. The
third option, which they recommended, was to allow for some (but not complete)
heterogeneity or (homogeneity). This approach lead them to their preferred shrink-
age estimator which gave them more reasonable parameter estimates. In a follow-
up study, Baltagi, Bresson and Pirotte (2002) reconsidered the two U.S. panel data
sets on residential electricity and natural-gas demand used by Maddala, Trost, Li
and Joutz (1997) and compared the out-of-sample forecast performance of the ho-
mogeneous, heterogeneous, and shrinkage estimators. Once again the results show
that when the data is used to estimate heterogeneous models across states, individ-
ual estimates offer the worst out-of-sample forecasts. Despite the fact that shrinkage
estimators outperform these individual estimates, they are outperformed by simple
homogeneous panel data estimates in out-of-sample forecasts. Admittedly, there are
additional case studies using U.S. data, but they do add to the evidence that sim-
plicity and parsimony in model estimation offered by the homogeneous estimators
yield better forecasts than the more parameter consuming heterogeneous estimators.

Proponents of the heterogeneous estimators include Pesaran and Smith (1995)
and Pesaran, Shin and Smith (1999), who advocate abandoning the pooled approach
altogether because of the inherent parameter heterogeneity, relying instead upon the
average response from individual regressions. In fact, an earlier paper by Robertson
and Symons (1992) studied the properties of some panel data estimators when the
regression coefficients vary across individuals, i.e., they are heterogeneous but are
assumed homogeneous in estimation. This was done for both stationary and nonsta-
tionary regressors. The basic conclusion was that severe biases can occur in dynamic
estimation even for relatively small parameter variation. Using an empirical exam-
ple of a real wage equation for a panel of 13 OECD countries observed over the
period 1958–1986, Robertson and Symons (1992) show that parameter homogene-
ity across countries is rejected and the true relationship appears dynamic. Imposing
false equality restriction biases the coefficient of the lagged wage upwards and the
coefficient of the capital-labor ratio downwards.

Pesaran and Smith (1995) consider the problem of estimating a dynamic panel
data model when the parameters are individually heterogeneous and illustrate their
results by estimating industry-specific U.K. labor demand functions. In this case the
model is given by
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yit = λiyi,t−1 +βixit +uit i = 1, . . . ,N t = 1, . . . ,T (16.1)

where λi is i.i.d. (λ ,σ2
λ ) and βi is i.i.d. (β ,σ2

β ). Further λi and βi are independent of
yis, xis, and uis for all s. The objective in this case is to obtain consistent estimates
of the mean values of λi and βi. Pesaran and Smith (1995) present four different
estimation procedures:

(1) aggregate time-series regressions of group averages;
(2) cross-section regressions of averages over time;
(3) pooled regressions allowing for fixed or random intercepts;
(4) separate regressions for each group, where coefficients estimates are averaged

over these groups.

They show that when T is small (even if N is large), all the procedures yield incon-
sistent estimators. The difficulty in obtaining consistent estimates for λ and β can
be explained by rewriting the above equation as

yit = λyi,t−1 +βxit +νit (16.2)

where νit = uit +(λi−λ )yi,t−1 +(βi−β )xit . By continuous substitution of yi,t−s it is
easy to see that νit is correlated with all present and past values of yi,t−1−s and xi,t−s

for s � 0. The fact that νit is correlated with the regressors renders the OLS estimator
inconsistent, and the fact that νit is correlated with (yi,t−1−s,xi,t−s) for s > 0 rules out
the possibility of choosing any lagged value of yit and xit as legitimate instruments.
When both N and T are large, Pesaran and Smith (1995) show that the cross-section
regression procedure will yield consistent estimates of the mean values of λ and β .
Intuitively, when T is large, the individual parameters λi and βi can be consistently
estimated using T observations of each individual i, say λ̂i and β̂i; then, averaging

these individual estimators,
N
∑

i=1
λ̂i/N and

N
∑

i=1
β̂i/N, will lead to consistent estimators

of the mean values of λ and β .
Hsiao and Tahmiscioglu (1997) use a panel of 561 U.S. firms over the period

1971–1992 to study the influence of financial constraints on company investment.
They find substantial differences across firms in terms of their investment behavior.
When a homogeneous pooled model is assumed, the impact of liquidity on firm
investment is seriously underestimated. The authors recommend a mixed fixed and
random coefficients framework based on the recursive predictive density criteria.

Pesaran, Smith and Im (1996) investigated the small sample properties of vari-
ous estimators of the long-run coefficients for a dynamic heterogeneous panel data
model using Monte Carlo experiments. Their findings indicate that the mean group
estimator performs reasonably well for large T . However, when T is small, the mean
group estimator could be seriously biased, particularly when N is large relative to
T . Pesaran, Shin and Smith (1999) examine the effectiveness of alternative bias-
correction procedures in reducing the small sample bias of these estimators using
Monte Carlo experiments. An interesting finding is that when the coefficient of the
lagged dependent variable is greater than or equal to 0.8, none of the bias correc-
tion procedures seem to work. Hsiao, Pesaran and Tahmiscioglu (1999) suggest a
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Bayesian approach for estimating the mean parameters of a dynamic heterogeneous
panel data model. The coefficients are assumed to be normally distributed across
cross-sectional units and the Bayes estimator is implemented using Markov Chain
Monte Carlo methods. Hsiao, Pesaran and Tahmiscioglu (1999) argue that Bayesian
methods can be a viable alternative in the estimation of mean coefficients in dy-
namic panel data models even when the initial observations are treated as fixed
constants. They establish the asymptotic equivalence of this Bayes estimator and
the mean group estimator proposed by Pesaran and Smith (1995). The asymptotics
are carried out for both N and T → ∞ with

√
N/T → 0. Monte Carlo experiments

show that this Bayes estimator has better sampling properties than other estimators
for both small and moderate size T . Hsiao, Pesaran and Tahmiscioglu (1999) also
caution against the use of the mean group estimator unless T is sufficiently large
relative to N. The bias in the mean coefficient of the lagged dependent variable ap-
pears to be serious when T is small and the true value of this coefficient is larger
than 0.6. Hsiao, Pesaran and Tahmiscioglu (1999) apply their methods to estimate
the q investment model using a panel of 273 U.S. firms over the period 1972–1993.

Depending on the extent of cross-sectional heterogeneity in the parameters, re-
searchers may prefer these heterogeneous estimators to the traditional pooled ho-
mogeneous parameter estimators. In fact, Hsiao, Pesaran and Tahmiscioglu (1999)
argued that there is not clarity in the literature about the appropriate estimation tech-
nique for dynamic panel data models, especially when the time series is short. They
suggested a hierarchical Bayes approach to the estimation of such models using
Markov Chain Monte Carlo methods (via Gibbs sampling).

By now, it is well known that pooling in the presence of parameter heterogeneity
can produce misleading results. So, it is important to know if the pooling assump-
tion is justified. Section 16.2 describes tests for poolability and Stein-rule methods.
This is illustrated for a Tobin q investment application based on Hsiao and Tahmis-
cioglu (1997). Section 16.3 presents several heterogeneous estimators based on the
sampling approach, the averaging approach and the Bayesian approach. Section 16.4
revisits the comparison of the out of sample forecast performance of the homoge-
neous and heterogeneous estimators in the context of the Tobin q application.

16.2 Tests for Poolability, Pretesting and Stein-Rule Methods

16.2.1 Tests for Poolability

The question of whether to pool the data or not naturally arises with panel data. The
restricted model is the pooled model:

yit = α +Xitβ +uit , i = 1, . . . ,N, t = 1, . . . ,T (16.3)

which utilizes a one-way error component model for the disturbances:
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uit = μi + vit (16.4)

where μi denotes the unobservable individual specific effect and vit denotes the re-
mainder disturbance. In vector form, (16.3) can be written as:

y = αeNT +Xβ +u = Zθ +u (16.5)

where y is (NT ×1), X is (NT × (k−1)), Z = [eNT ,X ], θ ′ = (α,β ′), eNT is a vector
of ones of dimension NT , and u is (NT ×1). Equation (16.4) can be written as:

u = Zμ μ + v (16.6)

where
Zμ = IN⊗ eT , μ ′ = (μ1, . . . ,μN) and v∼ i.i.d.

(
0,σ2

v INT
)

.

IN is an identity matrix of dimension N, eT is a vector of ones of dimension T , and
⊗ denotes the Kronecker product. If the μi are assumed to be fixed parameters, the
model is called the fixed effects model. If the μi are assumed to be random (i.e.,
μi ∼ i.i.d.

(
0,σ2

μ
)
), the model is called the random effects model.

This pooled model represents a behavioral equation with the same parameters
across individuals and over time. The unrestricted model, however, is the same be-
havioral equation but with different parameters across individuals and/or time. The
question of whether to pool or not to pool boils down to the question of whether the
parameters vary across individuals and/or over time. In what follows, we study the
tests of poolability of the data for the case of pooling across individuals keeping in
mind that the other case of pooling over time can be obtained in a similar fashion.

For the unrestricted model, we have a regression equation for each individual
given by:

yi = Ziθi +ui, i = 1, . . . ,N (16.7)

where yi is (T ×1), Zi = [eT ,Xi], Xi is (T × k−1), θ ′i = (αi,β ′i ), and ui is (T ×1).
So, θi is different for every individual equation. We want to test the hypothesis

H0 : θi = θ ,∀i.

So, under H0, we can write the restricted model as: y = Zθ + u. The unrestricted
model can also be written as:

y = Z∗θ ∗+u =

⎛

⎜
⎜
⎜
⎝

Z1 0 · · · 0
0 Z2 · · · 0
...

. . .
...

0 0 · · · ZN

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

θ1

θ2
...

θN

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

u1

u2
...

uN

⎞

⎟
⎟
⎟
⎠

(16.8)

where Z = Z∗I∗ with I∗ = (eN ⊗ Ik), eN is a vector of ones of dimension N, and Ik is
an identity matrix of dimension k.
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16.2.1.1 Test for Poolability Under uuu∼∼∼ NNN
(
000,,,σσσ222

uuuIIINNNTTT
)

We suppose that the disturbance u follows an normal distribution of zero mean and
constant variance σ2

u INT ,
(
i.e., μi = 0,σ2

μ = 0
)
. There is no individual specific ef-

fect. Then, the minimum variance unbiased (MVU) estimator for θ is the OLS esti-
mator:

θ̂OLS = θ̂MLE =
(
Z′Z
)−1

Z′y

and therefore
y = Zθ̂OLS + ûOLS.

Similarly, the MVU for θi is given by:

θ̂i,OLS = θ̂i,MLE =
(
Z′iZi
)−1

Z′i yi

and therefore
yi = Ziθ̂i,OLS + ûi,OLS.

Under H0, the following test statistic:

Fobs =

(
û′OLSûOLS−

N
∑

i=1
û′i,OLSûi,OLS

)
/(N−1)k

(
N
∑

i=1
û′i,OLSûi,OLS

)
/N (T − k)

(16.9)

is distributed as F ((N−1)k,N (T − k)). Hence, the critical region for this test is
defined as:

{Fobs > F ((N−1)k,N (T − k) ;α0)}
where α0 denotes the significance level of the test. This is exactly the Chow test
extended to the case of N linear regressions. Therefore, if an economist has reason
to believe that assumption u∼N

(
0,σ2

u INT
)

is true, and wants to pool his data across
individuals, then it is recommended that he test for the poolability of the data using
the Chow test given in (16.9) . For an extension of the Chow test for poolability to a
non-parametric panel data model that is robust to functional form misspecification,
see Baltagi, Hidalgo, and Li (1996).

The problem with the Chow test is that Ω �= σ2
u INT . In fact, for the one-way error

component model

Ω = E
[
uu′
]
= Zμ E

[
μμ ′
]

Z′μ +E
[
vv′
]

(16.10)

= σ2
μ (IN ⊗ JT )+σ2

v (IN⊗ IT )

where JT = eT e′T . Therefore, even if we assume normality on the disturbances, the
Chow statistic will not have the F-distribution described above. However, a gener-
alized Chow test which takes into account the general form of Ω will be the right
test to perform. This is taken up in the next section.
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16.2.1.2 Test for Poolability Under the General Assumption uuu∼∼∼ NNN (000,,,ΩΩΩ)

All we need to do is transform our model (under both the null and alternative hy-
pothesis) such that the transformed disturbances have a variance of σ2

u INT , then
apply the Chow test on the transformed model. Given Ω = σ2

u Σ, we premultiply the
restricted model by Σ−1/2 and call Σ−1/2y = ỹ. Hence:

ỹ = Z̃θ + ũ

with E [ũũ ′] = Σ−1/2E [uu′]Σ−1/2′ = σ2
u INT . Similarly, we premultiply the unre-

stricted model (16.8) by Σ−1/2 and call Σ−1/2Z∗ = Z̃∗. Therefore,

ỹ = Z̃∗θ ∗+ ũ

with E [ũũ ′] = σ2
u INT . At this stage, we can test H0 : θi = θ for every i = 1,2, . . . ,N,

simply by using the Chow test only now on the transformed models. Under H0, the
following test statistic:

F̃obs =
y′
[
Σ−1
(

Z∗
(
Z∗′Σ−1Z∗

)−1
Z∗′ −Z

(
Z′Σ−1Z

)−1
Z′
)

Σ−1
]

y/(N−1)k
(

y′Σ−1y− y′Σ−1Z∗ (Z∗′Σ−1Z∗)−1 Z∗′Σ−1y
)

/N (T − k)

(16.11)

is distributed as F ((N−1)k,N (T − k)). It is important to emphasize that (16.11)
is operational only when Σ is known. This test is a special application of a general
test for linear restrictions described by Roy in 1957 and used by Zellner in 1962
to test for aggregation bias in a set of seemingly unrelated regressions. In case Σ
is unknown, we replace Σ in (16.11) by a consistent estimator (say Σ̂) and call the

resulting test statistic ̂̃Fobs.
One of the main motivations behind pooling a time series of cross-sections is

to widen our database in order to get better and more reliable estimates of the pa-
rameters of our model. Using the Chow test, the question of whether “to pool or
not to pool” is reduced to a test of the validity of the null hypothesis H0 : θi = θ
for all i. Imposing these restrictions (true or false) will reduce the variance of the
pooled estimator, but may introduce bias if these restrictions are false. Baltagi (2005,
pp. 54–58) discusses three mean squared error criteria suggested by Wallace (1972)
for Ω = σ2

u INT and by McElroy (1977) for Ω = σ2
u Σ. These MSE criteria do not test

H0, but rather help us choose on pragmatic grounds between the restricted pooled
model and the unrestricted heterogeneous model. Using Monte Carlo experiments,
Baltagi (1981) shows that the Chow test performs poorly, rejecting poolability when
true under a random error component model whenever the variance components are
large. Weaker MSE criteria reduced the frequency of type I error committed by
the Chow test. However, the weaker MSE criteria performance was still poor com-
pared to the Roy–Zellner test or the extensions of these weaker MSE criteria for a
general Ω.
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Recently, Bun (2004) focused on testing the poolability hypothesis across cross-
section units assuming constant coefficients over time. In particular, this testing
applies to panel data with a limited number of cross-section units, like countries
or states observed over a long time period, i.e., with T larger than N. Bun (2004)
uses Monte Carlo experiments to examine the actual size of various asymptotic pro-
cedures for testing the poolability hypothesis. Dynamic regression models as well
as nonspherical disturbances are considered. Results show that the classical asymp-
totic tests have poor finite sample performance, while their bootstrapped counter-
parts lead to more accurate inference. An empirical example is given using panel
data on GDP growth and unemployment rates in 14 OECD countries over the pe-
riod 1966–1990. For this data set, it is shown that the classical asymptotic tests reject
poolability while their bootstrap counterparts do not.

16.2.2 Pretesting and Stein-Rule Methods

Choosing a pooled estimator if we do not reject H0 : θi = θ for all i, and the het-
erogeneous estimator if we reject H0 leads to a pretest estimator.1 This brings into
question the appropriate level of significance to use with this preliminary test. In
fact, the practice is to use significance levels much higher than 5%; see Maddala
and Hu (1996).

Another problem with the pretesting procedure is that its sampling distribution
is complicated; see Judge and Bock (1978). Also, these pretest estimators are dom-
inated by Stein-rule estimators under quadratic loss function. Using a wilderness
recreation demand model, Ziemer and Wetzstein (1983) show that a Stein-rule es-
timator gives better forecast risk performance than the pooled (θ̂OLS) or individual
estimators (θ̂i,OLS). The Stein-rule estimator is given by:

θ̂ S
i =

(
c

Fobs

)
θ̂OLS +

(
1− c

Fobs

)
θ̂i,OLS. (16.12)

The optimal value of the constant c suggested by Judge and Bock (1978) is:

c =
(N−1)k−2
N (T − k)+2

.

Note that θ̂ S
i shrinks θ̂i,OLS towards the pooled estimator θ̂OLS explaining why this

estimator is often called Stein-rule shrinkage estimator. When N is large, the fac-
tor c is roughly k/(T−k). If, in addition, the number of explanatory variables k
is small relative to the number of time periods T , c will be small and, for a given
Fobs, the shrinkage factor towards the pooled estimator (c/Fobs) will be small. The

1 Hsiao and Pesaran (2007) present several Hausman type tests for slope heterogeneity based on
the mean group estimator proposed by Pesaran, Shin and Smith (1999) (see the Sect. 16.3.1).
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Bayesian and empirical Bayesian methods (discussed later) imply shrinking towards
a weighted mean of the θ̂i and not the pooled estimator θ̂ .

16.2.3 Example

We illustrate the tests of poolability and the Stein-rule method using a simple
dynamic version of the classical Tobin q investment model studied by Hsiao and
Tahmiscioglu (1997):

(
I
K

)

it
= αi +β1i

(
I
K

)

it−1
+β2iqit +uit (16.13)

or in vector form
yit = Zitθi +uit

where Iit denotes investment expenditures by firm i during period t, Kit is the
replacement value of the capital stock, and qit is Tobin’s q of the firm. Tobin’s q
theory relates investment to marginal q, which is the ratio of the market value of
new investment goods to their replacement cost. Thus, investment will be an in-
creasing function of marginal q. Because marginal q is unobservable, it is common
in empirical work to substitute it with average or Tobin’s q. If a firm has unex-
ploited profit opportunities, then an increase of its capital stock price of 1 unit will
increase its market value by more than one unit (q > 1). Firms can be expected to
increase investment until marginal q equals 1. On the other hand, if a firm has al-
ready more than adequate capital, then an increase in capital stock by one unit will
increase its market value by less than one unit (q < 1). β1i is the investment iner-
tia of firm i and (1−β1i) is the speed of adjustment. The panel data set used in
this study contains 337 U.S. firms over 17 years (1982–1998).2 Hsiao, Pesaran and
Tahmiscioglu (1999) argued that the troubling findings of large estimates often ob-
tained for the adjustment cost parameters and the implied slow speeds of adjustment
of the capital stock to its equilibrium value may be due, at least partly, to the use of
inappropriate estimation techniques when there is significant heterogeneity in firm
investment responses to the q variable. The restricted model is:

(
I
K

)

it
= α +β1

(
I
K

)

it−1
+β2qit +uit (16.14)

or in vector form
yit = Zitθ +uit .

2 This was kindly provided by Cheng Hsiao and A. Kamil Tashmiscioglu. This is not exactly the
same data set as the one used by Hsiao, Pesaran and Tahmiscioglu (1999) which contains 273
firms over the 20 years (1973–1992). For a detailed description of these variables, see Hsiao and
Tahmiscioglu (1997).
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Table 16.1 Tests of poolability for the Tobin q investment model3 N = 337, T = 16

OLS LSDV FGLS

α 0.0872
(25.695)

— 0.0926
(2.585)

β1 0.4469
(39.138)

0.2777
(22.136)

0.3252
(26.929)

β2 0.0079
(18.829)

0.0157
(23.180)

0.0123
(21.838)

Chow test (intercept and slopes) 2.6026 ∼ F(1008,4381)
Chow test (slopes only) 2.4234∼ F(672,4718)
Roy–Zellner test 1.5796 ∼ F(1008,4381)
Stein-rule shrinkage factor 0.9118

We want first to check whether coefficients are constant or not across firms, that is
if H0 : θi = θ for all i.

Table 16.1 shows that the Chow test for poolability across firms gives an ob-
served F-statistic of 2.6026 which is distributed as F(1008,4718) under H0 : θi = θ
for i = 1, . . . ,N. There are 1008 restrictions and the test rejects poolability across
firms for all the coefficients. One can test for poolability of slopes only, allowing for
varying intercepts. The restricted model is the within regression with firm dummies
(LSDV). The observed F-statistic of 2.4234 is distributed as F(672,4718) under
H0 : β ji = β j for j = 1,2 and i = 1, . . . ,N. This again is significant at the 5% level
and rejects the poolability of the slopes across firms. The Roy–Zellner test for poola-
bility across firms, allowing for one-way error component disturbances, yields an
observed F-value of 1.5796 and is distributed as F(1008, 4381) under H0 : θi = θ
for i = 1, . . . ,N. This still rejects poolability across firms even after allowing for
one-way error component disturbances. The Stein-rule shrinkage factor is 91.18%,
so the Stein-rule estimator θ̂ S

i is a linear combination of 8.82% weight on the pooled
estimator θ̂OLS and 91.18% on the heterogeneous estimator θ̂i,OLS.

16.3 Heterogeneous Estimators

When the data do not support the hypothesis of fixed coefficients, it would seem
reasonable to allow for variations in the parameters across cross-sectional units. For
the ith individual, a single-equation model can be written as:

yi = Ziθi +ui, i = 1, . . . ,N (16.15)

that is:
yi ∼ N (Ziθi,Ωi) (16.16)

3 t-Statistics are in parentheses.
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with Ωi = E [uiu′i] = σ2
i IT . If all the parameters are treated as fixed and different

for cross-sectional units, there will be Nk parameters with only NT observations.
Obviously, there is no way we can obtain any meaningful estimates of θi, especially
when k is closed to T . Alternatively, each regression coefficient can be viewed as
a random variable with a probability distribution. The random coefficients specifi-
cation reduces the number of parameters to be estimated substantially, while still
allowing the coefficients to differ from unit to unit and/or from time to time. θi are
assumed to be independently normally distributed with mean θ and covariance Δ
(with Cov(θi,θ j) = 0, i �= j):

θi = θ + εi, θi ∼ N
(
θ ,Δ
)
. (16.17)

Substituting θi = θ + εi into (16.15) yields:

yi = Ziθ + vi (16.18)

where vi = Ziεi +ui. This leads us to the Swamy (1970) model.
Stacking all NT observations, we have:

y = Zθ + v (16.19)

where v = Z∗ε + u. The covariance matrix for the composite disturbance term v is
bloc-diagonal, and is defined by

V [v] = Σ = diag(Σ1, . . . ,ΣN)

where
Σi = ZiΔZ

′
i +σ2

i IT .

The best linear unbiased estimator of θ for (16.19) is the GLS estimator:

θ̂ GLS =
N

∑
i=1

Θiθ̂i,OLS (16.20)

where

θ̂i,OLS =
(

Z
′
i Zi

)−1
Z
′
i yi (16.21)

and

Θi =

(
N

∑
i=1

[
Δ+σ2

i

(
Z
′
i Zi

)−1
]−1
)−1 [

Δ+σ2
i

(
Z
′
i Zi

)−1
]−1

. (16.22)

The covariance matrix for the GLS estimator is:

V
[
θ̂ GLS

]
=

(
N

∑
i=1

[
Δ+σ2

i

(
Z
′
i Zi

)−1
]−1
)−1

. (16.23)
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Swamy proposed to use the least-squares estimators θ̂i and their residuals

r̂i

(
= yi−Ziθ̂i,OLS

)
to obtain unbiased estimators of σ2

i and Δ (see Hsiao and

Pesaran (2007)). Swamy (1970) provides an asymptotic normal and efficient esti-
mator of the mean coefficients. Pesaran and Smith (1995), and Pesaran, Shin and
Smith (1999) advocate alternative estimators which they call respectively the Mean
Group estimator and the Pooled Mean Group estimator.

16.3.1 Averaging Estimators

The Mean Group estimator is obtained by estimating the coefficients of each cross-
section separately by OLS and then taking an arithmetic average:

θ̃ =
1
N

N

∑
i=1

θ̂i,OLS. (16.24)

When T → ∞, θ̂i,OLS → θi and (16.24) will be consistent when N also goes to in-
finity. This estimator has obviously only asymptotic justification. However, it would
be interesting to have some idea about its performance in finite sample, particularly
as compared to Bayesian type estimators.

Pesaran, Shin and Smith (1999) proposed an estimator called the Pooled Mean
Group estimator which constrains the long-run coefficients to be the same among
individuals. Suppose that we want to estimate an ADL model:

yit = Zitθi +uit =
p

∑
j=1

λi jyi,t− j +
q

∑
j=0

δ′i jxi,t− j + γ ′i dt +uit (16.25)

where xit is a (k×1) vector of explanatory variables and dt is a (s×1) vector of
observations on fixed regressors such as intercept and time trends or variables that
vary only over time. We can re-parametrize (16.25):

Δyit = φiyi,t−1 +β ′i xit +
p−1

∑
j=1

λ ∗i jΔyi,t− j +
q−1

∑
j=0

δ∗′i jΔxi,t− j + γ ′i dt +uit (16.26)

where

φi =−
(

1−
p

∑
j=1

λi j

)

, βi =
q

∑
j=0

δi j, λ ∗i j =−
p

∑
m= j+1

λim and δ∗i j =−
q

∑
m= j+1

δim.

If we stack the time series observations for each group, the error-correction model
(16.26) becomes:
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Δyi
(T,1)

= φiyi,−1
(T,1)

+β ′i Xi
(T,k)

+
p−1

∑
j=1

λ ∗i jΔyi,− j
(T,1)

+
q−1

∑
j=0

δ∗′i jΔXi,− j
(T,k)

+ γ ′i Dt + εi (16.27)

where yi = (yi1, . . . ,yiT )′, Xi = (xi1, . . . ,xiT )′, and Dt = (d1, . . . ,dT )′. If φi < 0, there
exists a long-run relationship between yit and xit defined by:

yit =

(

−β ′
i

φi

)

xit + vit , ∀i. (16.28)

Pesaran, Shin and Smith (1999) constrain the long-run coefficients on Xi defined by
ωi = (−βi/φi) to be the same across individuals or across groups of individuals:

ωi = ω , ∀i. (16.29)

So, the ECM can be written more compactly as:

Δyi = φiξi (θ)+Wiκi +ui (16.30)

where the error correction component is:

ξi (θ) = yi,−1−Xiω

and

Wi =
(
Δyi,−1, . . . ,Δyi,−p+1,ΔXi,ΔXi,−1, . . . ,ΔXi,−q+1,D

)

κi =
(
λ ∗i1,λ ∗i2, . . . ,λ ∗ip−1,δ

∗′
i0,δ

∗′
i1, . . . ,δ

∗′
iq−1,γ ′i

)′
.

If the disturbances are normally distributed, the ML estimation of the long-run
coefficients ω and the individual-specific error-correction coefficients φi are ob-
tained by maximizing the concentrated likelihood (see Pesaran, Shin and Smith
(1999)).

16.3.2 Bayesian Framework

The underlying probability interpretation for a Bayesian is a subjective one, refer-
ring to a personal degree of belief. The rules of probability calculus are used to
examine how prior beliefs are transformed to posterior beliefs by incorporating data
information.4 Here we only consider cases where the model parameter vector θ is
of finite dimension. A Bayesian then focuses on the inference of θ (treated as a
random variable) conditional on y and the underlying model M, summarized in the
posterior density p

(
θ |y,M

)
. The observations in y define a mapping from the prior

4 See Chib (2001).
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p
(
θ
)

into p
(
θ |y,M

)
. The posterior distribution of θ can be derived by expressing

the likelihood function conditional on the initial values yi0 and combining it with
the prior distribution of θ :

p
(
θ |y,yi0

)
∝ p
(
y|θ
)

p
(
θ
)

.

Lindley and Smith (1972) proposed a three-stage hierarchy. The joint density func-
tion of the data y is such that:

y∼ N (Z∗θ ,Ω) where Ω = E
[
uu′
]

is indexed by a k-vector θ of unknown parameters assumed to be normally dis-
tributed

θ ∼ N
(
θ ,Δ
)

.

The third stage of the hierarchy corresponds to the prior distribution of θ

θ ∼ N (ϕ,Ψ) .

Using the properties of the multivariate normal distribution, we can define the con-
ditional density of y given θ . If y∼ N (Z∗θ ,Ω) and θ ∼ N

(
θ ,Δ
)
, then the marginal

distribution of y conditional on θ is

y∼ N
(
Z∗θ ,Σ

)

where Σ = Ω + Z∗Δ Z∗′. Combining this with the prior distribution of θ yields to
the posterior density of θ . Then, the posterior density is proportional to:

p
(
θ |y,yi0

)
∝ exp

(
−1

2

(
y−Z∗θ

)′Σ−1 (y−Z∗θ
)
− 1

2

(
θ −ϕ

)′Ψ−1 (θ −ϕ
)
)

.

Assuming prior ignorance at the third stage of the hierarchy (i.e., Ψ−1 = 0) yields
to the following posterior distribution of θ :

θ ∼ N

((
Z∗

′
Σ−1Z∗

)−1
Z∗

′
Σ−1y,

(
Z∗

′
Σ−1Z∗

)−1
)

From a frequentist point of view and in order to estimate θ ,θ ,σ2
i and Δ, we must

theoretically maximize the following log likelihood (see Maddala, Trost, Li and
Joutz (1997)):
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LogL
(
θ ,θ ,σ2

i ,Δ | y,Z∗
)

= Cst− T
2

N

∑
i=1

Logσ2
i −

N
2

Log |Δ|

−1
2

N

∑
i=1

1

σ2
i

(yi−Ziθi)
′
(yi−Ziθi)

−1
2

N

∑
i=1

(
θi−θ

)′
Δ−1 (θi−θ

)

we get

σ̂2
i =

1
T

(yi−Ziθi)
′
(yi−Ziθi)

Δ̂ =
1
N

N

∑
i=1

(
θi−θ

)(
θi−θ

)′

θ̂ =
1
N

N

∑
i=1

θ̂i

and

θ̂i =
[

Δ̂−1 +
1

σ̂2
i

Z
′
i Zi

]−1 [
Δ̂−1θ̂ +

1

σ̂2
i

Z
′
i Ziθ̂i,OLS

]
.

which is the same as

θ̂i = θ̂ + Δ̂ Z
′
i

[
ZiΔ̂ Z

′
i + σ̂2

i IT

]−1 [
yi−Ziθ̂

]

For estimating Maximum Likelihood parameters θ̂i, Δ̂ and σ̂2
i , we must run a first

step and use the OLS estimator for each individual.
The traditional approach to estimating regression coefficients with panel data is a

dichotomy of either estimating θi from the data on the ith cross-section unit or from
the pooled sample. The general solution that emerges from the Bayesian approach is
to shrink each individual θi from the ith cross-section towards a common estimate θ .

We suppose that
θi ∼ N

(
θ , Δ

)
.

This statement defines the prior distribution of θi. The parameters θ and Δ are un-
known, then we must make some assumptions. After this, we can obtain the poste-
rior distribution of θi. If θ , σ2

i and Δ were known, then the posterior distribution of
θi is given by:

θ̂ ∗i =
[

Δ−1 +
1

σ2
i

Z
′
i Zi

]−1 [
Δ−1θ +

1

σ2
i

Z
′
i Ziθ̂i,OLS

]



16 To Pool or Not to Pool? 533

and its variance:

V
[
θ̂ ∗i
]

=
[

Δ−1 +
1

σ2
i

Z
′
i Zi

]−1

where θ̂i,OLS is the OLS estimator of θi. The posterior distribution mean of θ is
defined by:

θ̂
∗
=

1
N

N

∑
i=1

θ̂ ∗i .

Lindley and Smith (1972) have shown that prior distributions for nuisance parame-
ters (including the variance–covariance matrix of the hyperparameters like θ ) lead
to integrals which cannot be all expressed in closed form. They suggest an approxi-
mation which consists of using the mode of the posterior distribution rather than the
mean.5 The former empirical Bayes estimator has been followed by other empirical
Bayes methods such as iterative Bayes and empirical iterative Bayes estimators (see
Maddala, Trost, Li and Joutz (1997) and Table 16.2).

A more flexible tool is the rejection sampling method discussed in Gelfand
and Smith (1990, 1992) when the only requirement is that the maximum value of
sampling density Max

θ
p(y|θ ,M) be finite. Hence, if we can draw from the prior

p(θ), we can generate drawings from the posterior p(θ |y,M) simply by rejec-
tion. Markov Chain Monte Carlo (MCMC) simulations versions of this accept–
reject algorithm have been recently proposed. As underlined by Chib (2001, 2007),
these methods have revolutionized Bayesian statistics. One very popular MCMC
method, introduced by Gelfand and Smith (1990), is called the Gibbs sampling
method. Therefore, a full Bayesian implementation of the model is now feasible
using sampling-based approaches to calculate marginal densities. Using Gibbs sam-
pling, Hsiao, Pesaran and Tahmiscioglu (1999) have proposed the “Hierarchical
Bayes” estimator.

16.3.2.1 Iterative Bayes Estimator

In general, σ2
i are Δ unknown parameters. Then we must make some prior as-

sumptions about these parameters. Smith (1973) proposed for Δ−1 a conjugate
Wishart distribution and for σ2

i some independent inverse χ2 distributions (see the
Sect. 16.3.2.4). Instead of the mean of the distribution, he used the posterior mode
of the distribution:

σ̂2
i =

1
T + ςi +2

[
ςiλi +

(
yi−Ziθ̂ ∗i

)′ (
yi−Ziθ̂ ∗i

)]
(16.31)

and

Δ̂∗ =
1

N− k−2+δ

[

R+
N

∑
i=1

(
θ̂ ∗i − θ̂

∗)(
θ̂ ∗i − θ̂

∗)′
]

(16.32)

5 This approximation is likely to be good only if the samples are fairly large and the resulting
posterior distributions approximatively normal.
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where ςi, λi , δ, and R are hyperparameters of the prior distribution. Smith (1973)
proposes to approximate these hyperparameters by using ςi = 0, δ = 1 and R is a
diagonal matrix with small positive entries (= 0.001). The estimators are:

σ̂2
i =

1
T +2

(
yi−Ziθ̂ ∗i

)′ (
yi−Ziθ̂ ∗i

)
(16.33)

Δ̂∗ =
1

N− k−1

[

R+
N

∑
i=1

(
θ̂ ∗i − θ̂

∗)(
θ̂ ∗i − θ̂

∗)′
]

(16.34)

θ̂ ∗i =
[

Δ̂∗−1 +
1

σ̂2
i

Z
′
i Zi

]−1 [
Δ̂∗−1θ̂

∗
+

1

σ̂2
i

Z
′
i Ziθ̂i,OLS

]
(16.35)

and

θ̂
∗
=

1
N

N

∑
i=1

θ̂ ∗i . (16.36)

The equations (16.33) to (16.36) must be estimated by iterative procedure. The ini-
tial iteration use OLS estimates.

16.3.2.2 Empirical Bayes Estimator

This estimator has been proposed by Smith (1973). It is a quite different as empirical
Bayes’s estimator proposed by Rao (1975). It is defined as:

θ̂
∗
=

1
N

N

∑
i=1

θ̂i,OLS

σ̂2
i =

1
T − k

(
y
′
iyi− y

′
iZiθ̂i,OLS

)

Δ̂∗ =
1

N−1

[
N

∑
i=1

(
θ̂i,OLS− θ̂

∗)(
θ̂i,OLS− θ̂

∗)′
]

and

θ̂ ∗i =
[

Δ̂∗−1 +
1

σ̂2
i

Z
′
i Zi

]−1 [
Δ̂∗−1θ̂

∗
+

1

σ̂2
i

Z
′
i Ziθ̂i,OLS

]
.

This estimator is based on OLS estimates. The estimators of σ̂2
i and Δ̂∗ are unbiased

if Zi contains only exogenous variables.

16.3.2.3 Empirical Iterative Bayes Estimator

This estimator was proposed by Maddala, Trost, Li and Joutz (1997). The parame-
ters σ̂2

i and Δ̂∗ are estimated by:
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σ̂2
i =

1
T − k

(
yi−Ziθ̂ ∗i

)′ (
yi−Ziθ̂ ∗i

)

and

Δ̂∗ =
1

N−1

[

R+
N

∑
i=1

(
θ̂ ∗i − θ̂

∗)(
θ̂ ∗i − θ̂

∗)′
]

;

then we can compute

θ̂ ∗i =
[

Δ̂∗−1 +
1

σ̂2
i

Z
′
i Zi

]−1 [
Δ̂∗−1θ̂

∗
+

1

σ̂2
i

Z
′
i Ziθ̂i,OLS

]

and

V
[
θ̂ ∗i
]

=
[

Δ̂∗−1 +
1

σ̂2
i

Z
′
i Zi

]−1

.

For the first iteration, we use the OLS estimates. Maddala, Trost, Li and Joutz (1997)
argue that the iterative process for estimating Δ and θ will yield to more efficient
estimates of these parameters.

16.3.2.4 Hierarchical Bayes Estimator

We have previously seen that Lindley and Smith (1972) have proposed a three-stage
hierarchy. The first stage of the hierarchy corresponds to the joint density function
of the data y such that:

y∼ N (Z∗θ ,Ω)

where Ω = E [uu′]. The second stage of the hierarchy is defined as

θ ∼ N
(
θ ,Δ
)

and the third stage of the hierarchy corresponds to the prior distribution of θ :

θ ∼ N (ϕ,Ψ) .

So, the marginal distribution of y conditional on θ is

y∼ N
(
Z∗θ ,Σ

)

where Σ = Ω+Z∗ΔZ∗′. Assuming prior ignorance at the third stage of the hierarchy
(i.e., Ψ−1 = 0) yields to the following posterior distribution of θ :

θ ∼ N

((
Z∗

′
Σ−1Z∗

)−1
Z∗

′
Σ−1y,

(
Z∗

′
Σ−1Z∗

)−1
)

θ ∼ N
(

θ ∗,V ∗
)

.
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Table 16.2 Shrinkage estimators

Estimators of σ2
i

Swamy 1
T−k

(
yi−Ziθ̂i,OLS

)′ (
yi−Ziθ̂i,OLS

)

ML 1
T

(
yi−Ziθ̂i

)′ (
yi−Ziθ̂i

)

Iterative Bayes 1
T+2

(
yi−Ziθ̂ ∗i

)′ (
yi−Ziθ̂ ∗i

)

Empirical Bayes 1
T−k

(
y
′
iyi− y

′
iZiθ̂i,OLS

)

Empirical Iterative Bayes 1
T−k

(
yi−Ziθ̂ ∗i

)′ (
yi−Ziθ̂ ∗i

)

Estimators of Δ

Swamy Δ̂ = 1
N−1

N
∑

i=1

(
θ̂i,OLS− 1

N

N
∑

i=1
θ̂i,OLS

)(
θ̂i,OLS− 1

N

N
∑

i=1
θ̂i,OLS

)′

− 1
N

N
∑

i=1
σ̂2

i (Z′iZi)
−1

ML Δ̂ = 1
N

N
∑

i=1

(
θ̂i− θ̂

)′ (
θ̂i− θ̂

)

Iterative Bayes Δ̂∗ = 1
N−k−1

[
R+

N
∑

i=1

(
θ̂ ∗i − θ̂

∗)(
θ̂ ∗i − θ̂

∗)′]

Empirical Bayes Δ̂∗ = 1
N−1

[
N
∑

i=1

(
θ̂i,OLS− θ̂

∗)(
θ̂i,OLS− θ̂

∗)′]

Empirical Iterative Bayes Δ̂∗ = 1
N−1

[
R+

N
∑

i=1

(
θ̂ ∗i − θ̂

∗)(
θ̂ ∗i − θ̂

∗)′]

Estimators of θi

Swamy No estimator

ML θ̂i =
[
Δ̂−1 + 1

σ̂2
i

Z′iZi

]−1 [
Δ̂−1θ̂ + 1

σ̂2
i

Z′iZiθ̂i,OLS

]

Bayes θ̂ ∗i =
[
Δ̂∗−1 + 1

σ̂2
i

Z′iZi

]−1 [
Δ̂∗−1θ̂

∗
+ 1

σ̂2
i

Z′iZiθ̂i,OLS

]

Estimators of θ

Swamy θ̂ =
N
∑

i=1
Θiθ̂i,OLS

Empirical Bayes θ̂
∗
= 1

N

N
∑

i=1
θ̂i,OLS

Others θ̂
∗

(and θ̂ ) = 1
N

N
∑

i=1
θ̂ ∗i

Following (16.20), (16.21), and (16.22), we get:

θ ∗ =
N

∑
i=1

Θiθ̂i,OLS (16.37)

where

Θi =

(
N

∑
i=1

[
Δ+σ2

i

(
Z
′
i Zi

)−1
]−1
)−1 [

Δ+σ2
i

(
Z
′
i Zi

)−1
]−1

.
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The posterior mean θ ∗ is a weighted average of the least squares estimates of in-
dividuals units and can be used as a point estimate of θ . In practice, the variance
components Δ and σ2

i in (16.37) are unknown. The proposed solution of Lindley
and Smith was an approximation that consists of using the mode of the posterior
distribution rather than the mean. The proposed solution was labelled the empiri-
cal Bayes estimator. Normally, the marginal posterior densities of the parameters
of interest can be obtained by integrating out the hyperparameters from the joint
posterior density:

p(θ |y) =
∫

p
(
θ |θ ,y

)
p
(
θ |y
)

dθ .

The required integration poses an insurmountable challenge and closed-form an-
alytic solutions cannot be obtained. Nevertheless, a full Bayesian implementation
of the model is now feasible as a result of recent advances in sampling-based ap-
proaches to calculate marginal densities. The Gibbs sampling algorithm has been
used successfully by Hsiao, Pesaran and Tahmiscioglu (1999).6

The Gibbs sampler is an iterative Markov Chain Monte Carlo (MCMC) method
which only requires the knowledge of the full conditional densities of the parameter
vector; see Chib (2001, 2007).

Starting from some arbitrary initial values, say θ (0) =
(

θ (0)
1 ,θ (0)

2 , . . . ,θ (0)
k

)
for

a parameter vector θ = (θ1,θ2, . . . ,θk), it samples (generates) alternately from
the conditional density of each component of the parameter vector conditional
on the values of other components sampled in the last iteration M. The vectors(

θ (1),θ (2), . . . ,θ (M)
)

will form a Markov Chain with transition probability from

stage θ ′ to the next one θ being:

H
(
θ ′,θ

)
= p
(

θ1|θ
′
2,θ

′
3, . . . ,θ

′
k,y
)

p
(

θ2|θ1,θ
′
3, . . . ,θ

′
k,y
)

. . . p(θk|θ1, . . . ,θk−1,y) .

As the number of iterations M → ∞, the samples values can be regarded as drawing
from the true joint and marginal posterior densities. In order to implement Gibbs
sampling, we need to specify the prior distribution of the hyperparameters. They are
assumed to be independent and distributed as:

p
(
Δ−1,Σ

)
= Wk

(
Δ−1|(ρR)−1 ,ρ

) N

∏
i=1

σ−2
i

where Wk represents the Wishart distribution7 with scale matrix (ρR) and degrees
of freedom ρ . With this structure, the joint density of all the parameters may be
written as:

6 See also Hsiao (2003).
7 A random symmetric positive definite (k,k) matrix A is said to follow a Wishart distribution
Wk (A|u,v) if the density of A is given by:

|A|(v−k−1)/2

|u|v/2
exp

{
−1

2
tr
(
u−1A

)
}

.

See Koop (2003).
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p
(
θi,θ ,Δ,σ2

i |y,yi0
)

∝
N

∏
i=1

σ−T
i exp

[

−1
2

N

∑
i=1

σ−2
i (yi−Ziθi)

′ (yi−Ziθi)

]

×|Δ|−N
2 exp

[

−1
2

N

∑
i=1

(
θi−θ

)′Δ−1 (θi−θ
)
]

×|Ψ|− 1
2 exp

[
−1

2

(
θ −ϕ

)′Ψ−1 (θ −ϕ
)
]

×|Δ|− 1
2 (ρ−k−1) exp

[
−1

2
tr (ρR)Δ−1

]

×
N

∏
i=1

σ−2
i .

The first line of the above formula corresponds to the standard likelihood function
and the others represent the prior information. The relevant conditional distributions
that are needed to implement the Gibbs sampler in this case are obtained from the
joint posterior density:

p
(
θi|y,θ ,Δ−1,σ2

1 , . . . ,σ2
N

)
= N

[
Ai
(
σ−2

i Z′i yi +Δ−1θ
)
,Ai
]

p
(
θ |y,θ1, . . . ,θN ,Δ−1,σ2

1 , . . . ,σ2
N

)
= N

[
B
(

NΔ−1θ̃ +Ψ−1ϕ
)

,B
]

p
(
Δ−1|y,θ1, . . . ,θN ,θ ,σ2

1 , . . . ,σ2
N

)
= Wk

[(
N
∑

i=1

(
θi−θ

)(
θi−θ

)′+ρR

)−1

,ρ+N

]

p
(
σ2

i |y,θ1, . . . ,θN ,θ ,Δ−1
)

= IG
[
T/2,

(
(yi−Ziθi)

′ (yi−Ziθi)
)
/2
]

where

Ai =
(
σ−2

i Z′iZi +Δ−1)−1
,B =

(
NΔ−1 +Ψ−1)−1

, θ̃ =
1
N

N

∑
i=1

θi

for i = 1, . . . ,N and IG denotes the inverse gamma distribution. These values sam-
pled after some initial number of iterations can be used to construct estimates of the
parameters of interest. Hsiao, Pesaran and Tahmiscioglu (1999) call the estimator of
θ obtained using Gibbs sampling the “hierarchical Bayes” estimator.

16.3.3 An Example

Following Hsiao, Pesaran and Tahmiscioglu (1999), Baltagi, Bresson and Pirotte
(2004) considered the simple dynamic version of the classical Tobin q investment
model (16.13). The panel data set used in this study contains 337 U.S. firms over
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17 years (1982–1998). The estimation results are given in Table 16.3. We first give
the results of 9 homogeneous panel data estimators. These include OLS, which ig-
nores the individual effects; the Within estimator, which allows for fixed individ-
ual effects; and FGLS, which assumes that individual effects are random. Hsiao,
Pesaran and Tahmiscioglu (1999) report the fixed effects estimates for a subset of

Table 16.3 Estimates of the q investment model

Model type Intercept (I/K)i, t−1 qi, t

OLS 0.086 0.464 0.007
(24.528) (38.718) (17.445)

Within 0.287 0.015
(21.565) (21.921)

FGLS 0.092 0.339 0.011
(18.823) (26.612) (20.363)

2SLS 0.087 0.457 0.007
(17.646) (21.017) (16.737)

Within-2SLS 0.163 0.016
(5.429) (22.176)

2SLS–KR 0.083 0.453 0.008
(15.990) (21.072) (16.020)

FD2SLS 0.296 0.026
(10.047) (21.407)

FD2SLS–KR 0.313 0.022
(16.419) (20.648)

FDGMM 0.347 0.022
(37.978) (29.833)

Heterogeneous estimators

Average OLS 0.019 0.277 0.042
(2.557) (20.254) (17.011)

Swamy 0.041 0.327 0.028
(4.915) (20.357) (9.655)

Average ML 0.050 0.313 0.026
(20.483) (55.947) (34.101)

Average 2SLS 0.017 0.280 0.042
(0.981) (5.694) (11.972)

Average empirical Bayes 0.037 0.297 0.032
(8.148) (29.185) (24.557)

Average iterative empirical Bayes 0.054 0.332 0.023
(25.059) (57.470) (34.983)

Average iterative Bayes 0.055 0.342 0.022
(32.123) (71.069) (39.124)

Hierarchical Bayes 0.063 0.423 0.014
(15.080) (26.496) (12.490)

Pooled mean group 0.039 0.374 0.022
(10.197) (20.613) (34.416)

Note: Numbers in parentheses denote t-statistics.
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273 firms over a longer time period 1973–1992. The estimate of the q coefficient is
0.009 compared to 0.015 for our sample. The corresponding estimates of the coeffi-
cient of lagged (I/K) are 0.295 and 0.287, respectively. The pooled OLS estimates
yield a lower q coefficient estimate of 0.007 and a higher coefficient of lagged (I/K)
of 0.464. The FGLS estimates lie in between the OLS and Within estimates.

Since our model is dynamic, we also focus on pooled estimators employing two-
stage least squares (2SLS) using as instruments the exogenous variables and their
lagged values. These 2SLS estimates were pretty close to OLS, while the Within
2SLS estimates yielded a lower estimate of the coefficient of lagged (I/K) than
that of Within. In addition, we report the first-difference 2SLS (FD2SLS) estima-
tor proposed by Anderson and Hsiao (1982) in which fixed or random individual
effects are eliminated and predetermined variables are used as instruments. This
yielded an even higher estimate of the q coefficient (0.026) than 2SLS but a lower
estimate of the coefficient of lagged (I/K) of 0.296. Keane and Runkle (1992) (here-
after denoted by KR) suggest a modification of the 2SLS estimator that allows for
any arbitrary type of serial correlation in the remainder error term. We refer to this
estimator as 2SLS–KR. Still another variant of this estimator allows for any arbi-
trary form of serial correlation in the first differenced model. This is denoted as
the FD2SLS–KR estimator. The 2SLS–KR estimates are close to those of 2SLS,
while the FD2SLS–KR estimates are close to those of FD2SLS. Finally, following
Arellano and Bond (1991), we used a generalized method of moments (GMM)
estimator on the first-difference specification (FDGMM) with instruments in lev-
els. This incorporates more orthogonality conditions than are usually used by
the Anderson and Hsiao (1982) estimator as well as a general robust variance–
covariance matrix specification allowed by GMM. This yielded estimates close to
those of FD2SLS.

For the heterogeneous estimators of Table 16.3, we first compute individual OLS
and 2SLS regressions. The average OLS and 2SLS estimates of the q coefficient
are around 0.042, while the estimates of the coefficient of lagged (I/K) are around
0.28. These are higher for Tobin’s q coefficient estimate and lower for the esti-
mate of the coefficient of lagged (I/K) than the mean group estimator obtained
by Hsiao, Pesaran and Tahmiscioglu (1999). The latter were 0.037 and 0.323, re-
spectively. We also computed the Swamy (1970) random coefficient regression es-
timator which is a weighted average of the individual least squares estimates where
the weights are inversely proportional to their variance–covariance matrices. This
yielded a lower q coefficient estimate of 0.026 than average OLS and a higher es-
timate of the coefficient of lagged (I/K) of 0.327. From the individual Maximum
Likelihood estimators, based on the normality assumption, several shrinkage esti-
mators have been proposed in the literature including the empirical Bayes estima-
tor, the iterative Bayes estimator, and the iterative empirical Bayes estimator. The
average ML estimates are close to those of Swamy. The average empirical Bayes
estimate of the q coefficient is 0.032 while that of average iterative empirical Bayes
and average iterative Bayes are 0.023 and 0.022, respectively. Next, we compute the
Hsiao, Pesaran and Tahmiscioglu (1999) hierarchical Bayes estimates. This yields a
q coefficient estimate of 0.014 compared to 0.0174 for the different sample used by
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Hsiao, Pesaran and Tahmiscioglu (1999). The corresponding estimates of the coeffi-
cient of lagged (I/K) are 0.423 and 0.431, respectively. Normal densities for lagged
(I/K) and q coefficients are drawn. Finally, we compute the Pesaran, Shin and
Smith (1999) Pooled Mean Group estimator. This estimator constrains the long-run
coefficients to be identical but allows the short-run coefficients and error variances
to differ across individuals. Long-run coefficients and individual-specific error cor-
rection coefficients are estimated using Maximum Likelihood. These ML estimates
are referred to as pooled mean group estimators in order to highlight the pooling ef-
fect of the homogeneity restrictions on the estimates of the long-run coefficients and
the fact that averages across individuals are used to obtain individual-wide mean es-
timates of the error-correction coefficients and the other short-run parameters of the
model. This yields a q coefficient estimate of 0.022 and a lagged (I/K) coefficient
estimate of 0.374.

16.4 Comments on the Predictive Approach

In some problems, it is interesting to predict one or more post-sample observations
on a given individual over several periods. In the Bayesian context, the problem of
prediction is solved by calculation of the predictive density.

16.4.1 From the Post-sample Predictive Density. . .. . .. . .

A fundamental goal in any statistical analysis is to predict a set of future obser-
vations at time (T + τ), say YT+τ , given the observed data YT and the underlying
model M. Forecasting in the Bayesian context is done through the calculation of
the prediction density defined as the distribution YT+τ conditioned on (YT ,M) but
marginalized over the parameters θ . The post-sample predictive density is defined
as (see Hsiao and Tahmiscioglu (1997)):

p(YT+τ |YT ,M) =
∫

p(YT+τ |YT ,M,θ) p(θ |YT ,M)dθ

where p(YT+τ |YT ,M,θ) is the conditional density of YT+τ given (YT ,M,θ) and
the marginalization is with respect to the posterior density p(θ |YT ,M) of θ . Thus,
when interested in forecasting future values YT+τ , one uses the posterior distribution
p(θ |YT ,M) to integrate out the parameters and gets the predictive density where
p(YT+τ |YT ,θ ,M) is obtained from the sampling model. The Bayesian approach
naturally gives rise to predictive densities where all parameters are integrated out,
making it a perfect tool for forecasting. Of course, all this comes at a cost, which is
typically of a computational nature. In general, the predictive density is not avail-
able in closed form. An analytical solution to the computational problem is provided
by summarizing prior information through restrictions to natural-conjugate prior
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densities (see Zellner (1971)). A natural-conjugate prior shares the functional form
of the likelihood. When it belongs to exponential families, this leads to posterior
densities of the same form. But now, a full Bayesian implementation of the model
is now feasible using sampling-based approaches to calculate marginal densities.
Using Gibbs sampling, Hsiao, Pesaran and Tahmiscioglu (1999) have proposed the
“hierarchical Bayes” estimator. For individual i, if we want to predict y at time
T + 1, say yi,T+1, we should use the conditional density p(yi,T+1|YT ) where YT in-
cludes all observed data (yi,1, . . . ,yi,T ) as well as the data on explanatory variables(

Z′i,1, . . . ,Z
′
i,T ,Z

′
i,T+1

)′
where Z′i,T+1is the k-vector of future explanatory variables

(
1,yi,T ,X ′i,T+1

)′
.8

Consequently, for the first step-ahead forecast, the predictive density is defined as:

p(yi,T+1|Yi,T ) =
∫

p(yi,T+1|Yi,T ,θ) p(θ |Yi,T )dθ

∼ N (E (yi,T+1|Yi,T ) ;V (yi,T+1|Yi,T )) , Y ′i,T ≡ (y′i
...yi,T+1)′.

So, the expected future value ŷi,T+1 is the mean of draws from the normal dis-
tribution. Using the properties of the multivariate normal distribution, we define the
conditional density of yi,T+2 given the observed data and the parameters, and so on.
So, differences—between forecast values at time T + τ—for several Bayes estima-
tors (Empirical Bayes, Iterative Bayes, Empirical Iterative Bayes and Hierarchical
Bayes) come from the differences in the estimation of

(
θ ,Δ,σ2

i

)
.

16.4.2 . . . to the Good Forecast Performance of the Hierarchical
Bayes Estimator: An Example

Let us consider our simple dynamic version of the classical Tobin q investment
model (16.13). For prediction comparison, Baltagi, Bresson and Pirotte (2004) have
estimated the model using the observations from 1982 to 1993 and have reserved
the last 5 years for obtaining forecasts (1994–1998). Table 16.4 gives a comparison
of various predictors using the RMSE criterion for the q investment model. Because
of the ability of an estimator to characterize long-run as well as short-run responses
is at issue, the average RMSE is calculated across the 337 firms at different fore-
cast horizons. Specifically, each model was applied to each firm, and out-of-sample
forecasts for 5 years were calculated. The relative forecast rankings are reported in
Table 16.4 after 1 and 5 years. The overall average ranking for the full 5 year period
is also reported. A comparison of heterogeneous versus homogeneous estimators
reveals some interesting patterns. The average OLS, average 2SLS, and the pooled
mean group estimators perform poorly, ranking always in the bottom of Table 16.4
no matter what forecast horizon we look at. The Swamy random coefficients

8 For more details, see Chib (2005).



16 To Pool or Not to Pool? 543

Ta
bl

e
16

.4
C

om
pa

ri
so

n
of

fo
re

ca
st

pe
rf

or
m

an
ce

of
th

e
q

in
ve

st
m

en
tm

od
el

1s
ty

ea
r

5t
h

ye
ar

Fi
ve

-y
ea

r
av

er
ag

e

R
an

ki
ng

E
st

im
at

or
R

M
SE

1
E

st
im

at
or

R
M

SE
1

E
st

im
at

or
R

M
SE

1

1.
H

ie
ra

rc
hi

ca
lB

ay
es

6.
67

81
O

L
S

10
.0

76
9

H
ie

ra
rc

hi
ca

lB
ay

es
8.

53
07

2.
In

di
vi

du
al

M
L

6.
91

51
2S

L
S–

K
R

10
.0

82
5

FG
L

S
8.

80
64

3.
It

er
at

iv
e

B
ay

es
6.

96
51

2S
L

S
10

.0
91

5
It

er
at

iv
e

em
pi

ri
ca

lB
ay

es
8.

80
69

4.
It

er
at

iv
e

em
pi

ri
ca

lB
ay

es
7.

00
24

H
ie

ra
rc

hi
ca

lB
ay

es
10

.1
42

8
It

er
at

iv
e

B
ay

es
8.

84
64

5.
FG

L
S

7.
07

22
FG

L
S

10
.1

96
8

O
L

S
8.

89
57

6.
E

m
pi

ri
ca

lB
ay

es
7.

08
05

It
er

at
iv

e
em

pi
ri

ca
lB

ay
es

10
.4

38
5

2S
L

S–
K

R
8.

90
89

7.
O

L
S

7.
15

41
It

er
at

iv
e

B
ay

es
10

.6
34

9
2S

L
S

8.
92

39
8.

2S
L

S–
K

R
7.

17
73

W
ith

in
10

.9
20

3
In

di
vi

du
al

M
L

8.
99

09
9.

2S
L

S
7.

19
70

W
ith

in
-2

SL
S

10
.9

61
4

E
m

pi
ri

ca
lB

ay
es

9.
27

50
10

.
FD

2S
L

S
7.

48
61

In
di

vi
du

al
M

L
10

.9
75

6
W

ith
in

9.
27

86
11

.
FD

2S
L

S–
K

R
7.

50
08

E
m

pi
ri

ca
lB

ay
es

11
.4

22
6

W
ith

in
-2

SL
S

9.
45

86
12

.
W

ith
in

7.
50

30
FD

2S
L

S–
K

R
11

.9
67

7
FD

2S
L

S–
K

R
9.

93
45

13
.

FD
G

M
M

7.
66

95
FD

2S
L

S
12

.0
47

3
FD

2S
L

S
9.

94
86

14
.

In
di

vi
du

al
O

L
S

7.
74

84
FD

G
M

M
12

.5
74

7
FD

G
M

M
10

.2
93

0
15

.
W

ith
in

-2
SL

S
7.

86
44

In
di

vi
du

al
O

L
S

13
.6

90
7

In
di

vi
du

al
O

L
S

10
.6

76
5

16
.

In
di

vi
du

al
2S

L
S

8.
59

33
Sw

am
y

16
.1

46
7

Sw
am

y
14

.0
71

5
17

.
Sw

am
y

11
.9

77
3

A
ve

ra
ge

O
L

S
19

.8
33

In
di

vi
du

al
2S

L
S

14
.1

79
2

18
.

Po
ol

ed
m

ea
n

gr
ou

p
12

.9
82

3
A

ve
ra

ge
2S

L
S

21
.8

02
6

A
ve

ra
ge

O
L

S
17

.2
82

5
19

.
A

ve
ra

ge
O

L
S

14
.9

04
3

In
di

vi
du

al
2S

L
S

21
.8

94
1

Po
ol

ed
m

ea
n

gr
ou

p
17

.4
40

8
20

.
A

ve
ra

ge
2S

L
S

15
.5

31
1

Po
ol

ed
m

ea
n

gr
ou

p
22

.0
32

0
A

ve
ra

ge
2S

L
S

18
.6

44
2

1
R

M
SE
×

10
−

2



544 B.H. Baltagi et al.

estimator did not perform well either, having a rank of 17 or 16 depending on the
forecast horizon. The weak forecast performance of the average and the Swamy
estimators relative to the homogeneous estimators arises because of the parameter-
instability problem of the individual firm regressions. The shrinkage iterative Bayes
and iterative empirical Bayes estimators perform well, ranking 3, 4 in the first year,
7, 6 in the 5th year, and 4, 3 for the 5 year average. The overall RMSE forecast
rankings offer a strong endorsement for the iterative shrinkage estimators. How-
ever, this good performance is closely matched by some of the homogeneous es-
timators: FGLS, OLS, 2SLS–KR and 2SLS. These rank 5,7,8,9 in the first year,
5,1,2,3 in the 5th year, and 2,5,6,7 for the 5 year average. Hsiao, Pesaran and
Tahmiscioglu (1999) also compared the out-of-sample forecasts for their sample us-
ing the fixed effects, the mean group, the corrected mean group, average empirical
Bayes, and hierarchical Bayes for a 5 year horizon. The hierarchical Bayes estimator
was found to perform the best for 1-to-5 year forecasts using the RMSE criterion.
For our sample, our results confirm Hsiao, Pesaran and Tahmiscioglu (1999) con-
clusions. The hierarchical Bayes estimators ranks 1 for the first year, 4 for the 5th
year, and 1 for the 5 year average. Its forecast performance is better than all other
heterogeneous estimators and is better than usual homogeneous estimators (OLS,
FGLS, 2SLS, . . . ) for the first year and for the 5 year average.

Baltagi, Bresson and Pirotte, (2004) reconsider the Tobin q investment model
studied by Hsiao, Pesaran and Tahmiscioglu, (1999) using a panel of 337 U.S. firms
over the period 1982–1998. It contrasts the out-of-sample forecast performance of
9 homogeneous panel data estimators and 11 heterogeneous and shrinkage Bayes
estimators over a 5 year horizon. Results show that the average heterogeneous es-
timators perform the worst in terms of mean squared error, while the hierarchical
Bayes estimator suggested by Hsiao, Pesaran and Tahmiscioglu (1999) performs
the best. Homogeneous panel estimators and iterative Bayes estimators are a close
second.

16.5 Conclusion

Although the performance of various estimators and their corresponding forecasts
may vary in ranking from one empirical example to another (see Baltagi (1997)),
Baltagi, Griffin and Xiong (2000), Baltagi, Bresson, Griffin and Pirotte (2003) and
Baltagi, Bresson and Pirotte (2002, 2004), the consistent finding in all these stud-
ies is that homogeneous panel data estimators perform well in forecast performance
mostly due to their simplicity, their parsimonious representation, and the stability
of the parameter estimates. Average heterogeneous estimators perform badly due to
parameter estimate instability caused by the estimation of several parameters with
short time series. Shrinkage estimators did well for some applications, especially
iterative Bayes and iterative empirical Bayes. For the Tobin q example, the hierar-
chical Bayes estimator performs very well and gives in mean the best forecasts.
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Chapter 17
Duration Models and Point Processes

Jean-Pierre Florens, Denis Fougère and Michel Mouchart

Many economic phenomena are characterized by the observation of a sequence of
events on a continuous interval of time. Think, for instance, to observing the dates
of a specific type of financial transactions, or to observing the dates of changes of
the individual labor market situation (full-time employed, part-time employed, un-
employed, etc.). The length of the interval between two successive events is called
a duration. A duration is a positive random variable, denoted T , representing the
length of a time period spent by an individual or a firm in a given state. For sim-
plicity, we assume that the distribution of T is not defective, i.e. Pr(T = ∞) = 0.
This variable is also called a failure time when the date of change is interpreted as a
breakdown or a failure.

The most elementary duration model is based on a “death process” {Xt , t ∈R+},
for which Xt takes its values in the discrete state space {E0,E1}. At the time origin,
called the birth date, the process is in state E0, i.e. X0 = E0. Trajectories of the
process Xt have at most a unique transition from state E0 to state E1, which occurs at
time T , called the death date. Consequently, the duration T generated by a trajectory
of the death process Xt is defined as follows:

T = inf{t | Xt = E1} .

In most structural models, T is a continuous random variable, but the empirical
distribution function is a discrete time process and nonparametric methods are of-
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ten based on (functional) transformations of the empirical distribution function,
considered as the best estimator of the “true” distribution function. Therefore, in
this chapter, we explicitly consider both continuous and discrete durations.

The first section of this survey concentrates on marginal models of durations, i.e.
models without explanatory variables. It presents the main functions characteriz-
ing the distribution of a duration variable, the survivor and hazard functions among
others. Section 17.2 is devoted to the presentation of conditional duration models,
and more particularly, proportional hazards and accelerated life models, which in-
corporate the effects of explanatory variables in two different ways. In this section,
a special emphasis is put on the problem of unobserved individual heterogeneity.
The basic duration model treats a single spell (of unemployment, for example) end-
ing with a given kind of transition (from unemployment to employment, for exam-
ple).1 But, in general, as a death could be due to various causes, an individual could
exit from unemployment to enter one among different states: full-time employment,
part-time employment, or training, for example. When a single-spell duration has
many (at least two) outcomes, the duration model may be modelled by means of a
so-called competing risks model. Competing risks models are presented in the third
section, which also contains a discussion on their identifiability. The right-censoring
issue is presented here as a particular case of a competing risks duration model. The
fourth section is concerned with statistical inference, with a special emphasis on
non- and semi- parametric estimation of single-spell duration models.

The remaining part of this chapter is devoted to point processes, which can be
viewed as a generalization of duration models. Such processes are a mathematical
formalization which allows to examine individual mobilities or transitions between a
finite number of discrete states through (continuous) time. They are particularly use-
ful for the microeconometric analysis of labor market dynamics. Section 17.5 sets
forth the main definitions for point and counting processes. Distribution, intensity
and likelihood functions of such processes are also examined. Section 17.6 presents
important elementary examples of point processes, namely Poisson, Markov and
semi-Markov processes. Such processes are of great interest because they are well
adapted to the case of observed censored or truncated realizations. The last section
presents a general semiparametric framework for studying point processes with ex-
planatory variables. It also focuses on the definition of martingale estimators, which
are particularly useful in this framework.

17.1 Marginal Duration Models

17.1.1 Distribution, Survivor and Density Functions

We first recall the general definition of the distribution function and of its com-
plement, the survivor function. Next, we give more details for the continuous and

1 Recently, duration models have been used to analyze the determinants of time intervals between
two successive changes in the price of a product sold in a given outlet (see, for instance, Fougère,
Le Bihan and Sevestre (2007)).
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the discrete cases, particularly from the point of view of the continuity of these
functions.

Definition 17.1. (Distribution function) The distribution function of the duration
variable T is denoted F and is defined as

F(t) = Pr(T ≤ t), t ≥ 0 .

�
The main properties of the distribution function F are: F(t) ∈ [0,1] ,F is monotone
non-decreasing, right continuous and limt→∞ F(t) = 1.

Definition 17.2. (Survivor function) The survivor function of the duration variable
T , denoted S, is defined as

S(t) = Pr(T ≥ t) = 1−F(t)+Pr(T = t) .

�
Its main properties are: S(t) ∈ [0,1] ,S is monotone non-increasing, left-continuous
and limt→∞ S(t) = 0.

Definition 17.3. (Density function) If there exists a function f : R+→R+ such that

F(t) =
∫ t

0
f (u)du or f (t) =

dF
dt

=−dS
dt

,

f is called the density of T . �
Thus, the density function may be interpreted as the “instantaneous probability” of
a failure, a death or an exit (from unemployment, for instance). Remember that in
the continuous case, there exists a value of t such that F(t) = S(t) = 0.5; that value
is the median of the distribution.

Definition 17.4. (Discrete duration)

∃( f j,a j), j ∈ J ⊆ N, f j > 0, ∑ j∈J f j = 1, 0≤ a j < a j+1

such that
F(t) = ∑ j∈J f j 1

{
t ≥ a j

}
= ∑{ j|a j≤t} f j

S(t) = ∑ j∈J f j 1
{

t ≤ a j
}

= ∑{ j|a j≥t} f j

or equivalently

f j = F (a j)−F
(
a j−
)

= F (a j)−F
(
a j−1

)

= S (a j)−S
(
a j+
)

= S (a j)−S
(
a j+1

)

�
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In the framework of a death process, the event {T = a j} means “alive up to age a j

and dead at age a j” and that event has probability f j.

17.1.2 Truncated Distributions and Hazard Functions

The use of statistical duration models may be justified by several arguments:

(i) Problem of time dependence. Consider the following question. What is the “in-
stantaneous” probability of dying at time t given you are still living at time t?
More generally, this is the problem of the probability law of duration T , condi-
tional on T ≥ t (remember that the event {T ≥ t} means “still alive at time t”).
This problem is exactly that of analyzing the dynamic behavior of the process.
Such conditional distributions are “truncated” distributions.

(ii) The preceding question is often so natural that modelling those truncated dis-
tributions may be economically more meaningful than modelling the untrun-
cated distributions. For instance, in job search models, the reservation wage, at
a given instant, is a function of the duration of unemployment up to that instant.

(iii) Right-censoring (see Sect. 17.3.4) makes truncated distributions particularly
useful.

Definition 17.5. (Integrated hazard function) The integrated hazard function of the
duration variable T is denoted Λ and is defined as

Λ : R+ → R+

t �→ Λ(t) =
∫
[0,t[

1
S (u)

dF (u)

�

The function Λ is monotone non-decreasing, left-continuous and verifies Λ(0) = 0
and Λ(∞) = ∞. As we will see later, the integrated hazard function is a useful tool for
characterizing some duration distributions. Let us consider now the hazard function
(or age-specific failure rate).

(i) Continuous case

In the continuous case, there is a density function f (t) and

Λ(t) =
∫ t

0

f (u)
S(u)

du =−
∫ t

0

1
S(u)

dS(u) =−ln S(t) .

Definition 17.6. (Hazard function) The hazard function of the duration variable T
is denoted λ and is defined as

λ (t) = dΛ(t)/dt = f (t)/S(t) =−d ln S(t)/dt .

�
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The function λ (t) may be viewed as the “instantaneous probability” of leaving the
current state, indeed

λ (t) = lim
Δ→0

Pr[t ≤ T < t +Δ | T ≥ t]
Δ

.

Thus, λ (t) is also called the “age-specific failure rate” or the “age-specific death
rate”. The function λ is non negative and

∫ t
0 λ (u)du < ∞, ∀t ∈ R+, but

∫ ∞
0 λ (u)

du = ∞ for non-defective distributions. Note that λ is not necessarily monotone.
Straightforward relationships between the distribution, survivor and hazard func-

tions should be noticed:

Λ(t) =
∫ t

0 λ (u)du, f (t) = λ (t)exp
(
−
∫ t

0 λ (u)du
)

S(t) = exp
(
−
∫ t

0 λ (u)du
)
, F(t) = 1− exp

(
−
∫ t

0 λ (u)du
)

which shows that each of these functions completely characterizes the distribution
of a duration.

Definition 17.7. (Temporal independence) The hazard function of the duration T
has the property of temporal independence if and only if it is constant over time, i.e.
λ (t) = λ , ∀t ∈ R (λ > 0) �

(ii) Discrete case

Remember that, in the discrete case, for any (integrable) function g(u) we have
∫

[0,t[
g(u)dF(u) = ∑

{ j|a j<t}
g(a j) f j = ∑

j
g(a j) f j1{a j < t} .

Therefore

Λ(t) = ∑
{ j|a j<t}

f j

S(a j)
= ∑
{ j|a j<t}

f j

f j + f j+1 + . . .
.

So, we obtain the discrete version of the (instantaneous) hazard function as

λ j = Λ(a j+)−Λ(a j) =
f j

f j + f j+1 + f j+2 + . . .
=

f j

S(a j)
.

In particular, λ1 = f1. The last formula may also be interpreted as

λ j = Pr(T = a j | T ≥ a j) .

To deduce relationships between survivor and hazard functions in the discrete case,
let us write the survivor function as:

S(t) = ∏{ j|a j<t}(1−λ j)
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based on the familiar identity

a0 +a1 = a0

(
1+

a1

a0

)

a0 +a1 +a2 = a0

(
1+

a1

a0

)(
1+

a2

a0 +a1

)

· · ·

∑0≤ j<k a j = a0 ∏1≤ j<k

(
1+

a j

∑0≤m< j−1 am

)

applied to:
S(t) = 1−∑{ j|a j<t}λ j .

Thus we obtain the relationship

ln S(t) = ∑{ j|a j<t} ln(1−λ j)≈−∑{ j|a j<t}λ j =−Λ(t)

if λ j is “small”, i.e. −ln (1−λ j) ≈ λ j. Thus, in the discrete case, Λ(t) is approx-
imately equal to −ln S(t) if all λ j are small, while in the continuous case, Λ(t) is
exactly equal to −ln S(t). Moreover, in the discrete case:

f j = λ j ∏1≤i≤ j−1(1−λi) .

Figure 17.1 presents the main distributions used for the statistical analysis of dura-
tion data.

17.2 Conditional Models

17.2.1 General Considerations

17.2.1.1 The Two Levels of Analysis to be Considered

(i) For a descriptive (or exploratory) data analysis, covariates may be used to con-
trol for observable factors of heterogeneity by performing separate analyses.

(ii) When the objective is to estimate a structural model, the parameter of interest
may be such that the (marginal) process generating some covariates may be
uninformative about the parameter of interest which, at the same time, is a
function of a parameter sufficient to parametrize the process conditional on
those covariates. Those covariates are then called “exogenous variables” and
are generally denoted by Z whereas the other variables, denoted by Y (or T ,
in case of a duration variable), are called “endogenous”, because the model
describes the way they are generated conditionally on the exogenous variables.
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In such a case, it is admissible to specify only the process conditional on those
exogenous variables, leaving the marginal process generating those exogenous
variables virtually unspecified. In other words, for the parameter of interest,
p(t | z,θ) is as informative as p(t,z | θ). According to a general principle of
parsimony, the conditional model is therefore preferred.

17.2.1.2 How to Specify conditional Models

(i) In general, a natural way of specifying conditional models is to make the param-
eters of a distribution dependent on the conditioning variable. Thus, in FT (t | θ),
one would transform θ into g(z,θ) where g would be a known function. For
example, Y ∼ N(μ ,σ2) could be transformed into (Y | Z) ∼ N(α + βZ,σ2).
Similarly, T ∼ exp(θ) could be transformed into (T | Z)∼ exp[g(Z,θ)] where,
e.g. g(Z,θ) = exp(−Z′θ).

(ii) When modelling individual data (and, in particular, duration data), a frequently
used strategy consists of starting with a so-called “baseline” distribution for
a reference individual, i.e. either an individual not belonging to the treatment
group (e.g. an individual for which Z = 0) or a “representative” individual (e.g.
an individual for which Z = E(Z)) and thereafter modelling, what makes the
other individuals different from that individual of reference. Typical examples
are the following:

• in the proportional hazard model, the global effect of all regressors Z is to
multiply the baseline hazard function by a scale factor,

• in the accelerated life model, the global effect of all regressors Z is to rescale
the duration variable. From now on, we shall only use the notation θ for the
complete parameter characterizing the conditional distribution generating
(T | Z). This vector is decomposed into θ = (α,β ) where α parametrizes the
baseline distribution and β represents the effect of the exogenous variables.

17.2.1.3 Time-Varying and Time-Constant Covariates Must be Distinguished

The covariates may represent:

• individual characteristics, such as gender, level of education, and so on, which
are fixed over time,

• other individual characteristics, such as marital status, number of children, eligi-
bility to social benefits or programs, which are typically varying through time,

• but also characteristics of the macroeconomic environment, such as the unem-
ployment rate, the job vacancy rate, the employment structure, and so on, which
are also time-varying but possibly common to several individuals.

Some variables may also represent interactions between several covariates. The dy-
namic properties of the model and the estimation procedures crucially depends on
whether the covariates are time-dependent or not.
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17.2.1.4 Interpretation of the Parameters

Most models are typically nonlinear in the sense that partial derivatives (of interest)
are not constant, but are functions of the values of the covariates and/or of the dura-
tion. This feature clearly makes the interpretation of the coefficients more difficult.
Furthermore, those partial derivatives are often not those of conditional expecta-
tions (as in regression analysis) but those of hazard functions (i.e. of “instantaneous
probabilities”).

17.2.2 The Proportional Hazard or Cox Model

17.2.2.1 Definition

In the proportional hazard model, the effect of the exogenous variable is specified as
multiplying a baseline hazard function by a function that depends on the exogenous
variable. When Z is not time-dependent, this model is defined as

λT (t | z,θ) = λ0(t | α)g(z,β ), θ = (α,β ) ,

where λ0(t | α) is the so-called baseline hazard function and g is a known function.
The proportional hazard model is equivalently characterized as

ΛT (t | z,θ) = g(z,β )
∫ t

0
λ0(u | α)du = g(z,β ) Λ0(t | α) ,

ST (t | z,θ) = exp
{
−g(z,β )

∫ t
0 λ0(u | α)du

}

= exp{−g(z,β ) Λ0(t | α)}

= [S0(t | α)]g(z,β )

where Λ0 and S0 are implicitly defined. Thus

fT (t | z,θ) = λT (t | z,θ) ST (t | z,θ)

= g(z,β ) λ0(t | α) [S0(t | α)]g(z,β )

17.2.2.2 Identification

The problem of identifying separately the functions g and λ0 comes from the fact
that for any k > 0 : g ·λ0 = gk ·k−1λ0. A rather natural solution consists of defining a
reference individual, i.e. a particular value z0 of Z for which g(z0,β ) = 1,∀β . Conse-
quently, λT (t | z0,θ) = λ0(t |α). When Z = 0 is meaningful, a typical normalization
is g(0,β ) = 1.
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In the proportional hazard model with time-constant covariates, the first-order
derivative

∂
∂ z

ln λT (t | z,θ) =
∂
∂ z

ln g(z,β ) ,

depends on z and β only and is therefore independent of t.

17.2.2.3 Semi-parametric Modelling

When interest is focused on the role of the exogenous variables, α is treated as a
nuisance parameter and β is the sole parameter of interest. In such a case, modelling
often relies on one of the following two extreme possibilities:

(i) λ0(t | α) is specified in the most simplest way such as λ0(t | α) = λ0(t), i.e. is
completely known, or λ0(t | α) = α , i.e. the baseline distribution is exponential
and therefore depends on only one unknown parameter;

(ii) λ0(t | α) is specified in the most general way: λ0(t | α) = α(t), i.e. a functional
parameter (α is a non-negative function such that its integral on the positive
real line diverges). This is a semiparametric model with parameter θ = (α,β ),
where α takes its value in a functional space, whereas β takes its value in a
(finite dimensional) Euclidean space. This approach is particularly attractive
in situations where economic theory would not give much information on the
structure of λ0(t | α).

17.2.2.4 A Particular Case

The function g(z,β ) should clearly be non-negative. An easy way to obtain that
property without restriction on β is the log-linear specification, viz.:

g(z,β ) = exp(z′β ), β ∈ R

k .

In such a case Λ0(t|α) = ΛT (t|0,θ). That specification has a number of interesting
properties. First, let us remark that:

∂
∂ z

ln λT (t | z,θ) =
∂
∂ z

ln g(z,β ) = β ,

i.e. z has a constant proportional effect on the instantaneous conditional probability
of leaving state E0. If z is not time-dependent, one may also write

ST (t | z,θ) = exp{−Λ0(t | α)exp(z′β )}= [S0(t | α)]exp(z′β )

fT (t | z,θ) = λ0(t | α)exp(z′β ) [S0(t | α)]exp(z′β )

Let us define
εt =−ln Λ0(t | α)− z′β .
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where εt has a completely specified distribution, independent of α,z or β , namely a
unit double-exponential distribution. Then we may write

−ln Λ0(t | α) = z′β + εt .

This is a (non-normal) nonlinear regression but linear if α is known. This feature of
the proportional hazard model was used by Han and Hausman (1990) for conducting
a semiparametric estimation on grouped duration data.

17.2.3 The Accelerated Time Model

17.2.3.1 The Basic Idea

In the accelerated time model, the effect of the exogenous variable is specified as
modifying the time scale. For the ease of exposition, we assume that the exoge-
nous variables are not time-dependent. The accelerated time model is accordingly
defined as

T = [g(z,β )]−1T0 or T0 = g(z,β )T

or, equivalently,
λT (t | z,θ) = g(z,β )×λ0 [t g(z,β ) | α]
ΛT (t | z,θ) = Λ0 [t g(z,β ) | α]
ST (t | z,θ) = S0 [t g(z,β ) | α]
fT (t | z,θ) = g(z,β ) f0 [t g(z,β ) | α]

with, as usual, θ = (α,β ). This specification may be particularly attractive when
the baseline distribution admits a scale parameter.

17.2.3.2 Empirical Test for the Accelerated Time Model

Let us consider the quantile functions, i.e. the inverse of the survivor (rather than, as
more usually, the distribution) functions:

qT (p | z,θ) = S−1
T (p | z,θ) , 0≤ p≤ 1 ,

q0(p | α) = S−1
0 (p | α), 0≤ p≤ 1 .

Because of the strict monotonicity (in the continuous case) of the survivor function,
we have

q0(p | α) = g(z,β ) ·qT (p | z,θ) .

In the {q0(p | α),qT (p | z,θ)}–space, this gives, for a fixed value of z, an homoge-
nous straight line, the gradient of which is given by g(z,β ). This feature suggests
that an easy empirical test for the accelerated time model may be obtained through
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an examination of the so-called “Q–Q-plot” (i.e. plot of the two quantiles) for a fixed
value of Z and a fixed (typically, estimated) value of θ = (α,β ).

17.2.3.3 Regression Representation of the Accelerated Time Model

The accelerated time model may also be written, in logarithmic terms, as

ln T = ln T0− ln g(z,β ) .

If we define μ0 = E [ln T0] and ε = ln T0−E [ln T0] , we may also write

ln T = μ0− ln g(z,β )+ ε .

In particular,

(i) if ln T0 ∼ N(μ ,σ2), i.e. T0 ∼ LN(μ ,σ2), then ε ∼ N(0,σ2). Thus we obtain a
normal regression model (if there is no censoring);

(ii) if g(z,β ) = exp (z′β ), we obtain a linear regression model: ln T = μ0−z′β +ε .

17.2.3.4 Particular Case: Weibull Baseline

In the particular case of a Weibull baseline distribution, namely Λ0 (t|x) = λtτ ,
where α = (λ,τ), along with a log-linear effect of the exogenous variable, namely
g(z,β ) = exp(β ′z), we obtain:

ΛPH (t|z,θ) = exp
(
β ′PHz

)
λ tτ

ΛAT (t|z,θ) = λ [t exp
(
β ′AT z

)
]τ

The two models, proportional hazards and accelerated time, become therefore iden-
tical under the reparametrization βPH = τβAT .

17.2.4 Aggregation and Heterogeneity

Heterogeneity is the problem created by the non-observability or the omission of
relevant exogenous variables. Aggregating over heterogenous individuals may cre-
ate complicated structures of the hazard function. The analytical aspect is shown,
for the general case, in the next lemma. An example illustrates a simple application
of this lemma. Then it is shown that aggregation destroys the exponentiality of a
duration.
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17.2.4.1 A Basic Lemma

Let T | Z ∼ FZ
T and Z ∼ FZ , i.e.

Pr(T ≤ t | Z = z) = FT (t | z) and Pr(Z ≤ z) = FZ (z)

Then

fT (t) =
∫

fT (t | z) dFZ (z)

ST (t) =
∫

ST (t | z) dFZ (z)

λT (t) =
fT (t)
ST (t)

=
∫

fT (t | z) dFZ (z)
∫

ST (t | z) dFZ (z)

=
∫

λT (t | z) ST (t | z)
∫

ST (t | z) dFZ (z)
dFZ (z)

=
∫

λT (t | z) dFZ (z | T ≥ t)

�
This lemma may be interpreted as follows: aggregating over heterogenous indi-
viduals, characterized by z, produces a duration distribution for which the hazard
function λT (t) is a weighted average of the individual hazard functions λT (t | z).
This possibly complicated weighting scheme may eventually account for complex
hazard functions when analyzing aggregate data. A simple example illustrates this
point.

17.2.4.2 An Example

Let Z = 0 for individuals with a low educational level, and Z = 1 for individuals with
a high educational level. The distribution of this variable over the whole population
is defined by Pr(Z = z) = θ z(1−θ)1−z. Moreover, we suppose that:

(T | Z = j)∼ F j
T , j = 0,1

Then we can deduce

fT (t) = θ fT (t | z = 1)+(1−θ) fT (t | z = 0)
ST (t) = θST (t | z = 1)+(1−θ)ST (t | z = 0)

λT (t) =
fT (t)
ST (t)

= θ
f 1
T (t)

θS1
T (t)+(1−θ)S0

T (t)

+(1−θ)
f 0
T (t)

θS1
T (t)+(1−θ)S0

T (t)

= λ 1
T (t)

θS1
T (t)

θS1
T (t)+(1−θ)S0

T (t)
+λ 0

T (t)
(1−θ)S0

T (t)
θS1

T (t)+(1−θ)S0
T (t)
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17.2.4.3 The “Mover–Stayer” Lemma

Lemma 17.1. If (T | Z)∼ exp{λ0(Z)} and Z∼FZ arbitrary, then λT (t) is monotone
decreasing. �

Proof. Indeed, we successively obtain:

ST (t) =
∫ ∞

0
ST (t | z) dFZ (z) =

∫ ∞

0
exp [−t λ0 (z)] dFZ (z)

fT (t) = − d
dt

ST (t) =
∫ ∞

0
λ0 (z)exp [−t λ0 (z)] dFZ (z)

λT (t) =
fT (t)
ST (t)

=
∫ ∞

0 λ0 (z)exp [−t λ0 (z)] dFZ (z)
∫ ∞

0 exp [−t λ0 (z)] dFZ (z)

It is then easy to check that

d
dt

λT (t) < 0 ∀t,∀FZ(Z), ∀λ0(Z)

(see, for example, Fourgeaud, Gouriéroux and Pradel (1990)).

This lemma may be interpreted as follows. Individuals are characterized by their
value of z. Large values of λ0(z) represent so-called “movers”: they will leave first,
while individuals represented by small value of λ0(z), the so-called “stayers”, will
leave (in probability) later. This explains why λT (t) will be decreasing because be-
ing determined at each t by the remaining individuals with smaller values of λ0(z).
This lemma also shows that although each individual duration has exponential du-
ration, the appropriate distribution not only is not exponential but has necessarily a
decreasing hazard rate, whatever is the distribution of Z.

17.2.5 Endogeneity

In the previous section, we have considered models where the covariates are ex-
ogenous. In many cases, this assumption is not realistic. Consider, for example, a
model constructed in the following way: T is a duration generated conditionally
on Z = (Z1,Z2), where Z2 is an individual characteristic and Z1 is the level of a
treatment. The variable Z2 is known by persons who assign the treatment but un-
known by the statistician. If the parameters of interest are the parameters of the
conditional distribution of T given (Z1,Z2) these parameters are in general not
identified by the conditional distribution of T given Z1 (after integration of Z2).
Using econometric terminology, Z1 becomes an endogenous variable. Endogene-
ity of treatments in duration models has been studied by Abbring and Van den
Berg (2003).
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17.3 Competing Risks and Multivariate Duration Models

17.3.1 Multivariate Durations

17.3.1.1 Introduction

Multivariate durations distributions are used in different situations. The first context
is the analysis of multivariate elementary point processes, which occurs when we
observe life lengths of several individuals belonging to the same family, or unem-
ployment spells of couples. This is also the case when, for a given individual, we
define a multivariate point process corresponding, for instance, to her labor market
trajectories and to her marriage/divorce history. Another use is in point processes
with more than one transition, as in the analysis of biographical data on unemploy-
ment. Yet another use is in situations where the vector of durations is latent and
some sampling scheme allows one to observe only a part of this vector; this is the
case in competing risks models to be presented later on.

In this section we focus our attention on general issues, namely basic definitions
and properties, and methods of construction. For expository purposes we limit the
presentation to bivariate distributions; extensions to more than two dimensions are
fairly obvious, although notations may become cumbersome.

17.3.1.2 Basic Concepts

We start with the multivariate survivor function defined and denoted as

ST1,T2(t1, t2) = Pr(T1 ≥ t1,T2 ≥ t2) .

In what follows we assume that ST1,T2 is twice differentiable but in the last section we
show how to treat a continuous but not everywhere differentiable survivor function
as well. The multivariate density is defined as

fT1,T2(t1, t2) =
∂ 2

∂ t1∂ t2
ST1,T2(t1, t2) .

The marginal survivor and density functions are defined as

ST1(t1) = ST1,T2(t1,0)

fT1(t1) =− d
dt1

ST1(t1)

and similarly for T2. Often we shall write, for simplicity, S1,2, f1,2 or S j( j = 1,2)
instead of ST1,T2 , etc.
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Conditional distributions occur in different contexts and should be carefully
distinguished according to the relevant conditioning event. Thus we need both
S1|2(t1|T2 = t2), f1|2(t1|T2 = t2) and S1|2(t1|T2 ≥ t2), f1|2(t1|T2 ≥ t2). They are
defined and denoted as follows:

S≥1|2(t1|t2) = Pr(T1 ≥ t1 | T2 ≥ t2) =
S1,2(t1, t2)

S2(t2)

f≥1|2(t1|t2) =− ∂
∂ t1

S1|2(t1 | T2 ≥ t2) =
− ∂

∂ t1
S1,2(t1, t2)

S2(t2)
.

Furthermore, as shown more precisely in next subsection,

S=
1|2(t1|t2) = Pr(T1 ≥ t1|T2 = t2) =−

∂
∂ t2

S1,2(t1, t2)

f2(t2)

f =
1|2(t1|t2) =− ∂

∂ t1
S=

1|2(t1|t2) =
f1,2(t1, t2)

f2(t2)
.

To each of these univariate conditional distributions, there corresponds a unique
hazard function. For instance, marginal hazard functions are defined and denoted as:

λ j(t j) = lim
Δ↓0

1
Δ

Pr [t j ≤ Tj < t j +Δ | Tj ≥ t j]

= −dln S j(t j)
dt j

=
f j(t j)
S j(t j)

Conditional hazard functions are respectively defined as

λ≥1|2(t1|t2) = lim
Δ↓0

1
Δ

Pr [t1 ≤ T1 < t1 +Δ | T1 ≥ t1,T2 ≥ t2]

=
f≥1|2(t1|t2)
S≥1|2(t1|t2)

=− ∂
∂ t1

ln S1,2(t1, t2)

λ=
1|2(t1|t2) = lim

Δ↓0

1
Δ

Pr [t1 ≤ T1 < t1 +Δ | T1 ≥ t1,T2 = t2]

=
f =
1|2(t1|t2)

S=
1|2(t1|t2)

= − ∂
∂ t1

[
ln

(
− ∂

∂ t2
S1,2(t1, t2)

)]
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17.3.1.3 Construction of Multivariate Distributions

Several techniques for constructing multivariate distributions are worth mentioning.
The most trivial one is the case of independent components in which case the
joint survivor and density functions are the products of (arbitrary) corresponding
marginal functions, and in which the conditional survivor, density and hazard func-
tions coincide with the corresponding marginal functions.

For the dependent case, two general procedures are: (i) take two univariate dis-
tributions, choose one to be marginal and take the other one to be conditional to the
first by making its parameters to be a function of the conditioning variable; (ii) take
a joint distribution with survivor S(t1, t2,y) where y is an auxiliary variable such that
S(t1, t2 | y) is meaningful, and marginalize it into S1,2(t1, t2).

17.3.2 Competing Risks Models: Definitions

Competing risks duration models may be applied to situations where the state space
E has more than two elements: E = {E0,E1, . . . ,EJ} , J > 2. Such models involve
specifying not only the date at which the process leaves the initial state E0, but also
which state in {E1, . . .EJ} is entered.

Consider, for instance, a medical trial where a patient is submitted to a “treat-
ment” for a supposedly known disease and where the survival time is observed.
Typically, the cause of death is multiple; in particular, it may be different from the
disease for which the treatment was originally designed, and the cause is possibly
associated with the treatment itself. One says that several risks “compete” to cause
the death of the patient. Similarly, in the labor market, when the initial state E0 is
unemployment, it may be relevant to distinguish several exit states, for example full-
time employment, part-time employment or early retirement. The relevance of these
distinctions is based on the fact that economic, social and institutional factors may
be important to explain both durations and transitions of the individual trajectories;
in other words, they are particularly important when analyzing biographical data.

Thus the data have the form (T,K) where T is the sojourn duration in the initial
state and K is the destination state. Therefore the law of such a process is specified
by the so-called sub-distribution

Pr(T ≥ t,K = k) = Pr(Tj ≥ Tk ≥ t, ∀ j �= k)

Competing risk models provide a specification of Pr(T ≥ t,K = k) based on the
following idea. T represents the duration of sojourn in the initial state E0, whatever
the destination state is. The latent random variable Tj would represent the duration of
sojourn in the initial state if E j were the only possible destination. In the competing
risk models, if ties have zero probability, i.e. Pr(Ti = Tj) = 0, ∀i �= j, the Tj’s are
connected by the relationships:
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T = min j{Tj}, j = 1, · · ·J,
K = argmin j{Tj = T} .

Thus, the Tj’s are latent duration variables because only their minimum is observed.
This structure permits to write easily the marginal laws of T and K, which are
given by:

ST (t) = Pr(T ≥ t) = Pr
{
∩ j=1,...,K (Tj ≥ t)

}

Pr[K = k] = Pr
{
∩ j �=k (Tk < Tj)

}

Intuitively, k is the index of the lowest latent duration (given an ascending order on
the j′s). In order to evaluate the likelihood function, we start by the joint survivor
function, using ∗ as an upper index in the notation of the joint distribution of the
latent durations (T1, . . . ,TJ) to stress that those durations are latent:

S∗(t1, . . . , tJ) = Pr(T1 ≥ t1, . . . ,TJ ≥ tJ)

for any (t1, . . . tJ) ∈ R

J
+. The survivor function of the observed duration T =

min j(Tj) satisfies

ST (t) = S∗(t, . . . , t), t ∈ R

+

The marginal survivor function of the latent duration Tj, for j = 1, . . . ,J, is denoted
S j
∗ and defined as:

S j
∗(t j) = S∗(0, . . . ,0, t j,0, . . . ,0) .

In the case where the Tj’s are independent, we have

S∗(t1, . . . , tJ) = ΠJ
j=1S j

∗(t j) .

Now, let us suppose that the functions S∗ and consequently ST and S j
∗ are continu-

ously differentiable. The marginal and relevant conditional hazard functions of the
latent duration Tj, for j = 1, . . . ,J, are denoted and defined as

λ j(t) = lim
Δ↓0

1
Δ

Pr(t ≤ Tj < t +Δ | Tj ≥ t) =−dln S j
∗(t)/dt, t ∈ R+,

λ≥j|T (t) = lim
Δ↓0

1
Δ

Pr(t ≤ Tj < t +Δ | T ≥ t)

= − ∂
∂ t j

ln S∗(t1, . . . , tJ) |t1=t2=···=tJ=t

where λ≥j|T (t) is a short cut for λ≥Tj |T (t|t). When the T ′j s are mutually independent, it

is obvious that:

λ≥j|T (t) = λ j(t), for any t ∈ R+ .



17 Duration Models and Point Processes 565

The hazard function of the observed duration T is denoted and defined as

λT (t) = lim
Δ↓0

1
Δ

Pr(t ≤ T < t +Δ | T ≥ t)

= −dln ST (t)/dt , t ∈+ .

=
J

∑
j=1

λ≥j|T (t)

because, in the definition of hT (t), the derivative of ST (t) is a directional derivative
(in the direction of the main diagonal (1,1, . . . ,1)) of S∗(t1, . . . , tJ). In the continu-
ously differentiable case, the likelihood function may be evaluated by differentiating
the sub-distribution, namely:

lT,K(t,k) = − d
dt

Pr(T ≥ t,K = k)

= − d
dt

Pr
{
∩ j �=k (Tj > Tk ≥ t)

}

Remember that a basic result of differential calculus gives:

S∗(t1, . . . , tJ) =−
∫ ∞

u=tk

∂
∂ tk

S∗(t1, . . . , t j) du

and, similarly, a basic result of conditional probability gives:

S∗(t1, . . . , tJ) =
∫ ∞

u=tk
S=

k̄|k = (t1, . . . , tk−1, tk+1, . . . , tJ | Tk = u) fk(u) du

where k̄ = {1,2, . . . , j}\{k} and

S=
k̄|k(t1, . . . , tk−1, tk+1, . . . , tJ | Tk = tk)

= Pr(T1 ≥ t1, . . . ,Tk−1 ≥ tk−1,Tk+1 ≥ tk+1, . . . ,TJ ≥ tJ | Tk = tk)

Thus the likelihood function may be written as:

S=
j̄| j(t1, . . . , t j−1, t j+1, . . . , tJ | t j) =−

∂
∂ t j

S∗(t1, . . . , tJ)

f j(t j)
.

In the sequel we use the following simplified notation

S=
j̄| j(t) = S=

j̄| j(t, t, . . . , t | t)

Then, the sub-distribution may be written as:
∫ ∞

tk
Sk̄|k(u) fk(u)du
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Therefore,

lT,K(t,k) =− d
dt

∫ ∞

t
S=

k̄|k(u) fk(u)du

= S=
k̄|k(t)× fk(t)

=− ∂
∂ tk

S∗(t, . . . , t)

=−S∗(t, . . .t)× ∂
∂ tk

ln S∗(t, . . . , t)

Using a disjunctive coding for the exit state, namely

A = (A1, . . . ,AJ) , A j = I{K = j}

we may also write

lT,A(t,a) =
J

∏
j=1

[
f j(t)S=

j̄| j(t)
]a j

= ST (t)
J

∏
j=1

[
λ≥j|T (t)

]a j
.

In case of independent latent durations, we have:

lT,K(t,k) = fk(t)∏
j �=k

S j(t)

= λk(t)ST (t) .

17.3.3 Identifiability of Competing Risks Models

The basic idea of competing risks models is to interpret the data (T,K), represent-
ing the sojourn duration in the initial state and the label of the exit state, as the
observation of the minimum component of a random vector along with the coordi-
nate where the minimum is obtained. Intuition suggests that these observations give
no information on the question whether the coordinate of the random vector, i.e.
of the latent durations, are independent or not. This intuition is confirmed by next
theorem

Theorem 17.1. Let us denote S = {S∗(t1 · · ·tJ)} the set of J-dimensional survivor
functions, SI = {S∗ ∈S | S∗(t1 · · ·tJ) = ∏ j S j(t j)} the subset of J-dimensional sur-
vivor functions with independent components, l∗(t,k) the likelihood function for a
model in S , and lI(t,k) the likelihood function for a model in SI . Then:

∀S∗ ∈S , ∃! SI ∈SI such that l∗(t,k) = lI(t,k)
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In particular,
λ ∗,≥j|T (t) = λ j,I(t)

�
In the continuous case, the proof of this theorem comes from the fact that, in the

general case, l∗(t,k) = λ ∗,≥k|(t)ST (t) and that λT (t) = ∑ j λ ∗,≥j|T (t), i.e. the distribution of
the observed duration depends only on the sum of the conditional hazard functions.
Therefore the equality λ ∗,≥k|T (t) = λk,I(t) ensures the equality of likelihood functions.
Mouchart and Rolin (2002) gives a slightly more general statement and proof of this
theorem.

This theorem means that to any competing risks model with dependent latent
durations, one may associate an observationally equivalent model with independent
latent durations. The rule of association is simply to build the joint latent distribu-
tion with marginal hazard functions of the independent model that are equal to the
conditional hazard functions of the dependent model. To illustrate this point, we can
consider the following bivariate example. Suppose that the joint survivor function
of the two latent durations (T1,T2) is given by:

S∗(t1, t2) = exp
{

1−α1t1−α2t2− exp [α12(α1t1 +α2t2)]
}

where α1,α2 > 0 and α12 > −1. Here the parameter α12 measures the dependence
between the two latent durations T1 and T2 in the sense that T1 and T2 are indepen-
dent once α12 = 0. The conditional and marginal hazard functions of this model are
respectively:

λ ∗,≥j|T (t) = α j

{
1+α12 exp[α12(α1 +α2)t]

}
, j = 1,2

and
λ ∗j (t) = α j[1+α12 exp(α jα12t)], j = 1,2 .

Marginal survivor functions are then

S∗j(t j) = exp
[
1−α jt j− exp(α12α jt j)

]
, j = 1,2 ,

from which it is obvious that

S∗(t1, t2) �= S∗1(t1)S
∗
2(t2), (t1, t2) ∈ R

2
+

except if α12 = 0. The likelihood element of an observation (t,k) may be written as

l∗(t,k) = αk{1+α12 exp[α12(α1 +α2)t]}
×exp{1− (α1 +α2)t− exp[α12(α1 +α2)t]}

The observationally equivalent model (i.e. having the same likelihood function) with
independent latent durations has marginal hazard functions given by λ ∗,≥j|T (t) above
and eventually marginal and joint survivor functions of latent durations given by:
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S j,I(t j) = exp

{
α j

α1 +α2
−α jt j−

α j

α1 +α2
expα12(α1 +α2)t j

}
, j = 1,2

SI(t1, t2) = exp

{
1−α1t1−α2t2−

1
α1 +α2

[
α1 expα12(α1 +α2)t1

+α2 expα12(α1 +α2)t2
]
}

Note that the latent models are clearly different unless α12 = 0, i.e.

S∗(t1, t2) �= SI(t1, t2)

but the statistical models are observationally equivalent, i.e. l∗(t,k) = lI(t,k). Note
also that both latent models have been identifiably parametrized, but the parameters
have very different meaning in the two latent models. In particular, α12 measures
the association among the latent variables in the case of dependence whereas α12

is a common parameter of the two marginal distributions in the case of indepen-
dent latent variables. The identifiability of the competing-risks duration model with
unobserved heterogeneity has been studied by Heckman and Honoré (1989). Their
results have been completed by those obtained by Honoré (1993) for duration mod-
els with multiple spells and with unobserved heterogeneity.

17.3.4 Right-Censoring

One usual feature of duration data is that the sampling scheme often produces right-
censored observations, i.e. observations which have not yet left the initial state E0 at
the end of the sampling period. For example, in the case of single-spell unemploy-
ment duration data, the sampling scheme is often the following. Individual observa-
tions are sampled from the inflow of individuals entering unemployment at time t0
and followed up until date C, which is possibly determined by the researcher. Now
let us assume that C is greater than t0. Some observations correspond to individuals
leaving the unemployment status before C, in which case they generate complete
unemployment durations. Other sampled individuals have not left the unemploy-
ment state at date C and so they generate right-censored unemployment durations.
Rather than sampling from the inflow into unemployment at a given date t0, the an-
alyst may sample from inflows considered at several staggered dates t1

0 , t2
0 , . . . and

follow up observations once again up to a censoring time C. Right-censoring can
be modelled using the framework of the competing risks models with state space
{E0,E1, . . . ,EJ},J > 1, where the last state EJ denotes the right-censored situation.
To illustrate this kind of formalization, let us consider a bivariate competing risks
model (T1,T2) with state space {E0,E1,E2}, E0 labelling unemployment, E1 em-
ployment and E2 right-censoring. Thus T2 = C. In other words, censoring is often
associated with a residual state in a model with multiple states. Suppose first that all
individual observations are sampled at the same date t0. Without loss of generality,
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one may write t0 = 0 (after some relevant time translation). Within the framework
presented in the previous section, this model may be viewed as resulting from a la-
tent survivor function S1,2(t1, t2 | θ) with parameter θ , and a generic element of the
likelihood function may be written as:

lT,D(t,d) =
[

f1(t | θ)S=
2|1(t | θ)

]d [
f2(t | θ)S=

1|2(t | θ)
]1−d

where D = I{T1≤T2}. In view of the identification problem, and because in many
cases censoring mechanisms are independent of the unemployment process, it is
often assumed that T1 and T2 are independent. Then,

lT,D(t,d) = [ f1(t | θ)S2(t | θ)]d [ f2(t | θ)S1(t | θ)]1−d

If moreover θ may be factorized into θ = (θ1,θ2), such that θ1 characterizes the
distribution of T1 and θ2 the distribution of T2, the likelihood reduces to

lT,D(t,a) = L1(θ1)L2(θ2)

where

L1(θ1) = f1(t | θ1)dS1(t | θ1)1−d .

The parameters of interest are in general those of the distribution of duration T1,
and their estimation could be deduced from L1(θ1) only. Then the generic element
of the relevant factor of the likelihood function is f1(t | θ1) (resp. S1(t | θ1)) for an
uncensored (resp. a right-censored) observation.

Another model generating censored data may be the following one. Let T0 be
the age of an individual entering unemployment. This age is randomly generated
by the individual previous labor market history. The duration of the unemployment
spell is T1 and the age at the end of the unemployment spell is then T0 + T1. The
econometric model specifies the joint distribution of (T0,T1) and these two random
variables are not, in general, assumed to be independent. A natural specification
could be a sequential one: the (marginal) distribution of T0 is first specified and a
conditional distribution of T1 given T0 completes the model.

Let us now assume that all the individuals are observed at a given date T∗. In
general this date is also random but, for simplicity, we consider T∗ as fixed (the
model is conditional to T∗). Let us also assume that the sample is constructed in
such a way that T0 ≤ T∗ (all the individuals have entered unemployment). Then T0 is
always observed but T1 is not censored if T0 +T1≤T∗. Otherwise, the unemployment
spell duration is censored.

Let us define T2 = T∗ −T0. From the distribution of (T0,T1) we obtain the distri-
bution of (T1,T2), and we may consider the observations as generated by a censored
duration model: T1 is observed only if T1 ≤ T2. But the following specification of a
likelihood based on the generic element:

lT,D(t,d) = f1(t)dS1(t)1−d
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where T = min(T1,T2), D = I(T1 ≤ T2), f1 and S1 are the density and the survivor
functions of T1, is incorrect for two reasons:

(i) First if T0 and T1 are dependent, T1 and T2 are also dependent and the likelihood
function must be based on their joint distribution.

(ii) The censoring mechanism is different from the usual competing risks model
because T0 or T2 is always observed and the likelihood of the actual data must
be the density of (T2,T,D). The generic element of this likelihood is then

lT2,T,D(t2, t,d) = f2(t2) f =
1|2(t | t2)a S=

1|2(t | t2)1−d

using our previous notations. Finally, note that the identification result of
Sect. 17.3.3 does not apply to this case since the censoring mechanism is dif-
ferent from the competing risks model.

17.4 Inference in Duration Models

17.4.1 Introduction

Models actually used in econometrics for dealing with duration data are character-
ized by two noteworthy features: durations are non-negative random variables and
most data sets involve right-censored data. In this section, we focus our attention
on the implications of censoring, both for adapting the inference procedure and for
evaluating the consequences of misspecification. We first review the inference in
parametric models, both in the marginal and in the conditional case, with a partic-
ular attention on a rigorous specification of the likelihood function; next we con-
sider non- and semi-parametric models. In each case, we first specify the structure
of the model and next give some illustrations with significantly relevant particular
cases.

17.4.2 Parametric Models

17.4.2.1 Inference in Marginal Models

The Basic Model

The basic model considers a random censoring process that is independent of the
duration variable. Let us introduce the following notations:
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η = (η1, . . . ,ηn)′ denote latent durations,

ζ = (ζ1, . . . ,ζn)′ denote latent censoring indicators,

T = (T1, . . . ,Tn)′, with Ti = ηi∧ζi, are observed durations

D = (D1, . . . ,Dn)′, with Di = I{ηi≤ζi} = I{Ti=ηi},

X = (X1, . . . ,Xn)′, with Xi = (Ti,Di)′, denote complete data

X = (T,D) with dim(X) = (n×2,1)
φ is a sufficient parametrisation for the process generating (η ,ζ )

Assumptions

A.1 (independent sampling): ⊥⊥i(ηi, ζi) | φ
A.2 (independent censoring): ηi⊥⊥ζi | φ
A.3 (definition of θ as a sufficient parametrization for η): ηi⊥⊥φ | θ
A.4 (definition of ω as a sufficient parametrization for ζ ): ζi⊥⊥φ | ω
A.5 (variation-free parameters) : (θ ,ω) ∈Θθ ×Θω
A.6 θ is the only parameter of interest

Latent Likelihood

Under (A.1) to (A.5), the complete latent likelihood is therefore:

L∗∗(φ) = ∏
i

fη(ηi | θ)·∏
i

fζ (ζi | ω) = L∗1(θ)·L∗2(ω)

Under (A.6), the relevant latent likelihood is

L∗1(θ) = ∏
i

fη(ηi | θ) = fη(η | θ)

Actual Likelihood

Considering the actually available data, namely (T,D), the complete actual likeli-
hood is

L(φ) = ∏
i

fη(Ti | θ)Di Sη(Ti | θ)1−Di ∏
i

fζ (Ti | ω)1−DiSζ (Ti | ω)Di

= L1(θ)L2(ω)

Under (A.6), the relevant actual likelihood is:

L1(θ) = ∏
i

fη(Ti | θ)Di Sη(Ti | θ)1−Di = ∏
i

λη(Ti | θ)DiSη(Ti | θ)
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Thus the logarithm of the relevant actual likelihood is:

L(θ) = ln L1(θ) = ∑
i

Di ln fη(Ti | θ)+∑
i
(1−Di) ln Sη(Ti | θ)

= ∑
i
[Di ln λη(Ti | θ)+ ln Sη(Ti | θ)]

= ∑
i
[Di ln λη(Ti | θ)−Λη(Ti | θ)]

The Exponential Case

The consequences of censoring are best understood by considering with some de-
tail the case where the duration of interest is exponentially distributed, which means
that fη(ηi | θ) = θe−θηi while fζ (ζi |ω) is left unspecified. Thus, the latent process
generating η is a member of the exponential family, ∑i ηi = η+ is a minimal suffi-
cient complete statistic of the latent process and, for a sample of size n, the Fisher
information is nθ−2. With censoring, the relevant actual likelihood is written as:

L(θ) = ∑
i

Di ln θ −∑
i

Ti θ = (ln θ)D+−θT+

where D+ = ∑i Di and T+ = ∑i Ti. The score and the statistical information are
accordingly:

S(θ) =
d

dθ
L(θ) =

D+

θ
−T+

J(θ) = − d2

dθ 2 L(θ) =
D+

θ 2

taking into account that J(θ) and therefore I(θ) are block diagonal. Therefore the
maximum likelihood estimator of θ is:

θ̂ML =
D+

T+

Let us recall that: √
n(θ̂ML,n−θ) L−→ N

{
0, [I(θ)]−1}

where

I(θ) = V

{
d

dθ
L(θ) | θ

}
= E[J(θ)|θ ] =

E[D+ | θ ]
θ 2

Note that:

E[Di | φ ] = Pr[ηi ≤ ζi | φ ] = E[Fη(ζi | θ) | φ ] = 1−E[e−θζi | φ ]

Therefore:
E[Di | θ ] = 1−E[e−θζi |θ ] = 1−

∫
e−θζidFζ (ζi)
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In practice, I(θ) is estimated as:

I(θ̂MV,n) =
D+

θ̂ 2
ML,n

Let us turn now to the uncensored case. In the model with censoring, there is only
one parameter, θ ∈ R+, and the bivariate statistic (D+,T+) is minimal sufficient
but not complete. This is an example of a curved exponential family with canonical
parameter (θ , ln θ). Also, let us notice the differences in the maximum likelihood
estimations:

D+ −→ n > D+

L(θ) = (ln θ)D+−θT+ −→ n ln θ −θT+

θ̂ c
ML = D+

T+
−→ θ̂ nc

ML = n
T+

> D+
T+

In other words, the cost of overlooking censoring may be appreciated by considering
the difference between the (true) Fisher information, and the numerical value of the
maximum likelihood estimator:

θ̂ c
ML

θ̂ nc
ML

=
D+

n
≤ 1 and = 1⇐⇒ D+ = n

17.4.2.2 Inference in Conditional Models

The General Statistical Model

Let us introduce the following definitions and assumptions:

• θ = (α,β ) ∈Θα ×Θβ ⊂ R

kα ×R

kβ , kα and kβ finite.
• Data:

Yi = (Ti,Di), Y = (Y1, . . . ,Yn)

Xi = (Yi,Zi), X = (X1, . . . ,Xn)

• Definition of κ and θ : Z⊥⊥θ | κ and Y⊥⊥κ | Z,θ
• Assumptions

variation-free parameters: (κ,θ) ∈Θκ ×Θθ
conditional independence: ⊥⊥iYi | Z,θ and Yi⊥⊥Z | Zi,θ
θ is the only parameter of interest

Therefore, the relevant actual loglikelihood takes the form:

L(θ) = ∑
i

Di ln fη(Ti | zi,θ)+∑
i
(1−Di)ln Sη(Ti | zi,θ)

= ∑
i

Di ln lη(Ti | zi,θ)−∑
i

Λη(Ti | zi,θ)
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The score and the statistical information are equal to:

S(θ) =
d

dθ
L(θ) = ∑

i

Di

λη(Ti | zi,θ)
d

dθ
λη(Ti | zi,θ)−∑

i

d
dθ

Λη(Ti | zi,θ)

I(θ) =
−d2

dθdθ ′
L(θ) = ∑

i
Di[λη(Ti|zi,θ)]−2 d

dθ
λη(Ti|zi,θ)

d

dθ ′
λη(Ti|zi,θ)

−∑
i

Diλη(Ti|zi,θ)−1 d2

dθdθ ′
λη(Ti|zi,θ)+∑

i

d2

dθdθ ′
Λη(Ti|zi,θ)

Notice once more that the expectation of I(θ) depends both on θ and K, and thus,
on the parameter of the censoring variable.

The Proportional Hazard Model

When
λη(t | z,θ) = g(z,β )λ0(t | α) ,

the log-likelihood function may be written as:

L(θ) = ∑
i

Di ln λη(Ti | z,θ)−∑
i

Λη(Ti | z,β )

= ∑
i

Di ln g(zi,β )+∑
i

Di ln λ0(Ti|α)−∑
i

g(zi,β )Λ0(Ti|α)

and, under the log-linear specification g(z,β ) = exp
(

z
′β
)

:

L(θ) = β ′∑
i

Dizi +∑
i

Di ln λ0(Ti|α)−∑
i

ez′iβ Λ0(Ti|α)

The Mixed Proportional Hazard Model and its Identifiability

The mixed proportional hazard (MPH) model is characterized by the following haz-
ard function:

λT (t | z) = λ0 (t)g(z)υ

where λ0 (t) is a baseline hazard function, g(z) is the function measuring the
proportional effect of observable covariates z on the hazard function, and υ is an
individual-specific random term representing unobserved individual heterogeneity.
The cumulative density function of υ is denoted H. This model is supposed to verify
the following assumptions:

Assumption 1: The covariate vector z is a finite-dimensional vector of dimension k
(1≤ k ≤ ∞). The function g(z) is positive for every z ∈Z ⊂ R

k.
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Assumption 2: The function λ0 (t) is positive and continuous on [0,∞), except that
limt→0 λ0 (t) may be infinite. For every t ≥ 0,

∫ t

0
λ0(u)du < ∞ while lim

t→∞

∫ t

0
λ0(u)du = ∞

Assumption 3: The distribution H of the random term υ in the inflow (i.e. when
t = 0) satisfies Pr{υ ∈ ]0,∞)}= 1.

Assumption 4: The individual value of υ is time-invariant.

Assumption 5: In the inflow (i.e. when t = 0), υ is independent of z.

This model is nonparametrically identified if there is a unique set of functions λ0, g
and H that generates the observable distribution of the data, namely F (t | z) . Con-
ditions for identification are the following (see Van den Berg (2001), for a clear
exposition):

Assumption 6: (variation in observed covariates): The set Z of possible values of z
contains at least two values, and g(z) is not constant on Z .

Assumption 7: (normalizations): For some a priori chosen t0 and z0, there holds:

∫ t0

0
λ0 (u)du = 1 and g(z0) = 1

Assumption 8: (tail of the unobserved heterogeneity distribution): E (υ) < ∞.

Assumptions 6 and 8 can be alternatively stated:

Assumption 6b: (variation in observed covariates): The vector z includes an element
za such that the set Z a of its possible values contains a non-empty open interval.
For given values of the other elements of z, the value of za varies over this inter-
val. Moreover, g(z) as a function of za is differentiable and not constant on this
interval.

Assumption 8b: (tail of the unobserved heterogeneity distribution): The random vari-
able υ is continuous, and the probability density function h(υ) of υ verifies the
following property:

lim
υ→∞

h(υ)
υ−1−∈V (υ)

= 1

where ε ∈ [0,1] is fixed in advance, and where V (υ) is a function such that:

lim
s→∞

V (sυ)
V (s)

= 1 .

Identification of the MPH model has been analyzed successively by Elbers and
Ridder (1982), Heckman and Singer (1984b), Ridder (1990), Melino and Sueyoshi
(1990), and Kortram, Lenstra, Ridder and Van Rooij (1995).
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The Accelerated Life Model

When λη(t | z,θ) = g(z,β ) λ0(t g(z,β ) | α), the log-likelihood function, for an ar-
bitrary family of baseline distributions, may be written as:

L(θ) = ∑
i

Di[ln g(zi,β )+ ln λ0(Ti g(zi,β )|α)]−∑
i

Λ(Ti g(zi,β )|α)

When the baseline distribution is exponential, namely when λ0(ti|α) = α , we
obtain:

L(θ) = ∑
i

Di[ln g(zi,β )+ ln α]−α ∑
i

Tig(zi,β )

In the particular case where g(zi,β ) = exp
(

z
′
iβ
)

, we obtain a proportional hazard

model. More generally, this is also the case for a Weibull baseline distribution:

L(θ) = ln α ∑
i

Di +β ′∑
i

Dizi−α ∑
i

Tie
z′iβ

17.4.3 Non-parametric and Semi-parametric Models

17.4.3.1 Marginal Models: The Kaplan–Meier Estimator
of the Survivor Factor

If we want to estimate ST (t) in presence of right-censoring, a simple idea is to adjust
the hazard rates of the product form of the (discrete) empirical survivor function.
With the same data as for the parametric models:

Yi = (Ti,Di)

Ti = min(ηi,ζi)

Di = I{Ti=ηi}

we now evaluate:

Ti → T(1) < T(2), . . . ,T(n) (order statistics)

Di → D
′
1,D

′
2, . . . ,D

′
n: (censoring indicators corresponding to the T(i))

R(t) = ∑
i

I{T(i)≥t}

B(T(i)) = ∑
j

D
′
jI{Tj=T(i)}
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Thus R(t) represents the number of individuals at risk at time t, i.e. those who are
neither “dead” nor censored at time t−, and B(T(i)) represents the number of deaths
(i.e. exiting without being censored) at the observed time T(i). A natural way of tak-
ing censoring into account is to consider that at the time T(i), B(T(i)) is the realization
of a binomial variable with parameter

(
R
(
T(i)
)
,λ (T(i))

)
. Then the hazard function

at (observed) time T(i) and the survivor functions are estimated as:

λ̂ (T(i)) =
B(T(i))
R(T(i))

ŜKM(t) = ∏
{T(i)<t}

[1− λ̂ (T(i))]

Remarks

1. If at T(i) there are only censored data, we have B(T(i)) = 0 and therefore ŜKM(T(i))
is continuous at T(i).

2. If the largest observation is a censored one, ŜKM(t) is strictly positive and con-
tinuous, at T(n):

ŜKM(t) = ŜKM(T(n)) > 0, ∀t > T(n)

If furthermore T(n−1) is not censored, lim
t→∞

F̂KM(t) > 0, which means that F could

be defective. A natural interpretation of this occurrence, in the case of a life
duration, is the following: if the largest observation does not correspond to an
exit (or a death), there is no empirical reason not to believe that such a life could
possibly be infinite. If one is willing to avoid defective distributions, one may
modify the Kaplan–Meier estimator as follows:

Ŝm
KM(t) = ∏

{T(i)≤t}
[1− ĥ(T(i))]I{t≤max{Di Ti}} = F̂KM(t)I{t≤max{Di Ti}}

where max{Di Ti} represents the largest uncensored duration.
3. If there are no ties at T(i), then:

B(T(i)) = D
′
i, R(t(i)) = n− i+1,

ŜKM(t) = ∏
{T(i)≤t}

(
1− Di

n− i+1

)

In many data sets, ties are observed, as a matter of fact. They call for two remarks:
(i) even if Fη and Fζ are continuous, Pr(η = ζ ) > 0 is possible when η is not
independent of ζ (see, for instance, Marshall and Olkin (1967)); (ii) the round-
ing problem: although theoretical models assume the time is continuous, actual
measurements are discrete in nature. We have just seen that the Kaplan–Meier
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estimator accommodates for ties. When the rounding problem is too severe be-
cause spells are actually observed through intervals, truncated survivor functions
may be used for an explicit modelling.

4. If, at the largest observation, some censored and uncensored data are tied, the es-
timated distribution, ŜKM(T(i)), is again defective and discontinuous at T(n), with:

ŜKM(T(n)) > ŜKM(T(∞−)) > 0

17.4.3.2 Conditional Models: The Semi-parametric Proportional Hazard
Model (The Cox Model)

Remember that in θ = (α,β ), α is a sufficient parameter for the baseline distribu-
tion, whereas β is introduced for describing the action of the exogenous variables.
The semiparametric version of the proportional hazard model takes the form:

λT (t | z,θ) = α(t)exp
(
z′β
)

where α(t) = λ0(t|z,θ), which is the baseline hazard function, is now a functional
parameter. Thus the parameter space takes the following form:

θ = (α,β ) ∈Θα ×Θβ

Θα = {α : R+ → R+ | α is continuous and
∫ ∞

0
α(t)dt = ∞}

Θβ ⊂ R

k

The functional parameter α is often a nuisance parameter, whereas the Euclidean
parameter β is the parameter of interest. It is therefore important to try to separate
inferences on α and β . A natural idea is to construct a statistic W = f (Y ) such that
the likelihood function LY |Z(α,β ) factorizes as follows:

LY |Z(α,β ) = LW |Z(β )×LY |W,Z(α,β )

In such a case, the inference on β would be made simpler by considering only the
partial likelihood LW |Z(β ) instead of LY |Z(α,β ). A heuristic argument in favour of
this simplification is that the information on β contained in LY |W,Z(α,β ) is likely to
be “eaten up” by the functional parameter α . This simplified estimator may now be
build as follows. Similarly to the Kaplan–Meier estimator, let us reorder the sample
according to the observed durations:

Ti −→ T(1) < T(2) < .. . < T(n)

Di −→ D
′
1,D

′
2, . . . ,D

′
n

and let us also define:
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R(t) = ∑
1≤i≤n

I{T(i)≥t}

R(t) = {k|T (k)≥ t}= {i|Ti ≥ t}

Thus R(t) represents the number of individuals at risk at time t and R(t) represents
the set of such individuals. Notation will be usefully simplified as follows:

R(i) = R(T(i)), R(i) = R(T(i))

Let us now represent the sample (T1, . . . ,Tn) by its order statistics (T(1) . . .T(n)) and
its rank statistics (R1, . . . ,Rn) where Ri is the rank of the i-th observation in the
vector of order statistics. Giving the rank statistics, which plays the role of W in the
previous expression, we may write the likelihood function of the rank statistics as
follows:

L(β ) = ∏
1≤i≤n

⎡

⎣ ez′iβ

∑k∈R(i) ez
′
kβ

⎤

⎦

Di

= ∏
1≤i≤D+

⎡

⎣ ez′iβ

∑k∈R(i) ez
′
kβ

⎤

⎦

Di

where D+ = ∑i Di. The (partial) likelihood estimator of β is then defined as

β̂ = argmax
β

L(β )

This estimator is consistent and its asymptotic properties have been studied e.g. by
Tsiatis (1981) and by Andersen, Borgan, Gill and Keiding (1993).

17.5 Counting Processes and Point Processes

Point processes provide the framework for modelling trajectories with more than
one transition and more than two states (such trajectories are sometimes called du-
ration models with multiple spells and multiple states). Formally a point process is a
continuous time process with a finite state space and right continuous with left limit
(cadlag) trajectories. A point process is conveniently represented by means of a
multivariate counting process that counts, as time increases, the number of possible
transitions. Consequently, we will first present counting processes.

17.5.1 Definitions

Let us consider a (finite or infinite) sequence (Tp)p≥1 of increasing random durations
(0 < T1 < T2 < .. .). This sequence characterizes a univariate counting process:

Nt = ∑
p≥1

I(Tp ≤ t)
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1

2

TpTp–1T2T1

Up

t

Nt

Fig. 17.2 A realization of a univariate counting process

The trajectories of Nt are right continuous, and such that N0 = 0 and Nt only in-
creases by jumps of size 1. A typical realization is shown in Fig. 17.2.

A duration model defines a process with a single jump (Nt = I(T ≥ t)). From the
definition of Nt , we can deduce easily the definition of the date Tp of the j-th jump
of the process:

Tp = inf{t|Nt = p}, p≥ 1

The distribution of Nt may be characterized by the distribution of the sequence
(Tp)p≥1. Equivalently, that sequence may be replaced by the sequence of positive
numbers:

Up = Tp−Tp−1 (T0 = 0)

The random variable is now the duration between the (p−1)-th and the p-th jumps.
If the random variables (Up)p≥1 are i.i.d., the process is called a renewal process.
The information denoted by F N

t and carried by Nt , observed from 0 to t (included),
is equivalent to the knowledge of T1, . . . ,Tp (Tp ≤ t < Tp+1) and the event Tp+1 > t.
Equivalently this information may be described by the random variables U1, . . . ,Up

and by the event Up+1 > t−∑p
q=1 Uq.

A multivariate counting process is a vector Nt = (N1
t , . . . ,NJ

t ) of counting pro-
cesses. This vectorial process is characterized by J sequences (T j

p )p≥1 ( j = 1, . . . ,J)
of increasing durations and by:

N j
t = ∑

p≥1
I(T j

p ≤ t)

The information content of the observation of this multivariate counting process up
to time t is described by the family of random variables T j

p such that T j
p j ≤ t, and by

the J events T j
p j+1 > t.

A multivariate counting process may also be represented by a unique sequence
(Tr)r≥1 of the jump times of any element of the vector Nt , and by er (r≥ 1) which is
a discrete-time process valued in (1, . . . ,J). In this sequence (Tr,er)r≥1, er ; indicates
the component j that jumps at date Tr. Note that the sequence (Tr) has the property:
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N̄t =
J

∑
j=1

N j
t = ∑

r≥1
I(Tr ≤ t)

The distribution of Nt may then be described by the sequence of conditional
distributions:

(Tr,er) | (Ts,es)s=1,...,r−1

Consider for example a bivariate duration (T 1,T 2), where Pr(T 1 = T 2) = 0. This
pair defines two single jump counting processes:

N1
t = I(T 1 ≤ t) and N2

t = I(T 2 ≤ t)

Then the (Tr)r sequence becomes:

T1 = min(T 1,T 2), T2 = max(T 1,T 2)

and

e1 = I(T 1 < T 2)+2I(T 2 ≤ T 1)
e2 = 3− e1

A point process is a continuous-time process valued in a finite (or more generally
discrete) state space {1, . . . ,K}. Such a process Xt may represent, for example, the
labor market situation of an individual at time t. In such a case, the set {1, . . . ,K}
describes the different possible labor market states (full-time employed, part-time
employed, unemployed, retired,. . . ) and Xt is characterized by the dates of the tran-
sitions between two different states. Indeed, a point process defines a multivariate
counting process. Consequently, we denote by j = (k,k′) the pair of states such that
a transition from k to k′ is possible and {1, . . . ,J} is the set of all these ordered pairs.
Then (T j

p )p≥1 is the sequence of jump times from k to k′ if j = (k,k′) and

N j
t = ∑

p≥1
I(T j

p ≤ t)

This multivariate counting process satisfies the following constraint by construc-
tion: after a jump of the component N j

t , j = (k,k′), the next process which may
jump is necessarily an element of the subfamily (N�

t )� where � = (k′,k”) and
k” �= k′.

17.5.2 Stochastic Intensity, Compensator and Likelihood
of a Counting Process

The stochastic intensity of a univariate counting process is defined as follows:

hN(t) = lim
Δ t↓0

1
Δ t

Pr(Nt+Δ t −Nt = 1 |F N
t−)



582 J.-P. Florens et al.

If for instance Nt = I(T ≤ t), this definition implies, where T is a continuous vari-
able, that h(t) = λ (t), which is the hazard function of T if T > t and h(t) = 0 after
the jump T . Equivalently:

hN(t) = λT (t)(1−Nt−),

where Nt− = I(T < t).
If Nt is a general univariate counting process Nt = ∑p≥1 I(Tp ≥ t), the stochastic

intensity is obtained by the following rule:

• If t > maxp(Tp) then h(t) = 0
• If t verifies Tp−1 < t ≤ Tp (where p = Nt +1) then

hN(t) = λp(t | T1, . . . ,Tp−1)

where λp is the hazard function of the duration Tp conditional on T1, . . . ,Tp−1.

If the model is specified in terms of Up = Tp−Tp−1, we have

hN(t) = λU
p (t−Tp−1 |U1, . . . ,Up−1)

where λU
p is the hazard function of Up given U1, . . .Up−1. This definition is easily

extended to multivariate counting processes. The stochastic intensity is then multi-
variate and for each j ∈ {1, . . . ,J} :

h j
N(t) = lim

Δ t↓0

1
Δ t

Pr(N j
t+Δ t −N j

t = 1 |F N
t−)

where F N
t− represents the information carried by all the coordinates of the process

observed before t.
If N j

t = ∑p≥1 I(T j
p ≤ t), h j

N(t) is null if t > maxp(T
j

p ). For each coordinate �, we
can choose p� = N�

t +1 such that

T �
p�−1 ≤ t < T �

p�

(where T �
p�

= +∞ if N�
t never jumps after T �

p�−1) and λ i
T (t) is equal to the hazard

function of T j
p j at the point t, given all the T �

q , � �= j and q < p�, and the family
of events T �

p�
≥ t. Let us take as an example the bivariate counting process N1

t =
I(T 1 ≤ t), N2

t = I(T 2 ≤ t). The stochastic intensity h1
N(t) is equal to the hazard

function of T 1 conditional on T 2 = t2 if T 2 < t or conditional on T 2 ≥ t if T 2 ≥ t.
The compensator of univariate counting process Nt with stochastic intensity hN(t)
is defined by

HN(t) =
∫ t

0
h(s)ds

For a duration model Nt = I(T ≤ t), HN(t) is equal to the integrated hazard Λ(t) if
T > t and equal to Λ(T ) if T ≤ t.
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For a multivariate counting process N j
t , we define a vector of compensators by:

H j
N(t) =

∫ t

0
h j

N(s)ds .

From now on, we simplify the notation H j
N(t) into H j

t similarly to Nt instead of N(t).
The compensators are positive and non-decreasing predictable processes satisfying
H0 = 0. The main property of the compensator is that the difference:

Mt = Nt −Ht

is a zero mean F N
t - martingale (i.e. E(Mt |F N

s ) = Ms). The decomposition Nt =
Ht + Mt is called the Doob–Meyer decomposition of the process Nt . The same de-
composition may be constructed for a multivariate counting process. In that case, M j

t
is a martingale with respect to the information sets generated by the whole process
(N1

t , . . . ,NJ
t ).

The stochastic intensity and the compensator both determine an elegant ex-
pression of the likelihood of a counting process. Consider first a univariate pro-
cess Nt = ∑p≥1 I(Tp ≤ t). If the process is observed between 0 and t such that
Tp−1 < t < Tp, the likelihood of this observation is:

�(t) =

{
p−1

∏
q=1

fq(Tq | T1, . . . ,Tq−1)

}

×Sp(t | T1, . . . ,Tp−1)

where fq and Sq are respectively the density and the survivor functions of Tq given
T1, . . . ,Tq−1. One can easily check that:

�(t) = ∏
Tq≤t

h(Tq)e−Ht

or

ln �(t) =
∫ t

0
ln h(s)dNs−Ht

In this expression, we use the stochastic integral notation:

∫ t

0
g(s)dNs = ∑

Tp≤t
g(Tp)

The stochastic intensity notation can be generalized to multivariate processes for
which the likelihood corresponding to the observation of all the coordinates of the
process up to time t is equal to:

ln l(t) =
J

∑
j=1

{∫ t

0
ln h j(s)dN j

s −H j
t

}

This way of writing the likelihood function is the basis for Cox’s estimation and
martingale estimations, to be presented in the last section of this chapter.
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17.6 Poisson, Markov and Semi-Markov Processes

In this section, we give first the example of a well-known single counting pro-
cess, namely the Poisson process. Then we examine point processes displaying
Markovian or semi-Markovian properties.

17.6.1 Poisson Processes

We consider the familiar Poisson process as an example of a univariate counting
process. Let M be a positive measure on R

+ with density m with respect to the
Lebesgue measure, i.e., M([a,b]) =

∫ b
a m(x) d(x).

A stochastic process Nt is a Poisson process associated with the measure M if its
distribution satisfies the following requirements:

(i) N0 = 0 ,
(ii) Nt is a process with independent increments: ∀t1, . . . , tn, the random variables

(Nti −Nti−1)i=1,... ,n are independent random variables,
(iii) the distribution of (Nt−Ns) is a Poisson distribution for any s < t, which means

that:

Pr(Nt −Ns = k) =
M([s, t])k

k!
e−M([s,t])

These three properties imply that a Poisson process is a counting process with unit
jumps. If m(x) is equal to some positive constant λ , then the process is said to be
homogeneous and we may verify that sojourn times Up = Tn−Tn−1 are i.i.d. ran-
dom variables with an exponential distribution with parameter λ > 0. The homoge-
neous Poisson process is then the renewal process characterized by the exponential
distribution.

The compensator and the intensity of a Poisson process, with respect to its canon-
ical filtration, are equal to H = M([0, t]) and to m(t), respectively. This result follows
from the equalities:

h(t) = lim
Δ t↓0

1
Δ t

Pr(Nt+Δ t −Nt = 1 |F N
t−)

= lim
Δ t↓0

1
Δ t

Pr(Nt+Δ t −Nt = 1 | Nt)

= lim
Δ t↓0

1
Δ t

[M(t, t +Δ t])e−M([t,t+Δ t])]

= m(t)

In particular, if the process is homogeneous, h(t) is constant. The likelihood �(t)
relative to the observation of the process Nt between 0 and t is derived from the
intensity and the compensator, i.e.
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ln �(t) =
∫ t

0
[ln m(s)] dNs−M([0, t])

= ∑
τn≤t

ln m(τn)−M([0, t]) .

If Nt is an homogeneous Poisson process with parameter λ , its likelihood satisfies:

ln �(t) = Nt ln λ −λ t .

17.6.2 Markov Processes

17.6.2.1 Definitions

We consider a point process X = (Xt)t∈R
+ valued in the finite state space E =

{1, . . . ,K}. The distribution of Xt is totally defined by a projective system:

Pr(Xt1 = j1, . . . ,Xtp = jp)

for any finite subset (t1, . . . , tp) of R

+ satisfying t1 < t2 < · · ·< tp. From these prob-
abilities, one can compute:

Pr(Xtp = jp | Xt1 = j1, . . . ,Xtp−1 = jp−1)

and the process Xt is a Markov process if:

Pr(Xtp = jp | Xt1 = j1, . . . ,Xtp−1 = jp−1) = Pr(Xtp = jp | Xtp−1 = jp−1)

It follows that a Markov process is characterized by the distribution of the initial
condition, i.e. by the distribution of X0, and by the transition probabilities:

p jk(s,s+ t) = Pr(Xs+t = k | Xs = j)

defined for any s and t ∈ R

+, and for any j and k ∈ E. The Markov process is said
to be time-homogeneous if:

p jk(s,s+ t) = p jk(0, t), ∀(s, t) ∈ R

+×R

+,∀( j,k) ∈ E2 ,

i.e. if the transition probability does not depend on the origin of the time set, but
only on the difference between the two dates s and (s+ t). For a time-homogeneous
Markov process, we denote the transition probability p jk(0, t) by p jk(t) and the
matrix with elements p jk(t) by P(t). So, P(t) is a K ×K matrix of non-negative
numbers such that the sum of each row is equal to one, i.e.

K

∑
k=1

p jk(t) = 1
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Moreover, decomposing the trajectory on [0, t] into two sub-trajectories on [0,s] and
[s, t], we obtain the following properties of the matrices P(t):

p jk(t) = ∑K
�=1 p j�(s) p�k(t− s) , ∀ 0≤ s≤ t, ∀ ( j,k) ∈ E×E

or equivalently:
P(t) = P(s) P(t− s) , 0≤ s≤ t .

We will now restrict our attention to processes satisfying some regularity conditions.

Definition 17.8. A time-homogeneous Markov process Xt is said to be standard if:

(i) ∀ j ∈ E, limt↓0 p j j(t) = 1 , and then, ∀k �= j, limt↓0 p jk(t) = 0,

(ii) ∃q jk ∈ R

+,∀( j,k) ∈ (E×E), with k �= j,
q jk = limt↓0

1
t p jk(t) = d

dt p jk(t) |t=0,

q j j =− limt↓0
1
t (1− p j j(t)) =−∑k �= j q jk �

As a direct consequence, quantities q jk satisfy the following properties:

(i) ∑K
k=1 q jk = 0, j ∈ E,

(ii) q jk ≥ 0, k �= j, and q j j ≤ 0, j ∈ E .

If j �= k, q jk is called the intensity of transition from state j to state k. The matrix
Q is called the intensity matrix or the generator of the process Xt . Writing p j j as

p j j(t) = 1−∑
k �= j

pk j(t), the previous definition implies that Q =
d
dt

P(t)|t=0

Theorem 17.2. The transition matrix P(t) of the time-homogeneous standard
Markov process Xt satisfies the forward matrix equation

d
dt

P(t) = P(t) ·Q

and the backward matrix equation

d
dt

P(t) = Q ·P(t) .

Proof. See Doob (1953), pp. 240–241, or Bhattacharya and Waymire (1990),
pp. 263–267.

These two equations are known as the Kolmogorov forward and backward differ-
ential equations, respectively. In general, these equations do not have a unique solu-
tion; however, Xt is said to be regular if the solution, subject to the border condition
P(0) = I, is unique and has the exponential form given in the following theorem
(where I is the identity matrix).
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Theorem 17.3. If the time-homogeneous Markov process Xt with generator Q is
regular, then the matrix

P(t) = exp(Qt) =
∞

∑
n=0

tnQn/n! (17.1)

exists for any t, and is the unique solution to the Kolmogorov differential equations
subject to the border condition P(0) = I.

Proof. See Doob (1953), pp. 240–241, or Bhattacharya and Waymire (1990),
pp. 267–275.

17.6.2.2 Distributions Related to a Time-Homogeneous
Standard Markov Process

Since the state space E is finite, the Markov process Xt moves by jumping from one
state to another. Let 0 = T0 < T1 < T2 < · · · , be the times of these transitions. As the
sample paths of the process Xt are right-continuous step functions, we can define
Yn = XTn as the state entered at Tn. Moreover, we set:

Un = Tn−Tn−1 , n ∈ N , and U0 = 0

The random variable Un represents the sojourn duration of the process in state
Yn−1 = XTn−1 entered at time Tn−1. A Markov point process Xt can be represented
by a multivariate counting process characterized by the sequence (Tn,en)n≥0. In this
representation, en is the transition at time Tn, i.e.:

en = (Yn−1,Yn) with Yn−1 �= Yn .

Thus en takes its value in a finite set with K(K− 1) elements. Yet, the represen-
tation of Xt as a point process is easier to formalize. So, we are interested in the
distribution of the sequences (Tn,Yn)n≥0 or (Un,Yn)n≥0, rather than of the sequence
(Tn,En)n≥0.

For that purpose, we firstly set λ j =−q j j for any j ∈ E, and we define quantities
ρ jk as follows:

• If λ j �= 0, j ∈ E, ρ j j = 0 and ρ jk = q jk/λ j , k �= j
• If λ j = 0 , j ∈ E ρ j j = 1 and ρ jk = 0 , k �= j

Theorem 17.4. If Xt is a time-homogeneous standard Markov process, then

(i) (Un,Yn)n≥0 is a Markov sequence and (Un,Yn) is independent of Un−1 given
Yn−1. Moreover Un and Yn are conditionally independent given Yn−1.

(ii) Un given Yn−1 = j has an exponential distribution with parameter λ j if λ j �= 0.
If λ j = 0, the state j is absorbing and Un = ∞ with probability 1.

(iii) Y = (Yn)n≥0 is a Markov chain with transition matrix:
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Pr(Yn = k | Yn−1 = j) = ρ jk, ( j,k) ∈ E×E

Proof. See Bhattacharya and Waymire (1990), pp. 275–279.

Theorem 17.5. If Xt is irreducible (∀ j,∀k,∃m such that p jk(m) > 0) and recurrent
(Pr(inf{m | Yn+m = j}< ∞ | Yn = j) = 1) then:

(i) the limits of transition probabilities p jk(t) exist and are independent of the ini-
tial state, i.e.

lim
t↑∞

p jk(t) = Πk

(ii) either Π = (Π1, . . . ,ΠK) = (0, . . . ,0), in which case all states are said to be
null recurrent, or ∑K

k=1 Πk = 1, in which case all states are said to be non-null
recurrent (or positive recurrent if Πk > 0,∀k ∈ E).

Proof. See Cox and Miller (1966), pp. 106–117.

The limiting distribution Π is also invariant or stationary, because:

Π = Π ·P(t) , ∀t ∈ R

+

In the case of an irreducible, recurrent non-null Markov process with generator Q,
calculation of the vector Π is made easier by noting that Π is the unique invariant
distribution probability satisfying the linear equation:

Π ·Q = 0

Moreover, if the embedded Markov chain Y is also irreducible and recurrent non-
null, Y has a limit distribution v satisfying:

v = v ·R

where R is the transition matrix of the embedded Markov chain. The relationship
between the two limit distributions Π and v is:

Π j =
[

v j

λ j

][ K

∑
k=1

vk

λk

]

, j ∈ E

or equivalently:

v j =
Π jλ j[

∑K
k=1 Πkλk

] , j ∈ E

Generally, v and Π are different. The last equation has a very interesting interpreta-
tion: since v j is the long-run frequency of visits of the chain Y to state j, and since
(1/λ j) is the mean duration of a sojourn of the process Xt in state j, then Π j, which
is the long-run proportion of occupation of state j for the process xt , is calculated
as the long-run global duration of sojourn in state j for the process Xt (calculated as
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the product of v j and 1/λ j), divided by the sum of the long-run global durations of
sojourn in the different states.

17.6.2.3 Statistical Inference for Time-Homogeneous Markov Models

Now we shall discuss the problem of estimating the generator Q of a time-
homogeneous Markov process Xt from the observation of N independent sam-
ple paths over a fixed time interval [0,T ]. Firstly, we consider the nonparametric

case of N i.i.d. realizations of Xt over [0,T ]. Here the likelihood function L(N)
Q is

given by

L(N)
Q =

N

∏
i=1

⎧
⎨

⎩
Pr(x(i)

0 = Y (i)
0 )× e−(T−τni (i))λyni

(i)

×
ni−1

∏
j=0

q
Y (i)

j ,Y (i)
j+1

e
−u(i)

j+1λ
Y

(i)
j

⎫
⎬

⎭

where ni is the number of transitions observed for the i–th sample path over [0,T ],
0 < τ(i)

1 < τ(i)
2 < · · · < τ(i)

ni being the ordered sequence of transition times for this

sample, and {(u(i)
0 ,Y (i)

0 ),(u(i)
1 ,Y (i)

1 ), . . . ,(u(i)
ni ,Y (i)

ni )} being the sequence of successive
sojourn durations and visited states for the i–th sample path, with the conventions:

u(i)
0 = 0 and u(i)

ni+1 = T − τ(i)
ni .

If we denote NT,N( j,k) the total number of transitions from state j to state k
observed over the N realizations and DT,N( j) the total length of time that state j is
occupied during these N sample paths, then it is easy to show that the maximum
likelihood estimator for q j,k is given by:

q̂ j,k(T,N) =
NT,N( j,k)

DT,N( j)

if j �= k and DT,N( j) �= 0. If DT,N( j) = 0, the MLE of q j,k does not exist and we
adopt the convention that:

q̂ j,k(T,N) = 0 if j �= k and DT,N( j) = 0 .

Asymptotic properties of the MLE estimates q̂ j,k(T,N) when T → ∞ and N is fixed
(typically, N = 1), or when N → ∞ and T is fixed, are given by the following theo-
rems (see Basawa and Prakasa Rao (1980), pp. 195–197).

Theorem 17.6. If there is a positive probability that the j-th state will be occupied
at some date t ≥ 0, then

plim
T↑∞

q̂ j,k(T,N) = q j,k a.s.
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and if each state has a positive probability of being occupied, then the random
variables {

N1/2(q̂ j,k(T,N)−q j,k)
}

k �= j

are asymptotically normal and independent with zero mean and variance

q j,k
∫ T

0 Pr[Xt = j] dt

Moreover, q̂ j,k(T,N) is asymptotically efficient when N tends to infinity. �

Theorem 17.7. If the time-homogeneous standard Markov process Xt is regular and
recurrent positive, then

plim
T↑∞

q̂ j,k(T,1) = q j,k a.s.

and the random variables

{T 1/2(q̂ j,k(T,1)−q j,k} j,k=1,...,K, j �=k

are asymptotically normal and independent with zero mean and variance q j,kρ/
Q( j, j) where ρ is the product of the non-zero eigenvalues of Q and Q( j, j) is the
( j, j)-th cofactor of Q. �

In the last case (i.e. when N = 1,T ↑ ∞), it is shown that

∫ T

0
Pr[xt = j]dt = Q( j, j)T ρ−1 +o(T ) for T ↑ ∞

Since

1
T

E

⎧
⎨

⎩
∂LogL(1)

Q

∂q j,k

⎫
⎬

⎭

2

=
∫ T

0 Pr[xt = j] dt
T q j,k

it follows from the previous theorem that

T 1/2{q̂ j,k(T,1)−q j,k
} d→ N

[
0,q j,kρ/Q( j, j)

]

and so q̂ j,k(T,1) is asymptotically efficient for T ↑ ∞.
Now let us suppose that transition intensities are functions of a set θ = (θ1, . . . ,θp)

of unknown parameters, i.e. they have the form q j,k(θ). The problem is then to ob-
tain a MLE of θ from N independent observations of the process xt(θ) over the
period [0,T ]. In this case, the likelihood function is:
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LQ(N,θ) =
N

∏
i=1

⎧
⎨

⎩
Pr
(

x0(i,θ) = Y (i)
0

)
× e

−(T−τ(i)
ni )λ (θ)

Y
(i)
ni

×
ni−1

∏
j=0

q(θ)

Y (i)
j ,Y (i)

j+1

e
−u(i)

j+1λ (θ)

Y
(i)
j

⎫
⎬

⎭

=

{
N

∏
i=1

Pr(x0(i,θ) = Y (i)
0 )

}

×
{

K

∏
j,k=1; j �=k

(q(θ)
j,k )NT,N( j,k)

}

×
{

K

∏
j=1

e−λ (θ)
j DT,N ( j)

}

where:

• DT,N( j) = ∑N
i=1 ∑ni

�=0 u(i)
�+1I(Y

(i)
� = j) is the total sojourn duration in state j, which

is observed over the N sample paths (with the convention u(i)
ni+1 = T − τ(i)

ni ),

• NT,N( j,k) = ∑N
i=1 ∑ni−1

�=0 I

(
Y (i)

� = j, Y (i)
�+1 = k

)
is the total number of transitions

from j to k, observed over the N sample paths.

With the assumption that the initial state Y (i)
0 does not depend on θ , the ML equa-

tions for estimating θ are:

∂ LogLQ(N,θ)
∂θm

=
K

∏
j,k=1
j �=k

⎡

⎣
NT,N( j,k)−DT,N( j)q(θ)

jk

q(θ)
jk

⎤

⎦
dq(θ)

jk

dθm
= 0, m = 1, . . . , p

In the case where N = 1, Billingsley (1961), p. 46, has shown that these equations
yield a consistent solution θ̂ = (θ̂1, . . . , θ̂p) such that

N
1/2

T (θ̂ −θ) d→ N(0, i(θ)−1) as T ↑ ∞

where NT is the total number of transitions during the interval [0,T ] and

i(θ) = − 1
NT

[
E

(
∂ 2 Log LQ(θ)

∂θm ∂θ ′m

)]

m=1,...,p

=

⎡

⎢
⎣

K

∏
j,k=1
j �=k

v j(θ)

λ j(θ) q(θ)
jk

⎛

⎝
dq(θ)

jk

dθm

⎞

⎠

⎛

⎝
dq(θ)

jk

dθm′

⎞

⎠

⎤

⎥
⎦

m, m′=1,··· ,p

v(θ) = [v j(θ)] j=1,...,K being the limit distribution of the embedded Markov chain
associated to the process Xt .
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17.6.3 Semi-Markov Processes

Semi-Markov processes can be viewed as direct extensions of Markov processes.
Using notations and concepts introduced for the characterization of a Markov
process, we will say that a stochastic process {Xt}t≥0 taking its value in the
discrete state space E = {1, . . . ,K} is semi-markovian if the sequence {Yn}n≥0

of states visited remains a Markov chain, but time un spent in the state Yn−1

need not be exponentially distributed and may depend on the next state entered,
namely Yn.

Definition 17.9. If (Yn)n∈N
and (un)n∈N

denote respectively the sequences of visited
states and sojourn durations of a continuous-time process {Xt}t≥0 with a discrete
state space E = {1, . . . ,K}, then {Xt}t≥0 is a semi-Markov process if:

Pr
{

Y� = j, u� ≤ t | (Yn)�−1
0 , (un)�−1

0

}

= Pr{Y� = j,u� ≤ t | Y�−1} � ∈ N, j ∈ E, t ∈ R

+

with the convention u0 = 0. Moreover, a semi-Markov process {Xt}t≥0 is said to be
time-homogeneous if transition probabilities

Pr{Y� = j,u� ≤ t | Y�−1 = i}= P(i, j, t) , (i, j) ∈ E×E

do not depend on �. The function P is called the kernel of the semi-Markov process
{xt}t≥0. Then the sequence Y = (Yn)n∈N

is a Markov chain with transition matrix:

R(i, j) = P(i, j,∞) = lim
t↑∞

P(i, j, t) , (i, j) ∈ E×E

and u1,u2, . . . are conditionally independent given Y . �
If the kernel P is defined as

P(i, j, t) = ρi j(1− e−λit) , (i, j) ∈ E×E

where λi ∈]0,∞[, ρii = 0 and ∑ j∈E ρi j = 1 ,∀i ∈ E, then {Xt}t≥0 is a time-
homogeneous Markov process with generator Q(i, j) = qi j = λiρi j, j �= i. On the
other hand, if E = {i} is a singleton, then (un)n∈N

is a time-homogeneous renewal
process with an inter–arrival time distribution of the form F(t) = P(i, i, t).

The law of a semi-Markov process {Xt}t≥0 is jointly characterized by the transi-
tion probability R(i, j) of the embedded Markov chain (Yn)n∈N

and the conditional
sojourn distributions:

G(i, j, t) = Pr{u� ≤ t | Y�−1 = i,Y� = j}, � ∈ N,(i, j) ∈ E×E

The kernel function of this semi-Markov process is then defined as:

P(i, j, t) = R(i, j) G(i, j, t)
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from which are deduced unconditional sojourn distributions:

F(i, t) = Pr{u� ≤ t | Y�−1 = i}= ∑
j∈E

P(i, j, t)

Let us recall that if the Markov chain Y = (Yn)n∈N
is irreducible and recurrent non-

null, there exists a limiting probability distribution v on E of the form:

v j = ∑
i∈E

vi R(i, j), j ∈ E

or in matrix notation:
v = vR

Moreover, if u1(i) = E[u1 | Y0 = i] < ∞, ∀i ∈ E, then the limit distribution of the
semi-Markov process {Xt}t≥0 is given by:

Π j = lim
t↑∞

Pr{xt = j}=
v ju1( j)

∑i∈E viu1(i)

Notice that this relation between Π and v is more general than the one for Markov
processes, for which u1(i) = λ−1

i .
The main statistical problem is to estimate the semi-Markov kernel P . Here

we concentrate on a fully nonparametric estimation procedure for a semi-Markov
process{Xt}t≥0, where the distribution of a sojourn in state i does not depend on the
next state to be entered, i.e.:

G(i, j, t) = F(i, t), ∀(i, j) ∈ E×E, ∀t ∈ R

+

Then R(i, j) and F(i, t) can be estimated from N i.i.d. realizations of {Xt}t≥0 over
a fixed time interval [0,T ]. In that case, let us denote NT,N(i, j) and N ∗

T,N(i) =
∑ j∈E NT,N(i, j) the number of transitions from i to j in [0,T ] and the number
of sojourns in state i completed before time T , respectively. Then nonparametric
maximum-likelihood estimators of the unconditional sojourn distributions and of
the transition matrix of the embedded Markov chain are respectively given by:

F̂(i, t) = N ∗
T,N(i)−1

N ∗
T,N (i)

∑
�=1

I(Y�−1 = i,u� ≤ t)

and
R̂(i, j) = NT,N(i, j)/N ∗

T,N(i) .

Consequently, one obtains:

P̂(i, j, t) = R̂(i, j) · F̂(i, t) .

Asymptotic properties (convergence, normality) of these nonparametric estima-
tors are reviewed by Karr (1986), Theorem 8.33. Non-parametric estimation of
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the kernel P of partially observed renewal processes has been considered by
Gill (1980) and surveyed by Karr (1986), pp. 347–351.

17.7 Statistical Analysis of Counting Processes

In this section, we present both the statistical analysis of counting processes based
on martingale estimators and the extension to these processes of the semiparamet-
ric inference initially proposed by Cox (1972, 1975), for duration models. For that
purpose, we consider a multivariate counting process with covariates, but our pre-
sentation is restricted to the case of a non-censored independent sampling scheme
for a counting process derived from a point process.

Let us denote n the number of individuals and i an element of {1, . . . ,n}. For
any individual i, we observe both the path Xi

t of a point process valued in a discrete
state space E with K elements and the path of a (multivariate) covariate process
Zi = (Zi

t )t . These two processes are observed over an interval [0,T ] for any i. Given
(Zi

t )t , the (Xi
t )t’s are assumed to be independent. The distribution of (Xi

t )t is also
assumed to be independent of the (Z j

t )t for any j �= i, i.e. it is independent of the
covariate processes of other individuals.

Now we have to describe the distribution of (Xi
t )t given (Zi

t )t . This goal is
achieved by representing the point process (Xi

t )t through a multivariate counting
process (Ni, j

t )t , where j = (k, �),k, � ∈ E, k �= �, j ∈ {1, . . . ,J = K(K− 1)}. This
counting process increases by jumps of size one when the individual i moves from
state k to state �. The distribution of (Ni, j

t )t , given (Zi
t )t , is characterized by its

stochastic intensity with respect to the filtration generated by both the past of all
the Ni, j

t processes, for i ∈ {1, . . . ,n} and j ∈ {1, . . . ,J}, and by the whole trajecto-
ries of all the (Zi

t ) processes. These stochastic intensities are assumed to take the
following form:

hi, j
t = ψ j((Zi

t )t ,θ
)

λ j
t Y i, j

t , i = 1, . . . , n , j = 1, . . . , J

where:

(i) ψ j
(
(Zi

t )t ,θ
)

is a known positive function depending on an unknown parame-
ter θ ∈ Θ ⊂ R

p ; in practice, each ψ j may depend on a subvector of θ only,
and then one has to check if the vector θ is identified by the vector of the ψ j

functions;
(ii) λ j

t is the baseline intensity function of Ni, j
t ; it does not depend on individual

i; the model is then a proportional hazard type model in which covariates act
multiplicatively through the ψ j functions on the baseline intensity; moreover,
λ j

t is assumed to be non-stochastic and hence a function valued in R

+; in the
semiparametric approach, the function λ j

t is assumed to be totally unknown and
the distribution of the Xi

t processes are then characterized by parameters θ and
by functions (λ j

t ), j = 1, . . . ,J;
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(iii) finally, Y i, j
t is a family of observable predictable stochastic processes valued

in {0,1}; we restrict our attention to the case where Y i, j
t characterize the fact

that the individual i is “at risk” at time t for jumping from state k to state �, if
j = (k, �), or equivalently:

Y i, j
t = 1 if xi

t− = k

Y i, j
t = 0 elsewhere

As hi, j
t is the stochastic intensity with respect to all the trajectories of the covari-

ate processes, it would be dependent of all the (Zi
t )t , i = 1, . . . ,n. However, we

have assumed that (Xi
t )t is independent of (Zi′

t )t for any i′ �= i given (Zi
t )t , and

this assumption is expressed by the fact that ψ j depends only on (Zi
t )t . In fact,

this requirement is not an assumption but is a condition on the definition of the
(Zi

t ) processes which may have some elements in common. Moreover, ψ j may
be a function of the whole trajectory of (Zi

t )t or of the current value Zi
t only. The

first case requires the continuous-time observation of covariates, which is unre-
alistic, or some approximation procedures such as discretization of stochastic in-
tegrals. The more common case is the one where the instantaneous probability
of a jump from state k to state � for the individual i depends only on the cur-
rent value of the process Zi, which implies that ψ j

(
(Zi

t )t ,θ
)

may be written as
ψ j(Zi

t ,θ). For example, if (Zi
t ) is a q-dimensional process, a usual specification is

the following:

ψ j(Zi
t ,θ) = exp(Zi′

t θ j)

where θ j ∈ R

q and θ = (θ j) j=1,...,J . More generally, such a specification may
be constrained by imposing that some components of Zi

t in the ψ j function are
eliminated.

Up to an additive constant, the log-likelihood of the model is equal to

LT (θ ,λ 1, . . . ,λ J)

=
n

∑
i=1

J

∑
j=1

∫ T

0
ln ψ j(Zi

t ,θ)dNi, j
t +

J

∑
j=1

∫ T

0
ln λ j

t dN
j
t

−
n

∑
i=1

J

∑
j=1

∫ T

0
ψ j(Zi

t ,θ)λ j
t Y i, j

t dt

where N
j
t = ∑n

i=1 Ni, j
t . The maximum likelihood estimator of θ can be derived from

this last equation if the λ j
t are known functions of unknown parameters. However,

the log-likelihood is unbounded if the functions λ j
t are taken as arguments: λ j

t may
be chosen arbitrarily large at observed jump times (and then the second element
in the right hand side of the log-likelihood equation may be as large as desired)
and null at other times (and then the third element in the r.h.s. of the log-likelihood
equation becomes equal to zero). Then it appears clearly that estimation must be
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based on a different procedure: parameters θ can be estimated by maximizing Cox’s
partial likelihood, and integrals of the λ j

t ’s are then estimated through martingale
techniques.

17.7.1 The Cox Likelihood

Following an argument given by Karr (1986), Chap. 5, the Cox’s likelihood can be
derived as the difference between the log-likelihood function of the observations
and the log-likelihood function of the N

j
t processes. This difference is a function

of θ only, and can be heuristically interpreted as the logarithm of the density of
the Ni, j

t given N
j
t and the covariates. Given the same filtration, intensities of the N

j
t

processes are the sum over i of hi, j
t , i.e.

h
j
t = λ j

t

(
n

∑
i=1

ψ j(Zi
t ,θ)Y i, j

t

)

and the log-likelihood of the statistic N
j
t is equal to

L∗T (θ ,λ 1, . . . ,λ J)

=
J

∑
j=1

∫ T

0
ln

n

∑
i=1

(
ψ j(Zi

t ,θ)Y i, j
t

)
dN

j
t +

J

∑
j=1

∫ T

0
ln λ j

t dN
j
t

−
J

∑
j=1

∫ T

0
λ j

t

( n

∑
i=1

ψ j(Zi
t ,θ)Y i, j

t )dt

The Cox likelihood is then defined as:

CT (θ) = LT (θ ,λ 1, . . . ,λ J)−L∗T (θ ,λ 1, . . . ,λ J)

=
J

∑
j=1

C j
T (θ)

where

C j
T (θ) =

n

∑
i=1

∫ T

0
ln ψ j(Zi

t ,θ)dNi, j
t −

∫ T

0
ln
( n

∑
i=1

ψ j(Zi
t ,θ)Y i, j

t

)
dN

j
t

or equivalently:

exp[C j
T (θ)] =

∏n
i=1 ∏τ i, j

u ≤T
ψ j(Zi

τ i, j
u

,θ)

∏τ j
u≤T ∑n

i=1 ψ j(Zi
τ j

u
,θ)Y i, j

τ j
u

In this last expression, the second product of the numerator is computed for all the
observed jump times τ i, j

u of the process Ni, j
t and the product in the denominator
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is computed for all the jump times τ j
u of the process N

j
t , i.e. for all the transitions

from state k to state � (if j = (k, �)) observed over all the individuals. Parameters
θ are estimated via the maximization of CT (θ). Moreover, if ψ j(Zi

t ,θ) depends on
a subvector θ j such that all the θ j’s are variation free, the estimator of θ j may be
obtained through a maximization of C j

T (θ) =C j
T (θ j) only. In this case, observations

of Ni, j
t for any i and t are sufficient for the estimation of θ j.

Asymptotic properties of the maximand of CT (θ), denoted θ̂ , have been studied
initially by Andersen and Gill (1982) and surveyed, for example, by Karr (1986),
Chap. 5. Under usual regularity conditions, it could be shown that θ̂ is a consistent
estimator of θ when n tends to ∞ and that

√
n(θ̂ −θ) is asymptotically normal with

variance explicitly given, for example, by Karr (1986), Chap. 5, formulas (5.90a)
to (5.91).

17.7.2 The Martingale Estimation of the Integrated Baseline
Intensity

For simplicity, let us first present martingale estimators for i.i.d. counting processes,
i.e. without presence of covariates. The likelihood of such a model is obtained by
setting ψ j(Zi

t ,θ) equal to 1 in the log-likelihood function:

LT (θ ,λ 1, . . . ,λ J)

=
n

∑
i=1

J

∑
j=1

∫ T

0
ln ψ j(Zi

t ,θ)dNi, j
t +

J

∑
j=1

∫ T

0
ln λ j

t dN
j
t

−
n

∑
i=1

J

∑
j=1

∫ T

0
ψ j(Zi

t ,θ)λ j
t Y i, j

t dt

In this case, one can easily verify that the log-likelihood is a function of N
j
t only,

up to an additive constant. This means that these processes constitute a sufficient
statistic. Indeed, in this case, the log-likelihood function becomes:

LT (λ 1, . . . ,λ J) =
J

∑
j=1

[∫ T

0
ln λ j

t dN
j
t −
∫ T

0
λ j

t Y
j
t dt

]

and the processes N
j
t have the following stochastic intensities:

h
j
t = λ j

t ·Y
j
t

where Y
j
t = ∑n

i=1 Y i, j
t is the number of individuals at risk for the transition of type j

(from state k to state �) at time t.
We want to estimate the integrals of λ j

t for any j. However, in practice, infor-
mation is only available for the time interval in which there exists some individuals
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from the sample who are at risk for the analyzed transition. Functions of interest are
then:

Λ j
t =

∫ t

0
λ j

s I(Y j
s > 0)ds

where I(Y j
s > 0) = 1 if Y

j
s > 0 and 0 elsewhere.

The martingale estimator of Λ j
t is defined by:

Λ̂ j
t =

∫ t

0
(Y j

s)
−1

I(Y j
s > 0) dN

j
s

This estimator may be heuristically justified by the following argument. Let us start
with the differential representation of a counting process:

dN
j
s = h j

s ds+dM j
s

where M j
s is a martingale. In our model, this expression becomes

dN
j
s = λ j

s ·Y
j
sds+dM j

s

which can be pre-multiplied by (Y j
s)
−1

I(Y j
s > 0) to give:

(Y j
s)
−1

I(Y j
s > 0)dN

j
s

= λ j
s I(Y j

s > 0)ds+(Y j
s)
−1

I(Y j
s > 0) dM j

s

Integrating the two sides of this relation yields:

Λ̂ j
t = Λ j

t +
∫ t

0
(Y j

s)
−1

I(Y j
s > 0) dM j

s

The difference between Λ̂ j
t and Λ j

t is then a stochastic integral of a predictable
process with respect to a martingale; so it is a martingale (see Dellacherie and
Meyer (1980), Chap. 7, Theorem 3). Moreover, it can be verified that

E(Λ̂ j
t −Λ j

t ) = 0

and

< Λ̂ j
t −Λ j

t >=
∫ t

0
λ j

s (Y j
s)
−1

I(Y j
s > 0)ds

Let us recall that the predictable variation E j
t =< Λ̂ j

t −Λ j
t > plays the role of an

instantaneous variance. In particular:

V (Λ̂ j
t −Λ j

t ) = E(< Λ̂ j
t −Λ j

t >)
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Using a martingale estimation approach, E j
t may be estimated by

Ê j
t =

∫ t

0
(Y j

s)
−2

I(Y j
s > 0)ds

Under standard regularity conditions, estimators Λ̂ j
t are asymptotically well-behaved.

They are consistent in a strong sense

E

[
sup

t
(Λ̂ j

t −Λ j
t )

2
]
→ 0 when n→ ∞

and n1/2(Λ̂ j
t −Λ j

t ) is asymptotically distributed as a centered Gaussian martingale
with continuous trajectories and whose predictable variation may be estimated by
nÊ j

t .
Let us now return to the general model with covariates. The differential repre-

sentation of a process Ni, j
t is then:

dNi, j
s = ψ j(Zi

s,θ) ·λ j
s ·Y i, j

s ds+dEi, j
s

where Ei, j
s is a zero-mean martingale. From the definition of dN

j
s , we obtain:

dN
j
s =

[
n

∑
i=1

ψ j(Zi
s,θ) ·Y i, j

s

]

λ j
s ds+dE

j
s

in which E
j
s = ∑n

i=1 Ei, j
s is still a zero-mean martingale.

Now let us define:

w j
t (θ) =

n

∑
i=1

ψ j(Zi
s,θ) ·Y i, j

s

Assuming that θ is known, the problem of inference on the integral of the λ j
t ’s is

identical to the previous case without covariates. The function parameters are now:

Λ j
t (θ) =

∫ t

0
I(w j

s(θ) > 0)λ j
s ds

and their estimators are given by:

Λ̂ j
t (θ) =

∫ t

0
[w j

s(θ)]−1
I(w j

s(θ) > 0)dN
j
s

If a Cox procedure is initially used and provides an estimator θ̂ of θ regardless of the
λ j

t ’s, an estimator of Λ j
t (θ) is obtained by substituting θ̂ for θ in this last expression.

It can be proved (see Andersen and Gill (1982)) that asymptotic properties of Λ̂ j
t (θ̂)

are identical to those of Λ̂ j
t (θ) and that estimators Λ̂ j

t (θ̂) are independent of each
other and independent of θ̂ asymptotically.
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17.8 Conclusions

This chapter focused on definitions and statistical analysis of duration models
and point processes. More extensive presentations are contained in textbooks by
Kalbfleisch and Prentice (1980), Lawless (1982), Jacobsen (1982), Cox and Oakes
(1984), Karr (1986), Daley and Vere-Jones (1988), Lancaster (1990), Andersen,
Borgan, Gill and Keiding (1993), or in detailed surveys by Heckman and Singer
(1984a), Kiefer (1988), Serfozo (1990), Van den Berg (2001). Markov chains have
been completely studied by Chung (1967), Freedman (1971), Revuz (1975) and by
Ethier and Kurtz (1986).
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Chapter 18
GMM for Panel Data Count Models

Frank Windmeijer

18.1 Introduction

This chapter gives an account of the recent literature on estimating (dynamic)
models for panel count data. Specifically, the treatment of unobserved individual
heterogeneity that is correlated with the explanatory variables and the presence of
explanatory variables that are not strictly exogenous are central. Moment conditions
are discussed for these types of problems that enable estimation of the parameters
by the Generalised Method of Moments (GMM). Interest in exponential regression
models has increased substantially in recent years. The Poisson regression model for
modelling an integer count dependent variable is an obvious example where the con-
ditional mean function is routinely modelled to be exponential. But also models for
continuous positive dependent variables that have a skewed distribution are increas-
ingly being advocated to have an exponential conditional mean function. Although
for these data the log transformation can be applied to multiplicative models, the
“retransformation” problem often poses severe difficulties if the object of interest is
the level of for example costs, see e.g. Manning, Basu and Mullahy (2005). Santos
Silva and Tenreyro (2006) also strongly recommend to estimate the multiplicative
models directly, as the log transformation can be unduly restrictive. Although the
focus of this chapter is on models for count data, almost all procedures can directly
be applied to models where the dependent variable is a positive continuous variable
and the conditional mean function is exponential. The one exception is the linear
feedback model as described in Sect. 18.3.4, which is a dynamic model specifica-
tion specific to discrete count data.

Section 18.2 discusses instrumental variables estimation for count data models
in cross sections. Section 18.3 derives moment conditions for the estimation of
(dynamic) models for count panel data allowing for correlated fixed effects and

Frank Windmeijer
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weakly exogenous regressors. Section 18.4 discusses GMM estimation. Section 18.5
reviews some of the applied literature and software to estimate the models by
nonlinear GMM. As standard Wald tests based on efficient two-step GMM esti-
mation results are known to have poor finite sample behavior, Sect. 18.6 considers
alternative test procedures that have recently been proposed in the literature. It also
considers estimation by the continuous updating estimator (CUE) as this estimator
has been shown to have a smaller finite sample bias than one- and two-step GMM.
As asymptotic standard errors for the CUE are downward biased in finite samples
we use results from alternative, many weak instrument asymptotics that lead to a
larger asymptotic variance of the CUE.

18.2 GMM in Cross-Sections

The Poisson distribution for an integer count variable yi, i = 1, . . . ,N, with mean μi

is given by

P(yi) =
e−μi μyi

yi!

and the Poisson regression model specifies μi = exp(x′iβ ), where xi is a vector of
explanatory variables and β a parameter vector to be estimated. The log-likelihood
function for the sample is then given by

lnL =
N

∑
i=1

yi ln(μi)−μi− ln(yi!)

with first-order condition

∂ lnL
∂β

=
N

∑
i=1

xi (yi−μi) = 0 . (18.1)

It is therefore clear that the Poisson regression estimator is a method of moments
estimator. If we write the model with an additive error term ui as

yi = exp
(
x′iβ
)
+ui = μi +ui

with
E (xiui) = E (xi (yi−μi)) = 0 ,

this is clearly the population equivalent of the sample first order condition in the
Poisson regression model.

An alternative moment estimator is obtained by specifying the error term as mul-
tiplicative in the model

yi = exp
(
x ′i β
)

wi = μiwi

with associated moment conditions
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E ((wi−1) |xi) = E

((
yi−μi

μi

)
|xi

)
= 0. (18.2)

Mullahy (1997) was the first to introduce GMM instrumental variables esti-
mation of count data models with endogenous explanatory variables. He used the
multiplicative setup with xi being correlated with the unobservables wi such that
E ((wi−1) |xi) �= 0 and the moment estimator that solves (18.2) is therefore not con-
sistent. There are instruments zi available that are correlated with the endogenous
regressors, but not with wi such that

E ((wi−1) |zi) = E

((
yi−μi

μi

)
|zi

)
= 0. (18.3)

Denote1

gi = zi

(
yi−μi

μi

)
,

then the GMM estimator for β that minimises

QN (β ) =

(
1
N

N

∑
i=1

gi

)′
W−1

N

(
1
N

N

∑
i=1

gi

)

is consistent, where WN is a weight matrix. The efficient two-step weight matrix is
given by

WN

(
β̂1

)
=

1
N

N

∑
i=1

gi

(
β̂1

)
gi

(
β̂1

)′

where

gi

(
β̂1

)
= zi

⎛

⎝
yi− exp

(
x ′i β̂1

)

exp
(

x ′i β̂1

)

⎞

⎠

with β̂1 an initial consistent estimator. Angrist (2001) strengthens the arguments for
using these moment conditions for causal inference as he shows that in a model with
endogenous treatment and a binary instrument, the Mullahy procedure estimates a
proportional local average treatment effect (LATE) parameter in models with no
covariates.

Windmeijer and Santos Silva (1997) propose use of the additive moment
conditions

E ((yi−μi) |zi) = 0, (18.4)

estimating the parameters β again by GMM, with in this case gi = zi (yi−μi). They
and Mullahy (1997) compare the two sets of moment conditions and show that both
sets cannot in general be valid at the same time. One exception is when there is

1 From the conditional moments (18.3) it follows that any function h(z) are valid instruments,
which raises the issue of optimal instruments. Here, we will only consider h(z) = z .
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classical measurement error in an explanatory variable, as in that case both additive
and multiplicative moment conditions are valid. Consider the simple model

yi = exp(α + x∗i β )+ui

but x∗i is not observed. Instead we observe xi

xi = x∗i + εi

and estimate β in the model

yi = exp(α + xiβ − εiβ )+ui .

When instruments zi are available that are correlated with xi and independent of the
i.i.d measurement errors εi, then the multiplicative moment conditions

E

((
yi− μ̃i

μ̃i

)
|zi

)
= 0

are valid, where

μ̃i = exp(α̃ + xiβ )
α̃ = α + ln(E [exp(−εβ )]) ,

and the latter expectation is assumed to be a constant. However, also the additive
moment conditions are valid as

E ((yi− μ̃i) |zi) = 0.

18.3 Panel Data Models

Let yit denote the discrete count variable to be explained for subject i, i = 1, . . . ,N, at
time t, t = 1, . . . ,T ; and let xit denote a vector of explanatory variables. An important
feature in panel data applications is unobserved heterogeneity or individual fixed ef-
fects. For count data models these effects are generally modelled multiplicatively as

yit = exp
(
x′itβ +ηi

)
+uit

= μitνi +uit ,

where νi = exp(ηi) is a permanent scaling factor for the individual specific mean. In
general, it is likely that the unobserved heterogeneity components ηi are correlated
with the explanatory variables, E (xitηi) �= 0, and therefore standard random effects
estimators for β will be inconsistent, see Hausman, Hall and Griliches (1984). This
section will describe moment conditions that can be used to consistently estimate the
parameters β when there is correlation between ηi and xit and allowing for different
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exogeneity properties of the explanatory variables, i.e. the regressors being strictly
exogenous, predetermined or endogenous. Throughout we assume that the uit are
not serially correlated and that E (uit |νi) = 0, t = 1, . . . ,T .

18.3.1 Strictly Exogenous Regressors

When the xit are strictly exogenous, there is no correlation between any of the id-
iosyncratic shocks uis, s = 1, . . . ,T and any of the xit , t = 1, . . .T , and the conditional
mean of yit satisfies

E (yit |νi,xit) = E (yit |νi,xi1, . . . ,xiT ) .

For this case, Hausman, Hall and Griliches (1984) use the Poisson conditional max-
imum likelihood estimator (CMLE), conditioning on ∑T

t=1 yit , which is the sufficient
statistic for ηi. This method mimics the fixed effect logit approach of Chamberlain
(1984). However, the Poisson maximum likelihood estimator (MLE) for β in a
model with separate individual specific constants does not suffer from the incidental
parameters problem, and is therefore consistent and the same as the CMLE. To see
this, note that the maximum likelihood first order conditions for the νi are given by

∂ lnL
∂νi

=
T

∑
t=1

∂ (yit ln(μitνi)−μitνi)
∂νi

=
T

∑
t=1

(
yit

νi
−μit

)
= 0

and therefore the MLE for νi is given by

ν̂i(ML) =
yi

μ i
,

where yi = T−1 ∑T
t=1 yit and μ i = T−1 ∑T

t=1 exp(x′itβ ). The MLE of the fixed effect is
independent of νi. Substituting the fixed effects estimates in the first order conditions
for β results in the moment conditions

∂ lnL
∂β

(ν̂i) =
N

∑
i=1

T

∑
t=1

(
yit −μit

yi

μ i

)
xit = 0 .

When xit is strictly exogenous,

plimN→∞
1
N

∂ lnL
∂β

(ν̂i) = plimN→∞
1
N

N

∑
i=1

T

∑
t=1

(
uit −

μit

μ i
ui

)
xit = 0 ,

with ui = T−1 ∑T
t=1 uit , and therefore the MLE for β is consistent.2 It is further

identical to the CMLE. The latter can be seen as follows. The Poisson conditional
log likelihood function is given by

2 Lancaster (2002) finds the same result for the Poisson model by means of a decomposition of the
likelihood.
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lnCL =
N

∑
i=1

T

∑
t=1

Γ(yit +1)−
N

∑
i=1

T

∑
t=1

yit ln

[
T

∑
s=1

exp
(
−(xit − xis)′β

)
]

,

where Γ(.) is the gamma function, see Hausman, Hall and Griliches (1984, p. 919).
The first-order condition for β is

∂ lnCL
∂β

=
N

∑
i=1

T

∑
t=1

yit

∑T
s=1 exp(−(xit − xis)′β )

T

∑
s=1

exp
(
−(xit − xis)′β

)
(xit − xis)

=
N

∑
i=1

T

∑
t=1

yitxit −
N

∑
i=1

T

∑
t=1

yit
∑T

s=1 xis exp(x′isβ )
∑T

s=1 exp(x′isβ )

=
N

∑
i=1

T

∑
t=1

xit

(
yit −μit

yi

μ i

)
,

which is exactly the same as the MLE first order condition for β .
The first order conditions imply that the Poisson MLE for β is equivalent to the

moment estimator in a model where the ratio of individual, or within group, means
are used to approximate the individual specific effects. This mean scaling model is
given by

yit = μit
yi

μ i
+u∗it , (18.5)

where u∗it = uit − μit
μ i

ui. Blundell, Griffith and Windmeijer (2002) call the resulting

estimator the within group mean scaling estimator.3

18.3.2 Predetermined Regressors

A regressor is predetermined when it is not correlated with current and future
shocks, but it is correlated with past shocks:

E (xituit+ j) = 0, j ≥ 0

E (xituit−s) �= 0, s≥ 1 .

With predetermined regressors, the within group mean scaling estimator is no longer
consistent. Chamberlain (1992) has proposed a transformation that eliminates the
fixed effect from the multiplicative model and generates orthogonality conditions
that can be used for consistent estimation in count data models with predetermined
regressors. The quasi-differencing transformation is

sit = yit
μit−1

μit
− yit−1 = uit

μit−1

μit
−uit−1 .

3 Clearly, the Poisson pseudo-likelihood results are preserved, see also Wooldridge (1999).
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Let xt−1
i = (xi1, . . . ,xit−1). When xit is predetermined, the following moment condi-

tions hold:

E
(
sit |xt−1

i

)
= E

((
E
(
uit |xt

i

) μit−1

μit
−uit−1

)
|xt−1

i

)
= 0. (18.6)

Wooldridge (1991) proposed the following quasi-differencing transformation

qit =
yit

μit
− yit−1

μit−1
=

uit

μit
− uit−1

μit−1
,

with moment conditions

E
(
qit |xt−1

i

)
= E

((
E (uit |xt

i )
μit

− uit−1

μit−1

)
|xt−1

i

)
= 0 .

It is clear that a variable in xit can not have only non-positive or non-negative
values, as then the corresponding estimate for β is infinity. A way around this
problem is to transform xit in deviations from its overall mean, x̃it = xit − x, with
x = 1

NT ∑N
i=1 ∑T

t=1 xit , see Windmeijer (2000).
Both moment conditions can also be derived from a multiplicative model

specification
yit = exp

(
x′itβ +ηi

)
wit = μitνiwit ,

where xit is now predetermined w.r.t. wit . Again, we assume that the wit are not
serially correlated and not correlated with νi, and E (wit) = 1. The Chamberlain
quasi-differencing transformation in this case is equivalent to

sit = yit
μit−1

μit
− yit−1 = νiμit−1 (wit −wit−1) ,

with moment conditions

E
(
sit |xt−1

i

)
= E

(
νiμit−1E

(
(wit −wit−1) |νi,x

t−1
i

)
|xt−1

i

)
= 0 .

Equivalently, for the Wooldridge transformation,

qit =
yit

μit
− yit−1

μit−1
= νi (wit −wit−1)

and
E
(
qit |xt−1

i

)
= E

(
νiE
(
(wit −wit−1) |νi,x

t−1
i

)
|xt−1

i

)
= 0 .

18.3.3 Endogenous Regressors

Regressors are endogenous when they are correlated with current (and possibly past)
shocks E (xituit−s) �= 0, s ≥ 0, for the specification with additive errors uit , or when
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E (xitwit−s) �= 0, s ≥ 0, for the specification with multiplicative errors wit . It is clear
from the derivations in the previous section that we cannot find valid sequential con-
ditional moment conditions for the specification with additive errors due to the non-
separability of the uit and μit . For the multiplicative error specification, there is again
non-separability of μit−1 and (wit −wit−1) for the Chamberlain transformation and so

E
(
sit |xt−2

i

)
= E

(
νiμit−1E

(
(wit −wit−1) |νi,x

t−1
i

)
|xt−2

i

)
�= 0 .

In contrast, the Wooldridge transformation does not depend on μit or μit−1 in this
case. Valid moment conditions are then given by

E
(
qit |xt−2

i

)
= E

(
νiE
(
(wit −wit−1) |νi,x

t−2
i

)
|xt−2

i

)
= 0 .

Therefore, in the case of endogenous explanatory variables, only the Wooldridge
transformation can be used for the consistent estimation of the parameters β . This
includes the case of classical measurement error in xit , where the measurement error
is not correlated over time.

18.3.4 Dynamic Models

Specifying dynamic models for count data by including lags of the dependent count
variables in the explanatory part of the model is not as straightforward as with lin-
ear models for a continuous dependent variable. Inclusion of the lagged dependent
variable in the exponential mean function may lead to rapidly exploding series. A
better starting point is to specify the model as in Crépon and Duguet (1997)

yit = h(yit−1,γ)exp
(
x′itβ +ηi

)
+uit ,

where h(., .) > 0 is any given function describing the way past values of the
dependent variable are affecting the current value.

Let

dit = 1{yit=0} ,

then a possible choice for h(., .) is

h(yit ,γ) = exp(γ1 ln(yit−1 + cdit−1)+ γ2dit−1) ,

where c is a pre-specified constant. In this case, ln(yit−1) is included as a regressor
for positive yit−1, and zero values of yit−1 have a separate effect on current values of
yit . Crépon and Duguet (1997) considered

h(yit ,γ) = exp(γ (1−dit−1)) ,

and extensions thereof to several regime indicators.
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Blundell, Griffith and Windmeijer (2002) propose use of a linear feedback model
for modelling dynamic count panel data process. The linear feedback model of order
1 (LFM(1)) is defined as

yit = γyit−1 + exp(x′itβ +ηi)+uit

= γyit−1 + μitνi +uit ,

where the lag of the dependent variable enters the model linearly. Extending the
model to include further lags is straightforward. The LFM has its origins in the
Integer-Valued Autoregressive (INAR) process and can be motivated as an entry-
exit process with the probability of exit equal to (1− γ). The correlation over time
for the INAR(1) process without additional regressors is similar to that of the AR(1)
model, corr(yit ,yit− j) = γ j.

For the patents-R&D model, Blundell, Griffith and Windmeijer (2002) consider
the economic model

Pit = k
(

Rβ
it +(1−δ)Rβ

it−1 +(1−δ)2 Rβ
it−2 . . .

)
νi + εit (18.7)

where Pit and Rit are the number of patents and R&D expenditures for firm i at time t
respectively, k is a positive constant and R&D expenditures depreciate geometrically
at rate δ. The long run steady state for firm i, ignoring feedback from patents to
R&D, can be written as

Pi =
k
δ

Rβ
i νi ,

and β can therefore be interpreted as the long run elasticity. Inverting (18.7) leads to

Pit = kRβ
i νi +(1−δ)Pit−1 +uit

and so in the LFM model

Pit = γPit−1 + exp(k∗+β ln(Rit))νi +uit

the estimate for γ is an estimate of the depreciation factor (1−δ) and the estimate
for β is an estimate of the long run elasticity of the R&D returns to patents.

Even when the xit are strictly exogenous, the within group mean scaling estimator
will be inconsistent for small T , as the lagged dependent variable is a predetermined
variable. For estimation by GMM, the Chamberlain quasi-differencing transforma-
tion for the LFM(1) model is given by

sit = (yit − γ yit−1)
μit−1

μit
− (yit−1− γyit−2) (18.8)

and the Wooldridge quasi-differencing transformation is given by

qit =
yit − γ yit−1

μit
− yit−1− γ yit−2

μit−1
.
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For predetermined xit the following moment conditions hold

E(sit |yt−2
i ,xt−1

i ) = 0;

E(qit |yt−2
i ,xt−1

i ) = 0,

while for endogenous xit , only the Wooldridge moment conditions are valid

E(qit |yt−2
i ,xt−2

i ) = 0 .

18.4 GMM

The orthogonality conditions as described in the sections above can be used to con-
sistently estimate the model parameters by the GMM estimation technique (see
Hansen, 1982). Let θ be the k-vector of parameters to be estimated, e.g. for the
LFM(1) model θ = (γ,β ′)′. The model has a true parameter θ0 satisfying the q
moment conditions

E [gi (θ0)] = 0 .

The GMM estimator θ̂ for θ0 is defined as

θ̂ = argmin
θ∈Θ

[
1
N

N

∑
i=1

gi (θ)

]′
W−1

N

[
1
N

N

∑
i=1

gi (θ)

]

,

where Θ is a compact set of parameter values; WN satisfies plimN→∞ WN = W ,
with W a positive definite matrix. Regularity conditions are assumed such that
limN→∞

1
N ∑N

i=1 gi (θ) = E [gi (θ)] and 1√
N ∑N

i=1 gi (θ0) → N (0,Ψ) where

Ψ = limN→∞
1
N ∑N

i=1 E
[(

gi (θ0)gi (θ0)
′)]. Let Γ(θ) = E [∂gi (θ)/∂θ ′] and

Γθ0 ≡ Γ(θ0), then
√

N
(

θ̂ −θ0

)
has a limiting normal distribution,

√
N
(

θ̂ −θ0

)
→ N (0,VW ) ,

where
VW =

(
Γ′θ0

W−1Γθ0

)−1 Γ′θ0
W−1ΨW−1Γθ0

(
Γ′θ0

W−1Γθ0

)−1
.

The efficient two-step GMM estimator, denoted θ̂2, is based on a weight matrix

that satisfies plimN→∞ WN = Ψ, with VW =
(

Γ′θ0
Ψ−1Γθ0

)−1
in that case. A weight

matrix that satisfies this property is given by

WN

(
θ̂1

)
=

1
N

N

∑
i=1

gi

(
θ̂1

)
gi

(
θ̂1

)′
,
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where θ̂1 is an initial consistent estimator for θ0.
Denote g(θ) = 1

N ∑N
i=1 gi (θ). The standard test for overidentifying restrictions is

N times the minimised GMM criterion

NQWN

(
θ̂2

)
= Ng

(
θ̂2

)′
W−1

N

(
θ̂1

)
g
(

θ̂2

)
,

which has an asymptotic chi-squared distribution with q− k degrees of freedom
when the moment conditions are valid.

For the Chamberlain quasi-differencing transformation the GMM estimator θ̂
minimises

θ̂ = argmin
θ∈Θ

(
1
N

N

∑
i=1

si (θ)′Zi

)

W−1
N

(
1
N

N

∑
i=1

Z′i si (θ)

)

,

where, for the LFM(1) model, si (θ) is the T −2 vector (si3,si4, . . . ,siT )′, with sit as
defined in (18.8), Zi is the matrix of instruments and WN is a weight matrix. When
the full sequential set of instruments is used and xit is predetermined, the instrument
matrix for the LFM(1) model is given by

Zi =

⎡

⎢
⎣

yi1 xi1 xi2
. . .

yi1 · · · yiT−2 xi1 · · · xiT−1

⎤

⎥
⎦ .

The efficient weight matrix is

WN

(
θ̂1

)
=

1
N

N

∑
i=1

Z′i si(θ̂1)si(θ̂1)′Zi ,

where θ̂1 can be a GMM estimator using for example WN = 1
N ∑N

i=1 Z′iZi as the initial

weight matrix. As stated above, under the assumed regularity conditions both θ̂1

and θ̂2 are asymptotically normally distributed. The asymptotic variance of θ̂1 is
computed as

v̂ar
(

θ̂1

)
=

1
N

(
C
(

θ̂1

)′
W−1

N C
(

θ̂1

))−1

C
(

θ̂1

)′
W−1

N WN

(
θ̂1

)
W−1

N C
(

θ̂1

)

×
(

C
(

θ̂1

)′
W−1

N C
(

θ̂1

))−1

where

C
(

θ̂1

)
=

1
N

N

∑
i=1

∂Z′i si (θ)
∂θ

|θ̂1
.

The asymptotic variance of the efficient two-step GMM, estimator is computed as

v̂ar
(

θ̂2

)
=

1
N

(
C
(

θ̂2

)′
W−1

N

(
θ̂1

)
C
(

θ̂2

))−1

.
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18.5 Applications and Software

The instrumental variables methods for count data models with endogenous regres-
sors using cross section data, as described in Sect. 18.2, have often been applied
in the health econometrics literature. For example, Mullahy (1997) uses the mul-
tiplicative moment conditions to estimate cigarette demand functions with a habit
stock measure as endogenous regressor. Windmeijer and Santos Silva (1997) esti-
mate health care demand functions with a self reported health measure as possible
endogenous variable, while Vera-Hernandez (1999) and Schellhorn (2001) estimate
health care demand functions with endogenous insurance choice. An example out-
side the health econometrics literature is Kelly (2000) who models the number of
crimes with police activity as an endogenous regressor.

The count panel data literature has largely focused on estimating models for
patenting and the returns to R&D investments, which started with the seminal
paper of Hausman, Hall and Griliches (1984). Following the development of the
quasi-differencing approach of Wooldridge (1991, 1997), Chamberlain (1992), and
Montalvo (1997), Cincera (1997), Crépon and Duguet (1997), Blundell, Griffith and
Van Reenen (1999) and Blundell, Griffith and Windmeijer (2002) developed and/or
estimated patent (or innovation) production functions using the GMM framework
allowing for correlated firm specific effects and weakly exogenous inputs. More re-
cently, Kim and Marschke (2005) use the GMM framework to find a relationship
between a firms’ patenting behavior and scientist turnover, whereas Salomon and
Shaver (2005) estimate a linear feedback model and find that exporting has a posi-
tive effect on innovating behavior of the firm.

The latter two publications estimated the models using ExpEnd, Windmeijer
(2002). This is a user friendly open source GAUSS (Aptech Systems, 2005) code for
nonlinear GMM estimation of the models described in the previous sections.4 For
cross-section data, ExpEnd estimates simple robust Poisson regression models using
moment conditions (18.1); and instrumental variables regressions using Mullahy’s
(1997) multiplicative moment conditions (18.3) or the additive moment condi-
tions (18.4). For panel data, ExpEnd estimates pooled robust Poisson regression
models; fixed effects models, using the mean scaling model (18.5); and the quasi-
differencing models using the Chamberlain (1992) or the Wooldridge (1991, 1997)
transformation, for static, distributed lag and linear feedback models. For the quasi-
differencing models, sequential and so-called stacked IV type instruments can be
specified, in both cases allowing for a flexible lag length of the instruments. For
overidentified models one- and two-step GMM parameter estimates are reported,
together with asymptotic standard errors. The test for overidentifying restrictions is
reported and for the panel data models the output further includes a test of first and
second order serial correlation of the quasi-differencing “residuals” sit(θ̂) or qit(θ̂).
If the model is correctly specified one expects to find an MA(1) serial correlation
structure.

4 For a review, see Romeu (2004).
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Another package that enables researchers to estimate these model types is TSP
Hall and Cummins (2005). Kitazawa (2000) provides various TSP procedures for
the estimation of count panel data models. Also LIMDEP, Greene (2005), provides
an environment where these models can be estimated.

18.6 Finite Sample Inference

Standard Wald tests based on two-step efficient GMM estimators are known to
have poor finite sample properties (see e.g. Blundell and Bond (1998)). Bond and
Windmeijer (2005) therefore analysed the finite sample performance of various al-
ternative test procedures for testing linear restrictions in linear panel data models.
The statistics they found to perform well in Monte Carlo exercises were an alter-
native two-step Wald test that uses a finite sample correction for the asymptotic
variance matrix, the LM test, and a simple criterion-based test. In this section we
briefly describe these procedures and adapt them to the case of nonlinear GMM
estimation where necessary.

Newey and Smith (2004) have shown that the GMM estimator can further also
suffer from quite large finite sample biases and advocate use of Generalized Em-
pirical Likelihood (GEL) estimators that they show to have smaller finite sample
biases. We will consider here the performance of the Continuous Updating Esti-
mator (CUE) as proposed by Hansen, Heaton and Yaron (1996), which is a GEL
estimator. The Wald test based on the CUE has also been shown to perform poorly
in finite samples by e.g. Hansen, Heaton and Yaron (1996). Newey and Windmeijer
(2005) derive the asymptotic distribution of the CUE when there are many weak
moment conditions. The asymptotic variance in this case is larger than the usual
asymptotic one and we will analyse the performance of an alternative Wald test that
uses an estimate for this larger asymptotic variance, together with a criterion based
test for the CUE as proposed by Hansen, Heaton and Yaron (1996).

The estimators and test procedures will be evaluated in a Monte Carlo study of
testing linear restrictions in a static count panel data model with an explanatory
variable that is correlated with the fixed unobserved heterogeneity and which is pre-
determined. The Chamberlain quasi-differencing transformation will be used with
sequential moment conditions.

18.6.1 Wald Test and Finite Sample Variance Correction

The standard Wald test for testing r linear restrictions of the form r (θ0) = 0 is
calculated as

Wald = r
(

θ̂
)′(

R′v̂ar
(

θ̂
)

R
)−1

r
(

θ̂
)

,
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where R = ∂ r (θ)/∂θ ′, and has an asymptotic χ2
r distribution under the null. Based

on the two-step GMM estimator and using its conventional asymptotic variance es-
timate, the Wald test has often been found to overreject correct null hypotheses
severely compared to its nominal size. This can occur even when the estimator has
negligible finite sample bias, due to the fact that the estimated asymptotic standard
errors can be severely downward biased in small samples. Windmeijer (2005) pro-
posed a finite sample variance correction that takes account of the extra variation due
to the presence of the estimated parameters θ̂1 in the weight matrix. He showed by
means of a Monte Carlo study that this correction works well for in linear models,
but it is not clear how well it will work in nonlinear GMM.

To derive the finite sample corrected variance, let

g(θ) =
1
N

N

∑
i=1

gi (θ) ; C (θ) =
∂g(θ)

∂θ ′
; G(θ) =

∂C (θ)
∂θ

,

and

bθ0,WN =
1
2

∂QWN

∂θ
|θ0 = C (θ0)

′W−1
N g(θ0) ;

Aθ0,WN =
1
2

∂ 2QWN

∂θ∂θ ′
|θ0 = C (θ0)

′W−1
N C (θ0)+G(θ0)

′ (Ik⊗W−1
N g(θ0)

)
.

A standard first order Taylor series approximation of θ̂2 around θ0, conditional on

WN

(
θ̂1

)
, results in

θ̂2−θ0 =−A−1
θ0,WN(θ̂1)

bθ0,WN(θ̂1) +Op
(
N−1) .

A further expansion of θ̂1 around θ0 results in

θ̂2−θ0 =−A−1
θ0,WN(θ0)bθ0,WN(θ0) +Dθ0,WN(θ0)

(
θ̂1−θ0

)
+Op

(
N−1) , (18.9)

where

WN (θ0) =
1
N

N

∑
i=1

gi (θ0)gi (θ0)
′

and

Dθ0,WN(θ0) =
∂

∂θ ′
(
−A−1

θ0,WN(θ)bθ0,WN(θ)

)
|θ0

is a k× k matrix.
Let θ̂1 be a one-step GMM estimator that uses a weight matrix WN that does not

depend on estimated parameters. An estimate of the variance of θ̂2 that incorporates
the term involving the one-step parameter estimates used in the weight matrix can
then be obtained as
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v̂arc

(
θ̂2

)
=

1
N

A−1
θ̂2,WN(θ̂1)

C
(

θ̂2

)′
W−1

N

(
θ̂1

)
C
(

θ̂2

)
A−1

θ̂2,WN(θ̂1)

+
1
N

Dθ̂2,WN(θ̂1)A−1
θ̂1,WN

C
(

θ̂1

)′
W−1

N C
(

θ̂2

)
A−1

θ̂2,WN(θ̂1)

+
1
N

A−1
θ̂2,WN(θ̂1)

C
(

θ̂2

)′
W−1

N C
(

θ̂1

)
A−1

θ̂1,WN
D′θ̂2,WN(θ̂1)

+ Dθ̂2,WN(θ̂1)v̂ar
(

θ̂1

)
D′θ̂2,WN(θ̂1)

,

where the jth column of Dθ̂2,WN(θ̂1) is given by

Dθ̂2,WN(θ̂1)[., j] = A−1
θ̂2,WN(θ̂1)

C
(

θ̂2

)′
W−1

N

(
θ̂1

) ∂WN (θ)
∂θ j

|θ̂2
W−1

N

(
θ̂1

)
g
(

θ̂2

)
,

and
∂WN (θ)

∂θ j
=

1
N

N

∑
i=1

(
∂gi (θ)

∂θ j
gi (θ)′+gi (θ)

∂gi (θ)′

∂θ j

)
.

The alternative two-step Wald test that uses a finite sample correction for the asymp-
totic variance matrix is then defined as

Waldc = r
(

θ̂2

)′(
R′v̂arc

(
θ̂2

)
R
)−1

r
(

θ̂2

)
.

The term Dθ0,W (θ0)

(
θ̂1−θ0

)
in (18.9) is itself Op

(
N−1
)

and in this gen-

eral setting, incorporating non-linear models and/or non-linear moment conditions,
whether taking account of it will improve the estimation of the small sample vari-
ance substantially depends on the other remainder terms which are of the same
order.

18.6.2 Criterion-Based Tests

Using the notation as in Bond and Windmeijer (2005), the standard two-step Wald
test can be computed as a criterion difference

Wald = N

(
g
(

θ̃2̂

)′
W−1

N

(
θ̂1

)
g
(

θ̃2̂

)
−g
(

θ̂2

)′
W−1

N

(
θ̂1

)
g
(

θ̂2

))
,

where θ̂1 and θ̂2 are the one-step and two-step GMM estimators in the unrestricted
model, whereas θ̃2̂ is a two-step GMM estimator in the restricted model, but using
as a weight matrix the consistent estimate of Ψ based on the unrestricted one-step

GMM estimator, WN

(
θ̂1

)
, see Newey and West (1987).
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The LM test can also be computed as a criterion difference

LM = N

(
g
(

θ̃2

)′
W−1

N

(
θ̃1

)
g
(

θ̃2

)
−g
(

θ̂2̃

)′
W−1

N

(
θ̃1

)
g
(

θ̂2̃

))
,

where θ̃1 and θ̃2 are the one-step and two-step GMM estimators in the restricted
model, whereas θ̂2̃ is a two-step GMM estimator in the unrestricted model, but using
as a weight matrix the consistent estimate of Ψ under the null, based on the restricted

one-step GMM estimator, WN

(
θ̃1

)
. The LM test has an asymptotic χ2

r distribution

under the null.
The criterion-based test statistic considered by Bond, Bowsher and Windmeijer

(2001) is given by

DRU = N

(
g
(

θ̃2

)′
W−1

N

(
θ̃1

)
g
(

θ̃2

)
−g
(

θ̂2

)′
W−1

N

(
θ̂1

)
g
(

θ̂2

))
.

DRU is the “likelihood ratio” test equivalent for GMM, and is the difference between
the test statistics for overidentifying restrictions in the restricted and unrestricted
models. Under the null, DRU has an asymptotic χ2

r distribution.

18.6.3 Continuous Updating Estimator

The Continuous Updating Estimator (CUE) is given by

θ̂CU = argmin
θ∈Θ

Q(θ) ;

Q(θ) =
1
2

g(θ)′W−1
N (θ)g(θ) ,

where, as before,

WN (θ) =
1
N

N

∑
i=1

gi (θ)gi (θ)′

and so the CUE minimises the criterion function including the parameters in the
weight matrix. The limiting distribution under standard regularity conditions is
given by √

N
(

θ̂CU −θ0

)
→ N (0,V ) ; V =

(
Γ′θ0

Ψ−1Γθ0

)−1

and is the same as the efficient two-step GMM estimator. The asymptotic variance
of the CUE is computed as

v̂ar
(

θ̂CU

)
=

1
N

(
C
(

θ̂CU

)′
W−1

N

(
θ̂CU

)
C
(

θ̂CU

))−1

,
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which is used in the calculation of the standard Wald test. Again, it has been shown
by e.g. Hansen, Heaton and Yaron (1996) that the asymptotic standard errors are
severely downward biased, leading to overrejection of a true null hypothesis using
the Wald test.

Newey and Windmeijer (2005) derive the asymptotic distribution of the CUE
under many weak instrument asymptotics. In these asymptotics, the number of in-
struments is allowed to grow with the sample size N, with the increase in number
of instruments accompanied by an increase in the concentration parameter. The re-
sulting limiting distribution of the CUE is again the normal distribution, but con-
vergence is at a slower rate than

√
N. The asymptotic variance is in this case larger

than the asymptotic variance using conventional asymptotics, and can be estimated
consistently by

v̂ar
(

θ̂CU

)

c
=

1
N

H−1
(

θ̂CU

)
S
(

θ̂CU

)′
W−1

N

(
θ̂CU

)
S
(

θ̂CU

)
H−1

(
θ̂CU

)
,

where

H (θ) =
∂ 2Q(θ)
∂θ∂θ ′

; S (θ) = (S1 (θ) ,S2 (θ) , . . . ,Sk (θ))

S j (θ) =
(

∂g(θ)
∂θ j

−Λ j (θ)W−1
N (θ)g(θ)

)

Λ j (θ) =
1
N

N

∑
i=1

∂gi (θ)
∂θ j

gi (θ)′ .

Here, unlike the usual asymptotics, the middle matrix S
(

θ̂CU

)′
W−1

N

(
θ̂CU

)
S
(

θ̂CU

)

estimates a different, larger object than the Hessian. Also, the use of the Hessian is

important, as the more common formula C
(

θ̂CU

)′
W−1

N

(
θ̂CU

)
C
(

θ̂CU

)
has extra

random terms that are eliminated in the Hessian under the alternative asymptotics.
Hansen, Heaton and Yaron (1996) proposed the use of a criterion-based test

similar to DRU , but based on the CUE. Their test statistic DCU
RU is defined as

DCU
RU = N

(
Q
(

θ̃CU

)
−Q
(

θ̂CU

))
,

where θ̂CU and θ̃CU are the CUEs for the unrestricted and restricted models respec-
tively. Under the null, DCU

RU has an asymptotic χ2
r distribution.

18.6.4 Monte Carlo Results

In this section we will illustrate the finite sample performance of the GMM estima-
tors and the test statistics as discussed in the previous sections by means of a small
Monte Carlo study. The data generating process is given by
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yit ∼ Poisson(exp(xitβ +ηi + εit))
xit = ρxit−1 +δηi +θεit−1 +ωit

ηi ∼ N
(
0,σ2

η
)

; εit ∼ N
(
0,σ2

ε
)

; ωit ∼ N
(
0,σ2

ω
)
,

β = 0.5; δ = 0.1; θ = 0.3; σ2
η = 0.3; σ2

ε = 0.3; σ2
ω = 0.25

ρ = {0.5,0.8} .

The dependent variable is a count variable, generated from the Poisson distribution
with unobserved fixed normally distributed heterogeneity ηi and further idiosyn-
cratic normally distributed heterogeneity εit . The xit are correlated with the ηi and
εit−1 and are therefore predetermined.

Table 18.1 presents estimation results from 10,000 Monte Carlo replications for
the one- and two-step GMM estimators as well as the continuous updating estimator
for T = 6, N = 250 and ρ = 0.5 or ρ = 0.8, using the moment conditions (18.6) as
proposed by Chamberlain (1992). The instruments set is given by

Zi =

⎡

⎢
⎢
⎢
⎣

xi1

xi1 xi2
. . .

xi1 · · · xiT−1

⎤

⎥
⎥
⎥
⎦

and hence there are a total of 15 moment conditions.The one-step GMM estimator
uses WN = 1

N ∑N
i=1 Z′iZi as the weight matrix.

When ρ = 0.5, the instruments are quite strong. The one-step GMM estima-
tor, denoted GMM1 in the table, has a moderate downward bias of −0.0408. Its
standard deviation is 0.1053, which seems well approximated by the asymptotic
standard error. The mean of the estimated standard errors is equal to 0.1031. The
two-step GMM estimator, denoted GMM2, has a smaller bias of −0.0211 and a
smaller standard deviation of 0.0803, representing a substantial efficiency gain with
more than a 23% reduction in standard deviation. In contrast to the one-step esti-

Table 18.1 Estimation results

ρ = 0.5 Mean St Dev Se Sec Median IQR
Bias Bias

GMM1 −0.0408 0.1053 0.1031 −0.0409 0.1381
GMM2 −0.0211 0.0803 0.0652 0.0799 −0.0209 0.1077
CUE 0.0043 0.0904 0.0652 0.0918 0.0024 0.1165
ρ = 0.8
GMM1 −0.1136 0.2094 0.1773 −0.0974 0.2435
GMM2 −0.0537 0.1335 0.0908 0.1365 −0.0498 0.1558
CUE 0.0033 0.1885 0.0879 0.1459 0.0029 0.1742

Note: T = 6, N = 250, β = 0.5, 10,000 replications, sec denotes finite sample corrected standard
errors for GMM2 and those resulting from many weak instrument asymptotics for CUE, IQR=
Inter Quartile Range



18 GMM for Panel Data Count Models 621

mator, the mean of the usual asymptotic standard errors is 19% smaller than the
standard deviation. However, taking account of the extra variation due to the pres-
ence of the one-step estimates in the weight matrix results in finite sample corrected
standard errors with a mean of 0.0799, which is virtually identical to the standard
deviation. The CUE has a very small bias of 0.0043, with a standard deviation of
0.0904, which is larger than that of the two-step GMM estimator, but smaller than
that of the one-step estimator. The mean of the usual asymptotic standard errors
is exactly the same as that of the two-step GMM estimator and in this case it is
almost 28% smaller than the standard deviation. The standard errors resulting from
the many weak instruments asymptotics have a mean of 0.0918, which is virtually
the same as the standard deviation.

Figure 18.1 shows p-value plots for the hypothesis H0 : ρ = 0.5, comparing nomi-
nal size with rejection frequencies. The various Wald tests are denoted W1, W2, W2C,
WCU and WCUC based on one-step GMM, two-step GMM with usual standard er-
rors, two-step GMM with finite sample corrected standard errors, CUE and CUE
with standard errors resulting from the many weak instruments asymptotics, respec-
tively. As expected, W2 and WCU overreject the null hypothesis substantially. W1

and W2C perform much better, but are still moderately oversized due to the bias of
the estimators. WCUC has a very good performance in terms of size of the test, the
rejection frequencies being very close to the 45o line. The two-step GMM based
LM and DRU tests also perform very well, their p-value plots being quite similar to
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Fig. 18.1 P-value plot, H0 : ρ = 0.5
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that of WCUC. Finally, the CUE based DCU
RU performs well, but tends to overreject

moderately at higher values of the nominal size.
When ρ = 0.8, the instruments become weaker as the xit series become more

persistent. The one-step GMM estimator now has a quite large downward bias of
−0.1136. Its standard deviation is 0.2094, which is now less well approximated
by the asymptotic standard error, with the mean of the estimated standard errors
being equal to 0.1773. The two-step GMM estimator has a smaller, but still quite
substantial bias of −0.0537 and a smaller standard deviation of 0.1335. The mean
of the usual asymptotic standard errors is 0.0908, again substantially smaller than
the standard deviation. The mean of the finite sample corrected standard errors is
0.1365, which is again very close to the standard deviation. The CUE, also with
these weaker instruments, has a very small bias of 0.0033, with a standard deviation
of 0.1885. In this case the so-called no moment-problem starts to become an issue
for the CUE, though, with some outlying estimates inflating the standard deviation,
see Guggenberger (2005). It is therefore better to look at the median bias and inter
quartile range (IQR) in this case, which shows that the CUE is median unbiased
with an IQR which is only slightly larger than that of the two-step GMM estimator,
0.1742 versus 0.1558 respectively.

Figure 18.2 shows p-value plots for the hypothesis H0 : ρ = 0.8. W2 and WCU

overreject the null hypothesis even more than when ρ = 0.5. W1 performs better, but
is still substantially oversized. W2C and WCUC perform quite well and quite similar,
slightly overrejecting the null. The two-step GMM based LM and DRU are again the
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best performers in terms of size, whereas the CUE based DCU
RU performs worse than

W2C and WCUC.
Summarising, it is clear that use of the finite sample corrected standard errors for

the two-step GMM estimator and the standard errors from the many weak instru-
ment asymptotics for the CUE improve the size performance of the Wald tests for
these estimators considerably. The simple criterion based DRU test performs very
well in these examples, as was the case in Bond and Windmeijer (2005) for linear
panel data models.
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Chapter 19
Spatial Panel Econometrics

Luc Anselin, Julie Le Gallo and Hubert Jayet

19.1 Introduction

Spatial econometrics is a subfield of econometrics that deals with the incorporation
of spatial effects in econometric methods (Anselin, 1988a). Spatial effects may re-
sult from spatial dependence, a special case of cross-sectional dependence, or from
spatial heterogeneity, a special case of cross-sectional heterogeneity. The distinc-
tion is that the structure of the dependence can somehow be related to location
and distance, both in a geographic space as well as in a more general economic
or social network space. Originally, most of the work in spatial econometrics was
inspired by research questions arising in regional science and economic geogra-
phy (early reviews can be found in, among others, Paelinck and Klaassen, 1979;
Cliff and Ord, 1981; Upton and Fingleton, 1985; Anselin, 1988a; Haining, 1990;
Anselin and Florax, 1995). However, more recently, spatial (and social) interaction
has increasingly received more attention in mainstream econometrics as well, both
from a theoretical as well as from an applied perspective (see the recent reviews and
extensive references in Anselin and Bera, 1998; Anselin, 2001b, 2002; Florax and
Van Der Vlist, 2003; and Anselin et al., 2004).

The central focus in spatial econometrics to date has been the single equa-
tion cross-sectional setting. However, as Arrelano argues in the introduction to
his recent panel data econometrics text, “the field [of econometrics of panel data]
has expanded to cover almost any aspect of econometrics” (Arellano, 2003, p. 2).
It is therefore not surprising that this has included spatial econometrics as well. For
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example, the second edition of Baltagi’s well known panel data text now includes
a brief discussion of spatial panels (Baltagi, 2001, pp. 195–197), and an increas-
ing number of papers are devoted to the topic (see the reviews in Anselin, 2001b;
Elhorst, 2001, 2003, as well as the recent papers by Baltagi et al., 2007, 2006;
Kapoor et al., 2007; and Pesaran, 2004; among others).

In this chapter, we review and organize this recent literature and emphasize a
range of issues pertaining to the specification, estimation and diagnostic testing for
spatial effects in panel data models. Since this encompasses a large and rapidly
growing literature, we limit our attention to models with continuous dependent vari-
ables,1 and to a design where the cross-sectional dimension (N) vastly exceeds the
time dimension (N � T ). We also avoid duplication by excluding aspects of the
standard treatment of heterogeneity and dependence in panel data models, as well
as the case where cross-sectional dependence is modeled by relying on the time
dimension (e.g., as in the classic SURE case with fixed N, and some more recent
extensions, such as Chen and Conley, 2001).

The chapter is organized into five remaining sections. First, we define the notion
of spatial effects more precisely and provide a brief outline of how the traditional
cross-sectional models can be extended to panel data model specifications. Next, we
consider this more closely and develop a taxonomy of space-time models. We then
turn to the issues of model estimation and diagnostic testing. We close with some
concluding remarks.

19.2 Spatial Effects

As a point of departure, consider a simple pooled linear regression model:

yit = xitβ + εit , (19.1)

where i is an index for the cross-sectional dimension, with i = 1, . . . ,N, and t is an
index for the time dimension, with t = 1, . . . ,T .2 Using customary notation, yit is an
observation on the dependent variable at i and t, xit a 1×K vector of observations
on the (exogenous) explanatory variables, β a matching K×1 vector of regression
coefficients, and εit an error term.

Given our interest in spatial effects, the observations will be stacked as successive
cross-sections for t = 1, . . . ,T , referred to as yt (a N×1 vector of cross-sectional ob-
servations for time period t), Xt (a N×K matrix of observations on a cross-section of
the explanatory variables for time period t) and εt (a N×1 vector of cross-sectional

1 The treatment of spatial effects in panel data models with discrete dependent variables is still in
its infancy.
2 Note that we couch the discussion using “time” as the second dimension for the sake of sim-
plicity. In general, it is also possible to have the second dimension reflect another cross-sectional
characteristic, such as an industry sector, and. along the same lines, extension to higher order panel
structures are possible as well.
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disturbances for time period t). In stacked form, the simple pooled regression then
becomes:

y = Xβ + ε, (19.2)

with y as a NT ×1 vector, X as a NT ×K matrix and ε as a NT ×1 vector.
In general, spatial dependence is present whenever correlation across cross-

sectional units is non-zero, and the pattern of non-zero correlations follows a cer-
tain spatial ordering. When little is known about the appropriate spatial ordering,
spatial dependence is reduced to simple cross-sectional dependence. For exam-
ple, the error terms are spatially correlated when E[εitε jt ] �= 0, for a given t and
i �= j, and the non-zero covariances conform to a specified neighbor relation. Note
how the correlation is purely cross-sectional in that it pertains to the same time
period t.

The neighbor relation is expressed by means of a so-called spatial weights
matrix. We will briefly review the concept of spatial weights (and the associated
spatial lag operator) and outline two classes of specifications for models with spa-
tial dependence. In one, the spatial correlation pertains to the dependent variable,
in a so-called spatial lag model, in the other it affects the error term, a so-called
spatial error model. The two specifications can also be combined, resulting in
so-called higher order spatial models. While these models and terms are by now
fairly familiar in the spatial econometric literature, we thought it useful to briefly
review them and to illustrate how they may be incorporated into a panel data
setting.3

The second class of spatial effects, spatial heterogeneity, is a special case of
the observed and unobserved heterogeneity which is treated prominently in the
mainstream panel data econometrics literature. For example, a heterogeneous panel
would relax the constant regression coefficient in (19.1), and replace it by:

yit = xitβi + εit ,

where the βi is a K×1 vector of regression coefficients specific to the cross-sectional
unit i.

This heterogeneity becomes spatial when there is a structure to the variability
across the i that is driven by spatial variables, such as location, distance or region.
In the spatial literature, discrete spatial variability is referred to as spatial regimes
(Anselin, 1988a). The continuous case can be modeled as a special form of ran-
dom coefficient variation (where the covariance shows a spatial pattern), or deter-
ministically, as a function of extraneous variables (so-called spatial expansion, e.g.,
Casetti, 1997), or as a special case of local regression models (so-called geograph-
ically weighted regression, Fotheringham et al., 2002). Neither of these has seen
application in panel data contexts.4

3 A more extensive technical review can be found in Anselin and Bera (1998).
4 In the literature of spatial statistics, spatially varying coefficients are treated in (Bayesian) hier-
archical models (Gelfand et al., 2003; Gamerman et al., 2003).
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Since most econometric aspects of spatial heterogeneity can be handled by means
of the standard panel data methods, we will focus the discussion that follows on
spatial dependence and will only consider the heterogeneity when it is relevant to
the modeling of the dependence.

19.2.1 Spatial Weights and Spatial Lag Operator

A spatial weights matrix W is a N×N positive matrix in which the rows and columns
correspond to the cross-sectional observations. An element wi j of the matrix ex-
presses the prior strength of the interaction between location i (in the row of the ma-
trix) and location j (column). This can be interpreted as the presence and strength
of a link between nodes (the observations) in a network representation that matches
the spatial weights structure. In the simplest case, the weights matrix is binary, with
wi j = 1 when i and j are neighbors, and wi j = 0 when they are not. By conven-
tion, the diagonal elements wii = 0. For computational simplicity and to aid in the
interpretation of the spatial variables, the weights are almost always standardized
such that the elements in each row sum to 1, or, ws

i j = wi j/∑ j wi j.5 A side effect
of this standardization is that the sum of all elements in W equals N, the number of
cross-sectional observations. Whereas the original weights are often symmetric, the
row-standardized form is no longer, which is an unusual complication with signifi-
cant computational consequences.

The specification of the spatial weights is an important problem in applied spatial
econometrics.6 Unless the weights are based on a formal theoretical model for so-
cial or spatial interaction, their specification is often ad hoc. In practice, the choice
is typically driven by geographic criteria, such as contiguity (sharing a common
border) or distance, including nearest neighbor distance (for examples and further
discussion, see, e.g., Cliff and Ord, 1981, pp. 17–19; Anselin, 1988a, Chap. 3).

Generalizations that incorporate notions of “economic” distance are increas-
ingly used as well (e.g., Case et al., 1993; Conley and Ligon, 2002; Conley and
Topa, 2002). A slightly different type of economic weights are so-called block
weights, where all observations in the same region are considered to be neighbors
(and not only the adjoining observations). More formally, if there are Ng units in a
block (such as counties in a state), they are all considered to be neighbors, and the
spatial weights equal 1/(Ng− 1) for all observations belonging to the same block
(see, e.g., Case, 1991, 1992; and, more recently, Lee, 2002).

So far, the weights considered were purely cross-sectional. To extend their
use in a panel data setting, they are assumed to remain constant over time.7

5 In what follows, we will use the symbol W for the spatial weights and assume row-
standardization.
6 An extensive discussion of spatial weights is outside the scope of this chapter. For a detailed
assessment of technical issues, see the recent review papers by Anselin and Bera (1998), and
Anselin (2002).
7 Since the spatial weights enter into a model premultiplied by a scalar parameter, changes in the in-
teraction structure over time can be accounted for by allowing this parameter to vary. Alternatively,
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Using the subscript to designate the matrix dimension, with WN as the weights for
the cross-sectional dimension, and the observations stacked as in (19.2), the full
NT ×NT weights matrix then becomes:

WNT = IT ⊗WN , (19.3)

with IT as an identity matrix of dimension T .
Unlike the time series case, where “neighboring” observations are directly

incorporated into a model specification through a shift operator (e.g., t − 1), this
is not unambiguous in a two dimensional spatial setting. For example, observa-
tions for irregular spatial units, such as counties or census tracts, typically do not
have the same number of neighbors, so that a spatial shift operator cannot be im-
plemented. Instead, in spatial econometrics, the neighboring observations are in-
cluded through a so-called spatial lag operator, more akin to a distributed lag than
a shift (Anselin, 1988a). In essence, a spatial lag operator constructs a new vari-
able that consists of the weighted average of the neighboring observations, with
the weights as specified in W . More formally, for a cross-sectional observation i
for variable z, the spatial lag would be ∑ j wi jz j. In most applications, the bulk
of the row elements in wi j are zero (resulting in a sparse structure for W ) so
that in effect the summation over j only incorporates the “neighbors,” i.e., those
observations for which wi j �= 0. In matrix notation, this corresponds to the ma-
trix operation WNyt , in which the N ×N cross-sectional weights matrix is post-
multiplied by a N× 1 vector of cross-sectional observations for each time period
t = 1, . . . ,T .

Spatial variables are included into a model specification by applying a spatial lag
operator to the dependent variable, to the explanatory variables, or to the error term.
A wide range of models for local and global spatial externalities can be specified
in this manner (for a review, see Anselin, 2003). This extends in a straightforward
manner to the panel data setting, by applying the NT ×NT weights from (19.3) to
the stacked y, X or ε from (19.2).

More precisely, in the same notation as above, a vector of spatially lagged
dependent variables follows as:

Wy = WNT y = (IT ⊗WN)y, (19.4)

a matrix of spatially lagged explanatory variables as:

WX = WNT X = (IT ⊗WN)X ,

and a vector of spatially lagged error terms as:

Wε = WNT ε = (IT ⊗WN)ε .

but less tractable, would be to let the weights vary and keep the parameter constant. Obviously, let-
ting both parameter and weights vary over time would lead to problems with identification and
interpretation (for example, see Druska and Horrace, 2004).
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The incorporation of these spatial lags into a regression specification is considered
next.

19.2.2 Spatial Lag Model

A spatial lag model, or, mixed regressive spatial autoregressive model, includes
a spatially lagged dependent variable on the RHS of the regression specification
(Anselin, 1988a). While usually applied in a pure cross-sectional setting, it can eas-
ily be extended to panel models. Using the stacked (19.2) and the expression for the
spatial lag from (19.4), this yields:

y = ρ(IT ⊗WN)y+Xβ + ε , (19.5)

where ρ is the spatial autoregressive parameter, and the other notation is as before.
In a cross-section, a spatial lag model is typically considered as the formal spec-

ification for the equilibrium outcome of a spatial or social interaction process, in
which the value of the dependent variable for one agent is jointly determined with
that of the neighboring agents.8 This model is increasingly applied in the recent
literature on social/spatial interaction, and is used to obtain empirical estimates for
the parameters of a spatial reaction function (Brueckner, 2003) or social multiplier
(Glaeser et al., 2002). It should be noted that other formulations to take into ac-
count social interaction have been suggested as well (e.g., Manski, 2000; Brock and
Durlauf, 2001) mostly in the context of discrete choice. The modeling of complex
neighborhood and network effects (e.g., Topa, 2001) requires considerable attention
to identification issues, maybe best known from the work of Manski on the “reflec-
tion problem” (Manski, 1993). Because of this theoretical foundation, the choice of
the weights in a spatial lag model is very important.

At first sight, the extension of the spatial lag model to a panel data context would
presume that the equilibrium process at hand is stable over time (constant ρ and con-
stant W ). However, the inclusion of the time dimension allows much more flexible
specifications, as outlined in Sect. 19.3.

The essential econometric problem in the estimation of (19.5) is that, unlike the
time series case, the spatial lag term is endogenous. This is the result of the two-
directionality of the neighbor relation in space (“I am my neighbor’s neighbor”)
in contrast to the one-directionality in time dependence (for details, see Anselin
and Bera, 1998). The consequence is a so-called spatial multiplier (Anselin, 2003)
which formally specifies how the joint determination of the values of the dependent

8 In spatial statistics, the preferred perspective is that of a conditional process, which is geared
to spatial prediction (see Cressie, 1993; Stein, 1999; and for a discussion of the implications in
a spatial econometric context, Anselin, 2002). Rather than specifying the joint distribution of all
the yi in the system, each yi is modeled conditional upon the y j for the neighbors. For detailed
discussion, see the previous references.
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variables in the spatial system is a function of the explanatory variables and error
terms at all locations in the system.

The extent of the joint determination of values in the system can be seen by
expressing (19.5) as a reduced form:

y =
[
IT ⊗ (IN−ρWN)−1]Xβ +

[
IT ⊗ (IN−ρWN)−1]ε , (19.6)

with the subscripts indicating the dimensions of the matrices. The inverse matrix
expression can be expanded and considered one cross-section at a time, due to the
block-diagonal structure of the inverse. A a result, for each N× 1 cross-section at
time t = 1, . . . ,T :

yt = Xtβ +ρWNXtβ +ρ2W 2
NXtβ + . . .+ εt +ρWNεt +ρ2W 2

Nεt . . .

The implication of this reduced form is that the spatial distribution of the yit in each
cross-section is determined not only by the explanatory variables and associated
regression coefficients at each location (Xtβ ), but also by those at neighboring loca-
tions, albeit subject to a distance decay effect (the increasing powers of ρ and WN).
In addition, the unobserved factors contained in the error term are not only relevant
for the location itself, but also for the neighboring locations (WNε), again, subject to
a distance decay effect. Note that in the simple pooled model, this spatial multiplier
effect is contained within each cross-section and does not spill over into other time
periods.9

The presence of the spatially lagged errors in the reduced form illustrates the
joint dependence of the WNyt and εt in each cross-section. In model estimation,
this simultaneity must be accounted for through instrumentation (IV and GMM es-
timation) or by specifying a complete distributional model (maximum likelihood
estimation).

Even without a solid theoretical foundation as a model for social/spatial interac-
tion, a spatial lag specification may be warranted to spatially detrend the data. This
is referred to as a spatial filter:

[IT ⊗ (IN−ρWN)]y = Xβ + ε, (19.7)

with the LHS as a new dependent variable from which the effect of spatial autocor-
relation has been eliminated. In contrast to time series, a simple detrending using
ρ = 1 is not possible, since that value of ρ is not in the allowable parameter space.10

As a consequence, the parameter ρ must be estimated in order for the spatial filtering
to be operational (see Anselin, 2002).

9 This can be relaxed in more flexible space-time models, see, for example, Sect. 19.3.3.1.
10 For row-standardized weights, ρ = 1 violates a standard regularity condition for spatial models
that requires that the inverse (I−ρWN)−1 exists (Kelejian and Prucha, 1999).
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19.2.3 Spatial Error Model

In contrast to the spatial lag model, a spatial error specification does not require a
theoretical model for spatial/social interaction, but, instead, is a special case of a
non-spherical error covariance matrix. An unconstrained error covariance matrix at
time t, E[εitε jt ],∀ i �= j contains N×(N−1)/2 parameters. These are only estimable
for small N and large T , and provided they remain constant over the time dimension.
In the panel data setting considered here, with N � T , structure must be imposed in
order to turn the covariance matrix into a function of a manageable set of parameters.

Four main approaches have been suggested to provide the basis for a parsi-
monious covariance structure: direct representation, spatial error processes, spatial
error components, and common factor models. Each will be reviewed briefly.

19.2.3.1 Direct Representation

The direct representation approach has its roots in the geostatistical literature and
the use of theoretical variogram and covariogram models (Cressie, 1993). It consists
of specifying the covariance between two observations as a direct function of the
distance that separates them, ∀ i �= j and t = 1, . . . ,T :

E[εitε jt ] = σ2 f (τ,di j), (19.8)

where τ is a parameter vector, di j is the (possibly economic) distance between
observation pairs i, j, σ2 is a scalar variance term, and f is a suitable distance de-
cay function, such as a negative exponential.11 The parameter space for τ should be
such that the combination of functional form and the distance metric ensures that
the resulting covariance matrix is positive definite (for further discussion, see, e.g,
Dubin, 1988).

An extension to a panel data setting is straightforward. With σ2Ωt,N as the er-
ror covariance matrix that results from applying the function (19.8) to the N × 1
cross-sectional error vector in time period t, the overall NT ×NT error variance-
covariance matrix ΣNT becomes a block diagonal matrix with the N×N variance
matrix for each cross-section on the diagonal.12 However, as specified, the func-
tion (19.8) does not vary over time, so that the result can be expressed concisely
as:

ΣNT = σ2 [IT ⊗ΩN ] ,

with Ωt,N = ΩN ∀t.13

11 For the sake of simplicity, we use a homoskedastic model with constant variance across all time
periods. This restriction can be readily relaxed. Similarly, the assumption of isotropy (only distance
matters, not direction) may be relaxed by including separate functions to account for directional
effects.
12 In the notation that follows, we use the subscripts T , N and NT to refer to the dimension of the
matrix, and the subscript t to refer to the cross-section at time t.
13 Note that this simplification only holds in the strictly homogeneous case with σ2

t = σ2 ∀t.
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19.2.3.2 Spatial Error Processes

Whereas the direct representation approach requires a distance metric and functional
form for the distance decay between a pair of observations, spatial error processes
are based on a formal relation between a location and its neighbors, using a spatial
weights matrix. The error covariance structure can then be derived for each specified
process, but typically the range of neighbors specified in the model is different from
the range of spatial dependence in the covariance matrix. This important aspect is
sometimes overlooked in empirical applications.

In analogy to time series analysis, the two most commonly used models for spa-
tial processes are the autoregressive and the moving average (for extensive technical
discussion, see Anselin, 1988a; Anselin and Bera, 1998; Anselin, 2003, and the ref-
erences cited therein).

A spatial autoregressive (SAR) specification for the N × 1 error vector εt in
period t = 1, . . . ,T , can be expressed as:

εt = θWNεt +ut ,

where WN is a N ×N spatial weights matrix (with the subscript indicating the
dimension), θ is the spatial autoregressive parameter, and ut is a N×1 idiosyncratic
error vector, assumed to be distributed independently across the cross-sectional di-
mension, with constant variance σ2

u .
Continuing in matrix notation for the cross-section at time t, it follows that:

εt = (IN−θWN)−1 ut ,

and hence the error covariance matrix for the cross-section at time t becomes:

Ωt,N = E[εtε ′t ] = σ2
u (IN−θWN)−1 (IN −θW ′

N

)−1
,

or, in a simpler notation, with BN = IN−θWN :

Ωt,N = σ2
u (B′NBN)−1 .

As before, in this homogeneous case, the cross-sectional covariance does not
vary over time, so that the full NT ×NT covariance matrix follows as:

ΣNT = σ2
u

[
IT ⊗ (B′NBN)−1] . (19.9)

Note that for a row-standardized weights matrix, BN will not be symmetric. Also,
even though WN may be sparse, the inverse term (B′NBN)−1 will not be sparse and
suggests a much wider range of spatial covariance than specified by the non-zero
elements of the weights matrix. In other words, the spatial covariance structure in-
duced by the SAR model is global.

A spatial moving average (SMA) specification for the N× 1 error vector εt in
period t = 1, . . . ,T , can be expressed as:



634 L. Anselin et al.

εt = γWNut +ut ,

where γ is the moving average parameter, and the other notation is as before. In
contrast to the SAR model, the variance covariance matrix for an error SMA process
does not involve a matrix inverse:

Ωt,N = E[εtε ′t ] = σ2
u

[
IN + γ(WN +W ′

N)+ γ2WNW ′
N

]
, (19.10)

and, in the homogenous case, the overall error covariance matrix follows
directly as:

ΣNT = σ2
u

(
IT ⊗

[
IN + γ(WN +W ′

N)+ γ2WNW ′
N

])
.

Aso, in contrast to the SAR model, the spatial covariance induced by the SMA
model is local.14

19.2.3.3 Spatial Error Components

A spatial error components specification (SEC) was suggested by Kelejian and
Robinson as an alternative to the SAR and SMA models (Kelejian and Robinson,
1995; Anselin and Moreno, 2003). In the SEC model, the error term is decomposed
into a local and a spillover effect.

In a panel data setting, the N×1 error vector εt for each time period t = 1, . . . ,T ,
is expressed as:

εt = WNΨt +ξt , (19.11)

where WN is the weights matrix, ξt is a N × 1 vector of local error components,
and ψt is a N×1 vector of spillover error components. The two component vectors
are assumed to consist of i.i.d terms, with respective variances σ2

ψ and σ2
ξ , and are

uncorrelated, E[ψitξ jt ] = 0, ∀ i, j, t.
The resulting N × N cross-sectional error covariance matrix is then, for t =

1, . . . ,T :

Ωt,N = E[εtε ′t ] = σ2
ψWNW ′

N +σ2
ξ IN . (19.12)

In the homogeneous model, this is again unchanging across time periods, and the
overall NT ×NT error covariance matrix can be expressed as:

14 For example, with WN specified as first order contiguity, the spatial covariance in (19.10) only
includes first and second order neighbors.
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ΣNT = σ2
ξ INT +σ2

ψ(IT ⊗WNW ′
N) .

Comparing (19.10 and 19.12), it can be readily seen that the range of covariance
induced by the SEC model is a subset that of the SMA model, and hence also a case
of local spatial externalities.

19.2.3.4 Common Factor Models

In the standard two-way error component regression model, each observational unit
contains an unobserved error component due to individual heterogeneity and one
due to a time period effect, in addition to the usual idiosyncratic error term (e.g.,
Baltagi, 2001, p. 31). In our notation:

εit = μi +λt +uit ,

with μi as the cross-sectional component, with variance σ2
μ , λt as the time com-

ponent, with variance σ2
λ , and uit as an idiosyncratic error term, assumed to be i.i.d

with variance σ2
u . The three random components are assumed to be zero mean and to

be uncorrelated with each other. The random components μi are assumed to be un-
correlated across cross-sectional units, and the components λt are assumed to be un-
correlated across time periods. This model is standard, except that for our purposes,
the data are stacked as cross-sections for different time periods. Consequently, the
N×1 cross-sectional error vector εt for time period t = 1, . . . ,T , becomes:

εt = μ +λt ιN +ut , (19.13)

where μ is a N×1 vector of cross-sectional error components μi, λt is a scalar time
component, ιN is a N× 1 vector of ones, and ut is a N× 1 vector of idiosyncratic
errors.

The structure in (19.13) results in a particular form of cross-sectional (spatial)
correlation, due to the common time component:

E[εtε ′t ] = σ2
μ IN +σ2

λ ιNι ′N +σ2
u IN ,

where the subscript N indicates the dimension of the identity matrices. Note that
the second term in this expression indicates equicorrelation in the cross-sectional
dimension, i.e., the correlation between two cross-sectional units i, j equals σ2

λ , no
matter how far these units are apart. While perfectly valid as a model for general
(global) cross-sectional correlation, this violates the distance decay effect that un-
derlies spatial interaction theory.

The complete NT × 1 error vector can be written as (see also Anselin, 1988a,
p. 153):

ε = (ιT ⊗ IN)μ +(IT ⊗ ιN)λ +u ,
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where the subscripts indicate the dimensions, λ is a T ×1 vector of time error com-
ponents, u is a NT × 1 vector of idiosyncratic errors, and the other notation is as
before. The overal error variance covariance matrix then follows as:

ΣNT = σ2
μ(ιT ι ′T ⊗ IN)+σ2

λ (IT ⊗ ιNι ′N)+σ2
u INT .

Note the how the order of matrices in the Kronecker products differs from the stan-
dard textbook notation, due to the stacking by cross-section.

A recent extension of the error component model can be found in the literature
on heterogeneous panels. Here, the time component is generalized and expressed in
the form of an unobserved common effect or factor ft to which all cross-sectional
units are exposed. However, unlike the standard error component model, each cross-
sectional unit has a distinct factor loading on this factor. The simplest form is the
so-called one factor structure, where the error term is specified as:

εit = δi ft +uit ,

with δi as the cross-sectional-specific loading on factor ft , and uit as an i.i.d zero
mean error term. Consequently, cross-sectional (spatial) covariance between the
errors at i and j follows from the the inclusion of the common factor ft in both
error terms:

E[εitε jt ] = δiδ jσ2
f .

The common factor model has been extended to include multiple factors. In these
specifications, a wide range of covariance structures can be expressed by including
sufficient factors and through cross-sectional differences among the factor loadings
(for further details, see Driscoll and Kraay, 1998; Pesaran, 2002; and Hsiao and
Pesaran, 2008).

19.3 A Taxonomy of Spatial Panel Model Specifications

So far, we have considered the introduction of spatial effects for panel data in the
form of spatial lag or spatial error models under extreme homogeneity. The point of
departure was the pooled specification, (19.1), and lag and error models are obtained
as outlined in Sects. 19.2.2 and 19.2.3. We now extend this taxonomy by introducing
heterogeneity, both over time and across space, as well as by considering joint space-
time dependence.

It should be noted that a large number of combinations of space-time hetero-
geneity and dependence are possible, although many of those suffer from identifi-
cation problems and/or are not estimable in practice. In our classification here, we
purposely limit the discussion to models that have seen some empirical applica-
tions (other, more extensive typologies can be found in Anselin, 1988a, Chap. 4;
Anselin, 2001b; Elhorst, 2001, 2003).



19 Spatial Panel Econometrics 637

19.3.1 Temporal Heterogeneity

19.3.1.1 General Case

Temporal heterogeneity is introduced in the familiar way in fixed effects models,
by allowing time-specific intercepts and/or slopes, and in random effects models,
by incorporating a random time component or factor (see Sect. 19.2.3.4). The ad-
dition of a spatially lagged dependent variable or spatially correlated error term in
these models is straightforward. For example, consider a pooled model with time-
specific intercept and slope coefficient to which a spatially autoregressive error term
is added. The cross-section in each period t = 1, . . . ,T , is:

yt = αt +Xtβt + εt , (19.14)

with

εt = θtWNεt +ut

where θt is a period-specific spatial autoregressive parameter, αt is the period-
specific intercept and βt a (K − 1)× 1 vector of period-specific slopes. Since T
is fixed (and the asymptotics are based on N → ∞), this model is a straightforward
replication of T cross-sectional models. A spatial lag specification is obtained in a
similar way.

19.3.1.2 Spatial Seemingly Unrelated Regressions

A generalization of the fixed effects model that has received some attention in the
empirical literature (e.g., Rey and Montouri, 1999) allows the cross-sectional error
terms εt to be correlated over time periods. This imposes very little structure on the
form of the temporal dependence and is the spatial counterpart of the classic SURE
model. It is referred to as the spatial SUR model (see Anselin, 1988a, Chap. 10;
and Anselin, 1988b). In matrix form, the equation for the cross-sectional regression
in each time period t = 1, . . . ,T , is as in (19.14), but now with the constant term
included in the vector βt :

yt = Xtβt + εt , (19.15)

with the cross-equation (temporal) correlation in general form, as:

E[εtε ′s] = σtsIN ,s �= t ,

where σts is the temporal covariance between s and t (by convention, the variance
terms are expressed as σ2

t ). In stacked form (T cross-sections), the model is:

y = Xβ + ε, (19.16)

with
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E[εε ′] = ΣT ⊗ IN (19.17)

and ΣT is the T ×T temporal covariance matrix with elements σts.
Spatial correlation can be introduced as a spatial lag specification or a spatial

error specification. Consider the spatial lag model first (see Anselin, 1988a for de-
tails). In each cross-section (with t = 1, . . . ,T ), the standard spatial lag specification
holds, but now with a time-specific spatial autoregressive coefficient ρt :

yt = ρtWNyt +Xtβt + εt .

To consider the full system, let β be a T K× 1 vector of the stacked time-specific
βt , for t = 1, . . . ,T .15 The corresponding NT ×KT matrix X of observations on the
explanatory variables then takes the form:

X =

⎛

⎜
⎜
⎝

X1 0 . . . 0
0 X2 . . . 0
. . . . . . . . . . . .
0 0 . . . XT

⎞

⎟
⎟
⎠ . (19.18)

Also, let the spatial autoregressive coefficients be grouped in a T ×T diagonal ma-
trix RT , as:

RT =

⎛

⎜
⎜
⎝

ρ1 0 . . . 0
0 ρ2 . . . 0
. . . . . . . . . . . .
0 0 . . . ρT

⎞

⎟
⎟
⎠ .

The full system can then be expressed concisely as:

y = (RT ⊗WN)y+Xβ + ε, (19.19)

with the error covariance matrix as in (19.17).
In empirical practice, besides the standard hypothesis tests on diagonality of the

error covariance matrix and stability of the regression coefficients over time, interest
in the spatial lag SUR model will center on testing the hypothesis of homogeneity
of the spatial autoregressive coefficients, or, H0 : ρ1 = ρ2 = . . . = ρT = ρ . If this null
hypothesis can be maintained, a simplified model can be implemented:

y = ρ(IT ⊗WN)y+Xβ + ε .

Spatial error autocorrelation can be introduced in the spatial SUR model in the
form of a SAR or SMA process for the error terms (see Anselin, 1988a, Chap. 10).
For example, consider the following SAR error process for the cross-section in each
time period t = 1, . . . ,T :

εt = θtWNεt +ut . (19.20)

15 We are assuming the same number of explanatory variables (K) in each equation, but this can
be readily generalized to allow the number of explanatory variables to vary by time period.
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The cross-equation covariance is introduced through the remainder error term ut ,
for which it is assumed that E[ut ] = 0, E[utu′t ] = σ2

t IN , and E[utu′s] = σtsIN , for t �= s.
As a result, the covariance matrix for the stacked NT ×1 error vector u becomes the
counterpart of (19.17):

E[uu′] = ΣT ⊗ IN ,

with, as before, ΣT as a T ×T matrix with elements σts.
The SAR error process in (19.20) can also be written as:

εt = (IN −θtWN)−1 ut ,

or, using the simplifying notation Bt,N = (IN−θtWN), as:

εt = B−1
t,Nut .

The overall cross-equation covariance between error vectors εt and εs then becomes:

E[εtε ′s] = B−1
t,N E[utu

′
s]B

−1′
s,N = σts B−1

t,N B−1′
s,N ,

which illustrates how the simple SUR structure induces space-time covariance as
well (the B−1

t,N matrices are not diagonal).
In stacked form, the error process for the NT ×1 error vector ε can be written as:

ε = B−1
NT u ,

with BNT as the matrix:

BNT = [INT − (ΘT ⊗WN)], (19.21)

and ΘT as a T ×T diagonal matrix containing the spatial autoregressive coefficients
θt , t = 1, . . . ,T . The overall error covariance matrix for the stacked equations then
becomes:

E[εε ′] = B−1
NT (ΣT ⊗ IN)B−1′

NT . (19.22)

As in the spatial lag SUR model, specific interest in the spatial error SUR model
centers on the homogeneity of the spatial autoregressive parameters, H0 : θ1 = θ2 =
. . . = θT = θ . If the homogeneity holds, the expression for BNT (19.21) simplifies to:

BNT = [IT ⊗ (IN−θWN)] .

19.3.2 Spatial Heterogeneity

We limit our attention in the treatment of spatial heterogeneity to models with unob-
served heterogeneity, specified in the usual manner as either fixed effects or random
effects. Both have been extended with spatial lag and spatial error specifications.
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19.3.2.1 Fixed Effects Models

The classic fixed effects model (e.g., Baltagi, 2001, pp. 12–15; and Arellano, 2003,
pp. 11–18) includes an individual specific “dummy variable” to capture unobserved
heterogeneity. For each observation i, t this yields, keeping the same notation as
before:

yi,t = αi + xitβ + εit

for i = 1, . . . ,N, t = 1, . . . ,T , and with an additional constraint of the form ∑i αi = 0,
such that the individual effects αi are separately identifiable from the constant term
in β .

As is well known, consistent estimation of the individual fixed effects is not pos-
sible when N → ∞, due to the incidental parameter problem. Since spatial models
rely on the asymptotics in the cross-sectional dimension to obtain consistency and
asymptotic normality of estimators, this would preclude the fixed effects model from
being extended with a spatial lag or spatial error term (Anselin, 2001b).

Nevertheless, it has been argued that when the interest is primarily in obtaining
consistent estimates for the β coefficients, the use of demeaned spatial regression
models may be appropriate, for example, using the standard maximum likelihood
estimation expressions (Elhorst, 2003, p. 250–251).

There are a number of aspects of this approach that warrant closer attention. One
is that the demeaning operator takes on a different form from the usual expression in
the literature, since the observations are stacked as cross-sections for different time
periods. Also, the demeaned models no longer contain a constant term, which may
be incompatible with assumptions made by standard spatial econometric software.
More importantly, the variance covariance matrix of the demeaned error terms is no
longer σ2

ε I, but becomes σ2
ε Q, where Q is the demeaning operator (this aspect is

ignored in the likelihood functions presented in Elhorst, 2003, p. 250).
To illustrate these points, consider a fixed effects spatial lag model in stacked

form, using the same setup as in (19.5), with the addition of the fixed effects:

y = ρ(IT ⊗WN)y+(ιT ⊗α)+Xβ + ε, (19.23)

where α is a N × 1 vector of individual fixed effects, with the constraint that
α ′ιN = 0, and, as before, E[εε ′] = σ2

ε INT . Note the difference with the classic
formulation in the Kronecker product for the fixed effects, due to the stacking of
cross-sections, rather than individual time series.

The demeaned form of (19.23) is obtained by substracting the average for
each cross-sectional unit computed over the time dimension, which wipes out
the individual fixed effects (as well as the constant term). Formally, this can be
expressed as:

QNT y = ρ(IT ⊗WN)QNT y+QNT Xβ +QNT ε, (19.24)

where QNT is the demeaning operator (and QNT X and β no longer contain a constant
term). The demeaning operator is a NT ×NT matrix that takes the form:
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QNT = INT − (ιT ι ′T /T ⊗ IN)

with, as before, ι as a vector of ones and the subscripts denoting the dimension of
vectors and matrices. Again, note the difference with the standard textbook notation,
due to stacking by cross-section. The matrix QNT is idempotent, and, as a result, the
variance of the error in (19.24) becomes:

E[εε ′] = σ2
ε QNT ,

where QNT is singular. Consequently, |QNT |= 0 and the regular inverse of the matrix
QNT does not exist. In the non-spatial case, this problem disappears because of the
properties of the generalized inverse Q− (see, e.g., Hsiao, 1986, p. 222). In the
absence of spatial variables, the regression in demeaned X and y can be treated as
a special case of GLS estimation, with Q− as the generalized inverse, such that
QQ−Q = Q. As a result β̂ = (X ′Q′Q−QX)−1X ′Q′Q−Qy = (X ′QX)−1X ′Qy, which
no longer involves the generalized inverse in the actual calculations.

However, the log-likelihood for the spatial lag model with demeaned variables is
based on the multivariate normality of the error term ε . In this case, the singularity
of QNT constitutes a problem since the (joint unconditional) likelihood becomes
degenerate.16 In the non-spatial literature on dynamic panels with individual fixed
effects, this problem is avoided by considering a transformed likelihood function
based on first differences of the variables (see Hsiao et al., 2002). The extension of
this idea to spatial models remains to be considered.

A likelihood approach to the spatial error model faces a similar complication.

19.3.2.2 Random Effects Models

In the random effects approach to modeling unobserved heterogeneity, interest has
centered on incorporating spatial error correlation into the regression error term,
in addition to the standard cross-sectional random component. Note that the lat-
ter induces serial correlation over time (of the equi-correlated type). Here, we fo-
cus attention on the one-way error component specification (e.g, Baltagi, 2001,
pp. 15–20; Arellano, 2003, Chap. 3).17

In contrast to the fixed effects case, asymptotics along the cross-sectional dimen-
sion (with N → ∞) present no problem for random effects models. The standard
specification of the error term in this model, is, for each i, t:

εit = μi +νit ,

16 In Elhorst, 2003 (p. 250), the log-likelihood uses σ2I as the error variance, not σ2QNT .
17 Explicit space-time dependence is treated in Sect. 19.3.3.
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where μi � IID(0,σ2
μ) is the cross-sectional random component, and νit � IID(0,σ2

ν )
is an idiosyncratic error term, with μi and νit independent from each other. In each
cross-section, for t = 1, . . . ,T , the N×1 error vector εt becomes:

εt = μ +νt , (19.25)

where μ is a N×1 vector of cross-sectional random components.
Spatial error autocorrelation can be introduced into this expression in a number

of different ways. A first approach follows the analogue from the time domain and
specifies a SAR process for the error component νt , for t = 1, . . . ,T (Anselin, 1988a,
p. 153; and, more recently, Baltagi et al., 2003):

νt = θWNνt +ut , (19.26)

with θ as the spatial autoregressive parameter (constant over time), WN as the spatial
weights matrix, and ut as an i.i.d idiosyncratic error term with variance σ2

u .
Using the notation BN = IN −θWN , we obtain the familiar result:

νt = (IN−θWN)−1ut = B−1
N ut .

This illustrates how the spatial autocorrelation pertains to a cross-section in each
time period (the error vector ut ) separately. In stacked form, the NT ×1 error term
then becomes:

ε = (ιT ⊗ IN)μ +(IT ⊗B−1
N )u, (19.27)

where u � IID(0,σ2
u INT ) is a NT ×1 vector of idiosyncratic errors. The correspond-

ing variance–covariance matrix for ε follows as:

ΣNT = E[εε ′] = σ2
μ(ιT ι ′T ⊗ IN)+σ2

u [IT ⊗ (B′NBN)−1] . (19.28)

Note that the first component induces correlation in the time dimension, but not in
the cross-sectional dimension, whereas the opposite holds for the second component
(correlation only in the cross-sectional dimension).

A second specification for spatial correlation in this model applies the SAR pro-
cess first and the error components specification to its remainder error (Kapoor
et al., 2007). Consider a SAR process for the NT ×1 error vector ε:

ε = θ(IT ⊗WN)ε +ν ,

or, using similar notation as the spatially correlated component in (19.27):

ε = (IT ⊗B−1
N )ν .

Now, the innovation vector ν is specified as a one way error component model
(Kapoor et al., 2007):

ν = (ιT ⊗ IN)μ +u ,
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with μ as the N × 1 vector of cross-sectional random components, and
u � IID(0,σ2

u INT ). In stacked form, the full error vector follows as:

ε = (IT ⊗B−1)[(ιT ⊗ IN)μ +u] .

The corresponding error variance covariance matrix is:

ΣNT = E[εε ′] = (IT ⊗B−1
N )[σ2

μ(ιT ι ′T ⊗ IN)+σ2
u INT ](IT ⊗B−1′

N ). (19.29)

Again, this model combines both time-wise as well as cross-sectional correlation,
with the latter pertaining to both the time specific error ut as well as the time invari-
ant error component μ .

Recently, an encompassing specification was suggested (Baltagi et al., 2006) that
includes both forms as special cases and provides a useful starting point for a wide
range of specification tests. In this model, an explicit distinction is made between
permanent and time variant spatial correlation. The former introduces a spatial au-
toregressive process for the N×1 error component μ :

μ = θ1WN μ +u1 ,

or, with A = IN − θ1WN , μ = A−1u1, where u1 is a N× 1 vector of time invariant
idiosyncratic errors with variance σ2

u1.
Time variant spatial correlation is included as a spatial autoregressive process for

each time-specific error vector νt , as:

νt = θ2WNνt +u2t ,

or, with B = IN −θ2WN , νt = B−1u2t , where u2t is a N× 1 vector of time invariant
idiosyncratic errors with variance σ2

u2.
The stacked error term then follows as:

ε = (ιT ⊗ IN)A−1u1 +(IT ⊗B−1)u2 ,

and u2 consists of the stacked u2t .
The corresponding error variance–covariance matrix follows as:

Σ = σ2
u1[ιT ι ′T ⊗ (A′A)−1]+σ2

u2[IT ⊗ (B′B)−1] .

The first element in this expression contains both time and spatial correlation,
whereas the second term only contains spatial correlation.

The two earlier specifications are found by imposing parameter constraints on the
encompassing form. More precisely, for θ1 = 0, the first model is obtained, and for
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θ1 = θ2, the second model follows. When both θ1 = θ2 = 0, the standard non-spatial
random effects model is obtained.

Statistical inference for error components models with spatial SAR processes can
be carried out as a special case of models with non-spherical error covariance. This
is addressed in Sects. 19.4 and 19.5.

19.3.3 Spatio-Temporal Models

The incorporation of dependence in both time and space dimensions in an econo-
metric specification adds an additional order of difficulty to the identification of the
NT×(NT−1)/2 elements of the variance covariance matrix. An important concept
in this regard is the notion of separability. Separability requires that a NT ×NT
space-time covariance matrix ΣNT can be decomposed into a component due to
space and a component due to time (see, e.g., Mardia and Goodall, 1993), or:

ΣNT = ΣT ⊗ΣN ,

where ΣT is a T × T variance covariance matrix for the time-wise dependence
and ΣN is a N ×N variance covariance matrix for the spatial dependence.18 This
ensures that the space-time dependence declines in a multiplicative fashion over
the two dimensions. It also addresses a central difficulty in space-time modeling,
i.e., the lack of a common “distance” metric that works both in the cross-sectional
and the time dimension. The approach taken in spatial panel econometrics is to
define “neighbors” in space by means of a spatial weights matrix and “neighbors”
in time by means of the customary time lags. However, the speed of the dynamic
space-time process may not be compatible with these choices, leading to further
misspecification.

19.3.3.1 Model Taxonomy

Ignoring for now any space-time dependence in the error terms, we can distinguish
four basic forms to introduce correlation in both space and time in panel data mod-
els (following Anselin, 2001b, p. 317–318). As before, we focus on models where
N � T and do not consider specifications where the time dimension is an important
aspect of the model.19 To facilitate exposition, we express these models for a N×1
cross-section at time t = 1, . . . ,T .

18 The notion of separable stationary spatio-temporal processes originates in the geostatistical lit-
erature, but can be readily applied to the current framework. Extension to non-separable structures
have been suggested in the recent literature (e.g., Cressie and Huang, 1999).
19 In the statistical literature, specifications of space-time dependence are often conceptualized as
hierarchical or multilevel models. This is beyond the scope of our current review (see, for example,
Waller et al., 1997a, b; Wikle et al., 1998; Banerjee et al., 2004, and the extensive set of references
therein).
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Pure space recursive models, in which the dependence pertains only to
neighboring locations in a previous period:

yt = γWNyt−1 +Xtβ + εt , (19.30)

with γ as the space-time autoregressive parameter, and WNyt−1 as a N × 1 vector
of observations on the spatially lagged dependent variable at t − 1. Note that this
can be readily extended with time and spatial lags of the explanatory variables,
Xt−1 or WNXt . However, since WNyt−1 already includes WNXt−1, adding a term of
this form would create identification problems. This is sometimes overlooked in
other taxonomies of dynamic space-time models (e.g., in the work of Elhorst, 2001,
p. 121, where space-time lags for both the dependent and the exploratory variables
are included in the specification).

Consider the space-time multiplier more closely. Start by substituting the equa-
tion for yt−1 in (19.30), which yields:

yt = γWN [γWNyt−2 +Xt−1β + εt−1]+Xtβ + εt ,

or,
yt = γ2W 2

Nyt−2 +Xtβ + γWNXt−1β + εt + γWNεt−1 .

Successive substitution reveals a space-time multiplier that follows from a series
of consecutively higher orders of both spatial and time lags applied to the X (and
error terms). Also, since the spatial dependence takes one period to manifest itself,
this specification becomes quite suitable to study spatial diffusion phenomena (see
the early discussion in Upton and Fingleton, 1985; and Dubin, 1995).

Time-space recursive models, in which the dependence relates to both the loca-
tion itself as well as its neighbors in the previous period:

yt = φyt−1 + γWNyt−1 +Xtβ + εt , (19.31)

with φ as the serial (time) autoregressive parameter, operating on the cross-section
of dependent variables at t−1. Spatially lagged contemporaneous explanatory vari-
ables (WNXt ) may be included as well, but time lagged explanatory variables will
result in identification problems. This model has particular appeal in space-time
forecasting (e.g., Giacomini and Granger, 2004).

Again, the nature of the space-time multiplier can be assessed by substituting the
explicit form for the spatially and time lagged terms:

yt = φ [φyt−2 + γWNyt−2 +Xt−1β + εt−1]
+γWN [φyt−2 + γWNyt−2 +Xt−1β + εt−1]
+Xtβ + εt ,

or,
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yt = (φ 2 +2φγWN + γ2W 2
N)yt−2

+Xtβ +(φ + γWN)Xt−1β
+εt +(φ + γWN)εt−1 ,

revealing a much more complex form for the effect of space-time lagged explanatory
variables (and errors), including the location itself as well as its neighbors.

Time-space simultaneous models, which include a time lag for the location itself
together with a contemporaneous spatial lag:

yt = φyt−1 +ρWNyt +Xtβ + εt ,

with ρ as the (contemporaneous) spatial autoregressive parameter.
The mulitplier in this model is complex, due to the combined effect of the

cross-sectional spatial multiplier (in each period) and the space-time multiplier that
follows from the time lag in the dependent variable. First, consider the pure cross-
sectional multiplier:

yt = (IN−ρWN)−1[φyt−1 +Xtβ + εt ] .

Next, substitute the corresponding expression for yt−1:

yt = (IN−ρWN)−1[φ [(IN−ρWN)−1(φyt−2

+Xt−1β + εt−1)]+Xtβ + εt ] ,

which yields:

yt = φ 2(IN−ρWN)−2yt−2

+(IN−ρWN)−1Xtβ +φ(IN−ρWN)−2Xt−1β

+(IN−ρWN)−1εt +φ(IN−ρWN)−2εt−1 .

From this it follows that the inclusion of any spatially lagged X in the original spec-
ification will lead to identification problems.

Time-space dynamic models, where all three forms of lags for the dependent
variable are included:

yt = φyt−1 +ρWNyt + γWNyt−1 +Xtβ + εt .

While this model is sometimes suggested as a general space-time specification, it
results in complex nonlinear constraints on the parameters, and, in practice, of-
ten suffers from identification problems. For example, focusing only on the time
lagged terms and substituting their expression for t − 1 (and rearranging terms)
yields:
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yt = φ [φyt−2 +ρWNyt−1 + γWNyt−2 +Xt−1β + εt−1]

+γWN [φyt−2 +ρWNyt−1 + γWNyt−2 +Xt−1β + εt−1]

+ρWNyt +Xtβ + εt ,

or, grouping by time period:

yt = ρWNyt +Xtβ + εt

+φρWNyt−1 + γρW 2
Nyt−1 +φXt−1β + γWNXt−1β

+φεt−1 + γWNεt−1

+φ 2yt−2 + γφWNyt−2 + γ2W 2
Nyt−2 .

The same types of space-time dependence processes can also be specified for the
error terms in panel data models (e.g., Fazekas et al., 1994). However, combinations
of both spatially lagged dependent variables and spatially lagged error terms may
lead to identification problems unless the parameters of the explanatory variables
are non-zero. An alternative form of error space-time dependence takes the error
components approach, to which we turn briefly.

19.3.3.2 Error Components with Space-Time Dependence

The starting point for including explicit serial dependence (in addition to the
equicorrelated form) in random effects models is the spatially autocorrelated form
considered in (19.25–19.26). However, instead of the indiosyncratic error ut in
19.26, a serially correlated term ζt is introduced (Baltagi et al., 2007):

νt = θWNνt +ζt (19.32)

with
ζt = φζt−1 +ut , (19.33)

where, as before, ut is used to denote the idiosyncratic error, and t = 1, . . . ,T . The
counterpart of the N×1 cross-sectional error vector εt in (19.27) becomes:

εt = (IN−θWN)−1ζt = B−1
N ζt ,

with ζ replacing the original error u. In stacked form, this becomes:

ε = (ιT ⊗ IN)μ +(IT ⊗B−1
N )ζ ,

with μ of dimension N × 1 and both ε and ζ of dimension NT × 1. The serial
correlation in ζ will yield serial covariances of the familiar AR(1) form, with:

E[ζi,tζi,t−k] = σ2
u

(
φ k

1−φ 2

)
,
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for k = 0, . . . ,T − 1, and i = 1, . . . ,N, where σ2
u is the variance of the error term

u. Grouping these serial covariances into a T × T variance covariance matrix ΩT

yields the overall variance covariance matrix for ε as (Baltagi et al., 2007):

ΣNT = E[εε ′] = σ2
μ(ιT ι ′T ⊗ IN)+ [ΩT ⊗ (B′NBN)−1] .

19.4 Estimation of Spatial Panel Models

The estimation of panel data models that include spatially lagged dependent vari-
ables and/or spatially correlated error terms follows as a direct extension of the
theory developed for the single cross-section. In the first case, the endogeneity of
the spatial lag must be dealt with, in the second, the non-spherical nature of the
error variance covariance matrix must be accounted for. Two main approaches have
been suggested in the literature, one based on the maximum likelihood principle,
the other on method of moments techniques. We consider each in turn.

We limit our attention to models with a parameterized form for the spatial depen-
dence, specified as a spatial autoregressive process.20 Note that some recent results
in the panel econometrics literature have also addressed estimation in models with
general, unspecified cross-sectional correlation (see, e.g., Driscoll and Kraay, 1998;
Coakley et al., 2002; Pesaran, 2002).

19.4.1 Maximum Likelihood Estimation

The theoretical framework for maximum likelihood estimation of spatial models
in the single cross-section setup is by now well developed (see, among others,
Ord, 1975; Mardia and Marshall, 1984; Anselin, 1988a; Cressie, 1993; Anselin and
Bera, 1998). While the regularity conditions are non-standard, and require a consid-
eration of triangular arrays (Kelejian and Prucha, 1999), the results for error terms
with a Gaussian distribution are fairly well established.

In practice, estimation consists of applying a non-linear optimization to the log-
likelihood function, which (in most circumstances) yields a consistent estimator
from the numerical solution to the first order conditions. Asymptotic inference is
based on asymptotic normality, with the asymptotic variance matrix derived from
the information matrix. This requires the second order partial derivatives of the log-
likelihood, for which analytical solutions exist in many of the models considered
(for technical details, see the review in Anselin and Bera, 1998).

A main obstacle in the practical implementation of ML estimation in a single
cross-section is the need to compute a Jacobian determinant for an N-dimensional
matrix (the dimension of the cross-section). In panel data models, this Jacobian is

20 Models with other forms for the error dependence have seen limited attention in a panel data
context and are not considered here.
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of dimension N×T , but it can often be simplified to a product of T N-dimensional
determinants. The classic solution to this problem is to decompose the Jacobian in
terms of the eigenvalues of the spatial weights matrix. For example, in the spatial lag
model, the Jacobian would be |IN −ρWN | = ∏i(1−ρωi), with ωi as the eigenval-
ues of WN (Ord, 1975).21 For large cross-sections, the computation of the eigenval-
ues becomes numerically unstable, precluding this method from being applicable.
Alternative solutions avoid the computation of the Jacobian determinant, but instead
approximate it by a polynomial function or by means of simulation methods (Barry
and Pace, 1999). Other methods are based on Cholesky or LU decomposition meth-
ods that exploit the sparsity of the spatial weights (Pace and Barry, 1997), or use a
characteristic polynomial approach (Smirnov and Anselin, 2001).

We now briefly review a number of useful log-likelihood expressions that result
when incorporating spatial lag or spatial error terms in panel data settings. Numeri-
cal procedures to carry out estimation and inference can be implemented along the
same lines as for the single cross-section, and will not be further elaborated.

19.4.1.1 Spatial Lag Models

As a point of departure, consider the pooled spatial lag model given in (19.5).
Assuming a Gaussian distribution for the error term, with ε � N(0,σ2

ε INT ), the log-
likelihood (ignoring the constants) follows as:

L = ln |IT ⊗ (IN−ρWN)|− NT
2

lnσ2
ε −

1
2σ2

ε
ε ′ε ,

with ε = y−ρ(IT ⊗WN)y−Xβ , and |IT ⊗ (IN−ρWN)| as the Jacobian determinant
of the spatial transformation. Given the block diagonal structure of the Jacobian, the
log-likelihood further simplifies to:

L = T ln |IN−ρWN |−
NT
2

lnσ2
ε −

1
2σ2

ε
ε ′ε, (19.34)

which boils down to a repetition of the standard cross-sectional model in T cross-
sections.

Generalizing this model slightly, we now assume ε � N(0,Σ) to allow for
more complex error covariance structures (including spatial correlation). The log-
likelihood remains essentially the same, except for the new error covariance term:

L = T ln |IN−ρWN |−
1
2

ln |Σ |− 1
2

ε ′Σ−1ε. (19.35)

21 In practice, the log Jacobian is used, with ln |IN −ρWN |= ∑i ln(1−ρωi).
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Two special cases result by introducing some structure into the variance covari-
ance matrix Σ . First, consider the classic one-way error components model from
(19.25), which, in stacked form, becomes (again, using cross-sections for T time
periods and assuming a Gaussian distribution for ε):

ε = (ιT ⊗ IN)μ +u .

The error covariance matrix follows as:

ΣNT = E[εε ′] = σ2
μ(ιT ι ′T ⊗ IN)+σ2

u INT . (19.36)

Using standard results, the inverse and determinant of this NT ×NT matrix can
be expressed in terms of matrix determinants and inverses of orders N and T only.
Inserting (19.36 into 19.35) yields the log-likelihood for the spatial lag model with
error components as:

L = T ln |IN−ρWN |− 1
2 ln |σ2

μ(ιT ι ′T ⊗ IN)+σ2
u INT |

− 1
2 ε ′
[
σ2

μ(ιT ι ′T ⊗ IN)+σ2
u INT

]−1 ε .

A second specification of interest is the SUR model that includes a spatial lag term,
(19.19). Its log-likelihood can be obtained in a similar fashion. Using the same no-
tation and stacking of observation matrices and parameters as in (19.18–19.19), the
log Jacobian follows as ln |INT − (RT ⊗WN)|. The block diagonal structure of the
matrix can be exploited to simplify this expression to ∑t ln |IN − ρtWN | (with the
sum over t = 1, . . . ,T ). Using (19.17) for the error variance covariance matrix in the
SUR model, the log-likelihood follows as:

L = ∑
t

ln |IN −ρtWN |−
N
2

ln |ΣT |−
1
2

ε ′
(
Σ−1

T ⊗ IN
)

ε ,

with ε = [INT − (RT ⊗WN)]y − Xβ (for further details, see Anselin, 1988a,
pp. 145–146).

19.4.1.2 Spatial Error Models

The log-likelihood functions for the various spatial error models considered in
this chapter follow directly as special cases of the standard result for maximum
likelihood estimation with a non-spherical error covariance (Magnus, 1978). With
ε � N(0,Σ) as the error vector, the familiar expression for the log-likelihood is
(ignoring the constant terms):

L =−1
2

ln |Σ |− 1
2

ε ′Σ−1ε .
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In the pooled model with SAR error terms, (19.9), the relevant determinant and
inverse matrix are:

|IT ⊗ (B′NBN)−1|= |BN |−2T

with BN as in (19.9), and:

Σ−1
NT =

1
σ2

u
[IT ⊗ (B′NBN)] .

The corresponding log-likelihood function is then:

L = −NT
2

lnσ2
u +T ln |BN |

− 1
2σ2

u
ε ′[IT ⊗ (B′NBN)]ε ,

with ε = y−Xβ . The estimates for the regression coefficient β are the result of a
spatial FGLS, using a consistent estimator for θ :

β̂ = [X ′(IT ⊗B′NBN)X ]−1X ′(IT ⊗B′NBN)y. (19.37)

Exploiting the block diagonal nature of B′NBN , this is equivalent to a regression
of the stacked spatially filtered dependent variables, (IN − θWN)yt on the spatially
filtered explanatory variables (IN −θWN)Xt , as a direct generalization of the single
cross-section case.

Two special cases are of particular interest. One is the random effects model
with spatial error correlation. Its error variance covariance matrix, (19.28), can
be simplified in order to facilitate the computation of the determinant and in-
verse term needed in the log-likelihood. Set η = σ2

μ/σ2
u , such that ΣNT = σ2

u ΨNT ,
with:

ΨNT = ιT ι ′T ⊗ηIN +[IT ⊗ (B′NBN)−1] ,

using the same notation and observation stacking as for (19.28). This particular
expression allows the determinant and inverse to be obtained as (see Anselin, 1988a,
p. 154, for details):

|ΨNT |= |(B′NBN)−1 +(T η)IN ||BN |−2(T−1)

and,

Ψ−1
NT =

ιT ι ′T
T
⊗ [(B′NBN)−1 +(T η)IN ]−1 +(IT −

ιT ι ′T
T

)⊗ (B′NBN) .

The log-likelihood thus becomes:
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L = −NT
2

lnσ2
u − (T −1) ln |BN |

−1
2

ln |(B′NBN)−1 +(T η)IN |

− 1
2σ2

u
ε ′[

ιT ι ′T
T
⊗ [(B′NBN)−1 +(T η)IN ]−1]ε

− 1
2σ2

u
ε ′[(IT −

ιT ι ′T
T

)⊗ (B′NBN)]ε ,

with ε = y−Xβ .
A second special case is the the spatial SUR model with spatial SAR error au-

tocorrelation. Its error variance covariance matrix is given by (19.22). The required
determinant and inverse for the log-likelihood are (see Anselin, 1988a, p. 143):

|B−1
NT (ΣT ⊗ IN)B−1′

NT |= |ΣT |N |BNT |−2 ,

and,

[B−1
NT (ΣT ⊗ IN)B−1′

NT ]−1 = B′NT [Σ−1
T ⊗ IN ]BNT .

Furthermore, due to the block-diagonal structure of BNT :

ln |BNT |= ∑
t

ln |IN−θtWN | .

The log-likelihood for this model then follows as:

L = −N
2

ln |ΣT |+∑
t

ln |IN−θtWN |

−1
2

ε ′B′NT (Σ−1
T ⊗ IN)BNT ε ,

with BNT ε corresponding to the residuals from spatially filtered dependent and
explanatory variables, [INT − (ΘT ⊗WN)](y−Xβ ), a generalization of the pooled
model case.

19.4.2 Instrumental Variables and GMM

As an alternative to reliance on an often unrealistic assumption of normality and
to avoid some of the computational problems associated with the Jacobian term in
ML estimation, instrumental variables and GMM methods have been suggested for
single cross-section spatial regression models (e.g., Anselin, 1988a, 1990; Kelejian
and Robinson, 1993; Kelejian and Prucha, 1998, 1999; Conley, 1999). These can be
extended to the panel data setting. We will consider the spatial lag and spatial error
models in turn.
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19.4.2.1 Spatial Lag Models

The endogeneity of the spatially lagged dependent variable suggests a straight-
forward instrumental variables strategy in which the spatially lagged (exogenous)
explanatory variables WX are used as instruments (Kelejian and Robinson, 1993;
Kelejian and Prucha, 1998; and also Lee, 2003 for the choice of optimal instru-
ments). This applies directly to the spatial lag in the pooled model, where the instru-
ments would be (IT ⊗WN)X (with X as a stacked NT × (K− 1) matrix, excluding
the constant term).

A special case is the spatial SUR model with a spatial lag term, (19.19). Follow-
ing the same approach as taken in the single cross-section, consider the spatially
lagged dependent variable and the explanatory variables in each equation grouped
into a matrix Zt = [WNyt Xt ], with parameter vector γt = [ρt β ′t ]′. The individual Zt

terms can be stacked into a NT × T (K + 1) matrix Z, using the same setup as in
(19.18), with a matching stacked coefficient vector γ . For each equation, construct
a matrix of instruments, Ht = [Xt WNXt ], stacked in block-diagonal form into H.
With a consistent estimate for the error variance covariance matrix, Σ̂T ⊗ IN , the
model parameters can be estimated by means of the IV estimator with a general
non-spherical error variance (Anselin, 1988a, p. 146):

γ̂ =
[
Z′H[H ′(Σ̂T ⊗ IN)H]−1H ′Z

]−1
Z′H[H ′(Σ̂T ⊗ IN)H]−1H ′y (19.38)

with an estimate for the coefficient variance as:

Var[γ̂] =
[
Z′H[H ′(Σ̂T ⊗ IN)H]−1H ′Z

]−1
.

This suggests an iterative spatial three stages least squares estimator (S3SLS): first
estimate each regression using spatial 2SLS (S2SLS); use the S2SLS residuals to ob-
tain a consistent estimate of Σ̂ ; and finally use Σ̂ in (19.38). Consistency and asymp-
totic normality of the spatial generalized IV estimator can be based on the argu-
ments developed for the cross-sectional S2SLS case (Kelejian and Robinson, 1993;
Kelejian and Prucha, 1998).

19.4.2.2 Spatial Error Models

The spatially weighted least squares result (19.37) for the regression parameters in
the pooled model with SAR errors also holds in a more general setting, without
assuming normality. As long as a consistent estimator for the nuisance parameter θ
can be obtained, the FGLS estimator will also be consistent for β .

In the single cross-section, a consistent estimator can be constructed from a set
of moment conditions on the error terms, as demonstrated in the Kelejian–Prucha
generalized moments (KPGM) estimator (Kelejian and Prucha, 1999). These condi-
tions can be readily extended to the pooled model, by replacing the single equation
spatial weights by their pooled counterparts (IT ⊗WN). The point of departure is the
stacked vector of SAR errors:
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ε = θ(IT ⊗WN)ε +u ,

where both ε and u are NT ×1 vectors, and u � IID[0,σ2
u INT ].

The three KPGM moment conditions (Kelejian and Prucha, 1999, p. 514) per-
tain to the idiosyncratic error vector u. Extending them to the pooled setting
yields:

E[
1

NT
u′u] = σ2

u

E[
1

NT
u′(IT ⊗W ′

N)(IT ⊗W )u] =
1
N

σ2
u tr(W ′

NWN)

E[
1

NT
u′(IT ⊗WN)u] = 0 ,

where tr is the matrix trace operator and use is made of tr(IT ⊗W ′
NWN) =

T trW ′
NWN , and tr(IT ⊗WN) = 0.

The estimator is made operational by substituting u = ε −θ(It ⊗WN)ε , and re-
placing ε by the regression residuals. The result is a system of three equations in
θ , θ 2 and σ2

u , which can be solved by nonlinear least squares (for technical details,
see Kelejian and Prucha, 1999). Under some fairly general regularity conditions,
substituting the consistent estimator for θ into the spatial FGLS (19.37) will yield
a consistent estimator for β . Recently, this approach has been extended to the error
components model with spatial error dependence (19.29), yielding a system of six
moment equations (for details, see Kapoor et al., 2007).

19.5 Testing for Spatial Dependence

Testing for spatial effects in spatial panel models centers on the null hypothe-
ses H0 : ρ = 0 and/or H0 : θ = 0 in the various models that include spatial
lag terms or spatial error autocorrelation. Arguably, the preferred approach is
based on Lagrange Multiplier (LM) or Rao Score (RS) tests, since these only
require estimation of the model under the null, avoiding the complexities asso-
ciated with ML estimation (for a recent review, see Anselin, 2001a). The test
statistics developed for the single cross-section case can be readily extended to
the pooled model. In addition, specialized diagnostics have been developed to
test for spatial effects in spatial SUR (Anselin, 1988b), and for error components
models (Anselin, 1988a; Baltagi et al., 2003, 2006, 2007). More recently, a strat-
egy has been suggested to test for general unspecified cross-sectional dependence
(Pesaran, 2004).

We focus our attention on the LM tests and first briefly review the generic case.
This is followed by an illustration of applications of the LM principle to tests against
error correlation in the spatial SUR and error components models.
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19.5.1 Lagrange Multiplier Tests for Spatial Lag and Spatial Error
Dependence in Pooled Models

The results for the pooled models follow as straightforward generalizations of the
single cross-section case, with proper adjustments for the spatial weights matrix and
weights matrix traces. Consider the pooled regression model (19.2) as the point of
departure, with e = y−X β̂ as a NT ×1 vector of regression residuals.

The single cross-section Lagrange Multiplier test statistic for spatial error cor-
relation, LME (Burridge, 1980), which is asymptotically distributed as χ2(1), is
readily extended to the pooled model with spatial weights matrix (IT ⊗WN) as:

LME =
[e′(IT ⊗WN)e/(e′e/NT )]2

tr[(IT ⊗W 2
N)+(IT ⊗W ′

NWN)]

or, using simplified trace terms:

LME =
[e′(IT ⊗WN)e/(e′e/NT )]2

T tr(W 2
N +W ′

NWN)
.

Similarly, the single cross-section LM test statistic for a spatial lag alternative,
LML (Anselin, 1988a), becomes:

LML =
[e′(IT ⊗WN)y/(e′e/NT )]2

[(Wŷ)′M(Wŷ)/σ̂2]+T tr(W 2
N +W ′

NWN)

with Wŷ = (IT ⊗WN)X β̂ as the spatially lagged predicted values in the regression,
and M = INT −X(X ′X)−1X ′. This statistic is also asymptotically distributed as χ2(1).

This simple approach can be generalized to account for more realistic error vari-
ance structures, such as heteroskedasticity across the time periods, in the same man-
ner that heteroskedasticity is included in test statistics for the single cross-section
(see, e.g., Kelejian and Robinson, 1998). Alternatively, each of the test statistics can
be robustified against the alternative of the other form, using the standard approach
(see Anselin et al., 1996).

19.5.2 Testing for Spatial Error Correlation in Panel Data Models

19.5.2.1 Spatial SUR Model

In the spatial SUR model (19.15–19.17), the LM test statistics are based on the
residuals from a standard ML or FGLS estimation. In contrast to the pooled model,
the null hypothesis pertains to T parameter constraints, H0 : θ1 = . . . = θT = 0 for
the spatial error alternative.

To construct the statistic, consider a N × T matrix E with the N × 1 individ-
ual equation residual vectors as columns. The LME test statistic then follows as
(Anselin, 1988b):
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LME = ι ′T (Σ̂−1
T ∗E ′WNE)J−1(Σ̂−1

T ∗E ′WNE)′ιT

with ∗ as the Hadamard product, and

J = [tr(W 2
N)]IT +[tr(W ′

NWN)](Σ̂−1
T ∗ Σ̂T )

The LME statistic is distributed asymptotically as χ2(T ).

19.5.2.2 Error Components Models

In the error components model with spatial autoregressive errors (19.25–19.26),
the null hypothesis is H0 : θ = 0. A LM test statistic can be constructed from the
residuals obtained by estimating the standard error components model by FGLS
or ML. With e as the NT × 1 residual vector, and, to simplify notation, with κ̂ =
(σ̂2

μ/σ̂2
u )/[1+T (σ̂2

μ/σ̂2
u )], the test statistic follows as (Anselin, 1988a, p. 155):

LME =

[
(1/σ̂2

u )e′[[IT + κ̂(T κ̂−2)ιT ι ′T ]⊗WN ]e
]2

p
,

with p = (T 2κ̂2 − 2κ̂ + T )(trW 2
N + trW ′

NWN). It is distributed asymptotically as
χ2(1).

When the point of departure is not the error components model, but the pooled
specification (19.2), both the error component and the spatial parameter can be con-
sidered as part of the null hypothesis, and a number of interesting combinations
result. The resulting tests can be classified as marginal, joint or conditional, de-
pending on which combinations of parameters restrictions are considered (Baltagi
et al., 2003).

Specifically, marginal tests would be on either H0 : θ = 0 (the spatial parameter)
or on H0 : σ2

μ = 0 (the error component), based on the residuals of the pooled model.
A joint test is on H0 : θ = σ2

μ = 0, and conditional tests are for H0 : θ = 0 (assuming
σ2

μ ≥ 0), or H0 : σ2
μ = 0 (assuming θ may or may not be zero). Each case yields a LM

statistic using the standard principles applied to the proper likelihood function (for
details, see Baltagi et al., 2003). This rationale can be further extended to include
a time-wise dependent process with parameter φ , as in (19.32–19.33) (for detailed
derivations, see Baltagi et al., 2007).

19.6 Conclusions

The econometrics of panel data models with spatial effects constitutes an active
area of research, as evidenced by a growing number of recent papers on the topic.
The focus to date has been primarily on theoretical and methodological aspects. Ar-
guably, the dissemination of these methods to empirical practice has been hampered
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by the lack of ready to use software. None of the standard econometric packages
include built-in facilities to carry out single cross-section spatial econometrics, let
alone spatial panel econometrics.

For single cross-section spatial econometrics, there are now several software
resources available, ranging from freestanding packages such as GeoDa (Anselin
et al., 2006), to collections of routines in Matlab (James LeSage’s collection of
routines at http://www.spatialeconometrics.com) and R (Bivand, 2002). However,
apart from a few Matlab routines for spatial fixed effects models developed by Paul
Elhorst (see http://www.spatialeconometrics.com), the situation is rather bleak for
panel spatial econometrics in general. A promising development in this regard is the
effort under the auspices of the U.S. Center for Spatially Integrated Social Science
(CSISS) to develop software for spatial econometrics in the open source Python
language. The PySpace collection of modules that is currently under active devel-
opment includes the basic tests and estimation methods for the pooled panel model
as well as the spatial SUR model (Anselin and Le Gallo, 2004).

While much progress has been made, many areas remain where very little insight
has been gained into the complexities that result from explicitly introduction spa-
tial dependence and spatial heterogeneity into panel data models. Directions with
particular promise for future research would be the extension to models with dis-
crete dependent variables. Also of particular interest to applied researchers would
be greater insight into the trade offs involved in using strategies for general cross-
sectional dependence relative to the use of parameterized spatial processes.

It is hoped that the review provided in the current chapter may provide a stimulus
and resource to theoretical and applied researchers alike to aid in pursuing these
directions in the future.
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Chapter 20
Foreign Direct Investment: Lessons
from Panel Data

Pierre Blanchard, Carl Gaigné and Claude Mathieu

20.1 Introduction

Since the 1980s, foreign direct investment (FDI) flows have grown substantially,
especially throughout OECD countries (UNCTAD (2002)). The average share of
FDI outflows in GDP went from around 2% in 1985 to almost 11% by the end of
the 1990s. In 2000, OECD countries were the source of 90% FDI flows, and the
recipient of 79%. International corporations are now major actors in international
trade since their contribution to global production climbed to 11% in 2001. It is not
surprising that, over the last two decades, FDI has spawned a significant amount
of academic research and the literature continues to grow at an impressive rate.
The empirical literature has expanded at a rapid pace in many different directions.
Regardless of the question studied, the nature of the problem itself generally requires
using panel data estimation methods because flows (or stocks) of FDI between pairs
of countries (or between country-industry pairs) are analyzed for one or several time
period. The purpose of this chapter is to provide a selective survey of the empirical
literature using panel data.

As we will see in the next section, the theoretical literature has identified two
dimensions acting upon the structure of FDI. The main components of firm/industry
characteristics are transport costs, plant scale economies and factor intensities
whereas market size, tariff levels and factor abundance are the main components of
country features. As a result, using the econometrics of panel data is a natural way to
evaluate the determinants to FDI. This issue is discussed in Sect. 20.3. In Sect. 20.4,
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Erudite, Faculté de Sciences Economiques et de Gestion, Université Paris XII Val de Marne, 61
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we present three types of empirical studies using the econometrics of panel data.
The first type concerns the trade-off between producing at home or abroad. The sec-
ond type studies more precisely the role of trade policies (anti-dumping, threat of
protectionism, custom union) in the decision to establish an additional plant in a for-
eign country. The last type focuses on the impact of financial factors on the level of
FDI. In the last section, we discuss recent econometric issues related to estimating
FDI models using panel data.

Before presenting the micro-foundations of the decision to produce abroad, we
have to define foreign direct investment. FDI refers to investments by multinational
firms (MNF) in affiliates or subsidiaries. It consists of two broad categories: (i) di-
rect net transfers from the parent company to the foreign affiliate, either through
equity or debt; and (ii) reinvested earnings by a foreign affiliate. FDI is generally
thought as a real capital flow between countries, the main interest in our analysis.
Still, statistical information on FDI involves financial flows that do not necessar-
ily correspond to an international allocation of productive capital. Indeed, FDI is
comprised of several types of capital. First, it contains real investment in plants
and equipment, either in the form of new plants and equipment or plant expansion.
Second, a major part of FDI consists of the financial flows associated with merg-
ers and acquisitions. This implies an ownership change in the absence of any real
investment. OECD (2000) estimates suggest that mergers and acquisitions account
for more than 60% of all FDI in developed countries. Others components of FDI
are joint ventures and equity increases. The latter component typically comprises
investment in financial capital. The distinction between the various types of FDI is
important because the different components may have different explanations.

20.2 A Simple Model of FDI

In the 1980s, trade economists proposed refinements of the factor-proportions
approach to explain the emergence of multinational corporations (e.g. Helpman
(1984)). They determine the conditions under which firms have an incentive to
become a “vertical” multinational, that is to separate headquarters from plant. A
vertical multinational activity arises between countries that differ significantly in
relative endowments. However, in order to explain the existence of foreign direct
investments among similar countries, an alternative approach has been proposed by
different authors (e.g. Markusen (1984)). The purpose is to determine the conditions
under which firms produce the same product in multiple plants, serving local mar-
kets by local production. A firm will probably be a horizontal multinational when
trade costs are relatively high and plant-level scale economies are low enough. This
theoretical literature on FDI is generally characterized by general equilibrium mod-
els (see Markusen (1995)). However, in order to make the results accessible, we
do not develop a general equilibrium model of plant location in this section. The
objective of this section is to show basic mechanisms at work by developing a sim-
ple model of foreign investments, which is close to Markusen (2002). We will see
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how the main characteristics of technologies and countries interact to determine the
choice of firms to engage in FDI and the type of FDI (horizontal or vertical). Tech-
nology features include plant-level and firm-level scale economies whereas country
features include trade costs and global market size as well as differences in market
size and marginal costs of production.

20.2.1 Assumptions and Preliminary Results

Consider one good produced by a single firm and sold in two markets/countries
(h and f ). Countries may differ in population size and/or in technology. The produc-
tion of the good implies two types of sunk cost: a plant-specific fixed cost (G) by
production unit and a firm-specific cost (F). Consumers are internationally immo-
bile and both markets are segmented. The firm practices third degree price discrimi-
nation without threat of arbitrage by consumers. There are three alternatives modes
of serving both markets. (i) By a national firm with a single plant located in country h
(type-n). The national firm serves country f by exporting, which implies operational
costs t such as transportation costs as well as other nontariff trade barriers. We as-
sume that t is symmetric between countries. (ii) By a horizontal multinational with
two plants located in both countries (type-h). The horizontal multinational serves
country f by establishing a subsidiary abroad, which implies further plant-specific
fixed cost G. (iii) By a vertical multinational with the headquarter located in country
h and one plant in country f that serves both markets (type-v).

The inverse demand function in each country is given by

pi j = a− (b/Li)qi j (20.1)

where pi j, qi j are price and quantity of the good produced in country i = h, f and
sold in country j = h, f . In addition Li is the population in country i = h, f . We
assume that a, b > 0.

The expression of profits of a type-n firm is expressed as follows:

πn = (a−(b/Lh)qhh)qhh +[(a−(b/L f )qh f )−t]qh f −ch(qhh +qh f )−G−F (20.2)

where ch is the marginal cost of production prevailing in country h, and F a firm-
specific fixed cost. By solving the first-order conditions, the profit-maximizing out-
put in both markets is given by,

q∗hh =
a− ch

2b
Lh and q∗h f =

a− ch− t
2b

Lh (20.3)

Consider now that the firm is a horizontal multinational. Its profit function is

πh = [(a− (b/Lh)qhh)− ch]qhh−G+[(a− (b/L f )bq f f )− c f ]q f f −G−F (20.4)
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The supply on the foreign market corresponds to

q∗f f =
a− c f

2b
L f (20.5)

Note that the supply on the domestic market is q∗hh from (20.3).
Finally, when the multinational adopts a type-v structure, its profit equation is

expressed as follows:

πv = [(a− (b/Lh)q f h)− c f − t]q f h +[(a− (b/L f )q f f )− c f ]q f f −G−F (20.6)

Maximizing (20.6) gives the export sales from country f to country h:

q∗f h =
a− c f − t

2b
Lh (20.7)

whereas the sales in country f (q∗f f ) are given by (20.5).
We can now summarize the total profits under the three alternative modes of

serving country h and f by introducing (20.3), (20.5) and (20.7) in (20.2), (20.4)
and (20.6), respectively,

πn =
(

a− ch

2b

)2

Lh +
(

a− ch− t
2b

)2

L f −G−F (20.8)

πh =
(

a− ch

2b

)2

Lh +
(

a− c f

2b

)2

L f −2G−F (20.9)

πv =
(

a− c f − t

2b

)2

Lh +
(

α− c f

2b

)2

L f −G−F (20.10)

20.2.2 Technology and Country Characteristics
as Determinants of FDI

The previous three profit equations enable us to determine the main factors that
determine the choice for a firm about whether or not to engage in foreign investment
and the type of FDI (horizontal or vertical). To simplify the analysis, we assume that
a > ch ≥ c f and Lh ≥ L f where a is sufficiently large as well as L f . We consider
four configurations: (i) the characteristics of both countries are identical; (ii) the
size of the home market is larger; (iii) the marginal cost of production is lower in
the foreign country; (iv) combination of cases (ii) and (iii).

(i) First, we assume that countries are identical with respect to technology and
factor endowments (ch = c f = c and Lh = L f = L). So, we have πn = πv. Trivial
calculations show that the firm decides to produce in both countries (πh > πn) if
and only if trade costs are high enough or equivalently when t > tnh where
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tnh ≡ (a− c)

(

1−
√

1− 4bG
L f (a− c)2

)

> 0 (20.11)

The threshold value tnh increases when G declines and decreases when the popu-
lation size of countries (L) grows. In other words, the firm will be likely a horizontal
multinational when trade costs are high relatively to plant scale economies and
when the markets to serve are large enough.

(ii) Assuming now that countries are only different in population size with
ch = c f = c and Lh > L f . Therefore, country h has an advantage in market size.
In this case, regardless of values of trade costs, profits when the firm adopts a
type-n structure is always superior to profits when it chooses a type-v structure
(πn > πv). The critical value of trade costs above which the national firm becomes
a horizontal multinational is identical to tnh, except that L f is now lower than Lh.
As a result, it appears that, when the market size is higher at home, convergence
in population size between countries prompts the firm to establish a second plant
abroad.

(iii) We now consider the case where countries are only different in production
costs with ch > c f and Lh = L f = L. Stated differently, country f has an advantage
in production costs. In this configuration, we have πn < πv regardless of trade costs.
When production costs differ among countries, the firm has a strong incentive to
become vertical multinational. In addition, the multinational produces in both coun-
tries if and only if t > tvh where

tvh = (a− c f )

(

1−
√

1− 4G
b2L(a− ch)2

)

(20.12)

It is readily confirmed that horizontal direct investments are favored when
marginal costs converge.

(iv) Finally, with ch > c f and Lh > L f , we consider the case where the advantage
in market size benefits country h while the advantage in production costs benefits
country f . This configuration is more complex because we must rank three profit
equations: πv, πn and πh. Figure 20.1 shows graphically the profits of each regime
against trade costs. It is straightforward to check that πv(t = 0) > πn(t = 0) and
that profits in both structures (type-v and -n) decline when trade costs increase. In
addition, we have πv(t = 0) > πh. As a result, the multinational is more likely to
have a vertical structure when trade costs are very low. Further, as profits do not vary
with respect to trade costs when the firm is characterized by a type-h structure (see
the dashed lines in Fig. 20.1), a horizontal FDI is more likely to take place when
trade costs are high enough. Finally, the firm becomes national when trade costs
take intermediate values. Note that the relative position of the profit curves depends
on the size of plant scale economies (G). More precisely, a fall in G increases the
profits more when the multinational is located in both countries than when the firm
produces in a single country.
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Fig. 20.1 Profit functions according to the firm type

Observe also that we have πv(t) > πn(t) if and only if t < tnv where

tnv ≡ (ch− c f )
Lh +L f

Lh−L f
(20.13)

Then, the firm is likely to prefer to serve both countries from the foreign country
when trade costs are low enough. In addition, when the size of markets diverges
noticeably (Lh grows or L f declines), the type-v firm is more likely to occur
(tnv increases). Consequently, the advantage in production costs dominates the ad-
vantage in market size when trade costs are sufficiently low, while the advantage
in market size dominates the advantage in production costs when trade costs are
high enough.

To summarize our analysis, we first recall the main conditions under which a
firm engages in horizontal FDI: countries are similar in market size and in marginal
production costs, the “world” demand is sufficiently high, the plant-specific fixed
cost is low relative to the firm-specific fixed cost and trade costs are high enough.
In addition, the firm is more likely to be a vertical multinational when trade costs
are low enough and when the difference in production costs is sufficiently high.
Finally, notice that FDI and trade are substitutes when multinationals are horizontal
and complementary when multinationals are vertical.

20.3 Econometric Implementation and Data

The basic model of the previous section has allowed us to identify the factors acting
upon the emergence of FDI at two levels: at firm/industry level (technology, plant
scale economies, factor intensities and transport costs) and at country level (market
size, tariff levels and factor endowments). As a result, panel data models have been
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extensively used for analyzing the factors determining the international allocation
of foreign investments.

20.3.1 A General Econometric Model

Ideally, in order to control for observed and unobserved heterogeneity between host
and domestic countries and for time effects, we need to estimate triple indexed mod-
els (see Matyas (2001), Egger and Pfaffermayr (2003)). A basic specification1 is, for
instance,

FDIi jt = xi jtβ +αi +λ j + γt +δi j +ui jt (20.14)

where FDIi jt is the amount of outward FDI of country i (home) held in the country
j (host) at year t and xi jt is a vector of regressors.2 As suggested by the theoreti-
cal model, the variables included in the regressors list may be: a measure of bilat-
eral country size (e.g. the sum of bilateral GDP); an index of size similarity; one
or more measure of differences in relative endowments (e.g. capital stock and/or
skilled labor ratios between the home and host countries); a variable measuring
trade costs (tariffs, distance, for example). Nevertheless, several variables are added
in order to control for investment, political, financial risks, non tariff barriers, open-
ness policy. . . . Because the specification takes into account the effect of “gravity”
factors (e.g. market size, distance), this model is usually called the gravity model
and is commonly used not only for FDI analysis but also for modelling trade be-
tween countries. The parameters αi and λ j are introduced in order to control for
heterogeneity across (host and domestic) countries (due for instance to legal or cul-
tural characteristics) whereas γt captures any time-specific effect common to all
pairs of countries such as business cycle effects, or changes in the degree of open-
ness across all economies. The term δi j accounts for all time-invariant effects be-
tween two given countries such as common language and common borders.3 These
effects are modelled either as fixed (fixed effects model) or as random (random ef-
fects model) or, in very few studies, with a random coefficients specification (e.g.
Feinberg and Keane (2001) and Balestra and Negassi (1992)). The Hausman test is
frequently used in order to choose between the fixed effects and the random effects
specification.

A second reason for using panel data for estimating FDI models relies often
on the necessity to take into account the correlation between contemporaneous
FDI flows and those of the previous year due to adjustment and sunk costs. By

1 A more general specification is given by Baltagi, Egger and Pfaffermayr (2003). See Sect. 20.4.
2 Several variants of this specification are frequently used in applied works, e.g.: (i) one can explain
bilateral FDI from country i to country j for a given year (FDIi j). (ii) It is also possible to focus on
FDI from a given home country to several host countries at time t (FDI jt) or in sector s at time t
for each host country j (FDI jst); (iii) one can also model FDI from a parent firm i to affiliates j at
time t (FDIi jt).
3 Note also that the country-pair effects may differ according to the direction of FDI (i.e. δi j �= δ ji)
which can be tested for.
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including FDIi jt−1 in the model, we have a dynamic specification of FDI. Although
this allows us to distinguish between short-run and long-run effects, it creates a
correlation between the lagged dependant variable and the error term. However
in this case, the usual estimators (OLS, within, GLS) are biased and inconsistent
(for short T ). With panel data, this problem may be solved by transforming the
model in first differences. Moreover, using the time dimension, we can quite eas-
ily find instruments for endogenous regressors, FDIi jt−1 of course, but also for
other explanatory variables which may be endogenous in such a context, e.g. GDP,
exchange rate.

Therefore, it is not surprising that a vast and recent econometric literature using
panel data has emerged on these topics with a great variability in the estimation
methods used.

20.3.2 FDI and Data Issues

Testing model (20.14) requires data that vary in different dimensions (firm/
industry, country and time). There are two main types of data on foreign direct
investment: (i) the balance of payments provides information on inward and out-
ward flows of FDI and the stocks derived from accumulated FDI flows. Such data
are available at country level and vary over time; (ii) the second type of data is
about operations of individual multinational firm at home and abroad. We discuss
the advantages and disadvantages of these two types of data sets.

Type (i). Different international institutions publish international data on FDI
based on the balance of payments, such as the International Monetary Fund (IMF),
the United Nations (via the UNCTAD World Investment Report) and the Orga-
nization for Economic Cooperation and Development (OECD). These data sets
cover many countries but many of them deviate significantly from the interna-
tional guidelines for the compilation of balance of payments and international
investment position statistics in the IMF’s Balance of Payment Manual (5th edi-
tion) and in the OECD’s Benchmark Definition of Foreign Direct Investment (3rd
edition). We choose to describe more precisely the data provided by the OECD (see
Lipsey (2001), for a description of data from IMF and United Nations) for two main
reasons: first, FDI between OECD countries represent more than 60% of the over-
all FDI; second, these countries are more in accordance with the recommendations
of Survey of Implementation of International Methodological Standards for Direct
Investment (SIMSDI) which is a comprehensive study of data sources, collection
methods, and dissemination and methodological practices for FDI statistics. The
Directorate for Financial, Fiscal and Enterprise Affairs of OECD yields statistics
on FDI transactions and positions, published under the title International Direct In-
vestment Statistics Yearbook. The flows and stocks of FDI are compiled by using
the balance of payments and the international investment positions, respectively.
Both data sets are available for inward and outward FDI by partner country and by
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industry (according to ISIC Rev. 3 classifications) in the standard format defined
by the international guidelines. A few OECD countries do not provide complete in-
formation and/or deviate from the agreed international standards established by the
IMF. Moreover, the database covers 28 OECD countries over the 1980–2000 period.
As a result, the cross-sectional comparability of the data is improving and balanced
panels can be easily implemented (see IMF and OECD (2001) and Nicoletti, Golub,
Hajkova, Mirza and Yoo (2003) for further details).

Type (ii). Although it is becoming more widely recognized that data need to ac-
count for heterogeneity between MNF, this type of information is still relatively
scarce. Some countries collect information about inward FDI (France, Germany,
Italy, among other) or outward FDI (Japan, see Falzoni (2000) for a description).
With few exceptions, only the US and Sweden produce data for both outward and
inward FDI.4 Moreover, information about the characteristics relative to the par-
ent companies and their affiliates are less frequent.5 In fact, the US Bureau of
Economic Analysis (BEA) provides the more extensive database about the oper-
ations of the affiliates and their parent companies. Indeed, available data give spe-
cific information about gross product, employment, wages and R&D expenditures
for each domestic or foreign unit belonging to a MNF. In the same vein, the Re-
search Institute of Industrial Economics (IUI) in Sweden compiles a dataset which
is based on a questionnaire sent to all Swedish MNF, containing information on
parent companies as well as on the operations of each individual subsidiary (see
Braunerhjelm, Ekholm, Grundberg and Karpaty (1996) for a detailed description
of this database). However, this survey is only implemented approximately ev-
ery four years since the 1960s. This means it is difficult to build a panel with a
time dimension. Even though the BEA only conducts benchmark surveys every
5 years, its annual surveys can be used to build a more detailed panel dataset.
A more important limit is that this dataset covers only US bilateral activity. Note
that this limit is applied to all MNF databases developed by the different national
official statistical departments (see for example the database on intra-firm inter-
national trade of the Department for Industrial Studies and Statistics (SESSI) of
the French Ministry for Economic Affairs, Finance and Industry) and also to data
gathered by private agencies (see Head and Ries (2001) for the database of Toyo
Keizai on Japanese MNF). In addition, studies testing the trade-off between US
export and FDI use the ratio of US exports to the sales of US multinational af-
filiates as the dependent variable. Indeed, the BEA’s database does not contain
firms which are only exporters. Consequently, the multinational firm sales must
be aggregated at the level of industries in order to make comparable FDI and
export data.

4 See Stephan and Pfaffmann (1998) and Lipsey (2001) for a description and a discussion of dif-
ferent national sources of FDI as in Sweden, Germany, Japan and Canada.
5 Note that these characteristics are not necessarily comparable when they exist (see for example
the survey about the foreign affiliates of the French Ministry of Finance in 2000).
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20.4 Empirical Estimations: Selected Applications

20.4.1 Testing the Trade-Off Between FDI and Exports

20.4.1.1 FDI Versus Exports

A branch of the empirical literature on multinational production-location decisions
has used the BEA database in order to study the determinants of FDI at the coun-
try/industry level. Within this literature, Brainard (1997) was the first to use direct
industry- and country-specific measures of several determinants of FDI. Her objec-
tive is to test the determinants of the horizontal integration of multinationals (see
Sect. 20.2). However, the author also controls for the possibility that multinational
activity is motivated by gaining access to factor supplies (vertical integration). This
work has been extended in two ways. First, Helpman, Melitz and Yeaple (2004) fo-
cus on the horizontal dimension of FDI location decision by taking into account the
heterogeneity within sectors. In parallel, Yeaple (2003) controls more explicitly for
the vertical dimension of FDI decisions by including the interaction between factor
intensities and factor abundance. Combining the approaches of Brainard, Helpman
et al. and Yeaple, the general empirical model is given by:

EXSHjs = β0 +∑c βccft js +∑l βlscales +βuUCjs +νs +λ j + ε js (20.15)

where EXSH js is, in the three papers, the ratio of total US sales of good s in coun-
try j to the sum of local affiliate sales and exports from US to that host country.6

Note that Brainard and Yeaple consider also the share of US imports as a dependent
variable. In this subsection, we only focus on outward foreign investment.

cft js is a vector of trade costs, such as transport and insurance costs (FREIGHT js)
and tariff barriers (TARIFF js). In Brainard and Yeaple, FREIGHT js is measured by
the freight and insurance charges reported by importers to the US Bureau of Census
to calculate freight factors such as the ratio of charges to import values.7 The data on
TARIFF js comes from a 1988/1989 database by the General Agreement on Tariffs
and Trade on ad valorem tariffs at the 3-digit SIC level of industry. In Helpman
et al., FREIGHT js is computed as the ratio of CIF imports into the US to FOB
imports from the data presented by Feenstra (1997) whereas TARIFF js is calculated
at the BEA industry/country level.

scales stands for scale economies in each industry. Two types of scale economies
must be distinguished: at the corporate level (CSCALEs) and at the plant level
(PSCALEs). They correspond to G and F in our theoretical model, respectively.
In Brainard, CSCALEs is measured as the number of nonproductive workers in the

6 Relatively to model (20.14), we deleted the subscript i since we have one home country (the
USA) and introduced a further dimension (the sector) indexed by the subscript s. Hence, νs is a
sector-specific component, capturing the sectoral characteristics of firms in each country that are
unobservable or omitted from equation, but do not vary over country.
7 No comparable data are available from exporters. The authors assume that transport costs are
symmetric, which introduces measurement error in the outward estimates.
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average US-based firm and, in Yeaple, as the average number of nonproduction
employees at the firm level. In Brainard, PSCALEs is defined as the number of pro-
duction employees in the median US plant ranked by value added, whereas Yeaple
uses the average number of production workers in the US plants. Helpman et al.
calculate the average number of non-production workers at the six-digit level. They
then compute this measure for every three-digit level as the average of the within
three-digit sectors, weighted by the six-digit level sales in this sector.

The variable UCjs stands for unit costs of production, introduced in order to con-
trol for factor-proportions differences. In Yeaple, this cost is a vector of variables
that reflect a potential host country’s unit cost of production by sector. Brainard
considers variations only in country characteristics since the proxy used is the dif-
ferential in per-worker income whereas Helpman et al. use only cross-industry vari-
ations in technology such as capital and R&D intensities.

As expected, the studies by Brainard and Helpman et al. suggest that the share
of affiliate sales is increasing in trade barriers, transport costs and corporate sale
economies and decreasing in production scale economies. The empirical analysis
of Brainard suggests also that the comparative advantage motive for FDI is far less
important. These findings support the horizontal model of FDI. However, by consid-
ering the interaction between factor abundance and factor intensities at highly dis-
aggregated level, Yeaple shows that the comparative advantage in production cost is
also a key determinant of FDI.

20.4.1.2 Horizontal Versus Vertical FDI

The previous empirical works suggest FDI decision may be motivated by both
horizontal and vertical considerations. Recent theoretical works, which are called
knowledge-capital models (henceforth KC model), show that vertical and hori-
zontal firms can emerge simultaneously (cf. Markusen, Venables, Eby-Konan and
Zhang (1996), Markusen (1997)). The main feature of the KC models is that ex-
ploitation of factor-price differences interacts with multi-plant scale economies to
explain the decision and the nature of foreign investments. The results of these
models, arising from simulations, relate the decision to produce abroad to coun-
try characteristics. Examples of empirical papers in this field are Carr, Markusen
and Maskus (2001) and Blonigen, Davies and Head (2003) as well as Markusen and
Maskus (2002a,b). Again, the data used in these empirical studies comes from the
US BEA, although data are aggregated across industries to the country-level to form
a panel of cross-country observations over the period 1986–1994.

The KC model is a more elaborate version of the model developed in Sect. 20.2.
The central idea is that the services of knowledge and knowledge-generating
activities can be spatially separated from production and supplied to production
facilities. As knowledge-based services are more skill intensive than production,
the multinational corporations have an incentive to locate the first (resp., second)
activity in country where skilled (resp., unskilled) labor is relatively cheap. Conse-
quently, the multinational firm can be vertically integrated. In addition, the output of
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knowledge-base activities can be used simultaneously by multiple producers. Then,
the existence of firm-level scale economies implies that the same products or ser-
vices are produced in different countries. In this case, multinational firms can be
horizontally integrated.

As in the theoretical model, three types of firms can emerge: (i) horizontal multi-
nationals where plants are located in different countries and headquarters set up
in the home country (type-h); (ii) vertical multinationals where production takes
place in a single plant located in a foreign country while the headquarters are main-
tained in the home country (type-v); and (iii) national firms with a single plant where
the production and knowledge-based services are located only in the home country
(type-n). Given the new assumptions, the last regime is dominant in the country with
the large market size and skilled worker endowment and when foreign investment
barriers are high. Type-h firms are likely to be dominant if transport costs are high
enough and if the nations are similar in relative factor endowments as well as in size.
In other words, if countries are dissimilar either in size or in factor endowments, one
nation will be favored. For example, if nations have the same factor endowments but
differ in size, firms located in the larger country benefit from lower production cost.
Thus, vertical multinationals may emerge when the home country is skilled-labor-
abundant and small, unless trade costs from the host country (where production
takes place) back to the parent country (where the headquarter is located) are too
excessive.

Given mechanisms discussed above, Carr, Markusen and Maskus (2001) estimate
the following equation:

FDIi jt = β0 +β1GDPsumi jt +β2(GDPdi fi jt)2 +β3SKILLdi fi jt (20.16)

+β4[GDPdi fi jt ×SKILLdi fi jt ]+mci jtγ +λ j +ui jt

The dependent variable (FDIi jt) is the real volume of production (sales) by man-
ufacturing affiliates in each host country j that are majority owned by parents in
domestic country i. The variable GDPsumi jt is the bilateral sum of real GDP levels
at home and abroad (the joint market size) whereas (GDPdi fi jt)2 is the squared dif-
ference in real GDP between home and foreign countries. Then, SKILLdi fi jt stands
for the difference in skilled-labor abundance in both countries. Note that the variable
GDPdi fi jt ×SKILLdi fi jt captures the fact that affiliates sales are higher when the
home country has a small size and is skilled-labour-abundant. Finally, mci jt is a vec-
tor of multinationalization cost variables such as the perceived costs of investing in,
and exporting to, the host country as well as the perceived trade costs in exporting
to the parent country.

A fixed effect (λ j) is introduced for each foreign country. The results with
country-pair dummies are not reproduced in the paper. As expected, outward in-
vestment increases with the joint market size, the convergence in GDP between the
parent country and any host country and the abundance in skilled workers of the
parent nation. Moreover, when the country fixed effects are introduced, the differ-
ence in skill endowments has a smaller role but remains significant while the other
variables keep the same impact.
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These results seem to offer direct support for the KC model and to reject the
horizontal model. Indeed, the last model predicts that absolute skill difference is
negatively related to affiliate sales (Markusen and Venables (2000)). In contrast, in
KC model, the production of foreign affiliates grows when the difference in skilled-
labour abundance declines. However, Carr, Markusen and Maskus (2001) estimate a
pooled coefficient on a difference term that takes both positive and negative values.
This introduces a substractive linear constraint which can lead to a sign reversal in
the pooled or restricted coefficient. Indeed, when the difference is negative (resp.,
positive), the rise in differences implies a convergence (resp., divergence) in skill-
labour endowments. From the same database, Blonigen, Davies and Head (2003)
exactly replicate the analysis of Carr et al. except that they consider the absolute
values of skill difference. In this way, these variables are always decreasing in skill
similarity. With this correct specification, Blonigen et al. obtain coefficient signs
that support the horizontal model. This result suggests that the preponderance of
multinational activity in developed countries is horizontal in nature.

20.4.1.3 Exports and FDI: Substitutes or Complements

Another way to determine the preponderance of horizontal FDI is to test whether
FDI and exports are substitutes or complements. Our analysis in Sect. 20.2 sug-
gests that substitution is the expected relationship under horizontal investments.
This result arises from the fact that this model focuses on trade in final goods. When
intermediate goods are introduced, foreign investment and export may simultane-
ously increase or decrease. Indeed, the rise in the production of affiliates induces
an increase in imported inputs from the home country which corresponds to intra-
firm trade when they come from parent companies (see for example Feinberg and
Keane (2006) Hanson, Mataloni and Slaughter (2005)). Then, sales abroad of final
goods and exports of intermediate goods can be complements. Several studies have
examined the empirical relationship between production abroad and exports.

From a panel of Japanese firms over time, Head and Ries (2001) show that over-
seas investment and exports are complements. This result is obtained for the entire
sample and by controlling for fixed firm effects. However, when the sample con-
cerns the large assemblers that are not vertically integrated, the production of plants
located abroad and the exports are substitutes. By using data published by the BEA
which varies by country and over time (between 1977 and 1994), Clausing (2000)
finds evidence that US multinationals activity and US exports are complements.
Indeed, by using a gravity equation specification of trade, the author shows that
a rise in affiliate local sales net of the value of imports from the US parent com-
pany increases the US exports. This result is robust when country-specific effects
are controlled for.

It is clear that the relationship between foreign investments and exports depends
on the level of aggregation of data. The studies using firm-level data underestimate
the complementary effect since firms may purchase a number of inputs from inde-
pendent suppliers that are set up in their domestic country. At the opposite, when
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data are not disaggregated, the complementary effect is overestimated. Swenson
(2004) examines how the change in US imports of product k from country i is related
to changes in FDI stocks measured at three aggregation levels: product k (3-digit),
2-digit industry which produces k and overall manufacturing. By controlling for en-
dogeneity, the empirical analysis reveals that US imports and foreign investment in
US are substitutes at the product-level while, at the overall manufacturing level, they
are complements. Note that any nation or industry fixed effects drop out from the
estimating equation.

Finally, Egger (2001) proposes a dynamic treatment of the bilateral economic
relationship, which would allow a useful distinction between short-run and long-
run relationships. The analysis is based on a dynamic bivariate panel framework.
The data cover the period 1986–1996 for bilateral relationships between the 15 EU
members. The empirical model is given by:

dEXi jt = α0 +α1dEXi jt−1 +α2dFDIi jt−1 +α3Zi jt +ρt + εi jt (20.17)

dFDIi jt = β0 +β1dEXi jt−1 +β2dFDIi jt−1 +β3Zi jt + γt +ui jt

where dEXi jt and dFDIi jt are first differences of exports and stocks of outward FDI
from country i to country j at period t, respectively. The use of first differences
as well as the Hansen (1982) two-step generalized methods of moments controls
for the correlation between lagged endogenous regressors and the error term. Note
that exports is included in the FDI equation as a lagged variable. The explanation
offered by the author is as follows: before setting up a plant in a country to serve
this market, firms look at their export performance. Then, Zi jt is a vector of vari-
ables similar to (20.15) and (20.16). Finally, ρt and γt are time-specific fixed effects.
These effects take into account business cycles affecting Europe as a whole. The
estimated coefficients of the lagged endogenous variables are significant suggesting
that adjustment costs play is a major role in FDI and exports. The estimation results
indicate also that outward FDI does not influence exports in the short-run, and vice-
versa. Consequently, it is difficult to reach a clear conclusion on the complementary
or substitutive nature of FDI and exports.

20.4.1.4 Exports and FDI: The Role of Distance

Among the key determinants of the decision to produce abroad, some variables such
as distance and sunk costs do not vary over the time. However, using first differ-
ences or within transformation does not permit to measure the impact of all time
invariant factors.8 In addition, these explanatory variables are likely to be corre-
lated with the time effect. As a result, the Hausman–Taylor model should allow
for testing the role of the distance in FDI and using time effects. The difficulty
arises from the choice of variables which are considered as doubly exogenous (not
correlated with the unobserved effects) and as singly exogenous (correlated with

8 Note that Carr, Markusen and Maskus (2001) do not take into account this problem when they
estimate the model (20.16).
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the unobserved effects). Although this econometric issue is very important, empir-
ical papers presented in Sect. 20.4.1. do not take account of this bias. There are
few papers using the Hausman–Taylor model to study the determinants of FDI.
Egger and Pfaffermayr (2004a) is a notable exception.9 Their data concern FDI from
the US and Germany to other countries between 1989 and 1999. By controlling for
(fixed) time effects and (random) industry-country pair effects, the authors find that
distance has a significant and positive impact on outward FDI and that exports and
outward FDI are complementary in the US and (weakly) substitutes in Germany.
Moreover, an over-identification test suggests that distance and relative factor en-
dowments are singly exogenous.

20.4.2 Testing the Role of Trade Policy in FDI

Almost all empirical contributions reviewed in the previous subsection consider that
tariff-jumping is an important motive for FDI. The role of tariff barriers in the de-
cision to produce abroad has also received specific attention from several empirical
analysis. These studies are important since they test the ability of policy makers
to influence international trade and FDI. The recent interest in the impact of trade
policy on the decision to produce abroad arises also from important reductions in
tariffs, quota and voluntary export restraints (VERs) and from an increasing num-
ber of countries with anti-dumping laws, because of numerous multilateral trade
agreements (see Baccheta and Bora (2001) and Blonigen and Prusa (2003)). Conse-
quently, it is not surprising that the tariff-jumping FDI analysis has concerned three
main aspects: (i) anti-dumping (AD) policies; (ii) the threat of a protectionist policy
(the so-called quid pro quo FDI hypothesis); and (iii) the transition periods of trade
liberalization. Again, the use of panel data econometrics is crucial in these three
domains. Indeed, testing the role of (i), (ii) and (iii) requires data that vary over time
and information at product/firm level.

20.4.2.1 Effects of Anti-dumping Laws

As stated by Blonigen and Prusa (2003), Since 1980, GATT/WTO members have
filed more complaints under the AD statute than under all other trade laws com-
bined. . . . So, among other related questions, a growing number of empirical works
using panel data study the effects of antidumping actions on FDI (these are mostly
oriented toward Japanese firms).

By using a panel of 7 countries (6 EU members plus the US) over the period
1980–1991, Barell and Pain (1999) estimate a model which relates Japanese direct
investment flows in country j at time t to a variable10 denoting the “discounted
stock” of anti-dumping cases (SAD jt ) in the EU or in the US, where

9 More precisely, a seemingly unrelated regression Hausman–Taylor model is considered because
they specify a system of two equations, exports and outward FDI, as in Egger (2001).
10 In addition to several other regressors, such as market size and relative labour cost.
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SAD jt ≡ AD jt +∑i (AD jt−i)/i. (20.18)

In this way, past anti-dumping actions may have a persistent, but progressively
weaker, effect on Japanese FDI. The model is estimated by using the within estima-
tor. The main result is that the level of AD has a positive effect on FDI. However, the
authors use a very aggregated and quite short panel data (N = 7 and T = 12), even
if they test carefully for the presence of heteroscedasticity and serial correlation of
errors (see their Appendix A).

A more convincing analysis is provided by Blonigen (2002).11 He first observes
that: In August 1993, Eastman Kodak Company filed a US antidumping petition
against US imports of photographic paper originating from plants owned by Fuji
Photo Film in Japan and the Netherlands. . . . While this led to an ensuing suspen-
sion agreement that led to substantially lower imports for a brief period, Fuji soon
located a photographic paper manufacturing plant to the United States. . . . AD du-
ties may result from a complex mechanism which requires the use of very disag-
gregated data. They are observed by all firms, they may change over time when
the foreign firm modifies its dumping behavior (it may obtain refunds of AD du-
ties in some cases) or if the US Department of Commerce changes the way it fixes
AD duties. For this reason, Blonigen uses a panel data including firm and product
combinations involved in US anti-dumping investigations from 1980 through 1990.
By using a probit model, the author evaluates the probability for a Japanese firm,
subject to anti-dumping duties, of locating its production for a given product in the
US. From a technical point of view, the model used is a pooled probit which in-
cludes industry dummies in order to control for unobserved industry characteristics.
The main result is that AD duties have a significant but small effect on FDI prob-
ability. Moreover, this effect is stronger when the firm has previous multinational
production experience.

One interesting variant of Blonigen’s approach may be found in Girma,
Greenaway and Wakelin (2002). The authors introduce a time dimension in the
panel and apply a different estimation strategy. Their basic model explains the pres-
ence (measured in terms of employment or fixed assets) of Japanese firms in the UK
by a set of explanatory variables including the cumulated number of anti-dumping
cases against Japanese firms measured as in (20.18). In this way, past anti-dumping
actions may have a persistent, but progressively weaker, effect on Japanese FDI.
The panel consists of 223 sectors observed over 1988–1996. The variables are con-
structed by aggregation of firms data. This permits a better evaluation of the tar-
iffs and cumulative anti-dumping variables, as well as accounting for their time
variabilities. However, for 146 industries, the dependent variable is equal to zero.
So, the authors use Heckman’s two-step estimation method. In the first stage, they
estimate the probability of having Japanese FDI in the sector by using a probit
model. In the second stage, they restrain their sample to the sectors with strictly

11 Belderbos and Sleuwaegen (1998) follow broadly the same approach with data on Japanese FDI
in the EU. They use a panel consisting of 131 firms and 345 (electronic) products, and so observed
at a very disaggregated level. The authors confirm that VERs, antidumping actions and tariffs favor
Japanese FDI and have a negative effect on firm-level exports to Europe.
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positive FDI and explain the level of FDI in these sectors by unit labor costs and
the cumulative number of anti-dumping cases. Additionally, in order to control for
a selectivity bias, the inverse Mills ratios estimated at the first stage are introduced
in the second stage. The model also includes time dummy variables which capture
some UK business cycle effects. The main result is that Japanese FDI in the UK de-
pends significantly on anti-dumping actions, and, to a more limited extent, on VERs
and tariff barriers.

20.4.2.2 Effects of the Threat of Protectionism

In the literature on the quid pro quo FDI hypothesis (see Bhagwati, Dinopoulos and
Wong (1992) and Grossman and Helpman (1996)) FDI may be caused by the threat
of protectionism, and not only by actual protectionism as in the tariff-jumping anal-
ysis. Foreign investment may be used by international corporations as an instrument
to defuse a possible protectionist action. In this case, when a firm establishes an
overseas local production unit and creates jobs, the host country has less incentives
to adopt protectionist measures.

Testing the quid pro quo hypothesis is difficult because the threat of protection
is not observed and must be distinguished from actual protection.12 Blonigen and
Feenstra (1997) have proposed a solution using a less aggregated panel dataset of
Japanese FDI in the US across 4-digit manufacturing industries from 1981 to 1988.
First, they define the threat of protection in industry i and year t − 1 as a latent
variable (Z∗) defined by

Z∗it−1 = wit−1γ +ηit−1 (20.19)

i.e. it relies on a set of variables w (including real Japanese import growth, US real
GNP growth). Now, consider that we observe at time t− 1 if an US anti-dumping
action is being engaged (Zit−1 = 1) or not (Zit−1 = 0) by the administration against
Japanese firms in a given industry. Suppose also that,

{
Zit−1 = 1 when Z∗it > 0
Zit−1 = 0 when Z∗it < 0

(20.20)

Hence, a US anti-dumping action (Zit−1) at time t− 1 is an indicator of the threat
of protection (Z∗it) at time t. In a first step, model (20.19) is estimated as a pooled
probit model (a random effects model would be probably a better solution) which
allows the authors to compute the predicted probability of protection Ẑit−1. Finally,
this variable is introduced in the Japanese FDI equation:

FDIit = xitβ + Ẑit−1δ+ εit (20.21)

12 A previous attempt to evaluate quid pro quo FDI was done by Ray (1991). Unfortunatly, the
analysis is conducted at industry level, probably inappropriate because trade protection is more
often product-specific.
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where xit contains a variable measuring actual protection in addition to Ẑ. Then,
this specification evaluates separately actual protection and threat effects. Equation
(20.21) can be estimated in a convergent way by OLS if ηit−1 is independent of
εit .13 In fact, as FDI values are not systematically reported in their database (ITA),
the authors choose to specify their dependent variable in the second equation as
the discrete number of FDI occurrences in a 4-digit industry in year t. As a result, a
random effects negative binomial specification14 is adopted which is an extension of
the Poisson model by introducing an individual unobserved effect in the conditional
mean (each industry is assumed to be characterized by a specific propensity to do
FDI). The main result is that Japanese FDI are highly sensitive not only to the actual
anti-dumping measures but also to the threat of such measures.

Finally, notice that without the use of panel data (sectors/firms and time), it
is probably impossible to split tariff-jumping and qui pro quo effects. Neverthe-
less, the random effects negative binomial specification requires that xit to be
strictly exogenous conditional on the unobserved effects. As R&D expenditures
are included in the regressors, this may raise some problems. As suggested by
Hausman, Hall and Griliches (1984), it would be useful to estimate a fixed effects
negative binomial model which allows for dependence between xi and the unob-
served heterogeneity term.

20.4.2.3 Effects of Periods of Trade Liberalization

Another way to assess the impact of tariffs on FDI is to study how MNFs react
during trade liberalization periods or when regional economic integration occurs.
Over the past years, there has been an important increase in efforts among countries
to achieve regional economic integration. Trade agreements largely differ on the
degree of integration they imply: free-trade areas (NAFTA-1994, EFTA-1960); cus-
toms unions (Mercosur-1995), common markets (European Single Market-1992);
or economic unions (Maastricht Treaty on the European Union-1998). Most studies
on the relationship between regional integration and FDI have focused on the EU
and NAFTA experiences.

Concerning NAFTA, an interesting analysis is due to Feinberg and Keane (2001).
They analyze the effects of US and Canadian tariff reductions on the production lo-
cation decisions of 701 majority-owned US-based MNF parents and their Canadian
affiliates.15 Their study has two main interesting features. First, data are observed
at a firm level (and not as usually at a more aggregated one industry and/or coun-
try level) over a relatively large period (1983–1992) that includes both the Tokyo
Round and the Canada-US Free Trade Agreement. Such panel data allow authors
to examine the effects of tariff reductions on changes in MNF production-location
and, at the same time, to control for time, firm and industry effects. Secondly, the

13 See the discussion in Blonigen and Feenstra (1997), and especially footnote 10. See also
Maddala (1983).
14 See Hausman, Hall and Griliches (1984).
15 They observe that US and Canadian tariffs dropped by approximately 62.5% from 1983 to 1992.
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authors use a random coefficient approach.16 The regression model is expressed as
follows:

Yit = β0 +(β1 + μi1)CTit +(β2 + μi2)UTit (20.22)

+(β3 + τi)TRENDt +β4Zit +φi + εit

with εit =ρεit−1 +ηit

where μi1 � N(0,σ2
μ1

), μi2 � N(0,σ2
μ2

) and τi � N(0,σ2
τ ). The variable Yit is de-

fined in different ways, for instance exports from Canadian affiliate i to its US parent
or exports from US parent i to its Canadian affiliate. CTit and UTit are respectively
Canadian and US tariffs in the industry to which firm i belongs at time t, and Zit

includes others exogenous variables like transport costs, relative factor costs, GDP
for each country and manufacturing wages. Such a specification has several ad-
vantages. First, the μi’s may capture across-firm heterogeneity in tariff responses
whereas τi and φi control for heterogeneity in the time trend (business cycle) for the
former and for unobserved time-invariant firm specific characteristics for the latter.
Note also that this specification is quite parsimonious if we compare it to a fixed
effects approach. Second, once the population mean for each β and the variance of
the βis are estimated, the authors construct estimates (a posteriori) of the individual
firm βi. Then they compute the mean of each βi within several industries defined
at the disaggregated 3-digit level. Lastly, they decompose the total variance of the
firm-specific βi between across- and within-industries. The main results are twofold.
First, the effect of Canadian tariff reductions on US parent exports to Canadian affil-
iates is very low (a 1% reduction in the Canadian tariffs increases US parent sales to
Canadian affiliates by 1.6% on average, and moreover, the coefficient is significant
only at the 20% level). At the same time, reductions in the US tariffs imply a greater
Canadian affiliate production for sales into the US. Hence, trade liberalization ap-
pears to have been trade-creating. . . and does not induce a “hollowing out” of Cana-
dian manufacturing. Second, within-industry (firm) effects explain more than 75%
of the variance in the random tariff coefficient. So, firms’ response to a change in
the tariff depends heavily on unobserved firm characteristics (technology and orga-
nization). Industry characteristics (scale economies and product differentiation) are
not a major determinant of the pattern of adjustment even if the industry is narrowly
defined. Nevertheless, as noted by the authors themselves, the random coefficients
specification may not be adequate if adjustment costs in production are high and if
a negative cross-sectional correlation exists, at the preliberalization period, between
tariffs and trade flows.17 In this case, a fixed-effects Tobit model may be a solution,
but its estimation is computationally more difficult.

16 In fact, the model is a random effects tobit model, estimated by ML, because some Yit are equal
to zero, when, for instance, affiliates produce and sell all their production in Canada.
17 See footnote 16, p. 127 in Feinberg and Keane (2001) for more details.
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Concerning the EU, there exist many studies on the impact of the various stages
of the integration process on FDI.18 Typically, regional trading groups, currency
unions. . . are captured by dummy variables. More recent works on this topic rely
on two further considerations. First, an integration process takes time to be imple-
mented and absorbed by the economies. So, integration effects must be modeled
in a dynamic way, in order to distinguish between short-run and long-run effects
and between announcement and post integration effects. Second, as it is necessary
to control for many unobserved factors (host and home countries, time, integration
phases effects), many dummies have to be introduced in the model, which can lead
to a serious loss of degrees of freedom and/or multicollinearity problems. Several
recent papers deal with these issues.19

Egger and Pfaffermayr (2004-b) try to isolate the impact on FDI of three EU
integration phases: the Single Market Program, the 1995 enlargement of the EU and
the Agreements between the EU and the Eastern European countries. They use a
FDI gravity model with bilateral and time effects in which they add 20 bilateral
integration group effects (e.g. EU 12, EFTA, rest of the World, CEEC) interacted
with all the three phase dummies (1986–1992, 1993–1994 and 1995–1998) that
gives 60 integration dummies. The model, estimated by the within estimator20, may
be defined as:

FDIi jt = xi jtβ +α +λt +δi j +πkp +ui jt (20.23)

where p (= 1,2,3) represents the integration phase and k (= 1, . . . ,20) the country
group. The estimation period is 1986–1998 and the unbalanced panel contains 3642
observations (with 13 home and 55 host countries). The main conclusion is that the
integration effects on FDI are substantial and positive, but largely anticipated by
the countries. Once the integration process is officially completed, regional integra-
tion has no more effects on FDI. However, the difference-in-differences estimator
does not eliminate factors evolving differently over time between countries. So, if
unobserved heterogeneity remains in the data, omitted variable bias may be a real
problem. Moreover, as the number of countries is not “large” in this work, correct
inference may be complicated (see Wooldridge (2003)).

In a very detailed work, Nicoletti, Golub, Hajkova, Mirza and Yoo (2003) use
new structural policy indicators constructed by the OECD to estimate the impact
of various trade policies on trade and FDI. Among many factors (FDI restrictions,
bilateral tariffs and non-tariff protection), they study the role of belonging to a free
trade area on FDI. They estimate two bilateral equations of FDI (one for outward
stocks, one for outflows). The general model is

18 One of the first attempts is given by Brenton, Di Mauro and Lucke (1999) who unfortunatly do
not use the panel dimension of their data.
19 There is a growing empirical literature on this subject, e.g. Girma (2002), Mold (2003),
Altomonte and Guagliano (2003), Bevan and Estrin (2004), Carstensen and Toubal (2004) and
Yeyati, Stein and Daude (2003) among others. More recent papers take into account the endo-
geneity of free trade agreements (Baier and Bergstrand (2007)) by of estimating a model on panel
data with IV and control-function techniques.
20 Also called, in this context, the difference-in-differences estimator.
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FDIi jt =∑x βxXi jt +∑c βcCit +∑p βpP jt (20.24)

+αi +α j +αit +αi j +α jt +ui jt

where i (resp., j) represents the home (resp., host) country, FDIi jt is the log of bi-
lateral FDI outward stocks or flows at time t, Xi jt are country-partner pair specific
variables,Cit are country specific variables, and Pjt are partner pair specific vari-
ables. As in Egger and Pfaffermayr (2004-b), the model contains many dummies in
order to control for observed and unobserved factors relative to time and (host and
home) countries. Nevertheless, Nicoletti et al. adopt a different estimation strategy.
Host-specific and home-specific effects are eliminated by using “transformed least
squares”, i.e., by expressing the data as deviations from the average home country
or the average host country. In this way, all home and host specific dummies are
removed from the model. They use OECD data described in the previous section, so
potentially 28× 27× 21 = 15876 observations are available, but, due to numerous
missing values, only about 4500 are used in the estimations. The main conclusion
is that participation in free-trade agreements has had significant quantitative effects
on FDI, particularly within the EU. For instance, they estimate the increase in FDI
stocks to be up to 100% for Czech Republic, Hungary and Poland between 1990
and 2004.

As shown by the two previous works, dynamic aspects (e.g. anticipations)
seem to play a major role when one tries to assert effects of regional integration
on FDI.

20.4.3 Testing the Relationship Between FDI
and Exchange Rate

In the second half of the 1980s the value of the yen increased while the dollar ex-
perienced a sharp depreciation. This phenomenon could explain why Japanese FDI
increased rapidly in the US during this period. However, the relationship between
the exchange rate and FDI is not evident. Under the assumption of a perfect inter-
national credit market, firms have the same advantage/disadvantage to purchase any
particular asset abroad or at home. In other words, entrepreneurs are able to borrow
at the same opportunity cost whatever their location and their nationality. Conse-
quently, the variations of exchange rates do not affect the structure of the private
capital account of countries’ balance of payments between portfolio investment and
FDI. Since the beginning of the 1990s, imperfections in the capital market have
become the main argument used in the literature to justify why it is necessary to
revisit the relationship between exchange rates and FDI. This question is discussed
in the next subsection. We will report empirical studies that highlight the role of
imperfections on the product market, on the one hand, and, the volatility of the ex-
change rate, on the other hand, in the relationship between exchange rate and foreign
investments.
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20.4.3.1 Role of Imperfections on Capital Markets

Two types of capital market imperfections play a key role in the relationship between
the decision to produce abroad and the exchange rate: the existence of asymmetric
information and the capacity of banks to grant loans.

Froot and Stein (1991) propose an adverse selection model where there exists
asymmetric information between lenders and borrowers/firms about the future profit
from an investment project. Moreover, the creditors incur a monitoring cost if they
want to observe the profit realized by the borrowers. This monitoring cost is what
causes external resources to be more expensive than internal resources and explains
why firms do not finance the whole of their investment by loans. The investment
project concerns the purchase of a domestic firm either by another domestic com-
pany or by a foreign multinational firm through a bidding process. As the domestic
currency experiences a real depreciation, the self-financing capacity of the MNF
grows relative to that of the other domestic bidder, so that (ceteris paribus) the MNF
increases its probability of winning the auction. From this analysis, the link between
real exchange rate and FDI is obvious.21

To verify the validity of these different theoretical arguments, Froot and Stein
(1991) use annual panel data coming from the International Trade Administra-
tion (ITA) of the US Trade Department and for the period 1977–1987. From this
database, the authors examine whether the wealth effect may be differentiated across
industries or across different types of FDI. Indeed, the US FDI inflows are disaggre-
gated by source country, and by industry as well as by type of purchases/transactions
(plant acquisition or expansion, merger and acquisition, joint-ventures). Results sug-
gest that the real exchange rate has not the same effect on the different parts of the
total foreign capital inflows into the US. The dollar variations only have a significant
effect on inward direct investments, as expected. The estimates of the real exchange
rate effects seem more convincing at the level of the different types of FDI transac-
tions. The exchange rate has a statistically significant impact with the right sign on
FDI associated with mergers and acquisition operations.22

Nevertheless, as the model is estimated by pooled OLS, it does not take into
account individual or time effects. This limit is important since no other variables
are introduced in the model which control for the alternative explanations of FDI
(such as distance, trade costs).

This criticism has been removed by Klein and Rosengren (1994). They adopt the
approach retained in Froot and Stein (1991) but consider a fixed-effects specifica-
tion to take into account the heterogeneity between the source countries. Moreover,
considering that the ITA data used by Froot and Stein (1991) are not necessarily
comprehensive, Klein and Rosengren prefer to complete their empirical analysis

21 This analysis does not hold for other types of inward investment such as foreign investment in
Treasury securities or in corporate stocks and bonds. For these portfolio investments, the monitor-
ing costs are expected to be small and, thus, uncorrelated with the real exchange rate.
22 The exchange rate has also a significant impact on joint-ventures and new plant FDI. This last
result is problematic since the bidding approach developed by authors does not really concern these
types of transaction.
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by using the BEA measure of FDI although this includes foreign acquisitions of
existing American-target firms and the establishment of new plants by MNF.23 The
available sample for the BEA series is over the 1979–1991 period while the ITA
annual data concern 1977–1987. As in Froot and Stein, the real exchange rate has
always a statistically significant impact with the right sign not only on FDI, as a
whole, but also on foreign mergers and acquisitions operations. Note that in accor-
dance with the theoretical conclusions of Froot and Stein, the effect is lower on FDI
than on mergers and acquisitions. On the other hand, as a log–log specification is
only used by Klein and Rosengren, it is difficult to know whether the estimation
of the fixed-effects model really modifies the values of the parameters compared to
the pooled OLS estimation. In order to control for alternative explanations for FDI,
Klein and Rosengren introduce as a regressor in their model the relative-labor-cost
between the US and the source countries. They find that the wealth effect is always
at work for FDI through mergers and acquisitions in the US while the relative-labor-
cost has no impact. Then, these different results suggest the empirical validity of the
conclusions drawn by Froot and Stein. However, the potential correlation between
the disturbances of the models relative to the different type of FDI is not taken into
account through, for example, SUR estimation.

However, during the mid-1990s, Japanese FDI fell whereas the yen appreciated
significantly. To explain this feature, Klein, Peek and Rosengren (2002) focus on
the role played by the financial intermediation. In a country where the relationships
between firms and banks are very close, the financial intermediation is dominant. In
this context, firms’ ability to engage in FDI is influenced by the capacity of banks
to grant loans. It is the relative access to credit (RAC) hypothesis. In the 1990s,
the Japanese bank sector experienced a collapse causing Japanese firms to be con-
strained in the financing of their investment projects. Thus, the value of Japanese
FDI as a share of total inward US FDI reached a peak of 30% in 1990 and then
declined during the following years by only 1% of total inward US FDI by 1998. It
is the validity of the RAC hypothesis that is tested by Klein, Peek and Rosengren
(2002).

A database is constructed by Klein et al. from firm-level FDI ITA over the pe-
riod 1987–1994. They use the number of FDI projects since the amount of FDI
is not systematically available. Moreover, Japanese firm characteristics (size, prof-
itability, market value and industry) come from the Pacific-Basin Capital Markets
Databases. From the Japan Company Handbook, are identified the 11 primary (first
referenced) banks of the Japanese firms included in the sample. During the sample
period, few Japanese firms change their primary bank. In order to obtain an indepen-
dent/objective evaluation of the banks’ financial health and their evolution over the
sample period, Klein, Peek and Rosengren (2002) use the time series of Moody’s
long-term deposit ratings. Thus, the authors exploit the time-heterogeneity between
banks although all of them experienced a downgrade in their Moody’s ratings during
the last years of the period. The empirical model is represented as follows:

23 Despite the difference in definition of FDI, the correlation between the BEA measure and the ITA
measure is quite high (0.86). This result confirms the preponderance of mergers and acquisitions
in the US inward FDI.
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RATEFDIit = α0 +α1DPROFITit−1 +dratingit−1β (20.25)

+dmacroit−1γ + εit

where εit � N(0,σ2). In this specification, the dependant variable, RATEFDIit , is
the variation rate in the number of FDI projects toward the US, financed by Japanese
primary bank i during year t. dratingit−1 contains two measures of changes of
Moody’s long-term deposit ratings for the Japanese main banks. A first dummy
variable takes the value 1 if the bank i has a change in its rating, during year t−1,
and 0 otherwise. Its effect on FDI is a priori negative. A second dummy variable is
introduced. Its coefficient is also expected to be negative because this variable takes
the value 1 when there are two or more downgrades and 0 otherwise. DPROFITit−1

corresponds to the variation of the profit sum of the firms associated with bank i.
This variable measuring the change in the health of firms is assumed to favor FDI.
dmacroit−1 contains a set of three macroeconomic variables intended to control for
differences in wealth and economic activity between Japan and the US. The first
variable is introduced to control the variation of wealth between both countries in
the spirit of Froot and Stein (1991). The impact of this variable on FDI should be
positive. The change in the US unemployment rate and the change in the Japanese
job-offers-to-applicants ratio are used to control for the macroeconomic business
cycle in both countries. The effect of these two variables on Japanese FDI to United
States is assumed negative.

The coefficients estimated are in accordance with the expectations. Thus, the
multiple-level (single-level) downgrade of a bank during the period causes a 70%
(30%) reduction in the number of Japanese FDI projects that use this bank as their
main lender. On the other hand, the wealth effect is not statistically significant,
weakening the argument developed by Froot and Stein (1991). Then, the decreasing
number of the Japanese FDI projects in the US over the 1990s seems to be explained
by the collapse of the Japanese banking sector rather than by the loss of competi-
tiveness of the Japanese Firms. Moreover, to show the robustness of their estimates,
Klein, Peek and Rosengren (2002) provide estimates from two restricted samples
including only multiple-year FDI firms or banks financing the most FDI projects. In
fact, the individual effects, which are likely to be correlated with some regressors,
have not been removed by the variable transformation used. Indeed, the first differ-
ence transformation is not applied to the explained variable since DFDIit is a rate.
Therefore, the estimation method is pooled OLS which is biased and inconsistent.

20.4.3.2 Role of Imperfection on Product Markets

The relationship between FDI and the exchange rate can also be explained by imper-
fections in the product market. Blonigen (1997) establishes three conditions for the
existence of a specific relationship between the (real) exchange rate and FDI. First,
the opportunity to purchase a target firm which owns a specific asset. The transfer
of this specific asset is realized at a low cost between different facilities whatever
their nationality. The target firm may be bought either by a (US) domestic firm or by
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a (Japanese) foreign one. Second the domestic and foreign markets are segmented.
This market imperfection challenges the law of one price and price adjustments that
could compensate for a change in the nominal exchange rate. Third, the access to
the foreign market must be limited to the domestic firm. Otherwise, both acquiring
rivals would have the same return on the specific asset abroad. Then, the domes-
tic firm knows entry barriers on the foreign market. These three conditions being
verified, a real depreciation of the domestic currency (the US dollar) relative to the
foreign one (the yen) leads to an increase in the surplus of the foreign firm. Con-
sequently, the foreign firm has an incentive to make a higher bid than its rival for
buying the target firm. The direct consequence is that a greater foreign acquisition
of the US assets must be expected during a period of real dollar depreciation, other
things being equal. This analysis exclusively concerns the inward FDI associated
with mergers and acquisitions operations.

From a balanced panel of 361 industries both manufacturing and nonmanufactur-
ing over the period 1975–1992, Blonigen (1997) analyzes the positive relationship
between the number of Japanese acquisitions by industry and by year (NFAit) into
the US and the real exchange rate (RERit) at industry level.24 The specification has
the following form:

Pr(NFAit ) = f (RERit ,Ωit ,Ψit) (20.26)

where Ωit includes variables having an important role in this approach: (i) the num-
ber of acquisitions of US target firms by other US firms (proxying the supply of
specific assets on the US market); (ii) the share of Japanese value added in each in-
dustry (for the US market penetration of Japanese firm); (iii) the annual real growth
of Japanese GDP (a proxy for Japanese demand for specific assets); (iv) the annual
growth in the Tokyo Stock Price index (its effect is assumed positive). This variable
is used as a proxy for the outgrowth of the speculative “bubble” economy of Japan
in the late 1980s and early 1990s. The variables included in Ψit must control for
other explanations found in the traditional literature on FDI, analyzed previously.

The data on the number of foreign acquisitions are typical of count data which
can vary from zero to several or even many, for some industries. The negative bi-
nomial model (Hausman, Hall and Griliches (1984)) is used for estimation and rep-
resents a generalization of the Poisson distribution with an additional parameter
allowing the variance to exceed the mean. Indeed, for the manufacturing and non-
manufacturing sectors over the 1975–1992 period, the number of Japanese acquisi-
tions (NFA) is ranged from 0 to 89, with a mean of 16 and a standard deviation of
20. Beyond this problem of overdispersion (or underdispersion), the model includes
individual fixed or random effects to take into account the cross-sectional hetero-
geneity. From this model and under the assumption of fixed effects, Pr(NFAit) can
be written as,

Pr(NFAit) =
Γ(λit +NFAit)

Γ(λitΓ(NFAit +1)

(
θi

1+θi

)λit
(

1
1+θi

)NFAit

(20.27)

24 The dollar value for acquisitions is not retained as a dependent variable since it is missing for
over one-third of the observations.
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where Γ is the gamma function. The parameter θi is the individual effect while λit

depends on the covariates by the following function:

lnλit = αRERit +Ωitβ +Ψitγ (20.28)

Under the assumption that NFAit are independent over time, ∑t NFAit also has a
negative binomial distribution with parameters θi and ∑t λit . In a context of random
effects now, to permit a tractable negative binomial mass function, θi/(1+θi) is as-
sumed to be distributed as a beta random variable with shape parameters (a, b). The
model with fixed or random effects can be estimated via the maximum-likelihood
method Greene (2004).

The estimates of both types of models support the main hypotheses formulated
by Blonigen (1997). In other words, a real appreciation of the yen relative to the
dollar leads to an increase in the number of Japanese acquisitions in the US. This
result holds for manufacturing industries rather than for nonmanufacturing and for
the industries with high levels of R&D. Moreover, the parameters associated with
the US supply and Japanese demand of specific assets have the positive expected
sign. On the other hand, the alternative explanations of Japanese FDI based on the
US tariff-jumping and the Japanese speculative bubble are unsatisfactory. Therefore,
these different results exhibit in accordance with Froot and Stein (1991) a wealth ef-
fect. However, this effect is mainly present in industries where specific assets like
innovation are present and it concerns foreign mergers and acquisitions, the most
important component of FDI. Then, this analysis goes further into the specific rela-
tionship between FDI and exchange rate.25

However, no proxies are introduced to estimate the level of entry barriers in the
Japanese markets for the US firms while this is one hypothesis among the most
important of this original approach. Moreover, the estimates from random and fixed
effects models are both reported but they are not compared using a Hausman test
to indicate whether the industry-specific effects are correlated with the regressors.
Without results of this specification test, it is difficult to deduce the appropriateness
of both models. Another important issue is how to introduce the fixed effects in the
negative binomial model. In this case, the fixed effects are conditioned out of the
likelihood function (see Allison and Waterman (2002)).

20.4.3.3 Role of the Exchange Rate Volatility

Since the 1970s and the end of generalized system of fixed exchange rates,
economists have also devoted much attention to the effects of exchange rate volatil-
ity on FDI. The effect of volatility of the real exchange rate on FDI depends on
whether firms may choose to export or to invest abroad, on their behavior towards
risk and on their expectations about the future profits from FDI.

25 These results are broadly supported by the empirical analysis of Guo and Trivedi (2002) that
assigns the industries to high- and low-sensitivity FDI categories relative to the exchange rate
movements.
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Following Dixit (1989), Campa (1993) develops an option model to explain why
the MNF make FDI or not (see also Altomonte and Pennings, 2003). In this frame-
work, as opposed to the traditional theory of investments under uncertainty, the ex-
pected future profits of a MNF, assumed risk-neutral, take into account the exchange
risk of entering the foreign market.26 Assuming the future values of the nominal ex-
change rate are lognormally distributed with a variance σ that grows linearly with
the time horizon. Then, even if a positive drift may lead to an appreciation of the for-
eign profits in domestic currency, at the same time the volatility in the future of the
nominal exchange rate may be too important to discourage FDI. In fact, the MNF
retains an option to enter the foreign market at any moment in time. This option has
a price which is the sunk cost of entering the market through FDI. This sunk cost
makes an irrevocable commitment of the MNF when it exercises the option. More-
over, the value of the option– equivalent to the value of the investment opportunity-
is the expected present discounted value of future profits from serving the foreign
market minus the amount of FDI realized at time t. Here, the decision to make FDI
is equivalent to deciding at which time to exercise such an option. The MNF holds
back for an extra period (e.g. stays out of the foreign market one more time) as long
as the expected change on the option’s value is higher than the expected return of
the present time. From his theoretical model, Campa (1993) deduces some predic-
tions about the effects of exchange rate volatility on FDI. The higher the exchange
rate R, the rate of change μ and the uncertainty σ , the more valuable the option to
enter is and the fewer events of entry observed. Furthermore, the lower the marginal
cost MC and the cost to entry in the foreign market k, the higher the expectation of
future profits from the activity abroad. Note that the marginal cost is not expressed
in foreign currency since Campa (1993) limits his empirical analysis to FDI related
to wholesale activities. Thus, the model concerns a MNF producing a good in the
home country and selling it in a foreign market via a sales subsidiary. The veri-
fication of these different predictions allows the author to construct the following
reduced form:

n∗it = f (μ ,σ ,e f/$,k,MC) (20.29)

where the explained variable, n∗it , is the number of MNF that enter the US wholesale
trade industry i in a given year t. The construction of regressors μ and σ depends
on the MNF’s expectations about the evolution of these two variables in the future.
These two variables correspond to the average and the standard deviation, respec-
tively, of the monthly change in the logarithm of the anticipated exchange rate. Two
types of anticipation are considered: perfect and static expectations. The exchange
rate level e f/$ is defined as the annual average of the exchange rate in units of do-
mestic currency of the MNF per one unit US dollar, in the year of entry. The level of
the sunk costs k is proxied by two variables. The first regressor is the ratio of fixed
assets to net wealth of all US firms in an industry and the second is the ratio of me-
dia expenditures to turnover in each US industry. The marginal cost MC is proxied

26 Note that the uncertainty can also concern the foreign production costs (see Brandao De Brito
and De Mello Sampayo, 2002)
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by the unit labor cost w since capital is assumed fixed, its cost being included in the
entry cost k.

The database is a panel of 61 US wholesale trade industries, defined at the four-
digit level, for the period 1981–1987. This sample contains a total of 768 entries of
MNF in the US. Even though the MNF come from 35 different countries, the geo-
graphical concentration of origin countries is high. Thus, Japan, the UK, Germany,
France and Canada account for almost 80% of the 768 foreign entries on the US
markets. The dependant variable n∗it is censored since it takes values from 0 to 40
with a large fraction of zeros. To take account of the truncated distribution of the
dependant variable, Campa (1993) uses a Tobit estimation.

The estimates are in accordance with the predictions of the theoretical analysis.
Thus, the estimated parameters have the right sign, except for μ . The uncertainty of
the exchange rate has a significant negative effect on the number of MNF entering
the US markets. The labor cost w is not significant in the estimates weakening the
range of the theoretical model. Nevertheless, both proxies of the entry costs Sunk
and Adv have significant negative coefficients while the level of the exchange rate
R has a positive effect, as expected. However, this last result is the opposite of the
conclusions of previous papers where the specific relationship between FDI and the
level of exchange rate is explained through market imperfections. In fact, the wealth-
effect argument developed by Froot and Stein (1991) is not valid in the present
analysis. Indeed, this argument concerns only the FDI realized in manufacturing
industries and it cannot be used for FDI in wholesale trade industries.

20.5 Some Recent Econometric Issues

The use of panel data presents specific features which introduce econometric com-
plications. In this last section, we discuss two main problems that have been recently
treated in the estimation of FDI models.

20.5.1 FDI, Panel Data and Spatial Econometrics

The first problem concerns the specification of the empirical model. Recent theo-
retical developments have stressed that a MNF may engage in FDI activities de-
pending not only on home and host characteristics, but also depending upon the
neighboring host’s specificities. First, a multinational firm may use a host country
as an export platform to other near markets for minimizing trade costs. Second, it
may also split its production in several vertical units with respect to the relative fac-
tor costs between countries. By definition, an econometric bilateral model of FDI
does not take into account the specificities of the neighboring host country. In order
to control for the correlation between inward FDI of one country and FDI of its
neighbors, we may use spatial panel data model estimation methods. Baltagi, Egger
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and Pfaffermayr (2007) and Blonigen, Davies, Waddell and Naughton (2007) are
two interesting studies on this topic. The first one analyzes US outward FDI stock
in country-industry pairs (in 1989–1999) whereas the second one focuses on FDI
from the US to 20 OECD countries (between 1980–2000). We can summarize their
approach as follows (for simplicity, we present mainly the Blonigen et al. method-
ology, which is simpler – but less general – than Baltagi et al.). Consider that the
data are sorted by time t (first sort key) and by host country j (second sort key), so
we can omit the t index. For simplicity, we present the specification assuming that
the panel is a balanced one (Nt = N),

fdi = X×β +ρ×W× fdi+u (20.30)

where fdi and u are N × 1 vectors (row j refers to the host country j) and X is
a N× k matrix of regressors. ρ ×W× fdi reflects the spatial autoregression term,
where W(N×N) is a (row normalized) spatial lag weighting matrix (for each year
t) (see Chap. 19 in this volume for the expression of W) where the components
(w(di j)) are a weighted function depending upon the distance between country i and
country j. According to Blonigen et al., a positive ρ means an agglomeration effect
or vertical production organization while a negative ρ suggests FDI are used for
export-platform reasons. Further, the spatial error term is defined as

u =ρ ′Wu+ ε

with |ρ ′| < 1. Notice also that the Baltagi et al. specification is more general since
it includes country-industry-pairs effects and also spatially weighted average of re-
gressors. Errors are spatially correlated when ρ ′ �= 0. However, recall that OLS es-
timators are still consistent but are inefficient. Finally, one interesting aspect of this
model is that W× fdi is endogenous and correlated with u. To estimate this model,
Blonigen et al. apply a maximum likelihood method while Baltagi et al. use the fixed
and the random effects 2SLS estimator (using the second and third order spatial lags
of the exogenous regressors as instruments).

In Blonigen et al. and Baltagi et al., estimations exhibit a significant spatial de-
pendence, which is negative in the former article and positive in the latter article. In
addition, spatial correlation of errors are only detected in Baltagi et al. Even though
results are different in some respects, the estimation of a spatial panel data model
of FDI is required in order to control for the correlation between the inward FDI of
different neighboring countries.

20.5.2 Exchange Rate, Unit Roots and Cointegration

As many empirical analysis on FDI very often use non-stationary variables and
models in levels, it is necessary to test for unit roots and cointegration in order
to avoid spurious regressions. This is a particular problem in FDI-exchange-rate
models while it is not treated in the empirical literature (see for example Froot and
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Stein (1991) and Klein, Peek and Rosengren (2002)). Up to now, there have been
few studies analyzing FDI determinants on panel data with this methodology which,
in the context of countries panel data estimation, presents several specific features.

On the one hand, it is frequently advanced that panel-based unit root tests have
higher power than unit root tests based on time series. Indeed, as countries’ data are
used for FDI analysis, panel data sets are sometimes characterized by large N and
large T dimensions. An illustration of such tests is given by Hsiao and Hsiao (2004)
who use an (unbalanced) panel data with only 5 countries observed between 1987
and 2002. They apply several tests (for example IPS and ADF-Fisher tests27) and
conclude that FDI is stationary, the exchange rate, GNP and wage differential vari-
ables are not. Moreover, they show that the first differences of the non stationary
series are I(0), so these variables are integrated of order one. These results seem to
be frequently encountered even if the opposite conclusion is often obtained in the
literature about the stationarity of FDI.28

On the other hand, given this result, the estimation of FDI determinants, using
cross-countries data over time, raises several other issues. First, if the micro relation-
ships are made of I(1) variables where each country has its own specific cointegrat-
ing relation, it is probably better to estimate the model on each country separately.
Nevertheless, with too few annual periods, making inference in such a context may
be difficult. Second, a solution to deal with spurious regressions is to take first differ-
ences of the I(1) variables and to apply usual panel data estimators in a framework
of pooling with I(0) variables. Nonetheless, in this case, variables that are constant
in the time dimension are removed from the model and a part of the long-run in-
formation is removed. For these reasons, De Santis, Anderton and Hijzen (2004)
and Hsiao and Hsiao (2004) suggest proceeding in two steps. First, panel cointe-
gration tests are applied in order to guard against the spurious regression problem.
Once again, using panel data may improve the small sample properties of such tests,
even if there is not general agreement on this point. From several tests (e.g. multi-
variate augmented Dickey–Fuller, Im–Pesaran and Shin tests), they reject the null
hypothesis that the residuals of the panel regressions are I(1), i.e. they reject the null
hypothesis of no cointegration in their panel data. Second, they must decide how
to do estimation and inference in panel data cointegration models.29 Among many
possibilities (e.g. OLS, Mean group, FMOLS, Within estimators), the two studies
choose to use the within estimator. Indeed, as the residuals of the within estimator
are stationary, within estimates are probably not spurious.30 Moreover, when T is
large and N is moderately large, Phillips and Moon (1999) shows that the within es-
timator consistently estimates in many cases the long-run effects and has a limiting
normal distribution.

27 See Chap. 9 in this volume.
28 See Brandão de Brito and Mello Sampayo (2004).
29 Brandão de Brito and Mello Sampayo (2004) estimate the cointegration relationships and the
error-correction mechanism equations for each country separately. As T = 7, it is not sure that such
an approach is correct.
30 As the De Santis, Anderton and Hijzen (2004) model is a dynamic one, they applied also the
Arellano-Bond estimator on first differences and find similar results.
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Hsiao and Hsiao (2004) study the determinants of FDI flows in China from
Hong Kong, Japan, Taiwan, Korea and the US between 1987 and 2002 (N = 5
& T = 14,15 or 16) whereas De Santis, Anderton and Hijzen (2004) analyze
the factors influencing stocks of FDI in the US from eight Euro area countries
(1980–2001), so that N = 8 and T = 22. Even though the data sets used are different,
the specifications are somewhat closed and include some common regressors (lag
FDI, exchange rate, GDP and wage differential). Limiting the presentation to the ex-
change rate, in both studies, a negative and significant relationship is found between
the exchange rate and FDI. Nevertheless, as lag FDI is included in the regressors
list, it is questionable that the Phillips and Moon (1999) results apply.
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Chapter 21
Stochastic Frontier Analysis and Efficiency
Estimation

Christopher Cornwell and Peter Schmidt

Theoretically, a production function gives the maximum possible output with a
given set of inputs. This is different from its common regression counterpart, which
specifies the conditional mean of output. The production function defines a bound-
ary or “frontier”, deviations from which can be interpreted as inefficiency. The
econometrics of stochastic frontier analysis (SFA) provides techniques for mod-
elling the frontier concept within a regression framework so that inefficiency can be
estimated.

Obviously, the notion of a frontier can be extended to other representations of
technology. Further, with behavioral assumptions like cost minimization, allocative
inefficiency can be distinguished from the technical errors. We discuss ways to make
this distinction empirically, but in this chapter we concentrate primarily on the es-
timation of production frontiers and measures of technical inefficiency relative to
them.

The literature on SFA is now roughly 30 years old and surveys have appeared
periodically (Førsund, Lovell and Schmidt (1980), Schmidt (1985–86), Lovell and
Schmidt (1988), Bauer (1990) and Greene (1993)). In addition, the literature has
been given a textbook treatment by Kumbhakar and Lovell (2000). Aside from re-
viewing recent advances in SFA, this chapter differs from the earlier surveys in its
focus on the use of panel data and attention to questions of econometric and statis-
tical detail.

In general, the frontier specifications we consider are variants of the general
panel-data regression model:

yit = αt +x′itβ + vit −uit = αit +x′itβ + vit , (21.1)
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where yit is output for firm i (i = 1, . . . ,N) at time t (t = 1, . . . ,T ), xit is a
vector of inputs and vit is a random error. In contrast to vit , uit is a one-sided
error (uit ≥ 0), capturing the shortfall of yit from the frontier, (αt + x′itβ + vit),
The term “stochastic frontier” follows from the fact that the frontier specification
includes vit .

Defining αit = αt − uit , we have a model in which inefficiency is reflected in
differences between firms in the intercepts. Various special cases arise depending
on the restrictions placed on the αit . The early literature on SFA developed in a
pure cross-section (T = 1) context, where identification requires strong assump-
tions about the distributions of vi and ui. The application and extension of panel-
data econometrics to SFA grew out dissatisfaction with these assumptions. The first
panel frontiers treated inefficiency as a time-invariant firm effect, αi = α−ui. Esti-
mates of the αi can be obtained using standard panel techniques and converted into
estimates of inefficiency. The time-invariance restriction can substitute for the distri-
butional assumptions necessary for cross-section SFA. Later work on panel frontiers
introduced specifications for the αit that relax the time-invariance assumption, while
retaining the advantages of panel data.

21.1 Measurement of Firm Efficiency

In general, when we say that a firm produces efficiently, we mean this in both a
technical and allocative sense. Here our emphasis will be on technical efficiency, but
we will pay some attention to allocative efficiency as well, in both cases following
the canonical approach to the measurement problem developed by Farrell (1957).

A firm is technically efficient if it uses the minimal level of inputs given output
and the input mix or produces the maximal level of output given inputs. The first
definition is formalized in Farrell’s input-based measure,

I (y, x) = min[b : f (bx)≥ y] , (21.2)

where I indicates the proportion of x necessary to produce y, holding the input
ratios constant, and f is a standard, neoclassical (frontier) production function. This
measure is illustrated in Fig. 21.1, which depicts an inefficient firm producing output
yA with input vector xA. Technically efficient production occurs along the isoquant,
Isoq[L(yA)] = [x : I (yA, x) = 1], where L(y) = [x : (y, x) is feasible] is the input
requirements set. Because only bxA is required to produce yA, both inputs must be
scaled back by the factor (1−b) to achieve technical efficiency.

While this measure is used widely, its appeal diminishes when the input set is not
strictly convex (the isoquant is not everywhere downward sloping). For example,
the input vector xB is technically efficient according to the Farrell input measure,
although the same level of output could be produced with less of x1. In this case,
a distinction exists between the isoquant and the efficient subset, ES[L(yA)] = [x :
x ∈ L(yA), and x̃ ≤ x implies x̃ /∈ L(yA)], with ES[L(yA)] ⊆ Isoq[L(yA)]. In most
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Fig. 21.1 Farrell measures of technical efficiency

econometric specifications this distinction has no practical significance, because the
functional forms used in empirical work impose equivalence between the efficient
subset and the isoquant (Lovell (1993) and Greene (1993)).

Corresponding to the output-oriented definition of efficiency is Farrell’s output-
based measure,

O(y, x) = min

[
a : f (x)≥ y

a

]
. (21.3)

Holding inputs constant, 1/O gives the amount by which output could be expanded.
From the perspective of the output-based measure, the firm producing yA with xA in
Fig. 21.1 will also be technically efficient if it operates on Isoq[L(yA/a)].

Färe and Lovell (1978) showed that if f is homogeneous of degree r (r =
returns to scale), then y = f (bx) = br f (x) = a f (x) and a = br. Thus, I = O
only under constant returns. When technology is not homogeneous, there is no
straightforward interpretation of O in terms of I , a result that has some im-
plications for how technical efficiency is estimated (Atkinson and Cornwell
(1994a)).

A firm is allocatively inefficient when the marginal rate of substitution between
any two of its inputs is not equal to the corresponding input price ratio. This is true
of the firm using xA in Fig 21.1, instead of the cost-minimizing input vector x∗. Let
p be the input price vector corresponding to the isocost line through x∗. Then the
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(input-based) technical efficiency of the firm producing with xA is b = p′(bxA)/p′xA,
and since p′x∗ = p′xC, its allocative efficiency is the ratio p′xC/p′(bx). It follows
that total or cost efficiency of the firm is given by p′xC/p′xA, or the product of
technical and allocative efficiency.

21.2 Introduction to SFA

21.2.1 The Basic SFA Empirical Framework

We begin with the Farrell output-based technical efficiency measure in (21.3), which
relates observed output, yi, to the production frontier, f (xi; β ), as follows:

yi = ai f (xi; β ), 0 < ai ≤ 1 , (21.4)

The basic empirical framework for SFA is a regression specification involving a
logarithmic transformation of (21.4) that adds a random error term (vi), as in

lnyi = ln f (xi; β )+ vi−ui , (21.5)

where ui =− lnai ≥ 0 represents technical inefficiency and output is bounded from
above by the stochastic frontier f (xi; β )exp(vi). The output-based measure of tech-
nical efficiency is obviously recovered as exp(−ui).

Models like (21.5) were first introduced by Aigner, Lovell and Schmidt (1977)
and Meeusen and van den Broeck (1977). These papers expressed the view that
the frontier specification should be like any other regression function, which is to
say, stochastic. Thus, the vi serve the same purpose as any conventional regression
disturbance—to account for random unobserved factors.

The central econometric issue in models like (21.5) is how to treat the ui. With
cross-section data they are usually assumed to follow some non-negative distri-
bution, conditional on xi. Panel data afford the opportunity to view (21.5) as a
standard unobserved-effects model and avoid the distributional assumption. Other
issues, such as choosing a functional form and the specification for f (xi; β ), are
also important insofar as they affect the estimation of firm efficiency.

21.2.2 Stochastic vs Deterministic Frontiers

The earliest attempts to quantify production inefficiency treated the frontier as de-
terministic, ignoring the role of vi. The classic example of this approach is Aigner
and Chu (1968). Aigner and Chu calculated β as the solution to either the lin-
ear or quadratic programming problem, taking f (xi; β ) to be Cobb-Douglas, and
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computed technical inefficiency as deviations from the fitted frontier. By ignoring
vi, all deviations from the frontier were regarded as inefficiency. Further, because
there is no stochastic structure to these models, it does not make sense to talk about
the statistical properties of their approach.

Closely related to the Aigner–Chu procedure is the non-parametric program-
ming technique of data envelopment analysis (DEA). With DEA the goal is to
“envelop” the data with a quasi-convex hull. Since DEA is non-parametric, it is
robust to misspecification of the functional form for f (xi; β ). See Cooper, Seiford
and Zhu (2004) for a recent survey of DEA.

The analysis of a deterministic frontiers can be made statistical by treating ui ≡
yi− f (xi; β ) as random variables. A simple strategy is assume the ui are iid with
a constant mean μ and constant variance, and uncorrelated with xi. In the Cobb-
Douglas setup of Aigner and Chu, this recasts in problem as a regression of the
form

lnyi = α∗+
K

∑
k=1

βk lnxik−u∗i , (21.6)

where α∗ = (α − μ) and u∗i = ui− μ . Ordinary least squares (OLS) consistently
estimates α∗ and the βks, from which a “corrected” OLS (COLS) estimator of α
can be obtained:

α̂ = α̂∗+max
i

(−û∗i ) , (21.7)

where û∗i = ln yi− α̂∗ −∑k β̂k lnxik. Then, letting ûi denote the corrected residu-
als based on α̂ , technical efficiencies can be estimated as exp(−ûi). However, the
distribution of α̂ is unknown even asymptotically.

Likelihood-based approaches to (21.6) exist as well; for example, the solutions to
the Aigner–Chu linear (quadratic) programming problem is a maximum-likelihood
estimator (MLE) if the ui are exponential (half-normal) (Schmidt (1976)). Still, the
properties of these estimators remain unknown, because the range of yi depends
on β , violating one of the regularity conditions for the usual properties of MLEs
to hold.

Similarly, a statistical analysis of DEA is possible if assumptions are made about
the nature of the randomness in the data. One possibility that has been suggested is
to assume simply that the data points (yi, xi) are a random sample from the set of
feasible production points. Under this assumption, plus some regularity conditions
on the distribution of these points in the neighborhood of the frontier, the DEA
measure is a consistent estimator of the efficiency level of a given firm, and its rate
of convergence is known. The asymptotic distribution theory is rather complicated.
Bootstrapping is also possible, although there are some non-standard features of
the bootstrap that are necessary in this setting. For a survey, see Simar and Wilson
(2000).

We do not recommend deterministic frontiers. This is partly due to our philo-
sophical view of the nature of randomness in the world, and partly due to the relative
complexity of statistical inference in deterministic frontier models.



702 C. Cornwell and P. Schmidt

21.2.3 Other Frontier Functions

Circumstances and objectives sometimes arise that make alternative representations
of technology a more desirable framework for efficiency analysis. These include
the presence of multiple outputs, exogeneity assumptions and interest in estimating
allocative efficiency.

Recently, it has become popular to accommodate multiple outputs through the
use of distance functions (e.g. Coelli and Perelman (1996), Morrison, Johnston and
Frengley (2000), and Atkinson, Cornwell and Honerkamp (2003)), which are di-
rectly related to the Farrell measures of technical inefficiency. For example, the
input distance function is defined as the maximum scale factor necessary to place x
on the boundary of L(y):

DI (y, x)≡max
λ

[
λ :

(
x
λ

)
∈ L(y)

]
, (21.8)

where y is a vector of outputs. The reciprocal of DI is just the Farrell input mea-
sure, which implies b in (21.2) is 1/λ . The empirical counterpart to (21.8) can be
expressed as

0 = lnDI (yi, xi)+ vi−ui , (21.9)

where ui = − ln bi. Estimation of the technology parameters can proceed as a
straightforward application of the generalized method of moments (GMM), since
standard assumptions about xi, vi and ui imply a set of moment conditions that
identify the model (see Atkinson, Cornwell and Honerkamp (2003)). Extracting es-
timates of the ui is possible with the methods described in the next section.

The most commonly adopted strategy for estimating technical and allocative
efficiency together is to adopt a cost function framework. One might also use a
cost function to accommodate multiple outputs or because it is more reasonable to
assume output is exogenous. The usual cost frontier specification is derived from
(21.2) as

C = g

(
y,

p
b

)
= min

bx

[(
p
b

)′
(bx) : f (bx) = y

]
=

1
b

g(y,p) , (21.10)

where C is observed cost, p is a vector of input prices and the last equality follows
from the fact that a cost function is linearly homogeneous in p. Equation (21.10)
leads to empirical models of the form

lnCi = lng(yi,pi)+ vi +ui , (21.11)

where ui = − lnbi. The ui in (21.11) measure cost efficiency, which will generally
include both technical and allocative distortions. Below we discuss how to distin-
guish between the two sources of error.
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21.2.4 SFA with Cross-Section Data

21.2.4.1 Estimating the Basic Stochastic Production Frontier

Estimation of (21.5) usually hinges on distributional assumptions for the vi and ui.
Such assumptions are required to estimate technical efficiency at the firm level with
cross-section data. The usual choices are vi |xi ∼ N(0, σ2

v ) and ui |xi ∼ N+(0, σ2
u )

(half-normal). Other possibilities for ui include exponential, truncated normal and
gamma, and evidence suggests that frontier estimates are not robust to the choice
(Schmidt and Lin (1984)). Given distributions for vi and ui and a functional form
selected for f (xi; β ), the standard approach is to estimate (21.5) by ML and is au-
tomated in popular econometric software such as Stata, TSP and Limdep. There is
also a COLS option for the stochastic frontier case in which the OLS estimator of
the intercept is corrected by a consistent estimator of E(ui), identified through the
higher-order moments of the OLS residuals.

In most cases, the whole point of the frontier estimation exercise is to compare
efficiencies at the firm level. Thus the focus of estimation ultimately is on the residu-

als, but no matter how they are computed, they represent ̂(vi−ui), not ûi. Estimation

of firm-specific efficiencies requires that ûi be extracted from ̂(vi−ui).
Jondrow, Lovell, Materov and Schmidt (1982) proposed an estimator for the ûi

based on E[ui |(vi− ui)] evaluated at ̂(vi−ui). Under the usual assumptions of the
model, consistent estimates of the technology parameters can be obtained via ML

or OLS, from which the ( ̂vi−ui) can be calculated. Although the Jondrow et al.
estimator is not consistent (because the variation associated with the distribution of
ui conditional on (vi− ui) is independent of N), there is no alternative consistent
estimator of firm-level efficiency when using cross-section data.

21.2.4.2 Estimating Technical and Allocative Efficiency

Schmidt and Lovell (1979) first demonstrated how to incorporate allocative distor-
tions by introducing errors in the first-order conditions for cost minimization. With
distributional assumptions for the allocative errors, they estimated the first-order
conditions along with the production frontier. Because Schmidt and Lovell adopted
the self-dual Cobb-Douglas functional form, their decomposition of cost efficiency
into technical and allocative components was straightforward.

A more typical framework for estimating technical and allocative efficiency
jointly is a cost system with the general form,

Ci = g(yi,pi)exp(vi +ui +ηi) (21.12)

sik = s(yi,pi)exp(ωik), (21.13)
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where sik is the observed share of the kth input, s(·) is the optimal share im-
plied by Shephard’s lemma applied to the deterministic component of the cost
function, g(yi,pi), and ηi and ωik are random disturbances reflecting allocative
inefficiency.

There is an inherent econometric challenge in estimating (21.12) and (21.13)
with cross-section data, because of the relationship between the allocative errors.
Allocative inefficiency raises costs, so ηi must be one-sided, but allocative distor-
tions involve over- and under-utilization of inputs, so the ωik will be two-sided.
Further, ηi and ωik will be correlated with each other. Without relying on functional
form restrictions, or assuming the problem away by asserting independence between
ηi and ωik, estimation is complicated. Kumbhakar (1997) derived a general solution
to the problem, but his model is highly nonlinear in the terms representing alloca-
tive efficiency and therefore difficult to estimate. More optimistically, Atkinson and
Cornwell (1994b) show how panel data can obviate the problem entirely.

21.3 SFA with Panel Data

21.3.1 Models with Time-Invariant Inefficiency

The models we consider in this section are special cases of (21.1), with αit = αi =
α−ui, so that

yit = αi +x′itβ + vit . (21.14)

From the viewpoint of the panel-data literature, (21.14) is just a standard
unobserved-effects model. Unless otherwise noted, we maintain the following as-
sumptions for (21.14):

(A.1) E(vit |xo
i ,αi) = 0, t = 1, . . . ,T (21.15)

(A.2) E(viv′i |xo
i ,αi) = σ2

v IT (21.16)

where xo
i = (xi1, . . . ,xiT ) and vi is T × 1. Thus we generally treat the variables in

xit as strictly exogenous (which, in a production context, could perhaps be defended
using the argument of Zellner, Kmenta and Dreze (1966)) and require the vit to
be conditionally homoscedastic and serially uncorrelated. Approaches to estimating
(21.14) differ depending on what is assumed about the αi (ui).

From this point on, we will no longer make an explicit notational distinction
between a variable and its logarithm. To be consistent with most empirical specifi-
cations, we will assume y and x are measured in logs. Thus, (21.14) can be thought
of as a Cobb-Douglas production frontier. However, the form of f (xi; β ) is not
very important for how we proceed with estimation, as long as the unobserved ef-
fect/inefficiency is additive.
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21.3.1.1 Advantages of Panel Data

The use of panel data to fit production relationships dates back at least to Mundlak
(1961), who used repeated observations on farms to control for unobserved soil
quality and managerial ability that affect output and may be correlated with inputs.
In most applications outside the SFA literature, this is the primary motivation for
using panel data—to control for unobservables that may be correlated with xit .

The first use of panel data in SFA was by Pitt and Lee (1981), but not until
Schmidt and Sickles (1984) was the link between the frontier and panel-data lit-
eratures systematically established. They identified three advantages of panel data
for SFA. First, the assumption of independence between xi and ui invoked in cross-
section estimation can be relaxed. Second, specific distributional assumptions for
vi and ui, required in cross-section data to estimate efficiency at the firm level, can
be avoided. Third, firm-level efficiency can be estimated more precisely, and, in the
case where T →∞, consistently. There is one caveat, however. These benefits come
at the expense of another assumption—that inefficiency does not vary over time.
The longer the panel, the less sense this assumption makes.

21.3.1.2 Estimating the Basic Panel Frontier Model

It is common in the panel-data literature to say that estimation of (21.14) depends
on whether the αi are fixed or random. As argued originally by Mundlak (1978) and
emphasized by Wooldridge (2002), this terminology misses the point. Of course the
αi are random; the issue is whether they are correlated with xit . To take a fixed-
effects (FE) approach to estimation is to allow arbitrary correlation between xit and
αi. A random-effects (RE) specification generally denies this possibility, or allows
such correlation only in very specific ways. This point is especially important in the
SFA literature, where correlation between inputs and inefficiency (ui) is a concern.

To facilitate the review of estimator choices for (21.14), we rewrite the model
combining all T observations for a single firm:

yi = Xiβ + eT αi +vi , (21.17)

where yi and vi are vectors of length T , Xi is T ×K and eT is a T × 1 vector of
ones. We begin the review maintaining assumptions (A.1) and (A.2) and leaving
open the possibility that xit is correlated with ui. Under these two assumptions, the
asymptotically efficient procedure is the FE estimator,

β̂FE =
( N

∑
i=1

X′iMiXi

)−1 N

∑
i=1

X′iMiyi , (21.18)

where Mi = IT − eT (e′T eT )−1e′T is the familiar projection that transforms the data
into deviations from firm means (for example, yit− ȳi, ȳi = T−1 ∑t yit). The estima-
tor is easily computed as OLS of yit − ȳi on xit − x̄i.
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More asymptotically efficient estimators exist if correlation between xit and ui

can be ruled out. An assumption like

(A.3) E(ui |xo
i ) = μ , (21.19)

does this, where μ > 0 indicates that the ui are drawn from a one-sided distribution.
Notationally, we accommodate μ as in (21.6), by defining α∗ = (α − μ) and u∗i =
ui−μ . Then, (21.17) becomes

yi = Xiβ + eT α∗+ εi , (21.20)

where εi = vit −u∗i . Along with (A.3) it is also common to assume

(A.4) E(u2
i |xo

i ) = σ2
u , (21.21)

which implies E(εiε ′i )≡Ωi = σ2
v IT +σ2

u eT e′T . Under (A.1)–(A.4), the standard RE
estimator,

(
α̂∗

β̂

)

RE

=
[ N

∑
i=1

(eT , Xi)′Ω−1
i (eT , Xi)

]−1 N

∑
i=1

(eT , Xi)′Ω−1
i yi , (21.22)

is asymptotically efficient.

Calculating (21.22) is equivalent OLS of Ω−1/2
i Yi on Ω−1/2

i , where Ω−1/2
i = IT−

(1−ψ)Pi, ψ = [σ2
v /(σ2

v +T σ2
u )]1/2 and Pi = IT −Mi. The form of Ω−1/2

i implies a
“quasi-demeaning” of the data, (for example, yit− (1−ψ)ȳi), that subsumes the FE
transformation. Clearly, as T → ∞, ψ → 0 and β̂RE → β̂FE. Actual implementation
requires consistent estimators for σ2

v and σ2
u . There are a number of alternatives, but

the most popular follows Wallace and Hussain (1969) and estimates the variance
components using the FE and “between” residuals, which are obtained from OLS
of ȳi on x̄i.

Occasionally, the RE estimator is justified on the grounds that some of the vari-
ables of interest do not vary over time and such variables are swept away by the
FE transformation. This is not necessary because the coefficients of time-invariant
variables (say zi) can be estimated as OLS of (ȳi− x̄iβ̂FE) on zi. However, the es-
timated coefficients of zi will be consistent only if the time-invariant variables are
uncorrelated with ui. In this case, one would not use the RE estimator either, for the
same reason.

Hausman and Taylor (1981) offered a solution to this problem in the form of an
efficient instrumental-variables (IV) estimator that allows some variables in xit and
zi to be correlated with the ui. Letting X∗i = (Xi,Zi), their estimator can be written as

(
α̂∗

β̂

)

HT

=
[ N

∑
i=1

(eT , X∗i )
′Ω−1/2

i PAi Ω
−1/2
i (eT , X∗i )

]−1 N

∑
i=1

(eT , X∗i )
′Ω−1/2

i PAi Ω
−1/2
i yi , (21.23)
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where PAi is the projection onto the instrument set Ai = (MiXi,PiXi1,Zi1) and
(Xi1,Zi1) designates variables that are uncorrelated with ui. Identification requires
that there are at least as many variables in Xi1 as in Zi2. Assuming (A.1), (A.2), (A.4)
(appropriately modified to include zi) hold, along with the Hausman-Taylor orthog-
onality conditions, β̂HT is the efficient GMM estimator using the instruments in Ai.

Amemiya and MaCurdy (1986) show that more instruments are implied by the
assumption that Xi1 and Zi1 are uncorrelated with ui. Their efficient IV estimator has
the same form as (21.23), but uses the instrument set [MiXi,IT ⊗(xo

i1,zi1)]. Breusch,
Mizon and Schmidt (1989) further extend the Hausman-Taylor estimator under the
additional assumption that the correlation between Xi2 and ui is constant over time.
Regardless of the instrument employed, any estimator of the form given in (21.23)
can be carried out by applying the RE data transformation to (21.20) and estimating
the transformed regression by IV.

The assumptions that lead to more efficient estimators than β̂FE can be tested
using the well known methodology of Hausman (1978). A Hausman test of the
difference between β̂FE and β̂RE will provide evidence on whether the data support
(A.3). The restrictions embodied in the efficient IV estimators can be tested in a
similar fashion, or by using the GMM-based test of overidentification suggested by
Hansen (1982).

Finally, it is worth pointing out that most popular econometric software auto-
mates β̂FE and β̂RE, and the Hausman test of their difference. Some (for example,
Stata and Limdep) also contain procedures to compute the Hausman–Taylor and
Amemiya–McCurdy estimators. However, as we have discussed, all of these estima-
tors are easily implemented with standard OLS or IV packages after appropriately
transforming the data.

21.3.1.3 Firm-Specific Technical Efficiency Estimates

Given any consistent estimator β , firm-specific estimates of technical inefficiency
can be obtained using a COLS procedure as with a deterministic frontier. This in-
volves calculating

ûi = α̂− α̂i, α̂ = max
i

(α̂i) , (21.24)

normalizing the frontier in terms of the best firm in the sample. Then, the remaining
firms’ efficiency levels are estimated by exp(−ûi), which is consistent as T → ∞
(assuming β̂ is).

In the FE case, αi can be estimated as α̂i = ȳi− x̄i
′β̂FE , or by direct OLS estima-

tion of (21.17) in which the αi appear as coefficients of firm-specific dummy vari-
ables. The latter is cumbersome if the sample contains a large number of firms, but
some software packages (Stata and Limdep) offer this as an alternative to their reg-
ular FE procedure (OLS on demeaned data). Because the FE estimator of β is con-
sistent under relatively weak conditions, it is appealing as a basis for SFA. However,
its appeal diminishes if the empirical frontier specification includes time-invariant
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regressors. As we suggested earlier, the effects of these variables can be parsed out
of α̂i, but their estimated coefficients will be consistent only if the time-invariant
variables are uncorrelated with ui, and if that is the case the Hausman-Taylor esti-
mator is preferred.

We should point out that, while α̂ is consistent as T → ∞, it is biased upward
when T is fixed. This upward bias is due to the “max” operation, and is consequently
more severe the larger N is. In fact, Park and Simar (1994) show that consistency of
α̂ requires the condition that (lnN)/T 1/2 → 0, so that N cannot increase too fast as
T increases. The upward bias of α̂ in the fixed-T case causes a downward bias in
estimated efficiencies (that is, in the ûi). We will comment more on this issue when
we discuss inference on the inefficiencies.

A more difficult problem is distinguishing inefficiency from unobservable time-
invariant variables. The COLS procedure will overstate a firm’s inefficiency if there
are time-invariant unobservables, but the alternatives require more assumptions.
One example is Heshmati and Kumbhakar (1994), who deal with capital as a fixed
unobservable in a study of Swedish dairy farms. Their strategy is to assume that
(yit −x′itβ ) can be decomposed as (αi + vit +uit), with uit ≤ 0, and treat the αi as a
fixed firm effect (representing unobserved capital). In addition, they take the vit and
uit to be conditionally normal and half-normal, as in standard cross-section SFA.
They impose independence between xit and uit , and they also assume that the uit are
independent over time. The latter is a very unrealistic assumption. This approach
will likely understate inefficiency because any time-invariant component of ineffi-
ciency is eliminated with the fixed effects, and any persistent component will be at
least partially eliminated.

The RE specification accommodates time-invariant regressors, but care should
be taken in testing the assumptions that serve as a basis for estimation, whether the
estimator is RE or efficient IV. Residuals constructed from either estimator can be
used to estimate αi = α∗ − u∗i and carry out the COLS procedure in (21.24). If the
RE estimator is justified, an alternative is to use the best linear unbiased predictor
(BLUP) of u∗i ,

û∗i =
−σ̂2

u ∑t ε̂it

T σ̂2
u + σ̂2

v
, (21.25)

in the COLS procedure.
Finally, as the Heshmati and Kumbhakar (1994) example illustrates, it is also

possible to proceed with essentially the same assumptions as in the cross-section
case. The only advantage of panel data then is the added precision that comes from
repeated observations on each firm. Battese and Coelli (1988) typify this approach,
assuming the ui are truncated normal and the vit are normal, conditional on xo

i .
They estimate α , β and the parameters of the error distributions by ML. An ad-
vantage of this approach, if xit and ui are independent, is that the frontier intercept
α is estimated directly, without the need for the “max” operation in (21.24). Thus,
the estimated frontier is not normalized in terms of the best firm and the best firm
need not be defined as 100 percent efficient. Battese and Coelli showed how to
obtain firm-specific efficiency estimates by generalizing the Jondrow et al. (1982)
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decomposition for a panel-data setting. The Battese–Coelli procedure is usually
available in software packages that support ML estimation of the cross-section fron-
tier model.

Regardless of the method, the estimation of firm-specific technical inefficiency
is straightforward. However, inference regarding the ûi is not. This is especially
true for the COLS procedure; because of the “max” operation in (21.24), standard
distributional results do not apply. We take up the problem of inference in a separate
section below.

21.3.1.4 Explaining Firm Efficiency

Often one is interested not only in estimating efficiency levels, but also in deter-
mining whether observable firm characteristics can explain them. For example, one
might ask whether state-owned or privately owned enterprises differ in their effi-
ciency levels, or whether big firms are more efficient than small firms. Questions
like these can be addressed in the context of a stochastic frontier model in which the
distribution of technical inefficiency depends on such firm characteristics.

To be more explicit, we consider a stochastic frontier model like (21.1) above,
and now assume that the technical inefficiency term uit depends on some observed
variables zit , with the dependence expressed as uit(zit , δ). We treat these variables
as exogenous, so they can include inputs or functions of inputs, but they should not
be a function of output.

As a specific example, the model of Reifschneider and Stevenson (1991), Caudill
and Ford (1993) and Caudill, Ford and Gropper (1995) (hereafter, RSCFG) assumes
that uit is distributed as N(0,σit)+, where σit is a function of zit and δ. One possibil-
ity is σit = exp(z′itδ). Since the expected value of uit is proportional to σit , we have
parameterized the mean of technical inefficiency. However, since the variance of uit

is proportional to σ2
it , we have also parameterized its variance. As a result specifi-

cations of this type are also referred to as models of heteroskedasticity. Kumbhakar
and Lovell (2000) discuss models of heteroskedasticity in one place (Sect. 3.4) and
incorporating exogenous influences on efficiency in another (Chap. 7), but in our
view these are the same. We will discuss these models from the point of view of
explaining efficiency.

Many empirical analyses have proceeded in two steps. In the first step, one es-
timates the stochastic frontier model and firms’ efficiency levels, ignoring z. In the
second step, one tries to see how efficiency levels vary with z, perhaps by regress-
ing a measure of efficiency on z. It has long been recognized that such a two-step
procedure will give biased results. Since E(y |x,z) depends on both x and z, the
first-step regression of y on x will be biased by the omission of z, if x and z are
correlated. A more subtle point is that the calculation of the firm-specific inefficien-
cies depends on the variances of vit and uit . Ignoring the fact that the variance of
uit is not constant, these estimates will be under-dispersed. These points are dis-
cussed in Kumbhakar and Lovell (2000), page 119 and Chap. 7, and in Wang and
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Schmidt (2002), Sect. 2.3. Simulations reported in Wang and Schmidt indicate these
biases are very severe. Accordingly, we do not recommend two-step procedures.

The alternative to a two-step procedure is one-step estimation by ML. For ex-
ample, under the assumptions of the RSCFG model, the density for observation i, t
is well defined. The likelihood then follows from an additional assumption on the
independence, or form of dependence, over time at the firm level. This will be dis-
cussed in more detail below.

The literature contains several alternatives to the RSCFG setup described above.
One is the model employed by Kumbhakar, Ghosh and McGuckin (1991), Huang
and Liu (1994), and Battese and Coelli (1995) (hereafter, KGMHLBC), which
assumes that the distribution of uit is N(μit ,σit)+. So, compared to the RSCFG
specification, this model parameterizes the mean rather than the variance of the pre-
truncation normal distribution. Several possibilities have been suggested for the pa-
rameterization of μit , including μit = z′itδ and μit = μ · exp(z′itδ). The KGMHLBC
model is heavily used in empirical applications, in part because it is readily available
in the FRONTIER software (Coelli 1996). Another is the model of Wang (2002), in
which the distribution of uit is N(μit ,σ2

it )
+, and where μit and σit both depend on

zit . Wang’s model allows for non-monotonic effects of zit on uit and can be used to
test the adequacy of the simpler specifications.

We now return to the point made above about the nature of dependence over time.
The simplest assumption, and the one most commonly made, is that (conditional on
zi1, . . . ,ziT ) the uit are independent over time. Since the vit are also typically assumed
to be independent over time, the errors (vit−uit) are independent over time, and the
likelihood is just the product, over all i and t, of the density for observation i, t.
It is widely recognized that the independence assumption is unrealistic. It is less
widely recognized that the MLE assuming independence is consistent even if the
independence assumption is false. In this case, however, a non-standard (robust)
covariance matrix calculation is required for the estimates. This is a textbook point
in the more general panel-data context, and is discussed in the frontiers context by
Alvarez, Amsler, Orea and Schmidt (2004).

Some of the models reviewed in this section satisfy the scaling property that uit =
h(zit ,δ) · ũit , where ũit does not depend on zit . For example, the RSCFG model has
this property, with ũit distributed as N(0,1)+, and with the scaling function h(zit ,δ)
equal to the parameterized function σit . If the scaling property holds, Battese and
Coelli (1992) show how to construct the likelihood under the assumption that the
underlying random variable ũit is time-invariant (and hence just equals ũi). However,
no model currently exists that allows correlation over time in a less restricted form.

21.3.1.5 Inference Based on Estimated Efficiencies

One of the advantages of SFA (over approaches based on deterministic frontier spec-
ifications) is the ability to measure the uncertainty of efficiency estimates. In addi-
tion to providing point estimates of a firm’s level of efficiency, confidence intervals
and hypothesis tests can be constructed.
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First, consider an error-components setup with the vit assumed to iid normal and
the ui are iid truncated normal, conditional on xo

i , as in Battese and Coelli (1988).
They show that the ui conditional on (vi1− ui, vi2− ui, . . . ,viT − ui) have a normal
distribution truncated from below at zero. The mean and variance (before truncation)
of the normal distribution are given by (21.9) and (21.10) of Battese and Coelli; the
mean depends on the average residual for the firm. The suggested point estimate (or
prediction) for ui is the mean of the truncated distribution, as given by their (21.11).
However, we can also obtain confidence intervals for ui directly from this distri-
bution; for example, a 95 percent confidence interval for ui is given by the range
between the 2.5 and 97.5 percentiles of the truncated normal conditional distribu-
tion of ui. This possibility was first noted by Horrace and Schmidt (1996). Similar
methods apply for inefficiency defined as exp(−ui). Similar comments also apply
in the cross-sectional case when the method of Jondrow et al. (1982) is used to
estimate ui.

Matters are more complicated under weaker assumptions that prevail in most
panel settings. Recall the COLS estimator for ui given in (21.24). Standard results
give the joint distribution of the α̂i, and the difficult nature of the inferential problem
is due to the max operation. To emphasize this point, for the moment we will ignore
the possible inaccuracy of the max operation in picking the maximal population
intercept. Suppose that the maximal estimated intercept is α̂m, where m represents
a specific observation, and note that αm may or may not be the maximal intercept
in the population. Then, ûi = α̂m − α̂i and we can use standard methods to con-
struct a confidence interval for αm−αi. For example, if the vit are normal or if T
is large, confidence intervals would be based on the Student’s t or standard normal
distributions.

There is also an extensive literature on multiple comparison procedures. A
good general discussion is given by Hochberg and Tamhane (1987). These pro-
cedures allow the construction of simultaneous confidence intervals for the (N−1)-
dimensional vector of differences (αm−αi, i �= m). This is a “multiple comparison
with a control” (MCC) problem, since for the moment we are treating αm as a con-
trol, or standard of comparison, without being concerned about whether it is in fact
the maximal population intercept. Dunnett (1955) gives an easily computable solu-
tion to the MCC problem for the special case that the α j are equicorrelated, and rel-
evant tabulations are given in Hochberg and Tamhane (1987), Dunnett (1964), Dunn
and Massey (1965) and Hahn and Hendrickson (1971). Horrace and Schmidt (2000)
provide evidence that the equicorrelated assumption is very nearly met in some ap-
plications and discuss approximate solutions when it is not met. These confidence
intervals may encompass both positive and negative values because they do not as-
sume that αm is the maximal population intercept.

From the SFA perspective, we are interested in simultaneous confidence intervals
for the N-dimensional vector of differences (α −αi, i = 1, . . . ,N), where α is the
maximal intercept in the population rather than in the sample. This is a “multiple
comparison with the best” (MCB) problem which differs from the MCC problem
because it is not assumed that we know which observation corresponds to the max-
imal population intercept. This problem was solved by Edwards and Hsu (1983),
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who showed how MCB intervals could be constructed from MCC intervals. Other
relevant references include Hsu (1981, 1984), and a survey is given by Horrace and
Schmidt (2000). The MCB intervals give non-negative lower and upper bounds for
the differences ui = α −αi, and the lower bound equals zero for a subset of the
firms. The MCB intervals are wider than the corresponding MCC intervals because
they include uncertainty about which observation is best. Some empirical examples
of MCB intervals are given in Sect. 21.4.

Another possible method of inference based on the FE estimates is bootstrap-
ping. We will begin with a very brief discussion of bootstrapping in the general
setting where we have a parameter θ , and there is an estimator θ̂ based on a ran-
dom sample (z1, . . . ,zN). The following bootstrap procedure will be repeated many
times, say for b = 1, . . . ,B where B is large. For iteration b, construct “pseudo data”,

z(b)
1 , . . . ,z(b)

N , by sampling randomly with replacement from the original data. From
the pseudo data, construct the estimate θ̂ (b). The basic result of the bootstrap is that
under fairly general conditions the asymptotic (large-N) distribution of (θ̂ (b)− θ̂)
conditional on the sample is the same as the (unconditional) asymptotic distribu-
tion of (θ̂ −θ). Thus, for large N the distribution of θ̂ around θ is the same as the
bootstrap distribution of θ̂ (b) around θ̂ , which is revealed by the large number of
bootstrap draws.

We now consider the application of the bootstrap to the specific case of the FE
estimates. Our discussion follows Simar (1992). Define the residuals based on the
FE estimates of β and αi as v̂it = yit − α̂i− xit β̂FE . The bootstrap samples will be
drawn by resampling these residuals, because the vit are the quantities analogous to
the zis in the previous paragraph, in the sense that they are assumed to be iid, and
they are the observable versions of the vit . (The sample size N above corresponds to

NT .) So, for bootstrap iteration b = 1, . . . ,B, we calculate the bootstrap sample v̂(b)
it

and the pseudo data, yit = α̂i + xit β̂FE + v̂(b)
it . From these data we get the bootstrap

estimates of the inefficiencies, and the bootstrap distribution of these estimates is
used to make inferences about the actual inefficiencies.

We note that the estimates depend on the quantity maxi α̂ j. Since “max” is not a
smooth function, it is not immediately apparent that this quantity is asymptotically
normal, and if it were not the validity of the bootstrap would be in doubt. A rigorous
proof of the validity of the bootstrap for this problem is given by Hall, Härdle and
Simar (1995). They prove the equivalence of the following three statements: (i)
maxi α̂ j is asymptotically normal; (ii) the bootstrap is valid as T → ∞ with N fixed;
and (iii) there are no ties for maxi α̂i, that is, there is a unique index i such that
αi = maxi α j. There are two important implications of this result. First, the bootstrap
will not be reliable unless T is large. Second, this is especially true if there are near
ties for maxi α j , in other words, when there is substantial uncertainty about which
firm is best.

Simulation results reported in Kim (1999) are fairly pessimistic. The bootstrap
does not lead to very reliable inference on the individual firm efficiencies unless T
is very large, or the variance of vit is quite small.
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A final possibility for inference is to be a Bayesian. In a Bayesian analysis one
postulates a prior distribution for the parameters of the problem, and combines the
prior with the likelihood to obtain a posterior distribution upon which inference is
based. In models like those we consider here, and in fact in many other models, this
inference is done by drawing from the posterior distribution using Markov-Chain
Monte Carlo methods.

We will begin with a “Bayesian FE model”, due to Koop, Osiewalski and
Steel (1997). They postulate an “uninformative” prior for the parameters β , σ2

v
and αi. If the vit are iid normal, the mean of the posterior distribution of β is the
usual FE estimate, which explains the name of the model. Now consider the ineffi-
ciency terms u∗i = max j α j−αi or the inefficiencies exp(−u∗i ). An important point
is that an uninformative (flat) prior for the αi implies a flat prior for the u∗i , but a
(very) informative prior for exp(−u∗i ). In fact, the prior for exp(−u∗i ) is proportional
to [exp(−u∗i )]

−1, which very, very strongly favors low efficiencies. In a sense this is
the Bayesian counterpart to the downward bias of the efficiency estimates using FE
that was discussed in Sect. 21.3.1.3. Indeed, the empirical results given in Kim and
Schmidt (2000) show a strong similarity between inferences based on the Bayesian
FE results and inferences based on bootstrapping the FE estimates.

Koop, Osiewalski and Steel also discuss RE Bayesian models, in which a proper,
informative prior is used for the ui (not the u∗i ). In this model, we estimate absolute
rather than relative efficiency, and we treat β , σ2

v , the overall intercept α and the in-
efficiencies ui or exp(−ui) as parameters. They consider, for example, independent
exponential priors for the ui. Kim and Schmidt find, unsurprisingly, that the results
from a Bayesian analysis with exponential prior inefficiency are quite similar to the
results from classical MLE if an exponential distribution is assumed for inefficiency,
and the Battese–Coelli result is used to extract the efficiencies. If such results are
generally true, as they probably are, it suggests that it does not make much differ-
ence whether one is a Bayesian or not; it just matters how strong the assumptions
are that one is willing to make about the efficiency distribution. An interesting point
is that in this case it is probably easier to be a Bayesian, in a numerical sense, and it
also allows more flexibility in choice of distribution.

21.3.1.6 Estimating Technical and Allocative Efficiency

Recall the cost frontier and share equations given in (21.12) and (21.13), where
allocative inefficiency is reflected in a one-sided disturbance in the cost equation
(ηi) and a two-sided error in the share equations (ωik), while technical inefficiency
is represented solely through a one-sided cost equation error (ui). As we noted in
Sect. 21.2.4.2, the choices for estimating such a system of equations are to either
adopt a restrictive functional form, assume ηi and ωik are independent, or attempt
to estimate the specification proposed by Kumbhakar (1997). Although the latter
captures the salient features of the relationship between the ηi and ωik and does
not impose a functional-form restrictions, the specification is difficult to estimate
because it is highly nonlinear in the terms involving the allocative errors.



714 C. Cornwell and P. Schmidt

An alternative to using error components is to model deviations from cost-
minimizing behavior in terms of parameters that scale prices. In this case, the firm
is assumed to minimize shadow cost, recognizing that although the input mix may
be incorrect when judged in terms of market prices, it can be seen as efficient when
related to shadow prices. The firm minimizes actual costs (is allocatively efficient)
only if the ratio of shadow prices equals the ratio of market prices. This parametric
approach was developed in a cross-section context by Lau and Yotopoulos (1971),
and later extended by Toda (1976), Lovell and Sickles (1983) and Atkinson and
Halvorsen (1984).

Atkinson and Cornwell (1994b) generalized the parametric approach to a panel
data setting. Reformulating (21.10) as a shadow cost-minimization problem, they
consider the estimation of a system of equations like

C∗it = g∗(yit ,p∗it)exp(vit +ui) (21.26)

s∗itk = s∗(yit ,p∗it)exp(ωitk), (21.27)

where p∗itk = φik pitk is a vector of shadow prices where the φik are parameters to be
estimated. Because allocative inefficiency is identified through the φik, the difficulty
of fully specifying the relationship between cost and share-equation allocative errors
is obviated. Further, the ωitk can be viewed (appropriately) as conventional random
errors.

From a panel-data perspective, the system in (21.26) and (21.27) is an
unobserved-effects model, where the effects appear as slope coefficients as well
as additive intercept terms. As Atkinson and Cornwell show, FE estimation of such
a model is straightforward. Firm-specific technical efficiency estimates can be con-
structed from the ûi using COLS. Estimates of φik indicate the relative over (φ̂ik < 1)
or under-utilization (φ̂ik > 1) of an input. Together, the ûi and φ̂ik can be translated
into an estimate of the potential cost savings from eliminating inefficiency.

21.3.2 Models with Time-Varying Inefficiency

While there are great benefits to treating efficiency as if it is time-invariant, time
invariance is a strong assumption, especially in longer panels. Now we relax this
assumption, explicitly taking up the the SFA model given in (21.1), where αt defines
the frontier intercept in period t. In the context of this model, the problem is simple
in principle. A firm’s level technical efficiency in each time can be estimated period
in COLS fashion as exp(−ûit), where

ûit = α̂t − α̂it , α̂t = max
i

(α̂it) . (21.28)

In practice, however, we cannot expect to identify the αit without placing some
additional structure on the frontier model. Different papers have restricted the αit in
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different ways. Below we consider the most widely utilized specifications as well as
some more recently proposed alternatives.

21.3.2.1 The Model of Cornwell, Schmidt and Sickles

Cornwell, Schmidt and Sickles (1990) (hereafter CSS) approached the problem
from the standpoint of a panel regression model with individual-specific slope coef-
ficients:

yit = x′itβ +w′itδi + vit , (21.29)

where wit is an L×1 vector of variables whose coefficients, δi, vary over i. Clearly,
(21.29) is a special case of the production frontier in (21.1) with αit = w′itδi. CSS
provide an empirical illustration based on the specification w′it = [1, t, t2] so that

αit = w′itδi = δi1 +δi2 t +δi3 t2 . (21.30)

Obviously if wit contains only a constant, (21.29) reduces to the usual unobserved
effects model, which is to say, the basic panel frontier with time-invariant technical
efficiency.

In addition to proposing a specification for αit , CSS extend the standard FE and
RE panel estimators to models like (21.29). To discuss these estimators, consider
the expression of (21.29) that combines all T observations on a single firm:

yi = Xiβ +Wiδi +vi , (21.31)

where Wi is a T ×L matrix. In addition, assume

(A.1′) E(vit |xo
i ,w

o
i ,αi) = 0, t = 1, . . . ,T (21.32)

(A.2′) E(viv′i |xo
i ,w

o
i ,αi) = σ2

v IT , (21.33)

parallel to (21.15) and (21.16) in Sect. 21.4.1.
As shown by CSS, the extension of the FE estimator in (21.18) is

β̂FE =
( N

∑
i=1

X′iMWiXi

)−1 N

∑
i=1

X′iMWiyi , (21.34)

where MWi = IT −Wi(W′
iWi)−1W′

i is a generalization of the demeaning projection,
Mi. Under (A.1′) and (A.2′), β̂FE is consistent and asymptotically normal, but note
that identification requires L≤ T .

The RE estimator in (21.22) can be likewise extended with the addition of as-
sumptions parallel to (21.19) and (21.21):

(A.3′) E(δi |xo
i ,w

o
i ) = δo (21.35)

(A.4′) E(δiδ′i |xo
i ,w

o
i ) = Δ . (21.36)
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After invoking (A.3′) and (A.4′) and writing δi as δo +ζi, (21.31) becomes

yi = Xiβ +Wiδo + εi

εi = Wiζi +vi. (21.37)

The RE estimator of β and δo is given by

(
β̂
δ̂o

)

RE

=
[ N

∑
i=1

(Xi, Wi)′Ω−1
i (Xi, Wi)

]−1 N

∑
i=1

(Xi, Wi)′Ω−1
i yi , (21.38)

where now Ωi = cov(εi) = σ2
u IT + WiΔW′

i. Consistent estimators of σ2
u and Δ are

provided in CSS. Under (A.1′)–(A.4′), β̂RE is asymptotically efficient, but this claim
hinges on (A.3′).

CSS also extended the Hausman–Taylor efficient IV estimator to the model with
individual-specific slope coefficients. This means partially relaxing (A.3′) and al-
lowing some of the variables in (Xi,Wi) to be correlated with δi. Assuming there are
enough orthogonality conditions to satisfy identification requirements, CSS show
that β and δo can be estimated as

(
β̂
δ̂o

)

HT

=
[ N

∑
i=1

(Xi, Wi)′Ω
−1/2
i PA∗i

Ω−1/2
i (Xi, Wi)

]−1

×
N

∑
i=1

(Xi, Wi)′Ω
−1/2
i PA∗i

Ω−1/2
i yi, (21.39)

where PA∗i
is the projection onto the transformed instrument set A∗i = Ω−1/2

i Ai and
Ai is the natural extension of the original Hausman and Taylor instrument set. Al-
though CSS do not pursue it, (21.39) encompasses extensions to the Amemiya–
MaCurdy and Breusch–Mizon–Schmidt estimators as well. The estimator in (21.39)
is the efficient GMM estimator under assumptions (A.1′), (A.2′), (A.4′) and the or-
thogonality conditions imposed by Ai. It is worth pointing out that, unlike in (21.23),
this efficient-GMM equivalence depends on the use of transformed instruments in
PA∗i

. Although the RE data transformation is more complicated in this case, in prin-

ciple β̂HT can be computed by premultiplying (21.38) by Ω−1/2
i and performing IV

using A∗i as instruments.
Firm-specific technical inefficiencies can be estimated using methods directly

analogous to those Sect. 21.3.1.3. In the FE case, this involves estimating the ele-
ments of δi either by OLS of yit − x′it β̂FE on wit or directly as coefficients of firm
dummies interacted with wit . Then compute the α̂it as w′it δ̂i and ûit as in (21.28).
Because the frontier intercept may vary from period to period, the temporal pattern
of technical efficiency will vary from firm to firm. Consider, for example, the CSS
specification of αit given in (21.30). Although α̂it will be quadratic in t for each
firm, α̂t may not be, which implies uit may not be either. The setup for estimating
technical efficiencies is essentially the same in the RE case, whether β and δo are
estimated by RE or or efficient IV. The only difference is the set of residuals used in
the calculations.
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21.3.2.2 The Models of Kumbhakar and Battese and Coelli

Kumbhakar (1990) and Battese and Coelli (1992) proposed time-varying efficiency
specifications of the form

uit = γ(t, θ)δi , (21.40)

where δi ≥ 0 is a scalar and γ(t, θ) is a scalar function of time and a vector of pa-
rameters, θ . Kumbhakar assumes γ(t, θ) = [1 + exp(bt + ct2)]−1, with θ = (b, c).
Depending on the values of b and c, the temporal pattern of inefficiency could be in-
creasing or decreasing, concave or convex. Battese and Coelli propose an alternative
model, γ(t, θ) = 1+η1(t−T )+η2(t−T )2, where θ = (η1, η2).

Because γ(t, θ) does not vary by firm in (21.40), the temporal pattern of techni-
cal efficiency is the same for all firms, in contrast to CSS. Also different from CSS,
Kumbhakar and Battese and Coelli couch their specifications in panel extensions of
the classic cross-section SFA model introduced in Sect. 21.2. Thus, estimation of
their models depends on distributional assumptions for δi and vit that impose inde-
pendence between efficiency and xit . Kumbhakar and Battese and Coelli derive the
MLEs for their respective models (treating the δi as truncated normal and vit as nor-
mal, conditional on xit) and show how to estimate firm-specific technical efficiencies
by extending Jondrow et al. (1982).

It is possible to estimate the models of Kumbhakar and Battese and Coelli under
weaker conditions than they imposed. For example, we could assume (A.4′) instead,
and integrate (21.40) into a RE panel regression model like (21.38) as follows:

yit = x′itβ − γ(t, θ)δo +[vit − γ(t, θ)(δi−δo)] . (21.41)

Such model can be estimated by nonlinear least squares and firm-specific technical
efficiencies obtained using the procedure in (21.28). All that is required is a simple
regression of firm-i residuals on γ(t, θ) to estimate (δi−δo). However, FE estima-
tion of (21.41) is econometrically more complicated because the unobserved effects
do not enter additively. This point will be discussed more fully in the next section.

Finally, the connection between specifications like (21.40) and those similar to
(21.30) is straightforward when we express the former in terms of αit . Suppose,
instead of (21.40), we asserted that αit = γ(t, θ)δi. So long as γ(t, θ) is positive
for all t, then αt = max j(α jt) = γ(t, θ)max j(δ j) and uit = γ(t, θ)[max j(δ j− δi)],
so that the αit and uit have the same temporal pattern, determined by the function
γ(t, θ), and this pattern is the same for all firms.

21.3.2.3 The Model of Ahn, Lee and Schmidt

The models presented in Sects. 21.4.1 and 21.4.2 allow technical inefficiency to
vary over time, but in a structured way. In this section we consider an alternative
model that was originally proposed by Kiefer (1980), and which was subsequently
applied to the frontiers problem by Lee and Schmidt (1993), and further analyzed by
Ahn, Lee and Schmidt (2001) and Han, Orea and Schmidt (2005). In this model the
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temporal pattern of inefficiency is arbitrary, but (as in (21.40) above) it is restricted
to be the same for all firms. The specification is

αit = λtδi , (21.42)

where the λt are parameters to be estimated. One can think of (21.42) as a special
case of (21.40) with γ(t, θ) represented by a set of time dummies. As such, an
advantage of (21.42) is that any parametric form such as Kumbhakar’s is a testable
special case. See, for example, Bai (2003).

The RE estimator of this model raises no new issues, but its FE estimator is
interesting. We consider assumptions similar to (A.1′) and (A.2′); that is, strict ex-
ogeneity of the regressors and the white noise property of the errors. Ahn, Lee and
Schmidt propose GMM estimators that impose the restrictions implied by these as-
sumptions. An surprising result is that the moment conditions based on the white
noise assumption are useful (result in an increase in asymptotic efficiency) even if
the errors are normal. This is certainly not the case in the usual linear regression
model without fixed effects. They also analyze the true FE estimator, defined by the
minimization of ∑i ∑t(yit − x′itβ −λtδi)2 with respect to β , λt and δi. The consis-
tency of this estimator requires the white noise assumption. Also, given the white
noise assumption, this estimator has a non-standard form for its covariance matrix,
and it is less efficient than the efficient GMM estimator, even if the errors are nor-
mal. Once again these are results that are not true in the linear regression model
without fixed effects.

Han, Orea and Schmidt (2005) extend this analysis to the case that λt is a para-
metric function of time and some parameters. Therefore they make possible a FE
analysis of models like those of Kumbhakar or Battese and Coelli (discussed in the
previous section). The essential results of Ahn, Lee and Schmidt extend to this case.
This means that a true FE analysis is possible, but it depends on a white noise as-
sumption, and it requires a non-standard calculation of the covariance matrix of the
estimates.

21.4 Applications

In this section we will discuss two empirical applications of the techniques that
this paper has described. References to additional applications can be found in the
survey papers listed in Sect. 21.1 above.

21.4.1 Egyptian Tile Manufacturers

First, we review the analysis of Egyptian tile manufacturers as originally conducted
by Seale (1985, 1990). The author personally collected data on a set of firms in the
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Fayoum region of Egypt, and was involved in, but did not supervise, the collection
of data in another region (Kalyubiya). The total sample consisted of 9 firms in the
Fayoum region and 16 in Kalyubiya. Data were collected over a 66-week period
in 1982–1983. This time period was divided into 3-week time intervals, so that the
maximum number of observations was 22. However, because firms did not produce
in all periods, the actual number of observations was not the same for all firms; that
is, the panel was unbalanced.

The firms make floor tiles using a rather simple technology: sand, cement and
water are mixed and pressed into tiles, which are dried in the sun. Three types of
tiles are made, and the firms do not produce other products. The capital of the firms
consists of a few types of machines: mixers, electric presses, manual presses and
polishers. There are only two skill categories of workers.

The original data were aggregated into measures of output, labor and capital. (Be-
cause the physical inputs are used in essentially fixed proportions to output, labor
and capital were the only inputs to be included in the production function.) Be-
cause of the relatively small number of output and input types, and because the data
were collected personally by the individual conducting the analysis, the aggregation
process is probably much less troublesome than in the typical production function
analysis.

The basic empirical results were generated in 1984 and 1985 and used the
methodology available at that time; namely, the MLE of Pitt and Lee (1981) and
the FE and RE estimators of Schmidt and Sickles (1984), suitably modified to ac-
count for the unbalanced nature of the panel. A Cobb-Douglas production function
was assumed. Hausman tests rejected the RE specifications, and so the focus was on
the FE treatment. The estimated coefficient of capital (machine hours) was positive
but insignificant, while the estimated coefficient of labor was insignificantly dif-
ferent from unity. Thus, for all practical purposes, estimated efficiency differences
reflect differences in output per worker-hour.

Firm efficiencies were estimated separately for the two areas, since they were
viewed as distinct markets. The estimates of technical efficiency ranged from 100
to 71 percent in the Fayoum area and from 100 to 56 percent in the Kalyubiya
area. This is a reasonable range given the costs of transporting output, and the least
efficient firms were located in small and remote villages where competition from
larger and more efficient firms was not a real threat.

Seale argues convincingly that his efficiency estimates do indeed reflect differ-
ences that one might interpret as inefficiency (as opposed to measurement error,
omitted inputs, etc.). For example, consider the following description of an inef-
ficient firm (Seale (1985, page 175)): “The organization of the firm could be im-
proved; the working area around the electric press is organized for three workers
only, while many tileries with an electric press are able to provide adequate space
for four workers to form tiles. The total working area, though large, is cluttered
with broken tiles and empty sacks, giving a general impression of disarray.” Fur-
thermore, Seale ranked the firms in terms of their apparent efficiency after his initial
visits to them, but before the data were collected and analyzed. His a priori rankings
were very similar to those from the statistical analysis. In fact, the rank correlation
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coefficient was 0.98 for the Fayoum region, in which he lived and supervised the
data collection effort, and 0.72 in Kalyubiya. This is fairly convincing evidence,
unfortunately of a type that we cannot expect generally to be available, that the
efficiency estimation exercise has been basically successful.

These data have subsequently been analyzed by a number of others, including
Horrace and Schmidt (1996, 2000) and Kim and Schmidt (2000). The following
results are from Kim and Schmidt. For reasons of space we will quote only the
results for one firm, number 4, which is the median-efficient firm based on the FE
estimates.

The FE estimates yield an efficiency level for firm 4 of 0.895. A set of 90 percent
MCB intervals give a confidence interval for firm 4 of [0.648, 1]. The “one” here
is exact—it is not the result of rounding. The usual percentile bootstrap gives a 90
percent confidence interval of [0.692, 0.940]. The Bayesian FE model gives a point
estimate (mean of the posterior distribution) of 0.812, which is somewhat lower, and
a 90 percent confidence interval (this is not a Bayesian word, but it is a Bayesian
calculation) of [0.688, 0.945]. Note the similarity of the Bayesian interval to the
interval from bootstrapping the FE estimates.

RE models give results that are relatively similar. For the half-normal MLE, the
point estimate of efficiency for firm 4 is 0.885 and a 90 percent confidence interval,
based on the Battese–Coelli method, is [0.787, 0.978]. For the exponential MLE,
we obtain 0.896 and [0.799, 0.984], and the Bayesian exponential model with an
uninformative prior for the exponential parameter yields 0.891 and [0.782, 0.986].

Kim and Schmidt argue that these results are optimistic, in the sense that the
choice of specific model is not too important, and the results are precise enough to
be of some potential use.

21.4.2 Indonesian Rice Farmers

Next, we turn to the analysis of Indonesian rice farmers. These data have been an-
alyzed by Erwidodo (1990), Lee and Schmidt (1993) and Horrace and Schmidt
(1996). The data contain information on 171 rice farms in Indonesia, for six grow-
ing seasons. They were collected by the Agro Economic Survey, as part of the Rural
Dynamic Study in the rice production area of the Cimanuk River Basin, West Java,
and obtained from the Center for Agro Economic Research, Ministry of Agriculture,
Indonesia. In particular, they were not collected as primary data by the individuals
later involved in the analysis, though Erwidodo was personally familiar with farm-
ing practices in the area. Time periods are growing seasons, of which there are two
per year; three of the six time periods are dry seasons and three are wet seasons. The
data were collected from six different villages that contain 19, 24, 37, 33, 22 and 36
farm families, respectively. This is a balanced panel in the sense that every family is
observed for the same six time periods.

Output is production of rough rice, in kilograms. The inputs include seed,
urea, tri-sodium phosphate (TSP), labor and land area. Erwidodo considered both



21 Stochastic Frontier Analysis and Efficiency Estimation 721

Cobb-Douglas and translog specifications, but we will follow Lee and Schmidt and
discuss only results for the Cobb-Douglas specification; this does not make much
difference. Besides the inputs, the equation that is estimated also includes some
dummy variables, as follows. DP is a dummy variable equal to one if pesticides
are used, and zero otherwise. DV1 equals one if high-yielding varieties of rice are
planted, while DV2 equals one if mixed varieties are planted; the omitted category
represents traditional varieties. DSS equals one in the wet season and zero other-
wise. DR1, . . . , DR5 are dummy variables representing the six villages, and are
intended to control for differences in soil quality or other relevant factors across vil-
lages. Finally, DSIZE is a dummy variable equal to one if the land area is greater
than 0.5 hectare. Erwidodo included this variable while Lee and Schmidt did not,
but in fact it makes little difference to the efficiency estimation exercise. We will
report results only for the specification that does not include DSIZE. The data are
described in detail in Erwidodo (1990).

Erwidodo estimated the model using the standard panel-data techniques: OLS,
FE and RE estimators. The results based on the three methods are quite similar;
correspondingly, the appropriate Hausman test failed to reject the RE specification.
The estimated coefficients of the five input variables were all positive and significant
at the usual critical levels. The elasticities ranged from 0.47 for land area to 0.078
for TSP, using the RE estimates, and from 0.43 to 0.09 using the FE estimates.
Returns to scale were insignificantly different from unity. The coefficient estimates
of the dummies for rice variety and for wet season were significantly different from
zero, while the rest of the dummy variables were usually insignificant. The results
that were significant indicate that high-yielding rice varieties have higher yields
than traditional varieties, and that output is higher in the wet season than in the dry
season.

Erwidodo calculates measures of both technical and allocative inefficiency, but
we will discuss measures of technical inefficiency only. He calculates estimates of
technical inefficiency in three ways: (i) the simple FE calculation given in (21.24)
above; (ii) the RE calculation involving the best linear predictor, given in (21.25)
above; and (iii) the method of Battese and Coelli (1988). Thus in Erwidodo’s im-
plementation of method (iii), distributional assumptions are used in the separation
of inefficiency from noise even though they were not used in estimation. We should
also note that we might expect the FE results (i) to differ rather substantially from the
RE results (ii) or (iii) since in the FE regression we cannot include the time-invariant
village dummy variables, and thus differences across villages in soil quality or other
relevant time-invariant factors are not controlled.

Erwidodo actually reports his results only for method (iii). Battese and Coelli
assumed that ui is distributed as N(μ , σ2

u ) truncated below at zero. Erwidodo as-
sumed μ = 0 so that ui is half-normal. In this case var(ui) = σ2

u (π − 2)/π . The
usual variance components estimates that are part of the RE procedure yield an es-
timate of var(ui), and this can be converted into an estimate of σ2

u by multiplying it
by π/(π−2). It appears that Erwidodo used his estimate of var(ui) as an estimate of
σ2

u , neglecting the factor π/(π − 2), which made his technical inefficiency figures
too small. Horrace and Schmidt (1996) recalculation of Erwidodo’s results yields
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farm-specific inefficiency estimates ranging from 3.5 to 25.8 percent, with a mean
of 10.6 percent.

Using the same data, Lee (1991) calculates technical inefficiency measures based
on FE estimation and method (i) above. Technical inefficiency now ranges from zero
to 64.6 percent, with a mean of 56.7 percent. Estimation by RE and use of method
(ii) gives results that are very similar to those for the FE estimator; for example,
mean technical inefficiency is then 57.1 percent. These results are consistent with
Erwidodo’s report that FE and RE generated much higher levels of technical in-
efficiency that the Battese–Coelli method, but that all three methods give similar
rankings.

Clearly there are striking differences between these results. To interpret them, it
is interesting to look at the precision of the estimates, as reflected in the relevant
confidence intervals. These results are given in Horrace and Schmidt (1996, 2000)
and Kim and Schmidt (2000). As in the previous section, here we report the re-
sults only for the median firm, number 15. For this firm, the FE estimates give
an efficiency level of 0.554. The 90 percent MCB confidence interval is [0.300, 1]
and the percentile bootstrap interval is [0.398, 0.646]. The Bayesian FE model
gives a point estimate of 0.509 and a 90 percent interval of [0.383, 0.656]. Once
again the Bayesian FE estimates are similar to the classical FE estimates and the
bootstrap.

As we saw above, the RE efficiencies are much higher. For the half-normal MLE,
the point estimate of efficiency for firm 15 is 0.923 with a 90 percent confidence
interval of [0.792, 0.990]. For the exponential MLE, we obtain 0.935 and [0.834,
0.996], and for the Bayesian exponential model with uninformative prior on the
exponential parameter we get 0.935 and [0.823, 0.996].

Clearly these results are less precise than for the previous data set, and the choice
of technique matters more. Kim and Schmidt argue that this is a difficult data set
to analyze, because T is fairly small and because the variance of noise (v) is large
relative to the variance of inefficiency (u). In this case we can gain a lot of pre-
cision by putting more structure on the model, but unfortunately the choice of
what structure to impose influences the results more strongly. There is no obvi-
ous solution to this problem other than to analyze data that have more favorable
characteristics.

Lee (1991) and Lee and Schmidt (1993) have also applied the time-varying ef-
ficiency model of subsection 3.2.3 to the Erwidodo data. Compared to the simpler
model with time-invariant efficiency, this model does not make much difference in
the estimates of the technical parameters (regression coefficients) or in the average
level of inefficiency. It does yield an interesting temporal pattern of inefficiency (see
Fig. 8.1, page 251, of Lee and Schmidt), with significantly higher efficiency levels
in time periods t = 3 and t = 4 than in the other time periods. However, given the
confidence intervals reported in the previous paragraphs for the simpler model, it
might be argued that a model with less structure is the opposite of what is needed
for this application.
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21.5 Concluding Remarks

In this chapter, we have given given a broad survey of the stochastic frontier ap-
proach to efficiency measurement, with an emphasis on the use of panel data. While
a considerable number of details were discussed, we have tried to emphasize two
main points. The first main point is that it is really a misuse of words to discuss
the measurement of efficiency; properly, we should refer to estimation of efficiency.
The estimation of efficiency is essentially a statistical problem, in the sense that
the results are subject to uncertainty, and this is true whether traditional statistical
methods are used or not. There are two main advantages to an explicitly statistical
approach, such as is possible using stochastic frontier models. First, an accommo-
dation can be made to statistical noise. Second, measures of the uncertainty of the
results can be generated. Our empirical results in Sect. 21.6 show the importance of
this second point. Using a deterministic (non-statistical) model does not remove this
uncertainty; it only hides it.

Our second main point is that panel data are useful because they allow weaker
assumptions or greater precision under a given set of assumptions, than would be
possible with a single cross section. Most of the work so far on the use of panel data
for efficiency estimation has emphasized the possibility of weakened assumptions
and more flexible models. In retrospect, this may have been a mistake. Certainly we
should suspect that the usual trade-off between flexibility of the model and precision
of results applies. If efficiency estimates were more routinely reported along with
appropriate measures of the uncertainty associated with them, this trade-off could
be made more intelligently.
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Chapter 22
Econometric Analyses of Linked
Employer–Employee Data

John M. Abowd, Francis Kramarz and Simon Woodcock

22.1 Introduction

There has been a recent explosion in the use of linked employer-employee data to
study the labor market. This was documented, in part, in our Handbook of Labor
Economics chapter (Abowd and Kramarz, 1999a).1 Various new econometric meth-
ods have been developed to address the problems raised by integrating longitu-
dinal employer and employee data. We first described these methods in Abowd
and Kramarz (1999b). In this chapter, we present a survey of these new econo-
metric methods, with a particular emphasis on new developments since our earlier
articles.

Linked employer-employee data bring together information from both sides of
the labor market. They therefore permit, for the first time, equilibrium analyses of
labor market outcomes. They also allow researchers to investigate the joint role
of worker and firm heterogeneity, both observed and unobserved, on labor market
outcomes. Labor economists have taken full advantage of these data to revisit clas-
sic questions and to formulate new ones, and much has been learned as a result.
For example, Abowd, Kramarz, Lengermann, and Roux (2005) have revisited the
classic question of inter-industry wage differentials to determine whether they are
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attributable to workers or firms. Abowd, Kramarz, Lengermann and Perez-Duarte
(2003) use linked employer-employee data to examine whether “good” workers are
employed by “good” firms. Dostie (2005) presents new evidence on the returns to
seniority and its relation to turnover; and Woodcock (2003) examines the role of
heterogeneity and worker-firm learning on employment and wage dynamics. These
applied endeavors have demonstrated the value of linked employer-employee data.
They have also spurred the development of new econometric methods to analyze
these data. These new methods, rather than specific applications, are the primary
focus of this chapter.

A distinguishing feature of longitudinal linked employer–employee data is that
individuals and their employers are identified and followed over time. Furthermore,
the relation between employer and employee, called a job relation, is continuously
monitored. From a statistical perspective, there are three populations under simulta-
neous study. Individuals are sampled from the population of households, workplaces
are sampled from the population of businesses, and jobs are sampled from the popu-
lation of employment histories. Because of the multiple sampling frames involved, it
is necessary to be precise about the statistical structure of the variables under study,
since they may come from the individual, employer, or job frame. Measured charac-
teristics of the individual, employer, and job are collected at multiple points in time,
which may or may not be synchronous. To make clear the importance of careful
elaboration of the sample structure for the variables under study, we will consider a
prototypical integrated employer–employee database before turning to specific sta-
tistical models. The specific statistical models that we consider are generalizations
of the specifications we first used in Abowd, Kramarz and Margolis, (1999, AKM
hereafter) as well as in more recent research.

We have noted a general misunderstanding of some recent, and some
not-so-recent, empirical methods used by statisticians. We therefore make an ef-
fort to relate these methods to those used by panel data econometricians. We show
the relation between various fixed effects estimators and estimators popular in the
variance components literature – in particular, mixed-effects estimators (see Searle,
Casella and McCulloch (1992). As we will see, statisticians and econometricians
have different parameters of interest, the former relying more on the variance com-
ponents and the design of the data, the latter being more concerned with endogeneity
in its various guises. These generate a variety of distinct computational issues. Con-
sequently econometricians and statisticians have independently developed a variety
of tools to estimate the effects of interest. However, the realized effects have the
same interpretation under all methods that we consider.

We begin, in Sect. 22.2, by describing a prototypical longitudinal linked data set
and discussing the related problems of missing data and sampling from integrated
data. In Sect. 22.3, we present two specifications for linear statistical models that
relate linked employer and employee data to outcomes measured at the individual
level. In the first and more general specification, person effects and firm effects
can reflect interaction between observable person or firm characteristics and unob-
served person and firm effects. For instance, match effects are potentially repre-
sentable in this setting. In the second and simpler specification, a typical individual
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has a zero mean for the measured outcomes. Person effects measure deviations
over time from this zero mean that do not vary as the employee moves from firm
to firm. Firm effects measure deviations from this zero mean that do not vary as
the firm employs different individuals. We continue, in Sect. 22.4, by defining
a variety of effects that are functions of the basic person and firm effects. Sec-
tion 22.5 considers the estimation of the person and firm effects by fixed-effects
methods. Section 22.6 discusses the use of mixed-effects estimators, the question of
orthogonal design, and their relation with various correlated random-effects spec-
ifications. In Sect. 22.7 we discuss the important heterogeneity biases that arise
when either the person or firm effects are missing or incompletely specified. We
discuss the consequences of endogenous mobility in Sect. 22.8, and conclude in
Sect. 22.9.

22.2 A Prototypical Longitudinal Linked Data Set 2

To summarize the complete likelihood function for linked longitudinal employer-
employee data, we adopt the formalization in Abowd and Woodcock (2001). They
considered statistical models for imputing missing data in linked databases using the
full-information techniques developed by Rubin (1987). Their prototypical longitu-
dinal linked data set contains observations about individuals and their employers
linked by means of a work history that contains information about the jobs each
individual held with each employer. The data are longitudinal because complete
work history records exist for each individual during the sample period and because
longitudinal data exist for the employer over the same period.

Suppose we have linked data on N workers and J firms with the following file
structure. There are three data files. The first file contains data on workers, U , with
elements denoted ui, i = 1, . . . ,N. In the discussion below these data are time-
invariant but in other applications they need not be. Call U the individual char-
acteristics file. The second data file contains longitudinal data on firms, Z, with
elements z jt , j = 1, . . . ,J and t = 1, . . . ,Tj. Call Z the employer characteristics file.
The third data file contains work histories, W, with elements wit , i = 1, . . . ,N and
t = 1, . . . ,Ti. Call W the work history file. It contains data elements for each em-
ployer who employed individual i during period t. The data U and W are linked by
a person identifier. The data Z and W are linked by a firm identifier; we conceptu-
alize this by the link function j = J(i, t) which indicates the firm j at which worker
i was employed at date t. For clarity of exposition, we assume throughout that all
work histories in W can can be linked to individuals in U and firms in Z and that the
employer link J(i, t) is unique for each (i, t).3

2 This section is based on Abowd and Woodcock (2001).
3 The notation to indicate a one-to-one relation between work histories and indviduals when there
are multiple employers is cumbersome. See Abowd and Stinson (2003) for a complete development
of the likelihood function allowing for multiple employers during the period.
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22.2.1 Missing Data

Abowd and Woodcock consider the problem of imputing missing data in a longitu-
dinal linked database. Their approach is based on the Sequential Regression Mul-
tivariate Imputation (SRMI; see Ragunathan et al., 2001). When imputing missing
data in each of the three files, they condition the imputation on as much available
information as possible. For example, when imputing missing data in the individual
characteristics file U they condition not only on the non-missing data in U (observed
characteristics of the individual) but also on characteristics of the jobs held by the
individual (data in W ) and the firms at which the individual was employed (data
in Z). Similarly, when conditioning the imputation of missing data in W and Z, they
condition on non-missing data from all three files. In this manner, their imputation
is based on the complete likelihood function for the linked longitudinal data.

The Abowd and Woodcock technique necessitates some data reduction. To un-
derstand the data reduction, consider imputing missing data in the individual char-
acteristics file U. Since individuals have work histories with different dynamic
configurations of employers, explicitly conditioning the missing data imputation of
individual characteristics on every variable corresponding to each job held by each
worker is impractical – there are a different number of such variables for each ob-
servation to be imputed. A sensible alternative is to condition on some function of
the available data that is well defined for each observation. For example, to impute
missing data in U , one could condition on the person-specific means of time-varying
work history and firm variables. Similar data reductions are required to impute miss-
ing data in the other files. In what follows, we use the functions g,h,m and n to
represent data reductions that span sampling frames.

Abowd and Woodcock note the importance of conditioning the imputation of
time-varying variables on contemporaneous data and leads and lags of available
data. Because the dynamic configuration of work histories varies from worker to
worker and the pattern of firm “births” and “deaths” varies from firm to firm, not
every observation with missing data has the same number of leads and lags available
to condition the imputation. In some cases, there are no leads and lags available at
all. They suggest grouping observations by the availability of dynamic conditioning
data (i.e., the number of leads and lags available to condition missing data impu-
tations) and separately imputing missing data for each group. This maximizes the
set of conditioning variables used to impute each missing value. Again, some data
reduction is generally necessary to keep the number of groups reasonable. For ex-
ample, one might only condition on a maximum of s leads and lags, with s = 1 or
s = 2. They parameterize the set of dynamic conditioning data available for a par-
ticular observation by κit in the work history file, and γ jt in the firm file. It may also
be desirable to split the observations into separate groups on the basis of observable
characteristics, for example sex, full-time/part-time employment status, or industry.
They parameterize these groups by λi in the individual file, μit in the work history
file, and ν jt in the firm file.

The key aspects of the SRMI algorithm are as follows. One proceeds sequentially
and iteratively through variables with missing data from all three files, at each stage
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imputing missing data conditional on all non-missing data and the most recently
imputed values of missing data. The optimal imputation sequence is in increasing
degree of missingness. As each variable in the sequence comes up for imputation,
observations are split into groups based on the value of κit , γ jt , λi,μit , and/or ν jt . The
imputed values are sampled from the posterior predictive distribution of a parametric
Bayesian imputation model that is specific to each group. After the imputes are
drawn, the source file for the variable under imputation is reassembled from each
of the group files. Before proceeding to the next variable, all three files must be
updated with the most recent imputations, since the next variable to be imputed may
reside in another file (U,W, or Z). At the same time, the functions of conditioning
data (including leads and lags) described above generally need to be re-computed.
The procedure continues for a pre-specified number of rounds or until the imputed
values are stable.

Explicitly specifying the posterior predictive densities from which the imputa-
tions are drawn is notationally cumbersome. For completeness, we reproduce these
directly from Abowd and Woodcock in (22.1), (22.2), and (22.3). For a particular
variable under imputation, subscripted by k, they denote by U<k the set of variables
in U with less missing data than variable k; W<k and Z<k are defined analogously.
They denote by U>k the set of variables in U with more missing data than variable
k, and define W>k and Z>k similarly. They use the subscript obs to denote variables
with no missing data. They also subscript conditioning variables by i, j, and t as
appropriate to make clear the relationships between variables in the three data files.
The predictive densities from which the round �+1 imputations are drawn are
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where f·k is the likelihood defined by an appropriate generalized linear model for
variable k, θk are unknown parameters, and the posterior densities pk (θk|.) are con-
ditioned on the same information as f·k. Repeating the missing data imputation
method M times yields M sets of completed data files (Um,W m,Zm) which they
call the completed data implicates m = 1, . . . ,M.

Equations (22.1–22.3) describe the complete set of conditional distributions of
each variable in the linked longitudinal employer–employee data, given all other
variables. Hence, they form the basis for sampling from this complete distribu-
tion. One can use these equations in a Gibbs sampler or other Monte Carlo Markov
Chain algorithm to draw a complete sample of linked longitudinal data that has the
same likelihood function as the original analysis sample. Abowd and Woodcock
use this property to draw partially synthetic data from the joint posterior predictive
distribution.

22.2.2 Sampling from Linked Data

Many of the estimators discussed below are computationally intensive. Because
many longitudinal linked databases are constructed from administrative records they
are very large.4 Thus researchers are sometimes faced with the prospect of sampling
from the linked data to facilitate estimation. In principle, sampling from any one of
the frames (workers, firms, or jobs) that comprise the linked data is straightforward.
However, the estimators discussed below rely on links between sampling frames
(i.e., observed worker mobility between firms) for identification. Small simple ran-
dom samples of individuals may not retain sufficient “connectedness” between
sampling frames for identification.5

Woodcock (2003) considers the problem of sampling from linked data while pre-
serving a minimum degree of connectedness between sampling frames. He presents
a “dense” sampling algorithm that guarantees each sampled worker is connected to
at least n others by a common employer. The sample is otherwise representative of
the population of individuals employed in a reference period. The dense sampling
algorithm is straightforward. It operates on the population of jobs at firms with at
least n employees in the reference period t. In the first stage, sample firms with
probabilities proportional to their employment in period t. In the second stage, sam-
ple a minimum of n employees from each sampled firm, with probabilities inversely
proportional to the firm’s employment in period t. A simple application of Bayes’
rule demonstrates that all jobs active in period t have an equal probability of being
sampled. The sample is thus equivalent to a simple random sample of jobs active in
period t, but guarantees that each sampled worker is connected to at least n others.

4 See Abowd and Kramarz (1999a) for a typology.
5 See Sect. 22.5.1.2 below for a discussion of connectedness and its role in identifying person and
firm effects.
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22.3 Linear Statistical Models with Person and Firm Effects

22.3.1 A General Specification

We consider the general linear statistical model:

yit = xitβ +qit,J(i,t)θi + rit,J(i,t)ψJ(i,t) + εit (22.4)

where yit is an observation for individual i = 1, . . . ,N, t = ni1, . . . ,niTi , Ti is the total
number of periods of data available for individual i, and the indices ni1, . . . ,niTi

indicate the period corresponding to the first observation on individual i through
the last observation on that individual, respectively. The vectors xit contain P time-
varying, exogenous characteristics of individual i; the vectors qit,J(i,t), and rit,J(i,t)
contain respectively Q and R exogenous characteristics of individual i and (or) firm
J(i, t). Both vectors include indicators that associate an observation and a person
(for q) or a firm (for r). We denote the design matrices of these indicators by D and
F , respectively. The vector θi is a size Q vector of person effects; ψJ(i,t) is a size
R vector of firm effects; and εit is the statistical residual. The first period available
for any individual is arbitrarily dated 1 and the maximum number of periods of
data available for any individual is T . Assemble the data for each person i into
conformable vectors and matrices
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where yi and εi are Ti× 1 and Xi is Ti×P with similar definitions for Qi,J(i,.) and
Ri,J(i,.).

We assume that a simple random sample of N individuals is observed for a max-
imum of T periods. Assume further that εi has the following properties:

E
[
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]
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{ΣTi}i , i = m

0, otherwise
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where {ΣTi}i means the selection of rows and columns from a T×T positive definite
symmetric matrix Σ such that the resulting Ti×Ti positive definite symmetric matrix
corresponds to the periods {ni1,ni2, . . . ,niTi}.6 In full matrix notation we have

y = Xβ +
[
D, Q̃

]
θ +
[
F, R̃
]

ψ + ε (22.5)

where: X is the N∗ ×P matrix of observable, time-varying characteristics (in devi-
ations from the grand means); D is the N∗ ×N design matrix of indicator variables
for the individual; Q̃ is the N∗×(Q−1)N matrix of the observable characteristics in
q with person-specific effects; F is the N∗ × J design matrix of indicator variables
for the firm; R̃ is the N∗ × (R− 1)J matrix of observable characteristics in r with
firm-specific effects; y is the N∗ × 1 vector of dependent data (also in deviations
from the grand mean); ε is the conformable vector of residuals; and N∗ = ∑N

i=1 Ti.
The vector y is ordered according to individuals as

y =

⎡

⎣
y1

· · ·
yN

⎤

⎦ (22.6)

and X , Q, R and ε are ordered conformably. A typical element of y is yit and a typical
element of X , or any similarly organized matrix, as x(i,t)p where the pair (i, t) denotes
the row index and p denotes the column index. The effects in (22.4) and (22.5) are:
β , the P× 1 vector of coefficients on the time-varying personal characteristics; θ ,
the QN× 1 vector of individual effects; and ψ , the RJ× 1 vector of firm effects.
When estimating the model by fixed effects methods, identification of the effects is
accomplished by imposing a zero sample mean for θi and ψJ(i,t) taken over all (i, t).7

In the mixed effects case, identification is achieved by assuming the random effects
have zero conditional mean and finite conditional variance.

22.3.2 The Pure Person and Firm Effects Specification

A simpler specification is:

yit = xitβ +θi +ψJ(i,t) + εit (22.7)

with variables defined as above except that θi is the pure person effect and ψJ(i,t) is
the pure firm effect. We now assume that εi has the following properties:8

6 See Sect. 22.6 for a specific example of {ΣTi}i.
7 Further details of identification requirements are discussed in Sect. 22.5.1.
8 The zero conditional mean assumption (22.8) has been interpreted as an assumption of “exoge-
nous mobility,” since it precludes any relationship between an individuals employment location
(measured by Fi) and the errors εi. See AKM for further discussion, and Sect. 22.8 below for
recent work that accomodates endogenous mobility.
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E [εi|Di,Fi,Xi] = 0 (22.8)

and

Cov [εi, εm|Di, Dm, Fi, Fm, Xi, Xm] =

{
{ΣTi}i , i = m

0, otherwise

where Di and Fi are those elements of D and F , respectively, corresponding to person
i. In full matrix notation we have

y = Xβ +Dθ +Fψ + ε (22.9)

where: X is the N∗ ×P matrix of observable, time-varying characteristics (in devia-
tions from the grand means); D is the N∗×N design matrix of indicator variables for
the individual; F is the N∗ ×J design matrix of indicator variables for the employer
at which i works at date t (J firms total); y is the N∗ × 1 vector of dependent data
(also in deviations from the grand mean); ε is the conformable vector of residuals;
and N∗ = ∑N

i=1 Ti.
The effects in (22.7) and (22.9) are: β , the P×1 vector of coefficients on the time-

varying personal characteristics; θ , the N×1 vector of individual effects; and ψ , the
J× 1 vector of firm effects. As above, identification of the effects is accomplished
by imposing a zero sample mean for θi and ψJ(i,t) taken over all (i, t) for fixed-
effects estimators, and by assuming of zero conditional mean and finite conditional
variance for random-effects estimators.

22.4 Definition of Effects of Interest

Many familiar models are special cases of the linear model in (22.4) and (22.5) or
the simpler version in (22.7) and (22.9). In this section we define a variety of ef-
fects of interest that are functions of the person and firm effects specified in the
preceding section. These definitions allow us to consider these familiar models us-
ing common notation and internally coherent definitions. We use the example of
estimating inter-industry wage differentials, frequently called industry effects, to
illustrate some important issues.

22.4.1 Person Effects and Unobservable Personal Heterogeneity

The person effect in (22.7) combines the effects of observable time-invariant per-
sonal characteristics and unobserved personal heterogeneity. We decompose these
two parts of the pure person effect as

θi = αi +uiη (22.10)
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where αi is the unobservable personal heterogeneity, ui is a vector of time-invariant
personal characteristics, and η is a vector of effects associated with the time-
invariant personal characteristics. An important feature of the decomposition in
(22.10) is that estimation can proceed for the person effects, θi, whether random
or fixed, without direct estimation of η . Since many linked employer–employee
data sets contain limited, or missing, information on the time-invariant character-
istics ui, we describe the estimation algorithms in terms of θi; however, when data
on ui are available, equivalent techniques can be used for estimation in the presence
of αi (see AKM for the fixed effects case, Woodcock (2003) for the mixed effects
case). The design matrix D in (22.9) can be augmented by columns associated with
the observables ui so that the statistical methods discussed below are applicable to
the estimation of the effect specified in (22.10).

This specification can be further generalized by incorporating time-varying ob-
servable characteristics of the worker, qit , or of the firm, q jt , that may well be inter-
acted as in (22.4) and (22.5) to give:

θ jit = αi +uiη +qit μi +q jtδi (22.11)

where μi and δi are vectors of effects associated with the time-varying person and
firm observable characteristics. Statistical analysis of the effects defined by (22.11)
is accomplished by augmenting the columns of D to reflect the data in q jt and qit .
The formulae shown in the estimation sections below can then be applied to the
augmented design matrix.

22.4.2 Firm Effects and Unobservable Firm Heterogeneity

The firm effect in (22.7) combines the effects of observable and unobserved time-
invariant characteristics of the firm. It can also be generalized to contain the effects
of time-varying characteristics of the firm and time-varying characteristics of the
employee–employer match as in (22.4) and (22.5). We illustrate each of these pos-
sibilities in this subsection.

We can decompose the pure firm effect of (22.7) into observable and unobserv-
able components as

ψ j = φ j + v jρ (22.12)

where φ j is unobservable firm heterogeneity, v j is a vector of time-invariant firm
characteristics, and ρ is a vector of associated effects.

Time-varying firm and employer–employee match characteristics require a re-
definition of the simple firm effect as ψ jit . The addition of the i and t subscripts
allows the firm effect to vary over time and across employer–employee matches.
Now let the firm observable characteristics be time-varying, v jt , and denote the ob-
servable match characteristics by r jit . Then we can write the firm effect as

ψ jit = φ j + v jtρ + r jitγ j (22.13)
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where γ j is a vector of effects associated with the match characteristics. Statistical
analysis of the effects defined by equation (22.13) is accomplished by augment-
ing the columns of F to reflect the data in v jt and r jit . The formulas shown in the
estimation sections below can then be applied to the augmented design matrix.

22.4.3 Firm-Average Person Effect

For each firm j we define a firm-average person effect

θ̄ j ≡ ᾱ j + ū jη =
∑{(i,t)|J(i,t)= j}θi

Nj
(22.14)

where
Nj ≡ ∑

∀(i,t)
1(J(i, t) = j)

and the function 1(A) takes the value 1 if A is true and 0 otherwise. The importance
of the effect defined in (22.14) may not be apparent at first glance. Consider the dif-
ference between ψ j and θ̄ j. The former effect measures the extent to which firm j
deviates from the average firm (averaged over individuals and weighted by employ-
ment duration) whereas the latter effect measures the extent to which the average
employee of firm j deviates from the population of potential employees. In their
analysis of wage rate determination, AKM refer to the firm-average person effect,
θ̄ j, as capturing the idea of high (or low) wage workers while the pure firm effect,
ψ j, captures the idea of a high (or low) wage firm. Both effects must be specified
and estimable for the distinction to carry empirical import.

22.4.4 Person-Average Firm Effect

For each individual i consider the person-average firm effect defined as

ψ̄i ≡ φ̄i + v̄iρ =
∑t ψJ(i,t)it

Ti
. (22.15)

This effect is the individual counterpart to the firm-average person effect. Lim-
ited sample sizes for individuals make estimates of this effect less useful in their
own right; however, they form the basis for conceptualizing the difference be-
tween the effect of heterogeneous individuals on the composition of a firm’s work-
force, as measured by the effect defined in (22.14), and the effect of heterogeneous
firms on an individual’s career employment outcomes, as measured by the effect
in (22.15).
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22.4.5 Industry Effects9

Industry is a characteristic of the employer. As such, the analysis of industry ef-
fects in the presence of person and firm effects can be accomplished by appropriate
definition of the industry effect with respect to the firm effects. We call the prop-
erly defined industry effect a “pure” industry effect. Denote the pure industry effect,
conditional on the same information as in (22.7) and (22.9), as κk for some industry
classification k = 1, . . . ,K. Our definition of the pure industry effect is simply the
correct aggregation of the pure firm effects within the industry. We define the pure
industry effect as the one that corresponds to putting industry indicator variables in
equation (22.9) and, then, defining what is left of the pure firm effect as a deviation
from the industry effects. Hence, κk can be represented as an employment-duration
weighted average of the firm effects within the industry classification k:

κk ≡
N

∑
i=1

T

∑
t=1

[
1(K(J(i, t)) = k)ψJ(i,t)

Nk

]

where

Nk ≡
J

∑
j=1

1(K( j) = k)Nj

and the function K( j) denotes the industry classification of firm j. If we insert this
pure industry effect, the appropriate aggregate of the firm effects, into (22.7), then

yit = xitβ +θi +κK(J(i,t)) + (ψJ(i,t)−κK(J(i,t)))+ εit

or, in matrix notation as in (22.9),

y = Xβ +Dθ +FAκ +(Fψ−FAκ)+ ε (22.16)

where the matrix A, J×K, classifies each of the J firms into one of the K industries;
that is, a jk = 1 if, and only if, K( j) = k. Algebraic manipulation of (22.16) reveals
that the vector κ , K× 1, may be interpreted as the following weighted average of
the pure firm effects:

κ ≡ (A′F ′FA)−1A′F ′Fψ. (22.17)

and the effect (Fψ − FAκ) may be re-expressed as MFAFψ , where MZ ≡
I − Z (Z′Z)−Z′ denotes the column null space of an arbitrary matrix Z, and ()−

is a computable generalized inverse. Thus, the aggregation of J firm effects into K
industry effects, weighted so as to be representative of individuals, can be accom-
plished directly by the specification of (22.16). Only rank(F ′MFAF) firm effects can
be separately identified using unrestricted fixed-effects methods; however, there is
neither an omitted variable nor an aggregation bias in the estimates of (22.16), using
either of class of estimators discussed below. Equation (22.16) simply decomposes
Fψ into two orthogonal components: the industry effects FAκ , and what is left of the

9 This section is based upon the analysis in Abowd, Finer and Kramarz (1999).
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firm effects after removing the industry effect, MFAFψ . While the decomposition is
orthogonal, the presence of X and D in (22.16) greatly complicates the estimation
by either fixed-effects or mixed-effects techniques.

22.4.6 Other Firm Characteristic Effects

Through careful specification of the firm effect in (22.13), we can estimate the av-
erage effect associated with any firm characteristic, v jt , or any interaction of firm
and personal characteristics, r jit , while allowing for unobservable firm and personal
heterogeneity.

22.4.7 Occupation Effects and Other Person××× Firm Interactions

If occupation effects are interpreted as characteristics of the person, then they are
covered by the analysis above and can be computed as functions of θ as described
in (22.11). Occupation effects are often interpreted as an interaction between per-
son and firm effects (Groshen (1991a,b, implicitly). Mixed effects specifications are
most appropriate in this case, and are discussed in Sect. 22.6.

22.5 Estimation by Fixed Effects Methods

In this section we present methods for estimating the pure person and firm effects
specification (22.7) by direct least squares, and consistent methods for estimating
generalizations of this specification.

22.5.1 Estimation of the Fixed Effects Model by Direct
Least Squares

This subsection directly draws from Abowd, Creecy and Kramarz (2002) (ACK,
hereafter). The normal equations for least squares estimation of fixed person, firm,
and characteristic effects are of very high dimension. Thus estimating the full
model by fixed-effect methods requires special algorithms. In our earlier work, e.g.,
Abowd, Finer and Kramarz (1999) (AFK, hereafter) and AKM, we relied on sta-
tistical approximations to render the estimation problem tractable. More recently,
ACK developed new algorithms that permit the exact least squares estimation of all
the effects in (22.7). These algorithms are based on the iterative conjugate gradient
method and rely on computational simplifications admitted by the sparse structure
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of the least squares normal equations. They have some similarity to methods used
in the animal and plant breeding literature.10 ACK also developed new methods for
computing estimable functions of the parameters of (22.7).

22.5.1.1 Least Squares Normal Equations

The full least squares solution to the estimation problem for (22.7) solves the normal
equations for all estimable effects:

⎡

⎣
X ′X X ′D X ′F
D′X D′D D′F
F ′X F ′D F ′F

⎤

⎦

⎡

⎣
β
θ
ψ

⎤

⎦ =

⎡

⎣
X ′y
D′y
F ′y

⎤

⎦ (22.18)

In typical applications, the cross-product matrix on the left-hand side of the equation
is too high-dimensional to solve using conventional algorithms (e.g., those imple-
mented in SAS, Stata, and other general purpose linear modeling software based
on variations of the sweep algorithm for solving (22.18)). AKM present a set of
approximate solutions based on the use of different conditioning effects, Z. AFK
applies the best of these approximations with a much higher-dimension Z.

22.5.1.2 Identification of Individual and Firm Effects

Many interesting economic applications of (22.7) make use of the estimated per-
son and firm effects. Estimation requires a method for determining the identified
effects11. The usual technique of sweeping out singular row/column combinations
from the normal (22.18) is not applicable to the ACK method because they solve the
normal equations without inverting the cross-product matrix. Hence, identification
requires finding conditions under which the normal equations (22.18) can be solved
exactly for some estimable functions of the person and firm effects. In this sub-
section we ignore the problem of identifying the coefficients β because in practice
this is rarely difficult.

The identification problem for the person and firm effects can be solved by ap-
plying graph-theoretic methods to determine groups of connected individuals and
firms. Within a connected group of persons/firms, identification can be determined
using conventional methods from the analysis of covariance. Connecting persons
and firms requires that some of the individuals in the sample be employed at multiple

10 See Abowd and Kramarz (1999a) for a longer dicussion of the relation of these models to
those found in the breeding literature. The techniques are summarized in Robinson (1991) and
the random-effects methods are thoroughly discussed in Neumaier and Groeneveld (1996). The
programs developed for breeding applications cannot be used directly for the linked employer–
employee data application because of the way the breeding effects are parameterized.
11 Standard statistical references, for example Searle et al. (1992), provide general methods for
finding the estimable functions of the parameters of (22.7). These methods also require the solution
of a very high dimension linear system and are, therefore, impractical for our purposes.
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employers. When a group of persons and firms is connected, the group contains all
the workers who ever worked for any of the firms in the group and all the firms at
which any of the workers were ever employed. In contrast, when a group of per-
sons and firms is not connected to a second group, no firm in the first group has
ever employed a person in the second group, nor has any person in the first group
ever been employed by a firm in the second group. From an economic perspec-
tive, connected groups of workers and firms show the realized mobility network in
the economy. From a statistical perspective, connected groups of workers and firms
block-diagonalize the normal equations and permit the precise statement of identi-
fication restrictions on the person and firm effects.

The following algorithm constructs G mutually-exclusive groups of connected
observations from the N workers in J firms observed over the sample period.12

For g = 1, . . . , repeat until no firms remain:
The first firm not assigned to a group is in group g.
Repeat until no more firms or persons are added to
group g:
Add all persons employed by a firm in group g
to group g.
Add all firms that have employed a person in group g
to group g.

End repeat.
End for.

At the conclusion of the algorithm, the persons and firms in the sample have been
divided into G groups. Denote the number of individuals in group g by Ng, and the
number of employers in the group by Jg. Some groups contain a single employer
and, possibly, only one individual. For groups that contain more than one employer,
every employer in the group is connected (in the graph-theoretic sense) to at least
one other employer in the group. Within each group g, the group mean of y and
Ng− 1 + Jg− 1 person and firm effects are identified. After the construction of the
G groups, exactly N + J−G effects are estimable. See the proof in Appendix 1 of
ACK.13

22.5.1.3 Normal Equations after Group Blocking

The identification argument can be clarified by considering the normal equations
after reordering the persons and firms by group. For simplicity, let the arbitrary

12 This algorithm finds all of the maximally connected sub-graphs of a graph. The relevant graph
has a set of vertices that is the union of the set of persons and the set of firms and edges that are
pairs of persons and firms. An edge (i, j) is in the graph if person i has worked for firm j.
13 The grouping algorithm constructs groups within which “main effect” contrasts due to persons
and firms are identified. In the linear models literature the “groups” are called “connected data”.
See Searle (1987, pp. 139–149) for a discussion of connected data. See Weeks and Williams (1964)
for the general algorithm in analysis of variance models.
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equation determining the unidentified effect set it equal to zero, i.e., set one person
or firm effect equal to zero in each group. Then the column associated with this
effect can be removed from the reorganized design matrix and we can suppress the
column associated with the group mean. The resulting normal equations are:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X ′X X ′D1 X ′F1 X ′D2 X ′F2 · · · X ′DG X ′FG

D′1X D′1 D1 0 0 · · · 0 0
F ′1X F ′1 D1 0 0 · · · 0 0

D′2X 0 0 D′2D2 D′2F2 · · · 0 0
F ′2X 0 0 F ′2D2 F ′2F2 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

D′GX 0 0 0 0 · · · D′GDG D′GFG

F ′GX 0 0 0 0 · · · F ′GDF F ′GFG

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β

θ1

ψ1

θ2

ψ2

· · ·

θG

ψG

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X ′y

D′1y
F ′1y

D′2y
F ′2y

· · ·

D′Gy
F ′Gy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22.19)

After reordering by group, the cross-products matrix is block diagonal. This ma-
trix has full column rank and the solution for the parameter vector is unique. ACK
do not solve (22.19) directly. Rather, they apply the technique discussed below to
estimate the identifiable effects.

22.5.1.4 Estimation by Direct Solution of the Least Squares Problem

Appendix 2 in ACK shows the exact algorithm used to solve equation (22.18). It
is a variant of the conjugate gradient algorithm, customized to exploit the sparse
representation of (22.18) and to accommodate very large problems with many X
variables. In practice, ACK apply this algorithm to the full set of persons, firms and
characteristics shown in the design matrices of (22.7) and (22.18). Unlike (22.19),
the cross-product matrix in (22.18) is not of full rank. Although the algorithm ACK
use converges to a least squares solution, the parameter estimates are not unique.
They subsequently apply the following identification procedure to the estimated ef-
fects. In each group, they eliminate one person effect by normalizing the group mean
person effect to zero. ACK also normalize the overall mean person and firm effects
to zero. This procedure identifies the grand mean of the dependent variable (or the
overall regression constant if X and y have not been standardized to mean zero) and
a set of N +J−G−1 person and firm effects measured as deviations from the grand
mean of the dependent variable.14

14 The computer software is available from the authors for both the direct least squares estima-
tion of the two-factor analysis of covariance and the grouping algorithm. Computer software that
implements both the random and fixed effects versions of these models used in breeding applica-
tions can be found in Groeneveld (1998). The specific algorithm we use can be found in Dongarra
et al. (1991) p. 146.
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22.5.2 Consistent Methods for β and γ (The Firm-Specific
Returns to Seniority)

The preceding discussion focused on estimation of the pure person and firm effects
model (22.7). In this subsection, we discuss methods presented in AKM for con-
sistent estimation of more general representations of the person and firm effects. In
particular, we discuss consistent estimation of β and γ j in the general representation
of the firm effect (22.13). The method relies on within-individual-firm differences
of the data. It is robust in the sense that it requires no additional statistical assump-
tions beyond those specified in (22.4) and the general definition of the firm effect
(22.13).15 We should note, however, that this estimation technique relies heavily on
the assumption of no interaction between X and F . Consider the first differences:

yi,nit − yinit−1 = (xinit − xinit−1)β + γJ(i,nit )(sinit − sinit−1)+ εinit − εinit−1 (22.20)

for all observations for which J(i,nit) = J(i,nit−1), and where sinit represents worker
i’s seniority at firm J (i,nit) in period nit .16 In matrix form:

�y =�Xβ + F̃γ +�ε (22.21)

where �y is Ñ∗ × 1, �X is Ñ∗ ×P, F̃ is Ñ∗ × J, �ε is Ñ∗ × 1, and Ñ∗ is equal to
the number of (i, t) combinations in the sample that satisfy the condition J(i,nit) =
J(i,nit−1). The matrix F̃ is the rows of the design of γ that correspond to the person-
years (i, t) for which the condition J(i,nit) = J(i,nit−1) is satisfied. The least squares
estimates of β and γ are,

β̃ = (�X ′MF̃ �X)−1�X ′MF̃ � y (22.22)

γ̃ = (F̃ ′F̃)−1F̃ ′(�y−�X β̃ ). (22.23)

A consistent estimate of V[β̃ ] is given by

˜
V[β̃ ] = (�X ′MF̃ �X)−1(�X ′MF̃ Ω̃MF̃ �X)(�X ′MF̃ �X)−1

where

Ω̃≡

⎡

⎢
⎢
⎣

Ω̃[�ε1] 0 · · · 0
0 Ω̃[�ε2] · · · 0
· · · · · · · · · · · ·
0 0 · · · Ω̃[�εN∗ ]

⎤

⎥
⎥
⎦

15 We have excluded v jt ρ from the firm effect (22.13), and assume a pure person effect θi.
16 In our preceding notation for the general firm effect (22.13), seniority is an element of observable
match-specific characteristics ri jt .
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and

Ω̃[�εi]≡

⎡

⎢
⎢
⎢
⎢
⎣

�̃ε
2
in2

�̃ε in2
�̃ε in3

· · · �̃ε in2
�̃ε inTi

�̃ε in3
�̃ε in2

�̃ε
2
in3

· · · �̃ε in3
�̃ε inTi

· · · · · · · · · · · ·
�̃ε inT1

�̃ε in2
�̃ε inT1

�̃ε in3
· · · �̃ε inTi

�̃ε inTi

⎤

⎥
⎥
⎥
⎥
⎦

.

It is understood that only the rows of �ε that satisfy the condition J(i,nit) =
J(i,nit−1) are used in the calculation of Ω̃, which is therefore Ñ∗ × Ñ∗. Notice that
this estimator does not impose all of the statistical structure of the basic linear model
(22.7).

22.6 The Mixed Model

In this Section, we focus on a mixed model specification of the pure person and firm
effects model. The mixed model arises when some, or all, of the effects in (22.9) are
treated as random, rather than fixed, effects. There is considerable confusion in the
literature about the comparison of fixed and mixed effects specifications, and so we
take pains in this section to define terms in a manner consistent with the enormous
statistical literature on this subject.

Consider the matrix formulation of the pure person and firm effects model, given
in (22.9). We focus on the cases treated by Woodcock (2003) and Abowd and
Stinson (2003), where the parameters β on observable characteristics are treated as
fixed, and where the pure person and firm effects θ and ψ are random.17 This spec-
ification corresponds closely to the hierarchical models that are common in some
other applied settings, for instance in the education literature.18

The mixed model is completely specified by (22.9) and the stochastic
assumptions19

17 In fact, Woodcock (2003) decomposes the pure person effect θi into observable (uiη) and unob-
served components (αi) as in equation (22.10). He treats η as fixed and αi as random. For clarity
of exposition we focus here on the simpler case where θi is random.
18 In the education literature, schools are analogous to firms and students are analogous to workers.
Because education data typically exhibit far less mobility (of students between schools) than we
observe in labor market data, the usual specification nests student effects within school effects. The
analogous hierarchical specification is therefore yit = xitβ +θi j +ψ j + εit , where θi j is the person
effect (nested within firm), and where ψ j and θi j are specified as random effects. Dostie (2005)
and Lillard (1999) estimate related mixed effects specifications for wages where the firm effect is
nested within individuals, e.g., yit = xitβ +θi +ψi j + εit .
19 In general, statisticians do not explicitly condition these expectations on X because they are
primarily concerned with experimental data, where X constitutes part of the experimental design.
Econometricians, however, are most often confronted with observational data. In this setting, X
can rarely be considered a fixed component of the experimental design.
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E [θ |X ] = E [ψ|X ] = E [ε|D,F,X ] = 0 (22.24)

Cov

⎡

⎣
θ
ψ
ε

∣
∣
∣
∣
∣
∣
X

⎤

⎦ =

⎡

⎣
σ2

θ IN 0 0
0 σ2

ψ IJ 0
0 0 R

⎤

⎦ . (22.25)

It is worth noting that unlike some random effects specifications encountered
elsewhere in the econometric literature, the mixed model we have specified does
not assume that the design of the random effects (D and F) is orthogonal to the
design (X) of the fixed effects (β ). Such an assumption is almost always violated in
economic data.

A variety of parameterizations of the residual covariance R are computationally
feasible. Woodcock (2003) considers several in detail. Abowd and Stinson (2003)
consider two more in the context of specifications that allow for multiple jobs in
the same (i, t) pair and multiple measures of the dependent variable. The simplest
parameterization is R = σ2

ε IN∗ . This specification is useful for making comparisons
with the fixed-effect estimation procedure.

The most general parameterization estimated by Woodcock (2003) allows for
a completely unstructured residual covariance within a worker-firm match. Let M
denote the number of worker-firm matches (jobs) in the data, and let τ̄ denote the
maximum observed duration of a worker-firm match. Suppose the data are ordered
by t within j within i. In the balanced data case, where there are τ̄ observations on
each worker-firm match, we can write

R = IM⊗W (22.26)

where W is the τ̄× τ̄ within-match error covariance.20 The extension to unbalanced
data, where each match between worker i and firm j has duration τi j ≤ τ̄ , is fairly
straightforward. Define a τ̄× τi j selection matrix Si j with elements on the principal
diagonal equal to 1, and off-diagonal elements equal to zero.21 Si j selects those
rows and columns of W that correspond to observed earnings outcomes in the match
between worker i and firm j. Then in the unbalanced data case, we have

20 Woodcock (2003) estimates this parameterization of R under the assumption that W is symmetric
and positive semi-definite.
21 For example, if τ̄ = 3 and a match between worker i and firm j lasts for 2 periods,

Si j =

⎡

⎣
1 0
0 1
0 0

⎤

⎦ .



746 J.M. Abowd et al.

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S′11WS11 0 0 · · · 0 0 0

0
. . . 0 · · · 0 0 0

0 0 S′1J1
WS1J1 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · S′N1WSN1 0 0

0 0 0 · · · 0
. . . 0

0 0 0 · · · 0 0 S′NJN
WSNJN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (22.27)

22.6.1 REML Estimation of the Mixed Model

Mixed model estimation is discussed at length in Searle et al. (1992) and McCulloch
and Searle (2001). There are three principal methods that can be applied to estimate
the variance components

(
σ2

θ ,σ2
ψ
)

and R : ANOVA, Maximum Likelihood (ML),
and Restricted Maximum Likelihood (REML). ANOVA and ML methods are famil-
iar to most economists; REML less so.22 Since REML is by far the most commonly
used estimation method among statisticians, it is worth giving it a brief treatment.

REML is frequently described as maximizing that part of likelihood that is in-
variant to the fixed effects (e.g., β ). More precisely, REML is maximum likelihood
on linear combinations of the dependent variable y, chosen so that the linear combi-
nations do not contain any of the fixed effects. As Searle et al. (1992, pp. 250–251)
show, these linear combinations are equivalent to residuals obtained after fitting the
fixed portion of the model (e.g., Xβ ) via least squares.23 The linear combinations
k′y are chosen so that

k′Xβ = 0 ∀β (22.28)

which implies
k′X = 0. (22.29)

Thus k′ projects onto the column null space of X , and is therefore

k′ = c′
[
IN∗ −X

(
X ′X
)−

X ′
]

(22.30)

≡ c′MX (22.31)

for arbitrary c′, and where A− denotes the generalized inverse of A. When X has
rank r ≤ p, there are only N∗ − r linearly independent vectors k′ satisfying (22.28).

22 REML estimation of mixed models is commonplace in statistical genetics and in the plant and
animal breeding literature. In recent years, REML has in fact become the mixed model estimation
method of choice in these fields, superceding ML and ANOVA.
23 Note this exercise is heuristic and serves only to motivate the REML approach. Under the
stochastic assumptions (22.24) and (22.25), the least squares estimator of β is not BLUE. The
BLUE of β is obtained by solving the mixed model equations (22.35).
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Define K′ = C′MX with rows k′ satisfying (22.28), and where K′ and C′ have
full row rank N∗ − r. REML estimation of the variance parameters is maximum
likelihood on K′y under normality. For y∼N (Xβ ,V) it follows that

K′y∼ N
(
0,K′VK

)
(22.32)

where V = DD′σ2
θ + FF ′σ2

ψ + R is the conditional covariance of y implied by
(22.25). The REML log-likelihood (i.e., the log-likelihood of K′y) is

logLREML =−1
2

(N∗ − r) log2π− 1
2

log
∣
∣K′VK

∣
∣− 1

2
y′K
(
K′VK

)−1
K′y. (22.33)

The REML estimator of the variance parameters has a number of attractive prop-
erties. First, REML estimates are invariant to the choice of K′.24 Second, REML
estimates are invariant to the value of the fixed effects (i.e., β ). Third, in the bal-
anced data case, REML is equivalent to ANOVA.25 Under normality, it thus inherits
the minimum variance unbiased property of the ANOVA estimator.26 Finally, since
REML is based on the maximum likelihood principle, it inherits the consistency,
efficiency, asymptotic normality, and invariance properties of ML.

Inference based on REML estimates of the variance components parameters is
straightforward. Since REML estimation is just maximum likelihood on (22.33),
REML likelihood ratio tests (REMLRTs) can be used. In most cases, REMLRTs are
equivalent to standard likelihood ratio tests. The exception is testing for the pres-
ence of some random effect γ . The null is σ2

γ = 0. Denote the restricted REML log-
likelihood by logL∗REML. The REMLRT statistic is Λ =−2(logL∗REML− logLREML) .
Since the null puts σ2

γ on the boundary of the parameter space under the alterna-
tive hypothesis, Λ has a non-standard distribution. Stram and Lee (1994) show the
asymptotic distribution of Λ is a 50:50 mixture of a χ2

0 and χ2
1 . The approximate

p-value of the test is thus 0.5
(
1−Pr

(
χ2

1 ≤Λ
))

.

22.6.2 Estimating the Fixed Effects and Realized
Random Effects

A disadvantage of REML estimation is that it provides no direct means for esti-
mating the fixed covariate effects β . Henderson, in Henderson, Kempthorne, Searle
and von Krosigk (1959) derived a system of equations that simultaneously yield
the BLUE of β and Best Linear Unbiased Predictor (BLUP) of the random effects.

24 Subject to rows k′ satisfying (22.28).
25 The usual statistical definition of balanced data can be found in Searle (1987). Under this def-
initions, longitudinal linked data on employers and employees are balanced if we observe each
worker employed at every firm, and all job spells have the same duration. Clearly, this is not the
usual case.
26 In contrast, ML estimators of variance components are biased since they do not take into account
degrees of freedom used for estimating the fixed effects.
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These equations have become known as the mixed model equations or Henderson
equations. Define the matrix of variance components

G =
[

σ2
θ IN 0
0 σ2

ψ IJ

]
. (22.34)

The mixed model equations are
⎡

⎣
X ′R−1X X ′R−1

[
D F

]
[

D′

F ′

]
R−1X

[
D′

F ′

]
R−1
[

D F
]
+G−1

⎤

⎦

⎡

⎣
β̃
θ̃
ψ̃

⎤

⎦=

⎡

⎣
X ′R−1y[
D′

F ′

]
R−1y

⎤

⎦ (22.35)

where β̃ denotes solutions for the fixed effects, and θ̃ and ψ̃ denote solutions for the
random effects. In practice, of course, solving (22.35) requires estimates of R and
G. Common practice is to use REML estimates G̃ and R̃.

The BLUPs θ̃ and ψ̃ have the following properties. They are best in the sense of
minimizing the mean square error of prediction

E

([
θ̃
ψ̃

]
−
[

θ
ψ

])′
A

([
θ̃
ψ̃

]
−
[

θ
ψ

])
(22.36)

where A is any positive definite symmetric matrix. They are linear in y, and unbiased
in the sense E(θ̃) = E (θ) and E(ψ̃) = E (ψ) .

The solutions to (22.35) also have a Bayesian interpretation. If we suppose
that the prior distribution for β is N (0,Ω) and the prior distribution for (θ ,ψ) is
N (0,G), then the posterior mean E [(β ,θ ,ψ)|y]→ (β̃ , θ̃ , ψ̃), the solution of (22.35),
as |Ω| → ∞. (See Goldberger (1962), Searle et al. (1992, pp. 331–333) and Robinson
(1991)).

The mixed model equations make clear the relationship between the fixed and
mixed model estimation. In particular, as |G| →∞ with R = σ2

ε IN∗ , the mixed model
equations (22.35) converge to the normal equations (22.18). Thus the mixed model
solutions (β̃ , θ̃ , ψ̃) converge to the least squares solutions (β̂ , θ̂ , ψ̂). In this sense the
least squares estimator is a special case of the mixed model estimator.

22.6.3 Mixed Models and Correlated Random Effects Models

Since Chamberlain (1984) introduced his extension of methods by Cramér (1946)
and Mundlak (1978) for handling balanced panel data models with random effects
that were correlated with the X variables, econometricians have generally referred
to the Chamberlain class of models as “correlated random-effects models.” Statis-
ticians, on the other hand, usually mean the Henderson (1953) formulation of the
mixed-effects model that gives rise to (22.35), with G nondiagonal, when they refer
to a correlated random-effects model.

It is important to distinguish between correlated random-effects models based on
the mixed model equations (G nondiagonal) and orthogonal design models, which
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can occur within either a fixed-effects or random-effects interpretation of the per-
son and firm effects. Orthogonal design means that one or more of the following
conditions hold:

X ′D = 0, orthogonal person-effect design and personal characteristics

X ′F = 0, orthogonal firm-effect design and personal characteristics

D′F = 0, orthogonal person-effect and firm-effect designs

An economy with random assignment of persons to firms could satisfy these condi-
tions. However, virtually all longitudinal linked employer–employee data, as well
as most other observational data in economics, violate at least one of these or-
thogonal design assumptions. Recognition of the absence of orthogonality between
the effects is the basis for the fixed-effects estimator approximations discussed in
Sect. 22.5 and the difficulty associated with solving the mixed-model equations, in
general (see Robinson, 1991, Searle et al., 1992, Neumaier and Groeneveld, 1996,
and Groeneveld, 1998).

To relate the Chamberlain-style correlated random-effects model to the mixed
model estimator, we consider a single time-varying X , which we give the compo-
nents of variance structure:

xit = υi + ςit (22.37)

where
Corr[υi,θi] �= 0

V[ςit ] = Δ

and
Corr[ςit ,εns] = 0 ∀i,n,s, t

This specification implies that Corr[υi,ψJ(i,t)] �= 0 as long as G is nondiagonal. Then,
to derive the Chamberlain estimating system for a balanced panel data model, as-
sume that Ti = T for all i and compute the linear projection of yi on xi

yi = xiΠ +νi (22.38)

where Π is the T ×T matrix of coefficients from the projection and νi is the T ×1
residual of the projection. Chamberlain provides an interpretation of the coefficients
in Π that remains valid under our specification.

Because the firm effect is shared by multiple individuals in the sample, however,
the techniques proposed by Chamberlain for estimating equation (22.38) require
modification. The most direct way to accomplish the extension of Chamberlain’s
methods is to substitute equation (22.37) into equation (22.7), then restate the sys-
tem of equations as a mixed model. For each individual i in period t we have

[
yit

xit

]
=
[

τi +ψJ(i,t) +ξit

υi + ςit

]
. (22.39)
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where τi = θi +υiβ and ξit = εit + ςitβ . Stacking yi and xi, define

mi ≡
[

yi

xi

]
, and m≡

⎡

⎣
m1

· · ·
mN

⎤

⎦

All other vectors are stacked conformably. Then, the mixed-effects formulation of
(22.39) can be written as

m = D1τ +D2υ +F3ψ +ν (22.40)

where D1,D2, and F3 are appropriately specified design matrices, τ is the N × 1
vector of person effects entering the y equation, υ is the N × 1 vector of person
effects entering the x equation, and

ν =

⎡

⎢
⎢
⎢
⎢
⎣

ξ1

ς1

· · ·
ξN

ςN

⎤

⎥
⎥
⎥
⎥
⎦

is the stacked joint error vector. Problems of this form, with τ,υ , and ψ corre-
lated and D1,D2, and F3 nonorthogonal look unusual to economists but are quite
common in animal science and statistical genetics. Software to solve the mixed
model equations and estimate the variance matrices for (22.40) has been devel-
oped by Groeneveld (1998) and Gilmour, Thompson and Cullis (1995) and some
applications, other than the one presented above, are discussed in Robinson (1991)
and Tanner (1996). The methods exploit the sparse structure of D1,D2, and F3 and
use analytic derivatives to solve (22.35). Robert (2001) and Tanner (1996) provide
algorithms based on simulated data techniques.

22.7 Models of Heterogeneity Biases in Incomplete Models

The analyses in this section are based upon the exact fixed-effects estimator for
model (22.9) given by the solution to (22.18).

22.7.1 Omission of the Firm Effects

When the estimated version of (22.9) excludes the firm effects, ψ , the estimated per-
son effects, θ ∗, are the sum of the underlying person effects, θ , and the employment-
duration weighted average of the firm effects for the firms in which the worker was
employed, conditional on the individual time-varying characteristics, X :
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θ ∗ = θ +(D′MX D)−1D′MX Fψ. (22.41)

Hence, if X were orthogonal to D and F , so that D′MX D = D′D and D′MX F = D′F ,
then the difference between θ ∗ and θ , which is just an omitted variable bias, would
be an N × 1 vector consisting, for each individual i, of the employment-duration
weighted average of the firm effects ψ j for j ∈ {J(i,ni1), . . . ,J(i,niT )}:

θ ∗i −θi =
Ti

∑
t=1

ψJ(i,nit )

Ti
,

the person-average firm effect. Similarly, the estimated coefficients on the time-
varying characteristics in the case of omitted firm effects, β ∗, are the sum of the
parameters of the full conditional expectation, β , and an omitted variable bias that
depends upon the conditional covariance of X and F , given D:

β ∗ = β +(X ′MDX)−1X ′MDFψ.

22.7.2 Omission of the Person Effects

Omitting the pure person effects (θ ) from the estimated version of (22.9) gives es-
timates of the firm effects, ψ∗∗, that can be interpreted as the sum of the pure firm
effects, ψ , and the employment-duration weighted average of the person effects of
all of the firm’s employees in the sample, conditional on the time-varying individual
characteristics:

ψ∗∗ = ψ +(F ′MX F)−1F ′MX Dθ . (22.42)

Hence, if X were orthogonal to D and F , so that F ′MX F = F ′F and F ′MX D = F ′D,
the difference between ψ∗∗ and ψ , again an omitted variable bias, would be a J×1
vector consisting of the employment-duration weighted average of person effects θi

for (i, t) ∈ {J(i, t) = j and t ∈ {ni1, . . . ,niTi}} for each firm j. That is,

ψ∗∗j −ψ j =
N

∑
i=1

Ti

∑
t=1

[
θi 1(J(i,nit) = j)

Nj

]
,

the firm-average person effect. The estimated coefficients on the time-varying char-
acteristics in the case of omitted individual effects, β ∗∗, are the sum of the effects of
time-varying personal characteristics in (22.9), β , and an omitted variable bias that
depends upon the covariance of X and D, given F :

β ∗∗ = β +(X ′MF X)−1X ′MF Dθ . (22.43)

This interpretation applies to studies like Groshen (1991a, 1991b, 1996).
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22.7.3 Inter-industry Wage Differentials

We showed above that industry effects are an aggregation of firm effects that may be
inconsistently estimated if either person or firm effects are excluded from the equa-
tion. We consider these issues now in the context of inter-industry wage differentials
as in Dickens and Katz (1987), Krueger and Summers (1987, 1988), Murphy and
Topel (1987), Gibbons and Katz (1992). The fixed or random effects estimation of
the aggregation of J firm effects into K industry effects, weighted so as to be rep-
resentative of individuals, can be accomplished directly by estimation of (22.16).
Only rank(F ′MFAF) fixed firm effects can be separately identified; however, the
mixed-effects model can produce estimates of all realized industry and firm effects.

As shown in AKM, fixed-effects estimates of industry effects, κ∗, that are com-
puted on the basis of an equation that excludes the remaining firm effects, MFAFψ ,
are equal to the pure industry effect, κ , plus an omitted variable bias that can be
expressed as a function of the conditional variance of the industry effects, FA, given
the time-varying characteristics, X , and the person effects, D:

κ∗ = κ +
(

A′F ′M[
D X

]FA

)−1

A′F ′M[
D X

]MFAFψ

which simplifies to κ∗ = κ if, and only if, the industry effects, FA, are orthogonal
to the subspace MFAF , given D and X , which is generally not true even though FA
and MFAF are orthogonal by construction. Thus, consistent fixed-effects estimation
of the pure inter-industry wage differentials, conditional on time-varying personal
characteristics and unobservable non-time-varying personal characteristics requires
identifying information on the underlying firms unless this conditional orthogonal-
ity condition holds. Mixed-effects estimation without identifying information on
both persons and firms likewise produces realized inter-industry wage effects that
confound personal and firm heterogeneity.

Similarly, AKM show that fixed-effects estimates of the coefficients of the time-
varying personal characteristics, β ∗, are equal to the true coefficients of the linear
model (22.9), β , plus an omitted variable bias that depends upon the conditional
covariance between these characteristics, X , and the residual subspace of the firm
effects, MFAF , given D:

β ∗ = β +

(

X ′M[

D FA
]X

)−1

X ′M[
D FA

]MFAFψ

which, once again, simplifies to β ∗ = β if, and only if, the time-varying personal
characteristics, X , are orthogonal to the subspace MFAF , given D and FA, which is
also not generally true. Once again, both fixed-effects and mixed-effects estimation
of the β coefficients produces estimates that confound personal and firm hetero-
geneity when both types of identifying information are not available.
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To assess the seriousness of the heterogeneity biases in the estimation of industry
effects, AKM propose a decomposition of the raw industry effect into the part due
to individual heterogeneity and the part due to firm heterogeneity. Their formulas
apply directly to the fixed-effects estimator of (22.9) and can be extended to the
estimated realized effects in a mixed-effects model. When (22.16) excludes both
person and firm effects, the resulting raw industry effect, κ∗∗k , equals the pure indus-
try effect, κ , plus the employment-duration weighted average residual firm effect
inside the industry, given X , and the employment-duration weighted average person
effect inside the industry, given the time-varying personal characteristics X :

κ∗∗ = κ +(A′F ′MX FA)−1A′F ′MX (MFAFψ +Dθ)

which can be restated as

κ∗∗ = (A′F ′MX FA)−1A′F ′MX Fψ +(A′F ′MX FA)−1A′F ′MX Dθ , (22.44)

which is the sum of the employment-duration weighted average firm effect, given
X and the employment-duration weighted average person effect, given X . If in-
dustry effects, FA, were orthogonal to time-varying personal characteristics, X ,
and to the design of the personal heterogeneity, D, so that A′F ′MX FA = A′F ′FA,
A′F ′MX F = A′F ′F , and A′F ′MX D = A′F ′D, then, the raw inter-industry wage
differentials, κ∗∗, would simply equal the pure inter-industry wage differentials,
κ , plus the employment-duration-weighted, industry-average pure person effect,
(A′F ′FA)−1 A′F ′Dθ , or

κ∗∗k = κk +
N

∑
i=1

Ti

∑
t=1

1[K(J(i,nit)) = k]θi

Nk

Thus, statistical analyses of inter-industry differentials that exclude either person or
firm effects confound the pure inter-industry wage differential with an average of the
person effects found in the industry, given the measured personal characteristics, X .

22.8 Endogenous Mobility

The problem of endogenous mobility occurs because of the possibility that individ-
uals and employers are not matched in the labor market on the basis of observable
characteristics and the person and firm effects. A complete treatment of this problem
is beyond the scope of this article; however, it is worth noting that the interpretation
of (22.7) and (22.9) as conditional expectations given the person and firm effects is
not affected by some forms of endogenous mobility. If the mobility equation is also
conditioned on X ,D, and, F , then the effects in the referenced equations are also
structural as long as mobility does not depend upon ε.

Matching models of the labor market, such as those proposed by Jovanovic (1979)
and Woodcock (2003) imply the existence of a random effect that is the interaction
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of person and firm identities. Such models are amenable to the statistical structure
laid out in Sect. 22.6; however, to our knowledge the application of such techniques
to this type of endogenous mobility model has only been attempted recently using
linked employer-employee data. We present these attempts now.

22.8.1 A Generalized Linear Mixed Model

Mixed model theory and estimation techniques have been applied to nonlinear mod-
els with linear indices. These are usually called generalized linear mixed models,
and include such familiar specifications as the probit, logit, and tobit models aug-
mented to include random effects. See McCulloch and Searle (2001) for a general
discussion.

Woodcock (2003) estimates a mixed probit model with random person and firm
effects as the first step of a modified Heckman two-step estimator. The goal is to
correct for truncation of the error distribution in a mixed model of earnings with
random person and firm effects. This truncation arises from endogenous mobility in
the context of an equilibrium matching model. Specifically, the Woodcock (2003)
matching model predicts that earnings are observed only if the worker-firm match
continues, and that the continuation decision depends on person-, firm-, and tenure-
specific mobility effects that are correlated with the person and firm effects in the
earnings equation. At tenure τ, the match continues only if εit ≥ ε̄iτ where

ε̄iτ = −μτ −ζiτ −ξ jτ (22.45)

[
ζiτ
ξ jτ

]
∼ N

([
0
0

]
,

[
σ2

ζτ
0

0 σ2
ξτ

])

.

When εit ∼N (0,Vτ) , the marginal probability of observing the earnings outcome
yit is

Pr(εit ≥ ε̄iτ) = 1−Φ

(
−μτ −ζiτ −ξ jτ

V 1/2
τ

)

= Φ

(
μτ +ζiτ +ξ jτ

V 1/2
τ

)

(22.46)

where Φ is the standard normal CDF. Then we have

E [yit |εit ≥ ε̄iτ ] = μ + x′itβ +θi +ψ j +V 1/2
τ

φ
(

μτ +ζiτ+ξ jτ

V 1/2
τ

)

Φ
(

μτ +ζiτ+ξ jτ

V 1/2
τ

)

= μ + x′itβ +θi +ψ j +V 1/2
τ λiτ (22.47)

where λiτ is the familiar Inverse Mills’ Ratio.
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The truncation correction based on (22.46) and (22.47) proceeds as follows. The
first step is to estimate a continuation probit at each tenure level with random person-
and firm-specific mobility effects ζiτ and ξ jτ . Woodcock (2003) estimates probits
using the Average Information REML algorithm of Gilmour et al. (1995), applied
to the method of Schall (1991). The Schall (1991) method extends standard meth-
ods for estimating generalized linear models to the random effects case. The basic
idea is to perform REML on a linearization of the link function Φ. The process re-
quires an iterative reweighting of the design matrices of fixed and random effects in
the linearized system, see Schall (1991) for details. With estimates of the realized
random effects ζ̃it and ξ̃ jτ in hand, Woodcock (2003) constructs an estimate λ̃iτ of
the Inverse Mills’ Ratio term for each observation. Including λ̃iτ as an additional
time-varying covariate in the earnings equation corrects for truncation in the error
distribution due to endogenous mobility.

22.8.2 A Model of Wages, Endogenous Mobility and Participation
with Person and Firm Effects

Following Buchinsky, Fougère, Kramarz and Tchernis (2003), and the structural
interpretation they develop, Beffy, Kamionka, Kramarz and Robert (2003, BKKR
hereafter) jointly model wages with a participation equation and an inter-firm mo-
bility equation that include state-dependence and unobserved heterogeneity. A firm-
specific unobserved heterogeneity component is added to the person-specific term.
Like the linear models discussed in detail above, the wage equation includes person
and firm effects.

Inter-firm mobility at date t depends on the realized mobility at date t−1. Sim-
ilarly, participation at date t depends on past participation and mobility. Hence, we
include initial conditions, modeled following Heckman (1981). This yields the fol-
lowing system of equations:

Initial Conditions:

zi1 ∼ U1,...,J

yi1 = I

(
XY

i1δY
0 +αY,E

zi1
+ vi1 > 0

)

wi1 = yi1

(
XW

i1 δW +θW,E
zi1

+ εi1

)

mi1 = yi1I

(
XM

i1 δM
0 +αM,E

zi1
+ui1 > 0

)
.

Main Equations: ∀t > 1,

zit = yit−1 ((1−mit−1)zit−1 +mit−1η̃it)+(1− yit−1)η
η ∼ U1,...,J η̃it ∼U(1,...,J)−(zit−1)
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yit = I

⎛

⎜
⎜
⎝γMmit−1 + γY yit−1 +XY

it δY +θY,E
zit

+θY,I
i + vit

︸ ︷︷ ︸
y∗it

> 0

⎞

⎟
⎟
⎠

wit = yit

(
XW

it δW +θW,E
zit

+θW,I
i + εit

)

mit = yitI

⎛

⎜
⎜
⎝γmit−1 +XM

it δM +θ M,E
zit

+θ M,I
i +uit

︸ ︷︷ ︸
m∗it

> 0

⎞

⎟
⎟
⎠ .

The variable zit denotes the latent identifier of the firm and J(i, t) denotes the realized
identifier of the firm at which worker i is employed at date t. Therefore, J(i, t) = zit

if individual i participates at date t. yit and mit denote, respectively, participation and
mobility, as previously defined. yit is an indicator function, equal to 1 if the individ-
ual i participates at date t. mit is an indicator function that takes values according to
Table 22.1.

The variable wit denotes the logarithm of the annualized total labor costs. The
variables X are the observable time-varying as well as the time-invariant charac-
teristics for individuals at the different dates. Here, θ I and θ E denote the random
effects specific to, respectively, individuals or firms in each equation. u, v and ε are
the error terms. There are J firms and N individuals in the panel of length T .

22.8.3 Stochastic Assumptions

In order to specify the stochastic assumptions for the person and firm-effects, BKKR
first rewrite their system of equations as:

zit = yit−1 ((1−mit−1)zit−1 +mit−1η̃it)+(1− yit−1)η

yit = I

⎛

⎜
⎜
⎝γMmit−1 + γY yit−1 +XY

it δY +ΩE
zit

θY,E +ΩI
itθY,I + vit

︸ ︷︷ ︸
y∗it

> 0

⎞

⎟
⎟
⎠

Table 22.1 Mobility Indicator

yit+1 = 1 yit+1 = 0
yit = 1 mit = 1 if J(i, t +1) �= J(i, t) mit censored

mit = 0 if J(i, t +1) = J(i, t)
yit = 0 mit = 0 p.s. mit = 0 p.s.
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wit = yit

(
XW

it δW +ΩE
zit

θW,E +ΩI
itθW,I + εit

)

mit = yit .I

⎛

⎜
⎜
⎝γmit−1 +XM

it δM +ΩE
zit

θ M,E +ΩI
itθ M,I +uit

︸ ︷︷ ︸
m∗it

> 0

⎞

⎟
⎟
⎠

for each t > 1, where ΩE
it is a design matrix of firm effects for the couple (i, t).

Hence, it is a 1× J matrix composed of J− 1 zeros and of a 1 at column zi,t . Sim-
ilarly, ΩI

it is a 1×N matrix composed of N− 1 zeros and of a 1 at column i. The
model includes two dimensions of heterogeneity. This double dimension crucially
affects the statistical structure of the likelihood function. The presence of firm ef-
fects makes the likelihood non-separable (person by person). Indeed, the outcomes
of two individuals employed at the same firm, not necessarily at the same date, are
not independent.

The next equations present the stochastic assumptions for the person and firm
effects:

θ E =
(
αY,E , αM,E , θY,E , θW,E , θ M,E) of dimension [5J,1]

θ I =
(
θY,I , θW,I , θ M,I) of dimension [3N,1].

Moreover,

θ E |Σ E ∼N (0,DE
0 ) (22.48)

θ I |Σ I ∼N (0,DI
0) (22.49)

DE
0 = Σ E ⊗ IJ (22.50)

DI
0 = Σ I⊗ IN (22.51)

where Σ E (resp. Σ I) is a symmetric positive definite matrix [5,5] (resp. [3,3]) with
mean zero. Notice that these assumptions imply that correlations between the wage,
the mobility, and the participation equations come from both person and firm hetero-
geneity (in addition to that coming from the idiosyncratic error terms). Furthermore,
these assumptions exclude explicit correlation between different firms (for instance,
the authors could have considered a non-zero correlation of the firm effects within
an industry, a non-tractable assumption). Notice though that BKKR could have in-
cluded in the wage equation, for instance, the lagged firm effects of those firms at
which a worker was employed in her career. This is difficult, but feasible in this
framework.

Finally, they assume that the idiosyncratic error terms follow:
⎛

⎝
vit

εit

uit

⎞

⎠∼iid N

⎛

⎝

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
1 ρywσ ρym

ρywσ σ2 ρwmσ
ρym σρwm 1

⎞

⎠

⎞

⎠ .
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Notice that experience and seniority are complex and highly non linear functions of
the participation and mobility equations. Because all these person and firm effects
are correlated between equations, the presence of experience and seniority in the
wage equation induces a correlation between these two variables and the person and
the firm effect in the same equation. Indeed, in the terminology introduced above,
the BKKR model exhibits correlated random effects.

BKKR estimate this model on French data using Monte-Carlo Markov Chain
methods (Gibbs sampling and the Hastings-Metropolis algorithms).

22.9 Conclusion

We have presented a relatively concise tour of econometric issues surrounding the
specification of linear models that form the basis for the analysis of linked longitudi-
nal employer–employee data. Our discussion has focused on the role of person and
firm effects in such models, because these data afford analysts the first opportunity
to separately distinguish these effects in the context of a wide variety of labor mar-
ket outcomes. We have shown that identification and estimation strategies depend
upon the observed sample of persons and firms (the design of the person and firm
effects) as well as on the amount of prior information one imposes on the problem,
in particular, the choice of full fixed-effects or mixed-effects estimation.

We do not mean to suggest that these estimation strategies are complete. Indeed,
many of the methods described in this chapter have been used by only a few analysts
and some have not been used at all in the labor economics context. We believe that
future analyses of linked employer–employee data will benefit from our attempt
to show the relations among the various techniques and to catalogue the potential
biases that arise from ignoring either personal or firm heterogeneity.
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Chapter 23
Life Cycle Labor Supply and Panel Data:
A Survey

Bertrand Koebel, François Laisney, Winfried Pohlmeier and Matthias Staat

23.1 Introduction

The econometrics of labor supply belongs to one of the technically most advanced
fields in microeconometrics. Many specific issues such as the proper modelling of
tax structures, the existence of fixed costs as well as rationing have been treated
in numerous articles so that marginal gains in substantive economic insights seem
low and entry costs into the field prohibitively high. Not surprisingly, one of the
most obvious paths for research on labor supply, the (micro-) econometric analy-
sis of the individual’s labor supply over the life cycle, has by now gained much
more attention than 10 years ago. The increased availability of panel data for many
countries, as well as the development of appropriate econometric techniques, have
made econometric studies of intertemporal labor supply behavior using panel data
not only interesting on purely theoretical grounds, they have also helped to achieve
a better understanding of individual retirement behavior, the functioning of institu-
tional settings in different countries (such as taxes, vocational training programmes,
day-care for children) and the distribution of income and wealth, to name only a few.

Estimation of labor supply functions using panel data has started out in the eight-
ies, and the number of studies reporting on such estimation is rapidly increasing.
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Earlier studies using panel data mainly concentrated on participation. Thus, it
is not surprising that the excellent surveys of Pencavel (1986), Heckman and
MaCurdy (1986) and Killingsworth and Heckman (1986) hardly touched the
subject.1 The latter survey concluded a comparison of a large number of cross sec-
tion studies with the words: “[these studies] seem to have reduced the mean and
substantially increased the variance of [. . .] what might be called the reasonable
guesstimate of the wage elasticity of female labour supply [. . .].2 However, [. . .]
studies based on alternative behavioural models—notably, life cycle models, which
have been used relatively little in empirical studies—are also likely to provide im-
portant insights” (pp. 196–197).

Earlier surveys of some of the material covered here can be found in Blundell
(1987, 1988), Blundell, Fry and Meghir (1990), Card (1994), MaCurdy et al. (1990)
and Blundell and MaCurdy (1999).

As we shall see, there has been a trend away from models that take advantage
of panel data almost exclusively in order to control for unobserved heterogeneity,
towards fully dynamic models where wages become endogenous, and consequently
the concept of wage elasticity loses much of its appeal.

This chapter aims at providing the reader with a thread through the literature on
the topic. However, we make no claim to exhaustivity, and concentrate mainly on
the theoretical aspects of the studies. In Sect. 23.2 we describe the basic model of
life cycle λ -constant labor supply. Sect. 23.3 is devoted to extensions taking account
of uncertainty and risk, while Sect. 23.4 discusses voluntary and involuntary non-
participation, as well as accounting for taxation. Sect. 23.5 presents an alternative
specification which leaves the λ -constant framework, and discusses its implications,
in particular for modelling the impact of taxes on labor supply. In Sect. 23.6 we
discuss studies relaxing within-period and between-period additive separability, and
focusing on rational habit formation and human capital accumulation. Sect. 23.7
concludes and opens towards other strands of the literature that contribute to the
understanding of labor supply.

23.2 The Basic Model of Life Cycle Labor Supply

We shall not restate here the theoretical developments contained in the survey of
Killingsworth and Heckman (1986) (pp. 144–179) but refer the reader to them.
Killingsworth and Heckman insist on the pioneering work of Mincer (1962). They
show that “the distinction between permanent and transitory wages is not particu-
larly useful from a theoretical standpoint” (p. 158) and demonstrate the usefulness
of Frisch demands as an alternative to the permanent vs. transitory distinction. 3

They also discuss models with endogenous wages and conclude: “although much
informal discussion implicitly or explicitly emphasizes the interrelationships be-

1 Yet see Chap. 5 in Killingsworth (1983), pp. 207–330.
2 Here we shall not restrict attention to female labor supply.
3 The uninformed reader will find a definition below.
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tween (. . .) work and wages in a life-cycle setting, rigorous analysis of such issues
using formal life-cycle labour supply models with endogenous wages is still in its
infancy” (p. 178). Here we will describe the models used for estimation in a selec-
tion of papers representative of the trend over the last 25 years. Along the way we
also give some details on the estimation techniques and on the results, illustrating
the fact that econometric modelling is by no means linear: there is a feedback of
estimation results on model specification.

23.2.1 The Framework

The seminal paper, as far as empirically implementable models are concerned, is
MaCurdy (1981).4 The assumptions retained are fairly stringent and include known
life length T , perfect foresight and perfect credit markets, as well as rates of time
preference that may differ across individuals and do not change over time. At time
1 an individual chooses {Cit ,Lit ,Ait}T

t=1 in order to maximizes discounted utility

T

∑
t=1

1
(1+ρi)t−1 Uit(Cit ,Lit) (23.1)

subject to the sequence of budget constraints

Ait = (1+ rt)Ai,t−1 +witNit −Cit , t = 1, . . . ,T . (23.2)

The variable C denotes real consumption, L leisure, A end of period assets in real
terms, N hours of work (N = L̄−L, where L̄ denotes maximum time available in
each period for allocation between leisure and market work), r is the real interest
rate, w the real wage, ρ the rate of time preference, and A0 denotes initial assets.
The within-period utility function Uit is assumed to be concave.

The first-order conditions, assuming an interior optimum, include the budget
restrictions (23.2) and

∂Uit

∂Cit
= λit , (23.3)

∂Uit

∂Lit
= λitwit , t = 1, . . . ,T, (23.4)

where λit denotes the Lagrange multiplier of the budget constraint in period t. Notice
that (pseudo) optimal demands can be derived by solving (23.2)–(23.4), eliminating
λit , to obtain C̃it(Sit ,wit), L̃it(Sit ,wit), where Sit ≡ Ait − (1+ rt)Ai,t−1 denotes the
level of saving or dissaving.5 In the timewise additive separable case, net saving Sit

is a sufficient statistic of all the future as far as the present decision is concerned. In

4 For the purpose of comparability with later sections, we slightly depart from MaCurdy’s exposi-
tion and notations.
5 MaCurdy (1983, p.271) calls C̃ and L̃ pseudo demand functions.
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general, the argument Sit of functions C̃it and L̃it will not be arbitrary, but optimally
chosen by individuals. For this reason it will depend of the entire wage profile, of
the initial wealth Ai0 and of the interest and time preference rates. This functional
dependence in general implies correlation between Sit and the past and future vari-
ables, and shocks and thus calls for instrumental variable estimation methods.

Instead of considering C̃ and L̃, MaCurdy (1981) derives the Frisch demands
Cit (λit ,wit) , Lit (λit ,wit), obtained by solving (23.3)–(23.4). The Lagrange multi-
plier λit measures the impact of a marginal increase in Ait on the optimal value of
objective (23.1). From the envelope theorem, we have

λit =
1+ rt+1

1+ρi
λit+1 , (23.5)

or, using a first-order approximation around ρi = rt+1 = 0,

lnλit ≈ rt+1−ρi + lnλi,t+1 . (23.6)

The value of λit is implicitly determined by substitution of the demand functions
C and L in (23.2). Thus, λit is a function of the entire wage profile, of the initial
wealth Ai0 and of the interest and time preference rates rt and ρi. Just as Sit , λit is
a sufficient statistic which summarizes the impact of all the future variables on the
present decision. As before, the use of instrumental variables is recommended for
parameter estimation. Using (23.5) and (23.6), we can write

λit = λi0

t

∏
k=1

1+ρi

1+ rk
(23.7)

or, assuming small values for ρi and the rk,

lnλit ≈ tρi−Rt + lnλi0 , (23.8)

where Rt = ∑t
k=1 rk, and substitute this term into functions C and L to obtain

C∗it (wit ,λi0) and L∗it (wit ,λi0) .

The concavity of Uit implies

∂C∗it
∂wit

≥ 0,
∂L∗it
∂wit

≤ 0,

∂C∗it
∂λi0

≤ 0,
∂L∗it
∂λi0

≤ 0,
∂ 2L∗it
∂λ 2

i0

≤ 0, (23.9)

and
∂λ ∗i0
∂Ai0

≤ 0,
∂λ ∗i0
∂wit

≤ 0, t = 1, . . . ,T.

where λ ∗i0
(
{wit}T

t=0 ,Ai0

)
is the value of the multiplier corresponding to the optimal

solution.
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Both types of demand functions are related by:

L∗ (λ ∗i0,wit) = L̃(Si0,wit) .

Two measures have focused the interest of economists: the Frisch elasticity of labor
supply with respect to the wage, denoting N∗it = N∗ (λi0,wit),

eλ ≡
∂N∗it
∂wit

wit

N∗it
,

and the intertemporal elasticity of substitution between labor supplies of two con-
secutive periods:

ies≡
∂
(

N∗it/N∗i,t+1

)

∂ (wit/wi,t+1)
wit/wi,t+1

N∗it/Ni,t+1
,

which gives the inverse of the percentage change in the relative labor supplies
(of two consecutive periods), when the ratio of relative wages wit/wi,t+1 increases
by 1%.

23.2.2 First Specifications of the Utility Function

MaCurdy (1981) specifies the following additively separable within-period utility
function for individual i:

Uit(Cit ,Lit) = γCitC
β
it − γNitN

αN
it , [Nit = L̄−Lit ], i = 1, . . . , I . (23.10)

Concavity requires 0 < β < 1, αN > 1. Heterogeneity, both observed and unob-
served, is modelled through random preferences with the specification

lnγNit = σi−u∗it , (23.11)

where u∗it is i.i.d. with zero expectation (note that time–varying characteristics are
excluded by assumption).

The resulting Frisch labor supply and consumption demand equations are:

lnNit =
1

αN −1
(lnλit − lnαN + lnwit −σi +u∗it) (23.12)

lnCit =
1

β −1
(lnλit − lnγCit − lnβ ).

Using (23.8), we obtain (assuming ρi = ρ)

lnNit = Fi +bt−δRt +δ lnwit +uit (23.13)
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with

Fi =
1

αN −1
(lnλi0−σi− lnαN), δ =

1
αN −1

, b = δρ, uit =−δu∗it .

This is a linear panel model with an individual-specific effect Fi, which has to be
treated as a fixed effect because it is correlated with wit via λi0. Notice that when
the ρi are not all identical, there is in addition heterogeneity in the parameter b. In
this model, the Frisch elasticity of labor supply is given by δ = 1/(αN −1) and is
also equal to the intertemporal elasticity of substitution.

Moreover, MaCurdy considers the following linear approximation of Fi:

Fi = Ziφ +
T

∑
t=1

γt lnwit +Ai0θ +αi , (23.14)

where Zi denotes a vector of household characteristics and αi a residual term. Ac-
cording to (23.9), γt and θ should be negative. Note that coefficients are identical
across households. Combined with the additional assumption of a quadratic form
for the profile of log wages,

lnwit = π0i +π1it +π2it
2 +ξit , (23.15)

this leads to
Fi = Ziφ +π0iγ0 +π1iγ1 +π2iγ2 +Ai0θ +ηi , (23.16)

with

γ j =
T

∑
t=1

γt t
j, j = 0,1,2 .

Interpretation: δ is the intertemporal substitution (or λ -constant, or Frisch) elas-
ticity. It describes the reaction to an evolutionary change of the wage rate along
the wage profile. It is positive since αN > 1. Along a profile, evolutionary changes
take place. MaCurdy calls changes between profiles parametric or profile changes.
A change Δ > 0 from a wage profile I to an otherwise identical profile II at time s
causes the Frisch labor supply of profile II to be lower than that of profile I in all
periods t �= s, because λII < λI by (23.9). Equation (23.14) implies

FII−FI = γsΔ < 0 .

The net effect on labor supply in period s, (δ+γs)Δ, can be positive or negative. δ+
γs and γs are the usual uncompensated (own- and cross-period) elasticities, and the
corresponding compensated elasticities are δ + γs−Esθ and γs−Esθ , respectively,
where Es denotes real earnings in period s. If leisure is a normal good (θ < 0), we
have

δ > δ+ γs−Esθ > δ+ γs ,

i.e.
eλ > eu > eA ,
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where eλ is the wage elasticity with constant marginal utility of wealth, eA is the
wage elasticity with constant (lifetime) wealth and eu is the wage elasticity with
constant (lifetime) utility. Bover (1989) and Blundell, Meghir and Neves (1993)
give useful discussions of the relationships between these elasticities.
Estimation is conducted in two stages.

Stage 1: (23.12) is estimated in first differences:6

Δ lnNit = b−δrt+1 +δΔ lnwit + εit , t = 2, . . . ,τ, i = 1, . . . , I .

MaCurdy (1981) considers the Frisch labor supply equations across the τ available
time periods as a system. No restrictions are imposed on the temporal covariance
structure of ε. As the level of wages may depend upon unobserved individual char-
acteristics which also affect the amount of working time, the variable wit can be sus-
pected to be correlated with εit . MaCurdy uses system estimation (2SLS and 3SLS),
and treats lnwit as endogenous, with instruments derived from a human capital type
equation.

In this way, the reactions of Nit to the evolutionary changes in wit are completely
described by δ̂. In order to also describe the reactions of labor supply to paramet-
ric changes in wages, information on the sensitivity of Fi with respect to wit is
needed.

Stage 2: Given the first stage parameter estimates, the fixed effects can be esti-
mated using (23.12) as:

F̂i =
1
τ

τ

∑
t=1

(
lnNit − b̂t + δ̂Rt − δ̂ lnwit

)
. (23.17)

A similar method is used to obtain estimates of the πhi parameters, which then allows
to estimate the unknown parameter of (23.16). These estimates can then be used to
identify the labor demand reaction to a shift in the wage profile and to obtain an
estimate of the wage elasticity eA.

Note that there are also contributions estimating pseudo supply functions. For
instance, Conway and Kniesner (1994) consider the following econometric
specification:

Nit = Fi +δwit +κSit +Zitπ +uit ,

which is a linear pseudo labor function (depending upon savings), where variables
wit and/or Sit are allowed to be correlated with the random term uit and individual
specific heterogeneity Fi. They use a sample of prime aged men from the PSID
who worked each year from 1978 to 1982 and experiment with different types of
instruments. They find that pseudo labor supply is decreasing in the wage in 59 out
of the 60 regressions considered. This finding is at odds with (23.9).

6 Henceforth, Δ will denote the first difference operator. Another possibility would be to use within
estimation. One advantage of estimation in first differences, however, is that no strict exogeneity
assumption is needed.
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23.3 Taking Account of Uncertainty and Risk

So far we have only considered labor substitution over time, which measures
changes in labor supply in response to anticipated wage changes. How individu-
als react in response to unanticipated wage and interest rate changes is important to
better understand the labor market impacts of monetary and fiscal policies for ex-
ample. The labor market implications of wage and interest rate volatility may also
have consequences for the optimal design of labor contracts and the organization of
financial markets.

MaCurdy (1983) was the first to propose an empirical framework allowing to
cope with uncertainty. He showed that uncertainty concerning wages and interest
rates can be accounted for by slightly adapting the model with certainty, so that
most uncertainty can be summarized into an additive residual term. The use of ad-
equate instruments then allows to consistently estimate the parameters of interest.
Some 20 years later, Pistaferri (2003) showed that a more precise modelling of un-
certainty yields a different specification of labor supply relationships. This allows
economists to study how labor supply reacts to unanticipated changes not only in
wages and interest rates, but also in other dimensions like wealth or family compo-
sition. As soon as uncertainty is introduced in the model, risk also naturally arises in
the specification of labor supply. Lich-Tyler (2002) investigated this second issue.
Both topics are related and can be presented within a comprehensive framework.

23.3.1 First Developments

Following MaCurdy (1983), we assume uncertainty concerning future wages and
interest rates. Replanning for the future takes place in every period, on the basis of
the new information obtained. The individual maximizes expected discounted utility
in period t:

Et

T

∑
s=t

1
(1+ρi)s−t Uis(Cis,Lis) , (23.18)

subject to the budget restriction (23.2). If we exclude corner solutions, the first-order
conditions include (23.3) and (23.4) at period t = 1.

As in static models, the ratio of first derivatives is still equal to relative prices,
so that this can provide the basis for estimating demand elasticities. This estimation
strategy was followed by MaCurdy (1983), using instrumental variables for control-
ling the endogeneity of Cit and Lit . Note that also the functions C∗it and L∗it are just the
same as in the certain case. This might suggest that differences between the certain
and uncertain cases are not important in the time additive separable case. However,
the level of saving Sit chosen in period t for some configuration of expected future
wage and interest rate paths, can turn out not having been optimal ex post, once time
discloses additional information. This is why replanning is necessary at each period.
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The Lagrange multipliers now satisfy

λit = Et

(
1+ rt+1

1+ρi
λi,t+1

)
, (23.19)

implying that the individual decides on savings in such a way that the discounted
expected utility of wealth remains constant. If we assume that there is no uncertainty
about rt+1 we have

λit =
1+ rt+1

1+ρi
Etλi,t+1 ,

which leads to the (first-order) approximation

lnλit ≈ Et lnλi,t+1−ρi + rt+1 (23.20)

= lnλi,t+1−ρi + rt+1 + ei,t+1,

where the random term ei,t+1, a forecast error of the marginal utility of next period,
satisfies Et(ei,t+1) = 0. Once substituted in the λ -constant demands in first differ-
ence obtained from (23.12):

Δ lnNit ≈ δΔ lnwit +δ(lnλi,t+1− lnλit) , (23.21)

this yields

Δ lnNit ≈ δΔ lnwit +δ(ρi− rt+1)−δet+1 . (23.22)

From (23.19) and the expression N (λit ,wit) of Frisch labor supply, it can be seen
that expected changes in λi,t+1 are already taken into account for determining labor
supply at period t. As a consequence, only unexpected changes in the marginal util-
ity of wealth influence changes in labor supply through ei,t+1. This is the economic
interpretation of the residual term in (23.22).

As in the certain case, the λ -constant demands can be relied on for estima-
tion. The “fixed effects” techniques remain available in the presence of uncertainty
about the wage profile. Under rational expectations, the orthogonality between
ei,t+1 and the information available at time t suggests application of the General-
ized Method of Moments (GMM). Exposition here has been kept fairly sketchy,
and we refer the reader to Altug and Miller (1990) for a more elaborate treatment
spelling out the implications of assuming a competitive environment with complete
markets.

Others contributions in this vein investigate the impact of unexpected capital,
windfall gains, house price shocks and inheritance on labor supply: see Joulfaian and
Wilhelm (1994) and Henley (2004). Both studies report that unexpected gains exert
(mostly) significant negative effects on working hours, but their impact is relatively
small in absolute value.
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23.3.2 Recent Contributions

Now we turn to the contributions of Pistaferri (2003) and Lich-Tyler (2002) , who
derive a labor supply specification from a more precise approximation of the rela-
tionship between consecutive marginal utilities of wealth (23.19). Although we do
not follow exactly each author’s presentation, we hope that our interpretation does
a good job of summarizing the main novelty of both contributions.

Without (intra-period) additive separability between consumption and leisure
(see next section), the λ -constant demands in first differences (23.21) become

Δ lnNit ≈ δΔ lnwit +η (lnλi,t+1− lnλit) , (23.23)

where η > δ when C and L are substitutes and η < δ when they are complements.
Instead of approximating lnλit by (23.20), let us use a second order Taylor approx-
imation to the random function λt+1(1+ rt+1)/(1+ρ) in the neighborhood of its
arguments’ mean and take its expectation to obtain

lnλit ≈ ln

[
1+Et rt+1

1+ρ
Etλi,t+1

]
(23.24)

+
1

2(1+ρ)
Et

(
rt+1−Et (rt+1)

λi,t+1−Et (λi,t+1)

)′( 0 1
1 0

)(
rt+1−E(rt+1)

λi,t+1−E(λi,t+1)

)

≈ lnEtλi,t+1−ρ +Et rt+1 +
Covt (rt+1,λi,t+1)

(1+ρ)
.

Similarly, it can be shown that:7

Et lnλi,t+1 ≈ lnEtλi,t+1−
Vart (λi,t+1)

2(Etλi,t+1)
2 .

Replacing these expressions into (23.23) yields

Δ lnNit ≈ η (ρ− rt+1)+δΔ lnwit +η
(

rt+1−Et rt+1−
1

1+ρ
Covt (rt+1,λi,t+1)

)

(23.25)

+η

(

lnλi,t+1−Et lnλi,t+1−
Vart (λi,t+1)

2(Etλi,t+1)
2

)

.

This is the extended λ -constant labor supply relationship which depends on two new
kinds of explanatory variables: (i) innovations in the marginal utility of wealth and
interest rate, and (ii) risk in the marginal utility of wealth and interest rate, reflected
in the variance–covariance terms. An increase in Vart (λi,t+1) has the same effect as
reducing the marginal utility of wealth at period t + 1. From economic theory, we

7 For any positive random variable, say v, it can be seen that Et lnv ≈ lnEt v − Vt v /
[
2(Et v)

2
]
.
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expect that η > 0, which means that a greater than expected interest rate increases
current labor supply. Similarly, individuals or time periods with high risk (reflected
by the variance terms) are characterized by a more decreasing labor supply profile
than individuals/periods with low risk.8

In order to obtain an empirically tractable expression for labor supply dynamics,
it is necessary to find an observable analogue for the last terms in (23.25). Hence, it
is necessary to understand how the marginal utility of wealth evolves over the life
cycle. Two strategies have been relied on for this purpose. Pistaferri (2003) translates
the uncertainty and risk on marginal utility of wealth λi,t+1 into uncertainty and risk
on wages. His strategy relies on two assumptions; one about the expectation error
(assumed to follow an MA(1) process), and one linking the marginal utility of wealth
to wages, as in (23.14). Lich-Tyler (2002) relies on definition of the marginal utility
of wealth to obtain an estimable expression for lnλi,t+1−Et lnλi,t+1.

We follow Lich-Tyler’s strategy to derive a simplified version of the model. In
our time separable framework, let us define the period t indirect utility function:9

V (rt ,wit ,Ait) = max
C,N

{
U(C,N−N) : (1+ rt)Ai,t−1 +witN = C +Ait

}
.

Then

λit =
∂V
∂A

(rt ,wit ,Ait) , (23.26)

which can be used to obtain an expression for lnλi,t+1−Et lnλi,t+1. Using a first-
order Taylor approximation to

λi,t+1 =
∂V
∂A

(rt+1,wi,t+1,Ai,t+1) . (23.27)

in the neighborhood of Et(rt+1,wi,t+1,Ai,t+1), omitting the arguments in the various
functions, yields

λi,t+1 �
∂V
∂A

+(rt+1−Et rt+1)
∂ 2V

∂A∂ r
+(wi,t+1−Etwi,t+1)

∂ 2V
∂A∂w

+(Ai,t+1−EtAi,t+1)
∂ 2V
∂A2 . (23.28)

Hence

Vart (λi,t+1)

2Et (λi,t+1)
2 � θArVart (rt+1)+θAwVart (wi,t+1) (23.29)

+θAAVart (Ai,t+1)+ covariance terms ,

8 On that account, it would be interesting to extend the model to allow for individual specific
interest rates, and use information on household exposure to financial market risks for evaluating
their labor supply behavior.
9 Strictly speaking, Ai,t−1 should appear as an argument in function V. But examination of (23.28)
shows that the corresponding terms are equal to zero, hence the simplification.
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with

θA j ≡
1
2

(
∂ 2V/∂A∂ j

∂V/∂A

)2

≥ 0, j = r, w, A .

Equation (23.28) can also be used to calculate

Covt (rt+1,λi,t+1) =
∂ 2V

∂A∂ r
Vt (rt+1)+

∂ 2V
∂A∂w

Covt (rt+1,wi,t+1)

+
∂ 2V
∂A2 Covt (rt+1,Ai,t+1) .

For simplicity, we assume that Covt (rt+1,λi,t+1) is constant in the sequel.
Using a first-order Taylor approximation to lnλ in the neighborhood of the real-

ization (r,wi,Ai)t+1 gives

Et lnλi,t+1 = Et ln
∂V
∂A

(rt+1,wi,t+1,Ai,t+1)

� ln
∂V
∂A

+(Et rt+1− rt+1)
∂ 2V/∂A∂ r

∂V/∂A

+(Etwi,t+1−wi,t+1)
∂ 2V/∂A∂w

∂V/∂A
+(EtAi,t+1−Ai,t+1)

∂ 2V/∂A2

∂V/∂A
.

Thus,

lnλi,t+1−Et lnλi,t+1 � −ηAr (rt+1−Et rt+1)−ηAw (wi,t+1−Etwi,t+1)
−ηAA (Ai,t+1−EtAi,t+1) . (23.30)

where ηAA denotes the measure of absolute risk aversion in wealth (in terms of the
indirect utility function), and

ηA j ≡−
∂ 2V/∂A∂ j

∂V/∂A
, j = r, w, A ,

denote the change in marginal utility of wealth due to unanticipated changes in the
explanatory variables. Notice that lnλi,t+1−Et lnλi,t+1 is uncorrelated with rt+1,
wi,t+1 and Ai,t+1 under the assumption of rational expectations, see Hansen and
Singleton (1982). In this case, former models that have neglected risk, and summed
up lnλi,t+1−Et lnλi,t+1 with the residual term, mainly incur a loss in information
and do not lead to an estimation bias.

Replacing (23.29) and (23.30) into (23.25) and adding a residual term uit yields

Δ lnNit = θ0 +η (ρ− rt+1)+δΔ lnwit

+ηr (rt+1−Et rt+1)+θrVart (rt+1)
+ηw (wi,t+1−Etwi,t+1)+θwVart (wi,t+1)
+ηA (Ai,t+1−EtAi,t+1)+θAVart (Ai,t+1)+uit . (23.31)
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The parameter θ0 comprises the covariance terms between the different types of risk.
The parameters ηr ≡η (1−ηAr) , η j ≡−ηηA j, and θ j ≡−ηθA j for j = w,A, reflect
risk aversion with respect to variable j. It can directly be seen that risk has a negative
impact on Δ lnNit . The impacts of unanticipated changes in w,A are asymmetric. In
the case where the marginal utility of wealth is decreasing in wit , ηAw > 0, and
as η > 0, we have ηw < 0. Positive innovations in wages (i.e. wi,t+1 > Et w̃i,t+1)
lead the individual to work less at t + 1, whereas negative innovations have the
opposite effect. In summary, unanticipated wage changes have the opposite impact
to anticipated wage changes.

23.3.3 Empirical Results

With this framework it now becomes possible to investigate empirically the impacts
of anticipated and unanticipated wage change on labor supply, and how individuals
react to an increase in the variability of the lifetime wage profile. For instance, they
could adopt a precautionary labor supply behavior in order to try to compensate the
risk of a wage profile.

Pistaferri (2003) uses panel data from the Bank of Italy (Survey of Household
Income and Wealth), which comprises subjective information for each individual on
her anticipated wage profile and price inflation (implying cross-sectional variability
in the real interest rates). The difference between observed and anticipated wage
gives the unanticipated wage profile. Pistaferri’s empirical specification is a special
case of (23.31):

Δ lnNit ≈ η (ρ−Et rt+1)+δΔ lnwit +βζit + γVart−1 (ζit)+uit ,

where

ζit ≡ lnwit −Et−1 lnwit .

Notice that in the neighborhood of zero, Vart−1 (ζit)≈ Vart−1 (wit)/(Et−1wit)
2 .

Lich-Tyler (2002) sums up the unanticipated changes into a residual term vit .
Using the wealth identity (23.2), it can be seen that the wealth risk Vart−1 (Ait) is
driven by risk in the interest rate and risk in the future wage path. Assuming “that
the wealth risk associated with a permanent wage change depends on the remaining
work years of the individual and the amount of wage volatility” (Lich-Tyler, p.18),
we write Vart−1 (Ait) = A2

i,t−1Vart−1 (rt)+γwtVart−1 (wit)(65− t) . Putting things to-
gether, (23.31) boils down to

Δ lnNit = θ0 +η (ρ− rt)+δΔ lnwit + γVart−1 (ζit)
+αrVart−1 (rt)+αrAA2

i,t−1Vart−1 (rt)+αwtVart−1 (wit)(65− t)+ vit .

Lich-Tyler relies on the PSID data for parameter estimation. In a first stage, the
variance terms are estimated from the data, using various regressions.
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Table 23.1 Labor supply estimates accounting for uncertainty and risk

η̂ δ̂ β̂ γ̂ α̂r α̂rA α̂wt

Pistaferri (i) 0.59
(0.29)

0.70
(0.09)

−0.20
(0.09)

−0.11
(0.03)

– – –

Pistaferri (ii) 0.22
(0.18)

0.26
(0.05)

0.05
(0.06)

−0.05
(0.01)

– – –

Lich-Tyler 0.01
(0.04)

0.29
(0.09)

– −0.13
(0.06)

−12.9
(4.6)

−0.05
(0.02)

−0.012
(0.005)

Some parameter estimates from both contributions are summarized in Table 23.1,
estimated standard errors are given in parentheses.

The first line of Table 23.1, Pistaferri (i) shows the result of Pistaferri’s ba-
sis estimates, whereas the second line, Pistaferri (ii), reports estimates of a model
controlling for unemployment constraints. Further model estimations and robust-
ness checks provide support for the first set of results. Pistaferri’s estimate of
the intertemporal elasticity of substitution is 0.70, which is somewhat higher than
those usually reported. The last line of Table 23.1 gives the estimates obtained by
Lich-Tyler. In this case, the elasticity of substitution of 0.29 is in line with those usu-
ally obtained from simpler models with the PSID data set. Pistaferri’s estimate of
the impact of wage innovation is significantly negative in his first model only. It im-
plies that an unexpected 10% permanent upward shift in the wage profile decreases
labor supply in all future periods by about 2.5%.

In all cases, the different types of risk have negative impact on the growth of
labor supply. This finding is consistent with precautionary labor supply behav-
ior. The estimates of γ are quite similar in the Pistaferri and Lich-Tyler studies.
Whereas Pistaferri finds his estimate of wage risk to have a very limited impact
on working behavior, Lich-Tyler’s conclusions are quite different. His simulations
show that wage risk can explain wide differences in working hour profiles (see his
Fig. 23.2, p.35).

23.4 Voluntary and Involuntary Non-participation

Depending on the economic context, individuals are not always willing to work,
or able to find a job, or able to work their desired amount of time. Taking this
distinction into account is important for avoiding estimation biases. For instance, if
after an increase in wages, a person loses her job, this does not mean that her labor
supply decreases in wages.
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23.4.1 Accounting for the Participation Decision

The prototype here is the paper by Heckman and MaCurdy (1980) which also
presents the first estimation of a Tobit model on panel data.10 The specification does
not differ much from that of MaCurdy (1981) but now the individual considered is
a married woman. Accounting for the participation decision is important because
selecting only working individuals leads to a selection bias.

Separability between the leisures of husband and wife is assumed, and the spec-
ification chosen for the utility function is

Uit(Cit ,Lit) = γCitC
β
it + γLitL

αL
it , (23.32)

with 0 < αL < 1, 0 < β < 1. Maximization of (23.1) subject to (23.2), taking the
possible nonparticipation into account, yields

lnLit =

⎧
⎨

⎩

1
αL−1

(lnλit − lnαL + lnwit − lnγLit) if Lit ≤ L̄,

ln L̄ otherwise.
(23.33)

The stochastic assumptions adopted are

lnγLit = Zitφ +η1i +u1it , (23.34)

lnwit = Xitψ +η2i +u2it , (23.35)

Eu jit = 0, Eu jitukis = δtsσ jk, j, k = 1, 2, i = 1, ...,n, s, t = 1, ...,T .

where η1i and η2i are individual fixed effects capturing unobserved heterogeneity
in the specifications of lnγLit and lnwit , and δts is the Kronecker symbol. The er-
ror terms u1it and u2it are assumed independent of all other variables in the RHS
of (23.34) and (23.35). The unobserved heterogeneity of the preference parameter
γLit , which reflects individuals’ implicit valuation of leisure, may well be correlated
with the unobserved heterogeneity η2i driving the wage of individual i. In this case,
wages are endogenous in (23.33). Substituting (23.34) and (23.35) into the labor
supply function helps to circumvent this problem.

Heckman and MaCurdy consider the reduced form:

lnLit =

⎧
⎨

⎩
fi +

ρ− r
αL−1

t−Zit
φ

αL−1
+Xit

ψ
αL−1

+ vit if Lit ≤ L̄,

ln L̄ otherwise.
(23.36)

where

fi =
1

αL−1
(lnλi0− lnαL−η1i +η2i) ,

and

10 See also Heckman and MaCurdy (1982)
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vit =
1

αL−1
(−u1it +u2it) .

Equations (23.35) and (23.36) are simultaneously estimated by ML, assuming nor-
mality for u1it and u2it .11 Identification of all parameters requires exclusion restric-
tions between X and Z. The fixed effects are fi in the hours equation and η2i in the
wage equation. The estimation can only be performed for women who worked at
least once in the observed periods. Correction for the corresponding selection bias
is found to have only a minor impact. Since asymptotic arguments are not justi-
fied in the time dimension (only eight waves), estimates of the fixed effects are not
consistent and this leads in principle to the inconsistency of all the coefficients.12

However, (i) Heckman (1981) performed Monte-Carlo simulations for fixed effects
Probit with eight waves and found that the fixed effects Probit performed well when
the explanatory variables were all strictly exogenous, (ii) Tobit should perform even
better because it is a combination of Probit and linear regression. The fixed effects
(incidental parameters) are estimated simultaneously with the parameters of inter-
est through alternated iteration on both subsets of parameters.13 Yet their economic
interpretation is difficult because the influence of f is mixed with that of the time
invariant variables in Zt and the same holds for η2 and the time invariant variables
in Xt . Regressions of the fixed effects on those time invariant variables completes
the picture and allows one to reach conclusions like the following: current-period
household income (exclusive of the wife’s earnings) has no significant impact on
labor supply, in contrast to an 8 year average income (proxy for the permanent in-
come).

Another study taking the participation decision into account is Jakubson (1988).
The specification is the same as above but separate identification of ψ and φ is left
aside and Jakubson specifies Xt ≡ Zt . The model is thus considerably simplified and
takes the Tobit form

lnLit =

{
fi +

ρ− r
α−1

t +Xit
ψ−φ
α−1

+ vit if Lit ≤ L̄,

ln L̄ otherwise.
(23.37)

Jakubson presents three approaches to the estimation of (23.37): simple pooling,
treatment of fi as a random effect taking into account the correlation with X (using
Chamberlain’s, 1984 approach) and, as before, treatment of fi as a fixed effect. For
the fixed effects, the considerations above still hold, while convergence for the ran-
dom effects specification is ensured even for short panels as long as their stochastic
specification is correct.

The main conclusions are: (i) the panel estimates (fixed or random effects) of
the influence of children on labor supply are only about 60% of the cross section

11 We do not mean to suggest that there are no alternatives to ML with joint normality in
this context, and the interested reader is referred to Wooldridge (1995) and Dustmann and
Rochina-Barrachina (2000) for some of these.
12 That is, for N → ∞.
13 A computationally more efficient alternative is discussed by Greene (2004).
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estimates, due to the neglect of individual effects in the latter; (ii) as concerns the
life cycle hypothesis, like in the Heckman and MaCurdy study, current income does
not have a significant influence in the fixed effects estimation, yet this does not hold
true for random effects.

Disregarding the inconsistency problem associated with fixed effects here, and
considering that sampling may be endogenous (one of the selection criteria be-
ing “stable marriage,” see Lundberg, 1988) the fixed effects approach might seem
preferable on a priori grounds. However, as we shall see in the following section,
the entire specification is questionable.

Accounting for taxes is feasible in the framework discussed here, as documented
by Laisney, Lechner, VanSoest and Wagenhals (1993). This study keeps the as-
sumptions of explicit additivity of the intertemporal utility function and of intertem-
poral separability of the budget constraint. The specification postulates parallel
within-period preferences, i.e.

Uit(Cit , Lit) = Git [Cit +Vit(Lit)] , (23.38)

where G is an increasing function. This specification yields a useful benchmark,
because the corresponding labor supply equation is independent of the marginal
utility of wealth, λi0 (and thus coincides with the Marshallian and the Hicksian
labor supply equations). This clearly solves several of the econometric problems
discussed above. Choosing a Box-Cox specification Vit(Lit) = γit(L

αL
it − 1)/αL and

keeping specifications (23.34) and (23.35) for the taste shifter γit and the gross wage
wit yields the labor supply equation

lnLit =
1

αL−1
(lnwit + ln[1− τt(wit Nit)]− lnγit)+ vit , (23.39)

where τt denotes the marginal tax rate, assumed here to vary only with earn-
ings. This equation is very similar to (23.33), the specification of Heckman and
MaCurdy (1980) apart from the fact that it does not include λit and ρi. However, as
will be discussed in the next section, the Heckman–MaCurdy specification requires
the restriction that Git is the identity, so that, although the two labor supply equa-
tions are nested, the overall specifications are not. In the same spirit, it can be seen
that the labor supply (23.61) and (23.33) of the Browning, Deaton and Irish (1985)
and Heckman and MaCurdy (1980) specifications can be nested in the more general
model

(Lit)κ −1
κ

=−αit −δ lnw∗(Nit)−θ1

√
1

w∗(Nit)
−δ lnλit + vit , (23.40)

where w∗(Nit) denotes the real net (marginal) wage rate associated with Nit . The
Browning et al. specification corresponds to the linear form κ = 1, whereas the
Heckman–MaCurdy specification corresponds to the logarithmic specification ob-
tained for the limiting case κ = 0, with θ1 = 0.
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The model is estimated, taking the participation decision into account, using an
unbalanced panel of married women drawn from the German Socio Economic Panel
1985–1989, using Mundlak’s (1978) approach to modelling random effects for λ
and Chamberlain’s (1984) minimum distance estimator, whereby the first stage of
the estimation procedure consists of (pseudo-) maximum likelihood simultaneous
estimation of (23.34), (23.35) and (23.40). Following MaCurdy et al. (1990), the
marginal tax rate is approximated by a smooth increasing function. A further dis-
tinctive feature of this study is that desired hours of work are used as the dependent
variable, instead of effective hours of work. This weakens to some extent the critique
of Tobit-type models of labor supply made by Mroz (1987).

23.4.2 Unemployment

Certainly one of the most questionable assumptions made so far is the assump-
tion that unemployment is voluntary. Ham (1986) produces empirical evidence
against this hypothesis in the context of life cycle models (see also Ashenfelter and
Ham, 1979). Ham uses the following modification of MaCurdy’s model. If an addi-
tional restriction consisting of a ceiling to the number of hours worked exists, and
if Tu is the set of indices of the periods where this restriction holds for individual i,
we have

lnNit < Fi +bt−δRt +δ lnwit +uit for t ∈ Tu , (23.41)

lnNit = Fi +bt−δRt +δ lnwit +uit for t �∈ Tu , (23.42)

where Fi corresponds to a higher value of λ than when Tu = ∅: the profile of ex-
pected wages at each period is lower than in the absence of unemployment periods.
Therefore, (23.13) will yield large residuals for t ∈ Tu if unemployment is not the
outcome of a free choice. The idea is then to estimate either

lnNit = Fi +bt−δRt +δ lnwit +θ1Uit +uit (23.43)

or
lnNit = Fi +bt−δRt +δ lnwit +θ2Hu

it +uit , (23.44)

where Uit = 1 if t ∈ Tu and 0 otherwise, and Hu
it denotes yearly hours of unemploy-

ment. If the free choice assumption is correct, then θ1 (or θ2) will not significantly
differ from zero. Otherwise one would expect negative values.

The free choice assumption is clearly rejected for both specifications (23.43) and
(23.44), as well as for other specifications allowing for uncertainty, nonlinearity
(with the additional term (lnwit)2), nonseparability, see (23.61), as well as for var-
ious assumptions on the covariance structure of the residuals. The results of these
tests suggest modelling these restrictions explicitly. Lilja (1986) makes several pro-
posals in this direction.

However, MaCurdy et al. (1990) criticizes Ham’s argument and shows that θ1

(or θ2) significant in (23.43) or (23.44) is compatible with voluntary unemployment
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caused by a lower wage offer wit for t ∈ Tu: “The reasoning underlying the testing of
exclusion restrictions in labour supply functions relies on the argument that wages
fully capture the influences of demand-side factors in a supply decision. This rea-
soning is sound but the variable identified as relevant by intertemporal substitution
theory is the offer wage; and the offer wage deviates from the observed market wage
if unemployment occurs at all” (MaCurdy 1990, p. 228; see also Card, 1987, who in-
terprets Ham’s findings in favor of demand-side conditions as the main determinant
of observed hours).

23.5 Alternative Parameterization and Implications

Browning (1986) and Blundell, Fry and Meghir (1990) point out that the specifica-
tion of λ -constant systems, where λ , or lnλ , appear additively and can be treated
as an individual-specific effect turns out to be extremely restrictive in the models of
MaCurdy (1981) and Browning et al. (1985). In this case, the labor supply functions
share the form

gi(Nit) = fi(wit ;θ)+δ lnλit (23.45)

where gi and fi are some functions, and θ and δ are parameters. After replacing
lnλit by (23.8), first differentiation for individual i allows us to get rid of individual
heterogeneity. The devastating consequence is that such intertemporal preferences
are completely identified (up to a monotonic transformation) on a single cross sec-
tion, given that some variation in the wages or prices can be observed. Thus, this
type of specification hardly qualifies for exploiting panel data.

An alternative strategy consists in estimating the within-period preferences by
eliminating λ , either directly between two goods or indirectly via the period budget
equation, and then estimating the time preference rate ρ separately. The advantage
is that no restriction on within-period preferences is required. Panel data are not
absolutely necessary for this strategy: a time series of independent cross sections
proves to be sufficient and even has some advantages in providing valid instrumen-
tal variables more easily, see Blundell, Fry and Meghir (1990). Blundell, Browning
and Meghir (1994) give a good example of the application of this strategy to de-
mands for goods. Four important panel studies on labor supply use this alternative
strategy.

MaCurdy (1983) proposes to directly estimate the marginal rate of substitution
functions. The first-order conditions (23.3) and (23.4) give

∂Uit/∂Nit

∂Uit/∂Cit
=−wit . (23.46)

The advantage over estimating Marshallian demands is that this allows estima-
tion of preferences that do not imply a closed-form expression for the demand
functions. The estimation of (23.46) does not require a panel. A cross section with
enough price variation, or indeed a time series of cross sections, can be sufficient.
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In spite of this, MaCurdy chooses the restrictive form

Uit = Git (U∗
it ) = ξit

(U∗
it +ν)σ −1

σ
, (23.47)

with

U∗
it = γit

(Cit +θC)αC

αC
− (Nit +θN)αN

αN
, (23.48)

and

ξit = exp[Xitφ +αit ] , (23.49)

γit = exp[Xitψ + εit ] . (23.50)

The parameters φ ,ψ,σ ,ν ,θC,θN ,αC, and αN are constant across individuals and
over time. This utility function is still additive, yet no longer explicitly additive, and
this form of U∗

t allows for several well-known special cases such as CES, addilog
and Stone-Geary. The Frisch labor supply function corresponding to (23.47) is usu-
ally different from (23.45). There is no identification problem here since (23.49)
and (23.50) are estimated in two different dimensions: (23.50) is estimated in the
“individual” dimension and (23.49) in the “time” dimension. Equations (23.46) and
(23.48) yield

lnwit =−Xitψ +(αN−1) ln(Nit +θN)− (αC−1) ln(Cit +θC)− εit , (23.51)

which provides consistent estimates (on a single cross section if desired) for ψ,αN ,
αC,θN and θC. Using those one can obtain γit by substitution of Xitψ + εit from
(23.51) into (23.50). Estimates for the parameters σ and φ can be obtained as fol-
lows. Substitution of (23.3) into (23.6) gives

ln

(
∂Uit

∂Cit

)
= rt+1−ρi + ln

(
∂Ui,t+1

∂Ci,t+1

)
+ ei,t+1 . (23.52)

The above specification leads to

ln
∂U∗

it

∂Cit
− ln

∂U∗
i,t+1

∂Ci,t+1
= rt+1−ρi− (Xi,t+1−Xit)φ

+(1−σ)
[
ln(U∗

it+1 +ν)− ln(U∗
it +ν)

]
+ ei,t+1 .

(23.53)

Since estimates for U∗
it and ∂U∗

it /∂Cit are available from the parameter estimation
of (23.51), specification (23.53) can be seen as a regression from which the still
unknown parameters φ and σ of the monotonic transformation Git can now be
identified. Either time series or panel data contain all the information needed to
estimate (23.53). Instrumental variables are necessary to take account of the endo-
geneity of U∗

it and U∗
i,t+1, and Pagan’s (1984) method of correcting the variance of
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the estimators would be advisable here, because estimated parameters are used in
the construction of regressors as well as regressands in (23.53). Taking account of
measurement errors in hours, wages or consumption would be difficult because such
errors would contaminate εit , see (23.51), and would therefore produce nonlinear er-
rors in the variables in (23.53).

The study of Blundell et al. (1993) of intertemporal labor supply of married
women starts from the following Marshallian supply specification for within-period
desired hours of work

Nit = α (wit ,Zit)−β (wit ,Zit) [Sit +a(wit ,Zit)]+uit , (23.54)

where wit is the real marginal after tax wage rate, Sit is a measure for unearned
income and Zit is a vector of characteristics. This supply function can be derived by
Roy’s identity from the indirect utility function

V (wit ,Sit ,Zit) =
1

1+ρ (Zit)

[(
Sit +a(wit ,Zit)

b(wit ,Zit)

)1+ρ(Zit )

−1

]

, (23.55)

with α(wit ,Zit) = ∂a/∂wit and β (wit ,Zit) = (∂b/∂wit)/b. The parameters of ρ (Zit)
which do not show up in the labor supply function are estimated in a second stage,
using GMM and relying on a procedure analogue to (23.53). Although the study
discusses several different elasticities, we shall only comment on λ -constant elastic-
ities of labor supply with respect to the net wage, computed at the means of various
subsamples of employed women. These range between 0.57 for childless women
with unemployed blue-collar husbands and 1.39 for women whose youngest child
is at most two and whose husbands are employed white-collars, a subsample with
typically low labor supply.

More on taxes: relaxing the intertemporal separability of the budget con-
straint. As pointed out by Blomquist (1985), capital taxation will usually break
the intertemporal separability of the intertemporal budget constraint. When the con-
straints (23.2) are replaced by

Ait = (1+ rt)Ai,t−1 +witNit −Cit −T (witNit + rtAi,t−1) , t = 1, . . . ,T ,

where the function T denotes the tax scheme. In this case, it is in general not possi-
ble to write the Frisch labor supply in function of an additive and constant λ -term
which can be easily differentiated out. Ziliak and Kniesner (1999) consider instead
a Marshallian labor supply function of the form

Nit = αwit +δAi, t−1 +φAit +Zitγ +ηi +ξit , (23.56)

where ηi denotes an individual effect. The wealth measure used for Ait is a construct
analogue to the familiar virtual income used in static models of labor supply with
taxes. Notice that both current assets and assets in the previous period condition this
labor supply function, which is thereby different from the pseudo supply function
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Ñit(Ait − (1+ rt)Ai,t−1,wit) of Sect. 23.2. Parameters reflecting the intertemporal
utility function are then recovered in a second stage which is very similar to
(23.52–23.53).

In contrast with Blundell et al., Ziliak and Kniesner use (balanced) panel data
(PSID for 1978–1987), 532 continuously married, continuously working men aged
22–51 in 1978), in both stages of the estimation procedure. In the first stage, this has
the advantage of allowing a better control of unobserved heterogeneity. Ziliak and
Kniesner estimate (23.56) in first differences by optimal GMM assuming absence
of autocorrelation in the process ξit , using internal instruments dated t−2 and other
instruments dated t − 1 and t − 2. Estimation in the second stage is conducted on
the same panel, with internal instruments dated t − 4 and other instruments dated
t−3 and t−4. A consistent estimator of the variance of the second stage estimator,
taking into account the variability of the estimated quantities, is obtained following
Newey (1984). Our impression is that potentially important efficiency gains might
be obtained quite easily by (a) moving from a balanced to an unbalanced panel,
which would substantially increase the number of observations, and (b) extending
the instrument set by taking instruments dated up to the named dates rather than
only instruments at the above dates.

Results from Step 1 show that the model conditioning on assets at two subse-
quent dates outperforms a model conditioning on savings. Two series of estimates
are presented for Step 2, depending on whether the subjective discount rate, assumed
constant over time, is allowed to vary over individuals or not. The former specifi-
cation is the preferred one. Even though the λ -constant specification was not used
for parameter estimation, the λ -constant elasticities of labor supply with respect to
the gross wage are easily computed from (23.56). Mean λ -constant elasticities by
wealth quartile vary between 0.14 for the lowest quartile and 0.20 for the highest.
Recall that this represents the response to an expected wage change. By contrast the
authors reckon that the average elasticity of labor supply with respect to an unex-
pected wage change will be roughly constant across wealth quartiles, at about 0.16.
Ziliak and Kniesner also compute deadweight loss measures associated to four tax
reforms, but reporting on these would take us too far off our track.

Errors in variables are thoroughly treated by Altonji (1986), using instrumental
variables methods. Unfortunately, in order to obtain the required linearity, Altonji
uses a version of MaCurdy’s (1981) restrictive form, i.e. an explicitly additive
within-period utility function

Uit =
γCit

αC
CαC

it −
γNit

αN
NαN

it , (23.57)

where γCit and γNit are time-varying taste modifiers. The λ -constant demands are

lnNit = cst+δN [lnwit + lnλit + t ln(1+ρ)− lnγNit ] , (23.58)

lnCit = cst+δC[lnλit + t ln(1+ρ)− lnγCit ] . (23.59)
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Rather than estimating (23.58) in first differences,14 Altonji proposes substituting
lnλit + t ln(1+ρ) out of (23.58) and (23.59). He then assumes that the observations
contain the measurement errors v∗Nit ,v

∗
Cit , and e∗it , and consist in n∗it = lnNit +

v∗Nit ,c
∗
it = lnCit + v∗Cit and w∗it = lnwit + e∗it . Since wit is not directly observed but

is calculated by dividing period income by Nit ,v∗Nit is correlated with e∗it but neither
of the two will be correlated with v∗Cit . Thus, we obtain the model:

n∗it = cst+δNw∗it +
δN

δC
c∗it +δN ln

γCit

γNit
+ v∗Nit −δNe∗it −

δN

δC
v∗Cit . (23.60)

The advantage over first differences is that the substitution using c∗it does not
bring lagged wages into the equation. Even more important perhaps, the assumption
about expectations that was used above to motivate estimating first differences under
uncertainty is now unnecessary. Instruments are used for w∗it and c∗it . The results do
not differ much from MaCurdy’s. See also Imai and Keane (2004) for a different
treatment of the problem of errors in variables.

23.6 Relaxing Separability Assumptions

We now discuss studies relaxing within-period and between-period additive
separability.

23.6.1 Relaxing Within-Period Additive Separability

When the within period utility function is additively separable, the Frisch demand
functions satisfy the restrictions

∂N
∂λit

λit

N
=

∂N
∂wit

wit

N
and

∂C
∂wit

= 0 ,

see (23.12). These restrictions are not simply a consequence of the functional form
adopted in (23.12), indeed they characterize within-period additive separability. The
importance of relaxing the assumption of separability between leisure and goods
is indicated in Browning and Meghir (1991) who reject this assumption, testing
it within a very general scheme using 1979–1984 FES data (time series of cross
sections): preferences about goods are specified in a flexible way, with conditional
cost functions where no behavioral assumption concerning labor supply or partic-
ipation decision is needed.15 Here we shall be concerned only with relaxing the
assumption of additive separability between the two “goods” leisure and aggregate
consumption.

14 Yet this is done for comparison.
15 Yet their model is not cast in the life cycle framework and the implications of their study for life
cycle models should be elucidated.
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Browning et al. (1985) estimate the following specification in first differences:

Nit = α1(ait)+δ lnwit +θ1

√
1

wit
+δ lnλit , (23.61)

Cit = α2(ait)−θ2
√

wit +β lnλit , (23.62)

where ait is a vector of household characteristics. Symmetry of the demand func-
tions implies that θ1 = θ2 = θ and within-period additive separability is equivalent
to θ = 0. Browning et al. (1985) estimate the equations separately, i.e. they do not
enforce the identity θ1 = θ2, as would be feasible in this context since there is no
adding-up restriction (in contrast with a Marshallian demand system). However,
they find θ1 and θ2 to be significantly different from zero and to have opposite
signs, which makes the entire specification appear questionable. Note that, although
Browning et al. consider aggregate consumption, no problem arises from working
with several consumption goods. Yet, durables should be given special attention, as
they might be more properly treated as assets.

So far we have focused on the preferences of an individual. In practice, however,
economists often work with “household preferences”. One of the many reasons for
doing this is the difficulty of isolating individual from household consumption in
survey data. Another assumption, which is necessary for the validity of the specifi-
cations that we have considered so far is the separability of the labor supplies of the
different potential earners in a household. If it holds, the earnings of the other house-
hold members can be accounted for in Ait , because then the influence of hours and
wages of other household members boils down to a pure income effect. Otherwise
the model is misspecified.

23.6.2 Relaxing Intertemporal Separability in Preferences

Although relaxing this assumption is no easy task, it is important because all the
studies that test the assumption clearly reject it. If the estimation results are to be
used in policy analysis, the specification must produce interpretable parameters and
not merely a separability test. In this respect, it seems difficult to simultaneously
model the multiple reasons that lead to the rejection of separability. Most empir-
ical studies therefore concentrate on only one of these aspects. The modelling of
partial adjustment, rational habit formation and human capital accumulation in an
optimization scheme over the life cycle is such a feasible extension.

Yet, before turning to structural models relaxing the intertemporal separability
assumption, it is interesting to discuss the results of a VAR approach to modelling
the relationship between wages and hours of work using panel data. As a prototype
for this kind of approach we will focus on the study by Holtz-Eakin, Newey and
Rosen (1988), but also refer the reader to Abowd and Card (1989).

Holtz-Eakin et al. analyze a sample of 898 males from the Panel Study of In-
come Dynamics (PSID) over 16 years. They estimate linear equations for wages and
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hours, with lags of equal lengths on both wages and hours on the right hand side of
each equation, and individual effects. Note that the equation on hours does not nest
the simple life-cycle model of MaCurdy (1981) since the contemporaneous wage
is excluded and no serial correlation is allowed. By contrast, the form of the wage
equation could be justified by human capital considerations. However, attempts at
interpreting these reduced form equations are not in line with the VAR approach.
The model of Holtz-Eakin et al. does not a priori impose the stationarity of the co-
efficients over time, not even for the individual effect. The estimation strategy relies
on GMM, combined with quasi-differencing along the lines of Chamberlain (1984,
p. 1263) in order to eliminate the individual effect while allowing for nonstationar-
ity. Errors in variables are easily dealt with in this linear GMM framework, but again
under the restrictive assumption of no serial correlation. Starting with a maximum
lag length of three periods (involving four lags of the original variables in the quasi-
differenced equations) parameter stability is rejected for none of the two equations,
and the analysis proceeds more simply with first differences. The next step concerns
testing the lag-length, and the assumption that one lag is sufficient to describe the
data is rejected in no equation at the 1% level, but rejected in the hours equation at
the 5% level.

Furthermore, one cannot reject the assumption that lagged hours could be ex-
cluded from the wage equation. The same holds for lagged wages in the hours
equation, when using only one lag, but not if two lags are retained (an argument
in favor of nesting the noncausality test within the hypothesis about the lag length is
that in this way the test statistics turn out to be asymptotically independent, which
facilitates pin-pointing the reasons for rejection of the joint hypothesis). Tests for
measurement error bias are constructed using internal instruments in the simple
first-order autoregressive models, in order to increase the power of the test. The
assumption of absence of measurement error cannot be rejected at the 5% level, but
there is evidence that the test may have low power in this instance. Most results
are qualitatively, and, what is more surprising, quantitatively replicated on a sam-
ple from the National Longitudinal Survey (NLS). The authors conclude (p. 1393):
“Our empirical results are consistent with the absence of lagged hours in the wage
forecasting equation, and thus with the absence of certain human capital or dynamic
incentive effects. Our results also show that lagged hours are important in the hours
equation, which is consistent with the alternatives to the simple labour supply model
that allow for costly hours adjustment or preferences that are not time separable
[our emphasis]. As usual, of course, these results might be due to serial correlation
in the error term or functional form misspecification”.

23.6.2.1 Rational Habit Formation

Bover (1991) estimates a rational habits model in a certainty framework with a min-
imum amount of replanning. The salient feature of her approach is that the model
specification is constructed in such a way that it allows for an explicit expression
of the marginal utility of wealth λ , as a function of future wages, initial wealth,
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the (constant) interest rate, and preference parameters. The advantage of such an
expression is that it allows a direct analysis of wealth effects on intertemporal labor
supply (see Card, 1994, for the potential importance of such effects), whereas the
approach of MaCurdy (1981) allows such an analysis only in a very indirect and
unsatisfactory way. However, this comes at a large cost, as we shall see. In period t
the individual maximizes

T

∑
t=1

1
(1+ρ)t−1 [(1−βit) ln(Cit − γc)+βit ln(γN +φNi,t−1−Nit)] (23.63)

subject to (23.2). The parameter φ now measures the habit persistence. The
Stone-Geary specification (23.63) was also used by Ashenfelter and Ham 1979 in
order to derive an explicit expression for λit under perfect foresight. The novel fea-
ture here lies in the relaxation of the intertemporal separability assumption through
the rational habit formation assumption. (In a previous paper Bover, 1986, consid-
ered two alternative models, one with partial adjustment and one with myopic habit
formation, which did not take account of all direct and indirect influences of current
labor supply on future decisions, as the rational habit formation model does, but she
found all these models to be empirically indistinguishable.)

Defining N∗it = Nit − φNi,t−1 and w∗it = ∑T−t
j=0(1 + r)− jφ jwi,t+ j allows one to

rewrite (23.63) and (23.2) in the usual form of a separable intertemporal utility
function with arguments {N∗it , Cit}t=1,...,T and an additively separable intertempo-
ral budget constraint. The corresponding Frisch demands are linear in λit and the
expression of the latter is obtained by substituting these into the budget constraint.
The reason for the subscript t in λit is the replanning that takes place at each period,
when the individual forms new predictions about his wage profile. The somewhat
arbitrary assumption here is that each individual’s future wages lie on a specific lin-
ear time trend, and that the individual learns more about the two coefficients of this
relationship as more time passes by. This is disturbing, because if the relationship
were deterministic, two observations would suffice to pin it down without any error,
and if not we have uncertainty about future wages, whereas the derivation of λit

assumed that w∗it is known.
This specification yields a nonlinear model where the dynamics are only present

in the error term. The model can be exactly linearized through transformations of
the exogenous variables on the one hand, and the parameters on the other. The er-
ror specification is of the error components type with the unobserved heterogeneity
subsumed in a time-invariant individual effect. Bover estimates the dummy vari-
able model with unrestricted covariance for the residual error term, including also
time dummies and using instruments to cope with potential endogeneity and mea-
surement error problems concerning the wage variable. The instruments used have
the property that they are strictly exogenous conditional on the individual effect.
A χ2 test of the overidentifying restrictions leads to no clear-cut rejection of the
specification. The results show that lagged hours have a significant effect on the
current decision.
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While Bover substitutes the marginal utility of wealth in the Euler equation with
a very special assumption about the wage path, Hotz, Kydland and Sedlacek (1988)
(HKS) consider the stochastic Euler equations, characterizing the first-order condi-
tions of the dynamic optimization problem. This strategy allows to consider more
general specifications for the utility functions. In period t the individual maximizes

Et

T

∑
t=1

1
(1+ρ)t−1 Uit(Cit ,Lit +αait) , (23.64)

with
ait = (1−η)ai,t−1 +Li,t−1 ,

subject to (23.2). As before Lit denotes leisure. This specification nests intertem-
poral separability (α = 0) and the models of Johnson and Pencavel (1984) and
Bover (1986, 1991), where only the labor supply of the previous period does play a
role in the preferences of the current period (η = 1).

In order to avoid misspecification, stemming from potential endogeneity of
wages, HKS only use the Euler equation for consumption. They specify Uit to be
translog and separately estimate the parameters for two age groups. Since parame-
ters α and η are identified under the maintained assumption of no contemporaneous
additive separability between Lit + αait and Cit , this allows testing the form of the
intertemporal nonseparability in preferences. Moreover, a score test of the wage exo-
geneity is offered. HKS also explain how to cope with a certain degree of correlation
between individuals through macroeconomic shocks or regional variables. Using a
sample of 482 men from the PSID, they reach the following conclusions. The es-
timated parameters α and (1−η) are positive and well determined and therefore
intertemporal separability is rejected, and not only Li,t−1 but also leisure decisions
in previous years have a direct influence on current decisions. The (within period)
separability between Lit + αait and Cit in the translog utility function is also re-
jected, as is exogeneity of the wages. A slightly disturbing result is the negativity of
the estimated rate of time preference.

The theoretical setting (Euler equation) implies orthogonality between the resid-
ual at time t and all the information available up to t−1. Thus, in GMM estimation,
all variables dated t−1 or earlier qualify in principle as instruments for the equation
dated t. This implication of theory can be tested by a χ2–test of overidentifying re-
strictions using two sets of instruments, where one is restricted to strictly exogenous
instruments. HKS conduct such a test and do not reject the null of orthogonality.

23.6.2.2 Human Capital Formation

Hotz et al. and Bover assume that the wage path is not influenced by the hours
decision, thus assuming intertemporal separability in the budget constraint. By con-
trast, Shaw (1989) and Imai and Keane (2004) relax that assumption, i.e. they allow
for nonseparability in the budget constraint (but not in the preferences). For Shaw,
α = 0 in (23.64). The budget restriction is as before given by (23.2). However, Shaw
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defines the real wage wit as the product RitKit of the human capital stock Kit and its
rental rate Rt and chooses a quadratic approximation f for the relationship between
Ki,t+1 on the one side and Kit and Nit on the other side, which yields the atypical
earnings function

wi,t+1

Ri,t+1
= f

(
Nit ,

wit

Rit

)
. (23.65)

Although Shaw considers a timewise separable direct utility function, this last equa-
tion, which makes future wages an increasing function of the current wage, renders
the indirect utility function nonseparable. The first-order optimality condition with
respect to leisure now reads:

∂Uit

∂Lit
= λitwit

(
1+Rit

∂ f−1

∂Nit

Nit

wit

)
, t = 1, . . . ,T , (23.66)

which differs from the timewise separable optimality condition (23.4). When work-
ing today increases future wages, this leads individuals to work more as predicted by
timewise separable models.16 Imai and Keane (2004) provide a further contribution
along these lines.

Shaw specifies Uit to be translog (as in HKS). Preference parameters are esti-
mated by GMM using the orthogonality conditions in the stochastic Euler equa-
tions. This contrasts with Imai and Keane (2004) who solve the stochastic dynamic
programming problem backwards.

Shaw’s conclusions are as follows. The rental rate of human capital varies con-
siderably over time and the number of hours worked has a strong influence on future
wages. This result offers a possible explanation for the misspecification of the usual
static earnings function. Because of the model structure and especially the fact that
the nonlinearity is within the budget constraint, the overall implications of the model
can only be evaluated by simulation. This reveals that the intertemporal elasticity of
labor supply is not constant as is usually assumed in static models, but instead rises
over the life cycle. Her model is estimated over a samples of 526 men from the
PSID. Due to the high degree of nonlinearity in the Euler equations, Shaw does not
handles measurement errors or unobserved heterogeneity. In particular, the presence
of unobserved heterogeneity is problematic as it can bias the conclusions about state
dependence in dynamic models (see Chamberlain, 1984).

A reason why the models of Shaw and HKS have been estimated with male
rather than with female labor supply may be that the estimation method used
does not readily extend to discrete data. Altug and Miller (1991) propose a solu-
tion to that problem. We shall not go into the details of their paper, but it seems
worth mentioning that this is a very sophisticated and innovative study, which also

16 Notice that for the alternative specification allowing the earning function f to depend on the
cumulative hours of work (and concave in this variable), there are especially young individuals
who have incentives to work more whereas older individuals for which human capital investment
become less attractive – given the fact that retirement is nearer than for young individuals – to
work less.
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considerably improves upon the treatment of aggregate shocks adopted by the two
studies just mentioned. The main drawback is that estimation of the model of Altug
and Miller is intricate, combining GMM with simulation of participation probabili-
ties and iterative estimation of Euler equations, including nonparametric regressions
at each iteration. In short, it required the use of a supercomputer. Another drawback,
a theoretical one, is that the model heavily relies on the assumption that actual hours
of work differ from expected or contracted hours of work in a stochastic manner.
While this may be attractive for some occupations (think of academics), it is much
less convincing for most others. To our knowledge, this is the only study of female
labor supply allowing for nonseparability both in the preferences and in the budget
constraint.

The study of Eckstein and Wolpin (1989), which is based on explicit solution of
the dynamic optimization problem facing individuals rather than on the exploita-
tion of first-order conditions, shares this generality but restricts attention to the
participation decision and disregards aggregate shocks. Hence it does not exactly
fit the framework of this survey.17 It has however inspired the work of Imai and
Keane (2004), to which we now turn. The main goal of their study is to reconcile
the microeconometric evidence on the ies with the higher values adopted by macroe-
conomists in the calibration of real business cycle models. Their framework as-
sumes both intertemporal and within period additive separability of preferences, but
it allows for on-the-job human capital accumulation to affect the wage path, which
breaks intertemporal separability in the budget constraint, as in Shaw (1989). It also
allows for measurement errors in wages, labor supply, and assets in a maximum like-
lihood framework with fully parametric distributional assumptions. Missing data on
assets are also handled through both distributional assumptions and the intertempo-
ral budget constraint. The functional forms adopted for the subutility functions from
consumption and leisure are the same as in MaCurdy (1981), except for the pres-
ence of age effects in the former. The intertemporal budget constraint is again (23.2)
where t denotes the age of the individual, and the real wage rate wt , assimilated with
the human capital stock, evolves according to

wt+1 = g(Nt ,wt , t)εt+1 ,

where εt+1 is a wage shock and g is a deterministic function of hours worked and
human capital at age t, and age itself.

Imai and Keane argue that neglecting human capital accumulation biases ies es-
timates towards zero. On the one hand, as the wage increases over the life-cycle, the
substitution effect leads to an increase in labor supply. On the other hand, concavity
of the value function in human capital lowers the rate of return to human capital
investment and reduces the incentive to supply labor. The combination of the two
effects leads to a fairly flat hours-wage profile, and attributing this to the substitution
effect only leads to an underestimation of the ies.

Indeed, estimating their model on a fairly homogeneous sample of 1000 ran-
domly chosen white males from the 1979 cohort of NLSY observed at ages 20–36

17 A summary of that study is in the 1996 version of this survey.
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and continuously reporting positive yearly hours of work, Imai and Keane obtain
an estimate of the ies of 3.82 with a very small standard error.18 They then simulate
data from their model over the life-cycle up to age 65 and estimate the ies on various
subsets using the OLS and IV methods of MaCurdy and Altonji. The results show
that the estimated ies is much lower in these estimates than the true ies in the sim-
ulated data, and that estimates are particularly low for individuals in the 20–36 age
group, underscoring the fact that the human capital component of the return to labor
supply is much greater for the young. Indeed, IV results obtained from the original
data yield an ies below 0.3, more than ten times smaller than the ML estimate.

Imai and Keane (2004) estimate the marginal rate of substitution between con-
sumption and labor supply, which corresponds to wit [1+Rit

(
∂ f−1/∂Nit

)
(Nit/wit)]

in (23.66). Their results range from about 2wit for 20 years old individuals to wit

for 60 years old. This means that the effective wage is higher than market wages wit

due to high return in human capital, which induces young people to work more (at
given wage) than predicted by (23.4).

23.7 Conclusion

Taking stock, we can draw the following conclusions. Firstly, in our opinion, there
has so far still being too little emphasis on the relaxation of ad hoc functional form
assumptions. In a way, this is understandable, because researchers have been busy
introducing and manipulating new and sometimes complex econometric methods.
Yet it is disturbing to see how popular the additively separable Box-Cox type spec-
ification has remained over the 25 past years, even in studies allowing much more
flexible approaches. The greater flexibility of the alternative to Frisch demands, con-
sisting in separate estimation of within-period and intertemporal preference param-
eters, has not yet been used fully in life-cycle labor supply studies. Secondly, given
the small sample sizes and the more or less pronounced arbitrariness of the selec-
tion, most of the studies we have discussed definitely have a methodological rather
than a substantive character.

Before closing this chapter we would still like to point out a series of papers
which do not completely fit under its heading but contribute to the understanding
of labor supply reactions. Blundell, Duncan and Meghir (1998) use past fiscal re-
forms in order to estimate labor supply responses. For estimation they rely on a
series of cross-sections but their innovative approach can easily be adapted to panel
data. A growing body of literature relies on daily information on wages and work-
ing time for particular worker groups to investigate the sensitivity of working time
to wages: cabdrivers have been considered by Camerer, Babcok, Loewenstein and
Thaler (1997) and by Farber (2005), stadium vendors by Oettinger (1999), bicy-
cle messengers by Fehr and Götte (2007). This type of data exhibits two important

18 The estimation method is too complex to be described in any detail in a survey. It entails several
clever approximations aiming at reducing the number of evaluation points and the dimension of
the optimisation space.
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advantages over usual panel data: these workers choose daily the number of working
hours they want to work, and daily variations of their hourly wage can reason-
ably be considered as transitory changes. Their results tend to suggest a negative
relationship between wages and working hours. Finally, there is a burgeoning
literature on the estimation of collective models of household labor supply, i.e.
models where the existence of autonomous decision makers within the household
is explicitly acknowledged, and the central assumption is that household alloca-
tions are Pareto efficient. For instance, Blundell, Chiappori, Magnac and Meghir
(2005) estimate a static model on repeated cross-sections, focusing on the partici-
pation/nonparticipation decision of the husband while allowing free choice of hours
for the wife (including nonparticipation). The longitudinal information contained in
panel data allows the study of intertemporal household allocations in the collective
framework, as exemplified by Mazzocco (2007).
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Chapter 24
Dynamic Policy Analysis

Jaap H. Abbring and James J. Heckman

Abstract This chapter studies the microeconometric treatment-effect and structural
approaches to dynamic policy evaluation. First, we discuss a reduced-form approach
based on a sequential randomization or dynamic matching assumption that is pop-
ular in biostatistics. We then discuss two complementary approaches for treatments
that are single stopping times and that allow for non-trivial dynamic selection on un-
observables. The first builds on continuous-time duration and event-history models.
The second extends the discrete-time dynamic discrete-choice literature.

24.1 Introduction

The methods discussed in Parts 1 and 2 of this volume are useful for microecono-
metric policy evaluation. That field analyzes the effects of policy interventions on
individual outcomes. Panel data facilitate the identification and estimation of such
effects. Panel data are especially helpful in analyzing the individual dynamic con-
sequences of policies and outcomes, which are mostly neglected in the vast cross-
sectional literature on this topic. Not surprisingly, panel-data methods are becoming
more widely used in the microeconometric policy evaluation literature. In this chap-
ter, we critically review recently developed methods and their applications.

The outline of the chapter is as follows. Section 24.2 presents the policy eval-
uation problem and discusses the treatment-effect approach to policy evaluation.
It establishes the notation used in the rest of this chapter. Section 24.3 reviews
an approach to the analysis of dynamic treatment effects based on a sequential
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randomization assumption that is popular in biostatistics (Gill and Robins, 2001;
Lok 2007; Robins, 1997) and has been applied in economics (see Fitzenberger,
Osikominu, and Völter, 2006; and Lechner and Miquel, 2002). This is a dy-
namic version of matching. We relate the assumptions justifying this approach
to the assumptions underlying the econometric dynamic discrete-choice literature
based on Rust’s (1987) conditional-independence condition which, as discussed
in Sect. 24.5.5 below, is frequently invoked in the structural econometrics litera-
ture. We note the limitations of the dynamic matching treatment-effect approach
in accounting for dynamic information accumulation. In Sects. 24.4 and 24.5, we
discuss two econometric approaches for the analysis of treatment times that al-
low for non-trivial dynamic selection on unobservables. Section 24.4 discusses the
continuous-time event-history approach to policy evaluation (Abbring and Van den
Berg, 2003b, 2005) and Abbring (2008). Section 24.5 introduces an approach devel-
oped by Heckman and Navarro (2007) that builds on and extends the discrete-time
dynamic discrete-choice literature. Like the analysis of Abbring and Van den Berg, it
does not rely on the conditional-independence assumptions used in dynamic match-
ing. The two complementary approaches surveyed in this chapter span the existing
econometric literature on dynamic treatment effects.

24.2 Policy Evaluation and Treatment Effects

24.2.1 The Evaluation Problem

We introduce some key ideas and set up the notation for this chapter by review-
ing the static policy evaluation problem discussed in, e.g., Heckman and Vytlacil
(2007a). Let Ω be the set of agent types. It is the sample space of a probability
space (Ω,I ,P), and all choices and outcomes are random variables defined on this
probability space. Each agent type ω ∈ Ω represents a single agent in a particular
state of nature. We could distinguish variation between agents from within-agent
randomness by taking Ω = J× Ω̃, with J the set of agents and Ω̃ the set of possible
states of nature. However, we do not make this distinction explicit in this chapter,
and often simply refer to agents instead of agent types.1

Consider a policy that targets the allocation of each agent in Ω to a single treat-
ment from a set S . In the most basic binary version, S = {0,1}, where “1” rep-
resents “treatment”, such as a training program, and “0” some baseline, “control”
program. Alternatively, S could take a continuum of values, e.g., R+ = [0,∞), rep-
resenting, e.g., unemployment benefit levels, or duration of time in a program.

A policy p = (a,τ)∈A ×T ≡P consists of a planner’s rule a : Ω→B for allo-
cating constraints and incentives to agents, and a rule τ : Ω×A →S that generates

1 For example, we could have Ω = [0,1] indexing the population of agents, with P being Lebesgue
measure on [0,1]. Alternatively, we could take Ω = [0,1]× Ω̃ and have [0,1] represent the popula-
tion of agents and Ω̃ states of nature.
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agent treatment choices for a given constraint allocation a. This framework allows
agent ω’s treatment choice to depend both on the constraint assignment mechanism
a—in particular, the distribution of the constraints in the population—and on the
constraints a(ω) ∈B assigned to agent ω .

The randomness in the planner’s constraint assignment a may reflect heterogene-
ity of agents as observed by the planner, but it may also be due to explicit random-
ization. For example, consider profiling on background characteristics of potential
participants in the assignment a to treatment eligibility. If the planner observes some
background characteristics on individuals in the population of interest, she could
choose eligibility status to be a deterministic function of those characteristics and,
possibly, some other random variable under her control by randomization. This in-
cludes the special case in which the planner randomizes persons into eligibility. We
denote the information set generated by the variables observed by the planner when
she assigns constraints, including those generated through deliberate randomization,
by IP.2 The planner’s information set IP determines how precisely she can target
each agent’s ω when assigning constraints. The variables in the information set fully
determine the constraints assignment a.

Subsequent to the planner’s constraints assignment a, each agent ω chooses treat-
ment τ(ω,a). We assume that agents know the constraint assignment mechanism a
in place. However, agents do not directly observe their types ω , but only observe re-
alizations IA(ω) of some random variables IA. For given a∈A , agent ω’s treatment
choice τ(ω,a) can only depend on ω through his observations IA(ω). Typically,
IA(ω) includes the variables used by the planner in determining a(ω), so that agents
know the constraints that they are facing. Other components of IA(ω) may be deter-
minants of preferences and outcomes. Variation in IA(ω) across ω may thus reflect
preference heterogeneity, heterogeneity in the assigned constraints, and heterogene-
ity in outcome predictors. We use IA to denote the information set generated by
IA.3 An agent’s information set IA determines how precisely the agent can tailor
his treatment choice to his type ω . For expositional convenience, we assume that
agents know more when choosing treatment than what the planner knows when as-
signing constraints, so that IA ⊇ IP. One consequence is that agents observe the
constraints a(ω) assigned to them, as previously discussed. In turn, the econometri-
cian may not have access to all of the information that is used by the agents when

2 Formally, IP is a sub-σ -algebra of I and a is assumed to be IP-measurable.
3 Formally, IA is a sub-σ -algebra of I —the σ -algebra generated by IA—and ω ∈Ω �→ τ(ω,a)∈
S should be IA-measurable for all a ∈ A . The possibility that different agents have different
information sets is allowed for because a distinction between agents and states of nature is implicit.
As suggested in the introduction to this section, we can make it explicit by distinguishing a set J
of agents and a set Ω̃ of states of nature and writing Ω = J× Ω̃. For expositional convenience,
let J be finite. We can model the case that agents observe their identity j by assuming that the
random variable JA on Ω that reveals their identity, that is JA( j, ω̃) = j, is in their information set
IA. If agents, in addition, observe some other random variable V on Ω, then the information set
IA generated by (JA,V ) can be interpreted as providing each agent j ∈ J with perfect information
about his identity j and with the agent- j-specific information about the state of nature ω̃ encoded
in the random variable ω̃ �→V ( j, ω̃) on Ω̃.
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they choose treatment.4 In this case, IA �⊆IE , where IE denotes the econometri-
cian’s information set.

We define sp(ω) as the treatment selected by agent ω under policy p. With p =
(a,τ), we have that sp(ω) = τ(ω,a). The random variable sp : Ω→S represents
the allocation of agents to treatments implied by policy p.5 Randomness in this
allocation reflects both heterogeneity in the planner’s assignment of constraints and
the agents’ heterogenous responses to this assignment. One extreme case arises if
the planner assigns agents to treatment groups and agents perfectly comply, so that
B = S and sp(ω) = τ(ω,a) = a(ω) for all ω ∈ Ω. In this case, all variation of
sp is due to heterogeneity in the constraints a(ω) across agents ω . At the other
extreme, agents do not respond at all to the incentives assigned by mechanisms in
A , and τ(a,ω) = τ(a′,ω) for all a,a′ ∈A and ω ∈Ω. In general, there are policies
that have a nontrivial (that is, nondegenerate) constraint assignment a, where at
least some agents respond to the assigned constraints a in their treatment choice,
τ(a,ω) �= τ(a′,ω) for some a,a′ ∈A and ω ∈Ω.

We seek to evaluate a policy p in terms of some outcome Yp, for example, earn-
ings. For each p ∈P , Yp is a random variable defined on the population Ω. The
evaluation can focus on objective outcomes Yp, on the subjective valuation R(Yp) of
Yp by the planner or the agents, or on both types of outcomes. The evaluation can
be performed relative to a variety of information sets reflecting different actors (the
agent, the planner and the econometrician) and the arrival of information in different
time periods. Thus, the randomness of Yp may represent both (ex ante) heterogeneity
among agents known to the planner when constraints are assigned (that is, variables
in IP) and/or heterogeneity known to the agents when they choose treatment (that
is, information in IA), as well as (ex post) shocks that are not foreseen by the policy
maker or by the agents. An information-feasible (ex ante) policy evaluation by the
planner would be based on some criterion using the distribution of Yp conditional on
IP. The econometrician can assist the planner in computing this evaluation if the
planner shares her ex ante information and IP ⊆IE .

Suppose that we have data on outcomes Yp0 under policy p0 with corresponding
treatment assignment sp0 . Consider an intervention that changes the policy from the
actual p0 to some counterfactual p′ with associated treatments sp′ and outcomes Yp′ .
This could involve a change in the planner’s constraint assignment from a0 to a′

for given τ0 = τ ′, a change in the agent choice rule from τ0 to τ ′ for given a0 = a′,
or both.

The policy evaluation problem involves contrasting Yp′ and Yp0 or functions of
these outcomes. For example, if the outcome of interest is mean earnings, we might
be interested in some weighted average of E[Yp′ −Yp0 |IP], such as E[Yp′ −Yp0 ]. The
special case where S = {0,1} and sp′ = a′ = 0 generates the effect of abolishing
the program. Implementing such a policy requires that the planner be able to induce
all agents into the control group by assigning constraints a′ = 0. In particular, this

4 See the discussion by Heckman and Vytlacil (2007b, Sects. 2 and 9).
5 Formally, {sp}p∈A×T is a stochastic process indexed by p.
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assumes that there are no substitute programs available to agents that are outside the
planner’s control (Heckman and Vytlacil, 2007b, Sect. 10).

For notational convenience, write S = sp0 for treatment assignment under the
actual policy p0 in place. Cross-sectional micro data typically provide a random
sample from the joint distribution of (Yp0 ,S).6 Clearly, without further assumptions,
such data do not identify the effects of the policy shift from p0 to p′. This iden-
tification problem becomes even more difficult if we do not seek to compare the
counterfactual policy p′ with the actual policy p0, but rather with another counter-
factual policy p′′ that also has never been observed. A leading example is the binary
case in which 0 < Pr(S = 1) < 1, but we seek to know the effects of sp′ = 0 (uni-
versal nonparticipation) and sp′′ = 1 (universal treatment), where neither policy has
ever been observed in place.

Panel data can help to evaluate the type of static policies discussed so far, if
interpreted as short-run or even one-shot policies. Suppose that we have data on
outcomes in two periods in which two different policies were in place. In a world
in which outcomes in any period are not affected by the policy or outcomes in the
other period, such data are directly informative on the contrast between outcomes
under both policies.

The standard microeconometric approach to the policy evaluation problem as-
sumes that the (subjective and objective) outcomes for any individual agent are the
same across all policy regimes for any particular treatment assigned to the indi-
vidual (see, e.g., Heckman, LaLonde, and Smith, 1999). Heckman and Vytlacil
(2007a) present a detailed account of the policy-invariance assumptions that jus-
tify this practice. They simplify the task of evaluating policy p to determining
(i) the assignment sp of treatments under policy p and (ii) treatment effects for
individual outcomes. Even within this simplified framework, there are still two
difficult, and distinct, problems in identifying treatment effects on individual out-
comes:

(A) The Evaluation Problem: that we observe an agent in one treatment state and
seek to determine that agent’s outcomes in another state; and

(B) The Selection Problem: that the distributions of outcomes for the agents we
observe in a given treatment state are not the marginal population distributions
that would be observed if agents were randomly assigned to the state.

The assignment mechanism sp of treatments under counterfactual policies p is
straightforward in the case where the planner assigns agents to treatment groups and
agents fully comply, so that sp = a. More generally, an explicit model of agent treat-
ment choices is needed to derive sp for counterfactual policies p. An explicit model
of agent treatment choices can also be helpful in addressing the selection problem,
and in identifying agent subjective valuations of outcomes. We now formalize the
notation for the treatment-effect approach that we will use in this section using the

6 Notice that a random sample of outcomes under a policy may entail nonrandom selection of
treatments as individual agents select individual treatments given τ and the constraints they face
assigned by a.
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potential-outcome framework of Neyman (1923), Roy (1951), Quandt (1958, 1972),
and Rubin (1974).7

24.2.2 The Treatment Effect Approach

For each agent ω ∈ Ω, let y(s,X(ω),U(ω)) be the potential outcome when the
agent is assigned to treatment s ∈ S . Here, X and U are covariates that are not
causally affected by the treatment or the outcomes.8,9 In the language of Kalbfleisch
and Prentice (1980) and Leamer (1985), we say that such covariates are “external”
to the causal model. X is observed by the econometrician (that is, in IE ) and U
is not.

Recall that sp is the assignment of agents to treatments under policy p. For all
policies p that we consider, the outcome Yp is linked to the potential outcomes by
the consistency condition Yp = y(sp,X ,U). This condition follows from the policy-
invariance assumptions. It embodies the assumption that an agent’s outcome only
depends on the treatment assigned to the agent and not separately on the mechanism
used to assign treatments. This excludes (strategic) interactions between agents and
equilibrium effects of the policy.10 It ensures that we can specify individual out-
comes y from participating in programs in S independently of the policy p and
treatment assignment sp. Economists say that y is autonomous, or structurally in-
variant with respect to the policy environment (see Frisch, 1938; Hurwicz, 1962;
and Heckman and Vytlacil, 2007a).11

We illustrate the treatment-effect approach with a basic example. Consider the
evaluation of an intervention that changes the policy from p0 to p′ in terms of its
mean effect E[Yp′ −Yp0 ] on outcomes. For expositional convenience, let treatment
be binary: S = {0,1}. Suppose that we have a cross-sectional sample from the joint
distribution of (Yp0 ,S,X). Assume that treatment assignment under both the actual
policy p0 and the alternative policy p′ is randomized, that is, both S and sp′ are
independent of the determinants (X ,U) of the potential outcomes. Then, because of
the policy-invariance conditions,

7 See Heckman et al. (1999); Heckman and Vytlacil (2007a); and Thurstone (1930), for results in
econometrics and extensive reviews of the econometric literature.
8 This “no feedback” condition requires that X and U are the same fixing treatment to s for all s.
See Haavelmo (1943), Pearl (2000), or the discussion in Heckman and Vytlacil (2007a,b).
9 Note that this framework is rich enough to capture the case in which potential outcomes de-
pend on treatment-specific unobservables as in Sect. 24.5, because these can be simply stacked
in U and subsequently selected by y. For example, in the case where S = {0,1} we can
write y(s,X ,(U0,U1)) = sy1(X ,U1)+ (1− s)y0(X ,U0) for some y0 and y1. A specification with-
out treatment-dependent unobservables is more tractable in the case of continuous treatments in
Sect. 24.3 and, in particular, continuous treatment times in Sect. 24.4.
10 See Pearl (2000); Heckman (2005); and Heckman and Vytlacil (2007a).
11 See also Aldrich (1989) and Hendry and Morgan (1995). Rubin’s (1986) stable-unit-treatment-
value assumption is a version of the classical invariance assumptions of econometrics (see Abbring,
2003; and Heckman and Vytlacil, 2007a, for discussion of this point).
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E[Yp′ −Yp0 ] = E[y(1,X ,U)− y(0,X ,U)]
[
Pr(sp′ = 1)−Pr(S = 1)

]
.

The mean effect of the intervention on outcomes equals the “average treatment
effect” E[y(1,X ,U)− y(0,X ,U)] times the net increase in the assignment to treat-
ment 1. The policy evaluation problem boils down to identifying the average
treatment effect, the distribution of the actual treatment assignment S, and the
distribution of treatment assignment sp′ under the alternative policy p′. Under the
assumption of randomized assignment, and provided that 0 < Pr(S = 1) < 1, the av-
erage treatment effect is identified as E[Yp0 |S = 1]−E[Yp0 |S = 0]. The distribution
of S is identified directly from the data. The distribution of sp′ is often known, as
in the case of universal nonparticipation (sp′ = 0) or universal treatment (sp′ = 1).
Otherwise, it needs to be identified using a model of treatment choice.

Heckman and Vytlacil (2007a,b) review more general evaluation problems and
econometric methods that do not rely on randomized assignment, such as the meth-
ods of matching and instrumental variables. Clearly, panel data, combined with sta-
tionarity assumptions, can help in addressing the selection problem in the evaluation
of static policies. We will not dwell on this application of panel data to the evaluation
of static policies, but now turn to the dynamic policy evaluation problem.

24.2.3 Dynamic Policy Evaluation

Interventions often have consequences that span over many periods. Policy interven-
tions at different points in time can be expected to affect not only current outcomes,
but also outcomes at other points in time. The same policy implemented at different
time periods may have different consequences. Moreover, policy assignment rules
often have non-trivial dynamics. The assignment of programs at any point in time
can be contingent on the available data on past program participation, intermediate
outcomes and covariates.

The dynamic policy evaluation problem can be formalized in a fashion similar to
the way we formalized the static problem in Sect. 24.2.1. In this subsection, we an-
alyze a discrete-time finite-horizon model. We consider continuous-time models in
Sect. 24.4. The possible treatment assignment times are 1, . . . , T̄ . We do not restrict
the set S of treatments. We allow the same treatment to be assigned on multiple
occasions. In general, the set of available treatments at each time t may depend on
time t and on the history of treatments, outcomes, and covariates. For expositional
convenience, we will only make this explicit in Sects. 24.4 and 24.5, where we focus
on the timing of a single treatment.

We define a dynamic policy p = (a,τ)∈A ×T ≡P as a dynamic constraint as-
signment rule a = {at}T̄

t=1 with a dynamic treatment choice rule τ = {τt}T̄
t=1. At each

time t, the planner assigns constraints at(ω) to each agent ω ∈ Ω, using informa-
tion in the time-t policy-p information set IP(t, p)⊆I . The planner’s information
set IP(t, p) could be based on covariates and random variables under the planner’s
control, as well as past choices and realized outcomes. We denote the sequence of
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planner’s information sets by IP(p) = {IP(t, p)}T̄
t=1. We assume that the planner

does not forget any information she once had, so that her information improves over
time and IP(t, p)⊆IP(t +1, p) for all t.12

Each agent ω chooses treatment τt(ω,a) given their information about ω at time
t under policy p and given the constraint assignment mechanism a ∈ A in place.
We assume that agents know the constraint assignment mechanism a in place. At
time t, under policy p, agents infer their information about their type ω from ran-
dom variables IA(t, p) that may include preference components and determinants of
constraints and future outcomes. IA(t, p) denotes the time-t policy-p information
set generated by IA(t, p) and IA(p) = {IA(t, p)}T̄

t=1. We assume that agents are
increasingly informed as time goes by, so that IA(t, p)⊆IA(t +1, p).13 For expo-
sitional convenience, we also assume that agents know more than the planner at each
time t, so that IP(t, p) ⊆ IA(t, p).14 Because all determinants of past and current
constraints are in the planner’s information set IP(t, p), this implies that agents ob-
serve (a1(ω), . . . ,at(ω)) at time t. Usually, they do not observe all determinants of
their future constraints (at+1(ω), . . . ,aT̄ (ω)).15 Thus, the treatment choices of the
agents may be contingent on past and current constraints, their preferences, and on
their predictions of future outcomes and constraints given their information IA(t, p)
and given the constraint assignment mechanism a in place.

Extending the notation for the static case, we denote the assignment of agents to
treatment τt at time t implied by a policy p by the random variable sp(t) defined so
that sp(ω, t) = τt(ω,a). We use the shorthand st

p for the vector (sp(1), . . . ,sp(t)) of

treatments assigned up to and including time t under policy p, and write sp = sT̄
p .

The assumptions made so far about the arrival of information imply that treatment
assignment sp(t) can only depend on the information IA(t, p) available to agents at
time t.16

Because past outcomes typically depend on the policy p, the planner’s informa-
tion IP(p) and the agents’ information IA(p) will generally depend on p as well.
In the treatment-effect framework that we develop in the next section, at each time
t different policies may have selected different elements in the set of potential out-
comes in the past. The different elements reveal different aspects of the unobserv-
ables underlying past and future outcomes. We will make assumptions that limit
the dependence of information sets on policies in the context of the treatment-effect
approach developed in the next section.

Objective outcomes associated with policies p are expressed as a vector of time-
specific outcomes Yp = (Yp(1), . . . ,Yp(T̄ )). The components of this vector may also
be vectors. We denote the outcomes from time 1 to time t under policy p by

12 Formally, the information IP(p) that accumulates for the planner under policy p is a filtration
in I , and a is a stochastic process that is adapted to IP(p).
13 Formally, the information IA(p) that accumulates for the agents is a filtration in I .
14 If agents are strictly better informed, and IP(t, p) ⊂ IA(t, p), it is unlikely that the planner
catches up and learns the agent’s information with a delay (e.g., IA(t, p) ⊆ IP(t + 1, p)) unless
agent’s choices and outcomes reveal all their private information.
15 Formally, a1, . . . ,at are IA(t, p)-measurable, but at+1, . . . ,aT̄ are not.
16 Formally, {sp(t)}T̄

t=1 is a stochastic process that is adapted to IA(p).
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Yt
p = (Yp(1), . . . ,Yp(t)). We analyze both subjective and objective evaluations of

policies in Sect. 24.5, where we consider more explicit economic models. Anal-
ogous to our analysis of the static case, we cannot learn about the outcomes Yp′

that would arise under a counterfactual policy p′ from data on outcomes Yp0 and
treatments sp0 = S under a policy p0 �= p′ without imposing further structure on the
problem.17 We follow the approach exposited for the static case and assume policy
invariance of individual outcomes under a given treatment. This reduces the evalu-
ation of a dynamic policy p to identifying (i) the dynamic assignment sp of treat-
ments under policy p and (ii) the dynamic treatment effects on individual outcomes.
We focus our discussion on the fundamental evaluation problem and the selection
problem that haunt inference about treatment effects. In the remainder of the sec-
tion, we review alternative approaches to identifying dynamic treatment effects, and
some approaches to modeling dynamic treatment choice. We first analyze methods
recently developed in statistics.

24.3 Dynamic Treatment Effects and Sequential Randomization

In a series of papers, Robins extends the static Neyman–Roy–Rubin model based
on selection on observables to a dynamic setting (see, e.g., Robins, 1997, and the
references therein). He does not consider agent choice or subjective evaluations.
Here, we review his extension, discuss its relationship to dynamic choice models in
econometrics, and assess its merits as a framework for economic policy analysis. We
follow the exposition of Gill and Robins (2001), but add some additional structure
to their basic framework to exposit the connection of their approach to the dynamic
approach pursued in econometrics.

24.3.1 Dynamic Treatment Effects

24.3.1.1 Dynamic Treatment and Dynamic Outcomes

To simplify the exposition, suppose that S is a finite discrete set.18 Recall that, at
each time t and for given p, treatment assignment sp(t) is a random variable that
only depends on the agent’s information IA(t, p), which includes personal knowl-
edge of preferences and determinants of constraints and outcomes. To make this
dependence explicit, suppose that external covariates Z, observed by the econo-
metrician (that is, variables in IE ), and unobserved external covariates V1 that

17 If outcomes under different policy regimes are informative about the same technology and pref-
erences, for example, then the analyst and the agent could learn about the ingredients that produce
counterfactual outcomes in all outcome states.
18 All of the results presented in this subsection extend to the case of continuous treatments. We
will give references to the appropriate literature in subsequent footnotes.
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affect treatment assignment are revealed to the agents at time 1. Then, at the start
of each period t ≥ 2, past outcomes Yp(t − 1) corresponding to the outcomes re-
alized under treatment assignment sp and external unobserved covariates Vt enter
the agent’s information set.19 In this notation, IA(1, p) is the information σ(Z,V1)
conveyed to the agent by (Z,V1) and, for t ≥ 2, IA(t, p) = σ(Yt−1

p ,Z,V t), with
Vt = (V1, . . . ,Vt). In the notation of the previous subsection, IA(1, p) = (Z,V1) and,
for t ≥ 2, IA(t, p) = (Yt−1

p ,Z,V t). Among the elements of IA(t, p) are the determi-
nants of the constraints faced by the agent up to t, which may or may not be observed
by the econometrician.

We attach ex post potential outcomes Y (t,s) = yt(s,X ,Ut), t = 1, . . . , T̄ , to each
treatment sequence s = (s(1), . . . ,s(T̄ )). Here, X is a vector of observed (by the
econometrician) external covariates and Ut , t = 1, . . . , T̄ , are vectors of unobserved
external covariates. Some components of X and Ut may be in agent information sets.
We denote Y t(s) = (Y (1,s), . . . ,Y (t,s)), Y (s) = Y T̄ (s), and U = (U1, . . . ,UT̄ ). As in
the static case, potential outcomes y are assumed to be invariant across policies p,
which ensures that Yp(t) = yt(sp,X ,Ut). In the remainder of this section, we keep
the dependence of outcomes on observed covariates X implicit and suppress all
conditioning on X .

We assume no causal dependence of outcomes on future treatment:20

(NA) For all t ≥ 1, Y (t,s) = Y (t,s′) for all s,s′ such that st = (s′)t ,

where st = (s(1), . . . ,s(t)) and (s′)t = (s′(1), . . . ,s′(t)). Abbring and Van den Berg
(2003b) and Abbring (2003) define this as a “no-anticipation” condition. It re-
quires that outcomes at time t (and before) be the same across policies that allo-
cate the same treatment up to and including t, even if they allocate different treat-
ments after t. In the structural econometric models discussed in Sects. 24.3.2.2 and
24.5 below, this condition is trivially satisfied if all state variables relevant to out-
comes at time t are included as inputs in the outcome equations Y (t,s) = yt(s,Ut),
t = 1, . . . , T̄ .

Because Z and V1 are assumed to be externally determined, and therefore not
affected by the policy p, the initial agent information set IA(1, p) = σ(Z,V1) does
not depend on p. Agent ω has the same initial data (Z(ω),V1(ω)) about his type ω
under all policies p. Thus, IA(1, p) = IA(1, p′) is a natural benchmark information
set for an ex ante comparison of outcomes at time 1 among different policies. For
t ≥ 2, (NA) implies that actual outcomes up to time t− 1 are equal between poli-
cies p and p′, Yt−1

p = Y t−1
p′ , if the treatment histories coincide up to time t − 1 so

that st−1
p = st−1

p′ . Together with the assumption that Z and V t are externally deter-
mined, it follows that agents have the same time-t information set structure about
ω under policies p and p′, IA(t, p) = σ(Yt−1

p ,Z,Vt) = σ(Yt−1
p′ ,Z,Vt) = IA(t, p′),

19 Note that any observed covariates that are dynamically revealed to the agents can be subsumed
in the outcomes.
20 For statistical inference from data on the distribution of (Yp0 ,S,Z), these equalities only need to
hold on events {ω ∈Ω : St(ω) = st}, t ≥ 1, respectively.
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if st−1
p = st−1

p′ .21,22 In this context, IA(t, p) = IA(t, p′) is a natural information set
for an ex ante comparison of outcomes from time t onwards between any two poli-
cies p and p′ such that st−1

p = st−1
p′ .

With this structure on the agent information sets in hand, it is instructive to
review the separate roles in determining treatment choice of information about
ω and knowledge about the constraint assignment rule a. First, agent ω’s time-t
treatment choice sp(ω, t) = τt(ω,a) may depend on distributional properties of a,
for example the share of agents assigned to particular treatment sequences, and
on the past and current constraints (a1(ω), . . . ,at(ω)) that were actually assigned
to him. We have assumed both to be known to the agent. Both may differ be-
tween policies, even if the agent information about ω is fixed across the policies.
Second, agent ω’s time-t treatment choice may depend on agent ω’s predictions
of future constraints and outcomes. A forward-looking agent ω will use observa-
tions of his covariates Z(ω) and Vt(ω) and past outcomes Y t−1

p (ω) to infer his
type ω and subsequently predict future external determinants (Ut(ω), . . . ,UT̄ (ω))
of his outcomes and (Vt+1(ω), . . . ,VT̄ (ω)) of his constraints and treatments. In
turn, this information updating allows agent ω to predict his future potential out-
comes (Y (t,s,ω), . . . ,Y (T̄ ,s,ω)) and, for a given policy regime p, his future con-
straints (at+1(ω), . . . ,aT̄ (ω)), treatments (sp(t + 1,ω), . . . ,sp(T̄ ,ω)), and realized
outcomes (Yp(t,ω), . . . ,Yp(T̄ ,ω)). Under different policies, the agent may gather
different information on his type ω and therefore come up with different
predictions of the external determinants of his future potential outcomes and con-
straints. In addition, even if the agent has the same time-t predictions of the ex-
ternal determinants of future constraints and potential outcomes, he may translate
these into different predictions of future constraints and outcomes under different
policies.

Assumption (NA) requires that current potential outcomes are not affected by
future treatment. Justifying this assumption requires specification of agent infor-
mation about future treatment and agent behavior in response to that information.
Such an interpretation requires that we formalize how information accumulates for
agents across treatment sequences s and s′ such that st = (s′)t and (st+1, . . . ,sT̄ ) �=
(s′t+1, . . . ,s

′
T̄ ). To this end, consider policies p and p′ such that sp = s and sp′ = s′.

These policies produce the same treatment assignment up to time t, but are different
in the future. We have previously shown that, even though the time-t agent infor-
mation about ω is the same under both policies, IA(t, p) = IA(t, p′), agents may
have different predictions of future constraints, treatments and outcomes because
the policies may differ in the future and agents know this. The policy-invariance

21 If st−1
p (ω) = st−1

p′ (ω) only holds for ω in some subset Ωt−1 ⊂ Ω of agents, then Y t−1
p (ω) =

Yt−1
p′ (ω) only for ω ∈Ωt−1, and information coincides between p and p′ only for agents in Ωt−1.

Formally, let Ωt−1 be the set {ω ∈Ω : st−1
p (ω) = st−1

p′ (ω)} of agents that share the same treatment
up to and including time t− 1. Then, Ωt−1 is in the agent’s information set under both policies,
Ωt−1 ∈IA(t, p)∩IA(t, p′). Moreover, the partitioning of Ωt−1 implied by IA(t, p) and IA(t, p′)
is the same. To see this, note that the collections of all sets in, respectively, IA(t, p) and IA(t, p′)
that are weakly included in Ωt−1 are identical σ -algebras on Ωt−1.
22 Notice that the realizations of the random variables Yt−1

p′ , Z, V t may differ among agents.
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conditions ensure that time-t potential outcomes are nevertheless the same under
each policy. This requires that potential outcomes be determined externally, and
are not affected by agent actions in response to different predictions of future con-
straints, treatments and outcomes. This assumption rules out investment responses
to alternative policies that affect potential outcomes.

In general, different policies in P will produce different predictions of future
constraints, treatment and outcomes. In the dynamic treatment-effect framework,
this may affect outcomes indirectly through agent treatment choices. If potential
outcomes are directly affected by agent’s forward-looking decisions, then the in-
variance conditions underlying the treatment-effect framework will be violated.
Section 24.3.3 illustrates this issue, and the no-anticipation condition, with some
examples.

24.3.1.2 Identification of Treatment Effects

Suppose that the econometrician has data that allows her to estimate the joint distri-
bution of (Yp0 ,S,Z) of outcomes, treatments and covariates under some policy p0,
where S = sp0 . These data are not enough to identify dynamic treatment effects.

To secure identification, Gill and Robins (2001) invoke a dynamic version of the
matching assumption (conditional independence) which relies on sequential ran-
domization:23

(M-1) For all treatment sequences s and all t,

S(t)⊥⊥(Y (t,s), . . . ,Y (T̄ ,s)) | (Yt−1
p0

,St−1 = st−1,Z),

where the conditioning set (Y 0
p0

,S0 = s0,Z) for t = 1 is Z.

Equivalently, S(t)⊥⊥(Ut , . . . ,UT̄ ) | (Yt−1
p0

,St−1,Z) for all t without further restricting
the data. Sequential randomization allows the Yp0(t) to be “dynamic confounders”—
variables that are affected by past treatment and that affect future treatment
assignment.

The sequence of conditioning information sets appearing in the sequential ran-
domization assumption, IE(1) = σ(Z) and, for t ≥ 2, IE(t) = σ(Yt−1

p0
,St−1,Z),

is a filtration IE of the econometrician’s information set σ(Yp0 ,S,Z). Note that
IE(t) ⊆IA(t, p0) for each t. If treatment assignment is based on strictly more in-
formation than IE , so that agents know strictly more than the econometrician and
act on their superior information, (M-1) is likely to fail if that extra information
also affects outcomes. Heckman and Vytlacil (2007b) make this point in a static
setting.

23 Formally, we need to restrict attention to sequences s in the support of S. Throughout this section,
we will assume this and related support conditions hold.
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Together with the no-anticipation condition (NA), which is a condition on out-
comes and distinct from (M-1), the dynamic potential-outcome model set up so far
is a natural dynamic extension of the Neyman–Roy–Rubin model for a static (strat-
ified) randomized experiment.

Under assumption (M-1) that the actual treatment assignment S is sequentially
randomized, we can sequentially identify the causal effects of treatment from the
distribution of the data (Yp0 ,S,Z) and construct the distribution of the potential out-
comes Y (s) for any treatment sequence s in the support of S.

Consider the case in which all variables are discrete. No-anticipation condition
(NA) ensures that potential outcomes for a treatment sequence s equal actual (under
policy p0) outcomes up to time t − 1 for agents with treatment history st−1 up to
time t−1. Formally, Yt−1(s) = Y t−1

p0
on the set {St−1 = st−1}. Using this, sequential

randomization assumption (M-1) can be rephrased in terms of potential outcomes:
for all s and t,

S(t)⊥⊥(Y (t,s), . . . ,Y (T̄ ,s)) | (Yt−1(s),St−1 = st−1,Z) .

In turn, this implies that, for all s and t,

Pr(Y (t,s) = y(t) | Yt−1(s) = yt−1,St = st ,Z
)

= Pr
(
Y (t,s) = y(t) | Yt−1(s) = yt−1,Z

)
, (24.1)

where yt−1 = (y(1), . . . ,y(t−1)) and y = yT̄ . From Bayes’ rule and (24.1), it follows
that

Pr(Y (s) = y|Z)

=Pr(Y (1,s) = y(1) | Z)
T̄

∏
t=2

Pr
(
Y (t,s) = y(t) | Yt−1(s) = yt−1,Z

)

=Pr(Y (1,s) = y(1) | S(1) = s(1),Z)

×
T̄

∏
t=2

Pr(Y (t,s) = y(t) | Yt−1(s) = yt−1,St = st ,Z
)

.

Invoking (NA), in particular Y (t,s) = Yp0(t) and Y t−1(s) = Yt−1
p0

on {St = st}, pro-
duces

Pr(Y (s) = y|Z) = Pr
(
Yp0(1) = y(1) | S(1) = s(1),Z

)

×
T̄

∏
t=2

Pr
(
Yp0(t) = y(t) | Yt−1

p0
= yt−1,St = st ,Z

)
. (24.2)
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This is a version of Robins’ (1997) “g-computation formula”.24,25 We can se-
quentially identify each component on the left hand side of the first expression, and
hence identify the counterfactual distributions. This establishes identification of the
distribution of Y (s) by expressing it in terms of objects that can be identified from
data. Identification is exact (or “tight”) in the sense that the identifying assumptions,
no anticipation and sequential randomization, do not restrict the factual data and are
therefore not testable (Gill and Robins, 2001).26

Example 24.1. Consider a two-period (T̄ = 2) version of the model in which agents
take either “treatment” (1) or “control” (0) in each period. Then, S(1) and S(2) have
values in S = {0,1}. The potential outcomes in period t are Y (t,(0,0)), Y (t,(0,1)),
Y (t,(1,0)) and Y (t,(1,1)). For example, Y (2,(0,0)) is the outcome in period 2 in
the case that the agent is assigned to the control group in each of the two periods.
Using Bayes’ rule, it follows that

Pr(Y (s) = y|Z) = Pr(Y (1,s) = y(1) | Z)Pr(Y (2,s) = y(2) | Y (1,s) = y(1),Z) .
(24.3)

The g-computation approach to constructing Pr(Y (s) = y|Z) from data replaces
the two probabilities in the right-hand side with probabilities of the observed (by
the econometrician) variables (Yp0 ,S,Z). First, note that Pr(Y (1,s) = y(1) | Z) =
Pr(Y (1,s) = y(1) | S(1) = s(1),Z) by (M-1). Moreover, (NA) ensures that poten-
tial outcomes in period 1 do not depend on the treatment status in period 2, so
that

Pr(Y (1,s) = y(1) | Z) = Pr
(

Yp(0) (1) = y(1) | S(1) = s(1),Z
)

.

24 Gill and Robins (2001) present versions of (NA) and (M-1) for the case with more general
distributions of treatments, and prove a version of the g-computation formula for the general case.
For a random vector X and a function f that is integrable with respect to the distribution of X , let∫

x∈A f (x)Pr(X ∈ dx) = E[ f (X)1(X ∈ A)]. Then,

Pr(Y (s) ∈ A|Z) =
∫

y∈A
Pr
(

Yp0 (T̄ ) ∈ dy(T̄ ) | Y T̄−1
p0

= yT̄−1,ST̄ = sT̄ ,Z
)

...

×Pr
(
Yp0 (2) ∈ dy(2) | Yp0 (1) = y(1),S2 = s2,Z

)

×Pr
(
Yp0 (1) ∈ dy(1) | S(1) = s(1),Z

)
,

where A is a set of Y (s). The right-hand side of this expression is almost surely unique under
regularity conditions presented by Gill and Robins (2001).
25 An interesting special case arises if the outcomes are survival indicators, that is if Yp0 (t) = 1 if
the agent survives up to and including time t and Yp0 (t) = 0 otherwise, t ≥ 1. Then, no anticipation
(NA) requires that treatment after death does not affect survival, and the g-computation formula
simplifies considerably (Abbring, 2003).
26 Gill and Robins’ (2001) analysis only involves causal inference on a final outcome

(
i.e., our

Y
(
s, T̄
))

and does not invoke the no-anticipation condition. However, their proof directly applies
to the case studied in this chapter.
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Similarly, subsequently invoking (NA) and (M-1), then (M-1), and then (NA),
gives

Pr(Y (2,s) = y(2) | Y (1,s) = y(1),Z)
= Pr

(
Y (2,s) = y(2) | Yp0(1),S(1) = s(1),Z

)
(by (NA) and (M-1))

= Pr
(
Y (2,s) = y(2) | Yp0(1),S = s,Z

)
(by (M-1))

= Pr
(
Yp0(2) = y(2) | Yp0(1),S = s,Z

)
. (by (NA))

Substituting these equations into the right-hand side of (24.3) gives the g-computation
formula,

Pr(Y (s) = y |Z) = Pr
(
Yp0(1) = y(1) | S(1) = s(1),Z

)

× Pr
(
Yp0(2) = y(2) | Yp0(1) = y(1),S = s,Z

)
.

Note that the right-hand side expression does not generally reduce to Pr
(
Yp0 = y|

S = s,Z). This would require the stronger, static matching condition S⊥⊥Y (s) | Z,
which we have not assumed here.

Matching on pretreatment covariates is a special case of the g-computation ap-
proach. Suppose that the entire treatment path is assigned independently of potential
outcomes given pretreatment covariates Z or, more precisely, S⊥⊥Y (s) | Z for all s.
This implies sequential randomization (M-1), and directly gives identification of the
distributions of Y (s)|Z and Y (s). The matching assumption imposes no restriction
on the data since Y (s) is only observed if S = s. The no-anticipation condition (NA)
is not required for identification in this special case because no conditioning on St is
required. Matching on pretreatment covariates is equivalent to matching in a static
model. The distribution of Y (s)|Z is identified without (NA), and assuming it to
be true would impose testable restrictions on the data. In particular, it would im-
ply that treatment assignment cannot be dependent on past outcomes given Z. The
static matching assumption is not likely to hold in applications where treatment is
dynamically assigned based on information on intermediate outcomes. This moti-
vates an analysis based on the more subtle sequential randomization assumption.
An alternative approach, developed in Sect. 24.5, is to explicitly model and identify
the evolution of the unobservables.

Gill and Robins claim that their sequential randomization and no-anticipation as-
sumptions are “neutral”, “for free”, or “harmless”. As we will argue later, from an
economic perspective, some of the model assumptions, notably the no-anticipation
assumption, can be interpreted as substantial behavioral/informational assumptions.
For example, Heckman and Vytlacil (2005, 2007b) and Heckman and Navarro
(2004) show how matching imposes the condition that marginal and average re-
turns are equal. Because of these strong assumptions, econometricians sometimes
phrase their “neutrality” result more negatively as a non-identification result
(Abbring and Van den Berg, 2003b), since it is possible that (M-1) and/or (NA)
may not hold.
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24.3.2 Policy Evaluation and Dynamic Discrete-Choice Analysis

24.3.2.1 The Effects of Policies

Consider a counterfactual policy p′ such that the corresponding allocation of treat-
ments sp′ satisfies sequential randomization, as in (M-1):

(M-2) For all treatment sequences s and all t,

sp′(t)⊥⊥(Y (t,s), . . . ,Y (T̄ ,s)) | (Yt−1
p′ ,st−1

p′ = st−1,Z).

The treatment assignment rule sp′ is equivalent to what Gill and Robins (2001) call a
“randomized plan”. The outcome distribution under such a rule cannot be constructed
by integrating the distributions of {Y (s)} with respect to the distribution of sp′ , be-
cause there may be feedback from intermediate outcomes into treatment assignment.
Instead, under the assumptions of the previous subsection and a support condition, we
can use a version of the g-computation formula for randomized plans given by Gill
and Robins to compute the distribution of outcomes under the policy p′:27

Pr
(
Yp′ = y|Z

)
= ∑

s∈S

Pr
(
Yp0(1) = y(1) | S(1) = s(1),Z

)
Pr
(
sp′(1) = s(1) | Z

)

×
T̄

∏
t=2

[
Pr
(
Yp0(t) = y(t) | Yt−1

p0
= yt−1,St = st ,Z

)

×Pr
(

sp′(t) = s(t) | Yt−1
p′ = yt−1,st−1

p′ = st−1,Z
)]

(24.4)

In the special case of static matching on Z, so that sp′⊥⊥U | Z, this simplifies to
integrating the distribution of Yp0 | (S = s,Z) over the distribution of sp′ |Z:28

27 The corresponding formula for the case with general treatment distributions is

Pr
(
Yp′ ∈ A|Z

)

=
∫

y∈A

∫

s∈S
Pr
(

Yp0 (T̄ ) ∈ dy(T̄ ) | Y T̄−1
p0

= yT̄−1,ST̄ = sT̄ ,Z
)

×Pr
(

sp′ (T̄ ) ∈ ds(T̄ ) | Y T̄−1
p′ = yT̄−1,sT̄−1

p′ = sT̄−1,Z
)

...
×Pr

(
Yp0 (2) ∈ dy(2) | Yp0 (1) = y(1),S(1) = s(1),Z

)

×Pr
(
sp′ (2) ∈ ds(2) | Yp′ (1) = y(1),sp′(1) = s(1),Z

)

×Pr
(
Yp0 (1) ∈ dy(1) | S(1) = s(1),Z

)
Pr
(
sp′ (1) ∈ ds(1) | Z

)
.

The support condition on sp′ requires that, for each t, the distribution of sp′ (t) | (Yt−1
p′ = yt−1,st−1

p′ =
st−1,Z = z) is absolutely continuous with respect to the distribution of S(t) | (Yt−1

p0
= yt−1,St−1 =

st−1,Z = z) for almost all (yt−1,st−1,z) from the distribution of (Yt−1
p0

,St−1,Z).
28 In the general case, this condition becomes

Pr
(
Yp′ ∈ A|Z

)
=
∫

s∈S
Pr
(
Yp0 ∈ A | S = s,Z

)
Pr
(
sp′ ∈ ds | Z

)
.
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Pr
(
Yp′ = y|Z

)
= ∑

s∈S

Pr
(
Yp0 = y | S = s,Z

)
Pr
(
sp′ = s | Z

)
.

24.3.2.2 Policy Choice and Optimal Policies

We now consider the problem of choosing a policy p that is optimal according to
some criterion. This problem is both of normative interest and of descriptive interest
if actual policies are chosen to be optimal. We could, for example, study the opti-
mal assignment a′ of constraints and incentives to agents. Alternatively, we could
assume that agents pick τ to maximize their utilities, and use the methods discussed
in this section to model τ .

Under the policy invariance assumptions that underlie the treatment-effect ap-
proach, p only affects outcomes through its implied treatment allocation sp. Thus,
the problem of choosing an optimal policy boils down to choosing an optimal treat-
ment allocation sp under informational and other constraints specific to the problem
at hand. For example, suppose that the planner and the agents have the same in-
formation, IP(p) = IA(p), the planner assigns eligibility to a program by a, and
agents fully comply, so that B = S and sp = a. Then, sp can be any rule from A
and is adapted to IP(p) = IA(p).

For expositional convenience, we consider the optimal choice of a treatment as-
signment sp adapted to the agent’s information IA(p) constructed earlier. We will
use the word “agents” to refer to the decision maker in this problem, even though
it can also apply to the planner’s decision problem. An econometric approach to
this problem is to estimate explicit dynamic choice models with explicit choice-
outcome relationships. One emphasis in the literature is on Markovian discrete-
choice models that satisfy Rust’s (1987) conditional-independence assumption (see
Rust, 1994). Other assumptions are made in the literature and we exposit them in
Sect. 24.5.

Here, we explore the use of Rust’s (1987) model as a model of treatment choice
in a dynamic treatment-effect setting. In particular, we make explicit the addi-
tional structure that Rust’s model, and in particular his conditional-independence
assumption, imposes on Robins’ dynamic potential-outcomes model. We follow
Rust (1987) and focus on a finite treatment (control) space S . In the notation of
our model, payoffs are determined by the outcomes Yp, treatment choices sp, the
“cost shocks” V , and the covariates Z. Rust (1987) assumes that {Yp(t−1),Vt ,Z} is
a controlled first-order Markov process, with initial condition Yp(0)≡ 0 and control
sp.29 As before, Vt and Z are not causally affected by choices, but Yp(t) may causally
depend on current and past choices. The agents choose a treatment assignment rule
sp that maximizes

29 Rust (1987) assumes an infinite-horizon, stationary environment. Here, we present a finite-
horizon version to facilitate a comparison with the dynamic potential-outcomes model and to link
up with the analysis in Sect. 24.5.
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E

[
T̄

∑
t=1

ϒt{Yp(t−1),Vt ,sp(t),Z}+ϒT̄+1{Yp(T̄ ),Z} IA(1)

]

, (24.5)

for some (net and discounted) utility functions ϒt and IA(1) = IA(1, p), which is
independent of p. ϒT̄+1{Yp(T̄ ),Z} is the terminal value. Under standard regularity
conditions on the utility functions, we can solve backward for the optimal policy sp.
Because of Rust’s Markov assumption, sp has a Markovian structure,

sp(t)⊥⊥(Yt−2
p ,Vt−1) | [Yp(t−1),Vt ,Z] ,

for t = 2, . . . , T̄ , and {Yp(t− 1),Vt ,Z} is a first-order Markov process. Note that Z
enters the model as an observed (by the econometrician) factor that shifts net util-
ity. A key assumption embodied in the specification of (24.5) is time-separability of
utility. Rust (1987), in addition, imposes separability between observed and unob-
served state variables. This assumption plays no essential role in expositing the core
ideas in Rust, and we will not make it here.

Rust’s (1987) conditional-independence assumption imposes two key restrictions
on the decision problem. It is instructive to consider these restrictions in isolation
from Rust’s Markov restriction. We make the model’s causal structure explicit us-
ing the potential-outcomes notation. Note that the model has a recursive causal
structure—the payoff-relevant state is controlled by current and past choices only—
and satisfies no-anticipation condition (NA). Setting Y (0,s)≡ 0 for specificity, and
ignoring the Markov restriction, Rust’s conditional-independence assumption re-
quires, in addition to the assumption that there are no direct causal effects of choices
on V , that

Y (s, t)⊥⊥Vt |
[
Y t−1(s),Z

]
, and (24.6)

Vt+1⊥⊥V t |
[
Y t(s),Z

]
, (24.7)

for all s and t. As noted by Rust (1987, p. 1011), condition (24.6) ensures that the ob-
served (by the econometrician) controlled state evolves independently of the unob-
served payoff-relevant variables. It is equivalent to (Florens and Mouchart, 1982)30

(M-3) [Y (s, t), . . . ,Y (s, T̄ )]⊥⊥Vt |
[
Y t−1(s),Z

]
for all t and s.

In turn, (M-3) implies (M-1) and is equivalent to the assumption that (M-2) holds
for all sp′ .

31

Condition (24.7) excludes serial dependence of the unobserved payoff-relevant
variables conditional on past outcomes. In contrast, Robins’ g-computation frame-
work allows for such serial dependence, provided that sequential randomization
holds if serial dependence is present. For example, if V⊥⊥U |Z, then (M-1) and its
variants hold without further assumptions on the time series structure of Vt .

30 Note that (24.6) is a Granger (1969) noncausality condition stating that, for all s and conditional
on Z, V does not cause Y (s).
31 If V has redundant components, that is components that do not nontrivially enter any assignment
rule sp, (M-3) imposes more structure, but structure that is irrelevant to the decision problem and
its empirical analysis.
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The first-order Markov assumption imposes additional restrictions on potential
outcomes. These restrictions are twofold. First, potential outcomes follow a first-
order Markov process. Second, s(t) only directly affects the Markov transition from
Y (t,s) to Y (t + 1,s). This strengthens the no-anticipation assumption presented in
Sect. 24.3.1.1. The Markov assumption also requires that Vt+1 only depends on
Y (s, t), and not on Yt−1(s), given Y (s, t).

In applications, we may assume that actual treatment assignment S solves the
Markovian decision problem. Together with specifications of ϒt , this further restricts
the dynamic choice-outcome model. Alternatively, one could make other assump-
tions on S and use (24.5) to define and find an optimal, and typically counterfactual,
assignment rule sp′ .

Our analysis shows that the substantial econometric literature on the structural
empirical analysis of Markovian decision problems under conditional independence
can be applied to policy evaluation under sequential randomization. Conversely,
methods developed for potential-outcomes models with sequential randomization
can be applied to learn about aspects of dynamic discrete-choice models. Murphy
(2003) develops methods to estimate an optimal treatment assignment rule using
Robins’ dynamic potential-outcomes model with sequential randomization (M-2).

24.3.3 The Information Structure of Policies

One concern about methods for policy evaluation based on the potential-outcomes
model is that potential outcomes are sometimes reduced-form representations of
dynamic models of agent’s choices. A policy maker choosing optimal policies
typically faces a population of agents who act on the available information, and
their actions in turn affect potential outcomes. For example, in terms of the model
of Sect. 24.3.2.2, a policy may change financial incentives—the b ∈ B assigned
through a could enter the net utilities ϒt—and leave it to the agents to control
outcomes by choosing treatment. In econometric policy evaluation, it is therefore
important to carefully model the information IA that accumulates to the agents
in different program states and under different policies, separately from the policy
maker’s information IP.

This can be contrasted with common practice in biostatistics. Statistical anal-
yses of the effects of drugs on health are usually concerned with the physician’s
(planner’s) information and decision problem. Gill and Robins’ (2001) sequential
randomization assumption, for example, is often justified by the assumption that
physicians base their treatment decisions on observable (by the analyst) informa-
tion only. This literature, however, often ignores the possibility that many variables
known to the physician may not be known to the observing statistician and that the
agents being given drugs alter the protocols.

Potential outcomes will often depend on the agent’s information. Failure to cor-
rectly model the information will often lead to violation of (NA) and failure of in-
variance. Potential outcomes may therefore not be valid inputs in a policy evaluation
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study. A naive specification of potential outcomes would only index treatments
by actual participation in, e.g., job search assistance or training programs. Such a
naive specification is incomplete in the context of economies inhabited by forward-
looking agents who make choices that affect outcomes. In specifying potential out-
comes, we should not only consider the effects of actual program participation, but
also the effects of the information available to agents about the program and policy.
We now illustrate this point.

Example 24.2. Black, Smith, Berger, and Noel (2003) analyze the effect of compul-
sory training and employment services provided to unemployment insurance (UI)
claimants in Kentucky on the exit rate from UI and earnings. In the program they
study, letters are sent out to notify agents some time ahead whether they are se-
lected to participate in the program. This information is recorded in a database and
available to them. They can analyze the letter as part of a program that consists of
information provision and subsequent participation in training. The main empirical
finding of their paper is that the threat of future mandatory training conveyed by the
letters is more effective in increasing the UI exit rate than training itself.

The data used by Black et al. (2003) are atypical of many economic data sets, be-
cause the data collectors carefully record the information provided to agents. This
allows Black et al. to analyze the effects of the provision of information along with
the effects of actual program participation. In many econometric applications, the
information on the program under study is less rich. Data sets may provide informa-
tion on actual participation in training programs and some background information
on how the program is administered. Typically, however, the data do not record all
of the letters sent to agents and do not record every phone conversation between
administrators and agents. Then, the econometrician needs to make assumptions
on how this information accumulates for agents. In many applications, knowledge
of specific institutional mechanisms of assignment can be used to justify specific
informational assumptions.

Example 24.3. Abbring, Van den Berg, and Van Ours (2005) analyze the effect of
punitive benefits reductions, or sanctions, in Dutch UI on re-employment rates.
In the Netherlands, UI claimants have to comply with certain rules concerning
search behavior and registration. If a claimant violates these rules, a sanction may
be applied. A sanction is a punitive reduction in benefits for some period of time
and may be accompanied by increased levels of monitoring by the UI agency.32

Abbring et al. (2005) use administrative data and know the re-employment dura-
tion, the duration at which a sanction is imposed if a sanction is imposed, and some
background characteristics for each UI case.

Without prior knowledge of the Dutch UI system, an analyst might make a va-
riety of informational assumptions. One extreme is that UI claimants know at the
start of their UI spells that their benefits will be reduced at some specific duration if
they are still claiming UI at that duration. This results in a UI system with entitle-
ment periods that are tailored to individual claimants and that are set and revealed

32 See Grubb (2000) for a review of sanction systems in the OECD.
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at the start of the UI spells. In this case, claimants will change their labor market
behavior from the start of their UI spell in response to the future benefits reduction
(e.g., Mortensen, 1977). At another extreme, claimants receive no prior signals of
impending sanctions and there are no anticipatory effects of actual benefits reduc-
tions. However, agents may still be aware of the properties of the sanctions process
and to some extent this will affect their behavior. Abbring et al. (2005) analyze a
search model with these features. Abbring and Van den Berg (2003b) provide a
structural example where the data cannot distinguish between these two informa-
tional assumptions. Abbring et al. (2005) use institutional background information
to argue in favor of the second informational assumption as the one that character-
izes their data.

If data on information provision are not available and simplifying assumptions on
the program’s information structure cannot be justified, the analyst needs to model
the information that accumulates to agents as an unobserved determinant of out-
comes. This is the approach followed, and further discussed, in Sect. 24.5.

The information determining outcomes typically includes aspects of the policy.
In Example 24.2, the letter announcing future training will be interpreted differently
in different policy environments. If agents are forward looking, the letter will be
more informative under a policy that specifies a strong relation between the letter
and mandatory training in the population than under a policy that allocates letters
and training independently. In Example 24.3, the policy is a monitoring regime.
Potential outcomes are UI durations under different sanction times. A change in
monitoring policy changes the value of unemployment. In a job-search model with
forward-looking agents, agents will respond by changing their search effort and
reservation wages, and UI duration outcomes will change. In either example, po-
tential outcomes are not invariant to variation in the policy. In the terminology of
Hurwicz (1962), the policy is not “structural” with regard to potential outcomes and
violates the invariance assumptions presented in Heckman and Vytlacil (2007a).
One must control for the effects of agents’ information.

24.3.4 Selection on Unobservables

In econometric program evaluations, (sequentially) randomized assignment is un-
likely to hold. We illustrate this in the models developed in Sect. 24.5. Observational
data are characterized by a lot of heterogeneity among agents, as documented by the
empirical examples in Abbring and Heckman (2007) and in Heckman et al. (1999).
This heterogeneity is unlikely to be fully captured by the observed variables in most
data sets. In a dynamic context, such unmeasured heterogeneity leads to violations
of the assumptions of Gill and Robins (2001) and Rust (1987) that choices represent
a sequential randomization. This is true even if the unmeasured variables only affect
the availability of slots in programs but not outcomes directly. If agents are ratio-
nal, forward-looking and observe at least some of the unmeasured variables that the
econometrician does not, they will typically respond to these variables through their
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choice of treatment and investment behavior. In this case, the sequential randomiza-
tion condition fails.

For the same reason, identification based on instrumental variables is relatively
hard to justify in dynamic models (Hansen and Sargent, 1980; Rosenzweig and
Wolpin, 2000; Abbring and Van den Berg, 2005). If the candidate instruments only
vary across persons but not over time for the same person, then they are not likely to
be valid instruments because they affect expectations and future choices and may af-
fect current potential outcomes. Instead of using instrumental variables that vary
only across persons, we require instruments based on unanticipated person-specific
shocks that affect treatment choices but not outcomes at each point in time. In the
context of continuously assigned treatments, the implied data requirements seem
onerous. To achieve identification, Abbring and Van den Berg (2003b) focus on re-
gressor variation rather than exclusion restrictions in a sufficiently smooth model of
continuous-time treatment effects. We discuss their analysis in Sect. 24.4. Heckman
and Navarro (2007) show that curvature conditions, not exclusion restrictions, that
result in the same variables having different effects on choices and outcomes in dif-
ferent periods, are motivated by economic theory and can be exploited to identify
dynamic treatment effects in discrete time without literally excluding any variables.
We discuss their analysis in Sect. 24.5. We now consider a formulation of the anal-
ysis in continuous time.

24.4 The Event-History Approach to Policy Analysis

The discrete-time models just discussed in Sect. 24.3 have an obvious limitation.
Time is continuous and many events are best described by a continuous-time model.
There is a rich field of continuous-time event-history analysis that has been adapted
to conduct policy evaluation analysis.33 For example, the effects of training and
counseling on unemployment durations and job stability have been analyzed by
applying event-history methods to data on individual labor-market and training his-
tories (Ridder, 1986; Card and Sullivan, 1988; Gritz, 1993; Ham and LaLonde,
1996; Eberwein, Ham, and LaLonde, 1997; Bonnal, Fougère, and Sérandon, 1997).
Similarly, the moral hazard effects of unemployment insurance have been stud-
ied by analyzing the effects of time-varying benefits on labor-market transitions
(e.g., Meyer, 1990; Abbring et al., 2005; Van den Berg, Van der Klaauw, and Van
Ours, 2004). In fields like epidemiology, the use of event-history models to ana-
lyze treatment effects is widespread (see, e.g., Andersen, Borgan, Gill, and Keiding,
1993; Keiding, 1999).

The event-history approach to program evaluation is firmly rooted in the econo-
metric literature on state dependence (lagged dependent variables) and heterogene-
ity (Heckman and Borjas, 1980; and Heckman, 1981a). Event-history models along

33 Abbring and Van den Berg (2004) discuss the relation between the event-history approach to
program evaluation and more standard latent-variable and panel-data methods, with a focus on
identification issues.
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the lines of Heckman and Singer (1984, 1986) are used to jointly model transitions
into programs and transitions into outcome states. Causal effects of programs are
modelled as the dependence of individual transition rates on the individual history of
program participation. Dynamic selection effects are modelled by allowing for de-
pendent unobserved heterogeneity in both the program and outcome transition rates.

Without restrictions on the class of models considered, true state dependence and
dynamic selection effects cannot be distinguished.34 Any history dependence of cur-
rent transition rates can be explained both as true state dependence and as the result
of unobserved heterogeneity that simultaneously affects the history and current tran-
sitions. This is a dynamic manifestation of the problem of drawing causal inference
from observational data. In applied work, researchers avoid this problem by impos-
ing additional structure. A typical, simple, example is a mixed semi-Markov model
in which the causal effects are restricted to program participation in the previous
spell (e.g., Bonnal et al. 1997). There is a substantial literature on the identifiability
of state-dependence effects and heterogeneity in duration and event-history models
that exploit such additional structure (see Heckman and Taber, 1994; and Van den
Berg, 2001 for reviews). Here, we provide discussion of some canonical cases.

24.4.1 Treatment Effects in Duration Models

24.4.1.1 Dynamically Assigned Binary Treatments and Duration Outcomes

We first consider the simplest case of mutual dependence of events in continuous
time, involving only two binary events. This case is sufficiently rich to capture the
effect of a dynamically assigned binary treatment on a duration outcome. Binary
events in continuous time can be fully characterized by the time at which they oc-
cur and a structural model for their joint determination is a simultaneous-equations
model for durations. We develop such a model along the lines of Abbring and
Van den Berg (2003b). This model is an extension, with general marginal distri-
butions and general causal and spurious dependence of the durations, of Freund’s
(1961) bivariate exponential model.

Consider two continuously-distributed random durations Y and S. We refer to
one of the durations, S, as the time to treatment and to the other duration, Y , as the
outcome duration. Such an asymmetry arises naturally in many applications. For
example, in Abbring et al.’s (2005) study of unemployment insurance, the treat-
ment is a punitive benefits reduction (sanction) and the outcome re-employment.
The re-employment process continues after imposition of a sanction, but the sanc-
tions process is terminated by re-employment. The current exposition, however, is
symmetric and unifies both cases. It applies to both the asymmetric setup of the
sanctions example and to applications in which both events may causally affect the
other event.

34 See Heckman and Singer (1986).
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Let Y (s) be the potential outcome duration that would prevail if the treatment
time is externally set to s. Similarly, let S(y) be the potential treatment time result-
ing from setting the outcome duration to y. We assume that ex ante heterogeneity
across agents is fully captured by observed covariates X and unobserved covariates
V , assumed to be external and temporally invariant. Treatment causally affects the
outcome duration through its hazard rate. We denote the hazard rate of Y (s) at time
t for an agent with characteristics (X ,V ) by θY (t|s,X ,V ). Similarly, outcomes af-
fect the treatment times through its hazard θS(t|y,X ,V ). Causal effects on hazard
rates are produced by recursive economic models driven by point processes, such as
search models. We provide an example below, and further discussion in Sect. 24.4.3.

Without loss of generality, we partition V into (VS,VY ) and assume that
θY (t|s,X ,V ) = θY (t|s,X ,VY ) and θS(t|y,X ,V ) = θS(t|y,X ,VS). Intuitively, VS and VY

are the unobservables affecting, respectively, treatment and outcome, and the joint
distribution of (VS,VY ) is unrestricted. In particular, VS and VY may have elements
in common.

The corresponding integrated hazard rates are defined by ΘY (t | s,X ,VY ) =∫ t
0 θY (u | s,X ,VY )du and ΘS(t | y,X ,VS) =

∫ t
0 θS(u | y,X ,VS)du. For expositional con-

venience, we assume that these integrated hazards are strictly increasing in t. We
also assume that they diverge to ∞ as t → ∞, so that the duration distributions are
non-defective.35 Then, ΘY (Y (s) | s,X ,VY ) and ΘS(S(y) | y,X ,VS) are unit exponen-
tial for all y,s ∈ R+.36 This implies the following model of potential outcomes and
treatments,37

Y (s) = y(s,X ,VY ,εY ) and S(y) = s(y,X ,VS,εS) ,

for some unit exponential random variables εY and εS that are independent of (X ,V ),
y = Θ−1

Y , and s = Θ−1
S .

The exponential errors εY and εS embody the ex post shocks that are inherent
to the individual hazard processes, that is the randomness in the transition process
after conditioning on covariates X and V and survival. We assume that εY⊥⊥εS, so
that {Y (s)} and {S(y)} are only dependent through the observed and unobserved
covariates (X ,V ). This conditional-independence assumption is weaker than the
conditional-independence assumption underlying the analysis of Sect. 24.3 and used

35 Abbring and Van den Berg (2003b) allow for defective distributions, which often have structural
interpretations. For example, some women never have children and some workers will never leave
a job. See Abbring (2002) for discussion.
36 Let T | X be distributed with density f (t|X), non-defective cumulative distribution function
F(t|X), and hazard rate θ(t|X) = f (t|X)/[1−F(t|X)]. Then,

∫ T
0 θ(t|X)dt =− ln[1−F(T |X)] is a

unit exponential random variable that is independent of X .
37 The causal hazard model only implies that the distributions of εY and εS are invariant across
assigned treatments and outcomes, respectively; their realizations may not be. This is sufficient for
the variation of y(s,X ,VY ,εY ) with s and of s(y,X ,VS,εS) with y to have a causal interpretation.
The further restriction that the random variables εY and εS are invariant is made for simplicity, and
is empirically innocuous. See Abbring and Van den Berg (2003b) for details and Freedman (2004)
for discussion.
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in matching, because it allows for conditioning on the invariant unobservables V . It
shares this feature with the discrete-time models developed in Sect. 24.5.

We assume a version of the no-anticipation condition of Sect. 24.3.1.1: for all
t ∈ R+,

θY (t|s,X ,VY ) = θY (t|s′,X ,VY ) and θS(t|y,X ,VS) = θS(t|y′,X ,VS)

for all s,s′,y,y′ ∈ [t,∞). This excludes effects of anticipation of the treatment on the
outcome. Similarly, there can be no anticipation effects of future outcomes on the
treatment time hazard.

Example 24.4. Consider a standard search model describing the job search behav-
ior of an unemployed individual (e.g., Mortensen, 1986) with characteristics (X ,V ).
Job offers arrive at a rate λ > 0 and are random draws from a given distribution F .
Both λ and F may depend on (X ,V ), but, for notational simplicity we suppress all
explicit representations of conditioning on (X ,V ) throughout this example. An of-
fer is either accepted or rejected. A rejected offer cannot be recalled at a later time.
The individual initially receives a constant flow of unemployment-insurance bene-
fits. However, the individual faces the risk of a sanction—a permanent reduction of
his benefits to some lower, constant level—at some point during his unemployment
spell. During the unemployment spell, sanctions arrive independently of the job-
offer process at a constant rate μ > 0. The individual cannot foresee the exact time
a sanction is imposed, but he knows the distribution of these times.38 The individual
chooses a job-acceptance rule so as to maximize his expected discounted lifetime
income. Under standard conditions, this is a reservation-wage rule: at time t, the
individual accepts each wage of w(t) or higher. The corresponding re-employment
hazard rate is λ (1−F(w(t))). Apart from the sanction, which is not foreseen and
arrives at a constant rate during the unemployment spell, the model is stationary.
This implies that the reservation wage is constant, say equal to w0, up to and includ-
ing time s, jumps to some lower level w1 < w0 at time s and stays constant at w1 for
the remainder of the unemployment spell if benefits would be reduced at time s.

The model is a version of the simultaneous-equations model for durations. To
see this, let Y be the re-employment duration and S the sanction time. The potential-
outcome hazards are

θY (t|s) =
{

λ0 if 0≤ t ≤ s
λ1 if t > s ,

where λ0 = λ [1−F(w0)] and λ1 = λ [1−F(w1)], and clearly λ1 ≥ λ0. Similarly,
the potential-treatment time hazards are θS(t|y) = μ if 0 ≤ t ≤ y, and 0 otherwise.
Note that the no-anticipation condition follows naturally from the recursive structure
of the economic decision problem in this case, in which we have properly accounted
for all relevant components of agent information sets. Furthermore, the assumed

38 This is a rudimentary version of the search model with punitive benefits reductions, or sanc-
tions, of Abbring et al. (2005). The main difference is that in the present version of the model the
sanctions process cannot be controlled by the agent.
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independence of the job offer and sanction processes at the individual level for given
(X ,V ) implies that εY⊥⊥εS.

The actual outcome and treatment are related to the potential outcomes and treat-
ments by S = S(Y ) and Y = Y (S). The no-anticipation assumption ensures that this
system has a unique solution (Y,S) by imposing a recursive structure on the under-
lying transition processes. Without anticipation effects, current treatment and out-
come hazards only depend on past outcome and treatment events, and the transition
processes evolve recursively (Abbring and Van den Berg, 2003b). Together with a
distribution G(· | X) of V | X , this gives a non-parametric structural model of the
distribution of (Y,S) | X that embodies general simultaneous causal dependence of
Y and S, dependence of (Y,X) on observed covariates X , and general dependence of
the unobserved errors VY and VS.

There are two reasons for imposing further restrictions on this model. First, it
is not identified from data on (Y,S,X). Take a version of the model with selection
on unobservables (VY⊥⊥/ VS | X) and consider the distribution of (Y,S)|X generated
by this version of the model. Then, there exists an alternative version of the model
that satisfies both no-anticipation and VY⊥⊥VS | X , and that generates the same dis-
tribution of (Y,S)|X (Abbring and Van den Berg, 2003b, Proposition 1). In other
words, for each version of the model with selection on unobservables and antic-
ipation effects, there is an observationally-equivalent model version that satisfies
no-anticipation and conditional randomization. This is a version of the nonidentifi-
cation result discussed in Sect. 24.3.1.

Second, even if we ensure nonparametric identification by assuming no-
anticipation and conditional randomization, we cannot learn about the agent-level
causal effects embodied in y and s without imposing even further restrictions.
At best, under regularity conditions we can identify θY (t|s,X) = E[θY (t|s,X ,VY )
|X ,Y (s)≥ t] and θS(t|y,X) = E[θS(t|y,X ,VS)|X ,S(y) ≥ t] from standard hazard re-
gressions (e.g., Andersen et al., 1993; Fleming and Harrington, 1991). Thus, we
can identify the distributions of Y (s)|X and S(y)|X , and therefore solve the selection
problem if we are only interested in these distributions. However, if we are also inter-
ested in the causal effects on the corresponding hazard rates for given X ,V , we face
an additional dynamic selection problem. The hazards of the identified distributions
of Y (s)|X and S(y)|X only condition on observed covariates X , and not on unob-
served covariates V , and are confounded with dynamic selection effects (Heckman
and Borjas, 1980; Heckman and Singer, 1986; Meyer, 1996; Abbring and Van den
Berg, 2005). For example, the difference between θY (t|s,X) and θY (t|s′,X) does not
only reflect agent-level differences between θY (t|s,X ,VY ) and θY (t|s′,X ,VY ), but
also differences in the subpopulations of survivors {X ,Y (s)≥ t} and {X ,Y (s′)≥ t}
on which the hazards are computed.

In the next two subsections, we discuss what can be learned about treatment
effects in duration models under additional model restrictions. We take the no-
anticipation assumption as fundamental. As explained in Sect. 24.3, this requires
that we measure and include in our model all relevant information needed to de-
fine potential outcomes. However, we relax the randomization assumption. We first
consider Abbring and Van den Berg’s (2003b) analysis of identification without
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exclusion restrictions. They argue that these results are useful, because exclusion
restrictions are hard to justify in an inherently dynamic setting with forward-looking
agents. Abbring and Van den Berg (2005) further clarify this issue by studying infer-
ence for treatment effects in duration models using a social experiment. We discuss
what can be learned from such experiments at the end of this section.

24.4.1.2 Identifiability Without Exclusion Restrictions

Abbring and Van den Berg consider an extension of the multivariate Mixed Pro-
portional Hazard (MPH) model (Lancaster, 1979) in which the hazard rates of
Y (s) | (X ,V ) and S(y) | (X ,V ) are given by

θY (t | s,X ,V ) =
{

λY (t)φY (X)VY if t ≤ s
λY (t)φY (X)δY (t,s,X)VY if t > s

(24.8)

and

θS(t | y,X ,V ) =
{

λS(t)φS(X)VS if t ≤ y
λS(t)φS(X)δS(t,y,X)VS if t > y,

(24.9)

respectively, and V = (VS,VY ) is distributed independently of X . The baseline haz-
ards λY : R+ → (0,∞) and λS : R+ → (0,∞) capture duration dependence of the
individual transition rates. The integrated hazards are ΛY (t) =

∫ t
0 λY (τ)dτ < ∞ and

ΛS(t) =
∫ t

0 λS(τ)dτ < ∞, for all t ∈ R+. The regressor functions φY : X → (0,∞)
and φS : X → (0,∞) are assumed to be continuous, with X ⊂ R

q the support of
X . In empirical work, these functions are frequently specified as φY (x) = exp(x′βY )
and φS(x) = exp(x′βS) for some parameter vectors βY and βS. We will not make
such parametric assumptions. Note that the fact that both regressor functions are
defined on the same domain X is not restrictive, because each function φY and
φS can “select” certain elements of X by being trivial functions of the other ele-
ments. In the parametric example, the vector βY would only have nonzero elements
for those regressors that matter to the outcome hazard. The functions δY and δS

capture the causal effects. Note that δY (t,s,X) only enters θY (t | s,X ,V ) at du-
rations t > s, so that the model satisfies no anticipation of treatment assumption
(NA). Similarly, it satisfies no anticipation of outcomes and has a recursive causal
structure as required by the no-anticipation assumption. If δY = 1, treatment is in-
effective; if δY is larger than 1, it stochastically reduces the remaining outcome
duration.

Note that this model allows δY and δS to depend on elapsed duration t, past
endogenous events, and the observed covariates X , but not on V . Abbring and Van
den Berg also consider an alternative model that allows δY and δS to depend on
unobservables in a general way, but not on past endogenous events.

Abbring and Van den Berg show that these models are nonparametrically identi-
fied from single-spell data under the conditions for the identification of competing-
risks models based on the multivariate MPH model given by Abbring and Van den
Berg (2003a). Among other conditions are the requirements that there is some
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independent local variation of the regressor effects in both hazard rates and a finite-
mean restriction on V , which are standard in the analysis of multivariate MPH mod-
els. With multiple-spell data, most of these assumptions, and the MPH structure,
can be relaxed (Abbring and Van den Berg, 2003b).

The models can be parameterized in a flexible way and estimated by maximum
likelihood. Typical parameterizations involve linear-index structures for the regres-
sor and causal effects, a discrete distribution G, and piecewise-constant baseline
hazards λS and λY . Abbring and Van den Berg (2003c) develop a simple graphical
method for inference on the sign of ln(δY ) in the absence of regressors. Abbring
et al. (2005) present an empirical application.

24.4.1.3 Inference Based on Instrumental Variables

The concerns expressed in Sect. 24.3.4 about the validity of exclusion restrictions
in dynamic settings carry over to event-history models.

Example 24.5. A good illustration of this point is offered by the analysis of
Eberwein et al. (1997), who study the effects of a training program on labor-market
transitions. Their data are particularly nice, as potential participants are randomized
into treatment and control groups at some baseline point in time. This allows them
to estimate the effect of intention to treat (with training) on subsequent labor-market
transitions. This is directly relevant to policy evaluation in the case that the policy
involves changing training enrollment through offers of treatment which may or
may not be accepted by agents.

However, Eberwein et al. are also interested in the effect of actual participation
in the training program on post program labor-market transitions. This is a distinct
problem, because compliance with the intention-to-treat protocol is imperfect. Some
agents in the control group are able to enroll in substitute programs, and some agents
in the treatment group choose never to enroll in a program at all. Moreover, actual
enrollment does not take place at the baseline time, but is dispersed over time. Those
in the treatment group are more likely to enroll earlier. This fact, coupled with the
initial randomization, suggests that the intention-to-treat indicator might be used as
an instrument for identifying the effect of program participation on employment and
unemployment spells.

The dynamic nature of enrollment into the training program, and the event-
history focus of the analysis complicate matters considerably. Standard instrumental-
variables methods cannot be directly applied. Instead, Eberwein et al. use a
parametric duration model for pre and post program outcomes that excludes the
intention-to-treat indicator from directly determining outcomes. They specify a du-
ration model for training enrollment that includes an intention-to-treat indicator as
an explanatory variable, and specify a model for labor-market transitions that ex-
cludes the intention-to-treat indicator and imposes a no-anticipation condition on
the effect of actual training participation on labor-market transitions. Such a model
is consistent with an environment in which agents cannot perfectly foresee the actual
training time they will be assigned and in which they do not respond to information
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about this time revealed by their assignment to an intention-to-treat group. This is
a strong assumption. In a search model with forward-looking agents, for example,
such information would typically affect the ex ante values of unemployment and
employment. Then, it would affect the labor-market transitions before actual train-
ing enrollment through changes in search efforts and reservation wages, unless these
are both assumed to be exogenous. An assumption of perfect foresight on the part
of the agents being studied only complicates matters further.

Abbring and Van den Berg (2005) study what can be learned about dynami-
cally assigned programs from social experiments if the intention-to-treat instrument
cannot be excluded from the outcome equation. They develop bounds, tests for un-
observed heterogeneity, and point-identification results that extend those discussed
in this section.39

24.4.2 Treatment Effects in More General Event-History Models

It is instructive to place the causal duration models developed in Sect. 24.4.1 in
the more general setting of event-history models with state dependence and hetero-
geneity. We do this following Abbring’s (2008) analysis of the mixed semi-Markov
model.

24.4.2.1 The Mixed Semi-Markov Event-History Model

The model is formulated in a fashion that is analogous to the frameworks of Heck-
man and Singer (1986). The point of departure is a continuous-time stochastic pro-
cess assuming values in a finite set S at each point in time. We will interpret real-
izations of this process as agents’ event histories of transitions between states in the
state space S .

Suppose that event histories start at real-valued random times T0 in an S -valued
random state S0, and that subsequent transitions occur at random times T1,T2, . . .
such that T0 < T1 < T2 < · · · . Let Sl be the random destination state of the transition
at Tl . Taking the sample paths of the event-history process to be right-continuous,
we have that Sl is the state occupied in the interval [Tl ,Tl+1).

Suppose that heterogeneity among agents is captured by vectors of time-constant
observed covariates X and unobserved covariates V .40 In this case, state dependence
in the event-history process for given individual characteristics X ,V has a causal

39 In the special case that a static treatment, or treatment plan, is assigned at the start of the spell,
standard instrumental-variables methods may be applied. See Abbring and Van den Berg (2005).
40 We restrict attention to time-invariant observed covariates for expositional convenience. The
analysis can easily be adapted to more general time-varying external covariates. Restricting atten-
tion to time-constant regressors is a worst-case scenario for identification. External time variation
in observed covariates aids identification (Heckman and Taber, 1994).
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interpretation.41 We structure such state dependence by assuming that the event-
history process conditional on X ,V is a time-homogeneous semi-Markov process.
Conditional on X ,V the length of a spell in a state and the destination state of the
transition ending that spell depend only on the past through the current state. In our
notation, (ΔTl ,Sl)⊥⊥{(Ti,Si), i = 0, . . . , l− 1} | Sl−1,X ,V , where ΔTl = Tl −Tl−1 is
the length of spell l. Also, the distribution of (ΔTl ,Sl)|Sl−1,X ,V does not depend on
l. Note that, conditional on X ,V , {Sl , l ≥ 0} is a time-homogeneous Markov chain
under these assumptions.

Non-trivial dynamic selection effects arise because V is not observed. The event-
history process conditional on observed covariates X only is a mixed semi-Markov
process. If V affects the initial state S0, or transitions from it, subpopulations of
agents in different states at some time t typically have different distributions of the
unobserved characteristics V . Therefore, a comparison of the subsequent transitions
in two such subpopulations does not only reflect state dependence, but also sort-
ing of agents with different unobserved characteristics into the different states they
occupy at time t.

We model {(ΔTl ,Sl), l ≥ 1}|T0,S0,X ,V as a repeated competing-risks model.
Due to the mixed semi-Markov assumption, the latent durations corresponding to
transitions into the possible destination states in the lth spell only depend on the
past through the current state Sl−1, conditional on X ,V . This implies that we can
fully specify the repeated competing-risks model by specifying a set of origin-
destination-specific latent durations, with corresponding transition rates. Let T l

jk de-
note the latent duration corresponding to the transition from state j to state k in
spell l. We explicitly allow for the possibility that transitions between certain (or-
dered) pairs of states may be impossible. To this end, define the correspondence
Q : S → σ(S ) assigning to each s ∈S the set of all destination states to which
transitions are made from s with positive probability.42 Here, σ(S ) is the set of
all subsets of S (the “power set” of S ). Then, the length of spell l is given by
ΔTl = mins∈Q(Sl−1) T l

Sl−1s, and the destination state by Sl = argmins∈Q(Sl−1) T l
Sl−1s.

We take the latent durations to be mutually independent, jointly independent
of T0,S0, and identically distributed across spells l, all conditional on X ,V . This
reflects both the mixed semi-Markov assumption and the additional assumption
that all dependence between the latent durations corresponding to the compet-
ing risks in a given spell l is captured by the observed regressors X and the un-
observables V . This is a standard assumption in econometric duration analysis,
which, with the semi-Markov assumption, allows us to characterize the distribu-
tion of {(ΔTl ,Sl), l ≥ 1}|T0,S0,X ,V by specifying origin-destination-specific haz-
ards θ jk(t|X ,V ) for the marginal distributions of T l

jk|X ,V .

41 We could make this explicit by extending the potential-outcomes model of Sect. 24.4.1.2 to
the general event-history setup. However, this would add a lot of complexity, but little extra
insight.
42 Throughout this section, we assume that Q is known. It is important to note, however, that Q
can actually be identified trivially in all cases considered.
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We assume that the hazards θ jk(t|X ,V ) are of the mixed proportional hazard
(MPH) type:43

θ jk(t|X ,V ) =
{

λ jk(t)φ jk(X)Vjk if k ∈Q( j)
0 otherwise.

(24.10)

The baseline hazards λ jk : R+→ (0,∞) have integrated hazards Λ jk(t) =
∫ t

0 λ jk(τ)dτ
< ∞, for all t ∈ R+. The regressor functions φ jk : X → (0,∞) are assumed to be
continuous. Finally, the (0,∞)-valued random variable Vjk is the scalar component
of V that affects the transition from state j to state k. Note that we allow for general
dependence between the components of V . This way, we can capture, for example,
that agents with lower re-employment rates have higher training enrolment rates.

This model fully characterizes the distribution of the transitions {(ΔTl ,Sl), l ≥ 1}
conditional on the initial conditions T0,S0 and the agent’s characteristics X ,V . A
complete model of the event histories {(Tl ,Sl), l ≥ 0} conditional on X ,V would
in addition require a specification of the initial conditions T0,S0 for given X ,V . It
is important to stress here that T0,S0 are the initial conditions of the event-history
process itself, and should not be confused with the initial conditions in a particular
sample (which we will discuss below). In empirical work, interest in the dependence
between start times T0 and characteristics X ,V is often limited to the observation that
the distribution of agents’ characteristics may vary over cohorts indexed by T0. The
choice of initial state S0 may in general be of some interest, but is often trivial. For
example, we could model labor-market histories from the calendar time T0 at which
agents turn 15 onwards. In an economy with perfect compliance to a mandatory
schooling up to age 15, the initial state S0 would be “(mandatory) schooling” for all.
Therefore, we will not consider a model of the event history’s initial conditions, but
instead focus on the conditional model of subsequent transition histories.

Because of the semi-Markov assumption, the distribution of {(ΔTl ,Sl), l ≥ 1}|
T0,S0,X ,V only depends on S0, and not T0. Thus, T0 only affects observed event
histories through cohort effects on the distribution of unobserved characteristics V .
The initial state S0, on the other hand, may both have causal effects on subsequent
transitions and be informative on the distribution of V . For expositional clarity, we
assume that V⊥⊥(T0,S0,X). This is true, for example, if all agents start in the same
state, so that S0 is degenerate, and V is independent of the start date T0 and the
observed covariates X .

An econometric model for transition histories conditional on the observed covari-
ates X can be derived from the model of {(ΔTl ,Sl), l ≥ 1}|S0,X ,V by integrating out
V . The exact way this should be done depends on the sampling scheme used. Here,
we focus on sampling from the population of event-histories. We assume that we
observe the covariates X , the initial state S0, and the first L̄ transitions from there.
Then, we can model these transitions for given S0,X by integrating the conditional
model over the distribution of V .

43 Proportionality can be relaxed if we have data on sufficiently long event-histories. See Honoré
(1993) and Abbring and Van den Berg (2003a,b) for related arguments for various multi-spell
duration models.
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Abbring (2008) discusses more complex, and arguably more realistic, sampling
schemes. For example, when studying labor-market histories we may randomly
sample from the stock of the unemployed at a particular point in time. Because
the unobserved component V affects the probability of being unemployed at the
sampling date, the distribution of V |X in the stock sample does not equal its popu-
lation distribution. This is again a dynamic version of the selection problem. More-
over, in this case, we typically do not observe an agent’s entire labor-market history
from T0 onwards. Instead, we may have data on the time spent in unemployment
at the sampling date and on labor-market transitions for some period after the sam-
pling date. This “initial-conditions problem” complicates matters further (Heckman,
1981b).

In the next two subsections, we first discuss some examples of applications of the
model and then review a basic identification result for the simple sampling scheme
above.

24.4.2.2 Applications to Program Evaluation

Several empirical papers study the effect of a single treatment on some outcome
duration or set of transitions. Two approaches can be distinguished. In the first ap-
proach, the outcome and treatment processes are explicitly and separately specified.
The second approach distinguishes treatment as one state within a single event-
history model with state dependence.

The first approach is used in a variety of papers in labor economics. Eberwein
et al. (1997) specify a model for labor market transitions in which the transition
intensities between various labor market states (not including treatment) depend on
whether someone has been assigned to a training program in the past or not. Abbring
et al. (2005) and Van den Berg et al. (2004) specify a model for re-employment
durations in which the re-employment hazard depends on whether a punitive ben-
efits reduction has been imposed in the past. Similarly, Van den Berg, Holm, and
Van Ours (2002) analyze the duration up to transition into medical trainee posi-
tions and the effect of an intermediate transition into a medical assistant position (a
“stepping-stone job”) on this duration. In all of these papers, the outcome model is
complemented with a hazard model for treatment choice.

These models fit into the framework of Sect. 24.4.1.2 or a multi-state exten-
sion thereof. We can rephrase the class of models discussed in Sect. 24.4.1.2 in
terms of a simple event-history model with state-dependence as follows. Distin-
guish three states, untreated (O), treated (P) and the exit state of interest (E), so that
S = {O,P,E}. All subjects start in O, so that S0 = O. Obviously, we do not want to
allow for all possible transitions between these three states. Instead, we restrict the
correspondence Q representing the possible transitions as follows:

Q(s) =

⎧
⎨

⎩

{P,E} s = O,
{E} if s = P,
/0 s = E.
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State dependence of the transition rates into E captures treatment effects in the sense
of Sect. 24.4.1.2. Not all models in Abbring and Van den Berg (2003b) are included
in the semi-Markov setup discussed here. In particular, in this paper we do not allow
the transition rate from P to E to depend on the duration spent in O. This extension
with “lagged duration dependence” (Heckman and Borjas, 1980) would be required
to capture one variant of their model.

The model for transitions from “untreated” (O) is a competing risks model, with
program enrolment (transition to P) and employment (E) competing to end the un-
treated spell. If the unobservable factor VOE that determines transitions to employ-
ment and the unobservable factor VOP affecting program enrolment are dependent,
then program enrolment is selective in the sense that the initial distribution of VOE—
and also typically that of VPE—among those who enroll at a given point in time does
not equal its distribution among survivors in O up to that time.44

The second approach is used by Gritz (1993) and Bonnal et al. (1997), among
others. Consider the following simplified setup. Suppose workers are either em-
ployed (E), unemployed (O), or engaged in a training program (P). We can now
specify a transition process among these three labor market states in which a causal
effect of training on unemployment and employment durations is modeled as de-
pendence of the various transition rates on the past occurrence of a training program
in the labor market history. Bonnal et al. (1997) only have limited information on
agents’ labor-market histories before the sample period. Partly to avoid difficult
initial-conditions problems, they restrict attention to “first order lagged occurrence
dependence” (Heckman and Borjas, 1980) by assuming that transition rates only
depend on the current and previous states occupied. Such a model is not directly
covered by the semi-Markov model, but with a simple augmentation of the state
space it can be covered. In particular, we have to include lagged states in the state
space on which the transition process is defined. Because there is no lagged state in
the event-history’s first spell, initial states should be defined separately. So, instead
of just distinguishing states in S ∗ = {E,O,P}, we distinguish augmented states in
S = {(s,s′) ∈ (S ∗ ∪ {I})×S ∗ : s �= s′}. Then, (I,s), s ∈S ∗, denote the initial
states, and (s,s′) ∈ S the augmented state of an agent who is currently in s′ and
came from s �= s′. In order to preserve the interpretation of the model as a model of
lagged occurrence dependence, we have to exclude certain transitions by specifying

Q(s,s′) = {(s′,s′′),s′′ ∈S ∗\{s′}} .

This excludes transitions to augmented states that are labeled with a lagged state
different from the origin state. Also, it ensures that agents never return to an ini-
tial state. For example, from the augmented state (O,P)—previously unemployed
and currently enrolled in a program—only transitions to augmented states (P,s′′)—
previously enrolled in a program and currently in s′′—are possible. Moreover, it is
not possible to be currently employed and transiting to initially unemployed, (I,O).

44 Note that, in addition, the survivors in O themselves are a selected subpopulation. Because V
affects survival in O, the distribution of V among survivors in O is not equal to its population
distribution.
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Rather, an employed person who loses her job would transit to (E,O)—currently
unemployed and previously employed.

The effects of training, for example, are now modeled as simple state-dependence
effects. For example, the effect of training on the transition rate from unemployment
to employment is simply the contrast between the individual transition rate from
(E,O) to (O,E) and the transition rate from (P,O) to (O,E). Dynamic selection
into the augmented states (E,O) and (P,O), as specified by the transition model,
confounds the empirical analysis of these training effects. Note that due to the
fact that we have restricted attention to first-order lagged occurrence dependence,
there are no longer-run effects of training on transition rates from unemployment to
employment.

24.4.2.3 Identification Without Exclusion Restrictions

In this section, we state a basic identification result for the following sampling
scheme. Suppose that the economist randomly samples from the population of
event-histories, and that we observe the first L̄ transitions (including destinations)
for each sampled event-history, with the possibility that L̄ = ∞.45 Thus, we observe
a random sample of {(Tl ,Sl), l ∈ {0,1, . . . , L̄}}, and X .

First note that we can only identify the determinants of θ jk for transitions ( j,k)
that occur with positive probability among the first L̄ transitions. Moreover, without
further restrictions, we can only identify the joint distribution of a vector of unob-
servables corresponding to (part of) a sequence of transitions that can be observed
among the first L̄ transitions.

With this qualification, identification can be proved by extending Abbring and
Van den Berg’s (2003a) analysis of the MPH competing risks model to the present
setting. This analysis assumes that transition rates have an MPH functional form.
Identification again requires specific moments of V to be finite, and independent
local variation in the regressor effects.

24.4.3 A Structural Perspective

Without further restrictions, the causal duration model of Sect. 24.4.1.1 is versa-
tile. It can be generated as the reduced form of a wide variety of continuous-time
economic models driven by point processes. Leading examples are sequential job-
search models in which job-offer arrival rates, and other model parameters, depend
on agent characteristics (X ,V ) and policy interventions (see, e.g., Mortensen, 1986,
and Example 24.4).

The MPH restriction on this model, however, is hard to justify from economic
theory. In particular, nonstationary job-search models often imply interactions

45 Note that this assumes away econometric initial-conditions problems of the type previously
discussed.
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between duration and covariate effects; the MPH model only results under strong
assumptions (Heckman and Singer, 1986; Van den Berg, 2001). Similarly, an MPH
structure is hard to generate from models in which agents learn about their individual
value of the model’s structural parameters, that is about (X ,V ), through Bayesian
updating.

An alternative class of continuous-time models, not discussed in this chapter,
specifies durations as the first time some Gaussian or more general process crosses
a threshold. Such models are closely related to a variety of dynamic economic mod-
els. They have attracted recent attention in statistics (see, e.g., Aalen and Gjessing,
2004). Abbring (2007) analyzes identifiability of “mixed hitting-time models”,
continuous-time threshold-crossing models in which the parameters depend on ob-
served and unobserved covariates, and discusses their link with optimizing models
in economics. This is a relatively new area of research, and a full development is
beyond the scope of this paper. It extends to a continuous-time framework the dy-
namic threshold crossing model developed in Heckman (1981a,b) that is used in the
next subsection of this chapter.

We now discuss a complementary discrete-time approach where it is possible to
make many important economic distinctions that are difficult to make in the setting
of continuous-time models and to avoid some difficult measure-theoretic problems.
In the structural version, it is possible to specify precisely agent information sets in
a fashion that is not possible in conventional duration models.

24.5 Dynamic Discrete Choice and Dynamic Treatment Effects

Heckman and Navarro (2007) and Cunha, Heckman, and Navarro (2007) present
econometric models for analyzing time to treatment and the consequences of the
choice of a particular treatment time. Treatment may be a medical intervention, stop-
ping schooling, opening a store, conducting an advertising campaign at a given date
or renewing a patent. Associated with each treatment time, there can be multiple out-
comes. They can include a vector of health status indicators and biomarkers; lifetime
employment and earnings consequences of stopping at a particular grade of school-
ing; the sales revenue and profit generated from opening a store at a certain time; the
revenues generated and market penetration gained from an advertising campaign; or
the value of exercising an option at a given time. Heckman and Navarro (2007) unite
and contribute to the literatures on dynamic discrete choice and dynamic treatment
effects. For both classes of models, they present semiparametric identification analy-
ses. We summarize their work in this section. It is formulated in discrete time, which
facilitates the specification of richer unobserved and observed covariate processes
than those entertained in the continuous-time framework of Abbring and Van den
Berg (2003b).

Heckman and Navarro extend the literature on treatment effects to model choices
of treatment times and the consequences of choice and link the literature on treat-
ment effects to the literature on precisely formulated structural dynamic
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discrete-choice models generated from index models crossing thresholds. They
show the value of precisely formulated economic models in extracting the infor-
mation sets of agents, in providing model identification, in generating the standard
treatment effects and in enforcing the nonanticipating behavior condition (NA) dis-
cussed in Sect. 24.3.1.46

They establish the semiparametric identifiability of a class of dynamic discrete-
choice models for stopping times and associated outcomes in which agents
sequentially update the information on which they act. They also establish identifi-
ability of a new class of reduced-form duration models that generalize conventional
discrete-time duration models to produce frameworks with much richer time series
properties for unobservables and general time-varying observables and patterns of
duration dependence than conventional duration models. Their analysis of identifi-
cation of these generalized models requires richer variation driven by observables
than is needed in the analysis of the more restrictive conventional models. However,
it does not require conventional period-by-period exclusion restrictions, which are
often difficult to justify. Instead, they rely on curvature restrictions across the in-
dex functions generating the durations that can be motivated by dynamic economic
theory.47 Their methods can be applied to a variety of outcome measures including
durations.

The key to their ability to identify structural models is that they supplement in-
formation on stopping times or time to treatment with additional information on
measured consequences of choices of time to treatment as well as measurements.
The dynamic discrete-choice literature surveyed in Rust (1994) and Magnac and
Thesmar (2002) focuses on discrete-choice processes with general preferences and
state vector evolution equations, typically Markovian in nature. Rust’s 1994 pa-
per contains negative results on nonparametric identification of discrete-choice pro-
cesses. Magnac and Thesmar (2002) present some positive results on nonparametric
identification if certain parameters or distributions of unobservables are assumed to
be known. Heckman and Navarro (2007) produce positive results on nonparametric
identification of a class of dynamic discrete-choice models based on expected in-
come maximization developed in labor economics by Flinn and Heckman (1982),
Keane and Wolpin (1997) and Eckstein and Wolpin (1999). These frameworks are
dynamic versions of the Roy model. Heckman and Navarro (2007) show how use
of cross-equation restrictions joined with data on supplementary measurement sys-
tems can undo Rust’s nonidentification result. We exposit their work and the related
literature in this section. With their structural framework, they can distinguish ob-
jective outcomes from subjective outcomes (valuations by the decision maker) in a
dynamic setting. Applying their analysis to health economics, they can identify the
causal effects on health of a medical treatment as well as the associated subjective

46 Aakvik, Heckman, and Vytlacil (2005); Heckman, Tobias, and Vytlacil (2001, 2003); Carneiro,
Hansen, and Heckman (2001, 2003) and Heckman and Vytlacil (2005) show how standard treat-
ment effects can be generated from structural models.
47 See Heckman and Honoré (1989) for examples of such an identification strategy in duration
models. See also Cameron and Heckman (1998).
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pain and suffering of a treatment regime for the patient.48 Attrition decisions also
convey information about agent preferences about treatment.49

They do not rely on the assumption of conditional independence of unobserv-
ables with outcomes, given observables, that is used throughout much of the dy-
namic discrete-choice literature and the dynamic treatment literature surveyed in
Sect. 24.3.50 As noted in Sect. 24.2, sequential conditional independence assump-
tions underlie recent work on reduced-form dynamic treatment effects.51 The semi-
parametric analysis of Heckman and Navarro (2007) based on factors generalizes
matching to a dynamic setting. In their paper, some of the variables that would
produce conditional independence and would justify matching if they were ob-
served, are treated as unobserved match variables. They are integrated out and
their distributions are identified.52 They consider two classes of models. We review
both.

24.5.1 Semi-parametric Duration Models and Counterfactuals

Heckman and Navarro (2007), henceforth HN, develop a semiparametric index
model for dynamic discrete choices that extends conventional discrete-time duration
analysis. They separate out duration dependence from heterogeneity in a semipara-
metric framework more general than conventional discrete-time duration models.
They produce a new class of reduced-form models for dynamic treatment effects by
adjoining time-to-treatment outcomes to the duration model. This analysis builds on
Heckman (1981a,b,c).

Their models are based on a latent variable for choice at time s,

I(s) = Ψ(s,Z (s))−η(s) ,

where the Z(s) are observables and η(s) are unobservables from the point of view of
the econometrician. Treatments at different times may have different outcome con-
sequences which they model after analyzing the time to treatment equation. Define
D(s) as an indicator of receipt of treatment at date s. Treatment is taken the first time
I(s) becomes positive. Thus,

D(s) = 1[I(s)≥ 0, I(s−1) < 0, . . . , I(1) < 0] ,

48 See Chan and Hamilton (2006) for a structural dynamic empirical analysis of this problem.
49 See Heckman and Smith (1998). Use of participation data to infer preferences about outcomes
is developed in Heckman (1974).
50 See, e.g., Rust (1987); Manski (1993); Hotz and Miller (1993) and the papers cited in Rust
(1994).
51 See, e.g., Gill and Robins (2001) and Lechner and Miquel (2002).
52 For estimates based on this idea, see Carneiro et al. (2003); Aakvik et al. (2005); Cunha and
Heckman (2007, 2008); Cunha, Heckman, and Navarro (2005, 2006); and Heckman and Navarro
(2005).
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where the indicator function 1 [·] takes the value of 1 if the term inside the braces
is true.53 They derive conditions for identifying a model with general forms of du-
ration dependence in the time to treatment equation using a large sample from the
distribution of (D,Z).

24.5.1.1 Single-Spell Duration Model

Individuals are assumed to start spells in a given (exogenously determined) state
and to exit the state at the beginning of time period S.54 S is thus a random vari-
able representing total completed spell length. Let D(s) = 1 if the individual ex-
its at time s, S = s, and D(s) = 0 otherwise. In an analysis of drug treatments, S
is the discrete-time period in the course of an illness at the beginning of which
the drug is administered. Let S̄ (< ∞) be the upper limit on the time the agent
being studied can be at risk for a treatment. It is possible in this example that
D(1) = 0, . . . ,D(S̄) = 0, so that a patient never receives treatment. In a schooling
example, “treatment” is not schooling, but rather dropping out of schooling.55 In
this case, S̄ is an upper limit to the number of years of schooling, and D(S̄) = 1 if
D(1) = 0, . . . ,D(S̄−1) = 0.

The duration model can be specified recursively in terms of the threshold-
crossing behavior of the sequence of underlying latent indices I(s). Recall that
I(s) = Ψ(s,Z (s))−η(s), with Z(s) being the regressors that are observed by the
analyst. The Z(s) can include expectations of future outcomes given current infor-
mation in the case of models with forward-looking behavior. For a given stopping
time s, let Ds = (D(1), . . . ,D(s)) and designate by d(s) and ds values that D(s) and
Ds assume. Thus, d(s) can be zero or one and ds is a sequence of s zeros or a se-
quence containing s− 1 zeros and a single one. Denote a sequence of all zeros by
(0), regardless of its length. Then,

D(1) = 1 [I(1)≥ 0]
and (24.11)

D(s) =

{
1 [I(s)≥ 0] if Ds−1 = (0)
0 otherwise,

s = 2, . . . , S̄ .

For s = 2, . . . , S̄, the indicator 1 [I(s)≥ 0] is observed if and only if the agent is
still at risk of treatment, Ds−1 = (0). To identify period s parameters from period
s outcomes, one must condition on all past outcomes and control for any selection
effects.

53 This framework captures the essential feature of any stopping time model. For example, in a
search model with one wage offer per period, I(s) is the gap between market wages and reservation
wages at time s. See, e.g., Flinn and Heckman (1982). This framework can also approximate the
explicit dynamic discrete-choice model analyzed in Sect. 24.5.2.
54 Thus we abstract from the initial-conditions problem discussed in Heckman (1981b).
55 In the drug treatment example, S may designate the time a treatment regime is completed.
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Let Z =
(
Z(1), . . . ,Z(S̄)

)
, and let η = (η(1), . . . ,η(S̄)). Assume that Z is sta-

tistically independent of η . Heckman and Navarro (2007) assume that Ψ(s,Z(s)) =
Z(s)γs. We deal with a more general case. Ψ(Z) =

(
Ψ(1,Z(1)), . . . ,Ψ(S̄,Z(S̄))

)
. We

let Ψ denote the abstract parameter. Depending on the values assumed by Ψ(s,Z(s)),
one can generate very general forms of duration dependence that depend on the val-
ues assumed by the Z(s). HN allow for period-specific effects of regressors on the
latent indices generating choices.

This model is the reduced form of a general dynamic discrete-choice model. Like
many reduced-form models, the link to choice theory is not clearly specified. It is
not a conventional multinomial choice model in a static (perfect certainty) setting
with associated outcomes.

24.5.1.2 Identification of Duration Models with General Error
Structures and Duration Dependence

Heckman and Navarro (2007) establish semiparametric identification of the model
of equation (24.11) assuming access to a large sample of i.i.d. (D,Z) observa-
tions. Let Zs = (Z(1), . . . ,Z(s)). Data on (D,Z) directly identify the conditional
probability Pr(D(s) = d (s) |Zs, Ds−1 = (0)) a.e. FZs|Ds−1=(0) where FZs|Ds−1=(0)

is the distribution of Zs conditional on previous choices Ds−1 = (0). Assume
that (Ψ,Fη) ∈ Φ×H , where Fη is the distribution of η and Φ×H is the
parameter space. The goal is to establish conditions under which knowledge of
Pr(D(s) = d(s)|Z,Ds−1 = (0)) a.e. FZ|Ds−1=(0) allows the analyst to identify a unique
element of Φ×H . They use a limit strategy that allows them to recover the param-
eters by conditioning on large values of the indices of the preceding choices. This
identification strategy is widely used in the analysis of discrete choice.56

They establish sufficient conditions for the identification of model (24.11). We
prove the following more general result:

Theorem 24.1. For the model defined by (24.11), assume the following conditions:

(i) η ⊥⊥ Z.
(ii) η is an absolutely continuous random variable on R

S̄ with support ∏S̄
s=1(η(s),

η(s)), where −∞≤ η(s) < η(s)≤+∞, for all s = 1, . . . , S̄.
(iii) The Ψ(s,Z(s)) satisfy the Matzkin (1992) conditions for identification of non-

parametric binary choice models, s = 1, . . . , S̄.57

(iv) Supp
(
Ψs−1(Z),Z(s)

)
= Supp

(
Ψs−1(Z)

)
×Supp(Z(s)), s = 2, . . . , S̄.

(v) Supp(Ψ(Z))⊇ Supp(η).

56 See, e.g., Manski (1988); Heckman (1990); Heckman and Honoré (1989, 1990); Matzkin (1992,
1993); Taber (2000); and Carneiro et al. (2003). A version of the strategy of this proof was first used
in psychology where agent choice sets are eliminated by experimenter manipulation. The limit set
argument effectively uses regressors to reduce the choice set confronting agents. See Falmagne
(1985) for a discussion of models of choice in psychology.
57 See Abbring and Heckman (2007, Appendix B.1) for a review of the conditions Matzkin (1992)
imposes for identification of nonparametric binary choice models. See also Matzkin (1994).
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Then Fη and Ψ(Z) are identified, where the Ψ(s,Z(s)), s = 1, . . . , S̄, are identified
over the relevant support admitted by (ii).

Proof. We sketch the proof for S̄ = 2. The result for general S̄ follows by a recursive
application of this argument. Consider the following three probabilities.

(a) Pr(D(1) = 1 | Z = z) =
∫Ψ(1,z(1))

η(1) fη(1)(u)du

(b) Pr(D(2) = 1,D(1) = 0 | Z = z) =
∫Ψ(2,z(2))

η(2)
∫ η̄(1)

Ψ(1,z(1)) fη(1),η(2)(u1,u2)du1du2.

(c) Pr(D(2) = 0,D(1) = 0 | Z = z) =
∫ η̄(2)

Ψ(2,z(2))
∫ η̄(1)

Ψ(1,z(1)) fη(1),η(2)(u1,u2)du1du2.

The left-hand sides are observed from data on those who stop in period 1 (a); those
who stop in period 2 (b); and those who terminate in the “0” state in period 2 (c).
From Matzkin (1992), we can identify Ψ(1,z(1)) and Fη(1) from (a). Using (b),

we can fix z(2) and vary Ψ(1,z(1)). From (iv) and (v), there exists a limit set Z̃1,
possibly dependent on z(2), such that lim

z(1)→Z̃1
Ψ(1,z(1)) = η(1). Thus we can

construct

Pr(D(2) = 0 | Z = z) =
∫ η̄(2)

Ψ(2,z(2))
fη(2)(u2)du2

and identify Ψ(2,z(2)) and Fη(2). Using the Ψ(1,z(1)), Ψ(2,z(2)), one can trace
out the joint distribution Fη(1),η(2) over its support. Under the Matzkin conditions,
identification is achieved on a non-negligible set. The proof generalizes in a straight-
forward way to general S̄. �

Observe that if the η(s) are bounded by finite upper and lower limits, we can
only determine the Ψ(s,Z(s)) over the limits so defined. Consider the first step of
the proof. Under the Matzkin conditions, Fη(1) is known. From assumption (ii), we
can determine

Ψ(1,z(1)) = F−1
η(1)(Pr(D(1) = 1 | Z = z)) ,

but only over the support (η(1), η̄(1)). If the support of η(1) is R, we deter-
mine Ψ(1,z(1)) for all z(1). Heckman and Navarro (2007) analyze the special case
Ψ(s,Z(s)) = Z(s)γs and invoke sequential rank conditions to identify γs, even over
limited supports. They also establish that the limit sets are non-negligible in this case
so that standard definitions of identifiability (see, e.g., Matzkin, 1992) will be satis-
fied.58 Construction of the limit set Z̃s,s = 1, . . . , S̄, depends on the functional form
specified for the Ψ(s,Z(s)). For the linear-in-parameters case Ψ(s,Z(s)) = Z(s)γs,
they are obtained by letting arguments get big or small. Matzkin (1992) shows how
to establish the limit sets for functions in her family of functions.

58 Heckman and Navarro (2007) prove their theorem for a model where D(s) = 1[I(s) ≤ 0] if
Ds−1 = (0),s = 2, . . . , S̄. Our formulation of their result is consistent with the notation in this
chapter.
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A version of Theorem 24.1 with Ψ(s,Z(s)) = Z(s)γs that allows dependence
between Z and ηs except for one component can be proved using the analysis of
Lewbel (2000) and Honoré and Lewbel (2002).59

The assumptions of Theorem 24.1 will be satisfied if there are transition-specific
exclusion restrictions for Z with the required properties. As noted in Sect. 24.4, in
models with many periods, this may be a demanding requirement. Very often, the Z
variables are time invariant and so cannot be used as exclusion restrictions. Corol-
lary 1 in HN, for the special case Ψ(s,Z(s)) = Z(s)γs, tells us that the HN version of
the model can be identified, even if there are no conventional exclusion restrictions
and the Z(s) are the same across all time periods, if sufficient structure is placed on
how the γs vary with s. Variations in the values of γs across time periods arise nat-
urally in finite horizon dynamic discrete-choice models where a shrinking horizon
produces different effects of the same variable in different periods. For example, in
Wolpin’s (1987) analysis of a search model, the value function depends on time and
the derived decision rules weight the same invariant characteristics differently in
different periods. In a schooling model, parental background and resources may af-
fect education continuation decisions differently at different stages of the schooling
decision. The model generating (24.11) can be semiparametrically identified with-
out transition-specific exclusions if the duration dependence is sufficiently general.
For a proof, see Corollary 1 in Heckman and Navarro (2007).

The conditions of Theorem 24.1 are somewhat similar to the conditions on the re-
gressor effects needed for identification of the continuous-time event-history models
in Sect. 24.4. One difference is that the present analysis requires independent varia-
tion of the regressor effects over the support of the distribution of the unobservables
generating outcomes. The continuous-time analysis based on the functional form of
the mixed proportional hazard model (MPH) as analyzed by Abbring and Van den
Berg (2003a) only requires local independent variation.

Theorem 24.1 and Corollary 1 in HN have important consequences. The
Ψ (s,Z(s)), s = 1, . . . , S̄, can be interpreted as duration dependence parameters that
are modified by the Z(s) and that vary across the spell in a more general way than
is permitted in mixed proportional hazards (MPH), generalized accelerated failure
time (GAFT) models or standard discrete-time hazard models.60 Duration depen-
dence in conventional specifications of duration models is usually generated by vari-
ation in model intercepts. The regressors are allowed to interact with the duration
dependence parameters. In the specifications justified by Theorem 24.1, the “hetero-
geneity” distribution Fη is identified for a general model. No special “permanent-
transitory” structure is required for the unobservables although that specification is
traditional in duration analysis. Their explicit treatment of the stochastic structure

59 HN discuss a version of such an extension at their website. Lewbel’s conditions are very strong.
To account for general forms of dependence between Z and ηs requires modeling the exact form of
the dependence. Nonparametric solutions to this problem remain an open question in the literature
on dynamic discrete choice. One solution is to assume functional forms for the error terms, but in
general, this is not enough to identify the model without further restrictions imposed. See Heckman
and Honoré (1990).
60 See Ridder (1990) for a discussion of these models.
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of the duration model is what allows HN to link in a general way the unobservables
generating the duration model to the unobservables generating the outcome equa-
tions that are introduced in the next section. Such an explicit link is not currently
available in the literature on continuous-time duration models for treatment effects
surveyed in Sect. 24.4, and is useful for modelling selection effects in outcomes
across different treatment times. Their outcomes can be both discrete and continu-
ous and are not restricted to be durations.

Under the conditions given in Corollary 1 of HN, no period-specific exclu-
sion conditions are required on the Z. Hansen and Sargent (1980) and Abbring
and Van den Berg (2003b) note that period-specific exclusions are not natural in
reduced-form duration models designed to approximate forward-looking life cycle
models. Agents make current decisions in light of their forecasts of future con-
straints and opportunities, and if they forecast some components well, and they
affect current decisions, then they are in Z (s) in period s. Corollary 1 in HN es-
tablishes identification without such exclusions. HN adjoin a system of counterfac-
tual outcomes to their model of time to treatment to produce a model for dynamic
counterfactuals. We summarize that work next.

24.5.1.3 Reduced-Form Dynamic Treatment Effects

This section reviews a reduced-form approach to generating dynamic counterfac-
tuals developed by HN. They apply and extend the analysis of Carneiro et al.
(2003) and Cunha et al. (2005, 2006) to generate ex post potential outcomes and
their relationship with the time to treatment indices I(s) analyzed in the preced-
ing subsection. With reduced-form models, it is difficult to impose restrictions from
economic theory or to make distinctions between ex ante and ex post outcomes.
In the structural model developed below, these and other distinctions can be made
easily.

Associated with each treatment time s, s = 1, . . . , S̄, is a vector of T̄ outcomes,

Y (s,X ,U (s))= (Y (1,s,X ,U (1,s)) , . . . ,Y (t,s,X ,U (t,s)) , . . . ,Y (T̄ ,s,X ,U (T̄ ,s))) .

Outcomes depend on covariates X and U (s) = (U (1,s) , . . . ,U (t,s) , . . . , U(T̄ ,s))
that are, respectively, observable and unobservable by the econometrician. Elements
of Y (s,X ,U (s)) are outcomes associated with stopping or receiving treatment at
the beginning of period s. They are factual outcomes if treatment s is actually se-
lected (S = s and D(s) = 1). Outcomes corresponding to treatments s′ that are not
selected (D(s′) = 0) are counterfactuals. The outcomes associated with each treat-
ment may be different, and indeed the treatments administered at different times
may be different.

The components Y (t,s,X ,U(t,s)) of the vector Y (s,X ,U (s)) can be interpreted
as the outcomes revealed at age t, t = 1, . . . , T̄ , and may themselves be vectors. The
reduced-form approach presented in this section is not sufficiently rich to capture
the notion that agents revise their anticipations of components of Y (s,X ,U (s)),
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s = 1, . . . , S̄, as they acquire information over time. This notion is systematically
developed using the structural model discussed below in Sect. 24.5.2.

The treatment “times” may be stages that are not necessarily connected with
real times. Thus s may be a schooling level. The correspondence between stages
and times is exact if each stage takes one period to complete. Our notation is more
flexible, and time and periods can be defined more generally. Our notation in this
section accommodates both cases.

Henceforth, whenever we have random variables with multiple arguments
R0(s,Q0, . . .) or R1(t,s,Q0, . . .) where the argument list begins with treatment state s
or both age t and state s (perhaps followed by other arguments Q0, . . . ), we will make
use of several condensed notations: (a) dropping the first argument as we collect the
components into vectors R0(Q0, . . .) or R1(s,Q0, . . .) of length S̄ or T̄ , respectively,
and (b) going further in the case of R1, dropping the s argument as we collect the
vectors R1(s,Q0, . . .) into a single S̄× T̄ array R1(Q0, . . .), but also (c) suppressing
one or more of the other arguments and writing R1(t,s) or R1(t,s,Q0) instead of
R1(t,s,Q0,Q1, . . .), etc. This notation is sufficiently rich to represent the life cycle
of outcomes for persons who receive treatment at s. Thus, in a schooling example,
the components of this vector may include life cycle earnings, employment, and
the like associated with a person with characteristics X , U (s) , s = 1, . . . , S̄, who
completes s years of schooling and then forever ceases schooling. It could include
earnings while in school at some level for persons who will eventually attain further
schooling as well as post-school earnings.

We measure age and treatment time on the same time scale, with origin 1, and let
T̄ ≥ S̄. Then, the Y (t,s,X ,U(t,s)) for t < s are outcomes realized while the person
is in school at age t (s is the time the person will leave school; t is the current age)
and before “treatment” (stopping schooling) has occurred. When t ≥ s, these are
post-school outcomes for treatment with s years of schooling. In this case, t− s is
years of post-school experience. In the case of a drug trial, the Y (t,s,X ,U (t,s)) for
t < s are measurements observed before the drug is taken at s and if t ≥ s, they are
the post-treatment measurements.

Following Carneiro et al. (2003), the variables in Y (t,s,X ,U(t,s)) may include
discrete, continuous or mixed discrete-continuous components. For the discrete or
mixed discrete-continuous cases, HN assume that latent continuous variables cross
thresholds to generate the discrete components. Durations can be generated by latent
index models associated with each outcome crossing thresholds analogous to the
model presented in (24.11). In this framework, for example, we can model the effect
of attaining s years of schooling on durations of unemployment or durations of
employment.

The reduced-form analysis in this section does not impose restrictions on the tem-
poral (age) structure of outcomes across treatment times in constructing outcomes
and specifying identifying assumptions. Each treatment time can have its own age
path of outcomes pre and post treatment. Outcomes prior to treatment and outcomes
after treatment are treated symmetrically and both may be different for different
treatment times. In particular, HN can allow earnings at age t for people who re-
ceive treatment at some future time s′ to differ from earnings at age t for people
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who receive treatment at some future time s′′, min(s′,s′′) > t even after controlling
for U and X .

This generality is in contrast with the analyses of Robins (1997) and Gill and
Robins (2001) discussed in Sect. 24.3 and the analysis of Abbring and Van den
Berg (2003b) discussed in Sect. 24.4. These analyses require exclusion of such an-
ticipation effects to secure identification, because their models attribute dependence
of treatment on past outcomes to selection effects. The sequential randomization as-
sumption (M-1) underlying the work of Gill and Robins allows treatment decisions
S(t) at time t to depend on past outcomes Yt−1

p0
in a general way. Therefore, with-

out additional restrictions, it is not possible to also identify causal (anticipatory)
effects of treatment S(t) on Yt−1

p0
. The no-anticipation condition (NA) excludes such

effects and secures identification in their framework.61 It is essential for applying
the conditional independence assumptions in deriving the g-computation formula.

HN’s very different approach to identification allows them to incorporate antici-
pation effects. As in their analysis of the duration model, they assume that there is an
exogenous source of independent variation of treatment decisions, independent of
past outcomes. Any variation in current outcomes with variation in future treatment
decisions induced by this exogenous source cannot be due to selection effects (since
they explicitly control for the unobservables) and is interpreted as anticipatory ef-
fects of treatment in their framework. However, their structural analysis naturally
excludes such effects (see Sect. 24.5.2 below). Therefore, a natural interpretation
of the ability of HN to identify anticipatory effects is that they have overidenti-
fying restrictions that allow them to test their model and, if necessary, relax their
assumptions.

In a model with uncertainty, agents act on and value ex ante outcomes. The model
developed below in Sect. 24.5.2 distinguishes ex ante from ex post outcomes. The
model developed in this section cannot because, within it, it is difficult to specify
the information sets on which agents act or the mechanism by which agents forecast
and act on Y (s,X ,U (s)) when they are making choices.

61 The role of the no-anticipation assumption in Abbring and Van den Berg (2003b) is similar.
However, their main analysis assumes an asymmetric treatment-outcome setup in which treatment
is not observed if it takes place after the outcome transition. In that case, the treatment time is cen-
sored at the outcome time. In this asymmetric setup, anticipatory effects of treatment on outcomes
cannot be identified because the econometrician cannot observe variation of outcome transitions
with future treatment times. This point may appear to be unrelated to the present discussion, but it
is not. As was pointed out by Abbring and Van den Berg (2003b), and in Sect. 24.4, the asymmetric
Abbring and Van den Berg (2003b) model can be extended to a fully symmetric bivariate duration
model in which treatment hazards may be causally affected by the past occurrence of an outcome
event just like outcomes may be affected by past treatment events. This model could be used to an-
alyze data in which both treatment and outcome times are fully observed. In this symmetric setup,
any dependence in the data of the time-to-treatment hazard on past outcome events is interpreted
as an effect of outcomes on future treatment decisions, and not an anticipatory effect of treatment
on past outcomes. If one does not restrict the effects of outcomes on future treatment, without
further restrictions, the data on treatments occurring after the outcome event carry no information
on anticipatory effects of treatment on outcomes and they face an identification problem similar to
that in the asymmetric case.
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One justification for not making an ex ante – ex post distinction is that the agents
being modeled operate under perfect foresight even though econometricians do
not observe all of the information available to the agents. In this framework, the
U (s) ,s = 1, . . . , S̄, are an ingredient of the econometric model that accounts for
the asymmetry of information between the agent and the econometrician studying
the agent.

Without imposing assumptions about the functional structure of the outcome
equations, it is not possible to nonparametrically identify counterfactual outcome
states Y (s,X ,U (s)) that have never been observed. Thus, in a schooling example,
HN assume that analysts observe life cycle outcomes for some persons for each stop-
ping time (level of final grade completion) and our notation reflects this.62 However,
analysts do not observe Y (s,X ,U (s)) for all s for anyone. A person can have only
one stopping time (one completed schooling level). This observational limitation
creates our evaluation problem, the “fundamental problem of causal inference”.63

In addition to this problem, there is the standard selection problem that the
Y (s,X ,U (s)) are only observed for persons who stop at s and not for a random
sample of the population. The selected distribution may not accurately characterize
the population distribution of Y (s,X ,U (s)) for persons selected at random. Note
also that without further structure, we can only identify treatment responses within
a given policy environment. In another policy environment, where the rules govern-
ing selection into treatment and/or the outcomes from treatment may be different,
the same time to treatment may be associated with entirely different responses.64

We now turn to the HN analysis of identification of outcome and treatment time
distributions.

24.5.1.4 Identification of Outcome and Treatment Time Distributions

We assume access to a large i.i.d. sample from the distribution of (S,Y (S,X ,U(S)),
X ,Z), where S is the stopping time, X are the variables determining outcomes and
Z are the variables determining choices. We also know Pr(S = s | Z = z), for s =
1, . . . , S̄, from the data. For expositional convenience, we first consider the case of
scalar outcomes Y (S,X ,U (S)). An analysis for vector Y (S,X ,U (S)) is presented
in HN and is discussed below.

Consider the analysis of continuous outcomes. HN analyze more general cases.
Their results extend the analyses of Heckman and Honoré (1990); Heckman (1990)
and Carneiro et al. (2003) by considering choices generated by a stopping time
model. To simplify the notation in this section, assume that the scalar outcome asso-
ciated with stopping at time s can be written as Y (s) = μ (s,X)+U (s), where Y (s)

62 In practice, analysts can only observe a portion of the life cycle after treatment. See the discus-
sion on pooling data across samples in Cunha et al. (2005) to replace missing life cycle data.
63 See Holland (1986) or Gill and Robins (2001).
64 This is the problem of general equilibrium effects, and leads to violation of the policy invari-
ance conditions. See Heckman et al. (1998), Heckman et al. (1999) or Abbring and Van den Berg
(2003b) for discussion of this problem.



840 J.H. Abbring and J.J. Heckman

is shorthand for Y (s,X ,U (s)). Y (s) is observed only if D(s) = 1 where the D(s) are
generated by the model analyzed in Theorem 24.1. Write I(s) = Ψ(s,Z(s))−η(s).
Assume that the Ψ(s,Z(s)) belong to the Matzkin (1992) class of functions. We
use the condensed representations I, Ψ(Z), η , Y , μ (X) and U as described in the
previous subsection.

Heckman and Navarro permit general stochastic dependence within the compo-
nents of U , within the components of η and across the two vectors. They assume
that (X ,Z) are independent of (U,η). Each component of (U,η) has a zero mean.
The joint distribution of (U,η) is assumed to be absolutely continuous.

With “sufficient variation” in the components of Ψ(Z), one can identify μ(s,X),
[Ψ(1,Z (1)), . . . , Ψ(s,Z (s))] and the joint distribution of U(s) and ηs. This enables
the analyst to identify average treatment effects across all stopping times, since one
can extract E(Y (s)−Y (s′) | X = x) from the marginal distributions of Y (s), s =
1, . . . , S̄.

Theorem 24.2. Write Ψs(Z) = (Ψ(1,Z(1), . . . ,Ψ(s,Z(s))). Assume in addition to
the conditions in Theorem 24.1 that

(i) E[U(s)] = 0. (U(s),ηs) are continuous random variables with support
Supp(U(s))×Supp(ηs) with upper and lower limits (U(s),ηs) and (U(s),ηs),
respectively, s = 1, . . . , S̄. These conditions hold for each component of each
subvector. The joint system is thus variation free for each component with re-
spect to every other component.

(ii) (U(s),ηs)⊥⊥ (X ,Z), s = 1, . . . , S̄ (independence).
(iii) μ(s,X) is a continuous function, s = 1, . . . , S̄.
(iv) Supp(Ψ(Z),X) = Supp(Ψ(Z))×Supp(X).

Then one can identify μ(s,X), Ψs(Z), Fηs,U(s), s = 1, . . . , S̄, where Ψ(Z) is identified
over the support admitted by condition (ii) of Theorem 24.1.

Proof. See Abbring and Heckman (2007), Appendix C.

The proof in Abbring and Heckman (2007, Appendix C) covers the case of vector
Y (s,X ,U(s)) where each component is a continuous random variable. Appendix D
of Abbring and Heckman (2007) states and proves a more general theorem for age-
specific outcomes Y (t,s,X ,U(t,s)), t = 1, . . . , T̄ , where Y can be a vector of con-
tinuous and discrete outcomes. In particular, HN can identify age-specific earnings
flows associated with multiple sources of income.

Theorem 24.2 does not identify the joint distribution of Y (1) , . . . ,Y
(
S̄
)

because
analysts observe only one of these outcomes for any person. Observe that exclusion
restrictions in the arguments of the choice of treatment equation are not required to
identify the counterfactuals. What is required is independent variation of arguments
which might be achieved by exclusion conditions but can be obtained by other func-
tional restrictions (see HN, Corollary 1, for example). One can identify the μ (s,X)
(up to constants) without the limit set argument. Thus, one can identify certain fea-
tures of the model without using the limit set argument. See HN.

As a by-product of Theorem 24.2, one can construct various counterfactual dis-
tributions of Y (s) for agents with index crossing histories such that D(s) = 0 (that is,
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for whom Y (s) is not observed). Define B(s) = 1 [I(s)≥ 0], Bs = (B(1), . . . ,B(s)),
and let bs denote a vector of possible values of Bs. D(s) was defined as B(s) if
Bs−1 = (0) and 0 otherwise. Theorem 24.2 gives conditions under which the coun-
terfactual distribution of Y (s) for those with D(s′) = 1, s′ �= s, can be constructed.
More generally, it can be used to construct

Pr
(

Y (s)≤ y(s) | Bs′ = bs′ ,X = x,Z = z
)

for all of the 2s′ possible sequences bs′ of Bs′ outcomes up to s′ ≤ s. If bs′ equals a
sequence of s′ −1 zeros followed by a one, then Bs′ = bs′ corresponds to D(s′) = 1.
The event Bs′ = (0) corresponds to Ds′ = (0), i.e., S > s′. For all other sequences
bs′ , Bs′ = bs′ defines a subpopulation of the agents with D(s′′) = 1 for some s′′ < s′

and multiple index crossings. For example, Bs′ = (0,1,0) corresponds to D(2) = 1
and I(3) < 0. This defines a subpopulation that takes treatment at time 2, but that
would not take treatment at time 3 if it would not have taken treatment at time 2.65

It is tempting to interpret such sequences with multiple crossings as corresponding
to multiple entry into and exit from treatment. However, this is inconsistent with the
stopping time model (24.11), and would require extension of the model to deal with
recurrent treatment. Whether a threshold-crossing model corresponds to a structural
model of treatment choice is yet another issue, which is taken up in the next section
and is also addressed in Cunha, Heckman, and Navarro (2007).

The counterfactuals that are identified by fixing D(s′) = 1 for different treatment
times s′ in the general model of HN have an asymmetric aspect. HN can generate
Y (s) distributions for persons who are treated at s or before. Without further struc-
ture, they cannot generate the distributions of these random variables for people who
receive treatment at times after s.

The source of this asymmetry is the generality of duration model (24.11). At
each stopping time s, HN acquire a new random variable η(s) which can have arbi-
trary dependence with Y (s) and Y (s′) for all s and s′. From Theorem 24.2, HN can
identify the dependence between η(s′) and Y (s) if s′ ≤ s. They cannot identify the
dependence between η(s′) and Y (s) for s′ > s without imposing further structure
on the unobservables.66 Thus, one can identify the distribution of college outcomes
for high school graduates who do not go on to college and can compare these to
outcomes for high school graduates, so they can identify the parameter “treatment
on the untreated.” However, one cannot identify the distribution of high school out-
comes for college graduates (and hence treatment on the treated parameters) without
imposing further structure.67 Since one can identify the marginal distributions under

65 Cunha et al. (2007) develop an ordered choice model with stochastic thresholds.
66 One possible structure is a factor model which is applied to this problem in the next section.
67 In the schooling example, one can identify treatment on the treated for the final category S̄ since
DS̄−1 = (0) implies D

(
S̄
)

= 1. Thus at stage S̄− 1, one can identify the distribution of Y
(
S̄−1

)

for persons for whom D(0) = 0, . . . ,D
(
S̄−1

)
= 0,D

(
S̄
)

= 1. Hence, if college is the terminal
state, and high school the state preceding college, one can identify the distribution of high school
outcomes for college graduates.
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the conditions of Theorem 24.2, one can identify pairwise average treatment effects
for all s,s′.

It is interesting to contrast the model identified by Theorem 24.2 with a con-
ventional static multinomial discrete-choice model with an associated system of
counterfactuals, as presented in Heckman and Vytlacil (2007a, Appendix B) and
analyzed in Abbring and Heckman (2007, Sect. 2). Using standard tools, it is pos-
sible to establish semiparametric identification of the conventional static model of
discrete choice joined with counterfactuals and to identify all of the standard mean
counterfactuals. For that model there is a fixed set of unobservables governing all
choices of states. Thus the analyst does not acquire new unobservables associated
with each stopping time as occurs in a dynamic model. In a dynamic model, se-
lection effects for Y (s) depend on the unobservables up to s but not later innova-
tions Selection effects in a static discrete-choice model depend on a fixed set of
unobservables for all outcomes. With suitable normalizations, HN identify the joint
distributions of choices and associated outcomes without the difficulties, just noted,
that appear in the reduced-form dynamic model. HN develop models for discrete
outcomes including duration models.

24.5.1.5 Using Factor Models to Identify Joint Distributions
of Counterfactuals

From Theorem 24.2 and its generalizations reported in HN, one can identify joint
distributions of outcomes for each treatment time s and the index generating treat-
ment times. One cannot identify the joint distributions of outcomes across treatment
times. Moreover, as just discussed, one cannot, in general, identify treatment on the
treated parameters.

Aakvik et al. (2005) and Carneiro et al. (2003) show how to use factor models
to identify the joint distributions across treatment times and recover the standard
treatment parameters. HN use their approach to identify the joint distribution of
Y = (Y (1), . . . ,Y (S̄)).

The basic idea underlying this approach is to use joint distributions for outcomes
measured at each treatment time s along with the choice index to construct the joint
distribution of outcomes across treatment choices. To illustrate how to implement
this intuition, suppose that we augment Theorem 24.2 by appealing to Theorem 2 in
Carneiro et al. (2003) to identify the joint distribution of the vector of outcomes at
each stopping time along with Is = (I (1) , . . . , I (s)) for each s. For each s, we may
write

Y (t,s,X ,U (t,s)) = μ (t,s,X)+U (t,s) , t = 1, . . . , T̄

I(s) = Ψ(s,Z(s))−η(s) .

The scale of Ψ(s,Z(s)) is determined from the Matzkin (1992) conditions. If we
specify the Matzkin functions only up to scale, we determine the functions up to
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scale and make a normalization. From Theorem 24.2, we can identify the joint
distribution of (η(1), . . . ,η(s), U(1,s), . . . ,U(T̄ ,s)).

To review these concepts and their application to the model discussed in this
section, suppose that we adopt a one-factor model where θ is the factor. It has mean
zero. The errors can be represented by

η(s) = ϕsθ + εη(s)

U (t,s) = αt,sθ + εt,s, t = 1, . . . , T̄ , s = 1, . . . , S̄ .

The θ are independent of all of the εη(s), εt,s and the ε’s are mutually independent
mean zero disturbances. The ϕs and αt,s are factor loadings. Since θ is an unob-
servable, its scale is unknown. One can set the scale of θ by normalizing one factor
loading, say αT̄ ,S̄ = 1. From the joint distribution of (ηs,U (s)), one can identify σ2

θ ,
αt,s,ϕs, t = 1, . . . , T̄ , for s = 1, . . . , S̄, using the arguments presented in, e.g., Abbring
and Heckman (2007, Sect. 2.8). A sufficient condition is T̄ ≥ 3, but this ignores pos-
sible additional information from cross-system restrictions. From this information,
one can form for t �= t ′ or s �= s′′ or both,

Cov
(
U (t,s) ,U

(
t ′,s′′

))
= αt,sαt ′,s′′σ2

θ ,

even though the analyst does not observe outcomes for the same person at two dif-
ferent stopping times. In fact, one can construct the joint distribution of (U,η) =
(U (1) , . . . ,U

(
S̄
)
,η). From this joint distribution, one can recover the standard

mean treatment effects as well as the joint distributions of the potential outcomes.
One can determine the percentage of participants at treatment time s who benefit
from participation compared to what their outcomes would be at other treatment
times. One can perform a parallel analysis for models for discrete outcomes and
durations. The analysis can be generalized to multiple factors. Conventional factor
analysis assumes that the unobservables are normally distributed. Carneiro et al.
(2003) establish nonparametric identifiability of the θ ’s and the ε’s and their analy-
sis of nonparametric identifiability applies here.

Theorem 24.2, strictly applied, actually produces only one scalar outcome along
with one or more choices for each stopping time.68 If vector outcomes are not avail-
able, access to a measurement system M that assumes the same values for each
stopping time can substitute for the need for vector outcomes for Y . Let Mj be the
jth component of this measurement system. Write

Mj = μ j,M(X)+Uj,M, j = 1, . . . ,J ,

where Uj,M are mean zero and independent of X .
Suppose that the Uj,M have a one-factor structure so Uj,M = α j,Mθ + ε j,M,

j = 1, . . . ,J, where the ε j,M are mean zero, mutually independent random variables,
independent of the θ . Adjoining these measurements to the one outcome measure
Y (s) can substitute for the measurements of Y (t,s) used in the previous example.

68 HN and Abbring and Heckman (2007) analyze the vector-outcome case.
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In an analysis of schooling, the Mj can be test scores that depend on ability θ .
Ability is assumed to affect outcomes Y (s) and the choice of treatment times in-
dices.

The factor models implement a matching on unobservables assumption,
{Y (s)}S̄

s=1 ⊥⊥ S | X ,Z,θ . HN allow for the θ to be unobserved variables and present
conditions under which their distributions can be identified.

24.5.1.6 Summary of the Reduced-Form Model

A limitation of the reduced-form approach pursued in this section is that, because the
underlying model of choice is not clearly specified, it is not possible without further
structure to form, or even define, the marginal treatment effect analyzed in Heckman
and Vytlacil (1999, 2001, 2005, 2007a,b) or Heckman, Urzua, and Vytlacil (2006).
The absence of well defined choice equations is problematic for the models analyzed
thus far in this section of our chapter, although it is typical of many statistical treat-
ment effect analyses.69 In this framework, it is not possible to distinguish objective
outcomes from subjective evaluations of outcomes, and to distinguish ex ante from
ex post outcomes. Another limitation of this analysis is its strong reliance on large
support conditions on the regressors coupled with independence assumptions. Inde-
pendence can be relaxed following Lewbel (2000) and Honoré and Lewbel (2002).
The large support assumption plays a fundamental role here and throughout the en-
tire evaluation literature.

HN develop an explicit economic model for dynamic treatment effects that al-
lows analysts to make these and other distinctions. They extend the analysis pre-
sented in this subsection to a more precisely formulated economic model. They ex-
plicitly allow for agent updating of information sets. A well posed economic model
enables economists to evaluate policies in one environment and accurately project
them to new environments as well as to accurately forecast new policies never previ-
ously experienced. We now turn to an analysis of a more fully articulated structural
econometric model.

24.5.2 A Sequential Structural Model with Option Values

This section analyzes the identifiability of a structural sequential optimal stopping
time model. HN use ingredients assembled in the previous sections to build an
economically interpretable framework for analyzing dynamic treatment effects. For
specificity, HN focus on a schooling model with associated earnings outcomes that
is motivated by the research of Keane and Wolpin (1997) and Eckstein and Wolpin

69 Heckman (2005) and Heckman and Vytlacil (2007a,b) point out that one distinctive feature of
the economic approach to program evaluation is the use of choice theory to define parameters and
evaluate alternative estimators.
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(1999). They explicitly model costs and build a dynamic version of a Roy model.
We briefly survey the literature on dynamic discrete choice in Sect. 24.5.5 below.

In the model of this section, it is possible to interpret the literature on dynamic
treatment effects within the context of an economic model; to allow for earnings
while in treatment as well as grade-specific tuition costs; to separately identify re-
turns and costs; to distinguish private evaluations from “objective” ex ante and ex
post outcomes and to identify persons at various margins of choice. In the context
of medical economics, HN consider how to identify the pain and suffering associ-
ated with a treatment as well as the distribution of benefits from the intervention.
They also model how anticipations about potential future outcomes associated with
various choices evolve over the life cycle as sequential treatment choices are made.

In contrast to the analysis of Sect. 24.5.1, the identification proof for their dy-
namic choice model works in reverse starting from the last period and sequentially
proceeding backward. This approach is required by the forward-looking nature of
dynamic choice analysis and makes an interesting contrast with the analysis of iden-
tification for the reduced-form models which proceeds forward from initial period
values.

HN use limit set arguments to identify the parameters of outcome and measure-
ment systems for each stopping time s = 1, . . . , S̄, including means and joint distri-
butions of unobservables. These systems are identified without invoking any special
assumptions about the structure of model unobservables. When they invoke factor
structure assumptions for the unobservables, they identify the factor loadings as-
sociated with the measurements (as defined in Sect. 24.5.1.5) and outcomes. They
also nonparametrically identify the distributions of the factors and the distributions
of the innovations to the factors. With the joint distributions of outcomes and mea-
surements in hand for each treatment time, HN can identify cost (and preference) in-
formation from choice equations that depend on outcomes and costs (preferences).
HN can also identify joint distributions of outcomes across stopping times. Thus,
they can identify the proportion of people who benefit from treatment. Their analy-
sis generalizes the one shot decision models of Cunha and Heckman (2007, 2008);
Cunha et al. (2005, 2006) to a sequential setting.

All agents start with 1 year of schooling at age 1 and then sequentially choose, at
each subsequent age, whether to continue for another year in school. New informa-
tion arrives at each age. One of the benefits of staying in school is the arrival of new
information about returns. Each year of schooling takes 1 year of age to complete.
There is no grade repetition. Once persons leave school, they never return.70 As a
consequence, an agent’s schooling level equals her age up to the time S ≤ S̄ she
leaves school. After that, ageing continues up to age T̄ ≥ S̄, but schooling does not.
We again denote D(s) = 1(S = s) for all s ∈ {1, . . . , S̄}. Let δ(t) = 1 if a person has
left school at or before age t; δ(t) = 0 if a person is still in school.

A person’s earnings at age t depend on her current schooling level s and whether
she has left school on or before age t (δ(t) = 1) or not (δ(t) = 0). Thus,

70 It would be better to derive such stopping behavior as a feature of a more general model with
possible recurrence of states. Cunha et al. (2007) develop general conditions under which it is
optimal to stop and never return.
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Y (t,s,δ(t),X) = μ (t,s,δ(t),X)+U (t,s,δ(t)) . (24.12)

Note that Y (t,s,0,X) is only meaningfully defined if s = t, in which case it denotes
the earnings of a person as a student at age and schooling level s. More precisely,
Y (s,s,0,X) denotes the earnings of an individual with characteristics X who is still
enrolled in school at age and schooling level s and goes on to complete at least
s + 1 years of schooling. The fact that earnings in school depend only on the cur-
rent schooling level, and not on the final schooling level obtained, reflects the no-
anticipation condition (NA). U (t,s,δ(t)) is a mean zero shock that is unobserved
by the econometrician but may, or may not, be observed by the agent. Y (t,s,1,X) is
meaningfully defined only if s≤ t, in which case it denotes the earnings at age t of
an agent who has decided to stop schooling at s.

The direct cost of remaining enrolled in school at age and schooling level s is

C (s,X ,Z (s)) = Φ(s,X ,Z (s))+W (s)

where X and Z (s) are vectors of observed characteristics (from the point of view of
the econometrician) that affect costs at schooling level s, and W (s) are mean zero
shocks that are unobserved by the econometrician that may or may not be observed
by the agent. Costs are paid in the period before schooling is undertaken. The agent
is assumed to know the costs of making schooling decisions at each transition. The
agent is also assumed to know the X and Z = (Z(1), . . . ,Z(S̄−1)) from age 1.71

The optimal schooling decision involves comparisons of the value of continuing
in school for another year and the value of leaving school forever at each age and
schooling level s ∈ {1, . . . , S̄− 1}. We can solve for these values, and the optimal
schooling decision, by backward recursion.

The agent’s expected reward of stopping schooling forever at level and age s
(i.e., receiving treatment s) is given by the expected present value of her remaining
lifetime earnings:

R(s, Is) = E

(
T̄−s

∑
j=0

(
1

1+ r

) j

Y (s+ j,s,1,X)

∣
∣
∣
∣
∣

Is

)

, (24.13)

where Is are the state variables generating the age-s-specific information set Is.72

They include the schooling level attained at age s, the covariates X and Z, as well
as all other variables known to the agent and used in forecasting future variables.
Assume a fixed, nonstochastic, interest rate r.73 The continuation value at age and
schooling level s given information Is is denoted by K (s, Is).

71 These assumptions can be relaxed and are made for convenience. See Carneiro, Hansen, and
Heckman (2003), Cunha, Heckman, and Navarro (2005) and Cunha and Heckman (2007) for a
discussion of selecting variables in the agent’s information set.
72 We only consider the agent’s information set here, and drop the subscript A for notational con-
venience.
73 This assumption is relaxed in HN who present conditions under which r can be identified.
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At S̄− 1, when an individual decides whether to stop or continue on to S̄, the
expected reward from remaining enrolled and continuing to S̄ (i.e., the continuation
value) is the earnings while in school less costs plus the expected discounted future
return that arises from completing S̄ years of schooling:

K
(
S̄−1, IS̄−1

)
= Y

(
S̄−1, S̄−1,0,X

)
−C
(
S̄−1,X ,Z

(
S̄−1

))

+
1

1+ r
E
(
R
(
S̄, IS̄

)
| IS̄−1

)

where C
(
S̄−1,X ,Z

(
S̄−1

))
is the direct cost of schooling for the transition to S̄.

This expression embodies the assumption that each year of school takes 1 year of
age. IS̄−1 incorporates all of the information known to the agent.

The value of being in school just before deciding on continuation at age and
schooling level S̄−1 is the larger of the two expected rewards that arise from stop-
ping at S̄−1 or continuing one more period to S̄:

V
(
S̄−1, IS̄−1

)
= max

{
R
(
S̄−1, IS̄−1

)
,K
(
S̄−1, IS̄−1

)}
.

More generally, at age and schooling level s, this value is

V (s, Is) = max{R(s, Is) ,K (s, Is)}

= max

{

R(s, Is) ,

(
Y (s,s,0,X)−C (s,X ,Z (s))

+
1

1+ r
E (V (s+1, Is+1) | Is)

)}

.74

Following the exposition of the reduced-form decision rule in Sect. 24.5.1, define
the decision rule in terms of a first passage of the “index” R(s, Is)−K(s, Is),

D(s) = 1 [R(s, Is)−K(s, Is)≥ 0,

R(s−1, Is−1)−K(s−1, Is−1) < 0, . . . ,R(1, I1)−K(1, I1) < 0] .

An individual stops at the schooling level at the first age where this index be-
comes positive. From data on stopping times, one can nonparametrically identify

74 This model allows no recall and is clearly a simplification of a more general model of schooling
with option values. Instead of imposing the requirement that once a student drops out the student
never returns, it would be useful to derive this property as a feature of the economic environment
and the characteristics of individuals. Cunha et al. (2007) develop such conditions. In a more gen-
eral model, different persons could drop out and return to school at different times as information
sets are revised. This would create further option value beyond the option value developed in the
text that arises from the possibility that persons who attain a given schooling level can attend the
next schooling level in any future period. Implicit in this analysis of option values is the additional
assumption that persons must work at the highest level of education for which they are trained. An
alternative model allows individuals to work each period at the highest wage across all levels of
schooling that they have attained. Such a model may be too extreme because it ignores the costs of
switching jobs, especially at the higher educational levels where there may be a lot of job-specific
human capital for each schooling level. A model with these additional features is presented in
Heckman et al. (2007).
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the conditional probability of stopping at s,

Pr(S = s | X ,Z) = Pr

⎛

⎝
R(s, Is)−K(s, Is)≥ 0,
R(s−1, Is−1)−K(s−1, Is−1) < 0, . . . ,
R(1, I1)−K(1, I1) < 0

∣
∣
∣
∣
∣
∣

X ,Z

⎞

⎠ .

HN use factor structure models based on the θ introduced in Sect. 24.5.1 to de-
fine the information updating structure. Agents learn about different components
of θ as they evolve through life. The HN assumptions allow for the possibility that
agents may know some or all the elements of θ at a given age t regardless of whether
or not they determine earnings at or before age t. Once known, they are not forgot-
ten. As agents accumulate information, they revise their forecasts of their future
earnings prospects at subsequent stages of the decision process. This affects their
decision rules and subsequent choices. Thus HN allow for learning which can affect
both pretreatment outcomes and posttreatment outcomes.75,76 All dynamic discrete-
choice models make some assumptions about the updating of information and any
rigorous identification analysis of this class of models must test among competing
specifications of information updating.

Variables unknown to the agent are integrated out by the agent in forming expec-
tations over future outcomes. Variables known to the agent are treated as constants
by the agents. They are integrated out by the econometrician to control for het-
erogeneity. These are separate operations except for special cases. In general, the
econometrician knows less than what the agent knows. The econometrician seeks
to identify the distributions of the variables in the agent information sets that are
used by the agents to form their expectations as well as the distributions of variables
known to the agent and treated as certain quantities by the agent but not known
by the econometrician. Determining which elements belong in the agent’s informa-
tion set can be done using the methods exposited in Cunha et al. (2005) and Cunha
and Heckman (2007) who consider testing what components of X ,Z,ε as well as
θ are in the agent’s information set. We briefly discuss this issue at the end of the
next section.77 HN establish semiparametric identification of the model assuming
a given information structure. Determining the appropriate information structure

75 This type of learning about unobservables can be captured by HN’s reduced-form model, but
not by Abbring and Van den Berg’s (2003b) single-spell mixed proportional hazards model. Their
model does not allow for time-varying unobservables. Abbring and Van den Berg develop a
multiple-spell model that allows for time-varying unobservables. Moreover, their nonparametric
discussion of (NA) and randomization does not exclude the sequential revelation to the agent of a
finite number of unobserved factors although they do not systematically develop such a model.
76 It is fruitful to distinguish models with exogenous arrival of information (so that information
arrives at each age t independent of any actions taken by the agent) from information that arrives
as a result of choices by the agent. The HN model is in the first class. The models of Miller (1984)
or Pakes (1986) are in the second class. See our discussion in Sect. 24.5.5.
77 The HN model of learning is clearly very barebones. Information arrives exogenously across
ages. In the factor model, all agents who advance to a stage get information about additional factors
at that stage of their life cycles but the realizations of the factors may differ across persons.
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facing the agent and its evolution is an essential aspect of identifying any dynamic
discrete-choice model.

Observe that agents with the same information variables It at age t have the same
expectations of future returns, and the same continuation and stopping values. They
make the same investment choices. Persons with the same ex ante reward, state
and preference variables have the same ex ante distributions of stopping times. Ex
post, stopping times may differ among agents with identical ex ante information.
Controlling for It , future realizations of stopping times do not affect past rewards.
This rules out the problem that the future can cause the past, which may happen in
HN’s reduced-form model. It enforces the (NA) condition of Abbring and Van den
Berg. Failure to accurately model It produces failure of (NA).

HN establish semiparametric identification of their model without period-by-
period exclusion restrictions. Their analysis extends Theorems 24.1 and 24.2 to an
explicit choice-theoretic setting. They use limit set arguments to identify the joint
distributions of earnings (for each treatment time s across t) and any associated mea-
surements that do not depend on the stopping time chosen. For each stopping time,
they construct the means of earnings outcomes at each age and of the measurements
and the joint distributions of the unobservables for earnings and measurements. Fac-
tor analyzing the joint distributions of the unobservables, under conditions specified
in Carneiro et al. (2003), they identify the factor loadings, and nonparametrically
identify the distributions of the factors and the independent components of the error
terms in the earnings and measurement equations. Armed with this knowledge, they
use choice data to identify the distribution of the components of the cost functions
that are not directly observed. They construct the joint distributions of outcomes
across stopping times. They also present conditions under which the interest rate r
is identified.

In their model, analysts can distinguish period by period ex ante expected returns
from ex post realizations by applying the analysis of Cunha et al. (2005). See the
survey in Heckman, Lochner, and Todd (2006) and Sect. 2 of Abbring and Heck-
man (2007) for discussions of this approach. Because they link choices to outcomes
through the factor structure assumption, they can also distinguish ex ante preference
or cost parameters from their ex post realizations. Ex ante, agents may not know
some components of θ . Ex post, they do. All of the information about future rewards
and returns is embodied in the information set It . Unless the time of treatment is
known with perfect certainty, it cannot cause outcomes prior to its realization.

The analysis of HN is predicated on specification of agent information sets. These
information sets should be carefully distinguished from those of the econometrician.
Cunha et al. (2005) present methods for determining which components of future
outcomes are in the information sets of agents at each age, It . If there are compo-
nents unknown to the agent at age t, under rational expectations, agents form their
value functions used to make schooling choices by integrating out the unknown
components using the distributions of the variables in their information sets. Com-
ponents that are known to the agent are treated as constants by the individual in
forming the value function but as unknown variables by the econometrician and
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their distribution is estimated. The true information set of the agent is determined
from the set of possible specifications of the information sets of agents by picking
the specification that best fits the data on choices and outcomes penalizing for pa-
rameter estimation. If neither the agent nor the econometrician knows a variable,
the econometrician identifies the determinants of the distribution of the unknown
variables that is used by the agent to form expectations. If the agent knows some
variables, but the econometrician does not, the econometrician seeks to identify
the distribution of the variables, but the agent treats the variables as known con-
stants.

HN can identify all of the treatment parameters including the pairwise average
treatment effect (ATE), the marginal treatment effect (MTE) for each transition (ob-
tained by finding mean outcomes for individuals indifferent between transitions),
all of the treatment on the treated and treatment on the untreated parameters and
the population distribution of treatment effects by applying the analysis of Carneiro
et al. (2003) and Cunha et al. (2005) to this model. Their analysis can be generalized
to cover the case where there are vectors of contemporaneous outcome measures for
different stopping times. See HN for proofs and details.78

24.5.3 Identification at Infinity

Heckman and Navarro (2007), and many other researchers, rely on identification
at infinity to obtain their main identification results. Identification at infinity is re-
quired to identify the average treatment effect (ATE) using IV and control function
methods and in the reduced-form discrete-time models developed in the previous
subsections. While this approach is controversial, it is also testable. In any sample,
one can plot the distributions of the probability of each state (exit time) to determine
if the identification conditions are satisfied in any sample. Figure 24.1, presented by
HN from the research of Heckman, Stixrud, and Urzua (2006), shows such plots
for a six-state static schooling model that they estimate. To identify the marginal
outcome distributions for each state, the support of the state probabilities should be
the full unit interval. The identification at infinity condition is clearly not satisfied
in their data.79 Only the empirical distribution of the state probability of graduat-
ing from a 4-year college comes even close to covering the full unit interval. Thus,
their empirical results rely on parametric assumptions, and ATE and the marginal
distributions of outcomes are nonparametrically nonidentified in their data without
invoking additional structure.

78 The same limitations regarding independence assumptions between the regressors and errors
discussed in the analysis of reduced forms apply to the structural model.
79 One can always argue that they are satisfied in an infinite sample that has not yet been realized.
That statement has no empirical content.
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Fig. 24.1 Sample distribution of schooling attainment probabilities for males from the National
Longitudinal Survey of Youth

24.5.4 Comparing Reduced-Form and Structural Models

The reduced-form model analyzed in Sect. 24.5.1 is typical of many reduced-form
statistical approaches within which it is difficult to make important conceptual dis-
tinctions. Because agent choice equations are not modeled explicitly, it is hard to
use such frameworks to formally analyze the decision makers’ expectations, costs
of treatment, the arrival of information, the content of agent information sets and the
consequences of the arrival of information for decisions regarding time to treatment
as well as outcomes. Key behavioral assumptions are buried in statistical assump-
tions. It is difficult to distinguish ex post from ex ante valuations of outcomes in the
reduced-form models. Cunha et al. (2005); Carneiro et al. (2003) and Cunha and
Heckman (2007, 2008) present analyses that distinguish ex ante anticipations from
ex post realizations.80 In reduced-form models, it is difficult to make the distinction
between private evaluations and preferences (e.g., “costs” as defined in this section)
from objective outcomes (the Y variables).

Statistical and reduced-form econometric approaches to analyzing dynamic coun-
terfactuals appeal to uncertainty to motivate the stochastic structure of models. They
do not explicitly characterize how agents respond to uncertainty or make treatment
choices based on the arrival of new information (see Robins, 1989, 1997; Lok, 2007;
Gill and Robins, 2001; Abbring and Van den Berg, 2003b; and Van der Laan and
Robins, 2003). The structural approach surveyed in Sect. 24.5.2 and developed by

80 See the summary of this literature in Heckman et al. (2006).
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HN allows for a clear treatment of the arrival of information, agent expectations, and
the effects of new information on choice and its consequences. In an environment of
imperfect certainty about the future, it rules out the possibility of the future causing
the past once the effects of agent information are controlled for.

The structural model developed by HN allows agents to learn about new factors
(components of θ ) as they proceed sequentially through their life cycles. It also al-
lows agents to learn about other components of the model (see Cunha et al., 2005).
Agent anticipations of when they will stop and the consequences of alternative stop-
ping times can be sequentially revised. Agent anticipated payoffs and stopping times
are sequentially revised as new information becomes available. The mechanism
by which agents revise their anticipations is modeled and identified. See Cunha
et al. (2005, 2006); Cunha and Heckman (2007, 2008) and Abbring and Heckman
(2007) for further discussion of these issues and Heckman et al. (2006) for a partial
survey of recent developments in the literature.

The clearest interpretation of the models in the statistical literature on dy-
namic treatment effects is as ex post selection-corrected analyses of distributions
of events that have occurred. In a model of perfect certainty, where ex post and ex
ante choices and outcomes are identical, the reduced-form approach can be inter-
preted as approximating clearly specified choice models. In a more general anal-
ysis with information arrival and agent updating of information sets, the nature of
the approximation is less clear cut. Thus, the current reduced-form literature is un-
clear as to which agent decision-making processes and information arrival assump-
tions justify the conditional sequential randomization assumptions widely used in
the dynamic treatment effect literature (see, e.g., Gill and Robins, 2001; Lechner
and Miquel, 2002; Lok, 2007; Robins, 1989, 1997; Van der Laan and Robins,
2003). Section 24.3.2.2 provides some insight by highlighting the connection to
the conditional-independence assumption often employed in the structural dynamic
discrete-choice literature (see Rust, 1987; and the survey in Rust, 1994). Reduced-
form approaches are not clear about the source of the unobservables and their re-
lationship with conditioning variables. It would be a valuable exercise to exhibit
which structural models are approximated by various reduced-form models. In the
structural analysis, this specification emerges as part of the analysis, as our discus-
sion of the stochastic properties of the unobservables presented in the preceding
section makes clear.

The HN analysis of both structural and reduced-form models relies heavily on
limit set arguments. They solve the selection problem in limit sets. The dynamic
matching models of Gill and Robins (2001) and Lok (2007) solve the selection
problem by invoking recursive conditional independence assumptions. In the con-
text of the models of HN, they assume that the econometrician knows the θ or can
eliminate the effect of θ on estimates of the model by conditioning on a suitable set
of variables. The HN analysis entertains the possibility that analysts know less than
the agents they study. It allows for some of the variables that would make matching
valid to be unobservable. As we have noted in early subsections, versions of recur-
sive conditional independence assumptions are also used in the dynamic discrete-
choice literature (see the survey in Rust, 1994). The HN factor models allow analysts
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to construct the joint distribution of outcomes across stopping times. This feature is
missing from the statistical treatment effect literature.

Both HN’s structural and reduced-form models of treatment choice are stopping
time models. Neither model allows for multiple entry into and exit from treatment,
even though agents in these models would like to reverse their treatment decisions
for some realizations of their index if this was not too costly (or, in the case of the
reduced-form model, if the index thresholds for returning would not be too low).81

Cunha, Heckman, and Navarro (2007) derive conditions on structural stopping mod-
els from a more basic model that entertains the possibility of return from dropout
states but which nonetheless exhibits the stopping time property. The HN identifi-
cation strategy relies on the nonrecurrent nature of treatment. Their identification
strategy of using limit sets can be applied to a recurrent model provided that ana-
lysts confine attention to subsets of (X ,Z) such that in those subsets the probability
of recurrence is zero.

24.5.5 A Short Survey of Dynamic Discrete-Choice Models

Rust (1994) presents a widely cited nonparametric nonidentification theorem for
dynamic discrete-choice models. It is important to note the restrictive nature of his
negative results. He analyzes a recurrent state infinite horizon model in a stationary
environment. He does not use any exclusion restrictions or cross outcome-choice
restrictions. He uses a general utility function. He places no restrictions on period-
specific utility functions such as concavity or linearity nor does he specify restric-
tions connecting preferences and outcomes. One can break Rust’s nonidentification
result with additional information.

Magnac and Thesmar (2002) present an extended comment on Rust’s analysis
including positive results for identification when the econometrician knows the dis-
tributions of unobservables, assumes that unobservables enter period-specific utility
functions in an additively separable way and is willing to specify functional forms
of utility functions or other ingredients of the model, as do Pakes (1986), Keane
and Wolpin (1997), Eckstein and Wolpin (1999) and Hotz and Miller (1988, 1993).
Magnac and Thesmar (2002) also consider the case where one state (choice) is ab-
sorbing (as do Hotz and Miller, 1993) and where the value functions are known at
the terminal age (T̄ ) (as do Keane and Wolpin, 1997 and Belzil and Hansen, 2002).
In HN, each treatment time is an absorbing state. In a separate analysis, Magnac
and Thesmar consider the case where unobservables from the point of view of the
econometrician are correlated over time (or age t) and choices (s) under the assump-
tion that the distribution of the unobservables is known. They also consider the case
where exclusion restrictions are available. Throughout their analysis, they maintain

81 Recall that treatment occurs if the index turns positive. If there are costs to reversing this deci-
sion, agents would only reverse their decision if the index falls below some negative threshold. The
stopping time assumption is equivalent to the assumption that the costs of reversal are prohibitively
large, or that the corresponding threshold is at the lower end of the support of the index.
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that the distribution of the unobservables is known both by the agent and the
econometrician.

HN provide semiparametric identification of a finite-horizon finite-state model
with an absorbing state with semiparametric specifications of reward and cost func-
tions.82 Given that rewards are in value units, the scale of their utility function is
fixed as they also are in models of profit-maximizing firms. Choices are not in-
variant to arbitrary affine transformations so that one source of nonidentifiability in
Rust’s analysis is eliminated. They can identify the error distributions nonparamet-
rically given their factor structure. They do not have to assume either the functional
form of the unobservables or knowledge of the entire distribution of unobservables.

HN present a fully specified structural model of choices and outcomes moti-
vated by, but not identical to, the analyses of Keane and Wolpin (1994, 1997) and
Eckstein and Wolpin (1999). In their setups, outcome and cost functions are para-
metrically specified. Their states are recurrent while those of HN are absorbing. In
the HN model, once an agent drops out of school, the agent does not return. In
the Keane–Wolpin model, an agent who drops out can return. Keane and Wolpin
do not establish identification of their model, whereas HN establish semiparametric
identification of their model. They analyze models with more general times series
processes for unobservables. In both the HN and Keane–Wolpin frameworks, agents
learn about unobservables. In the Keane–Wolpin framework, such learning is about
temporally independent shocks that do not affect agent expectations about returns
relevant to possible future choices. The information just affects the opportunity costs
of current choices. In the HN framework, learning affects agent expectations about
future returns as well as current opportunity costs.

The HN model extends previous work by Carneiro et al. (2003); Cunha and
Heckman (2007, 2008) and Cunha et al. (2005, 2006) by considering explicit multi-
period dynamic models with information updating. They consider one-shot decision
models with information updating and associated outcomes.

Their analysis is related to that of Taber (2000). Like Cameron and Heckman
(1998), both HN and Taber use identification-in-the-limit arguments.83 Taber con-
siders identification of a two period model with a general utility function, whereas
in Sect. 24.5.2, we discuss how HN consider identification of a specific form of
the utility function (an earnings function) for a multiperiod maximization problem.
As in HN, Taber allows for the sequential arrival of information. His analysis is
based on conventional exclusion restrictions, but the analysis of HN is not. They
use outcome data in conjunction with the discrete dynamic choice data to exploit
cross-equation restrictions, whereas Taber does not.

The HN treatment of serially correlated unobservables is more general than any
discussion that appears in the current dynamic discrete choice and dynamic treat-
ment effect literature. They do not invoke the strong sequential conditional indepen-
dence assumptions used in the dynamic treatment effect literature in statistics (Gill

82 Although their main theorems are for additively separable reward and cost functions, it appears
that additive separability can be relaxed using the analysis of Matzkin (2003).
83 Pakes and Simpson (1989) sketch a proof of identification of a model of the option values of
patents that is based on limit sets for an option model.
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and Robins, 2001; Lechner and Miquel, 2002; Lok, 2007; Robins, 1989, 1997), nor
do they invoke the closely related conditional temporal independence of unobserved
state variables given observed state variables invoked by Rust (1987); Hotz and
Miller (1988, 1993); Manski (1993) and Magnac and Thesmar (2002) (in the first
part of their paper) or the independence assumptions invoked by Wolpin (1984).84

HN allow for more general time series dependence in the unobservables than is
entertained by Pakes (1986), Keane and Wolpin (1997) or Eckstein and Wolpin
(1999).85

Like Miller (1984) and Pakes (1986), HN explicitly model, identify and estimate
agent learning that affects expected future returns.86 Pakes and Miller assume func-
tional forms for the distributions of the error process and for the serial correlation
pattern about information updating and time series dependence. The HN analysis
of the unobservables is nonparametric and they estimate, rather than impose, the
stochastic structure of the information updating process.

Virtually all papers in the literature, including the HN analysis, invoke rational
expectations. An exception is the analysis of Manski (1993) who replaces rational
expectations with a synthetic cohort assumption that choices and outcomes of one
group can be observed (and acted on) by a younger group. This assumption is more
plausible in stationary environments and excludes any temporal dependence in un-
observables. In recent work, Manski (2004) advocates use of elicited expectations
as an alternative to the synthetic cohort approach.

While HN use rational expectations, they estimate, rather than impose the struc-
ture of agent information sets. Miller (1984), Pakes (1986), Keane and Wolpin
(1997), and Eckstein and Wolpin (1999) assume that they know the law govern-
ing the evolution of agent information up to unknown parameters.87 Following the
procedure presented in Cunha and Heckman (2007, 2008); Cunha et al. (2005, 2006)
and Navarro (2005), HN can test for which factors (θ ) appear in agent information
sets at different stages of the life cycle and they identify the distributions of the
unobservables nonparametrically.

The HN analysis of dynamic treatment effects is comparable, in some aspects,
to the recent continuous-time event-history approach of Abbring and Van den Berg
(2003b) previously analyzed. Those authors build a continuous-time model of coun-
terfactuals for outcomes that are durations. They model treatment assignment times
using a continuous-time duration model.

84 Manski (1993) and Hotz and Miller (1993) use a synthetic cohort effect approach that assumes
that young agents will follow the transitions of contemporaneous older agents in making their
lifecycle decisions. Manski and Hotz and Miller exclude any temporally dependent unobservables
from their models. The synthetic cohort approach has been widely used in labor economics at
least since Mincer (1974). See Ghez and Becker (1975), MaCurdy (1981) and Mincer (1974) for
applications of the synthetic cohort approach. For empirical evidence against the assumption that
the earnings of older workers are a reliable guide to the earnings of younger workers in models of
earnings and schooling choices for recent cohorts of workers, see Heckman et al. (2006).
85 Rust (1994) provides a clear statement of the stochastic assumptions underlying the dynamic
discrete-choice literature up to the date of his survey.
86 As previously noted, the previous literature assumes learning only about current costs.
87 They specify a priori particular processes of information arrival as well as which components of
the unobservables agents know and act on, and which components they do not.
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The HN analysis is in discrete time and builds on previous work by Heckman
(1981a,c) on heterogeneity and state dependence that identifies the causal effect of
employment (or unemployment) on future employment (or unemployment).88 They
model time to treatment and associated vectors of outcome equations that may be
discrete, continuous or mixed discrete-continuous. In a discrete-time setting, they
are able to generate a variety of distributions of counterfactuals and economically
motivated parameters. They allow for heterogeneity in responses to treatment that
has a general time series structure.

As noted in Sect. 24.5.4, Abbring and Van den Berg (2003b) do not identify
explicit agent information sets as HN do in their paper and as is done in Cunha
et al. (2005), and they do not model learning about future rewards. Their outcomes
are restricted to be continuous-time durations. The HN framework is formulated
in discrete time, which facilitates the specification of richer unobserved and ob-
served covariate processes than those entertained in the continuous-time framework
of Abbring and Van den Berg (2003b). It is straightforward to attach a vector of
treatment outcomes in the HN model that includes continuous outcomes, discrete
outcomes and durations expressed as binary strings.89 At a practical level, the ap-
proach often can produce very fine-grained descriptions of continuous-time phe-
nomena by using models with many finite periods. Clearly, a synthesis of the event-
history approach with the HN approach would be highly desirable. That would
entail taking continuous-time limits of the discrete-time models. It is a task that
awaits completion.

Flinn and Heckman (1982) utilize information on stopping times and associ-
ated wages to derive cross-equation restrictions to partially identify an equilib-
rium job search model for a stationary economic environment where agents have
an infinite horizon. They establish that the model is nonparametrically nonidenti-
fied. Their analysis shows that use of outcome data in conjunction with data on
stopping times is not sufficient to secure nonparametric identification of a dynamic
discrete-choice model, even when the reward function is linear in outcomes unlike
the reward functions in Rust (1987) and Magnac and Thesmar (2002). Parametric
restrictions can break their nonidentification result. Abbring and Campbell (2005)
exploit such restrictions, together with cross-equation restrictions on stopping times
and noisy outcome measures, to prove identification of an infinite-horizon model of
firm survival and growth with entrepreneurial learning. Alternatively, nonstationar-
ity arising from finite horizons can break their nonidentification result (see Wolpin,
1987). The HN analysis exploits the finite-horizon backward-induction structure of
our model in conjunction with outcome data to secure identification and does not
rely on arbitrary period by period exclusion restrictions. They substantially depart
from the assumptions maintained in Rust’s nonidentification theorem (1994). They
achieve identification by using cross-equation restrictions, linearity of preferences

88 Heckman and Borjas (1980) investigate these issues in a continuous-time duration model. See
also Heckman and MaCurdy (1980).
89 Abbring (2008) considers nonparametric identification of mixed semi-Markov event-history
models that extends his work with Van den Berg. See Sect. 24.4.
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and additional measurements, and exploiting the structure of their finite horizon
nonrecurrent model. Nonstationarity of regressors greatly facilitates identification
by producing both exclusion and curvature restrictions which can substitute for stan-
dard exclusion restrictions.

24.6 Conclusion

This paper has surveyed recent approaches to using panel data to evaluate policies.
We have compared and contrasted the statistical dynamic treatment approach based
on sequential conditional independence assumptions that generalize matching to
approaches developed in econometrics. We compared and contrasted a continuous-
time event-history approach developed by Abbring and Van den Berg (2003b)
to discrete-time reduced-form and structural models developed by Heckman and
Navarro (2007), and Cunha et al. (2005).
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Chapter 25
Econometrics of Individual Labor Market
Transitions

Denis Fougère and Thierry Kamionka

25.1 Introduction

During the last 20 years, the microeconometric analysis of individual transitions
has been extensively used for investigating some problems inherent in the func-
tioning of contemporary labor markets, such as the relations between individual
mobility and wages, the variability of flows between employment, unemployment
and non-employment through the business cycle, or the effects of public poli-
cies (training programs, unemployment insurance, . . . ) on individual patterns of
unemployment. Typically, labor market transition data register sequences of du-
rations spent by workers in distinct states, such as employment, unemployment
and non-employment. When individual participation histories are completely ob-
served through panel or retrospective surveys, the econometrician then disposes of
continuous-time realizations of the labor market participation process. When these
histories are only observed at many successive dates through panel surveys, the
available information is a truncated one; more precisely it takes the form of discrete-
time observations of underlying continuous-time processes. Our presentation of sta-
tistical procedures used for analysing individual transition or mobility histories is
based on the distinction between these two kinds of data.
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Statistical models of labor market transitions can be viewed as extensions of the
single-spell unemployment duration model (see Chap. 14, this volume). Theoreti-
cally, a transition process is a continuous-time process taking its values in a finite
discrete state space whose elements represent the main labor force participation
states, for example employment, unemployment and non-employment.

The goal is then to estimate parameters which capture effects of different
time-independent or time-varying exogenous variables on intensities of transition
between states of participation. Here transition intensities represent conditional in-
stantaneous probabilities of transition between two distinct states at some date.
Typically, the analyst is interested in knowing the sign and the size of the influ-
ence of a given variable, such as the unemployment insurance amount or the past
training and employment experiences, on the transition from unemployment to em-
ployment for example, and more generally in predicting the effect of such variables
on the future of the transition process. For this purpose, she can treat these variables
as regressors in the specification of transition intensities. Doing that, she estimates
a reduced-form model of transition. Estimation of a more structural model requires
the specification of an underlying dynamic structure in which the participation state
is basically the choice set for a worker and in which parameters to be estimated
influence directly individual objective functions (such as intertemporal utility func-
tions) which must be maximized under some revelant constraints inside a dynamic
programming setup. Such structural models have been surveyed by Eckstein and
Wolpin (1989) or Rust (1994).

Our survey focuses only on reduced-form transition models, which have been
extensively used and estimated in labor microeconometrics. The first section con-
tains a general presentation of the statistical modelling of the transition process
for continuous-time (event-history) data. The first section briefly recalls the use-
ful mathematical definitions, essentially the ones characterizing the distribution of
the joint sequence of visited states and of sojourn durations in these states. It also
presents parametric and nonparametric estimation procedures, and ends with the
issue of the unobserved heterogeneity treatment in this kind of process.

The second section deals with inference for a particular class of transition pro-
cesses, namely markovian processes or simple mixtures of markovian processes, us-
ing discrete-time panel observations. Here the main problem is the embeddability of
the discrete-time Markov chain into a continuous time one. In other words, the ques-
tion is whether or not the discrete-time panel observations of a transition process are
generated by a continuous-time homogeneous Markov process. After a discussion
of this problem, the second section presents maximum-likelihood and bayesian pro-
cedures for estimating the transition intensity matrix governing the evolution of the
continuous-time markovian process. Particular attention is paid to the estimation of
the continuous-time mover–stayer model, which is the more elementary model of
mixed Markov processes.

The conclusion points out some extensions.
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25.2 Multi-spell Multi-state Models

25.2.1 General framework

25.2.1.1 Notations

Let us consider a cadlag1 stochastic process Xt , t ∈ R

+, taking its value in a finite
discrete-state space denoted E = {1, . . . ,K}, K ∈ N and K ≥ 2. In other words, K
represents the total number of states for the process, and Xt is the state occupied at
time t by the individual (so Xt ∈ E,∀t ∈R

+). Let {xt , t ∈R

+} be a realization of this
process. We suppose that all the individual realizations of this process are identically
and independently distributed: to simplify the notations, we can then omit the index
for individuals.

As an illustration we consider the case of a labor force participation process
describing the state occupied by a worker at time t. In order to simplify, we set:

Xt =

⎧
⎪⎨

⎪⎩

1 if the individual is employed at time t

2 if the individual is unemployed at time t

3 if the individual is out of the labor force at time t

(25.1)

Now we suppose that each individual process is observed from the date of en-
try into the labor market, denoted τ0 for the individual, up to an exogenously
fixed time τe (τe > τ0). An example of realization of process Xt is represented in
Fig. 25.1.

This figure shows that the individual is first employed from time τ0 up to time
τ1, then unemployed from time τ1 up to time τ2, then employed once again from

1

τ0 τ1 τ2 τ3 τe

t

2

3

xt

Fig. 25.1 A realization of the process Xt

1 “cadlag” means right-continuous, admitting left limits. For the definition of a cadlag process, see
Chap. 17, Sect. 17.1, this volume.
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time τ2 up to time τ3, and finally out of the labor force (from time τ3 on) when the
observation stops at time τe. If we denote:

u� = τ�− τ�−1 , � = 1,2, . . . (25.2)

the sojourn duration in state xτ(�−1) reached by the individual at time τ(�−1) (before
a transition to state xτ�

at time τ�), the process Xt can be equivalently characterized
by the sequences

{
(τ�, xτ�

) ;� ∈ N

}
or {(u�, xΣ �

k=0uk
)� ; � ∈ N} with u0 = τ0.

Now suppose that process Xt is observed from the exogenous date τs, with τs ∈
]τ0, τ1[, up to time τe and that the date of entry into the state occupied at time τs

(i.e. the date of entry into the labor market, τ0) is unknown to the analyst. Then,
the sojourn duration in state xτs = xτ0 is said to be left-censored. Symmetrically,
for the example in Fig. 25.1, the sojourn duration in state xτe = xτ3 is said to be
right-censored, because the couple (τ4, xτ4) is not observed.

We restrict now our attention to non left-censored samples, i.e. such that τs = τ0,
for all individuals.2 We define the event-history corresponding to process Xt for the
observation period [τ0, τe] as:

ω =
{

τ0, xτ0 , τ1, xτ1 , . . . , τn, xτn

}
(25.3)

where n is the number of transitions, i.e. the number of modifications, of the studied
process during the period [τ0, τe]. This event-history can be equivalently defined as:

ω =
{

τ0,u1,xτ0+u1 ,u2,xτ0+u1+u2 , . . . ,un,xτ0+ Σ n
�=1u�

}
(25.4)

This realization of the process from time τ0 to time τe can be written:

ω = ((τ0,xτ0),(u1,xτ1), . . . ,(un,xτn),(un+1,0)) (25.5)

where un+1 = τe−τn is the duration of the last observed spell. The last spell is right-
censored. Indeed, τn+1 and xn+1 are not observed. Consequently, we fix xn+1 = 0 in
order to signify that the last duration is at least equal to un+1. This realization of the
process can be rewritten

ω = (y0,y1, . . . ,yn,yn+1) (25.6)

where

yk =

⎧
⎪⎨

⎪⎩

(τ0,xτ0) if k = 0

(τk,xτk) if 1≤ k ≤ n

(τn+1,0) if k = n+1

Let us define a spell as a period of time delimited by two successive transitions. The
history of the process is a sequence of variables yk = (uk,xτk), where uk is the length
of spell k and xτk is the state occupied by the individual at time τk.

2 The statistical treatment of left-censored spells has been considered by Heckman and
Singer (1984), Ondrich 1985 and Amemiya 2001.
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25.2.1.2 Distributions of Spell Durations

Suppose now that the process enters state xτ�−1 (xτ�−1 ∈ {1, . . . ,K}) at time τ�−1

(� = 1, . . . , n + 1). Let us examine the probability distribution of the sojourn du-
ration in state xτ�−1 entered after the (�− 1)-th transition of the process. For that
purpose, we assume that this sojourn duration is generated by a conditional proba-
bility distribution P given the event-history (y0, . . . ,y�−1) and a vector of exogenous
variables z, defined by the cumulative distribution function

F(u | y0, . . . ,y�−1;z;θ) = Pr [U� ≤ u | y0, . . . ,y�−1;z;θ ]
= 1−S(u | y0, . . . ,y�−1;z;θ) (25.7)

where θ is a vector of unknown parameters. Here U� denotes the random variable
corresponding to the duration of the �− th spell of the process, starting with its
(�−1)− th transition. S(u | y0, . . . ,y�−1;z;θ) is the survivor function of the sojourn
duration in the �− th spell. If the probability distribution P admits a density f with
respect to the Lebesgue measure, then:

F(u | y0, . . . ,y�−1;z;θ) =
∫ u

0
f (t | y0, . . . ,y�−1;z;θ) dt (25.8)

and

f (u | y0, . . . ,y�−1;z;θ) =
d
du

F(u | y0, . . . ,y�−1;z;θ)

= − d
du

S(u | y0, . . . ,y�−1;z;θ) (25.9)

If the function f (u | y0, . . . ,y�−1;z;θ) is cadlag, then there exists a function, called
the hazard function of the sojourn duration in the �− th spell, defined as

h(u | y0, . . . ,y�−1;z;θ) =
f (u | y0, . . . ,y�−1;z;θ)
S(u | y0, . . . ,y�−1;z;θ)

= − d
du

log S(u | y0, . . . ,y�−1;z;θ) (25.10)

or equivalently as

h(u|y0, . . . ,y�−1;z;θ) du = lim
d u↓0

Pr [u≤U� <u+d u |U�≥u;y0, . . . ,y�−1; z]
d u

(25.11)

From (25.9), it follows that:

− log S(u | y0, . . . ,y�−1;z;θ) =
∫ u

0
h(t | y0, . . . ,y�−1;z;θ) dt

= H(u | y0, . . . ,y�−1;z;θ) (25.12)
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The function H�(u | y0, . . . ,y�−1; z) is called the conditional integrated hazard
function of the sojourn in the �− th spell, given the history of the process up to
time τ�−1.

Reduced-form statistical models of labour-market transitions can be viewed as
extensions of competing risks duration models or multi-states multi-spells duration
models. These concepts will now be specified.

25.2.1.3 Competing Risks Duration Models

Let us assume that the number of states K is strictly greater than 2 (K > 2) and that,
for each spell, there exists (K−1) independent latent random variables, denoted U�

k,�
(k �= xτ�−1 ; k ∈ E). Each random variable U∗

k,� represents the latent sojourn duration
in state xτ�−1 before a transition to state k (k �= xτ�−1 ) during the �− th spell of the
process.

The observed sojourn duration u� is the minimum of these (K − 1) latent
durations:

u� = inf
k �=xτ�−1

{
u∗k,�
}

(25.13)

Then, for any τ�−1 ∈ ω:

S(u | y0, . . . ,y�−1;z;θ) =
K

∏
k=1
k �= j

S(u,k | y0, . . . ,y�−1;z;θ) (25.14)

where S(u,k | y0, . . . ,y�−1;z;θ) = Pr(U∗
k,� ≥ u | y0, . . . ,y�−1;z) is the conditional

survival function of the sojourn duration in state xτ�−1 before a transition to state
k during the �− th spell of the process, given the history of the process up to
time τ�−1.

Let g(u,k | y0, . . . ,y�−1;z;θ) be the conditional density function of the latent so-
journ duration in state xτ�−1 before a transition to state k, and hk(u | y0, . . . ,y�−1;z;θ)
the associated conditional hazard function. Then we have the relations:

hk(u | y0, . . . ,y�−1;z;θ) =
g(u,k | y0, . . . ,y�−1;z;θ)
S(u,k | y0, . . . ,y�−1;z;θ)

(25.15)

and

S(u,k | y0, . . . ,y�−1;z;θ) = exp

(
−
∫ u

0
hk(t | y0, . . . ,y�−1;z;θ) dt

)
(25.16)
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Let us remark that (25.14) and (25.16) imply:

S(u | y0, . . . ,y�−1;z;θ) = exp

⎛

⎝−
∫ u

0
∑

k �=xτ�−1

hk(t | y0, . . . ,y�−1;z;θ) dt

⎞

⎠ (25.17)

Thus the conditional density function of the observed sojourn duration in state
j during the �− th spell of the process, given that this spell starts at time τ�−1 and
ends at time τ�−1 +u by a transition to state k, is:

f (u,k | y0, . . .y�−1;z;θ) = hk(u | y0, . . . ,y�−1;z;θ),

× exp

(
−
∫ u

0

K

∑
k′=1

k′ �=xτ�−1

hk′(t | y0, . . . ,y�−1;z;θ) dt

)

(25.18)

This is the likelihood contribution of the �− th spell when this spell is not right-
censored (i.e. when τ� = τ�−1 + u ≤ τe). When the �− th spell lasts more than
τe− τ�−1, the contribution of this spell to the likelihood function is:

S(τe− τ�−1 | y0, . . . ,y�−1;z;θ) = Pr(U� > τe− τ�−1 | y0, . . . ,y�−1;z)

25.2.1.4 Multi-spells Multi-states Duration Models

These models are the extension of the preceding independent competing risks
model, which treats the case of a single spell (the �− th spell) with multiple destina-
tions. In the multi-spells multi-states model, the typical likelihood contribution has
the following form:

L (θ) =
n+1

∏
�=1

f (y� | y0, . . . ,y�−1;z;θ) (25.19)

where f (y� | y0, . . . ,y�−1;θ) is the conditional density of Y� given Y0 = y0,Y1 =
y1, . . . ,Y�−1 = y�−1,Z = z and θ is a vector of parameters. Definition (25.18) im-
plies that:

L (θ) =
n

∏
�=1

f (τ�−τ�−1,xτ�
|y0, . . . ,y�−1;z;θ)

× Sn+1(τe− τn|y0, . . . ,yn;z;θ)
(25.20)

The last term of the right-hand side product in (25.20) is the contribution of the
last observed spell, which is right-censored. References for a general presentation
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of labor market transition econometric models can be found in surveys by Flinn and
Heckman (1982a, b, 1983a) or in the textbook by Lancaster 1990a.

25.2.2 Non-parametric and Parametric Estimation

25.2.2.1 Non-parametric Estimation

The Kaplan-Meier Estimator

In the elementary duration model, a nonparametric estimator of the survivor function
can be obtained using the Kaplan-Meier estimator for right-censored data. Let us
suppose that we observe I sample paths (i.i.d. realizations of the process Xt ) with
the same past history ω[τ0,τn−1]. Let I� be the number of sample paths such that
τn,i ≤ T2 and I− I� the number of sample paths for which the n-th spell duration
is right-censored, i.e. τn,i > T2, i denoting here the index of the process realization
(i = 1, . . . , I). If τn,1, . . . ,τn,I� are the I� ordered transition dates from state Xτn−1

(i.e. τn,1 ≤ . . . ≤ τn,I� ≤ T2), the Kaplan-Meier estimator of the survivor function
Sn(t | ω[τ0,τn−1]) is:

Ŝn(t | ω[τ0,τn−1]) = ∏
i:τn,i≤t

(
1− di

ri

)

i = 1, . . . , I�, t ∈]τn−1,T2] (25.21)

where ri is the number of sample paths for which the transition date from state
Xτn−1 is greater than or equal to τn,i and di is the number of transition times equal to
τn,i. An estimator for the variance of the survivor function estimate is given by the
Greenwood’s formula:

Var
[
Ŝn(t | ω[τ0,τn−1])

]

�
{

Ŝn(t | ω[τ0,τn−1])
}2× ∑

i:τn,i≤t

di

ri(ri−di)
(25.22)

This estimator allows to implement nonparametric tests for the equality of the sur-
vivor functions of two different subpopulations (such as the Savage and log-rank
tests).

In the case of multiple destinations (i.e. competing risks models), we must restrict
the set of sample paths indexed by i ∈ {1, . . . , I�} to the process realizations expe-
riencing transitions from the state Xτn−1 to some state k (k �= Xτn−1 ). Transitions to
another state than k are considered as right-censored durations. If we set Xτn−1 = j,
then the Kaplan-Meier estimator of the survivor function S jk(t |ω[τ0,τn−1]) is given
by the appropriate application of formula (25.21), and an estimator of its variance
is given by formula (25.22).
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The Aalen Estimator

The function H�(u |ω[τ0,τ�−1]), defined in (25.12) and giving the integrated hazard
function of the sojourn duration in the �−th spell, can be estimated nonparametrically
using the Aalen estimator (Aalen, 1978):

Ĥ�(u | ω[τ0,τ�−1]) = ∑
i:τ�−1≤τ�,i<u

di

ri
(25.23)

Ĥ�(u | ω[τ0,τ�−1]) is an unbiased estimator of H�(u | ω[τ0,τ�−1]), and an estima-
tor of its variance is given by:

var
[
Ĥ�(u | ω[τ0,τ�−1])

]
= ∑

i:τ�−1≤τ�,i<u

di

ri(ri−di)
(25.24)

In the competing risks model, (25.12) is equivalent to:

− log S jk(u | ω[τ0,τ�−1]) =
∫ u

0 h jk(t | ω[τ0,τ�−1]) dt

= Hjk(u | ω[τ0,τ�−1])
(25.25)

where Hjk(u | ω[τ0,τ�−1]) is the integrated intensity (or hazard) function for a tran-
sition from state j to state k (k �= j) during the �− th spell of the process, and
given the past history ω[τ0,τ�−1] of the process. The Aalen estimator of this func-
tion can be derived from the formula (25.24) by considering indexes i correspond-
ing to transitions from state j to state k during the �− th spell of the process;
indexes corresponding to other types of transition from state j are now considered as
right-censored durations. The Aalen estimator can be used to implement nonpara-
metric tests for the equality of two or more transition intensities corresponding to
distinct transitions.

25.2.2.2 Specification of Conditional Hazard Functions

The Markov Model

In a markovian model, the hazard functions hk(t | y0, . . . ,y�−1;z;θ) depend on t, on
states xτ�−1 and on k, but are independent of the previous history of the process.
More precisely:

hk(t | y0, . . . ,y�−1;z;θ) = hk(t | xτ�−1 ;z;θ), k �= xτ�−1 (25.26)

and
h j(t | y0, . . . ,y�−1;z;θ) = 0, if j = xτ�−1
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When the Markov model is time-independent, it is said to be time-homogeneous.
In this case:

hk(t | xτ�−1 ;z;θ) = hk(xτ�−1 ;z;θ) = hxτ�−1 ,k(z;θ) , k �= xτ�−1 , ∀t ∈ R

+ (25.27)

The particular case of a continuous-time markovian model observed in discrete-
time will be extensively treated in the following subsection (this Chapter). Let us
now consider two simple examples of markovian processes.

Example 25.1. Consider the case of a time-homogeneous markovian model with two
states (K = 2) and assume that:

hk(t | xτ�−1 ;θ) =

⎧
⎪⎨

⎪⎩

α if xτ�−1 = 1 and k = 2

β if xτ�−1 = 2 and k = 1

0 otherwise

(25.28)

with θ = (α,β ). The parameter α > 0 is the instantaneous rate of transition from
state 1 (for instance, the employment state) to state 2 (for instance, the unemploy-
ment state). Reciprocally, β > 0 is the instantaneous rate of transition from state 2
to state 1.

Durations of employment (respectively, unemployment) are independently and
identically distributed according to an exponential distribution with parameter α
(respectively, with parameter β ). If p1(t0) and p2(t0) denote occupation probabil-
ities of states 1 and 2 at time t0 respectively, then occupation probabilities at time
t (t > t0) are respectively defined by:

p1(t) =
β

α +β
+
{

p1(t0)−
β

α +β

}
e−(α+β )t

p2(t) =
α

α +β
+
{

p2(t0)−
α

α +β

}
e−(α+β )t

(25.29)

Let (p�
1, p�

2) denote the stationary probability distribution of the process. Then it
is easy to verify from (25.29) that:

p�
1 =

β
α +β

and p�
2 =

α
α +β

(25.30)

In the economic literature, there are many examples of stationary job search
models generating such a markovian time-homogeneous model with two states (em-
ployment and unemployment): see, for instance, the survey by Mortensen 1986. Ex-
tensions to three-states models (employment, unemployment and out-of-labor-force
states) have been considered, for example, by Flinn and Heckman (1982a) and Bur-
dett et al. (1984a, b). Markovian models of labor mobility have been estimated, for
instance, by Tuma and Robins (1980), Flinn and Heckman (1983b), Mortensen and
Neuman (1984), Olsen, Smith and Farkas, (1986) and Magnac and Robin (1994).

Example 25.2. Let us consider now the example of a non-homogeneous marko-
vian model with two states (employment and unemployment, respectively denoted
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1 and 2). Let us assume that the corresponding conditional hazard functions verify

hk(t | xτ�−1 ;θ) =

⎧
⎪⎨

⎪⎩

h2(t;θ) if xτ�−1 = 1 and k = 2

h1(t;θ) if xτ�−1 = 2 and k = 1

0 otherwise

(25.31)

Let p(0) = (p1(t0), p2(t0))′ denote the initial probability distribution at time t0.
The distribution of state occupation probabilities at time t, denoted p(t) = (p1(t),
p2(t))′, is given by:

p1(t) = exp

{
−
∫ t

t0
[h1(s;θ)+h2(s;θ)] ds

}

×
[

p1(t0)+
∫ t

t0
h1(s;θ) exp

{∫ s

t0
(h1(u;θ)+h2(u;θ)) du

}
ds

]

(25.32)

and p2(t) = 1− p1(t) (see Chesher and Lancaster, 1983).
Non-homogeneous markovian models are often used to deal with processes

mainly influenced by the individual age at the transition date. For example, let us
consider a transition process {Xt}t≥0 with state-space E = {1,2,3}, and for which
the time scale is the age (equal to At at time t). If the origin date of the process (i.e.
the date of entry into the labor market) is denoted Aτ0 for a given individual, then a
realization of the process {Xt}t≥0 over the period [Aτ0 , τe] is depicted in Fig. 25.2.

Now let us suppose that transition intensities at time t depend only on the age
attained at this time and are specified such as:

hk
(
t | y0, . . . ,y�−1;Aτ0 ;θ

)
= hk(At ;xτ�−1 ;θ)

= exp
(

αxτ�−1 ,k +βxτ�−1 ,k At

)
(25.33)

where α j,k and β j,k ( j,k ∈ E×E and k �= j) are parameters to be estimated. In for-
mula (25.33), the individual index is omitted for simplifying notations. By noting

Fig. 25.2 A realization of a non-homogeneous markovian model
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that:
At = Aτ�−1 +(At −Aτ�−1) = Aτ�−1 +ut� (25.34)

where ut� denotes the time already spent in the �− th spell at date t, it is possible to
write again transition intensities as:

hk(t | y0, . . . ,y�−1;Aτ0 ;θ) = exp
(

αxτ�−1 ,k +βxτ�−1 ,k Aτ�−1 +βxτ�−1 ,k ut�

)
(25.35)

and to deduce the survivor function of the sojourn duration in the �−th spell which
has the form:

S(u | y0, . . . ,y�−1;Aτ0 ;θ)

= exp

⎧
⎨

⎩
− ∑

k �=xτ�−1

∫ Aτ�−1 +u

Aτ�−1

exp(αxτ�−1 ,k+βxτ�−1 ,k Aτ�−1+βxτ�−1 ,k ut�) d t

⎫
⎬

⎭
(25.36)

where �≥ 1. By setting ut� = t−Aτ�−1 in expression (25.36), it follows that:

S{u | y0, . . . ,y�−1;Aτ0 ;θ}=

exp

⎛

⎝− ∑
k �=xτ�−1

exp(αxτ�−1 ,k)

βxτ�−1 ,k

[
exp(βxτ�−1 ,k (Aτ�−1+u))−exp(βxτ�−1 ,k Aτ�−1)

]
⎞

⎠

(25.37)

if βxτ�−1 ,k �= 0. Then the likelihood contribution of the �− th spell beginning at age
Aτ�−1 with a transition to state xτ�−1 and ending at age Aτ�

with a transition to state
xτ�

is:

L� = f (Aτ�
−Aτ�−1 ,xτ�

| y0, . . . ,y�−1;Aτ0 ;θ)
= hxτ�

(τ� | y0, . . . ,y�−1;Aτ0 ;θ) S(Aτ�
−Aτ�−1 | y0, . . . ,y�−1;Aτ0 ;θ)

= exp
(

αxτ�−1 ,k +βxτ�−1 ,k Aτ�

)

× exp

⎛

⎝− ∑
k′ �=xτ�−1

exp(αxτ�−1 ,k′)

βxτ�−1 ,k′

[
exp(βxτ�−1 ,k′ Aτ�

)−exp(βxτ�−1 ,k′ Aτ�−1)
]
⎞

⎠

(25.38)

Non-homogeneous markovian models of transitions between employment and
unemployment have been estimated, for example, by Ridder 1986 and Trivedi and
Alexander (1989).
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Semi-Markov Models

In semi-Markov models, hazard functions depend only on the currently occupied
state (denoted xτ�−1 for spell �), on the destination state (denoted k), on the so-
journ duration in state xτ�−1 and on the time of entry into the currently occupied
state. If the spell corresponding to the currently occupied state is the �− th spell of
the process, then hazard functions of the semi-Markov model have two alternative
representations:

hk(t | y0, . . . ,y�−1;θ) = hk(t | τ�−1;xτ�−1 ;θ) (25.39)

or
hk(u | y0, . . . ,y�−1;θ) = hk(u | τ�−1;xτ�−1 ;θ) (25.40)

where u = t − τ�−1 is the time already spent in the current state (i.e. in the �− th
spell of the process). When the hazard functions do not depend on the date τ�−1 of
the last event, but depend only on the time already spent in the current state, then the
semi-Markov model is said to be time-homogeneous. In this case, hazard functions
defined in (25.40) are such that:

hk(u | τ�−1;xτ�−1 ;θ) = hk(u | xτ�−1 ;θ), u ∈ R

+ (25.41)

In this model, the mean duration of a sojourn in state xτ�−1 can be calculated
using definitions of hazard and survivor functions, and thus it is given by:

E(U� | xτ�−1 ;θ) =
∫ ∞

0
u S(u | xτ�−1 ;θ)

{

∑
k �=xτ�−1

hk(u | xτ�−1 ;θ)
}

du (25.42)

where U� is the random variable representing the duration of a spell � and

S(u | xτ�−1 ;θ) = exp(−
∫ u

0
∑

k �=xτ�−1

hk(s | xτ�−1 ;θ) ds) (25.43)

This conditional expectation can be obtained using the following property:

E(U� | xτ�−1 ;θ) =
∫ ∞

0
S(u | xτ�−1 ;θ) du (25.44)

(see, for instance, Klein and Moeschberger (2003)). Semi-markovian models of
transition between two or three states have been estimated by Flinn and Heckman
(1982b), Burdett, Kiefer and Sharma (1985), Bonnal, Fougère and Sérandon
(1997), and Gilbert, Kamionka and Lacroix (2001).



878 D. Fougère and T. Kamionka

25.2.3 Unobserved Heterogeneity

Here heterogeneity is supposed to cover individual observable and unobservable
characteristics. Once again, we will omit the individual index.

25.2.3.1 Correlation Between Spells

Let us assume that the conditional model is time-homogeneous semi-markovian and

hk(u | y0, . . . ,y�−1;z;v;θ) = hk(u� | xτ�−1 ;z;vxτ�−1 ,k;θxτ�−1 ,k) (25.45)

where v is a vector of individual unobserved heterogeneity terms and θ is the vector
of parameters to be estimated.

Let hk(u� | xτ�−1 ;z;vxτ�−1 ,k;θxτ�−1 ,k) denote the conditional hazard function for the
sojourn duration in the �− th spell of the participation process, when the currently
occupied state is state xτ�−1 and the destination state is k. Here z is a vector of ex-
ogenous variables, possibly time-dependent, v( j,k) is an heterogeneity random term,
which is unobserved, and λ jk is a vector of parameters. The preceding hazard func-
tion is often supposed to be equal to:

hk(u� | xτ�−1 ;z,vxτ�−1 ,k,θxτ�−1 ,k) = exp
[
ϕ(z;u�;θxτ�−1 ,k)+ vxτ�−1 ,k

]
(25.46)

Several assumptions can be made concerning the unobserved random terms v j,k.
Firstly, v j,k can be supposed to be specific to the transition from j to k, so

v j,k �= v j′,k′ for any ( j,k) �= ( j′,k′).

It can be also specific to the origin state, in which case:

v j,k = v j for any k �= j.

Finally, v j,k can be supposed to be independent of states j and k and thus to be
fixed over time for each individual, i.e.

v j,k = v for any ( j,k) ∈ E×E, k �= j.

This last assumption will be made through the remaining part of our presentation.
Let us remark that a fixed heterogeneity term is sufficient to generate some correla-
tion between spells durations. If we assume that v has a probability density function
with respect to the Lebesgue measure denoted g(v | α), where α is a parameter,
then we can deduce that the marginal survivor function of the sojourn duration in
the �− th spell of the process, when current state is xτ�−1 , has the form:
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S(u� | xτ�−1 ;z;θxτ�−1
) =

∫

DG

S(u� | xτ�−1 ;z;v;θxτ�−1
) g(v | α)dv

=
∫

DG

exp

{
− exp(v)

∫ u�

0

(

∑
k �=xτ�−1

exp(ϕ(z; t;θxτ�−1 ,k)
)

dt

}
g(v | α)dv (25.47)

where θxτ�−1
=
{

(θxτ�−1 ,k)k �=xτ�−1
,α
}

and DG is the support of the probability dis-

tribution of the random variable v.
Such formalizations of heterogeneity have been used for estimation purposes by

Heckman and Borjas (1980), Butler et al. (1986), (1989), Mealli and Pudney (1996),
Bonnal, Fougère and Sérandon (1997), Gilbert, Kamionka and Lacroix (2001), and
Kamionka and Lacroix (2003).

• Example. To illustrate the treatment of unobserved heterogeneity in transition pro-
cesses, let us consider a realization of a two state time-homogeneous Markov pro-
cess. More precisely, let us assume that this realization generates a complete spell in
state 1 over the interval [0,τ1] and a right-censored spell in state 2 over the interval
[τ1,τe[. Transition intensities between the two states are given by:

hk(t | xτ�−1 ;vxτ�−1
;λxτ�−1

) = λxτ�−1
+ vxτ�−1

(25.48)

where k ∈ {1,2}, λxτ�−1
> 0 and t ∈R

+, λ1 and λ2 are two positive parameters, and
v1 and v2 are two random variables supposed to be exponentially distributed with a
density function g(v | α) = α exp(−α v), α > 0. We want to deduce the likelihood
function for this realization of the process when v1 and v2 are supposed to be spell-
specific and independent (v1 �= v2 and v1⊥⊥v2) or fixed over time (v1 = v2 = v). In
the first case (v1 �= v2 and v1⊥⊥v2), the conditional likelihood function is:

Lv(λ ) = f (τ1,xτ1 | x0;v;λ ) S(τe−τ1 | xτ1 ;v;λ ),

= (λ1+v1) exp{−(λ1+v1)τ1} exp{−(λ2+v2)(τe−τ1)} (25.49)

where v = (v1,v2)′, λ = (λ1,λ2)′, x0 = 1 and xτ1 = 2. Because v1 and v2 are unob-
served, we must deal with the following marginalized likelihood function:

L(α;λ ) =
∫ ∞

0

∫ ∞

0
L(v1,v2,λ1,λ2) g(v1 | α) g(v2 | α) dv1 dv2

= f (τ1,xτ1 | x0;α;λ ) S(τe− τ1 | x1;α;λ ) (25.50)

where

f (τ1,xτ1 | x0;α;λ ) = exp(−λ1 τ1)
(

α
τ1 +α

)(
λ1 +

1
τ1 +α

)

and S(τe− τ1 | xτ1 ;α;λ ) = exp(−λ2 (τe− τ1))
(

α
(τe− τ1)+α

)
(25.51)
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are the marginalized density and survivor functions of sojourn durations τ1 and
(τe− τ1) in the first and second spells respectively.

When the heterogeneity term is fixed over time (v1 = v2 = v), then the marginal
likelihood contribution is:

L(α,λ ) =
∫ ∞

0
(λ1+v) exp{−(λ1τ1+λ2(τe−τ1)+vτe)}α exp(−α v) dv,

= exp{−λ1τ1−λ2(τe− τ1)}
α

α + τe

{
λ1 +

α
α + τe

}
(25.52)

which is obviously not equal to the product of the marginalized density and survivor
functions of the sojourn durations in the first and second spells as in the case where
v1 �= v2. �

Now, let us assume that there exists a function ψ defining a one-to-one relation
between v and some random variable ν , such as:

v = ψ(ν ,α) (25.53)

For instance, ψ can be the inverse of the c.d.f. for v, and ν can be uniformly dis-
tributed on [0,1]. Then:

S(u� | xτ�−1 ;z;θxτ�−1
) =

∫ 1

0
S(u� | xτ�−1 ;z;ψ(ν ,α);θxτ�−1

) φ(ν) dν (25.54)

where φ(.) is the density function of ν . The marginal hazard function for the sojourn
in the �− th spell can be deduced from (25.54) as:

h(u� | xτ�−1 ;z;θxτ�−1
) =− d

du�
S(u� | xτ�−1 ;z;θxτ�−1

) (25.55)

Using definitions (25.54) and (25.55), the individual contribution to the likeli-
hood function can be easily deduced and maximized with respect to θ , either by
usual procedures of likelihood maximization if the integrals (25.40) and (25.41)
can be easily calculated, or by simulation methods (see, e.g., Gouriéroux and
Monfort, 1997) in the opposite case.

For instance, let us consider the case of a semi-markovian model where the in-
dividual heterogeneity term is fixed over time, i.e. v j,k = v for any ( j,k) ∈ E×E.
From (25.20) and (25.46)–(25.47), the typical likelihood contribution in the present
case is:

Lv(θ) =
n

∏
�=1

hxτ�

(
τ�− τ�−1 | xτ�−1 ;z;v;θxτ�−1 ,xτ�

)

×
n+1

∏
�=1

exp

{
−
∫ τ�

τ�−1
∑

k �=xτ�−1

hk(t | xτ�−1 ;z;v;θxτ�−1 ,k) dt

}
(25.56)
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with τn+1 = τe by convention. Using relation (25.53), the marginalized likelihood
contribution obtained by integrating out ν is:

L (θ) =
∫ 1

0
Lψ(ν ,α)(θ) φ(ν) dν (25.57)

When the integral is not analytically tractable, simulated ML estimators of pa-
rameters α and (θ jk)k �= j can be obtained by maximizing the following simulated
likelihood function with respect to α and (θ jk)k �= j:

LN(θ) =
1
N

N

∑
n=1

Lψ(νn,α) (θ) (25.58)

where νn is drawn from the distribution with density function φ(.), which must be
conveniently chosen (for asymptotic properties of these estimators, see Gouriéroux
and Monfort, (1997)).

25.2.3.2 Correlation Between Destination States

Let us assume that the conditional hazard function for the transition into state k is
given by the expression

hk(u | y0, . . . ,y�−1;z;v;λ ) = h0
k(u;γ) ϕ(y0, . . . ,y�−1;z;β ) ζk (25.59)

where ϕ(.) is a positive function depending on the exogenous variables and the
history of the process, ζk an unobserved heterogeneity component specific to the
individual (ζk > 0), β and γ are vectors of parameters, h0

k(u;γ) is a baseline hazard
function for the transition to state k (k ∈ {1, . . . ,K}). Let us assume that (see Gilbert
et al., 2001)

ζk = exp(ak v1 +bk v2) (25.60)

where ak and bk are parameters such that ak = I[k ≥ 2] for k = 1, . . . ,K and b1 = 1.
The latent components v1 and v2 are assumed to be independently and identically
distributed with a p.d.f. denoted g(v;α), where α is a parameter and vs ∈ DG,
s = 1,2.

In this two factor loading model, the correlation between log(ζk) and log(ζk′),
ρk,k′ , is given by the expression

ρk,k′ =
ak ak′ +bk bk′√

a2
k +b2

k

√
a2

k′ +b2
k′

(25.61)

where k,k′ = 1, . . . ,K. The contribution to the conditional likelihood function of a
given realization of the process w = (y1, . . . ,yn,yn+1) is:
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L (θ)=
∫

DG

∫

DG

n+1

∏
�=1

f (y�|y0, . . . ,y�−1;z;v1,v2;λ ) g(v1;α) g(v2;α) dv1 dv2

(25.62)
where

f (u,k | y0, . . . ,y�−1;z;v1,v2;λ ) = hk(u | y0, . . . ,y�−1;z;v1,v2;λ )δk

×exp

⎧
⎨

⎩
−
∫ u

0
∑

j �=xτ�−1

h j(t | y0, . . . ,y�−1;z;v1,v2;λ )d t

⎫
⎬

⎭
(25.63)

and the conditional hazard function is given by expression (25.59). The exponent
δk is equal to 1 if k ∈ {1, . . . ,K}, and to 0 otherwise. λ is a vector of parameters
and θ = (α,λ ). As the last spell is right-censored, the corresponding contribution
of this spell is given by the survivor function

f (yn+1|y0, . . . ,yn;z;v1,v2;λ )=exp

⎧
⎨

⎩
−

un+1∫

0

∑
j �=xτn

h j(t|y0, . . . ,yn;z;v1,v2;λ )d t

⎫
⎬

⎭

(25.64)
where yn+1 = (un+1,0) (state 0 corresponds to right-censoring).

Bonnal et al. (1997) contains an example of a two factor loading model. Lin-
deboom and van den Berg (1994), Ham and Lalonde (1996) and Eberwein et al.
(1997), (2002) use a one factor loading model in order to correlate the con-
ditional hazard functions. A four factor loading model has been proposed by
Mealli and Pudney (2003). Let us remark that, in the case of bivariate duration
models, association measures were studied by Van den Berg 1997. Discrete dis-
tributions of the unobserved heterogeneity component can be alternatively used
(see, for instance, Heckman and Singer (1984) Gritz 1993, Baker and Melino
(2000)).

This way to correlate the transition rates using a factor loading model is par-
ticularly useful for program evaluation on nonexperimental data. In this case, it is
possible to characterize the impact on the conditional hazard functions of previous
participation to a program by taking into account selectivity phenomena at entry
into the program.

25.3 Markov Processes Using Discrete-Time Observations

The econometric literature on labor mobility processes observed with discrete-time
panel data makes often use of two elementary stochastic processes describing indi-
vidual transitions between a finite number of participation states.

The first one is the continuous-time Markov chain, whose parameters can be
estimated through the quasi-Newton (or scoring) algorithm proposed by Kalbfleisch
and Lawless (1985). This kind of model allows to calculate stationary probabilities
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of state occupation, the mean duration of sojourn in a given state, and the intensities
of transition from one state to another.

A main difficulty can appear in this approach: in some cases the discrete-time
Markov chain cannot be represented by a continuous-time process. This problem
is known as the embeddability problem which has been surveyed by Singer and
Spilerman (1976a), b) and Singer (1981, 1982). However, some non-embeddable
transition probability matrices can become embeddable after an infinitesimal modi-
fication complying with the stochastic property. This suggests that the embeddabil-
ity problem can be due to sampling errors.

Geweke et al., (1986a) established a bayesian method to estimate the posterior
mean of the parameters associated with the Markov process and some functions
of these parameters, using a diffuse prior defined on the set of stochastic matrices.
Their procedure allows to determine the embeddability probability of the discrete-
time Markov chain and to derive confidence intervals for its parameters under the
posterior.

The second frequently used modelization incorporates a very simple form of het-
erogeneity among the individuals: this is the mover-stayer model, which was stud-
ied in the discrete-time framework by Frydman 1984, Sampson 1990 and Fougère
and Kamionka (2003). The mover-stayer model is a stochastic process mixing two
Markov chains. This modelling implies that the reference population consists of
two types of individuals: the “stayers” permanently sojourning in a given state,
and the “movers” moving between states according to a non-degenerate Markov
process.

These two modelizations will be successively studied in the following subsection.

25.3.1 The Time-Homogeneous Markovian Model

Let us consider a markovian process {Xt , t ∈ R

+} defined on a discrete state-space
E = {1, . . . ,K}, K ∈ N, with a transition probability matrix P(s, t) with entries
p j,k(s, t), ( j,k) ∈ E×E, 0≤ s≤ t, where:

p j,k(s, t) = Pr{Xt = k | Xs = j} (25.65)

and
K

∑
k=1

p j,k(s, t) = 1. If this markovian process is time-homogeneous, then:

p j,k(s, t) = p j,k(0, t− s)≡ p j,k(t− s), 0≤ s≤ t (25.66)

or equivalently:
P(s, t) = P(0, t− s)≡ P(t− s), 0≤ s≤ t (25.67)

This implies that transition intensities defined by:

h j,k = lim
Δt↓0

p j,k(t, t +Δt)/Δt, Δt ≥ 0, ( j,k) ∈ E×E, j �= k (25.68)
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are constant through time, i.e.:

hk(t | xτ�−1 ;θ) = h j,k(t | θ) = h j,k , t ≥ 0, ( j,k) ∈ E×E, j �= k (25.69)

where xτ�−1 = j. These transition intensities are equal to the hazard functions previ-
ously defined in (25.26) and (25.27). The K×K transition intensity matrix, which
is associated to the time-homogeneous markovian process {Xt , t ∈ R

+}, is denoted
Q and has entries:

q( j,k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h j,k ∈ R

+ if j �= k, ( j,k) ∈ E×E

−
K

∑
m=1
m�= j

h j,m ≤ 0 i f j = k, j ∈ E
(25.70)

Let us denote Q the set of transition intensity matrices, i.e. the set of (K×K) ma-
trices with entries verifying the conditions (25.70). It is well known (cf. Doob (1953,
p. 240 and 241) that the transition probability matrix over an interval of length T can
be written:

P(0,T ) = exp(QT ), T ∈ R

+ (25.71)

where exp(A) = ∑∞
k=0 Ak/k! for any K×K matrix A.

Main properties of the time-homogeneous markovian process {Xt , t ∈ R

+} with
state-space E, are the following:

• sojourn times in state j ( j ∈ E) are positive random variables, which are expo-
nentially distributed with parameter −q( j, j):

u j ∼ exp(−q( j, j)), j = 1, . . . ,K (25.72)

with E[u j] = var[u j]1/2 =−q( j, j)−1,
• the probability of a transition to state k given that the process is currently in state

j (k �= j) is independent of the sojourn time in state j, and is found to be:

r j,k =−q( j,k)/q( j, j), k �= j, ( j,k) ∈ E×E (25.73)

• if the time-homogeneous Markov process {Xt} is ergodic, its equilibrium (or
limiting) probability distribution is denoted P∗ = (p∗1, . . . , p∗K)′ and defined as the
unique solution to the linear system of equations:

Q′P∗ = 0 , with
K

∑
i=1

p∗i = 1 (25.74)
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25.3.1.1 Maximum Likelihood Estimator of the Matrix P Using Discrete-Time
(Multiwave) Panel Data

Let us suppose now that we observe η independent realizations of the process {Xt}
at equally spaced times T0, T1, . . . , TL (L > 1) such as: T�−T�−1 = T , � = 1, . . . ,L.
Let us denote:

• n j,k(�) the number of individuals who were in state j at time T�−1 and who are in
state k at time T�,

• n j(�−1) the number of individuals who were in state j at time T�−1. Maximizing
the conditional likelihood function given the initial distribution at T0:

L(P(0,T )) =
L

∏
�=1

K

∏
j,k=1

{
p j,k(T�−1,T�)

}n j,k(�)

=
K

∏
j,k=1

{
p j,k(0,T )

}ΣL
�=1n j,k(�) (25.75)

with
K

∑
k=1

p j,k(0,T ) = 1, gives the ( j,k) entry of the MLE P̂(0,T ) for P(0,T ):

p̂ j,k(0,T ) =

(
L

∑
�=1

n j,k(�)

)

/

(
L

∑
�=1

n j(�−1)

)

(25.76)

(see Anderson and Goodman, 1957). If the solution Q̂ to the equation:

P̂(0,T ) = exp(Q̂T ), T > 0 (25.77)

belongs to the set Q of intensity matrices, then Q̂ is a MLE estimator for Q. Never-
theless, two difficulties may appear:3

• the (25.77) can have multiple solutions Q̂ ∈ Q: this problem is known as the
aliasing problem;4

• none of the solutions Q̂ to the equation (25.77) belongs to the set Q of intensity
matrices; in that case, the probability matrix P̂(0,T ) is said to be non-embeddable
with a continuous-time Markov process.

25.3.1.2 Necessary Conditions for Embeddability

The unique necessary and sufficient condition for embeddability was given by
Kendall, who proved that, when K = 2, the transition matrix P̂(0,T ) is embeddable

3 A detailed analysis of these problems is developed in papers by Singer and Spilerman (1976 a
and b).
4 The aliasing problem has also been considered by Phillips (1973).
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if and only if the trace of P̂(0,T ) is strictly greater than 1. When K ≥ 3, only neces-
sary conditions are known; they are the following:5

1st necessary condition (Chung, 1967):

• if p̂ j,k(0,T ) = 0, then p̂(n)
j,k (0,T ) = 0, ∀n ∈ N, where p̂(n)

j,k (0,T ) is the entry ( j,k)
of the matrix [P̂(0,T )]n,

• if p̂ j,k(0,T ) �= 0, then p̂(n)
j,k (0,T ) �= 0, ∀n ∈ N;

2nd necessary condition (Kingman, 1962): det
[
P̂(0,T )

]
> 0,

3rd necessary condition (Elfving, 1937):

• no eigenvalue λi of P̂(0,T ) can satisfy | λi |= 1, other than λi = 1;
• in addition, any negative eigenvalue must have even algebraic multiplicity;

4th necessary condition (Runnenberg, 1962): the argument of any eigenvalue λi of
P̂(0,T ) must satisfy:

(
1
2

+
1
K

)
Π≤ arg(log λi)≤

(
3
2
− 1

K

)
Π

This last condition plays an important role in the remainder of the analysis.

25.3.1.3 Resolving the Equation P̂(0,T ) =P̂(0,T ) =P̂(0,T ) = exp(Q̂T )(Q̂T )(Q̂T )

The proof of the following theorem can be found in Singer and Spilerman (1976a):

If P̂(0,T ) has K distinct 6 eigenvalues (λ1, . . . ,λK) and can be written P̂(0,T ) =
A×D×A−1, where D = diag(λ1, . . . ,λK) and the eigenvector corresponding to
λi (i = 1, . . . ,K) is contained in the i−th column of the (K×K) matrix A, then:

log(P̂(0,T )) = Q̂T = A×

⎛

⎜
⎝

logk1
(λ1) . . . 0
...

. . .
...

0 . . . logkK
(λK)

⎞

⎟
⎠×A−1 (25.78)

where logki
(λi) = log | λi |+(argλi +2kiΠ)i,ki ∈ Z, is a branch of the logarithm

of λi, when λi ∈ C .7

5 Singer and Spilerman (1976a) and Geweke, Marshall and Zarkin (1986b) survey this problem.
6 The case of repeated eigenvalues arises very rarely in empirical applications. For its treatment,
the reader can consult Singer and Spilerman (1976a), p. 19–25).
7 Let us recall that the logarithmic function is multiple valued in the complex set C . If z = a +
ib (z ∈ C ), then: logk(z) = log | z | +i(θ + 2kΠ), k ∈ Z, with | z |=

√
a2 +b2, and θ = arg(z) =

tan−1(b/a). Each value for k generates a distinct value for log(z), which is called a branch of the
logarithm.
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Since (25.77) has as many solutions Q̂ as there are combinations of the form
(logk1

(λ1), . . . , logkK
(λK)), the number of these solutions is infinite when the ma-

trix P̂(0,T ) has at least two complex conjugate eigenvalues. However, an important
implication of the fourth necessary condition for embeddability is that only finitely
many branches of log(P̂(0,T )) need to be checked for membership in Q. Indeed,
this condition implies:

∀λi, −Li(K)≤ ki ≤Ui(K) (25.79)

where Ui(K) = intpt

∣
∣
∣
∣
∣
log | λi | tan{( 1

2 + 1
K )Π}− | arg λi |

2Π

∣
∣
∣
∣
∣

Li(K) = intpt

∣
∣
∣
∣
∣
log | λi | tan{( 3

2 −
1
K )Π}− | arg λi |

2Π

∣
∣
∣
∣
∣

the function “intpt” being the integer part of a real number. So the number of
branches of λi which must be computed is equal to Li(K)+Ui(K)+ 1, the last one
corresponding to the main branch (with ki = 0). Then the number of solutions Q̂ that
must be examined for membership in Q is denoted k∗(P̂) and is equal to:

k∗(P̂) =

⎧
⎨

⎩

v

∏
j=1
{L j(K)+Uj(K)+1} if v≥ 1

1 if v = 0
(25.80)

where v denotes the number of complex conjugate eigenvalue pairs of the matrix
P̂(0,T ). Let us remark that:

• for a real eigenvalue, only the principal branch of the logarithm must be exam-
ined: other branches (with ki �= 0) correspond to complex intensity matrices Q̂;

• each element of a complex conjugate eigenvalue pair has the same number of
candidate branches (see (25.79)); moreover, only combinations of branches in-
volving the same ki in each element of the pair must be computed; all others
correspond to complex intensity matrices; this fact explains why the calculation
of k∗(P̂) is based on the number of complex conjugate eigenvalue pairs, and
why the number of branches that need to be checked for each pair j is equal to
L j(K)+Uj(K)+1 rather than {L j(K)+Uj(K)+1}2.

If (25.77) has only one solution Q̂ ∈Q, this solution is the MLE for the intensity
matrix of the homogeneous continuous-time Markov process {Xt , t ∈ R

+}; an esti-
mator for the asymptotic covariance matrix of Q̂ has been given by Kalbfleisch and
Lawless (1985).
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25.3.1.4 The Scoring Procedure

Kalbfleisch and Lawless (1985) have proposed to maximize with respect to θ the
conditional likelihood function (25.75), i.e.

L(θ) =
K

∏
i, j=1

{
exp(QT )

}ΣL
�=1ni, j(�)

(i, j) , Q ∈Q (25.81)

through a scoring algorithm. In this expression, {exp(QT )}i, j is the entry (i, j) of
the matrix exp(QT ) = P(0,T ) and θ is the vector of extra diagonal elements of
the matrix Q (θ ≡ θ(Q)). If it is assumed that matrix Q has K distinct eigenvalues,
denoted (d1, · · · ,dK), matrices Q and P(0,T ) can be written as:

Q = A DQA−1 = A diag (d1, · · · ,dK)A−1

and P(0,T ) = exp(QT ) = A exp(DQT )A−1

= A diag(ed1T , · · · ,edKT )A−1 = A diag(λ1, · · · ,λK)A−1 (25.82)

These formulae lead to a convenient expression of the score (or gradient) vector,
which is:

S(θ) =
{

∂ logL(Q)
∂ qk�

}
=

{
K

∑
i, j=1

L

∑
�=1

ni, j(�)
∂{exp(QT )}(i, j)/∂qk�

{exp(QT )}(i, j)

}

(25.83)

where

∂{exp(QT )}
∂qk�

=
∞

∑
s=1

( ∂Qs

∂qk�

)T s

s!
=

∞

∑
s=1

s−1

∑
r=0

Qr ∂Q
∂qk�

·Qs−1−r · T s

s!

= AVk�A−1

the matrix

Vk� =
∞

∑
s=1

s−1

∑
r=0

Dr
Q

(
A−1 ∂Q

∂qk�
A
)
Ds−1−r

Q
T s

s!
having elements:

⎧
⎨

⎩
(Gk�)(i, j)

edit − ed jt

di−d j
, i �= j,

(Gk�)(i, j)t edit , i = j,

where (Gk�)(i, j) is the entry (i, j) of the matrix Gk� = A−1 ∂Q
∂qk�

A.
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The information matrix, which has the form

E

[
−∂ 2 logL(θ)

∂qk�∂qk′�′

]
=

{
L

∑
�=1

K

∑
i, j=1

E[Ni(�−1)]
pi, j(0,T )

∂ pi, j(0,T )
∂qk�

∂ pi, j(0,T )
∂qk′�′

}

(25.84)

(see Kalbfleisch and Lawless ((1985), p. 864), is estimated by:

M(θ) =

{
L

∑
�=1

K

∑
i, j=1

ni(�−1)
pi, j(0,T )

∂ pi, j(0,T )
∂qk�

∂ pi, j(0,T )
∂qk′�′

}

(25.85)

The iterative formula for the scoring algorithm being:

θn+1 = θn +M(θn)−1S(θn)

where n≥ 0 and an initial value θ0 = θ(Q0) is still to be chosen. Two cases must be
considered (the case with multiple solutions in Q is excluded):

• equation (25.77) admits only one solution for Q̂ and this solution belongs to the
set Q of transition intensity matrices: Q̂ is the MLE of the transition matrix Q
of the time-homogeneous markovian process, and the matrix M(θ(Q̂))−1 gives a
consistent estimate of the covariance matrix of θ̂ = θ(Q̂);

• the unique solution Q0 = Q̂ to (25.77) doesn’t belong to the set Q; however, it
may exist matrices P̃(0,T ) = exp(Q̃T ) “close” to P̂(0,T ) and which are embed-
dable, i.e. such that Q̃ ∈Q; in this case, the scoring algorithm of Kalbfleisch and
Lawless (1985) can be applied to the maximization of the likelihood (25.81) sub-
ject to the constraint Q ∈ Q; this constraint can be directly introduced into the
iterative procedure by setting

qi, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp(ai, j), ai, j ∈ R, j �= i,(i, j) ∈ E×E

qii =−
K

∑
k=1
k �=i

qik, i = j, i ∈ E
(25.86)

and the initial value Q0 can be chosen to verify:

Q0 = argmin
Q∈ Q

‖ Q0− Q̂ ‖ (25.87)

where Q̂ = 1
T log P̂(0,T ).

25.3.1.5 Bayesian Inference

Geweke, Marshall and Zarkin (1986a) have developed a bayesian approach for sta-
tistical inference on Q (and functions of Q) by using a diffuse prior on the set of
stochastic matrices. This approach can be justified by two arguments:
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• when the MLE of Q is on the parameter set boundary, standard asymptotic
theory cannot be applied any more; bayesian inference overcomes this diffi-
culty: the posterior confidence interval for Q can be viewed as its asymptotic
approximation;

• moreover, bayesian inference allows incorporating into the choice of the prior
distribution some information external to the sample (for example, the distribu-
tion of sojourn durations in each state).

Let us denote PK the set of (K×K) stochastic matrices, i.e. Pk =
{

P ∈ MK,K :
∀i, j ∈ E, pi, j ≥ 0 and ∑K

j=1 pi, j = 1
}
,P∗K the set of (K×K) embeddable stochastic

matrices, i.e. P∗K = {P ∈ MK,K : P ∈ PK and ∃Q ∈ Q,P(O,T ) = exp(QT ),T > 0}.
For any P ∈ P∗K ,k∗(P) denotes the number of combinations of the form (25.78)
belonging to Q and verifying (25.77). Now let us consider a prior distribution
on P ∈ PK , denoted μ(P), a prior distribution on Q, denoted hk(P) and verifying

∑k∗(P)
k=1 hk(P) = 1 for P ∈ PK , and a R-valued function of interest denoted g(Q). If

the posterior embeddability probability of P is defined as:

Pr(P ∈ P∗K | N) =

∫
P∗K

L(P;N)μ(P)dP
∫

PK
L(P;N)μ(P)dP

> 0 (25.88)

then the expectation of g(Q) is equal to

E[g(Q) | N,P ∈ P∗K ] =

∫
P∗K

∑k∗(P)
k=1 hk(P)g[Qk(P)]L(P;N)μ(P)dP

∫
P∗K

L(P;N)μ(P)dP
(25.89)

where the entry (i, j) of the matrix N is ∑L
�=1 ni, j(�),L(P;N) is the likelihood func-

tion and Qk(P) is the transition intensity matrix corresponding to the k-th combina-
tion of logarithms of the eigenvalues of matrix P. The function of interest g(Q) can
be, for example, g(Q) = qi, j,(i, j) ∈ E×E, or:

g(Q) = E
{
(qi, j−E(qi, j | N;P ∈ P∗K))2 | N;P ∈ P∗K

}

which is equivalent to:

g(Q) = E
{

q2
i, j | N;P ∈ P∗K

}
−E2{qi, j | N;P ∈ P∗K

}

The embeddability probability for P and the first moment of g(Q) may be com-
puted using Monte-Carlo integration. This involves the choice of an importance
function from which a sequence of matrices {Pi} ∈ PK can be easily generated (see
Geweke et al., (1986a), for such a function). Now let us consider a function J(Pi)
such that J(Pi) = 1 if Pi ∈ P∗K and J(Pi) = 0 otherwise. If μ(Pi) is bounded above,
then:
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lim
I→∞

I

∑
i=1

J(Pi)L(Pi;N)μ(Pi)/I(Pi)

I

∑
i=1

L(Pi;N)μ(Pi)/I(Pi)

= Pr[P ∈ P∗K | N] a.s.

(25.90)

Moreover, if Hk(P) is a multinomial random variable such that Pr[Hk(P) = 1] =
hk(P), and if g(Q) is bounded above, then

lim
I→∞

I

∑
i=1

k∗(Pi)

∑
k=1

Hk(Pi)g[Qk(Pi)]J(Pi)L(Pi;N)μ(Pi)/I(Pi)

I

∑
i=1

J(Pi)L(Pi;N)μ(Pi)/I(Pi)

= E[g(Q) | N;P ∈ P∗K ] a.s. (25.91)

(see Geweke et al., (1986a), p. 658).

25.3.1.6 Tenure Records

Up to now we concentrated on the statistical analysis of discrete-time observations
of an underlying continuous-time Markov process. The available information is
sometimes richer than the one brought by discrete-time data, but not as complete
as the one contained in continuous-time data. Indeed it can consist, for a given in-
dividual, in the joint sequence {(xT�

,dT�
)}�=0,··· ,L of occupied states {xT�

}�=0,··· ,L
and of times {dT�

}�=0,··· ,L already spent in these states at distant observation times
{T�}�=0,···L. Such data have been studied in the continuous-time markovian frame-
work by Magnac and Robin (1994), who proposed to call this kind of observations
“tenure records”. Figure 25.3 gives an example of a tenure record.

In this example, T0,T1,T2 and T3 are the exogenous survey dates. The process
{Xt}t≥0 is first observed to be in state xT0 = 1 at time T0: it occupies this state from
date (T0−d0) on. It is then observed to be in state 3 at successive times T1 and T2.
This state was entered at time (T1− d1) = (T2− d2). Finally, the process is at time
T3 in state xT3 = 1 from date (T3− d3) on. Indeed it is possible that a spell covers
two survey dates, as it is the case for the second observed spell in the preceding
example: obviously, the information collected in T1 is redundant.

Let us remark that in tenure records data sets, any sojourn duration is right-
censored with probability one. Typically, a tenure record consists of a sequence
{xT�

,d�, t�}�=0,··· ,L with the convention tL = ∞. The process {Xt}t≥0 enters state xT�

at time (T�− d�) and is observed to stay in this state for a duration greater than
d�. Then the process is not observed (i.e. is truncated) during a period of length
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Fig. 25.3 An example of a tenure record

t� = (T�+1 − d�+1)− T�. Let hi j(s, t) be the probability that the process {Xt} en-
ters state j at time t given that it was in state i at time s(s < t). If {Xt} is time-
homogeneous markovian, then hi j(0, t− s) ≡ hi j(t− s),s < t. In this case, hi j(t) is
equal to:

hi j(t) =
K

∑
k=1
k �= j

pik(t) qk j, (i, j) ∈ E×E (25.92)

Consequently, the likelihood function for a tenure record {xT�
,d�, t�}�=0,··· ,L is

the following:

L =

{
L−1

∏
�=0

S(d� | xT�
) hxT�

,xT�+1
(t�)

}

S(dL | xTL)

= exp(−λxTL
dL)

L−1

∏
�=0

{
exp(−λxT�

d�)
K

∑
k=1

k �=xT�+1

{exp(Qt�)}(xT�
,k) ·qk,xT�+1

}

(25.93)

where S(u | xT�
) is the survivor function of the sojourn duration in state xT�

and Q is
the transition intensity matrix with entries:

Q(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−λi =−
K

∑
k=1
k �=i

qik, if j = i

qi j, if j �= i

Magnac and Robin (1994) show that tenure records allow to identify the intensity
of transition from one state to the same state (for example, employment) when
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within-state mobility is allowed (i.e. when a worker can directly move from one
job to another). Discrete-time observations do not present this advantage.

For a treatment of incomplete records, particularly in presence of unobserved
heterogeneity see, for instance, Kamionka 1998. Magnac et al. (1995) propose to
use indirect inference to estimate the parameters of a transition model under a semi-
Markov assumption in the context of a censoring mechanism.

25.3.2 The Mover-Stayer Model

25.3.2.1 MLE for the Discrete-Time Mover-Stayer Model

The mover-stayer model has been introduced by Blumen et al. 1955 for study-
ing the mobility of workers in the labor market. Subsequently, Goodman (1961),
Spilerman (1972) and Singer and Spilerman (1976a) have developed the statisti-
cal analysis of this model, essentially on the discrete-time axis. The mover-stayer
model in discrete time is a stochastic process {X�, � ∈ N}, defined on a discrete
state-space E = {1, . . . ,K}, K ∈ N, and resulting from the mixture of two indepen-
dent Markov chains; the first of these two chains, denoted {X1

� , � ∈ N} is degener-
ate, i.e. its transition probability matrix is the identity matrix, denoted I. The other
chain, denoted {X2

� , � ∈ N} is characterized by a non-degenerate transition matrix
M(s,u) =‖ mi, j(s,u) ‖, i, j = 1, . . . ,K, 0≤ s≤ u, where:

mi, j(s,u) = Pr{X2
u = j | X2

s = i}, i, j ∈ E, s,u ∈ N, s≤ u (25.94)

and
K

∑
j=1

mi, j(s,u) = 1.

Moreover, the Markov chain {X2
� , � ∈ N} is assumed to be time homogeneous, i.e.:

mi, j(s,u) = mi, j(0,u− s)≡ mi, j(u− s), 0≤ s≤ u (25.95)

which is equivalent to:

M(s,u) = M(0,u− s)≡M(u− s), 0≤ s≤ u (25.96)

Now let us assume that the mixed process {X�, � ∈ N} is observed at fixed and
equally distant times: 0,T,2T, . . . ,LT, with T > 0 and L ∈ N (L ≥ 1). Transition
probabilities for this process are given by the formulas:

pi, j(0,kT ) = Pr[XkT = j | X0 = i], i, j ∈ E, k = 1, . . . ,L (25.97)

=
{

(1− si)[mi, j(T )](k) if j �= i
si +(1− si)[mi,i(T )](k) if j = i

where [mi, j(T )](k) is the entry (i, j) of the matrix [M(T )]k, and (si,1− si), with
si ∈ [0,1], is a mixing measure for state i ∈ E. So, in the mover-stayer model, the
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reference population is composed of two kinds of individuals: the “stayers”, per-
manently sojourning in the same state, and the “movers”, who move from one state
to another according to the time-homogeneous Markov chain with transition prob-
ability matrix M(s,u),s ≤ u. The proportion of “stayers” in state i (i ∈ E) is equal
to si.

The estimation of the transition matrix M(0,T ) and of the mixing measure s
from a sample of N independent realizations of the process {X�, � ∈ N}, has been
extensively treated by Frydman (1984) and then carried out by Sampson (1990).
The method developed by Frydman relies on a simple recursive procedure, which
will be rapidly surveyed. Formally, the form of the sample is:

{X0(n),XT (n),X2T (n), . . . ,XLT (n); 1≤ n≤ N}

where XkT (n) (k = 0, . . . ,L) is the state of the process for the n−th realization at time
kT , and (L+1) is the number of equally spaced dates of observation.

Let us denote ni0,...,iLT the number of individuals for which the observed discrete
path is (i0, . . . , iLT ), ni(kT ) the number of individuals in state i at time kT , ni j(kT )
the number of individuals who are in state i at time (k− 1)T and in state j at time
(kT ), ni the number of individuals who have a constant path,8 i.e. i0 = iT = . . . =
iLT = i, i∈ E, ni j = ∑L

k=1 ni j(kT ) the total number of observed transitions from state
i to state j, n∗i = ∑L−1

k=0 ni(kT ) the total number of visits to state i before time (LT ),
ηi ≥ 0 the proportion of individuals initially (i.e. at date 0) in state i, i ∈ E, with
∑K

i=1 ηi = 1.
The likelihood function for the sample is (Frydman, 1984, p. 633):

L =
K

∏
i=1

ηni(0)
i

K

∏
i=1

Li (25.98)

where:

Li = {si +(1− si)[mii(0,T )]L}ni(1− si)ni(0)−ni [mii(0,T )]nii−Lni

×
K

∏
k=1
k �=i

[mik(0,T )]nik

In this last expression, ni(0) is the number of individuals in state i at time 0, ni

is the number of individuals permanently observed in state i, (ni(0)− ni) is the
number of individuals initially in state i who experience at least one transition in
the L following periods, nik is the total number of transitions from state i to state k.
Maximizing the function (25.98) with respect to M and s subject to the constraints
si ≥ 0, i ∈ E, is equivalent to maximize the K expressions:

Li = Log Li +λisi, i = 1, . . . ,K (25.99)

8 Among the individuals permanently sojourning in state i, we must distinguish the “stayers” from
the “movers”; indeed, the probability that a “mover” is observed to be in state i at each observation
point is strictly positive and equal to {mii(0,T )}L.
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for which the first-order derivatives relatively to si are:

∂Li

∂ si
=

ni{1− [mii(0,T )]L}
si +(1− si)[mii(0,T )]L

− ni(0)−ni

1− si
+λi = 0 (25.100)

Two situations should be considered:
First case: If si > 0, then λi = 0 and:

si =
ni−ni(0)[mii(0,T )]L

ni(0){1− [mii(0,T )]L} (25.101)

As shown by Frydman (1984, p. 634–635), the ML estimators of transition prob-
abilities mi j (with fixed i, and j varying from 1 to K) are given by the recursive
equation:

m̂i j(0,T ) = ni j{1− m̂ii(0,T )−
j−1

∑
k=1
k �=i

m̂ik(0,T )}/
K

∑
k= j
k �=i

nik, j �= i, i, j ∈ E (25.102)

To solve (25.102), it is necessary to begin by setting j = 1 if i �= 1 and j = 2 if
i = 1. Furthermore, m̂ii(0,T ) is the solution, belonging to the interval [0,1], to the
equation:

[n∗i −Lni(0)][mii(0,T )]L+1 +[Lni(0)−nii][mii(0,T )]L

+[Lni−n∗i ]mii(0,T )+(nii−Lni) = 0 (25.103)

Frydman (1984) doesn’t notice that si≤0 whenever ( ni
ni(0) )≤[mii(0,T )]L, where

(ni/ni(0)) is the proportion of individuals permanently observed in state i. In that
case, the initial assumption si > 0 is violated, and it is necessary to consider the case
where si = 0.
Second case: If si = 0, then:

m̂i j(0,T ) = ni j/n∗i , ∀ i, j = 1, . . . ,K (25.104)

This is the usual ML estimator for the probability of transition from i to j
for a first-order Markov chain in discrete time (for example, see Anderson and
Goodman (1957), or Billingsley (1961). A remark, which is not contained in the
paper by Frydman (1984), must be made. It may appear that Lni = nii (with nii �= 0),
which means that no transition from state i to any other distinct state is observed.
This case arises when the number ni of individuals permanently observed in state i
is equal to the number ni(0) of individuals initially present in state i (if ni(0) �= 0).
Then the estimation problem has two solutions:

• si=1 and mii is non-identifiable (see (25.101) and (25.103)),
• si = 0 and mii = 1.

The first solution corresponds to a pure model of “stayers” in state i, the second to
a time-homogeneous Markov chain in which state i is absorbing. The mover-stayer
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model, as a mixture of two Markov chains, is not appropriate any more for state
i. When this case appears in the applied work, we propose to choose the solution
si = 0 and mii = 1, especially for computing the estimated marginal probabilities
of the form Pr[XkT = i], k = 0, . . . ,L, i = 1, . . . ,K. The analytical expression of the
estimated asymptotic covariance matrix for ML estimators M̂ and ŝ can be calculated
using second derivatives of expression (25.99).

25.3.2.2 Bayesian Inference for the Continuous-Time Mover-Stayer Model

The mover-stayer model in continuous-time is a mixture of two independent Markov
chains; the first one denoted {X1

t , t ∈ R

+} has a degenerate transition matrix equal
to the identity matrix I; the second one denoted {X2

t , t ∈R

+} has a non-degenerate
transition matrix M(s, t), 0≤ s≤ t, verifying over any interval of length T :

M(0,T ) = exp(QT ), T ∈ R

+ (25.105)

Setting M(0,kT ) = ‖mi, j(0,kT )‖, we get:

P(0,kT ) = diag(s)+diag(IK− s){exp(QT )}K , T ≥ 0, k = 1, . . . ,L (25.106)

where s = (s1, . . . ,sK)′, (IK − s) = (1− s1, . . . ,1− sK)′, and diag(x) is a diagonal
matrix with vector x on the main diagonal. From the discrete-time ML estima-
tors of stayers’ proportions s and of the transition probability matrix M(0,T ), it
is then possible to obtain the ML estimator of the intensity matrix Q by resolv-
ing (25.105) (see subsection 2.1 above). But, due to the possible problem of non-
embeddability of the matrix M(0,T ), it could be better to adopt a bayesian approach,
as the one proposed by Fougère and Kamionka (2003). This approach is summarized
below.

Definition 25.1 To write the likelihood-function and the expected value under the
posterior of some function of parameters, additional notation is needed. Let MK be
the space of K×K stochastic matrices:

MK = {M =‖ mi j ‖ : mi j ≥ 0, ∀i, j ∈ E and
K

∑
j=1

mi j = 1, ∀ i ∈ E}.

Clearly, the transition probability matrix M(0,T ) belongs to MK . Let μ(M,s)
be a prior mapping MK × [0,1] into R (the uniform prior will be used in the ap-
plication). μ(M,s) is defined for M ∈ MK and for a vector of mixing measures
s = {si , i ∈ E} ∈ [0,1]K . [0,1]K denotes the cartesian product of K copies of
[0,1]. Let us denote Q the space of intensity matrices:

Q = {Q =‖ qi j ‖ : qi j ≥ 0, i, j ∈ E, i �= j and qii ≤ 0,∀i ∈ E}.
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If M(0,T ) is embeddable, there exists at least one matrix Q ∈ Q defined by
the equation M(0,T ) = exp(QT ), where T is the number of time units between
observations. Let M∗

K the space of embeddable stochastic matrices:

M∗
K = {M(0,T ) ∈ MK : ∃ Q ∈ Q, exp(QT ) = M(0,T )}.

If DK = MK × [0,1]K represents the parameters space for the model, then the
space D∗K = M∗

K× [0,1]K denotes the set of embeddable parameters and D∗K ⊂ DK .
As it was shown in subsection 2.1, the solution to M(0,T ) = exp(QT ) may not be
unique: this is the aliasing problem.

Let us consider now the set of matrices Q(k) ∈Q, solutions of the equation Q(k) =
log(M(0,T ))/T , for k = 1 , . . . , B(M). B(M) is the number of continuous-time un-
derlying processes corresponding to the discrete-time Markov chain represented by
M(0,T ) ∈MK . We have B(M) ∈ N and B(M) = 0 if M /∈M∗

K . Denote Q(k)(M) the
intensity matrix that corresponds to the k−th solution of log(M), k = 1, . . . ,B(M).
Q(k)(M), 1 ≤ k ≤ B(M), is a function defined for M ∈ M∗

K , Q(k)(M) ∈ Q. Let
h(k)(M) be a probability density function induced by a prior probability distribu-
tion on the k−th solution of the equation M(0,T ) = exp(QT ) when M ∈ M∗

K . By

definition, h(k)(M) verifies ∑B(M)
k=1 h(k)(M) = 1.

Let g(Q,s) be a function defined for (Q,s) ∈ Q× [0,1]K . This function is such
that the evaluation of its moments (in particular, the posterior mean and the posterior
standard deviation) is a question of interest. Thus, the posterior probability that the
transition probability matrix M is embeddable has the form:

Pr[(M,s) ∈ D∗K | (N,n)] =

∫

D∗K
L(M,s;N,n)μ(M,s) d(M,s)

∫

DK

L(M,s;N,n)μ(M,s) d(M,s)
(25.107)

Likelihood and Importance Functions

The likelihood function L≡ L(M,s;N,n) up to the initial distribution of the process
{X(t), t ≥ 0} is

L ∝
K

∏
i=1

Li (25.108)

where:

Li = [ si +(1− si)×{exp(QT )}L
ii ]ni × (1− si)ni(0)−ni

×{exp(QT )}nii−Lni
ii

K

∏
k �=i,k=1

{exp(QT )}nik
ik , (25.109)

{exp(QT )}i,k denoting the entry (i,k) of the K × K matrix exp(QT ). If Pr
[M ∈M∗

K | N,n] > 0, then
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E[g(Q,s) | (N,n);(M,s) ∈ D∗K ] (25.110)

=

∫

D∗K

B(M)

∑
k=1

h(k)(M) g(Q(k)(M),s) L(M,s;N,n) μ(M,s) d(M,s)
∫

DK

L(M,s;N,n) μ(M,s) d(M,s)

In order to evaluate the integrals inside expressions (25.107) and (25.110), an
adaptation of the Monte-Carlo method may be used because an analytical expression
for Q(k)(M) or B(M) when K≥ 3 has not been found yet. Let I(M,s) be a probability
density function defined for (M,s) ∈ DK . I(M,s) is the importance function from
which a sequence {Mi,si} of parameters will be drawn. We suppose that I(M,s) > 0
and that μ(M,s) and g(Q,s) are bounded above.

Let J(M) a function defined for M ∈MK :

J(M) =
{

1 if M ∈M∗
K

0 otherwise

Then

lim
I→ +∞

I

∑
i=1

J(Mi) L(Mi,si;N,n) μ(Mi,si)/I(Mi,si)

I

∑
i=1

L(Mi,si;N,n) μ(Mi,si)/I(Mi,si)

(25.111)

a.s= Pr[(M,s) ∈ D∗K | N,n]

and

E[g(Q,s) | N,n;(M,s) ∈ D∗K ] a.s=

lim
I→+∞

I

∑
i=1

B(M)

∑
k=1

h(k)(Mi) g[Q(k)(Mi),si]J(Mi) L(Mi,si;N,n) μ(Mi,si)
I(Mi,si)

I

∑
i=1

J(Mi) L(Mi,si;N,n) μ(Mi,si)/I(Mi,si)

(25.112)

where Pr[(M,s) ∈ D∗K | N,n] is the probability under the posterior that the discrete-
time Mover–Stayer model is embeddable with the continuous time one, and
E[g(Q,s) | N,n;(M,s) ∈ D∗K ] defines the posterior moments of the parameters’
function of interest.

For a better convergence of estimators (25.111) and (25.112), I(M,s) should be
concentrated on the part of DK where L(M,s;N,n) is nonnegligible. For that pur-
pose, if μ(M,s) is not concentrated on some part of the set DK (that’s the case when
μ is uniform), I(M,s) can be taken proportional to the likelihood L(M,s;N,n). Be-
cause drawing (M,s) from L(M,s;N,n) is difficult, Fougère and Kamionka (2003)
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choose a normal expansion for L(M,s;N,n) with mean the ML estimator (M̂, ŝ) and
with covariance matrix the inverse of the information matrix estimated at (M̂, ŝ).

When g(Q,s) and μ(M,s) are bounded above, the convergence of the estima-
tor (25.112) is obtained almost surely. When the function g(Q,s) does not verify
this property (for instance, if we are interested in the estimation of qi j), the con-
vergence of the expression (25.112) relies on the existence of the posterior mean:
E[g(Q,s) | (M,s) ∈ D∗K ;N,n].

The covariance matrix V associated to L(M,s;N,n) is block diagonal with blocks
consisting of matrices Vi, i = 1, . . . ,K, defined as:

Vi(M,s) =−E

[
∂ 2Log(Li(M,s;N,n))

∂θk∂θl

]−1

= Ri(M,s)−1 (25.113)

with θk,θl =
{

mi, j , i, j ∈ E
si , i ∈ E

where Ri(M,s) is the i− th diagonal block of the

information matrix R(M,s) associated to L(M,s;N,n). Then a sequence of draws
{(Mk,sk)}k=1,...,I can be generated according to the density of a multivariate normal
distribution with mean (M,s) and covariance matrix V (M,s) = R(M,s)−1. If we
suppose that Vi− = PiP′i is the Choleski’s decomposition of the matrix Vi− obtained
by dropping the last row and column of matrix Vi , and if yk ∼ N(0K , IK), then

zk = Pi yk +

⎛

⎜
⎜
⎜
⎝

si

mi1
...

miK−1

⎞

⎟
⎟
⎟
⎠
∼ N(

⎛

⎜
⎜
⎜
⎝

si

mi1
...

miK−1

⎞

⎟
⎟
⎟
⎠

,Vi−) (25.114)

Finally, we can obtain miK by setting miK = 1− ∑K−1
j=1 mi, j. Inside the pro-

cedure, si, (mi,1, . . . ,mi,K), and Vi are estimated by their MLE, respectively ŝi,
(m̂i,1, . . . , m̂i,K), and V̂i. For more details, see Fougère and Kamionka (2003).

Limiting Probability Distribution and Mobility Indices

The mobility of movers can be appreciated by examination of the mobility indices
for continuous-time Markov processes proposed by Geweke et al. (1986b). For the
movers process with intensity matrix Q, four indices of mobility can be considered:

M1(Q) = − log[det(M(0,T ))]/K =−tr(Q)/K

M2(Q) =
K

∑
i=1

Π(m)
i

K

∑
j=1

qi j | i− j |

M3(Q) = −
K

∑
j=1

Π(m)
j qi j

M4(Q) = −ℜe[log(λ2)] (25.115)
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where:

• Π(m)
i is the equilibrium probability in state i for the movers, given by equation

Q′π(m)
i = 0, with Σ K

i=1π(m)
i = 1,

• the eigenvalues of the matrix M(0,T ) denoted by λ1, . . . ,λK , are ordered so that
| λ1 |≥ . . .≥| λK |,

• ℜe denotes the real part of the logarithm of the eigenvalue λ2.

We can also define the equilibrium (or limiting) probability distribution for the
mixed “mover-stayer” process {Xt , t ∈ R

+}. For state i, the limiting probability, de-
noted πi, is given by:

πi = siηi +π(m)
i

K

∑
j=1

(1− s j)η j, i ∈ E (25.116)

where:

• η = {ηi, i ∈ E} is the initial probability distribution (i.e. at the date 0) for the
process {Xt , t ∈ R

+},
• and π(m)

i is the limiting probability of “movers” in state i.

It is easily verified that, for a purely markovian process (one for which si =
0, ∀i ∈ E), the formula (25.116) becomes πi = π(m)

i . The mobility indices (25.115)
and the limiting distribution (25.116) can be estimated using formula (25.112) and
taking respectively g(Q,s) = Mk(Q) (1≤ k ≤ 4), or g(Q,s) = π .

Bayesian Inference Using Gibbs Sampling

The likelihood function of the sample X can be written

L(X |s,M,X0)=
N

∏
n=1

2

∑
k=1

L (X(n)|s,M,Xo(n),zn=k) Pr[zn=k|s,M,Xo(n)]

where L is the conditional contribution of the individual n given the initial state
Xo(n) and the unobserved heterogeneity type zn. zn is an unobserved indicator tak-
ing the value 1 if the individual is a stayer or the value 2 if the individual is
a mover.

The prior density on the parameter θ = (s,M) is assumed to be the product of
the conjugate densities μ1(s) and μ2(M), where

μ1(M) =
K

∏
j=1

Γ(a j +b j)
Γ(a j)Γ(b j)

s
a j−1
j (1− s j)b j−1

is the Dirichlet distribution with parameters a j > 0, b j > 0, j = 1, . . . ,K, and
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μ2(M) =
K

∏
i=1

Γ

(
K

∑
k=1

αik

)

K

∏
k=1

Γ(αik)

K

∏
i, j=1

m
αi j−1
i j

is the matrix beta distribution with parameter αi j > 0, i, j = 1, . . . ,K.
The conditional distribution of the unobserved type zn is thus

zn | θ ,X(n) ∼ B(1; p(X(n);θ)) (25.117)

where

p(Xn;θ) =
L (X(n) | s,M,Xo(n),zn = 1) Pr[zn = 1 | s,M,Xo(n)]
2

∑
i=1

L (X(n) | s,M,Xo(n),zn = i) Pr[zn = i | s,M,Xo(n)]

Combining the prior and the sample informations we obtain that

s j | X ,Z ∼ Dirichlet

(

a j +
N

∑
n=1

i(n)
j (2− zn),b j +

N

∑
n=1

i(n)
j (zn−1)

)

(25.118)

M | X ,Z ∼ Matrix beta

(

αik +
N

∑
n=1

(zn−1)N(n)
ik ; i,k = 1, . . . ,K

)

(25.119)

The Gibbs sampling algorithm runs like this:
Initialization: Fix an initial value θ (0) = (s(0),M(0)).
Update from θ (m) to θ (m+1) by doing :
1 - Generate Z(m) according to the conditional distribution (25.117), given θ = θ (m)

and X;
2 - Generate θ (m+1) = (s(m+1),M(m+1)) using the conditional distribution (25.118)
and (25.119), given Z = Z(m) and X.

Under general regularity conditions and for m large enough, the resulting random
variable θ (m) is distributed according to the stationary posterior distribution μ(θ |
X). Draws from the stationary posterior distribution μ(θ | X) may be used to obtain
posterior estimates of θ using an expression similar to the one given by (25.112)
(see Fougère and Kamionka, (2003)). Step one of the algorithm corresponds to a
data augmentation step (see, Robert and Casella, (2002)).

25.4 Concluding Remarks

This chapter has introduced reduced-form models and statistical methods for an-
alyzing longitudinal panel data on individual labor market transitions. The first
section gave a very general presentation of methods concerning continuous-time
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observations, while the second section focused on the treatment of discrete-time
observations for continuous-time discrete-state processes.

Obviously, our survey did not intend to cover exhaustively a continuously and
rapidly growing literature. Among subjects treated in this field of research, two top-
ics seem to be especially important. The first one is the treatment of endogenous
selection bias in dynamic populations (see Lancaster and Imbens, (1990), (1995),
Lancaster, (1990b), Ham and Lalonde, (1996), and Fougère, Kamionka and Prieto,
(2005)). Indeed, some sampling schemes for continuous-time discrete state space
processes are such that the probability of being in the sample depends on the en-
dogenous variable, i.e. being in a given state (for example, unemployment) at some
date. Consequently inference from these endogenous samples requires specific sta-
tistical methods which have begun to be elaborated (see the papers quoted above).
Another research area is the evaluation of the effect of public interventions such as
employment and training programs. Here the main problem is knowing if these pro-
grams have a joint positive effect on earnings and employment rates of beneficiaries
(see, for example, papers by Card and Sullivan, (1988), Heckman, (1990), Eber-
wein, Ham and Lalonde, (1997), Bonnal, Fougère and Sérandon, (1997), Heckman,
Lalonde and Smith, (1999)). In order to avoid misleading results, this evaluation
must take into account the selection biases induced simultaneously by the process
of eligibility to the program and by the sampling scheme. Thus these two fields of
research are very closely connected.
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Chapter 26
Software Review

Pierre Blanchard

26.1 Introduction

Since the previous edition of this book, econometric software used for estimating
panel data models have been improved on three different scales. First, many pack-
ages allow now to estimate linear models on huge panel data sets made up of thou-
sands of individuals with moderate execution times, even on a personal computer.
Second, the estimation of linear dynamic panel data models is becoming more and
more frequent. With several packages, it is now easy, i.e. with short programming,
to estimate such models by instrumental variable method or by generalized method
of moments. Lastly, the evolution has been the most significant in non linear model
estimation on panel data. As shown in this book, an important literature on discrete
choice and count models estimation with panel data, to name only a few, has been
developed. Estimating such models is now an essential trend for applied econome-
tricians and the need for appropriate econometric software is great.

Furthermore, a rapid glance to publications1 frequently reviewing econometric
software shows that the number of software used by econometricians (including
their add-on modules and user application programs) has considerably increased.
Even if we restrain ourselves to those which can be easily used with panel data, a
great deal offer various econometric methods and provide different environments.
Software for econometrics on panel data can broadly be classified into two main
groups:

• First, we find general-purpose econometric packages, like LIMDEP, RATS, SAS,
TSP. . . using command-driven languages, pull-down menus or both. They are

Pierre Blanchard
Erudite, Faculté de Sciences Economiques et de Gestion, Université Paris XII Val de Marne, 61
Av. du Général de Gaulle, 94010 Créteil Cédex, France, e-mail: blanchard@univ-paris12.fr

1 For instance, Computational Economics, Economic Journal, Journal of Applied Econometrics,
Journal of Economic Surveys. . .
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easy to use and flexible to allow many, but not all, sorts of model estimation. For
specific problems, they offer very often a matrix programming language.

• The second group consists of high-level matrix programming languages such as
GAUSS, Ox. . . A common feature of these languages is that they are oriented
towards intensive matrix manipulations. They require a good level of skill in pro-
gramming, but they have the advantage of being largely flexible and, potentially
at least, very fast. They are mainly used for hard to program estimation methods
(non linear models), Monte-Carlo simulation. . .

Among the six software selected in the 1996’s version of this chapter, five of them
have made significant improvements and then will be reviewed here: four general-
purpose econometric packages, LIMDEP, RATS, TSP, SAS and one high-level ma-
trix programming language, GAUSS. Three others, not included in the previous
edition, were added: two general-purpose econometric packages: EViews and Stata;
one high-level matrix programming language: Ox.

Moreover, some very well known software are not included in this review, for
instance, Shazam, SPSS. . . (general-purpose econometric packages), O-Matrix, R,
S-Plus. . . (high-level matrix programming languages) and some specialized soft-
ware (Frontier. . . ). We did not review them because we need some basic economet-
ric methods for panel data (within, between, FGLS, IV. . . estimators) which must be
available without tedious programming (or with template programs and adds-ons).

In the first two sections of this chapter, we analyze the selected software be-
longing to each two groups enumerated above. Most of these software are regularly
reviewed, so we discuss them mainly in terms of panel data management and rele-
vant econometric methods they offer. We illustrate2 their capabilities in estimating
first, linear static and dynamic panel data models and, second (when possible), sev-
eral non linear models (a random effects model and a random effects probit model
estimated by maximum likelihood method).

As emphasized by McCullough and Vinod (1999), numerical accuracy is an im-
portant, but often neglected, characteristic of econometric software. Section 26.3 is
devoted to this problem and to performance evaluation.

26.2 General-Purpose Econometric Packages

26.2.1 EViews (v. 5.1)

EViews (Econometric Views) is mainly used for graphical and statistical analy-
sis, time series estimation and model simulation (see Roberts, 1995, Holly and
Turner, 1998, Sparks, 1997 and Noble, 1999). Thanks to version 4, it was already
possible to estimate some panel data models with the pool object, which is useful

2 All the programs, data and web links used in this chapter can be found on a companion web site
of this volume (http://www.univ-paris12.fr/epd).
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Table 26.1 EViews code #1 (grunfeld eviews.prg)

cd c:\epd\data\eviews ’ default directory
wfcreate(wf="grunfeld") a 1935 1954 10 ’ creating the workfile
read(t=xls,a2) "grunfeld.xls" 11 ’ loading the excel file

when dealing with a panel dataset with small N and large T. The last release3 offers
now extended panel data management capabilities and estimation features for bal-
anced and unbalanced panel, particularly when the panel datasets contain many indi-
viduals. One of the interesting features of EViews is that this software is designed to
be used mainly by pull-down menu. A program mode (with also a command line in-
terface) is also available, and, for space limitation reasons, we limit our presentation
to the batch mode, which is not necessarily the simplest one. Another particular as-
pect of this software is the concept of workfile which is central to EViews’ working.
A workfile is a container for EViews objects (equations, graphs, matrices, series. . . )
and each workfile may be formed of one or more workfile pages (each containing
specific objects). EViews can manage series of maximum 4 million observations for
each, and the total number of observations is only limited by available RAM size.4

When a user works on a panel data set, its workfile will contain several series which
are associated with an individual identifier and a date identifier. Entering panel data
in the workfile depends on the nature of the panel data set.

If the panel is a balanced one and if the basic dataset is, for instance, in an Excel
format, the following code5 (see Table 26.1) will execute this task for the Grunfeld
data (N = 10, T = 20).

In the wfcreate instruction, a stands for annual data (beginning in 1935 and
ending in 1954, but other periodicities instead of annual may be used) and 10 in-
dicates than the panel contains 10 individuals. The read instruction can import
ASCII, Lotus and Excel files. For reading more file formats (Stata, SAS transport,
HTML, GAUSS, GiveWin, RATS, TSP. . . ), in addition to the previous ones, one
can use the wfopen instruction (see Table 26.2).

If the panel is unbalanced, you must follow three steps. First, you have to create
an unstructured workfile with the wfcreate instruction. Second, read the external
data file (or even an EViews file) with a read or wfopen instruction. Third, it is
necessary to structure the workfile as an unbalanced panel with the pagestruct
instruction applied to an individual identifier (say ident) and to a date identifier

3 EViews 6 is now available.
4 For instance, with 256 Mb RAM, a workfile may contain more than 1900 series with 100,000
observations each.
5 In this chapter, sofware commands, options and Web links are written in Typewriter font.
For all softwares, except EViews, Ox and Stata, the first letter of a command is written in uppercase;
file names and (user) variable names are written in lowercase. For Stata, commands, file names and
variables names are always in lowercase. For Ox, names are case sensitive. We follow the EViews
documentation in writing all in lower cases.
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Table 26.2 EViews code #2 (ab eviews.prg)

cd c:\epd\data\eviews ’ default directory
wfcreate(wf="ab") u 1 1031 ’ creating the undated structure
wfopen "c:\epd\data\excel\ab.xls" ’ loading the excel file
pagestruct ident @date(year) ’ creating the panel structure

(say year). These steps are illustrated by the following piece of code using data
from Arellano and Bond, 1991 (hereafter AB), saved initially in an Excel file.

Of course, if the data are already saved in a panel data workfile, wfopen
"c:\epd\data\excel\ab.xls" would be sufficient. If the workfile has not
a panel structure, add only a pagestruct instruction (you will need an individual
identifier and a date identifier) after the instruction wfopen.

Moreover, a sort instruction with several sort keys is available and merging
workfiles is also possible by using links facilities (easy to do by menus). Alphanu-
meric series and several date formats are recognized in a workfile, but EViews con-
siders alphanumeric series in an Excel or an ASCII files as missing values (coded
by na). A complete programming language may be used for complex tasks.

Once, your workfile is ready, graphics, descriptive statistics and estimation on
panel data estimation are quite straightforward. First, EViews offers several use-
ful tools (statistics, graphics, test for equality of means and variances between
groups. . . ) as shown by the following program reproduce in Table 26.3.

This code illustrates another EViews characteristic: the object concept. For in-
stance, the previous program defines a group object (named g1 referring to the
variables year and gi). Then, we can apply some view (a graph, some tests for in-
stance) or some procedures (e.g. an equation estimation) to this object. Static panel
data estimation is easily carried out by few instructions. Nevertheless, there is one
exception: the between estimator which requires a great deal of programming (this
cannot be done by menus). We do not report how to obtain between estimation due
to space limitations (see grunfeld eviews.prg).

The ls instruction (see Table 26.4) offers several options which are very useful
for panel data estimation, particularly several ways to apply robust methods for
computing the coefficient standard errors (White, SUR. . . ). One-way and two-way
specifications are also supported as well as different ways to estimate the component
variances in random effects models (Swamy-Arora, Wallace-Hussain, Wansbeek-
Kapteyn).

Table 26.3 EViews code #3 (grunfeld eviews.prg)

vc.statby ident ’ descriptive statistics by individual
group g1 year gi ’ defining a group of variables
g1.xy(panel=individual) ’ individual graphs
gi.testby(mean) ident ’ anova
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Table 26.4 EViews code #4 (grunfeld eviews.prg)

equation ols.ls gi c vf vc ’ ols
equation within.ls(cx=f) gi vf vc c ’ within
equation ec.ls(cx=r) gi vf vc c ’ fgls
ec.ranhaus ’Hausman test

Dynamic panel data estimations6 are equally easy to obtain by the use of menu
(Proc and by choosing the GMM/DPD method) or by the Dynamic Panel Wizard
(a succession of 6 dialog windows). This can be also done by programming as in-
dicated in Table 26.5 which can reproduce the AB results (Tables 4 and 5, pp. 290,
292). We can also apply the Anderson–Hsiao estimator (hereafter AH, see Anderson
and Hsiao, 1981). Note that the underscore (“ ”) is the continuation line character.

This program requires several explanations.

1. First, note the use (new to EViews 5) of replacement variables (called sometimes
macro variables) quite useful for defining variable lists used repetitively. For in-
stance, %inst = "w w(-1) k k(-1) k(-2) ys ys(-1) ys(-2)"
defines a list of instruments which can be used when {%inst} is referred to in
the program. Remark also that there is only one instruction in each line. A long
instruction may be set in several lines with the (underscore) character.

Table 26.5 EViews code #5 (ab eviews.prg)

’ define replacement variables
%rhs = "n(-1) n(-2) w w(-1) k k(-1) k(-2) ys ys(-1) ys(-2)"
%model = "n " + %rhs
%inst = "w w(-1) k k(-1) k(-2) ys ys(-1) ys(-2)"
’ (5g) OLS with White robust se
equation ols.gmm(per=f,gmm=perwhite) {%model} @ {%rhs}
’ (5h) LSDV with White robust se
equation within.ls(cx=f,per=f,cov=perwhite,nodf) {%model}
’ (5e) AH with n(-3) in diff., White robust se.
equation ahd.gmm(cx=fd,per=f,levelper,cov=perwhite,nodf)

{%model} @ n(-2) n(-3) {%inst}
’ (5f) AH with n(-3) in lev., White Period Robust se.
equation ahl.gmm(cx=fd,per=f,levelper,

gmm=ident,cov=perwhite,nodf)
{%model} @ n(-2) @lev(n(-3)) {%inst}

’ (4a1) AB first-diff., period dum. in lev., 1st step robust.
equation aba1.gmm(cx=fd,per=f,levelper,cov=perwhite,nodf)

{%model} @ @dyn(n) {%inst}
’ (4a2) - AB first-diff., period dum. in lev., 2nd step robust
equation aba2.gmm(cx=fd,per=f,levelper,gmm=perwhite)

{%model} @ @dyn(n) {%inst}

6 Instrumental variable estimation can be obtained with the tsls instruction.
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2. EViews propose several functions that are useful for panel data.
@expand(ident) owes to create automatically individual dummy variables
(one for each individual in the panel). There are also instructions for creating
trend variables (@trend, @trendc. . . ).

3. Option cx= requires fixed effects estimation when cx=f, first difference estima-
tion when cx=fd and orthogonal deviation when cx=od. By default, no trans-
formation is done. When per=f, time dummies are included, and if levelper
is specified, time dummies are in levels even if cx=fd or cx=od.

4. gmm and cov Options define GMM weighting (identity, White. . . ) and coeffi-
cient covariance computation method (White, SUR, ordinary. . . ).

5. The special instruction @dyn(n,-2,-5) permits to include lags of n from 2
to 5 as instruments as suggested by Arellano and Bond, (1991). With @dyn(n),
EViews will incorporate all the possible lags.

There are other EViews capabilities that have to retain our attention. EViews 5 is
the first software which offers panel data unit root tests without any programming.
In recent years, there has been growing interest in the use of macroeconomic panel
data (sets of countries, regions or industries -large N- on many periods -large T-). It
is frequently advocated that panel data unit root tests have higher power than those
done on time series data. With EViews, several tests are available (provided with
many options): (1) Levin, Lin and Chu, (2) Breitung, (3) Im, Pesaran and Shin, (4)
Fisher-type using ADF (5) Fisher-type using PP and (6) Hadri tests. The availability of
these tests associated to many estimation methods on pooled time-series cross-section
data (T large, N small) will certainly be useful for panel data macroeconomists.

Up to now, non linear model estimation (binary probit/logit, ordered mod-
els, censored models, count models. . . ) are limited to cross section data. Never-
theless, EViews offers a specific procedure (called the Log Likelihood Object)
to estimate other non linear models by the maximum likelihood method (see
chronoml eviews.prg used in Sect. 26.4.1). Yet, it seems difficult to adapt
it to non linear panel data estimation (random effects probit model, by instance)
when it is necessary to evaluate separately the log likelihood by individuals on
Ti periods.

The on-line help and the paper documentation (2 volumes, more than one hun-
dred pages on pooled and panel data management and estimation) are quite good.
The web site contains mainly commercial information. A EViews group discussion
via E-mail or via Usenet is not available. It would be useful that, in the future, more
program examples on panel data will be downloadable.

26.2.2 LIMDEP (v. 8) with NLOGIT (v. 3)

LIMDEP7 (LIMited DEPendent variable models) was initially designed, as its
name indicates, in order to estimate models having limited or qualitative dependant

7 LIMDEP 9 and NLOGIT 4 are available.
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variables. Successive releases have improved its coverage of econometric methods
in many domains.

As noted by McKenzie and Takaoka (2003), LIMDEP Version 8 (with 3.0 for
Nlogit) “represents a significant expansion of the estimation techniques for panel
data models”. For some discrete choice models estimation on panel data, you will
need Nlogit, available at a substantial extra cost. In all cases, very few programming
is required.

LIMDEP requires a microcomputer running under Windows 95 or a later ver-
sion and works either in batch mode or by menu. LIMDEP uses four key win-
dows: the output window (which reports log and results), the project window, the
command window and the data editor window. As our focus is concentrated only
on batch mode, we let aside the use of menu and use mainly the command win-
dow. On this point, one of LIMDEP’s interesting feature is that it produces a trace
file (trace.lim) which gives a complete trace of the LIMDEP’s session (list of
commands obtained when using the mode menu, for instance). Further details on
LIMDEP’s general features may be founded in Fry (1996), Heywood and Rebelo
(1996), Wright (1996), McCullough (1999b), McKenzie (2000) and McKenzie and
Takaoka (2003).

As it is simply impossible to give a complete list of the LIMDEP capabilities in
panel data field, we sketch only the most important. Note that, generally speaking,
little programming is required.

As we focus on the batch mode, we only need to describe the panel data file and
the file (.lim) containing LIMDEP’s code .

Firstly, LIMDEP may manage large (balanced or unbalanced) panel datasets with
a limit8 of 900 variables (see the rows instruction). LIMDEP may read various file
formats, mainly ASCII, XLS, binary. . . A panel data is supposed to be organized
by individuals; if not, a Sort instruction with one key is available for re-ordering
the panel if necessary (you may use too the Reorder options of Regress com-
mand). Merging panel datasets is not possible only in the case when you have to
merge a panel dataset containing invariant variables with a usual panel dataset (in
Read instruction). Obviously, you need a common individual identifier. So, that is
why one needs (unless your data are balanced) a panel dataset that contains an indi-
vidual identifier (say ident) which can be of any numerical values. Note also that
missing values are managed in a very particular way by LIMDEP. Missing values
are coded with -999. Whether these observations are eliminated for computations or
not depends on the command being used. For panel data estimation, LIMDEP will
exclude all the rows for an individual if one observation is missing. Notice that, with
panel data, the Create instruction like Create; x1 = x[-1] $ does not take
into account the switching from an individual to another one. In this case, you can
use the Reject instruction to eliminate some observations, but this may contra-
dict the Pds specification (see below, but don’t use the Skip instruction). So, users
have to be very careful, in particular with dynamic models.

8 See Limdep’s documentation for a complete list of program limits. For instance, with the fixed
effects binary logit model, 100 periods for one individual is a maximum.
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Table 26.6 Limdep code #1 (grunfeld.lim)

Reset $
Read ; File = C:\epd\data\excel\grunfeld.xls; Format=Xls;Names $
Title ; ols, within and fgls estimations $
Regress ; Lhs = gi ; Rhs = One, vf, vc ; Pds=20 ; Panel $
Title ; between estimation $
Regress ; Lhs = gi ; Rhs = One, vf, vc ; Pds=20 ; Means;Panel $

Secondly, the definition of the panel data structure is set up when specifying the
estimation instructions, and not when reading the data file. In Table 26.6, we present
a simple example on Grunfeld’s data.

This short program suggests several remarks:

• In batch mode, you have to be careful in typing commands which use $ and
; symbols in a different way from other software (TSP, SAS. . . ). Commands
end with a $ and ; is the symbol for separating options (if any) in a command.
Comments are included with the ? comment ; or with the /* comment */
syntax. In the same way, LIMDEP’s programming language may be different
from others in the way it treats loop’s instructions, procedures etc.

• As our panel is balanced, we specify Pds = 20, because the panel has 20 peri-
ods by individual (a group for LIMDEP). If the panel was unbalanced, you have
to write Pds = ni where ni is a variable which gives, each individual, the
number of period observations (for instance 4,4,4,4,2,2,3,3,3). Our model be-
ing a linear one,9 it would be possible to replace the Pds specification by Str
= ident where ident is a numerical variable containing a unique numeric
identifier code. It is possible to create a ni (and a new ident identifier)
variable by the following code: Regress ; Lhs = One; Rhs = One;
Str = ident ; Panel $. This will create two new variables: groupti
which contains the number of observations by individual, and stratum con-
taining a new individual identifier equal to 1,2, . . . ,N. Another useful instruction
(not shown above) Expand, may transform a categorical variable into a set of
dummy variables.

• Our Panel option requires an estimation for the panel data, in our example,
a one-way fixed or random effects linear models. Through Means, Fixed
Effects or Random Effects options, it is possible to obtain only spe-
cific results. Note also, that the output (not shown) is very clear and detailed;
many useful tests are automatically reported (Hausman, F, LR and LM tests).
Other tests may be programmed with LIMDEP’s programming language. For
a two-way specification, just specify Period = timev where timev is a
variable name containing integers like 1,2, . . . ,Ti but not like timev = 1981,
1982, . . . ,1999.

9 For non linear models estimation on panel data, the STR specification is not possible, you must
provide Pds = varname or Pds = number.
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• Many other possibilities are available (with specific instructions or program tem-
plates): Restricted estimation, White robust estimation, random effects model es-
timation with autocorrelated error structure, estimation by 2SLS (for fixed effects
model), the Hausman-Taylor (hereafter HT) estimator for random effects model,
estimation of Hildreth-Houck and Swamy’s random coefficients models etc.

For dynamic linear panel data models, Arellano–Bond-Bover GMM’s estimator
is available with LIMDEP, but it correctly works only with LIMDEP 9 (see the
program called ab.lim, not reproduced here).

As far as non linear models on panel data are concerned, the range of LIMDEP
capabilities is huge. With LIMDEP, you can estimate probit/logit, truncation, or-
dered probit/logit, poisson, negative binomial, bivariate probit, sample selection
and stochastic frontier models with either fixed or random effects. With the Nlogit
package, multinomial logit, heteroscedastic extreme value, random parameters logit,
nested logit, latent class, multinomial multiperiod probit models among others may
also be estimated. We will study only two illustrations. First, in Table 26.7, we esti-
mate (on Grunfeld’s data) a one-way linear random effects model by ML.

This example shows how we can use the Gxbr instructions for computing indi-
vidual means, and the deviations to individual means. It indicates also that it is easy
to write the log-likelihood for an observation. Note that it is possible to supply (not
shown here) first (but not second) derivatives when speed and convergence prob-
lems are important. If the log likelihood has to be computed in using separately the
Ti log-likelihood for an individual, it will be more complicated.

Fortunately, for many situations, LIMDEP does it automatically. Very few pro-
gramming is then required for estimating mixed, binary, multinomial probit/logit. . .
models. For instance, in Table 26.8, we estimate on Keane and Wolpin’s data (here-
after KW, see Keane and Wolpin, 1997) a random effects binary probit model.

Table 26.7 Limdep code #2 (grunfeld.lim)

? creating the individual means (used by ml)
Matrix ; mgib = Gxbr(gi,ident) ; mvfb = Gxbr(vf,ident) ;

mvcb = Gxbr(vc,ident) $
Create ; gib = Mgib(ident) ; vfb = Mvfb(ident) ;

vcb = Mvcb(ident) $
? creating deviations to individual means
Create ; giw = gi - gib ; vfw = vf - vfb ; vcw = vc - vcb $
Title ; ML estimation of error components model $
Calc ; tt = 20 ; nn = 10 ; nt = 200 $
Maximize ; Start = 1.0 , 1.0 , 1.0 , 1.0 , 1.0 ;

Labels = b0 , b1 , b2, s2u , s2a ; Alg = Bfgs ;
Fcn = -Log(2*3.14116)/2-Log(s2u)*(tt-1)/(2*tt)

-Log(s2u+tt*s2a)/(2*tt)-(1/(2*s2u))*((giw - b1*vfw -
b2*vcw)ˆ2)

-(1/(2*(s2u+tt*s2a)))*((gib - b0 - b1*vfb -
b2*vcb)ˆ2) $
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Table 26.8 Limdep code #3 (discrete choice.lim)

Reset $
? NB: ident (1 to 1838), year (81 to 87)
? NB : choice 1= school, 2=home, 3=wcollar, 4=bcollar, 5=serv
? Reading an Excel data file
Read ; File = c:\epd\data\excel\kw.xls;Format=XLS;Names $
? creating a variable named groupti given Ti
Regress ; Lhs = One ; Rhs = One ; Str = ident ; Panel $
? Creating the 0/1 variable for binomial models
Create ; status = choice > 2 $
Title ; one way random effects probit model $
Probit;Lhs=status;Rhs=One,educ,exper,expersq,black;

Pds= groupti ; Random Effects; Maxit = 500 $
Stop $

The documentation is good, large (may be too large, one Reference Guide and
two Econometric Modeling Guides, plus a separate documentation for NLOGIT,
all with many examples) and sometimes we encounter some repetitions (see, for
instance, § R6-6 and § R16-24). Nevertheless, even if you have not planned to use
LIMDEP, you ought to read, at least, the two chapters entirely devoted to panel data
models (chapter E8, Linear Models for Panel Data and E14, Panel Data for Binary
Choice). Indeed, they contain very interesting information concerning these models,
in particular, many illuminating technical details and very judicious notes on prac-
tical aspects of econometric modeling with panel data. The LIMDEP’s listserv is of
equal interest.

26.2.3 RATS (v. 6)

Even if RATS (Regression Analysis of Time Series) is mainly designed for time
series analysis, it also provides a few special instructions to estimate linear models
on panel data.

One interesting RATS’ feature is that it deals explicitly with the panel data struc-
ture. This can be done with the Calendar and Allocate instructions10 which
define the data structure. For instance, if you use the Grunfeld’s data (a balanced
panel dataset), you may write, at the beginning of your RATS program, the follow-
ing code:11

Calendar(Panelobs=20) 1935 1 1
Allocate 10//1954:1

10 Allocate is now optional with RATS 6.
11 A Wizard environment is also available for some simple tasks.
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This panel data set have 10 individuals (firms), observed between 1935 and 1954
(20 years). The observation for a variable, say y, for individual n◦3 observed in
1950 is referenced like y(3//1950:1). Note that, for RATS, a panel data set is
always organized by individual (all time periods for the first individual, followed by
all time period for the second individual,. . .). Moreover, the periodicity of the panel
may be annual, quarterly, biannual, monthly, weekly. . . In adjusting the Calendar
and Allocate, you could extract easily a sub sample from the file too.

The panel doesn’t need to be balanced, as it is the case for AB data. Some caution
is yet required: if you are reading a non RATS data file (Excel for instance), your file
must be “balanced” in a special sense, i.e. each individual must be observed during
the same period, but when an individual is not observed in a given year, variables
(but not the date’s entry) have to be set to missing values (%NA for RATS). You can
balance it manually or in using the Pform instruction (see ab rats.prg for an
illustration). This instruction may reorganize unbalanced panel data series (an index
series for the individuals and for the time periods are then required); RATS inserts
missing values for all variables when a year for an individual is missing. When the
operation is realized, you can save your “balanced panel dataset” in a RATS data
file. It is then possible, for instance, that an individual begins in 1976 and stops in
1986 and another one begins in 1979 and stops in 1983.

Suppose now that your panel data set is well defined. Thanks to the Calendar
and Allocate instructions, creating new series becomes very simple. Particularly,
if you create a lagged series by SET yl1 / = y{1}, the series yl1 contains a
missing value in the first year of each individual. This same property applies to
differenced and led series. Moreover, RATS documentation provides simple code
for creating trend series, individual and time dummies using specific panel function
%trend(t), %indiv(t) and %period(t). When your variables (the series
for RATS) are correctly defined, you have several ways for estimating a panel data
model.

RATS offers various instructions to estimate a static linear model with random
or fixed effects (one-way or two-way).

To estimate a (one-way) random and fixed effects model on the Grunfeld’s data,
the most simple way is to use the Pregress instruction, see Table 26.9.

Unbalanced panels are correctly taken into account in the computation of θi.
Another way that aims at estimating a (one-way) fixed or random effects model

consists in using, first the Panel instruction to transform the series in taking devi-
ation to the individual means, and then to estimate the transformed model by OLS.
As an example, in order to apply the within estimator, we can transform the original
series in deviation to the individual means by instructions reported in Table 26.10
which create giwit = giit−gii., . . . and then, estimate the transformed model by OLS.

Note that (Dfc=10) is necessary for correcting the number of degrees of free-
dom that are lost by substracting out the 140 (we suppose N = 140) individual
means. The Pregress instruction do not have a constant term.

We can proceed in a similar way to estimate a model by between or FGLS es-
timator. Moreover, a random effects model can be also estimated in using first, the
instruction Pstats applied to the OLS residuals to obtain estimations of a σ2

u and
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Table 26.9 RATS code #1 (grunfeld rats.prg)

End 1
Calendar(Panelobs=20) 1935 1 1
Allocate 10//1954:1

* Reading the xls data file
Open Data C:\epd\data\excel\grunfeld.xls
Data(Unit=Data,Format=Xls,Org=Obs) / ident year gi vf vc
Close Data

* within
Pregress(Effects=Indiv,Method=Fixed) gi
# vf vc

* fgls
Pregress(Effects=Indiv,Method=Random) gi
# Constant vf vc

σ2
ε , second, in computing θi by usual formula, third in transforming the original

series with the Panel instruction under the form gireit = giit−θigii., . . . and finally
in applying OLS on transformed series.

From the point of view of the panel data model estimation process, RATS is
flexible and can deal with large panel datasets thanks to its use of virtual memory.
Nevertheless, the output regression is incomplete, only an F test for the presence of
individual (or time) specific effects and a LR test for equal variance of perturbations
across individuals (with the Pstats instruction) are reported. Neither Hausman
test, nor other tests for the presence of individual (or time) specific effects (two
sided and one sided LM, . . . ) are available without programming. Of course, it is
always possible to program them with RATS in using its matrix language or with
users’s procedures (if any).

On the Estima Web site, there are several programs that can be used in estimat-
ing dynamic linear models on panel data by GMM. However some programming
efforts are required as, for instance, in the design of the instruments matrix used by
AB estimator (see ab rats.prg). Nevertheless, in simpler cases, for instance, es-
timating a dynamic panel data model by AH method is easy to realize. It is achieved
by the code given in Table 26.11.

There are no specialized instructions for estimating non linear models on panel
data (probit random effects model,. . . ). But, maximum likelihood estimation may
be done using the Maximize instruction. For instance, with RATS, it is easy to
estimate a random effects model by ML. One needs only to write the likelihood for
an observation using individual means and deviation to individual means created

Table 26.10 RATS code #2 (grunfeld rats.prg)

Panel(Entry=1.0,Indiv=-1.0) gi / giw
Panel(Entry=1.0,Indiv=-1.0) vf / vfw
Panel(Entry=1.0,Indiv=-1.0) vc / vcw
Linreg(Dfc=10) giw
# vfw vcw
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Table 26.11 RATS code #3 (ab rats.prg)

Calendar(Panelobs=9) 1976 1 1
Allocate 140//1984:1

* reading the data file and variable creation not reproduced

* computing variables in difference
Diff n / dn ; Diff w / dw ; Diff k / dk ; Diff ys / dys

* estimation by Anderson-Hsiao IV, cf. AB (1991), pp. 292 col e
Instruments dn{2 3} dw{0 1} dk{0 1 2} dys{0 1 2} dumyear
Linreg(Optimalweights,Instruments,Robusterrors,Lags=T-1) dn
# dn{1 2} dw{0 1} dk{0 1 2} dys{0 1 2} dumyear

by the Panel instruction. Remember that RATS requires that you write the log
likelihood for an individual i at time t, which is done by the Frml instructions
reproduced in Table 26.12.

If your log likelihood involves computation of individual log likelihood by prod-
uct of time period observations (for instance as in a random effects probit model),
this will be more difficult to realize. Moreover, as it seems impossible to define first
and second derivatives, it will be difficult to achieve convergence in some compli-
cated cases.

More generally (cf. McCullough (1997) and Heywood and Rebelo (1996)),
RATS works through an interactive mode as well as in batch mode and is available
for many platforms (Windows, Macintosh, Unix, VMS. . . ). RATS has a simple but
good interface (basically, a program window and an output/log window). It can read
and write numerous file formats (ASCII, XLS, DBF12. . . ) and also has some data-
bank management functions. Nevertheless, a merge instruction is not offered and
the sort instruction (Order) admits only one sort key, which is not always adequate
for some panel data management. Another deficiency is the lack of cross-tabulation
instruction.

The Estima Web site contains a wide range of useful information, in particu-
lar for panel data, some RATS programs or procedures for (Pedroni) unit root and

Table 26.12 RATS code #4 (grunfeld rats.prg)

Nonlin b1 b2 b3 s2u s2b
Compute b1=b2=b3=s2u=s2b=1
Frml resww = giw - b2*vfw - b3*vcw
Frml resbb = gib -b1 - b2*vfb - b3*vcb
Frml logl = -0.5*Log(2*%PI) -Log(s2u)*(tt-1)/(2*tt) $

-Log(s2u+tt*s2b)/(2*tt) -(1/(2*s2u))*(resww**2) $
-(1/(2*(s2u+tt*s2b)))*(resbb**2)

Maximize(Iter=2000,Notrace,Print) logl /

12 This format is quite useful for file conversion because DBF file are not restricted on the number
of records and of variables, contrarly to Excel which is limited to 65536 lines and 256 columns.
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cointegration testing with panel data, estimation of spatial correlation consistent co-
variance matrix from panel data, estimation of Swamy’s random coefficient model.

In addition, you can download some panel data example programs with their data
sets to reproduce the results presented, for instance, in Wooldridge (2002).

The documentation is good (many examples with data & programs). Neverthe-
less, in some cases, computational methods are not fully described, for instance:
how does the Pstats instruction work? how are obtained the estimations of a σ2

u ,
σ2

ε and then θi with the Pregress instruction? This may be not a problem due to
the very effective working of the RATS discussion list.

26.2.4 SAS (v. 9.1)

SAS is probably the best known of all statistical software packages and is avail-
able virtually on all platforms except on Macintosh computers. Microcomputer and
mainframe versions have exactly the same features with a homogeneous user’s inter-
face (mainly three windows: program, log and output ones). Working in interactive
and batch modes, SAS covers a wide range of statistical and econometric methods
available in several modules which can be rented separately (SAS/Base, SAS/Stat,
SAS/ETS, SAS/Graph. . . ).

An SAS program consists usually in series of Data steps which create SAS ta-
bles on which we apply Procedure steps to carry out statistical, graphical and other
types of analysis. SAS uses virtual memory and offers a powerful macro-language
(SAS/Macro included in SAS/Base) and a good matrix programming language
(SAS/IML) as a separate module. Even if some improvements had been reached
with the last release, SAS is very often criticized for its outdated features which do
not support many econometric estimation methods and econometric testing. This is
particularly true for panel data estimation.

SAS provides very few specific procedures for static linear model estimation
on panel data. The most useful one is Proc Tscsreg which is illustrated in
Table 26.13 applied to Grunfeld’s data.

Several points stand out in Proc Tscsreg. First, the panel dataset may be ei-
ther balanced or unbalanced using the Id instruction for balanced (or unbalanced
data or Cs= and Ts= options for balanced data). Second, two-way model estima-
tions are possible in specifying Fixedtwo or Rantwo options and some variants
are available (first-order autoregressive structure for the error term. . . ). Third, this
procedure reports an Hausman test and an F test for no fixed effects. Finally, with
a great number of individuals (> 5000 with the configuration used in this review),
a virtual memory problem may appear when using the within estimator (probably
due to the computation of fixed effects without using Frisch-Waugh method). In this
case, it is better to use Proc Gml with the Absorb (using Frisch-Waugh method)
instruction as shown in Table 26.13.

Nevertheless, FGLS estimation is always very slow with numerous individu-
als (with Proc Tscsreg) due to the preliminary estimation of the fixed effects
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Table 26.13 SAS code # 1 (grunfeld.sas)

Libname in ’c:\epd\data\sas’ ; Run ;

Proc Tscsreg Data = in.grunfeld ;
Id ident year ; Model gi = vf vc / Fixone ; Title within ;

Run ;

Proc Tscsreg Data = in.grunfeld ;
Id ident year ; Model gi = vf vc / Ranone ; TITLE fgls;Run ;

Proc Glm Data = in.grunfeld ; Model gi = vf vc ; Absorb ident ;
Title within with Proc Glm ; Run ;

Proc Mixed Data = in.grunfeld ; Class ident ;
Model gi = vf vc / S ; Random ident / S ; Method = Ml ;

Title ML estimation of RE model ; Run ;

models used for computing σ2
ε . So, very often, users prefer first, to transform the

variables in computing individual means, differences and quasi-differences to in-
dividual means and second, to estimate the transformed models by OLS obtaining
between, within or FGLS estimates. The resulting program (not reported here be-
cause of space limitation) is longer but faster in executing on large panel datasets.

For maximum likelihood estimation of the random effects (linear) model, a sim-
ple solution (very time consuming with numerous individuals) may be implemented
with Proc Mixed13 (see Table 26.13).

There is a new (experimental) procedure for estimating dynamic linear model
on panel data, Proc Panel, but, to our knowledge, it does not correctly work for
dynamic models estimated by GMM. Note however that Proc Panel allows to
create new variables (lags for instance) in the body of the procedure. The Proc
Model instruction which may estimate models by IV and GMM works only on
time series or cross section data. It is easy to implement AH methods, but Proc
Model cannot reproduce standard errors robust to general cross-section and time
series heteroscedasticity as in Arellano and Bond (1991). This may be done with
a SAS/IML program, so more complex programming is required (this is done in
ab.sas).

The situation is less controversial for non linear model estimation on panel data.
Even if many procedures which implement Logit/Probit estimation are mainly de-
signed for cross-section data, others work with panel data.14 SAS may estimate fixed
effects logit models with conditional maximum likelihood, generalized estimating
equations (GEE with Proc Genmod), random effects logit and probit models on

13 Note that SAS offers an other procedure for ML estimation, Proc Nlp which is part of
SAS/OR module. Proc Mixed must be prefered to Proc Nlin which can estimate some mod-
els by ML (with the model.like = logl ; and loss = -logl ; instructions). See
grunfeld.sas for an illustration.
14 See Allison (1999) for a detailed presentation.
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panel data. As a SAS program spends a great part of its time reading and writ-
ing data on a hard disk, time execution for some non linear models may become
extremely long, and sometimes, problems like insufficient memory occur. The in-
structions reported in Table 26.14 illustrate some SAS capabilities in discrete choice
model estimation on KW data (variables creation not reported).

Another difficulty can be relevant with SAS. Indeed, there are many procedures
to estimate discrete choice models (Proc Logistic,15 Proc Mixed, Proc
Catmod, Proc Nlmixed, Proc Glm, Proc Probit. . . ) each
with many different options. Therefore, it may be difficult to determine which one
corresponds more to the purpose. Sometimes, the same results may be achieved
by several procedures. Two procedures were recently introduced: Proc Mdc to
estimate mixed logit models and Proc Qlim for (mainly) multinomial logit and
tobit models, but only on cross-section data.

A crucial point must be here taken into consideration. For some procedures
(Proc Model, Proc Nlmixed, Proc Nlin. . . ), it is possible to insert
programming statements (Do-loop, If expressions, arrays manipulation, macro-
instructions. . . ), so that, the user may adapt, for example, the computation of his
log likelihood to a special problem. Yet, this way of programming may be difficult.

Table 26.14 SAS code # 3 (discrete choice.sas)

/* conditional fixed effects logit model */
Proc Logistic Data = temp ; Model choice = educ exper expersq ;
Strata ident ; Run ;

/* random effects logit model */
Proc Nlmixed data = in.kw ;
Parms b0=1 b1=0 b2=0 b3=0 b4=0 s2u=1 ; pi = Constant(’PI’);
eta = b0 + b1*educ + b2*exper + b3*expersq +b4*black+ u ;
expeta = exp(-eta) ; p = 1/(1+expeta) ;
Model choice ˜Binary(p) ; Random u ˜Normal(0,s2u) Subject =
ident ;
Estimate "rho" s2u/(s2u+(pi**2)/3) ; Run ;

/* random effects probit model */
Proc Nlmixed data = in.kw ;
Parms b0=1 b1=0 b2=0 b3=0 b4=0 s2u=1 ;
eta = b0 + b1*educ + b2*exper + b3*expersq + b4*black + u ;
IF (choice = 1) Then p = Probnorm(eta) ; Else p = 1 -
Probnorm(eta) ;
ll = log(p) ; Model status ˜General(ll) ;
Random u ˜Normal(0,s2u) Subject = ident ; Estimate
"rho" s2u/(s2u+1) ;

Run ;

15 Proc Logistic models Prob(y=0). Using the descending option allows to model
Prob(y=1) instead.
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However, it is hard to believe today that the scope of panel instructions would
improve in the future. Indeed, the efforts aimed at developing SAS are massively
concentrated upon the modernization of other parts of the software (web integra-
tion, data mining, data warehousing. . . ). Here again, because of the vast community
of SAS users, it is often easy to find SAS programs (with macro instructions and/or
IML) for panel data estimation. Nevertheless, in the future, it is possible that the
new version of IML, called SAS/IML Workshop (yet available under a test version)
changes considerably this situation. Indeed, in an IML procedure, DATA and PROC
steps cannot be integrated16 into the IML program. IML Workshop enables you to
utilize DATA and PROC steps (and external C/Fortran/Java functions) as subrou-
tines to an IML program, which may simplify greatly some programming task.

Moreover, the great power of its data management instructions (ideally designed
for panel data) justifies the use of SAS by itself. With SAS, the most difficult oper-
ations on panel data sets like merging, matching. . . become virtually instantaneous
with very little programming. In addition the ODS (Output Delivery Service) per-
mits to save all or parts of the results in files with HTML, RTF (Word), PostScript
or PDF formats. These reasons explain why SAS is frequently used over the world,
despite its high costs and its basic limitations.

The documentation is huge (for instance, only for SAS/STAT module, 3 volumes,
near 4000 pages!) with a terminology and examples coming very often from bio-
statistics, agronomy, psychology, sociology. . . Nevertheless, the Web site proposes
interesting technical supports with on line documentations, many data files and SAS
example’s programs. The SAS Users Group International (SUGI) and the SAS dis-
cussion list are exceptionnally active and useful.

26.2.5 Stata (v. 9)

Even if Stata is mainly oriented towards econometrics, social science and biostatis-
tics on longitudinal data, version 917 has developed significantly on different topics,
particularly for panel data estimation. From a general view point, Stata presents
three main characteristics:

• First, it is available in many platforms (Windows, MacOS, UNIX. . . ) and in three
different versions: Small Stata managing a limited number of observations and
variables, Intercooled Stata which is less limited because of the use of virtual
memory and Stata/SE adequate for analyzing larger datasets. The Intercooled
version that we use in this review has only a maximum matrix size of (800×800)
and the number of variables cannot go beyond 2047 in a dataset.

• Second, its interface is simple but perfectible (the results window could be ame-
liorated); Stata works through a command mode (in the same way in different
platforms) and a Graphical User Interface. When working in a command mode,

16 Exactly as Data and Proc steps cannot interchange informations with an other Data or Proc
step without the use of a table (or a SAS macro variable).
17 Stata 10 is now available.
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note than Stata’s commands are typed in lowercase letters (cf. below for some
exceptions); the same apply for variable names but not for file name. This is not
really a problem because Stata has an excellent and really unified syntax which
can be learned very quickly (except, may be, when using the macro language).
In many cases, it is better to include all commands in a (ASCII) do-file; it’s the
solution we advocate in this review.

• Third, Stata is a modular software, i.e. many commands are in fact contained in
(ASCII) ado-files (automatic do-files), written with a powerful (but sometimes
unusual) programming language which makes an extensive use of macros. This
is the case for many new panel data commands. The main advantage is that many
users’ specific procedures are available from the Web site. Moreover, a (rather
simple, only one window is available) internal editor for ado and do files is pro-
vided.

From a panel data estimation’s method viewpoint, Stata is very interesting espe-
cially because it comes with useful functions. First, linear panel data estimation
methods are numerous and easy to implement. The code (a do file) reproduced
in Table 26.15 shows how to estimate the Grunfeld model by OLS, within, FGLS
methods.

We note that panel data specific instructions begin with an xt word. Moreover,
in this example, the panel structure is not declared when reading the datafile but
it is realized thanks to the use of i(ident) option in the xt instruction, which
announce either a balanced or unbalanced panel dataset. For Stata, a panel dataset
is always organized by individual (but it can be reshaped with a reshape instruc-
tion or with xtdata instruction). Other options (available for most commands) are
useful:

• if condition for applying a command on a subsample defined by a condi-
tion (e.g. if age < 60),

• in range for applying a command on a specific list of observations (e.g. in
100/200),

• weight varpond for weighting observations according to values taken by
varpond variable.

• There is also a special syntax by varlist: command for applying a com-
mand depending on the value taken by one or several variables (e.g. by ident:
xtsummarize). This is very useful for panel data.

Table 26.15 Stata code # 1 (grunfeld.do)

use c:\epd\data\stata\grunfeld.dta // reading the dataset
regress gi vf vc // ols
xtreg gi vf vc, fe i(ident) // within
xtreg gi vf vc, be i(ident) // between
xtreg gi vf vc, re theta i(ident) // fgls
xthaus // hausman test
xttest0 // BP LM test
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There are several useful instructions which describe (xtdes), summarize
(xtsum), tabulate (xttab), graph (xtdata, xtline) variables in a panel data
set. Stata allow several estimation methods for static or dynamic panel data models
(IV, GMM, 2SLS. . . ). This can be illustrated through the estimation of a dynamic
panel data model’s on AB data (cf. Table 26.16; reading data file and creation of
some variables are not reported).

Several topical points can be raised here. First, the symbol /// is the continu-
ing line operator. Second, applying AB GMM estimator with xtabond instruction
(or AH estimator with xtivreg or ivreg2 instructions) is very simple. More-
over, system estimators are available with xtabond2 and xtdpdsys instruc-
tions. Third, note that in the context of a dynamic estimation, it is necessary to
define explicitly the panel structure by tsset instruction (another variant implies
to use iis ident and tis year instructions). Creating variables in first dif-
ferences may be done by, for example, generate dk = d.k and we can use
in a similar way f (forward), s (seasonal) and d (difference). We must also under-
line the fact that we define lagged variables by, e.g., l(0/2).(dk dys) which
creates lags 0,1 and 2 of the two variables These operators may also be combined.
For example, l2d.(k ys) gives the same results as l(0/2).(dk dys). With
many instruments, you will probably need to adjust the matsize parameter. For
complicated problemss, Stata offers a new and quite powerful matrix programming
language (Mata).

For non linear estimation on panel data, Stata enables to proceed in different
ways. First, when maximum likelihood is required, it is possible for users to write
their own likelihood function and then to call Stata for maximizing it. One of the
most interesting features of this ML module is its ability to maximize the log like-
lihood summing up the individuals components obtained by time aggregation (for
instance, as in a random effects probit). This works on a balanced or an unbal-
anced panel. Moreover, it is possible, but not necessary, to write the first and second
derivatives. But, as the Stata language is somewhat specific (intensive use of macro

Table 26.16 Stata code # 2 (ab.do)

// reading data file and new variables creation not reported
set matsize 200 // used by xtabonb
tsset ident year // panel data structure necessary for xtabond
// AH-d AB, table 5-e pp. 292
xtivreg n l2.n l(0/1).w l(0/2).(k ys) year3-year9 ///
(l.n = l3.n), fd
// AH-l with ivreg2 (gmm) : table 5-f pp. 292
ivreg2 d.n l2d.n l(0/1)d.w l(0/2)d.(k ys) year3-year9 ///

(l1d.n = l3.n), cluster(ident) gmm
// one-step results (not robust)
xtabond n l(0/1).w l(0/2).(k ys) year4-year9, lags(2)
// one-step results + robust : table 4-a1 pp. 290
xtabond n l(0/1).w l(0/2).(k ys) year4-year9, lags(2) robust
// two-step results : table a2 pp. 292
xtabond n l(0/1).w l(0/2).(k ys) year4-year9, lags(2) twostep
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Table 26.17 Stata code # 3 (grunfeld ml.do)

clear
program drop all
program define mlere
version 8.0
args todo b lnf
tempvar theta1 z T S z2 Sz 2 a
tempname s u s e
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘s u’ = ‘b’, eq(2) scalar
mleval ‘s e’ = ‘b’, eq(3) scalar
quietly {
gen double ‘z’ = $ML y1 - ‘theta1’
by i: gen ‘T’ = cond( n== N, N,.)
by i: gen double ‘S z2’ = cond( n== N,sum(‘z’ˆ2),.)
by i: gen double ‘Sz 2’ = cond( n== N,sum(‘z’)ˆ2,.)
gen double ‘a’ = ‘s u’ˆ2 / (‘T’*‘s u’ˆ2 + ‘s e’ˆ2)
mlsum ‘lnf’ = -.5*‘T’*ln(2* pi*‘s e’ˆ2) ///

-.5*ln(‘T’*‘s u’ˆ2/‘s e’ˆ2 +1) ///
-.5*( (‘S z2’-‘a’*‘Sz 2’)/‘s e’ˆ2 ) ///

if ‘T’˜= .
}

end
use c:\epd\data\stata\grunfeld.dta
sort ident year
ml model d0 mlere (eq1: gi=vf vc) (s u:) (s e:), ///

max init(1 1 1 1 1,copy)
ml display

variables), this may be difficult to do as shown in Table 26.17 (the code is adapted
from Gould, Pitblado and Sribney, 2003).

Second, as in the following example (Random Effects probit model), Stata pro-
vides many modules (Ado-files) doing automatically ML estimation on some non
linear models on panel data: stochastic frontier models, fixed-effects & random ef-
fects logit models, random-effects probit models (with a powerful quadcheck
instruction which checks the sensibility of estimation results to the selected number
of quadrature points), random-effects tobit models. . . We give now (see Table 26.18)
an illustration of using such estimation instructions on KW data.

Other general Stata’s features should be taken into consideration (for a more
complete review, see Kolenikov (2001), Barrachina and Llopis (2002)). Stata may
read and write various file formats: Stata, ASCII (very easily), and dBase, MS Ac-
cess, Excel files. . . with the ODBC instruction. The graphics module is very good.
Stata offers also several instructions (append, merge, joinby. . . ) to merge a
dataset with another one. Many instructions (recode, autocode, tabulate. . . )
permit to create dummy variables very easily. The documentation is excellent (13
volumes, may be the best one of all general purposes packages documentation
reviewed in this chapter). There is a special volume which is dedicated to cross-
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Table 26.18 Stata code # 4 (discrete choice.do)

clear
set memory 10m
version 8
use c:\epd\data\stata\kw.dta // reading the dataset
// creating the endogeneous var. (0/1)
generate status = (choice==1)*1 + (choice==2)*2 + (choice>=3)*3
generate choice1 = (status==1)*0 + (status==2)*0 + (status==3)*1
// conditional fixed-effects logistic regression
clogit choice1 educ exper expersq black, group(ident)
// random effects logit model
xtlogit choice1 educ exper expersq black, i(ident) re
// random effects probit model
xtprobit choice1 educ exper expersq black, i(ident) re

sectional time series models estimation (Stata, 2003), containing very useful
technical appendices. The Stata Web site is equally very convincing: it is possi-
ble to call directly a dataset by an http instruction in a Stata program and the user
may find several ado files which can be downloaded, installed and used with Stata.
Automatic updating is also available.

26.2.6 TSP (v. 5)

This latest version of TSP (Time Series Processor) has several new features which
introduce substantial improvements compared to the later version (4.2) reviewed
in the second edition of this volume, some of them being yet available with the
version 4.5.

First, two new interfaces are today available: (a) “TSP through the Looking
Glass” which is a two windows interface (a program window and an output/log win-
dow), (b) “TSP through GiveWin” (GiveWin is an interactive menu-driven graphics-
oriented program in which TSP, as some other software Ox, PC-Give. . . , may be
integrated) but with a moderate extra-cost. In this review, we use “TSP through the
Looking Glass”.

Second, many limitations of the previous versions have been removed: two di-
mensional matrices are now available, the graphic module has been enhanced, (with
GiveWin, it becomes really nice; note too that special graphics for panel data are
available in TSP), and the size of the dataset may be extremely large. Nevertheless,
the programming language has some limitations (e.g. string management features).

From the point of view of panel data management, a major change is that the
Freq instruction can manage panel data structure (balanced or unbalanced) and
allow to handle missing values, leads and lags. Suppose you have a balanced panel
dataset (Grunfeld’s data with 10 individuals observed 20 years, 1935–1954), you
may write, at the beginning of your program, Freq(Panel,T=20).
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Table 26.19 TSP code #1 (grunfeld.tsp)

Freq(Panel,Id=ident) ;
? reading an xls file
Read(File=’c:\epd\data\excel\grunfeld.xls’) ;
Freq(Panel,Id=ident) A; ? A stands for annual data
? Panel data estimation (ols, between, within, fgls)
Panel(Robust,Hcomega=Block) gi c vf vc ;

For unbalanced data (for instance, AB data, 140 individuals, 1976–1984), it
is necessary to have in the data file one series having a numerical identifier for
each individual (for instance, ident = 1,2,3, . . . ,140). Then, you can define
Freq(Panel,id=ident) A;.

Linear panel data estimation is mainly done with the usual Panel instruction,
which is illustrated on the following example using Grunfeld’s data. Note that the
syntax of Table 26.19 is clear and concise.

The output is very detailed; an F test of fixed effects and an Hausman test are
automatically reported.

Several recent improvements are of major interest for panel data models. New
estimation commands allow to estimate (1) RE (individual and/or time) model by
ML, (2) RE or FE model with a AR1 error term by ML, (3) RE or FE probit model
and (4) 2SLS and GMM with FE. When estimation methods and tests on panel
data models (linear and nonlinear) are not available with pre-programmed instruc-
tions; fortunately, on two TSP companion Web sites, it is possible to find dozens
of programs mainly for IV, GMM. . . panel data estimation. Of course, users have
to write programs based on a good matrix language and with a powerful maximum
likelihood instruction (look at the Differ instruction, for instance). We are going
to illustrate these points with the same two examples used previously: a dynamic
linear model by AH estimator and a random effects model estimated by ML.

For dynamic linear model on panel data, applying the AH estimator, is easy (in
Table 26.20, we do not report code for reading the data file).

Table 26.20 TSP code #2 (ab.tsp)

? creating new variables
dn = n - n(-1) ;dw = w - w(-1) ; ? gener is optional
dk = k - k(-1) ;dys = ys - ys(-1) ;
Dummy year ; ? creates year dummies year1...year9
? Panel data estimation : AHd, cf. A&B pp. 292
List lvar dn(-3) dn(-2) dw dw(-1) dk dk(-1) dk(-2)

dys dys(-1) dys(-2) year5-year9 ;
Select .Not.Miss(dn(-3)) ;
? AHd robust
2sls(Robust,Hcomega=Block,Inst=lvar) dn c dn(-1) dn(-2)

dw dw(-1) dk dk(-1) dk(-2) dys dys(-1) dys(-2) year6-year9 ;
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Table 26.21 TSP code #3 (discrete choice.tsp)

Title ’Random effects probit’ ;
Probit(Rei) choice C educ exper expersq black ;
Title ’Fixed effects logit’ ;
Probit(Fei) choice C educ exper expersq black ;

Note the use of the Dummy instruction which creates very easily time dummies,
denoted year1...year9. With the last release, when using the Robust and
Hcomega=Block TSP’s options, the SEs are robust to general cross-section het-
eroscedasticity and time series autocorrelation. Nevertheless, for GMM estimation
(AB estimator), there is not a Hcomega option, so so we cannot reproduce exactly
AB results. On TSP companion Web site, a sample program is available to do this
task, but the solution is too complicated (in creating the instruments matrix and
computing the var-cov matrix) to be reproduced here.

TSP offers also some instructions for estimating logit/probit models on panel
data. For instance, the example of Table 26.21 shows how to estimate random effects
probit and fixed effects probit models on KW data.

Note that TSP uses analytical first and second derivatives in these maximum
likelihood estimation, which implies that this code is executed very quickly. For
other maximum likelihood estimations, there are two ways to specify the log like-
lihood. First, we can use the Frml and Eqsub instructions. The major advantage
of this method is that TSP can compute first and second analytical derivatives (see
above). This method contributes largely to the speed and the possibility to achieve
convergence. When it is difficult to write the log likelihood with one or more Frml
instructions (e.g. with panel data, it is necessary to sum up the log likelihood on time
periods), the user may write it with the Proc method. If this case, derivatives are
evaluated numerically, sometimes not very adequately, and are very time consum-
ing. We illustrate here only the first possibility on the estimation of a linear random
effects models on Grunfeld’s data (see Table 26.22, some parts of the program are
not reported).

Table 26.22 TSP code #4 (grunfeld.tsp)

? log likelihood as in Nerlove (2002)
Param beta0,1 beta1,1 beta2,1 sigma2,1 rho,0.5 ;
Frml rei logl = - Log(sigma2)/2 - (0.5/(sigma2))*((e)ˆ2)

- Log(ksi)/(2*t) - Log(eta)*(t-1)/(2*t) ;
Frml ksi 1 + rho*t - rho ;
Frml eta 1 - rho ;
Frml e gistar - beta1*vfstar - beta2*vcstar- beta0/sqrt(ksi) ;
Esqub rei e ksi eta ;
Title ’ML Random individual effects’ ;
Ml(Maxit=100,Hiter=N,Hcov=N) rei ;
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More generally, TSP can run on various type of hardware (Windows PC, Apple
Macintosh, Unix workstations and some mainframes). The Sort instruction admits
only one key, and merging panel datasets does not seem not easy. Lastly, cross-
tabulation instructions are not available. It can read and write numerous file formats
(ASCII, XLS, DBF, Stata. . . ) and also provide some databank management capabil-
ities. For more details, one can refer to Silk (1997), Lubrano (1998), Merino (1998).

The documentation is good, but contains too few examples on panel data, which
is not really a problem due to the great amount of explanations available on the
Web site. More information may be obtained by contacting the efficient technical
support.

26.3 High-Level Matrix Programming Languages

Econometricians use more and more matrix programming language in at least two
situations:

1. They need to apply new econometric techniques, not yet available in general
econometric packages, and difficult to implement with them,

2. The econometric method is too time-intensive and so, requires a very efficient
programming language (Monte-Carlo simulation, estimation by simulation. . . )
without requiring knowledge of a low level programming language18 (e.g. C or
C++).

Matrix programming languages are very often an efficient solution to these
difficulties, easier than using low level programming languages. Two packages seem
to dominate, at least when panel data estimation is concerned: GAUSS and Ox.

26.3.1 GAUSS (v. 5)

GAUSS19 is an econometrics and statistics oriented programming language de-
signed to perform statistical and mathematical (specially matrix) calculus. GAUSS
is available in two versions: GAUSS for UNIX workstations and GAUSS for Win-
dows. It consists mainly of three components: (1) The GAUSS programming lan-
guage, (2) a library of application modules (Time Series, Maxlik, GAUSSplot. . . )
and (3) some add-on programs (GaussX. . . ), these last two components available
with an extra cost. Due to its speed, to its intuitive and powerful syntax, and above

18 See Cribari-Neto (1999) and Eddelbüttel (1996) for the interest to use low level programming
languages for econometric purposes.
19 Version 8 is available and offers new or updated libraries (Algorithmic Derivatives, Discrete
Choice, Symbolic Tools, GAUSSplot. . . ). There is also a new feature, directly related to panel data
models, which allows to use 3 (or more) dimensional arrays. This may be quite useful to manage
balanced panel data in arrays with individual, time and regressor dimensions.
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all, to the free availability of numerous user’s programs (DPD, Expend. . . ), GAUSS
is probably the most commonly used of the high-level matrix programming lan-
guages, particularly in panel data econometrics (cf. Cribari-Neto (1997), Heywood
and Rebelo (1996) and Vinod (2000) for a more general presentation).

For panel data estimation, various strategies may be followed.
For static linear models on panel data, we can first use the TSCS command (in-

cluded in the Time Series application module - with an extra cost) which may es-
timate a panel data model by OLS, within and FGLS estimators, providing also an
F test of no individual fixed effects and a Hausman test (fixed effects model vs ran-
dom effects model). In Table 26.23, there is an example of TSCS’s use on Grunfeld’s
data.

TSCS it not very sophisticated but is fast and can manage a panel data set (bal-
anced or unbalanced) of whatever size thanks to its working by block of individuals.
As TSCS command is written in GAUSS (put in a procedure), then users can ame-
liorate it by adding its own code for doing new tests, etc.

Another way to estimate panel data models consists in writing on your own a
GAUSS program. In this case, the program would be quite different depending on the
fact than your panel data set is balanced or not and be of a moderate size or
not. With a small balanced panel dataset (for instance the Grunfeld’s data), pro-
gramming OLS, between, within and FGLS is easy, as shown in Table 26.24,
where we reproduce a simplified but working example (we limit us to within
estimation).

This brief example illustrates GAUSS main characteristics: GAUSS works mainly
on matrices and vectors (xdat, x and y). Once, the matrices defined (by extracting
columns of xdat), computation of an estimator, e.g. OLS, is made by bols =
Invpd(x’x)*x’y;. For within estimation, it is a little bit more complicated, we
must first create yit − yi. and xit − xi.. To achieve this result, we must reconfigurate
the y matrix (and also the x matrix) by ynt = Reshape(y,nn,tt) ; (ynt
has now nn lines and tt columns). Then, individual means are created by yb =
Meanc(ynt’) ; (note the need for transposing because Meanc computes means
by columns) and finally yw = Vecr(ynt-yb) ; computes deviation to individ-
ual means to stack in an (nn,1) vector. Lastly, within estimation is done by applying
OLS on transformed data by bwith = Invpd(xw’xw)*xw’yw ;. This may
be completed by computing residuals, tests. . . In fact, the most tedious part is often
to obtain a correct presentation of the output (the Print and Printfm instructions

Table 26.23 Gauss code #1 (grunfeld tscs.prg)

Cls ; New ; Closeall ;
Library Tscs ; #Include tscs.ext ; Tscsset ;
lhs = { gi } ; exog = { vf, vc } ;
grp = { ident } ; tsmeth = 1 ;
filename = "c:\\epd\\data\\gauss\\grunfeld";
{bwtih,vbwith,mdv,bec,vbec,mec} = Tscs(filename,lhs,exog,grp) ;
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Table 26.24 Gauss code #2 (grunfeld gauss.prg)

/* initializations */
Cls ; New ; nn = 10 ; tt = 20 ; nt = nn*tt ;
file = "c:\\epd\\data\\gauss\\grunfeld" ;
/* reading the Gauss data file */
Open f1 = ˆfile For Read ; vnoms = Getname(file) ;
xdat = Readr(f1,nt) ; f1 = Close(f1) ;
/* xdat is a matrix (200,# of variables in the file)*/
/* defining y and x matrices from xdat */
Let pexo = vf vc ; Let pendo = gi ;
lvexo = Indcv(pexo,vnoms) ; lvendo = Indcv(pendo,vnoms) ;
x = Submat(xdat,0,lvexo)˜Ones(nt,1) ; y = Submat(xdat,0,lvendo) ;
/* Within transformation */
ynt = Reshape(y,nn,tt) ; w = Vecr(ynt-Meanc(ynt’)) ;
x1nt = Reshape(x[.,1],nn,tt) ; x2nt = Reshape(x[.,2],nn,tt) ;
xw = Vecr(x1nt-Meanc(x1nt’))˜Vecr(x2nt-Meanc(x2nt’)) ;
/* within */
bwith = Invpd(xw’xw)*xw’yw ; ? bwith ; /* to be completed */
end ;

are complex and not very powerful; this is also true for printing instructions provided
by Ox and SAS/IML).

With a large unbalanced panel dataset, the program must be adapted in the fol-
lowing way. For memory space limitations, computations must be done individual
by individual. So, it is useful to read first an auxiliary file (say auxti) giving for
each individual (represented by an identification variable, say ident), the num-
ber of times this individual is observed, say, a variable named tii = 3,5,8,3. . . for
instance. Second, we read the data file20 (called mydata) and do the
computations individual by individual (or with more programming by block of in-
dividuals). The following code illustrates this idea (note than DPD-GAUSS, but not
TSCS, use this principle). We limit ourselves to within estimation due to space lim-
itation. This code is reproduced in Table 26.25.

A reshape operation is then not necessary, because we work individual by
individual. The program will be slower due to this working (but it may be speeded up
if working by block of individuals which implies a complication in programming),
and because probably several do loops on the data file will be necessary, one for
computing OLS, between and within estimation and at least another one for FGLS
estimation, tests, etc.

For dynamic linear model estimation on panel data, fortunately things are simpler
because of the DPD-GAUSS program (cf. Arellano and Bond, 1998) which com-
putes estimates for dynamic models from balanced or unbalanced panel data. This
program provides several estimators (OLS, within, GMM, instrumental variables,

20 It is also possible to read all the variables into memory (GAUSS put them in a workspace) and
then to do the computations by individual. This will speed up the execution and, at the same time,
will save memory.
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Table 26.25 Gauss code #3 (simple by indiv.prg)

New ;
/* reading the auxiliary datafile */
file = "c:\\epd\\data\\gauss\\auxti" ;
Open f1 = ˆfile For Read ;
nind = Rowsf(f1) ; z = Readr(f1,nind) ;
f1 = Close(f1) ; tii = z[.,2] ;
/* defining variable names */
file = "c:\\epd\\data\\gauss\\mydata" ;
vnoms = Getname(file) ;
Let pexo = x1 x2 x3 x4 x5 x6 x7 x8 x9 ; Let pendo = y ;
lvexo = Indcv(pexo,vnoms) ; lvendo = Indcv(pendo,vnoms) ;
/* read and compute by individual */
Open f2 = ˆfile for Read ;
i = 1 ; xwtxw = 0 ; xwtyw = 0 ;
Do While i <= nind ;

data = Readr(f2,tii[i]) ;
y = Submat(data,0,lvendo) ; x = Submat(data,0,lvexo) ;
/* between and within transformation */
xm = Meanc(x) ; ym = Meanc(y) ; xw = x - xm’ ; yw = y - ym’ ;
xwtxw = xwtxw + xw’xw ; xwtyw = xwtyw + xw’yw ;
i = i + 1 ; /* next individual */

Endo ;
f2 = Close(f2) ;
bw = Invpd(xwtxw)*xwtyw ; ? bw ;
End ;

system estimators. . . ) and robust test statistics (Sargan test, tests for serial corre-
lation. . . ). Reading the data by block, DPD is not limited by a maximum number
of observations. The instrumental variables matrix can contain several hundred of
columns, the main limitation being its invertibility. In order to work with the DPD
program, the user has to supply two GAUSS data file: one containing the NT obser-
vations of the k variables (sorted by individual and consecutive), and the second one
(an auxiliary file) indicating the structure of the main data set. For the AB data,21

this auxiliary file looks as in Table 26.26.

Table 26.26 Contents of the auxiliary file (abaux.dat)

nbyear count
7 103
8 23
9 14

21 These files are provided with DPD-GAUSS. We only change their names.
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These two files22 (named ab.dat and abaux.dat) permit to DPD to read
quickly the panel but require that the data file must be sorted by nbyear and by
individual. Note that the main dataset should contain a time stratification variable
and, optionally, an individual stratification variable. The next step is to modify, with
the GAUSS editor, an (ASCII) file: DPD.RUN (you can change its name). This file
contains GAUSS instructions which define the name and path of main and auxil-
iary datasets, the name of time, individual stratification, independent and dependent
variables and the definition of instruments. . . This program calls for two related pro-
grams (located in the Gauss directory): DPD.FNS containing some functions for
data transformations and DPD.PRG, the main program file. DPD.RUN may look
as in Table 26.27 (instructions used only for printing, unmodified lines and some
comments are not reproduced).

This code allows to reproduce AB results (see Arellano and Bond (1991),
Table 4-a1, a2). One of the crucial points is the choice of the instrumental vari-
ables and the DPD function named GMM() which returns the optimal instrument
matrix for the GMM estimators. This matrix may be combined with other ma-
trices using the vertical concatenation operator (˜). DPD-GAUSS allows also to
use system GMM estimators combining moment conditions for equations in first
differences with moment conditions for equations in levels (with the functions
Lev1(), Diflev(). . . Another major interest of DPD-GAUSS is that the authors
provide the source code, so you can adapt it to your own problem if required. If
you want to estimate your model by OLS or within, you need only to adapt the

Table 26.27 Gauss code #5 (ab gauss.prg)

bat=1; /* mode batch */
imod=1; /* model in diff. */
icon = 1 ; irob = 1 ; /* constant and robust estimation
choices */
open f1="c:\\epd\\data\\gauss\\xdata"; /* main data */
open f2="c:\\epd\\data\\gauss\\auxdata"; /* auxiliary data */
yearcol=2; /* Data column for year */
year1=1976; /* First year of data */
nyears=9; /* Number of years in data set */
lag=2; /* Longest lag to be constructed due to nt−2*/

/* 2 first obs. by indiv. skipped */
data=ln(data); /* all variables in log */
y=dif(3,0); /* endogeneous var. */
/* exogeneous var: note the use of the diff function */
x=dif(3,1)˜dif(3,2)˜dif(4,0)˜dif(4,1)˜dif(5,0)˜dif(5,1)
˜dif(5,2)˜dif(6,0)˜dif(6,1)˜dif(6,2);
/* instruments definition */
z=gmm(3,2,99)˜x[.,3:10]; /* note the use of gmm function */
/* more lines follow */

22 Recall than with GAUSS, a dataset is made, in general, of two files: one with the extension
.dat containing the data, the second one with the extension .dht, giving the columns’ names.
So, in our example, four files are used: ab.dat, ab.dht, abaux.dat and abaux.dht.
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choice of the instruments matrix in writing z=Ols ; (or z=x ;) for OLS and z
= Wgroups; for within estimator. To be used correctly DPD requires a bit of
knowledge of GAUSS and a little idea of DPD working (individual by individual,
all the variables are in the matrix called here data). A careful reading of the user’s
guide for DPD (Arellano and Bond, 1998) is absolutely necessary.

For non linear or maximum likelihood estimation, three application modules are
very useful: constrained optimization (CO), maximum likelihood (Maxlik) and con-
strained maximum likelihood (CML) modules. We are going to illustrate the use
of Maxlik on a simple example,23 estimation of an error components model by
ML on Grunfeld’s data (data reading and variables creation not reproduced), see
Table 26.28.

It is clear according to this example that GAUSS programming supposes a
good knowledge of basic programming concept (procedures, local and global vari-
ables. . . ).

The GAUSS documentation is good, but contains too few examples. The Aptech
web site is mainly limited to commercial information. Fortunately, there are nu-
merous users programs which can be easily founded and used, e.g. for panel data
estimation:

Table 26.28 Gauss code #6 (grunfeld ml gauss.prg)

New ; Closeall ; Library Maxlik ; #Include Maxlik.ext;

/* ML estimation of error components model */
xb = xb.*.Ones(tt,1) ; yb = yb.*.Ones(tt,1) ;
maxl = yb˜Ones(nt,1)˜xb˜yw˜xw ;
Maxset ; Maxclr ;
x0 = 1˜1˜1˜1˜0.5 ; /* initialization values */
{bml,logl,g,h,retc} = Maxlik(maxl,0,&logl,x0) ;

Proc logl(b,z) ;
Local llog , ksi , eta , part3 ;
ksi = 1 + b[5]*tt - b[5] ;
eta = 1 - b[5] ;
part3 = ( z[.,5]/Sqrt(eta) + z[.,1]/Sqrt(ksi) )
- b[2]*( z[.,3]/Sqrt(ksi) + z[.,6]/Sqrt(eta) )
- b[3]*( z[.,4]/Sqrt(ksi) + z[.,7]/Sqrt(eta) ) -

b[1]/Sqrt(ksi) ;
llog = -nt*Ln(2*PI)/2 -nt*Ln(b[4])/2 -nn*Ln(ksi)/2 -
(nt-nn)*Ln(eta)/2
-(1/(2*b[4]))*(part3’*part3) ;

Retp(llog) ;
Endp ;
End ;

23 A more complex one (random effect probit model estimation) is given in
reprobit gauss.prg).
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• C. Kao and I. Choi provide free programs for unit root and cointegration tests for
panel data,

• Many GAUSS programs on linear and non linear (binary, censored, count,
sample-selection. . . ) models are provided by Lee (2002),

• Train (2003) provides free code for mixed logit estimation for panel data,
• Windmeijer (2000) offers a GAUSS program for non-linear GMM estimation

of exponential models with endogenous regressors for cross section and panel
(dynamic) count data models (see also Romeu, 2004).

26.3.2 Ox (v. 3.4)

Ox is a true object matrix programming language available for many platforms
(Windows, DOS, Unix, Linux,. . . ).

All Ox versions are free for academic use, except the Windows version. The free
versions are named OxConsole (for DOS/UNIX) as they are called by a command
line in a console windows. An editor is not provided with this basic version which
cannot moreover visualize graphs (but it can save them in a Postscript file).

The Windows version (called Ox Professional24) may use two types of interface:
first, GiveWin, and, secondly, OxEdit. OxEdit (provided with a purchase of Ox)
is a text editor developed, as for Ox, by J. Doorniks. In this review, we use Ox
Professional. (v. 3.3) for Windows with OxEdit. OxEdit has two interesting features:
first, when OxEdit edits an Ox source code, it uses colors25 to distinguish between
instruction keywords, comments, numbers, syntax errors. . . ; second, it may be used
as a front-end to Ox (but also to C, C++, TEX, LATEX. . . ). Nevertheless, an advantage
of GiveWin over OxEdit is that it allows users to modify a graph created by Ox by
adding text, labels,. . . Moreover, GiveWin enables to manage data (editing, variable
creation. . . ) more easily.

The Ox language has several specific features:

• It has broadly a similar syntax to C, C++ and Java (e.g. Kerninghan and Ritchie,
1998, Stroustrup, 1992). All indexing of matrices and vectors start at 0 and not
at 1. The main difference from C, C++ is that a matrix is a standard type in Ox.
So, even if all variables must be declared before use, their type is defined only
implicitly. Therefore, a variable may start as an integer and then be redefined as
a matrix.

• As GAUSS, it has an extended graphical, mathematical and statistical functions
library and similar matrix operator (concatenation, inversion. . . ). Ox also allows

24 Ox 4.1 is now available. Note that we do not review another well-known econometric software,
PcGive for two reasons: (1) space limitations and, (2) PcGive is mainly written in Ox language
and shares several features with Ox. Nevertheless, it uses pull-down menus and is a simple and
efficient alternative to Ox.
25 This is also true for GiveWin and for the SAS Enhanced Editor.
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for vectorized code, more efficient for programming and execution, and very
often, Ox and GAUSS syntaxes are similar. Nevertheless, in some cases (Do-
loops. . . ), Ox syntax may be unusual for non C, C++ users.

• Nevertheless, Ox syntax is case sensitive and many instructions must be written
in lowercase, some exceptions arise when using Ox classes (see below). Variable
names cannot exceed 60 characters (the first one being a letter).

• Ox can read various datafile formats: PcGive/GiveWin, XLS, GAUSS, Stata,
ASCII. . .

Some of these aspects may be illustrated through a short example (closed to the
GAUSS26 one, cf. pp. xxix), given in Table 26.29.

In fact, the main difference between GAUSS and Ox is the concept of Class.
Ox provides pre-programmed classes,27 such as the Database class (used to store
data with database functionalities). One of the major interest of the class concept is
that it avoids using global variables. It is probably with this concept of classes (an
optionally feature) that a non C,C++ user could encounter trouble. Using classes
is very useful to develop professional applications. Moreover, if creating Ox class
may be difficult,28 using it is not, as we can see in Table 26.30 which illustrates
some uses of the Database class (used by many other classes).

Table 26.29 Ox code #1 (grunfeld1.ox)

#include <oxstd.h>
main()
{
decl data, x, y, nt, nn, tt, ynt, yb, yw,
x1nt, xb1, x1w, x2nt, xb2, x2w, xw, bwith ;
data = loadmat("c:\\epd\\data\\excel\\grunfeld.xls");
nt = 200 ; nn= 10 ; tt = 20 ; // balanced panel data set
y = data[][2] ; x = data[][3:4] ; // defining y and x matrices
ynt = reshape(y,nn,tt) ; yb = meanr(ynt) ; yw
= vecr(ynt-yb) ;
x1nt = reshape(x[][0],nn,tt) ; xb1 = meanr(x1nt) ; x1w
= vecr(x1nt-xb1) ;
x2nt = reshape(x[][1],nn,tt) ; xb2 = meanr(x2nt) ; x2w
= vecr(x2nt-xb2) ;
xw = x1w˜x2w ; bwith = invertsym(xw’xw)*xw’yw ;
println("bw = " , bwith) ;

}

26 Note also that it is possible to run a GAUSS program under Ox, see Doornik (2004), Laurent
and Urbain (2004) and Viton (2003). Of course, Ox can be interfaced with C, C++ programs.
27 Following Podovinsky (1999), a class provides “an abstract definition of an object (both in terms
of variables - the data - and functions - the methods that apply to the data-)”.
28 A user interested in writing his own Ox classes may refer to Doornik, Draisma and Ooms,
(2001,Chap. 8, pp. 78–91).
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Table 26.30 Ox code #2 (grunfeld2.ox)

#include <oxstd.h> #import <database> // don’t put a ;
main()
{
decl mydb, mnames, names1, y, ly, mdata, ident, year ;
mydb = new Database();
mydb.Load("c:\\epd\\data\ox\\grunfeld.in7"); // load data
mydb->Info() ; // info on the file
mnames = mydb->GetAllNames() ; // load var. names into a vector
println("# of obs = " , mydb->GetSize() ) ; // print nb. of obs.
println("var. names = " , mnames ) ; // and var. names
mdata = mydb->GetAll() ; // load all data in a matrix
ident = mydb->GetVar("ident") ; // load ident var. into ident
mydb->SetSelSample(-1,1,-1,1) ; // set sample, necessary

year = mydb->GetVar("year") ; // load year var. into year
mydb->Select(0, {"gi",0,0, "vf",0,0} ) ; // 2 var. in group 0
println("# of indiv : ", columns(unique(ident)),
"\n period : ", min(unique(year)) ,
" : ", max(unique(year)) ) ;

y = mydb->GetGroup(0) ; // load 2 var from group 0 into y
ly = log(y) ; // taking log of 2 variables
names1 = {"y", "log(y)"} ; // print result for checking
println("%c", names1, (y˜ly)[0:1][]) ; // 2 rows, all columns
delete mydb; // finished with object
}

This short program suggests two points:

• With the Database class, it is easy to read (and to create) a data file with
mydb->Load(...); Moreover, mydb->Info() ;may be used to obtain
some file information (variable names, number of missing values. . . ).

• We see according to this example that this class enables to access to the data but
also to predetermined functions working on this data (which may be different
from the class used). For instance, the GetSize() function returns the number
of observations in the file. GetVar(...) and GetAll() allow to put some
or all variables in a vector or in a matrix.

• In the same way, with Select(...) and GetGroup(...), we can define
some object (a group named 0, 1 containing one or several variables. . . ) and then
manipulating it.

• Don’t forget to define the SetSelSample(...)which is mandatory. Remem-
ber that missing values are dropped out. Note also, that SetSelSample(...)
must be defined just after the Select(...) instruction, but only if you use
Select(...) and GetGroup(...)...

• There are many functions which may be used for each class. Note however that
the Database class is not, as it stands here, able to manage panel data if, for
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instance, we want to create lags (and to put a missing value for the first observa-
tion for each individual). This can be realized by an other class, DPD class which
has many of the Database class instructions (plus some other ones, that we will
examine later) or by hand (in a loop).

Ox comes with several (free) packages or classes:29 Maximization package
(numerical optimization and differentiation), Probability package (density, cumu-
lative density, random number. . . ), Simulation class (Monte Carlo experiments),
QuadPack (numerical integration), Lapack (matrix calculus). . . Among these pack-
ages, three may be useful for panel data estimation.

Ox-DPD (cf. Doornik, Arellano and Bond, 2002) is a package for estimation of
dynamic panel data models, whose functionalities are closed to DPD GAUSS. In
Table 26.31, we illustrate Ox-DPD use by an example.

Table 26.31 Ox code #3 (ab.ox)

#include <oxstd.h> #import <packages/dpd/dpd>
main()
{
decl dpd = new DPD(); // defining data set and model used
dpd.Load("c:\\epd\\data\ox\\abdata.in7"); // load data
dpd.SetOptions(TRUE); // robust standard errors
dpd.SetYear("YEAR"); dpd.SetGroup("IND");
dpd.SetDummies(D CONSTANT + D TIME); // specify dummies
dpd.Select(Y VAR, {"n", 0, 0}); // endogeneous & regressors
dpd.Select(X VAR, {"n", 1, 2, "w", 0, 1, "k", 0, 2, "ys", 0, 2});
print("\n\n***** Within *****");

dpd.SetTransform(T WITHIN); dpd.Estimate();
print("\n\n***** AH diff *****");

dpd.Select(I VAR, {"n", 2, 3, "w", 0, 1, "k", 0, 2,
"ys", 0, 2});

dpd.SetTransform(T DIFFERENCES); dpd.Estimate();
print("\n\n***** AB col a2 *****");

dpd.DeSelect() ; // reformulate model, warning, see the text
dpd.SetYear("YEAR"); dpd.SetGroup("IND");
dpd.SetDummies(D CONSTANT + D TIME) ;
dpd.Select(Y VAR, {"n", 0, 0});
dpd.Select(X VAR, {"n", 1, 2, "w", 0, 1, "k", 0, 2,

"ys", 0, 2});
dpd.Select(I VAR, {"w", 0, 1, "k", 0, 2, "ys", 0, 2});
dpd.Gmm("n", 2, 99); // GMM-type instrument
dpd.SetTest(1, 2); // Sargan,AR 1-2 tests
dpd.SetMethod(M 2STEP); dpd.Estimate(); // 2-step estimation

delete dpd; // finished with object
}

29 Loosely speaking, there is a difference between a package and a class: a package is a compiled
version of one or more classes.
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We can make two comments about this code.

• The panel structure is declared with the dpd.SetYear("YEAR") instruction.
So you do not need an individual identifier in your datafile (Ox-DPD creates
an index variable by differencing the year variable). If you have one, it is bet-
ter to write also dpd.SetIdent("IDENT") when, e. g., for some individ-
uals the last year is 1998 and the first one of the next individual is 1999. One
tricky point is that you must not confuse uppercase (‘‘IDENT’’) and lower-
case (‘‘ident’’) depending upon the way you create the variable.

• Be careful with the statements dpd.Select(...), dpd.Gmm(...). . . For
instance, if you write dpd.Select(X VAR, {"n", 0, 1}); and after
dpd.Select(X VAR, {"k", 1, 2}); there will be 4 variables in the re-
gressors list, nt, nt−1, kt−1 and kt−2. This explains why you will need the
dpd.DeSelect() ; which clears completely the list.

Second, with the the Maximization package, it is easy (and in a very fast
manner) to estimate a random effects model by ML on Grunfeld data, as shown
in Table 26.32. Note two points: 1◦) GAUSS offers broadly the same function-
alities, but Ox does not provide a constrained optimization and a constrained
maximum likelihood modules; 2◦) If the log likelihood has to be evaluated by
individuals, the program becomes more more complicated (see probitreml.ox
for an illustration).

Lastly, we must mention also a new (free) package, DCM (Discrete Choice Mod-
els) written by Weeks and Eklöf (see Eklöf and Weeks 2004a, b). DCM is a pack-
age to estimate several classes of discrete choice multinomial models, particularly,
conditional logit, mixed logit, multinomial probit, nested logit, ordered probit. . . on
cross-section and (in somes cases) on panel data. DCM is a class written in Ox
and its use is simple and flexible. This is especially true concerning30 the struc-
ture of the database to be read (which consists in observations about individual
and/or choice characteristics for a combination of individuals, time and alterna-
tives). DCM can read several structures with few and simple instructions. As, up
to now, in the version 1.0, all panel data features are not yet implemented (only
for conditional logit and mixed logit model), we do not give more details on it (see
discrete choice.ox for a simple example), but it is a promising package.

As a matrix programming language, Ox competes directly with GAUSS for
several reasons: First, Ox is cheaper than GAUSS (recall that some Ox versions
are free); Second, if you are a C or C++ users, the object-oriented program-
ming approach gives more flexibility; Lastly, in many cases, Ox is faster than
GAUSS (see Steinhaus, 2002, Küsters and Steffen, 1996 and Sect. 26.4.1 for
an evaluation of speed in a panel data context). For more general reviews, cf.
Cribari-Neto (1997), Cribari-Neto and Zarkos (2003), Kenc and Orszag (1997) and
Podovinsky (1999).

Ox has an excellent (but quite technical) documentation (see Doornik, Draisma
and Ooms (2001) and Doornik (2001)). The Web site is excellent (Doornik’s one,
because Timberlake web site is only commercial) with the possibility to consult or

30 It is also easy to store the estimation results in a LATEXformatted table.
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Table 26.32 Ox code #4 (chronoml.ox)

#include <oxstd.h> #include <oxfloat.h> #import <maximize>
decl gY, gX, gTT ; // global data
LOGLreml(const coeff, const mloglik, const
avScore, const amHessian)

{
decl llognc ;
llognc = -log(2*M PI)/2- (gTT-1)*log(coeff[3]ˆ2)/(2*gTT)

- log(coeff[3]ˆ2+gTT*coeff[4]ˆ2)/(2*gTT)
- (1/(2*coeff[3]ˆ2))*((gY[][1]- coeff[1]*gX[][2]
- coeff[2]*gX[][3]).ˆ2) - (1/(2*coeff[3]ˆ2+gTT*2*coeff[4]ˆ2))

*((gY[][0]- coeff[0]- coeff[1]*gX[][0]- coeff[2]*gX[][1]).ˆ2 );
mloglik[0] = double( meanc(llognc) ); return 1;
}
main()
{
decl coeff, valfunc, coder, data, x, y, nt, nn, tt, yb,
yw, xb, xw,
mhess, mcovar ;
data = loadmat("c:\\epd\\data\\excel\\grunfeld.xls") ;
y = data[][2] ; x = data[][3:4] ; // y, x
yb = data[][5] ; xb = data[][6:7] ; // yb, xb
yw = data[][8] ; xw = data[][9:10] ; // yw, xw
tt = 20 ; gY = yb˜yw ; gX = xb˜xw ; gTT = tt ;
print("Random effects model by ML","\n\n");
coeff = <-42.71; 0.115; 0.23; 94; 94>; // ols starting values
coder = MaxBFGS(LOGLreml, &coeff, &valfunc, 0, TRUE) ;
Num2Derivative(LOGLreml,coeff,&mhess) ;
mcovar = invertgen(-mhess) / rows(y) ;
print("parameters:", coeff’ ,"\
nstd err.:", sqrt(diagonal(mcovar)) ) ;
}

download the Ox documentation. The Ox-users discussion group is not very active
but the Doornik’s support is very efficient.

26.4 Performance Hints and Numerical Accuracy Evaluation

26.4.1 Speed Comparison31

First, in Table 26.33 we provide, for each software, time execution32 to estimate a
linear panel data model with 10 regressors by OLS, within and FGLS estimators on a

31 More detailed speed evaluations (but not on panel data) can be found in Küsters and
Steffen (1996), Nerlove (1998) and Steinhaus (2002).
32 In this review, we use a Pentium 4, 1.6 GHz, with 70 Go HDD and 256 MB RAM running under
Microsoft Windows 2000.
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Table 26.33 Speed evaluations

Software Linear Model Data
Reading Timea

+Execution Time

ML Estimation Resultsb

EViews 7s Marquardt (s2,160,5.2s), BHHH
(s2,200,6.6s)c

GAUSS TSCS: 2s BFGS(s1,124,0.23s), DFP(ns)
User’s program: 1.7s Newton (s2,77,0.86s), BHHH

(s2,967,3.64s)d

LIMDEP 4s BFGS (ns), DFP (s2,16,3.8s)
Newton (s1,34,36.38s), BHHH (ns)e

Ox Pro. DPD/Ox: 5s BFGS (s1,247,0.17s) f

User’s program: 1.3s
RATS 5s BFGS (s1,117,2s), BHHH

(s1,930,35s)g

SAS 10s Newton(s2,5,0.06s), Gauss
(s1,207,0.51s)
Marquardt (s1,81,0.18s)h

Stata 17s Newton-Raphson (s1,11,1.25s)i

B HHH (s2,937,8.5s), Newton (s1,28,
0.25s)

TSP 7s Gauss(s1,28,1s), BFGS (s2,32,0.16s)
disCrete hessian
(s1,28,1.08s) j

a The files were saved in the proprietary’s format for each software. File sizes are about 8-15 Mb.
b For each available algorithm, we give between parenthesis (1) the convergence status (s1) (resp.
s2) convergence with the first (resp. second) starting values set. Ns indicates no solution, (2) , the
number of iterations and (3) the execution time in seconds.
c with the LogL object and the ml instruction.
d with the Fastmax procedure.
e with the Maximize instruction.
f with the Maximization package and the MaxBFGS function. g with the maximize instruction.
h with Proc Nlin.
i with the ml command.
j with the ml instruction.

large33 unbalanced panel data set. It contains 10.000 individuals observed between 5
and 12 years (85.160 observations), randomly generated (as in Nerlove, 1971). Sec-
ond, in the same table, we indicate time performance and convergence status to esti-
mate a random effects model by the maximum likelihood method (see Hsiao, 1986
for the definition of the log-likelihood34). Grunfeld’s data are used.

33 In several cases, it is probably necessary to adjust the memory size: for TSP, using OPTIONS
instruction, for Limdep using TOOLS/OPTIONS/PROJECT menu, for SAS in modifying the
CONFIG file and setting memory 10m for Stata.
34 See Nerlove (2002) for alternative specifications.
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Consider, first, the linear model estimation case. In general, speed performances
are good and relatively closed. Ox seems to be the faster, and does a little bet-
ter than GAUSS when using a specific program. Nevertheless, if we use Ox with
the DPD class, the program is slower but the results are more detailed, and more
estimation methods and options are available. LIMDEP, RATS and TSP are also
quite fast when estimating linear panel data models. The slower ones are Stata
and SAS. For SAS, it is due to its numerous read/write operations. There is no
apparent explanation for Stata. Probably, using the most powerful version of Stata
(Stata/SE) would reduce time execution for this software. Note also that GAUSS
and Ox are more complex to use in comparison with the other packages. Finally,
we can remark that the estimates obtained (not reported here) are very closed be-
tween software. The main differences come from FGLS estimation due to different
computations of θi.

Nevertheless, there are several special cases. With RATS, if we use the
Pregress instruction, execution time grows to 11mn (due to the estimation of
the N fixed effects). It is then better to use the Panel instructions (cf. pp. xiii in
this chapter) with large panels. For SAS, for the same reason, it was impossible,
with my configuration, to apply Tscsreg procedure. SAS reported an unsufficient
memory error message even when the virtual memory was largely increased. So
we use the Glm procedure to estimate the FE model and Proc Mixed for the RE
model. Nevertheless, this last instruction is very inefficient because the estimation
is done by ML. Hence, we program directly all the variable transformations and use
OLS on transformed variables in order to implement the between, within and FGLS
estimators. For GAUSS, we use first the TSCS module and also a specific program
we wrote. This program loads all the data in memory and does two Do-loops indi-
vidual by individual for the computations. So, for all these reasons, in some cases,
comparing performance hints is difficult.

General lessons for the maximum likelihood estimation are also difficult to draw.
First, note that we try to “standardize” the setup for ML estimation for all software.
The likelihood function is the same in each case without specifying first or second
derivatives. We do not use any built-in instruction owing to estimate directly RE
model by ML without defining explicitely the log-likelihood. As far as it was pos-
sible, the convergence criterion is based on the percentage changes in coefficients
and/or on the norm of the gradient (both equal to 10−5). Finally, we define two sets
of starting values for the coefficients: first very far ones from the solution (labelled
as s1); second, s2 is defined according to the OLS estimation. At this point, sev-
eral comments may be done. First, once again, Ox performs extremely well (quick
convergence with s1) but it offers only one algorithm, BFGS.35 RATS and Stata
have also good convergence properties: they converge quickly with s1 (with the
BFGS method for RATS). All other software achieve convergence, and sometimes
very quickly, sometimes even with s1, but not for all the available algorithms. Nev-
ertheless, EViews converges only with s2. Finally, the most surprising result is that

35 Newton algorithm may be used but only when providing, at least, first derivatives.
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a given method may perform very well with a software but not with another one.
So, users have to check their final estimation results in using different algorithms,
different starting values and (if possible) different software.

26.4.2 Numerical Accuracy Evaluations

Econometricians have devoted considerable efforts to develop better or new estima-
tion methods. Less was done in controlling numerical accuracy of computational
routines used for implementing them. In applied works, panel data users encounter
frequently errors or warning messages such as not invertible matrix, not conver-
gence, underflow, overflow. . . without knowing if these problems come from the data
or the algorithm used.

Computational errors arise from a variety of reasons:

• Inexact binary representation of a real value (e.g. 0.1 may be in fact treated as
0.099999964),

• Rounding errors because of limited computer’s word length,
• Algorithmic errors (truncation, bugs or inadequate algorithm).

Most of the time (see McCullough and Vinod, 1999,McCullough, 1998,1999a,
1999b), software numerical accuracy is evaluated by comparison with the bench-
mark results for the Statistical Reference data Sets (SRD) provided by the Na-
tional Institute of Standards and Technology (NIST, cf. Gill, Guthrie, Lagergren
and Rogers, 2001). These reference datasets are mainly artificial datasets created
to evaluate software with ill-conditioned data in four general areas useful for our
purpose: univariate statistics, analysis of variance, linear regression and non lin-
ear regression. Moreover, they are classified according to their difficulty level
(lower, average, higher) depending on the number of constant leading digits (3,
7 or 13). NIST provided, for each case, certified values up to 15 (11 for non-
linear estimation) significant digits (i.e. the first nonzero digit and all succeeding
digits).

We present, for each software, in Table 26.34 a synthesis of NIST benchmark
tests. For each test category and for each difficulty level (in the following or-
der: lower, average and higher), we give the mean, and between parenthesis, the
minimum and the maximum of number of digits accuracy obtained in using all
the datasets for a given level. This number (called LRE) is between 0 (fail) and
15 (perfect result up to 15 digits. It is frequently admitted36 that, for a lower
level of difficulty, LRE must be equal or superior to 10 (6 for nonlinear esti-
mation), whereas for high level, a LRE value equal or greater than 4 or 5 is
reasonable.

36 See, for example, Nerlove 2001.
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Three main conclusions may be drawn on these results:

1. First, these results should be taken with care. As there are obtained on very
special datasets, their interest for usual econometric practice is controversial. For
instance, note that the dataset (SmLs09.dat, high difficulty level) used for check-
ing Anova computations contains 18.009 observations like 1000000000000.n
where n equals 2, 3, 4, 5 or 6!. For non linear estimations, the variety of avail-
able algorithms and the different settings of convergence criteria make some
comparisons quite difficult (see Lilien, 2000). Nevertheless, an important point
consists in the fact that all software send a warning or an error message when
colinearity or non convergence problems occur.

2. For univariate statistics, Anova and linear regression, it seems that we can be
relatively confident in the results obtained by all our reviewed software. More
precisely, univariate statistics are very accurately computed. This is also true
for standard errors (about 13 digits) but less for the first order autocorrelation
coefficient: EViews and RATS fail to compute it correctly in some cases (6 and
3 times respectively). For anova, EViews has a 0 score 3 times. For the most
difficult case (smls09), only Ox, SAS, Stata and TSP obtain 2–4 correct digits.
Linear estimation results are very closed and good with one exception: with the
Filippeli dataset, all software whose results are reported, except LIMDEP and
Ox,37 obtain a zero score.

3. Benchmark results for non linear regression are more mitigated and vary con-
siderably upon the software used and the tests done. Two main comments may
de done: First, SAS, Stata and TSP have excellent performances (never less than
5–6 digits, most of the time about 8–10 correct digits) but EViews and RATS
works also well even if they fail in some difficult cases. Second, the more sur-
prising result is the poor performance of Gauss and Ox. For some datasets, this
may be explained by the fact we do not provide analytical first derivatives. But
SAS and Stata also use numerical derivatives. We must note that we use the soft-
ware defaults for non linear estimation, setting only the maximum number of
iterations to 1000 and the convergence criteria to 1e-11. So, at least for Gauss
which offers many options (algorithm. . . ), it is possible to obtain better results in
modifying the non linear setup. Nevertheless, it is doubtful that the results will
be completely changed (see Vinod, 2000).

We conclude this section by giving some information on uniform random gen-
eration numbers. In Table 26.35, we summarize the main characteristics of uniform
random generator number used by the software that we review. We give the results
of a very well known RNG test, called DIEHARD test which consists in 18 specific
tests.

We can make several remarks. First, it must be noticed that all analyzed soft-
ware except RATS and SAS, provide recent RNG. Indeed, RNG with a period
of 232 (or less) are useless for large simulation work. For instance, admit that

37 Another exception is Mathematica, cf. Nerlove, 2001.
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Table 26.34 Numerical accuracy results

Softwarea Univariate
Statisticsb

Anovac Linear
Regressiond

Non Linear
Regressiond,e, f

EViews 5g
15 (15–15)
15 (15–15)
15 (15–15)

9.1 (0–15)
9.2 (0–15)
2.2 (0–3.3)

12.8 (12.2–13.3)
15 (15–15)
6.4 (0–9.9)

9.6 (8–11)
8 (0–11)
8.5 (0–10.9)

GAUSS 5h
15 (15–15)
14.5 (14–15)
14 (14–14)

13.4 (12.4–14.5)
7.9 (6.5–8.5)
1.6 (0–2.7)

11.7 (11.3–12.1)
14.9 (14.7–15)
6.4 (0–13.4)

5.9 (3–7.8)
3 (0–6.4)
4.6 (0–7.8)

LIMDEP 7i
15 (15–15)
14.5 (14–15)
14 (14–14)

13.2 (12.4–14)
7.7 (6.2–8.4)
1.4 (0–2.4)

13.3 (13.2–13.3)
14.9 (14.7–15)
10.2 (6.7–14.6)

8.9 (7.1–9.9)
7.3 (0–10.6)
8.3 (7–9.5)

Ox Pro. j
15 (15–15)
15 (15–15)
15 (15–15)

14.5 (12.9–15.0)
9.9 (9.3–11.7)
3.3 (3.3–3.3)

13.1 (12.7–13.6)
14.9 (14.7–15)
9.8 (7.3–12.8)

5.2 (0–9.8)
3.2 (0–9)
4.5 (0—-10.5)

RATS 6k
14.5 (14–15)
14 (14–14)
15 (15–15)

13.6 (12.4–14.4)
7.9 (6.5–8.5)
1.6 (0–2.7)

11.8 (11.5–12.1)
14.9 (14.7–15)
6.2 (0–9.1)

6.7 (5.5–8.8)
5.8 (0–10.6)
6.7 (3.4–9.4)

SAS 9.1l
15 (15–15)
14.5 (14–15)
14 (14–14)

13.6 (12.7–15)
9.9 (8.8–10.4)
4.3 (4.2–4.4)

11.9 (11.5–12.3)
14.9 (14.7–15)
6.3 (0–9.6)

10 (7.4–11)
9.8 (6.7–11)
9.6 (7.6–11)

Stata 8.1m
15 (15–15)
15 (15–15)
15 (15–15)

13.7 (13.1–15)
10.2 (10.2–10.4)
4.3 (4.2–4.4)

12.1 (11.5–12.8)
14.9 (14.7–15)
6.9 (0–12.1)

8.5 (6.7–9.4)
8.1 (4.8–10.9)
7.2 (6–8.3)

TSP 4.5n
15 (15–15)
14.5 (14–15)
14 (14–14)

13.7 (12.3–14.7)
10.25 (10.2–10.4)
3.7 (2.1–4.6)

12.5 (12.1–12.9)
14.9 (14.7–15)
8.4 (0–12.8)

9.7 (7.9–11)
9.7 (6.5 –11)
9.4 (7.9–11)

a Author’s computations in all cases.
b For univariate statistics, we report only the results for mean computation.
c For anova, we report only the results for the F result.
d For linear and non linear regression, we report only the results for the estimated coefficients.
e When non convergence was encountered with the first set of starting values, we provide the re-
sults obtained with the second set of initial values.
f EViews and TSP use analytical first derivatives. The other softwate use numerical first deriva-
tives.
g Used instructions: stats, testby and ls.
h Used instructions: meanc, stdc, ols and the Constrained Optimization module. For anova, a spe-
cific code is used (see Vinod, 2000).
i Used instructions: dstat, xvcm, regress and nlsq
j Used instructions: meanc, varc, acf, olsc and MaxBFGS. For anova, a specific code is used (see
Vinod, 2000).
k Used instructions: statistics, correlate, pstat, linreg and nlls.
l Used instructions: proc means, proc arima (+ proc autoreg), proc anova, proc reg and proc nlin.
m Used instructions: summarize, corrgram, anova, reg and nl.
n Used instructions: msd, bjident, olsq and lsq.
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Table 26.35 Random generator number

Softwarea Function
Name

Reference Max.
Period

No. of success to
Diehard testsb

EViews rnd
Knuth (1997)
L’Ecuyer (1999)
Matsumoto-Nishimura (1998)

2129

2319

219937

18/18
18/18
18/18

GAUSS
rndu
rndKMu

Kennedy-Gentle (1980)
Marsaglia (2000)

232−1
108888

8/18
17/18

LIMDEP rnu L’Ecuyer (1999) 2191 18/18

Ox ranu
Park-Miller (1988)
Marsaglia (1999)
L’Ecuyer (1997)

232−1

260

2113

17/18
17/18
18/18

RATS %uniform Park-Miller (1987) 232−1 16/18

SAS
ranuni
uniform

Fishman and Moore (1982) 231−1 14/18

Stata uniform Marsaglia (1994) 2126 18/18

TSP random
L’Ecuyer (1990)
L’Ecuyer (1999)

231−1

2319
17/18
18/18

a author calculations.
b Diehard tests return a p-value. A test fails when the p-value is ¡ 0.01 or ¿ 0.99. When a test returns
several p-values, it fails if more than 2 p-values are ¡ 0.01 or ¿ 0.99.

we follow Knuth’s recommendation, i.e. set the maximum number of draws as
d < period/1000. So, in using a RNG with a period of 232, we would only allow
for about 400 replications in a panel data simulation study with NT = 1000 and 10
variables. So, some care is needed when using SAS and RATS RNG. Second, even
if the fact to pass the DIEHARD test (or other ones) does not prove that a RNG
is a performing one, but failure to pass several tests proves that it should not be
used. These two issues are important since the quality of a uniform RNG is crucial
for the quality of a non uniform one and, so determines in part the validity of the
simulation results. On this last ground, users may be confident with the 8 software
we reviewed.
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