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Abstract. Registration of Diffusion Weighted (DW)-MRI datasets has
been commonly achieved to date in literature by using either scalar or
2nd-order tensorial information. However, scalar or 2nd-order tensors fail
to capture complex local tissue structures, such as fiber crossings, and
therefore, datasets containing fiber-crossings cannot be registered accu-
rately by using these techniques. In this paper we present a novel method
for non-rigidly registering DW-MRI datasets that are represented by a
field of 4th-order tensors. We use the Hellinger distance between the
normalized 4th-order tensors represented as distributions, in order to
achieve this registration. Hellinger distance is easy to compute, is scale
and rotation invariant and hence allows for comparison of the true shape
of distributions. Furthermore, we propose a novel 4th-order tensor re-
transformation operator, which plays an essential role in the registration
procedure and shows significantly better performance compared to the
re-orientation operator used in literature for DTI registration. We val-
idate and compare our technique with other existing scalar image and
DTI registration methods using simulated diffusion MR data and real
HARDI datasets.

1 Introduction

In medical imaging, during the last decade, it has become possible to collect
magnetic resonance image (MRI) data that measures the apparent diffusivity of
water in tissue in vivo. A 2nd order tensor has commonly been used to approx-
imate the diffusivity profile at each image lattice point in a DW-MRI [4]. The
approximated diffusivity function is given by

d(g) = gT Dg (1)

where g = [g1 g2 g3]
T is the magnetic field gradient direction and D is the

estimated 2nd-order tensor.
Registration of DW-MRI datasets by using 2nd-order tensors has been pro-

posed by Alexander et al. [2]. In this work a tensor re-orientation operation was
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proposed as a significant part of the diffusion tensor field transformation proce-
dure. A framework for non-rigid registration of multi-modal medical images was
proposed in [12]. This technique performs registration based on extraction of
highly structured features from the datasets and it was applied to tensor fields.
Registration of DTI using quantities which are invariant to rigid transformations
and computed from the diffusion tensors was proposed in [7]. By registering the
rigid-tranformation invariant maps, one avoids the re-orientation step and thus
can reduce the time complexity. The locally affine multi-resolution scalar image
registration proposed in [8] was extended to DTI images in [17]. In this method
the image domain of the image being registered is subdivided (using a multi-
resolution framework) into smaller regions, and each region is registered using
affine transformation. The affine transformation is parametrized using a trans-
formation vector, a rotation, and an SPD matrix. By using this parametrization
one can avoid the polar decomposition step which is required in order to extract
the rotation component for re-orientation purposes.

All the above methods perform registration of DW-MRI datasets based on
scalar images or 2nd-order tensorial approximations of the local diffusivity. This
approximation fails to represent complex local tissue structures, such as fiber
crossings, and therefore DTI registration of dataset containing such crossings
leads to inaccurate transformations of the local tissue structures.

In this paper we present a novel registration method for DW-MRI datasets
represented by a field of 4th-order tensors. We propose to use the Hellinger dis-
tance measure between 4th-order tensors represented by angular distributions
(corresponding to the normalized coefficients of these tensors), and employ it in
the registration procedure. Hellinger distance is very commonly used in commu-
nication networks and also in density estimation techniques as it is quite robust
and has attractive asymptotics [5]. From our point of view, this distance is easy
to compute and is scale and rotation invariant, thus allowing for true shape
comparison [9]. Another key contribution of our work is the higher-order tensor
re-transformation operation, which is applied in our registration algorithm. We
validate our framework and compare it with existing techniques using simulated
MR and real datasets.

2 Registration of 4th-Order Tensor Fields

This section is organized as follows: First, in 2.1 we briefly review the formulation
of 4th-order tensors in DW-MRI. Then, in section 2.2 we define the Hellinger
distance between 4th-order tensors represented by angular distributions, which
will be employed in section 2.3 for registration of 4th-order tensor fields.

2.1 4th-Order Symmetric Positive Tensors from DW-MRI

The diffusivity function can be modeled by Eq. 1 using a 2nd-order tensor. Stud-
ies have shown that this approximation fails to model complex local diffusivity
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profiles in real tissues [14,10,11,1] and a higher-order approximation must be
employed instead. Several higher-order approximations have been proposed in
literature and among them, spherical harmonics [14,6], cartesian tensors [10]
etc. have been popular. A 4th-order tensor can be employed in the following
diffusivity function

d(g) =
∑

i+j+k=4

Di,j,kgi
1g

j
2g

k
3 (2)

where g = [g1 g2 g3]
T is the magnetic field gradient direction. It should be noted

that in the case of 4th-order symmetric tensors there are 15 unique coefficients
Di,j,k, while in the case of 2nd-order tensors we only have 6.

A positive definite 4th-order tensor field can be estimated from a DW-MRI
dataset using the parametrization proposed in [3]. In this parametrization, a 4th-
order symmetric positive definite tensor is expressed as a sum of squares of three
quadratic forms as d(g) = (vT q1)2 + (vT q2)2 + (vT q3)2 = vT QQTv = vT Gv
where v is a properly chosen vector of monomials, (e.g. [g2

1 g2
2 g2

3 g1g2 g1g3
g2g3]T ), Q = [q1|q2|q3] is a 6 × 3 matrix obtained by stacking the 6 coefficient
vectors qi and G = QQT is the so called Gram matrix. Gram matrix G is
symmetric positive semi-definite and has rank=3. By using this parametrization
and following the algorithm presented in [3], a Gram matrix G is estimated at
each voxel of a DW-MRI dataset. Then, one can uniquely compute the tensor
coefficients Di,j,k from the coefficients of G.

Given two different DW-MRI datasets depicting the same or different subjects,
one can register them by using the information provided by the coefficients
Di,j,k of the corresponding 4th-order tensor fields. For this purpose, we need to
define the appropriate metric between higher-order tensors, which will be later
employed by the registration algorithm.

2.2 Distance Measure

In this section we define a distance measure between symmetric positive definite
4th-order tensors using their corresponding normalized representations which are
angular distributions. A family of angular distributions for modeling antipodal
symmetric directional data is the angular central Gaussian distribution family,
which has a simple formula and a number of properties discussed in [16].

The family of angular central Gaussian distributions on the q-dimensional

sphere Sq with radius one is given by p(g) = 1
Zq(T) (g

T T−1g)−
q+1
2 where g is a

(q + 1)-dimensional unit vector, T is a symmetric positive-definite matrix and
Zq(T) is a normalizing factor. In the S2 case, g is a 3 dimensional unit vector,
Z2(T) = 4π

√
|T|, and T is a 3 × 3 symmetric positive-definite matrix similar

to the 2nd-order tensor used in DTI. A generalization of this distribution family
for the case of higher-order tensors should involve an appropriate generalized
normalizing factor as a function of higher-order tensors and a generalization of
the tensor inversion operation, which may not lead to a closed-form expression.
In order to get closed-form expressions we define a new higher-order angular
distribution as
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p(g) =
1∫

S2
d(g)2

d(g)2 (3)

where in the case of 4th-order tensors d(g) is given by Eq. (2) and the integral is
over S2 (i.e. over all unit vectors g). The integral in Eq. (3) can be analytically
computed and it can be written in a sum-of-squares form [3].

Given two angular distributions we need to define a scale and rotation invari-
ant metric in order to make true shape (obtained after removing scale and orien-
tation) comparison between them. This can be efficiently done by the Hellinger
distance between 4th-order tensors D1 and D2:

dist2(D1,D2) =
∫

S2

(
√

p1(g)−
√

p2(g))2 =
∫

S2

(
d1(g)√∫

S2
(d1(g))2

− d2(g)√∫
S2

(d2(g))2
)2

(4)
Here we use the notation D to denote the 15-dimensional vector consisting of
the unique coefficients Di,j,k of a 4th-order tensor. Eq. 4 can also be analytically
expressed in a sum-of-squares form and it is invariant to scale and rotations of
the 3D space, i.e. the distance between p1(g) and p2(g) is equal to the distance
between p1(sRg) and p2(sRg), where R is a 3 × 3 rotation matrix and s is a
scale parameter.

In the following section we use the above distance measure for registering a
pair of misaligned 4th-order tensor fields.

2.3 Registration

In this section we present an algorithm for 4th-order tensor field registration.
Given two 4th-order tensor fields I1(x) and I2(x), where x is the 3D lattice
index, we need to estimate the unknown transformation F (x), which transforms
the dataset I1(F (x)) in order to better match I2(x). In the case of an affine
transformation we have F (x) = Ax + T, where A is a 3 × 3 transformation
matrix and T is the translational component of the transformation.

The estimation of the unknown transformation parameters can be done by
minimizing the following energy function

E(A,T) =
∫

�3
dist2(I1(Ax + T),A−1 × I2(x))dx (5)

where dist(., .) is the distance measuere between 4th-order tensors defined in
section 2.2, and the integral is over the 3D image domain. A−1 × I2(x) denotes
some higher-order tensor re-transformation operation. This operation applies the
inverse transformation to the tensors of the dataset I2 in order to compare them
with the corresponding tensors of the transformed image I1.

In the case of registering 2nd-order tensor fields, it has been shown that the
unknown transformation parameters can be successfully estimated by applying
only the rotation component of the transformation to the dataset I2 [2]. This
happens because of the fact that 2nd-order tensors can approximate only single
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fiber distributions, whose principal direction transformation can be adequately
performed by applying rotations only to the tensors.

In the case of 4th-order tensors, multiple fiber distributions can be resolved by
a single tensor, whose relative orientations can also be affected by the deforma-
tion part of the applied transformation. Therefore, tensor re-orientation is not
meaningful for higher-order tensors and in this case a tensor re-transformation
operation must be performed instead, using the full affine matrix A, which is
defined in section 2.4. Affine transformation has been also used in DTI; for more
details and justification of the scheme, the reader is referred to [15].

Equation (5) can be extended for non-rigid registration of 4th-order tensor
fields by dividing the domain of image I1 into N smaller regions and then reg-
istering each smaller region by using affine transformations. Similar method has
been used for scalar image registration [8] and DTI registration [17]. The un-
known transformation parameters can be estimated by minimizing

E(A1,T1, . . . ,AN ,TN ) =
N∑

r=1

∫

�3
dist2(I1,r(Arx + Tr),A−1

r × I2(x))dx (6)

Eq. 6 can be efficiently minimized by a conjugate gradient algorithm used in a
multi-resolution framework, similar to that used in [8] and [17].

2.4 3D Affine Transformation of 4th-Order Tensors

Assume that we have vectorized the coefficients Di,j,k into a 1 × 15 vector D in
some specific order Dn = Din,jn,kn , ( e.g. D1 = D4,0,0, D2 = D2,2,0, etc.). By
using this vector, Eq. 2 can be written as

∑15
n=1 Dng1

ing2
jng3

kn . If we apply an
affine transformation defined by the 3×3 matrix A to the 3D space, the previous
equation becomes

∑15
n=1 Dn(a1g)in(a2g)jn(a3g)kn ,where (a1g)in(a2g)jn(a3g)kn

is a polynomial of order 4 in 3 variables g1, g2, g3, and ai is the ith raw of A. In
this summation there are 15 such polynomials and each of them can be expanded
as

∑15
m=1 Cm,ng1

img2
jmg3

km , by computing the corresponding coefficients Cm,n

as functions of matrix A. For example if we use the same vectorization as we
did in the previous example, we have C1,1 = (A1,1)4, C1,2 = (A1,1)2(A2,1)2,
etc. Therefore, we can construct the 15 × 15 matrix C, whose elements Cm,n

are simple functions of A, and use it to define the operation of transforming a
4th-order tensor D by a 3D affine transformation A as

A × D = C(A) · D (7)

3 Experimental Results

In the experiments presented in this section, we tested the performance of our
method using simulated diffusion-weighted MR data and real HARDI data sets.
The figures in this section are depicting probability profiles estimated from the
4th-order tensors [11]. The synthetic data were generated by simulating the MR
signal from single fibers and fiber crossings using the simulation model in [13]. A
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Fig. 1. Left: a) Synthetically generated dataset by simulating the MR signal [13]. b)
Dataset generated by applying a non-rigid transformation to (a). Center: Crossing
misalignment in ROI after registering datasets (a) and (b) using various methods.
Right: Quantitative comparison of the registration errors. The errors were measured
by Eq. 4 for the whole field.

dataset of size 128 × 128 was generated by simulating two fiber bundles crossing
each other (Fig. 1a). Then, a non-rigid deformation was randomly generated
as a b-spline displacement field and then applied to the original dataset. The
obtained dataset is shown in Fig. 1b.

In order to compare the accuracy of our 4th-order tensor field registration
method with other methods that perform DTI regitration or registration of scalar
quantities computed from tensors (e.g. GA), we registered the dataset of Fig. 1a
with that of Fig. 1b by performing: a) General Anisotropy (GA) map registration
using the method in [8], b) DTI registration using the algorithm in [17] and c)
4th-order tensor registration using our proposed method. Fig. 1 (center) shows
a comparison of the registration results in the region of interest (ROI) shown
in the box of Fig. 1a. Each plate in this column shows the misalignment of the
fiber crossing profiles after registering using the above methods. By observing
the results, our proposed method performs significantly better than the other
methods, and motivates the use of 4th-order tensors for registering DW-MRI
datasets. Figure 1 (right) shows a quantitative comparison of the above results by
measuring the distance between the corresponding misaligned tensors by using
the measure defined in section 2.2. The results conclusively validate the accuracy
of our method and demonstrate its superior performance compared to the other
existing methods.

Furthermore, another dataset (shown in Fig. 2 left) was simulated using [13],
by stretching the fibers of Fig.1a along the x-axis by a factor s. In this simulation
the fiber orientations were taken to form an angle φ′ = atan(tan(φ)/s) with x-
axis, where φ is the original angle between the fiber orientation and x-axis, which
was used in the simulation of dataset in Fig. 1a.

In order to demonstrate the need of the tensor re-transformation operation
defined in section 2.4, we registered the dataset in Fig. 1a with that in Fig. 2(left)
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Fig. 2. Left: Simulated dataset generated by stretching the fibers of Fig 1a. Rest of the
plates: Comparison of results after registering dataset in Fig.2(left) to that of Fig.1a
using tensor re-orientation only and our proposed tensor re-transformation.

Fig. 3. a and b) S0 images from two HARDI volumes of human hippocampi. c,d)
datasets before and after registration. Tensors from the ROI in (d) showing crossings.

by using: a) re-orientation only in Eq. (5), and b) our proposed re-transformation
operation. Fig. 2 depict: a single tensor from the crossing region of the dataset in
Fig. 2(left) after registering the datasets using the two methods. By observing the
results, we conclude that by re-orienting only the tensors, the fiber orientations
were inaccurately estimated, and this motivates the use of our proposed re-
transformation.

In the data acquisition first an image without diffusion-weighting was col-
lected, and then 21 diffusion-weighted images were collected with a 415 mT/m
diffusion gradient (Td =17 ms, δ = 2.4ms, b = 1250 s/mm2). Figure 3 shows
two S0 images from the two 3D volumes (a,b), and two ”checkers” images show-
ing the datasets before (c) and after registration (d). A ”checkers” image is a
way to display two images at the same time, presenting one image in the half
boxes, and the other in the rest of the boxes. Based on knowledge of hippocam-
pal anatomy, fiber crossings are observed in several hippocampal regions such as
CA3 stratum pyramidale and stratum lucidum. Therefore, one should employ
our 4th-order tensor method instead of DTI registration. By observing Fig.3d all
the hippocampal regions were successfully alligned by our method, transforming
appropriately the fiber crossings Fig. 3(right).

4 Conclusions

Registration of DW-MRI datasets has been commonly performed by using either
scalar or DTI information [17]. However scalar or 2nd-order tensorial approxi-
mation fails to represent complex local tissue structures, such as fiber crossings,
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resulting in inaccurate transformations in regions where such complex struc-
tures are present. In this paper we presented a method for registering diffusion
weighted MRI represented by 4th-order tensor fields. This method employs a
novel scale and rotation invariant distance measure between 4th-order tensors.
We also proposed a 4th-order tensor re-transformation operation and showed
that it plays essential role in the registration procedure. We applied our method
to both synthetically generated datasets from simulated MR signal, and real high
angular resolution diffusion weighted MR datasets. We compared and validated
our method, showing superior performance over other existing methods.
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