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Abstract. The segmentation of macroscopically ill-defined and highly
variable structures, such as the hippocampus Hc and the amygdala Am,
from MRI requires specific constraints. Here, we describe and evaluate a
hybrid segmentation method that uses knowledge derived from a proba-
bilistic atlas and from anatomical landmarks based on stable anatomical
characteristics of the structures. Combined in a previously published
semi-automatic segmentation method, they lead to a fast, robust and
accurate fully automatic segmentation of Hc and Am. The probabilis-
tic atlas was built from 16 young controls and registered with the ”uni-
fied segmentation” of SPM5. The algorithm was quantitatively evaluated
with respect to manual segmentation on two MRI datasets: the 16 young
controls, with a leave-one-out strategy, and a mixed cohort of 8 controls
and 15 subjects with epilepsy with variable hippocampal sclerosis. The
segmentation driven by hybrid knowledge leads to greatly improved re-
sults compared to that obtained by registration of the thresholded atlas
alone: mean overlap for Hc on the 16 young controls increased from 78%
to 87% (p < 0.001) and on the mixed cohort from 73% to 82% (p < 0.001)
while the error on volumes decreased from 10% to 7% (p < 0.005) and
from 18% to 8% (p < 0.001), respectively. Automatic results were bet-
ter than the semi-automatic results: for the 16 young controls, average
overlap increased from 84% to 87% (p < 0.001) for Hc and from 81% to
84% (p < 0.002) for Am, with equivalent improvements in volume error.

1 Introduction

Volumetric analyzes of brain structures can inform on mechanisms underlying
disease progression. The hippocampus Hc and the amygdala Am are of major
interest, due to their implication in epilepsy and Alzheimer’s disease. Manual
volume measurement still remains the norm, making large cohort studies dif-
ficult. Poor boundary definition makes segmentation of these two grey matter
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structures from Magnetic Resonance Imaging (MRI) scans challenging. Prior
knowledge from anatomical atlases is necessary to their coherent manual delin-
eation. For automation, this knowledge can come from statistical information
on shape [1][2] or deformations [3][4], which may not be suitable for diseased
structures. Registering an atlas template derived from a single subject [5][6]
has been shown to be influenced by the choice of the atlas [7], even if com-
bined registration-segmentation methods [8] may prove less sensitive. Regis-
tration and segmentation using probabilistic information [9][10][11] offer more
thorough global spatial knowledge. It is complementary to anatomical knowl-
edge [12] [13], which formalizes stable global and local anatomical relationships.

Fully automatic, fast and robust segmentation of healthy and pathological
hippocampi and amygdale suitable for routine use has yet to be demonstrated.
On the one hand, segmentation methods based on probabilistic information re-
quire high dimensional deformations [10], in order to achieve precise extraction.
On the other hand, methods based mainly on image intensity can be fast, but
need a good initialisation to be accurate. We describe a new fully automatic
hybrid segmentation algorithm that combines the two methods by using global
spatial knowledge from a probabilistic atlases within a previously published semi-
automatic algorithm driven by anatomical knowledge [13]. The new algorithm’s
performance is evaluated on data from healthy controls and a mixed cohort
including subjects with hippocampal sclerosis associated with chronic epilepsy.

2 Method

The method is based on iterative two-object competitive deformation [13]. Two
regions deform following local topology-preserving transformations from two
initial objects, within an extracted bounding box embedding Hc and Am. Bound-
ing box and initial objects are automatically retrieved from probabilistic at-
lases. Here, the deformation process is constrained by hybrid prior knowledge
derived from probabilistic atlases and neuroanatomical landmarks automatically
detected during the deformation. The process is driven by minimizing a global
energy functional in a Markovian framework. A competitive scheme allows the
identification of the partly visible Hc-Am interface. At each iteration, the energy
functional is modified according to probabilistic and anatomical likelihood.

2.1 Construction of the Am and Hc Probabilistic Atlases

MRI data from 16 young controls (S1-S16) were manually segmented by an ex-
pert following a 3D protocol [13], ensuring 3D-coherent structures. This results
in a set of 32 binary labeled datasets, 16 with both Hc {Hci, i = 1...16} and 16
with both Am {Ami, i = 1...16}. The transformation from native to MNI stan-
dard space, {Ti, i = 1...16}, is computed with the unified segmentation module
of SPM5 [14], which allows to iteratively optimize registration parameters (linear
combination of cosine transformation bases), tissue classification, and intensity
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Fig. 1. Axial section showing probabilistic atlases for Hc and Am and 3D renderings
of the 0.5-level of the probability maps (Hc in red, Am in green)

non-uniformity correction. The SPM5 default parameters are used. The proba-
bilistic atlases PAHc and PAAm (Fig 1) are created as follows:

∀v ∈ Ω, PAHc(v) =
1
16

16∑

i=1

Ti(Hci)(v) and PAAm(v) =
1
16

16∑

i=1

Ti(Ami)(v) (1)

where v is a voxel in the MRI set Ω. PAHc(v), resp. PAAm(v), is the probability
that v belongs to Hc, resp. Am, according to the probabilistic atlas prior.

2.2 Initialization of the Deformation

For a given subject, individual atlases IPAHc and IPAAm are created by back
registering the atlases PAHc and PAAm to the subject’s space, using the inverse
deformation {(Ti, )−1, i = 1...16} computed by the SPM5 unified segmentation.

Bounding box: The bounding box BBHcAm must fully embed Hc and Am
but is not used as a geometrical constraint. It is defined as the smallest paral-
lelepiped subvolume in Ω around the non-null probability object HcAmmin =
[v ∈ Ω, IPAHc(v) > 0 or IPAAm(v) > 0] (Fig 2).

Initial objects: The initial object Hcinit, resp. Aminit, is created from the
maximum probability object Hcmax, resp. Ammax. Hcmax is defined as the 1-
level of the probability map IPAHc. It is built by keeping the voxels for which
the probability equals one, while regularising to prevent holes (IPAHc(v) < 1
but v is ”inside” Hcmax) and wires (IPAHc(v) = 1 but v ”spikes” from Hcmax)

Fig. 2. Bounding box extraction, illustrated on sagittal, coronal and axial slices
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Fig. 3. Atlas, regularised object and initial object, for Hc and Am (axial slice)

to appear. Let N6N
Hcmax be the number of 6-neighbours of v labelled in Hcmax. If

N6N
Hcmax is larger than 3, rejecting v from Hcmax will result in a hole in Hcmax; if

N6N
Hcmax is smaller than 1, including v in Hcmax will result in a wire. Combining

regularity rule and probability threshold iteratively, we get:
⎧
⎪⎨

⎪⎩

[Hcmax]0 = [v ∈ BBHcAm, IPAHc(v) > 0]

[Hcmax]i =

[
IPAHc(v) = 1 and N6N

[Hcmax]i−1(v) ≥ 1
or IPAHc(v) �= 1 and N6N

[Hcmax]i−1(v) ≥ 3

]
.

(2)

The iterations proceed until Hcmax (resp. Ammax) remains unchanged. Hcmax

(resp. Ammax) is then eroded with a 1mm-structuring element, and the largest
connected component is kept to create the initial object Hcinit (resp. Aminit)
(Fig 3). The erosion step is introduced to increase robustness in case of atrophy.

2.3 Introduction of Hybrid Prior Knowledge

The regularisation term of the energy functional in [13] is modified to take into
account the probability of the voxel v to belong to the deforming object O (Hc
or Am), derived from IPAHc and IPAAm. This term is locally expressed as the
comparison of the number of O -labelled neighbours of v, NO(v), and a standard
number of neighbours Ñ , with σI a standard deviation around Ñ :

EI
O =

(
Ñ − γPZ

O (v)γAZ
O (v)NO(v)

σI

)5

. (3)

The γ parameters influence the classification according to prior probabilities for
v to belong to O ; for γ superior to 1, NO(v) is artificially increased, decreasing
the energy, and vice versa for γ inferior to 1. γAZ

O models anatomical zones
AZ defined by the anatomical landmarks (γAZ

O (v) = 2 if v is likely for O and
0.5 if v is unlikely for O). γPZ

O models probability zones PZ given by IPAO:
γPZ

O (v) = 0.75 if IPAO(v) = 0, γPZ
O (v) = 1.5 if 0.75 ≤ IPAO(v) < 1 and

γPZ
O (v) = 2 if IPAO(v) = 1; otherwise, γPZ

O = 1. Values are chosen empirically.

2.4 Atlas Mismatch: Automatic Detection and Correction
Strategies

Atlas-based segmentation methods face a common problem: a possible initial
mismatch of the atlas. An automatic strategy is used to detect such occurrences,
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Fig. 4. 3D-renderings of automatic and manual segmentations, and overlap between
segmentations (manual segmentations in shades of grey) and probabilistic atlases

based on two successive tests comparing intensity distributions for the grey mat-
ter (GM) and for the 0.5-level object for Hc: Hc0.5 = [v ∈ Ω, IPAHc(v) ≥ 0.5].
The first test detects cases when the deformed atlas fails to match the Hc scle-
rosis. It compares the average intensity on Hc0.5 to that of GM; the assumption
is that an overestimated Hc0.5 when Hc is sclerotic will include cerebrospinal
fluid dark voxels. The second test detects atlas misalignment in the region of
interest. It compares the standard deviation on Hc0.5 to that on an eroded ver-
sion of Hc0.5. The assumption is that a misaligned Hc0.5 will include voxels
of several tissues; for large misplacements, erosion will not reduce the standard
deviation. An automatic correction strategy was introduced: if the atlas IPAHc

is misaligned, the correction relies on decreasing the probabilistic constraint; if
IPAHc is overestimated, the correction relies on shrinking IPAHc by erosion.

3 Performance Evaluation

The impact of the new automatic initialisation process and probabilistic at-
las constraint on segmentation performance was evaluated with qualitative and
quantitative comparisons between automatic (without and with atlas constraint),
semi-automatic (with manual initialisation [13]) and manual segmentations [13]
together with comparisons to the 0.5-level object derived from the registered at-
las in subject’s space (Hc0.5 and Am0.5), as a simple atlas-based segmentation.

3.1 Validation Data

The atlas is created using the 16 controls data (S1-S16 included in [13]), acquired
in the axial plane; a leave-one-out procedure is followed, the atlas being derived
from the remaining 15 subjects for each subject. Data from 23 subjects (mixed
cohort), acquired in the coronal plane [15] were split into 3 groups: 8 healthy
controls (C1-C8, Hc volume: 2.9 ± 0.5cm3(1.8 − 3.6)), 8 subjects with epilepsy
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Table 1. Segmentation performance index values in data from 16 healthy controls
(top) and from the 23 subjects in the mixed cohort (bottom)

semi-auto 00.5 automatic constrained corrected
16 young controls

Hc

RV 7 ± 4(0-14) 10 ± 6(1-26) 9 ± 6(0-25) 7 ± 4(0-15) 7 ± 4(0-15)
K 84 ± 3(78-89) 78 ± 4(64-84) 82 ± 4(74-89) 87 ± 2(80-90) 87 ± 2(80-90)

MIV 1.1 ± 1(0-4) 0.8 ± 1(0-5) 1.6 ± 2.3(0-9) 0.8 ± 0.8(0-4) 0.8 ± 0.8(0-4)
DM 4.5 ± 1.5(3-9) 4 ± 1.3(3-9) 5.1 ± 2.4(2-15) 3.5 ± 1.2(2-8) 3.5 ± 1.2(2-8)

Am

RV 12 ± 7(1-27) 10 ± 8(0-33) 14 ± 9(1-35) 10 ± 6(0-26) 10 ± 6(0-26)
K 81 ± 4(69-88) 82 ± 4(70-89) 77 ± 6(62-86) 84 ± 4(76-91) 84 ± 4(76-91)

MIV 1.5 ± 1(0-4) 1.9 ± 2.2(0-9) 1.1 ± 0.7(0-2) 1.1 ± 1(0-5) 1.1 ± 1(0-5)
DM 3.9 ± 0.9(3-6) 2.8 ± 0.5(2-4) 4.5 ± 1.1(3-7) 3.3 ± 0.7(2-7) 3.3 ± 0.7(2-7)

mixed cohort

Hc

RV 18 ± 15(0-74) 25 ± 39(0-200) 10 ± 11(0-64) 9 ± 7(0-33)
K 73 ± 11(41-86) 70 ± 18(0-87) 81 ± 8(59-89) 82 ± 6(64-89)

MIV 2.3 ± 4.7(0-28) 11 ± 14(0-68) 3.5 ± 8(0-48) 3.0 ± 5.6(0-33)
DM 4.5 ± 2.9(2-20) 10 ± 5.5(3-27) 5.3 ± 2.9(3-14) 5.1 ± 2.6(3-14)

Am

RV 15 ± 10(0-44) 32 ± 42(0-200) 20 ± 14(1-58) 20 ± 13(1-54)
K 75 ± 8(35-86) 63 ± 18(0-85) 77 ± 9(34-88) 77 ± 7(50-88)

MIV 2.9 ± 3.4(0-13) 1.2 ± 0.9(0-10) 1.8 ± 2.3(0-10) 1.8 ± 2.3(0-10)
DM 2.8 ± 3.6(2-7) 6.2 ± 2.7(3-16) 3.7 ± 0.9(2-6) 3.7 ± 0.9(2-6)

and known Hc sclerosis (HS1-HS8, 2.0±0.8cm3(0.7−3.5)), 7 subjects with tem-
poral lobe epilepsy and normal Hc volumes (TL1-TL7, 2.6±0.5cm3(1.6−3.4))).
All datasets were manually segmented according to the same protocol as that
used to create the atlas, by the same investigator. All processing apart from
registration is run within the Anatomist software environment [16]. The whole
segmentation procedure for both Hc and Am requires around 15min. Four indices
are used to compare the segmentation S with the reference R [13]: RV (S, R)=
2.|VS − VR|/(VS + VR), the error on volumes; K(S, R)=2.VS∩R/(VS + VR), the
Dice overlap; MIV (S1, R1, R2)=2.VS1∩R2/(VS1 + VR1), the missclassified inter-
face voxels and DM(S, R)=max[maxv∈Ŝ(d(v, R̂)), maxv∈R̂(d(v, Ŝ))], the sym-
metric maximal distance, with Ŝ the 6-connectivity border of S. Significance for
the variation of these values was tested using a two-tailed Student’s t-test.

3.2 Validation Results in Young Healthy Controls

The segmentation results were found to be qualitatively correct. The two cases
chosen for illustration (Fig 4) are those with the best and worst results in [13].
Table 1, top rows, summarizes the quantitative results. The automatic
initialisation gives better results than the registered 0.5-level object, but in-
ferior to the semi-automatic results [13]; the automatic results with atlas con-
straint are better than those from all other methods. No need for correction was
detected.
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3.3 Evaluation on Data from Mixed Cohort

Quantitative comparisons between automatic and manual segmentations (Table 1,
bottom rows), show the importance of the atlas constraint on the results, even if
the automatic results for Am were not significantly better than Am0.5. Occasional
initial atlas misalignments were observed; most were not detected as atlas mis-
match but were nonetheless successfully corrected in the course of the automatic
segmentation. Atlas mismatch was detected in 3 Hc out of 78, as illustrated in
Fig. 5: atlas overestimation for two highly sclerotic Hc and atlas misalignment in
another one. Segmentation failures were prevented with the correction strategy,
as shown in the right column of Table 1. Note that the worst value for RV (33%)
in our method was obtained for the smallest Hc in the group studied according to
the manually estimated volume. 0.7cm3.

Fig. 5. Qualitative indices vs. detection test characterizing atlas mismatch (defined vs.
the test value average on the 16 young controls with a range of 4 standard deviations).

4 Discussion and Conclusion

The combination of probabilistic knowledge and anatomical prior knowledge
within the competitive deformation algorithm [13] allows accurate fully auto-
matic segmentation of Hc and Am on healthy controls. The automatic detec-
tion and correction of initial atlas mismatch resulted in highly encouraging Hc
segmentation on data from a representative group of subjects with epilepsy, in-
cluding cases with high degrees of hippocampal sclerosis.

The fully automatic method performed better than both semi-automatic seg-
mentation and 0.5-level probability object. For controls, the segmentation results
(a K value of 87% for Hc and 84% for Am) compare favourably with the lit-
erature. In fact, K values are 83% for Hc [5] after manual placement of 28
landmarks, or 80% for Hc and 65% for Am [9], with similar errors on volumes.
Using a method that requires the placement of 50 manual landmarks, a K of
88% for Hc was obtained [2]. The results for an entirely probabilistic method
were 82% for Hc and 81% for Am [10]. Moreover, our results on patient data
compare favourably with published results in subjects with epilepsy. Values for
the 9 sclerotic Hc in HS1-8 (average volume: 1.4cm3 (0.7-2)) are K=76% (64-83)
and RV =16% (4-33) for Hc, while in [5], they were, for 5 sclerotic Hc (average
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volume: 1.3cm3 (1.2-1.4), K=67% (57-75) and RV =16% (6-19). A recent study
in sclerotic Hc (1.2cm3 (1.1-1.6)) achieved similar overlap (K=76% (71-83)) but
at the expense of about 2 weeks of CPU time [17].
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