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Abstract. Extending the philosophy of additive Schwarz algorithms,
we propose a hybrid framework that allows different subdomains to use
different mathematical models, different spatial discretizations, differ-
ent local mesh types, and even different serial codes. This hybrid soft-
ware framework is implemented using object-oriented techniques, such
that existing serial codes are easily reused after being equipped with the
standard interface of a generic subdomain solver. The resulting hybrid
parallel tsunami simulator thus has full flexibility and extensibility. The
focus of this paper is on the software design of the framework, with an
illustrating example of application.

1 Introduction and Motivation

Computing the propagation of waves in the open sea is a key issue in tsunami
simulation. When an entire ocean is the solution domain, this computational task
becomes extremely challenging, both due to the huge amount of computations
needed and due to the fact that different physics are valid in different regions. For
example, the effect of dispersion is important for modeling wave propagation over
an vast region with large water depth (see e.g. [5,10]). Moreover, in regions where
water depth rapidly changes or close to the coastlines, nonlinear effects become
important. Both the above factors mean that using a simple wave propagation
model (such as the shallow water formulation (3)-(4) to be given later) over an
entire ocean domain may seriously affect the accuracy (see e.g. [8,6]). Therefore,
the computations should preferably adopt a hybrid strategy, i.e., using advanced
mathematical models in small local areas where needed, while applying simple
models to the remaining large regions. This is for achieving an acceptable balance
between computational efficiency and accuracy.

Although tsunami simulations often employ the non-dispersive standard shal-
low water equations, we have in this work applied a set of Boussinesq equations,
which are capable of modeling weakly dispersive and nonlinear waves:
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Equation (1) is called the continuity equation, and Equation (2) is a variant
of the Bernoulli (momentum) equation. In the above equations, η and φ are
the primary unknowns denoting, respectively, the water surface elevation and
the velocity potential. The water depth H is assumed to be a function of the
spatial coordinates x and y. In (1)-(2) the effect of dispersion and nonlinearity
is controlled by the two dimensionless constants ε and α, respectively. For more
mathematical and numerical details, we refer to [10,7,3]. Note that by choosing
ε = α = 0, we recover the widely used linear shallow water equations:

∂η
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∂φ
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+ η = 0. (4)

The Boussinesq equations (1)-(2) can be considered a compromise between
the computationally too expensive Navier-Stokes equations and the simple shal-
low water model (3)-(4). The numerical algorithm for solving (1)-(2) typically
consists of a time-stepping process that solves the following two semi-discretized
equations per time level:
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The above numerical scheme has adopted centered differences in the temporal
direction and an associated staggered temporal grid [9]. The superscript � in (5)-
(6) denotes the time level. For the spatial discretization, both finite elements and
finite differences can be used, depending on whether or not unstructured (and
adaptively refined) meshes are needed to resolve the details of the water depth
and/or the shape of coastlines. We mention that the shallow water model (3)-(4),
being a special case of the Boussinesq equations (1)-(2), can be discretized in the
temporal direction in the same fashion as in (5)-(6), likewise for the subsequent
spatial discretization. The difference is that the resulting numerical strategy for
solving (3)-(4) is often of an explicit nature (no need to solve linear systems),
giving rise to an extremely fast algorithm. In contrast, the numerical strategy
for (1)-(2) is of an implicit nature, meaning that linear systems must be solved
for both (5) and (6) at every discrete time level. Moreover, unstructured finite
element meshes will incur more computation time, in comparison with solving
linear systems related to (5)-(6) on uniform finite difference spatial meshes. This
is due to the complex data structure and indirect memory access that are used by
the finite element codes. Therefore, in respect of software, the coding complexity
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and computational cost also suggest that advanced mathematical models and
unstructured computational meshes should only be applied to local small areas
where necessary.

2 Parallelization by a Subdomain-Based Approach

Parallel computing is essential for simulating wave propagation over an entire
ocean, because a huge number of degrees of freedom are often needed. As we
have discussed above, different physics are valid in different regions, calling for
a computationally resource-aware parallelization. More specifically, in regions
where nonlinear and/or dispersive effects are important, existing serial software
for Boussinesq equations (1)-(2) should be applied. Likewise can existing serial
software for linear shallow water equations (3)-(4) be used in the remaining
regions.

Such a parallelization strategy is most easily realized by using subdomains,
such that the entire spatial domain Ω is decomposed into a set of overlapping
subdomains {Ωs}P

s=1. Mathematically, this idea of parallelization was first con-
ceived in the additive Schwarz algorithms, see [11]. In a generic setting, where a
partial differential equation (PDE) is expressed as

LΩ(u) = fΩ,

the Schwarz algorithm consists of an iterative process generating u0, u1, . . . , uk

as a series of approximate solutions. During Schwarz iteration k, each subdomain
first independently updates its local solution through

LΩs(u
k
s) = fk−1

Ωs
. (7)

Note that notation fk−1
Ωs

means a right-hand side due to restricting fΩ within Ωs

while making use of the latest global approximation uk−1 on the internal bound-
aries of Ωs. When all the subdomains have finished solving (7), the new global
solution uk is composed by “sewing together” the subdomain local solutions
uk

1 , u
k
2 , . . . , uk

P .
Equation (7) thus opens for the possibility of using different local solvers in

different subdomains. Taking the idea of additive Schwarz one step further, we
can also apply different mathematical models in different subdomains. Therefore,
different serial codes may be deployed regionwise. In the context of solving (5)-
(6), these two equation can each use a series of the above Schwarz iterations at
every discrete time level. The same set of subdomains should be used for both
(5) and (6), to avoid unnecessary cross-subdomain data shuffle.

3 An Object-Oriented Implementation

To implement a hybrid parallel tsunami simulator as argued above, we resort to
object-oriented programming techniques. For simplicity, the implementation can
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be extended from a generic library of Schwarz algorithms for solving PDEs, such
as that described in [1]. Our objective is a flexible design, such that existing serial
wave propagation codes can be easily integrated into a hybrid parallel simulator
of wave propagation. We will use C++ syntax in the following text, but the
object-oriented strategy is equally implementable using another language such
as Python, see e.g. [2].

3.1 A Generic Schwarz Framework

Before explaining the overall design of an object-oriented hybrid parallel tsunami
simulator, it is necessary to briefly repeat the generic library of Schwarz al-
gorithms, as described in [1]. Let us assume that the generic Schwarz library
consists of two generic components, say, class SubdomainSolver and class
Administrator. The purpose of the generic base class SubdomainSolver is to
declare on beforehand a generic interface of all concrete subdomain solvers, which
can later be inserted into the generic Schwarz framework. The generic interface
is namely a set of virtual member functions without concrete implementation.
For example, createLocalMatrix is a virtual function meant for setting up the
subdomain matrix associated with discretizing (7), and function solveLocal
is meant for solving the discretized form of (7) during each Schwarz iteration.
The actual computational work is of course realized inside a concrete subclass
of SubdomainSolver, which implements the virtual member functions such as
createLocalMatrix and solveLocal, either by a cut-and-paste of old serial
codes or more elegantly as a wrapper of an existing solver class.

Regarding the generic base class Administrator, the purpose is also to im-
plement on beforehand a common set of functions, some of them as virtual
member functions, useful later in a concrete parallel PDE solver based on ad-
ditive Schwarz iterations. The typical functions of Administrator deal with,
e.g., checking the global convergence among subdomains and invoking required
inter-subdomain communication, all of which are independent of specific PDEs.

3.2 Designing a Parallel Tsunami Simulator

Now it is time for us to present the design of a hybrid parallel tsunami simulator.
To maintain flexibility, while considering the special features with solving the
Boussinesq water wave equations (1)-(2) (recall that (3)-(4) is a special case),
we introduce a new generic class SubdomainBQSolver. The class is derived as a
subclass of SubdomainSolver to implement all the virtual member functions of
SubdomainSolver, while introducing a small set of new virtual functions. This is
because, e.g., the two semi-discretized equations (5)-(6) both need to be solved
using additive Schwarz iterations, thus requiring the solveLocal function to
contain two versions, one for (5) and the other for (6). The structure of function
SubdomainBQSolver::solveLocal may therefore be as follows:
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if (solve_4_continuity)
return solveContinuityEq ();

else
return solveBernoulliEq ();

Here, solve 4 continuity is a flag indicating which equation, (5) or (6), is
the current solution target. We note that the two new virtual member func-
tions solveContinuityEq and solveBernoulliEq are left open for concrete
subclasses to later insert their actual code of computation.

Once the new generic class SubdomainBQSolver is ready, a new class with
name HybridBQSolver is derived as a subclass from base class Administrator.
All the virtual functions of Administrator are implemented in HybridBQSolver,
which also implements the time-stepping process that solves (5)-(6) at each
time level. This in turn relies on an object of SubdomainBQSolver to per-
form the actual subdomain work for solving (7) during each Schwarz itera-
tion. We remark that an object of HybridBQSolver and an object of a sub-
class of SubdomainBQSolver will be deployed on each processor during a par-
allel simulation, and inter-subdomain communication is handled between the
objects of HybridBQSolver. The remaining programming work needed to im-
plement an actual parallel tsunami simulator is mainly in form of deriving con-
crete subclass(es) of SubdomainBQSolver, best illustrated by the following case
study. A hybrid parallel simulator arises when objects of different subclasses of
SubdomainBQSolver are deployed on different subdomains.

4 Case Study

We have two existing serial software codes: (1) an advanced C++ finite element
solver named class Boussinesq applicable for unstructured meshes, and (2) a
legacy F77 finite difference code applicable for uniform meshes. Both codes are
hard to parallelize following the standard approach of inserting MPI commands
directly into linear algebra operations. This is especially true for the legacy F77
code, which has a tangled internal data structure. Our objective is to build a
hybrid parallel tsunami simulator based on these two codes, in a straightforward
and effective way. To this end two light-weight new classes are programmed:

class SubdomainBQFEMSolver and class SubdomainBQFDMSolver

Here, class SubdomainBQFEMSolver uses double inheritance, as subclass of both
SubdomainBQSolver and Boussinesq, so that it inherits the computational func-
tionality from Boussinesq and at the same time is accepted by HybridBQSolver
as a subdomain solver. Similarly, class SubdomainBQFDMSolver is derived from
SubdomainBQSolver and at the same time “wraps up” the F77 subroutines of
the legacy code inside its solveLocal function.

Using such a hybrid software framework, a parallel tsunami simulator has
been built for the 2004 Indian Ocean tsunami. The entire spatial domain is
depicted in Fig. 1, where the epicenter is located at position (1, 1). Moreover,
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Fig. 1. An example of partitioning the Indian Ocean domain into a mixture of rectan-
gular and complex-shaped subdomains. Finite differences are used by the rectangular
subdomains to carry out the spatial discretization, whereas the complex-shaped sub-
domains use finite elements and adaptively refined local meshes.

the figure also shows different types of local meshes, i.e., uniform local meshes in
the rectangular subdomains and adaptively refined local meshes in the complex-
shaped subdomains. Different spatial discretizations (finite differences and finite
elements) can thus be deployed in different regions. The simulation results have
been reported in [4].

5 Concluding Remarks

We have explained a hybrid software framework for parallelizing and, at the
same time, combining different existing serial codes. Such a parallelization strat-
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egy is numerically inspired by the additive Schwarz algorithms, while implemen-
tationally enabled by object-oriented programming techniques. The approach is
particularly attractive for creating parallel simulators of wave propagation, as
many old serial wave codes exist but are otherwise difficult to be parallelized. For
ocean-scale simulations, the advantage of such a hybrid parallel simulator is that
small areas of difficulty can be handled by subdomains that are equipped with
an advanced mathematical model and a sophisticated numerical solver, whereas
the remaining vast regions are handled by a simple mathematical model and fast
code.

Future work will apply the software approach from this paper to other aspects
of tsunami simulation, for instance, run-up of waves on beaches. Quite some so-
phisticated serial codes have been developed for the run-up problem, and these
are hard to parallelize well. Our suggested approach makes parallelization fea-
sible with little work. Of even more importance is the fact that reuse of very
well-tested codes contributes to high reliability in a new hybrid, parallel simu-
lator. For each new problem such as wave run-up it always remains, however,
to investigate whether the additive Schwarz algorithm is capable of delivering
satisfactory parallel efficiency.
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