High-Level User Interfaces for
the DOE ACTS Collection

L. Anthony Drummond', Vicente Galiano?, Violeta Migallén?,
and José Penadés®

! Lawrence Berkeley National Laboratory,
One Cyclotron Road, Berkeley CA 94703, United States of America
LADrummond@lbl.gov
2 Departamento de Fisica y Arquitectura de Computadores,
Universidad Miguel Hernandez, ES-03202 Elche, Alicante, Spain
vgaliano@umh.es
3 Departamento de Ciencia de la Computacién e Inteligencia Artificial,
Universidad de Alicante, ES-03071 Alicante, Spain
{violeta, jpenades}@dccia.ua.es

Abstract. The ACTS collection project comprises a set of state-of-the-
art software tools to speed up the development of High-Performance
Computing Applications in science and engineering. We look at the de-
velopment of High Level user interfaces using scripting languages like
Python, to facilitate the access to ACTS technology to a wide commu-
nity of computational scientists. PyACTS is our main project here, but
we also visit other efforts within the community of developers of ACTS
tools.

1 Introduction

The Advanced CompuTational Software (ACTS) [I] Collection comprises a set of
computational tools developed primarily at DOE laboratories, sometimes in col-
laboration with universities and other funding agencies (NSF, DARPA), aimed
at simplifying the solution of common and important computational problems.
A number of important scientific problems have been successfully studied and
solved by means of computer simulations built on top of tools available in the
ACTS Collection [2]. The ACTS Collection brings robust and high-end software
tools to the hands of application developers to accelerate the development of
computational science codes and consequent results. However, this transfer of
technology is not always successful due in part to the intricacy in understanding
the interfaces associated with the software tools and the time an application sci-
entists spends installing and learning the use of a given tool. Here we present a
set of Python based interfaces to some of the tools in the ACTS Collection, Py-
ACTS. We also present some examples of it applications and future development
directions.

B. Kagstrom et al. (Eds.): PARA 2006, LNCS 4699, pp. 251 2007.
© Springer-Verlag Berlin Heidelberg 2007

252 L.A. Drummond et al.
2 Some of the Tools in the ACTS Collection

In Table [we briefly list some of the numerical functionality available in the
ACTS Collection. The tools in Table [[l have development projects that include
interfaces in Python. A closer look at the functionality offered by these tools
[1], we see that there are some tools that compliment others (i.e., the use of a
direct solver inside a preconditioner used by an iterative scheme, or the use of
a preconditioner from Tool A inside Tool B, etc.) and tools with functionality
that overlap. Selecting the appropriate tool is not trivial and problem specific, it
may require in some cases not only expertise in numerical linear algebra but also
extensive testing and tuning. To be able to explore the full functional plethora in
the ACTS Collection, a user may spend months learning the different interfaces
and parameterizations of a giving tool. Our goal with PyACTS is to build a high
level user interface that directly reduces the amount of work a user spends simply
learning to use a tool, facilitates a faster development of her or his application.
PyACTS [I5I6/17] provides a didactical user interface to assist with their first
application prototype and following production code development. Here we look
at the PyACTS development project and existing functionalities.
The reader is referred to the ACTS Information Center [I8] for more details on
these tools and others available in the collection. Our initial work has been focused
on the development of PyScal,APACK which is introduced in the next section.

3 PyACTS: A Python Interface to the ACTS Collection

Python [19] is an interpreted, interactive, object-oriented programming lan-
guage. Python combines remarkable power with very clear syntax. It has mod-
ules, classes, exceptions, very high level dynamic data types, and dynamic typing.
New built-in modules are easily written in C or C++4-. Python is also usable as an
extension language for applications that need a programmable interface. Python
is designed to make integration with other software components in a system
as simple as possible. Programs written in Python can be easily blended with
other languages. For instance, Python scripts can call out existing C and C++
libraries, Java classes, and much more. Actually, it is this feature of Python that
is employed in our current work.

Additionally, Python is portable: it runs on many brands of UNIX, on Win-
dows, Mac, and many other platforms. Python is copyrighted but freely usable
and distributable, even for commercial use. Python is an ideal language for proto-
type development and other ad—hoc programming tasks, without compromising
maintainability and it uses an elegant syntax for readable programs. All of the
ACTS tools listed in the previous section use MPI as one of the methods for
supporting message passing. In the PyACTS, we use pyMPI [20], which enables
us to use the same Python modules and rich functionality. We have also tested
other Python implementations of MPI and these can be replaced without any
portability issues because of the MPI functionality used inside PyACTS is avail-
able in all flavor implementations and the observed performance is quite similar.

High-Level User Interfaces for the DOE ACTS Collection 253

Table 1. A subset of the Numerical Tools in the ACTS Collection with their Python
based Interfaces. At this time, all these third party Python based projects are inde-
pendent of PyACTS and not a part of the ACTS collection.

TOOL Short Description

Library of high-performance linear algebra routines for
distributed-memory message-passing Multiple Instruction Mul-
ScaLAPACK [3] tiple Data (MIMD) computers and networks of workstations.
and PyScaLAPACK The library contains routines for solving systems of linear equa-
from PyACTS tions, least squares, eigenvalue problems and singular value
problems. It also contains routines that handle matrix factor-
izations or estimation of condition numbers.

General purpose library for the direct solution of large, sparse,
nonsymmetric systems of linear equations on high performance
machines. The library is written in C and is callable from ei-
ther C or Fortran. The library routines perform an LU decom-

SuperLU [] and
PySuperLLU from

PyACTS position with numerical pivoting and triangular system solves
through forward and back substitution.
The Portable, Extensible Toolkit for Scientific computation
[7], provides sets of tools for the parallel, as well as serial, nu-
PETSc [] and merical solution of PDEs that require solving large-scale, sparse
PyPETSc [6] linear and nonlinear systems of equations. PETSc includes non-

linear and linear equation solvers that employ a variety of New-
ton techniques and Krylov subspace methods.

SUite of Nonlinear and DlIfferential/ ALgebraic equation
Solvers, and it refers to a family of four closely related solvers;
CVODE [8l9], for systems of ordinary differential equations;
CVODES [10], variant of CVODE for sensitivity analysis; KIN-
SOL [11], for systems of nonlinear algebraic equations; and IDA
[12], for systems of differential-algebraic equations.

SUNDIALS and
some available
Python bindings

A framework for the development of parallel solvers and li-
braries within an object-oriented environment. AztecOO is one
Trilinos [13] and of the libraries available in Trilinos and it is part of the ACTS

PyTrilinos [14] Collection. The Trilinos framework offers a variety of mecha-
nisms for a software package to interact with other software
packages.

PyACTS is a collection of carefully designed and written software wrappers to
the ACTS tools, it also includes other routines written in Python to provide high

254 L.A. Drummond et al.

level users interfaces. Therefore, wrappers written for PyPBLAS, PyBLACS and
PyScaLAPACK were generated first with the help of F2PY [2I], and then we
loaded these wrappers with functionality that will automatically validate the
arguments passed to the actual PyACTS routines, and check for consistency
between the types of objects expected by the ACTS tools. These wrappers also
provide us with the ability to transparently convert data types between PyACTS
modules to support interoperability. More details on these wrappers are giving
later in this section. In additional, PyACTS interfaces contain fewer arguments
in their calls but generate automatically other parameters that are later passed
to the actual ACTS tool interfaces. An example of this abstraction is shown with
a PBLAS 3 example in Figure[Il In the panel (a) of this figure, we notice that
there are parameters like the PBLAS descriptors that do not contribute directly
with the operation, C' = aAB+ C, but are there to support the parallelism and
optimize the algorithmic implementation. Many users in computational science
and engineering do not care for these levels of details.

In example illustration (Figure [Il), PyACTS removes these extra arguments
from the PyPBLAS user interface. And internally PyPBLAS will automatically
generate the missing parameters for the user and execute the proper call to
the corresponding PBLAS routine. Furthermore, one more complex part of the
ScaLAPACK and SuperLU interfaces is the handling of the two dimensional
cyclic distribution. PyACTS provides an automatic mechanism to create the
data layout and manage the resulting data distributions for the user.

While our PyACTS implementations automatically generates many of the
parameters for the user, and provides support functionality, the user can still
modify this parametric behavior by calling directly a routine at a lower lever
of the PyACTS structure. Thus, PyACTS has resulted in a modular tool that
support users with different levels of expertise with ACTS tools.

Figure [illustrates the internal structure of the PyACTS software. As il-
lustrated in this graph we use components of pyMPI and Numerical Python,
NumPy [22], to provide array management and parallelism. Additionally we have
created a set of utilities to facilitate I/O of different formats (e.g., NETCDF,
ascii), and general purpose processing routines.

The utilities module is shared by all the components of PyACTS and they
are not particular to a tool in ACTS. The individual tool modules (e.g., the
PyScalLAPACK module, PySuperLLU module, etc.) contain the Python bindings
to the ACTS tools.

The Python wrappers provide not only a level of transparency to some tool
arguments but also a set of well designed validation procedures and generation
of extra arguments to call the Fortran or C language libraries. Validation pro-
cedures verify that the correct variables are passed as parameters to a given
routine. For instance when calling a PyScalLAPACK routines that takes a ma-
trix as argument, the verification will consist of a checking of the ScaLAPACK
type matrix and that the matrix has indeed values before it calls to the ac-
tual ScaLAPACK matrix. Internally, it also checks whether the corresponding
ScalLAPACK contexts for the distributed arrays have been created.

High-Level User Interfaces for the DOE ACTS Collection 255

PvGEMM(TRANSA, TRANSB, M, N, K, ALPHA,
A, IA, JA, DESCA,
B, IB, JB, DESCB,
BETA, C, IC, JC, DESCC)

(a)
XSt

“|> from PyACTS import *
> import PyACTS.PyPBLAS as PyPBLAS

Generate or enter n,n matrix A, vectors B and C
and scalars

> PyACTS.gridinit() # grid initialization
> C=PyPBLAS.pvgemm(alpha,A,B,beta,C) # call level 3

PBLAS routine
> PyACTS.gridexit()

(b)

Fig. 1. The generic BLAS 3 Fortran and C call is shown in panel (a), and panel (b)
shows the simplified PyACTS, specifically PyPBLAS, version of the same call

In PyACTS, the interoperability between ACTS tools is managed via a col-
lection of routines for conversions of data representations between the different
ACTS tools. For instance, this allows a user to convert a matrix from SuperLU
into a PETSc matrix in an easier manner.

Currently, we have developed an interface to ScaLAPACK and SuperLU,
PyScaLAPACK [15] and PySuperLU, respectively. In addition, we have designed
a modular implementation of PyACTS that is shown in Figure 2l This design
allows for easily handling of different versions of the same package and also the
interoperability with other Python interfaces from other ACTS tool develop-
ers. For instance, PETSc and SUNDIALS provide their own Python extensions.
Trilinos provides PyTrilinos [23], with Python extensions to provide access to
most of the Trilinos functionality. TAU [24], a performance profiling and tuning
tool in the ACTS Collection, can also profile programs written in Python. Thus,
the PyACTS modular structure still allows for integration of existing PyACTS
functionality with the ones being developed by other ACTS tool developers. As
shown also in Figure 2], a user wanting to use PyACTS needs to have installed:
MPI, BLAS, BLACS, ScaLAPACK, Python 2.1 or later, and NumPy

4 Some Examples of Applications Using PyACTS
Modules

In this section we briefly present results from two parallel implementations of
the Conjugate Gradient (CG) algorithm. The first implementation written in

256 L.A. Drummond et al.

PYTHON INTERPRETER: pyMPI

Y Y Y Y Y
PyACTS
Y PySuperLU| |PyBLACS| PyPBLAS||PyScaLAPACK in-ilt-osaI: e Numerical
Module Module Module Module wr}te ! Python
| | | |
v A 1] v ¥
PYACTS.s0 |pysuperLU| . . |PyBLACS||PyPBLAS| |PyScaLAPACK
Wrapper Wrapper || Wrapper Wrapper l:zth?;
orl
| | |
| | |
Y Y Y
Sl ScaLAPACK
Libraries

(libscalapack.a)

v '

‘ BLACS ‘

Y Y

‘ MPI ‘

Fig. 2. Modular Structure of the PyACTS Project

(seq, shared,dist) L

pure Fortran and the second one in Python using PyACTS modules. There are
many implementations of the CG for high performance computing, including
robust and scalable implementations that are offered in the ACTS Collection.
Furthermore, there is extensive literature on the subject that discusses in detail
its derivation, applications and performance issues of the CG Algorithm. Thus,
our goal here is not to provide a better version of the CG or extend the litera-
ture on the subject, but rather to illustrate with an example and performance
results the low overhead of PyACTS. We have chosen this example because of
the multiple calls to PBLAS routines and parallel manipulation of vectors and
matrices.

In the PyACTS code, we have used the PyPBLAS module, and in the For-
tran code we call the counterpart PBLAS routines directly. The experiments
were perform in a Linux cluster with 6 2.0GHz Intel processors and 512Mbytes
memory per processor. The BLAS level routines were previously optimized with
ATLAS [25].

The different curves correspond to different processor grids for the two code
implementations. First, we observe a marginal difference in the timings between
the PyACTS and Fortran versions. Because Python automatically provides a
more efficient memory management mechanism than Fortran (i.e., a Fortran code
without any special memory management nor memory optimization schemes) in
some cases we were able to run the parallel PyACTS implementation with matrix
sizes and processes grids that were not possible with Fortran due to memory lim-
itations. For instance see 1 x 1 configuration for matrix sizes over 11,000 in Figure
3(a)l Figure shows the relationship between the execution time of the For-
tran code and Python based one (Time FortranCode + Time PyACT SCode)

High-Level User Interfaces for the DOE ACTS Collection 257

45

4 —~—FORTRAN 1X1 -a—PYTHON 1X1 /
FORTRAN 2X1 ——PYTHON 2X1
—— FORTRAN 4X1 —PYTHON 4X1

3,5 1
s~ FORTRAN 6X1 —+ PYTHON 6X1 /
3
25 =
/
2 7

o
©

o
@

/T_Python
°
3

o
E)

Time (sec.)

\ \
\
%
~

T_Fortran

o

2

N

-
\
X
\
°
2
N\

— = —ixt et
o e
05 / . 4/{;,4 03 4 e

0,2 T T T T T T T T T

=)

i e e e R P P PP PSS DSOS S
o L L N N o o @
P PP LS LLLLLELL LSS PSS S S S
P & § P £ P £ § S D SRR S S SRRSO IR IR
T F S S S S 059\00 IR RTRT R X
P Matrix size
Matrix size

(a) Actual Run Times (b) Relative Run Times

Fig. 3. Comparing a Fortran vs a Python implementation of the Conjugate Gradient
algorithm. We use PyACTS modules for the Python implementation.

A number of other examples have been performed with both PyScaLAPACK
and PyPBLAS routines [26], and the results have consistently displayed a marginal
difference between the PyACTS and Fortran code implementations in different
computer platforms.

Additionally, PyScaLAPACK has already been used inside scientific appli-
cations [26]. In particular, it has been used to provided parallel functionality
to a sequential Python-based package called PyClimate. PyClimate [27] pro-
vides support to common tasks during the analysis of climate variability data. It
provides functions that range from simple IO operations and operations with
COARDS-compliant netCDF files to Empirical Orthogonal Function (EOF)
analysis, Canonical Correlation Analysis (CCA) and Singular Value Decomposi-
tion (SVD) analysis of coupled data sets, some linear digital filters, kernel based
probability-density function estimation and access to DCDFLIB.C library from
Python. PyClimate uses functionality available in LAPACK.

5 Conclusions and Future Work

Although, early experiments with PyACTS have shown a low overhead induced
by the Python-based interface, PyACTS is not yet intended for large production
runs in high-end system, rather it is a didactical tool for generating a first proto-
type of the application code. It helps the user to become familiar with a particular
interface and also access in an interoperable manner other ACTS tools interface
without having to learn it in great detail. We envision that the popularity of high-
level programing languages, and their portability to many computer system will
in the future enable technology that will make this high-level programming lan-
guages to scale. Thus, PyACTS may also scale to thousands of processors.

We are currently working on a PyACTS scribe that will allow to write out the
Fortran and C language equivalent functions of the High-Level PyACTS routines.

258 L.A. Drummond et al.

Therefore, a user that prototypes an application using PyACTS will be able to get
the exact Fortran or C calling interface sequence in order to produce a code that
can be compiled and used for production runs in a large number of system.

In the future, we will be working closely with other ACTS tool developers and
integrating more functionality to PyACTS.

Acknowledgments. This work was partially supported by the Division of
Mathematical, Information, and Computational Sciences of the U.S. Depart-
ment of Energy under contract No. DE-AC03-76SF00098”, the Spanish Ministry
of Science and Education under grant number TIN2005-093070-C02-02, and by
Universidad de Alicante under grant number VIGROB-020.

References

1. Drummond, L.A., Marques, O.A: An Overview of the Advanced CompuTational
Software (ACTS) Collection. ACM Transactions on Mathematical Software 31(3),
282-301 (2005), http://doi.acm.org/10.1145/1089014.1089016

2. Drummond, L.A., Hernédndez, V., Marques, O., Romén, J.E., Vidal, V.: A Survey
of High-Quality Computational Libraries and Their Impact in Science and Engi-
neering Applications. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI),
vol. 3403, pp. 37-50. Springer, Heidelberg (2005)

3. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J.W., Dhillon, I.,
Dongarra, J.J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D.,
Whaley, R.C.: ScaLAPACK User’s Guide. STAM, Philadelphia (1997)

4. Demmel, J.W., Gilbert, J.R., Li, X.: SuperLU User’s Guide. University of Califor-
nia, Berkeley (2003)

5. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., Curfman
Mclnnes, L., Smith, B.F., Zhang, H.: PETSc’s home page (2007),
http://www.mcs.anl.gov/petsc

. Korvola, T.: PyPETSc (2005), http://www.elisanet.fi/tkorvola/hacks/’’

7. Balay, S.K., Gropp, W.D., Mclnnes, L.C., Smith, B.F.: Efficient Management of
Parallelism in Object Oriented Numerical Software Libraries. Modern Software
Tools in Scientific Computing. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.)
Modern Software Tools in Scientific Computing, pp. 163-202. Birkhauser Press

1997

8. goher)l, S.D., Hindmarsh, A.C.: CVODE User Guide. Technical Report UCRL-MA-
118618, Lawrence Livermore National Laboratory (1994)

9. Byrne, G.D., Hindmarsh, A.C.: User documentation for PVODE, an ODE solver
for parallel computers. Technical Report UCRL-ID-130884, Lawrence Livermore
National Laboratory (1998)

10. Hindmarsh, A.C., Serban, R.: User Documentation for CVODES, An ODE
Solver with Sensitivity Analysis Capabilities. Technical Report UCRL-MA-148813,
Lawrence Livermore National Laboratory (2002)

11. Taylor, A.G., Hindmarsh, A.C.: User Documentation for KINSOL, A nonlinear
solver for sequential and parallel computers. Technical Report UCRL-ID-131185,
Lawrence Livermore National Laboratory (1998)

12. Hindmarsh, A.C., Taylor, A.G.: User Documentation for IDA, a Differential-
Algebraic Equation Solver for Sequential and Parallel Computers. Technical Report
UCRL-MA-136910, Lawrence Livermore National Laboratory (1999)

D

http://doi.acm.org/10.1145/1089014.1089016
http://www.mcs.anl.gov/petsc
http://www.elisanet.fi/tkorvola/hacks/''

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

High-Level User Interfaces for the DOE ACTS Collection 259

Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G.,
Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thorn-
quist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An
Overview of the Trilinos Project. ACM TOMS Vol 31:3 (2004) 127

Sala, M., Spotz, W., Heroux, M.: PyTrilinos: High-performance distributed-
memory solvers for Python. ACM TOMS (2006) (submitted)

Galiano, V., Drummond, L.A., Migallén, V., Penadés, J.: High Level User Inter-
faces for High Performance Libraries in Linear Algebra: PyBLACS and PyPBLAS.
In: Proceedings from 12th International Linear Algebra Society Conference, Uni-
versity of Regina, Regina, Saskatchewan, Canada (2005)

Drummond, L.A., Galiano, V., Migallén, V., Penadés, J.: Improving ease of use in
BLACS and PBLAS with Python. In: Joubert, G., Nagel, W., Peters, F., Plata,
0., Tirado, P., Zapata, E. (eds.) Parallel Computing: Current & Future Issues of
High-End Computing, Proceedings of the International Conference ParCo 2005,
vol. 33, NIC series (2006) ISBN 3-00-017352-8

Kang, N., Drummond, L.A.: A first prototype of PyACTS. Technical Report
LBNIL-53849, Lawrence Berkeley National Laboratory (2003)

Marques, O.A., Drummond, L.A.: The ACTS Information Center (2007),
http://acts.nersc.gov

van Rossum, F.D.J.G.: An Introduction to Python. Network Theory Ltd (2003)
Miller, P.: PyMPI - An introduction to parallel Python using MPI (2002),
http://www.1llnl.gov/computing/develop/python/pyMPI.pdf

Peterson, P.: F2py users guide and reference manual (2005),
http://cens.ioc.ee/projects/f2py2e/

Ascher, D., Dubois, P.F., Hinsen, K., Hugunin, J., Oliphant, T.: Numerical Python.
Lawrence Livermore National Laboratory, Livermore, CA 94566, UCRL- MA-
128569 (2001), http://numpy.sourceforge.net

Sala, M.: Distributed Sparse Linear Algebra with PyTrilinos. Technical Report
SAND2005-3835, Sandia National Laboratories (2005)

Shende, S., Malony, A.D.: The tau parallel performance system. International Jour-
nal of High Performance Computing Applications 20, 287-311 (2006)

Whaley, R.C., Petitet, A., Dongarra, J.: Automated empirical optimizations of
software and the atlas project. Parallel Computing 27, 3-25 (2001)

Drummond, L.A., Galiano, V., Marques, O.A., Migallén, V., Penadés, J.: PyACTS:
A High-Level Framework for Fast Development of High Performance Applications.
In: Lecture Notes in Computer Science. vol. 4395, pp. 417-425 (2007)

Saenz, J., Zubillaga, J., Ferndndez, J.: Geophysical data analysis using Python.
Computers and Geosciences 28/4, 457-465 (2002)

http://acts.nersc.gov
http://www.llnl.gov/computing/develop/python/pyMPI.pdf
http://cens.ioc.ee/projects/f2py2e/
http://numpy.sourceforge.net

	High-Level User Interfaces for the DOE ACTS Collection
	Introduction
	Some of the Tools in the ACTS Collection
	PyACTS: A Python Interface to the ACTS Collection
	Some Examples of Applications Using PyACTS Modules
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

