
Slicing Abstractions�

Ingo Brückner1, Klaus Dräger2, Bernd Finkbeiner2, and Heike Wehrheim3

1 Carl von Ossietzky Universität, 26129 Oldenburg, Germany
ingo.brueckner@informatik.uni-oldenburg.de

2 Universität des Saarlandes, Fachrichtung Informatik, 66123 Saarbrücken, Germany
{draeger,finkbeiner}@cs.uni-sb.de

3 Universität Paderborn, Institut für Informatik, 33098 Paderborn, Germany
wehrheim@uni-paderborn.de

Abstract. Abstraction and slicing are both techniques for reducing the
size of the state space to be inspected during verification. In this paper,
we present a new model checking procedure for infinite-state concurrent
systems that interleaves automatic abstraction refinement, which splits
states according to new predicates obtained by Craig interpolation, with
slicing, which removes irrelevant states and transitions from the abstrac-
tion. The effects of abstraction and slicing complement each other. As
the refinement progresses, the increasing accuracy of the abstract model
allows for a more precise slice; the resulting smaller representation gives
room for additional predicates in the abstraction. The procedure termi-
nates when an error path in the abstraction can be concretized, which
proves that the system is erroneous, or when the slice becomes empty,
which proves that the system is correct.

1 Introduction

Much of the progress in automated software verification during the past
decade has been driven by the invention of predicate abstraction together with
methods like Craig interpolation that automatically find the right predicates
[1,2,3,4,5,6,7]. Predicate abstraction reduces a potentially infinite state space to
the finite set of valuations of a tuple of state predicates. In the abstraction re-
finement loop, one first builds an initial abstract model from some given set of
predicates. Then the abstract model is verified, which may result in a proof of
correctness (no counter example), a proof of incorrectness (an abstract counter
example that can be concretized), or a spurious counter example (an abstract
counter example that cannot be concretized). In the latter case, additional pred-
icates are extracted from the proof of spuriousness, and the next iteration of the
loop starts with the extended set of predicates.

The advantage of predicate abstraction is its precision: when successful, the
refinement loop automatically produces a set of predicates that eliminates all
� This work was partly supported by the German Research Council (DFG) as part

of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

F. Arbab and M. Sirjani (Eds.): FSEN 2007, LNCS 4767, pp. 17–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 I. Brückner et al.

pc=0

pc=1pc=2 pc=3

init

requestready

up down
moveUp moveDn

ready ready

Fig. 1. Control flow graph of a simple elevator

spurious counter examples. On the other hand, the abstract systems generated by
predicate abstraction tend to become prohibitively large: the size of the abstract
system, and hence the complexity of the verification step of the loop, grows
exponentially with the number of predicates.

In this paper, we address this problem by interleaving abstraction refinement
steps with slicing. Slicing syntactically tracks the dependencies between variables
and transitions in a system and completely removes irrelevant parts. While slic-
ing alone cannot be used as a proof technique, it has the advantage that it never
increases the size of the state space and may lead to significant reductions.

Figure 1 shows the control flow graph of a simple elevator example, which will
be used in the following to illustrate our method. The elevator accepts a request
for a certain floor, then moves up or down accordingly, and finally, after reaching
the requested floor, is ready for a new request. The transitions of the elevator are
specified in Table 1. The system variables include the program counter pc, the
current floor current , the currently requested floor req , and a nondeterministic
input variable input (input is constrained to be in the valid range input ≤ Max
when the elevator is ready to receive its next request). We verify the correctness of
the elevator by showing that the error condition current > Max is never satisfied.

The verification of the elevator is shown in Figures 2 and 3. (We will refer
to these figures throughout the paper to illustrate the individual steps.) Our
procedure maintains an explicit representation of the abstract model. Rather
than requiring, as in many other approaches, a simulation preorder between
system and abstraction, we call an abstraction sound if the system is correct
iff the abstraction has no concretizable error path. The process starts with a
default abstraction shown as Step 1 of Figure 2: there are four abstract nodes,
corresponding to the four different evaluations of init (a predicate characterizing
the initial states) and error (a predicate characterizing error states). The edges
in the abstraction allow for all possible paths between init and error states
that are “minimal” in the sense that they do not visit a second init or error
state. The advantage of this restriction is that redundant computation segments,

Slicing Abstractions 19

Table 1. Initial condition, error condition, and transitions of a simple elevator

init pc=0 ∧ current≤Max ∧ input≤Max
error current>Max
request pc=0 ∧ pc′=1 ∧ current ′=current ∧ req ′=input
ready pc ≥ 1 ∧ req=current ∧ pc′=0 ∧ current ′=current ∧ req ′=req ∧ input ′≤Max
up pc=1 ∧ req > current ∧ pc′=2 ∧ current ′=current ∧ req ′=req
down pc=1 ∧ req < current ∧ pc′=3 ∧ current ′=current ∧ req ′=req
moveUp pc=2 ∧ req > current ∧ pc′=2 ∧ current ′=current + 1 ∧ req ′=req
moveDn pc=3 ∧ req < current ∧ pc′=3 ∧ current ′=current − 1 ∧ req ′=req

such as any downward movement of the elevator (which needs to be followed
by an upward movement before an error can possibly be reached), are quickly
eliminated from the abstraction.

Predicates, obtained by Craig interpolation, are used to refine the abstraction
locally, i.e., by splitting individual nodes. In parallel, slicing reduces the size of
the abstraction by dropping irrelevant states and transitions from the model. (In
Figures 2 and 3, components that are eliminated by slicing are shown in dashed
lines.) The effects of abstraction and slicing complement each other. As the
refinement progresses, the increasing accuracy of the abstract model allows for
a more precise slice; the resulting reduction gives room for additional predicates
in the abstraction. In the example, the procedure terminates after Step 6, when
the slice becomes empty, proving that the system is correct.

2 Related Work

Abstraction. There is a rich literature on predicate abstraction and the abstrac-
tion refinement loop [1,2,3,4,5]. The key difference between our approach and
classic predicate abstraction is that we use new predicates to split individual
nodes, while predicate abstraction interprets every predicate in every abstract
state. Our approach can be seen as a generalization of lazy abstraction [6,7],
which incrementally refines the state space with new predicates as the control
flow graph is searched in a forward manner to find an error path. New pred-
icates in lazy abstraction only affect the subgraph reachable from the current
node. Lazy abstraction thus exploits locality in branches of the control flow graph
while our approach exploits locality in individual nodes of the abstraction.

Our abstraction process is similar to deductive model checking [8], which also
refines an explicit abstraction by splitting individual nodes. While we only handle
simple error conditions, deductive model checking provides rules for full linear-
time temporal logic. The key difference is that deductive model checking is only
partly automated and in particular relies on the user to select the nodes and
predicates for splitting.

Slicing. Program slicing, introduced by Weiser [9], is a static analysis technique
widely used in debugging, program comprehension, testing, and maintenance.

20 I. Brückner et al.

n1: init

¬error

n2: ¬init

¬error

n3: ¬init

error

n4: init

error

T T

T

T

Step 1: Initial abstraction.

n1: init

¬error

n2: ¬init

¬error

n3: ¬init

error

n4: init

error

{request} {moveUp#}

T \ {ready}

∅

Step 2: After slicing. The transition relation moveUp on edge (n2, n3) simplifies to
moveUp# = pc=2 ∧ req > current ∧ pc′=2 ∧ current ′=current + 1.

n1: init

¬error

n2: ¬init

¬error

pc=1

n5: ¬init

¬error

pc �= 1

n3: ¬init

error

{request}
{up, down}

∅

{moveUp#}

∅ {moveUp, moveDn}

Step 3: After splitting node n2 with predicate pc=1 and slicing.

n1: init

¬error

n2: ¬init

¬error

pc=1

n5: ¬init

¬error

pc=2

n6: ¬init

¬error

pc �= 1
pc �= 2

n3: ¬init

error

{request} {up}

{down}
∅∅

{moveUp#}

{moveUp}

{moveDn}

Step 4: After splitting node n5 with predicate pc=2 and slicing.

Fig. 2. Steps 1–4 of the verification of the simple elevator. Components shown in dashed
lines are deleted in the slice.

Slicing Abstractions 21

n1: init

¬error

n2: ¬init

¬error

pc=1

n5: ¬init

¬error

pc=2

n3: ¬init

error

{request ◦n2 up}

{moveUp#}

{moveUp}

Step 5: Node n2 is bypassed via transition relation request ◦n2 up.

n1: init

¬error

n5: ¬init

¬error

pc=2
req ≤ Max

n7: ¬init

¬error

pc=2
req > Max

n3: ¬init

error

{request ◦n2 up}

∅

∅∅ ∅

{moveUp#}

{moveUp}

{moveUp}

Step 6: After splitting node n5 with predicate req ≤ Max and slicing.

Fig. 3. Steps 5 and 6 of the verification of the simple elevator. Components shown in
dashed lines are deleted in the slice. Since the slice after Step 6 is empty, the system
is correct.

Essentially, slicing extracts the parts of a program which might affect some
given slicing criterion (e.g. a variable at some point). Slicing has become one of
the standard reduction techniques in finite-state model checking (for instance in
SAL [10], Bandera [11], Promela [12], IF [13]). More recently, slicing has been
used in automated abstraction refinement as a preprocessing step on abstract
error paths (thus analyzing individual paths, not the full abstraction). Path
slicing [14] removes irrelevant parts of the abstract error path before the path
is passed to the theorem prover to verify if the path can be concretized.

Usually, the slice is determined by a dependency analysis on the control flow
graph of the program. A more refined technique, taking additional information
about the property under interest into account, is conditioned slicing [15]. Here,
an assumption about the initial (forward conditioning) or final states (backward
conditioning) is added in the form of a predicate, and slicing then only keeps the
statements which can be executed from an initial state or which lead to a final
state satisfying the predicate.

22 I. Brückner et al.

Closest to our work is the backward conditioning approach of [16] (used for
program comprehension, not verification). Backward conditioning proceeds by a
symbolic execution of the program and the use of a theorem prover to prune the
execution paths which do not lead into a desired final state. The analysis is how-
ever always carried out on the concrete program, not its abstraction, and the tech-
nique will – due to its objective of program comprehension – preserve all paths to
the given final states. A use of conditioned slicing in verification can be found in
[17], where the condition is extracted from a temporal logic formula of the form
G(p → q). The predicate p is used as a condition for forward conditioning, the
technique is then building a refined program dependence graph (based on the con-
trol flow graph). A conditioning method operating on an abstraction of the pro-
gram is presented in [18]. On this abstraction it can be determined under which
conditions one statement might affect another (while for verification we need to
find out whether some condition might hold at all or not).

3 Preliminaries: Transition Systems

We use a general representation of concurrent systems as transition systems,
which can be defined using an assertion language based on first-order logic. In
the following we denote the set of first-order formulas over a set of variables
V by Ass(V). A transition system S = 〈V, init , T 〉 consists of the following
components:

– V : a finite set of system variables. We define for each system variable v ∈ V
a primed variable v′ ∈ V ′, which indicates the value of v in the next state.
We call the set Ass(V) of assertions over the system variables the set of state
predicates and the set Ass(V ∪ V ′) of assertions over the system variables
and the primed variables the set of transition relations. For a state predicate
ϕ, let ϕ′ denote the assertion where each variable v is replaced by v′.

– init(V): the initial condition, a state predicate characterizing all states in
which the computation of the system can start.

– T : the transition set. Each transition τ(V, V ′) ∈ T is a conjunction
τ(V, V ′) =

∧
i gi(V) ∧

∧
i ti(V, V ′) of guards gi and transition relations

ti. In the special case where, for a given set W of variables, τ is of the form
τ(V, V ′) =

∧
i gi(V) ∧

∧
v∈W (v′ = ev(V)), i.e., each variable in W is as-

signed a value defined over V , we say that τ is a guarded W -assignment. We
assume that T always contains the idling transition τidle =

∧
v∈V v = v′.

A state of S is a valuation of the system variables V . A run is an infinite
alternating sequence s0, τ0, s1, τ1, . . . of states and transitions such that init(s0)
holds and for all positions i ≥ 0, τi(si, si+1) holds.

We assume that the correctness criterion for S is given as an error condition
error(V), a predicate which characterizes all error states. We say S is correct if
there is no run s0, τ0, s1, . . . of S that has a position i ≥ 0 such that error (si)
holds.

Slicing Abstractions 23

4 Abstraction

Our abstractions are graphs where the nodes are labeled with sets of predicates
and the edges are labeled with sets of transition relations.

Definition 1. An abstraction A = 〈N, E, ν, η〉 of a transition system S =
〈V, init , T 〉 consists of the following components:

– a finite set N of nodes,
– a set E ⊆ N × N of edges,
– a labeling ν : N → 2Ass(V) of nodes with sets of predicates, and
– a labeling η : E → 2Ass(V,V ′) of edges with sets of transition relations.

A node n ∈ N of the abstraction is an initial node if its label ν(n) contains
the initial condition init , and an error node if its label ν(n) contains the error
condition error . In the following, let I = {n ∈ N | init ∈ ν(n)} denote the set
of initial nodes, and F = {n ∈ N | error ∈ ν(n)} the set of error nodes.

A path of an abstraction is a finite alternating sequence
n0, τ0, n1, τ1, . . . , τk−1, nk of nodes and transitions such that for all
0 ≤ i < k, τi ∈ η(ni, ni+1). An error path is a path n0, τ0, n1, τ1, . . . , τk−1, nk

such that n0 ∈ I is an initial node and nk ∈ F is an error node.
An abstract path n0, τ0, n1, τ1, . . . , τk−1, nk is concretizable in S if there exists

a finite sequence of states s0, s1, . . . , sk such that for every position 0 ≤ i ≤ k
and every state predicate q ∈ ν(ni), q(si) holds and for every position 0 ≤ i < k,
τi(si, si+1) holds. We call the alternating sequence of system states and tran-
sitions s0, τ0, s1, τ1, . . . , τk−1, sk the concretization of n0, τ0, n1, τ1, . . . , τk−1, nk.
An abstract error path that is not concretizable is called spurious. An abstraction
A of a transition system S is sound if there exists a concretizable error path in A
if and only if S is not correct. Our abstraction refinement procedure starts with
a sound initial abstraction and then preserves soundness in each transformation.

Definition 2. The initial abstraction A0 = 〈N, E, ν, η〉 of a transition system
S = 〈V, init , T 〉 consists of the following components:

– N = {ie, ie, ie, ie}
– E = {(ie, ie), (ie, ie), (ie, ie), (ie, ie)}
– ν : ie �→ {init , error}, ie �→ {¬init , error}, ie �→ {init , ¬error}, ie �→

{¬init , ¬error},
– η : e �→ T for all e ∈ E.

The initial abstraction is shown as Step 1 of Figure 2. As explained in the
introduction, no concretization of a path in the abstraction visits an initial or
error state twice. This is consistent with our definition of soundness, which only
requires the existence of some concretizable error path. Given an error path that
visits initial or error nodes multiple times, we can always construct an error path
that visits both only once, by considering the segment between the last initial
node and the first error node.

24 I. Brückner et al.

Proposition 1. The initial abstraction A0 of a transition system S is sound.

Proof. By definition, the concretization of an error path of A0 is the prefix of
a run of S that leads to a state that satisfies the error condition. Hence, the
existence of a concretizable error path implies that S is not correct. Suppose,
on the other hand, that S is not correct, i.e., there exists a run s0, τ0, s1, τ1 . . .
such that error(sk) holds for some k ∈ N. Let i be the greatest index between
0 and k such that init(si) holds, and let j be the smallest index between i and
k such that error(j) holds. The subsequence si, τi, si+1, τi+1, . . . , sk defines a
concretizable abstract path ni, τi, ni+1, τi+1, . . . , τk−1, nk as follows: for all l =
i, . . . , k, nl = ie ⇔ init(sl) ∧ error (sl); nl = ie ⇔ ¬init(sl) ∧ error(sl); nl =
ie ⇔ init(sl) ∧ ¬error (sl); nl = ie ⇔ ¬init(sl) ∧ ¬error (sl). Since ni ∈ I and
nk ∈ F , ni, τi, ni+1, τi+1, . . . , τk−1, nk is an error path.
�

Soundness of the abstraction is preserved by all of the following transformations
on the abstraction. Due to lack of space, we prove this only for the most complex
type of simplification, namely Simplify Transition.

5 Slicing

Slicing removes irrelevant components from the abstraction. We define four dif-
ferent types of slicing operations: Elimination of transitions, elimination of nodes,
simplification of transition relations, and the introduction of bypass transitions.

5.1 Eliminating Transitions

The abstraction may contain transitions that are irrelevant because the predi-
cates on the source and target nodes of the edge contradict the transition rela-
tion. Such transitions are eliminated in the slice:

Inconsistent Transition. Let A = 〈N, E, ν, η〉 be an abstraction that contains
a transition relation τ ∈ η(m, n) on some edge (m, n) ∈ E such that the
formula

∧
q∈ν(m) q ∧ τ ∧

∧
q∈ν(n) q′ is unsatisfiable. We remove τ , resulting

in the abstraction A′ = 〈N, E, ν, η′〉, where η′(m, n) = η(m, n) � {τ} and
η′(e) = η(e) for e �= (m, n).

Empty Edges. The removal of transition relations may result in edges with
empty labels. Such edges can be removed, transforming A = 〈N, E, ν, η〉
into the abstraction A′ = 〈N, E′, ν, η|E′〉, where E′ = {e ∈ E | η(e) �= ∅}.

In Step 2 of the elevator example, all transition relations on the edge between
nodes n1 and n3 are contradicted by the predicates on the nodes: there is no
transition that leads directly from an initial state to an error state (the only
transition enabled in the initial state is request, which does not modify current).
As a result, all transitions are removed from the label, and the empty edge is
removed from the abstraction.

Slicing Abstractions 25

5.2 Eliminating Nodes

Nodes are removed from the abstraction if they are either labeled with an in-
consistent combination of predicates or do not occur on any error paths.

Inconsistent Node. Let A = 〈N, E, ν, η〉 be an abstraction that contains a
node n ∈ N such that

∧
q∈ν(n) q is unsatisfiable. We remove n, resulting in

the abstraction A′ = 〈N ′, E′, ν|N ′ , η|E′〉, where N ′ = N � {n} and E′ =
E ∩ (N ′ × N ′).

Unreachable Node. Let A = 〈N, E, ν, η〉 be an abstraction that contains a
node n ∈ N which is unreachable from initial nodes or from which no error
node can be reached. We remove n, resulting in A′ = 〈N ′, E′, ν|N ′ , η|E′〉,
where N ′ = N � {n} and E′ = E ∩ (N ′ × N ′).

In Step 2 of the elevator example, the inconsistent node n4 is removed (the
conjunction init ∧error is unsatisfiable). Unreachable nodes are removed in Step
4 (node n6), Step 5 (node n2), and Step 6 (the entire abstraction).

5.3 Simplifying Transition Relations

The next slicing mechanism removes constraints from transition relations that
are irrelevant for the existence of a concretizable error path. For this purpose
we assign to each node n ∈ N a set of live variables L(n) ⊆ V , containing all
variables whose value may possibly affect the existence of a concretizable path
from n to the error.

As usual in slicing, the set of live variables is computed by a fixpoint com-
putation. Initially, the live variables of a node n ∈ N are those appearing in
its labeling ν(n) and in the enabling conditions of the transitions on outgoing
edges: L0(n) = vars(ν(n)) ∪

⋃
(n,m)∈E,τ∈η(n,m) vars(enabled(τ)).

Then, this labeling is updated according to dependencies through transition
relations on edges. For a predicate q we let vars(q) denote the set of its free
variables. For a transition relation τ and a set of variables X we let dependτ (X)
denote the set of variables that potentially influence the value of variables in X
when τ is taken: for τ =

∧
i gi(V) ∧

∧
i ti(V, V ′), depend τ (X) = W ∩ V , where

W is the smallest set of variables such that X ′ ⊆ W , for all i, vars(gi) ⊆ W , and
for all i with vars(ti)∩W �= ∅, vars(ti) ⊆ W . The labeling is updated as follows
until a fixpoint is reached: Li+1(n) = Li(n)∪

⋃
(n,m)∈E,τ∈η(n,m) depend τ (Li(m)).

Given the set of live variables for all nodes, we can simplify the transition
relations by eliminating constraints over irrelevant variables. We assume that
the conjunction of all such constraints is satisfiable (which can be achieved by a
prior application of transformation Inconsistent Transition).

Simplify Transition. Let A = 〈N, E, ν, η〉 be an abstraction and let L(n) ⊆
V indicate the set of live variables for each node n. The simplification
simplify(τ, m, n) of a transition τ on an edge (m, n) ∈ E is obtained by
removing from τ all conjuncts φ with vars(φ) ∩ (L(m) ∪ L(n)′) = ∅. In the

26 I. Brückner et al.

special case of a guarded W -assignment τ , the simplification simplify(τ, m, n)
is obtained by removing from τ all conjuncts v′ = ev(V) with v �∈ L(n).
Simplifying all transitions results in the new abstraction A′ = 〈N, E, ν, η′〉
where η′(m, n) = {simplify(τ, m, n) | τ ∈ η(m, n)} for all (m, n) ∈ E.

In Step 2 of the elevator example, node n3 is labeled with the set
{pc, current , input} and nodes n1 and n2 are labeled with the full set of vari-
ables. As a result, the transition relation moveUp on the edge from n2 to n3 is
simplified to moveUp# by dropping the conjunct req ′=req.

Proposition 2. Let A = 〈N, E, ν, η〉 be a sound abstraction of a transition
system S = 〈V, init , T 〉, and let A′ be the result of applying Simplify Transition.
Then A′ is again a sound abstraction.

Proof. We show that A has a concretizable error path iff A′ has. The implica-
tion from A to A′ is straightforward since simplify eliminates conjuncts from
transition relations and thus every concretization of an error path in A is a
concretization of the corresponding modified error path in A′.

For the reverse direction assume n0, τ0, n1, τ1, . . . , nk to be a concretizable
error path in A′ with concretization s0, . . . , sk. Let τ̂i be the corresponding non-
simplified version of τi in A. We inductively construct a concretization ŝ0, . . . , ŝk

of n0, τ̂0, n1, τ̂1, . . . , nk. For a state s and a set of variables X ⊆ V , we write s|X
to stand for the valuation s restricted to X . We use the operator ⊕ to conjoin
valuations over disjoint sets of variables. The construction of the concretization
starts with ŝ0 = s0. ŝ0 can be written as s0|L(n0) ⊕ t0 for some valuation t0 of
variables in V \ L(n0). Then we set ŝ1 to s1|L(n1) ⊕ t1, where t1 is a valuation
of V \ L(n1) such that φ(t0, t1) for all removed conjuncts φ of τ̂0. Such a t1
exists since we assumed that the conjunction of all φ is satisfiable and φ further-
more contains no variables from enabled(τ̂0). Then τ̂0(ŝ0, ŝ1) since φ does not
constrain variables in L(n1) (definition of depends) and the enabledness of τ̂0 is
independent of φ (vars(enabled(τ̂0)) ⊆ L(n0)). This construction can similarly
be continued for all states.
�

5.4 Bypass Transitions

The following construction allows us to bypass (and, as a consequence, often
eliminate) nodes in the abstraction. For a node n with an incoming transition τ1
and an outgoing transition τ2, we define the bypass relation (τ1 ◦n τ2)(V, V ′) =
∃V ′′ . τ1(V, V ′′)∧ν(n)(V ′′)∧τ2(V ′′, V ′). If W = L(n) is the set of live variables of
n and τ1 is a guarded W -assignment τ1(V, V ′) =

∧
i gi(V) ∧

∧
v∈W (v′ = ev(V)),

then τ1 ◦n τ2 can be simplified to (τ1 ◦n τ2)(V, V ′) =
∧

i gi(V) ∧ ν(n)[ev/v](V) ∧
τ2[ev/v](V, V ′).

Bypass Transition. Let A = 〈N, E, ν, η〉 be an abstraction and let τ ∈ η(m, n)
be a transition on some edge (m, n) ∈ E. Transition τ can be modified to
bypass node n, resulting in the new abstraction A′ = 〈N, E′, ν, η′〉, where
E′ = E ∪ {(m, n′) | (n, n′) ∈ E}, η′(m, n) = η(m, n) � {τ} and η′(m, n′) =
η(m, n′) ∪ {τ ◦n τ2 | τ2 ∈ η(n, n′)}.

Slicing Abstractions 27

In Step 5 of the elevator example, node n2 is bypassed via request ◦n2 up. As
a result, n2 becomes unreachable and is eliminated.

6 Abstraction Refinement

We first introduce the refinement step for a given predicate and node and then
discuss how both can be obtained automatically by error path analysis.

6.1 Node Splitting

Given some new predicate q, we split an abstract node labeled ϕ into two new
nodes, one labeled ϕ ∪ {q}, the other ϕ ∪ {¬q}.

Node split. Let A = 〈N, E, ν, η〉 be an abstraction of a transition
system S = 〈V, init , T 〉, and let n ∈ N be some abstract
node and q(V) some predicate. The node split of A with respect
to n and q is the new abstraction A′ = 〈N ′, E′, ν′, η′〉, where
– N ′ = N ∪ {n′} where n′ is a fresh node n′ �∈ N ;
– E′ =

⋃
e∈E edgesplit(e), where

edgesplit(e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(n, n), (n, n′), (n′, n), (n′, n′)} if e = (n, n),
{(m, n), (m, n′)} if e = (m, n), m �= n,

{(n, m), (n′, m)} if e = (n, m), m �= n, and
{e} otherwise,

– ν′(m) =

⎧
⎪⎨

⎪⎩

ν(n) ∪ {q} if m = n

ν(n) ∪ {¬q} if m = n′, and
ν(m) otherwise;

– η′(e′) = η(e) for all e′ ∈ edgesplit(e)

The elevator example involves several node splits. For instance, in Step 3, the
split of node n2 with predicate pc = 1 adds the new node n5.

6.2 Error Path Analysis

The verification process terminates as soon as the abstraction has a concretizable
error path (in which case the system is incorrect) or no error paths at all (in
which case the system is correct). The refinement process is therefore driven by
the analysis of spurious error paths.

Our technique is based on Craig interpolation. For a given pair of formulas
ϕ(X) and ψ(Y), such that ϕ ∧ ψ is unsatisfiable, a Craig interpolant Υ (X ∩ Y)
is a formula over the variables common to ϕ and ψ such that Υ is implied by
ϕ and Υ ∧ ψ is unsatisfiable. Craig interpolants can be automatically generated
for a number of theories, including systems of linear inequalities over the reals
combined with uninterpreted function symbols [19].

28 I. Brückner et al.

In order to obtain the new predicate, we use a variation of a standard error
path cutting technique [20] from predicate abstraction, which splits the path into
two subsequences such that the new predicate is an interpolant for the first-order
formulas corresponding to the first and second parts. To ensure that the new
predicate affects as many error paths as possible, we focus on minimal spurious
sub-paths:

For a spurious error path n0, τ0, n1, τ1, . . . , τk−1, nk, we call a sub-path
ni, τi, ni+1, τi+1, . . . , τj−1, nj with 0 ≤ i < j ≤ k minimal if the sub-path is
not concretizable but both ni+1, τi+1, . . . , τj−1, nj and ni, τi+1, . . . , nj−1 are con-
cretizable.

We translate error paths to first-order formulas in the following way. Let,
for each i ∈ N, Vi be a set of fresh variables such that for each v ∈ V ,
Vi contains a corresponding fresh variable vi ∈ Vi. Given a finite path p =
n0, τ0, n1, τ1, . . . , τk−1, nk in an abstraction A (such that τi ∈ η(ni, ni+1) for all
0 ≤ i < k), we define two first-order formulas

Γ1(p) = ν(n0)(V0) ∧ τ0(V0, V1) ∧ ν(n1)(V1) ∧ τ1(V1, V2) ∧ . . . ∧ ν(nk−1)(Vk−1),
Γ2(p) = τk−1(Vk−1, Vk) ∧ ν(nk)(Vk).

We analyze a given spurious error path n0, τ0, n1, τ1, . . . , τk−1, nk in two steps:

1. We find a minimal sub-path p = ni, τi, ni+1, τi+1, . . . , τj−1, nj. This deter-
mines the node n = nj−1 which will be split.

2. We compute the interpolant of Γ1(p) and Γ2(p). The interpolant Υ (Vj−1)
defines the new predicate q = Υ (V) on which we split node n.

After Step 2 of the elevator example, we obtain the abstract error path
p = n1, request, n2, moveUp#, n3. The error path is minimal, since both
n1, request, n2 and n2, moveUp#, n3 are concretizable. Hence, n2 is selected for
the split. The interpolant of Γ1(p) and Γ2(p) is the predicate pc1 = 1, which is
implied by Γ1(p) (it occurs in request(V0, V1)) and contradicts Γ2(p) (pc1 = 2
occurs in moveUp#(V1, V2)).

7 Experiments

We have implemented the new model checking procedure as a small proto-
type tool named SLAB (for Sl icing abstractions). SLAB is implemented in Java
(JRE 1.5) and relies on Andrey Rybalchenko’s CLP-Prover [21] for satisfiabil-
ity checking and interpolant generation. In Table 2, we give running times of
SLAB for a collection of standard benchmarks. Our experiments were carried
out on an Intel Pentium M 1.80 GHz system with 1 GByte of RAM. For com-
parison, we also give the running times of the Abstraction Refinement Model
Checker ARMC [22] and the Berkeley Lazy Abstraction Software Verification
Tool BLAST [23] where applicable. Our benchmarks include a finite-state sys-
tem (Deque), an infinite-state discrete system (Bakery), and a real-time system
(Fisher).

Slicing Abstractions 29

Table 2. Experimental results for SLAB vs. ARMC and BLAST: number of iterations
of the refinement loop and running times in seconds on the benchmarks Deque (with
5, . . . , 9 cells), Bakery (with 2, . . . , 5 processes), and Fisher (with 2, 3, 4 processes).
(BLAST is not applicable to the real-time system Fisher.)

SLAB ARMC BLAST
specification iterations time (s) time (s) time (s)
Deque 5 6 1.34 3.80 2.23
Deque 6 6 1.92 27.65 5.64
Deque 7 8 2.70 255.63 13.64
Deque 8 8 3.15 1277.85 36.63
Deque 9 10 4.80 timeout 90.17
Bakery 2 29 6.30 2.56 9.26
Bakery 3 47 33.53 24.97 1943.17
Bakery 4 71 128.53 988.69 timeout
Bakery 5 96 376.56 timeout timeout
Fisher 2 42 9.26 3.37 N/A
Fisher 3 335 126.05 339.21 N/A
Fisher 4 2832 2605.85 timeout N/A

Deque. The Deque benchmark is an abstract version of a cyclic buffer for
a double-ended queue. We model the cells of the buffer by n flags, where
true indicates a currently allocated cell. Initially, all but the first flag are
false. Adding or deleting an element at either end is represented by tog-
gling a flag under the condition that the values of the two neighboring flags
are different: (true, true, false) ↔ (true, false , false) and (false , true, true) ↔
(false , false, true). The error condition is satisfied if there are no unallocated
cells left in the buffer.

Bakery. The Bakery protocol [24] is a mutual exclusion algorithm that uses
tickets to prevent simultaneous access to a critical resource. Whenever a process
wants to access the shared resource, it acquires a new ticket with a value v that
is higher than that of all existing tickets. Before the process accesses the critical
resource, it waits until every process that is currently requesting a ticket has
obtained one, and every process that currently holds a ticket with a lower value
than v has finished using the resource. An error occurs if two processes access
the critical resource at the same time.

Fisher. Fisher’s algorithm, as described in [25], is a real-time mutual exclusion
protocol. Access to a resource shared between n processes is controlled through a
single integer variable lock and real-time constraints involving two fixed bounds
C1 < C2. Each process uses an individual (resettable) clock c to keep track of
the passing of time between transitions. Each process first checks if the lock is
free, then, after waiting for no longer than bound C1, sets lock to its (unique) id.
It then waits for at least C2, and if the value of the lock is unchanged, accesses
the critical resource. When leaving, it frees up the lock. As in the previous

30 I. Brückner et al.

0 5 10 15
0

10

20

30

40

50

60

70

��
��

��
��

��
��

��
��

��

��

��

��

��

��

��

��

��

��

Number of abstract states

Number of
predicates

Fig. 4. Relation of the number of abstract states and the number of predicates in
intermediate abstractions during the verification of the Bakery protocol with three
processes

benchmark, an error occurs if two processes access the critical resource at the
same time.

On our benchmarks, SLAB outperforms both ARMC and BLAST, and scales
much better to larger systems. It appears that the abstract state space con-
structed by SLAB grows much more slowly in the number of predicates than
the (fully exponential) state space considered by standard predicate abstrac-
tion: Figure 4 depicts the relation between the number of predicates and the
number of abstract states in intermediate abstractions from the verification of
the Bakery protocol with three processes.

8 Conclusions

We have presented a new model checking procedure for infinite-state concurrent
systems that combines automatic abstraction refinement with slicing. Our ex-
periments show that the two methods indeed complement each other well: As
the refinement progresses, the increasing accuracy of the abstract model allows
for a more precise slice; because the size of the resulting abstraction grows more
slowly (in the number of predicates) than in standard predicate abstraction, our
approach scales to larger systems.

Slicing Abstractions 31

Similar to lazy abstraction [6,7], the new approach exploits the inherent lo-
cality of the system. While lazy abstraction incrementally adds new predicates
during a traversal of the control flow graph, ensuring that the additional pred-
icates affect only the currently traversed sub-branch of the control flow graph,
our approach refines individual nodes of the abstraction.

The state set that is partitioned according to a new predicate is thus not iden-
tified by a particular control flow location, as in lazy abstraction, but changes
dynamically as the abstraction refinement progresses: with increasing precision
of the existing abstraction, the state sets partitioned by new predicates become
smaller and smaller. As a result, the abstraction process is independent of a par-
ticular control structure and can be applied to any transition system, including
those with concurrent or infinite control.

References

1. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

2. Colón, M.A., Uribe, T.E.: Generating finite-state abstractions of reactive systems
using decision procedures. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp.
293–304. Springer, Heidelberg (1998)

3. Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties of
interfaces. In: Proc. SPIN 2001, pp. 103–122. Springer, New York (2001)

4. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

5. Das, S., Dill, D.L.: Counter-example based predicate discovery in predicate ab-
straction. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517,
Springer, Heidelberg (2002)

6. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
POPL 2002, pp. 58–70. ACM Press, New York (2002)

7. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

8. Sipma, H.B., Uribe, T.E., Manna, Z.: Deductive model checking. Formal Methods
in System Design 15(1), 49–74 (1999) (Preliminary version appeared). In: Proc. 8th

Intl. Conference on Computer Aided Verification. LNCS, vol. 1102, pp. 208–219.
Springer-Verlag, Heidelberg (1996)

9. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering, pp. 439–449. IEEE Press, Los Alamitos (1981)

10. Ganesh, V., Saidi, N.S.H.: Slicing SAL. Technical report, SRI International (1999),
http://theory.stanford.edu/

11. Dwyer, M.B., Hatcliff, J., Hoosier, M., Ranganath, V., Robby, W.T.: Evaluating
the effectiveness of slicing for model reduction of concurrent object-oriented pro-
grams. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS,
vol. 3920, pp. 73–89. Springer, Heidelberg (2006)

12. Millett, L., Teitelbaum, T.: Issues in slicing PROMELA and its applications to
model checking, protocol understanding, and simulation. Software Tools for Tech-
nology Transfer 2(4), 343–349 (2000)

http://theory.stanford.edu/

32 I. Brückner et al.

13. Bozga, M., Fernandez, J.C., Ghirvu, L., Graf, S., Krimm, J.P., Mounier, L.: IF: An
Intermediate Representation and Validation Environment for Timed Asynchronous
Systems. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS,
vol. 1708, pp. 307–327. Springer, Heidelberg (1999)

14. Jhala, R., Majumdar, R.: Path slicing. In: Proc. PLDI 2005, pp. 38–47. ACM Press,
New York (2005)

15. Canfora, G., Cimitile, A., Lucia, A.D.: Conditioned program slicing. Information
and Software Technology Special Issue on Program Slicing 40, 595–607 (1998)

16. Fox, C., Danicic, S., Harman, M., Hierons, R.M.: Backward Conditioning: A New
Program Specialisation Technique and Its Application to Program Comprehension.
In: IWPC, pp. 89–97. IEEE Computer Society, Los Alamitos (2001)

17. Vasudevan, S., Emerson, E.A., Abraham, J.A.: Efficient Model Checking of Hard-
ware Using Conditioned Slicing. ENTCS 128(6), 279–294 (2005)

18. Hong, H., Lee, I., Sokolsky, O.: Abstract slicing: A new approach to program slicing
based on abstract interpretation and model checking. In: SCAM, pp. 25–34. IEEE
Computer Society, Los Alamitos (2005)

19. McMillan, K.L.: Applications of Craig interpolants in model checking. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer,
Heidelberg (2005)

20. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. POPL 2004, pp. 232–244. ACM Press, New York (2004)

21. Rybalchenko, A.: CLP-prover (2006),
http://mtc.epfl.ch/∼rybalche/clp-prover/

22. Podelski, A., Rybalchenko, A.: ARMC: the logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
Springer, Heidelberg (2006)

23. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with
BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–
239. Springer, Heidelberg (2003)

24. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
munications of the ACM 17(8), 435–455 (1974)

25. Manna, Z., Pnueli, A.: Clocked transition systems. Technical Report STAN-CS-
TR-96-1566, Computer Science Department, Stanford University (1996)

http://mtc.epfl.ch/~rybalche/clp-prover/

	Slicing Abstractions
	Introduction
	Related Work
	Preliminaries: Transition Systems
	Abstraction
	Slicing
	Eliminating Transitions
	Eliminating Nodes
	Simplifying Transition Relations
	Bypass Transitions

	Abstraction Refinement
	Node Splitting
	Error Path Analysis

	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

