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Preface

The present volume contains the post-proceedings of the second IPM Interna-
tional Symposium on Fundamentals of Software Engineering (FSEN), Tehran,
Iran, April 17–19, 2007. This event, FSEN 2007, was organized by the School of
Computer Science at the Institute for Studies in Fundamental Sciences (IPM)
in Iran, in cooperation with the ACM SIGSOFT and IFIP WG 2.2, and was
additionally supported by the University of Tehran, Sharif University of Tech-
nology, and the International Scientific Meetings Office (ISMO). This symposium
brought together researchers and practitioners working on different aspects of
formal methods in software engineering. FSEN 2007 covered many aspects of
formal methods, especially those related to advancing the application of formal
methods in the software industry and promoting their integration with practical
engineering techniques.

A truly international program committee of top researchers from 23 different
academic institutes in 9 countries selected the technical content of this sympo-
sium. We received a total of 73 submissions, out of which the PC selected 22 as
regular papers and 8 as short papers to be published in the post-proceedings,
and 6 papers accepted for poster presentations at the symposium. Each submis-
sion was reviewed by at least 3 independent referees, for its quality, originality,
contribution, clarity of presentation, and its relevance to the symposium topics.
We had 93 registered participants at the symposium from 12 countries.

We had 4 distinguished keynote speakers at FSEN 2007: James C. Browne,
University of Texas at Austin, Texas, USA, on Unification of Verification and
Validation Methods for Software; Masahiro Fujita, University of Tokyo, Japan, on
Hardware-Software Co-design for SoC with Separated Verification Between Com-
putation and Communication; Davide Sangiorgi, University of Bologna, Italy, on
Bisimulation in Higher-Order Languages; and Peter D. Mosses, Swansea Univer-
sity, Wales, UK, on Fundamentals of Semantics Engineering.

In conjunction with FSEN 2007, the Working Group 2.2 of IFIP organized
2 full-day tutorials by internationally recognized researchers on the semantics
of programming languages (Peter D. Mosses), and the semantics of concurrency
(Davide Sangiorgi). These well-attended and well-received tutorials strength-
ened the impact of FSEN 2007, and we would like to take this opportunity to
express our appreciation for the contribution of IFIP WG 2.2 and the tutorial
speakers.

We are grateful for the support and the assistance of the IPM staff in the
organization of this symposium, especially Dr. Larijani, Dr. Sarbazi-Azad, Ms.
Arfai and Mr. Shahrabi. We thank the members of the program committee for
their time, effort, and contributions to making FSEN 2007 a quality sympo-
sium. Last but not least, our thanks go to our authors and workshop partici-
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pants, without whose submissions and participation FSEN 2007 would not have
materialized.

April 2007 Farhad Arbab
Marjan Sirjani
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Finite Abstract Models for Deterministic

Transition Systems: Fair Parallel Composition
and Refinement-Preserving Logic

Harald Fecher and Immo Grabe

Christian-Albrechts-University at Kiel, Germany
{hf,igb}@informatik.uni-kiel.de

Abstract. Since usually no scheduler is given at the programming or
modeling language level, abstract models together with a refinement no-
tion are necessary to model concurrent systems adequately. Determinis-
tic transition systems are an appropriate model for implementations of
(concurrent) reactive programs based on synchronous communication.
In this paper, we develop a suitable setting for modeling and reasoning
about deterministic transition systems. In particular, we (i) develop a
class of abstract models together with a refinement notion; (ii) define
parallel composition guaranteeing fairness; and (iii) develop a 3-valued
logic with a satisfaction relation that is preserved under refinement.

1 Introduction

The execution of concurrent reactive programs, where the scheduler is given, e.g.,
by the operating system, behaves (if no real random generator exists) determinis-
tically up to the environment, i.e., the system behaves in the same way whenever
the environment behaves in the same way (including points in time). Determin-
istic transition systems, where no two transitions leaving the same state have
the same label, are an appropriate model for reactive systems based on syn-
chronous communication, whenever the environment will provide at most one
action (resp. will request at most one of the actions provided by the system)
at once. For example, they are in particular an appropriate model for imple-
mentations of a UML state machine [1], where only synchronous communication
between the state machine and its event pool, which can provide at most one
‘event’ at the same time, occurs.

Deterministic transition systems are also appropriate as model for components
of closed concurrent systems, whenever every component has its own scheduler,
i.e., determines which process(es) of the component performs the next action.
Here, a global scheduler decides if a (and which) communication between the
component and its environment takes place or if an internal computation takes
place.

Models for programming languages that contain concurrency are usually non-
deterministic, since the scheduler is not known at that level (i.e., will be pro-
vided by the operating system). Therefore, those models as well as models for

F. Arbab and M. Sirjani (Eds.): FSEN 2007, LNCS 4767, pp. 1–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 H. Fecher and I. Grabe

modeling languages should contain nondeterminism, which will be resolved (via
refinements) in later design phases and/or by the operating system until deter-
ministic computations are reached. Properties valid on the abstract level, i.e., on
the model containing nondeterminism, should be preserved under refinement to
maintain the relation between the model and the system. Furthermore, a model
for the abstract level should provide a compact and finite description of sets of
implementations, especially to improve verification. Moreover, it should be closed
under standard operators to be suitable for defining semantics of programming
languages and for compositional reasoning. Note that often programmers, soft-
ware engineers, and computer scientists stay on the abstract level and never
reach the concrete level in their contribution to the software development pro-
cess. Nevertheless, it is important to know what exactly the systems are, since
the definition of, e.g., sound satisfaction at the abstract level heavily depends
on this information.

Contribution. We develop a setting for modeling and reasoning about determin-
istic transition systems.

In particular:

– We develop a class of abstract models together with a refinement notion,
where exactly the deterministic transition systems are the concrete ones.
Our model allows finite/compact modeling by (i) abstracting labels, (ii) hav-
ing a predicate over labels indicating whether the removal of all transitions
having a label is allowed as a refinement step or not, and (iii) having Streett
acceptance conditions for restricting infinite computations.

– We define parallel composition for our model that (i) preserves refinement,
(ii) preserves satisfiability (i.e., the existence of a refining implementation),
and (iii) guarantees fairness, in that, roughly speaking, every component
as well as internal synchronization gets an infinite number of opportunities
to execute. Here, Streett acceptance conditions are naturally generated by
parallel composition between deterministic transition systems.

– We develop a logic together with its satisfaction relation. The logic has as
its basic operator 〈[ α ]〉q indicating that α can be executed and after ex-
ecuting α property q is guaranteed to hold. This logic yields a 3-valued
satisfaction relation on our model, but is 2-valued on concrete abstractions
(implementations). We show soundness, i.e., that satisfaction is preserved un-
der refinement. Furthermore, deciding our satisfaction relation is in NP and
approximates the EXPTIME-hard language inclusion problem which asks
whether all implementations that refine abstraction M satisfy property φ.
The PSPACE-complete LTL model checking problem is also approximated.

Related work. Kripke structures (with Streett fairness constraints) together with
trace inclusion as refinement notion are used as abstract settings for linear time,
where implementations are traces. In this context, LTL [2] is an appropriate logic.
Abstract models used for abstraction of linear time settings are not appropriate
for our purpose, since they do not model the branching time sensitivity obtained
by communications on different actions.
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Transition systems with (forward or backward) simulation [3, 4] are not an
appropriate setting for abstraction of deterministic transition systems, since de-
terministic transition systems can be refined further and, therefore, refinement
preserving satisfaction relations are in general not 2-valued on them. Therefore,
alternating refinement [5] also yields no appropriate setting for our purpose,
since it coincides with simulation on labeled transition systems.

On the other hand, transition systems with ready simulation [6] yield an ap-
propriate setting if deterministic transition systems are the implementations.
The predicate over labels and the fairness constraint in our setting allow a
more compact representation than ready simulation, which will be illustrated
later. Note that ready simulation coincides with our refinement notion for the
canonical embedding of transition systems into our setting. Transition systems
are already extended in [7, 8] by a predicate over labels indicating divergence
(infinitely many internal computations are possible). Therefore, the relation in-
troduced there, called prebisimulation, does not yield a comparable refinement
notion. The refinement notions of failure, failure trace, ready, and ready trace
inclusion [9] are also appropriate settings if deterministic transition systems are
the implementations. Their trace based approach makes it hard to define an
approximated, compositional satisfaction relation that is preserved under refine-
ment.

Standard branching time logics, which are interpreted on transition systems,
are, e.g., CTL [10] and the μ-calculus [11]. But these logics are not appropriate
for our setting, since these logics are not preserved under ready simulation: the
property that “there is a transition labeled a such that b is possible afterwards”

holds in the labeled transition system ��a��b�� a �� but not in its refinement
�� a �� . μ-automata [12], (disjunctive) modal transition systems [13, 14] and
their variants [15, 16, 17, 18] are used as abstraction model for transition sys-
tems in order to improve verification of full branching time properties, as, e.g., in
[19, 20, 21]. These models are not appropriate for our purpose, since they consider
transition systems rather than deterministic transition systems as implementa-
tions. Consequently, these models contain additional complex structures that
are unnecessary if the implementations are guaranteed to be deterministic. For
example, a state in a modal transition system can have more than one outgo-
ing must-transitions, which makes it, e.g., hard to determine satisfiability w.r.t.
deterministic transition systems.

To the best of our knowledge there is no abstract model (beside the model
developed here) that can create finite abstraction of labeled (deterministic) tran-
sition systems in case infinitely many different transition labels are used.

Outline. Our model together with its refinement notion is formally introduced in
Section 2, whereas in Section 3 the parallel composition is presented. Section 4
introduces the logic together with the satisfaction relation and Section 5 presents
illustration how the setting can be used for modeling and for verification. Section
6 concludes the paper and discusses future work.
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2 Synchronously-Communicating Transition Systems

Here, we present the model of interest, including the refinement notion. In the
following, |M | denotes the cardinality of a set M , P(M) denotes its power set,
and M = {m | m ∈ M} denotes the set of conames of M . Furthermore, let Act
be the set of actions such that (i) Act, {τ}, and {Δ} are pairwise disjoint and
(ii) ∀h ∈ Act : h ∈ Act∧h = h.1 Here, h ∈ Act is the co-action on which h ∈ Act
synchronizes, τ indicates an internal computation, and Δ indicates that a not
yet specified communication is possible. Note that in reactive programs fairness
depends more on the communication than on the states. Therefore, defining
fairness constraints on transitions rather than on states leads to a smoother ap-
proach. Formally, our abstract model for (programming and modeling languages
of) deterministic, concurrent, reactive systems based on synchronous communi-
cation is:

Definition 1 (STS). A synchronously-communicating transition system (STS)
M is a tuple (S, Si, Ω, T, γ, e, S) such that

– (s ∈)S is its set of states,
– Si ⊆ S is its nonempty set of initial states,
– Ω ⊆ Act is its set of explicitly modeled communication,
– (t ∈)T is its set of transitions,
– γ : T → S × (Act ∪ {τ, Δ}) × S is its transition relation;

to simplify later definitions, we assume that every initial state is a target of
an τ-transition, i.e., ∀s′ ∈ Si : ∃t, s : γ(t) = (s, τ, s′), (those transitions,
from a non-reachable state s, are often omitted in later illustrations)

– e : S → P(Act ∪ {τ}) is its action existence predicate,
– S ∈ P(P(T ) × P(T )) a finite set representing a Streett acceptance condition.

M is called finite if |S| + |Ω| + |T | + |
⋃

s∈S e(s)| is finite.

Before we give comments on the above definition, we introduce the following
notations: The components of a STS M are denoted by S, Si, Ω, T , γ, e, S and
tagged with indices if needed. We write srcM(t) for the source, labM(t) for the
label, and tarM(t) for the target of t ∈ T (where subscript M is omitted if it
is clear from the context), i.e., if γ(t) = (s, α, s′) then src(t) = s, lab(t) = α,
and tar(t) = s′. Furthermore, OM(s) denotes the set of labels that occur on
transitions leaving s, i.e., O(s) = {lab(t) | t ∈ T ∧ src(t) = s}.

Transitions having labels α outside Ω can be matched by α or by the default
label. The following function is used later to model this circumstance:

γ̃(t) def=
{

A \ Ω}{(src(t), h, tar(t)) | h ∈ Act \ Ω} if lab(t) = Δ
{γ(t)} otherwise .

Predicate e is used to obtain compact abstractions, especially for the definition
of the parallel composition. Here, h ∈ e(s) ∩ Act indicates that the existance of
1 Note that overlined labels (h) can be omitted if an undirected synchronous commu-

nication is used.
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a transition labeled with h is guaranteed iff h ∈ e(s). Similarly, the existence of
a transition labeled with τ is only guaranteed iff τ ∈ e(s). Otherwise, a process,
where no internal computation exists (can only communicate), is an allowed
refinement. That predicate e really yields more compact representation than
ready simulation is illustrated by the following example:

Example 2. Consider the STS a�� a �� a1,...,an�� . In order to describe the
same set of deterministic transition system of this STS via ready simulation at
least 1+2n states are necessary, since the non initial state has to be modeled by

using all possible subsets of {a1, ..., an}. Furthermore, 2n + 2n(
∑n

i=0(i ·
(

n
i

)

))

transitions instead of the 1 + n of the STS are needed, since per label and state
either all or none states of the 1 + 2n derived states from the non-initial state
have to be reached. For example, if n = 2 then the following transition system
describes the same set of deterministic transition system via ready simulation:

��

a
�����������

a
����������

a
��

a

		

a1�� a1



a1

��

a1

��

a2



a2

��
a2 ��

a2

��
a1,a2����������

������

a1,a2



a1,a2

��

a1,a2

��

The Streett acceptance condition for model M is a predicate AccM that charac-
terizes the allowed infinite sequences of transitions, those (tn)n∈IN satisfying “for
all (E, F ) ∈ S set {n ∈ IN | tn ∈ E} is infinite or set {n ∈ IN | tn ∈ F} is finite”.
We chose a Streett condition since they are closed under, and naturally appear
in, parallel composition, which is not the case for RabinChain or Rabin fairness
conditions. Moreover, a Streett condition guarantees that checking formulas of
our logics, introduced later, for such models is in NP. Two STSs are illustrated
in Figure 1. We continue by introducing implementations formally:

Definition 3 (Concrete STS). A concrete STS is a STS M such that

– there is exactly one initial element, i.e., |Si| = 1,
– every communication is explicitly modeled, i.e., Ω = Act,
– the default label is not used, i.e., ∀t ∈ T : lab(t) �= Δ,
– a transition exists iff its existence predicate holds, i.e., ∀s ∈ S : O(s) = e(s),
– the underlying transition system is deterministic, i.e.,

∀t, t′ ∈ T : (src(t) = src(t′) ∧ lab(t) = lab(t′)) ⇒ t = t′, and
– no acceptance condition exists, i.e., S = ∅.

The STS N̈ of Figure 1 is, e.g., a concrete STS, whereas N̂ of that figure is not
concrete. We turn to defining a refinement notion between models, using game
based definition, similar as, e.g., in [22], since fairness can be nicely handled by
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Fig. 1. Two synchronously-communicating transition systems. Here, Act = {a, b, c}.
Targets of transitions having no source indicate initial states. The elements of e(s) are
written inside the state borders of s. Transitions labeled with tuples describe a set
of transitions each having a label from that tuple. A circled number i (resp., i) on
transition t denotes that t is contained in the first (resp., second) component of the
i-th Streett condition pair.

Table 1. Moves of refinement game at configuration (t1, t2) ∈ T1 × T2. Refinement
plays are sequences of configurations generated thus.

Transition: Player II chooses t′
1 ∈ T1 such that tar(t1) = src(t′

1); Player I responds
with t′

2 ∈ T2 such that tar(t2) = src(t′
2) and lab(t′

1) = lab(t′
2)∨ (lab(t′

1) ∈ Act\Ω2 ∧
lab(t′

2) = Δ); the next configuration is (t′
1, t

′
2).

Existence predicate: Player II chooses a ∈ e2(tar(t2)); Player I wins iff a ∈ e1(tar(t1)).

games. For a sequence of tuples Φ we write Φ[i] for the sequence obtained from
Φ through projection onto the i-th coordinate. Note that AccM is defined on
page 5.

Definition 4 (Refinement)

– Finite refinement plays for models M1 and M2 have the rules and winning
conditions as stated in Table 1. An infinite play Φ is a win for Player I iff
AccM1(Φ[1]) ⇒ AccM2(Φ[2]) holds; otherwise, it is won by Player II.

– Model M1 refines M2 iff Ω2 ⊆ Ω1 and Player I has a strategy for the
corresponding refinement game between M1 and M2 such that for all t1 ∈ T1
with tar(t1) ∈ Si

1 there is t2 ∈ T2 with tar(t2) ∈ Si
2 and Player I wins all

refinement plays started at (t1, t2) with her strategy.

Every label explicitly modeled at the abstract level has to be explicitly modeled
at a more concrete level (Ω2 ⊆ Ω1). The necessity of a communication action (or
computation) at the abstract level must be maintained at the concrete level (see
Table 1). Furthermore, every action that is possible at the concrete level must
have already been possible at the abstract level, possibly via the default label if
the label does not have to be explicitly modeled at the abstract level (see Table
1). The acceptance on the concrete level has to be maintained at the abstract
level in an infinite play.

Example 5. N̈ of Figure 1 refines N̂ of that figure (the 4 upper states on the left
side are abstracted by the upper left state, the upper right by the upper right,
the two bottom left by the bottom left, and the two bottom right by the bottom
right one).
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The refinement notion of simulation on transition system is embedded into our
setting by mapping e always to the empty set, whereas the notion of ready
simulation is embedded by mapping e(s) always onto O(s).

Note that if an STS M refines a concrete STS it is not necessarily the case

that M has to be concrete, e.g., a a
��

a
��

a��
a �� refines a

��
a�� .

Theorem 6. Refinement is reflexive and transitive. Moreover, refinement yields
an equivalence relation on concrete STSs.

Note that the complexity of checking refinement is high, since [Streett ⇒ Streett]
does not reduce in general to Rabin or Streett conditions, i.e., in general no
Player has a memoryless winning strategy. Nevertheless, this is not very problem-
atic for our purpose, since in practice refinement will be guaranteed by construc-
tion: using refinement patterns for top-down developments and using abstraction
techniques, like predicate abstraction [23], for bottom-up developments. To us
it is more important to obtain efficient satisfaction check, which we get.

Definition 7 (Satisfiability). Suppose M is an STS, then M is satisfiable if
there is a concrete STS that refines M.

For example, the STSs of Figure 1 are satisfiable, whereas a�� is not.

3 Parallel Composition

Only parallel composition, which is the most complex one, and no further opera-
tors, like hiding, is presented.2 Parallel operators following different views, where,
e.g., a CSP [24] based communication instead of a CCS [25] based handshake
communication is used, can also be straightforwardly defined on STS. Below we
write πi for the projection onto the i-th coordinate of an ordered tuple.

Definition 8 (Parallel composition). Suppose M1 and M2 are two STSs
such that, without loss of generality, S1, T1 as well as S2, T2 are disjoint and
Ω1 = Ω2 = Act. Then the parallel composition M1‖M2 is the STS (S1×S2, S

i
1×

Si
2, Ω1, T, γ, e, S), where

– T ⊆ (T1 ×S2)∪ (S1 ×T2)∪ (T1 ×T2), where only those t are taken for which
γ(t), given in Table 2, is defined,

– e(s1, s2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{τ} if e−(s1,s2)
∧ e+

(s1,s2)
{τ} ∩ (e1(s1) ∪ e2(s2)) if ¬e−(s1,s2)

∧ e+
(s1,s2)

{τ} ∪ e1(s1) ∪ e2(s2) if e−(s1,s2)
∧ ¬e+

(s1,s2)
e1(s1) ∪ e2(s2) if ¬e−(s1,s2)

∧ ¬e+
(s1,s2)

with e−(s1,s2) if communication is guaranteed, i.e., e(s1)∩e(s2) ∩ Act �= ∅, and

e+
(s1,s2) holds if communication is possible, i.e., O(s1) ∩ O(s2) ∩ Act �= ∅,

2 Note that in order to define sequential composition, the definition of STS has to be
extended such that termination can be modeled.
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Table 2. Transition relation of the parallel composition

(s1, h, s′
1) ∈ �γ1(t1) (s2, h, s′

2) ∈ �γ2(t2) h ∈ Act
γ(t1, t2) = ((s1, s2), τ, (s′

1, s
′
2))

γ1(t1) = (s1, α, s′
1)

γ(t1, s2) = ((s1, s2), α, (s′
1, s2))

γ2(t2) = (s2, α, s′
2)

γ(s1, t2) = ((s1, s2), α, (s1, s
′
2))

– S =
⋃

i∈{1,2}{({t ∈ T | πi(t) ∈ E}, {t ∈ T | πi(t) ∈ F}) | (E, F ) ∈ Si} ∪
{(Co1 ∪ NC1, Co‖), (Co2 ∪ NC2, Co‖), (Sy ∪ NS, Co‖)}
where for i ∈ {1, 2}, Co‖ = {t ∈ T | lab(t) = τ} is the set of all transitions
obtained by internal computtions, Coi = {t ∈ Co‖ | πi(t) ∈ Ti ∧ lab(πi(t)) =
τ} are those transitions obtained by internal synchronization of Mi, Sy =
{t ∈ Co‖ | π1(t) ∈ T1 ∧ lab(π1(t)) �= τ} are those transitions obtained by
synchronization of M1 and M2, NCi = {t ∈ T | τ /∈ e(πi(src(t)))} are
those transitions where no internal computation is guaranteed in the i-th
component of its source, and NS = {t ∈ T | ¬e−(src(t))} are those transition
where no synchronization is guaranteed in its source.

A label is explicitly modeled if it is explicitly modeled by both sides. The tran-
sitions of the parallel composition are (i) the tuple of the transitions from both
sides, if they correspond to communication between the two components and
(ii) the transitions of each side not corresponding to communication between
the two sides combined with all states of the other side. The latter kind of tran-
sitions is described by the last two rules in Table 2, whereas the first rule of this
table describes the synchronization between the two components, which yields
an internal computation. A computation is guaranteed in state (s1, s2) if at least
one side guarantees a computation or an synchronization is guaranteed. A com-
munication action is guaranteed if it is guaranteed by at least one side and no
synchronization is possible. The latter point is reasonable, since the scheduler
for communication may always favor a synchronization instead of an external
communication.

The Streett condition of each side is preserved and the scheduler gives (if
infinite computations take place) every component as well as every synchro-
nization an infinite number of opportunities to execute, i.e., these computations
infinitely often occur or they are infinitely often disabled. These fairness con-
straints correspond to weak fairness. Strong fairness, where, e.g., one compo-
nent executes infinitely often unless its computation is continuously disabled
at the global scheduling points (i.e., points different from communication with
the environment), can be obtained as follows: Replace the last three tuples
in S by {(Co1, PC1), (Co2, PC2), (Sy1, PH)}, where PH (PCi) consists of those
transitions where an synchronization is possible in (the i-th component of) its
source. Note that in case of communications the scheduler (for the weak as well
for the strong variant) is not completely fair: If both sides always provide h
then it is possible that the environment only communicates via h with the left
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component. Extra constraints can be added to S in order to restrict the scheduler
further. Also different weak fairness constraints can be defined, e.g., by taking
only those position into account, where an internal computation takes place (re-
strict NCi and NS to elements from Co‖ and add into the first components of
the Streett pairs those transitions where no internal computation is guaranteed
at their sources). The kind of application determines which parallel operator is
the appropriate one.

It is easily seen that M1‖M2 indeed yields an STS and that ‖ is commutative
(e− and e+ turns out to be symmetric). An example of parallel composition is
given in Figure 2. As seen in that example, the parallel composition of two

a b b
τ

a
τ τ

a b
τ

�� �� �����
a ��

b

��
τ

��

b

��

a,τ

��

a,b
  

τ
��������1,2,3

��������1,2
�� a ��

τ
��������1,2,3 ��������1,3

!!
a,b
  
��������1,2,3

τ
��������2,3


τ ��������1,2,3��������1,3

""‖ =

Fig. 2. Parallel composition of two STS. For notations we refer to Figure 1.

concrete STS does not yield in general a concrete STS. This is reasonable, since
the distribution of the concurrent computation is not yet given. Refinement and
satisfiability is preserved under parallel composition:

Theorem 9 (Refinement preservation). Let M1, M′
1, M2, and M′

2 be
STSs with M1 refines M′

1 and M2 refines M′
2. Then M1‖M2 refines M′

1‖M′
2.

Theorem 10 (Satisfiability preservation). Suppose M1 and M2 are two
satisfiable STS. Then M1‖M2 is satisfiable.

4 EF-Logic

We define a satisfaction relation between our models and a tree automata ver-
sion similar to [26]. An automaton description of the logic rather than a BNF-
grammar is used, since this allows an appropriate satisfaction definition via
games even if the model has fairness constraints.

Definition 11 (EF automata). An exists-forall automaton (EF automaton)
is a tuple A = (Q, qi, δ, Θ), where

– (q ∈)Q is a finite, nonempty set of states,
– qi ∈ Q is its initial automaton state,
– δ is a transition relation, which maps an automaton state to one of the

following forms, where q, q1, q2 are automaton states and α ∈ Act ∪ {τ, Δ̃}:
true | false | q | q1∧̃q2 | q1∨̃q2 | 〈[ α ]〉q | [α]q , and

– Θ: Q → IN is an acceptance condition with finite image.

A is guarded if every cycle in the underlying graph of automaton A contains an
element that is labeled with 〈[ α ]〉 or [α] for some α.
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Label q only moves to a next state; it is used to obtain effective transformation
of fixpoint formulas in terms of a BNF-grammar representation into a EF au-
tomaton representation [26]. ∧̃ (∨̃) corresponds to the logical and (respectively,
or). Formula 〈[ α ]〉q with α �= Δ̃ means that α is present and after its execu-
tion the property of q is guaranteed to hold. Its dual formula [α]q with α �= Δ̃
indicates that either no α is possible or after the execution of α the property
of q is guaranteed to hold. Furthermore, [Δ̃]q indicates that after any possible
communication the property of q is guaranteed to hold. Consequently, its dual
operator 〈[ Δ̃ ]〉q holds if a communication is possible such that the property of
q is guaranteed to hold afterwards. In other words, [Δ̃]q (〈[ Δ̃ ]〉q) encodes some
special infinite conjunctions (respectively, disjunctions).

Definition 12 (Dual automaton). The dual EF automaton of an EF automa-
ton A, written Adual, is (Q, qi, δdual, Θdual), where ∀q : Θdual(q) = Θ(q) + 1 and
δdual is obtained from δ by replacing true by false, ∧̃ by ∨̃, 〈[ α ]〉 by [α], and vice
versa.

�A
∧̃∨̃ �� ∧̃��

〈[ a ]〉
##��
��

〈[ b ]〉
$$	

		
	

〈[ τ ]〉
##��
��

[Δ̃]

$$	
		

	

true ��

%%





&&����
��

�� 01 0

00 0 00
�Adual

∨̃∧̃ �� ∨̃��

[a]
##��
��

[b]
$$	

		
	

[τ ]
##��
��

〈[ Δ̃ ]〉
$$	

		
	

false ��

%%





&&����
��

�� 12 1

11 1 11

Fig. 3. An alternating tree automata and its dual one. Accepting values are depicted
next to states. �A says that (i) if only a happens, b has to be possible after a finite
number of steps and (ii) after any communication a computation remains guaranteed.
�Adual states that (i) after any a-communication b is never enabled or (ii) there is a
finite sequence of communications such that no computation is possible thereafter.

An alternating tree automaton and its dual one is depicted in Figure 3. Through-
out this paper, we restrict ourselfs without loss of generality to guarded automata
(formulas) [11]. Also, for any bounded sequence n of elements in IN we write
sup(n) for the largest m that occurs in n infinitely often. Let map(f, Φ) be the
sequence obtained from the sequence Φ by applying function f to all elements
of Φ pointwise. In the following, we give a satisfaction definition generalizing
the intuition of satisfaction on concrete STS to general STS such that it is pre-
served under refinement. Note that this satisfaction relation is also the suitable
approximative satisfaction relation for ready simulation (remind that transition
systems can be embedded such that our refinement restricted to this embedding
coincides with ready simulation).

Definition 13 (Satisfaction)

– Finite satisfaction plays for model M and EF automaton A have the rules
and winning conditions as stated in Table 3. An infinite play Φ is a win for
Player I iff [AccD(Φ[1]) ⇒ sup(map(Θ, Φ[2])) is even]; otherwise, it is won
by Player II.



Finite Abstract Models for Deterministic Transition Systems 11

Table 3. Moves of satisfaction game at configuration (t, q) ∈ T × Q, specified through
a case analysis on the value of δ(q). Satisfaction plays are sequences of configurations
generated thus.

true: is won by Player I. false: is won by Player II.
q′: the next configuration is (t, q′).
q1∧̃q2: Player II picks a q′ from {q1, q2}; the next configuration is (t, q′).
q1∨̃q2: Player I picks a q′ from {q1, q2}; the next configuration is (t, q′).
[α]q′ and α �= Δ̃: Player II picks t′ such that tar(t) = src(t′) and lab(t′) = α ∨ (α ∈

Act \ Ω ∧ lab(t′) = Δ); the next configuration is (t′, q′).
[Δ̃]q′: Player II picks t′ such that tar(t) = src(t′) and lab(t′) ∈ Act ∪ {Δ}; the next

configuration is (t′, q′).
〈[ α ]〉q′ and α �= Δ̃: Player II wins if α /∈ e(tar(t)); otherwise the play continues as in

case [α]q′.
〈[ Δ̃ ]〉q′: Player I picks h ∈ Act; the play continues as in case 〈[ h ]〉q′.

– The model M satisfies the automaton A, written as M |= A, iff Player I has
a strategy for the corresponding satisfaction game between M and A such
that for any t ∈ T with tar(t) ∈ Si Player I wins all satisfaction plays started
at (t, qi) with her strategy.

We give some comments on the non standard steps used in Table 3: In [α]q′

with α �= Δ̃ any transition labeled with α and in case the label is not explicitly
modeled also any transition labeled with the default label has to be matched,
since it can be refined to one having this label. If α = Δ̃ then any transition
labeled different from τ has to be matched. In 〈[ α ]〉q′ the transition has to
be existent, which is guaranteed by α ∈ e(tar(t)). Furthermore, all possible
transitions have to be matched, which is handled via [α]q′. The latter point is
necessary, since a concrete refinement is deterministic and the corresponding
concrete transition only has to be matched by one transition at the abstraction.
In 〈[ Δ̃ ]〉q′ a communication action has to be existent that always leads to a state
satisfying q’. The acceptance condition for satisfaction plays between a model M
and an automaton A is a variant of those familiar from the literature: An infinite
play Φ is a win for Player I iff either the projection of Φ onto the automata A
is accepting in A (i.e., sup(map(Θ, Φ[2])) is even), or the projection of Φ onto
M is non-accepting in M (i.e., ¬AccD(Φ[1])). Note that the possible infinite
choice in rule 〈[ Δ̃ ]〉 can be easily reduced to a finite one whenever M is finite.
Furthermore, negation of a formula is modeled via the dual automaton:

Theorem 14 (2-valuedness). Suppose A is a guarded EF automaton and M̈
is a concrete STS, then M̈ |= A ⇐⇒ ¬(M̈ |= Adual).

The satisfaction relation on general STS is inherently 3-valued, since (i) any
instance M |= A attempts to establish whether all refinements M′ of M satisfy
A and (ii) some, but not all, refinements of M may satisfy A in q. The winning
conditions for the satisfaction game are Rabin conditions as they have form
[Streett ⇒ RabinChain] which reduces to Rabin; so deciding M |= A is in
NP for finite models. We prove soundness of M |= A as an approximation



12 H. Fecher and I. Grabe

of the EXPTIME-hard relation which asks whether all concrete STS M̈ that
refine M satisfy A. In particular, we approximate the PSPACE-complete LTL
model checking problem [27], since LTL, as well as the linear μ-calculus, can
be embedded into our logic if we transform unlabeled transition systems having
predicates as STS by (i) labeling all transitions with τ , (ii) encoding predicates
via labeled transitions, and (iii) putting e(s) = O(s).3

Theorem 15 (Soundness). Let A be a guarded EF automaton and M1 and
M2 be two STSs such that M1 refines M2 and M2 |= A. Then M1 |= A.

Example 16. The automaton Â of Figure 3 is satisfied by the STS N̂ of Figure
1, and thus by Theorem 15 also by N̈ of Figure 1. The three-valuedness of the
satisfaction relation can be seen, since neither all concrete refinements of N̂
satisfy 〈[ c ]〉true nor its dual one, [c]false. The approximation of our satisfaction
definition is seen by the fact that 〈[ c ]〉true∨ [c]false is not satisfied by N̂ , but by
all of its concrete refinements.

Corollary 17. A STS M is not satisfiable if M satisfies an EF automaton as
well as its dual one.

5 Application

Here, we present two small examples illustrating the advantages of our setting.
One in the context of modeling the other one in the context of verification.

5.1 Modeling

Suppose a program as well as a firewall that prechecks the incoming messages
for the program are executed on a single processor computer. The program can
beside its internal computation always react on an incoming message from the
firewall. This is done via handshake communication of the firewall action p (pass)
and the program action p. After such a handshake communication the program
directly replies to the environment via action r (reply). The firewall is able to
receive a message from the environment via action g (get) at the initial state.
Then it either drops it (and goes back to the initial state) or p is enabled. In the
later case, further get actions can be received. Additionally, after p the initial
state is reached or messages can still be passed on. Furthermore, at every point
in time internal computation is possible. The program and firewall are modeled
by the STS of Figure 4 (a), respectively (b).

As already illustrated in Figure 2, Streett fairness constraint are obtained after
parallel composition of the models of the program and the firewall. This is rea-
sonable, since we are only interested in operating systems that give the program
3 To be precise, we have NP over the number of transitions, whereas LTL is PSPACE-

complete over the number of states. Nevertheless, we can straightforwardly adapt
our satisfaction definition w.r.t. state-based fairness. In other words, we really have
an NP approximation of the PSPACE-complete LTL model checking problem.
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Fig. 4. (a) A program, (b) an abstract firewall model, and (c) a less abstract firewall
modeled as STS, where Ω = {p, p, g, r} in all three models

as well as the firewall infinitely often the opportunity to execute. It is straightfor-
ward to see that the current firewall specification satisfies the EF automata from
Figure 5. Now the model of the firewall is made more precise by modeling one

∧̃

[τ ]

∧̃ [p] false

〈[ g ]〉 true
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''��
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��
��

0

0
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Fig. 5. An alternating tree automata. It says that (i) a message can only be passed to
the program if the firewall received one and (ii) if no message is received so far, the
firewall must be able to receive one.

having a message buffer of size two. This leads to the STS of Figure 4 (c). Then
one can see that this is indeed a refinement of the previous firewall model. Hence,
it also satisfies the EF automaton of Figure 5 by Theorem 15.

5.2 Abstraction

Consider the firewall implementation of Figure 6 (a), where (i) the message is
added to the buffer, x, if the maximal buffer size, y, is not exceeded, otherwise
the message is lost; (ii) the maximal buffer size can be extended by one via an
internal computation if the maximal buffer size is currently reached; and (iii) a
message in a buffer can be removed and passed on. It is obvious that this firewall
is indeed deterministic and that it satisfies the property of the automaton from
Figure 5. Nevertheless, it cannot be automatically verified, since the underlying
state space is infinite. A predicate abstraction [23] technique yielding STSs,
which is not yet formally defined, is illustrated in Figure 6 (b). This abstract
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Fig. 6. (a) A firewall implementation in terms of a state machine and (b) its abstraction
w.r.t. predicate x = 0 in terms of STSs, where Ω = {p, p, g, r}
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Fig. 7. A deterministic transition systems (a) for which no finite abstraction in terms
of modal transition system exists that satisfies EF-automata (b), which describes that
after the first action either infinitely many m-actions are possible or g1 is possible after
finitely many m-actions. On the other hand, the STS (c) satisfies EF-automata (b) and
is an abstraction of (a).

STS is finite and indeed satisfies the automaton from Figure 5 as required.
Note that modal transition systems [13] are not sufficient as abstract model to
verify this property by using predicate x = 0 for abstraction, since no outgoing
must transition from the abstract state x = 0 exists. In other words at least
unnecessary complex abstractions (greater state space) have to be derived. That
modal transition also fails is in some cases is illustrated in Figure 7. Disjunctive
modal transition systems [14], which are sufficient, are unnecessary complex,
since additional must hypertransitions are needed.

In order to handle arbitrary liveness properties the predicate abstraction can
be extended with ranking functions, as it is done in [15], where arbitrary tran-
sitions systems are the implementations. By this abstraction technique, Streett
acceptance condition naturally occur by construction. Note that by using this
ranked predicate abstraction technique, STS are complete in the sense that if
a deterministic transition satisfies an EF automaton A, then there is a ranked
predicate abstraction such that the obtained STS abstraction also satisfies A.

6 Conclusion

Synchronously-communicating transition systems (STS), which are a suitable
setting for modeling and reasoning about deterministic transition systems, were
presented. In particular, we presented a refinement notion, fair parallel com-
position, and 3-valued satisfaction on a logic for STSs. Therefore, whenever
implementations behave deterministically and synchronous communication is
considered, STSs (i) are appropriate as semantical model of programming and
modeling languages and (ii) yield an appropriate foundation for verification via
abstraction as well as via compositional reasoning.

Future work will be an extension of STSs such that also asynchronous and
shared variable communication, as well as termination is possible. Here, a com-
bination of transition systems with termination [28, 29] and I/O-automata [30]
might be a good starting point. Furthermore, an adaption where sets of actions
rather than single actions are used as labels is also of interest, since this allows
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to model that communication on different actions can take place (via parallel
components) at the same time step.
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sults. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–
562. Springer, Heidelberg (1995)

[13] Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE
Computer Society Press, Los Alamitos (1988)

[14] Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
LICS, pp. 108–117. IEEE Computer Society Press, Los Alamitos (1990)

[15] Fecher, H., Huth, M.: Ranked predicate abstraction for branching time: Com-
plete, incremental, and precise. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS,
vol. 4218, pp. 322–336. Springer, Heidelberg (2006)

[16] Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. In:
LICS, pp. 399–410. IEEE Computer Society Press, Los Alamitos (2006)

[17] Dams, D., Namjoshi, K.S.: The existence of finite abstractions for branching time
model checking. In: LICS, pp. 335–344. IEEE Computer Society Press, Los Alami-
tos (2004)



16 H. Fecher and I. Grabe

[18] Dams, D., Namjoshi, K.S.: Automata as abstractions [32], pp. 216–232
[19] Huth, M.: Refinement is complete for implementations. Formal Asp. Com-

put. 17(2), 113–137 (2005)
[20] Grumberg, O., Lange, M., Leucker, M., Shoham, S.: Don’t know in the μ-calculus

[32], pp. 233–249
[21] de Alfaro, L., Godefroid, P., Jagadeesan, R.: Three-valued abstractions of games:

Uncertainty, but with precision. In: LICS, pp. 170–179. IEEE Computer Society
Press, Los Alamitos (2004)

[22] Henzinger, T.A., Majumdar, R.: Fair bisimulation. In: Schwartzbach, M.I., Graf,
S. (eds.) ETAPS 2000 and TACAS 2000. LNCS, vol. 1785, pp. 299–314. Springer,
Heidelberg (2000)

[23] Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

[24] Hoare, C.A.R.: Communications Sequential Processes. International Series in
Computer Science. Prentice Hall (1985)

[25] Milner, R.: Communication and Concurrency. International Series in Computer
Science. Prentice-Hall (1989)

[26] Wilke, Th.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Soc. Math. Belg. 8(2), 359–391 (2001)

[27] Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
Journal of the ACM 32(3), 733–749 (1985)

[28] Bergstra, J.A., Fokkink, W., Ponse, A.: Process algebra with recursive operations
[31], pp. 333–389

[29] Fecher, H., Majster-Cederbaum, M.: Event structures for arbitrary disruption.
Fundamenta Informaticae 68(1,2), 103–130 (2005)

[30] Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-
Quarterly 2(3), 219–246 (1989)

[31] Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra.
North-Holland, Amsterdam (2001)

[32] Cousot, R. (ed.): VMCAI 2005. LNCS, vol. 3385, pp. 17–19. Springer, Heidelberg
(2005)



Slicing Abstractions�
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Abstract. Abstraction and slicing are both techniques for reducing the
size of the state space to be inspected during verification. In this paper,
we present a new model checking procedure for infinite-state concurrent
systems that interleaves automatic abstraction refinement, which splits
states according to new predicates obtained by Craig interpolation, with
slicing, which removes irrelevant states and transitions from the abstrac-
tion. The effects of abstraction and slicing complement each other. As
the refinement progresses, the increasing accuracy of the abstract model
allows for a more precise slice; the resulting smaller representation gives
room for additional predicates in the abstraction. The procedure termi-
nates when an error path in the abstraction can be concretized, which
proves that the system is erroneous, or when the slice becomes empty,
which proves that the system is correct.

1 Introduction

Much of the progress in automated software verification during the past
decade has been driven by the invention of predicate abstraction together with
methods like Craig interpolation that automatically find the right predicates
[1,2,3,4,5,6,7]. Predicate abstraction reduces a potentially infinite state space to
the finite set of valuations of a tuple of state predicates. In the abstraction re-
finement loop, one first builds an initial abstract model from some given set of
predicates. Then the abstract model is verified, which may result in a proof of
correctness (no counter example), a proof of incorrectness (an abstract counter
example that can be concretized), or a spurious counter example (an abstract
counter example that cannot be concretized). In the latter case, additional pred-
icates are extracted from the proof of spuriousness, and the next iteration of the
loop starts with the extended set of predicates.

The advantage of predicate abstraction is its precision: when successful, the
refinement loop automatically produces a set of predicates that eliminates all
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ready ready

Fig. 1. Control flow graph of a simple elevator

spurious counter examples. On the other hand, the abstract systems generated by
predicate abstraction tend to become prohibitively large: the size of the abstract
system, and hence the complexity of the verification step of the loop, grows
exponentially with the number of predicates.

In this paper, we address this problem by interleaving abstraction refinement
steps with slicing. Slicing syntactically tracks the dependencies between variables
and transitions in a system and completely removes irrelevant parts. While slic-
ing alone cannot be used as a proof technique, it has the advantage that it never
increases the size of the state space and may lead to significant reductions.

Figure 1 shows the control flow graph of a simple elevator example, which will
be used in the following to illustrate our method. The elevator accepts a request
for a certain floor, then moves up or down accordingly, and finally, after reaching
the requested floor, is ready for a new request. The transitions of the elevator are
specified in Table 1. The system variables include the program counter pc, the
current floor current , the currently requested floor req , and a nondeterministic
input variable input (input is constrained to be in the valid range input ≤ Max
when the elevator is ready to receive its next request). We verify the correctness of
the elevator by showing that the error condition current > Max is never satisfied.

The verification of the elevator is shown in Figures 2 and 3. (We will refer
to these figures throughout the paper to illustrate the individual steps.) Our
procedure maintains an explicit representation of the abstract model. Rather
than requiring, as in many other approaches, a simulation preorder between
system and abstraction, we call an abstraction sound if the system is correct
iff the abstraction has no concretizable error path. The process starts with a
default abstraction shown as Step 1 of Figure 2: there are four abstract nodes,
corresponding to the four different evaluations of init (a predicate characterizing
the initial states) and error (a predicate characterizing error states). The edges
in the abstraction allow for all possible paths between init and error states
that are “minimal” in the sense that they do not visit a second init or error
state. The advantage of this restriction is that redundant computation segments,
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Table 1. Initial condition, error condition, and transitions of a simple elevator

init pc=0 ∧ current≤Max ∧ input≤Max
error current>Max
request pc=0 ∧ pc′=1 ∧ current ′=current ∧ req ′=input
ready pc ≥ 1 ∧ req=current ∧ pc′=0 ∧ current ′=current ∧ req ′=req ∧ input ′≤Max
up pc=1 ∧ req > current ∧ pc′=2 ∧ current ′=current ∧ req ′=req
down pc=1 ∧ req < current ∧ pc′=3 ∧ current ′=current ∧ req ′=req
moveUp pc=2 ∧ req > current ∧ pc′=2 ∧ current ′=current + 1 ∧ req ′=req
moveDn pc=3 ∧ req < current ∧ pc′=3 ∧ current ′=current − 1 ∧ req ′=req

such as any downward movement of the elevator (which needs to be followed
by an upward movement before an error can possibly be reached), are quickly
eliminated from the abstraction.

Predicates, obtained by Craig interpolation, are used to refine the abstraction
locally, i.e., by splitting individual nodes. In parallel, slicing reduces the size of
the abstraction by dropping irrelevant states and transitions from the model. (In
Figures 2 and 3, components that are eliminated by slicing are shown in dashed
lines.) The effects of abstraction and slicing complement each other. As the
refinement progresses, the increasing accuracy of the abstract model allows for
a more precise slice; the resulting reduction gives room for additional predicates
in the abstraction. In the example, the procedure terminates after Step 6, when
the slice becomes empty, proving that the system is correct.

2 Related Work

Abstraction. There is a rich literature on predicate abstraction and the abstrac-
tion refinement loop [1,2,3,4,5]. The key difference between our approach and
classic predicate abstraction is that we use new predicates to split individual
nodes, while predicate abstraction interprets every predicate in every abstract
state. Our approach can be seen as a generalization of lazy abstraction [6,7],
which incrementally refines the state space with new predicates as the control
flow graph is searched in a forward manner to find an error path. New pred-
icates in lazy abstraction only affect the subgraph reachable from the current
node. Lazy abstraction thus exploits locality in branches of the control flow graph
while our approach exploits locality in individual nodes of the abstraction.

Our abstraction process is similar to deductive model checking [8], which also
refines an explicit abstraction by splitting individual nodes. While we only handle
simple error conditions, deductive model checking provides rules for full linear-
time temporal logic. The key difference is that deductive model checking is only
partly automated and in particular relies on the user to select the nodes and
predicates for splitting.

Slicing. Program slicing, introduced by Weiser [9], is a static analysis technique
widely used in debugging, program comprehension, testing, and maintenance.
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Step 1: Initial abstraction.
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{request} {moveUp#}

T \ {ready}

∅

Step 2: After slicing. The transition relation moveUp on edge (n2, n3) simplifies to
moveUp# = pc=2 ∧ req > current ∧ pc′=2 ∧ current ′=current + 1.

n1: init

¬error

n2: ¬init

¬error

pc=1

n5: ¬init

¬error

pc �= 1

n3: ¬init

error

{request}
{up, down}

∅

{moveUp#}

∅ {moveUp, moveDn}

Step 3: After splitting node n2 with predicate pc=1 and slicing.

n1: init

¬error

n2: ¬init

¬error

pc=1

n5: ¬init

¬error

pc=2

n6: ¬init

¬error

pc �= 1
pc �= 2

n3: ¬init

error

{request} {up}

{down}

∅∅

{moveUp#}

{moveUp}

{moveDn}

Step 4: After splitting node n5 with predicate pc=2 and slicing.

Fig. 2. Steps 1–4 of the verification of the simple elevator. Components shown in dashed
lines are deleted in the slice.
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n1: init

¬error

n2: ¬init

¬error

pc=1

n5: ¬init

¬error

pc=2

n3: ¬init

error

{request ◦n2 up}

{moveUp#}
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Step 5: Node n2 is bypassed via transition relation request ◦n2 up.

n1: init

¬error
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¬error
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n7: ¬init

¬error
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req > Max

n3: ¬init

error

{request ◦n2 up}

∅

∅∅ ∅

{moveUp#}

{moveUp}
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Step 6: After splitting node n5 with predicate req ≤ Max and slicing.

Fig. 3. Steps 5 and 6 of the verification of the simple elevator. Components shown in
dashed lines are deleted in the slice. Since the slice after Step 6 is empty, the system
is correct.

Essentially, slicing extracts the parts of a program which might affect some
given slicing criterion (e.g. a variable at some point). Slicing has become one of
the standard reduction techniques in finite-state model checking (for instance in
SAL [10], Bandera [11], Promela [12], IF [13]). More recently, slicing has been
used in automated abstraction refinement as a preprocessing step on abstract
error paths (thus analyzing individual paths, not the full abstraction). Path
slicing [14] removes irrelevant parts of the abstract error path before the path
is passed to the theorem prover to verify if the path can be concretized.

Usually, the slice is determined by a dependency analysis on the control flow
graph of the program. A more refined technique, taking additional information
about the property under interest into account, is conditioned slicing [15]. Here,
an assumption about the initial (forward conditioning) or final states (backward
conditioning) is added in the form of a predicate, and slicing then only keeps the
statements which can be executed from an initial state or which lead to a final
state satisfying the predicate.
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Closest to our work is the backward conditioning approach of [16] (used for
program comprehension, not verification). Backward conditioning proceeds by a
symbolic execution of the program and the use of a theorem prover to prune the
execution paths which do not lead into a desired final state. The analysis is how-
ever always carried out on the concrete program, not its abstraction, and the tech-
nique will – due to its objective of program comprehension – preserve all paths to
the given final states. A use of conditioned slicing in verification can be found in
[17], where the condition is extracted from a temporal logic formula of the form
G(p → q). The predicate p is used as a condition for forward conditioning, the
technique is then building a refined program dependence graph (based on the con-
trol flow graph). A conditioning method operating on an abstraction of the pro-
gram is presented in [18]. On this abstraction it can be determined under which
conditions one statement might affect another (while for verification we need to
find out whether some condition might hold at all or not).

3 Preliminaries: Transition Systems

We use a general representation of concurrent systems as transition systems,
which can be defined using an assertion language based on first-order logic. In
the following we denote the set of first-order formulas over a set of variables
V by Ass(V). A transition system S = 〈V, init , T 〉 consists of the following
components:

– V : a finite set of system variables. We define for each system variable v ∈ V
a primed variable v′ ∈ V ′, which indicates the value of v in the next state.
We call the set Ass(V ) of assertions over the system variables the set of state
predicates and the set Ass(V ∪ V ′) of assertions over the system variables
and the primed variables the set of transition relations. For a state predicate
ϕ, let ϕ′ denote the assertion where each variable v is replaced by v′.

– init(V ): the initial condition, a state predicate characterizing all states in
which the computation of the system can start.

– T : the transition set. Each transition τ(V, V ′) ∈ T is a conjunction
τ(V, V ′) =

∧
i gi(V ) ∧

∧
i ti(V, V ′) of guards gi and transition relations

ti. In the special case where, for a given set W of variables, τ is of the form
τ(V, V ′) =

∧
i gi(V ) ∧

∧
v∈W (v′ = ev(V )), i.e., each variable in W is as-

signed a value defined over V , we say that τ is a guarded W -assignment. We
assume that T always contains the idling transition τidle =

∧
v∈V v = v′.

A state of S is a valuation of the system variables V . A run is an infinite
alternating sequence s0, τ0, s1, τ1, . . . of states and transitions such that init(s0)
holds and for all positions i ≥ 0, τi(si, si+1) holds.

We assume that the correctness criterion for S is given as an error condition
error(V ), a predicate which characterizes all error states. We say S is correct if
there is no run s0, τ0, s1, . . . of S that has a position i ≥ 0 such that error (si)
holds.
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4 Abstraction

Our abstractions are graphs where the nodes are labeled with sets of predicates
and the edges are labeled with sets of transition relations.

Definition 1. An abstraction A = 〈N, E, ν, η〉 of a transition system S =
〈V, init , T 〉 consists of the following components:

– a finite set N of nodes,
– a set E ⊆ N × N of edges,
– a labeling ν : N → 2Ass(V ) of nodes with sets of predicates, and
– a labeling η : E → 2Ass(V,V ′) of edges with sets of transition relations.

A node n ∈ N of the abstraction is an initial node if its label ν(n) contains
the initial condition init , and an error node if its label ν(n) contains the error
condition error . In the following, let I = {n ∈ N | init ∈ ν(n)} denote the set
of initial nodes, and F = {n ∈ N | error ∈ ν(n)} the set of error nodes.

A path of an abstraction is a finite alternating sequence
n0, τ0, n1, τ1, . . . , τk−1, nk of nodes and transitions such that for all
0 ≤ i < k, τi ∈ η(ni, ni+1). An error path is a path n0, τ0, n1, τ1, . . . , τk−1, nk

such that n0 ∈ I is an initial node and nk ∈ F is an error node.
An abstract path n0, τ0, n1, τ1, . . . , τk−1, nk is concretizable in S if there exists

a finite sequence of states s0, s1, . . . , sk such that for every position 0 ≤ i ≤ k
and every state predicate q ∈ ν(ni), q(si) holds and for every position 0 ≤ i < k,
τi(si, si+1) holds. We call the alternating sequence of system states and tran-
sitions s0, τ0, s1, τ1, . . . , τk−1, sk the concretization of n0, τ0, n1, τ1, . . . , τk−1, nk.
An abstract error path that is not concretizable is called spurious. An abstraction
A of a transition system S is sound if there exists a concretizable error path in A
if and only if S is not correct. Our abstraction refinement procedure starts with
a sound initial abstraction and then preserves soundness in each transformation.

Definition 2. The initial abstraction A0 = 〈N, E, ν, η〉 of a transition system
S = 〈V, init , T 〉 consists of the following components:

– N = {ie, ie, ie, ie}
– E = {(ie, ie), (ie, ie), (ie, ie), (ie, ie)}
– ν : ie �→ {init , error}, ie �→ {¬init , error}, ie �→ {init , ¬error}, ie �→

{¬init , ¬error},
– η : e �→ T for all e ∈ E.

The initial abstraction is shown as Step 1 of Figure 2. As explained in the
introduction, no concretization of a path in the abstraction visits an initial or
error state twice. This is consistent with our definition of soundness, which only
requires the existence of some concretizable error path. Given an error path that
visits initial or error nodes multiple times, we can always construct an error path
that visits both only once, by considering the segment between the last initial
node and the first error node.
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Proposition 1. The initial abstraction A0 of a transition system S is sound.

Proof. By definition, the concretization of an error path of A0 is the prefix of
a run of S that leads to a state that satisfies the error condition. Hence, the
existence of a concretizable error path implies that S is not correct. Suppose,
on the other hand, that S is not correct, i.e., there exists a run s0, τ0, s1, τ1 . . .
such that error(sk) holds for some k ∈ N. Let i be the greatest index between
0 and k such that init(si) holds, and let j be the smallest index between i and
k such that error(j) holds. The subsequence si, τi, si+1, τi+1, . . . , sk defines a
concretizable abstract path ni, τi, ni+1, τi+1, . . . , τk−1, nk as follows: for all l =
i, . . . , k, nl = ie ⇔ init(sl) ∧ error (sl); nl = ie ⇔ ¬init(sl) ∧ error(sl); nl =
ie ⇔ init(sl) ∧ ¬error (sl); nl = ie ⇔ ¬init(sl) ∧ ¬error (sl). Since ni ∈ I and
nk ∈ F , ni, τi, ni+1, τi+1, . . . , τk−1, nk is an error path. �

Soundness of the abstraction is preserved by all of the following transformations
on the abstraction. Due to lack of space, we prove this only for the most complex
type of simplification, namely Simplify Transition.

5 Slicing

Slicing removes irrelevant components from the abstraction. We define four dif-
ferent types of slicing operations: Elimination of transitions, elimination of nodes,
simplification of transition relations, and the introduction of bypass transitions.

5.1 Eliminating Transitions

The abstraction may contain transitions that are irrelevant because the predi-
cates on the source and target nodes of the edge contradict the transition rela-
tion. Such transitions are eliminated in the slice:

Inconsistent Transition. Let A = 〈N, E, ν, η〉 be an abstraction that contains
a transition relation τ ∈ η(m, n) on some edge (m, n) ∈ E such that the
formula

∧
q∈ν(m) q ∧ τ ∧

∧
q∈ν(n) q′ is unsatisfiable. We remove τ , resulting

in the abstraction A′ = 〈N, E, ν, η′〉, where η′(m, n) = η(m, n) � {τ} and
η′(e) = η(e) for e �= (m, n).

Empty Edges. The removal of transition relations may result in edges with
empty labels. Such edges can be removed, transforming A = 〈N, E, ν, η〉
into the abstraction A′ = 〈N, E′, ν, η|E′〉, where E′ = {e ∈ E | η(e) �= ∅}.

In Step 2 of the elevator example, all transition relations on the edge between
nodes n1 and n3 are contradicted by the predicates on the nodes: there is no
transition that leads directly from an initial state to an error state (the only
transition enabled in the initial state is request, which does not modify current).
As a result, all transitions are removed from the label, and the empty edge is
removed from the abstraction.
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5.2 Eliminating Nodes

Nodes are removed from the abstraction if they are either labeled with an in-
consistent combination of predicates or do not occur on any error paths.

Inconsistent Node. Let A = 〈N, E, ν, η〉 be an abstraction that contains a
node n ∈ N such that

∧
q∈ν(n) q is unsatisfiable. We remove n, resulting in

the abstraction A′ = 〈N ′, E′, ν|N ′ , η|E′〉, where N ′ = N � {n} and E′ =
E ∩ (N ′ × N ′).

Unreachable Node. Let A = 〈N, E, ν, η〉 be an abstraction that contains a
node n ∈ N which is unreachable from initial nodes or from which no error
node can be reached. We remove n, resulting in A′ = 〈N ′, E′, ν|N ′ , η|E′〉,
where N ′ = N � {n} and E′ = E ∩ (N ′ × N ′).

In Step 2 of the elevator example, the inconsistent node n4 is removed (the
conjunction init ∧error is unsatisfiable). Unreachable nodes are removed in Step
4 (node n6), Step 5 (node n2), and Step 6 (the entire abstraction).

5.3 Simplifying Transition Relations

The next slicing mechanism removes constraints from transition relations that
are irrelevant for the existence of a concretizable error path. For this purpose
we assign to each node n ∈ N a set of live variables L(n) ⊆ V , containing all
variables whose value may possibly affect the existence of a concretizable path
from n to the error.

As usual in slicing, the set of live variables is computed by a fixpoint com-
putation. Initially, the live variables of a node n ∈ N are those appearing in
its labeling ν(n) and in the enabling conditions of the transitions on outgoing
edges: L0(n) = vars(ν(n)) ∪

⋃
(n,m)∈E,τ∈η(n,m) vars(enabled(τ)).

Then, this labeling is updated according to dependencies through transition
relations on edges. For a predicate q we let vars(q) denote the set of its free
variables. For a transition relation τ and a set of variables X we let dependτ (X)
denote the set of variables that potentially influence the value of variables in X
when τ is taken: for τ =

∧
i gi(V ) ∧

∧
i ti(V, V ′), depend τ (X) = W ∩ V , where

W is the smallest set of variables such that X ′ ⊆ W , for all i, vars(gi) ⊆ W , and
for all i with vars(ti)∩W �= ∅, vars(ti) ⊆ W . The labeling is updated as follows
until a fixpoint is reached: Li+1(n) = Li(n)∪

⋃
(n,m)∈E,τ∈η(n,m) depend τ (Li(m)).

Given the set of live variables for all nodes, we can simplify the transition
relations by eliminating constraints over irrelevant variables. We assume that
the conjunction of all such constraints is satisfiable (which can be achieved by a
prior application of transformation Inconsistent Transition).

Simplify Transition. Let A = 〈N, E, ν, η〉 be an abstraction and let L(n) ⊆
V indicate the set of live variables for each node n. The simplification
simplify(τ, m, n) of a transition τ on an edge (m, n) ∈ E is obtained by
removing from τ all conjuncts φ with vars(φ) ∩ (L(m) ∪ L(n)′) = ∅. In the
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special case of a guarded W -assignment τ , the simplification simplify(τ, m, n)
is obtained by removing from τ all conjuncts v′ = ev(V ) with v �∈ L(n).
Simplifying all transitions results in the new abstraction A′ = 〈N, E, ν, η′〉
where η′(m, n) = {simplify(τ, m, n) | τ ∈ η(m, n)} for all (m, n) ∈ E.

In Step 2 of the elevator example, node n3 is labeled with the set
{pc, current , input} and nodes n1 and n2 are labeled with the full set of vari-
ables. As a result, the transition relation moveUp on the edge from n2 to n3 is
simplified to moveUp# by dropping the conjunct req ′=req.

Proposition 2. Let A = 〈N, E, ν, η〉 be a sound abstraction of a transition
system S = 〈V, init , T 〉, and let A′ be the result of applying Simplify Transition.
Then A′ is again a sound abstraction.

Proof. We show that A has a concretizable error path iff A′ has. The implica-
tion from A to A′ is straightforward since simplify eliminates conjuncts from
transition relations and thus every concretization of an error path in A is a
concretization of the corresponding modified error path in A′.

For the reverse direction assume n0, τ0, n1, τ1, . . . , nk to be a concretizable
error path in A′ with concretization s0, . . . , sk. Let τ̂i be the corresponding non-
simplified version of τi in A. We inductively construct a concretization ŝ0, . . . , ŝk

of n0, τ̂0, n1, τ̂1, . . . , nk. For a state s and a set of variables X ⊆ V , we write s|X
to stand for the valuation s restricted to X . We use the operator ⊕ to conjoin
valuations over disjoint sets of variables. The construction of the concretization
starts with ŝ0 = s0. ŝ0 can be written as s0|L(n0) ⊕ t0 for some valuation t0 of
variables in V \ L(n0). Then we set ŝ1 to s1|L(n1) ⊕ t1, where t1 is a valuation
of V \ L(n1) such that φ(t0, t1) for all removed conjuncts φ of τ̂0. Such a t1
exists since we assumed that the conjunction of all φ is satisfiable and φ further-
more contains no variables from enabled(τ̂0). Then τ̂0(ŝ0, ŝ1) since φ does not
constrain variables in L(n1) (definition of depends) and the enabledness of τ̂0 is
independent of φ (vars(enabled(τ̂0)) ⊆ L(n0)). This construction can similarly
be continued for all states. �

5.4 Bypass Transitions

The following construction allows us to bypass (and, as a consequence, often
eliminate) nodes in the abstraction. For a node n with an incoming transition τ1
and an outgoing transition τ2, we define the bypass relation (τ1 ◦n τ2)(V, V ′) =
∃V ′′ . τ1(V, V ′′)∧ν(n)(V ′′)∧τ2(V ′′, V ′). If W = L(n) is the set of live variables of
n and τ1 is a guarded W -assignment τ1(V, V ′) =

∧
i gi(V ) ∧

∧
v∈W (v′ = ev(V )),

then τ1 ◦n τ2 can be simplified to (τ1 ◦n τ2)(V, V ′) =
∧

i gi(V ) ∧ ν(n)[ev/v](V ) ∧
τ2[ev/v](V, V ′).

Bypass Transition. Let A = 〈N, E, ν, η〉 be an abstraction and let τ ∈ η(m, n)
be a transition on some edge (m, n) ∈ E. Transition τ can be modified to
bypass node n, resulting in the new abstraction A′ = 〈N, E′, ν, η′〉, where
E′ = E ∪ {(m, n′) | (n, n′) ∈ E}, η′(m, n) = η(m, n) � {τ} and η′(m, n′) =
η(m, n′) ∪ {τ ◦n τ2 | τ2 ∈ η(n, n′)}.
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In Step 5 of the elevator example, node n2 is bypassed via request ◦n2 up. As
a result, n2 becomes unreachable and is eliminated.

6 Abstraction Refinement

We first introduce the refinement step for a given predicate and node and then
discuss how both can be obtained automatically by error path analysis.

6.1 Node Splitting

Given some new predicate q, we split an abstract node labeled ϕ into two new
nodes, one labeled ϕ ∪ {q}, the other ϕ ∪ {¬q}.

Node split. Let A = 〈N, E, ν, η〉 be an abstraction of a transition
system S = 〈V, init , T 〉, and let n ∈ N be some abstract
node and q(V ) some predicate. The node split of A with respect
to n and q is the new abstraction A′ = 〈N ′, E′, ν′, η′〉, where
– N ′ = N ∪ {n′} where n′ is a fresh node n′ �∈ N ;
– E′ =

⋃
e∈E edgesplit(e), where

edgesplit(e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(n, n), (n, n′), (n′, n), (n′, n′)} if e = (n, n),
{(m, n), (m, n′)} if e = (m, n), m �= n,

{(n, m), (n′, m)} if e = (n, m), m �= n, and
{e} otherwise,

– ν′(m) =

⎧
⎪⎨

⎪⎩

ν(n) ∪ {q} if m = n

ν(n) ∪ {¬q} if m = n′, and
ν(m) otherwise;

– η′(e′) = η(e) for all e′ ∈ edgesplit(e)

The elevator example involves several node splits. For instance, in Step 3, the
split of node n2 with predicate pc = 1 adds the new node n5.

6.2 Error Path Analysis

The verification process terminates as soon as the abstraction has a concretizable
error path (in which case the system is incorrect) or no error paths at all (in
which case the system is correct). The refinement process is therefore driven by
the analysis of spurious error paths.

Our technique is based on Craig interpolation. For a given pair of formulas
ϕ(X) and ψ(Y ), such that ϕ ∧ ψ is unsatisfiable, a Craig interpolant Υ (X ∩ Y )
is a formula over the variables common to ϕ and ψ such that Υ is implied by
ϕ and Υ ∧ ψ is unsatisfiable. Craig interpolants can be automatically generated
for a number of theories, including systems of linear inequalities over the reals
combined with uninterpreted function symbols [19].
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In order to obtain the new predicate, we use a variation of a standard error
path cutting technique [20] from predicate abstraction, which splits the path into
two subsequences such that the new predicate is an interpolant for the first-order
formulas corresponding to the first and second parts. To ensure that the new
predicate affects as many error paths as possible, we focus on minimal spurious
sub-paths:

For a spurious error path n0, τ0, n1, τ1, . . . , τk−1, nk, we call a sub-path
ni, τi, ni+1, τi+1, . . . , τj−1, nj with 0 ≤ i < j ≤ k minimal if the sub-path is
not concretizable but both ni+1, τi+1, . . . , τj−1, nj and ni, τi+1, . . . , nj−1 are con-
cretizable.

We translate error paths to first-order formulas in the following way. Let,
for each i ∈ N, Vi be a set of fresh variables such that for each v ∈ V ,
Vi contains a corresponding fresh variable vi ∈ Vi. Given a finite path p =
n0, τ0, n1, τ1, . . . , τk−1, nk in an abstraction A (such that τi ∈ η(ni, ni+1) for all
0 ≤ i < k), we define two first-order formulas

Γ1(p) = ν(n0)(V0) ∧ τ0(V0, V1) ∧ ν(n1)(V1) ∧ τ1(V1, V2) ∧ . . . ∧ ν(nk−1)(Vk−1),
Γ2(p) = τk−1(Vk−1, Vk) ∧ ν(nk)(Vk).

We analyze a given spurious error path n0, τ0, n1, τ1, . . . , τk−1, nk in two steps:

1. We find a minimal sub-path p = ni, τi, ni+1, τi+1, . . . , τj−1, nj. This deter-
mines the node n = nj−1 which will be split.

2. We compute the interpolant of Γ1(p) and Γ2(p). The interpolant Υ (Vj−1)
defines the new predicate q = Υ (V ) on which we split node n.

After Step 2 of the elevator example, we obtain the abstract error path
p = n1, request, n2, moveUp#, n3. The error path is minimal, since both
n1, request, n2 and n2, moveUp#, n3 are concretizable. Hence, n2 is selected for
the split. The interpolant of Γ1(p) and Γ2(p) is the predicate pc1 = 1, which is
implied by Γ1(p) (it occurs in request(V0, V1)) and contradicts Γ2(p) (pc1 = 2
occurs in moveUp#(V1, V2)).

7 Experiments

We have implemented the new model checking procedure as a small proto-
type tool named SLAB (for Sl icing abstractions). SLAB is implemented in Java
(JRE 1.5) and relies on Andrey Rybalchenko’s CLP-Prover [21] for satisfiabil-
ity checking and interpolant generation. In Table 2, we give running times of
SLAB for a collection of standard benchmarks. Our experiments were carried
out on an Intel Pentium M 1.80 GHz system with 1 GByte of RAM. For com-
parison, we also give the running times of the Abstraction Refinement Model
Checker ARMC [22] and the Berkeley Lazy Abstraction Software Verification
Tool BLAST [23] where applicable. Our benchmarks include a finite-state sys-
tem (Deque), an infinite-state discrete system (Bakery), and a real-time system
(Fisher).
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Table 2. Experimental results for SLAB vs. ARMC and BLAST: number of iterations
of the refinement loop and running times in seconds on the benchmarks Deque (with
5, . . . , 9 cells), Bakery (with 2, . . . , 5 processes), and Fisher (with 2, 3, 4 processes).
(BLAST is not applicable to the real-time system Fisher.)

SLAB ARMC BLAST
specification iterations time (s) time (s) time (s)

Deque 5 6 1.34 3.80 2.23
Deque 6 6 1.92 27.65 5.64
Deque 7 8 2.70 255.63 13.64
Deque 8 8 3.15 1277.85 36.63
Deque 9 10 4.80 timeout 90.17

Bakery 2 29 6.30 2.56 9.26
Bakery 3 47 33.53 24.97 1943.17
Bakery 4 71 128.53 988.69 timeout
Bakery 5 96 376.56 timeout timeout

Fisher 2 42 9.26 3.37 N/A
Fisher 3 335 126.05 339.21 N/A
Fisher 4 2832 2605.85 timeout N/A

Deque. The Deque benchmark is an abstract version of a cyclic buffer for
a double-ended queue. We model the cells of the buffer by n flags, where
true indicates a currently allocated cell. Initially, all but the first flag are
false. Adding or deleting an element at either end is represented by tog-
gling a flag under the condition that the values of the two neighboring flags
are different: (true, true, false) ↔ (true, false , false) and (false , true, true) ↔
(false , false, true). The error condition is satisfied if there are no unallocated
cells left in the buffer.

Bakery. The Bakery protocol [24] is a mutual exclusion algorithm that uses
tickets to prevent simultaneous access to a critical resource. Whenever a process
wants to access the shared resource, it acquires a new ticket with a value v that
is higher than that of all existing tickets. Before the process accesses the critical
resource, it waits until every process that is currently requesting a ticket has
obtained one, and every process that currently holds a ticket with a lower value
than v has finished using the resource. An error occurs if two processes access
the critical resource at the same time.

Fisher. Fisher’s algorithm, as described in [25], is a real-time mutual exclusion
protocol. Access to a resource shared between n processes is controlled through a
single integer variable lock and real-time constraints involving two fixed bounds
C1 < C2. Each process uses an individual (resettable) clock c to keep track of
the passing of time between transitions. Each process first checks if the lock is
free, then, after waiting for no longer than bound C1, sets lock to its (unique) id.
It then waits for at least C2, and if the value of the lock is unchanged, accesses
the critical resource. When leaving, it frees up the lock. As in the previous
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Fig. 4. Relation of the number of abstract states and the number of predicates in
intermediate abstractions during the verification of the Bakery protocol with three
processes

benchmark, an error occurs if two processes access the critical resource at the
same time.

On our benchmarks, SLAB outperforms both ARMC and BLAST, and scales
much better to larger systems. It appears that the abstract state space con-
structed by SLAB grows much more slowly in the number of predicates than
the (fully exponential) state space considered by standard predicate abstrac-
tion: Figure 4 depicts the relation between the number of predicates and the
number of abstract states in intermediate abstractions from the verification of
the Bakery protocol with three processes.

8 Conclusions

We have presented a new model checking procedure for infinite-state concurrent
systems that combines automatic abstraction refinement with slicing. Our ex-
periments show that the two methods indeed complement each other well: As
the refinement progresses, the increasing accuracy of the abstract model allows
for a more precise slice; because the size of the resulting abstraction grows more
slowly (in the number of predicates) than in standard predicate abstraction, our
approach scales to larger systems.
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Similar to lazy abstraction [6,7], the new approach exploits the inherent lo-
cality of the system. While lazy abstraction incrementally adds new predicates
during a traversal of the control flow graph, ensuring that the additional pred-
icates affect only the currently traversed sub-branch of the control flow graph,
our approach refines individual nodes of the abstraction.

The state set that is partitioned according to a new predicate is thus not iden-
tified by a particular control flow location, as in lazy abstraction, but changes
dynamically as the abstraction refinement progresses: with increasing precision
of the existing abstraction, the state sets partitioned by new predicates become
smaller and smaller. As a result, the abstraction process is independent of a par-
ticular control structure and can be applied to any transition system, including
those with concurrent or infinite control.
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Abstract. We formally specify the recent DRM scheme of Nair et al.
in the μcrl process algebraic language. The security requirements of
the scheme are formalized and using them as the basis, the scheme is
verified. The verification shows the presence of security weaknesses in the
original protocols, which are then addressed in our proposed extension
to the scheme. A finite model of the extended scheme is subsequently
model checked and shown to satisfy its design requirements, including
secrecy, fairness and resisting content masquerading. Our analysis was
distributed over a cluster of machines, allowing us to check the whole
extended scheme despite its complexity and high non-determinacy.

1 Introduction

Recent years have seen a rapid increase in the popularity of personal devices
capable of rendering digital contents. Large content providers as well as inde-
pendent artists are looking forward to these new opportunities for selling their
copyrighted materials, necessitating the development of systems to protect digi-
tal contents from illegal access and unauthorized distribution. Technologies used
to enforce policies controlling usage of digital contents are referred to as Digital
Rights Management (DRM) techniques. A major challenge in DRM is enforcing
the policies after contents have been distributed to consumers. This problem is
currently addressed by limiting the distribution of protected contents only to
the so-called compliant devices (e.g. iPods), that by construction are guaranteed
to always enforce the DRM policies associated with the contents they render.

A unique concept of DRM-preserving content redistribution was proposed
in [1], hereafter called NPGCT scheme, where users act also as content redis-
tributors. This potentially allows consumers to not only buy the rights to use
a content, but also to redistribute the content in a controlled manner. From a
security point of view, this is technically challenging, since the resulting system
forms a peer-to-peer network of independent devices, each of them a consumer,
an authorized distributor, and also a potential attacker. Recent sobering expe-
rience [2] has shown that DRM techniques are inherently complicated and if
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carelessly enforced can infringe on customers’, as well as vendors’, rights. These
serve as motivation for using formal methods to verify the NPGCT scheme to
provide both content vendors and customers a certain degree of confidence in
the security and fairness of the system.

Contributions. Our contribution in this paper is twofold. First, on the security
side, we formally specify the NPGCT protocols and analyze them. Our analysis
reveals two security flaws in the scheme. We then propose an extended scheme,
dubbed Nuovo DRM, to address these issues. A formal specification and veri-
fication of Nuovo DRM is subsequently presented and (a finite model of) the
scheme is shown to indeed achieve its design goals.

Second, we use state-of-the-art formal tools and techniques to handle the
verification problem of DRM schemes. We use the μcrl process algebraic lan-
guage [3] and toolset [4] to specify the protocol participants and the intruder
model. Due to the complexity and sheer size of the schemes, we resorted to a
distributed instantiation of the toolset [5] to generate and minimize the corre-
sponding state spaces. In particular, since the Nuovo DRM scheme is highly
non-deterministic due to the presence of several fall-back scenarios, with the
inclusion of an intruder model to the system, it easily runs into the limits of
single-machine state space generation. To the best of our knowledge, we are
the first to formally verify a whole DRM scheme. Moreover, we adapt the stan-
dard formal model of intruder, namely the Dolev-Yao model [6], to reflect the
restricted behavior of compliant devices in DRM systems.

Related work. Nuovo DRM contains an optimistic fair exchange protocol. Op-
timistic fair exchange protocols have been introduced in [7] and since then have
attracted much attention. The closest fair exchange protocol to our scheme is
perhaps the probabilistic synchronous protocol of [8], as it relies on trusted com-
puting devices in exchange. In contrast to [8], we present a deterministic asyn-
chronous protocol that achieves strong (as opposed to probabilistic) fairness,
but, as a drawback, relies on impartial agents to secure unsupervised exchanges.

In this paper we do not address modeling semantics and derivations of rights
associated with DRM-protected contents, which constitutes a whole separate
body of research, e.g. see [9]. We focus on formal analysis of transactional prop-
erties of DRM schemes. Related to this, there are several papers on model check-
ing (usually small instances of) optimistic fair exchange protocols, e.g. [10,11,12].
What makes our study unique is the size of the system that is automatically an-
alyzed here, as well as, capturing some DRM-specific features of the system, e.g.
compliant devices, in the model. Constraint solving for checking fair exchange
protocols has been proposed in [13]. This can detect type-flaw attacks, but is
restricted to checking safety properties. Theorem-proving approaches to check-
ing fairness of protocols [14,15,16] can provide a complete security proof at the
cost of heavy human intervention, and thus cannot be easily integrated in the
protocol design phase.

Structure of the paper. We start by explaining the notations and (cryp-
tographic) assumptions used in the paper, in Section 2. Section 3 summarizes



Nuovo DRM Paradiso: Towards a Verified Fair DRM Scheme 35

the NPGCT scheme, which provides the basis for our refined scheme. Section 4
presents the Nuovo DRM scheme, its assumptions and its goals. Nuovo DRM
is then formally analyzed in Section 5 and shown to achieve its goals. Finally,
Section 6 concludes the paper with some possible future research directions.

2 Notations and Assumptions

Trusted devices assumptions. Compliant devices are tamper-proof hardware,
possibly operated by malicious owners, that follow only their certified software.
We assume that compliant devices are able to locally perform atomic actions:
multiple actions can be logically linked in these devices, such that either all
or none of them are executed. They also contain a limited amount of secure
scratch memory and non-volatile storage. These requirements are typically met
by current technologies (e.g. iPods). A legitimate content provider, (abusively)
referred to as trusted third party (TTP), is assumed impartial in its behavior
and eventually available to respond to requests from compliant devices.

Cryptographic assumptions. In our analysis the cryptographic operations
are assumed to be ideal à la Dolev-Yao [6]: we assume access to a secure one-
way collision-resistant hash function h; therefore h(x) uniquely describes x. A
message m encrypted with symmetric key K is denoted {m}K , from which m
can only be extracted using K. Notations pk(X) and sk (X) denote the public
and private keys of entity X , respectively. In asymmetric encryption we have
{{m}sk(X)}pk(X) = {{m}pk(X)}sk(X) = m. Encrypting with sk(X) denotes sign-
ing and, for convenience, we let m be retrievable from {m}sk(X).

Notations. C and D denote compliant customer devices, respectively owned
by owner(C) and owner(D). P denotes a trusted legitimate content provider. A
DRM-protected content is denoted by M . The finite set of all protected contents
is denoted Cont . It is assumed that unique descriptors (e.g. hash values) of
all M ∈ Cont are publicly known. The (finite) set of all possible rights in the
protocols is denoted Rgts. The term RX(M) represents the rights of device X
for content M .

3 The NPGCT DRM Scheme

The NPGCT scheme was proposed as a DRM-preserving digital content redistri-
bution system where a consumer doubles up as a content reseller. In this section
we briefly describe the NPGCT scheme and then present the results of its formal
analysis. For a detailed specification of NPGCT see [1].

3.1 NPGCT Protocols

The scheme consists of two main protocols: the first distributes contents from
provider P to client C, the second allows C to resell contents to another client D.
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Provider-customer protocol (P2C). The protocol is initiated by the owner
of C who wants to buy item M with rights R from provider P . From [1]:

1. C → P : Request content
2. C ↔ P : Mutual authentication, [payment]
3. P → C : {M}K , {K}pk(C), R, σ, Λ

σ=meta-data of M , Λ={h(P, C, M, σ, R)}sk(P )

Here Λ acts as a certification that C has been granted rights R and helps in
proving C’s right to redistribute M to other clients. It also binds the meta-
data σ to the content, which prevents masquerading attacks on M .

Customer-customer protocol (C2C). This part of the protocol is initiated
by the owner of D who wants to buy M with rights R′ from C. From [1]:

1. D → C : Request content
2. C ↔ D : Mutual authentication
3. C → D : {M}K′ , {K′}pk(D), RC(M), R′, σ, Λ, Λ′

Λ′ = {h(C, D, M, σ, R′)}sk(C)

4. D : Verifies σ, Λ′ and RC(M) using Λ
5. D → C : ψ, [payment]

ψ = {h(C, P, {M}K′ , σ, R′)}sk(D)

By ψ, D acknowledges that it has received M with rights R′, while Λ and Λ′

form a chain that helps to prove that D has been granted rights R′.

3.2 Formal Analysis of NPGCT

We have formally specified and model checked the NPGCT scheme. In this
section, due to space constrains, we only present the results of this analysis.
The assumptions and security goals of the scheme, their formalization, the pro-
tocol specification toolset and the model checking technology used here are
similar to those used for Nuovo DRM, which are discussed in the following
sections. Details of this analysis along with found attack traces are available
online [17].

Two security flaws in the NPGCT scheme were revealed in our analysis. First,
in the P2C (and similarly the C2C) protocol, a malicious customer could feed
rights from a previous session to the trusted device, because the authentication
phase is not extended to guarantee freshness of the content-right bundle that is
subsequently delivered. This flaw allows C to accumulate rights without paying
P for it. As a remedy, fresh nonces from the authentication phase can be used
in Λ to ensure the freshness of the whole exchange, c.f. Section 4.

Second, in the C2C protocol, payment is not bound to the request/receive
messages exchanged between two customers. Thus, once D receives M in step
3, the owner of D can avoid paying C by aborting the protocol. Since this
exchange is unsupervised, the owners of compliant devices are forced to trust
each other to complete transactions. While it is reasonable to extend such trust
to a legitimate content provider, it should not be assumed for device owners in
C2C exchanges.
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4 The Nuovo DRM Scheme

This section describes an extension to the NPGCT, dubbed Nuovo DRM, which
in particular addresses the security concerns identified in Section 3.2. Here we
confine to informal descriptions; a formal specification is discussed in Section 5.

4.1 Nuovo DRM’s Goals

We require the Nuovo DRM scheme to achieve the following goals (the same
goals as those used to analyze the NPGCT scheme in Section 3.2):

G1. Effectiveness. A protocol achieves effectiveness iff when honest partic-
ipants run the protocol, it terminates successfully, i.e. a desired content-right
bundle is exchanged for the corresponding payment order. Effectiveness is a
sanity check for the functionality of the protocol and is therefore checked in a
reliable communication system with no attacker.

G2. Secrecy. Secrecy states that no outsider may learn “secret” items, which are
usually encrypted for intended receivers. Nuovo DRM (similar to NPGCT) limits
the distribution of protected contents by encrypting them for intended compliant
devices. This scheme must thus guarantee that a DRM-protected content never
appears in plain to any non-compliant device.

G3. Resisting content masquerading. Content masquerading occurs when
content M is passed off as content M ′, for M �= M ′. Preventing this attack
ensures that an intruder cannot feed M ′ to a device that has requested M .

G4. Strong fairness. Assume Alice owns mA and Bob owns mB. Informally,
strong fairness states that if Alice and Bob run a protocol to exchange their items,
finally either both or neither of them receive the other party’s item [18]. Strong
fairness usually requires the contents exchanged in the system to be strongly
generatable: in Nuovo, a content provider can provide the exact missing content
if the exchange goes amiss. Strong fairness also guarantees timeliness, which
informally states that, in a finite amount of time, honest protocol participants
can safely terminate their role in the protocol with no help from malicious parties.
As this is a liveness property1, resilient communication channels (assumption A2
below) are necessary for fairness to hold [7]. For an in-depth discussion of fairness
in exchange we refer the interested reader to [7].

4.2 Nuovo DRM’s Assumptions

Nuovo DRM is based on the following assumptions:

A1. Consumer compliant devices are assumed tamper-proof. Owners of compli-
ant devices are however untrusted. They may collude to subvert the protocol.

1 Properties of systems can be divided into two classes: safety properties, stating un-
wanted situations do not happen, and liveness properties, stipulating desired events
eventually happen. For a formal definition of these property classes see [19].
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They can, in particular, arbitrarily switch off their own devices (“crash failure
model” in distributed computing terminology).

A2. We assume an asynchronous resilient communication model with no global
clock, i.e. the communication media deliver each transmitted message intact in
a finite but unknown amount of time. Resilience is necessary when aiming for
fairness [20], and is realizable under certain reasonable assumptions [21].

A3. There exists a hierarchy of public keys, with the public key of the root
embedded in each compliant device and available to content providers. Using
such an infrastructure, a device can prove its identity or verify other devices’
identities without having to contact the root. Participant identities (C, D and P )
implicitly refer to these authentication certificates issued by the root.

A4. Protocol participants negotiate the price of content in advance. In Nuovo
DRM, the price of the content being traded is bundled with the requested rights.

4.3 Nuovo DRM Protocols

As in NPGCT, our scheme consists of two main protocols: the first distributes
content from provider P to client C, the second allows C to resell content to
another client D.

Provider-customer protocol (P2C). The owner of C wants to buy item M
with rights R from content provider P . Here C and P , but not owner (C), are
assumed trusted.

1. owner(C) → C : P, h(M), R
2. C → P : C, nC

3. P → C : {nP , nC , C}sk(P )

4. C → P : {nC , nP , h(M), R, P}sk(C)

5. P → C : {M}K , {K}pk(C), {R, nC}sk(P )

In the first step, the hash of the desired content, retrieved from a trusted public
directory, with a right and the identity of a legitimate provider are fed to the
compliant device C. Following assumption A4, owner(C) and P have already
reached an agreement on the price. Whether P is a legitimate provider can be
checked by C and vice versa (see assumption A3). In step 2, C generates a fresh
nonce nC and sends it to P , which will continue the protocol only if C is a
compliant device. Message 4 completes the mutual authentication between C
and P . This also constitutes a payment order from C to P . After receiving
this message, P checks if R is the same as previously agreed upon (assumption
A4) and only if so, stores the payment order (for future/immediate encashing)
and performs step 5 after generating a random fresh key K. When C receives
message 5, it decrypts {K}pk(C), extracts M and checks if it matches h(M) in
message 1, and nC is the same as the nonce in message 2. If these tests pass,
C updates RC(M) with R, e.g. R is added to RC(M). Note that RC(M) is not
necessarily R: C could already have some rights associated with M , for instance,
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acquired from an earlier purchase. Since we abstract away from rights semantics
(see our related work), the update phase is left unspecified here.

We now define a set of abstract actions to highlight important steps of the
protocol. These are used in the formalization process to define desired behav-
iors of the protocol. For the P2C protocol, C performs the abstract action
request(C, h(M), R, P ) at step 4, indicating the start of the exchange from C’s
point of view. At step 5, P performs issue(P, h(M), R, C), denoting the re-
ceipt of the payment order and sending the content to C. Finally C performs
update(C, h(M), R, P ) upon accepting message 5, denoting the successful termi-
nation of the exchange from C’s point of view. These abstract actions are further
discussed in Section 5.

Customer-customer protocol (C2C). The owner of D wants to buy item M
with rights R′ from another compliant device C. This protocol can be seen as a
fair exchange protocol where C and D want to exchange a content-right bundle
for its associated payment so that either both or none of them receive their de-
sired items. In deterministic protocols, however, achieving fairness is proved to be
impossible without a TTP [22]. Assuming that most participants are honest and
protocols go wrong infrequently, it is reasonable to use protocols which require
TTP’s intervention only when a conflict has to be resolved. These are usually
called optimistic fair exchange protocols [7] and contain two sub-protocols: an
optimistic sub-protocol is executed between untrusted devices, and if a partici-
pant cannot finish this protocol run, it will initiate a recovery sub-protocol with
a designated TTP.2 Our C2C protocol is an optimistic fair exchange protocol
which uses the content provider P as the TTP. The optimistic exchange sub-
protocol is as follows:

1. owner(D) → D : C, h(M), R′

2. D → C : D, nD

3. C → D : {n′
C , nD, D}sk(C)

4. D → C : {nD , n′
C , h(M), R′, C}sk(D)

5. C → D : {M}K′ , {K′}pk(D), {R′, nD}sk(C)

This protocol is similar to the P2C protocol and only the abstract actions
are described here: at step 4, D takes the action request(D, h(M), R′, C) when
sending out the message which represents its payment. At step 5, C performs
issue(C, h(M), R′, D) and in the same atomic action updates the right associated
with M (reflecting that some part of RC(M) has been used for reselling M) and
stores the payment order signed by D. Note that the atomicity of these actions is
necessary to guarantee that C does not store the payment order without simul-
taneously updating the right RC(M). Upon accepting message 5, D performs
update(D, h(M), R′, C).

2 Fair exchange is attained by ensuring either successful termination (recovery) or
failure (abortion) for both parties. In Nuovo DRM, if neither party terminates suc-
cessfully, nothing is exchanged and failure is already attained. Hence, no particular
“abort” protocol is necessary.



40 M. Torabi Dashti, S. Krishnan Nair, and H.L. Jonker

In this protocol, a malicious owner(C) can abort before sending message 5
to D or this message can get lost due to a hardware failure. To prevent such
unfair situations for D, we provide a recovery mechanism to obtain the lost
content.

Recovery sub-protocol. The goal is to bring the compliant device D back to a
fair state in case of a failure in delivering message 5 in the C2C protocol. D can
start a recovery session with the content provider P at any time after sending
message 4 in the C2C protocol. If a connection with the provider is not available,
D saves the current state and simply waits till it becomes available. Once the
recovery protocol has been initiated, D ignores messages from the optimistic run
of C2C. The purpose of the recovery is to ensure that D receives the content
and rights that owner(D) wanted (and ostensibly paid for).

5r. D : resolves(D)
6r. D → P : D, n′

D

7r. P → D : {n′
P , n′

D, D}sk(P )

8r. D → P : {n′
D, n′

P , 〈nD, n′
C , h(M), R′, C〉, R′′, P}sk(D)

9r. P → D : {M}K′′ , {K′′}pk(D), {R′′, n′
D}SK(P )

In this protocol D and P behave as if D is purchasing the M -R′′ content-right
bundle from P using the P2C protocol, except that, in message 8r, D reports the
failed C2C exchange it had with C. The following abstract actions are performed
here: request(D, h(M), R′, P ) is performed by D at step 8r. At step 9r, P per-
forms issue(P, h(M), R′, D) and upon accepting message 9r, D performs update
(D, h(M), R′, P ). The way P resolves (payments of) failed exchanges deserves de-
tailed explanation. This however falls beyond the scope of our formal analysis and,
due to space constraints, is omitted here; see [17] for a detailed discussion.

One can argue that the recovery sub-protocol may also fail due to lossy
communication channels. As a way to mitigate this, persistent communication
channels for content providers can be built, e.g., using an FTP server as an inter-
mediary. The provider would upload the content, and the device would download
it from the server. In order to guarantee fairness, such resilient communication
channels are generally unavoidable [7] (c.f. assumption A2).

As a final note, we emphasize that only tamper-proof compliant devices are
considered here (assumption A1). These protocols can be trivially attacked if the
devices are tampered with (e.g. a corrupted D would be able to initiate a recovery
protocol even after a successful exchange). Methods for revoking circumvented
devices and resisting systematic content pirating are described in [23,1].

5 Formal Analysis

In this section we describe the steps followed to formally verify that Nuovo DRM
achieves its design goals. Our approach is based on finite-state model check-
ing [24], which (usually) requires negligible human intervention and, moreover,
produces concrete counterexamples, i.e. attack traces, if the design fails to sat-
isfy a desired property. It can therefore be effectively integrated into the design
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phase. However, a complete security proof of the system cannot, in general, be
established by model checking. For an overview on formal methods for verifying
security protocols see [25]. Our formal verification can be seen as a sequence of
steps: first, we specify the protocol and the intruder model in the μcrl pro-
cess algebraic language and generate the corresponding model using the μcrl

toolset (version 2.17.12). Second, we state the desired properties in the regular
(alternation-free) μ-calculus, and, finally, check the protocol model with regard
to the properties in the cadp toolset. Below, these steps are described in detail.

5.1 Formal Specification of Nuovo DRM

The complex structure of Nuovo DRM calls for an expressive specification lan-
guage. We have formalized the Nuovo DRM scheme in μcrl, a language for spec-
ifying and verifying distributed systems and protocols in an algebraic style [3].
A μcrl specification describes a labeled transition system (LTS), in which
states represent process terms and edges are labeled with actions. The μcrl

toolset [4,5], together with cadp [26] which acts as its back-end, features visual-
ization, simulation, symbolic reduction, (distributed) state space generation and
reduction, model checking and theorem proving capabilities.

We model a security protocol as an asynchronous composition of a finite num-
ber of non-deterministic named processes. These processes model roles of honest
participants in the protocol. Processes communicate by sending and receiving
messages. A message is a pair m = (q, c), where q is the identity of the intended
receiver process (so that the network can route the message to its destination)
and c is the content of the message. To send or receive a message m, a partici-
pant p performs the actions send(p, m) or recv(p, m), respectively. Apart from
send and recv, all other actions of processes are assumed internal, i.e. not com-
municating with other participants. These are symbolic actions that typically
denote security claims of protocol participants (e.g. update in Section 4.3). Here,
we only present a μcrl specification of the honest customer role in the P2C
protocol. For a complete specification of Nuovo DRM see [23]. We start with a
very short introduction to μcrl.

The μCRL specification language. In a μcrl specification, processes are
represented by process terms, which describe the order in which the actions may
happen in a process. A process term consists of action names and recursion vari-
ables combined by process algebraic operators. The operators ‘·’ and ‘+’ are used
for the sequential and alternative composition (“choice”) of processes, respec-
tively. The process

∑
d∈Δ P (d), where Δ is a (infinite) data domain, behaves as

P (d1) + P (d2) + · · · .
The customer process. In μcrl spec 1 we specify the customer’s compliant
device role in the P2C protocol of the Nuovo DRM scheme. In this specification,
Nonce and Key represent the finite set of nonces and keys available in the pro-
tocol, respectively. The set Ω is C’s local collection of content-right bundles, nC

denotes the nonce that is available to C in the current protocol round, and the
function nxt : Nonce → Nonce, given a seed, generates a fresh random nonce.
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To simplify the presentation we remove the identities of senders and intended
receivers from messages. Note that any discrepancy in the received content is
automatically detected in this code: in the last message, if the first part does
not agree with the initial h(M), the message will not be accepted.

μCRL spec 1. Customer device in the P2C protocol

C(Ω, nC) =
�

R∈Rgts
M∈Cont

recv(P, h(M), R).send(C, nC).

�

n∈Nonce

recv({n, nC , C}sk(P )).

send({nC , n, h(M), R, P}sk(C)).request(C, h(M), R, C).�

K∈Key

recv({M}K , {K}pk(C), {R, nC}sk(P )).update(C, h(M), R, P ).

C(Ω ∪ {〈M, R〉}, nxt(nC))

Communication models. We consider two different communication models.
The first is a synchronous communication model that is used to verify the ef-
fectiveness property (goal G1). In this model there is no intruder and all par-
ticipants are honest. A process p can send a message m to q only if q at the
same time can receive it from p. The synchronization between these is denoted
com, which formalizes the “p → q : m” notation of Sections 3 and 4. In order
to verify the properties G2–G4, an asynchronous communication model is used
where the intruder has complete control over the communication media. When a
process p sends a message m with the intention that it should be received by q,
it is in fact the intruder that receives it, and it is only from the intruder that q
may receive m. The communications between participants of a protocol, via the
intruder, is thus asynchronous and, moreover, a participant has no guarantees
about the origins of the messages it receives.

Intruder model. We follow Dolev and Yao’s approach to model the intruder [6],
with some deviations that are described below. The Dolev-Yao (DY) intruder has
complete control over the network: it intercepts and remembers all transmitted
messages, it can encrypt, decrypt and sign messages if it knows the corresponding
keys, it can compose and send new messages using its knowledge and it can
remove or delay messages in favor of others being communicated. As it has
complete control over communication media, we assume it plays the role of the
communication media. All messages are thus channeled through the intruder.
Under the perfect cryptography assumption, this intruder has been shown to
be the most powerful attacker model [27]. In our formalization, this intruder
is a non-deterministic process that exhausts all possible sequences of actions,
resulting in an LTS which can subsequently be formally checked. Note that
the intruder is not necessarily an outside party: it may be a legitimate, though
malicious, player in the protocol.

The intruder model used here is different from the DY intruder in two main
aspects (for a formal specification of our intruder model see [23]). These differ-
ences stem from the characteristics of the DRM scheme and its requirements:
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I1. Trusted devices, that play a crucial role in these protocols, significantly limit
the power of the intruder3. However, the intruder has the ability to deliberately
turn off its (otherwise trusted) devices. This has been reflected in our model by
allowing the devices controlled by the intruder to non-deterministically choose
between continuing and quitting the protocol at each step, except when per-
forming atomic actions. Therefore, in the model, all non-atomic actions a of the
devices operated by the intruder are rewritten with a + off . Thus, the intruder
cannot turn compliant devices off while these devices are performing an atomic
action. We verify the protocols in the presence of this enriched intruder model
to capture possible security threats posed by these behaviors.

I2. Liveness properties of protocols can in general not be proved in the DY model,
since the intruder can block all communications. To achieve fairness, which in-
herently comprises a liveness property (see Section 4.1), optimistic fair exchange
protocols often rely on a “resilient communication channels” (RCC ) assumption,
e.g. see [28]. RCC guarantee that all transmitted messages will eventually reach
their destination, provided a recipient for them exists [7]. The behavior of our
intruder model is limited by RCC , i.e. it cannot indefinitely block the network.4

Since the intruder is a non-deterministic process in our model, to exclude execu-
tions that violate RCC , we impose a fairness constraint 5 on the resulting LTS.
Besides, the action com†, used in Section 5.3, represents communications not
required by RCC. A protocol has to achieve its goals even when executions con-
taining com† actions are avoided. A formal treatment of these issues is beyond
the scope of this paper and can be found in [29].

As a minor deviation from DY, to indicate violation of the secrecy require-
ment, the intruder process performs the abstract action revealed when it gets
access to a non-encrypted version of any DRM-protected content. This action
is of course not triggered when the intruder merely renders an item using its
trusted device, which is a normal behavior in the system.

5.2 Regular μ-Calculus

The design goals of Nuovo DRM (G1-G4) are encoded in the regular μ-calculus
[30]. This logic covers the Nuovo DRM’s design goals in its entirety, both safety
and liveness, and naturally incorporates data parameters that are exchanged
in the protocols. The alternation-free fragment of the regular μ-calculus can be
efficiently model checked [30], and all the formulas that we have verified are in
this fragment. Below, a short account of this logic is presented.

3 In our formalization we ignore the possibility of tampering trusted devices. Coun-
termeasures for such cases are discussed in [23,1].

4 For instance, a wireless channel provides RCC for mobile devices, assuming that
jamming can only be locally sustained.

5 Two different notions of fairness are used in this paper: fairness in exchange (see G4)
and fairness constraint of an LTS, which informally states that each process of the
system has to be given a fair chance to execute [24].
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Regular μ-calculus consists of regular formulas and state formulas. Regular
formulas, describing sets of traces, are built upon action formulas and the stan-
dard regular expression operators. We use ‘.’, ‘∨’, ‘¬’ and ‘∗’ for concatenation,
choice, complement and transitive-reflexive closure, respectively, of regular for-
mulas. State formulas, expressing properties of states, are built upon proposi-
tional variables, standard boolean operators, the possibility modal operator 〈· · · 〉
(used in the form 〈R〉T to express the existence of an execution of the protocol
for which the regular formula R holds), the necessity modal operator [· · · ] (used
in the form [R]F to express that, for all executions of the protocol, the regular
formula R does not hold) and the minimal and maximal fixed point operators
μ and ν. A state satisfies μX. F iff it belongs to the minimal solution of the
fixed point equation X = F (X), F being a state formula and X a set of states.
The symbols F and T are used in both action formulas and state formulas. In
action formulas they represent no action and any action and in state formulas
they denote the empty set and the entire state space, respectively. The wild-card
action parameter ‘−’ represents any parameter of an action.

5.3 Analysis Results

In this section we describe the results obtained from the formal analysis of the
Nuovo DRM scheme. Our analysis has the following properties: the intruder is
allowed to have access to unbounded resources of data (like fresh nonces), should
it need them to exploit the protocol. We consider only a finite number of con-
current sessions of the protocol, i.e. each participant is provided a finite number
of fresh nonces to start new exchange sessions. Although this does not, in gen-
eral, constitute a proof of security for a protocol, in many practical situations it
suffices. As security of cryptographic protocols is not decidable (e.g. see [31]), a
trade-off has to be made between completeness of the proofs and their automa-
tion. Our analysis method is fully automatic. Following [6], we assume perfect
cryptography and do not consider attacks resulting from weaknesses of the cryp-
tographic apparatus used in protocols. Type-flaw attacks6 are also omitted from
our analysis. These can, in any case, be easily prevented [32].

Our formal analysis consists of two scenarios. The first verifies effectiveness
(G1) while using the synchronous communication model of Section 5.1. The
second scenario uses the asynchronous communication model of Section 5.1 to
verify the remaining properties (G2-G4). Both scenarios consist of two compliant
devices C and D that are controlled (but not tampered) by the intruder of
Section 5.1. Below, P , as always, represents the trusted content provider. The
formulas in the following results use abstract actions to improve the readability
of the proved theorems. These actions are explained in Sections 4.3 and 5.1. A
complete formalization of these actions can be found in [23].

Honest scenario S0: The communication network is assumed operational and
no malicious agent is present. C is ordered to buy an item from P . Then, C resells
6 A type-flaw attack happens when a field in a message that was originally intended

to have one type is interpreted as having another type.
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the purchased item to D. This scenario was checked using the Evaluator 3.0
model checker from the cadp toolset, confirming that it is deadlock-free, and
effective as specified below.

Result 1. Nuovo DRM is effective for scenario S0, meaning that it satisfies the
following properties:

1. Each purchase request is inevitably responded.

∀m ∈ Cont, r ∈ Rgts. [T∗.request(C, m, r, P )] μX.(〈T〉T ∧ [¬update(C, m, r, P )]X)
∧
[T∗.request(D, m, r, C)] μX.(〈T〉T ∧ [¬update(D, m, r, C)]X)

2. Each received item is preceded by its payment.

∀m ∈ Cont, r ∈ Rgts.
[(¬issue(P, m, r, C))∗.update(C, m, r, P )]F ∧ [(¬issue(C, m, r, D))∗.update(D, m, r, C)]F

Dishonest scenario S1: The intruder controls the communication network
and is the owner of the compliant devices C and D. The intruder can instruct
the compliant devices to purchase items from the provider P , exchange items
between themselves and resolve a pending transaction. Moreover, the compliant
device C can non-deterministically choose between following or aborting the
protocol at each step, which models the ability of the intruder to turn the device
off (see I1 in Section 5.1). We model three concurrent runs of the content provider
P , and three sequential runs of each of C and D. The resulting model was checked
using the Evaluator 3.0 model checker from the cadp toolset and the following
results were proven.

Result 2. Nuovo DRM provides secrecy in scenario S1, i.e. no protected content
is revealed to the intruder (see Section 5.1).

∀m : Cont. [T∗.revealed(m)]F

Result 3. Nuovo DRM resists content masquerading attacks in S1, ensuring
that a compliant device only receives the content which it has requested.

∀a ∈ {C, D}, m ∈ Cont, r ∈ Rgts. [(¬request(C, m, r, D))∗.update(C, m, r, D)]F ∧
[(¬request(D, m, r, C))∗.update(D, m, r, C)]F ∧
[(¬request(a, m, r, P ))∗.update(a, m, r, P )]F.

Besides, the intruder cannot feed the self-fabricated content m0 to compliant
devices:

∀a ∈ {C, D}, r ∈ Rgts. [T∗.update(C, m0, r, D)]F ∧
[T∗.update(D, m0, r, C)]F ∧
[T∗.update(a, m0, r, P )]F.

Result 4. Nuovo DRM provides strong fairness in S1 for P , i.e. no compliant
device receives a protected content, unless the corresponding payment has been
made to P .

∀a ∈ {C, D}, m ∈ Cont, r ∈ Rgts. [(¬issue(P, m, r, a))∗.update(a, m, r, P )]F
∧
[T∗.update(a, m, r, P ).(¬issue(P, m, r, a))∗.
update(a, m, r, P )]F



46 M. Torabi Dashti, S. Krishnan Nair, and H.L. Jonker

Result 5. Nuovo DRM provides strong fairness in S1 for D, as formalized be-
low7:

1. As a customer: if a compliant device pays (a provider or reseller device) for
a content, it will eventually receive it. 8

Note that there are only finitely many TTPs available in the model, so the
intruder, in principle, can keep all of them busy, preventing other participants
from resolving their pending transactions. This corresponds to a denial of
service attack in practice, which can be mitigated by putting time limits
on transactions with TTPs. As we abstract away from timing aspects here,
instead, the action lastttp is used to indicate that all TTPs in the model are
exhausted by the intruder. In other words, as long as this action has not
occurred yet, there is still at least one TTP available to resort to.

∀m ∈ Cont, r ∈ Rgts. [T∗.request(D, m, r, P ).(¬(update(D, m, r, P )))∗]
〈(¬com†(−,−,−))∗.(update(D, m, r, P ))〉T
∧

∀m ∈ Cont, r ∈ Rgts. [T∗.request(D, m, r, C).(¬(resolves(D) ∨ update(D, m, r, C)))∗]
〈(¬com†(−,−,−))∗.(resolves(D) ∨ update(D, m, r, C))〉T
∧
[(¬lastttp)∗.request(D, m, r, C).(¬lastttp)∗.resolves(D).
(¬(update(D, m, r, P ) ∨ lastttp))∗]
〈(¬com†(−,−,−))∗.update(D, m, r, P )〉T

2. As a reseller: no compliant device receives a content from a reseller device,
unless the corresponding payment has already been made to the reseller.

∀m ∈ Cont, r ∈ Rgts. [(¬issue(D, m, r, C))∗.update(C, m, r, D)]F
∧
[T∗.update(C, m, r, D).(¬issue(D, m, r, C))∗.update(C, m, r, D)]F

Note that the strong fairness notion that is formalized and checked here subsumes
the timeliness property of goal G4, simply because when D starts the resolve
protocol, which it can autonomously do, it always recovers to a fair state without
any help from C.

Theorem 1. Nuovo DRM achieves its design goals in scenarios S0 and S1.

Proof. G1 is achieved based on result 1. Result 2 implies G2. Result 3 guarantees
achieving G3. Results 4 and 5 guarantee G4.

6 Conclusions

We have formally analyzed the NPGCT DRM scheme and found two vulnera-
bilities in its protocols. The scheme is subsequently extended to address these
7 Strong fairness for C is not guaranteed here, as it can quit the protocol prematurely.

A protocol guarantees security only for the participants that follow the protocol.
8 The fairness constraint used in the formulas corresponds to the strong notion of

fairness in [33]: ∀θ. F ∞enabled(θ) ⇒ F ∞executed (θ).



Nuovo DRM Paradiso: Towards a Verified Fair DRM Scheme 47

vulnerabilities. The extended scheme, namely Nuovo DRM, as many other DRM
systems, is inherently complicated and, thus, error prone. This calls for expressive
and powerful formal verification tools to provide a certain degree of confidence
in the security and fairness of the system. We have analyzed and validated our
design goals on a finite model of Nuovo DRM. There is of course no silver bullet:
our formal verification is not complete as it abstracts away many details of the
system. For instance, as future work, we are considering analyzing the account-
ability of the provider, which is taken as non-disputable in this study, addressing
possible anonymity concerns of customers and incorporating the payment phase
into the formal model. We are currently working on a practical implementation
of Nuovo DRM using existing technologies, see [17].

Acknowledgments. We are grateful to Bruno Crispo and Wan Fokkink, for
their comments on earlier versions of this paper, and to Bert Lisser for his help
with distributed state space generation.
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Abstract. A communication protocol consists of a sequence of mes-
sages used by peer entities to communicate. Each entity in a network is
equipped by at least one protocol stack. Due to the need for on-the-fly
reconfiguration of protocol stack in future communication and compu-
tation devices, formalizing substitutability and compatibility of protocol
entities are important in correctness assessment of dynamic reconfigura-
tion. In this paper, we extend Constraint Automata and propose I/O-
Constraint Automata to model behavior of protocols and propose enough
formalism for substitutability and compatibility relations between proto-
cols. We introduce input-blocking property of communication protocols,
and show that in the context of communication protocols simulation re-
lation is not strong enough for notion of substitutability. We show the
relation between substitutability and compatibility to reason about the
correctness in substitution of a protocol with a new one.

1 Introduction

Every system in a network has at least one protocol stack to communicate with
other systems. Each protocol stack is materialized through one or more com-
ponents, to which we refer as protocol components. Considering the OSI model
[1] of a protocol stack, the application layer is located on the top layer and its
mission is to transfer the application data to its peer application layer in the
other system. The underlying peer protocols in two systems exchange proper
sequence of messages in order to transfer upper layer data.

Future communication and computation devices require a dynamic- reconfig-
urable protocol stack to operate in different situations and contexts. In dynamic-
reconfigurable protocol stack, protocol entities can be changed at run-time. Many
research projects such as [2,3,4] have been carried out to offer a dynamic recon-
figurable protocol stack.

In this context, substitutability problem is defined as the verification of
whether a protocol component can be replaced with another component trans-
parently. For this reason, two criteria should be verified for correctness[5]; First,

F. Arbab and M. Sirjani (Eds.): FSEN 2007, LNCS 4767, pp. 49–64, 2007.
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any updated protocol component must continue to provide all messages offered
by its earlier counterpart, and secondly intended correctness properties should
be valid for the new component.

Compatibility problem studies the verification of inter-operation of two com-
municating peer components. It is important to note that, correct substitution of
a new component with an old one, provides compatibility of the new component
and the peer of the old one[6]. We believe that substitutability and compatibility
are two key properties in the development of dynamic-reconfigurable systems,
because they allow one to reason about the correctness of reconfiguration.

In this paper, we briefly describe Constraint Automata introduced in [7] and
properties of communication protocols related to substitutability and compatibil-
ity problems, in Section 2. In Section 3, we introduce I/O-Constraint Automata
to model behavior of communication protocol. We believe that I/O-Constraint
Automata with its names-set and constraints, is an appropriate formalism to
model communication protocols. Section 4 proposes enough formalisms for spec-
ification of substitutability and compatibility of protocols. We propose commu-
nication automaton of two constraint automata for the notion of compatibility;
Moreover, we show that simulation notion in automata is not strong enough
for the substitutability of two protocols. This section presents a formalism for
backward-compatibility relation between protocols. In Section 5, we discuss re-
lated work. Finally, we conclude in Section 6, expressing our current and future
work.

2 Background

One widespread approach to model behavior of protocol components is using
automata. We extend and use Constraint Automata introduced by Arbab et
al [7] for modeling protocol components and also substitutability and compati-
bility notions. In this section, we briefly describe Constraint Automata and its
underlying semantic, Timed Data Streams.

2.1 Timed Data Streams

Timed Data Stream (TDS) is used to represent the sequence of timestamped
snapshot of data-exchanging activities being done in a port. To define it formally,
suppose Data is a fixed, non-empty, and finite set of exchanging data. The set
of all timed data streams over Data is given by:

TDS = {〈α, a〉 ∈ Dataω × R
ω
+|∀k ≥ 0 : a(k) ≤ a(k + 1)and lim

k→∞
a(k) = ∞}

in which V ω = {α|α : {0, 1, 2, ...} → V } (for V = Data, R+), are the set of
all streams over Data and R+. Data stream α ∈ Dataω is denoted as α =
α(0), α(1), . . .. Moreover, notation α′ is used as derivative for α stream and
denotes α(1), α(2), α(3), . . .. Thus, a timed data stream 〈α, a〉 consists of a data
stream α and a time stream a consisting of increasing positive real numbers that
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go to infinity. The time stream a indicates for each data item α(k) the moment
a(k) at which it appears for input, output or internal use. The presented TDS
specifies infinite streams, which corresponds to infinite “runs”.

To each port Ai, a timed data stream is associated and for a given name-set
Names = {A1, ..., An}, all TDS-tuples are defined as follows:

TDSNames = {(〈α1, a1〉, ..., 〈αn, an〉) : 〈αi, ai〉 ∈ TDS, i = 1, ..., n}

2.2 Constraint Automata

Constraint automata use a finite set N of Names, which stands for a set of all
ports. The transitions of constraint automata are labeled with pairs consisting of
a subset N of ports {A1, ..., An} and a data constraint g, which can be viewed as a
symbolic representation of sets of data-assignments. Formally, data constraints
are propositional formula built from the atoms A = d, where data item d is
assigned to port A. Data constraints are given by the following grammar:

g ::= true | A = d | g1 ∧ g2 | ¬g

Logical equivalence ≡ and logical implication ≤ of data constraints are defined
as:

g1 ≡ g2 iff for all data-assignments δ : δ |= g1 ⇐⇒ δ |= g2
g1 ≤ g2 iff for all data-assignments δ : δ |= g1 =⇒ δ |= g2

In above formulas, δ is in the form of [A �→ δA : A ∈ N ], which is used to
describe the data-assignment that assigns to every TDS-name A ∈ N the value
δA ∈ Data. The symbol |= stands for the obvious satisfaction relation, which
results from interpreting data constraints over data-assignments.

Definition 1 (Constraint Automata). A constraint automaton over the data
domain Data is a tuple A = (Q, Names, →, Q0) where:

– Q, is a set of states
– Names, is a finite set of port names
– −→, is a subset of Q × 2Names × DC × Q, called the transition relation of A

– Q0 ⊂ Q, is the set of initial states.

It is common to write q
N,g−−→ p instead of (q, N, g, p), in which N is the name-set

and g is the data constraints over N acting as a guard of the transition. DC
is an abbreviation for DC(N, Data), which denotes the set of data constraints
over ports N .

Constraint automaton is considered as acceptor for TDS-tuple that takes an
input-stream θ ∈ TDSNames and generates an infinite run for θ, that is a se-
quence q0, q1, q2, . . . of automaton-states that can be obtained via transitions
whose name-sets and guards match θ.
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Bisimulation and Simulation. To define bisimulation, let A = (Q, Names,
→, Q0) be a constraint automaton and R an equivalence relation on states of au-
tomata, Q. R is called a bisimulation for A if for q1, q2 ∈ Q, all pairs (q1, q2) ∈ R,
allR-equivalence classesP ∈ Q\R, andeveryN ⊂ Names:

dc(q1, N, P ) ≡ dc(q2, N, P )

in which, dc(q, N, P ) is a disjunction of all data constraints for all transitions
from q into a state in P with nodes N . States q1 and q2 are called bisimulation
equivalent (denoted q1 ∼ q2) iff there exists a bisimulation R with (q1, q2) ∈ R.
Moreover, two constraint automata A1 and A2 with the same set of names, are
called bisimulation equivalent (denoted A1 ∼ A2) iff for every initial state q0,1
of A1 there is an initial state q0,2 of A2 such that q0,1 and q0,2 are bisimulation
equivalent, and vice versa. Here, A1 and A2 must be combined into a large
automaton obtained through the disjoint union of A1 and A2.

To define simulation relation, let A = (Q, Names, →, Q0) be a constraint
automaton and R a binary relation on Q. R is called a simulation for A if for
q1, q2 ∈ Q, all pairs (q1, q2) ∈ R, all R-upward closed sets P ⊂ Q, and every
N ⊂ Names:

dc(q1, N, P ) ≤ dc(q2, N, P )

P is called R-upward closed iff for all states p ∈ P and (p, p′) ∈ R we have p′ ∈ P .
A state q1 is simulated by another state q2 (and q2 simulates q1), denoted as
q1 � q2, iff there exists a simulation R with (q1, q2) ∈ R . A constraint automaton
A2 simulates another constraint automaton A1 (denoted as A1 � A2) iff every
initial state of A1 is simulated by an initial state of A2.

2.3 Communication Protocol

A communication protocol defines the rules for transmission of data blocks, each
known as a Protocol Data Unit (PDU), from one node in a network to another
node. Protocols are normally defined in a layered manner and provide all or part
of the services specified by a layer of the OSI reference model[1]. A protocol
specification defines operations of the protocol and consists of three parts[8]:

– Definition of the format for protocol control information which forms the
PDU header

– Definition of rules for transmitting and receiving PDUs
– Definition of services provided by the protocol layers

Internal services and mechanisms in protocols, such as error handling in a pro-
tocol entity, are provided for its upper layer; They are transparent to its peer
entity and realized through input and output messages. Accordingly, we give a
simple definition for protocol:

Definition 2 (Protocol). A protocol is a set of input and output messages
having predefined formats, plus some rules governing the exchange of messages.
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While given definition of protocol does not consider timing issues (e.g. timeout
and resending mechanisms), it fulfills our requirements in this paper.

In practice, each protocol entity has a minimum set of functionalities corre-
sponding to a set of input and output messages. Over time, one or more ex-
tensions corresponding to some new or updated services in protocol entity are
added or replaced. These extensions may change set of input or output messages.
Inter-operation of two peers requires their commitment on the main functional-
ities. If the new version can transparently inter-operate with the peer of the old
version, it is called backward-compatible extension.

Backward Compatibility. Backward-compatible extensions are used to mod-
ify protocols without coordinating the distribution of new versions. It causes to
limit the distribution and standardizing costs. In a backward-compatible exten-
sion the component is modified in such a way that it can transparently inter-
operate with existing versions [9]. This generally implies no essential changes in
the component. TCP slow-start [10] and ESMTP [11] are examples of such a
change. In a slightly more relaxed version of backward-compatibility, no changes
are made to the fixed part of the header of protocol. Instead, either some fields
are added to the variable length options field at the end of the header, or existing
header fields are used for multiple purposes(overloaded).

3 I/O-Constraint Automata

In this paper, we modify Constraint Automata (CA) [7] in such a way that
can separately express the sequence of input, output and internal messages, and
the constraints governing messages. We call the new automata, I/O-Constraint
Automata (or I/O-CA in short). The main motivations for using CA and intro-
ducing an extension, to model communication protocols are:

– Unlike I/O Automata [12] and Interface Automata [13] transitions in I/O-CA
are data-dependent, which is useful (w.r.t Definition 2) in modeling protocol
messages;

– The TDS-language generated by CA (and so I/O-CA) can be considered to
specify data streams that can flow through the communication protocol;

– Data constraints on transitions can be used to specify formats and con-
straints of data and control messages;

– For pragmatic reasons, it is desirable to separate input, output and internal
messages in protocols.

We suppose that every protocol is implemented as a component (protocol
component) and its behavior is specified with an automaton (protocol automa-
ton), namely I/O-CA. Each message type in the protocol has an equivalent port
or name in its corresponding I/O-CA. Unlike original CA, ports in I/O-CA are
distinct into three disjoint sets (like Interface Automata[13]), input, output, and
internal to clearly distinguish protocol input, output and internal streams. In
sequel, whenever it is understood from the context, we use the term “protocol”
instead of protocol automaton or protocol component.
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To formalize behavior of a protocol component by means of timed data
streams, we use the names AI

1, ..., A
I
n for the input ports, AO

1 , ..., AO
n for the

output ports, and AH
1 , ..., AH

n for the internal ports. The input and output ports
connect components to each other or to the environment of the system. Each
port is dedicated to one specific type of message.

For every given name-set of ports Names, we show set of all input ports,
output ports and internal ports with NamesI , NamesO and NamesH respec-
tively. To each port Ai, a timed data stream is associated. That is, for a given
name-set Names in which, NamesI = {AI

1, ..., A
I
n}, NamesO = {AO

1 , ..., AO
m},

NamesH = {AH
1 , ..., AH

k }, we define input, output and internal streams as fol-
lows:

TDSNamesI

= {(〈α1, a1〉, ..., 〈αn, an〉) : 〈αi, ai〉 ∈ TDS, i = 1, ..., n}

TDSNamesO

= {(〈β1, b1〉, ..., 〈βm, bm〉) : 〈βi, bi〉 ∈ TDS, i = 1, ..., m}

TDSNamesH

= {(〈γ1, c1〉, ..., 〈γl, cl〉) : 〈γi, ci〉 ∈ TDS, i = 1, ..., l}

3.1 Example: Alternating Bit Protocol

Alternating Bit Protocol (ABP) is a simple form of the Sliding Window Protocol
(SWP) with a window size of 1. It is a connection-less protocol for transferring
messages in one direction between a pair of protocols. Many popular communica-
tion protocols such as TCP and HDLC are based on SWP. The message sequence
numbers simply alternate between 0 and 1 [1]. The sender simply sends messages
numbered d(0), the data d attached with a bit “0”, or d(1), the data d attached
with a bit “1”; the content of messages is not identified. These are acknowledged
with ack(1) or ack(0) respectively. Figure 1 shows a corresponding I/O-CA for a
ABP-sender, noted as A(ABP ) = (Q, Names, →, Q0). There is one input port
that supports message types A, NamesI = {A}. Message type is a pre-defined
format for a message, for example A may be one byte-message. Also, there is one
output port that supports message type D, NamesO = {D}. We use annotations
“in”, “out” and “int” for indices of ports to distinguish their input, output or
internal types. Each message type or port has a timed data stream. For example
TDS for port A is a set like TDS(A) = {〈′00000010′, t0〉, 〈′00000100′, t1〉, . . .}.

3.2 Execution Model for Communicating I/O-CA

There are two interaction (synchronization) models for two communicating peer
components[14].

i. Input-Blocking, Output-Blocking: Whenever a component is ready to per-
form an input/output transition, it has to wait (is blocked) until a peer is
ready. Systems based on this type of synchronization are called “blocking
systems”.
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SD0 RA1

SD1RA0

{Dout}, Dout = d(0)

{Ain}, Ain = ack(0)

{Dout}, Dout = d(1)

{Ain}, Ain = ack(0) {Ain}, Ain = ack(1)

{Ain}, Ain = ack(1)

{Dout}, Dout = d(0)

{Dout}, Dout = d(1)

Fig. 1. Protocol Automata for Alternating Bit Protocol (ABP) sender

ii. Input-Blocking, Output-Non-Blocking: Whenever a component is ready to
perform an output transition, it is free to do so. Whenever a component is
ready to perform an input transition, it has to wait until the peer is ready.
These systems are called “non- blocking systems”.

In both models, the component is blocked when it requires an input message.
We call this property “input-blocking”. Moreover, in non-blocking systems, we
assume that input ports can receive all type of messages but never delivers
incorrect message type.

Interaction in communication protocols are usually based on non-blocking
model. For safety considerations, incorrect inputs are not considered for delivery
in order not to cause the protocol component to behave abnormal. For an ex-
ample, in TCP protocol, when a TCP sender component sends a SY N message
to its peer (TCP receiver), it waits (is blocked) for receiving a SY N − ACK
message. Any other message type may be received by the TCP sender, but in
this state, it only accepts and delivers appropriate SY N − ACK message from
the peer.

To model the inter-operation of two communicating peer protocol compo-
nents, we use two I/O-CA that communicate through a FIFO and error-free
communication channels (with unbounded buffers). We call communication of
two peers “parallel execution” which takes place in a closed system. That is,
for two protocol components P1 and P2, inputs for input ports of P1 (P2) are
provided only from the component P2 (P1), and outputs of output ports of P1
(P2) are given only to P2 (P1). For every output port such as Dout in one com-
ponent, if there is an input port Din in its peer component in which it can use
(deliver) Dout’s messages, we call port Dout is “utilized” in the communication
by the port Din. In addition, for two ports Dout as an output and Din as an
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input port, we call they are “compatible”, if their message types are the same.
It is important to note that, for two compatible ports, the output port may not
be utilized in any communication.

We propose an automaton called Communication Automata to specify the
communication behavior of two automata. States of the Communication Au-
tomaton are the consistent global states of two automata and transitions show
the legal input/output actions for the ports. We define the Communication Au-
tomaton as follows:

Definition 3 (Communication-Automaton). The communication-auto-
maton of two I/O-CA A1 = (Q1, Names1, →1, Q0,1) and A2 = (Q2, Names2,
→2, Q0,2) is built by applying our pruning algorithm on the Cartesian product au-
tomaton A = A1 × A2.

The objective of the pruning algorithm is to remove all incorrect traces from the
Cartesian product automaton to achieve an automaton with global consistent
states. Intuitively, an incorrect trace is a trace that has an input port that can
not utilize any preceding output port in that trace. Such an input port causes the
trace to be blocked for infinite time and should be removed from the automata.

Our pruning algorithm traverses the automaton and marks all compatible
input and output pairs of ports. At first, all the ports are unmarked. Specifically,
the algorithm has two steps:

1. In each transition of A (Cartesian product automaton) and for each input
port, look for an unmarked compatible port or marked compatible port on
a self loop transition (transition with the same source and sink node) in the
same or preceding transitions (path from the initial states to that transition)
and mark both input and output ports; if there is no compatible port, remove
the transition from the automaton.

2. Remove all the states (and their transitions) that are not reachable from any
initial state.

Moreover, in production of two automata, we should have following pre-
conditions, to avoid abusing of names:

NamesH
1 ∩ Names2 = φ, NamesH

2 ∩ Names1 = φ,
NamesO

1 ∩ NamesO
2 = φ, NamesI

1 ∩ NamesI
2 = φ

In the definition, two automata synchronize on their compatible input and
output ports. Non-blocking property of I/O-CA allows automaton to send its
output whenever it is ready. As a result, a pair of input and output ports should
be synchronized either on the same transition or in a path of transitions that
the output port precedes the input port. Figure 2 shows the communication
automaton for two communicating I/O-CA. In the figure, we used the short
notation “D+” for producing a proper data item from output port D, and “D−”
for consuming a proper data through input port D. The notation “D + −” as
a label for a transition indicates two compatible ports Din and Dout sends and
receives data at the same time.
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{Ain}, {Ain = ack}
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D

A

{Din}, {Din = d}

{Aout}, {Aout = ack}

q1 q2

D

A

A - A +

D + -

CommunicationAutomaton : P1 ‖ P2

Fig. 2. Communication automaton for a parallel execution of two peer automata

In I/O-CA, there is no final states and we define the safety of communication
based on the infinite run of two communicating I/O-CA. It is easy to check that
if the communication automaton of two communicating I/O-CA has a cyclic
graph, then two I/O-CA can have an infinite run. This is because in every traces
of the communication automaton, before each input port there is a compatible
output port that causes the trace not to be blocked. As a result, we give the
following corollary for safety of a communication automaton:

Corollary 1 (Safe Communication Protocol). Let A1 = (Q1, Names1,
→1, Q0,1) and A2 = (Q2, Names2, →2, Q0,2) be two automata. A = A1 ‖ A2 =
(Q, Names,→, Q0) is safe iff A has a cyclic graph.

4 Compatibility and Substitutability

In this section, we explain compatibility of two I/O-CA based on their communi-
cation automaton. We exploit simulation relation for definition of substitutability
and backwards-compatibility notions in communication protocols.

4.1 Compatibility

Compatibility of two parallel executable automata implies the amount of ability
of each automaton in utilizing messages of its peer. We define compatibility of
two automata based on their communication-automaton. The definition exploits
the non-blocking model of interaction of two communicating I/O-CA.

We define two specific types of compatibility, strong and weak. In a strong
compatibility, two peer protocol components utilize all provided messages of each
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other. This situation occurs when all outputs of the components are carried out
in a “correct” way. In a weak compatibility, there is at least one output of a peer
component that is not utilized by the other peer.

Definition 4 (Compatibility of two I/O-CA). Let A1 = (Q1, Names1,
→1, Q0,1) and A2 = (Q2, Names2, →2, Q0,2) be two automata. Let A = A1 ‖
A2 = (Q, Names,→, Q0):

– A1 and A2 have weak compatibility, noted A1 ‖wc A2, iff A is safe and has
at least one output port that is not utilized in the communication automaton.

– A1 and A2 have strong compatibility, noted A1 ‖sc A2, iff A is safe and all
output ports are utilized in the communication automaton.

– For Γ ⊆ (Names1 ∩ Names2), A1 and A2 have Γ -satisfiable compatibility,
noted A1 ‖Γ A2, iff all ports in Γ are utilized during the communication
automaton.

Example 1. Figure 3 depicts I/O-CA for some example components, P1, P2,
P3, and P4. Each component has its own input and output ports. We have
used annotations “in” and “out” to distinguish input and output ports. The set
Data = {d, ack, eack} shows the data items that can be sent or delivered in all
components. According to the figure, component P1 simply sends a data d from
port D and waits for port A to get data item ack. Component P2 delivers data
item d through port D and sends a data item ack. In component P3, in state
t2 the component waits to receive eack message and then ack message to send
next data item d. In component P4, in state s2 component either accept ack or
eack message and then sends a data item d.

Considering the automata, we have following results based on the definition
for compatibility:

– P1 and P2 are strongly compatible components: P1 ‖sc P2 or P1 ‖Γ P2 in
which Γ = {D, A}

– despite extra input type E for P4, we have P4 ‖sc P2 or P4 ‖Γ P2 in which
Γ = {D, A}. Note that, based on our definition for the strong compatibility,
it is not necessary for the peer of P4 to produce messages for the input port
E.

4.2 Behavioral Substitutability

In this subsection, we define behavioral substitutability of two protocol automata
and formalize the backwards-compatibility notion of substitutability in proto-
cols.

Based on simulation relation we define substitutability relation between two
automata.

Definition 5 (Strong substitutability of two protocols). Let A1 = (Q1,
Names1, →1, Q0,1) and A2 = (Q2, Names2, →2, Q0,2) be two automata, A2 is
strongly substitutable with A1, noted A1 �ss A2, iff Names1 = Names2 and
A1 ∼ A2; (A1 and A2 are bisimilar)
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Fig. 3. Examples for protocol component automata

For ordinary labeled transition systems checking bisimilarity or checking
whether one simulates another can be done in polynomial time [15]. For I/O-CA,
standard algorithms for labeled transition systems (and finite automata) can be
modified. However, as CA deals with logical equivalence and implication, the
algorithmic treatment of the branching time relations (bisimulation and simu-
lation) is more difficult than for ordinary labeled transition systems where only
the existence of transitions with certain target states is important. As the proofs
in [7] the problems of checking whether two CA are bisimilar or one automaton
simulate another one, are coNP-Hard. Here, we use I/O-CA for modeling pro-
tocols, which have finite set of messages and states; therefore, the complexity of
checking bisimulation and simulation relations are polynomial.

Simulation and bisimulation in behaviors of two component automata are usu-
ally used as a sufficient condition for substitutability problem (e.g. [16]). Herein,
as our I/O-CA are input-blocking/output non-blocking systems, we show with
an example that the simulation relation is not strong enough for substitutability
problem.

Example 2. Considering Figure 3 and protocol automata for protocols P1, P2,
P3, and P4 we have:

– protocol P3 simulates protocol P1, P1 � P3, but we cannot substitute it with
P1; This is because of the extra input requirement (namely eack) together
with input-blocking property of I/O-CA.

– protocol P4 simulates protocol P1, P1 � P4, and we can substitute it with
P1; Extra input requirement (eack) does not always block the execution of
the protocol, because state s2 may proceed with alternative input (ack).

The given example leads us to find a condition, weaker than bisimulation, for
substitutability notion.
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Backward Compatible Substitution. Backward-compatibility property of
a protocol component is an essential requirement to perform a transparent dy-
namic reconfiguration in a single node of a network [9]. Here, we want to formalize
backward-compatibility based on our automata model for a protocol component
to present a sufficient condition for substitutability.

To enable a new protocol to inter-operate with the peer of the old protocol
component, is should provide at least all the previous output messages and
should not have any extra input. The only remaining problem which may be a
risk in backward-compatibility of a new protocol and the peer of the old protocol
is the extra requirements of new protocol. Regarding the input blocking property
of protocols, as mentioned in Section 3.2, there is no problem with the extra
output messages of the new protocol and only extra input requirements should
be satisfied.

Definition 6 (Backward compatible substitution of a protocol). For au-
tomata A1 and A2, A2 is a backward-compatible substitution for A1, noted as
A1 �bs A2 iff following conditions are hold:

– A1 � A2, (A2 simulates A1)
– For any qi, qj ∈ STATE(A1) ∩ STATE(A2), in which STATE(Ak), is the

set of states for automaton Ak (k = 1, 2), and any transition path qi �∗ qj,
(i �= j) in which all transitions are in ST (A2)\ST (A1) either the transition
path has not any input port or there is at least one alternative transition
path from qi to qj exists in A1. Transition path qi �∗ qj means a sequence
of transitions starts from qi and ends in qj.

Example 3. Considering Figure 3 and protocol automata for protocols P1, P2,
P3, and P4 we have:

– with respect to the Definition 6, P1 �bs P4, because the extra transition in
P4 has no input port,

– P1 ��bs P3 because of the extra transition in P3 with an input port (note
that, P1 � P3)

Based on the definitions for strong substitutability and backward-compatible
substitutability we give the following corollaries:

Corollary 2 (Hierarchy of substitutability relations). The substitutability
relations form a hierarchy: �ss⇒�bs

Corollary 3. For all constraint automata A1, A2 and A3 we have:
A1 �x A1, and if A1 �x A2, and A2 �x A3 then A1 �x A3 (for x = ss and bs)

Proof. It is clear the relation �ss is reflexive. Transitivity property of �ss is
deduced from transitivity of bisimulation relation. For realizing transitivity prop-
erty of �bs relation, we should note that, based on the definition for backward-
compatible substitution, �bs⇒�.
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We show the existing link between compatibility and substitutability concepts,
and namely their combination, which seems necessary, when we deal with in-
cremental design of components. Backward compatibility guarantees the trans-
parency of changes in behavior of automaton. As a result, we can expect no effect
in compatibility between two parallel executing automata. The following theo-
rem studies the preservation of compatibility by substitutability, dealing with
the two compatibility relations together with the two substitutability relations
given in this paper.

Theorem 1 (Compatibility preservation by substitutability). For au-
tomata A1, A2 and A3, in which Ai = (Qi, Namesi, →i, Q0,i):

1. (A1 ‖sc A3)
∧

(A1 �ss A2) ⇒ (A2 ‖ss A3)
2. (A1 ‖Γ13 A3)

∧
(A1 �bs A2) ⇒ (A2 ‖Γ23 A3) such that, Γ13 ⊆ Γ23

Proof. Part 1. It is enough to prove for each transition of A2, there is a corre-
sponding transition (path) in A3 in which they can synchronize in communica-
tion automaton. Let qj,2 → qj+1,2 be a transition in A2, we can find qk,1 and
ql,1 in A1 that are similar to qj,2 and qj+1,2. The transition (path) between qk,1
and ql,1 have a corresponding transition in A3, that can be synchronized with
qj,2 → qj+1,2.

Part 2. From the definition for �bs we realize that A2 is similar to A1. Therefor,
in their corresponding communication automaton all the ports in Γ13 exist and
also Γ23 may have more ports than Γ13.

5 Related Work

Most works in the field of modeling behavior of components [17] address com-
ponent compatibility and adaptation in a distributed environment and are often
based on process calculi [18]. Different automata models also exist to formally
explain behavior of components; I/O Automata [12] (suitable for modeling dis-
tributed and concurrent systems), Interface Automata [13] (for documentation
and validation of systems made of components communicating through their in-
terfaces) and Component Interaction Automata [14] (formal verification-oriented
component-based specification language with special emphasis on composition-
ality in components) are example of such models.

Some researches [19,16] put a specific emphasis on the substitutability and
compatibility problems. In [16], the authors focus on a compositional math-
ematical automata model for behavioral programs to correct use of extended
components in frameworks. The problem of compatibility is used to check the
correctness of compositionality of components. In [20] Labeled Petri Net is used
to model behavior of components. Substitutability of two components has been
defined based on subtyping of provided and required observable services. For
compatibility of two components, authors have used production of petri net mod-
els of components. In [5] authors aim to present an automated and compositional
procedure to solve the substitutability problem in the context of evolving soft-
ware systems. For checking correctness of software upgrades a technique based
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on simultaneous use of over and under approximations obtained via existential
and universal abstractions together with a dynamic assume-guarantee reasoning
algorithm has been proposed. Authors use Interface Automata in [6] and refine-
ment or subtyping relations for substitutability and production of two automata
for compatibility problem.

We use I/O-Constraint Automata (an extension to Constraint Automata [7])
to model behavior of protocol components. I/O-Constraint Automata employ
set of input, output and internal port names and data constraints over the
ports. Data-dependent transitions and ports are used to model data flow in
the communication protocols. To solve the substitutability problem in proto-
cols, we use bisimulation relation between two protocol automata and show that
simulation relation is not strong enough for substitutability assessment in the
context of protocols. We introduce input-blocking property of protocols and de-
fine backward-compatible substitution. For compatibility, like related work we
use product automaton of two automata with attention to the input-blocking
property.

6 Conclusion and Future Work

In this paper, we proposed I/O-Constraint Automata to model behavior of pro-
tocols. Based on this model, we defined the substitutability and compatibility
relations. We demonstrated that in the context of communication protocols sim-
ulation relation is not strong enough for notion of substitutability. Based on
the results of this paper, there is a strong relation between substitutability and
compatibility. The relation helps to reason about the correctness in substitu-
tion of two communicating protocols. We introduced input-blocking property in
communication protocols and formally defined backward-compatibility notion
which is useful in designing new protocols and checking backward-compatibility
between protocols.

Our work on formalizing protocol components relies on our currently and fu-
ture experience with a framework for dynamic-reconfigurable architecture for
protocol stack. In this framework, protocol entities are realized through one
software component that includes formal specification of protocol and its imple-
mentation. Such a component model allowed us to study substitutability and
compatibility of protocol components.
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Abstract. In this paper we offer a novel methodology for verifying cor-
rectness of (timed) security protocols. The idea consists in computing
the time of a correct execution of a session and finding out whether the
Intruder can change it to shorter or longer by an active attack. Moreover,
we generalize the correspondence property so that attacks can be also
discovered when some time constraints are not satisfied. As case studies
we verify generalized authentication of KERBEROS, TMN, Neumann
Stubblebine Protocol, Andrew Secure Protocol, WMF, and NSPK.

1 Introduction

Security (or authentication) protocols define the rules of exchanging some mes-
sages between the parties in order to establish a secure communication channel
between them, i.e., they provide the mechanism aimed at guaranteeing that the
other party is who they say they are (authentication), that confidential informa-
tion is not visible to non-authorised parties (secrecy), and that the information
exchanged by two parties cannot be altered by an intruder (integrity). There
are several approaches to verification of untimed security protocols, see e.g.,
[1,2,3,4,5]. Quite recently there have also been defined approaches to verifica-
tion of time dependent protocols [6,7,8,9]. Our approach is closer to the work
by Corin at al. [10], where security protocols are directly modeled in terms of
networks of timed automata extended with integer variables, and verified with
UppAal [11]. The authors address timeouts and retransmissions, but do not show
how one can model timestamps [12] in such an approach.

There are several methods for finding attacks on security protocols. One can
check whether the authentication property is satisfied, but this is not sufficient
for discovering several ’authentication-independent’ types of attacks. So, know-
ing the type of an attack one check whether it can occur or not. But, how to look
for entirely unknown (types of) attacks ? Clearly, we can test the knowledge of
the Intruder in order to find out whether he possesses some ’insecure’ informa-
tion. This requires either to use a special (epistemic) formalism for expressing
� The authors acknowledge partial support from the Ministry of Science and Informa-

tion Society Technologies under grant number 3 T11C 011 28 and N516 038 31/3853.
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properties or to encode the knowledge of the Intruder into the states of the
model, which leads to either making verification or the model itself more com-
plicated. Moreover, no feedback for implementators follows from such a method
of checking correctness. This paper1 offers a novel method for finding attacks
of any type either known or unknown. Our method consists in computing the
time of a correct execution of a session and finding out whether the Intruder can
change it to shorter or longer by an active attack. This method can be applied
to both the timed as well as untimed protocols. To this aim and in order to
make our modelling closer to real applications, the model of a protocol involves
delays and timeouts on transitions by setting time constraints on actions to be
executed. Timestamps are not necessary for using our method, but we take the
opportunity to show how to tackle protocols with timestamps as well.

Our experimental results show that the known replay attacks on KERBEROS
and Neumann Stubblebine protocol [14] are found using the classical correspon-
dence property, whereas an attack on TMN [15] and a type flaw attack on An-
drew Secure RPC Protocol (ASP) [14] requires verifying our generalised (timed)
property. While playing with timing constraints, in addition to finding attacks,
we can also identify time dependencies in protocols for which some known at-
tacks can be eliminated. An example of such a protocol is Needham-Schroeder
Public-Key (NSPK), where one can find an attack [16] using the correspondence
property, but this attack disappears when we introduce timeouts and set them
in an appropriate way. Formally, our method consists in translating a Common
Language specification of a security protocol, possibly with timestamps, to one of
the higher-level language IL2 [17], and then again translating automatically the
specification (obtained) in IL to a timed automaton without integer variables3.

The rest of the paper is organized as follows. Section 2 introduces security
protocols and the Dolev-Yao model of the Intruder In Section 3 timing aspects
of the protocols are discussed. Our timed authentication property is defined in
Section 4. The implementation in IL is described in Section 5. The experimental
results and conclusions are presented in Section 6 and Section 7.

2 Modelling Security Protocols and the Intruder

In this section we introduce basic syntax for writing security protocols and dis-
cuss the Dolev-Yao model of the Intruder assumed in this paper.

We describe the protocols using a standard notation [14], called Common Syn-
tax (CS, for short) developed for cryptographic protocols [15]. Usually, protocols
involve two, three or four roles, which we denote with the capital letters A, B
for the principals, and with S or S′ for the servers.

1 Some preliminary results [13] were presented at CS&P’06.
2 IL is the acronym for the Intermediate Language (ver. 1.0).
3 Thanks to that in addition to UppAal we can also use model checkers like Kronos

[18] or VerICS [19] accepting timed automata (or their networks) without integer
variables.
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Let a protocol Q be represented by a finite sequence of instructions:

1. X1 −→ Y1 : M1
...

n. Xn −→ Yn : Mn

where Xi, Yi ∈ {A, B, S, S′} and Xi �= Yi for 1 ≤ i ≤ n, Yi = Xi+1 for 1 ≤ i < n,
and Mi is called a message variable4. The informal meaning of the instruction
A −→ B : M is that a principal of role A sends a message, which is a value of
the variable M , to a principal of role B. Each message variable M is composed of
variables ranging over identifiers representing principals (PV), keys (KV), nonces
(NV), and possibly timestamps (T V), and their lifetimes (LV).

Formally, the message variables are generated by the following grammar:

Message ::= Component × Component∗

Component ::= Cipher | Atom
Cipher ::= {Component∗}K

Atom ::= P | N | K | T | L,
where P ∈ PV , N ∈ NV , K ∈ KV , T ∈ T V , and L ∈ LV .

For X, Y ∈ {A, B, S, S′}, KXY is a key variable of X and Y , NX is a nonce
variable of X , TX is a timestamp variable of X , and LX is a lifetime variable
of X . Moreover, by R we denote a random number variable. A message M can
be encrypted with a key K, denoted by {M }K . For example {TX , NX}KXY is a
message variable containing the timestamp variable TX and the nonce variable
NX encrypted with the key variable KXY .

The keys shared between an agent and a server (e.g., KAS, KBS) or be-
tween two agents (e.g., KAB) are considered. The nonces represent random non-
predictable numbers that are declared to be used only once by a concrete agent.
The timestamps are unique identifiers whose values are provided by the (local)
clock of its issuing entity and determine the time when a given message is gen-
erated. A value related to a timestamp is a lifetime defining how long since the
timestamp creation it is acceptable to use each of the components of the mes-
sages the timestamp relates to. Next, we give an example of the protocol which
is considered in the following sections.

Example 1. The protocol ASP [20] is the following sequence of four instructions:

1. A −→ B : M1 = A, {NA}KAB ;
2. B −→ A : M2 = {NA + 1, NB}KAB ;
3. A −→ B : M3 = {NB + 1}KAB ;
4. B −→ A : M4 = {K ′

AB, N ′
B}KAB .

In the first message A (Initiator) sends a nonce NA, which B (Responder) in-
crements and returns as the second message together with his nonce NB. If A
is satisfied with the value returned, then he returns B’s nonce incremented by
4 We will frequently refer to variables via their names like message, principal, nonce,

key, and timestamp if this does not lead to confusion.
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1. Then, B receives and checks the third message and if it is matched, then he
sends a new session key to A together with a new value N ′

B to be used in a
subsequent communication.

A concrete message consists of components which are built of atomic crypto-
graphic primitives that are elements of the following finite sets of identifiers:
P = {s, a, b, c, ι, . . .} — principal, also called agents or participants, SK =
{kas, kbs, kab, . . .} symmetric keys, AK = {ka, kb, k

−1
a , k−1

b , . . .} — asymmetric
keys, let K = SK ∪ AK be the set of all the keys, N = {na, nb, n

′
a, n

′
b, . . .}

— nonces, T = {ta, tb, ts, . . .} — timestamps, L = {l, l′, . . .} — lifetimes, R =
{ra, rb, . . .} — random numbers5.

By a protocol run we mean a finite sequence of instructions resulting from
a fixed number of possibly parallel sessions of the protocol. In a session of the
protocol the variables are instantiated by concrete identifiers (names) of the
principals and of the message elements. By a component’s type we understand
the sequence of the types of its atoms together with the braces. For example the
type of the component c = {k, p, l}k is {K, P , L}K and the type of the component
c = {{p, l}k}k is {{P , L}K}K. Notice that for each protocol there is a finite set
of the types of components that can be used for composing all the messages in
this protocol. These types of components are denoted by C1, C2, . . . , Cn.

2.1 Modelling the Intruder

Notice that the set P contains the identifier ι used for denoting the Intruder. The
Dolev-Yao model of the Intruder is assumed [21]. One of the capabilities (besides
exploiting intercepted messages) is that the Intruder can impersonate each agent
executing the protocol, so he can play each of the roles of the protocol. Even
thought the Intruder has got his own keys, nonces etc., he can also try to use
all the information he is receiving in the protocol run as his own (e.g., nonces).
When the Intruder impersonates an agent x (x∈P\{ι}), we denote this by ι(x).

Intruder: Knowledge, Processes and Actions. Typically, the following
Dolev-Yao capabilities of the Intruder are assumed [21]:

– He eavesdrops every letter passing through the Net, duplicates it and stores
a copy in his local memory IK, called database or Intruder knowledge.

– He can affect intercepted letters by changing their headers (rerouting), re-
playing a letter, replacing an original letter with a modified or a new one,
and finally send it or just delete intercepted letter.

– He can create any brand new letter built upon his knowledge.
– He can derive new facts basing only on his actual knowledge. This means he

can decrypt and decompose any message only if he possesses a proper key.
– He can also exploit the malicious agent, who can initialize some sessions of

the protocol. The Intruder can use his knowledge.
5 We provide a variant of our implementation where the sets N and K are unified into

the set R.
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An Optimized Intruder. The crucial point in an efficient modelling of the In-
truder is to restrict his capabilities as much as possible, but without eliminating
any of the possible attacks. One obvious restriction is that the Intruder gen-
erates messages of such a type and pattern, which can be potentially accepted
by some agent. This means that the Intruder should be only sending messages,
which are correct. So, intercepted messages are only modified by replacing some
components with other components of the same type and pattern, which can
be generated using the Intruder’s knowledge and then send over to the respon-
der. However, when the Intruder acts as an initiator6 (for example sending the
message M1 or M3 in KERBEROS), generating a completely new message can
bring him to success. Our restriction on the Intruder’s behaviour follows the
rules of the optimized and the lazy Intruder of [21,2,13].

3 Timing Aspects

In this section we discuss all the timing aspects we consider in the implementa-
tions of security protocols.

Timeout. After sending a message Mi , a principal p ∈ P playing a role X ,
where X ∈ {A, B, S}, in a session j of a protocol is waiting for a response
message7. The maximal period of time the sender is allowed to wait for it is
called a timeout we denote as tout,i(j). Then, the next action of the principal p
is executed if a response message had been received before the timeout passed.
When the timeout is reached, and no response message has arrived, the principal
who sends the message Mi in the session j can execute one of the following
alternative actions: resending a message (called a retransmission) or starting the
same session again (called reset of a session).

When verifying cryptographic protocols with timestamps, it is desirable to
check their safety with respect to the timestamps and analyse their relationship
with timeouts fixed in the protocol. It is well known that in some types of
protocols it is not possible to set a timeout for each message. In such a case a
timestamp indicating the time of creating a message is useful. Then, the receiver
can decide whether the message is fresh or not, depending on the value of the
timestamp and its lifetime L.

Time of Creating a Message Mi . For each principal p ∈ P we set a time of
performing each mathematical operation like encryption - τenc(p), decryption -
τdec(p), and generating random values - τgen(p). This way we can compute the
time τMi (p) of creating any message Mi by the principal p.

τMi (p) = (n1 ∗ τdec(p)) + (n2 ∗ τenc(p)) + (n3 ∗ τgen(p)),

6 He can initiate a session either from the beginning or from a middle of the protocol.
7 Note, however, that there are messages without a corresponding response. This de-

pends on the construction of a protocol and there are protocols without any response
message (e.g., WMF protocol).
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where n2(n3) is the number of the operations of encryption (generating random
values, resp.) to be performed in order to generate a message Mi , whereas n1
is the number of the operations of decryption after receiving Mi−1 (of the pre-
vious step of the protocol). The Intruder’s time of composing a message using
components he has intercepted in previous steps of the protocol is denoted by
τcom,Mi(ι), but when it is assumed to be equal for all the messages it is denoted
with τcom(ι).

Delay. The delay τd represents the time of message transmission from sender
to receiver. As we have said before, all the messages are passing through the
Intruder’s part of the model, so how long it takes from sending to receiving a
message depends on the value of a delay and the actions the Intruder performs.
We assume that τd ∈ 〈τd,min, τd,i〉 and the τd,min is a minimal delay of the
network we have set before the run of the protocol. In order to simplify the
formalism we assume that the minimal delay is the same for all the message
transmissions 8. The value of τd,i represents the maximal delay for a step i of
the protocol (transferring a message Mi ) and it is computed with respect to the
timeouts (lifetimes) which cover the sequences of actions this step belongs to,
the times of composing the messages that are sent in these sequences of actions,
and τd,min. The details of computing τd,i are given later in this section.

Time of a Session. This is an expected time of performing all the steps of
a protocol including the time of a transmission of messages through the net. It
is specified as a time interval 〈Tmin, Tmax〉, where Tmin(Tmax) is the minimal
(maximal, resp.) time of an execution of all the actions allowing for all the
possible delays. Below, we give a definition of the graph of the message flow in
a protocol Q of n instructions and its one session R:

1. X1 −→ Y1 : M1 1. p1 −→ q1 : m1

... ...

n. Xn −→ Yn : Mn n. pn −→ qn : mn

where pi (qi) is the principal sending (receiving, resp.) mi, for 1 ≤ i ≤ n.
Let tstamp(Mi) be the timestamp variable (if exists) of the message Mi ,

and let li be the value of the lifetime granted for tstamp(Mi) in mi. For ex-
ample, if Mi = {X ,LX}KXS , {TX ,NX }KXY , then tstamp(Mi) = TX and if
mi = {x, lx}kxs , {tx, nx}kxy , then li = lx.

In the graph defined below (Def. 1), the vertices represent control points of the
message flow in the protocol such that the vertex 2i − 1 corresponds to sending
the message i, whereas the vertex 2i to receiving this message, for i ∈ {1, . . . , n}.
There are four types of edges in the graph denoted with Ej for j ∈ {1, 2, 3, 4}.
Each edge (2i − 1, 2i) of E1 represents a transfer of the message i through the
net. This edge is labelled with the minimal and maximal time of this transfer.

8 We usually assume that τd,min is close to 0.
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Each edge (2i, 2i + 1) of E2 represents a composition of the message i and it
is labelled with the time of this composition. The edges of E3 (E4) correspond
to timeouts (lifetimes, resp.). The intuition behind the edge (i, j) of E3 or E4
is that it covers all the edges of E1 and E2 between the vertices from the set
{i, . . . , j}.

Definition 1. The four-tuple G = (V, lV , E, lE) is a weighted labelled acyclic
graph of the message flow in the session R, where

– V = {1, 2, . . . , 2n} is the set of the vertices,
– lV : V −→ {+, −} × P is a vertex labelling function such that

lV (2i − 1) = −pi (pi is the principal sending the message i) and
lV (2i) = +qi (qi is the principal receiving the message i) for 1 ≤ i ≤ n.

– E ⊆ V ×V is a set of the directed labelled edges, where E = E1∪E2∪E3∪E4,
E2 ∩ (E3 ∪ E4) = ∅, E1 ∩ E3 = ∅, and

◦ E1 = {(2i − 1, 2i) | 1 ≤ i ≤ n}.
E1 contains the edges representing the minimal and the maximal times
of transferring messages through the net.

◦ E2 = {(2i − 2, 2i − 1) | 1 < i ≤ n}.
E2 contains the edges representing the times of composing the messages.

◦ E3 = {(2i − 1, 2j) | lV (2j) = +pi, 1 ≤ i < j ≤ n, where j is the smallest
such a number for i}.
E3 contains the edges representing the timeouts between sending the mes-
sage mi and receiving the response message mj by pi.

◦ E4 = {(2i − 1, 2j) | tstamp(Mi) = tstamp(Mj ), 1 ≤ i ≤ j ≤n}.
E4 contains the edges representing the lifetime li of the timestamp sent
in the message mi and then received in each message mj.

– lE : E −→ N ∪ (N ×N)∪ (N ×N ×N)∪ ({τM}×N ×P) is an edge labelling
function s.t.
an edge (2i − 1, 2i) ∈ E1 \ E4 is labelled with 〈τd,min, τd,i〉 for 1 ≤ i ≤ n,
(τd,min is fixed, whereas the value of τd,i is computed if there is a lifetime or
a timeout covering9 the edge (2i − 1, 2i), otherwise is equal to ∞),
an edge (2i − 1, 2i) ∈ E1 ∩ E4 is labelled with 〈τd,min, τd,i〉, li for 1 ≤ i ≤ n,
an edge (2i − 2, 2i − 1) ∈ E2 is labelled with τMi (pi) for 1 < i ≤ n,
an edge (2i − 1, 2j) ∈ E3 ∩ E4 is labelled with min{tout,i, li},
an edge (2i − 1, 2j) ∈ E3 \ E4 is labelled with tout,i, and
an edge (2i − 1, 2j) ∈ E4 \ E3 is labelled with li, for 1 ≤ i ≤ j ≤ n,
where τd,i is calculated as follows.
For each i ∈ {1, . . . , n} define:
- a set of the timeout- or lifetime-edges covering the edge (2i − 1, 2i) of
transferring the message mi,

LTi = {(k, l) ∈ E3 ∪ E4 | k ≤ 2i − 1 ∧ l ≥ 2i} (1)

- the minimal time of executing all the operations covered by the timeout
(lifetime) lE((k, l)), where pi is the principal composing the message Mi .

9 This means that there is an edge (k, l) in E3 ∪ E4 s.t. k ≤ 2i − 1 and 2i ≤ l.
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tca(k, l) =
l/2∑

i=(k+1)/2+1

(τMi (pi) + τd,min) + τd,min (2)

For each (k, l) ∈ LTi:

lt(k,l) = max{τd,min, lE((k, l)) − tca(k, l) + τd,min} (3)

For each i ∈ {1, . . . , n}:

τd,i = min{lt(k,l) | (k, l) ∈ LTi}. (4)

Notice that we do not consider the time of composing the first and decom-
posing the last message. It is sufficient to measure the time between sending
the first message and receiving the last one. Moreover, if a timeout or a life-
time is incorrectly set, i.e., it does not allow for sending a message, say Mi,
after the time delay τd,min, then we set τd,i to be equal to τd,min as well. But,
later when computing the minimal and maximal possible time of executing one
session (Tmin and Tmax), we use this information for setting both the times
to 0.

Notice that τd,i (in the formula (4)) is computed as the minimum over all the
times allowed by the timeout- and lifetimes-edges covering the transfer of the
message mi. This is clearly correct as τd,i can never exceed the minimal value of
a timeout (lifetime)-edge covering the transfer of mi.

In [10] the four typical message flow schemas for cryptographic protocols are
presented. Their taxonomy is focused on timeout dependencies, so it does not
deal with timestamps in the message flow schemas. As our goal is to apply the
method to all the types of protocols without any restriction on their specifications
or contents of the messages we introduce lifetime parameters that were not
specified in [10]. Next, for each protocol to be verified, we build the corresponding
graph according to Definition 1. Then, Tmin and Tmax are computed. Tmin is
taken as the weight of the minimal path in this graph, which corresponds to a
sequential execution of all the actions within their minimal transmission time.
However, if lE((k, l)) − tca(k, l) < 0 for some i ∈ {1, . . . , n} and (k, l) ∈ LTi,
then we set Tmin := 0.

Tmax is the maximal possible time of executing one session of the protocol
taking into account all the timeouts and lifetimes. The idea behind computing
Tmax is as follows. For each transition (2j − 1, 2j) of E1 we find its maximal
possible delay, denoted by τmax,j, provided all the preceding transfers of the
messages from m1 to mj−1 have taken their maximal possible delays. The value
of τmax,j is computed similarly to τd,j , but for all the transitions (2i−1, 2i) of E1
prior to (2j − 1, 2j), we take the values of τmax,i instead of τd,min. This requires
to slightly modify the formulas LT(k,l) into LTj

(k,l). Then, Tmax is defined as the
sum of τmax,1 and all τmax,j and τMi (pi) for j ∈ {2, . . . , n}. But, if τmax,j < τd,min

for some j ∈ {1, . . . , n}, then we set Tmax := 0. Below, we formalize the above
algorithm in the following inductive definition.
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We start with setting τmax,1 := τd,1.
Next, for j ∈ {2, . . . , n} we will use the following definitions to calculate τmax,j .
For (k, l) ∈ LTj :

ltj
(k,l) = lE((k, l)) −

l/2∑

i=(k+1)/2+1

(τMi (pi) + τi−1) (5)

where τi =
{

τmax,i, for i ≤ j,
τd,min, otherwise

Finally:
τmax,j = min{ltj

(k,l) | (k, l) ∈ LTj}, (6)

Tmin :=
{

τd,min +
∑n

j=2(τMj (pj) + τd,min), (∀1 ≤ j ≤ n) τmax,j ≥ τd,min

0, otherwise
(7)

Tmax :=
{

τmax,1 +
∑n

j=2(τmax,j + τMj (pj)), (∀1 ≤ j ≤ n) τmax,j ≥ τd,min

0, otherwise
(8)

Example 2. The message flow graph for ASP is shown in Fig. 1. The graph
contains 8 vertices as there are 4 instructions in the protocol. There are no edges
corresponding to lifetimes as timestamps are not used in the protocol. Notice
that the timeout tout,1, labelling the edge (1, 4), covers the three edges: (1, 2) -
representing the sending of M1 from a to b, (2, 3) - composing M2 by b, and (3, 4)
- the sending of M2 from b to a. The timeout tout,2, labelling the edge (3, 6),
covers the three edges: (3, 4) - representing the sending of M2 , (4, 5) - composing
M3 by a, and (5, 6) - the sending of M3 from a to b. Finally, the timeout tout,3,
labelling the edge (5, 8), covers the three edges: (5, 6) - representing the sending
of M3 , (6, 7) - composing M4 by b, and (7, 8) - the sending of M4 from b to a.

2 61 3 4 5 7 8
〈τd,min,τd,4〉

+b −b +a +b −b +a

tout,2

tout,1 tout,3

−a −a

〈τd,min,τd,3〉

τM2(b) τM3(a) τM4(b)

〈τd,min,τd,1〉 〈τd,min,τd,2〉

Fig. 1. The message flow graph for ASP

Assuming proper timeouts settings, the simplified formulas for Tmin and Tmax

derived from (3)-(8) for the graph presented in Fig. 1 are as follows: Tmin =
τM2 (b)+τM3 (a)+τM4 (b)+4 ∗ τd,min, Tmax = tout,1 + τM3 (a)+tout,3. If at least
one of the timeouts is too short, then Tmin and Tmax are set to 0.
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4 Authentication Property

We start with giving a definition of an attack [22] on an authentication protocol.
We do not consider a passive attack [22] which is only based on monitoring the
communication channel. Then, we formulate an extension of the authentication
property for which we show that it implies an attack on a protocol.

Definition 2. An active attack is one where the adversary attempts to delete,
add, or in some other way alter the transmission on the channel.

The actions of the Intruder leading to an active attack are called active ac-
tions.
Typically security protocols are verified against the (entity) authentication prop-
erty [23,24], which can be formulated as the following correspondence property:

If a principal x has finished N sessions with a principal y in a protocol run,
then the principal x must have started at least N sessions with the principal y.
When the above relation is symmetric we capture the mutual entity authentica-
tion. In this paper we suggest the timed authentication property, which consists
of the above property and the following extension:

If a session of a protocol run between two principals x and y started at the time
Tstart, then it can be finished only within the time interval 〈Tstart + Tmin, Tstart +
Tmax〉.

Notice that if a protocol ends before the specified Tmin, then this may be
a result of omitting at least one of the instructions or/and performing at least
one of the instructions faster than it was expected. But, if a protocol ends after
the specified Tmax, then this may be caused by some additional actions, a mod-
ification of the timestamp, or an execution of at least one of the instructions
slower than it was assumed. As the honest participants are not able to change
the way they execute the protocol, the only possibility for an unexpected speed
up or slow down in the execution of the protocol is due to an active action of
the Intruder. So, if a session ends before the minimal time or after the maximal
time specified causing that the timed authentication property does not hold,
then there is an active attack in the meaning of Definition 2.

It is worth mentioning that the timed authentication property allows for de-
tecting attacks even when the standard correspondence property is satisfied. To
this aim observe that the correspondence property holds for a protocol whose ses-
sion has started but has not terminated, but it fails only if a session has been ter-
minated but it had not been started. Notice that there are attacks in which the
Intruder impersonating the Responder leads to a successful end of a session, so
that the correspondence property holds. By playing with the times of executing
Intruder’s actions we can show that there is a session which is finished before its
minimal time Tmin, which means that the timed authentication property fails.

5 Implementation

The roles A and B of the protocol Q are translated to disjoint parametrized IL
processes ProcX(p)(j), where p ∈ P is the agent playing the role X ∈ {A, B},
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and j ∈ N is the number of a session. Notice that it is possible to run more than
one10 instance of each role by each agent of P . The role S (S′) is translated to
the process ProcS (ProcS′ , resp.), which is not parametrized as it is possible
to specify only one instance of each of them for all the possible sessions of
the protocol. Each process ProcX(p)(j) and ProcS is specified by a set of local
variables Vp = {N, K, L, T }, which are called protocol variables, a set of locations
Qp of the internal states of p which represents the local stage of the protocol
execution, the initial location q0

p in which all the necessary initial values of the
protocol variables are set, and a set of (timed) transitions Tp(j) which correspond
to the steps executed by the principal p playing his role in the session j.

The time interval specified for the transition indicates the period of time in
which the transition is allowed to be fired since its enabling. The processes run-
ning in parallel are synchronized through a set of buffers B and global variables
VG. Communication between the participants is realized via two sets of buffers,
called BIN and BOUT . A sender puts the message i into the buffer of BOUT

i

which is denoted as Send(BOUT
i , m), whereas a receiver accepts the message i

from the buffer of BIN
i denoted as Accept(BIN

i , m). The Intruder transfers mes-
sages from BOUT to BIN , so that he can easily control the flow and contents of
the messages.

All the processes of Intruder are operating on a special set IK of buffers,
called Intruder’s knowledge. The buffers are used for storing all the messages
passing through the net according to the types of components. But, if compo-
nents corresponding to some cryptographic primitives have not been defined for
a verified protocol, then the buffers for them are created additionally. Such an
organization allows the Intruder for an easy access to desired data types in order
to compose new correct messages. In case of ASP we have the following buffers:
BC1 , BC2 , and BC3 corresponding to the three types of components, whereas
BK (for keys) and BN (for nonces) would be added as there are no components
corresponding to the primitives of K and N . The automated procedures of the
Intruder’s behaviour are described in [25]. The process of composing messages
is based on two main procedures: ComposeHeader and ComposeComponent
that use the components stored in IK in order to compose all the possible cor-
rect messages. The decomposing process consists of DecomposeMessage and
DecomposeComponent procedures. The first one splits messages into compo-
nents which are then analysed by the second procedure. The plain and encrypted
components are stored in IK. If the Intruder happens to be in the possession
of the proper key to decrypt a component, then this component is decomposed
into subcomponents that are saved in IK.

The timing aspects discussed are modelled by timed transitions. To implement
a timeout, for each session j we introduce the variable Tmri(j) that indicates
the state of a process ProcX(p)(j) (p ∈ P and j ∈ N) after the sending of mes-
sage Mi

11. Moreover, we implement the process TmOuti(j) which is responsible
for managing the value of this variable. When the process ProcX(p)(j) sends a

10 We assume that the number of sessions is bounded.
11 Note that only one role in a session j can send a message Mi .
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message and starts a timer of the timeout by setting Tmri(j) to 1, the transi-
tion t1 in the process TmOuti(j) gets enabled and fired after the time reaches
tout,i(j). This transition changes the value of Tmri(j) back to 0. The process
ProcX(p)(j) is able to receive an expected message as long as Tmri(j) equals to
1. When this condition fails to hold, the process returns to the state Init and
generates new initial values like keys, nonces, and other random variables.

To implement a timestamp, the global variable Ti is introduced and initially
set to 0. This variable represents the state of the timestamp i which may by either
’valid’ or ’not valid’. The process T imestampi is responsible for managing the
value of Ti. When timestamp i is generated, Ti is set to i and the transition from
Init to NotV alid gets enabled (see Fig. 2). Then, after exactly Li units of time
the transition from Init to NotV alid is forced, and it sets back Ti to 0. When
the agent receives a message, he tests the corresponding timestamp by reading
its identifier from the buffer and then checking the value of the variable Ti of the
timestamp. If the value is equal to i and the message is found as matched, then
it is accepted. Otherwise, the message is not accepted. An outdated timestamp
cannot be validated anymore.

init

t1

Tmri=1
〈tout,i, tout,i〉

Tmri:=0

NotValidinit

<Li, Li>

Ti=i

Ti:=0

Fig. 2. The automata models of the processes TmOuti and T imestampi

A set of processes Propertyxy(j) in IL, one for each session j, is used to model
the timed authentication property. The process Property for one session is shown
in Fig. 3. There are three possible locations (in addition to Init) each process
Property can be in: AUTH , ERR, and C ERR. The state AUTH is reached
when the last message in a protocol is accepted within the correct time interval.
The transition to the state ERR is caused when either the protocol ends too
early or too late, whereas the state C ERR is reached when the correspondence
property is not satisfied. The pair of global variables start and end is used to
synchronize the participants’ processes with the process Property. When the
protocol starts, the variable start is set to 1, the transition from Init to AUTH ,
and both the transitions from Init to ERR become enabled. Each of them is
fireable within the time interval specified, but it is fired only when the variable
end has changed its value to 1 (during this time interval).

To implement the (basic) correspondence property, for each pair (x, y) of
principals, where x, y ∈ P \ {server}, we use the global variable VAUTH(x, y)
whose value is equal to 0 at the beginning of a protocol run. Then, at the
beginning of each new session for x and y the variable VAUTH(x, y) is incremented
by 1, and at the end of each session the variable VAUTH(x, y) is decremented by
1. As long as the value of VAUTH(x, y) is non-negative the (basic) correspondence
property holds.
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end=1

start=1
end=1

init

C_ERR AUTHERR

end:=0

start=1

start=1
end=1

end=1

<0, Tmin>

<Tmin, Tmax>

VAUTH<0

<Tmax, ∞>
VAUTH<0

Fig. 3. The schema of the process Propertyxy

6 Experimental Results

Our experiments are performed in order to show how values of time constraints
influence safety of protocols as well as how they can be used to find or eliminate
flaws in these protocols. We used the following two tools: VerICS [19] and Kronos
[18]. Both of them have been fed with product automata generated by VerICS.
For the protocols ASP, KERBEROS, NSP, and TMN the results are displayed
in Fig. 4, where reachability of the states AUTH, ERR, and C ERR depends on
values of the timed parameters.

In order to find an attack we set the time for each of the Intruder’s actions to
belong to the time interval 〈0, Tmax〉. We test each protocol against the property
shown in Fig. 3. When the state ERR (or C ERR) of the property is reached,
we look through the path leading to this state in the product automaton to get
the time intervals for time parameters for which the attack has been discovered.
This may result in finding an execution of the protocol, which is finished before
the specified minimal time of a session. This way flaws are found in ASP [14] and
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TMN [15] as for both the protocols the state ERR is reachable (see Fig. 4 (a),(b)).
We have also checked the relationships between the lifetime of a timestamp and
τcom(ι)12. In Fig. 4 (a) the relationship between τcom(ι) and the time of finishing
ASP is presented. If composing a new message by the Intruder takes less time
than composing a message of type M3 by the principal b, then the protocol is
finished before Tmin.

For both the protocols NSP and KERBEROS if τcom(ι) < l, then the cor-
respondence property does not hold (see Fig. 4 (c),(d)). Moreover, the results
for NSP show that when l does not allow for finishing the protocol (it is too
short) but the time τcom(ι) is shorter than l, the protocol is finished before the
time specified and the state ERR becomes reachable. The minimal value of the
lifetime of a timestamp allowing to finish the protocol is denoted as lmin.

For KERBEROS the state ERR becomes reachable as well if additionally
τcom(ι) < τ1

com(ι) or τcom(ι) > τ2
com(ι), where τ1

com(ι) = Tmin − τM4 (b) and
τ2
com(ι) = Tmax − τM4 (b).

The protocol WMF13 is another example for which we show that the timed
property can be unsatisfied while the correspondence property still holds. This
is the case when the time of a session is exceeded and is not limited even by a
timestamp. So, the state ERR of the property is reached, for the following time
constraint τcom(ι) + τd,1 + τd,2 < l1, where l1 is the lifetime set for m1.

While playing with timing constraints, in addition to finding attacks, we can
also identify time dependencies for which some known attacks in protocols can be
eliminated. Consider the protocol NSPK, where one can find an attack [16] using
the correspondence property. This attack can be eliminated when the timeouts
are set in an appropriate way. The condition is as follows: (τd,i − τd,min) <
τ(Mi)(ι) for i = {1, 3}. Recall that τd,i depends on the corresponding timeouts.

7 Conclusions

In this paper we offered a novel methodology for verifying correctness of (timed)
security protocols whose actions are parametrized with time. Our main contribu-
tion consists in generalizing the correspondence property so that several attacks
can be discovered when some time constraints are not satisfied. The verified
model of a protocol is obtained via a translation from CL to the high level spec-
ification language IL, and then again to timed automata. We have introduced
several time parameters into the model and discussed their meaning for the pro-
tocols considered. As some of these parameters depend on principal’s abilities
(e.g., the times of cryptographic operations) we based our methodology on one
session of a protocol run rather than on a protocol itself.

Our timed correspondence property is specified as a timed IL process where
the insecure states are constrained by time intervals. We showed how to build the
message flow graph for a protocol session with respect to the timed parameters
12 This is the Intruder’s time of composing a message using components he has inter-

cepted in previous steps of the protocol.
13 1. A −→ S : A, {TA, B, KAB}KAS 2. S −→ B : {TS , A, KAB}KBS .
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discussed in order to calculate the essential values used in the property. The
definition of such a graph is applicable to most of the protocols [14,15].

The verification based on checking the reachability of the error states for the
timed correspondence property leads us to find attacks that cannot be discovered
using the standard correspondence property. The experimental results for the
protocols ASP and TMN confirm that the timed property is not satisfied as
both the protocols can be finished before the specified minimal time of a session.

Using this property it is also possible to find an insecure relationship between
timed parameters, which may show weak points of the protocol. We showed a
subtle relationship between lifetimes of the timestamps and timeouts in NSP and
KERBEROS, while for KERBEROS these parameters can be tuned carefully to
avoid an unexpected finish of the protocol.

Moreover, time constrains are used to find time dependencies for which some
known attacks in protocols can be eliminated.
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Abstract. Groote, Pang and Wouters (2001) analyzed an existing dis-
tributed lift system using the process algebraic toolset μCRL. Pang,
Karstens and Fokkink (2003) analyzed a redesign of this system using the
timed automata based toolset Uppaal. We adapt and extend this Up-

paal model. Firstly, we refine the synchronization mechanism between
lifts, to explain a new problem that was reported by the developers of
the lift system, and to propose a solution for it. Secondly, we allow a
lift to enter a halt state, after which the entire system should make an
emergency stop, for instance because a lift meets a maximum height
threshold. Using the Uppaal model checker we verified that the adapted
lift system satisfies the system requirements.

1 Introduction

Verifying the correctness of the protocols that regulate the behavior of dis-
tributed systems is usually a formidable task, as even simple behaviors become
wildly complicated when they are carried out in parallel. Formal verification is
a suitable approach to check whether a specification of such a protocol meets its
requirements. In a formal model of a real-life system, details irrelevant to the
requirements under scrutiny can be abstracted away. With the formal model at
hand, one is able to reason about the system in a systematic and automatic way,
using e.g. a model checker or theorem prover. This formal reasoning can detect
errors and suggest ways in which the system can be improved or optimized.

To achieve more confidence regarding the verified system, detected flaws in the
formal model can be repaired, the model can be refined by adding more details,
and extensions of the functionality can be included in the model. In this paper,
we report on some modeling and verification experiences gained by adapting the
Uppaal model from [1,2] of a distributed lift system.

This lift system is used in real life for lifting lorries, railway carriages, buses
etc. A system consists of a number of lifts: each wheel is supported by one lift,
and each lift has its own micro-controller. This system is being designed and
implemented by a small Dutch company (for commercial reasons we are not at
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liberty to reveal the company name). A special protocol has been developed to
let the lifts, which are connected in a ring network, operate synchronously. It
consists of an initialization phase, in which all lifts get a unique identity, and a
normal operation phase. When in the latter phase say an up button on a lift is
pushed, this lift leads the synchronous upward movement of all lifts until its up

button is released again. Special situations, such as when up buttons at different
lifts are pushed at the same time, have to be taken into account.

In order to explain and repair some detected bugs in the lift system, it was ini-
tially specified in the process algebraic language μCRL, and analyzed by means
of model checking using the μCRL toolset [3]. This work was reported in [4,5].
In a redesign of the lift system, to include the recommendations from [5], the
developers experienced a new problem. Since this problem involved exact tim-
ing information, and details of the system that had been abstracted away in
the μCRL model, a more detailed model was specified in Uppaal [6]. Using
the graphic simulation tool in Uppaal, the reason for the problem in the re-
design was explained, and a solution was proposed. Moreover, it was shown
using model checking that the Uppaal model with this new solution satisfied
all requirements. The solution was incorporated in the latest release of the lift
system in early 2004. This work was reported in [1].

At the end of 2004, the developers of the lift system involved us in two matters
regarding the coming release. Firstly, the developers reported that a new bug
could sometimes occur when an up button was pressed and almost immediately
released again. We refine the synchronization mechanism between lifts in the
Uppaal model from [1], to capture this new problem and propose a solution for
it. Secondly, the developers wanted a more polished solution for the situation
where the system has to make an emergency stop because, for instance, one
of the lifts meets a maximum height threshold. This feature of the system had
been abstracted away in the μCRL and the original Uppaal model. In our new
Uppaal model, we allow a lift to enter a special “halt” state, which is spread
to the other lifts, upon which they all halt. The main challenge is how to move
from this halt state to a standby state, as this requires that the main authority
shifts back from the lift that initiated to halt state to the lift that controlled the
movement.

During the adaptation of the Uppaal model, we made several initial design
errors, which were detected in the model checking phase. In this paper we explain
our ultimate solutions for the synchronization mechanism and the halt state, and
report on some of the initial design errors. Moreover, during the model checking
exercise we detected a flaw in the Uppaal model from [1] (which does not occur
in the real implementation of the lift system). This flaw in the model had gone
unnoticed due to a too restrictive test automaton in that paper. We explain how
this flaw in the model can be repaired. We have shown using the Uppaal model
checker that our solutions are correct, at least for ring networks of size three,
and with respect to the scenarios in our test automata.

A first aim of the current paper is to add yet another experience report on
the use of formal methods in industry. Our collaboration with the company that
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builds the lift system has continued over the last five years. This experience is
quite unique, in the sense that formal methods and tools (μCRL and Uppaal)
have been applied to the original lift system and its redesigns in three subsequent
case studies. Over the years, the team of developers remained the same, but the
team from the formal methods side has changed at each case study. In Section
6 we will draw some conclusions on the use of formal methods in long term
industrial development, on the basis of these case studies.

A second aim is to communicate our experiences with adapting an Uppaal

model. Also it is explained how we used the Uppaal model checker, with the
help of test automata and decoration variables [7,8].

The developers acknowledge the usefulness of formal verification for their re-
design. The new synchronization mechanism was included in the latest release of
the lift system. Our specification of the special halt state will become part of the
next release. The developers are now more confident in the correct functioning
of the redesigned lift system. They stress that applying formal methods in the
early design phases would save them testing effort and cost.

The paper is structured as follows. In Section 2, we provide an informal high-
level description of the lift system, together with an explanation of our Uppaal

model of this system. Section 3 presents the system requirements that we want
to verify. In Section 4 we present the refined synchronization mechanism between
lifts, and explain in detail how we model checked the resulting Uppaal model.
In Section 5 we present the extension with a special halt state for emergency
situations, and again describe the model checking exercise. Section 6 contains
the conclusions. And finally Appendix A contains the most important automata
of the Uppaal model of the lift system.

2 UPPAAL Model of the Lift System

2.1 High-Level System Description

The lift system consists of an arbitrary number of lifts. Each lift supports one
wheel of a vehicle. Different lift systems may have a different number of lifts,
but this has no influence on the analysis, since this network should operate in
the same way regardless how many lifts are connected.

Every lift has its own buttons. Three buttons are taken into account in the
model: setref, up and down. Pressing a setref button on a lift is the only
way a run of the system can start. If an up or down button on a certain lift is
pressed, all lifts in the system are meant to move up or down at the same time.
If the up button at a lift has been pressed, the down button at this same lift
cannot be pressed before the up button is released.

Movement of the lift system is controlled by means of a micro-controller.
Each lift has its own micro-controller, called station here. Stations can adopt
four different states: startup, standby, up and down. The state of a station
can change in two ways: when a button on the lift is pressed, or by receiving a
message from the network.
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In the lift system, the data field of the messages transferred over the bus
contains two pieces of information: the position of the sender station and the
type of the message. There are two types of messages: state messages and sync
messages. State messages broadcast the state of the sending station to the other
stations, while sync messages initiate physical movement. In response to a sync
message, the receiving station transfers its state to the motor of the lift, which
causes movement. If the station is in the state up, the lift will move up a fixed
distance; if it is in down, the lift will move down.

All stations are connected to a can (Controller Area Network) bus [9]. The
can bus is a multi-master serial bus with error detection capabilities. The bus
transmits messages to the stations. Whenever a station wants to send a message,
it is said to claim the bus. Stations can receive messages at any moment, but
when a station wants to send a message it has to wait until it is its turn to claim
the bus. In the can bus, all stations can claim the bus at each cycle and several
stations can claim the bus simultaneously. A non-destructive arbitration mech-
anism is used to determine which station may send its message. The resulting
usage of the bus is ordered, meaning that the stations take fixed turns to send
their messages. To achieve this orderly usage of the bus, before the lift system
can start to operate, a start-up phase is performed in which each station finds
out its position in the network and the total number of lifts in the network. This
start-up phase is part of our Uppaal model, but we abstract away from it here,
as it is identical to the specification of the start-up phase in the original Uppaal

model. See [1] for a detailed description of the start-up phase.
When the start-up phase has finished, each station has been assigned a unique

position and is in the state standby, and the setref button is disabled. Then
the normal operation phase starts, which is described in some detail in the
remainder of this section. During normal operation, stations claim the bus in the
same order cycle after cycle. A station knows whether it is its turn to claim the
bus by checking the position of the sender station in the last received message.
The state of a station changes from standby to up or down when its up or
down button is pressed, respectively. A station where this happens is called
an active station. The active station sends an up or down message, according
to the button that was pressed at the station. Each passive station changes its
state according to the messages it receives, and when it is its turn to claim
the bus it broadcasts its state. These state messages are received by all other
stations, and the ordered sending of messages makes sure that the active station
counts no more than one message from each station. When the active station
counts enough up (or down) messages, it concludes that all lifts are ready to
move. Then the active station broadcasts a sync message, after which in each
cycle (as long as the active station continues to broadcast sync messages) all
lifts move one unit of distance. In contrast to passive stations, the state of
the active station can only change when the pressed button is released again.
In that case its state changes to standby and the station becomes passive
again.
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2.2 UPPAAL Model

Uppaal [6] is a toolset for verifying timed systems, which are modeled as net-
works of timed automata [10], extended with global shared variables. Clock vari-
ables can be associated to a transition or a node. In a transition, clock variables
can be reset or used in a guard. There are a graphical editor for system specifi-
cation, a simulator and a model checker. During the design phase, the simulator
is used to validate the dynamic behavior of each design sketch, in particular
for fault detection, and later on for debugging the generated diagnostic traces.
The verifier mainly checks for invariants and reachability properties. It does so
by exploring the state space of a system using on-the-fly techniques. Symbolic
techniques are used to reduce the verification of modal logic formulas to solving
simple reachability constraints.

The Uppaal (version 3.4.11) model of the lift system consists of four au-
tomata: Bus, Timer, Station and Interface. The automaton Bus models the can

bus, and the automaton Timer models time delays. For each lift in the system
we create two automata: Station and Interface, where Station models the micro-
controller, while Interface captures the pressing and releasing of buttons on the
lift. These last two automata can be found at the end of this paper, in Appendix
A. The complete Uppaal model is available at . http://seshome.informatik.
. uni-oldenburg.de/ jun/lift/. Here we only provide sufficient explanations
to present our adaptations of the original Uppaal model and the analysis of
this adapted model. A more detailed explanation and motivation can be found
in [11].

Fast and main loop. Each station performs two different loops. In the so-called
fast loop, a station can get a message from the bus, and when it is a station’s turn
to claim the bus, it sends a message to the bus intended for the other stations.
Furthermore, the active station can count state messages and initiate movement
of the whole system, by means of a sync message. In a main loop, a station
synchronizes with its interface, to obtain information about which button on
the lift (if any) has been pressed or released. Such a main loop takes place after
a fixed number of cycles from the fast loop.

The two loops were implemented separately because communication with the
bus is relatively fast. The separation leads to faster communication between the
lifts, which is essential for the safe functioning of the system, as else the response
time of the system would become too slow.

The precise time delays of the two loops in the actual lift system are taken
into account in the Uppaal model, and will be discussed below.

Flags. In [1], two flags Change and Active were introduced in the automaton
Station, as an improvement over two flags in the implementation of the lift
system. The developers of the lift system acknowledged that this improvement
solved a detected bug in the system, and included the new flags in its redesign.

When Active is set, the corresponding station is active; otherwise, the station
is passive. Change of a station is set when at this station a button is pressed

http://seshome.informatik.uni-oldenburg.de/~jun/lift/
http://seshome.informatik.uni-oldenburg.de/~jun/lift/
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or released; this update is communicated to the station through the main loop.
The Change flag is used to remember that the Active flag at this station must
change from passive to active, or vice versa. Change is reset together with a
setting or resetting of Active (or if in the meantime a button is released or
pressed again). This first change happens as soon as the station gets its turn to
claim the bus, and the incoming message carries the state standby.

Bus. We omit a precise description of the internals of the automaton Bus, and
view it as a black box that regulates the distribution of messages in the fast
loop. In the Uppaal model, there are two channels for communication between
the bus and the stations, and global shared variables are used for data transfer
over these channels. When a station wants to send a message to the bus, it has
to instantiate values for some global variables, for instance the sender’s identity
and state. When communication takes place, the values of those variables are
saved to local variables of the bus. In a similar fashion, messages are sent from
the bus to the stations.

Timer. Transitions normally do not take time in Uppaal, but they do in the lift
system. Each main loop consumes 1 millisecond. After each main loop, the sta-
tion waits 0.5 millisecond to get messages from the bus. During the fast loop, the
receiving and sending messages take 1 millisecond. Before sending a sync mes-
sage, stations delay 1.5 millisecond. And before sending a state message, stations
delay 2 milliseconds. The automaton Timer expresses this time consumption by
means of transitions; this idea is borrowed from [12].

3 Requirements

The desired behavior of the lift system is captured in five requirements it has
to fulfill, taken from [1]. These requirements were formulated together with the
developers of the system.

1. Deadlock freeness: The system never ends up in a state where it cannot
perform any action.

2. Liveness I: If all buttons are released, the system will eventually get to a
state in which all lifts are standby.

3. Liveness II: If exactly one up (or down) button is pressed and not released,
then all lifts will eventually move up (or down).

4. Safety I: If one of the lifts moves, then all other lifts move simultaneously
(that is, within one cycle of the fast loop) in the same direction.

5. Safety II: If the lifts move, then an appropriate button was pressed.

The model checker of Uppaal allows to check formulas over a rather weak
temporal logic. In particular, Liveness II and Safety I cannot be expressed in
this logic. In [7,8] an approach was developed for model checking such properties
via reachability testing. The idea is to transform the property into a so-called
test automaton, which is placed in parallel to the Uppaal model of the system.
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Such a test automaton is typically built from a specific scenario (e.g., a fixed
sequence of button presses and releases), and contains a ‘bad’ state which can
only be reached if the corresponding property is violated.

The test automaton may need some extra information that is not being main-
tained in the Uppaal model of the system (such as how often a certain loop has
been taken). This information can be added to the model, without influencing
its functional behavior, in the form of so-called decoration variables.

In our verifications of two versions of the Uppaal model of the lift system,
which will be described in Sections 4 and 5, we made extensive use of test
automata and decoration variables. We performed model checking with respect
to networks of two or three lifts.

In the test automata, station 1 will play the role of active station. That is,
the up button at station 1 is the first button to be pressed, making station 1
active. We note that this is not a real limitation, in the sense that the network
is fully symmetric (i.e., all stations exhibit the same behavior).

4 Sync Flag

The developers of the lift system informed us that a deadlock had occurred. After
some testing at their premises, empirical evidence showed that itmay occur if anup

(or down) button is released shortly after it was pressed. Since this deadlock was
not detected using the Uppaal model from [1], it appeared that a crucial aspect of
the system was missing in that model. The developers were of the opinion that the
bug was most likely in the synchronization mechanism between the stations.

Discussions with the developers brought to light the fact that synchronization
of the stations is implemented in a somewhat different fashion than as was
specified in the Uppaal model. In the real system there is an extra Sync flag
at each station, which is missing in the Uppaal model.

When the active station counts enough up (or down) messages, in the Uppaal

model, this station initiates movement straight away by sending a sync message
to the other stations. But in the real system, at each station there is an extra
Sync flag, which is set if the state of the station is up (or down) and there is no
obstruction to send output to the motor. Each station reports in the messages
it sends whether its Sync flag is set, and the active station only sends a sync
message when the Sync flag is set at each station. When output is sent to the
motor, the Sync flag at that station is reset. The Sync flag guarantees that
output ports of the stations to their motors are in sync. Otherwise it might be
the case that one station moves while another does not, for instance because the
latter reached its highest position.

At first sight, it makes sense to abstract away from the Sync flag in the
Uppaal model, as it does not take into account obstructions to the output ports.
However, the Sync flag can have an influence on the functional behavior, even
in the absence of such obstructions. We therefore adapted the Uppaal model
from [1] to include the Sync flag, and analyzed by means of the Uppaal model
checker whether the adapted model satisfies the requirements from Section 3.
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Deadlock freeness can be expressed in the modal logic of Uppaal:

A[] not deadlock

where deadlock is a predefined predicate in Uppaal that holds for all deadlock
states. We checked this property with respect to a number of scenarios (i.e.,
test automata). Initially this property was violated. Analysis of the error trace
showed that, in line with reports from the developers, the deadlock may occur
if an up (or down) button is released shortly after it has been pressed. Namely,
as said before, the Sync flag is reset when output is sent to the motor. But if
the up button is released shortly after it has been pressed, it may be the case
that a Sync flag at some station is set, but never reset, because no output is
sent to the motor. The simple solution for this problem is to reset Sync flags
also when a button is released. We included this solution in our Uppaal model,
upon which no further deadlocks were detected.

Parallel button presses do not have an effect. That is, suppose that a button at
some station is pressed. If (before the release of this button) a button at another
lift is pressed and released, then this does not affect the states of the stations.
We formulated this in a test automaton, in which initially the up button at
station 1 is pressed, expressed by the flag press1!. This button press makes
station 1 active; the guard Active[1]==1 makes sure that this happens before
the up button at station 2 is pressed (press2!), as else station 2 might get active
instead of station 1. Finally the button at station 2 is released (release2!). The
bad state can be reached if as a result the state of one of the stations is not in
sync with the button state of the active station 1. The test automaton uses a
decoration variables countcycle, which in the model is increased by one at every
fast loop, together with a parameter NCYCLE (which we instantiated with 6 for
two lifts, and with 13 for three lifts). The guard countcycle<=NCYCLE on the
last transition guarantees that the scenario covers only a bounded number of
fast loops, as otherwise the property could not be model checked. Without the
guard countcycle==1 on the second transition the bad state could be reached,
as it requires one cycle of the fast loop before all stations have attained the same
state as buttonstate[1].

press1!

countcycle:=0,

S2

S3

S1 S4 bad

release2!countcycle==1,

press2!,

currentstate[3]!=buttonstate[1]
currentstate[2]!=buttonstate[1] or
currentstate[1]!=buttonstate[1] or
Active[1]==0 or
Active[2]==1 or

countcycle<=NCYCLE,

Active[1]==1

A model checking exercise with respect to our model in parallel to the test
automaton above (for three lifts) showed that the bad state in the test automaton
cannot be reached. In view of this positive model checking result, in the test
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automata to follow regarding the liveness and safety requirements, we do not
take into account parallel button presses.

Liveness I was checked for a number of scenarios. Below a test automaton is
presented in which first the up button at station 1 is pressed (making it active),
next the up button at station 2 is pressed, then the button at station 1 is released
(making station 2 active), and finally the button at station 2 is released. As
before, countcycle and NCYCLE are used to make the scenario bounded. The bad
state can be reached if after NCYCLE fast loops the stations are not all standby.
(Again we instantiated NCYCLE with 6 for two lifts, and with 13 for three lifts).

release2!

countcycle:=0,

release1!
currentstate[3]!=standby
currentstate[2]!=standby or
currentstate[1]!=standby or

press2!

press1!

S4

S3S2

S1 S5 bad
countcycle==NCYCLE,

A model checking exercise with respect to our model in parallel to the test
automaton above (for three lifts) showed that the bad state in the test automaton
cannot be reached.

Liveness II was verified using a test automaton in which the up button at
station 1 is pressed and not released; Liveness II requires that eventually all
lifts will start moving. As before, countcycle and NCYCLE are used to make
the scenario bounded. In the model, the decoration variable visitmovement is
increased by one every time a lift starts moving. Furthermore, N denotes the
number of lifts in the system. If the up button at station 1 is pressed and not
released, and at the deadline (countcycle==NCYCLE) not all lifts have started
moving (visitmovement<N), then the bad state is reached.

countcycle:=0,

press1!

visitmovement:=0,

visitmovement<N

S1 S2 bad
countcycle==NCYCLE,

A model checking exercise with respect to our model in parallel to the test
automaton above showed that the bad state in the test automaton cannot be
reached.

The test automaton that was used in [1] for checking Safety I captures a quite
restricted collection of scenarios. We constructed the following more elaborate
test automaton. It has a similar structure as the previous test automaton. Sup-
pose that the up button at station 1 is pressed. The bad state can only be reached
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if ultimately (countcycle==NCYCLE) all lifts move (visitmovement==N) while
not all stations are in the same state (currentstate[1]!=currentstate[2] or
currentstate[1]!=currentstate[3]).

currentstate[1]!=currentstate[3]
currentstate[1]!=currentstate[2] or

countcycle:=0,

press1!

visitmovement:=0,

visitmovement==N,

S1 S2 bad
countcycle==NCYCLE,

To our surprise, a model checking exercise with respect to our model in parallel
to the test automaton above showed that Safety I was violated. We also checked
this test automaton against the Uppaal model from [1], and there too it was
violated. In the model, lifts could actually move in opposite directions! This bug
did not occur in a network with two lifts, but it did in a network with three
lifts. Analysis of the error trace showed the reason for the bug: in the Uppaal

model (unlike the implementation), a global variable in the can bus maintains
the message state; each station can read this variable. With three lifts, it is
possible that a station receives a state message without processing it yet. Then
another station may send a message to the bus, overwriting the message state
variable before the first station reads it. The solution for this problem is simply
to conform to the implementation, by introducing a message state variable at
each station. We included this solution in our Uppaal model, upon which Safety
I was satisfied.

Finally, we verified Safety II in the same fashion as in [1]. The idea is to put
a ‘false’ guard on all transitions in the Interface automaton that represent a
button being pressed, and to add a flag move to the node capturing movement
in the Station automaton, which is set if this node is visited. Now Safety II can
be verified using the following modal formula:

A[] move == 0.

We also verified Safety II with respect to a number of scenarios in which a
button is pressed and then released within a short time interval, expressed by
the parameter SHORT. We verified that in such scenarios no lift moves. In the
test automaton below, SHORT was given the value 3 (in case of three lifts).

S1

release1!

countcycle:=0,

countcycle:=0, countcycle==SHORT,

press1!

visitmovement:=0,

visitmovement>0

S2 S3 bad
countcycle==NCYCLE,
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5 HALT State

In the implementation of the lift system, the situation is taken into account where
the system has to make an emergency stop, for instance because one of the lifts
meets a minimum or maximum height threshold. This feature of the system was
abstracted away in the Uppaal model in [1]. The developers of the lift system
asked us to propose a more polished solution for emergency stops, because in their
implementation emergency stops were dealt with in a rather ad hoc fashion.

We extended the Station automaton, by allowing it to enter a special halt

state, which is spread to the other lifts, upon which they all halt. Adapting the
model can be split into three tasks: (1) achieve halt in the detecting station,
(2) communicate this halt state to the other stations, and (3) leave the halt

state to continue normal operation from the standby state.

Detecting halt. In the Station automaton, we added a transition which allows a
station (nondeterministically) to detect a halt notification, after which it changes
its state to halt. Initially, we allowed this transition to be taken only when the
lift is in movement. However, according to the developers, in real life detection
may also happen when a button was pressed but no movement has taken place
yet. Therefore the latter was added as an extra possibility.

Spreading halt. The halt state is spread to the other stations via the fast loop.
When a station in state halt gets its turn to claim the bus, it sends out a halt
message, which makes the other stations take on the halt state too.

Leaving halt. The hardest part is leaving the halt state once the button that ini-
tiated the lastmovementhas been released.The active station, atwhich this button
waspressed, thenneeds to return to the standby state to resumenormal operation.
It must therefore ignore further incoming halt messages from the other stations. So
if a station is inhalt state, and itsActiveandChangeflags areboth set (meaning
that it is theactive stationandthebuttonhasbeenreleased), it adopts thestandby

state, and spreads this state to the other stations via the fast loop.
We analyzed by means of the Uppaal model checker whether the adapted

model, including the halt state, satisfies the requirements from Section 3. Two
requirements need the proviso that halt is not detected.

1. Liveness II: If exactly one up (or down) button is pressed and not released,
and halt is not detected, then all lifts will eventually move up (or down).

2. Safety I: If one of the lifts moves, and halt is not detected, then all other
lifts simultaneously move in the same direction.

Furthermore, together with the developers of the system we formulated one extra
liveness requirement and one extra safety requirement.

1. Liveness III: After halt is detected, it is always possible for the system to
get to a state where all stations are standby.

2. Safety III: If halt is detected, then within a certain amount of time a state
is reached where no lift moves.
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Deadlock freeness, Liveness I and Safety II could be verified as in the previous
section. For the other requirements, a global decoration variable halted was
introduced, to signal the detection of halt. In the test automata for Liveness II
and Safety I, we added a guard to ensure that the bad node can only be reached
if halted is not set. With these adapted test automata, Liveness II and Safety
I could be verified without problem.

Liveness III was checked against a test automaton that is similar to the test
automaton that we used for Liveness I in the previous section. The main dif-
ference is that a guard halted==1 was added, to express that halt has been
detected. A model checking exercise with respect to our model in parallel to the
resulting test automaton showed that the bad state cannot be reached.

countcycle:=0,

press1! release1!

halted==1,

currentstate[3]!=standby
currentstate[2]!=standby or
currentstate[1]!=standby or

S2S1 S3 bad
countcycle==NCYCLE,

For Safety III, initially we required that after a detection of halt, all lifts
would stop moving within one cycle of the fast loop. However, this turned out
to be too strict as it is not satisfied by the real-life system. Namely, if the lifts
are moving, and the station detecting halt has just sent a state message to the
bus, it may be that two cycles of the fast loop are needed before all lifts have
halted. Safety III with “four cycles of the fast loop” substituted for “a certain
amount of time” does hold (in case of three lifts). That is, all stations except
the one that detects halt move at most twice after this detection; so in general
there can be at most 2N-2 movements from the moment halt is detected. In the
model, the value of the decoration variable visitmovement (which is increased
by one at every movement of a lift) is set to zero as soon as halted is set. The
bad state is reached if visitmovement>=2N-1 and halted==1. We successfully
checked the following test automaton against our model.

badS2S1

press1!

halted==1

visitmovement==2N-1,

Time and memory consumption. Uppaal recommends to use “memtime” (see
http://freshmeat.net/projects/memtime/) for measuring time and memory
consumption. It is also remarked: ”Please note that the result on memory is
obtained by polling (with variable periods), which means that programs termi-
nating very quickly may give different results for different executions.”

The experiments were performed with Uppaal 3.4.11 on a PC with a AMD
Athlon(TM) 64 Processor 3200+ of 2GHz, and with 1GB memory. Time and

http://freshmeat.net/projects/memtime/
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memory consumption were extracted using the Uppaal command line: “veri-
fyta” with options “depth first search”, “conservative space optimization”, and
“cheap inclusion checker”. The time and memory consumption for checking each
separate requirement, for a network of three lifts with NCYCLE = 13, is presented
in Table 1.

Table 1. Time and memory consumption

time (seconds) memory (KB)

Deadlock freeness 10.7 64,588
Liveness I 35.2 399,256
Liveness II 6.2 76,980
Liveness III 19.0 234,936
Safety I 6.1 85,052
Safety II 12.7 157,672
Safety III 10.4 141,612

6 Concluding Remarks

In this paper, we have reported on an industrial case study in which formal tech-
niques were applied for the analysis of a distributed system for lifting trucks.
Our work can be considered as one more piece of evidence that formal verifica-
tion techniques are sufficiently mature to be applied in the design of industrial
systems. In particular embedded controllers appear to be well-suited for formal
modeling and verification with model checking, as they tend to combine a high
degree of complexity with a manageable state space.

A formal model is always an abstraction of the real system. The good thing is
that this enables to study the core of a system, without superfluous details that
may needlessly obscure the picture and increase the state space. A drawback
however is that one may abstract away too much. In our case study, we saw two
examples of this, regarding the Uppaal model from [1]. Firstly, abstracting away
from the Sync flag meant that a bug in the implementation was missed. Sec-
ondly, using one global shared variable instead of different local shared variables
at all stations induced a serious flaw in the model.

The latter flaw brings us to the use of test automata, as this flaw was initially
missed due to a too restrictive test automaton. Uppaal’s modal logic is not
very expressive. It is well-known that test automata can come to the rescue, to
express different scenarios of a property that is outside the scope of the modal
logic. However, this comes at a price. First of all, it means that only a subset
of scenarios is verified, so that concrete test automata tend to be less general
than the high-level requirements. Furthermore, building a good test automaton
can be quite laborious. Last but not least, a test automaton can itself be too
restrictive or even flawed. Still, test automata do allow to adequately capture
critical/typical user interactions with the system. On one hand, more general
test automata can describe more interactions, but on the other hand, checking
them requires much more running time and memory usage, and can make the
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verification impossible, as we experienced. It is up to the user to try and find a
good balance in this trade-off.

A disappointment for us was that, even with respect to relatively simple test
automata, Uppaal was only able to verify a network of up to three lifts. For a
network of four lifts, it simply ran out of memory. A solution to this problem may
be to use symbolic, compositional or on-the-fly methods, or symmetry reduction.
Especially the latter approach could be fruitful here, in view of the symmetric
nature of the ring topology of the lift system; as future research we intend to
use the symmetry reduction method for Uppaal from [13].

A strong point of formal models is that it is relatively easy to extend or adapt
them, and then verify the adapted model. We experienced that it is very useful
to have the ability to try different solutions to a problem (in this case the extra
halt state), and verify with model checking whether a solution is satisfactory.
This was far easier than it would have been for the developers of the system to
implement these different solutions and perform a substantial testing effort.

One has to keep in mind that an adaptation of the model can give rise to
an adaptation of requirements, or to new requirements. Here we had to adapt
Liveness II and Safety I, and introduced new requirements Liveness III and
Safety III, for the extended model that includes a halt state.

For us, the excellent graphical interface of Uppaal has been invaluable, as it
enabled the developers of the lift system to fully understand and comment on
our formal models. We would like to emphasize the importance of establishing a
good relationship between a formal methods group and a team of engineers. This
relationship should be built on mutual trust and technical insight. Too often, a
formal verification effort within industry is limited to a single case study. In
general it would be much more fruitful to perform a series of case studies with
the same group of engineers, and ideally with subsequent releases of the same
system. This way the engineers get better acquainted with the formal methods
approach, and the formal methods people get a better technical insight. Even
more important, this way the results of a formal analysis can have a direct
impact on the design of a system, and the strengths of formal models come to
light. Namely, while developers may struggle to adapt the implementation and
have to spend considerable testing effort, adaptation of the formal model and
the subsequent model checking exercise tend to take relatively little effort.

Acknowledgments. We thank the developers of the lift system for their collabo-
ration and fruitful discussions. Henk Barendregt and Frits Vaandrager provided
useful feedback.
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A UPPAAL Automata of the Lift Model

We present the two most important automata of our Uppaal model. Start-up
phase and the automata Bus and Timer are left out.

The automaton Interface, which is depicted in Figure 1, captures the buttons
on a lift.

The automaton Station is depicted in two separate parts, which are joined
together at the initial node normaloperation. At this node, two loops of a
station can be performed: the main loop and the fast loop.

The main loop, which is depicted in Figure 2, is a short loop in which the
automaton Station synchronizes with its Interface. Executing the main loop is
the only way the station can get information about which button on the lift (if
any) is pressed or released. This main loop takes place after a fixed number of fast
loops, which is modeled as a constant CYCLES in the Uppaal model. A counter
cyclecounter is used to record the number of fast loops that have happened
after the last main loop. When cyclecounter==CYCLES, the main loop takes
place and cyclecounter is reset to 0. If the station detects a difference between
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inDown

inUP

onlyonesetref

inSBY

onesetref==0 and myid == 1
setref!
onesetref=1,
buttonstate[myid]=Standby

pressed[myid]<2 and
cyclecounter[myid]<CYCLES and
buttonstate[myid]==Standby
press?
buttonstate[myid]=Up,
pressed[myid]=pressed[myid]+1
pressed[myid]<2 and 
cyclecounter[myid]<CYCLES and 
buttonstate[myid]==Standby
press?
buttonstate[myid]=Down,
pressed[myid]=pressed[myid]+1

released[myid]<2 and 
cyclecounter[myid]<CYCLES and 
buttonstate[myid]==Up
release?
buttonstate[myid]=Standby,
released[myid]=released[myid]+1

released[myid]<2 and 
cyclecounter[myid]<CYCLES and
buttonstate[myid]==Down
release?
buttonstate[myid]=Standby,
released[myid]=released[myid]+1

cyclecounter[myid]==CYCLES
mainloop!
pressed[myid]=1, 
released[myid]=0

cyclecounter[myid]==CYCLES
mainloop!
pressed[myid]=1, 
released[myid]=0

cyclecounter[myid]==CYCLES
mainloop!
pressed[myid]=0, 
released[myid]=0

onesetref>0
buttonstate[myid]=Standby

Fig. 1. The automaton Interface

NormalOperation

endofSTARTUP

movement

mlnochangemlpassive mlactive

mlmove

mlsame

Change[myid]==1 and
cyclecounter[myid]==CYCLES

mainloop?

cyclecounter[myid]=0,
countcycle=(countcycle==NCYCLE?
countcycle:countcycle+1)

endofs!

endofST=endofST+1

SYNC[myid]=0,
move[myid]=
currentstate[myid],
visitmovement = (
visitmovement==N*2-1?
N:visitmovement+1)

move[myid]=0

Change[myid]==0 and
cyclecounter[myid]==CYCLES
mainloop?
cyclecounter[myid]=0,
countcycle=(countcycle==
NCYCLE?countcycle:countcycle+1)

Active[myid]==0 Active[myid]==1 currentstate[myid]==
buttonstate[myid]

SYNC[myid]==0

SYNC[myid]==1

currentstate[myid]!=buttonstate[myid] and 
currentstate[myid]!=Halt
Change[myid]=1,
counter[myid]=0

currentstate[myid]!=Standby and
currentstate[myid]!=Halt

currentstate[myid]==Standby

Change[myid]=(buttonstate[myid]==Standby?0:1),
currentstate[myid]=buttonstate[myid]

nohalt != 1

currentstate[myid]=Halt,
halted=1,
visitmovement=0,
move[myid]=0

currentstate[myid]==Halt

currentstate[myid]==Halt
Change[myid]=(buttonstate[myid]
==Standby?1:0),
counter[myid]=(buttonstate[myid]
==Standby?0:counter[myid])

currentstate[myid]==Standby and
buttonstate[myid]!=Standby and
nohalt != 1

Active[myid]=1,
currentstate[myid]=Halt,
halted=2

Fig. 2. Part of the automaton Station: Main loop

its current state (modeled by the variable currentstate) and the state of the
Interface (modeled by variable buttonstate), the station may change its state
and adopt the one from the Interface.

In the fast loop, which is depicted in Figure 3, a station can do several things.
First a station can get messages from the bus. Second, a station can send a
message to the other stations, if it gets the turn to use the bus. Third, the active
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sendingstatemes

S9S8

S6

S5

NormalOperation

gobacktonormal

myturncountenough

getmessage

syncset

sendingsyncmes waitforbus1

wait2

waitforbus2

myid==receiver and
messagestate==Sync and
cyclecounter[myid]<CYCLES
bustolift?

SYNC[myid]=1,
cyclecounter[myid]=
cyclecounter[myid]+1

t10!

myid==receiver and
messagestate<Sync and
cyclecounter[myid]<CYCLES
bustolift?
lastsender[myid]=(messageposition==
number[myid]?0:messageposition),
cyclecounter[myid]=cyclecounter[myid]+1,
mymessagestate=messagestate

counter[myid]!=1

counter[myid]==1 and
Active[myid]==1 and
Change[myid]==0

tobemessagestate==0
tobesender=myid,
tobemessagestate=Sync,
tobemessageposition=position[myid],
SYNC[myid]=1

tobemessagestate==0
tobesender=myid,
tobemessageposition=position[myid],
tobemessagestate=currentstate[myid],
counter[myid]=(Active[myid]==1?number[myid]:0)

(lastsender[myid]+1)==position[myid]

(lastsender[myid]+1)!=position[myid]

Active[myid]==1 and
Change[myid]==0 and 
currentstate[myid]!=Standby
t10!
counter[myid]=((mymessagestate==currentstate[myid] and
currentstate[myid]!=Halt)?counter[myid]-1:counter[myid]),
currentstate[myid]=(mymessagestate==Halt?Halt:currentstate[myid])

Active[myid]==1 and
Change[myid]==1
t10!

Active[myid]=(lastsender[myid]+1
==position[myid]?0:1),
Change[myid]=(lastsender[myid]+1
==position[myid]?0:1),
currentstate[myid]=(lastsender[myid]+1
==position[myid]?Standby:currentstate[myid]),
SYNC[myid]=(lastsender[myid]+1
==position[myid]?0:SYNC[myid])

Active[myid]==0 and 
Change[myid]==0

t10!

currentstate[myid]==Halt
currentstate[myid]=(mymessagestate
==Standby?Standby:currentstate[myid]),
SYNC[myid]=(mymessagestate
==Standby?0:SYNC[myid])

Active[myid]==0 and
Change[myid]==1
t10!

currentstate[myid]!=Halt and
mymessagestate==Standby and 
lastsender[myid]+1==position[myid]
Active[myid]=1, 
Change[myid]=0, 
counter[myid]=number[myid]

currentstate[myid]!=Halt and
mymessagestate!=Standby and 
lastsender[myid]+1==position[myid]
Active[myid]=0, 
Change[myid]=0, 
currentstate[myid]=mymessagestate

lastsender[myid]+1!=position[myid]

lifttobus!
t10!

t20!

t10!

lifttobus!currentstate[myid]!=Halt
currentstate[myid]=mymessagestate,
SYNC[myid]=(mymessagestate
==Standby?0:SYNC[myid])

currentstate[myid]==Halt

Fig. 3. Part of the automaton Station: Fast loop

station can count state messages and initiate a movement of the whole system.
In that case the active station will enter the node activemovement, while the
other stations get a sync message and enter the node passivemovement.
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Abstract. During the last years, timed automata have become a popu-
lar model for describing the behaviour of real-time systems. In particular,
there has been much research on problems such as language inclusion and
universality. It is well-known that the universality problem is undecidable
for the class of timed automata with two or more clocks. Recently, it was
shown that the problem becomes decidable if the automata are restricted
to operate on a single clock variable. However, existing algorithms use a
region-based constraint system and suffer from constraint explosion even
for small examples. In this paper, we present a zone-based algorithm for
solving the universality problem for single-clock timed automata. We ap-
ply the theory of better quasi-orderings, a refinement of the theory of well
quasi-orderings, to prove termination of the algorithm. We have imple-
mented a prototype based on our method, and checked universality for a
number of timed automata. Comparisons with a region-based prototype
confirm that zones are a more succinct representation, and hence allow
a much more efficient implementation of the universality algorithm.

1 Introduction

Timed automata have emerged as one of the most popular models for specifi-
cation and analysis of real-time systems. An execution of such an automaton
can be viewed as a timed word consisting of a sequence of events and their as-
sociated timestamps. Furthermore, different properties of the automaton can be
expressed as languages of timed words. Since their introduction by Alur and Dill
[1], timed automata have been used as the foundation for several verification
algorithms and tools (see [2] for a survey). One of the most fundamental results
about timed automata is the undecidability of the universality problem: Given
a timed automaton A, is the language of A universal? (i.e., is every timed word
accepted by A?). This problem is undecidable when the automaton A is allowed
to have two or more clocks. In this context it is natural to seek subclasses of
timed automata, with reduced expressive power, for which universality (or the
more general problem of language inclusion) is decidable [3,4,2,5,6,7].

In particular, the paper [8] shows that both the universality and language
inclusion problems are decidable for the class of timed automata which are re-
stricted to operate on a single clock. The paper uses a variant of regions as a

F. Arbab and M. Sirjani (Eds.): FSEN 2007, LNCS 4767, pp. 98–112, 2007.
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symbolic representation for sets of states in the universality algorithm; and uses
the theory of well quasi-orderings, for proving termination of the algorithm. De-
spite the positive result in [8], deriving an algorithm which has a reasonable
efficiency is still a difficult challenge. In fact, it is shown in [9] that the univer-
sality problem has a non-primitive recursive complexity for single-clock timed
automata. In addition, it is well-known that the region representation is in gen-
eral very inefficient and tends to explode even on very small examples.

In this paper, we propose a new formalism based on zones as a symbolic repre-
sentation of sets of states in the universality algorithm. Our motivation is twofold.
On one hand, several existing verification algorithms for classes of systems with
well quasi-ordered state spaces perform well in practice when combined with effi-
cient symbolic representations (despite non-primitive recursive complexities). Ex-
amples include lossy channel systems [10] and timed Petri nets [11]. On the other
hand, zones often provide a much more compact representation of states than re-
gions. Therefore, zones are used for instance in the design of existing tools for
verification of real-time systems, such as KRONOS [12] and UPPAAL [13].

We solve the universality problem, by adapting the standard subset construc-
tion method. In particular we compute configurations: each configuration is the
set of states which the automaton reaches through the execution of one timed
word. We use zones as symbolic representations of (infinite) sets of configura-
tions. One important aspect of the universality problem is that there is no bound
on the number of clock variables in the zones which arise in the analysis. This
makes the algorithm much more difficult to design compared to other zone-based
algorithms such as the ones used in the above mentioned tools. A main challenge
then is to show that the algorithm is still guaranteed to terminate. To achieve
this, we show that zones are well quasi-ordered. More precisely, we show that,
for each infinite sequence of zones Z0, Z1, Z2, . . ., there are i and j with i < j
such that the non-universality of Zj is “entailed” by the non-universality of Zi.
To show the well quasi-ordering of zones, we follow the methodology of [14],
and show that zones in fact satisfy a stronger property than well quasi-ordering,
namely that they are better quasi-ordered.

We have implemented a prototype based on our method and have checked
a number of timed automata for universality. Comparisons with a region-based
prototype confirm that zones are a more succinct representation, and hence
universality analysis is much more efficient when it operates on zones rather
than regions.

Outline. In the next section, we give some preliminaries of timed automata. In
Section 3 we consider the universality problem for configurations. In Section 4,
we introduce zones, and in Section 5, we describe the zone-based universality
algorithm. In Section 6, we show that the algorithm is guaranteed to terminate.
We devote Section 7 and Section 8 to describe how to implement the different
steps of the algorithm; more precisely, we show how to compute successors of
zones in the algorithm, and how to check the entailment relation on zones. In
Section 9, we report some experimental results. Finally, we give some conclusions
and directions for future work in Section 10.
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2 Timed Automata

In this section, we recall the basic definitions for timed automata, and concen-
trate on the class where the automata operate on a single clock.

We use N and R+ to denote the sets of natural numbers and non-negative reals
respectively. For ν ∈ R+, let �ν� and fract (ν) be the integral resp. fractional
part of ν.

Timed Words. Let Σ be a finite alphabet. A timed event is a pair (t, a), where
t ∈ R+ is called the timestamp of the event a ∈ Σ. A timed word is a finite
sequence t = (t0, a0)(t1, a1)(t2, a2) . . . (tn, an) of timed events whose sequence
of timestamps t0t1t2 . . . tn is non-decreasing. We write TΣ∗ for the set of finite
timed words over the alphabet Σ.

Timed Automata. We consider timed automata which operate on a single
clock (in the sequel referred to as clock c). We define the set Φ of clock constraints
to be conjunctions of formulas of the form c ∼ k, k ∼ c, where k ∈ N and
∼∈ {<, ≤, >, ≥}. A timed automaton is a tuple A = (Σ, S, sinit , F, E), where

– Σ is a finite alphabet of events,
– S is a finite set of control states,
– sinit ∈ S is the initial control state,
– F ⊆ S is a set of accepting control states,
– E ⊆ S × S × Φ × Σ × {tt ,ff } is a finite set of edges. An edge (s, s′, φ, a, R)

allows an a-labelled transition from s to s′, provided that the precondition
φ on clock c is met. Afterwards, c is either reset to 0 (if R = tt), or its value
remains unchanged (if R = ff ).

We let cmax be the maximum natural number which appears on the edges of
the automaton. A global state q of A is a pair (s, ν), where s ∈ S is a control
state and ν ∈ R+ represents the value of clock c. We use state (q) and val (q)
to denote s and ν. We say that q is accepting if state (q) ∈ F . The initial global
state qinit is of the form (sinit , 0).

Transition System. We define a transition relation on global states. For a
global state q, we let q + δ be the global state q′ such that state (q′) = state (q)
and val (q′) = val (q) + δ. A timed transition is of the form q δ−→T q′, where
q′ = q + δ. A discrete transition is of the form (s, ν) a−→D (s′, ν′) such that there
is an edge (s, s′, φ, a, R) in E and the following conditions are satisfied: (i) ν

satisfies φ; (ii) ν′ = 0 if R = tt ; and (iii) ν′ = ν if R = ff . We write q
δ, a−→ q′ to

denote that q δ−→T q + δ a−→D q′. For a global state q, a run (of A) from q is a
finite sequence of transitions

q0
δ0, a0−→ q1

δ1, a1−→ q2
δ2, a2−→ · · · δn−1, an−1−→ qn (1)

where q0 = q. The run is accepting if qn is accepting. We use L(q) to denote the
set of timed words of the form (t0, a0)(t1, a1) . . . (tn−1, an−1) such that there is an
accepting run from q of the above form and tj =

∑j
i=0 δi for each j : 0 ≤ j < n.
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We say that q is universal if L(q) = TΣ∗. In the universality problem, we are
given an automaton, and are asked whether the initial global state is universal
or not.

3 Configurations

To solve the universality problem for global states, we study a more general
problem, namely the universality problem for (sets of) configurations.

Configurations. A configuration γ is a finite set of global states. A configu-
ration is said to be accepting if some q ∈ γ is accepting. We lift the transition
relation from global states to configurations. We use γ δ−→T γ′ to denote that
γ′ =

{
q′| ∃q ∈ γ. q δ−→T q′

}
. The definitions of the relations a−→D and

δ, a−→ are
extended to configurations in a similar manner. For a configuration γ, a run (of
A) from γ is a finite sequence of transitions

γ0
δ0, a0−→ γ1

δ1, a1−→ γ2
δ2, a2−→ · · · δn−1, an−1−→ γn (2)

where γ0 = γ. The run is accepting if γn is accepting. We define L(γ) in a similar
manner to the case of global states. We say that γ is universal if L(γ) = TΣ∗.
Notice that L(γ) =

⋃
q∈γ L(q).

Sets of Configurations. A set Γ of configurations is said to be accepting
if all its members are accepting. We use Γ δ−→T Γ ′ to denote that Γ ′ ={
γ′| ∃γ ∈ Γ. γ δ−→T γ′

}
. The definitions of the other transition relations are

extended analogously. Also the notions of a run, an accepting run, L(Γ ), and
universality, are extended in a similar manner to the case of sets of configura-
tions.

We write Γ =⇒ Γ ′ to denote that Γ δ−→T Γ ′′ a−→D Γ ′ for some δ, a, and Γ ′′.
We define (Γ =⇒) to be the set {Γ ′| Γ =⇒ Γ ′}.

Region Equivalence. For configurations γ and γ′, and a bijection h : γ �→ γ′,
we write γ ≡h γ′ to denote that the following conditions are satisfied for each
q, q1, q2 ∈ γ:

– state (q) = state (h(q)).
– val (q) ≤ cmax iff val (h(q)) ≤ cmax .
– if val (q) ≤ cmax then �val (q)� = �val (h(q))�.
– if val (q) ≤ cmax then fract (val (q)) = 0 iff fract (val (h(q))) = 0.
– if val (q1) ≤ cmax and val (q2) ≤ cmax then fract (val (q1)) ≤ fract (val (q2))

iff fract (val (h(q1))) ≤ fract (val (h(q2))).

We write γ ≡ γ′ to denote that γ ≡h γ′ for some h. The relation ≡ is an
equivalence, and is a modification of the standard region equivalence on global
states. The latter relates (multi-clock) global states, while we here relate sets
of global states each with a single clock. The following lemma is an adaptation
from the classical theory of timed automata [1].
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Lemma 1. For configurations γ1, γ2, and γ3, if γ1
δ, a−→ γ2 and γ1 ≡ γ3, then

there is a γ4 such that γ3
δ, a−→ γ4 and γ2 ≡ γ4.

Entailment. We define an entailment relation � on (sets of) configurations.
For configurations γ and γ′, we write γ � γ′ to denote that there is a γ′′ ⊆ γ′

such that γ′′ ≡ γ. For sets of configurations Γ and Γ ′, we use Γ � Γ ′ to denote
that for each γ′ ∈ Γ ′, there is a γ ∈ Γ such that γ � γ′. We write Γ ≡ Γ ′

to denote that both Γ � Γ ′ and Γ ′ � Γ . The following lemma follows from
Lemma 1.

Lemma 2. Let Γ1, Γ2, Γ3 be sets of configurations. If Γ1 =⇒ Γ2 and Γ3 � Γ1,
then there is a set of configurations Γ4 such that Γ3 =⇒ Γ4 and Γ4 � Γ2.

For a set Γ of configurations, we define the distance dist(Γ ) of Γ to be the
smallest n such there is a sequence Γ0 =⇒ Γ1 =⇒ Γ2 =⇒ · · · =⇒ Γn, where Γ0 =
Γ , and Γn is not accepting. In other words, dist(Γ ) gives the shortest distance
through =⇒ from Γ to a non-accepting set of configurations. If Γ is universal
then we define dist(Γ ) = ∞. Notice that dist(Γ ) = 0 iff Γ is not accepting. The
following two lemmas relate (non-)universality of a set Γ of configurations to
the (non-)universality of its successors.

Lemma 3. For a set Γ of configurations, if 0 < dist(Γ ) < ∞ then there is a
Γ ′ ∈ (Γ =⇒) such that dist(Γ ′) < dist(Γ ).

Lemma 4. For a set Γ of configurations, Γ is universal iff Γ is accepting and
each Γ ′ ∈ (Γ =⇒) is universal.

Notice that if Γ � Γ ′ and Γ ′ is not accepting then Γ is not accepting. This,
together with Lemma 2, implies the following lemma. The lemma shows the
relation between the entailment relation and the distance function.

Lemma 5. For sets Γ and Γ ′ of configurations, if Γ � Γ ′ then dist(Γ ) ≤
dist(Γ ′).

4 Zones

We will use zones as a symbolic representation of (infinite) sets of configu-
rations in our universality algorithm. We assume a timed automaton A =
(Σ, S, sinit , F, E). For each s ∈ S, we will use a set Xs of variables ranging
over R+. We use X to denote the set

⋃
s∈S Xs. For x ∈ Xs, we use type (x) to

denote the control state s.

Zones. A zone condition ϕ is one of the forms x ∼ k, k ∼ x, or y − x ∼ k,
where ∼∈ {≤, <}, x, y ∈ X , and k is an integer. A zone Z is a finite conjunction
of zone conditions. Sometimes, we consider a zone Z to be a set and write, for
instance, (x ∼ k) ∈ Z to indicate that x ∼ k is one of the conjuncts in Z. We
use Var (Z) to denote the set of variables which occur in Z.
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Consider a zone Z, a configuration γ, and a mapping h : Var (Z) �→ γ. We
write γ |=h Z to denote that, for each x, y ∈ Var (Z), the following conditions
are satisfied:

– type (x) = state (h(x)).
– if (x ∼ k) ∈ Z then val (h(x)) ∼ k.
– if (k ∼ x) ∈ Z then k ∼ val (h(x)).
– if (y − x ∼ k) ∈ Z then val (h(y)) − val (h(x)) ∼ k.

We write γ |= Z to denote that γ |=h Z for some h. We use [[Z]] to denote the
set {γ| γ |= Z}. Intuitively, each variable in Var (Z) represents one global state.
The configurations in [[Z]] contain global states whose control states are defined
by the types of the corresponding variables, and whose clock values are related
according to the zone conditions.

We say that Z is universal if [[Z]] is universal. Similarly, we say that Z is
accepting if [[Z]] is accepting. Let Y be a set of variables. By Z [Y ], we mean the
zone we get from Z by removing all conjuncts which contain a variable in Y .
For a set Z of zones, we use Z [Y ] to denote the set {Z [Y ] | Z ∈ Z}.

For zones Z and Z ′, abusing notation, we use Z ≡ Z ′ resp. Z � Z ′ to denote
that [[Z]] ≡ [[Z ′]] resp. [[Z]] � [[Z ′]] , and use dist(Z) to denote dist([[Z]]). We use
Post(Z ) to denote a finite set Z of zones such that

⋃
Z′∈Z [[Z ′]] = ([[Z]] =⇒). In

Section 7, we show that such a set exists and is computable. A zone Z is said to
be consistent if [[Z]] �= ∅.

Lemma 6. For a zone Z, we can check whether Z is consistent or not.

Notice that an inconsistent zone is trivially universal.

Normal Form. A zone Z is said to be in stable if the following four conditions
are satisfied:

– If (y − x ≤ k1) ∈ Z and (z − y ≤ k2) ∈ Z then (z − x ≤ k3) ∈ Z for some
k3 ≤ k1 + k2.

– If (x ≤ k1) ∈ Z and (y − x ≤ k2) ∈ Z then (y ≤ k3) ∈ Z for some k3 ≤
k1 + k2.

– If (y − x ≤ k1) ∈ Z and (k2 ≤ y) ∈ Z then (k3 ≤ x) ∈ Z for some k3 ≥
k2 − k1.

– If (y − x ≤ k1) ∈ Z then (k2 ≤ x) ∈ Z for some k2 ≥ −k1.
– Similar conditions hold in the case of strict inequalities.

A zone Z is said to be in normal form if all the constants appearing in the
definition of Z are less than or equal to cmax . It is straightforward [15] to show
the following

Lemma 7. For each zone Z, we can construct:

– a stable zone ZS such that (i) Var (ZS) = Var (Z); and (ii) γ |=h ZS iff
γ |=h Z for each γ and h

– A zone ZN in normal form such that ZN ≡ Z.

Notice that the first part of the lemma implies that [[ZS ]] = [[Z]]. We use
Stabilize(Z) and Norm(Z) to denote ZS and ZN respectively. For a set Z of
zones, we define Stabilize(Z) = {Stabilize(Z)| Z ∈ Z and Z is consistent}.
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5 Algorithm

The zone-based universality algorithm is defined as follows:

Algorithm 1. Zone-Based Universality Checking
Input: A zone Zinit .
Output: Is Zinit universal?

ToExplore := {Zinit}
Explored := ∅
while ToExplore �= ∅

remove some Z from ToExplore
if Z is not accepting then

return (false)
else if ∃Z′ ∈ Explored. Z′ � Z then

discard Z
else

ToExplore := ToExplore
�

{Norm(Z′)| Z′ ∈ Post(Z )}
Explored := {Z}

�
{Z′| Z′ ∈ Explored ∧ (Z �� Z′)}

return (true)
end

The algorithm inputs a zone Zinit , and should check whether Zinit is universal
or not. The algorithm maintains two sets of zones: a set ToExplore, initialized
to {Zinit}, of zones which have not yet been analyzed; and a set Explored,
initialized to the empty set, of zones which contains information about the set of
zones which already have been analyzed. The algorithm preserves the following
two invariants:

– some zone in (ToExplore
⋃

Explored) is non-universal iff Zinit is non-
universal; and

– If Zinit is non-universal, then ∃Z ∈ ToExplore. ∀Z′ ∈ Explored. dist(Z) <
dist(Z′).

Due to the invariants, the following two conditions can be checked during each
step of the algorithm:

– if ToExplore becomes empty then the algorithm terminates with a positive
answer; and

– if a non-accepting zone is detected then the algorithm terminates with a
negative answer.

If neither of the two conditions is satisfied, the algorithm proceeds by picking
and removing a zone Z from ToExplore. Two possibilities arise depending on
the value of Z:

– If there exists a zone Z ′ ∈ Explored with Z ′ � Z, then we discard Z. The
first invariant is preserved by Lemma 5. If Zinit is non-universal, then the
second invariant and Lemma 5 imply that there is still some Z ′′ ∈ ToExplore
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such that dist(Z ′′) < dist(Z ′) ≤ dist(Z). This means that the second invari-
ant will also be preserved by this step.

– Otherwise, we generate the zones in Post(Z ), normalize each one of them
(Lemma 7), and then put it in ToExplore. The first invariant will be pre-
served by Lemma 4, while the second invariant will be preserved by Lemma 7,
Lemma 5, and Lemma 3.

Partial correctness of the algorithm follows immediately from the invariant. It
remains to show that:

– The algorithm terminates (done in Section 6).
– We can compute Post and can check the entailment relation � on zones

(done in Section 7 and Section 8).

Remark. Observe that the correctness of the algorithm is preserved in case we
replace � in the algorithm by any ordering �′ such that �′⊆� (i.e., Z �′ Z ′

implies Z � Z ′).

6 Termination

Using the methodology of [16] it can be shown that the universality algorithm of
Section 5 is guaranteed to terminate in case � is a well quasi-ordering (WQO).
Following the framework of [14], we show that � in fact satisfies a stronger
property than WQO; namely that it is a better quasi-ordering (BQO).

6.1 WQOs and BQOs

A quasi-ordering, or a QO for short, is a pair (A, �) where � is a reflexive and
transitive (binary) relation on a set A. A QO (A, �) is a well quasi-ordering, or
a WQO for short, if for each infinite sequence a1, a2, a3, . . . of elements of A,
there are i < j such that ai � aj . For a set B ⊆ A, we define min(B) to be a
subset of B which satisfies the following two properties:

– for each a ∈ B there is a b ∈ min(B) with b � a.
– the elements of min(B) are not related by �, i.e., there are no a, b ∈ min(B)

with a � b.

If there are several sets satisfying the above two conditions, then we assume that
min(B) gives an arbitrary (but fixed) such a set. Notice that if � is a WQO then
min(B) is finite.

Given a QO (A, �), we define a QO (A∗, �∗) on the set A∗ such that
x1 x2 · · · xm �∗ y1 y2 · · · yn if and only if there is a strictly monotone injection
h from {1, . . . , m} to {1, . . . , n} such that xi � yh(i) for each i : 1 ≤ i ≤ m. We
define the relation �P on the set P(A) of finite subsets of A, so that A1 �P A2
if and only if ∀b ∈ A2 : ∃a ∈ A1 : a � b.

Lemma 8. For sets A1, A2 ⊆ A, we have A1 �P A2 iff min(A1) �P min(A2).
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In the following lemma we state some properties of BQOs1 [14,17].

Lemma 9. 1. Each BQO is WQO.
2. If A is finite then (A, =) is BQO.
3. If (A, �) is BQO then (A∗, �∗) is BQO.
4. If (A, �) is BQO then

(
P(A), �P)

is BQO.
5. If (A, �1) is BQO and �1⊆�2 then (A, �2) is BQO.

(Sets of) Configurations are BQO. Fix an automaton A = (Σ, S, sinit , F, E)
For a global state q, we define the signature sign (q) to be a pair (s, k) ∈ S ×
{0, 1, 2, . . . , 2 · cmax + 1}, where s = state (q) and k is defined as follows:

– k = 2 · �val (q)� if val (q) ≤ cmax and fract (val (q)) = 0.
– k = 2 · �val (q)� + 1 if val (q) < cmax and fract (val (q)) > 0.
– k = 2 · cmax + 1 if val (q) > cmax .

For a configurationγ,wedefine sign (γ) to beawordoverS×{0, 1, . . . , 2 · cmax +1}
of the form r0r1 · · · rn such that the following properties are satisfied:

– {sign (q) | q ∈ γ} = r0 ∪ r1 ∪ · · · ∪ rn.
– If q ∈ ri and q′ ∈ rj then fract (q) ≤ fract (q′) iff i ≤ j.

The signature can be viewed as an encoding of the region to which the configu-
ration belongs. The ordering among the sets inside the word reflects the relative
ordering of the fractional parts. The control states, the integral parts of the clock
values, and whether the fractional part is equal to zero, are all stored inside the
signature of each global state. Observe that a signature is not an exact encoding
of region, as the former keeps track of the fractional parts of clocks greater than
cmax , while a region equates all such clock values. We define an ordering on
configurations induced by signatures as follows. Consider configurations γ and
γ′ such that sign (γ) = r0r1 · · · rm and sign (γ′) = r′0r′1 · · · r′n. We use γ � γ′ to
denote that there is a strictly monotonic2 injection h : {0, . . . , m} �→ {0, . . . , n}
such that ri ⊆ r′h(i) for each i : 0 ≤ i ≤ m. The above mentioned relation be-
tween regions and signatures is captured in the following lemma (a formal proof
can be given in a similar manner to see [18] or [8]).

Lemma 10. For configurations γ and γ′ if γ � γ′ then γ � γ′

We observe that the signature of each configuration is a finite word over finite
sets over a finite alphabet (namely finite sets over S×{0, 1, 2, . . . , 2 · cmax + 1}).
Consequently, Lemma 9 (Property 2 and Property 3) gives the following:

Lemma 11. � is a BQO on the set of configurations.

From Lemma 10, Lemma 11, and Lemma 9 (Property 5) we get the following:

1 The technical definition of BQOs is quite complicated and can be found in e.g. [14].
The actual definition is not needed for understanding the rest of the paper, and is
therefore omitted here.

2 Strict monotonicity means that i < j implies h(i) < h(j).
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Corollary 1. � is a BQO on the set of configurations.

From the definition of � on zones, Corollary 1, Lemma 8, and Lemma 9 (Prop-
erty 4) we get the following

Lemma 12. � is a BQO on zones.

Lemma 12 and Lemma 9 (Property 1) give the following:

Corollary 2. � is a WQO on zones.

7 Computing Successors

In this section, we show how to compute Post(Z ) for some zone Z. We compute
Post(Z ) as PostD (PostT (Z )), where PostT and PostD characterize timed resp.
discrete successors of Z.

Timed Successors. For a zone Z, we let PostT (Z ) denote the zone Z ′ such
that [[Z]] δ−→T [[Z ′]]. In other words, Z ′ characterizes the set of configurations
which are timed successors of configurations in [[Z]]. To compute Z ′, we first
compute the zone Z ′′ where Z ′′ is stable and where [[Z ′′]] = [[Z]] (Lemma 7). We
can derive PostT (Z ) from Z ′′ by deleting all clock conditions of the forms x ≤ k
and x < k in Z ′′. This gives the following:

Lemma 13. For a zone Z, we can compute PostT (Z ).

Discrete Successors. Fix a timed automaton A = (Σ, S, sinit , F, E) and a
zone Z. Informally, the idea of computing PostD (Z ) is as follows. We recall that
each variable in x ∈ Var (Z) represents one global state q in a configuration
γ ∈ [[Z]]. The global state q (represented by x) produces a (possibly empty)
set of successors. More precisely, each edge e = (s, s′, φ, a, R) which “matches”
x may produce a successor global state q′. Here, x and e are considered to be
matching if type (x) is identical to the source control state s in e. Notice that a
successor is generated only if val (q) satisfies φ. In this manner, a configuration γ
produces a set of successors, reflecting the different successors of the individual
global states in γ. We formalize the above reasoning in a number of steps.

First, we define the set of matching variables and edges. For a variable x ∈
Var (Z) and a label a ∈ Σ, we let E(x, a) be the set of edges whose source
control state is type (x) and whose label is a. For an a ∈ Σ, we define the set
Z � a = {(e, x) | x ∈ Var (Z) ∧ e ∈ E(x, a)}. For each pair (e, x) ∈ (Z � a),
we use a fresh variable y(e,x) (i.e., y(e,x) is not a member of Var (Z)). We define
type

(
y(e,x)

)
to be the target control state of e. Intuitively, for e = (s, s′, φ, a, R),

the set Z �a contains all pairs (e, x) which are matching, i.e., type (x) = s. Each
such a pair can potentially generate a new global state, represented by a new
variable y(e,x) in PostD (Z ). Since the control state of the new global state will
be s′, the type of y(e,x) is also defined to be s′.

For (e, x) ∈ Z � a with e = (s, s′, φ, a, R), we define Z ⊗ (e, x) to be one of
the following sets:
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– if R = ff then Z ⊗ (e, x) =
{
(y(e,x) = x) ∧ φ(x) , ¬φ(x)

}
.

– if R = tt then Z ⊗ (e, x) =
{
(y(e,x) = 0) ∧ φ(x) , ¬φ(x)

}
.

Intuitively, for each pair (e, x), there are two possibilities: either (i) the guard
φ is satisfied, in which case we generate a new global state represented by the
new variable y(e,x) in Post(Z ); or (ii) φ is not satisfied in which case no new
variable is added to Post(Z ). If a new global state is added then, depending on
the value of R, there are two possibilities: either (i) its clock value is equal to
the clock value of the original global state; or (ii) its clock value is equal to 0. In
the first case we add the condition y(e,x) = x, while in the second case we add
the condition y(e,x) = 0.

For a ∈ Σ, we define Z ⊗ a to be the set of zones of the form
⎛

⎝
∧

(e,x)∈(Z�a)

φ(e,x)

⎞

⎠ ∧ Z

where φ(e,x) ∈ (Z ⊗ (e, x)) for each (e, x) ∈ (Z � a). Finally, we define:

Z ⊕ a = (Stabilize (Z ⊗ a)) [Var (Z)]

Each member of Z ⊗ a is a zone which represents the conjunction of the original
zone Z with one of the zones in PostD (Z ). To obtain the new zone, we abstract
from the variables of Z. The purpose of stabilization is to avoid losing information
when removing the elements of Var (Z). The following lemma shows correctness
of the above construction.

Lemma 14. PostD (Z ) =
⋃

a∈Σ

Z ⊕ a.

8 Checking Entailment

In this section, we describe how to implement the entailment relation � on
zones. In fact, there are two methods of computing Z1 � Z2. The first method
is to generate the regions in Z1 and Z2, and compare them for entailment. This
method is still less sensitive to constraint explosion than regions-based methods
(methods which only use regions), since only a subset of the regions (namely the
ones in Z1 and Z2) need to be stored at a time. Another method (which we have
used in our experimentation) is to construct a logical formula (in a decidable
theory) which gives a characterization of the entailment relation. More precisely,
the formula corresponds to an ordering �′ on zones which implies �. As indicated
in Section 5, the correctness of the universality algorithm will be preserved using
the new ordering �′. However, the algorithm will not be guaranteed to terminate
unless �′ itself is a WQO. This is due to the fact that zones may avoid being
discarded although they are entailed (according to �) by other zones. The use
of �′ may still be motivated if they run efficiently on more examples in practice.

Here, we use formulas in a decidable logic which we call Difference Bound Logic
(DBL). The atomic formulas are either of the form x ≤ k or of the form y−x ∼ k,
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where x and y are variables interpreted over R+ and k ∈ N. Furthermore the set
of formulas is closed under the propositional connectives. It is easy to see that
validity of DBL-formulas is NP-complete.

Given a zone Z with Var (Z) = {x1, . . . , xm}, it is sometimes convenient to
view Z as a predicate Z(x1, . . . , xm) on the set N

m. Observe that γ |=h Z iff
Z(h(x1), . . . , h(xn)) holds. For zones Z1 and Z2, a renaming from Z1 to Z2 is
a mapping R : Var (Z1) �→ Var (Z2) such that type (x) = type (R(x)). We use
Ren(Z1)(Z2) to denote the set of renamings from Z1 to Z2.

Lemma 15. For zones Z1 and Z2 with Var (Z1) = {x1, . . . , xm} and Var (Z2) =
{y1, . . . , yn}, if

∀y1, . . . , yn.

⎛

⎜
⎜
⎝

Z2(y1, . . . , yn) =⇒
∨

R∈Ren(Z1)(Z2)

Z1(R(x1), . . . , R(xm))

⎞

⎟
⎟
⎠

then Z1 � Z2.

Notice that the above is a DBL-formula.

Remark. Lemma 15 defines an ordering �′ which implies �. More precisely, in
�′ we take into consideration clock differences even for clocks whose values are
greater than cmax . In fact, we can modify �′ so that it coincides with �. This
can be achieved by modifying the disjunction through adding formulas which
equate clock values greater than cmax . This can be expressed as a DBL-formula
in a straightforward manner. In this manner, the termination of the algorithm
will still be guaranteed when using �′.

9 Experimentation

We have implemented two prototypes to check universality for single-clock timed
automata. One of the implementations is based on zones, whereas the other one
uses a more compact representation of zones, called Difference Decision Diagrams
(DDD), and is based on a package developed at the Technical University of
Denmark [19]. We have used these prototypes to check several timed automata
for universality. As a reference tool, we used the region-based implementation
developed at the Oxford University Computing Laboratory.

In Table 1 we present the results of the tests. For each timed automaton, we
give the number of control states, edges, cmax , whether universality holds or
not, and the execution time for each of the three methods. We use “not term.”
to indicate that the program did not terminate after more than 24 hours, or
that the program stopped without solving the problem due to an out-of-memory
exception. All tests were conducted on a Sun workstation with 4.0 GB memory
and a 1.0 GHz UltraSPARC-IIIi processor. For both the zone- and region-based
implementations we used Java version 1.5.0 05. The DDD-based implementation
is compiled with gcc version 2.7.2.3.
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Table 1. Experimental results

|S| |E| cmax univ? Region Zone DDD
3 4 1 no 21 ms 13 ms 10 ms
3 4 25 no 364 ms 13 ms 0 ms
3 4 50 no 636 ms 14 ms 10 ms
3 4 10000 no 4 hr 49 min 38 sec 601 ms 13 ms 10 ms
10 22 2 yes 639 ms 61 ms 70 ms
10 22 6 yes 550 ms 41 ms 50 ms
10 22 25 yes 1 sec 526 ms 40 ms 70 ms
10 29 135 yes 20 s 981 ms 4 sec 418 ms not term.
10 29 235 yes 1 min 9 sec 20 ms 3 sec 558 ms not term.
10 29 335 yes 2 min 24 sec 21 ms 3 sec 746 ms not term.
10 38 335 yes 1 min 43 sec 175 ms 20 sec 184 ms not term.
10 44 35 no 3 sec 181 ms 4 min 28 sec 762 ms 1 sec 10 ms
10 44 170 no 27 sec 227 ms 2 min 57 sec 715 ms 670 ms
10 44 560 no 1 min 25 sec 289 ms 6 sec 758 ms 870 ms
10 44 1635 no 41 min 20 sec 623 ms 3 sec 523 ms 320 ms
10 44 2635 no 2 hr 44 sec 135 ms 10 sec 300 ms 1 sec 600 ms
10 44 3635 no 2 hr 1 min 26 sec 921 ms 14 sec 174 ms 1 sec 580 ms
10 44 5635 no 5 hr 21 min 9 sec 24 ms 13 sec 457 ms 1 sec 680 ms
10 44 11635 no not term. 15 sec 207 ms 1 sec 540 ms
10 30 9335 yes not term. 3 sec 599 ms not term.
20 53 4335 yes not term. 7 sec 061 ms not term.
25 63 3000 yes not term. 40 sec 324 ms not term.
20 53 4335 no not term. 13 sec 132 ms 12 sec 410 ms
10 30 9880 no not term. 11 sec 52 ms 300 ms
25 65 10000 no not term. 1 sec 225 ms 480 ms
25 65 10000 no not term. 10 min 27 sec 614 ms 2 sec 670 ms

In 16 out of 26 tests the execution time of the DDD-based program is smaller
than that of the other programs. However, the zone-based prototype is almost as
efficient as the DDD-based prototype, as the differences between the execution
times are very small, i.e., within a time span of no more than seconds in most of
the cases. This is in contrast to the significant differences between the run times
of region- and zone-based implementations, varying between milliseconds and
hours. As expected, the region-based implementation performs badly for high
values of cmax . Notice that the run times of both the DDD- and the zone-based
prototypes remain relatively stable under changes of the value of cmax .

10 Conclusions and Future Work

We have presented a zone-based algorithm for solving the universality problem
for timed automata with a single clock. We prove termination of the algorithm
using the theory of better quasi-orderings, a refinement of the theory of well
quasi-orderings. One interesting direction for future work is to extend the algo-
rithm so that we solve the more general problem of language inclusion. Another
challenge is to extend the algorithm to deal with the case of general (multi-
clock) timed automata. In fact, we can modify the notion of zones by adding
extra information to keep track of clocks which belong to the same state inside
a configuration. In such a case, computing successors and checking entailment
can be carried out in a similar manner to the methods of this paper. How-
ever, the entailment relation will not be a well quasi-ordering, and therefore the
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universality algorithm will no more be guaranteed to terminate. This is expected
since the problem is undecidable for multi-clock timed automata. Despite this,
using zones may make the algorithm terminate sufficiently often so that it be-
comes practically interesting even for the general case.
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Abstract. In this paper, we propose a component-based approach to
verify system-level designs. The coordination language Reo is selected as
an Architecture Description Language (ADL) to model system designs
written in SystemC. In our approach we map a SystemC design to a Reo
circuit, and then construct the corresponding constraint automata which
show the behavior of the system and can be used for analysis purposes.
The elegance of our approach is in using Reo and constraint automata as
a pair to capture the structure and the behavior of the system together.
We checked the correctness of our approach by comparing the SystemC
simulation kernel behavior with the behavior of the glue code we pro-
posed.

Keywords: hardware design, formal verification, Reo, constraint au-
tomata, SystemC.

1 Introduction

Variants of general-purpose programming languages, like SystemC [1] are in-
creasingly used to specify system-level designs that have both hardware and soft-
ware parts. Using these languages, the decision concerning hardware/software
partitioning may be deferred to later stages. SystemC also enables the design
team to design systems at a high level of abstraction. This higher level of ab-
straction gives the designers a fundamental understanding early in the design
process of the interactions of the entire system and enables better and earlier
verification [1].

Most engineering designs can be viewed as systems, i.e., as collections of sev-
eral components whose combined operation provides useful services. Components
can be heterogeneous in nature and their interaction may be regulated by some
simple or complex means. So, the application of component-based modeling in
design and verification of hardware systems seems to be practical [2,3,4].

Here we use a unified method based on components for system-level design,
considering hardware and software, and different levels of abstraction. Using
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a verifiable component-based language, we provide formal verification support.
Existing approaches and tools for verifying hardware/software co-designs mainly
apply non-formal approaches or handle only low-level specifications. But formal
verification is getting more and more attention as a technique to verify/validate
the hardware/software co-designs sufficiently [5,6,7].

The specification languages typically fall into two classes with diverse pros
and cons [8]. The first set of specification languages is called Architecture De-
scription Languages (ADLs). The second set consists of general formal models
usually based on the automata theory. The essential drawback of the ADLs is
that their specification power is limited by the underlying model which is of-
ten not general enough to preserve all the interaction properties which might
arise through the component composition. Additionally, the verification within
an ADL framework usually supports a verification of only a small fixed set of
properties often unique for the language [8]. The automata-based models (as
opposite to ADLs) are highly formal and general, and usually supported by au-
tomated verification tools (model-checkers in particular). However, these models
are designed for modeling of component interaction only and therefore are unable
to describe the interconnection structure of hierarchical component architecture
which also influences the behavior [8].

In this work, Reo [9] and constraint automata [10] are used for modeling
system designs written in SystemC. The supporting tools and techniques can
be used for formal verification. We use Reo as an ADL language to model the
systems and then construct the corresponding constraint automata which show
the behavior of the systems and can be used for analysis purposes. The power
and elegance of our approach is in using Reo and constraint automata as a pair
to capture the structure and the behavior of the systems together. The behav-
ior of the system components can be modeled directly by constraint automata
without coping with the details of their internal structure. The coordination and
communication between components are captured by Reo circuits. The capabil-
ity of Reo in modeling synchrony and asynchrony together, makes the language
suitable for designing hardware systems.

In this paper we show how a SystemC code can be mapped to Reo circuits.
The process is as follows:

– Get system designs written in SystemC
– Model the behavior of the SC METHOD and SC THREAD processes in the

design by constraint automata
– Use Reo channels to connect SC METHOD and SC THREAD processes in

the design together and visualize the architecture of the system
– Obtain the behavior of the system compositionally by joining the constraint

automata of the processes and the constraint automata of the Reo circuits
used in the model

We show how the processes in a SystemC code are mapped to constraint
automata and how the communication between processes is modeled by Reo
circuits and then mapped into constraint automata. By this approach, given a
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SystemC code, we have a visual representation of the design architecture and its
behavior.

This work is based on the work proposed in [11] but is significantly extended
according to the further results gained by working on SystemC designs and
SystemC simulation kernel semantics. In [11], the system is first partitioned into
combinational and sequential hardware and software components and then Reo
is used for connecting the components. Here, we do not need to partition the
system and the connecting Reo circuit is designed based on the types of the
processes in SystemC designs.

We can alternatively start the design process from the architecture of the
system captured as a Reo circuit (instead of a SystemC code) and then proceed
to obtain the constraint automata of the whole system to be able to analyze the
behavior of the system.

Outline of the paper. In the next section we have an overview of the related
work. Then, a brief background of SystemC, Reo and constraint automata is
presented in Section 3. Section 4 explains our approach where Reo circuits are
made from SystemC designs. The mapping of SystemC processes to constraint
automata is also presented in this section. Section 5 is a short conclusion and a
view of our future work.

2 Related Work

Related projects mainly concern defining SystemC semantics and verifying Sys-
temC designs. For instance, Salem presented the formal semantics of a synchronous
subset of SystemC using denotational semantics [12]. The subset includes mod-
ules, processes, threads, wait statement, ports and signals. The author proposes a
formal model for SystemC delta time and gives a semantic definition for the lan-
guages two-phase scheduler. The work in [12], however, provides the description of
the above parts only using general syntactic rules. It does not provide any specific
definitions for basic SystemC components and processes [5].

In [7], an approach is given in order to translate SystemC models into a Petri-
net based representation. The Petri-net model is then used for model checking
of properties expressed in a timed temporal logic. The authors focused on the
translation of some SystemC mechanisms like method calls, scheduler, signals
and wait statements into the proposed representation. The approach is particu-
larly suitable for models at a high level of abstraction, such as transaction-level.
The Petri-net models become very complicated even for small SystemC designs
and can not visualize the behavior of the designs clearly.

Kroening and Sharygina [6] translate SystemC models into Labeled Kripke
Structures (LKS). Their approach does not take either timing or signal aspects
into account. Their work is more focused on an abstraction-refinement approach
based on automatic hardware/software partitioning.

The work of Vikram [13], derives the Finite State Machine (FSM) model of
the SystemC designs. In that approach, the design in SystemC is first translated
to C. Then, the FSM is generated from the C code. This approach is problematic
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in the sense that translating SystemC to C is not always feasible. The technique
can not be applied to SystemC considering the object oriented nature of the
library and that not all of the SystemC is synthesizable [14].

In [5], a methodology is presented to verify SystemC designs based on a defini-
tion for SystemC semantics using Abstract State Machines (ASMs) [15]. In this
methodology the SystemC design is abstracted into hypergraphs to keep a sim-
plified view of the design including only processes status, activation conditions
and order of execution. The latter is then modeled with ASMs and compiled
with the AsmL tool in order to generate a finite state machine that can be used
for formal verification by external tools linked to ASM, such as model checkers
or theorem provers.

In our previous work [11], we used Reo [9] for specification of system level
designs. Constraint automata can be constructed from Reo circuits and can be
formally verified. In that work, only the coordination and communication be-
tween different components of a system are modeled in Reo, and nothing is
said about modeling the components themselves. Here, we focus on the model-
ing of behavior of the SystemC processes as components and also elaborate on
the mapping between coordination and communication extracted from SystemC
codes and Reo circuits. We start from SystemC designs, visualize the architec-
ture of the systems using Reo and analyze them by constraint automata. Our
method is easy to use and can be used in different levels of abstraction. It also
supports compositional and formal verification of SystemC designs based on the
tools developed for analyzing constraint automata.

3 Background

3.1 SystemC

SystemC was originally developed for specification of low-level designs. The main
motivation of SystemC is that a circuit model can be compiled using a regular
C++ compiler, and then simulated efficiently. The SystemC language includes
all constructs allowed in C++, although a very small subset is actually synthe-
sizable.

Modularization in SystemC is implemented by means of C++ classes: the
SystemC construct, SC MODULE, is simply a pre-processor macro for a class
definition. The behavior of a module is specified by defining one or more pro-
cesses which are executed concurrently. A process is either an SC METHOD, an
SC THREAD, or an SC CTHREAD.

A process has a list of events that activate the process. This list of events is
called the sensitivity list of the process. SC METHOD processes never suspend
internally. They can never invoke wait and must avoid using calls to block-
ing methods. Whenever an event occurs on any of the signals to which an
SC METHOD process is sensitive, the SC METHOD process will run atomi-
cally and return.

SC THREAD processes are started once and only once by the simulator.
Once a thread starts to execute, it is in complete control of the simulation until
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it chooses to return control to the simulator. SystemC offers two ways to pass
control back to the simulator. One way is to simply exit and the other way is
the wait statement. When an SC THREAD process exits, it is terminated for
the rest of the simulation. The wait suspends the SC THREAD processes until
it is again activated by an event. Therefore, SC THREAD processes typically
contain an infinite loop containing at least one wait.

SC CTHREAD is a variation on the SC THREAD and has the requirement
of being sensitive to a clock. For every SC CTHREAD process, a correspond-
ing SC Thread process with the same behavior can be substituted. So, in our
approach, we only consider the Method and Thread processes.

Events may be generated explicitly by a process (notifying an SC EVENT),
or implicitly by changing signal values.

The simulation kernel of SystemC has a two-dimensional timing. One dimen-
sion is the actual physical time and the other is delta time. Delta time is used
to model the concurrent execution of the hardware systems. So, if processes
that are running concurrently, change the values of some signals, the values of
the signals shall be updated simultaneously after a delta time delay which is a
zero-real-time interval.

3.2 Reo

Reo is a model for building component connectors in a compositional manner [9].
Reo connectors are constructed in the same spirit as logic and electronics circuits:
take basic elements and connect them. Basic connectors in Reo are channels.
Each channel has exactly two ends, which can be a sink end or a source end. A
sink end is where data flows out of a channel, and a source end is where data
flows into a channel.

Channels are connected to make a circuit. Connecting (or joining) channels is
putting channel ends together in a node. So, a node is a set of coincident channel
ends. The semantics of a node is as follows. A component can write data items
to a source node that it is connected to. The write operation succeeds only if
all (source) channel ends coincident on the node accept the data item, in which
case the data item is transparently written to every source end coincident on the
node. A source node, thus, acts as a replicator. A component can obtain data
items, by an input operation, from a sink node that it is connected to. A take
operation succeeds only if at least one of the (sink) channel ends coincident on
the node offers a suitable data item; if more than one coincident channel end
offers suitable data items, one is selected nondeterministically. A sink node, thus,
acts as a nondeterministic merger.

The simplest channels used in these connectors are synchronous (Sync) chan-
nels, represented as simple solid arrows (Figure 1.a). A Sync channel has a source
and a sink end, and no buffer. It accepts a data item through its source end iff it
can simultaneously dispense it through its sink. A lossy synchronous (LossySync)
channel is similar to a Sync channel, except that it always accepts all data items
through its source end. If it is possible for it to simultaneously dispense the
data item through its sink (e.g., there is a take operation pending on its sink)
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the channel transfers the data item; otherwise the data item is lost. LossySync
channels are depicted as dashed arrows (Figure 1.b). FIFO1 is an asynchronous
channel with the bounded capacity of 1 (Figure 1.c). The small box in the middle
of the arrow represents its buffer.

Fig. 1. A Set of Basic Reo Channels

3.3 Constraint Automata

Constraint automata [10] is proposed as compositional semantics for Reo, based
on timed data streams [16]. Each element of a timed data stream is a pair of
time and a data item, where the time indicates when the data item is being
input or output. A transition ma be fired when a data item is observed at a
port of the component and according to the observed data, the automaton may
change its state. A constraint automaton (over the data domain Data) is a tuple
A = (Q, Names,−→, Q0) where Q is a finite set of states, Names is a finite set
of names, −→ is a finite subset of Q × 2Names × DC × Q, called the transition
relation of A, and Q0 ⊆ Q is the set of initial states. In the transition relation,
DC represents the data constraints.

Each channel in Reo, and the merger nodes are mapped to a constraint au-
tomaton. Some examples of this mapping are depicted in Figure 2. Constraint
automata have some operations (i.e. join and hide), that allow joining of the
constraint automata [10].

Fig. 2. Constraint automata for some basic Reo channels, and merger node

To simplify constraint automata where data plays a significant role in com-
putation, a parameterized notation of constraint automata is proposed in [10].
The transitions of a parameterized constraint automaton may have an action
set which consists of some expressions. An expression is built from constants
d ∈ Data, the symbols dB for B ∈ Names, variables and operators for the
chosen data domain (e.g., boolean operator ∨, ∧, etc. for Data = (0, 1) and
arithmetic operators +, -, etc. for Data = N). The expressions in the action set
of each transition are executed when the transition is fired.
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4 Mapping SystemC Designs to Reo Circuits

In our approach, we get the description of a system in SystemC. Then we distin-
guish the constituent components of the system and their communication rela-
tion. The processes in a SystemC design, either SC METHOD or SC THREAD,
build up the components of the system. Each process is modeled as a constraint
automaton using the control graph of the process. The communication and co-
ordination is modeled by Reo circuits. The behavior of the whole system is
compositionally obtained by joining the constraint automata of the processes
and the constraint automata of the Reo circuits. We first studied the SystemC
simulation kernel carefully and mapped it to constraint automata. The simu-
lation kernel of SystemC is responsible for executing a concurrent model in a
sequential system. We consider the results in this mapping and instead of cop-
ing with all the details of simulation kernel we put the Reo circuits as the glue
code between the components. Using Sync channels in Reo circuits allows the
components of the model to be executed concurrently and helps us to abstract
delta time in SystemC simulation. Although these two approaches is consistent,
the second one is simpler and gives us better visualization of the architecture of
the systems.

4.1 Determining the Constituent Components

We get the description of a system in SystemC from which the components of
the system are determined. Each process of a SystemC design (SC METHOD
or SC THREAD) is considered as a component of the system.

Each SC METHOD is mapped to a component which has an input port for
each signal in the sensitivity list of the process and an output port for each signal
to which it writes into. Components related to SC THREAD processes have an
input port for each signal which they call wait statement on it, and an output
for each signal that they writes to it.

4.2 Constraint Automata of the Components

After determining the components of the system, a constraint automaton is
derived for each component. These constraint automata are captured through
the paths and sub-paths in the control graph of the related processes. In the
following, first we show how the paths and sub-paths are defined in the control
graph of the processes. Then we explain how the constraint automata of the
SC METHOD processes and the constraint automata of SC THREAD processes
are derived respectively.

Two variables are considered for each signal; data and V alue. The data vari-
able is temporary and read only. It can be used only on the transitions which has
the corresponding signal in their name set. It contains the current value of the
signal and is shown as data signalName. On the other hand, the V alue variable
contains the current value of the signal and even can be used in a transition that
does not have the signal in its name set. The name of this variable is equal to
the name of the related signal. Whenever a new value is written to a signal, the
corresponding V alue variable gets the new value.
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Paths and Sub-paths in Processes. SystemC is a C++ class library. There-
fore any C++ construct can be used in describing the behavior of a process. By
considering the statements in the body of a process, a control graph is obtained.
There are different paths in the control graph, starting from the first statement
and going through the consequent statements. The paths are formed by selec-
tion statements. We consider these paths to construct the constraint automaton
of each process and call them processpaths. A condition and an action set is
considered for each process path. The condition set is obtained by integrating
all the selection conditions in the process path. The action set consists of all the
statements except selection statements in the path. Figure 3 is a small ALU

SC MODULE(Alu Module) { void Alu Module : alu Method() {
sc in〈bool〉 reset; if (reset.read() == 1) {
sc in〈int〉 op; I =0;
sc in〈int〉 in data; out data.write(0);
sc out〈int〉 out data; }
sc int I; else {
SC CTOR(Alu Module) { switch(op) {

SC METHOD(alu Method); case 1 :
Sensitive〈〈reset〈〈op; I = 1;

} out data.write(in data + I );
break;
case 2 :

path 1: condition = {reset=1} I = 2;
action = {I:=0, out data:=0 } out data.write(in data + I );

path 2: condition = {reset〈〉1, op=1} break;
action = {I:=1, out data:=in data+1} case default :

path 3: condition = {reset〈〉1, op=2} I=0;
action = {I:=2, out data:=in data+2} }

path 4: condition = {reset〈〉1, op〈〉1, op〈〉2} }
action = {I:=0} }

Fig. 3. A Simple ALU Design in SystemC

design. The ALU has three input and one output ports. The alu Method which
is an SC METHOD process, describes the behavior of the ALU and is sensitive
to reset and op signals. If the value of the reset signal is equal to one, the ALU
puts a zero value on its output. Otherwise, the value of the op signal determines
the kind of operation that the ALU has to do. If the op signal has the value
one(two), in data data is added to one(two) and put on the out data signal. In
the case that the value of op signal is not equal to one or two, nothing is done
by the ALU, causing the out data to retain its value. The paths of the example
are shown in Figure 4. These paths are also demonstrated as condition-action
pairs in Figure 3.

The paths of an SC METHOD process do not contain any blocking statement,
but the paths of an SC THREAD may contain several blocking statements. If a
path consists of n blocking statements, it can be broken to n sub-paths in such a
way that each sub-path contains exactly one blocking statement from which the
sub-path starts. Figure 5 shows a special counter design. The counter has two
inputs and one output. The counter Thread is an SC THREAD process and
demonstrates the counter behavior. The counter is a sequential component and
counts the number of the clock cycles in which the input becomes zero. The paths
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Fig. 4. Paths of the alu Method

SC Module(Counter Module) { void Counter Module : counter Thread() {
sc in〈bool〉 clk; for( ; ; ) {
sc in〈int〉 input; wait(input);
sc out〈int〉 output; if (input == 0) {

count++;
sc int count=0; wait();

output.write(count);
}

SC CTOR(Counter Module) { }
SC THREAD(counter Thread); }
Sensitive〈〈clk.neg();

}
}

path 1: condition={input 〈〉 0} action={}
path 2: condition={input = 0} action={count += 1, output := count}
sub-path1 of path 2 : waits on input condition={input = 0} action={count += 1}
sub-path2 of path 2 : waits on clk condition={} action={output := count}

Fig. 5. A Special Counter Design in SystemC

of the counter Thread process are shown in Figure 6. The paths/sub-paths are
also demonstrated in Figure 5.

Constraint Automata of SC METHOD Processes. The Name set of the
constraint automaton of an SC METHOD process is the set of signals that the
process writes to plus the signals in the sensitivity list of the process. Figure 7
shows the algorithm to construct the constraint automata of SC METHOD pro-
cesses. The constraint automaton of an SC METHOD process has only one state
which is initial state. The transitions are added to the constraint automaton of
the process using the paths of the control graph. The occurrence of events on
each combination of the signals in the sensitivity list of the process, can activate
the process independently. Therefore, for each path, at most 2N − 1 transitions
will be added; where N is the number of the signals in the sensitivity list of the
process. The name set of the transitions are different combinations of the signals
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Fig. 6. Paths of the counter Thread

Fig. 7. Algorithm to Construct Constraint Automata of SC METHOD Processes

in the sensitivity list plus the signals which are written in the related path. The
data constraint and the action sets of the transitions are equal to the condition
set and the action set of the path, respectively.

For loops (and nested loops), we have one transition initializing the indexes
of the loop, and a transition to check their values. Also a transition is considered
for the last iteration of the loop which returns to a state from which the loop
starts. The constraint automaton of the alu Method is shown in Figure 8.

Constraint Automata of SC THREAD Processes. The Name set of the
constraint automaton of an SC THREAD process is the set of signals that the
process writes to or waits on. Figure 9 shows the algorithm to construct the
constraint automata of SC THREAD processes. For each sub-path, there exists
a transition. The name set of each transition is the set of signals on which
the wait statement is called. The data constraint and action sets of the these
transition are equal to the condition and action sets of the corresponding sub-
path, respectively. The transitions of the first sub-paths start from the initial
state. For each subsequent sub-path, a state is added from which the transition
of the sub-path starts. The final transition of the path must be ended at the
initial state.

Here, loops are treated like the loops in SC METHOD processes with a little
bit difference, considering blocking statements in them. The constraint automa-
ton of the counter Thread is shown in Figure 10.
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Fig. 8. Constraint Automaton of the alu Method

Fig. 9. Algorithm to Construct Constraint Automata of SC THREAD Processes

4.3 Modeling the Communication Between Components Using Reo

In the previous section, we used constraint automata for modeling the behavior
of the components of SystemC designs. Here, we show how Reo can be used as an
ADL to show the components (as black boxes) and the communication between
them. Reo circuits are used as glue codes to connect the components all together
and make the whole system. The behavior of the whole system is obtained by
joining the constraint automata of the components and the constraint automata
of the Reo circuits used in the model.
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Fig. 10. Constraint Automaton of the counter Thread

Fig. 11. An Example of Components Connection Using Reo

Sync channels, LossySync channels, mergers and replicators are used to con-
nect the components of a SystemC together. The inputs and outputs of the
components related to SC METHOD processes, must be provided through Sync
channels. An event on each input of a SC METHOD process would cause the pro-
cess to run atomically and provide its outputs immediately. So, using Sync chan-
nels at the input and output ports of the components related to SC METHOD
processes is appropriate.

The inputs and outputs of the components related to SC THREAD processes
are provided through LossySync and Sync channels, respectively. The component

SC Module(Module1) { SC Module(Module2) { SC Module(Module3) {
sc in〈int〉 a; sc in〈int〉 m,n; sc in〈int〉 b, d;
sc out〈int〉 o; sc out〈int〉 x; sc out〈int〉 c;

void Method1{ void Method1{ void Thread1{
o = a * 10; x = m + n; for( ; ; ) {

} } wait(d); c = 0;
wait(b); c = 1;

SC CTOR(Module1) { SC CTOR(Module2) { }
SC METHOD(Method1); SC METHOD(Method2); }
Sensitive〈〈a;} Sensitive〈〈m,n;}

} } SC CTOR(Module3) {
SC THREAD(Thread1);}

}

Fig. 12. Some Modules Written in SystemC
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of a SC THREAD process has an input for each of the signals on which it waits.
If the process is waiting on a signal and an event occurs on that signal, the
LossySync channel at the related input port, will act as a Sync channel and the
process will continue running. In the case that the process is waiting on a signal
and an event occurs on another signal which is also the input of the process,
the event is lost in the LossySync channel and nothing is done by the process.
This behavior of the LossySync comes from the maximal progress concept in
constraint automata.

Since the outputs of the SC THREAD processes are provided immediately
through the execution of the process, Sync channels are appropriate to be used
at the output ports of the components related to these processes.

A signal may provide input for more than one component. According to its
behavior, a replicator can handle this situation. A merger is used in the situation
where there are more than one driver for a signal. Figure 11 shows a schema of
components interconnection using Reo circuits.

int sc main(int argc, char* argv[]){ int sc main(int argc, char* argv[]){ int sc main(int argc, char* argv[]){
sc signal〈int〉 a,b,c,tmp; sc signal〈int〉 a,n,x; sc signal〈int〉 a,b,n,c,x;
Module1 mod1(”Module1”); Module1 mod1(”Module1”); Module1 mod1(”Module1”);
Module3 mod3(”Module3”); Module2 mod2(”Module2”); Module2 mod2(”Module2”);
mod1.a(a); mod1.a(a); Module3 mod3(”Module3”);
mod1.o(tmp); mod1.o(tmp); mod1.a(a);
mod3.b(b); mod2.m(tmp); mod1.o(tmp);
mod3.d(tmp); mod2.n(n); mod2.m(tmp);
mod3.c(c); mod2.x(x); mod2.n(n);

...} ...} mod2.x(x);
mod3.b(b);
mod3.d(tmp);
mod3.c(c);

...}

Fig. 13. Some Designs Made of Modules in Figure 12

Some Examples. Figure 12 contains the description of three modules in Sys-
temC. Module1 has one input, a, and one output, o. The behavior of this module
is shown by an SC METHOD process which is sensitive to a. Module2 has two
inputs, m and n, and one output, x. The behavior of this module is also shown
by an SC METHOD process. The SC METHOD process is sensitive to all of the
inputs of the module. Module3 has two inputs, b and d, and one output, c. The
behavior of this module is shown by an SC THREAD process which waits on d
and o, repeatedly.

Figure 13 shows three small SystemC designs made of the modules described
in Figure 12. In the first design the instances of Module1 and Module2 are
connected to each other. The second design contains one instance of Module1
and one instance of Module2. The last design has an instance of all the modules
of Figure 12. Figure 14 shows the Reo circuits used in connecting the components
of the designs in Figure 13.

As can be seen, the inputs and outputs of the SC METHOD processes are
provided through Sync channels and the inputs and outputs of the SC THREAD
processes are provided through LossySync and Sync channels, respectively.
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Fig. 14. Some Examples of Components Interconnection Using Reo

Figure 14 contains the constraint automata of the processes and the constraint
automata of Reo circuits used in each design. For each design, a constraint
automaton is derived by joining the constraint automata of the constituent pro-
cesses and Reo circuits, which shows the behavior of the designs.

5 Conclusion and Future Work

We introduced a compositional and component-based approach for modeling and
verifying system-level designs. This approach allows to describe the architecture
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of a SystemC design in high levels of abstraction, using Reo as an ADL language.
The architecture is then mapped to automata which can be formally verified. So,
we can benefit from ADL languages and automata-based languages at the same
time. We mapped the system designs written in SystemC to Reo circuits and
then compositionally construct their behavior using constraint automata. Then
we can use the common formal techniques for formal verification of constraint
automata.

This work concentrates on mapping of SystemC to Reo and constraint au-
tomata. The mapping is independent of the size of the system designs. There
may be problems in analyzing large constraint automata resulted from a big
SystemC design. Considering the ongoing research and work on model checking
constraint automata, we will soon have better tools for analyzing larger con-
straint automata.

For proposing our approach, we worked on mapping the SystemC simulation
kernel to constraint automata. The constraint automaton of the simulation kernel
can be a substituent for the Reo circuit which serves as the glue code between
components. We checked and saw the equivalency of the constraint automata
of the whole system resulted from applying each method (putting the proposed
Reo circuit or the constraint automata of the simulation kernel). The proof of
this equivalency shall be provided in our future work. As an alternative, the
design process can start from a Reo circuit instead of the hardware description
languages like SystemC. We plan to study the possible methods for deriving
SystemC codes from Reo circuits.
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Abstract. The paper describes a product-line-oriented approach to reusing 
requirements for systems with highly complex variability. Software product 
lines are a powerful means to manage comprehensively of all artifacts produced 
during system development for reuse. Hence, classical product line approaches 
provide mechanisms to handle requirements for reuse. But especially in the 
context of automotive systems, we face the challenge of creating reusable 
requirements specifications that each contain variability; reuse for requirements 
specifications of this kind means handling variability of variability models. This 
paper describes techniques for generating requirements specifications with 
variability from a so-called requirements library. The research results described 
originate from a process improvement initiative at DaimlerChrysler. The 
presented approaches are therefore pragmatic and aimed at current industrial 
practice but are formally based on a category-theoretical notation. Driven by 
practical issues, the paper comes up with extended means for variability 
modeling and a new notion of variability, broadening the scope of what can be 
managed by product lines. 

Keywords: automotive systems, complex variability, requirements engineering, 
software product lines, variability modeling. 

1   Introduction 

The complexity of automobile electronics is due to both the distribution of a variety 
of interacting functions over a number of different components and a concomitantly 
large number of interfaces and the high degree of variation resulting from inevitable 
product differentiation. 

This results in multiple fields of action. On the one hand, high quality demands 
must be placed on specifications owing to the level of complexity. On the other hand, 
efficiency when creating specifications in the face of short development cycles is 
becoming increasingly important. 

In most cases, it is not possible to adopt the specifications of earlier models, mainly 
owing to the technology’s constant further development and because the distribution 
of functions among components frequently differs from model to model for reasons of 
overall optimization, which can lead to very different system architectures right 
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across the model range. What is required, instead, is a method that allows existing 
specification modules to be adapted and reconfigured. Up to now, the field of textual 
specifications reuse has provided only limited methodical support for wide-spread 
industrial use, particularly in the context of developing automobile electronics. 

A successful technique for supporting the reuse of all kinds of development 
artifacts are software product lines. Carmakers have, in fact, experienced substantial 
benefits from product line approaches applied to the fabrication and mechanical 
engineering of vehicles. Engines and floor panels, Antilock Braking Systems and 
lamps are all being shared across a widening range of cars — indeed, across different 
marques and company boundaries. 

Compared with the success of reusing mechanical and electrical components the 
reuse of software has proved harder to achieve. Luxury cars contain an increasing 
amount of software, which accounts for a rapidly growing percentage of the total cost 
of design and production. This is particularly true of the car’s control software, which 
is organized in electronic control units (ECUs). These communicate on an internal 
network or bus such as a CAN bus (itself now a standardized commodity item). 

Each ECU is, as far as the carmaker is concerned, specified and procured as a 
unique component for each type of car. Top-of-the-range models are distinguished 
from the rest — both cheaper models from the same carmaker and rival models of 
other marques — by the innovativeness and desirability of their ECUs’ features. 

This situation is problematic because there is no methodical support for reusing 
artifacts (in particular requirements) beyond different ECUs, which would allow 
economies of scale – especially in the context of automotive model ranges: we use the 
term model range in order to describe a set of cars that have a high degree of 
commonalities, e.g. all currently produced A-classes are a model range. The cars of a 
model range can differ from one another, but also model ranges differ from one 
another, e.g. all A-classes differ from all C-classes. 

The classical definition of a software product line is based on such product families 
that are similar to model ranges and requires explicit activities to manage the 
commonalities and differences between the products (see Section 2 for details). 

Each product of an automotive model range is a vehicle, and each vehicle contains 
ECUs. These ECUs realize the overall variability of the model range, which means 
that each ECU is a product family. Classical product line and variability modeling 
approaches provide mechanisms for handling these kinds of product families. But, as 
outlined above, from the point of view of a carmaker the problem is not describing the 
variability of one model range but reusing development artifacts across specific model 
ranges; reuse here means using development artifacts in different product families. 
These product families can also differ in their underlying variability approach, so 
carmakers need a technique to express variability and commonality of product 
families – a technique not provided by classical product line approaches. 

In this paper, we present a requirements library to manage variability and 
commonality of product families at the requirements level. The problem of highly 
complex variability is not described in the research literature, except for a previous 
publication of ours on multi-level feature trees [1]. The results presented in this paper 
originate from a process improvement initiative at DaimlerChrysler [2]. Since it is 
intended to implement the results in the practical work of the business units, the 
presented solutions are pragmatic and geared to industrial practice. The basic idea of 
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the paper – arranging requirements for the ECUs of different model ranges in one 
requirements library – is based on developers’ experience. This paper provides a 
systematic framework for the experience-based “method” and describes it 
comprehensively. This is important to make the idea available for broad industrial use 
and to enhance classical product line techniques. 

Although highly complex variability in this sense is today a problem mainly in the 
automotive domain and other domains producing highly differentiated embedded 
systems for mass customization (like the mobile phone industry), the problem will 
become more relevant in other software domains in the near future: software will be 
increasingly developed in software product lines in order to benefit from intensive 
reuse and fast development cycles. In a situation where the developed products 
themselves are product lines, techniques are needed to handle commonalities and 
variability between product lines. 

The remainder of the paper introduces a comprehensive technique for managing 
requirements for systems with highly complex variability. Section 2 provides a survey 
of literature is provided, discussing other variability techniques. Section 3 describes 
the current status of requirements reuse as an experience-based requirements library 
method. Section 4 describes requirements reuse within the systematic use of the 
requirements library and gives a definition of the notion of model-range-spanning 
variability, i.e. extended variability. Detailed requirements variability modeling is 
introduced in Section 5 where it is also illustrated by small examples from the 
automotive domain that already clarify the problem although the examples themselves 
are quite simple. Section 6 discusses related approaches and Section 7 concludes with 
a discussion of the presented approach and points out future research needs. 

2   Survey of Literature on Software Product Lines and Variability 
Modeling 

The method described below deals with adjustments to specifications and to the 
process of creating specifications in order to simplify the reuse of model-range-
spanning requirements. As a practical example, this paper will examine the wipe/wash 
function in a passenger car. Almost all passenger cars support this function in one 
form or another; however the model-specific implementation of this function is 
frequently different because even if the function and operation is uniform, the 
technical implementation still varies from model to model. This problem is discussed 
in general under the keyword “Software Reuse”. There are a range of proposed 
solutions, from a component-oriented approach (e.g. [3]) to abstraction and 
traceability (e.g. [4]) to a compact, systematic approach in which all artifacts arising 
during the development of the system are associated with one another (e.g. [5], [6], 
and [7]). 

The appeal of a “software product line approach” is that only the core elements of 
the product are available as core assets and, as such, form the heart of the reuse: these 
core elements are adopted and enhanced to incorporate detailed system-specific 
information, some of which is already identified by variation points, without 
anticipating design decisions. A software product line can therefore be defined as “a 
set of software-intensive systems sharing a common, managed set of features that 
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satisfy the specific needs of a particular market segment or mission and that are 
developed from a common set of core assets in a prescribed way” [7]. 

The starting point for the reuse of detailed requirements specifications is often a 
feature list for the organization and an overview of the characteristics of all electrical 
and electronic systems, on the basis of which decisions relation to the model-range-
independent development of electrical or electronic functions are made. This 
technique of working with features is frequently suggested as a way of supporting a 
product line approach (e.g. [8]), although the rigorous application of features is also 
subject to criticism because the structured approach based on working with features 
[9] is clearly reaching its limits, much like structured analysis [10]. Furthermore, the 
features concept is currently used in various domains, sometimes even within 
organizations, with different connotations. Currently, there are attempts to unify 
feature models (e.g. [11]) and equip them with comprehensive expressiveness (e.g. 
[12]). The present paper tries to show how these current efforts to enhance 
expressiveness and use of feature models can support requirements reuse in complex 
variability situations. It shows the interplay of flexibility and abstraction – e.g. as 
provided by multi-level feature trees – and explicit variability modeling within the 
artifact of requirements, a necessity in order to manage highly complex variability for 
the reuse of requirements specifications. 

3   Current Status in Practice: The Intuitional Use of a 
“Requirements Library” 

To implement a useful reuse mechanism for electrical and electronic passenger car 
systems, it was important for us to include current research and experience in this area 
of the industry as well as to examine current procedures used to create specifications 
to ensure that our proposal addresses these issues. In addition to an intensive study of 
the relevant literature, we therefore studied six specifications for complex interior 
ECUs from various models in order to provide answers to questions relating to the 
reuse of requirements, the systematic changing and evolution of requirements as well 
as the types of variability and options for displaying variability. To reinforce our 
findings from the specifications’ review we conducted several interviews with 
requirements engineers developing the requirements specifications. 

The primary activities involved in the development of ECUs on the manufacturing 
side are the creation of the specifications, the assignment of a supplier to implement 
the ECUs and the inspection, testing and integration of the ECU into the vehicle 
concept. In this case, a team typically supervises an ECU for the various model ranges 
in which changing requirements within the environment must be acted upon and 
implemented. In addition to the further development of systems for new models, there 
is naturally always a need to develop innovative features, which takes up a 
disproportionate amount of time. 

The strict team orientation leads to intensive cooperation among developers and an 
implicit bundling of knowledge about the application domains. Functional changes as 
well as solutions to technical problems are discussed on an ad-hoc basis and 
incorporated into the specifications. This cooperation results in the development over 
time of a common understanding of functions, which acts as a strong force in molding 
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identity. Even if this is sometimes manifested in a team-specific specification culture, 
there are considerable benefits to be reaped from this working method because it is 
based on efficient communication. 

Along with competencies in requirements engineering, ECU engineers have 
acquired high levels of competence in the areas of inspection and integration with 
regard to the electrical and electronic design of ECUs. As a result, the specifications 
have acquired a very technical orientation and are specified to a level that makes them 
less suitable for reuse, with the consequence that they have a short life cycle based on 
the rapid pace of technological development. Nevertheless, we observed a high degree 
of similarity in the specifications used as test items in our study, although they were 
certainly subject to system-specific variations: similarity measures of approx. 15% to 
90% were found at text module level. The variations between the specifications with 
high similarity measures were attributable to technical variations, variations relating 
to parameterization or new functions. Marginal reuse quotients were more likely to be 
recorded in cases where the specifications were written by different teams. 

The reasons for changing or evolving features or function descriptions were 
frequently based on decisions that concerned this model range and that addressed the 
ECU under examination as well as the interface with other control units. Established 
model-range-independent functions such as the wipe/wash function were only 
occasionally changed in terms of their functionality. We identify this as an important 
starting point for supporting reuse. 

Based on our own demand to propose a reuse approach closely related to current 
practical requirements specification processes, we decided to examine the 
specifications in the same way as the developers themselves had previously dealt with 
variability, and we discovered that the specifications described the systems with all 
the possible special equipment, options and alternatives for this model range (the 
outer shell covering all functions for this model). The current vehicle configuration is 
stored in the ECUs using local parameters; or it is passed to the individual functions at 
runtime using messages issued by a selected ECU or may not be issued at all. In the 
case of reduced equipment, we identified two typical patterns used in the specification 
of behavior in the event of missing hardware or software: the function specifications 
described either different function branches that depended on the vehicle 
configuration or an emergency operation procedure for hardware or software detected 
as missing – e.g. owing to the absence of specific signals. In the latter case, only the 
diagnostic module is informed of the configuration, thus suppressing the generation of 
entries in the fault memory; the actual function specification can remain unchanged. 

Since development teams are organized with respect to the ECUs they develop, 
each team is confronted with differences of the ECUs for different model ranges. 
Thus the developers were in fact aware of the need to also describe different 
variability behavior of the ECUs for different model ranges. This becomes obvious 
because of a very specific dependency referred to in different requirements 
specifications: the “independency”. This kind of dependency is only needed if there is 
a comparison between different variability models – i.e. product families – in place, 
as shown explicitly in the next section. The case of repeated occurrence of this 
dependency in different requirements specifications makes it obvious that the 
developers have a kind of abstract requirements library in their minds and explicitly 
describe differences between variability approaches of model ranges (see Fig. 1); the 
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“independency” is needed to show that in this model range the dependency behavior 
between two variable items differs from another model range (which may be in the 
mind of the reader of the specification). 

 
Fig. 1. The development team uses the requirements library implicitly to describe requirements 
specifications for ECUs of different model ranges (MR_X, MR_Y, and MR_Z). Each 
requirements specification for a model range describes a set of different ECU variants in order 
to realize the variability of a model range. 

Hence, the main results were: 

• development of one ECU for different model ranges within one development 
team 

• intuitional reuse of requirements and functions for technically different ECUs 
• development teams facilitate the description of variability of model ranges by 

using certain patterns (e.g. description of outer shell covering all functions of the 
ECU instead of describing the possible variants of the model range products) 

In the next section, a systematic methodical basis for the requirements library is 
elaborated. 

4   Requirements Reuse in a Requirements Library 

The challenge for us was to find a successful product line approach to be applied in 
industries where mostly only requirements play an important role, because the other 
software development artifacts like software architecture or code are developed by 
suppliers, as is the case in the automotive industry. 

“A system that is used will be changed” states Lehman in [13] – and system 
changes are actually what chiefly drive the need for systematic reuse. Reuse means 
handling changes; systematic reuse essentially means handling expected changes. 
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Thus one has to ask how changes occur, which changes are right and desirable, and 
which changes are occasional, uncoordinated or historically conditioned, and hence 
possibly dispensable. 

Thus, if a product is changed in the course of time, these questions should be asked 
at all development levels producing artifacts because it may be possible that at each 
level there arises the wish to realize individual solutions or approaches or the need for 
abbreviations or simplifications as a result of short development schedules. These 
temporary changes should not become methodical, e.g. by putting them as a specific 
and reusable variant in a reuse platform; this means that techniques must be provided 
to prevent developers from making short-term solutions part of a reuse framework. 

If reuse means that future changes are supported beneficially, reuse essentially 
comprises two aspects with respect to our discussion: 

• Constructively, it means that we must first identify those changes that are 
relevant and that must be communicated to every stakeholder, e.g. by putting 
these changes in a platform. 

• Application of this idea means that only those changes will have an impact on 
future product development that are reasonable for the product line, e.g. by 
providing innovative features or by making system features independent of the 
specific system architecture. This means that individual or short-term solutions 
are marginalized and play a less relevant role in daily development work. 

Especially the constructive aspect of this interpretation of reuse is crucial for 
textual requirements. Language is a social asset that is used by humans to present 
themselves, to enunciate personal ideas. Language is then, an important form of 
expression for every individual and a main way to show individuality. This social 
aspect of language vehemently contradicts the objective of reuse to minimize 
individual (and thus short-term) differences. The existence of such a conflict of goals 
is also supported by the findings of the previous section, where we described the 
analysis of requirements specifications and found a wide range of similarity quotients: 
a small portion of functionally different requirements and a large portion of 
differently expressed requirements, describing mostly the same thing. 

Reusing requirements involves special demands with respect to the handling of 
requirements. In practice it is not normally possible to make a clear distinction 
between problem and solution space. That is why requirements – unlike the demands 
of requirements engineering textbooks –not only describe problems but already give 
solutions. This is in fact acceptable if requirements engineers record their own 
expertise in doing so. In the case of reuse, a strictly solution-oriented description of 
requirements may result in short-lived requirements because technology develops 
rapidly and each reference to a concrete technology might cause rejection of the 
requirement in the next development step. This means that requirements must be 
described independently of specific technical solutions or architectures because the 
level of functional and non-functional requirements is less affected by changes than 
technological issues. Thus requirements can describe functional solutions and still be 
reused if the function itself is well established and the requirement does not refer to a 
technical solution or assumes a specific system architecture. 
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Another aspect peculiar to requirements – especially requirements for automotive 
systems – must be observed for successful reuse: cars are developed in model ranges, 
and model ranges comprise a set of vehicles differing from one another by optional 
equipment, design and country variants. This kind of variability we call model-range-
specific variability. 

 

Model-range-specific variability signifies variable items of requirements 
specifications for a model range. Forms of model-range-specific variability are: 

• variability through optional equipment 
• variability through special vehicles (police cars, taxis …) 
• variability through country-specific equipment 
• variability through specific design (cabriolet, estate …) 

This specific variability has not only a bearing on the whole vehicle but also on 
each ECU of the vehicle because the ECUs react with different functional ranges on 
the variability. Specific variability can be expressed by classical variability and 
feature models (e.g. [8], and [9]). 

The present paper is about adapting specifications of ECUs to facilitate the reuse of 
model-range-spanning variability. 
 

Model-range-spanning variability signifies variabilities between model ranges. These 
variabilities can affect functional ranges as well as model-range-specific variability. 
 

This definition of model-range-spanning variability is the basis for the 
requirements library. The requirements library provides a pool of architecture-
independent specification modules, which, supported by tools, can be combined to 
form model-range-specific system specifications or components thereof. 

The requirements library consists mainly of abstract and technical requirements 
abstracting from concrete design decisions. Requirements use parameters and signals 
in order to be adapted smoothly for different model ranges. Requirements reuse 
within the requirements library is driven by selecting features, which in turn preselect 
abstract requirements in the database. Decisions met by requirements engineers 
further refine and complete the preselection. 

During the transition from the features to the requirements descriptions, a switch 
also takes place from a customer-oriented view to a system development view. The 
requirements are sufficiently decomposed into technical requirements to make them 
suitable for distribution across system architectures. We draw a distinction between 
the abstract and technical levels of the requirements descriptions, which are both 
described independently of the system architecture, i.e. they contain neither 
requirements to ECU assignments nor signal addressing. 

The abstract level of the requirements library only describes the targeted 
functionality and the required parameters and signals. Most of the decisions relating 
to the selection of possible alternatives and options should be made in this not overly 
detailed view of the vehicle systems. Only at the technical level are details added (e.g. 
behavior in the event of errors, value ranges and coding of signals and parameters, 
binding times …). 
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5   Requirements Variability Modeling 

Variability modeling for requirements reuse differs from current variability modeling 
approaches: the variability model is not used to configure, say design elements for a 
product family; instead, it directly influences the selection of requirements. And in the 
case of automotive requirements specifications one is confronted with the need to 
manage model-range-spanning variability. Furthermore, requirements specifications 
offer an abstract view of the described system, similar to feature models. These are 
the reasons why we decided to describe requirements variability directly within the 
artifact of requirements. 

 

Fig. 2. The basic elements of the requirements variability model are variable requirements. 
Requirements can be grouped by variation-sub-points, expressing the variability of the 
requirements by cardinalities (cf. [12]). Variation-sub-points are grouped by variation points. 
Two kinds of dependencies can be expressed in the requirements variability model: level-1 
dependencies, e.g. between variable requirements or variable requirements and variation points; 
or level-2 dependencies, e.g. between variation-sub-points, between level-1 dependencies or 
between variation-sub-points and level-1 dependencies. 

Requirements variability must cope with both, model-range-spanning and model-
range-specific variability because requirements are used between different model 
range specifications and each requirements specification must also describe the 
specific variability. We can state that 

• each requirements specification is a requirements library, and 
• each requirements library comprising only model-range-specific variability is a 

product (i.e. model range) specification. 
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Provided a stable requirements library exists, the main task of a requirements engineer 
shifts from developing requirements specifications to deriving requirements 
specifications (including the derivation of a variability definition for the model range). 
Deriving product specifications from a requirements library effectively means a stepwise 
decrease of model-range-spanning variability. The requirements variability model 
described below is formalized (syntactically as well as semantically) in a category-
theoretical notation in [2] that can be used for a language-independent implementation. 
The tool described in the last part of this section is also based on this formalization. 

The basic elements of the requirements variability model are (variable) 
requirements, see Fig. 2. This means that the variability model is directly implemented 
within the requirements database. Variable requirements are arranged in variation-sub-
points, which are themselves arranged in variation points. The distinction between 
variation-sub-points and variation points is needed to describe requirements for 
different model ranges, i.e. different variability models. The notation for requirements 
variability models that we use in the following is not intended to be used by end-users. 
It rather depicts conceptually the requirements variability that is managed in tools. 

 

Fig. 3. The requirements “Rain-dependent Wiping” to “Constant Wiping” belong to the 
Variation Point “Wiping” and are grouped by different Variation-Sub-Points (in this example 
we have three Variation-Sub-Points). The variability of the Variation-Sub-Points is described 
by cardinalities, where the statement (n, m) means that at least n and at most m of the respective 
requirements can be chosen. “Intermittent Wiping” and “Constant Wiping” are grouped by the 
first Variation-Sub-Point, whereas the other two Variation-Sub-Points comprise all three 
requirements. 

Fig. 3 gives an example of a variation point and three variation-sub-points. If the 
requirements library includes a model as depicted in Fig. 3, this means that there are 
model ranges in whose vehicles either “Intermittent Wiping” or “Constant Wiping” is 
available; “Intermittent Wiping” and “Constant Wiping” are excluding alternatives in 
this case (Variation-Sub-Point (1, 1)). There are also model ranges whose vehicles 
include at least one and at most three of all three wiping modes (Variation-Sub-Point 
(1, 3)), and there are also model ranges whose vehicles include zero to at most two of 
all three wiping modes (Variation-Sub-Point (0, 2)). 

The variation point “Wiping” can be instantiated with respect to a specific 
variability modeling (i.e. one can chose one of the variation-sub-points) or with 
respect to a specific selection of requirements that is a correct instantiation of either of 
the variation-sub-points. Fig. 4 shows two possible instantiations of the variation 
point “Wiping”. 
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Fig. 4. Two possible instantiations of the Variation Point “Wiping” of Fig. 3 are shown. In the 
left part of the figure, the variation point is instantiated and includes only one variation-sub-
point, i.e. one variability model. In the right part of the figure, the variation point is instantiated 
by instantiating correctly one of the variation-sub-points. This ensures that the variation point is 
fully bound and no variability is left. 

In order to keep the search space in the instantiation process small, we distinguish 
between three kinds of variation points: 

• A variation point can be mandatory, i.e. one of its variation-sub-points or a 
correct instance of one of the variation-sub-points must be instantiated for each 
specification derived from the requirements library. 

• A variation point can be optional, meaning that the whole variation point with 
its variation-sub-points and all the requirements can be left out when 
instantiating a specification from the requirements library. 

• A variation point can be consecutive, meaning that the whole variation point 
must be selected only if the respective requirement (the requirement having an 
includes-dependency to the variation point) is chosen. 

Fig. 5 illustrates this point. 

 

Fig. 5. A Mandatory Variation Point is depicted by an includes-dependency without a source 
element. Here it can either be instantiated to a variation point offering a “Simple Wiping 
Engine” or a “Complex Wiping Engine” as alternatives or to a rudimentary variation point 
offering mandatory a “Complex Wiping Engine”. Furthermore the variation point can be 
instantiated to a correct instantiation of either of its variation-sub-points (e.g. “Simple Wiping 
Engine”). An Optional Variation Point is given if no dependency is linked to the variation 
point. It can be left out completely or is instantiated to either of its variation sub points or to the 
requirement itself (being a correct instance of at least one variation sub point). A Consecutive 
Variation Point is given if a requirement includes this variation point. 
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Fig. 5 introduces includes-dependencies of level-1. Fig. 6 illustrates the use of 
level-2 dependencies. 

 

Fig. 6. The figure depicts the variation points “Wiping” and “Wiping Engine”, both mandatory 
variation points, depicted by the includes-dependency. But there are also dependencies 
between these variation points. A level-1 dependency is the includes-dependency from 
“Constant Wiping” to “Simple Wiping Engine”. This dependency is excluded by a level-2 
dependency from the variation-sub-point (1, 3) of the “Wiping” variation point. The reason is 
another level-2 dependency from the variation-sub-point (1, 3) of “Wiping” to the lower (1, 1) 
variation-sub-point of “Wiping Engine”, always including the “Complex Wiping Engine”. 
Since the level-1 includes-dependency is excluded in this case, there exists another level-2 
dependency from the variation-sub-point (1, 3) of the “Wiping” variation point to the 
alternative dependency – in this case the is-independent-dependency – a specific dependency 
of extended variability models. 

In Fig. 6, a specific level-1 dependency is depicted: the is_independent-
dependency. This kind of dependency is motivated by practical considerations (cf. 
Section 3) and needed for a systematic description of the variability model. It is only 
applicable as a level-1 dependency, whereas all the other possible level-1 
dependencies (like includes, excludes and influences) can also be used as level-2 
dependencies. 

The complete details of extended variability models could not presented in this 
paper for reasons of length; for more details (including the use of category theory to 
describe a comprehensive framework of syntax and semantics of variability models), 
readers are referred to [2]. 

Requirements Variability Modeling and Tool Support 

We have presented extended variability modeling and its application for requirements 
libraries in conceptual terms. To try out the approach and its practical applicability, 
we applied the approach [14] to the commercial requirements management tool 
DOORS [15]. We opted for DOORS because it is wildly used in the automotive 
industry. Also it is easily extendable because it provides a script language DOORS 
eXtension Language (dxl) making a huge number of tool-internal functions available. 
The study, which also includes a set of rules concerning the use of the model, contains 
a compact program allowing the use of extended variability models in DOORS. By 
using DOORS-specific links for the realization of level-1 dependencies, the concept 
can be elegantly visualized for the user. 

The applicability of the approach in a tool as shown in the study is an important 
step towards practical implementation of the approach: process improvement 
initiatives often start with the introduction of a new tool directly supporting the 
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accomplishment of several process steps. The need for a systematic reuse process for 
requirements specifications is obvious, with systems facing increasingly complicated, 
high quality demands of customers and short development cycles. The applicability of 
the reuse approach presented in this paper and the possibility of implementing the 
approach easily in a tool describe a practical approach to successfully meeting current 
challenges in requirements reuse of embedded systems with highly complex 
variability. 

6   Related Work 

In [16], Bühne et al. describe the problem that classical feature models fail to meet the 
demands for specifying automotive model ranges because there are multiple criteria 
applying to whole model ranges. Consequently, they propose enhancing feature 
models to describe feature models for model ranges, design, country, and special 
vehicle variants. This, in fact, is an approach to solving the problem of differing 
variability for different model ranges. With respect to the method described in this 
paper, the following differences were identified: 

• The resulting feature model is invariably oriented to the past because the 
developed feature model only describes complete model ranges, as opposed to 
describing basic structures of more than one model range in one variability 
model, as proposed in this paper. Hence, this kind of feature model is not 
suitable for specifying future model ranges or country variants. 

• The proposed feature model comprises a fixed set of criteria, each constituting 
one perspective on how the systems might be variable. But this set of criteria 
could change, in which case maintenance of the model is very challenging 
because many dependencies are encapsulated in the different layers of the model 
and are therefore not visible. 

• Such a feature model does not directly support the reuse of requirements or 
specifications because no requirements are described. Feature models cannot 
replace requirements specifications – at most they supplement requirements. 
Since feature models provide an abstract view of the system and the system-
specific variability (cf. Section 4) and can be adapted flexibly, they are of 
special interest to management and software architecture developers, allowing 
them to gain a first impression of the system. But in the case of carmakers, 
software architecture plays a secondary role because it is largely developed by 
suppliers. 

• Last but not least, the underlying idea of these feature diagrams is difficult to 
align with current thinking of requirements engineers in automotive industrial 
practice: partitioning perspectives on feature models into model range, design or 
country variant is not really suitable for engineers because the current industrial 
process (cf. Section 3) assumes a model-range-oriented approach in which 
design and country variants are nothing more than optional equipment. This 
industrial approach is, in fact, reasonable because design or country variability 
does not differ conceptually from optional-equipment variability. 
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In summary, the approach presented in this paper is more focused on the specific 
needs of the automotive domain and also comprises treatment of requirements, not 
only feature models. 

Therefore, we suggest using different criteria, flexibly introduced, to preconfigure 
feature trees from multi-level feature trees with respect to specific characteristics of 
the set of products under examination [17] (cf. also Section 3). 

7   Conclusion 

In supporting the creation of model-range-specific electrical and electronic systems, 
the requirements library pursues a practice- and reuse-oriented approach. It is geared 
to both software product lines and component-oriented approaches. 

The European research project ATESST (http://www.atesst.org) further develops 
the architecture description language for automotive systems EAST-ADL 
(http://www.east-eea.net/) addressing among other things, highly complex variability. 
The techniques presented in this paper will be included in the EAST-ADL2, 
developed in ATESST. 

Future work will focus primarily on integration of the presented requirements 
library and other variability modeling approaches in order to equip the requirements-
artifact-oriented requirements library with more abstract – and therefore more flexible 
– techniques. The already mentioned multi-level feature trees [1] in particular can be 
used to provide a more abstract view of the system. In fact, since multi-level feature 
trees also include techniques for handling highly complex variability, they provide a 
comprehensive view of the variability of the requirements library. 

Future work will, however address the link not only to a more abstract view of the 
requirements library but also to more concrete artifacts than requirements. Rapidly 
changing system architectures for different model ranges are a special challenge for 
the automotive industry. The requirements library can be seen as a new step in a 
progression of standardization efforts by automotive developers to abstract from 
concrete ECUs. The introduction of OSEK (http://www.osek-vdx.org/) allowed 
abstraction from one specific ECU. The current efforts of Autosar 
(http://www.autosar.org) aim at abstraction from a single combination of ECUs. The 
requirements library can now be used to abstract from a set of different combinations 
of ECUs. Further research is needed to implement a connection to the design layer, 
mapping the requirements to different system architectures based on architecture 
validation. 
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Abstract. This paper deals with test case selection from axiomatic
specifications whose axioms are quantifier-free first-order formulae. Test
cases are modeled as ground formulae and any specification has an ex-
haustive test data set whose successful submission means correctness,
provided that the software under verification can be modeled as a first-
order structure over the same signature. As it has already been done for
positive conditional equational specifications, we derive test cases from
selection criteria based on axiom coverage. Our selection criteria allows
us to select test cases by iteratively unfolding an initial target test pur-
pose, given as a formula. The initial reference test set is iteratively split
into successive subsets. Each subset of test cases is defined by constraints
which are increasingly introduced by the unfolding procedure to ensure
an appropriate matching between the current test purpose under unfold-
ing and specification axioms. Our unfolding procedure is sound (no test
is added) and complete (no test is lost) with respect to the starting test
purpose. It is exemplified on a simple example.

Keywords: Specification-based testing, quantifier-free first-order speci-
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tree normalization.

Introduction

Specification-based testing is a particular case of black-box testing which con-
sists in performing the system under test with some input data in order to state
whether its behaviour is conformant to a rigorous specification (i.e. given as a
formal text provided with a clear semantic). Formal specifications make possible
the automation of both test case generation from selection criteria and evaluation
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of test executions as successful or not. Selection criteria for specification-based
testing generally allow to cover specification requirements (e.g. axioms, transi-
tions or states). The computation of the success/failure verdict of test execution
tools follows from the comparison between the outputs given by the system un-
der test and the expected ones defined by the formal specification. Besides the
possibility of computing verdicts for a test case execution, using formal specifica-
tions allows one to properly define the conformance relation, which states what it
means for a system to conform to its specification. Such a conformance relation
depends on both test hypotheses on the system, which allow to consider it as a
formal model, and observability restrictions on the system. These observability
restrictions are used to select test cases which can be interpreted as successful
or not when performed by the system under test. For instance, in the framework
of testing from algebraic specifications, “observable” test cases are any ground
equations provided with an equality predicate within the programming language
used to implement the system under test. When such conditions (test hypotheses
on systems and observability restrictions) are precisely stated, it becomes possi-
ble to formally define the testing activity [1,2]. In particular, correctness can be
defined up to these conditions by characterizing an exhaustive test set, whose
success is equivalent to system correctness. Moreover, a testing process can be
qualified as sound if selected test cases cannot discard correct systems, and as
complete if any non-correct system can be detected by at least one test case.
In fact, these notions of soundness and completeness may be slightly adapted
depending on whether they are applied to an exhaustive test set, to a selection
criterion, or to a subset of tests targeted by a test purpose [3].

Testing from algebraic specifications has already been extensively studied
[1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Correctness issues have been investigated in
presence of non-observable types whose equality can only be observed through
observable contexts, i.e. by applying some composition of functions yielding an
observable result. Selection issues have also been investigated. They consist in
either directly covering axioms by instantiating variables with some chosen data
or unfolding axioms in order to make a case analysis of function definition. In this
last case, test cases for a functionality under test are extracted from the spec-
ification by building input data which match the different cases defined by the
specification. For example, when functions are recursively specified, the analysis
can be refined as many times as the tester chooses to do it. The main drawback
of such a selection strategy is that the specification under consideration has to
be under a restrictive form, namely positive conditional formulae [4, 5, 6].

In this paper, we propose a family of selection criteria based on axiom un-
folding for a larger class of axiomatic specifications: quantifier-free first-order
formulae. The enlargement is twofold. First, we do not reduce atomic formulae
to equations and consider any kind of predicates. Secondly, formulae are not re-
stricted to Horn clauses (called conditional positive formulae when dealing with
equational logic). Our primary goal was to consider the whole classical first-order
language. However, we immediately eliminate the existential quantifier. Indeed,
testing a formula of the form ∃X, ϕ(X) would amount to exhibit a witness value
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a such that ϕ(X) is interpreted as true by the system when substituting X by
a. Of course, there is no general way to exhibit such a pertinent value, but no-
tice that astonishly, exhibiting such a value would amount to simply prove the
system with respect to the initial property. Thus, existential properties are not
testable. Some works on specification-based testing [7,8] have already considered
a similar class of formulae. They propose a mixed approach combining black-box
and white-box testing to deal with the problem of non-observable data types.
From the selection point of view, they do not propose any particular strategy, but
only the substitution of axiom variables for some arbitrarily chosen data. On the
contrary, following the specification-based testing framework proposed in [1], we
characterize an exhaustive test set for such specifications. Moreover, by extend-
ing the unfolding-based selection criteria family defined for conditional positive
equational specifications, we define a sound and complete unfolding procedure
devoted to the coverage of quantifier-free first-order axioms.

The paper is organized as follows. In Section 1, we recall standard notations
about quantifier-free first-order specifications. Section 2 gives relevant definitions
of [1] concerning our framework of testing. In Section 3, an exhaustive test set
for quantifier-free first-order specifications is characterized. Section 4 proposes
an unfolding procedure allowing us to define a family of selection criteria for the
considered class of specifications. Finally, in Section 4.3, the selection criteria
based on the unfolding procedure is proved to be both sound and complete.

1 Preliminaries

1.1 Quantifier-Free First-Order Specifications

A (first-order) signature Σ = (S, F, P, V ) consists of a set S of sorts, a set F of
operation names each one equipped with an arity in S∗ ×S, a set P of predicate
names each one equipped with an arity in S+ and an S-indexed set of variables
V . In the sequel, an operation name f of arity (s1 . . . sn, s) will be denoted by
f : s1 × . . . × sn → s, and a predicate name p of arity (s1 . . . sn) will be denoted
by p : s1 × . . . × sn. Given a signature Σ = (S, F, P, V ), TΣ(V ) and TΣ are
both S-sets of terms with variables in V and ground terms, respectively, freely
generated from variables and operations in Σ and preserving arity of operations.
A substitution is any mapping σ : V → TΣ(V ) that preserves sorts. Substitutions
are naturally extended to terms with variables. Σ-atomic formulae are formulae
of the form p(t1, . . . , tn) with p : s1 × . . . × sn and ti ∈ TΣ(V )si for each i,
1 ≤ i ≤ n. A Σ-formula is a quantifier-free first-order formula built from atomic
formulae and Boolean connectives ¬, ∧, ∨ and ⇒. As usual, free variables of
quantifier-free formulae are implicitly universally quantified. A Σ-formula is said
ground if it does not contain variables. Let us denote For(Σ) the set of all Σ-
formulae. A specification Sp = (Σ, Ax) consists of a signature Σ and a set Ax of
quantifier-free formulae built over Σ. Formulae in Ax are often called axioms.

A Σ-model M is an S-indexed set M equipped for each f : s1 × . . . × sn →
s ∈ F with a mapping fM : Ms1 × . . . × Msn → Ms and for each predicate
p : s1 × . . . × sn with an n-ary relation pM ⊆ Ms1 × . . . × Msn . Mod(Σ) is
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the category objects of which are all Σ-models. Given a Σ-model M, a Σ-
interpretation in M is any mapping ν : V → M . Interpretations are naturally
extended to terms with variables. A Σ-model M satisfies for an interpretation
ν a Σ-atomic formula p(t1, . . . , tn) if and only if (ν(t1), . . . , ν(tn)) ∈ pM. The
satisfaction of a Σ-formula ϕ for an interpretation ν by M, denoted M |=ν ϕ,
is inductively defined on the structure of ϕ from the satisfaction for ν of atomic
formulae of ϕ and using classic semantic interpretations of Boolean connectives.
M validates a formula ϕ, denoted M |= ϕ, if and only if for every interpretation
ν : V → M , M |=ν ϕ. Given Ψ ⊆ For(Σ) and two Σ-models M and M′, M is
Ψ -equivalent to M′, denoted M ≡Ψ M′, if and only if we have: ∀ϕ ∈ Ψ, M |=
ϕ ⇐⇒ M′ |= ϕ. Given a specification Sp = (Σ, Ax), a Σ-model M is an Sp-
model if for every ϕ ∈ Ax, M |= ϕ. Mod(Sp) is the full subcategory of Mod(Σ),
objects of which are all Sp-models. A Σ-formula ϕ is a semantic consequence of
a specification Sp = (Σ, Ax), denoted Sp |= ϕ, if and only if for every Sp-model
M, we have M |= ϕ. Sp• is the set of all semantic consequences.

Given a set of quantifier-free formulae Ψ ⊆ For(Σ), let us denote HTΣ the
Σ-model, classically called the Herbrand model of Ψ ,

– defined by the Σ-algebra, whose carrier is TΣ and whose operation meaning
is defined for every operation f : s1 × . . . × sn → s ∈ F by the mapping
fHTΣ : (t1, . . . , tn) → f(t1, . . . , tn), and

– determined by the set of ground atomic formulae p(t1, . . . , tn) such that
Ψ |= p(t1, . . . , tn).

It is easy to show that Ψ |= ϕ ⇔ HTΣ |= ϕ for every ground formula ϕ, and then
HTΣ ∈ Mod((Σ, Ψ)).

A calculus for quantifier-free first-order specifications is defined by the follow-
ing inference rules, where Γ |∼ Δ is a sequent such that Γ and Δ are two sets
of quantifier-free first-order formulae:

Γ,ϕ |∼ Δ,ϕ
Ax

Γ |∼ Δ,ϕ

Γ,¬ϕ |∼ Δ
Left-¬

Γ,ϕ |∼ Δ

Γ |∼ Δ,¬ϕ
Right-¬

Γ,ϕ,ψ |∼ Δ

Γ,ϕ∧ψ |∼ Δ
Left-∧

Γ |∼ Δ,ϕ Γ |∼ Δ,ψ

Γ |∼ Δ,ϕ∧ψ
Right-∧

Γ,ϕ |∼ Δ Γ,ψ |∼ Δ

Γ,ϕ∨ψ |∼ Δ
Left-∨

Γ |∼ Δ,ϕ,ψ

Γ |∼ Δ,ϕ∨ψ
Right-∨

Γ |∼ Δ,ϕ Γ,ψ |∼ Δ

Γ,ϕ⇒ψ |∼ Δ
Left-⇒

Γ,ϕ |∼ Δ,ψ

Γ |∼ Δ,ϕ⇒ψ
Right-⇒

Γ |∼ Δ

σ(Γ ) |∼ σ(Δ)
Subs

Γ |∼ Δ,ϕ Γ ′,ϕ |∼ Δ′

Γ,Γ ′ |∼ Δ,Δ′
Cut

Observe that the inference rules associated to Boolean connectives obviously
define an automatic process that allows to transform any sequent |∼ ϕ, where
ϕ is a quantifier-free formula, into a set of sequents Γ |∼ Δ where every formula
in Γ and Δ is atomic. Let us call such sequents normalized sequents.
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Moreover, we can show that every proof tree can be transformed into a proof
tree of same conclusion and such that both Cut and Subs rules never occur under
rule instances associated to Boolean connectives. This transformation is obtained
from basic transformations, for example:

Γ |∼ Δ,ψ,ϕ

Γ,¬ϕ |∼ Δ,ψ
Left-¬

Γ ′,ψ |∼ Δ′

Γ,Γ ′,¬ϕ |∼ Δ,Δ′
Cut �

Γ |∼ Δ,ψ,ϕ Γ ′,ψ |∼ Δ′

Γ,Γ ′ |∼ Δ,Δ′,ϕ
Cut

Γ,Γ ′,¬ϕ |∼ Δ,Δ′
Left-¬

The other basic transformations are defined in the same way. Therefore, us-
ing proof terms for proofs, with a recursive path ordering >rpo to order proofs
induced by the well-founded relation (precedence) > on rule instances

Cut, Subs > Left-@, Right-@, where @ ∈ {¬, ∧, ∨, ⇒}

we show that the transitive closure of �is contained in the relation >rpo, and
thus that � is terminating.

This last result states that every sequent is equivalent to a normalized sequent,
which allows to only deal with normalized sequents. Therefore, in the following,
we will suppose that specification axioms are normalized sequents.

1.2 Running Example

By way of illustration, we give a specification of sorted lists of positive rationals.
We first give a specification of naturals, built from constructors 0 and successor

s. Addition add and multiplication mult on naturals are specified as usual, as
well as the predicate “less than” ltn. The constructor operation / then builds
rationals from couples of naturals. Two rationals x/y and u/v are equal (eqr
predicate) if mult(x, v) and mult(u, y) are equal. Since we consider only positive
rationals, x/y is less than u/v (ltr predicate) if mult(x, v) is less than mult(u, y).

Lists of rationals are then built from constructors [ ] and :: as usual. The
insertion insert of a rational in a sorted list needs to consider four cases: the
list is empty; the first element of the list is equal to the rational to insert, and
then the element is not repeated; the first element of the list is greater than the
rational to insert, and then it is inserted at the head; the first element of the list
is less than the rational to insert, then the insertion is tried in the rest of the
list. The membership predicate isin is specified saying that there is no element
in the empty list, and that searching for an element in a non-empty list comes
to find it at the head of the list or to search it in the rest of the list.

The behaviour of operations add , mult and insert is classically specified by
equations. When dealing with first-order logic, this requires to introduce three
equality predicates =Nat : Nat × Nat , =Rat : Rat × Rat and =List : List × List ,
each one equipped with the following axioms:

x =@ x
x =@ y ⇒ y =@ x
x =@ y ∧ y =@ z ⇒ x =@ z
x1 =@1 y1 ∧ . . . ∧ xn =@n yn ⇒ f(x1, . . . , xn) =@ f(y1, . . . , yn)
x1 =@1 y1 ∧ . . . ∧ xn =@n yn ∧ p(x1, . . . , xn) ⇒ p(y1, . . . , yn)
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where @, @i ∈ {Nat ,Rat ,List}, f : @1 × . . . × @n → @ and p : @1 × . . . × @n.
In order not to make heavy specifications, another approach is to transform any
operation f : s1 × . . . × sn → s into a predicate f : s1 × . . . × sn × s and
then to make the equality implicit. This is the approach we will follow in the
specification below. Another consequence of such an approach is to make the use
of our algorithm of selection criteria, based on axiom unfolding, easier because
less axioms are considered.

spec RatList =
sorts Nat, Rat, List
ops 0 : Nat ;

s : Nat → Nat ;
/ : Nat × Nat → Rat ;

[ ] : List ;
:: : Rat × List → List

preds add : Nat × Nat × Nat ;
mult : Nat × Nat × Nat ;
ltn : Nat × Nat ;
eqr : Rat × Rat ;
ltr : Rat × Rat ;
insert : Rat × List × List ;
isin : Rat × List

vars x, y, z, u, v, n, m: Nat ; e: Rat ; l, l′: List
• add(x, 0, x)
• add(x, s(y), s(z)) ⇔ add(x, y, z)
• mult(x, 0, 0)
• add(x, u, z) ∧ mult(x, y, u) ⇒ mult(x, s(y), z)
• ltn(0, s(x))
• ¬ ltn(x, 0)
• ltn(s(x), s(y)) ⇔ ltn(x, y)
• mult(x, s(v), n) ∧ mult(u, s(y), n) ⇒ eqr(x/s(y), u/s(v))
• ltn(m, n) ∧ mult(x, s(v), m) ∧ mult(u, s(y), n) ⇒ ltr(x/s(y), u/s(v))
• insert(x/s(y), [ ], x/s(y) :: [ ])
• eqr(x/s(y), e) ⇒ insert(x/s(y), e :: l, e :: l)
• ltr(x/s(y), e) ⇒ insert(x/s(y), e :: l, x/s(y) :: (e :: l))
• ltr(e, x/s(y)) ∧ insert(x/s(y), l, l′) ⇒ insert(x/s(y), e :: l, e :: l′)
• ¬ isin(x/s(y), [ ])
• isin(x/s(y), e :: l) ⇔ eqr(x/s(y), e) ∨ isin(x/s(y), l)

end

Axioms are then transformed into normalized sequents, as explained above.
For example, the normalization of the right-to-left implication of the axiom
isin(x/s(y), e :: l) ⇔ eqr(x/s(y), e) ∨ isin(x/s(y), l) leads to two normalized
sequents as follows:

eqr(x/s(y),e) |∼ isin(x/s(y),e::l) isin(x/s(y),l) |∼ isin(x/s(y),e::l)

eqr(x/s(y),e) ∨ isin(x/s(y),l) |∼ isin(x/s(y),e::l)
Left-∨

|∼ eqr(x/s(y),e) ∨ isin(x/s(y),l) ⇒ isin(x/s(y),e::l)
Right-⇒
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1. |∼ add(x, 0, x)
2. add(x, s(y), s(z)) |∼ add(x, y, z)
3. add(x, y, z) |∼ add(x, s(y), s(z))
4. |∼ mult(x, 0, 0)
5. add(x, u, z),mult(x, y, u) |∼ mult(x, s(y), z)
6. |∼ ltn(0, s(x))
7. ltn(x, 0) |∼
8. ltn(s(x), s(y)) |∼ ltn(x, y)
9. ltn(x, y) |∼ ltn(s(x), s(y))

10. mult(x, s(v), n),mult(u, s(y), n) |∼ eqr(x/s(y), u/s(v))
11. ltn(m, n),mult(x, s(v),m),mult(u, s(y), n) |∼ ltr(x/s(y), u/s(v))
12. |∼ insert(x/s(y), [ ], x/s(y) :: [ ])
13. eqr(x/s(y), e) |∼ insert(x/s(y), e :: l, e :: l)
14. ltr(x/s(y), e) |∼ insert(x/s(y), e :: l, x/s(y) :: e :: l)
15. ltr(e, x/s(y)), insert(x/s(y), l, l′) |∼ insert(x/s(y), e :: l, e :: l′)
16. isin(x/s(y), [ ]) |∼
17. isin(x/s(y), e :: l) |∼ eqr(x/s(y), e), isin(x/s(y), l)
18. eqr(x/s(y), e) |∼ isin(x/s(y), e :: l)
19. isin(x/s(y), l) |∼ isin(x/s(y), e :: l)

2 A General Framework of Testing from Formal
Specifications

The work presented in Section 4 comes within the general framework of test-
ing from formal specifications defined in [1]. Here, we succinctly introduce this
framework, then we instantiate it to the formalism we have just defined in Sec-
tion 1.

The interpretation of test cases submission as a success or failure is related
to the notion of program correctness. Following previous works [1, 4, 9, 10, 11],
test cases are formulae and programs are Σ-models. Therefore, test cases inter-
pretation is defined by formula satisfaction. When a test case is submitted to a
program, it has to yield a verdict (success or failure). Hence, test cases have to
be directly interpreted as “true” or “false” by a “computation” of the program.
These “executable” formulae are called observable.

Let Sp = (Σ, Ax) be a specification and Obs ⊆ For(Σ) any set of observable
formulae. Let P be a program which is denoted by a Σ-model of Mod(Σ). Then
test cases are observable formulae, which are successful for P if and only if P
validates them (i.e. performs them and interprets them as “true”). A test set
T is then a set of test cases. T is said to be successful for P if and only if
∀ϕ ∈ T, P |= ϕ.

Following an observational approach [14], to be qualified as correct with re-
spect to a specification Sp, a program is required to be observationally equivalent
to a model of Mod(Sp), up to the observable formulae of Obs.

Definition 1 (Correctness). P is correct for Sp via Obs, denoted by
CorrectObs(P,Sp), if and only if there exists a model M in Mod(Sp) such that
M ≡Obs P .
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Definition 2 (Exhaustiveness). Let K ⊆ Mod(Σ). A test set T is exhaustive
for K with respect to Sp and Obs if and only if

∀P ∈ K, P |= T ⇐⇒ CorrectObs(P,Sp)

The existence of an exhaustive test set means that Sp is testable via Obs since
correctness can be asymptotically approached by submitting a (possibly infinite)
test set. Hence, an exhaustive test set is appropriate to start the process of se-
lecting a finite test set with a reasonable size. However, depending on the nature
of Sp, Obs and K, an exhaustive test set does not necessarily exist. For instance,
in [12], we have shown that for positive conditional algebraic specifications, when
Obs is restricted to ground equations, Sp• ∩ Obs is only exhaustive for algebras
satisfying a strong condition, called initiality, which, roughly speaking, means
that the program under test behaves like the initial algebra of Mod(Sp) for all
ground instances of equations occurring in premises of axioms of Sp. The prob-
lem is that showing such a property on a program may be as difficult as proving
its correctness, and then restricts its testability.

In Section 3, we will show that in the presence of a specification Sp with
quantifier-free axioms, and when the set of observable formulae Obs is the set of
all ground first-order formulae, the exhaustiveness of Sp• ∩ Obs holds without
conditions on programs, that is K = Mod(Σ).

Test sets can be compared with respect to their ability to reject (or to accept,
from a dual point of view) programs. Two test sets are then said to be equivalent
if and only they accept exactly the same programs.

The challenge of testing then consists in managing (infinite) test sets. In prac-
tice, experts apply some selection criteria on a reference test set in order to ex-
tract a test set of sufficiently reasonable size to be submitted to the program.
The underlying idea is that all test sets satisfying a considered selection crite-
rion reveal the same class of incorrect programs, intuitively those corresponding
to the fault model captured by the criterion. For example, the criterion called
“uniformity hypothesis” over a test set T postulates that any chosen value is
equivalent to another one in T .

A classic way to select test data with a selection criterion C consists in splitting
a given starting test set T into a family of test subsets {Ti}i∈IC(T ) such that
T = ∪i∈IC(T ) Ti holds. A test set satisfying such a selection criterion simply
contains at least one test case for each non-empty subset Ti. Intuitively, all test
cases in Ti are supposed equivalent to reveal incorrect programs with respect to
the fault model captured by Ti. Hence, the selection criterion C is a coverage
criterion according to the way C is splitting the initial test set T into the family
{Ti}i∈IC(T ) . This is the method that we will use in this paper to select test data,
known under the term of partition testing.

For instance, the selection criterion we will define in the sequel of this paper
consists in splitting a test set into subsets according to specification axioms.
If we come back to the RatList specification, the insert predicate is specified
inductively by four axioms. Testing a formula consists in finding input data,
that is, ground substitutions to apply to the formula in order to submit it to the
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program, bringing into play at least once each of these four axioms. Therefore,
the set of test cases associated to insert(r, L, L′), where r, L and L′ are variables,
can be split into four subsets:

1. The set of tests associated to the substitution L → [ ], coming from the
axiom insert(x/s(y), [ ], x/s(y) :: [ ]).

2. The set associated to the case where the rational to insert is equal to the
first element of the list, that is, associated to the substitution r → x/s(y),
L → e :: l with eqr (x/s(y), e), coming from the axiom eqr(x/s(y), e) ⇒
insert(x/s(y), e :: l, e :: l).

3. The set associated to the case where it is less than the first element, that is,
the substitution r → x/s(y), L → e :: l with ltr(x/s(y), e), coming from the
axiom ltr(x/s(y), e) ⇒ insert(x/s(y), e :: l, x/s(y) :: e :: l).

4. The set associated to the case where it is greater than it, that is, the sub-
stitution r → x/s(y), L → e :: l with ltr(x/s(y), e), coming from the axiom
ltr(e, x/s(y)) ∧ insert(x/s(y), l, l′) ⇒ insert(x/s(y), e :: l, e :: l′).

The process can be pursued on each above subset.

Definition 3 (Selection criterion). A selection criterion C is a mapping1

P(Sp• ∩ Obs) → P(P(Sp• ∩ Obs)). For a test set T , we denote |C(T )| =
∪i∈IC(T ) Ti where C(T ) = {Ti}i∈IC(T ) .

T ′ satisfies C applied to T , denoted by T ′ � C(T ), if and only if:

∀i ∈ IC(T ), Ti �= ∅ ⇒ T ′ ∩ Ti �= ∅

A selection criterion consists of a mapping that splits test sets into families of
test sets. The selection criterion is satisfied as soon as the considered test set
contains at least one test case within each (non-empty) set of the resulting family.
To be pertinent, a selection criterion should ensure some properties between the
starting test set and the resulting family of test sets:

Definition 4 (Properties). Let C be a selection criterion and T be a test set.

– C is said sound for T if and only if |C(T )| ⊆ T ;
– C is said complete for T if and only if |C(T )| = T .

The properties of soundness and completeness are essential for an adequate se-
lection criterion: soundness ensures that test cases will be selected within the
starting test set (i.e. no test is added) while completeness ensures that we capture
all test cases up to the notion of equivalent test cases (i.e. no test is lost).

3 An Exhaustive Test Set

Here, we show that for every quantifier-free first-order specification Sp = (Σ, Ax),
Sp• ∩ Obs is an exhaustive test set for Mod(Σ), when Obs is the set of all ground
formulae built over Σ.
1 For a given set X, P(X) denotes the set of all subsets of X.
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Theorem 1. Let Sp = (Σ, Ax) be a specification. Then Sp• ∩Obs is exhaustive
for Mod(Σ).

Proof. Let P be a program, i.e. P ∈ Mod(Σ), such that P |= Sp• ∩ Obs . Let us
show that CorrectObs(P,Sp).

Note Th(P ) = {ϕ ∈ Obs | P |= ϕ}. Let HTΣ ∈ Mod(Σ) be the Herbrand
model of Th(P ). By definition, we have that P ≡Obs HTΣ . Let us then show
that HTΣ ∈ Mod(Sp). Let ϕ be an axiom of Sp. Let ν : V → HTΣ be an
interpretation. By definition, ν(ϕ) is a ground formula. By hypothesis, P |= ν(ϕ)
and then HTΣ |= ν(ϕ). We conclude that HTΣ |=ν ϕ.

Suppose that there exists M ∈ Mod(Sp) such that M ≡Obs P . Let ϕ ∈
Sp• ∩ Obs. By hypothesis, M |= ϕ, then P |= ϕ as well. ��

4 Selection Criteria Based on Axiom Unfolding

In this section, we study the problem of test case selection for quantifier-free
specifications, by adapting a selection criteria based on unfolding of positive
conditional formulae in the algebraic specification setting [6].

4.1 Test Sets for Quantifier-Free Formulae

The selection method that we are going to define takes inspiration from classic
methods that split the initial test set of any formula considered as a test purpose.
Succinctly, for a quantifier-free first-order formula ϕ, our method consists in

1. splitting the initial test set for ϕ into many test subsets, called constrained
test sets for ϕ, and

2. choosing any input in each non-empty subset.

First, let us define what test set and constrained test set for a quantifier-free
formula are.

Definition 5 (Test set). Let ϕ be a quantifier-free formula, called test purpose.
The test set for ϕ, denoted by Tϕ, is the set defined as follows:

Tϕ = {ρ(ϕ) | ρ : V → TΣ, ρ(ϕ) ∈ Sp• ∩ Obs}

Note that ϕ may be any formula, not necessarily in Sp•.

Example 1. Here are some test purposes for the signature of specification
RatList, with examples of associated test cases.

add(x, 0, x). Since add(x, 0, x) is an axiom, all ground instances of this formula
are test cases: add(0, 0, 0), add(6, 0, 6), etc.

eqr(u, v). This predicate is under-specified, the case where a rational is of the
form x/0 is not taken into account, so there cannot be tests on this case.
Test cases may be: eqr(1/2, 1/2), eqr (3/6, 4/8), etc.
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add(m, n, r) ⇒ mult(m, 2, r). Only cases where add(m, n, r) is not satisfied or
where m = n are semantic consequences of the specification. The interest-
ing test cases are those where m = n such as add(2, 2, 4) ⇒ mult(2, 2, 4),
add(5, 5, 10) ⇒ mult(5, 2, 10), etc.

insert(r, l, [ ]). The formula is never satisfied for any ground instance of r and l,
so there is no possible test case.

Definition 6 (Constrained test set). Let ϕ be a quantifier-free formula, C
be a set of quantifier-free formulae called Σ-constraints, and σ : V → TΣ(V ) be
a substitution. A test set for ϕ with respect to C and σ, denoted by T(C,σ),ϕ, is
the set of ground formulae defined by:

T(C,σ),ϕ ={ρ(σ(ϕ)) | ρ : V → TΣ , ρ(σ(ϕ)) ∈ Sp•∩Obs , ∀ψ ∈ C, ρ(ψ) ∈ Sp•∩Obs}

The couple 〈(C, σ), ϕ〉 is called a constrained test purpose.

Note that the test purpose ϕ of Definition 5 can be seen as the constrained test
purpose 〈({ϕ}, id), ϕ〉.
Example 2. Let us denote a substitution σ : V → TΣ(V ) mapping a set X =
{x1, . . . , xn} to a set Y = {y1, . . . , yn}, such that σ(xi) = yi for all i, 1 ≤ i ≤ n,
by [x1 → y1, . . . , xn → yn].

Examples of constrained test purposes may be the following:

〈(∅, [x → s(u)]), add(x, 0, x)〉

〈({ltn(3, x)}, id), add(x, 0, x)〉

〈({ltn(x, z)}, [u → x/s(y), v → z/s(y)]), ltr(u, v)〉

〈({ltn(m, n),mult(x, s(z), m),mult(w, s(y), n)}, [u → x/s(y), v → w/s(z)]),
ltr(u, v)〉

As another example, to come back to the example of splitting the test set
associated to insert(r, L, L′) into four subsets, we can express each of four test
subsets in terms of constrained test purposes as follows:

〈(∅, σ1), insert(r, L, L′)〉
〈({eqr (x0/s(y0), e0)}, σ2), insert(r, L, L′)〉
〈({ltr(x0/s(y0), e0)}, σ3), insert(r, L, L′)〉
〈({ltr(e0, x0/s(y0)), insert(x0/s(y0), l0, l′0)}, σ4), insert(r, L, L′)〉

where
r L L′

σ1 x0/s(y0) [ ] x0/s(y0) :: [ ]
σ2 x0/s(y0) e0 :: l0 e0 :: l0
σ3 x0/s(y0) e0 :: l0 x0/s(y0) :: (e0 :: l0)
σ4 x0/s(y0) e0 :: l0 e0 :: l′0

Only this kind of constrained test sets, built from a case analysis of the speci-
fication axioms, will be of interest. The aim of the unfolding procedure we will
introduce in the next section is to build such test sets.
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4.2 Unfolding Procedure

In practice, the initial test purpose is unconstrained. The aim is to replace it with
a set of constrained test purposes. This is what the unfolding procedure does,
matching the initial formula with the specification axioms, when it is possible.

Therefore, the unfolding procedure inputs are:

– a quantifier-free specification Sp = (Σ, Ax) where axioms of Ax have been
transformed into normalized sequents;

– a quantifier-free formula ϕ seen as the initial constrained test purpose
〈(∅, id), ϕ〉;

– a family Ψ of couples (C, σ) where C is a set of Σ-constraints in the form of
normalized sequents, and σ is a substitution V → TΣ(V ).

The first set Ψ0 only contains the couple composed of the set of normalized
sequents obtained from the quantifier-free formula ϕ under test and the identity
substitution.

The unfolding procedure is expressed by the following two rules:2

Reduce Ψ ∪ {(C ∪ {Γ |∼ Δ}, σ′)}
Ψ ∪ {(σ(C), σ ◦ σ′)} ∃γ ∈ Γ, ∃δ ∈ Δ s.t. σ(γ) = σ(δ), σ mgu

Unfold
Ψ ∪ {(C ∪ {ψ}, σ′)}

Ψ ∪
⋃

(c,σ)∈Tr(ψ)

{(σ(C) ∪ c, σ ◦ σ′)}

where Tr(ψ) for ψ = γ1, . . . , γm |∼ δ1, . . . , δn is the set defined by:
{(

{(σ(γp+1), . . . , σ(γm), σ(ζi) |∼ σ(δq+1), . . . , σ(δn)}1≤i≤k

∪ {(σ(γp+1), . . . , σ(γm) |∼ σ(ξi), σ(δq+1), . . . , σ(δn)}1≤i≤l
, σ

)∣
∣
∣
∣

ψ1, . . . , ψp, ξ1, . . . , ξl |∼ ζ1, . . . , ζk, ϕ1, . . . , ϕq ∈ Ax,
1 ≤ p ≤ m, ∀1 ≤ i ≤ p, σ(ψi) = σ(γi),
1 ≤ q ≤ n, ∀1 ≤ i ≤ q, σ(ϕi) = σ(δi),
σ unifier, k, l ∈ N

⎫
⎪⎪⎬

⎪⎪⎭

The Red rule eliminates tautologies from constraints sets. Intuitively, the
Unfold rule consists in replacing the formula ψ with a set c of constraints,
which are what remains of the axiom after unification. Then testing σ(ψ) comes
to test the formulae of c. The particular case where no formula has to be cut is
taken into account, since k and l may be equal to zero. Tr(ψ) is then a couple
(∅, σ), and it is the last step of unfolding for this formula.

Each unification with an axiom leads to a couple (c, σ), so the initial formula
ψ is replaced with as much sets of formulae as there are axioms to which it
can be unified. The definition of Tr(ψ) being based on unification, this set is
computable if the specification Sp has a finite set of axioms. Therefore, given an

2 The most general unifier (or mgu) of two terms γ and δ is the most general substi-
tution σ such that σ(γ) = σ(δ).
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atomic formula ψ, we have the selection criterion Cψ that maps any T(C,σ′),ϕ to
(T(σ(C\{ψ})∪c,σ◦σ′),ϕ)(c,σ)∈Tr(ψ) if ψ ∈ C, and to TC,ϕ otherwise.

We write 〈Ψ, ϕ〉 �U 〈Ψ ′, ϕ〉 to mean that Ψ ′ can be derived from Ψ by applying
Reduce or Unfold. An unfolding procedure is then a program, inputs of which
are a quantifier-free first-order specification Sp and a quantifier-free formula ϕ,
and uses the above inference rules to generate the sequence

〈Ψ0, ϕ〉 �U 〈Ψ1, ϕ〉 �U 〈Ψ2, ϕ〉 . . .

Example 3. We want to test the formula isin(r, L) ⇒ insert(r, L, L′).

Ψ0 = { ({isin(r, L) |∼ insert(r, L, L′)}, id) }

Ψ1 = { (∅, σ1), (16)
({eqr(x0/s(y0), e0) |∼ insert(x0/s(y0), e0 :: l0, l

′
0),

isin(x0/s(y0), l0) |∼ insert(x0/s(y0), e0 :: l0, l
′
0)}, σ2), (17)

({isin(x0/s(y0), e0 :: l0) |∼ insert(x0/s(y0), l0, l′0)}, σ3), (19)
(∅, σ4), (12)
({isin(x0/s(y0), e0 :: l0) |∼ eqr(x0/s(y0), e0)}, σ5), (13)
({isin(x0/s(y0), e0 :: l0) |∼ ltr(x0/s(y0), e0)}, σ6), (14)
{isin(x0/s(y0), e0 :: l0) |∼ ltr(e0, x0/s(y0)),
isin(x0/s(y0), e0 :: l0) |∼ insert(x0/s(y0), l0, l′0)}, σ7) (15) }

where
r L L′ x y e l l′

σ1 x0/s(y0) [ ] x0 y0
σ2 x0/s(y0) e0 :: l0 l′0 x0 y0 e0 l0
σ3 x0/s(y0) l0 l′0 x0 y0 l0
σ4 x0/s(y0) [ ] x0/s(y0) :: [ ] x0 y0
σ5 x0/s(y0) e0 :: l0 e0 :: l0 x0 y0 e0 l0
σ6 x0/s(y0) e0 :: l0 x0/s(y0) :: e0 :: l0 x0 y0 e0 l0
σ7 x0/s(y0) e0 :: l0 e0 :: l′0 x0 y0 e0 l0 l′0

Each couple of Ψ1 is labelled by the number of the axiom used for the unfolding
of the initial formula.

The first couple (∅, σ1) comes from the unification of the initial formula with
the axiom isin(x/s(y), [ ]) |∼ . Since isin(r, L) |∼ insert(r, L, L′) with r = x/s(y)
and L = [ ] is a direct consequence of this axiom, no constraint is generated but
the substitution.

If L is not the empty list, the initial formula isin(r, L) |∼ insert(r, L, L′) is
true if and only if L = L′. Its unfolding when L is not empty will then lead
to two kinds of constraints: those where L = L′ that will become test cases
since they are consequences of the specification, and those where L �= L′ that
will not lead to test cases. For example, the fifth couple ({isin(x0/s(y0), e0 ::
l0) |∼ eqr(x0/s(y0), e0)}, σ5) is a potential test case since isin(x0/s(y0), e0 :: l0)
and eqr(x0/s(y0), e0) are true simultaneously for any ground substitution. On
the contrary, the sixth couple, whose constraint formula is isin(x0/s(y0), e0 ::



Test Selection Criteria for Quantifier-Free First-Order Specifications 157

l0) |∼ ltr(x0/s(y0), e0), will never lead to a test case. Indeed, when x0/s(y0) is
in the list e0 :: l0, then it cannot be less than e0, for any ground substitution.

The unfolding procedure cannot distinguish between these two kinds of con-
straints, however, before being submitted to the program, a ground substitution
ρ is applied to constrained test purposes. Since by definition, ρ(ψ) has to be a
consequence of the specification, constraints where L �= L′ will not be submitted
as test cases to the program.

A second unfolding of, for example, the formula isin(x0/s(y0), e0 ::
l0) |∼ eqr(x0/s(y0), e0) would lead to the following set:

{ ({eqr(x0/s(y0), e0) |∼ eqr(x0/s(y0), e0)
isin(x0/s(y0), l0) |∼ eqr(x0/s(y0), e0)}, σ′

1), (17)
({isin(x0/s(y0), e1 :: e0 :: l0) |∼ eqr(x0/s(y0), e0)}, σ′

2), (19)
({isin(x0/s(y0), u0/s(v0) :: l0) |∼ mult(x0, s(v0), n0),
isin(x0/s(y0), u0/s(v0) :: l0) |∼ mult(u0, s(y0), n0)}, σ′

3), (10)
({isin(x0/s(y0), l0) |∼ }, σ′

4) (17) }

The tautology eqr(x0/s(y0), e0) |∼ eqr(x0/s(y0), e0) would be naturally deleted
with the Reduce rule.

Here, our unfolding procedure has been defined in order to cover behaviours
of one test purpose, represented by the formula ϕ. When we are interested in
covering more widely the exhaustive set Sp•∩Obs , a strategy consists in ordering
quantifier-free first-order formula with respect to their length, as follows:

Φ0 = { |∼ p(x1, . . . , xn) | p : s1 × . . . × sn ∈ P, ∀i, 1 ≤ i ≤ n, xi ∈ Vsi}

Φn+1 = {p(x1, . . . , xn), Γ |∼ Δ, Γ |∼ Δ, p(x1, . . . , xn) |
Γ |∼ Δ ∈ Φn, p : s1 × . . . × sn ∈ P, ∀i, 1 ≤ i ≤ n, xi ∈ Vsi}

Then, to manage the size (often infinite) of Sp•∩Obs , we start by choosing k ∈ N,
and then we apply for every i, 1 ≤ i ≤ k, the above unfolding procedure to each
p(x1, . . . , xn), Γ |∼ Δ and Γ |∼ Δ, p(x1, . . . , xn) belonging to Φi. Of course, this
requires that signatures are finite so that each set Φi is finite too.

4.3 Soundness and Completeness

Here, we prove the two properties that make the unfolding procedure relevant
for selection of appropriate test cases, i.e. that the selection criterion defined by
the procedure is sound and complete for the initial test set we defined.

Test sets for quantifier-free formulae are naturally extended to sets of couples
Ψ as follows:

TΨ,ϕ =
⋃

(C,σ)∈Ψ

T(C,σ),ϕ

Theorem 2. If 〈Ψ, ϕ〉 �U 〈Ψ ′, ϕ〉, then TΨ,ϕ = TΨ ′,ϕ.

The proof may be found in [15].
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5 Conclusion

In this paper, we have extended a selection criterion, based on unfolding of
positive conditional axioms in the algebraic specification setting, to quantifier-
free first-order specifications. Our unfolding procedure consists in dividing an
initial test set into subsets and then selecting test cases within each subset. We
have then proved that this unfolding is complete. Moreover, we have shown that
given a quantifier-free first-order specification Sp, Sp• ∩Obs is an exhaustive set
whatever the system under test is.

Research on this unfolding procedure is mainly continued on two aspects.
First, we are specializing our unfolding procedure by handling equality (when
it occurs) in a efficient way. Indeed equality often occurs in software specifica-
tions. When dealing with first-order logic, the axiomatization of equality leads
to uniformly tackle this predicate as the others, without taking advantage of
the efficient, natural and concise kind of reasoning which is attached to, namely,
replacement of equal by equal. We are then adapting our unfolding procedure
by defining it from sequent calculus LK= or G= [16]. Finally, our goal is to pro-
pose a framework of functional testing with selection criteria including primitive
structuration, following [8, 13].
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Dept. Sistemas Informáticos y Computación
Universidad Complutense de Madrid, E-28040 Madrid, Spain
mgmerayo@fdi.ucm.es,mn@sip.ucm.es,isrodrig@sip.ucm.es

Abstract. We present a formal framework to specify and test systems
presenting both soft and hard deadlines. While hard deadlines must be
always met on time, soft deadlines can be sometimes met in a different
time, usually higher, from the specified one. It is this characteristic (to
formally define sometimes) what produces several reasonable alternatives
to define appropriate implementation relations, that is, relations to de-
cide wether an implementation is correct with respect to a specification.
In addition to introduce these relations, we define a testing framework
to test implementations.

1 Introduction

Formal methods refer to techniques based on mathematics for the specification,
development, and verification of systems. The use of formal methods is espe-
cially relevant in reliable systems where, due to safety and security reasons,
it is important to ensure that errors are not included during the development
process. Formal methods are particularly effective when used early in the devel-
opment process, at the requirements and specification levels, but can be used
for a complete formal development of a system. In this regard, and consider-
ing specification formalism, we may mention the (original) notions of process
algebras, Petri nets, and Moore/Mealy machines. Once the roots were well con-
solidated other considerations were taken into account. The next step was to
deal with quantitative information such as the time underlying the performance
of systems or the probabilities resolving the non-deterministic choices that a sys-
tem may undertake. These characteristics gave raise to new models where time
and/or probabilities were included (for example, [1,2,3,4,5,6,7,8] among many
others).

The formal representation of systems allows to rigorously analyze their prop-
erties. In particular, it allows to establish the correctness of the system with
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respect to a specification or the fulfillment of a specific set of required condi-
tions, to check the semantic equivalence of two systems, to analyze the preference
of a system to another with respect to a given criterion, to predict the possi-
bility of incorrect behaviors, to establish the performance level of a system, etc.
In this line, formal testing techniques allow to test the correctness of a system
with respect to a specification. Formal testing originally targeted the functional
behavior of systems, such as determining whether the tested system can, on the
one hand, perform certain actions and, on the other hand, does not perform
some unexpected ones. The application of formal testing techniques to check
the correctness of a system requires to identify the critical aspects of the system,
that is, those aspects that will make the difference between correct and incorrect
behaviors. While the relevant aspects of some systems only concern what they
do, in some other systems it is equally relevant how they do what they do. Thus,
formal testing techniques are recently also dealing with non-functional proper-
ties such as the probability of an event to happen or the time that it takes to
perform a certain action (for example, [9,10,11,12,13,14,15,16]).

One of the problems when specifying timed systems is that it is not always easy
to precisely establish the time bounds associated with the tasks that the system
performs. Thus, it is sometimes useful to allow some degree of indecision in such
specifications. In this line, stochastic models (for example, [17,18,19,20,21,22,23])
allow to specify constraints such as with probability p the task must finish before
t time units have passed. So, the specifier does not need to provide the precise
point of time associated with a task, but a probabilistic estimation of the time
value(s). However, there are situations where the specifier either does not have
such probabilistic information or does not want to provide such information
because it might unnecessarily complicate the model. In this case, it seems that
the most appropriate way to specify time constraints is to use time intervals,
that is, the specifier provides a set of possible time values, instead of just one, but
without quantifying the probability that each value of the interval has. Moreover,
it may happen that while testing the correctness of a system the tester allows
some imprecision in the temporal behavior of the system. For example, if the
specifier cannot precisely define the temporal constraints of a system, the tester
can also have problems to determine what is the exact notion of passing a test on
time. Moreover, it can be admissible that the execution of a task sometimes lasts
more than expected: If most of the times the task is performed on time, a couple
of delays can be tolerated. This is the idea of a soft deadline, in contrast with
hard deadlines that have to be always met on time. Finally, another reason for
the tester to allow imprecisions, it may happen that the artifacts measuring time
while testing a system are not as precise as desirable. In this case, an apparent
wrong behavior due to bad timing can be in fact correct since it may happen
that the watches are not working properly.

In this paper we propose a formal framework to specify and test systems where
time considerations can fall in some of the cases commented in the previous
paragraph. Time will be introduced in specifications by extending classical finite
state machines with time intervals associated to the performance of actions.
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Intuitively, transitions in finite state machines indicate that if the machine is in
a state s and receives and input i then it will produce and output o and it will
change its state to s′. An appropriate notation for such a transition could be

s
i/o−→ s′. If we consider our timed extension of finite state machines, a transition

such as s
i/o−→ [t1,t2]s′ means that if the machine is in state s and receives the

input i, it will perform the output o and reach the state s′, and it will take a
time greater than or equal to t1 but smaller than or equal to t2.

Testing, as well as the definition of implementation relations, will depend
on measuring time values and accepting the performance of the system if the
time behavior is correct up to an admissible error. The possible definition of
admissible will give raise to several alternative implementation relations and
several notions of passing a test. However, there is still a last issue that must
be taken into account when dealing with systems where time requirements are
given by means of intervals. Since we assume a black-box testing framework, we
cannot check that the intervals governing the behavior of the implementation
are correctly related with the ones corresponding to the implementation. In
fact, the execution of a test will return the time that it took to be performed,
not the associated time interval. As a consequence, since we assume that time
intervals are non-negative real numbers, we would need an infinite number of
observations from a transition of the implementation (with an unknown time
interval) to assure that its time interval is correct with the respect to the one of
the specification (which it is accessible).

Even though there are several papers devoted to formal testing of timed sys-
tems [10,9,11,12,15,16], we are aware of only one work where the topic of non-
strict deadlines is considered in a testing framework. In [24], a probabilistic for-
malism is used to approximate the idea of soft deadline. However, their approach
is not very related to ours since, on the one hand, they are based on [25,26], and,
on the other hand, they use a probabilistic approach, based on [27], to deal with
soft deadlines. Testing relations to compare processes are based on the responses
of the processes to all the tests, while we apply tests, derived from specifications,
to implementations to determine whether the implementation is somehow cor-
rect with respect to the specification. As we mentioned before, stochastic models
allow to partially simulate soft deadlines. In this line, there are two proposals
to test stochastic systems [28,29]. Since they are also inspired by [25,26], these
contributions are not related to the one presented in this paper.

The rest of the paper is organized as follows. In Section 2 we introduce our
notion of timed finite state machine and give some auxiliary notation. In Sec-
tion 3 we give our timed conformance relations. In Section 4 we show how tests
are defined and applied to implementations. Finally, in Section 5 we give our
conclusions and some lines for future work.

2 Extending Finite State Machines with Time Intervals

In this section we introduce our notion of timed finite state machine, that we call
IFSM, and some concepts that will be used along the paper. The main difference
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with respect to usual FSMs consists in the addition of time to indicate the lapse
between offering an input and receiving an output. First we introduce notation
related to time intervals, sets, and multisets.

Definition 1. We say that d = [a1, a2] is a time interval if a1 ∈ IR+, a2 ∈
IR+ ∪ {∞}, and a1 ≤ a2. From now on we assume that for all r ∈ IR+ we have
r < ∞, r + ∞ = ∞, and r

∞ = 0. We consider that IIR+ denotes the set of time
intervals. We write πi(d), for i ∈ {1, 2}, to denote the value ai.

Given two time intervals d1 = [a11, a12] and d2 = [a21, a22], d1+d2 denotes the
time interval [a11+a21, a12+a22]. Addition of time intervals can be generalized to
n summands in the expected way. Given n time intervals d1 = [a11, a12], . . . , dn =
[an1, an2], we have that

∑
di denotes the time interval [

∑
ai1,

∑
ai2].

Given a set S, we consider that |S| denotes the cardinal of S, P(S) denotes
the powerset of S, and ℘(S) denotes the powermultiset of S, that is, the set of
multisets conformed from elements belonging to S. We will use the symbols {| and
|} to denote multisets. Given a multiset M, we write r ∈ M if r appears in M
(that is, r has multiplicity greater than 0). We write ||M|| to denote the cardinal
of M including multiplicity of its elements. For example, ||{|1, 2, 3, 1, 2|}|| = 5. ��

A temporal requirement such as [t1, t2] indicates that the associated task should
take at least t1 time units and at most t2 units to be performed. Intervals like
[0, t2], [t1, ∞], or [0, ∞] denote the absence of a temporal lower/upper bound and
the absence of any bound, respectively. Let us note that in the case of [t1, ∞]
and [0, ∞] we are abusing the notation since these intervals represent, in fact,
the intervals [t1, ∞) and [0, ∞), respectively.

Definition 2. An Interval Finite State Machine, in the following IFSM, is a
tuple M = (S, I, O, T r, sin) where S is a finite set of states, I is the set of input
actions, O is the set of output actions, Tr is the set of transitions, and sin is the
initial state.

A transition belonging to Tr is a tuple (s, s′, i, o, d) where s, s′ ∈ S are the
initial and final states of the transition, i ∈ I and o ∈ O are the input and output
actions, and d ∈ IIR+ is the time interval associated with the transition.

We say that the IFSM M is input-enabled if for all state s ∈ S and input
i ∈ I, there exist s′, o, and d such that (s, s′, i, o, d) ∈ Tr. We say that the IFSM
M is observable if there do not exist two different transitions (s, s1, i, o, d1) and
(s, s2, i, o, d2). ��

Intuitively, a transition (s, s′, i, o, d) indicates that if the machine is in state s
and receives the input i then, after a time belonging to the interval d has passed,
the machine emits the output o and moves to s′. In Figure 1 we give a graphical
example of an IFSM.

Next, we introduce the notion of trace. As usual, a trace is a sequence of
input/output pairs. In addition, we have to record the possible time values, that
is a time interval, where the trace can be performed. An evolution is a trace
starting at the initial state of the machine.
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1

2 3

a1/b1 a2/b2

a3/b3

a4/b4

M1

a1/b1

I = {a1, a2, a3, a4}, O = {b1, b2, b3, b4}
t12 = (s1, s2, a1, b1, [1, 3])
t13 = (s1, s3, a2, b2, [2, 6])
t32 = (s3, s2, a3, b3, [1, 2])
t21 = (s2, s1, a4, b4, [3, 9])
t22 = (s2, s2, a1, b1, [4, 5])

Fig. 1. Example of IFSM

Definition 3. Let M = (S, I, O, T r, sin) be an IFSM. A timed trace, or simply
trace, of M is a tuple (s, s′, (i1/o1, . . . , ir/or), d) if we have that there exist
transitions (s, s1, i1, o1, d1),. . ., (sr−1, s

′, ir, or, dr) ∈ Tr, such that d =
∑

di. We
say that (i1/o1, . . . , ir/or) is a non-timed evolution, or simply evolution, of M if
we have that (sin, s′, (i1/o1, . . . , ir/or), d) is a trace of M for some d ∈ IIR+

and
s′ ∈ S. We denote by NTEvol(M) the set of non-timed evolutions of M .

We say that the pair ((i1/o1, . . . , ir/or), d) is a timed evolution of M if we
have that (sin, s′, (i1/o1, . . . , ir/or), d) is a trace of M . We denote by TEvol(M)
the set of timed evolutions of M . ��

Let us consider again the IFSM depicted in Figure 1 and its transitions t13,
t32, and t21. We can build the trace (s1, s1, (a2/b2, a3/b3, a4/b4), [6, 17]) based
on these transitions. This trace represents that from state 1 the machine can
accept the sequence of inputs (a2, a3, a4) and it will emit the sequence of outputs
(b2, b3, b4) after a time belonging to the interval [6, 17] has passed.

3 Implementation Relations

In this section we introduce our implementation relations. Following the classical
pattern, we consider that an implementation conforms to a specification if for
all possible sequence of inputs that the specification can perform, the outputs
emitted by the implementation are a subset of those for the specification. Intu-
itively, this means that the implementation cannot invent a behavior (that is, an
output) for those traces that the specification can perform. This pattern is bor-
rowed from ioco [30] and was introduced in the context of finite state machines
in [31].

A specification is an IFSM. Regarding implementations, we consider that they
are also given by means of IFSMs. Besides, we assume that input actions are
always enabled in any state of the implementation, that is, implementations
are input-enabled according to Definition 2. This is a usual condition to assure
that the implementation will react (somehow) to any input appearing in the
specification. In order to simplify the presentation, we will consider that both
specifications and implementations are given by observable IFSMs (see Defini-
tion 2). Let us note that even restricting to this kind of machines we may still
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Fig. 2. Examples of non-timely conformance

have two transitions (s, s1, i, o1, d1) and (s, s2, i, o2, d2), as far as o1 	= o2. Thus,
we allow some degree of non-determinism.

Definition 4. Let S and I be two IFSMs. We say that I non-timely conforms to
S, denoted by IconfntS, if for all e = (i1/o1, . . . , ir−1/or−1, ir/or) ∈ NTEvol(S),
with r ≥ 1, we have that

e′ = (i1/o1, . . . , ir−1/or−1, ir/o′r) ∈ NTEvol(I) =⇒ e′ ∈ NTEvol(S)

��

In the previous definition, let us note that if the specification would have also
the property of input-enabled then we may remove the condition “for all e =
(i1/o1, . . . , ir−1/or−1, ir/or) ∈ NTEvol(S), with r ≥ 1 ”, so that we simply have
to check trace inclusion.

Example 1. Let us consider the systems M1 and M2 depicted in Figure 2 where
time information has been omitted. We have M2 confnt M1. Let us note that
the non-timed evolutions of M2 having as prefix the sequence (a2/b3, a2/b4) are
not checked because M1 (playing the role of specification) cannot perform those
evolutions.

Let us now consider that M1 is extended with the transition (2, 2, a2, null, d)
so that M1 is input-enabled. Then, M1 does not conform to M2. For example, M2
may perform the non-timed evolution e = (a2/b3, a2/b4), M1 has the non-timed
evolution e′ = (a2/b3, a2/null), but e′ does not belong to the set of non-timed
evolutions of M2. Note that e and e′ share the common prefix a2/b3, a2. ��

Next we introduce our first timed implementation relation. In addition to the
non-timed conformance of the implementation, we require a time condition to
hold: The time intervals of the implementation correspond to those of the spec-
ification.

Definition 5. Let I and S be IFSMs. We say that I conforms in time to S,
denoted by I confint S, if I confnt S and for all e ∈ NTEvol(I) ∩ NTEvol(S) we
have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ (e, d) ∈ TEvol(S)

��
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Despite its neat definition, this relation suffers from practical problems due to
our assumption that the implementation under test is a black box. Even though
this is a very reasonable notion of conformance, the fact that we assume a black-
box testing framework disallows us to check whether the corresponding intervals
coincide indeed. In fact, since we are considering that time intervals are defined
over the set of non-negative real numbers, we would need an infinite number
of observations from a transition of the implementation (with an unknown time
interval) to assure that its time interval coincides with the one from the specifica-
tion (which it is accessible). Thus, we have to give more realistic implementation
relations that are less accurate but are checkable. We only need to suppose that
we can actually record the time that the implementation needs to perform a
given sequence. In order to that, we introduce the concept of timed execution.
They are simply input/output sequences together with the time that it took to
perform the sequence. In a certain sense, timed executions can be seen as in-
stances of the timed evolutions that the implementation can perform. Regarding
the definition of observed time values, we just associate with each evolution the
corresponding time values.

Definition 6. Let I be an IFSM. We say that ((i1/o1, . . . , in/on), t) is an ob-
served timed execution of I, or simply timed execution, if the observation of I
shows that the sequence (i1/o1, . . . , in/on) is performed in time t.

Let H = {|(e′1, t1), . . . , (e′n, tn)|} be a multiset of observed timed executions
and Φ = {e | ∃ t : (e, t) ∈ H} be a set of input/output sequences. We say that
Obs TimeH : Φ −→ ℘(IR+) is the multiset of observed time values of H for Φ if
for all e ∈ Φ we have Obs TimeH(e) = {|t | (e, t) ∈ H |}. ��

Next, we introduce several conformance relations where we check that the ob-
served time values fulfill, in each case, certain conditions with respect to the
appropriate time intervals. The purpose of this paper is to introduce implemen-
tation relations where the time behavior of the implementation does not exactly
correspond to what we expect, that is, it partially deviates from the behavior
defined in the specification. In this case, we have to take into account this pos-
sible divergence. Intuitively, we will determine whether the amount of incorrect
time values is relevant to ensure the possible conformance of the implementa-
tion to the specification. Moreover, we measure the degree of the deviation of
the observed time values, with respect to the interval. So, by considering that
there cannot be any error we test a hard deadline; soft deadlines will allow a
certain error, as long as it is kept under a certain bound. First, we introduce
some notation to relate a set of observed time values and a time interval.

Definition 7. Let d = [a1, a2] ∈ IIR+ be a time interval, R be a non-empty
multiset of non-negative real numbers, and 0 ≤ α ≤ 1.

– We write R ⊆α d if we have

||{|r | r ∈ R ∧ (r < a1 ∨ r > a2)|}||
||R|| ≤ 1 − α
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– We write R �α d if we have

||{|r | r ∈ R ∧ r < a1|}||
||R|| ≤ 1 − α and ||{|r | r ∈ R ∧ r > a2|}|| = 0

– We write R �α d if we have

||{|r | r ∈ R ∧ a1 ≤ r ≤ a2|}||
||R|| ≤ 1 − α and ||{|r | r ∈ R ∧ r > a2|}|| = 0

– We define three notions of distance of an observed time value r ∈ IR+ to an
interval d = [a1, a2] ∈ IIR+ , and their generalization to sets of values as

dist(r, d) =

����
���

0 if r ∈ d

r − a2 if r > a2

a1 − r if r < a1

dist(C, d) =
�

r∈C dist(r, d)2

dist up(r, d) =

�
0 if r ≤ a2

r − a2 if r > a2
dist up(C, d) =

�
r∈C dist up(r, d)2

dist low(r, d) =

�
0 if r < a1

r − a1 if r ≥ a1
dist low(C, d) =

�
r∈C dist low(r, d)2

��

Let us remark that bigger values of α denote smaller tolerance to have unex-
pected values. The first relation, ⊆α, denotes that the number of values outside
the considered interval is not big. There is no distinction between values being
smaller/greater than the lower/upper bound of the interval. The second relation,
�α, can be used to indicate that we do not allow values greater than the upper
bound and that the number of values smaller than the lower bound is acceptable.
Finally, �α is useful in situations where most of the values have to be smaller
than the lower bound of the interval, while values greater than the upper bound
are again not allowed. This last relation will be used to check that the system
is fast. The previous relations count the number of errors but do not quantify
how big the errors are. Regarding distance functions, they measure the error
degree of wrong values. The first one, dist, considers both time values greater
and smaller than the bounds of the interval. The dist up function considers as
wrong only values greater than the upper bound of the interval. Finally, we will
use the dist low function for measuring the values that are not fast enough, that
is, bigger than the lower bound of the interval. By combining inclusion relations
and distance functions, we can evaluate the conformance of the implementation
with respect to the specification in different ways.

Definition 8. Let I and S be two IFSMs, H be a multiset of timed executions
of I, Φ = {e | ∃ t : (e, t) ∈ H} ∩ NTEvol(S), 0 ≤ α ≤ 1, and β ∈ IR+. We define
the following implementation relations:
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– I (H, α)-timely conforms to S, denoted by I conf
(H,α)
int S, if I confnt S and

for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ Obs TimeH(e) ⊆α d

– I (H, α)-preferable timely conforms to S, denoted by Iconf
(H,α)
intp S, if Iconfnt

S and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ Obs TimeH(e) �α d

– I (H, α)-fast timely conforms to S, denoted by I conf
(H,α)
intf S, if I confnt S

and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ Obs TimeH(e) �α d

– I (H, β)-global timely conforms to S, denoted by I conf
(H,β)
intgb S, if I confnt S

and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ dist(Obs TimeH(e), d) ≤ β

– I (H, β)-up-timely conforms to S, denoted by I conf
(H,β)
intup S, if I confnt S

and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ dist up(Obs TimeH(e), d) ≤ β

– I (H, β)-low-timely conforms to S, denoted by I conf
(H,β)
intlw S, if I confnt S

and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒ dist low(Obs TimeH(e), d) ≤ β

– I (H, α, β)-timely conforms to S, denoted by I conf
(H,α,β)
int S, if I confnt S

and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒
(
Obs TimeH(e) ⊆α d ∧ dist(Obs TimeH(e), d) ≤ β

)

– I (H, α, β)-preferable timely conforms to S, denoted by I conf
(H,α,β)
intp S, if

I confnt S and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒

⎛

⎝
Obs TimeH(e) �α d

∧
dist low(Obs TimeH(e), d) ≤ β

⎞

⎠

– I (H, α, β)-fast timely conforms to S, denoted by Iconf
(H,α,β)
intf S, if IconfntS

and for all e ∈ Φ we have that for all time interval d ∈ IIR+

(e, d) ∈ TEvol(S) =⇒

⎛

⎝
Obs TimeH(e) �α d

∧
dist low(Obs TimeH(e), d) ≤ β

⎞

⎠

��
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Intuitively, the new relations establish that the implementation must conform
to the specification in the usual way (that is, I confnt S). In addition, the ob-
served execution time values corresponding to an evolution must mostly belong
to the time interval indicated by the specification for that evolution (timely
conforms), or be less than or equal to the lower/upper bound (fast timely
conforms/preferable timely conforms) respectively. The relations global timely,
up-timely, and low-timely require that the errors presented by the observed ex-
ecution time values do not exceed a established threshold. Finally, in the last
three relations, we consider both requests simultaneously, that is, the relations
demand conditions both over the number of observed time values out of the
interval and over the allowed deviation.

Let us remark that to have the previously defined relations parameterized by
the set H is somehow similar to consider the, widely used, fairness assumption in
formal testing: If we test a system enough, we can be sure that we go through all
the possible paths of the tested machine. In the case of the fairness assumption,
we would have something like H = TEvol(I) while in our setting we have that
an implementation is correct up to the submultiset of TEvol(I) that we consider.

4 Definition and Application of Tests

A test represents a sequence of inputs applied to the implementation. After
applying each input, we check whether the received output is expected or not. In
the latter case, a fail signal is produced. In the former case, either a pass signal
is emitted (indicating successful termination) or the testing process continues
by applying another input. If we are testing an implementation with input and
output sets I and O, respectively, tests are deterministic acyclic I/O labelled
transition systems (i.e. trees) with a strict alternation between an input action
and the set of output actions. After an output action we may find either a
leaf (indicating either failure or successful termination) or another input action.
Leaves are labelled either by pass or by fail. In the first case we add a time
stamp. The time stamp will be a time interval. The idea is that we will record
the time that the implementation takes to arrive to that point and compare it
with the time stamp.

Definition 9. A test is a tuple T = (S, I, O, T r, s0, SI , SO, SF , SP , CT ) where
S is the set of states, I and O are disjoint sets of input and output actions,
respectively, Tr ⊆ S × (I ∪ O) × S is the transition relation, s0 ∈ S is the
initial state, and the sets SI , SO, SF , SP ⊆ S are a partition of S. The transition
relation and the sets of states fulfill the following conditions:

– SI is the set of input states. We have that s0 ∈ SI . For all input state s ∈ SI

there exists a unique outgoing transition (s, a, s′) ∈ Tr. For this transition
we have that a ∈ I and s′ ∈ SO.

– SO is the set of output states. For all output state s ∈ SO we have that
for all o ∈ O there exists a unique state s′ such that (s, o, s′) ∈ Tr. In this
case, s′ /∈ SO. Moreover, there do not exist i ∈ I and s′ ∈ S such that
(s, i, s′) ∈ Tr.
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– SF and SP are the sets of fail and pass states, respectively. We say that these
states are terminal. That is, for all state s ∈ SF ∪ SP we have that there do
not exist a ∈ I ∪ O and s′ ∈ S such that (s, a, s′) ∈ Tr.

Finally, CT : SP −→ IIR+ is a function associating time stamps, that is, a time
intervals, with passing states.

Let e = i1/o1, . . . , ir/or. We write T
e=⇒ s if s ∈ SF ∪ SP and there exist

states s12, s21, s22, . . . sr1, sr2 ∈ S such that {(s0, i1, s12), (sr2, or, s)} ⊆ Tr, for
all 2 ≤ j ≤ r we have (sj1, ij, sj2) ∈ Tr, and for all 1 ≤ j ≤ r − 1 we have
(sj2, oj , s(j+1)1) ∈ Tr.

We say that a test case T is valid if the graph induced by T is a tree with
root at the initial state s0. We say that a set of tests T = {T1, . . . , Tn} is a test
suite. ��

From now on we will assume that when we talk about tests we refer only to valid
tests. Next we define the application of a test to an implementation. We will say
that the test suite T is passed if, for all test, the terminal states reached by the
composition of implementation and test belong to the set of passing states. Let
us remark that since we are assuming that implementations are input-enabled,
the testing process will conclude only when the test reaches either a fail or a
success state.

Definition 10. Let I be an implementation under test and T be a test. We
denote the application of the test T to the implementation I by I ‖ T .

Let I be a IFSM, T be a test, and s be a state of T . We write I ‖ T
e=⇒ s if

T
e=⇒ s and e ∈ NTEvol(I).

We say that I passes the test suite T , denoted by pass(I, T ), if for all test
T = (S, I, O, T r, s, SI , SO, SF , SP , CT ) ∈ T and e ∈ NTEvol(I) there do not exist
s ∈ SF such that I ‖ T

e=⇒ s. ��

The previous definition of passing tests did not take into account the time values
that will be collected during the application of tests. We apply time conditions
to the set of observed timed executions. In fact, we need a set of test executions
associated to each evolution in order to evaluate if they match, in a certain
sense, the time interval associated to the corresponding state of the test. In
order to increase the reliability degree, we will not take the classical approach
where passing a test suite is defined according only to the results for each test.
In our approach, we will put together all the observations, for each test, so that
we have more samples for each evolution. In particular, some observations will
be used several times. In other words, an observation from a given test may be
used to check the validity of another test sharing the same observed sequence.

Definition 11. Let I be an IFSM, T be a test, and s be a state of T . We write
I ‖ T

e=⇒t s if T
e=⇒ s and (e, t) is an observed timed execution of I. In this

case we say that (e, t) is a test execution of I and T . Let I be an IFSM and
T = {T1, . . . , Tn} be a test suite. Let H1, . . . , Hn be sets of test executions of
I and T1, . . . , Tn, respectively. Let H =

⋃n
i=1 Hi, Φ = {e | ∃ t : (e, t) ∈ H},

β ∈ IR+, and 0 ≤ α ≤ 1. We say that
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– I (H, α)-timely passes the test suite T if pass(I, T ) and for all e ∈ Φ and
all T ∈ T such that I ‖ T

e=⇒ s, we have that

Obs TimeH(e) ⊆α CT (s)

– I (H, α)-preferable passes the test suite T if pass(I, T ) and for all e ∈ Φ and
all T ∈ T such that I ‖ T

e=⇒ s, we have that

Obs TimeH(e) �α CT (s)

– I (H, α)-fast passes the test suite T if pass(I, T ) and for all e ∈ Φ and all
T ∈ T such that I ‖ T

e=⇒ s, we have that

Obs TimeH(e) �α CT (s)

– I (H, β)-global timely passes the test suite T if pass(I, T ) and for all e ∈ Φ

and all T ∈ T such that I ‖ T
e=⇒ s, we have that

dist(Obs TimeH(e), CT (s)) ≤ β

– I (H, β)-up-timely passes the test suite T if pass(I, T ) and for all e ∈ Φ and
all T ∈ T such that I ‖ T

e=⇒ s, we have that

dist up(Obs TimeH(e), CT (s)) ≤ β

– I (H, β)-low-timely passes the test suite T if pass(I, T ) and for all e ∈ Φ

and all T ∈ T such that I ‖ T
e=⇒ s, we have that

dist low(Obs TimeH(e), CT (s)) ≤ β

– I (H, α, β)-timely passes the test suite T if pass(I, T ) and for all e ∈ Φ and
all T ∈ T such that I ‖ T

e=⇒ s, we have that

Obs TimeH(e) ⊆α CT (s) ∧ dist(Obs TimeH(e), CT (s)) ≤ β

– I (H, α, β)-preferable passes the test suite T if pass(I, T ) and for all e ∈ Φ

and all T ∈ T such that I ‖ T
e=⇒ s, we have that

Obs TimeH(e) �α CT (s) ∧ dist low(Obs TimeH(e), CT (s)) ≤ β

– I (H, α, β)-fast passes the test suite T if pass(I, T ) and for all e ∈ Φ and
all T ∈ T such that I ‖ T

e=⇒ s, we have that

Obs TimeH(e) �α CT (s) ∧ dist low(Obs TimeH(e), CT (s)) ≤ β
��

Let us remark that an observed timed execution does not return the time interval
associated with performing the evolution (that is, the addition of all the intervals
corresponding to each transition of the implementation) but the time that it took



172 M.G. Merayo, M. Núñez, and I. Rodrguez

to perform the evolution. Let us also note that in a fix time values framework,
these two notions (addition of time values corresponding to the transitions of
the implementation and observed time) do in fact coincide.

Intuitively, an implementation passes a test if there does not exist an evolu-
tion leading to a fail state. Once we know that the functional behavior of the
implementation is correct with respect to the test, we need to check time con-
ditions. The set H corresponds to the observations of the (several) applications
of the tests belonging to the test suite T to I. Thus, we have to decide whether,
for each evolution e, the observed time values (that is, Obs TimeH(e)) match
the definition of the time intervals appearing in the successful state of the tests
corresponding to the execution of that evolution (that is, CT (s)).

Due to space limitations, we cannot include in this paper the algorithm that
we propose to derive tests from a specification. In spite of the differences, our
algorithm is an adaptation of that in [32]. We get a test suite extracted from the
specification S. We denote this test suite by tests(S).

Next, we present a result to establish the application of the test suite tests(S)
for determining whether an implementation, for a sample H , conforms to a
specification with respect to the relations given in Definition 8.

Theorem 1. (Soundness and Completeness) Let I and S be IFSMs. Given a
multiset of timed executions H , β ∈ IR+, and 0 ≤ α ≤ 1 we have

– I conf
(H,α)
int S iff I (H, α)-timely passes tests(S).

– I conf
(H,α)
intf S iff I (H, α)-fast passes tests(S).

– I conf
(H,α)
intp S iff I (H, α)-preferable passes tests(S).

– I conf
(H,β)
intgb S iff I (H, β)-global timely passes tests(S).

– I conf
(H,β)
intup S iff I (H, β)-up-timely passes tests(S).

– I conf
(H,β)
intlw S iff I (H, β)-low-timely passes tests(S).

– I conf
(H,α,β)
int S iff I (H, α, β)-timely passes tests(S).

– I conf
(H,α,β)
intf S iff I (H, α, β)-fast passes tests(S).

– I conf
(H,α,β)
intp S iff I (H, α, β)-preferable passes tests(S).

��

5 Conclusions and Future Work

In this paper we have presented a novel framework to specify and test timed
systems showing both soft and hard deadlines. We have defined nine conformance
relations that take into account the different considerations of what a slightly
erroneous system is, that is, that soft deadlines are almost always met. We have
also developed a testing theory by introducing a notion of test and by defining
how tests are applied to implementations and what is the meaning of passing a
test. Finally, we have stated that testing a system with the appropriate test suite
is equivalent to establish that it is related with the specification from which the
test suite was extracted.
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There is still some room for future work. First, it would be interesting to
study the precise relation between the different implementation relations that
we define in this paper. Second, we would like to take this paper as a first step,
together with [33], to define a testing theory for systems presenting both time
and probabilistic information expressed by means of intervals.
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31. Núñez, M., Rodŕıguez, I.: Encoding PAMR into (timed) EFSMs. In: Peled, D.A., Vardi,
M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 1–16. Springer, Heidelberg (2002)

32. Núñez, M., Rodŕıguez, I.: Conformance testing relations for timed systems. In:
Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 103–117.
Springer, Heidelberg (2006)

33. López, N., Núñez, M., Rodŕıguez, I.: Specification, testing and implementation
relations for symbolic-probabilistic systems. Theoretical Computer Science 353(1–
3), 228–248 (2006)



Automatic Composition of Stateless

Components: A Logical Reasoning Approach

Seyyed Vahid Hashemian and Farhad Mavaddat

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada
{svhashemian,fmavaddat}@cs.uwaterloo.ca

Abstract. Reusing available software components in developing new
systems is always a priority, as it usually saves a considerable amount of
time, money and human effort. An ideal scenario for software reuse is to
build a new software system by composing existing components based
on their behavioral properties. In this paper we take advantage of log-
ical reasoning to find a solution for automatic composition of stateless
components, which are components with a simple two step workflow:
receiving inputs and then returning the corresponding outputs. We pro-
vide a concrete algorithm to find possible component compositions for a
requested behavior. We then validate those compositions using a process
algebra, which is specifically designed for this purpose.

Keywords: Software Reuse, Component Composition, Web Services
Composition, Process Algebra.

1 Introduction

Software products are usually developed in such a way that, if necessary, they
could be reused in future developments, as this usually saves a considerable
amount of time, money and human effort. In building a software system based
on components we usually break down the overall behavior of the system into
smaller behavioral pieces for which we can build or find a component. Then by
integrating all these components we develop the target system which performs
according to that overall behavior. In other words, we take advantage of the
divide-and-conquer method to build a complex software system. Nowadays, this
approach is usually used in every software development attempt.

If there are only a few available components, manually searching for reuse
options might be justifiable. However, if there are hundreds of these compo-
nents this manual search would be impractical, if not impossible. That is why
(semi-)automatic approaches have emerged to perform this search as efficient
as possible. Finding reuse options becomes even more interesting, though more
complicated, when we would also check the possibility of reusing compositions
of available components. In other words, there might be situations, in which
none of the single components provides the expected behavior, but a composi-
tion of some of them does so. This general version of the problem is studied in
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this paper. We can rephrase the problem, hereafter the composition problem, as
follows:

A repository of available components specified by their behavior, and
a request for a new component (or software system) are given. Is there
any composition of some of the available components that provides the
requested behavior? If so, what is that composition?

The behavior of a system is defined as actions that it performs, their order of
execution, possible preconditions and effects, and possible nonfunctional aspects
such as timing and probability. In this paper, we concentrate only on the ac-
tions and their order of execution as the observable behavior of a component.
Moreover, we consider only stateless components. The behavior of a stateless
component is a two step process: first it receives some inputs; and then it re-
turns some outputs accordingly. In other words, in stateless components knowing
the inputs and outputs is sufficient for figuring out the behavior. Most compo-
nents that perform information retrieval tasks can be categorized as stateless
components. For example, the web service CityStateByZip [1] as a software com-
ponent is an information service with an input zipCode and two outputs city and
state. It first receives the input zipCode and then returns the corresponding city
and state as the result.

Stateless components are not limited to information components. As an ex-
ample, the web service EmailAddressValidator [1] is a component which receives
an emailAddress and returns a boolean value based on whether the given email
address actually exists. Another example is the CaesarCipher service [1] which
receives a text and a shiftNo and returns the ciphered text in its cipher output.
We can imagine that stateless components form a large subset in any component
based environment. For example, almost all the published web services in the
repository http://www.xmethods.net/ are stateless.

As a solution to the composition problem, a composition plan is generated
describing the available components that should be used, their order of execution,
and possible data passings among them. In Figure 1, the role of a composition
planner is shown in a typical component composition engine. The composition
engine is used to extract and store specification of available components, finding
composition plans for component requests, and finally providing appropriate
facilities for executing the composite component according to the generated plan.
This engine is comprised of four main parts:

– Component Specification Repository (or repository): It contains the nec-
essary information about the available components. For example, in web
services WSDL documents could be used for this purpose.

– Component Specification Extractor: From the specification of a component,
it extracts the necessary information to be stored in the repository. In case
there is no such document, the information can be entered manually.

– Component Composition Planner: Based on the specification of available
components and the requested behavior it finds a composition plan to expose
that behavior. This is the part that we focus on in this paper.
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Fig. 1. The architecture of a typical component composition engine [2]

– Composite Component Execution Engine: It executes a given composition
plan. In case it requires any information about the constituent components
of the composition plan, it contacts the repository.

Note that the components outside the boundary of the composition engine in
Figure 1 are the input and output of the engine. The input is a new component
that is introduced to the engine, while the output is the composite component
or the composition plan that is generated according to the given request.

In this paper we take advantage of logical reasoning to solve the composition
problem for stateless components, i.e. to study how the composition planner
should work. In Section 2 we address some of the related works on this subject.
Section 3 contains necessary formalism for representing behavior of software
components. In Section 4 we briefly review logical reasoning at an introductory
level. Then, in Section 5 we use the logical reasoning techniques to solve the com-
position problem for the stateless components. Finally, we conclude the paper
in Section 6 with a short summary and the future plans.

2 Related Works

Similar versions of the composition problem have been studied in a large number
of academic and industrial research papers. They usually differ from one another
in terms of the type of components they study, information they capture from
each component, and the level of abstraction of their solution. In this section, we
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briefly review some of these works, that mostly study the composition problem
in web services. Web services could be considered the best example of software
components to fit the composition problem.

Benatallah et al. in [3] propose an approach for facilitating large-scale inter-
operation of web services. They take advantage of service communities as the
repositories of web services with similar functionality. The workflow, precondi-
tions and effects of each web service are modeled by a statechart, in which each
state is one of the constituting web services. They also introduce a specification
language for web services interaction based on state-charts, and a peer-to-peer
execution model for composite web services. They assume it is already known
how the composite web service is built. In other words, they study the Composite
Component Execution Engine (Figure 1).

Rao et al. in [4] use Linear Logic axioms to model the behavior of stateless
services and their nonfunctional constraints. They consider the Linear Logic
specification of available services as given axioms and try to prove a requested
service, which is also a Linear Logic axiom, using proof trees. However, they do
not explain how a proof tree can be converted into a composition plan. Although
they do not discuss the performance of their approach, it most likely is dependent
on the performance of possible automatic theorem provers that they would use.

Medjahed et al. in [5] propose an ontology-based framework for automatic
composition of web services. Ontologies are simply different vocabularies that
are used in specification of web services. Authors consider both syntactic and
semantic attributes of web services to find a valid composition. To do so, they
introduce a composability model and a matchmaking algorithm to search for
composable operations and services. They mostly focus on matching algorithms
for web services and their operations rather than finding a composition plan.

Laukkanen and Helin in [6] propose an approach for finding semantically sim-
ilar web services to a specific service. This similarity search includes searching
for a web service or a set of web services with similar inputs, outputs, precon-
ditions and effects. The replacement may be a simple web service or a set of
web services. In case there is a set of web services, the whole set as a single
service should conform the required inputs, outputs, preconditions and effects.
The steps taken to find this replacement include determining the functionality of
the service to be replaced, finding semantically similar services from an available
repository, and creating a workflow based on which the required functionality
is provided. Authors do not represent any algorithm in this regard, especially
for “how the discovery process is performed”, “how semantic matching engine
makes necessary reasonings” and also, “how the workflow composer works”.

We studied a very simple version of composing stateless web services in [7],
where we assumed that each service has only one input and one output. We
introduced a dependency graph to capture dependencies among the input and
output of available services. In this graph, nodes represent inputs and outputs of
services, while edges stand for the input-output dependencies imposed by each
web service. We used the dependency information to solve this simple version of
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the problem and explained how it can be solved in linear time in the size of the
graph. Since this initial version of the dependency graph has some restrictions,
we tried to extend the dependency graph in [2]. Apparently, generalizing the
problem made the composition planner much more complex, i.e. exponential
in the worst case. However, using some reasonable simplifying assumptions we
could obtain a PTIME-Complete complexity.

In another paper [8], we introduced an algebra for process composition. We
used this algebra and outlined how the composition problem in general could be
solved. We use some of its results in this paper to solve the composition problem
for stateless components.

3 Formal Representation of Components Behavior

In order to represent the behavior of components we use a specific process al-
gebra, called composition algebra. It is based on the familiar algebras such as
CSP [9] and CCS [10] with less operators and minor changes. We introduced
this algebra in [8], and here we briefly review its main properties. In this paper,
the behavior of a component is the observable actions that it performs, and their
order of execution. In other words, a behavior is the underlying process through
which a component is executed. That is why process algebras become helpful. We
assume that associated with each component there is a process including some
actions, where actions represent data types exchanged between components.

Operands of the composition algebra are actions and processes. Action names
start with a lowercase letter, e.g. emailAddress, while process names start with
an uppercase, e.g. EmailAddressValidator. Each action is an input or an output,
and to distinguish them, outputs are identified by an overline, e.g. boolean.

There are four main operators in the composition algebra. These operators
are used to compose actions and processes and form more complex processes.

– Sequence (·): It represents the sequential execution of actions and processes.
– Choice (+): It is used to describe different branches of execution.
– Parallel ( || ): It is used to represent a concurrent or unordered execution.

Similar to other process algebras, concurrent executions are simulated with
unordered executions; i.e. (a · P ) || (b · Q) ≡ (a · (P || (b · Q))) + (b · ((a · P ) || Q)).

– Synchronization �: It represents one or more synchronizations between two
processes. There are two cases that two processes can be synchronized. In
both cases as the result of the synchronization, the parts before synchroniza-
tion points and the parts after in the two processes are executed in parallel.

• Complimentary actions: When the output of one process is consumed by
another process as an input, they become synchronized on that action.
The result of synchronizing two complimentary actions is a silent action,
represented by τ , which is not visible to the outside world. To calculate
the result of such a synchronization the composition formulas of inter-
face automata [11] can be used. For example, (name · emailAddress) �
(emailAddress · boolean) ≡ name · τ · boolean ≡ name · boolean.
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• Shared input: When two processes take the same input, they can be
synchronized on that input. As an example, (name · emailAddress) �
(name · phoneNo) ≡ name · (emailAddress || phoneNo).

Two processes might have more than one pair of synchronizing actions, in
which case they become synchronized on all those pairs, on the condition
that the order of synchronizing actions in both processes is the same.

Among these operators, the binding power of the synchronization is the most,
and then sequence, parallel and choice in order. We use σ-trace equivalence [10] as
the equivalence semantics for processes. Specifically, two processes are equivalent
(≡) if and only if every execution trace in one is an execution trace in the other.
For example, two processes a · (b + c) and a · b + a · (b + c) are σ-trace equivalent
as their trace sets, {a · b, a · c}, are the same.

We finish this overview section with some of the important rules and axioms
of the composition algebra.

– commutativity of all operators except the sequence
– associativity of all operators except the synchronization1

– P · τ ≡ τ · P ≡ P , P + τ ≡ τ + P �≡ P , P || τ ≡ τ || P ≡ P , P � τ ≡ τ � P ≡ P

– P is the inverse of P , and P � P ≡ P � P ≡ τ

– P = P1 · x · P2 and Q = Q1 · x · Q2 =⇒ P � Q ≡ (P1 || Q1) · (P2 � Q2), if x and
x are the first synchronizing actions in P and Q.

– P = P1 · x · P2 and Q = Q1 · x · Q2 =⇒ P � Q ≡ (P1 || Q1) · x · (P2 � Q2), if x is
the first synchronizing action in P and Q.

– P + P ≡ P

– P · (Q + R) ≡ (P · Q) + (P · R), (Q + R) · P ≡ (Q · P ) + (R · P )

– P || (Q + R) ≡ (P || Q) + (P || R), (Q + R) || P ≡ (Q || P ) + (R || P )

4 Logical Reasoning

In simple terms, logical reasoning is defined as the formal manipulation of sym-
bols representing a collection of believed propositions to produce representations
of new ones. These symbols are used to represent the knowledge and also to infer
it through some known rules. The collection of believed propositions is called the
knowledge base. The type of logical reasoning we apply in composition planning
is logical inference, in which the final result is considered to be a conclusion of
the initial propositions. For example, if the knowledge base contains two propo-
sitions “patient x is allergic to medication m” and “anyone allergic to medication
m is also allergic to medication m′” using logical inference we can conclude that
“patient x is allergic to medication m′” [12].

In the reasoning problem we study in this paper there is a knowledge base S

containing the known propositions and a goal proposition R. What we expect
as the result is whether R can be inferred from the propositions in S, written

1 The synchronization operator is associative if only one of the synchronization types,
and not both, appears in an algebraic expression [11,9].
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as S � R. It is trivial that to prove S � R is equivalent to prove that S ∪ {¬R}
is unsatisfiable. In other words, if it turns out that S ∪ {¬R} is satisfiable, we
conclude that S �� R; and if S ∪ {¬R} is unsatisfiable, then S � R. It is assumed
that there is no contradicting propositions in S, which means S �� FALSE. If
S ∪ {¬R} is unsatisfiable, or S entails R (S � R), sometimes we might need to
know how R is derived from S, i.e. which propositions from S and in what order
have been applied to result in R.

The reasoning algorithm and its complexity is dependent on the expressivity
of the underlying logic. Specifically, the way the knowledge is represented is a
determinant factor in how we should reason about it. We would expect to reason
simpler in propositional logic rather than in first-order predicate logic. Unfor-
tunately, the logical reasoning even for propositional logic, as a non-parametric
and simpler form of logic, is NP-Complete in the worst case. Therefore, trying to
convert the composition problem into a propositional logic reasoning would not
help much. However, there is a less expressive form of logic, i.e. Horn clauses,
which comes with less reasoning complexity in special cases [12].

A Horn clause is a Disjunctive Normal Form clause in first order logic with at
most one positive literal. For example, the clause ¬child ∨ ¬male ∨ boy is a Horn
clause with two negative and one positive literals. Since Horn clauses have no
more than one positive literal they can be converted into a conditional clause,
as the above clause is equivalent to child ∧ male =⇒ boy. Therefore, every such
conditional clause in propositional logic is a Horn clause [12].

In order to reason about Horn clauses we need to see how we can infer a
new clause from two Horn clauses. As the main inference rule, when a literal
appears positive in one clause and negative in the other, the two clauses can be
resolved; i.e. two clauses ¬a1 ∨ · · · ∨ ¬am ∨ b1 and ¬b1 ∨ · · · ∨ ¬bn ∨ c1 result in
¬a1 ∨· · ·∨¬am ∨¬b2 ∨· · ·∨¬bn ∨c1. In conditional format, a1 ∧· · ·∧am =⇒ b1 and
b1 ∧ · · · ∧ bn =⇒ c1 imply a1 ∧ · · · ∧ am ∧ b2 ∧ · · · ∧ bn =⇒ c1. This inference rule
is used to solve the reasoning problem for Horn clauses. To do so, we start with
a knowledge base S and, by resolving Horn clauses from S and the temporary
clauses created through some steps, we try to prove a goal clause R. If this is
successful, we say that R can be derived from S, and show it by S 	 R.

A restricted but sufficient form of resolution is the SLD resolution. An SLD
resolution starts with resolving two clauses from the knowledge base S and in
every single intermediate step the result of the last step is resolved with another
clause from S. Therefore, two resolution results can not be resolved in an SLD
resolution. The derivation continues until R is proved to be either true or false.

There are two main SLD techniques for reasoning about propositional Horn
clauses: backward chaining and forward chaining. The backward chaining pro-
cedure has two drawbacks; it might go into an infinite loop, or it might take
exponential time to terminate. However, the forward chaining approach (the
algorithm shown in Figure 2) is much more reliable and efficient as it always
terminates and also performs the reasoning in linear time in the number of
clauses. We use this procedure in the next section to provide a solution for the
composition problem [12].
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input: a finite list of literals q1, · · · , qn

output: YES or NO according to whether a knowledge base S entails all qi’s

1. if all of the goals qi are marked as solved, then return YES
2. check if there is a clause p∨¬p1 ∨· · ·∨¬pm in S, such that all of its negative literals

p1, · · · , pm are marked as solved, and its positive literal p is not marked as solved
3. if there is such a clause, mark p as solved and go to step (1)
4. otherwise, return NO

Fig. 2. The SLD forward chaining procedure [12]

5 The Composition Planning Approach

We described in Section 3 how actions in composition algebra are modeled by
nonparametric names. Since we focus on stateless components in this paper,
we can assume that in the composition algebra the underlying process of all
these components is of the general form P ≡ (i1 || · · · || im) · (o1 || · · · || on), which
correctly captures the intended behavior, i.e. receiving some inputs and then
returning some outputs. In order to solve the composition problem using the
reasoning techniques, in this section we discuss in more details our earlier pro-
cedure [8], its main drawback, and the improved approach.

5.1 The Old Procedure and Its Drawback

The algebraic representation of behavior mentioned above has an alternative
representation in propositional logic, as it can be modeled by the conditional
expression Pk ≡ ik1 ∧ · · · ∧ ikmk

=⇒ ok
1 ∧ · · · ∧ ok

nk
. For example, the web service

CityStateByZip of Section 1 is specified in composition algebra by the algebraic
expression CityStateByZip ≡ zipCode · (city || state). Alternatively, it can be de-
scribed in propositional logic using the conditional expression CityStateByZip ≡
zipCode =⇒ city∧ state. As the result the composition problem can be expressed
as follows.

There is a knowledge base S containing a set of propositional clauses in
the form of Pk ≡ Ik =⇒ Ok, where Ik ≡ ik1∧· · ·∧ikmk

and Ok ≡ ok
1∧· · ·∧ok

nk
.

There is also a target clause R ≡ IR =⇒ OR, with IR ≡ iR1 ∧ · · · ∧ iRmR

and OR ≡ oR
1 ∧ · · · ∧ oR

nR
. The question is whether S � R. If so, the

corresponding derivation is also required.

In [8] we provided a procedure based on the algorithm in Figure 2 to solve the
above problem. To do so, we made a little change in the above composition
problem so that we can apply the forward chaining algorithm. The idea was
to add iR1 , . . . , iRmR

as known facts to the knowledge base S, and try to prove
that oR

1 , . . . , oR
nR

hold. The algorithm shown in Figure 3 represents the proposed
procedure. This algorithm runs in linear time as well, as it is quite similar to
the forward chaining algorithm in terms of the steps taken. The composition
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input: a finite set of literals OR = {oR
1 , · · · , oR

nR
}

output: YES or NO according to whether S ∪ IR entails all the literals in OR

1. mark all the literals in IR as true
2. if all of the literals in OR are marked as true, then return YES
3. check if there is a clause in S such that all of its left-hand-side literals are marked

as true, and there is at least one literal in its right-hand-side which is not marked
as true

4. if there is such a clause, add it to the list of clauses used so far, and mark all the
unmarked literals on its right-hand-side as true and go to step (2)

5. otherwise, return NO

Fig. 3. The modified version of the forward chaining algorithm [8]

plan can be obtained based on the order of using knowledge base clauses in the
algorithm.
Example: Let us assume a repository of available components containing:

P1 ≡ address · zipCode P2 ≡ (name || birthDate) · localMap

P3 ≡ (address || zipCode) · localMap P4 ≡ (name || birthDate) · (zipCode || birthPlace)

P5 ≡ (sIN ||name) · address P6 ≡ (sIN || birthDate || birthPlace) · phoneNo

P7 ≡ (sIN || birthDate || zipCode) · phoneNo

Given the target component R ≡ (sIN ||name || birthDate) · (localMap || phoneNo),
we are interested to know whether R can be built by composing some of these
components.

We convert the component specifications into the propositional logic format
and apply the algorithm in Figure 3 in order to find a solution. To find a solu-
tion, we start by marking sIN, name and birthDate as true. If there are different
choices from S to use in Step (3) of the algorithm, we can randomly pick one.
Following the algorithm, we see that picking P2, P4 and P6 in the same order is
one solution2. To validate, we find the result of (P2 � P4) � P6 in composition
algebra:

P2 � P4 = ((name || birthDate) · localMap) � ((name || birthDate) · (zipCode || birthPlace))

= (name || birthDate) · (localMap || zipCode || birthPlace)

(P2 � P4) � P6 = (name || birthDate) · (localMap || zipCode || birthPlace)

� (sIN || birthDate || birthPlace) · phoneNo

= (sIN ||name || birthDate) · (localMap || zipCode) · phoneNo

=2(sIN ||name || birthDate) · localMap · phoneNo

We realize that the result is slightly different from the specification of R; i.e. the
outputs are not generated in parallel in the proposed composition. We explain
this small difference as follows.

– Normally, the parallel operator in such requests means that the relative order
of inputs and outputs is not important; and as long as inputs are taken and

2 We assume that unwanted generated outputs can be ignored.
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then outputs are produced based on them, the result is acceptable. This way,
we can accept the composition (P2 � P4) � P6 as an approximate solution3to
the request (sIN ||name || birthDate) · (localMap || phoneNo).

– If the above result is not acceptable, and we need to produce the exact
parallel expression, we may assume that the published composite component
of Figure 1 would take care of this ordering. In other words, it works as a
wrapper around all the constituent components and can wait to receive both
localMap and phoneNo and then return them to the user.

In case we needed to achieve a composition that is exactly equivalent to the
request R and we found a solution leading to a non-equivalent expression, like
the above example, we would have had to backtrack to the last choice we made
and continue the algorithm with another alternative. This apparently would add
to the complexity of the procedure, but we do not go into its details in this
paper, as we assume that the approximate results are also acceptable. ��
Although the algorithm in Figure 3 takes linear time in the number of knowledge
base clauses to find a solution, it does not work properly in all stateless cases.
In particular, it fails to correctly capture the concept of cardinality. In other
words, since there is no cardinality involved in propositional logic expressions,
e.g. a∧a ≡ a, this algorithm would not be able to appropriately deal with multiple
instances of literals.
Example: Let us add to the repository of the previous example a new component
P8 ≡ (zipCode || zipCode) · distance, which has an input with cardinality 2. This
expression can not be appropriately converted into a propositional logic formula,
because following the above mapping we obtain P8 ≡ zipCode ∧ zipCode =⇒
distance ≡ zipCode =⇒ distance ��
Therefore, the old logical representation for components behavior and the corre-
sponding algorithm do not answer the composition problem in general. We show
in the rest of this paper how they can be improved to capture the cardinality of
literals as well.
3 Formally speaking, two algebraic expressions e1 ≡ I1 · O1 and e2 ≡ I2 · O2, in which

• I1 and I2 contain only input actions, and moreover contain the same num-
ber of input actions of each type,

• O1 and O2 contain only output actions, and moreover contain the same
number of output actions of each type,

are approximately equivalent if one or both of the followings hold:

• For some expression I0, either I1 ≡ I2 + I0 (I0 �≡ I2) or I2 ≡ I1 + I0 (I0 �≡ I1).
• For some expression O0, either O1 ≡ O2 + O0 (O0 �≡ O2) or O2 ≡ O1 + O0

(O0 �≡ O1).

For example, e1 ≡ a · (b || c) is approximately equivalent to e2 ≡ a · b · c, because
• e1 ≡ I1 · O1, where I1 ≡ a and O1 ≡ b || c,
• e2 ≡ I2 · O2, where I2 ≡ a and O2 ≡ b · c,
• I1 and I2 contain the same input actions, and O1 and O2 contain the same

output actions,
• I1 ≡ I2 and O1 ≡ O2 + c · b.
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5.2 The New Procedure

The initial proposed composition procedure is promising enough that we try to
apply the same ideas to capture cardinalities. In the old approach every compo-
nent behavior could be seen as P : I → O, in which I and O are sets containing
the corresponding inputs and outputs identified by their data type names. Since
sets are unable to represent duplicate members and cardinalities, in the new pro-
cedure we assume that inputs and outputs are multisets [13] of type names. To
distinguish duplicate type names that might appear in these multisets, we use
unique identifiers and we call them data instances or instances, where type(m) is
the data type of the instance identified by m.

In order to solve the more general version of the stateless composition problem
there are some extra constraints that must be taken into account.

1. Each component might be used more than once in a composition. In algo-
rithms shown in Figures 2 and 3 each clause is used at most once, because
when its right hand side is marked as true, there is no need to use that clause
again. Since cardinality of a data type can be more than one, a component
might be needed more than once. Therefore, in the new procedure, when
a component is selected to participate in a composition it should not be
removed from the list of available components.

2. When some inputs are used by a component, they (exact same instances)
can not be used by the same component again. This is because after the
inputs are used by the component the expected result is generated, and
there is no point in running the component on those inputs again, as it
will produce the same result. Algorithms in Figures 2 and 3 automatically
comply with this rule as they do not use the same clause more than once. To
apply this constraint, we attach to each instance m, that is being processed,
a set usedBy of identifiers of the form P i specifying that the component P

has been applied on m in the step i of the reasoning algorithm.
3. For every single piece of functionality, all the given input instances must be

used to produce each of the corresponding output instances, unless otherwise
is specified by the user. For example, for the request (sIN ||name || birthDate) ·
(localMap || phoneNo), in producing the outputs localMap and phoneNo all the
three inputs must be used. To comply with this constraint, which is not
considered in the algorithm in Figure 3, in generating outputs through the
composition algorithm we need to determine whether all the inputs have been
used. Therefore, we attach to each instance m a multiset uses containing data
types from IR that have been used so far to generate m. If uses(m) = IR for
some instance m, we conclude that all the inputs in IR have participated in
producing m.

4. In order to find the actual composition in case the algorithm returns a
“YES”, we keep a set from along with every instance m that contains the
instances that have been used to produce m. This way we can find out the
appropriate components from the repository that are used in each step.

The algorithm shown in Figure 4 contains the improved reasoning-based pro-
cedure for composition planning. In this algorithm, we define the set M to keep
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input: a repository S of components of the form C : IC → OC where IC and OC are
multisets of data types; and similarly, a request R : IR → OR.
output: YES/NO according to whether there is a valid composition from S for R.

1. define M as the set of instances, and set M = ∅.
2. for each single data type i in IR, create a new instance m in M, and set

– type(m) = i,
– usedBy(m) = ∅,
– uses(m) = ∅,
– from(m) = ∅.

3. use a step counter n, and set n = 1.
4. if there is a set K ⊆ M, such that

– TYPE(K) = OR, where TYPE(K) = {type(m)|m ∈ K}, and
– for every instance m ∈ K, uses(m) = IR,

return YES.
5. check if there is a component C : IC → OC in S and a set L ⊆ M, such that

– TYPE(L) = IC , and
– Ck /∈ �m∈L usedBy(m) for some step k.

6. if there is such a component,
– for every m ∈ L, usedBy(m) = usedBy(m) ∪ {Cn},
– for every o in OC , create a new instance m′ in M, and set

• type(m′) = o,
• usedBy(m′) = ∅,
• uses(m′) = (IC ∩ IR) ∪ (

�
m∈L uses(m)).

• from(m′) = L

– n = n + 1,
– go to step (4)

7. otherwise, return NO

Fig. 4. The improved procedure for composition planning

track of the instances that are already produced as the algorithm execution
progresses (Step 1). To every instance m that is added to M we assign

– its data type type(m),
– a set usedBy(m) containing components that have used this instance so far,
– a multiset uses(m) including data types IR that have been used, either di-

rectly or indirectly, in producing m, and
– a set from(m) which contains instances from M used directly to produce m.

In the beginning an instance is added to M for every single data type in IR

(Step 2). We also use a step counter to record the components used in each step
(Step 3). In Step 4 a test is done to see if we have achieved a valid composition
for the request R. A valid composition would produce an instance of the same
type for every data type in OR (to satisfy the cardinality constraint), where in
producing each of them the whole IR is used. If the test fails, we need to continue
with a new component to produce more outputs (Step 5). We do so by finding
some instances in M that can be used by a component C, and have not been used
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by that component before. If there is such a component (Step 6), Cn (component
C at step n) is added to the set usedBy of each of those instances, and for each
output o of C a new instance m′ is added to M with the appropriate type, usedBy,
uses and from values. In particular,

– type(m′) would be o;
– usedBy(m′) would be empty;
– uses(m′) would contain all the data types from IR that are in IC too, plus all

the data types from IR that have participated in producing instances in L;
– from(m′) would obviously contain the instances in L.

If there is no new component from the repository to use instances in M , the
algorithm terminates with a negative result (Step 7).

We can consider the execution of the algorithm as a multi-level graph struc-
ture, in which nodes at each level represent a set of instances from M and edges
represent components from the repository. In this structure, there is an edge
with label Cn from an instance i at level li to an instance j at level lj (lj > li),
if and only if there is a component C : IC → OC used in step n of the algorithm,
such that type(i) ∈ IC and type(j) ∈ OC and for each other data type t in IC there
is an instance k at some level l (l < lj) with type(k) = t. Moreover, at least one
instance of one of the data types in IC must have appeared at level lj − 1. In
other words, if the maximum level of instances in from(m) is l, m would sit at
level l+1. Let min(nl) and max(nl) denote the minimum and maximum of the set
{n| there is an edge i

Cn

−−→ j such that lj = l}. In order to create the levels of this
graph in a breadth-first order, we assume that li < lj ⇔ min(nlj ) > max(nli).
This assumption guarantees that all the possible instances at each level are cre-
ated before creating instances at the next level. To start creating instances, we
put instances corresponding to the initial inputs in IR at level 0. Then interme-
diate instances generated by the algorithm sit at the next levels.

Theorem 1. If there is a solution for a given composition problem, the algo-
rithm in Figure 4 is able to find it; and if there is none, it terminates.

Proof. According to the above breadth-first method in applying the components
from the repository S and creating new instances, it is guaranteed that the
algorithm will find a solution, if there is any, because all the instances leading
to a valid composition would be at some levels of this graph and finally would
be reached by the algorithm. Moreover, it is obvious that for every instance in
the graph there is least one path from level 0 to that instance. Assuming that
each repository component appears at most once in each such graph path, it
is guaranteed that instances of all the possible data types (according to inputs
and outputs of available components) would be created up to level |S| = n. This
assumption is reasonable since we capture only syntactic information of available
components and do not consider their behavioral semantics. Therefore, if there
is no solution up to level n, there will not be any afterwards. ��

As mentioned before, the algorithm in Figure 4 returns only a “YES/NO” an-
swer, and does not return the actual composition in case the answer is a “YES”.
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Fig. 5. The result of the algorithm shown in Figure 4 for the given example

In order to find the composition, we take advantage of the information stored
along with instances in M and also the set K that was found right before the al-
gorithm terminated (line 4). We can start by instances in K and go back step by
step to the inputs and components that resulted them and so on, until we reach
the original inputs, i.e. the instances corresponding to IR. The above multi-level
graph could be used to find the actual composition through its paths from level
0 to the desired outputs. We go through a brief example to clarify this graph
structure and the whole approach in more details.
Example: Consider the following set of components:

P1 : name → email, P2 : name → phone, P3 : phone → zipCode, P4 : zipCode2 → distance,
P5 : phone → address, P6 : zipCode → city, P7 : address → zipCode, P8 : name → cell

The superscript 2 in P4 implies that this component takes two instances of zipCode
as inputs. We explain the algorithm using the multi-level graph in Figure 5.
Given R : name2 → distance, the algorithm in Figure 4 starts by adding m1 and
m2 of type name to M . Each of these instances, can produce one instance of
email, phone and cell in the next six steps (instances m3 to m8 by components
P1, P2 and P8). Since there is no solution yet, in the next four steps, each of the
two phone instances that are currently in M (m4 and m7) produce one instance
of zipCode and address (instances m9 to m12 by components P3 and P5). Again,
there is no distance instance in M up to this point. Continuing the algorithm,
each zipCode instance produces one city instance (instances m13 and m15 by
component P6), and each address instance creates one zipCode instance (m14 and
m16 by component P7). Then, two initial zipCode instances (m9 and m11) produce
one distance instance (m17 by component P4). Since in producing m17 both name
instances in IR have been used, the algorithm returns a “YES”.

In the graph of Figure 5, the set usedBy for each instance is the set of its
outgoing edge labels. Also, the set uses for each data instance is the multiset of
the data types of all the instance at the top level of this graph which have a path
to that specific instance. And finally, the set from for each instance is the set
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of its parents in the graph. The section of the graph which is inside the dotted
area represents the data instances leading to the “YES” response. Based on its
structure and the components appearing on its edge labels we can find out the
corresponding composition. In this specific example, we see two parallel paths
that are merged using the component P4. In other words, before the merge point,
the two paths represent parallel execution of two instances of P2 �P3. Therefore,
the proposed composition turns out to be ((P2 � P3) || (P2 � P3)) � P4. To verify
this solution, we use the composition algebraic rules:
P2 � P3 ≡ (name · phone) � (phone · zipCode) ≡ name · zipCode

((P2 � P3) || (P2 � P3)) � P4 ≡ ((name · zipCode) || (name · zipCode)) � ((zipCode || zipCode) ·
distance) ≡ (name ||name) · distance. ��

Complexity
To discuss the complexity of the algorithm in Fugure 4, we assume that |S| = n;
and further we assume that k is an upper bound for the number of inputs and
outputs of each component and also the request, e.g. the number of instances
in IR and OR is O(k). It is not hard to see that at each level of the graph
resulted from the algorithm, in the worst case each instance can be used by
O(n) components from the repository producing O(kn) new instances in the
next levels. Since a solution might not be found until level n of the graph is fully
created, we conclude that, in the worst case, the algorithm runs exponentially in
the number of components. However, we believe that this worst case situation
is far from practice, as the more components are used in the first levels of the
graph, the more is the possibility of finding a solution well before level n. On the
other hand, if the graph is expanded up to level n, instances have been used by
only a few (and not O(n)) components on average. These informal observations
encourages us to believe that the real complexity of this algorithm is much less
than the worst case above. Studying the complexity in more details and also
possible improvements to the algorithm are parts of our future plan.

6 Summary and Future Work

In this paper we studied the composition problem for software components and,
specifically, explained how a composition plan for stateless components can be
found by presenting a reasoning approach. This approach is simpler than the
one presented in [2] which takes advantage of dependency graphs. Compared to
similar works on component composition, we believe that our algorithm is more
concrete for implementation purposes, and its complexity is not worse, if not
better. Although the algorithm has exponential time complexity in the worst
case, we believe that a better complexity can be achieved in the real situations.
As part of our future plan, we are going to study the algorithm in more details
for possible improvements and also a more precise performance measure. Then,
we will perform some evaluation by implementing the algorithm and running it
against some test data to obtain a better understanding of its real complexity.
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Abstract. Component-based programming is about how to create ap-
plication programs from prefabricated components with new software that
provides both glue between the components, and new functionality. Mod-
els of components are required to support black-box compositionality and
substitutability by a third party as well as interoperability. However, the
glue codes and programs designed by users of the components for new ap-
plications in general do not require these features, and they can be even
designed in programming paradigms different from those of the compo-
nents. In this paper, we extend the rCOS calculus of components with a
model for glue programs and application programs that is different from
that of components. We study the composition of a glue program with
components and prove that the components glued by the glue program
yield a new component.

Keywords: Components, Contracts, Protocols, Composition, Glue
Codes, Application Programs, Refinement.

1 Introduction

Component-based development (CBD) is about how to create new software by
combining prefabricated components with new programs that provide both glue
between the components, and new functionality [1]. Furthermore, there seems
to be no disagreement on the following interrelated properties that components
enjoy.

1. Black-box composability, substitutability and reusability: there is no need to
know the design and the implementation when composing a component with
other parts of the system, substituting a component with another one or
reusing it in another application.
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2. Independent development: components can be designed, implemented, veri-
fied, validated and deployed independently.

3. Interoperability: components can be implemented in different programming
languages and paradigms, but they can be composed, be glued together and
cooperate with each another.

These features require that a component has a black-box specification of what it
provides to and what it requires from its environment. In rCOS [2,3], the provided
services and required service of a component are given by the contract of the
provided interface and the contract of the required interface of the component,
respectively. Thus, the contracts together with the interfaces of a component
provide a black-box specification of the component. The model of contracts in
rCOS also defines the unified semantic model of implementations of interfaces
in different programming languages, and thus clearly supports interoperability
of components and analysis of the correctness of a component with respect to
its interface contract. The theory of refinements of contracts and components in
rCOS characterizes component substitutivity, as well as supporting independent
development of components. Compositions are defined in rCOS for chaining
the provided interface of one component to the required interface of another,
renaming and hiding interface operations of a component.

However, there is no precise characterization for the “new program” that
provides both “glue” between the components, and “new functionality”. In this
paper, we introduce the notion of processes into rCOS. Like a component, a pro-
cess has an interface declaring its local variables and methods, and its behavior
is specified by a process contract. Unlike a component that passively waits for
a client to call its provided services, a process is active and has its own control
on when to call out or to wait for a call to its provided services. For such an
active process, we cannot have separate contracts for its provided interface and
required interface, because we cannot have separate specifications of outgoing
calls and incoming calls [2]. For simplicity, but without losing expressiveness,
we assume a process like a Java thread does not provide services and only calls
operations provided by components. Therefore, processes can only communicate
via shared components. The composition of two processes will be by interleaving,
and produce a new process.

Let C be the parallel composition of a number of disjoint components Ci,
i = 1, . . . , k. A glue program for C is a process P that makes calls to the oper-
ations in set X provided by C. The synchronization composition P ‖ [X] C of C

and P is defined similarly to the alphabetized parallel in CSP [4,5]. The gluing
composition is defined by hiding the synchronized methods between the com-
ponent C and the process P . We show that (P ‖ [X] C)\X is a component. We
will study the algebraic laws of the composition of processes and components as
well.

We also model an application program as a set of parallel processes that make
use of the services provided by components. As processes only interact with com-
ponents via the provided interfaces of the components, interoperability is thus
supported as the contracts which define the semantics of the common interface
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description language (IDL), even though components, glue programs and compo-
nents are not implemented in the same language. Analysis and verification of an
application program can be performed in the classical formal frameworks, but at
the level of contracts of components instead of implementations of components.
The analysis and verification can reuse any proved properties about the compo-
nents, such as divergence freedom and deadlock freedom of the implementation
of the components, without the need to reprove them.

Due to the limit of space, we omit all proofs in this paper, the interesting
reader can be referred to [6] for the proofs.

The rest of this paper is organized as follows. Section 2 contains a brief sum-
mary of rCOS. In section 3, we define the model of process and gluing composi-
tion. As well, we prove that gluing components by a process indeed forms a new
component and then present a method to calculate the contract of the resulted
component. Section 4 presents a comparison between our work to the relative
work. Section 5 draws a short conclusion and discusses the future work.

2 Interface, Contracts and Components

This section uses examples to briefly review the main modelling elements of the
component model in rCOS. The read can be referred to [2] for details.

2.1 Preliminaries

For convenience, we first introduce some notions of traces. Given an alphabet Σ,
Σ∗ denotes all finite sequences generated from Σ, while Σ∞ denotes all infinite
sequences generated from Σ. Given a sequence s, we use |s|, tail(s), and head(s)

to denote the length, tail, and head of s, respectively. s1 • s2 denotes the con-
catenation of the sequences s1 and s2, and s1 � s2 denotes that s1 is a prefix of
s2. s � A stands for the sequence obtained by removing all events not in Σ from
s. If A is a singleton {a}, s � A is abbreviated as s � a. s ↓ b counts the number of
occurrences of b in s.

2.2 Interface

An interface I = 〈FDec, MDec〉 declares a set of fields and a set of operation sig-
natures without providing any semantic information of their designs and imple-
mentations. Here, for the sake of encapsulation, all fields declared in an interface
are assumed to be local to the underpinning contract and component and there-
fore are not accessible to its environments. The environments can only access the
declared fields via the declared methods1. Each field in FDec has the form x : T
of a variable with its type, and an operation m(in inx, out outx) ∈ MDec declares
a name for the operation and its input parameters and output parameters with
their types. For simplicity, we do not deal with data types formally and assume
1 In fact, such an assumption can be relaxed. In many cases, the relaxation will improve

the ease in developing complex systems, typically, embedded systems.
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that a method has at most one input parameter and one output parameter and
is written in the form m(inu, out v) in what follows.

Example 1. Consider a buffer of integers. It has an interface that enables the
user to put data in and get data from the buffer:

B1=〈buff :seq(int), {put(in x :int), get(out y :int)}〉,

where seq(int) is the type of finite sequences of integers.

Interfaces can be merged and extended by adding new operations [2].

2.3 Contract

A contract of an interface of a component provides semantic information that
specifies how the interface can be used and allows us to define the dynamic
behavior of the component on the interface. Here, we are only concerned with
components of concurrent and distributed software systems and thus only in-
terested in the functionality and interaction protocols of components, leaving
real-time and other non-functional quality of services (QoS) out of the scope of
this paper. Formally, a contract is a tuple Ctr(I, Init, MSpec,Prot), where

– I is an interface;
– Init is a predicate that defines the initial values of the fields in I .FDec;
– MSPec assigns each operation m(x; y) a static functionality specification as pair

of pre and postconditions of the form p(x, I .FDec) � R(x, I .FDec, y′, I .FDec′),
where non-primed and primed variables represents the values of the variables
in the pre and post state of the execution of the operation, respectively.
If the precondition p(x, I .FDec) is true, the pair will be abbreviated as �
R(x, I .FDec, y′, I .FDec′) ;

– Prot is called the protocol of the interface, which is a set of finite sequences
of method call events. Each sequence is of the form m1, . . . , mk.

Example 2. For the buffer interface in Example 1, the following contract CtrB

defines a one-place buffer:

Init
def
= |buff |=0

MSpec(put(in x:int))
def
= (� buff ′=〈x〉 • buff )

MSpec(get(out y:int))
def
= (� buff ′ = tail(buff ) ∧ y′ = head(buff ))

Prot
def
= (put; get)∗+(put; (get; put)∗)

In many applications, the protocols can be specified as regular expressions and
in such a case protocol compatibility can be automatically checked.

A pair of pre and postconditions is called a design in [7]. It is proven there
that designs are closed under all imperative programming constructors such
as assignment, sequential composition, conditional choice, recursion and so on.
These constructors are all monotonic with respect to the refinement order among
designs. In [8], we showed how to define an object-oriented program as a design
too. Therefore, the model of contracts of interfaces can be safely used as a
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common semantic model of different programming languages and paradigms to
support interoperability of components.

For theoretical treatment of contracts and their refinement, the designs of
operations and the interaction protocol can be combined by the notion of guarded
designs [2].

A guarded design is a pair of a guard g and a design D, denoted by g&D,
and defined by D � g � Idle2, meaning that the caller is forced to wait if the
guard condition does not hold when invoking the method, otherwise it behaves
as the design D. We have proven in [2] that guarded designs are closed under
all programming constructors, and these constructors are all monotonic with
respect to the refinement order.

A reactive contract is a triple Ctr = (I, Init ,MSpec), where MSpec assigns each
operation m(x; y) in the interface I with a guarded design. In what follows, we
use gm to denote the guard part of MSpec(m), for any m ∈ MDec.

Example 3. The contract in Example 2 can have an equivalent reactive version:

Init
def
= |buff |=0

MSpec(put(inx:int))
def
= (|buff | = 0)&(� buff ′ = 〈x〉)

MSpec(get(out y:int))
def
= (|buff | = 1)&(� buff ′ = 〈〉 ∧ y ′ = head(buff ))

Given a reactive contract Ctr = (I , Init ,MSpec), its dynamic behavior is defined
by its sets of failures and divergences (F(Ctr), D(Ctr)). Each method call m(u, v)

includes two events ?m(u) for receiving an invocation and m(v)! for sending a
return to the caller. Therefore, each trace in failures and divergences is of the
form ?m1(u1), m1(v1)!, . . . , ?mn(un), mn(vn)! or ?m1(u1), m1(v1)!, . . . , ?mn(un). The
failures and divergences are defined as:

– D(Ctr) consists of the sequences of interactions between Ctr and its environ-
ment which lead the contract to a divergent state.

– F(Ctr) is the set of pairs (s, X), where s is a sequence of interactions between
Ctr and its environment, and X denotes a set of methods to which the
contract may refuse to respond after executing s. A failure (s, X) should be
one of the following cases:
1. s = 〈?m1(x1), m1(y1)!, . . . , ?mk(xk), mk(yk)!〉 and ∀m ∈ X .¬gm, k ≥ 0. If

k = 0 then s = 〈〉. This corresponds to the case when the system reaches a
state where none of the guards of the events in X is true, after executing s.

2. s = 〈?m1(x1), m1(y1)!, . . . , ?mk(xk)〉 and mk! �∈ X. This corresponds to the
case when the operation mk is waiting to output its result, performing
any of other operations will result in a failure, because it is assumed
that the execution of a method is atomic in the sense that the method is
either executed completely, or not at all, no other methods can interrupt
its execution.

3. s = 〈?m1(x1), m1(y1)!, . . . , ?mk(xk)〉 and X could be any set of methods,
where the execution of mk enters a waiting state.

2 This is the shorthand of if g then D else Idle.
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4. Finally, s ∈ D(Ctr) and X can be any set of methods. That is, a divergent
trace with any set of methods always forms a failure.

Example 4. The dynamic behaviour of the buffer of Example 3 can be described
by the following failure/divergence model:

D = ∅,

F = {(s, X) | ∃k ∈ N.((s = 〈S(k)〉 ∧ X ⊆ {?put})

∨(s = 〈S(k), ?put(xk+1)〉 ∧ X ⊆ {put!})

∨(s = 〈S(k), ?put(xk+1), !put()〉 ∧ X ⊆ {?get})
∨(s = 〈S(k), ?put(xk+1), put()!, ?get()〉 ∧ X ⊆ {get!}))},

where

S(k)
def
= ?put(x1), put()!, ?get(), get(x1)!, ...?put(xk), put()!, ?get(), get(xk)!,

Y
def
= {?put, put!, ?get, get!} − Y.

The following notion of refinement allows us to compare and substitute compo-
nents according to their contracts.

Definition 1. Let Ctr1 and Ctr2 be two contracts. We say that Ctr1 is refined
by Ctr2, denoted by Ctr1 � Ctr2, if

1. Ctr2 provides the same services as Ctr1, i.e. Ctr2.MDec = Ctr1.MDec,
2. Ctr2 is not easier to diverge than Ctr1, i.e. D(Ctr2) ⊆ D(Ctr1), and
3. Ctr2 is not easier to deadlock than Ctr1, i.e. F(Ctr2) ⊆ F(Ctr 1).

Ctr1 and Ctr2 are equivalent, denoted by Ctr1 ≡ Ctr2, if they refine each other.

For the full refinement calculus of components, we refer the reader to [3].

2.4 Component

A component is an implementation of a contract of its provided interface. To
implement such a contract, the component may use services provided by other
components. These services are called required services and are specified as a
contract of an interface that is called the required interface.

Formally, a component C is a tuple (I , Init, MCode,PriMDec,PriMCode, InMDec),

where

1. I and Init are its interface and initial condition, respectively;
2. PriMDec is a set of method declarations that are internal to the component;
3. MCode (PriMCode) maps each method m in I.MDec (resp. PriMDec) to a

program of a underlining programming language. However, according to the
results of [7], any program can be abstracted as a guarded command g&c,
further to a guarded design. W.l.o.g., we always assume that the two functions
map each method to a guarded command from now on.

4. InMDec denotes a required interface which operations may be called in the
implementations of the operations in PriMCode and I.MDec, but not declared
there.
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We use C.I, C.Init, C.MCode, C.PriMDec, C.PriMCode and C.InMDec to denote
the corresponding parts of C.

According to [7], a guarded command g&c can always be defined as a guarded
design Dsn(g&c). The command c may contain both invocations to methods in
PriMDec and InMDec. Once the code of the private commands are given, their
semantics can be used for the calculation of Dsn(g&c). However, Dsn(g&c) also
depends on the given contract of the required interface. Therefore, the semantics
of component C is defined to be the contract function [[C]](·) such that for any
given contract InCtr of the required interface InMDec, [[C]](InCtr) is the contract
of the provided interface I.MDec in which the guarded design of each operation
m is calculated by Dsn(MCode(m)) from the code of PriMDec and the given
required contract. A component C is called closed if it does not require external
services.

2.5 Chaining Components Together

It is a natural way to compose components by chaining the provided operations
of one component to the required operation of the other.

Definition 2. Let C1 and C2 be components such that C1.I.FDec∩C2.I.FDec =

∅, C1.I.MDec ∩ C2.I.MDec = ∅ and C1.P riMDec ∩ C2.P riMDec = ∅. Then the
chaining C1 to C2, denoted by C1〉〉C2, is the component with

– (C1〉〉C2).FDec
def
= C1.FDec ∪ C2.FDec,

– (C1〉〉C2).InMDec
def
= (C2.InMDec ∪ C1.InMDec) − (C2.MDec ∪ C1.MDec),

– (C1〉〉C2).MDec def
= C1.MDec ∪ C2.MDec,

– (C1〉〉C2).Init
def
= C1.Init ∧ C2.Init,

– (C1〉〉C2).Code
def
= C1.Code ∪ C2.Code, and

– (C1〉〉C2).PriCode
def
= C1.PriCode ∪ C2.PriCode.

It is easy to show that the chaining operator is monotonic w.r.t. the refinement
order of components [2]. In the special case when (C1.InMDec ∪ C2.InMDec) ∩
(C1.MDec ∪ C2.MDec) = ∅ , the chaining C1 to C2 is called disjoint union and
denoted as C1||C2. Some other operators over components have also been defined
in [2] such as renaming, feedback and hiding.

Example 5. Define two buffer components C1 and C2 as follows

C1 .FDec = {buff1 :Seq(int)}
C1 .MDec = {put(in x :int), get1 (out y :int)}
C1 .Code(put) = (buff1 :=〈x〉) � buff1=〈〉 � (put1 (head(buff1 )); buff1 :=〈x〉)
C1 .Code(get1 ) = (buff1 �=〈〉) −→ (y :=head(buff1 ); buff1 =〈〉)
C1 .InMDec = {put1 (in x :int)}

C2 .FDec = {buff2 :Seq(int)}
C2 .MDec = {put1 (in x :int), get(out y :int)}
C2 .Code(put1 ) = (buff2 =〈〉) −→ buff2 :=〈x〉
C2 .Code(get) = (y :=head(buff2 ); buff2 :=〈〉) � buff2 �=〈〉 � get1 (y)
C2 .InMDec = {get1 (in y :int)}
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Then, C1〉〉C2 is shown in Fig.1 (a), hiding get1 in C1〉〉C2, i.e. (C1〉〉C2)\{get1}
is shown in Fig.1 (b).

(a)

C1

put get1

C2

get

put1
put1

(b)

C1

put

C2

get

put1
put1

Fig. 1. (a) Chaining Composition, (b) Hiding After Chaining

3 Processes: A Model of Glue and Application Programs

In addition to building new components by applying the component operators
defined in the previous section to existing components, we often need to glue
existing components with a program to form a new component. Because in the
most cases, we have to restrict the behaviour of the existing components and
coordinate them in order to construct a new component from them. Thus, these
component operators will not be applicable any more. For example, it is impos-
sible to simply apply the chaining operator to two one-place buffers with the
same contract defined in Example 3 to produce a two-place buffer as we did in
Example 5.

Glue code in general has different characteristics from components and we
model it as a process. Like a component, a process has an interface declaring
its own local variables and methods and its behavior is specified by a process
contract. Unlike a component which passively waits for a client to call its pro-
vided services, a process is active and has its own flow of control on when to call
out or to wait for a call to its provided services. For such an active process, we
cannot have separate contracts for the provided interface and required interface,
because we cannot have separate specifications of outgoing calls and incoming
calls [2].

Glue codes and application programs play different roles in component-based
software development. However, their behavior shares common characteristics.
Application programs have their own control flows, and carry out their own
computation task by using services provided by components, interacting with
components in the same way as a glue program.

In this section, we define the model of processes and the glue composition of
a process and a component. For simplicity and predictability, we assume that
processes do not provide methods to their environment and do not communicate
directly with each other. They are loosely coupled and can only communicate
via invoking methods of components. The composition of processes is defined by
interleaving and yields a new process.
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3.1 Processes

The interface of a process is the access point through which the process invokes
the operations of components. The process also carries out local computation by
changing its local variables.

Definition 3. A process interface I is a pair 〈FDec,MDec〉, where FDec is a set
of field declarations, and MDec is a set of method invocation signatures. Each of
them is of the form !m(inu : U,out v : V ).

A process contract Ctr is a triple 〈I, Init ,MSpec〉, where I is a process interface,
Init and MSpec are defined same as in a reactive contract.

We use the notation I.MDec to denote the set {m |!m(inu : U,out v : V ) ∈
I.MDec}.

Example 6. As shown in Fig.2 (a), a three-place buffer is built by gluing two
one-place buffers defined in Example 3. The contract of the glue process is

I.FDec = {tmp : seq(int)}
I.MDec = {!put(inu : int), !get(out v : int)}
Init = |tmp| = 0
MSpec(!put(u)) = {u, tmp} : |tmp| > 0 & � u′ = head(tmp) ∧ tmp′ = 〈〉
MSpec(!get(v)) = {v, tmp} : |tmp| = 0& � tmp′ = 〈v〉

As shown in the Fig.2 (b), to construct a two-place buffer, we need a new com-
ponent that assures the execution of sequence get1(x), put2(x) is not interrupted.
Here, M.Code(move) = {get1(u); put2(u)}

The dynamic behavior of a process contract is defined on the basis of the
observable events of the forms !m(u) for making an invocation and m(v)? for
receiving a return from the invoked component. These are the synchronization
complementary events of ?m(u) and m(v)! in the behavior of a component con-
tract.

F(Ctr) and D(Ctr) of a process contract Ctr are defined as:

– D(Ctr) consists of the sequences of interactions between Ctr and its environ-
ment which lead the contract to a divergent state. Each of such sequences is

(a)

C1

put

C2

get

put1get1

P

(b)

                    move

C 1

put1
C 2

get2

put2get1

P

M

Fig. 2. (a) Gluing Two One-place Buffers Forms a Three-place Buffer, (b) Gluing Two
One-place Buffers Forms a Two-place Buffer
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of the form 〈!m1(x1), m1(y1)?, . . . , !mk(xk), mk(yk)?, !mk+1(xk+1)〉 · s, where s is
any sequence of method calls and the execution of mk+1 diverges.

– F(Ctr) is the set of pairs (s, X) where s is a sequence of interactions between
Ctr and its environment, and X denotes a set of methods that the contract
may refuse to respond to after engaging all events in s. Any (s, X) ∈ F should
be one of the following cases:

1. s = 〈!m1(x1), m1(y1)?, . . . , !mk(xk), mk(yk)?〉 and ∀m ∈ X .¬gm, k ≥ 0. If k

= 0 then s =<>. This case represents that each method in X cannot be
engaged after executing the sequence of calls, because their guards do
not hold in the state.

2. s = 〈!m1(x1), m1(y1)?, . . . , !mk(xk)〉 and mk? �∈ X. This corresponds to the
case where the contract is waiting for the return.

3. s = 〈!m1(x1), m1(y1)?, . . . , !mk(xk)〉 and X could be any set of methods.
Here the execution of mk enters a waiting state.

4. Finally, s ∈ D(Ctr) and X can be any set of methods. That is, a divergent
trace with any set of methods always forms a failure.

For a divergence free contract, case (4) will disappear. We can combine !m(x)

and m(y)? into m(x, y) and describe the failures in terms of sequences over events
m(x, y) by removing !mk(xk) from the traces in cases (2) and (3) and put the
event m(x, y) into the refusal set. Thus, F(Ctr) can be simply defined as:

1. s = 〈m1(x1, y1), . . . , mk(xk, yk)〉 and ∀m ∈ X .¬gm; or
2. s = 〈m1(x1, y1), . . . mk(xk, yk)〉 and ∀m ∈ X if m is executed following s, then

m must reach a waiting state.

It is worth noting that the difference of failures and divergences of processes
and contracts lies in the forms of sequences of method calls, the former’s is of
the form !m1(x1), m1(y1)?, · · · , !mk(xk), m(yk)?, · · ·, while the latter’s is of the form
?m1(x1), m1(y1)!, · · · , ?mk(xk), m(yk)!, · · ·.

Example 7. The dynamic behaviour of the process given in the Example 6 can
be described by the following failure/divergence model:

D = ∅
F = {(s, X) | ∃k ∈ N.((s = 〈S′(k)〉 ∧ X ⊆ {!get1})

∨ (s = 〈S(k)′, !get1()〉 ∧ X ⊆ {get1?})

∨ (s = 〈S′(k), !get1(), get1(xk+1)?〉 ∧ X ⊆ {!put2})

∨ (s = 〈S′(k), !get1(), get1(xk+1)?, !put2(xk+1)〉 ∧ X ⊆ {put2?}))}
where

S′(k)
def
= !get1(), get1(x1)?, !put2(x1), put2()?, ..., !get1(), get1(xk)?, !put2(xk), put2()?

Y
def
= {!get1(), get1()?, !put2(), put2()?} − Y

In fact, a process can be seen as a special component without provided services.
Therefore, we can apply the chaining operator of components to processes to
produce new processes. However, all application of the operator to any two
processes P1 and P2 will be degenerated to the disjoint union of P1 and P2, i.e.
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P1 ‖ P2, as P1 and P2 both have no provided services. On the other hand, the
other operators such as renaming and hiding can not apply to processes, because
from a logical point of view, the names of the required services of a process are
bound to the process.

3.2 Composing a Component with a Process

We consider the glue composition of a closed component and a process. If there
are a number of closed components to be glued by a process, the disjoint union
of these components forms another closed component.

Definition 4. Let C be a closed component and P be a process that only calls
methods provided by C, then the failures and divergences of the synchroniza-
tion composition C ‖ [X]P , denoted as F(C ‖ [X]P ) and D(C ‖ [X]P ) respectively,
similarly to [5], are defined as:

D(C ‖ [X]P )
= {a • b | ∃s ∈ T (C), t ∈ T (P ).a ∈ (s ‖ [X]t) ∩ Σ∗ ∧ (s ∈ D(C) ∨ t ∈ D(P ))}

F(C ‖ [X]P )
= {(a, Y ∪ Z) | Y \ X = Z \ X ∧ ∃s ∈ T (C)∃t ∈ T (P ).((s, Y ) ∈ F(C)∧

(t, Z) ∈ F(P ) ∧ a ∈ (s ‖ [X]t))} ∪ {(a, Y ) | a ∈ D(C ‖ [X]P )}

where T (Q) stands for the set of traces of Q, where Q is either a component or a
process; X is the set of synchronized methods; Σ = {?m(xi), m(yi)! | m ∈ C.MDec},
b ∈ Σ∗ and s ‖ [X]t denotes the parallel operation over traces, e.g. abc ‖ [{b, c}]a′bcd =

{aa′bcd, a′abcd}.

We can also apply the hiding operator of CSP to a component C and make any
action in X become internal and invisible, denoted as C\X . Its dynamic behavior
is defined as:

D(C \ X) = {(s � X) • t | s ∈ D(C) ∧ t ∈ T (C) � X}
∪{(a � X) • t | t ∈ T (C) � X ∧ a ∈ Σ∞ ∧ |a � X| < ∞ ∧ ∀s � a.s ∈ T (C)}

F(C � X) = {(s � X, Y − X) | (s, Y ) ∈ F(C)} ∪ {(s, Y ) | s ∈ D(C \ X)}

Definition 5. Let C be a closed component, P a process s.t. P.MDec ⊆ C.MDec,
the gluing composition C � P is defined as: C � P

def
= (C ‖ [P.MDec]P) \ P.MDec.

The following theorem gives an answer to what is the entity obtained by the
glue composition.

Theorem 1. Suppose a closed component C and a process P satisfying the con-
dition P.MDec ⊆ C.MDec, then C � P is a closed component.

Similarly, we can prove that the glue composition applying to an open component
and a process produces an open component. That is,

Theorem 2. If C is an open component with a required interface InMDec and
P is a process that only calls the provided methods of C, then (C � P) is an open
component with the required interface InMDec.
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The semantics of the open component (C � P) is defined as a function that
given a contract of the required interface, returns a contract of the provided
interface, denoted as λ InCtr .(C � P)(InCtr). It is easy to see that (C�P)(InCtr) =

C(InCtr) � P

Example 8. Consider the component given in Fig.2 (a). Its dynamic behaviour
is given by the following failures since it is divergence free.

F = {(tr, X) | tr ∈ {put1, get2}∗ ∧ X ∈ P{put1, get2} ∧ ∀tr1 � tr.
(tr1 ↓ put1 − tr1 ↓ get2 ≤ 3 ∧ vals(tr1 � get2) � vals(tr1 � put1))∧
((tr ↓ put1 = tr ↓ get2 ∧ X ⊆ {get2}) ∨ (tr ↓ put1 − tr ↓ get2 ≤ 2 ∧ X = ∅)∨

(tr ↓ put1 = tr ↓ get2 + 2 ∧ X ⊆ {put1}))}

where vals(s) returns the parameters occuring in the sequence s, and (tr ↓ put1 −
tr ↓ get2) is used to compute the number of items stored in the buffer.

3.3 The State-Based Reactive Contract of a Glued Component

In this section, we study how to calculate the “state-based” reactive contract
of a glued component in terms of the field variables of its subcomponent and
process.

The approach is based on the observation that if there is a sequence of
methods s = 〈m, m1, . . . , mk, n〉 occurring in a trace of C ‖ [P.MDec]P, where
m, n /∈ P.MDec and m1, . . . , mk ∈ P.MDec, the behaviour [|m|]; [|m1|]; . . . ; [|mn|] can
be considered as a possible behaviour of m in the glued component, where “;”
means the sequential composition of guarded designs [7]. The reason is because
m1, . . . , mk are hidden and therefore become invisible in the glued component.
Thus, for an observable method m /∈ P.MDec, its guarded design is the non-
deterministic choice [7] of all those possible behaviour. However, it is easy to see
that this approach only works when the glued component does not diverge. The
divergence freedom can be proved by the theory of CSP and the FDR model
checking tool.

Whenever a divergence free trace of C‖ [P.MDec]P has a prefix of the form
〈m1, . . . , mn, m〉, where m /∈ P.MDec and m1, . . . , mn ∈ P.MDec, we put the be-
haviour of the invisible sequence 〈m1, . . . , mn〉 to be part of the initial condition.

Formally, we present our approach as follows: Let C be a closed component
and P a process with P.MDec ⊆ C.MDec. Then the contract for (C � P) can be
calculated as follows:

(C � P).FDec
def
= C.FDec ∪ P.FDec

(C � P).MDec
def
= C.MDec − {P.MDec}

(C � P).Init
def
= (C.Init ∧ P.Init) ∧ �tr∈G(C.Init ∧ P.Init); [|tr|]

(C � P).MSpec(m)
def
= C.MSpec(m) �tr∈Q(m) [|tr|], ∀m ∈ (C � P).MDec

where

– G def
= {hτ | ∃s ∈ Σ∗, ∃n ∈ (C � P).MDec. (hτ ∈ P.MDec

+ ∧ hτ • 〈n〉 • s ∈ LT )},
which is the set of maximal invisible prefixes of legal traces.
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– Q(m)
def
= {〈m〉•hτ | ∃r, s ∈ Σ∗, ∃n ∈ (C �P).MDec.(hτ ∈ P.MDec

+ ∧r•〈m〉•hτ •
〈n〉 • s ∈ LT )} . Q(m) contains all the sequences of the form 〈m, m1, . . . , mn〉
in each of the divergence free traces of C � P , where m1, . . . , mn ∈ P.MDec.

– LT def
= {t ∈ T (C) | ∃X ∈ P(C.MDec). (t, X) ∈ F(C ‖ [X]P ) ∧ t /∈ D(C ‖ [X]P )∧

(t � X) /∈ D((C ‖ [X]P ) \ X)}. That is, the legal traces of C � P are those that
themselves and their projections on Σ − X are not divergent .

– [|tr|] maps each sequence tr to a guarded design which is calculated by se-
quentially composing the guarded design of each method of tr in turn. The
guarded design of each method is defined by the following rules:
1. [|mg |] is C.MSpec(m) if m /∈ P.MDec, otherwise C.MSpec(m) ∧ P.MSpec(m).

It is easy to see that [|mg |] is a guarded design, for any m ∈ C.MDec;
2. if tr = 〈m1, m2, . . . , mn〉, then [|tr|] = [|mg

1 |]; [|mg
2 |]; . . . ; [|mg

n|]. Here, “;” means the
sequential composition of (guarded) designs (see [7]).

Here, we have to point out that there may be different way to construct the pos-
sible behaviour of an observable method and the initial condition, it can therefore
result in different contracts. For example, for the sequence 〈m〉 • τ1 • τ2 • 〈n〉, in-
stead of defining their guarded design as MSpec(m)

def
= [|m; τ1; τ2|] and MSpec(n)

def
=

[|n|], we can define them as MSpec(m)
def
= [|m; τ1|] and MSpec(n)

def
= [|τ2; n|]. However,

it is easy to prove that all these contracts should refine each other since they share
the same failures and divergences as that of (C ‖ [P.MDec]P )\P.MDec.

Example 9. Calculate the contract of the component given in Fig.2 (a) from its
dynamic behaviour in Example 8, and the contract of the process and one place
buffer given in Example 6 and Example 3 respectively.

I .FDec = {tmp, buff 1, buff 2 : seq(int)}
I .MDec = {put1(inu : int; ), get2(out v : int)}

Init = tmp ′ = 〈〉 ∧ buff ′
1 = 〈〉 ∧ buff ′

2 = 〈〉
MSpec(put1) = C1.MSpec(put1) � [|put1; get1|] � [|put1; get1; put2|] � [|put1; put2|]

�[|put 1; put2; get1|] � [|put1; get1|]
= {buff 1} : |buff 1| = 0& � buff ′

1 = 〈u〉
�{tmp} : |buff 1| = 0 ∧ |tmp| = 0 ∧ |buff 2| = 0& � tmp′ = 〈u〉
�{buff 2} : |buff 1| = 0 ∧ |tmp| = 0 ∧ |buff 2| = 0& � buff ′

2 = 〈u〉
�{buff 1, tmp, buff 2} : |buff 1| = 0 ∧ |tmp| �= 0 ∧ |buff 2| = 0&

� buff ′
1 = 〈u〉 ∧ tmp′ = 〈〉 ∧ buff ′

2 = tmp

�{tmp, buff 2} : |buff 1| = 0 ∧ |tmp| �= 0 ∧ |buff 2| = 0&

� tmp′ = 〈u〉 ∧ buff ′
2 = tmp

�{tmp, buff 2} : |buff 1| = 0 ∧ |tmp| = 0 ∧ |buff 2| �= 0&

� tmp′ = 〈u〉 ∧ buff ′
2 = tmp

Similarly, we can calculate MSpec(get2). Due to space, we omit it.

This example shows that the calculation of the failures and divergences is quite
tedious. However it could be aided by the CSP tool FDR [5].
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4 Relative Work

In CBD, how to construct composite components from existing ones is a chal-
lenging problem. In the object-oriented programming community, there has been
extensive research on attacking this issue. For example, SuperGlue [9], Jiazzi [10],
the calculus of assemblages [11] and so on. SuperGlue is a connection-based asyn-
chronous programming model. In SuperGlue, a component is either SuperGlue
code or Java code with a set of signals (possibly infinite many), and composing
existing components is via connection rules over the signals of the subcompo-
nents defined by SuperGlue Code. While Jiazzi [10] can be used to construct
large-scale binary components in Java. Jiazzi components can be thought of as
generalizations of Java packages with added support for external linking and
separate compilation. Existing Java classes and Jiazzi components can be com-
posed by Jiazzi linker to a new Jiazzi component. The linking is similar to the
chaining operator in rCOS. Comparing with SuperGlue and Jiazzi, in our ap-
proach, each component is equipped with a provided interface and its contract,
optionally as well as a required interface and its contract. Thus, components can
be more easily reused across different applications, as the provided interfaces and
contracts together with the required interfaces and contracts encapsulate their
designs and implementations, as well as their data structures. Furthermore, the
interoperability of components is well established in our model, since rCOS acts
as the underlying theory of component designs which unifies semantic models
of different programming languages and paradigms into the notion of interface
contracts. What’s more, our approach provides more means to compose new
components from existing ones, either by component operators or by glue codes.

SuperGlue, Jiazzi and rCOS all cope with composing (gluing) components
statically in the sense that all method names used for composing must be resolved
in the moment these components are composed (glued). Whereas the calculus of
assemblages [11] can handle the composing (gluing) dynamically. However, there
is no the notion of contracts within it either.

[12] investigated the notions of components, composition of components and
verification of composed components in an asynchronous interleaving event-
based model, called Asynchronous Interleaving Message-passing computation
model (AIM), with which the composition of components is interpreted as asyn-
chronous parallel, analogous remark is applied to the composition of properties
of components. In fact, we believe what was handled in [12] exactly corresponds
to what the chaining operator can do in rCOS. However, rCOS is a combina-
tion of event-based model and state-based model, whose event-based model is a
synchronous concurrent model in contrast to that of [12], an asynchronous con-
current model. So, rCOS allows different notations and methods for modelling
and analysing different aspects of components and processes, such as pre and
post conditions for functionality, traces of events for interaction protocols, fail-
ures and divergences for the denotational view of dynamic behavior and guarded
designs for operational views of dynamic behavior. This supports the separation
of concerns and gives the hope of integrating different verification techniques
and tools via this common model. In fact, the assume-guarantee proof style
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used in [12] can also be easily adopted in our framework. However, our work
is not only about assume-guarantee verification in the original setting. When
chaining components together, the verification and calculation of the composed
components are different from the case when components are glued together.
Using verified properties in our framework is more about substitution of proof
obligations by theorems proved about services that are used in components or
application programs.

There are also various approaches to handle the composition of components
in the formal methods community. In [13], a component is defined as a stream
process function which maps the input streams of actions to the output streams
of actions. The refinement relation between components is defined over a pair
of input streams and output streams. rCOS clearly divides the provided con-
tract(input actions) and the required contract(output actions) and can treat
them separately, which greatly ease the composition of components. Like rCOS,
Reo[1] treats components and glue codes(connectors) as distinct types. The two
types build on a common formal foundation, the Abstract Behaviour Types. The
Abstract Behaviour Types is very expressive for specification, but it is hard to
be linked to implementation language. The notion of guarded design in rCOS
can link specifications and OO languages very smoothly.

5 Conclusions and Future Work

We have proposed a model supporting component-based programming. The
model unifies the component model developed earlier in [2] and the process model
defined here. Processes are introduced to model application programs and glue
programs which help developers to build new components from existing ones.

In the proposed model, a typical component-based application consists of a
family of components and a number of parallel application processes. Some of
the components are reused from a component repository while others are newly
built using gluing processes as well as component operators (chaining, service
renaming, and service hiding).

As for future work, we need to investigate the following issues:

– In this paper, the method to calculate the resulted contract of the gluing
of a component and a process is very complicated and difficult to track.
Therefore, as a future work, on one hand, we need to simplify the procedure;
on the other hand, we will look into automating the calculation.

– It will be interesting research topic to investigate how different verification
techniques and tools can be applied to rCOS.

– We are also interested in investigating on how rCOS can be applied to web
service systems, and to deal with quality of services (QoS) of components,
such as time and resource constraints.

– Case studies of realistic component systems such as CORBA.
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Abstract. In the context of Service Oriented Computing, contracts are
descriptions of the observable behaviour of services. Contracts have been
already successfully exploited to solve the problem of client/service com-
position. In this paper we consider services where the choice to perform
an output may not depend on the environment and we revisit the theory
of contracts in order to tackle the problem of composition of multiple
services (not only one client with one service). Moreover, we relate our
theory of contracts with the theory of testing preorder (interpreted as a
subcontract relation) and we show that a compliant group of contracts
is still compliant if every contract is replaced by one of its subcontract.

1 Introduction

Service Oriented Computing (SOC) is a novel paradigm for distributed comput-
ing based on services intended as autonomous and heterogeneous components
that can be published and discovered via standard interface languages and pub-
lish/discovery protocols. One of the peculiarities of Service Oriented Computing,
distinguishing it from other distributed computing paradigms (such as compo-
nent based software engineering), is that it is centered around the so-called mes-
sage oriented architectures. This means that, given a set of collaborating services,
the current state of their interaction is stored inside the exchanged messages and
not only within the services. From a practical viewpoint, this means that it is
necessary to include, in the exchanged messages, the so-called correlation infor-
mation that permits to a service to associate a received message to the correct
session of interaction (in fact, the same service could be contemporarily involved
in different sessions at the same time).

Web Services is the most prominent service oriented technology: Web Services
publish their interface expressed in WSDL, they are discovered through the
UDDI protocol, and they are invoked using SOAP.

Even if one of the declared goal of Web Services is to support the automatic
discovery of services, this is not yet practically achieved. Two main problems are
still to be satisfactorily solved. The first one, investigated by the semantic web
research community, is concerned with the lack of semantic information in the
description of services. The second problem, addressed in this paper, is concerned
� Research partially funded by EU Integrated Project Sensoria, contract n. 016004.
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with the problem of guaranteeing that the interacting services are compliant in
the sense that their behaviours are complementary. In particular, it is important
to check whether a set of services, once combined in order to collaborate, are
stuck-free.

In order to be able to check the compliance of the composed services, it is
necessary that the services expose in their interface also the description of their
expected behaviour. In the service oriented computing literature, this kind of
information is referred to as the service contract [1]. More precisely, the ser-
vice contract describes the sequence of input/output operations that the service
intends to execute within a session of interaction with other services.

Contracts have been already investigated in the context of client-service in-
teraction [2]. In this paper, we consider a different scenario: instead of analysing
client-service architectures, we assume that several services interact according
to a peer-to-peer architecture. Through the analysis of the service contracts we
want to define a theory that, on the one hand, permits to formally verify whether
the composed services are compliant (thus giving rise to a correct composition)
and, on the other hand, permits to replace a service with another one without af-
fecting the correctness of the overall system. In this case we say that the initially
expected contract is replaced with one of its subcontract.

We foreseen at least two main applications for our theory of contracts. On the
one hand, it can be exploited in the service discovery phase. Consider, for in-
stance, a service system defined in terms of the contracts that should be exposed
by each of the service components. The actual services to be combined could be
retrieved independently one from the other (e.g. querying contemporarily differ-
ent service registries) collecting that services that either exposes the expected
contract, or one of its subcontract. On the other hand, the notion of subcontract
could be useful in service updates in order to ensure backward compatibility.
Consider, e.g., a service that should be updated in order to provide new func-
tionalities; if the new version exposes a subcontract of the previous service, our
theory ensures that the new service is a correct substitute for the previous one.

1.1 Technical Contribution

We define two process calculi, one for contracts and one for systems composed
of contracts. The latter is an extension of the former. The calculus for contracts
is a typical process calculus distinguishing between deadlock and successful ter-
mination. This distinction is necessary in order to model the fact that a service
could internally deadlock due to its internal parallelism. Another peculiarity of
the calculus is that the decision to execute output actions may not depend on
the other services in the system. In more technical terms, we do not admit mixed
choices a+b where a is an input action while b is an output. This reflects the fact
that the current service oriented technologies (such as Web Services) are based
on asynchronous communication and, as formally discussed in [3], mixed choice
is not reasonably implementable in asynchronously communicating concurrent
systems. We avoid mixed choices imposing that all output actions b are preceded
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by an internal τ action; in this way a service first decide to execute the output,
and only subsequently the message becomes actually available.

The second calculus for systems permits to compose in parallel contracts that
interact within a session, and to add restrictions in order to model local channel
names, that can be used only inside subsessions involving a proper subset of the
composed contracts.

The calculus is used to define our notion of correct composed system; a system
is correct if all the composed contracts are ensured to reach successful comple-
tion. Then, we introduce contract refinement as the possibility to independently
replace each contract with a subcontract without breaking correctness. In gen-
eral, this notion of refinement is rather complex to be checked mainly because
it is defined in order to permit the contemporary and independent refinement of
the contracts. Our main result is that in our calculus this notion of refinement
coincides with a more treatable subcontract relation in which only one contract
is replaced and the other ones are left unchanged. This new notion characterizes
refinement in a testing scenario, thus giving us the possibility to resort to the
theory of testing [4,5]. In particular, we show how to use the theory of should-
testing [5] to prove that one contract is a subcontract of another one.

1.2 Related Work

As stated above, we resort to the theory of testing. There are some relevant
differences between our form of testing and the traditional one proposed by De
Nicola-Hennessy [4]. The most relevant difference is that, besides requiring the
success of the test, we impose also that the tested process should successfully
complete its execution. This further requirement has important consequences;
for instance, we do not distinguish between the always unsuccessful process 0
and other processes, such as a.1 + a.b.1,1 for which there are no guarantees
of successful completion in any possible context. Another relevant difference is
in the treatment of divergence: we do not follow the traditional catastrophic
approach, but the fair approach introduced by the theory of should-testing of
Rensink-Vogler [5]. In fact, we do not impose that all computations must succeed,
but that all computations can always be extended in order to reach success.

Contracts have been investigated also by Fournet et al. [6] and Carpineti et
al. [2].

In [6] contracts are CCS-like processes; a generic process P is defined as com-
pliant to a contract C if, for every tuple of names ã and process Q, whenever
(νã)(C|Q) is stuck-free then also (νã)(P |Q) is. Our notion of contract refine-
ment differs from stuck-free conformance mainly because we consider a different
notion of stuckness. In [6] a process state is stuck (on a tuple of channel names
ã) if it has no internal moves (but it can execute at least one action on one of
the channels in ã). In our approach, an end-states different from successful ter-
mination is stuck (independently of any tuple ã). Thus, we distinguish between
internal deadlock and successful completion while this is not the case in [6]. An-
other difference follows from the exploitation of the restriction (νã); this is used
1 We use 0 to denote unsuccessful termination and 1 for successful completion.
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in [6] to explicitly indicate the local channels of communication used between
the contract C and the process Q. In our context we can make a stronger closed-
world assumption (corresponding to a restriction on all channel names) because
service contracts do not describe the entire behaviour of a service, but the flow
of execution of its operations inside one session of communication.

The closed-world assumption is considered also in [2] where, as in our case,
a service oriented scenario is considered. In particular, in [2] a theory of con-
tracts is defined for investigating the compatibility between one client and one
service. Our paper consider multi-party composition where several services are
composed in a peer-to-peer manner. Moreover, we impose service substitutability
as a mandatory property for our notion of refinement; this does not hold in [2]
where it is not in general possible to substitute a service exposing one contract
with another one exposing a subcontract. Another relevant difference is that the
contracts in [2] comprises also mixed choices.

Structure of the paper. Section 2 reports syntax and semantics of the process
calculi. In Section 3 we describe our theory of contracts and we prove our main
results. Finally, Section 4 reports some conclusive remarks.

2 Syntax and Semantics of the Process Calculi

In this Section we introduce incrementally the two calculi. The first one is the
calculus for contracts; it is a typical calculus comprising two possible final states
(failure or success), input and output prefixes, sequencing, choice, parallel com-
position, restriction and repetition.

2.1 Definition of Contracts

We assume a denumerable set of names N = {a, b, c, ...}. The set Nloc = {a∗ | a ∈
N} is the set of local names. We take α to range over the set of all names
Nall = N ∪ Nloc. The set A = N ∪ {a | a ∈ N} is the set of input and output
actions. The set Aloc = Nloc ∪ {a∗ | a∗ ∈ Nloc} is the set of input and output
local actions. We take β to range over the set of all actions Act = Aloc ∪A∪{τ},
where τ denotes an internal computation.

Definition 1 (Contracts). The syntax of contracts is defined by the following
grammar

C ::= 0 | 1 | τ | α | τ ; α |
C; C | C+C | C|C | C\M | C∗

where M ⊆ Nloc. The set of all contracts C is denoted by Pcon.

We consider four possible atoms: unsuccessful termination 0, successful termi-
nation 1, input action a, and silent move τ . Output actions always appear after
an internal move τ . The operators are: sequencing ; , choice + , parallel | ,
restriction \ M , and repetition ∗.
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In the following we will omit trailing “1” when writing contracts and, given
a set of names M , with M = {a | a ∈ M} we denote the set output actions
performable on those names.

The operational semantics of contracts is defined by the rules in Table 1
(plus the omitted symmetric rules). We take λ to range over the set of labels
L = Act ∪ {√}, where

√
denotes successful termination.

Table 1. Semantic rules for contracts (symmetric rules omitted)

1
√

−→ 0 β
β−→ 1

C
λ−→ C′

C+D
λ−→ C′

C
λ−→ C′ λ �= √

C;D
λ−→ C′;D

C
√

−→ C′ D
λ−→ D′

C;D
λ−→ D′

C
a∗−→ C′ D

a∗−→ D′

C|D τ−→ C′|D′

C
√

−→ C′ D
√

−→ D′

C|D
√

−→ C′|D′

C
λ−→ C′ λ �= √

C|D λ−→ C′|D

C
λ−→ C′ λ �∈ M ∪ M

C\M
λ−→ C′\M

C∗
√

−→ 0
C

λ−→ C′

C∗ λ−→ C′; C∗

The operational semantics is rather standard for process calculi with sequen-
tial composition, where the

√
label is used to explicitly denote completion. The

unique relevant remark is that synchronization within a contract is permitted
only on local names a∗; the synchronization on global names between different
contracts will be considered in the next calculus used to model the composition
of contracts.

In the remainder of the paper we use the following notations: C
λ−→ to mean

that there exists C′ such that C
λ−→ C′ and, given a sequence of labels w =

λ1λ2 · · · λn−1λn (possibly empty, i.e., w = ε), we use C
w−→ C′ to denote the

sequence of transitions C
λ1−→ C1

λ2−→ · · · λn−1−→ Cn−1
λn−→ C′ (in case of w = ε we

have C′ = C, i.e., C
ε−→ C).

The main results reported in this paper are consequences of a property of
contracts that we call output persistency. This property states that once a con-
tract decides to execute an output, its actual execution is mandatory in order to
successfully complete the execution of the contract. In order to formally prove
this property we need to formalize two (easy to prove) preliminary lemmata.

Lemma 1. Let C ∈ Pcon s.t. C
a−→ and C

λ−→ C′, then λ �= √
.

Lemma 2. Let C ∈ Pcon s.t. C
a−→ and C

β−→ C′ with β �= a, then C′ a−→.

Output persistency is a trivial consequence of these two lemmata.
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Proposition 1 (Output persistency). Let C ∈ Pcon be a contract such that

C
w−→ C′ a−→. We have that, for every C′′ such that C′ w′

−→ C′′ and C′′
√

−→,
the string w′ must include a.

2.2 Composing Contracts

We now introduce the calculus for modeling systems of composed contracts. This
is an extension of the previous calculus; the basic terms are contracts under
execution denoted with [C].

Besides the parallel composition operator ||, we consider also restriction \\
in order to model the possibility to open local channels of interaction among
contracts. This operator of restriction distinguishes between input and output
operations; this allows us, e.g., to model a system composed of two contracts
C1 and C2 such that channel a is used for communications from C1 to C2 and
channel b is used for communications along the opposite directions:

([C1]\\{a, b}) || ([C2]\\{a, b})

Definition 2 (Contract composition). The syntax of contract compositions
is defined by the following grammar

P ::= [C] | P ||P | P\\L

where L ⊆ A.

In the following we will sometimes omit parenthesis“[ ]” when writing contract
compositions and we will call system a composition of contracts.

The operational semantics of systems is defined by the rules in Table 2 (plus
the omitted symmetric rules).

Table 2. Semantic rules for contract compositions (symmetric rules omitted)

C
λ−→ C′ λ �∈ Aloc

[C]
λ−→ [C′]

P
λ−→ P ′ λ �= √

P ||Q λ−→ P ′||Q

P
a−→ P ′ Q

a−→ Q′

P ||Q τ−→ P ′||Q′

P
√

−→ P ′ Q
√

−→ Q′

P ||Q
√

−→ P ′||Q′

P
λ−→ P ′ λ �∈ L

P\\L
λ−→ P ′\\L

Note that, due to the absence of internal communication of actions of A inside
contracts, when we apply external restriction directly to a contract C, i.e. we
consider [C]\\L for some L ⊆ A, we obtain a transition system isomorphic to
that of the contract C{0/β|β ∈ L} \Nloc or, equivalently, to that of [C{0/β|β ∈
L}], where C{0/β|β ∈ L} represents the syntactical substitution of 0 for every
occurence of any subterm β such that β ∈ L.
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We are now ready to define our notion of correct composition of contracts.
Intuitively, a system composed of contracts is correct if all possible computations
may guarantee completion; this means that the system is both deadlock and
livelock free (there could be an infinite computation, but given any possible
prefix of this infinite computation, it can be extended to reach a successfully
completed computation).

Definition 3 (Correct contract composition). A system P is a correct con-
tract composition, denoted P ↓, if for every P ′ such that P

τ−→
∗

P ′ there exists

P ′′ such that P ′ τ−→
∗

P ′′
√

−→ .

As examples of correct contract compositions, you can consider C1||C2 with

C1 = a + b C2 = (τ ; a) + (τ ; b)
C1 = a; b C2 = τ ; a; τ ; b
C1 = a + b + c C2 = (τ ; a) + (τ ; b)
C1 = (a; b) + (b; a) C2 = (τ ; a) | (τ ; b)
C1 = (a; τ ; b)∗ C2 = τ ; a; (b; τ ; a)∗; b

3 Contract Refinement

In this Section we introduce our theory of contracts. The basic idea is to have
a notion of refinement of contracts such that, given a system composed of the
contracts C1, · · · , Cn, we can replace each contract Ci with one of its refinements
C′

i without breaking the correctness of the system.
Some simple example of refinement follows. Consider the correct system C1||C2

with
C1 = a + b C2 = (τ ; a) + (τ ; b)

We can replace C1 with C′
1 = a+b+c or C2 with C′

2 = τ ; a without breaking the
correctness of the system. This example shows a first important intuition: a con-
tract could be replaced with another one that has more external nondeterminism
and/or less internal nondeterminism.

Consider now

D1 = a + b + c D2 = (τ ; a) + (τ ; b)

where we can refine D1 with D′
1 = a + b + d. Clearly, this refinement does not

hold in general because we could have another correct system

D1 = a + b + c D′
2 = (τ ; a) + (τ ; b) + (τ ; c)

where such a refinement does not hold. This second example shows that refine-
ment is influenced by the potential actions that could be executed by the other
contracts in the system. Indeed, D′

1 is not a correct substitute for D1 because
D′

2 has the possibility to produce c.
Based on this intuition, we parameterize our notion of subcontract relation

C′ ≤I,O C on the set I of inputs, and the set O of outputs, that could be
potentilly executed by the other contracts in the system. We will see that
D′

1 ≤∅,{a,b} D1 but D′
1 �≤∅,{a,b,c} D1.
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3.1 Subcontract Pre-order

We first define two auxiliary functions that extract from contracts and systems
the set of names used in input and output actions, respectively.

Definition 4 (Input and Output sets). Given the contract C ∈ Pcon, we
define I(C) (resp. O(C)) as the subset of N of the potential input (resp. ouput)
actions of C. Formally, we define I(C) as follows (O(C) is defined similarly):

I(0) = I(1) = I(τ) = I(τ ; α) = ∅ I(α) = if α∈N then {α} else ∅
I(C;C′) = I(C+C′) = I(C|C′) = I(C)∪I(C′) I(C\M) = I(C ∗) = I(C)

Note that the set M in C \ M does not influence I(C \ M) because it contains
only local names outside N . Given the system P , we define I(P ) (resp. O(P ))
as the subset of N of the potential input (resp. ouput) actions of P . Formally,
we define I(P ) as follows (O(P ) is defined similarly):

I([C]) = I(C) I(P ||P ′) = I(P ) ∪ I(P ′) I(P\\L) = I(P ) − L

We are now ready to define the notion of subcontract pre-order C′
i ≤I,O Ci in

which the substitutability of contract Ci with C′
i is parameterized in the possible

input and output actions I and O of the other contracts in the considered system.
More precisely, we consider a correct system C1\\I1 ∪ O1 || . . . || Cn\\In ∪ On

composed of the contracts C1, · · · , Cn following a particular name discipline: the
names in Ii (resp. Oi) cannot be used in input (resp. output) actions by the
contract Ci. This discipline is guaranteed restricting each contract Ci on the set
of actions Ii ∪ Oi. In this particular system, we want to be able to subtitute
each of the contract Ci with any contract C′

i such that C′
i ≤I,O Ci where I and

O comprise the possible input and output actions that can be executed by the
other contracts Cj with j �= i. This last condition can be ensured imposing that

( ⋃

j �=i

I(Cj)−Ij

)
−Oi ⊆ I ∧

( ⋃

j �=i

O(Cj)−Oj

)
−Ii ⊆ O

This kind of formula is considered in the subsequent definition that formalizes
the notion of subcontract pre-order family.

Definition 5 (Subcontract pre-order family). A family {≤I,O| I, O ⊆ N }
of pre-orders over Pcon is a subcontract pre-order family if, for any n ≥ 1,
contracts C1, . . . , Cn ∈ Pcon and C′

1, . . . , C
′
n ∈ Pcon and input and output names

I1, . . . , In ⊆ N and O1, . . . , On ⊆ N , we have

(C1\\I1 ∪ O1 || . . . || Cn\\In ∪ On)↓ ∧
∀i. C′

i ≤ I′
i,O

′
i
Ci ∧ (

⋃
j �=i I(Cj)−Ij)−Oi ⊆ I ′i ∧ (

⋃
j �=i O(Cj)−Oj)−Ii ⊆ O′

i

⇒ (C′
1\\I1 ∪ O1 || . . . || C′

n\\In ∪ On)↓

We will prove that there exists a maximal subcontract pre-order family; this is
a direct consequence of the output persistency property. In fact, if we consider
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mixed choice it is easy to prove that there exists no maximal subcontract pre-
order family. Consider, e.g., the trivially correct system C1||C2 with C1 = a and
C2 = a; we could have two subcontract pre-order families ≤1

I,O and ≤2
I,O such

that
a + c.0 ≤1

∅,{a} a and a + c.0 ≤1
{a},∅ a

and
a + c.0 ≤2

∅,{a} a and a + c.0 ≤2
{a},∅ a

but no subcontract pre-order family ≤ could have

a + c.0 ≤∅,{a} a and a + c.0 ≤{a},∅ a

because if we refine C1 with a+ c.0 and C2 with a+ c.0 we achieve the incorrect
system a + c.0||a + c.0 that can deadlock after synchronization on channel c.

We will show that the maximal subcontract pre-order family can be achieved
defining a coarser form of refinement in which, given any system composed of
a set of contracts, refinement is applied to one contract only (thus leaving the
other unchanged). We call this form of refinement singular subcontract pre-order.

Intuitively a family of pre-orders {≤I,O| I, O ⊆ N } is a singular subcontract
pre-order family whenever the correctness of systems is preserved by refining
just one of the contracts. More precisely, for any n ≥ 1, C1, . . . , Cn ∈ Pcon,
I1, . . . , In ⊆ N , O1, . . . , On ⊆ N , 1 ≤ i ≤ n and C′

i ∈ Pcon we require

(C1\\I1 ∪ O1 || . . . || Ci\\Ii ∪ Oi || . . . || Cn\\In ∪ On)↓ ∧
C′

i ≤ I,O Ci ∧ (
⋃

j �=i I(Cj)−Ij)−Oi ⊆ I ∧ (
⋃

j �=i O(Cj)−Oj)−Ii ⊆ O

⇒ (C1\\I1 ∪ O1 || . . . || C′
i\\Ii ∪ Oi || . . . ||Cn\\In ∪ On)↓

By exploiting commutativity and associativity of parallel composition, and
the fact that the internal behavior of C1\\I1 ∪ O1 || . . . || Cn\\In ∪ On is the same
as that of C1||((C2{0/β|β ∈ I2∪O2}|| . . . ||Cn{0/β|β ∈ In ∪On})\\O1∪I1) we can
group the contracts which are not being refined and denote them with a generic
term P taken from Pconpar, the set of the systems of the form (C1|| . . . ||Cn)\\I∪O,
with Ci ∈ Pcon for all i ∈ {1, . . . , n} and I, O ⊆ N . Moreover we note that, given
P = (C1|| . . . ||Cn)\\I ∪ O ∈ Pconpar, we have I(P ) = (

⋃
1≤i≤n I([Ci])) − I and

O(P ) = (
⋃

1≤i≤n O([Ci])) − O.

Definition 6 (Singular subcontract pre-order family). A family of pre-
orders {≤I,O| I, O ⊆ N } is a singular subcontract pre-order family if, for any
C, C′ ∈ Pcon, P ∈ Pconpar we have

(C||P )↓ ∧ C′ ≤I,O C ∧ I(P ) ⊆ I ∧ O(P ) ⊆ O ⇒ (C′||P )↓

In order to prove the existence of the maximal subcontract pre-order family,
we prove that every family of pre-orders that is a subcontract family is also a
singular subcontract family (Theorem 1). Moreover we show that there exists
a maximal singular subcontract family and we prove that it also a subcontract
family (Theorem 2).
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Theorem 1. If a family of pre-orders {≤I,O| I, O ⊆ N } is a subcontract pre-
order family then it is also a singular subcontract pre-order family.

Proof. Suppose that {≤I,O| I, O ⊆ N } is a subcontract pre-order family. Con-
sider n ≥ 1, P ∈ Pconpar, C, C′ ∈ Pcon. From (C||P ) ↓ and C′ ≤I,O C, where
I(P ) ⊆ I and O(P ) ⊆ O, we can derive (C′||P )↓ by just taking in the definition
of subcontract pre-order family, C1 = C, C′

1 = C′, C2 . . . Cn and I1 and O1 to
be such that P = (C2|| . . . ||Cn)\\O1 ∪ I1; I2 . . . In and O2 . . . On to be the empty-
set; and finally C′

i to be Ci for every i ≥ 2 (since ≤I,O are pre-orders we have
C ≤I,O C for every I, O and C).

From the simple structure of their definition we can easily deduce that singular
subcontract pre-order families have maximum, i.e. there exists a singular sub-
contract pre-order family such that every pre-order ≤I,O in the family includes
all the corresponding pre-order ≤I,O of the other singular subcontract pre-order
families. In the following we let Pconpar,I,O denote the subset of processes of
Pconpar such that I(P ) ⊆ I and O(P ) ⊆ O.

Definition 7 (Input-Output Subcontract relation). A contract C′ is a
subcontract of a contract C with respect to a set of input channel names I ⊆ N
and output channel names O ⊆ N , denoted C′ �I,O C, if

∀P ∈ Pconpar,I,O. (C||P )↓ ⇒ (C′||P )↓

It is trivial to verify that the family of pre-orders {�I,O| I, O ⊆ N } is a singular
subcontract pre-order family and is the maximum of all the singular subcontract
pre-order families.

The following Proposition states an intuitive contravariant property: given
�I′,O′ , and the greater sets I and O (i.e. I ′ ⊆ I and O′ ⊆ O) we obtain a smaller
pre-order �I,O (i.e. �I,O⊆�I′,O′). This follows from the fact that extending the
sets of input and output actions means considering a greater set of discriminating
contexts.

Proposition 2. Let C, C′ ∈ Pcon be two contracts, I, I ′ ⊆ N be two sets of
input channel names such that I ′ ⊆ I and O, O′ ⊆ N be two sets of output
channel names such that O′ ⊆ O. We have:

C′ �I,O C ⇒ C′ �I′,O′ C

The following Proposititon states that a subcontract is still a subcontract even
if we restrict its actions in order to consider only the inputs and outputs already
available in the supercontract. The result about the possibility to restrict the
outputs will be extensively used in the remainder of the paper.

Proposition 3. Let C, C′ ∈ Pcon be contracts and I, O ⊆ N be sets of input
and output names. We have

C′ �I,O C ⇒ C′\\(I(C′) − I(C)) �I,O C

C′ �I,O C ⇒ C′\\(O(C′) − O(C)) �I,O C
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Proof. We discuss the result concerned with restriction of outputs (the proof
for the restriction of inputs is symmetrical). Let C′ �I,O C. Given any P ∈
Pconpar,I,O such that (C||P ) ↓, we will show that (C′\\(O(C′) − O(C)) || P ) ↓.
We first observe that (C || P\\(O(C′) − O(C))) ↓. Since C′ �I,O C, we derive
(C′ || P\\(O(C′)−O(C)))↓. As a consequence (C′\\(O(C′) − O(C)) || P\\(O(C′)−
O(C)))↓. We can conclude (C′\\(O(C′) − O(C)) || P )↓.

All the results discussed so far do not depend on the output persistency property.
The first relevant result depending on this peculiarity is reported in the following
Proposition. It states that if we substitute a contract with one of its subcontract,
the latter cannot activate outputs that were not included in the potential outputs
of the supercontract.

Proposition 4. Let C, C′ ∈ Pcon be contracts and I, O ⊆ N be sets of input
and output names. If C′ �I,O C we have that, for every P ∈ Pconpar,I,O such
that (C||P )↓,

(C′||P ) τ−→
∗

(C′
der ||Pder) ⇒ ∀ a ∈ O(C′) − O(C). C′

der
a−→/

Proof. We proceed by contradiction. Suppose that there exist C′
der , Pder such

that (C′||P ) τ−→
∗

(C′
der ||Pder) and C′

der
a−→ for some a ∈ O(C′) − O(C).

We further suppose (without loss of generality) that such a path is minimal,
i.e. no intermediate state (C′

der2||Pder2) is traversed, such that C′
der2

a−→ for
some a ∈ O(C′)−O(C). This implies that the same path must be performable by
(C′\\(O(C′) − O(C)) || P ), thus reaching the state (C′

der\\(O(C′) − O(C)) ||Pder).

However, since in the state C′
der of contract C′ we have C′

der
a−→ for some

a ∈ O(C′) − O(C) and the execution of a is disallowed by restriction, due to
output persistency, the contract will never be able to reach success (no matter
what contracts in P will do). Therefore (C′\\(O(C′) − O(C)) || P ) �↓ and (due to
Proposition 3) we reached a contradiction.

The following Proposition permits to conclude that the set of potential inputs
of the other contracts in the system is an information that does not influence
the subcontract relation.

Proposition 5. Let C ∈ Pcon be contracts, O ⊆ N be a set of output names
and I, I ′ ⊆ N be two sets of input names such that O(C) ⊆ I, I ′. We have that
for every contract C′ ∈ Pcon,

C′ �I,O C ⇐⇒ C′ �I′,O C

Proof. Let us suppose C′ �I′,O C (the opposite direction is symmetric). Given
any P ∈ Pconpar,I,O such that (C||P ) ↓, we will show that (C′||P ) ↓. We first
observe that (C || P\\(I − O(C)))↓. Since C′ �I′,O C and O(C) ⊆ I ′, we derive
(C′ || P\\(I − O(C)))↓. Due to Proposition 4 we have that (C′ || P\\(I − O(C)))
can never reach by τ transitions a state where outputs in O(C′) − O(C) are
executable by some derivative of C′, so we conclude (C′ || P )↓.
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We are now in place to prove the main result of this paper, i.e. that the Input-
Output Subcontract relation defined in the Definition 7 is also a subcontract
pre-order family.

Theorem 2. The family of pre-orders {�I,O| I, O ⊆ N } is a subcontract pre-
order family.

Proof. Consider n ≥ 1, C1, . . . , Cn ∈ Pcon, C′
1, . . . , C

′
n ∈ Pcon, I1, . . . , In ⊆ N

and O1, . . . , On ⊆ N . For any i we let Pi = Ci\\Ii ∪ Oi and P ′
i = C′

i\\Ii ∪ Oi. If
(P1|| . . . ||Pn)↓ and for all i we have that C′

i �I′
i,O

′
i
Ci, with I ′i and O′

i satisfying
the constraint on names as specified in Definition 5, we can derive (P ′

1|| . . . ||P ′
n)↓

as follows. For every i from 1 to n we show that

(P ′
1\\(O(C′

1) − O(C1))|| . . . ||Pi|| . . . ||P ′
n\\(O(C′

n) − O(Cn)))↓

by multiply applying the definition of singular subcontract pre-order family to
any Cj with j �= i. For instance if i is 1, from (P1|| . . . ||Pn)↓ we derive

(P1||P ′
2\\(O(C′

2) − O(C2))||P3|| . . . ||Pn)↓

by applying the definition of singular subcontract pre-order to refine C2 and by
using Proposition 3. We then use this intermadiate result to re-apply the defini-
tion of singular subcontract pre-order family for refining C3 and we derive

(P1||P ′
2\\(O(P ′

2) − O(P2))||P ′
3\\(O(C′

3) − O(C3))||P4|| . . . ||Pn)↓

We proceed in this way until we yield

(P1||P ′
2\\(O(C′

2) − O(C2))|| . . . ||P ′
n\\(O(C′

n) − O(Cn)))↓

For i ∈ {2 . . . n} we proceed in a similar way to obtain

(P ′
1\\(O(C′

1) − O(C1))|| . . . ||Pi|| . . . ||P ′
n\\(O(C′

n) − O(Cn)))↓

We conclude the proof as follows. For any i, since C′
i �I,O Ci, by Proposi-

tion 4 we have that (P ′
1\\(O(C′

1) − O(C1))|| . . . ||P ′
i || . . . ||P ′

n\\(O(C′
n) − O(Cn)))

can never reach by τ transitions a state where outputs in O(C′
1) − O(C1) are

executable by the derivative C′
i,der of C′

i that is syntactically included in the
derivative P ′

i,der of P ′
i . If now we consider the behavior of

(P ′
1\\(O(C′

1) − O(C1))|| . . . ||P ′
n\\(O(C′

n) − O(Cn)))

we derive that, for any i, we cannot reach by τ transitions a state

(P ′
1,der\\(O(C′

1) − O(C1))|| . . . ||(P ′
i,der\\(O(C′

i) − O(Ci))|| . . .
||P ′

n,der\\(O(C′
n) − O(Cn)))

where C′
i,der (the derivative of C′

i syntactically included in P ′
i,der) can execute

outputs in O(C′
i)−O(Ci). Hence the presence of the restriction operators does not
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affect the internal behavior of (P ′
1\\(O(C′

1) − O(C1))|| . . . ||P ′
n\\(O(C′

n) − O(Cn)))
with respect to (P ′

1|| . . . ||P ′
n). Therefore, we can finally derive (P ′

1|| . . . ||P ′
n)↓ from

(P ′
1\\(O(C′

1) − O(C1))|| . . . ||P ′
n\\(O(C′

n) − O(Cn))) ↓, that is obtained by furher
applying the definition of singular subcontract pre-order to refine Ci in any of
the i-indexed statement in the first part of the proof.

This last Theorem proves that the maximal singular subcontract pre-order family
is also a subcontract preorder family; since we proved that every subcontract
preorder family is also a singular subcontract pre-order family (see Theorem 1),
we can conclude that there exists a maximal subcontract pre-order family and
it corresponds to the family {�I,O |I, O ⊆ N}.

Moreover, the Proposition 5 permits to abstract away from the index I of �I,O

assuming always I = N ; formally, let �O=�N ,O. Similarly, we use Pconpar,O to
denote the set of processes Pconpar,N ,O. Hence, we can characterize the maximal
subcontract pre-order family with the following subcontract relation.

Definition 8 (Subcontract relation). A contract C′ is a subcontract of a
contract C with respect to a set of output channel names O ⊆ N , denoted C′ �O

C, if
∀P ∈ Pconpar,O. (C||P )↓ ⇒ (C′||P )↓

The remainder of this Section is devoted to the definition of an actual way for
proving that two contracts are in subcontract relation. This is achieved resorting
to the theory of should-testing [5]. The main difference of should-testing with
respect to the standard must-testing [4] is that fairness is taken into account;
an (unfair) infinite computation that never gives rise to success is observed in
the standard must-testing scenario, while this is not the case in the should-
testing scenario. The formal definition of should-testing is reported in the proof
of Theorem 3.

We need a preliminary result that essentially proves that C′ �O C if and only
if C′\\N −O �N C\\N −O.

Lemma 3. Let C, C′ be two contracts and O ⊆ N be a set of output names.
We have C′ �O C iff

∀P ∈ Pconpar. (C\\N −O || P )↓ ⇒ (C′\\N −O || P )↓

Proof. Given P ∈ Pconpar, we have (C\\N−O || P )↓ ⇐⇒ (C\\N−O || P\\N −O)↓
⇐⇒ (C || P\\N −O) ↓ and (C′\\N −O || P ) ↓ ⇐⇒ (C′\\N −O || P\\N −O) ↓ ⇐⇒
(C′ || P\\N −O)↓. In the particular case of P ∈ Pconpar,O we have that P\\N −O
is isomorphic to P .

In the following we denote with �test the should-testing preorder defined in [5]
where we consider the set of actions used by terms as being L (i.e.

√
is included

in the set of actions of terms under testing as any other action). We denote here
with

√′ the special action for the success of the test (denoted by
√

in [5]).
In order to resort to the theory defined in [5], we define a normal form for

contracts of our calculus that corresponds to terms of the language in [5]. The
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normal form of the system P (denoted with NF(P)) is defined as follows, by
using the operator recXθ (defined in [5]) that represents the value of X in the
solution of the minimum fixpoint of the finite set of equations θ,

NF(P) = recX1θ where θ is the set of equations
Xi =

∑
j λi,j ; Xder(i,j)

where, assuming to enumerate the states in the labeled transition system of P
starting from X1, each variable Xi corresponds to the i-th state of the labeled
transition system of P , λi,j is the label of the j-th outgoing transition from Xi,
and der(i, j) is the index of the state reached with the j-th outgoing transition
from Xi. We assume empty sums to be equal to 0, i.e. if there are no outgoing
transitions from Xi, we have Xi = 0.

Theorem 3. Let C, C′ be two contracts and O ⊆ N be a set of output names.
We have

NF(C′\\(N −O)) �test NF(C\\(N −O)) ⇒ C′ �O C

Proof. According to the definition of should-testing of [5], since

NF(C′\\(N −O)) �test NF(C\\(N −O))

we have that, for every test t, if NF(C\\(N−O)) shd t, then also NF(C′\\(N−O))
shd t, where Q shd t iff

∀w ∈ L∗, Q′. Q||Lt
w−→ Q′ ⇒ ∃v ∈ L∗, Q′′ : Q′ v−→ Q′′

√′

−→

where ||L is the CSP parallel operator: in R||LR′ transitions of R and R′ with the
same label λ (with λ �= τ,

√′) are required to synchronize and yield a transition
with label λ.

Let us now suppose P ∈ Pconpar with (C\\N − O||P ) ↓. We consider t =
NF(P ){√

/
√

;
√′}, i.e., the normal form of P where we replace each occurrence

of
√

with the sequence
√

;
√′. We denote with t the term obtained by turning

each a occurring in t into a, and each a into a. From the definition of shd it
immediately follows that NF(C\\(N −O)) shd t. Since NF(C′\\(N −O)) �test

NF(C\\(N−O)), we have that also NF(C′\\(N−O)) shd t. From the definition
of shd we can conclude that (C′\\N −O||P ) ↓. The thesis directly follows from
Lemma 3.

Note that the opposite implication

C′ �O C ⇒ NF(C′\\(N −O)) �test NF(C\\(N −O))

does not hold in general. For example if we take contracts C = a + a; c and
C′ = b + b; c we have that C′ �O C (and C �O C′) for any O (there is no
contract P such that (C||P )↓ or (C′||P )↓), but obviously NF(C′\\(N−O)) �test

NF(C\\(N−O)) (and NF(C\\(N−O)) �test NF(C′\\(N−O)) ) does not hold for
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any O that includes {a, b, c}. As another example, consider contracts C = τ ;0+a
and C′ = τ ;0 + b. We have that C′ �O C (and C �O C′) for any O (there
is no contract P such that (C||P ) ↓ or (C′||P ) ↓), but NF(C′\\(N −O)) �test

NF(C\\(N−O)) (and NF(C\\(N−O)) �test NF(C′\\(N−O)) ) does not hold for
any O that includes {a, b}: this can be seen by considering the test t =

√′ + b;0
(t =

√′ + a;0).
Finally, we observe that the labeled transition system of each contract C is

finite state as we consider the Kleene-star repetition operator and not general
recursion. This implies that also NF(C\\N − O) is finite state for any O. In [5]
it is proved that for finite state terms should-testing preorder is decidable and
an actual verification algorithm is presented. This algorithm, in the light of our
Theorem 3, represents a sound approach to prove also our subcontract relation.

4 Conclusion and Future Work

We have introduced a notion of subcontract relation useful for service oriented
computing, where services are to be composed in such a way that deadlocks and
livelocks are avoided. In order to be as much flexible as possible, we want to
relate with our subcontract relation all those services that could safely replace
their supercontracts. In the Introduction we have already discussed the practical
impact of our notion of subcontract and we have compared our theory with the
related literature.

Here, we simply add some comments about future plans. We intend to in-
vestigate the connection between the calculi used in this paper and calculi for
service choreography such as those presented in [7] and [8]. In particular, in [8] an
end-point calculus similar to our contract calculus is considered where external
choices must be guarded on input operations. Moreover, a subtyping relation is
used in [8] to formalize similar aspects: the addition of input guarded branches in
external choices is safe as well as the cancellation of output guarded branches in
internal choices. Differently from [8] we consider a weaker should-testing seman-
tics instead of the more restrictive (bi)simulation approach of [8]. This permits
us, for instance, to abstract away from branching information that reveals not
significant for contract composition.
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Abstract. We define a type system for COWS, a formalism for specifying and
combining services, while modelling their dynamic behaviour. Our types permit
to express policies constraining data exchanges in terms of sets of service part-
ner names attachable to each single datum. Service programmers explicitly write
only the annotations necessary to specify the wanted policies for communicable
data, while a type inference system (statically) derives the minimal additional
annotations that ensure consistency of services initial configuration. Then, the
language dynamic semantics only performs very simple checks to authorize or
block communication. We prove that the type system and the operational seman-
tics are sound. As a consequence, we have the following data protection property:
services always comply with the policies regulating the exchange of data among
interacting services. We illustrate our approach through a simplified but realistic
scenario for a service-based electronic marketplace.

1 Introduction

Service-oriented computing (SOC) is an emerging paradigm for developing loosely
coupled, interoperable, evolvable applications which exploits the pervasiveness of the
Internet and its related technologies. SOC systems deliver application functionality as
services to either end-user applications or other services. Current software engineer-
ing technologies for SOC, however, remain at the descriptive level and do not support
analytical tools for checking that SOC applications enjoy desirable properties and do
not manifest unexpected behaviors. To reason about and guarantee such properties, one
must also be able to specify and enforce some security policies. Indeed, programming
service oriented middlewares and the applications running on them without putting
data at risk or compromising robustness of the whole platform requires services to be
checked and their resource usage to be strictly put in relation to their capabilities.

Great efforts have been recently devoted to embed security mechanisms within
standard programming features (some of these techniques are surveyed in [1]).
Language-based mechanisms are a scalable way to provide evidence that a large number
of applications enjoy some given properties. For example, by using type systems, one
can prove the type soundness of the language as a whole, from which it follows that all
well-typed applications do comply with the policies stated by their types. To facilitate
the task of designing such a sound language for SOC, one can initially focus only on
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the mechanisms at the basis of SOC. Afterwards, this core formalism could hopefully
be expanded into a full-fledged language by adding the high level, often redundant,
constructs typical of effective programming languages.

Many researchers have hence put forward exploiting the studies on process calculi,
a cornerstone of current foundational research on specification and analysis of concur-
rent, distributed and mobile systems through mathematical — mainly algebraic and log-
ical — tools. Indeed, due to their algebraic nature, process calculi convey in a distilled
form the compositional programming style of SOC. This is witnessed by the several
process calculi like formalisms for SOC proposed in the literature by now (see, e.g.,
[2,3,4,5,6,7,8,9]). However, although capable of describing complex systems and ap-
plications, such proposals still lack those reasoning mechanisms and analytical tools,
e.g. type systems and behavioural equivalences, that process calculi usually hand down.

In this paper, we tailor the type-based approach for protecting data in global comput-
ing applications put forward in [10] to COWS, a formalism for specifying service-based
applications that we introduce in [9]. We thus define a typed variant of COWS that per-
mits expressing and forcing policies regulating the exchange of data among interacting
services. Programmers can indeed settle the partners usable to exchange any given da-
tum (and, then, the services that can share it), thus avoiding the datum be accessed (by
unwanted services) through unauthorized partners. The language (static and dynamic)
semantics then guarantees that well-typed services always comply with the constraints
expressed by the type associated to each single datum.

The rest of the paper is organized as follows. Section 2 introduces syntax, type in-
ference and operational semantics of (our typed variant of) COWS, while Section 3
presents our main results. Section 4 demonstrates our approach through a simplified but
realistic scenario for a service-based electronic marketplace. Finally, Section 5 touches
upon comparisons with more strictly related work and directions for future work.

2 COWS: Calculus for Orchestration of Web Services

Before formally defining our language, we provide some insights on its main features.
We refer the interested reader to [9] for further motivations on the design of COWS,
for many examples illustrating its peculiarities and expressiveness, and for comparisons
with other process-based and orchestration formalisms.

The design of COWS has been influenced by the principles underlying WS-
BPEL [11], the de facto standard language for orchestration of web services. Similarly
to WS-BPEL, COWS supports service instances with shared states, allows a same
process to play more than one partner role and permits programming stateful sessions
by correlating different service interactions. However, COWS intends to be a foun-
dational model not specifically tight to web services’ current technology. Thus, some
WS-BPEL constructs, such as e.g. fault and compensation handlers and flow graphs,
do not have a precise counterpart in COWS, rather they are expressed in terms of more
primitive operators (see [12], Sect. 3). The design of COWS has also taken advantage of
previous work on process calculi. In fact, it combines in an original way constructs and
features borrowed from well-known process calculi, e.g. asynchronous communication,
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polyadic synchronization, pattern matching, protection, delimited receiving and killing
activities, while however resulting different from any of them.

The basic elements of COWS are partners and operations. They can be combined
to designate communication endpoints and can be exchanged in communication, but
dynamically received names cannot form endpoints used to receive further invocations.
Endpoints naming mechanism is very flexible, e.g. it permits identifying a same service
by means of different logic names and separately dealing with the names composing
an endpoint. This is, e.g., exploited in request-response interaction, where usually the
service provider knows the name of the response operation, but not the partner name of
the service it has to reply to.

COWS computational entities are called services. Typically, a service creates one
specific instance to serve each received request. Instances may run concurrently. Each
instance can be composed of concurrent threads that may offer a choice among alterna-
tive receive activities. Services could be able to receive multiple messages in a statically
unpredictable order and in such a way that the first incoming message triggers creation
of a service instance which subsequent messages are routed to. Pattern matching is the
mechanism used for correlating messages logically forming a same interaction ‘ses-
sion’ by means of their same contents. It permits locating those data that are important
to identify service instances and is flexible enough for allowing a single message to par-
ticipate in multiple interaction sessions, each identified by separate correlation values.

Inter-service communication give rise to substitutions of variables with values. How-
ever, to enable concurrent instances or threads within an instance to share the state (or
part of it), receive activities in COWS do not bind variables. The range of application
of the substitution generated by a communication is then regulated by the delimitation
operator, that is the only binder of the calculus. Delimitation, additionally, can be used
to generate fresh private names (as the restriction operator of the π-calculus) and to de-
limit the field of action of the kill activity, a powerful orchestration construct that can
be used to force termination of whole service instances. Sensitive code can however be
protected from the effect of a forced termination by using the protection operator.

The type system we present in this paper permits to express and enforce policies for
regulating the exchange of data among services. To implement such policies, program-
mers can annotate data with sets of partner names characterizing the services authorized
to use and exchange them; these sets are called regions. The language operational se-
mantics uses these annotations to guarantee that computations proceed according to
them. This property, called soundness, can be stated as follows

A service s is sound if, for any datum v in s associated to region r and for all
evolutions of s, it holds that v can be exchanged only by using partners in r.

To facilitate the task of decorating COWS terms with type annotations, we let the type
system partially infer such annotations à la ML: service programmers explicitly write
only the annotations necessary to specify the wanted policies for communicable data;
then, a type inference system (statically) performs some coherence checks (e.g. the part-
ner used by an invoke must belong to the regions of all data occurring in the argument
of the activity) and derives the minimal region annotations for variable declarations that
ensure consistency of services initial configuration. This allows us to define an opera-
tional semantics with types [13] which is simpler than a full-fledged typed operational
semantics, because it only performs simple checks (i.e. subset inclusion) using region



226 A. Lapadula, R. Pugliese, and F. Tiezzi

Table 1. COWS syntax

s ::= kill(k) | u • u′!{e(x̄)}r | g | s | s | {|s|} | [d] s | ∗ s (services)

g ::= 0 | p • o?w̄.s | g + g (receive-guarded choice)

annotations to authorize or block transitions. Our main results prove that the type sys-
tem and the operational semantics are sound. As a consequence, we have that services
always comply with the constraints expressed by the type of each single datum.

Syntax. COWS syntax is parameterized by three countable and pairwise disjoint sets:
the set of (killer) labels (ranged over by k, k′, . . .), the set of values (ranged over by v, v′,
. . . ) and the set of ‘write once’ variables (ranged over by x, y, . . . ). The set of values is
left unspecified; however, we assume that it includes the set of names, ranged over by n,
m, . . . , mainly used to represent partners and operations. COWS is also parameterized
by a set of expressions, ranged over by e, whose exact syntax is deliberately omitted;
we just assume that expressions contain, at least, values and variables. Notably, killer
labels are not (communicable) values. Notationally, we prefer letters p, p′, . . . when we
want to stress the use of a name as a partner, o, o′, . . . when we want to stress the use
of a name as an operation. We will use w to range over values and variables, u to range
over names and variables, and d to range over killer labels, names and variables.

Regions can be either finite subsets of partners and variables or the distinct element�
(denoting the universe of partners). The set of all regions, ranged over by r, is partially
ordered by the subset inclusion relation ⊆, and has � as top element.

Notation ·̄ stands for tuples of objects, e.g. x̄ is a compact notation for denoting
the tuple of variables 〈x1, . . . , xn〉 (with n ≥ 0). We assume that variables in the same
tuple are pairwise distinct. All notations shall extend to tuples component-wise. An
expression e tagged with region r will be written as {e}r; an untagged e will stand for
{e}�. We will write e(x̄) to make explicit all the variables x̄ occurring in e (we still
write e when this information is not needed), and ē (resp. r̄) to denote the tuple of the
expressions (resp. regions) occurring in {e}r.

We will call raw services those COWS services written according to the syntax in
Table 1. Intuitively, raw services only contain those region annotations that implement
the policies for data exchange settled by the programmers. Services are structured ac-
tivities built from basic activities, i.e. the empty activity 0, the kill activity kill( ) , the
invoke activity • ! and the receive activity • ? , by means of (receive) prefixing
. , guarded choice + , parallel composition | , protection {| |} , delimitation [ ]

and replication ∗ . Notably, as in the Lπ [14], communication endpoints of receive
activities are identified statically because their syntax only allows using names and not
variables. We adopt the following conventions about the operators precedence: monadic
operators bind more tightly than parallel composition, and prefixing more tightly than
choice. We shall omit a trailing 0 and use [d1, . . . , dn] s to denote [d1] . . . [dn] s.

The only binding construct is delimitation: [d] s binds d in the scope s. The oc-
currence of a name/variable/label is free if it is not under the scope of a binder. We
denote by fd(t) (resp. bd(t)) the set of names, variables and killer labels that occur free
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Table 2. Type inference system

Γ 	 0 
 Γ 	 0 (t-nil) Γ 	 kill(k) 
 Γ 	 kill(k) (t-kill)

∀ r′ ∈ {ri}i∈{1,..,n} u1 ∈ r′
(t-inv)

Γ 	 u1 • u2!〈{e1(ȳ1)}r1 , . . . , {en(ȳn)}rn 〉 

(Γ + {x : r1}x∈ȳ1 + . . . + {x : rn}x∈ȳn ) 	 u1 • u2!〈{e1(ȳ1)}r1 , . . . , {en(ȳn)}rn〉

Γ + {x : {p}}x∈fv(w̄) 	 s 
 Γ′ 	 s′
(t-rec)

Γ 	 p • o?w̄.s 
 Γ′ 	 p • o?w̄.s′

Γ 	 g1 
 Γ1 	 g′1 Γ 	 g2 
 Γ2 	 g′2
(t-sum)

Γ 	 g1 + g2 
 Γ1 + Γ2 	 g′1 + g′2

Γ 	 s 
 Γ′ 	 s′
(t-prot)

Γ 	 {|s|} 
 Γ′ 	 {|s′|}
Γ 	 s 
 Γ′ 	 s′

(t-repl)
Γ 	 ∗ s 
 Γ′ 	 ∗ s′

Γ 	 s 
 Γ′ 	 s′ n � reg(Γ′)
(t-delname)

Γ 	 [n] s 
 Γ′ 	 [n] s′
Γ 	 s 
 Γ′ 	 s′

(t-dellab)
Γ 	 [k] s 
 Γ′ 	 [k] s′

Γ, {x : ∅} 	 s 
 Γ′, {x : r} 	 s′ x � reg(Γ′)
(t-delvar)

Γ 	 [x] s 
 Γ′ 	 [{x}r−{x}] s′

Γ 	 s1 
 Γ1 	 s′1 Γ 	 s2 
 Γ2 	 s′2
(t-par)

Γ 	 s1 | s2 
 Γ1 + Γ2 	 s′1 | s′2

(resp. bound) in a term t, by fv(t) (resp. bv(t)) the set of free (resp. bound) variables in
t, and by fk(t) the set of free killer labels in t. Two terms are alpha-equivalent if one can
be obtained from the other by consistently renaming bound names/variables/labels. As
usual, we identify terms up to alpha-equivalence. For simplicity sake, in the sequel we
assume that bound variables in services are pairwise distinct (of course, this condition
is not restrictive and can always be fulfilled by possibly using alpha-conversion).

A type inference system. The annotations put by the type inference are written as su-
perscripts, to better distinguish them from those put by the programmers. Thus, the
syntax of variable delimitation becomes [{x}r] s, which means that the datum that dy-
namically will replace x will be used at most by the partners in r. Typed COWS services
are then generated by the syntax in Table 1 where, differently from the previous section,
d ranges over killer labels, names and annotated variables as {x}r . Notably, types may
depend on partner variables, i.e. on parameters of receiving activities; during compu-
tation, they are therefore affected by application of substitutions that replace partner
variables with partner names. We assume that the region of a partner name always con-
tains, at least implicitly, such partner.
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The type inference system is presented in Table 2. Typing judgements are written
Γ 	 s 
 Γ′ 	 s′, where the type environment Γ is a finite function from variables
to regions such that fv(s) ⊆ dom(Γ) and bv(s) ∩ dom(Γ) = ∅ (the same holds for Γ′
and s′). Type environments are written as sets of pairs of the form x : r, where x is a
partner variable and r is its assumed region annotation. The domain of an environment
is defined as usual: dom(∅) = ∅ and dom(Γ, {x : r}) = dom(Γ) ∪ {x}, where ‘,’ denotes
union between environments with disjoint domains. The region of Γ is the union of the
regions in Γ, i.e. reg(∅) = ∅ and reg(Γ, {x : r}) = r ∪ reg(Γ). We will write Γ + Γ′ to
denote the environment obtained by extending Γ with Γ′; + is inductively defined by

Γ + ∅ = Γ
Γ + {x : r} =

{
Γ′, {x : r ∪ r′} if Γ = Γ′, {x : r′}
Γ, {x : r} otherwise

Γ + ({x : r}, Γ′) = (Γ + {x : r}) + Γ′
Hence, the judgement ∅ 	 s 
 ∅ 	 s′ can be derived only if s is a closed raw

service (because the initial environment is empty); if it is derivable, then s′ is the typed
service obtained by decorating s with the region annotations describing the use of each
variable of s in its scope. Type inference determines such regions by considering the
invoking and receiving partners where the variables occur.

We now comment on the most significant typing rules. Rule (t-inv) checks if the
invoked partner u1 belongs to the regions of the communicated data. If it succeeds,
the type environment Γ is extended by associating a proper region to each variable
used in the expressions argument of the invoke activity. Rule (t-rec) tries to type s in
the type environment Γ extended by adding the receiving partner to the regions of the
variables in w̄. Rules (t-sum) and (t-par) yield the same typing; this is due to the sharing
of variables. For instance, service [x] (p • o?〈x〉 | p′ • o′!〈{x}r〉) with p′ ∈ r is annotated
as [{x}r′ ] (p • o?〈x〉 | p′ • o′!〈{x}r〉) with r′ = ({p} ∪ r − {x}). In rule (t-delname), premise
n � reg(Γ′) prevents a new name n to escape from its binder [n] in the inference. As an
example, consider the closed raw service

[z] p • o?〈z〉 . [p′] p′′ • o′′!〈{z}{p′′ ,p′}〉 (∗)
Without the premise n � reg(Γ′), the service resulting from the type inference would
be [{z}{p′′ ,p′ ,p}] p • o?〈z〉 . [p′] p′′ • o′′!〈{z}{p′′ ,p′}〉. The problem with this service is that
the name p′ occurring in the annotation associated to z by the inference system escapes
from the scope of its binder and, thus, represents a completely different name. Although,
service (∗) is not typable, by a simple semantics preserving manipulation one can get a
typable service as, e.g., the following one [p′] [z] p •o?〈z〉 . p′′ • o′′!〈{z}{p′′ ,p′}〉.

Similarly, in rule (t-delvar), premise x � reg(Γ′) prevents initially closed services to
become open at the end of the inference. Otherwise, e.g., the type inference would
transform the closed raw service

[x] p • o?〈x〉 . [y] p′ • o′?〈y〉 . p′′ • o′′!〈{x}{p′′ ,y}〉 (∗∗)
into the open service [{x}{p,p′′ ,y}] p • o?〈x〉 . [{y}{p′}] p′ • o′?〈y〉 . p′′ • o′′!〈{x}{p′′ ,y}〉. Also in
this case, we can easily modify the untypable service (∗∗) to get a typable one with a
similar semantics like, e.g., the service [y] [x] p •o?〈x〉 . p′ • o′?〈y〉 . p′′ • o′′!〈{x}{p′′ ,y}〉.
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Table 3. Structural congruence

∗ 0 ≡ 0 ∗ s ≡ s | ∗ s {|0|} ≡ 0
{| {|s|} |} ≡ {|s|} {|[d] s|} ≡ [d] {|s|} [d] 0 ≡ 0

[d1] [d2] s ≡ [d2] [d1] s if d1� {x}r1 and d2� {y}r2

[n] [{x}r] s ≡ [{x}r] [n] s if n�r
[{x}r1 ] [{y}r2 ] s ≡ [{y}r2 ] [{x}r1 ] s if y�r1 and x�r2

s1 | [d] s2 ≡ [d] (s1 | s2) if d � fd(s1)∪fk(s2)

Table 4. Matching rules

M(v, {v}r) = ∅ M(x, {v}r) = {x �→ {v}r}
M(w1, {v1}r1 ) = σ1 M(w̄2, {v2}r2 ) = σ2

M((w1, w̄2), ({v1}r1 , {v2}r2 )) = σ1 � σ2

Furthermore, in (t-delvar), x is annotated with r−{x}, rather than with r, otherwise ini-
tially closed services could become open. E.g., the closed raw service [x] p • o?〈x〉 .
p′ • o′!〈{x}{p′ ,x}〉 would be transformed into the open service [{x}{p,p′ ,x}] p • o?〈x〉 .
p′ • o′!〈{x}{p′ ,x}〉 (indeed, x occurs in the annotation associated to its declaration). Notice
that, although the region associated to x by the inference does never record that a ser-
vice possibly transmits x with regions containing x, rule (t-delvar) is sound because we
assumed that the region of a partner name, at least implicitly, contains the partner name.

Definition 1. A service s is well-typed if ∅ 	 s′ 
 ∅ 	 s for some raw service s′.

Operational semantics. COWS operational semantics is defined only for closed ser-
vices, i.e. services without free variables/labels (similarly to many real compilers, we
consider terms with free variables/labels as programming errors), but of course the rules
also involve non-closed services (see e.g. the premises of rules (del )). Formally, the se-
mantics is given in terms of a structural congruence and of a labelled transition relation.

The structural congruence ≡ identifies syntactically different services that intuitively
represent the same service. It is defined as the least congruence relation induced by a
given set of equational laws. We explicitly show in Table 3 the laws for replication, pro-
tection and delimitation, while omit the (standard) laws for the other operators stating
that parallel composition is commutative, associative and has 0 as identity element, and
that guarded choice enjoys the same properties and, additionally, is idempotent. All the
presented laws are straightforward. Only notice that the last law can be used to extend
the scope of names (like a similar law in the π-calculus), thus enabling communication
of restricted names, except when the argument d of the delimitation is a free killer label
of s2 (this avoids involving s1 in the effect of a kill activity inside s2).

To define the labelled transition relation, we need a few auxiliary functions. First,
we exploit a function [[ ]] for evaluating closed expressions (i.e. expressions without
variables): it takes a closed expression and returns a value. However, [[ ]] cannot be
explicitly defined because the exact syntax of expressions is deliberately not specified.
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Table 5. Is there an active kill(k)? / Are there conflicting receives along p • o matching {v}r?

kill(k) ↓kill

s ↓kill ∨ s′ ↓kill

s | s′ ↓kill

s ↓kill

{|s|} ↓kill

s ↓kill

[d] s ↓kill

s ↓kill

∗ s ↓kill

|M(w̄, {v}r) |< �
p • o?w̄.s ↓�

p • o,{v}r

s ↓�
p • o,{v}r d � {p, o}

[d] s ↓�
p • o,{v}r

s ↓�
p • o,{v}r

{|s|} ↓�
p • o,{v}r

g ↓�
p • o,{v}r ∨ g′ ↓�

p • o,{v}r
g + g′ ↓�

p • o,{v}r

s ↓�
p • o,{v}r ∨ s′ ↓�

p • o,{v}r
s | s′ ↓�

p • o,{v}r

s ↓�
p • o,{v}r

∗ s ↓�
p • o,{v}r

Then, through the rules in Table 4, we define the partial functionM( , ) that per-
mits performing pattern-matching on semi-structured data thus determining if a receive
and an invoke over the same endpoint can synchronize. The rules state that two tuples
match if they have the same number of fields and corresponding fields have matching
values/variables. Variables match any annotated value, and a value matches an anno-
tated value only if, apart for the region annotation, they are identical. When tuples w̄
and {v}r do match,M(w̄, {v}r) returns a substitution, that also records region annotations
of values exchanged in communication, for the variables in w̄; otherwise, it is undefined.
Substitutions (ranged over by σ) are functions mapping variables to annotated values
and are written as collections of pairs of the form x �→ {v}r . Application of substitution
σ to s, written s ·σ, has the effect of replacing every free occurrence of x in s with v, for
each x �→ {v}r ∈ σ, by possibly using alpha-conversion for avoiding v to be captured by
name delimitations within s. We use |σ | to denote the number of pairs in σ and σ1�σ2

to denote the union of σ1 and σ2 when they have disjoint domains.
We also define a function, named halt( ), that takes a service s as an argument and

returns the service obtained by only retaining the protected activities inside s. halt( ) is
defined inductively on the syntax of services. The most significant case is halt({|s|}) =
{|s|}. In the other cases, halt( ) returns 0, except for parallel composition, delimitation
and replication operators, for which it acts as an homomorphism.

Finally, in Table 5, we inductively define two predicates: s↓kill checks if s can imme-
diately perform a kill(k); s↓�

p •o,{v}r
, with � natural number, checks existence of potential

communication conflicts, i.e. the ability of s of performing a receive activity matching
{v}r over the endpoint p • o that generates a substitution with fewer pairs than �.

The labelled transition relation
α−−→ is the least relation over services induced by the

rules in Table 6, where α is generated by the following grammar:

α ::= †k | (p •o) � {v}r | (p •o) � w̄ | p •o �σ� w̄ {v}r | †
In the sequel, we use d(α) to denote the set of names, variables and killer labels oc-
curring in α, except for α = p •o �σ� w̄ {v}r for which we let d(p •o �σ� w̄ {v}r) = d(σ),
where d({x �→ {v}r}) = {x, v}∪ r and d(σ1�σ2) = d(σ1)∪d(σ2). The meaning of labels
is as follows: †k denotes execution of a request for terminating a term from within the



Regulating Data Exchange in Service Oriented Applications 231

Table 6. Operational semantics

kill(k)
†k−−→ 0 (kill) p • o?w̄.s

(p •o)�w̄−−−−−−−→ s (rec)

[[ē]] = v̄ fv(r̄) = ∅
(inv)

p • o!{e}r (p • o)�{v}r−−−−−−−−→ 0

g1
α−−→ s

(choice)
g1 + g2

α−−→ s

s
p • o �σ�{x�→{v}r }� w̄ {v′}r′−−−−−−−−−−−−−−−−−−→ s′ r′′ · σ ⊆ r

(delsub)

[{x}r′′ ] s
p • o �σ� w̄ {v′}r′−−−−−−−−−−−→ s′ · {x �→ {v}r}

s
†k−−→ s′

(delkill)
[k] s

†−→ [k] s′

s
α−−→ s′ d � {x}r d�d(α) s ↓kill⇒ α=†, †k

(delpass)
[d] s

α−−→ [d] s′
s
α−−→ s′ x�d(α)

(xpass)
[{x}r] s

α−−→ [{x}r] s′

s1
(p • o)�w̄−−−−−−−→ s′1 s2

(p • o)�{v}r−−−−−−−−→ s′2 M(w̄, {v}r) = σ ¬(s1 | s2 ↓|σ|p • o,{v}r )
(com)

s1 | s2
p •o �σ� w̄ {v}r−−−−−−−−−−→ s′1 | s′2

s1
p • o �σ� w̄ {v}r−−−−−−−−−−→ s′1 ¬(s2 ↓|M(w̄,{v}r ) |

p • o,{v}r
)

(parcon f )

s1 | s2
p •o �σ� w̄ {v}r−−−−−−−−−−→ s′1 | s2

s1
†k−−→ s′1

(parkill)
s1 | s2

†k−−→ s′1 | halt(s2)

s1
α−−→ s′1 α � (p •o �σ� w̄ {v}r), †k

(parpass)
s1 | s2

α−−→ s′1 | s2

s
α−−→ s′

(prot)
{|s|} α−−→ {|s′|}

s ≡ s1 s1
α−−→ s2 s2 ≡ s′

(cong)
s
α−−→ s′

delimitation [k] , (p •o) � {v}r and (p •o) � w̄ denote execution of invoke and receive
activities over the endpoint p • o, respectively, p •o �σ� w̄ {v}r (if σ � ∅) denotes execu-
tion of a communication over p • o with receive parameters w̄ and matching values {v}r
and with substitution σ to be still applied, † and p •o �∅� w̄ {v}r denote computational
steps corresponding to taking place of forced termination and communication (without
pending substitutions), respectively. Hence, a computation from a closed service s0 is a
sequence of connected transitions of the form

s0
α1−−→ s1

α2−−→ s2
α3−−→ s3 . . .

where, for each i, αi is either p •o �∅� w̄ {v}r or †, and si is called reduct of s0.
We comment on salient points. Activity kill(k) forces termination of all unprotected

parallel activities (rules (kill) and (parkill)) inside an enclosing [k] , that stops the killing
effect by turning the transition label †k into † (rule (delkill)). Existence of such delimita-
tion is ensured by the assumption that the semantics is only defined for closed services.
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Sensitive code can be protected from killing by putting it into a protection {| |}; this way,
{|s|} behaves like s (rule (prot)). Similarly, [d] s behaves like s, except when the transition
label α contains d or when a kill activity is active in s and α does not correspond to a kill
activity (rules (delpass) and (xpass)): in such cases the transition should be derived by us-
ing rules (delkill) or (delsub). In other words, kill activities are executed eagerly. A service
invocation can proceed only if the expressions in the argument can be evaluated and
their regions do not contain variables (rule (inv)). A receive activity offers an invocable
operation along a given partner name (rule (rec)). The execution of a receive permits
to take a decision between alternative behaviours (rule (choice)). Communication can
take place when two parallel services perform matching receive and invoke activities
(rules (com)). Communication generates a substitution that is recorded in the transition
label (for subsequent application), rather than a silent transition as in most process cal-
culi. If more then one matching is possible the receive that needs fewer substitutions
is selected to progress (rules (com) and (parcon f )). This mechanism permits to correlate
different service communications thus implicitly creating interaction sessions and can
be exploited to model the precedence of a service instance over the corresponding ser-
vice specification when both can process the same request. A substitution {x �→ {v}r}
for a variable x is applied to a term (rule (delsub)) when the delimitation for x is encoun-
tered, i.e. the whole scope s of x is determined, provided that the region annotations of
the variable declaration and of the substituent datum v do comply i.e. r′ · σ ⊆ r. This
condition also means that as a value is received it gets annotated with a smaller region.
The substitution for x is then applied to s and x disappears from the term and cannot
be reassigned a value. Execution of parallel services is interleaved (rule (parpass)), but
when a kill activity or a communication is performed. Indeed, the former must trigger
termination of all parallel services (according to rule (parkill)), while the latter must en-
sure that the receive activity with greater priority progresses (rule (com) and (parcon f )).
The last rule states that structurally congruent services have the same transitions.

3 Main Results

Our main results are standard and state that well-typedness is preserved along compu-
tations (subject reduction) and that well-typed services do respect region annotations
(type safety). Together, these results imply the soundness of our theory, i.e. no violation
of data regions will ever occur during the evolution of well-typed services. The formal
account of these results follow. To save space, we only outline the techniques used in
the proofs and refer the interested reader to [15] for a full account.

For the proof of subject reduction, we need some standard lemmata concerning sub-
stitution and weakening. The substitution lemma handles the substitution of partner
variables with partner names. Application of a substitution σ to a type environment Γ,
written Γ · σ, is defined only when dom(σ) ∩ dom(Γ) = ∅ and, for each x �→ {v}r ∈ σ,
has the effect of replacing every occurrence of x in the regions of Γ with v, i.e.

∅ · {x �→ {v}r} = ∅ and (Γ, {y : r′}) · {x �→ {v}r} = Γ · {x �→ {v}r}, {y : (r′ · {x �→ {v}r})}.
Lemma 1 (Substitution Lemma). If Γ, {x : r} 	 s 
 Γ′, {x : r′} 	 s′ and σ = {x �→
{v}r′′ }, then Γ · σ 	 s · σ 
 Γ′ · σ 	 s′ · σ.
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Proof. By induction on the length of the type derivation, with a case analysis on the last
rule used in the derivation. �

Lemma 2 (Weakening Lemma). Let Γ′ 	 s′ 
 Γ 	 s and x � bd(s), then Γ′ + {x :
r} 	 s′ 
 Γ + {x : r} 	 s.

Proof. By a straightforward induction on the length of the type derivation, with a case
analysis on the last used rule, and by exploiting the fact that extending Γ by adding
{x : r} does not affect the premise of rule (t-inv). �

We also need a few auxiliary results. The first one states that function halt( ) preserves
well-typedness and can be easily proved by induction on the definition of halt( ).

Lemma 3. If s is well-typed then halt(s) is well-typed.

The next results establish well-typedness preservation by the structural congruence and
by the labelled transition relation, respectively. We use the following preorder� on type
environments: we write Γ � Γ′ if there exists a Γ′′ such that Γ + Γ′′ = Γ′.

Lemma 4. If Γ′ 	 s′1 
 Γ 	 s1 and s1 ≡ s2 then there exists a raw service s′2 such
that Γ′ 	 s′2 
 Γ 	 s2.

Proof. By a straightforward induction on the derivation of s1 ≡ s2. �

Theorem 1. If Γ′1 	 s′1 
 Γ1 	 s1 and s1
α−−→ s2 then there exist a raw service s′2 and

two type environments Γ2 and Γ′2 such that Γ2 � Γ1, Γ′1 � Γ′2 and Γ′2 	 s′2 
 Γ2 	 s2.

Proof. By induction on the length of the inference of s1
α−−→ s2, with a case analysis on

the last used rule. �

We can now easily prove that well-typedness is preserved along computations.

Corollary 1 (Subject Reduction). If service s is well-typed and s
α−−→ s′ with α ∈

{†, n̂ �∅� w̄ {v}r}, then s′ is well-typed.

To characterize the errors that our type system can capture we use predicate ⇑: s ⇑ holds
true when s can immediately generate a runtime error. This happens when in an active
context there is an invoke activity on a partner not included in the region annotation
of some of the expressions argument of the activity. Formally, ⇑ is defined as the least
predicate closed under the following rules

∃ r′ ∈ r̄ . p � r′

p • o!{e}r ⇑
s ⇑
A[[s]] ⇑

s ≡ s′ s ⇑
s′ ⇑

We remark that the runtime errors that our type discipline can capture are related to
the policies for the exchange of data. We skip such runtime errors as ‘unproper use of
variables’ (e.g. in x • o!v̄ the variable x is not replaced by a partner name) that can be
easily dealt with standard type systems.

We can now prove that well-typed services do respect region annotations, from which
it follows that the type system and the operational semantics are sound.
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Theorem 2 (Type Safety). If s is a well-typed service then s ⇑ holds false.

Proof. By induction on the derivation of s ⇑, with a case analysis on the last used rule,
we prove that if s ⇑ then s is not well-typed, from which the thesis follows. �

Corollary 2 (Type Soundness). Let s be a well-typed service. Then s′ ⇑ holds false for
every reduct s′ of s.

Proof. Corollary 1 can be repeatedly applied to prove that s′ is well-typed, then Theo-
rem 2 permits to conclude. �

4 A Case Study by W3C

In this section we illustrate an application of our framework to a simplified but realistic
electronic marketplace scenario inspired by [16]. To show usefulness of our approach,
we focus on the central part of the protocol where sensitive data are exchanged, i.e. we
omit the initial bartering and the concluding interactions, and expand the part relative
to the payment process. We will write Z � s to assign a symbolic name Z to service s.

Suppose a service buyer invokes a service seller to purchase some goods. Once
seller has received an order request, it sends back the partner name of the service
credit agency to be used for the payment. buyer can then check the information on
credit agency and, possibly, confirm the payment by sending its credit card data to
seller. In this case, seller forwards the received data to credit agency and passes the
order to the service shipper. In the end, the whole system is

EMP � buyer | credit agency | [psh] (seller | shipper)

When fixing the policies for data exchange, services can (safely) assume that, at
the outset, partner names ps, pca and pb are publicly available for invoking seller,
credit agency and buyer, respectively. Instead, the partner name psh for invoking
shipper is private and only shared with seller. Of course, due to the syntactical restric-
tions, the ‘locality’ condition for partner names is preserved by the semantics. Thus, the
initials assumptions remain true forever.

The buyer service is defined as

buyer � [id] ( ps • oord!〈{id}{ps ,pb}, pb, order〉
| [xca] pb • oca in f o?〈id, xca〉.

[p, o] ( p •o!〈〉 | p • o?〈〉.ps • opay!〈{id}{ps ,pb}, {cc data}{ps ,xca}〉
+ p • o?〈〉.ps • ocanc!〈{id}{ps ,pb}〉 ) )

The endpoint ps • oord is used for invoking the seller service and transmitting the order
together with the buyer’s partner name pb. The (restricted) name id represents the order
identifier and is used for correlating all those service interactions that logically form a
same session relative to the processing of order. For example, the specification of buyer
could be slightly modified to allow the service to simultaneously make multiple orders:
of course, although all such parallel threads must use the same partner ps to interact
with seller, they can exploit different order identifiers as a means to correlate messages
belonging to different interaction sessions. The type attached to id only allows buyer
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and seller to exchange and use it, since they are the only services that can receive along
ps and pb. Instead, pb comes without an attached policy, since it is publicly known (it
is transmitted to indicate the service making the invocation for the call-back operation).
For simplicity, also order has no attached policy; thus, it could be later on communi-
cated to any other service. Variable xca is used to store the partner name of the credit
agency service to be used to possibly finalize the purchase and also to implement the
policy for buyer’s credit card data. After the information on the credit agency service
are verified, buyer sends a message to seller either to confirm or to cancel the order.
This is simply modelled as an internal non-deterministic choice, by exploiting the pri-
vate endpoint p • o (a more precise model can be obtained by exploiting the encodings
shown in [9]).

The seller service is defined as

seller � ∗ [xb, xid, xord, k] ps • oord?〈xid, xb, xord〉.
( xb • oca in f o!〈{xid}{xb}, pca〉
| [xcc] ps • opay?〈xid, xcc〉.( pca • ocr req!〈xord, {xcc}{pca}〉

| psh • osh req!〈xord〉 )
| ps • ocanc?〈xid〉.kill(k) )

Once seller receives an order along ps • oord, it creates one specific instance that sends
back to buyer (via xb) the partner name pca of the credit agency service where the pay-
ment will be made. Whenever the seller instance receives the credit card data correlated
to xid, it forwards them to credit agency and passes the order to the (internal) shipper
service. Instead, if buyer demands cancellation of the order, the corresponding instance
of seller is immediately terminated. Name k is used to delimit the effect of the kill
activity only to the relevant instance.

The remaining two services are defined as

credit agency � ∗ [x, y] pca • ocr req?〈x, y〉. < execute the payment >

shipper � ∗ [z] psh • osh req?〈z〉. < process the order >

Let now consider the type inference phase. Service seller gets annotated as follows:

seller′ � ∗ [{xb}{ps }] [{xid}{ps ,xb}, {xord}�, k] ps • oord?〈xid, xb, xord〉.
( xb • oca in f o!〈{xid}{xb}, pca〉
| [{xcc}{ps ,pca}] ps • opay?〈xid, xcc〉.( pca • ocr req!〈xord, {xcc}{pca}〉

| psh • osh req!〈xord〉 )
| ps • ocanc?〈xid〉.kill(k) )

The type inference has the task of checking consistency of region annotations of
the arguments occurring within invoke activities and that of deriving the annotations
for variable declarations. As regards consistency, there are only two explicitly typed
expressions used as arguments of invoke activities, i.e. xid and xcc, and their types {xb}
and {pca} satisfy the consistency constraint (see rule (t-inv)). The remaining expres-
sions occurring as arguments of invoke activities, i.e. the only xord, have implicitly
assigned type � (indeed, recall that we assumed that an untagged e stands for {e}�)
and are thus trivially consistent. As regards type derivation, when a variable is put in the
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environment (rule (t-delvar)), it is assigned type ∅. Later on, when a variable is used as
an argument of an invoke or receive, its type can possibly be enriched (rules (t-inv) and
(t-rec)). Thus, at the end of the inference, declaration of variable xb, that is only used
in ps • oord?〈xid, xb, xord〉, will have assigned region {ps} (application of rule (t-rec)).
Instead, declaration of xord has assigned type � (rule (t-inv) is used) while that of xcc

has assigned type {ps, pca} and, similarly, declaration of xid gets annotated with {ps, xb}
(in both cases rules (t-inv) and (t-rec) are used). Notably, in seller′, delimitation [{xb}ps ]
does not commute any longer with delimitations [{xid}{ps ,xb}, {xord}�, k] (otherwise the
service would become opened).

The variable declarations of the other services are annotated in a trivial way: xca with
{pb}, x and y with {pca}, and z with {psh} (we assume that credit agency and shipper do
not re-transmit the received data). Thus, if we call buyer′, credit agency′ and shipper′
the other typed services, then the system resulting from the type inference is

buyer′ | credit agency′ | [psh] (seller′ | shipper′)

After some computation steps, the system can become

[id] ( ps • opay!〈{id}{ps ,pb}, {cc data}{ps ,pca}〉 | [psh] ( seller′ |
[k, {xcc}{ps ,pca}] ( ps • opay?〈id, xcc〉.( pca • ocr req!〈order, {xcc}{pca}〉

| psh • osh req!〈order〉 )
| ps • ocanc?〈id〉.kill(k) )

| ∗ [{x}{pca}, {y}{pca}] pca • ocr req?〈x, y〉. < execute the payment >
| ∗ [{z}{psh}] psh • osh req?〈z〉. < process the order > ) )

Thus, after buyer′ sends the credit card data, we get

[id, psh] ( seller′
| [k] ( pca • ocr req!〈order, {cc data}{pca}〉 | psh • osh req!〈order〉

| ps • ocanc?〈id〉.kill(k) )
| ∗ [{x}{pca}, {y}{pca}] pca • ocr req?〈x, y〉. < execute the payment >
| ∗ [{z}{psh}] psh • osh req?〈z〉. < process the order > )

At this point, seller′ can safely communicate credit card data of buyer′ to credit agency′

and, then, forward the order to shipper′.
Suppose now that service seller′ also contains such a malicious invocation as

psh • o!〈. . . , {xcc}r , . . .〉. In order to successfully pass the type inference phase, it should
be that psh ∈ r (otherwise rule (t-inv) could not be applied). Therefore, in the resulting
typed service we would have the variable declaration [{xcc}r′ ] , with r ⊆ r′. Now, com-
munication with buyer′ would be blocked by the runtime checks because the datum is
tagged as {cc data}{ps,pca}, and psh ∈ r ⊆ r′ implies that r′ � {ps, pca}.

5 Concluding Remarks

We have introduced a first analytical tool for checking that COWS specifications
enjoy some desirable properties concerning the partners, and hence the services, that
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can safely access any given datum and, in that respect, do not manifest unexpected be-
haviors. Our type system is quite simple: types are just sets and operations on types
are union, intersection, subset inclusion, etc. The language operational semantics only
involves types in efficiently implementable checks, i.e. subset inclusions. While im-
plementation of our framework is currently in progress, we are also working on the
definition of a completely static variant where all dynamic checks have been moved to
the static phase.

The types used in this paper are essentially inspired by the ‘region types’ for
Confined-λ of [17] and for global computing calculi of [10]. There are however some
noticeable differences. In fact, COWS permits describing not necessarily distributed
systems and exchanging heterogeneous data along endpoints, which calls for a more
dynamic typing mechanism than communication channels. Moreover, COWS permits
annotating only the relevant data while Confined-λ requires typing any constant, func-
tion and channel. The group types, originally proposed for the Ambients calculus [18]
and then recast to the π-calculus [19], have purposes similar to our region annotations,
albeit they are only used for constraining the exchanges of ambient and channel names.
Confinement has been also explored in the context of Java, and related calculi, for con-
fining classes and objects within specific packages [20,21].

More expressive type disciplines based, e.g., on session types and behavioural types
are emerging as powerful tools for taking into account behavioural and non-functional
properties of computing systems. In the case of services, they could permit to express
and enforce many relevant policies for, e.g., regulating resources usage, constraining the
sequences of messages accepted by services, ensuring service interoperability and com-
positionality, guaranteeing absence of deadlock in service composition, checking that
interaction obeys a given protocol. Some of the studies developed for the π-calculus
(see e.g. [22,23,24,25,26]) are promising starting points, but they need non trivial adap-
tations to deal with all COWS peculiar features. For example, one of the major prob-
lems we envisage concerns the treatment of killing and protection activities, that are not
commonly used in process calculi.

Many efforts have been devoted to develop analytical tools for SOC foundational lan-
guages. Some works study mechanisms for comparing global descriptions (i.e. chore-
ographies) and local descriptions (i.e. orchestrations) of a same system. Means to check
conformance of these different views have been defined in [5] and, by relying on ses-
sion types, in [22]. COWS, instead, only considers service orchestration and focuses
on modelling the dynamic behaviour of services without the limitations possibly in-
troduced by a layer of choreography. Some other works [27,28] have concentrated on
modelling web transactions and on studying their properties in programming languages
based on the π-calculus, while [29,30] formalize long running transactions with spe-
cial care for the Sagas mechanism [31]. A type system specifying security policies
for orchestration has been introduced in [32] for a very basic formalism based on the
λ-calculus. Finally, a type system for checking compliance between (simplified) WS-
BPEL terms and the associated WSDL documents has been defined in [7].

Acknowledgements. We thank the anonymous referees for their useful comments.



238 A. Lapadula, R. Pugliese, and F. Tiezzi

References

1. Schneider, F.B., Morrisett, G., Harper, R.: A language-based approach to security. In: Wil-
helm, R. (ed.) Informatics. LNCS, vol. 2000, pp. 86–101. Springer, Heidelberg (2001)

2. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing web service choreographies.
ENTCS 105, 73–94 (2004)

3. Viroli, M.: Towards a formal foundational to orchestration languages. ENTCS 105, 51–71
(2004)

4. Geguang, P., Xiangpeng, Z., Shuling, W., Zongyan, Q.: Towards the semantics and verifica-
tion of bpel4ws. In: WLFM, Elsevier, Amsterdam (2005)

5. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and orchestration
conformance for system design. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION
2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg (2006)

6. Laneve, C., Padovani, L.: Smooth orchestrators. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOS-
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Abstract. Web services are emerging as a promising technology for the
development of next generation distributed heterogeneous software sys-
tems. We define a new behavioural equivalence for Web services, based
on bisimilarity and inspired by recent advances in the theory of reactive
systems. The proposed equivalence is compositional and decidable, and
it provides a firm ground for enhanced behaviour-aware discovery and for
a sound incremental development of services and service compositions.

1 Introduction

Web services are emerging as a promising technology for the development of
next generation distributed heterogeneous software systems [1]. Roughly, a Web
service is any piece of software that makes itself available over the Internet. A
Web service is identified by a URI, it is universally accessible by means of stan-
dard protocols (WSDL, UDDI, SOAP), and it self-describes its functionalities
by exposing a public interface.

WSDL [2] is the currently employed standard for describing services. A WSDL
description details what a service provides, by listing its operations in terms of
input and output messages, and how a service can be invoked, by specifying
one or more network locations where it can be accessed. WSDL descriptions
do not include any information on the interaction behaviour of services, that
is, on the order with which messages can be received or sent by each service.
Unfortunately, the lack of behavioural information inhibits the possibility of a
priori determining whether two services have the same behaviour as well as
the possibility of verifying properties of service compositions, such as deadlock-
freedom.

Various proposals have been put forward to feature service descriptions that
include both semantics (viz., ontology-based) and behaviour information about
services. One of the major efforts in this direction is OWL-S [3], a high-level
ontology-based language for describing services, proposed by the OWL-S coali-
tion. Since OWL-S is a computer-interpretable semantic mark-up language pro-
viding all the needed information for describing services, OWL-S paves the way
for the full automation of service discovery, invocation and composition. In
particular, OWL-S service descriptions include a declaration of the interaction
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behaviour of services (the process model), which provides the needed information
for the a priori analysis and verification of service invocations and compositions.

The objective of this paper is to define a notion of behavioural equivalence
for Web services. An immediate application of such a notion is the possibility of
establishing whether syntactically different services feature the same behaviour,
and hence for instance of verifying whether the upgrade of a service S with a new
version S′ may affect the interoperability with existing clients of S. The avail-
ability of a well-founded notion of behavioural equivalence can also be exploited
to develop enhanced service discovery techniques so as to go beyond functional
matching and determine whether a given service (or service composition) fea-
tures a desired interaction behaviour. According to these aims, two fundamental
properties of any equivalence relation are computability and compositionality.
Computability is a key requirement in ensuring the viability of an equivalence
relation, that is, in allowing the development of automated software capable of
determining whether two services are behaviourally equivalent or not. Composi-
tionality permits to exploit the equivalence relation for a disciplined incremental
development of services, by means of sound compositions and replacements.

In this paper we first show how the behaviour of a Web service can be suitably
described by means of a Petri net. Petri nets [4] are one of the best known
and most widely adopted formalisms to express the concurrent behaviour of
(software) systems: besides providing a clear and precise semantics, they feature
an intuitive graphical notation, and a number of techniques and tools for their
analysis, simulation and execution are available. Petri nets have also been already
employed to model Web services (e.g., see [5,6,7]). We introduce a simple variant
of standard condition/event Petri nets (viz., CPR nets for Consume-Produce-
Read nets) to naturally model the behaviour of Web services, and in particular
the persistence of data. We then show how OWL-S process models can be directly
mapped into CPR nets, borrowing from the translation from OWL-S to place-
transition nets (P/T for short) described in [8].

Our next step is the identification of a suitable behavioural equivalence for
our class of nets. Indeed, the dynamics of a Petri net, as well as those of most
functional and process calculi, is usually defined in terms of reduction relations
among its markings (i.e., the states of a system). Despite its simplicity, the main
drawback of reduction semantics is poor compositionality, in the sense that the
dynamic behaviour of an arbitrary stand alone net may become unpredictable
whenever it becomes a part of a larger net. Recently, Leifer and Milner [9] de-
viced a methodology for distilling from a reduction relation a set of labels satis-
fying suitable requirements of minimality, in order to build a labelled reduction
relation, such that the associated behavioural notion of bisimilarity is a compo-
sitional equivalence. The methodology has been later applied to P/T nets [10]
as well as to their condition/event variant [11] (C/E for short). Thus, after dis-
cussing a motivating example, we define a novel notion of net equivalence, based
on bisimilarity and inspired by the recent theoretical advances we just mentioned
above. We show that this new equivalence relation is indeed compositional (i.e.,
that is a congruence), and that it is also decidable.
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The main contribution of this paper is therefore the definition of a decidable
behavioural congruence for Web services, which paves the way for the deploy-
ment of behaviour-aware discovery mechanisms and for a sound incremental
development of services and service compositions.

2 Modeling Web Services with Petri Nets

Before describing how Petri nets can be employed to model Web services, we
recall the essence of OWL-S, a high-level ontology-based language for describing
Web services. An OWL-S service advertisement consists of three documents: the
service profile, providing a high-level specification of the service by describing its
functional (i.e., inputs and outputs) and extra-functional attributes; the process
model, describing the service behaviour by providing a view of the service in
terms of process composition; and the service grounding, stating how to interact
with the service by specifying protocol and message format information.

In the paper we focus on the OWL-S process model, as it details the be-
havioural information needed to represent a service as a Petri net. More precisely,
the process model describes a service as a composite process which consists, in
turn, of composite processes and/or atomic processes. An atomic process can not
be decomposed further and it has associated inputs and outputs, while a com-
posite process is built up by using a few control constructs: sequence (i.e., se-
quential execution), choice (conditional execution), split (parallel execution),
split+join (parallel execution with synchronization), any-order (unordered
sequential execution), repeat-while and repeat-until (iterative execution).

In [8] the second and third author proposed a mapping from OWL-S service
descriptions to P/T nets with the objective to exploit the Petri net representation
of services for a behaviour-aware service discovery. Given a query specifying the
inputs and outputs of the service to be found, first the functional attributes of the
available services are considered, in order to discover a composition capable of
satisfying the query functionally. Next, the found composition is translated into
a P/T net and analysed in order to verify properties such as deadlock-freedom.

The mapping presented in [8] takes into account the fact that an OWL-S
atomic operation can be executed only if all its inputs are available and all the
operations that must occur before its execution have been completed. Hence,
atomic operations are mapped into transitions, and places and transition firing
rules are employed to model both the availability of data (i.e., the data flow) and
the executability of atomic operations (i.e., the control flow). Indeed, an atomic
operation T is modelled as a transition t having an input/output data place for
each input/output of T , an input control place to denote that t is executable as
well as an output control place to denote that t has completed its execution.

However, the specific features concerning the Web service framework (already
emphasised in [8]) suggest more specific nets. In this paper we introduce a simple
variant of standard Petri nets [4] as a tool for properly modelling Web services.
Given a net N modelling a Web service, we first of all noted that the portion of
N restricted to transitions and control places should behave as a classical C/E
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net, that is, only one token should occur at most for each place. Furthermore, we
opted for a model stressing the persistence of data, meaning that, once a data
has been produced by some service operation, it has to be kept available for all
the service operations that input it. In other words, whilst control places can be
produced and consumed, data places can be read, produced but not consumed.
Hence, the portion of N restricted to data places behaves as a contextual net [12].

To encompass into the same structure the different net behaviour determined
by data and control places, we introduce our own particular flavour of contextual
C/E nets, which is going to be formally introduced in the following subsection.

2.1 Consume-Produce-Read Nets

This subsection introduces consume-produce-read nets. These are a slight exten-
sion of standard Petri nets, since they are equipped with two disjoint sets of
places, namely, the control places (to be consumed and produced) and the data
places (to be produced and read) .

Definition 1 (CPR net). A consume-produce-read net (simply, CPR net) N
is a five-tuple (CN , DN , TN , FN , IN ) where

– CN is a finite set of control places,
– DN is a finite set of data places (disjoint from CN ),
– TN is a finite set of transitions,
– FN ⊆ (CN × TN ) ∪ (TN × CN ) is the control flow relation,
– IN ⊆ (DN × TN) ∪ (TN × DN ) is the data flow relation.

Our nets behave as standard C/E nets with respect to control places; while, as
we are going to see, data places are never emptied, once they are inhabited.

As for standard nets, we associate a pre-set and a post-set with each transition
t, together with two additional sets, called read- and produce-set.

Definition 2 (pre-, post-, read-, and produce-set). Given a CPR net N ,
we define for each t ∈ TN the sets

�t = {s ∈ CN | (s, t) ∈ FN} t� = {s ∈ CN | (t, s) ∈ FN}
•t = {s ∈ DN | (s, t) ∈ IN} t• = {s ∈ DN | (t, s) ∈ IN}

which denote respectively the pre-set, post-set, read-set and produce-set of t.

Fig. 1 depicts our chosen graphical notation. Diamonds represent control places,
while circles and rectangles represent data places and transitions, respectively.
For instance, the transition shown in Fig. 1 reads the data places labelled
I1, I2, . . . , In (this is represented by a straight line) and produces the data places
labelled O1, . . . , Om (this is represented by a pointed arrow). In doing so, the
control flow passes from the left-most to the right-most control place.

Definition 3 (marking). Given a CPR net N , a marking M for N is a finite
set of places in PN = CN ∪ DN .



244 F. Bonchi et al.

Fig. 1. Modelling atomic operations as CPR net transitions

A marking of the net N coincides with a subset of its set PN of places, since each
place can contain at most one token. The evolution of a net is given by a relation
over markings. A transitions t is enabled by a marking M if the control places
which belong to the pre-set of t as well as the data places which belong to the
read-set of t are contained in M , and no overlap (as defined later) between M
and the post-set of t occurs. In this case a firing step may take place: t removes
the tokens from the control places which belong to the pre-set of t and adds a
token to each place which belongs to the post- and produce-set of t.

Definition 4 (firing step). Let N be a CPR net. Given a transition t ∈ TN

and a marking M for N , a firing step is a triple M [t〉M ′ such that (�t∪ •t) ⊆ M
and (M ∩ t�) ⊆ �t (M enables t), and moreover M ′ = (M \ �t) ∪ t� ∪ t•.

We write M [〉M ′ if there exists some t such that M [t〉M ′.

The enabling condition states that (i) all the tokens of the pre-set of a transition
have to be contained in the marking, and (ii) that the marking does not contain
any token in the post-set of the transition, unless it is consumed and regenerated.
The second condition usually characterizes C/E nets. Note instead that data
places act as sinks, hence, any token can be added and only the occurrence of a
token is checked. The read-only feature of data places is reminiscent of the work
on so-called contextual C/E nets by Montanari and Rossi [12].

2.2 From OWL-S to CPR Nets

After formally defining CPR nets, we can show how OWL-S service descriptions
can be mapped into CPR nets.

Let us define a service as a triple (i, P, f) where P denotes the CPR (sub)net
representing the service and i and f denote the initial and the final control
places of P , respectively. To define compositional operators is sufficient to prop-
erly coordinate the initial and final control places of the employed services. For
instance, let us consider the sequential composition of two services (i1, P1, f1)
and (i2, P2, f2). This is a CPR net consisting of the two services and a transition
whose starting control place is f1 and the final control place is i2. By doing so,
P1 has to be completed before P2 can start.

For lack of space, we do not give a formal semantics of the sequence operator
and of the other OWL-S control constructs. Anyway, the reader can intuitively
understand how OWL-S composite operations can be mapped into CPR nets by
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observing Fig. 2. The PX-labelled boxes represent (ix, PX, fx) services, the dark
gray rectangles identify empty transitions, and the light gray diamonds denote
the starting and final control places of the resulting nets. To simplify reading
we omitted data places from the nets of Fig. 2. Yet, it is important to note that
the PX-boxes can share data places to simulate the exchange of data amongst
services, as we will formally define in Section 4.1.

Fig. 2. Modelling OWL-S composite operations as CPR nets

3 Motivating Examples

The ultimate objective of this paper is to introduce a decidable notion of equiv-
alence between Web services represented as CPR nets. This notion establishes
whether two service behaviours are equivalent and it can be employed to suitably
address the following issues:

1) incremental development of services — to check whether two different ver-
sions of a service are equivalent;

2) matching services — to check whether a (composition of) service(s) matches
a query that specifies the behaviour of the desired service (composition) to
be found (viz., the notion of equivalence needed by [8]);

3) replaceability of services — to check whether a service s which takes part in a
composition C[s] can be replaced with a different service r without changing
the behaviour of C, i.e., guaranteeing the equivalence between C[s] and C[r].

We can hence outline the main features that a suitable notion of equivalence
should have, that is, weakness and compositionality. It has to be weak as it must
equate services with respect to their externally observable behaviour. Indeed,
it is reasonable that two versions of a service differently implement the same
operations (1), as well as we can imagine that a simple query can be satisfied
by a complex service composition (2). Therefore, this notion of equivalence has
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Fig. 3. Example of (non-)equivalent services

to be abstract enough to equate services that differ only on internal transition
steps. Furthermore, (3) also asks for compositionality, and if two services are
equivalent, then they can be always used interchangeably.

Let us now consider some examples (inspired by [13]). Fig. 3 illustrates the
CPR nets of seven services, where rectangles, circles and diamonds represent
transitions, data places and control places, respectively. Note the boxes that
limit each service. As we will formalise in the following section, a box represents
the outer interface of a service, that is, the set of places which can interact
with the environment. Hence, those places that in Fig. 3 lie on the box are the
ones that can be observed externally. Consider the services WS1 and WS2 of
Fig. 3. As one may note, WS1 and WS2 have the same behaviour with respect to
the notion of trace equivalence. Indeed, they have identical sets of traces, since
after producing A they may alternatively read either B or C. Consider now
the context C1[−], depicted in Fig. 3, which represents a possible environment
in which WS1 and WS2 can be embedded. Note the gray area contained in
C1[−]. Its border is the inner interface of C1[−]. As formalised in Section 4.1,
a service WS can be inserted inside a context C[−] if the outer interface of
WS and the inner interface of C[−] coincide. The resulting composition C[WS]
consists of the fusion of such interfaces, as well as of the fusion of the data places
and the union of the transitions of WS and C[−]. We note that C1[−] inputs
A, produced by WS1, and yields B or C, taken as input by WS1. Hence, the
composition C1[WS1] works and finishes properly. Now, in order to test if the
trace equivalence is the notion suitable for our purpose, we replace WS1 with the
trace equivalent service WS2 and we check whether the composition C1[WS2]
works properly as well. Yet, C1[WS2] produces a possibly deadlocking system.

Let us now describe a second example arguing the need of weakness. Con-
sider the services WS3 and WS4. For instance, WS4 could be a composition
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candidate to satisfy the query represented by WS3. Although WS3 and WS4
appear different as they perform a different number of transitions, they both
produce B or C. Namely, WS3 and WS4 have identical externally observable
behaviour, and they indeed should be considered equivalent.

By taking into account the requirements briefly outlined in this motivating
section, we define a novel notion of equivalence based on bisimilarity which
features weakness, compositionality and decidability.

4 A Congruence for Open CPR Nets

In the previous section we argued about the relevance of a behavioural equiva-
lence, formally characterizing the notion of replaceability, and we motivated why
such an equivalence should be both compositional and weak.

A first step for defining compositionality is to equip nets with a notion of
interface and context. Next, we introduce two notions of equivalence: the first is
conceptually the correct one, even if it turns out to be quite hard to reason about,
while the second provides a simple, decidable characterization of the former.

4.1 Open CPR Nets and CPR Contexts

For the sake of presentation, a chosen net N = (CN , DN , TN , FN , IN ) is assumed.

Definition 5 (Open CPR net). Let N be a CPR net. An interface for N is
a triple 〈i, f, OD〉 such that i �= f and

– i is a control place (i.e., i ∈ CN ), the initial place;
– f is a control place (i.e., f ∈ CN ), the final place; and
– OD is a set of data places (i.e, OD ⊆ DN), the open data places.

An interface is an outer interface O for N if there exists no transition t ∈ TN

such that either i ∈ t� or f ∈ �t. An open CPR net N (OCPR for short) is a
pair 〈N, O〉, for N a CPR net and O an outer interface for N .

The condition characterizing outer interfaces requires that the initial place has
no incoming transition and the final place has no outgoing transition. Hence,
OCPR nets recall the Work-Flow (WF) nets1 proposed by van der Aalst [14].

The components of a specific interface or open net are often denoted by adding
them a subscript. Given an open net N , Op(N ) denotes the set of open places,
which consists of those places occurring on the interface, initial and final places
included. Furthermore, the places of N not belonging to Op(N ) constitute the
closed places. It is important to note that open places are crucial for the definition
of observational equivalence that we propose in the next subsection.

Fig. 4 shows the graphical notation used to represent OCPR nets. The bound-
ing box of the OCPR net WS1 represents the outer interface of the net. Note
the initial and final places used to compose the control of services (as suggested
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Fig. 4. Two open nets, a context and a composite net

in Fig. 2) as well as the open data places employed to share data. Next, we
symmetrically define an inner interface for N as an interface such that there is
no transition t ∈ TN verifying either f ∈ t� or i ∈ �t.

Definition 6 (CPR context). A CPR context C[−] is a triple 〈N, O, I〉 such
that N is a CPR net, I = 〈iI , fI , ODI〉 and O = 〈iO, fO, ODO〉 are an inner
and an outer interface for N , respectively, and iI �= fO, iO �= fI.

A context C[−] is shown in Fig. 4. Substantially, it is an open net with an
hole, represented there by a gray area. The border of the hole denotes the inner
interface of the context. As for open nets, the bounding box is the outer interface.
The only difference between inner and outer interfaces is that the initial place
of the former has no outgoing transitions (and vice versa for final places).

Contexts represent environments in which services can be embedded, i.e.,
possible ways they can be used by other services. An OCPR net can be inserted
in a context if the net outer interface and the context inner interface coincide.

Definition 7 (CPR composition). Let N = 〈N, O〉 be an OCPR net and
C[−] = 〈NC , OC , IC〉 a CPR context, such that O = IC . Then, the composite net
C[N ] is the OCPR net (CN 	O CNC , DN 	O DNC , TN 	TNC , FN 	FNC , IN 	INC )
with outer interface OC .

In other words, the disjoint union of the two nets is performed, except for those
places occurring in O, which are coalesced: this is denoted by the symbol 	O.
Moreover, OC becomes the set of open places of the resulting net.

Consider e.g. the net WS1, the context C[−] and their composition, denoted
by C[WS1], as illustrated in Fig. 4. The places on the outer interface of WS1 are
1 More precisely, our nets lack the connectiveness requirement, see e.g. [14, Sect. 2.2].

Note however that, even if this is not made explicit, the property holds for all the
nets obtained by modeling OWL-S composite operations.
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coalesced with the ones on the inner interface of C[−]. The output interface of
C[WS1] is the outer interface of C[−]. Note that the data place A is open in WS1
and closed in C[WS1]: this example highlights the capability of hiding places,
removing them from the outer interface of an open net. Indeed, this feature is
reminiscent of the restriction operator of process calculi, such as CCS [15].

It is worth observing that contexts can be composed with contexts as well:
CPR contexts form a category where interfaces are objects and contexts are
arrows going from the inner interface to the outer interface2 (and OCPR nets
are arrows whose source is the empty interface and target is the outer interface).

4.2 Saturated Bisimilarity for OCPR Nets

This section addresses the question of the equivalence between nets. Our answer
relies on an observational approach, equating two systems if they can not be told
apart from an external observer. More precisely, the observer can only examine
the open places of a net, which is otherwise a black box, and those places may
be checked for verifying if they are actually inhabited or if they are empty.

For the sake of presentation, a chosen OCPR net N = 〈N, O〉 is assumed.

Definition 8 (observation). Let N be an OCPR net, and M a marking of N .
The observation on N at M is the set of places Obs(N , M) = Op(N ) ∩ M .

Thus, an observer looks at the evolution of the system by observing if tokens
are produced or consumed in the open places. Accordingly, two OCPR nets N
and N ′ with the same outer interface and with initial markings M and M ′ are
considered equivalent if Obs(N , M) = Obs(N ′, M ′) and if every state reachable
from M in N is equivalent to a state reachable from M ′ in N ′ (and vice versa).

The previous remark is formalized by the definition below, where MN denotes
the set of all OCPR nets with markings and �N denotes the reflexive and
transitive closure of the firing relation [〉 for the net N underlying N .

Definition 9 (naive bisimulation). A symmetric relation R ⊆ MN × MN
is a naive bisimulation if whenever (N , M) R (N ′, M ′) then

– ON = O′
N ′ and Obs(N , M) = Obs(N ′, M ′), and

– M �N M1 implies M ′ �N ′ M ′
1 & (N , M1) R (N ′, M ′

1).

The union of all naive bisimulations is called naive bisimilarity.

The equivalence above is “naive” in the sense that it clearly fails to be com-
positional. Indeed, consider the OCPR nets WS1 and WS2 in Fig. 4. They are
trivially equivalent since none of them can fire. However, they are not equivalent
anymore whenever they are inserted into a context (such as the one on that same

2 CPR nets and their morphisms (not defined here) form an adhesive category [16].
The category of CPR contexts is the cospan bicategory over such category [17], thus
it is amenable to the borrowed context technique [18] for distilling a set of labels
from a reduction relation. That technique is implicitly exploited in the next section.
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Fig. 4) containing a transition that generates a token in the initial place and in
the data place A. Indeed the former can now produce a token on B reaching the
final state f , while the latter can not move.

The solution out of the impasse, which is quite standard both in functional
languages and process calculi, is to allow the observer to perform more complex
experiments, inserting a net into any possible context.

Definition 10 (saturated bisimulation). A symmetric relation R ⊆ MN ×
MN is a saturated bisimulation if whenever (N , M) R (N ′, M ′) then

– ON = ON ′ and Obs(N , M) = Obs(N ′, M ′), and
– ∀C[−].M �C[N ] M1 implies M ′ �C[N ′] M ′

1 & (C[N ], M1) R (C[N ′], M ′
1).

The union of all saturated bisimulations is called saturated bisimilarity (≈S).

Clearly, ≈S is by definition a congruence. Indeed, it is the largest bisimulation
that preserves compositionality, as stated below.

Proposition 1. ≈S is the largest bisimulation that is also a congruence.

The above proposition ensures the compositionality of the equivalence, hence,
the possibility of replacing one service by an equivalent one without changing the
behaviour of the whole composite service. Moreover, the equivalence is “weak” in
the sense that, differently from most of the current proposals, no explicit occur-
rence of a transition is observed. The previous definition leads to the following
notion of equivalence between OCPR nets, hence, between services.

Definition 11 (bisimilar nets). Let N , N ′ be OCPR nets. They are bisimilar,
denoted by N ≈ N ′, if (N , ∅) ≈S (N ′, ∅).

The choice of the empty marking guarantees that the equivalence is as general
as possible. Indeed, the presence of a token in an open place can be simulated
by closing the net with respect to a transition adding a token in that place, and
if any two nets are saturated bisimilar with respect to the empty marking, they
are so also with respect to any marking with tokens in the open places.

The negative side of ≈ is that this equivalence seems quite hard to be auto-
matically decided because of the quantification over all possible contexts. In the
following subsection we introduce an alternative equivalence, easier to reason
about and to automatically verify, and we prove that it coincides with ≈S .

4.3 An Equivalent Decidable Bisimilarity

Saturated bisimulation seems conceptually the right notion, and this is further
argued in the following section. However, it seems quite hard to analyze (or
automatically verify), due to the universal quantification over contexts. In this
section we thus introduce semi-saturated bisimilarity, based on a simple labelled
transition system (LTS) distilled from the firing semantics of an OCPR net.

The introduction of an LTS is inspired to the theory of reactive systems [9].
This meta-theory suggests guidelines for deriving a LTS from an unlabelled one,
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choosing a set of labels with suitable requirements of minimality. In the setting
of OCPR nets, the reduction relation is given by [〉, and a firing is allowed if
all the preconditions of a transition are satisfied. Thus, intuitively, the minimal
context that allows a firing just adds the tokens needed for that firing.

Definition 12 (labelled transition system). Let N be an OCPR net, and
let Λ = {τ} ∪ ({+} × PN ) ∪ ({−} × CN ) be a set of labels, ranged over by l. The
transition relation for N is the relation RN inductively generated by the set of
inference rules below

o ∈ Op(N ) \ (M ∪ {f})
M

+o→N M ∪ {o}
f ∈ M

M
−f→N M \ {f}

M [〉M ′

M
τ→N M ′

where M
l→N M ′ means that 〈M, l, M ′〉 ∈ RN , and i, f denote the initial and

the final place of N , respectively.

Thus, a context may add tokens in open places in order to perform a firing, as
represented by the transition +o→N . Similarly, a context may consume tokens from
the final place f . A context can not interact with the net in any other observable
way, as the initial place i can be used by the context only as a post condition,
and all the other open places are data places whose tokens can be read but not
consumed. Likewise, τ transitions represent internal firing steps, i.e., steps that
do not need any additional token from the environment.

The theory of reactive systems ensures that, for a suitable choice of labels,
the bisimilarity on the derived LTS is a congruence [9]. However, often that
bisimilarity does not coincide with the saturated one. In [19] the first author,
together with König and Montanari, discusses this problem and introduces the
notion of semi-saturated bisimilarity that coincides with the saturated one.

Definition 13 (semi-saturated bisimulation). A symmetric relation R ⊆
MN × MN is a semi saturated bisimulation if whenever (N , M) R (N ′, M ′)

– ON = O′
N ′ and Obs(N , M) = Obs(N ′, M ′),

– M
+o→N M1 implies M ′ ∪ {o} �N ′ M ′

1 and (N , M1) R (N ′, M ′
1),

– M
−f→N M1 implies M ′ \ {f} �N ′ M ′

1 and (N , M1) R (N ′, M ′
1),

– M
τ→N M1 implies M ′ �N ′ M ′

1 and (N , M1) R (N ′, M ′
1).

The union of all semi-saturated bisimulations is called semi-saturated bisimilar-
ity (≈SS).

The key theorem of the paper is stated below.

Theorem 1. ≈S=≈SS.

Thus, in order to prove that two OCPR nets are bisimilar, it suffices to exhibit
a semi-saturated bisimulation between the states of the two nets that includes
the pair of empty markings. Most importantly, though, this search can be auto-
matically performed, since the set of possible states of an OCPR net are finite.
Hence, the result below immediately follows.

Corollary 1. ≈S is decidable.
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5 Related Works

The successful introduction of observational equivalences for process calculi in
the early 1980s spawned similar researches on nets, as witnessed3 by the sur-
vey [20]. According to the taxonomy there, saturated bisimilarity is a state-based
equivalence, since it encompasses a notion of interface (a set of observable places)
and it is dictated by the way the firing relation crosses the interfaces. Indeed,
our bisimilarity is reminiscent of ST-equivalence, as in [20, Def. 4.2.6].

This section does not try to survey the field: first of all, the literature is
very large, and its retelling is not suitable for a conference paper. Moreover,
our CPR nets have distinctive features, since data places act as sinks, thus any
comparison should take that fact into account, putting an additional layer of
complexity. Furthermore, our main interest is in a compositional equivalence,
thus restricting the area of possible intersection with former works.

In the rest of the section we then focus on two issues that are closely related
to the novelties introduced in our framework: the use of the theory of reactive
systems for obtaining a tractable equivalence; and the use of (equivalences on)
nets for dealing with the specification of Web services and of their composition.

5.1 Nets, Open Places and Labels

Most current-day formalisms for system specification come equipped with a re-
duction semantics: a suitable algebra of states is defined, and system evolution is
represented by a relation between states. However, the lack of observable actions
(either associated to the states, or to the reductions) forbids the development of
observational equivalences, which are often handier and more tractable.

Concerning Petri nets, the need of primitives for expressing the interaction
with an environment was recognized early on, and notions of “net interface”,
intended as a subset of the items of the net, are already reported in [20]. Interfaces
are key ingredients for defining an observation, as well as for expressing net
operators: along this line, a classical approach is the Box Algebra [21]. The main
difference with our proposal is in the use of a set of labels for obtaining a labelled
reduction relation, on top of which to define the semi-saturated semantics.

Indeed, mostly related to our solution are open nets : place/transitions nets
where two distinguished sets of input and output places (where tokens may
be added or removed, respectively) are identified, and then used to compose
nets by place coalescing [22]. A comparison among the derived equivalences
is in order, even if it is left for future work: note however that the authors
stick to P/T nets; and the dichotomy between input and output places, that is
reflected on net composition, is missing in our approach. We refer to [22], and
the references therein, for a survey and comparison with other interface-based
techniques, mostly important the net components proposed by Kindler [23].

The most important source of inspiration for our work is the theory of reactive
systems [9], introducing a technique for the synthesis of labels with suitable
3 The analysis there is restricted to contact-free C/E nets, i.e., such that the second

requirement of the enabling condition in Definition 4 is never verified.
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minimality requirements from a reduction relation: the main advantage of the
tecnique is that it guarantees that the bisimilarity on the derived labelled relation
is a congruence. Indeed, our approach benefits from the general definition of
interface deriving from the theory. Concerning Petri nets, the technique was
first applied by Milner in [10], after implementing nets into a more complex
graphical structure, namely bigraphs. And later by Sassone and Sobociński [11]:
the labelled relation of the latter work largely coincides with ours. The main
difference, besides the use of our flavour of C/E nets, is the introduction of
saturated bisimilarity and the corresponding characterisation by semi-saturated
bisimilarity. Moreover, our equivalence is weak (the number of transitions is not
observed) and interleaving (parallelism is reduced to non-determinism). To the
best of our knowledge, the treatment of such a bisimilarity for nets, and its
decidable characterisation, is original to our paper, and it exploits the results by
the first author, König and Montanari reported in [19].

5.2 Nets for Service Equivalence

The application of Petri nets to the specification and the modelling of distributed
systems has been around since their inception. Concerning Web services, the use
of nets has been strongly advocated in the works by van der Aalst, see e.g. [14]
and the position paper [7]. More specifically, he and his coauthors address the
issue of equivalences for nets in [24]: they propose a trace-based, probabilistic
equivalence for nets which is quite far from our proposal.

Tightly related to us is the work of Martens, which actually inspired some of
our examples in Section 3. More precisely, we refer to [6], where van der Aalst’s
WF Petri nets (with disjoint sets of input, output and internal places) are anal-
ysed for checking structural properties of Web services. The author introduces
there the notions of net module and net composition: these recall the open nets
formalism mentioned above, and roughly coincide with our own solution.

Martens introduces in [6] the notion of net soundness and net usability, ba-
sically related to state reachability with respect to composition with suitable
modules. We sketch here a solution for recasting those notions in terms of satu-
rated bisimilarity. Let us start considering the OCPR net 1 depicted in Fig. 5;
moreover, let νO[−] be the OCPR context that close all the elements in the set
O of open data places of an OCPR net N . According to [6], we say that a net
N is weakly sound if and only if νO[N ] ≈ 1; a context C[−] utilizes a net N if
νO[C[N ]] ≈ 1; and a net N is usable if there exists a context C[−] utilizing it.

Next, the author considers there a few notions of observational equivalence
for his flavour of WF nets, discussing in turn trace, bisimulation and simula-
tion equivalences. He identifies the weakness of trace equivalence with respect to
deadlock, as we echoed in Section 3. He further argues on bisimulation, reaching

Fig. 5. The OCPR net 1
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the conclusion of simulation as the most adequate equivalence. Note that
Martens’ notion of simulation (denoted here by ≡) can be expressed by satu-
rated bisimilarity. Indeed, N ≡ N ′ if and only if νO[C[N ]] ≈ 1 ⇔ νO[C[N ′]] ≈ 1
for all possible contexts C[−]: intuitively, this means that the two nets are us-
able by exactly the same environments. Note that our solution is stricter, since
≈⊆≡, while the converse does not hold. In fact, M3 and M4 of Fig. 4 of [13] are
equivalent according to Martens, even if they are not saturated bisimilar.

6 Concluding Remarks

We introduced Open Consume-Produce-Read (OCPR) nets to naturally model
the behaviour of OWL-S Web services (although our approach could tackle WS-
BPEL services, in the line of [25]). We also defined the notion of saturated bisim-
ilarity for OCPR nets, relying on the concepts of interface and CPR context:
An interface is a set of places which interact with the environment, while a CPR
context represents a possible environment where a service can be embedded in.

To the best of our knowledge, the proposed bisimilarity is the first equivalence
employing Petri nets for Web services that features:

• weakness – It abstracts from internal transition steps by equating struc-
turally different, yet externally indistinguishable services. An obvious
application of such a notion is for checking whether a (complex) service
implements a given specification. Indeed, it is often the case that a ser-
vice provider publishes simple service specifications by hiding unnecessary
and/or confidential details of their implementations, as well as, similarly, a
matchmaking system verifies whether a (composition of) service(s) matches
a client query.

• compositionality – It is the largest bisimulation that is also a congruence.
Thus, two equivalent services can be always used interchangeably. Consider,
for instance, a complex application where a component service S fails (e.g.,
it becomes unavailable). S can be replaced with an equivalent service S′

without changing the behaviour of the whole application.
• decidability – As the set of the states of an OCPR net is finite, the saturated

bisimilarity is decidable. It can hence be employed by automated software
tools in order to check whether two services are behaviourally equivalent.

We leave to future work a throughout analysis of the connection between our
saturated bisimilarity and Martens’ simulation. We just note here that our rely-
ing on a standard notion of observational equivalence allows the reuse of existing
theoretical techniques and practical tools, such as e.g. the characterizations of
minimal equivalent nets and the algorithms for calculating them.
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16. Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FOSSACS
2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)
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{monta,semini}@di.unipi.it

2 Department of Computer Science, University of Leicester
srm13@le.ac.uk

Abstract. Appel is a general language for expressing policies in a va-
riety of application domains with a clear separation between the core
language and its specialisation for concrete domains. Policies can con-
flict, thus leading to undesired behaviour. We present a novel formal
semantics for the Appel language based on ΔDSTL(x) (so far Appel

only had an informal semantics). ΔDSTL(x) is an extension of temporal
logic to deal with global applications: it includes modalities to localize
properties to system components, an operator to deal with events, and
temporal modalities à la Unity. A further contribution of the paper is
the development of techniques based on the semantics to reason about
conflicts.

1 Motivation

In general the idea of policies is to adapt the behaviour of an existing system.
Policies are high-level statements to support personal, organisational or system
goals. Policies have been defined as information which can be used to modify
the behaviour of a system [1]. Policies have been studied in applications such as
distributed systems management, network management, Quality of Service, and
access control [2,3].

More recently policies have been studied as means for end-users to express how
they want for a system to behave. The work has mostly concentrated on telecom-
munications systems [4], but there have also been initial attempts at transferring
this to service oriented systems [5]. Notably these approaches have been more
operational in nature, that is they use a general purpose policy language with
an informal semantics.

In general policies are not singular entities, they are generally arranged in
groups to collectively express overall goals. However, when several policies are
composed (or applied simultaneously) they might contradict each other: a phe-
nomenon referred to as policy conflict. Policy conflict has been recognised as
a problem [6] and there have been some attempts to address this, mostly in
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the domain of access or resource control. In the case of end-user policies the
problem is significantly increased by a number of factors. To name a few: the
application domains are much more open and hence increase difficulty in mod-
elling them, there will be many more end-user policies than there are system
policies (sheer number of policies) and end-users are not necessarily aware of
the wider consequences of a policy that they formulate. However, policy conflict
hinders maximum gain when using policies and hence it is important to tackle
the problem. Both, detection and resolution are important aspects – resolution
at design-time means redesign of the policies.

We propose a logic based reasoning approach to detect policy conflict in the
Appel policy language [7,4]. As Appel has so far only been presented with an
informal semantics, we must first formalise this in a suitable logic. This paper
presents the novel formal semantics for Appel which is based on ΔDSTL(x)
(distributed state temporal logic [8,9]) and then shows how this helps with the
rigorous detection of conflicts.

Policy conflicts need to be first detected and then resolved. In this paper we
concentrate on detecting conflicts in Appel policies that for simplicity are as-
sumed to be co-located (i.e. not distributed). The paper is structured as follows:
In the next section we introduce the policy language and the logic we use for
reasoning. In Section 3 we introduce the formal semantics for Appel. Section 4
considers reasoning about conflict. Section 5 discusses the results and achieve-
ments. After highlighting related work in Section 6, the paper is rounded up
with a brief summary and pointers to further work.

2 Background

2.1 APPEL

Policies have been used for some time to adapt the behaviour of systems at
runtime. Mostly they have been used in the context of Quality of Service and
Access Control. There are a number of policy languages specific to these do-
mains. The Appel policy language [7,4] has been developed in the context of
telecommunication systems, to express end-user policies. A detailed discussion
why this language was required can be found in [10].

Appel is a general language for expressing policies in a variety of application
domains with a clear separation between the core language and its specialisation
for concrete domains (e.g. telecommunications). Here we concentrate on the
core language; the semantics developed later maintains the separation between
core and application domain. As Appel is designed for end users rather than
administrators the style of Appel is closer to natural language allowing policies
to be more readily formulated and understood by ordinary users. To aid this, a
wizard has been presented to allow users to formulate policies [4].

So far, there has not been a formal semantics for Appel – one aspect that
this work is addressing. Let us consider the following syntax:
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policy ::= pol rule group | pol rule group policy
pol rule group ::= polrule | pol rule group op pol rule group
op ::= g(conditions) | u | par | seq
polrule ::= [triggers] [conditions] actions
triggers ::= trigger | triggers or triggers
conditions ::= condition | not conditions |

conditions or conditions | conditions and conditions
actions ::= action | actions actionop actions
actionop ::= and | or | andthen | orelse

Trigger and action are domain specific atoms. Condition is either a domain
specific or a more generic (e.g. time) predicate.

A policy consists of a number of policy rules. The applicability of a rule de-
pends on whether its trigger has occurred and whether its conditions are satisfied.
Policy rules may be grouped using a number of operators (sequential, parallel,
guarded and unguarded choice) – we will discuss details when formalising their
semantics.

A policy rule consists of an optional trigger, an optional condition, and an
action. The core language defines the structure but not the details of these, these
are defined in specific application domains. This allows the core language to be
used for different purposes.

Triggers are caused by external events. Triggers may be combined using and
and or, with the obvious meaning that both or either must occur. Conditions
may be combined with and, or and not with the expected meaning. A condition
expresses properties of the state and of the trigger parameters. Finally, actions
have an effect on the system in which the policies are applied. A few operators
have been defined to create composite actions (again, we discuss details when
considering the formal semantics).

2.2 A Fragment of the Distributed States Temporal Logic

ΔDSTL(x) is an extension of temporal logic to deal with global applications: it
includes modalities to localize properties to system components, an operator to
deal with events, and temporal modalities à la Unity [8,9]. For instance, one may
say that event Δq (q becomes true) occurring in component m when property p
holds, entails that properties q and r hold in future states of components n and
m, respectively: m (p ∧ Δq) leads to n r ∧ m s.

In this paper we need the following fragment of the logic:

F ::= A | false | ΔA | ∼ F | F ∧ F ′ | mF

φ ::= ∃x̄F | F leads to F ′ | F because F ′

where: A is an atom, ΔA is an event, and mF is a located formula1. A formula
φ can be an invariant, a formula constraining the future, or a formula constrain-
ing the past: operator leads to expresses a liveness condition, F is eventually
1 Here we consider only one component, m. The spatial features will be helpful when

considering “full Appel” that distributes policies to several sites.
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followed by F ′; because expresses a safety condition, and says that F has been
preceded by F ′.

For the sake of readability, we leave universal quantification implicit, and
make explicit existential quantifiers, when needed, i.e. in the case of invariants
∃x̄F . The intended meaning of a temporal formula is that a formula is univer-
sally quantified over all values of the variables appearing in its premises, and
existentially quantified on the remaining variables.

We now show the semantics. Let C be a computation, i.e. a sequence of states.
Let S be the set of C’s states: s, s′ are states in S and ds, ds′ are distributed states
in 2S 2. Moreover, let S be totally ordered by ≥, the reflexive and transitive
closure of the next state relation. These relations are extended as follows to
2S × 2S: ds follows (precedes) ds′ iff for each s ∈ ds there exists s′ ∈ ds′ with
s ≥ s′ (≤), and for each s′ ∈ ds′ there exists s ∈ ds with s′ ≤ s (≥); ds i–
precedes (immediately precedes) ds′ iff for each s ∈ ds there exists s′ ∈ ds′ with
next(s, s′) and for each s′ ∈ ds′ there exists s ∈ ds with next(s, s′). Let ϑx̄ be a
grounding substitution for the (tuple of) variables x̄, ϑF for the variables in F ,
and Fϑ the application of substitution ϑ to F . We say:

C |= ∃x̄F iff ∀ϑF\x̄ each ds |= FϑF\x̄ϑx̄ for some ϑx̄

C |= F leads to G iff ∀ϑF each ds |= FϑF is followed by a ds′ |= GϑF ϑG\F

for some ϑG\F

C |= F because G iff ∀ϑF each ds |= FϑF is preceded by a ds′ |= GϑF ϑG\F

for some ϑG\F

ds |= A iff each s ∈ ds |= A

ds 	|= false

ds |=∼ F iff ds 	|= F

ds |= F ∧ F ′ iff ds |= F and ds |= F ′

ds |= ΔA iff ds |= A and for ds′ i–preceding ds, ds′ |=∼ A

ds |= mF iff there exists s ∈ ds such that {s} |= F

For instance, the following computation fragment satisfies p leads to q:

→ . → p → . → . → q → . → p → q → . → . → . → p ∧ q → .

and → . → p∧q → . → . → r∧s → . → . satisfies both m(p∧q) leads to m(r∧s)
and mp∧mq leads to mr ∧ms. Only the latter formula is also satisfied by any
of the following:

→ . → p ∧ q → . → . → r → s → . → .

→ . → p → . → q → . → . → r → s → . → .

→ .p → . → r → . → q → . → s → . → .

2 In the full logic, these subset can contain states of several components, hence the
name.
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since a distributed state can be composed of distinguished and possibly non
adjacent states. As a further example, the formulae m(p∧ ∼ p) and p∧ ∼ p are
false, while any ds containing at least a state satisfying p and a state satisfying
∼ p satisfies mp ∧ m(∼ p). On the contrary, m(p ∨ q) is equivalent to mp ∨ mq.

Some rules of the logic follows. All rules hold both for leads to and for
because: we abstract the operator by op. Rule CC applies when formulae G
and G′ are located, i.e. prefixed by m, or composed of located formulae.

CC F op G F ′
op G′

F ∧ F ′
op G ∧ G′ PD F op G F ′

op G

F ∨ F ′
op G

E
F op false

∼ F

SW F ′ → F F op G G → G′

F ′
op G′ TR F op G G op H

F op H
I: F op F

The logic comes with MaRK, a proof assistant that partially automates the
verification process and is a valuable tool supporting the proof process, making
it feasible to avoid error prone “by hand” arguments [11].

3 ΔDSTL(x) Semantics for APPEL

The semantics will be developed in two steps: first of all we define rules for the
interpretation of a policy rule, then we consider combining policy rules.

3.1 Semantics for a Policy Rule

Let us recall that a policy rule is essentially a triple (triggers, conditions, actions),
where triggers is either a single trigger or a combination of a number of them.
The same holds for conditions and actions. Also recall that triggers and actions
are optional.

Let us define functions M, C and T , which will map (elements of) a policy
rule into a set of ΔDSTL(x) formulae in 2φ.
What is a trigger? Assume t ∈ trigger and ts ∈ triggers.

T [[ε]] = true
T [[t]] = Δt
T [[ts or ts′]] = T [[ts]] ∨ T [[ts′]]

What is a condition? Assume c ∈ condition and cs ∈ conditions.
C[[ε]] = true
C[[c]] = c
C[[cs or cs′]] = C[[cs]] ∨ C[[cs′]]
C[[cs and cs′]] = C[[cs]] ∧ C[[cs′]]

More complicated, what is the meaning of an action? And furthermore what does
it mean to compose actions? We note that actions can succeed and fail, which
is important in the context of composing operations. Of course what exactly it
means for an action to succeed or fail is dependent on the domain and specifics
of the operation. As we are considering the semantics for the core language, we
strive to stay clear of the domain specifics here. In order to capture the difference
of success and failure we define two functions:
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S, F : actions → φ × 2φ

The first element in the resulting pair is a formula describing the success or failure
of the action, the second element is a (possibly empty) set of side conditions
that are imposing further restrictions on the first element. These extra formulae
capture the rather intricate dependencies of executing an action depending on
success/failure of a previous one that arise with some of the operators. Hence,
for a simple action a ∈ action we gain:

S[[a]] = 〈ms(a), ∅〉 and F [[a]] = 〈mf(a), ∅〉

Irrespective of the domain, it seems sensible to expect that an action either
succeeds or fails, but never does both: s(a) ⊕ f(a). Let us postpone discussion
of the details of S and F for a moment. In the following, assume a ∈ action and
as ∈ actions. We now have all the parts to define the meaning of a policy rule
as a function M : triggers× conditions×actions → 2φ. Let S[[as]] = 〈hsa, scsa〉
and F [[as]] = 〈hfa, scfa〉, then:

M[[ts cs as]] = {m(T [[ts]] ∧ C[[cs]]) leads to hsa ∨ hfa} ∪ {scsa} ∪ {scfa}

The informal semantics for the action operators is as follows [7]:

and: This specifies that the policy should lead to the execution of both actions in
either order. This can be implemented by executing the actions in a specific
order or in parallel.

andthen: This is a stronger version of and, since the first action must precede
the second in any execution.

or: This specifies that either one of the actions should be taken.
orelse: This is the or operator with a prescribed order. It means that a user

feels more strongly about the first action specified.

Let S[[As]] = 〈hsa, scsa〉, S[[Bs]] = 〈hsb, scsb〉, F [[As]] = 〈hfa, scfa〉, F [[Bs]] =
〈hfb, scfb〉, then

S[[As and Bs]] = 〈hsa ∧ hsb, scsa ∪ scsb〉
S[[As or Bs]] = 〈hsa ∨ hsb, scsa ∪ scsb〉
S[[As andthen Bs]] = 〈hsa ∧ hsb, hsb because hsa ∪ scsa ∪ scsb〉
S[[As orelse Bs]] = 〈hsa ∨ hsb, hsb because hfa ∪ scsa ∪ scsb ∪ scfa〉

and
F [[As and Bs]] = 〈hfa ∨ hfb, scfa ∪ scfb〉
F [[As or Bs]] = 〈hfa ∧ hfb, scfa ∪ scfb〉
F [[As andthen Bs]] = 〈hfa ∨ hfb, hfb because hsa ∪ scfa ∪ scfb ∪ scsa〉
F [[As orelse Bs]] = 〈hfa ∧ hfb, hfb because hfa ∪ scfa ∪ scfb〉

Let us consider an example, S[[(a orelse b) orelse c]], with a, b, c ∈ action.
S[[(a orelse b) orelse c]]

S[[a orelse b]]
S[[a]] = 〈ms(a), ∅〉
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S[[b]] = 〈ms(b), ∅〉
F [[a]] = 〈mf(a), ∅〉

= 〈ms(a) ∨ ms(b), ms(b) because mf(a)〉
S[[c]] = 〈s(c), ∅〉
F [[a orelse b]]

F [[a]] = 〈mf(a), ∅〉
F [[b]] = 〈mf(b), ∅〉

= 〈mf(a) ∧ mf(b), mf(b) because mf(a)〉
= 〈ms(a) ∨ ms(b) ∨ ms(c),
{ms(b)because mf(a), ms(c) because mf(a)∧mf(b), mf(b) because mf(a)}〉

3.2 Semantics for a Policy Rule Group

A policy rule group is the composition of a number of policy rules. The Ap-

pel language provides a number of operators to compose policy rules with the
following informal semantics [7]:

g(condition): When two policy rules are joined by the guarded choice operator,
the execution engine will first evaluate the nested condition. If the guard
evaluates to true, the first of the two rules will be applied, otherwise the
second. Clearly once the guard has been evaluated it is necessary to decide
whether the individual rule is applicable. Once a guarded choice has been
made, it is not undone even if the resulting rule is not followed.

u: Unguarded choice provides more flexibility, as both parts will be tested for
applicability. If only one of the two policy rules is applicable, this will be
chosen. If both are applicable, the system can choose one at random.

seq: Sequential composition allows the rules to be enforced in the specified or-
der. That is we traverse the structure, determining whether the first rule
is applicable. If so we apply the first rule, otherwise we check the second
rule. Note that the second rule will only be checked if the first rule is not
applicable.

par: Parallel composition of two rules allows for a user to express an indifference
with respect to the order of two rules. Both rules are applied, but the order
in which this is done is not important.

To define function G, giving semantics to a policy group, we need two auxiliary
functions. The first one expresses the weakest precondition for a policy rule group
to be applicable. Let (t, c, a) ∈ polrule and ps ∈ pol rule group:

WP [[(t, c, a)]] = c
WP [[ps1 seq ps2]] = WP[[ps1]] ∨ WP[[ps2]]
WP [[ps1 par ps2]] = WP [[ps1]] ∨ WP[[ps2]]
WP [[ps1 g(c) ps2]] = (c ∧ WP[[ps1]]) ∨ (∼ c ∧ WP [[ps2]])
WP [[ps1 u ps2]] = WP [[ps1]] ∨ WP[[ps2]]

The second auxiliary function is a syntactic transformation to substitute the
conditions in the policies:

d((t, c, a), x) = (t, x, a)
d(ps1 op ps2, x) = d(ps1, x) op d(ps2, x)
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We can now define G : policy rule group → 2φ. Here first, second and either
are fresh predicates. Predicate pick is randomly set.

G[[(t, c, a)]] = M[[(t, c, a)]]
G[[ps1 seq ps2]] =

WP [[ps1]] ←→ first
∼ WP[[ps1]] ∧ WP [[ps2]] ←→ second
G[[d(ps1, f irst)]]
G[[d(ps2, second)]]

G[[ps1 par ps2]] =
G[[ps1]]
G[[ps2]]

G[[ps1 g(c) ps2]] =
c ∧ WP [[ps1]] ←→ first
∼ c ∧ WP [[ps2]] ←→ second
G[[d(ps1, f irst)]]
G[[d(ps2, second)]]

G[[ps1 u ps2]] =
WP [[ps1]]∧ ∼ WP [[ps2]] ←→ first
WP [[ps2]]∧ ∼ WP [[ps1]] ←→ second
WP [[ps1]] ∧ WP[[ps2]] ←→ either
G[[d(ps1, f irst ∨ (either ∧ pick))]]
G[[d(ps2, second ∨ (either∧ ∼ pick))]]

3.3 The Else Operator

The example in the following section originally made use of the else operator in
P2 and P3. Since it is only syntactic sugar, we are not adding it to the language
presented earlier, but rather show how it can be rewritten into the considered
fragment.

The informal description of else is that it behaves like or unless it occurs
at the top level. So if it occurs at the top level, if trigger and condition then
a1 else a2 is equivalent to two rules combined with a guarded choice where the
condition is acting as guard, i.e. trigger then a1 g(condition) trigger then a2.

If the condition is empty or else occurs below the top level it can simply be
replaced with or.

3.4 A Non–trivial Example

We will here study Example 5.7 from [7] with the purpose of showing the formal
semantics at work. The purpose of the policies is to forward an incoming call
when the recipient is busy. Otherwise, if not answered within 5 seconds, the call
should be forwarded in a way that depends on the caller: calls from “acme” or
“tom” should be forwarded to the office. If once more unanswered, the call goes
to the recipient’s mobile. Any other call should be forwarded home. In any case,
business calls during office hours should be logged as such, and other calls as
“out of hours” calls.
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The policy is expressed by the policy group P1 seq (P2 par P3), where:

P_1 = when call
if busy
do forward_to(vm)

P2 = P2a g(c2) P2b with:

c_2 = if not caller(acme) and not caller(tom)
P_2a = when not_answered(5)

do forward_to(home)
P_2b = when not_answered(5)

do forward_to(office)
orelse

do forward_to(mobile)

P3 = P3a g(c3) P3b with:

c_3 = if call_type(business) and calltime(h) and inbusinesshours(h)
P_3a = when call

do log(office_hours_call)
P_3b = when call

do log(out_of_hours_call)

So, following the definitions3 , we get
G[[P1 seq ((P2a g(c2) P2b) par (P3a g(c3) P3b))]] =

busy ←→ first

∼ busy ←→ second

m(Δcall ∧ first) leads to ms(forward to(vm)) ∨ mf(forward to(vm))

∼ caller(acme)∧ ∼ caller(tom) ∧ second ←→ first′

(caller(acme) ∨ caller(tom)) ∧ second ←→ second′

m(Δnot answered(5)∧first′) leads to ms(forward to(home))∨mf(forward to(home))

m(Δnot answered(5) ∧ second′) leads to

(ms(forward to(office)) ∨ ms(forward to(mobile)))

∨ (mf(forward to(office)) ∧ mf(forward to(mobile)))

ms(forward to(mobile)) because mf(forward to(office))

call type(business) ∧ calltime(h) ∧ inbusinesshours(h) ∧ second ←→ first′′

∼ (call type(business) ∧ calltime(h) ∧ inbusinesshours(h)) ∧ second ←→ second′′

m(Δcall ∧ first′′) leads to ms(log(office hours call)) ∨ mf(log(office hours call))
m(Δcall∧second′′) leads to ms(log(out of hours call))∨mf(log(out of hours call))

Remark 1. We model the application of two or more policies as an atomic step,
independently of the fact that the policies are applied concurrently or in se-
quence. We only distinguish between before and after their application. To this
purpose, we consider all predicates to be stable, including those describing the
success and failure of an action. Stability means that once a predicate becomes
true it stays so, and is related to the following rule: F leads to mG ∧ mG′

F leads to m(G ∧ G′)

3 From now on, we will represent sets of formulae as lists, without brackets.
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This rule holds only when G and G′ are stable. Since we are only interested in de-
tecting conflict between actions, the stability assumption is reasonable. Indeed,
the execution of an action does not cancel the fact that another action has been
executed. Moreover, stability does not hinder the detection of situations where
an action is executed when some conflicting conditions hold in the domain. In
other words, we do not need to define the semantics of the actions and look at
the state transformation caused by their execution. Finally, note that stability
is preserved by conjunction and disjunction.

4 Dealing with Policy Conflicts

A conflict arises when, as a result of the policy application, two actions are
executed, and they are defined to be conflicting in the domain description. A
conflict arises also when a state is reached where a pair of conflicting predicates
hold (these can be a predicate and its negation, or predicates defined to be
conflicting in the domain description).
We can distinguish two types of conflict:

– actual conflict: from the policy theory and the domain description, we derive
true leads to conflict. This means that the policy as it is gives raise to a
conflict.

– possible conflict: from the policy theory and the domain description, we
derive true leads to disjunction, and one of the disjuncts is a conflict. A
typical case is when the disjunction arises from two actions, like m((s(a) ∨
f(a)) ∧ (s(b) ∨ f(b))). Distributing, one sees immediately that the conflict
s(a) ∧ s(b) may be avoided because one of the actions fails.

To introduce a further kind of conflict, we look at the policies in Example 5.1 of
[6]:

P1 = if user(x) and if admin(x) do allow(x)
P2 = if user(Joe) do deny(Joe)

There is also a piece of domain information: admin(Joe). Also, we know from the
domain description that actions allow and deny are conflicting, i.e., s(allow(x))∧
s(deny(x)) → conflict . To detect conflicts, we first express the rules in the logic:

G[[P1]] = m(user(x) ∧ admin(x)) leads to ms(allow(x)) ∨ mf(allow(x))
G[[P2]] = m user(Joe) leads to ms(deny(Joe)) ∨ mf(deny(Joe))

and then we develop the following proof:

G[[P1]] admin(Joe)

m user(Joe) leads to ms(allow(Joe)) ∨ mf(allow(Joe)) G[[P2]]

m user(Joe) leads to

m(s(allow(Joe)) ∨ f(allow(Joe))) ∧ m(s(deny(Joe)) ∨ f(deny(Joe)))
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We cannot go further. That is, we have not actually found a possible conflict, but
we have discovered a potential one: only if the domain description is extended
to satisfy the premise, i.e. if user(Joe) is stated, the conflict arises.

A systematic way to find all the interesting facts that might be added to
the domain description and possibly generate (potential) conflicts, is to take
finite consistent subsets of the Herbrand Base (HB) of the theory obtained from
the policies and the domain description. The HB of a theory is the set of all
ground atoms which can be constructed using the ground terms and the predicate
symbols from the language fragment used to define the theory itself4. Since
triggers and actions are not interesting extensions of the domain description, we
restrict the HB to the atoms built using the predicates symbols in the conditions.

In our example, we have
HB = {admin(Joe), user(Joe)}

Hence we can go a step further:
m(user(Joe) ∧ admin(Joe)) leads to

m(s(allow(Joe)) ∨ f(allow(Joe))) ∧ m(s(deny(Joe)) ∨ f(deny(Joe))) HB
true leads to m((s(allow(Joe)) ∨ f(allow(Joe))) ∧ (s(deny(Joe)) ∨ f(deny(Joe))))

Distributing the conjunction we get a typical case of possible conflict. Since the
conflict is derived in the theory extended with HB, we consider it to be potential.

In the following example, we consider a slight variant on the previous:

G[[P3]] = m(user(x)∧admin(x)∧daytime) leads to ms(allow(x))∨mf(allow(x))
G[[P4]] = m(user(Joe)∧nighttime) leads to ms(deny(Joe))∨mf(deny(Joe))

and apply the same the proof pattern:

user(Joe) ∧ admin(Joe) G[[P3]]

m daytime leads to

m s(allow(Joe)) ∨ m f(allow(Joe))

user(Joe) G[[P4]]

m nighttime leads to

m s(deny(Joe)) ∨ m f(deny(Joe))

m daytime ∧ m nighttime leads to

m(s(allow(Joe)) ∨ f(allow(Joe))) ∧ m(s(deny(Joe)) ∨ f(deny(Joe)))

One could factorize m, but this is not the point. To detect a potential conflict
we would need to reduce the premise to true, by exploiting the HB. However,
any consistent subset of HB contains either daytime or nighttime, but not both
of them. Hence it is not possible to simplify to true.

5 Discussion

The above method allows to detect conflicts. However, which conflict exactly is
being detected depends on the definitions of the conflict ‘rules’. In particular
we can distinguish between two types of conflict rules that allow to detect two
distinct types of conflict: conflicts between two or more policies and conflict
between a policy and the system (in the absence of other policies).
4 The formal definition of HB, in particular for the temporal case, states a set of re-

quirements on the form of the theory (e.g. clausal, skolemized). This form is equiv-
alent to that of the theories obtained from Appel policies.
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Considering the relation between feature interaction and policy conflict, we
can draw parallels with features. When considering features we can also find
problems when a feature interacts with the system (that is in the absence of other
features) – traditionally these have been considered as bugs. Feature interaction
work is always based on the assumption that the individual features on their own
(of course the base system is always present) work as expected and problems
occur when more than one feature is added to the system simultaneously.
Let us consider the following example:

[[P1]] = daytime leads to s(allow)
[[P2]] = lunchtime leads to s(blacklist)

daytime and lunchtime are overlapping, that is they can both hold at the same
time; blacklist is an action.

In the light of the previous, we could say that a policy conflict is clearly a
conflict between a number of policies and the problem does not occur if only
one policy is present. Let us first investigate this in more detail. To detect this
type of conflict, we do not require a partial specification of the actions. It is
sufficient to say that s(a) and s(b) lead to a conflict, as we have indeed done in
the previous section.

If we consider the blacklisting example at hand, the definition of conflict here
would be s(allow) ∧ s(blacklist) → conflict. Adding the domain dependent
information lunchtime → daytime, we detect the potential conflict.

In this case we do not model the fact that an action might change the value of
a predicate, say blacklisted; we also do not model the fact that predicates might
change “miracleously” (that is by other actions in the system or spontaneously).
In the light of this we can see predicates in the precondition as stable.

On the other hand, a policy interacting in an undesired way with the system
(in the absence of other policies) is also an interesting case to consider. It might
make less sense to speak about a bug here, after all policies are not implementa-
tions of system components, but rather high level descriptions of how the system
should behave. Our method allows also to detect these, however more detail and a
different definition of the conflict rules is required. The conflict rules will include
a notion of state variables and the actions need to be specified somewhat. For the
example on blacklisting, this means that we know that s(blacklist) → blacklisted,
that is the action leads to a change of the predicate. Our definition of conflict then
is blacklisted∧ s(allow) → conflict. It should be obvious that this conflict exists
in the absence of P2, and indeed we can detect it.

In this latter case each action comes with a (possibly empty) list of conflicting
states, while in the former each action comes with a list of conflicting actions.

One further aspect to consider, and this is again based on experience in feature
interaction, is the question as to how many policies are required to generate a
conflict. In feature interaction there is only one example for a true three-way
interaction, and that is quite contrived.

In some sense this question is important, as the definition of conflict could be
done considering only conflicting pairs if the same holds for policies. Note that
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it only influences the definition of conflict rules, and thus is more important as
a design guideline.

6 Related Work

Of particular relevance is the work on policy conflict: policies may contradict
since they may be set by different organisations or at different levels in the same
organisation. Surprisingly, there does not appear to have been much work on
policy conflicts. [12] recognises but does not address conflicts that arise in policy-
driven adaptation mechanisms. [13] aims to define hierarchical policies such that,
by definition, the subordinate policies cannot conflict. Conflicts are still possible
if one policy in the hierarchy is changed. The use of meta-policies (policies about
policies) is proposed as a solution, e.g. in [1], where meta-policy checks are
applied when policies are specified and when they are executed. Similar ideas,
where predefined rules and good understanding of the domain allow resolution
of conflicts, are presented in [14]. In [15], it is anticipated that authorisation
policies may lead to conflict. This is resolved by providing a function to compare
policies and decide which should take precedence.

Further discussion on policy conflicts exist in the area of access control policies,
often using logics to model policies. A formal model that permits the enforce-
ment of complex access policies through composition is presented in [16]. Policies
are expressed as safety conditions in Interval Temporal Logic, and they can be
checked at run-time by the simulation tool Tempura. A fragment of first order
logic, more expressive than Datalog, is used in [17]. The restrictions are such
that no conflicts can arise. The logic permits to query the policy set for permis-
sible/prohibited actions, via a friendly interface for naive users. UCON, a recent
model of usage control that extends the concepts of access control has been
formalized in [18], using an extension of Lamport’s Temporal Logic of Actions.

Policy have also been applied to resource management in distributed system.
[19] discusses the need for both static and dynamic conflict detection and reso-
lution, and introduces computationally feasible algorithms to this purpose. The
underlying model exploits a deontic logic of permission, prohibition, and obliga-
tion, coupled with temporal classifiers that indicate the span of the mode. Our
approach is more flexible in expressing policies (it is not restricted to resource
management and OPI type rules) and broader in scope (the conflict detection
considers conflicting actions and not conflicting permissions applied to the same
action).

We have made comparisons to features and feature interaction in the discus-
sion; features stem from the telecommunications industry, but similar concepts
exist in other areas such as component-based systems. In general a feature is new
functionality to enhance a base system. Features are often developed in isolation
and each feature’s operation is tested with respect to the base system, and also
with common known features.

Unfortunately, when two or more features are added to a base system, unex-
pected behaviour might occur. This is caused by the features influencing each
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other, and is referred to as feature interaction. Feature interaction shows many
similarities to policy conflict, the main difference being the detail to which it has
been studied. A general discussion of the problem appears in [20]. The literature
on feature interaction is large [21,22].

7 Conclusion and Further Work

In this paper we have presented a formal semantics for a slightly reduced sub-
set of the Appel policy language, which sofar benefited only from an informal
semantics. We also presented a novel method to reason about policy conflict in
Appel policies based on the developed semantics.

The semantics is a temporal logic theory, and a conflict is found if we de-
rive, from the semantics of the policies, the formula true leads to conflict, a
liveness formula stating that a conflict will surely arise.

As stated earlier, policies that are being used in software systems will be
created and maintained by different parties, ranging from system administrators
to lay users. Clearly this scope of authors and their respective interest means
that inevitably policies will conflict with each other. An automatisation of our
approach, using the proof assistant MaRK [11], will lead to tool support for
detecting conflicts when policies are created or changed. Note that, due to the
basic structure of Appel terms, the size of the HB is not an issue.

To prove the absence of a conflict, we need to derive conflict because false,
which is a safety formula. To do so, we have to augment the semantic translation
with safety conditions. This is left to further investigation.

As Appel policies can be distributed in the networked system, we will enhance
our conflict detection technique to deal with the distributed situation. ΔDSTL(x)
lends itself naturally to this as the logic as concepts of location. For this it will
be required to model the location information provided in policies in the logic.
A further aspect is the enhancement of the formal semantics to include Appel’s
user preferences.
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Abstract. This paper shows how a machine-code Hoare logic is used
to lift reasoning from the tedious operational model of a machine lan-
guage to a manageable level of abstraction without making simplifying
assumptions. A Hoare logic is placed on top of a high-fidelity model of
the ARM instruction set. We show how the generality of ARM instruc-
tions is captured by specifications in the logic and how the logic can
be used to prove loops and procedures that traverse pointer-based data
structures. The presented work has been mechanised in the HOL4 the-
orem prover and is currently being used to verify ARM machine code
implementations of arithmetic and cryptographic operations.

1 Introduction

Although software runs on real machines like Intel, AMD, Sun, IBM, HP and
ARM processors, most current verification activity is performed using highly
simplified abstract models. For bug finding this is sensible, as simple models are
much more tractable than realistic models. However, the use of unrealistically
simple models is unsatisfactory for assurance of correctness, since correctness-
critical low level details will not have been taken into account. Details that are
frequently overlooked at the low levels include: finiteness of stacks and integers,
whether or not addresses need to be aligned and details of status bits.

Recently software verification based on realistically modelled software has re-
ceived an increasing amount of attention as tools become able to cope with
tedious operational models. Boyer and Yu [1] have done some impressive pio-
neering work on verification of programs for the Motorola MC68020, Tan and
Appel [2] verified memory safety of Sun’s SPARC machine code, and Hardin
et al. [3] verified machine code written for Rockwell Collins AAMP7G.

Curiously these efforts have made little use of advances in programming log-
ics, while efforts for proving programs written in realistically modelled low-level
programming languages such as C have [4]. The work of Tan and Appel is –
to the best of our knowledge – the only significant effort that places a general
programming logic on top of a realistically modelled machine language. Their
approach requires substantial effort to prove the soundness of applying the logic
to their SPARC model. Hardin et al. and Boyer and Yu verify machine-code
programs using a form of symbolic simulation of the bare operational semantics
of their respective processor models.

In an earlier paper we developed a general Hoare logic for realistically mod-
elled machine code [5]. In this paper the general logic is specialised to a detailed
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model of ARM machine code. This paper shows how the logic captures the de-
tails of ARM instructions and uses examples to illustrate how programs can be
proved using the logic. The examples present proofs of loops and procedures that
traverse recursive data structures.

This paper avoids a lengthy proof of soundness by simply instantiating ab-
breviating definitions for which sound proof rules have been proved in an earlier
paper [5]. All specifications and proofs presented in this paper have been me-
chanically checked using the HOL4 system [6]. The detailed ARM model at the
base of this work has been extracted from a proof of correctness of the instruction
set architecture of an ARM processor [7].

The remainder of this paper is organised as follows. Section 2 gives a brief
overview of the ARM machine language and specialises a Hoare logic to reason
about ARM machine code. Section 3 presents how the details of ARM instruc-
tions are captured by specifications in the new logic. Section 4 illustrates the use
of the logic through examples. Section 5 presents the ARM model and Section 6
concludes with a summary.

2 Hoare Triples for ARM

This section instantiates a Hoare logic to ARM machine code. We start with
a brief overview of ARM machine code and then describe how a general Hoare
logic is specialised to reason about ARM code.

2.1 ARM Machine Code

ARM machine code runs on ARM processors. These are widely used commer-
cial RISC processors often found in mobile phones. The resources that ARM
instructions access are, from a birds-eye-view, the following:

1. 16 registers are visible at any time: register 15 is the program counter and
the others are general purpose registers each holding a 32-bit value (by con-
vention register 13 is the stack pointer and register 14 is the link register);

2. 4 status bits: negative, zero, carry and overflow;
3. a 32-bit addressable memory with entries of 8 bits (or equivalently, a 30-bit

addressable memory with 32-bit entries).

This high-level view is sufficient for all 32-bit ARM instructions that do not
require interaction between operation modes. In some sense these are the in-
structions of the “programmer’s model” of ARM. The Hoare logic presented in
this paper is restricted to the subset of 32-bit ARM instructions that can exe-
cute equally regardless of operation mode (user, supervisor, etc). However the
operational model at the base of this work considers also the instructions that
do depend on the operation mode, for more details see Section 5.

Some interesting features of the 32-bit ARM instructions that have required
special attention are listed below.
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1. All instructions can be executed conditionally, i.e. instructions can be con-
figured to have no effect when the status bits fail to satisfy some condition.

2. All “data processing” instructions can update the status bits.
3. During execution, undefined instruction encodings or forbidden instruction

arguments can be encountered, in which case the subsequent behaviour is
implementation specific (modelled as unpredictable behaviour).

2.2 ARM Hoare Logic

This section specialises a general machine-code Hoare logic, presented earlier [5],
to ARM machine code. The general logic specifies the behaviour of collections of
code segments using Hoare triples that allow multiple entry points and multiple
exit points. In this paper we will mainly use specifications with a single entry
point and a single sequence of code:

{P} cs {Q1}h1 · · · {Qk}hk

Such specifications are to be read informally as follows: whenever P holds for the
current state and code sequence cs is executed, a state will be reached where one
of the postconditions Qi holds and the program counter will have been updated
by function hi.

Models of states usually consist of tuples of components. However, when defin-
ing the semantics of our general Hoare logic, we have found it more convenient to
represent states as sets of basic state elements that separately specify the values
of single pieces of the state. This allows states to be split and partitioned using
elementary set operations (e.g. ∪, ∩, −). The elements we need for ARM are:
Reg i x (specifies register i has value x), Mem j y (specifies memory location j
has value y), Status (sn, sz, sc, sv) (specifies the values of the four status flags),
Undef b (specifies whether an ‘undefined’ instruction has been encountered) and
Rest z (specifies the remainder of the state). Thus for ARM, each state will be
a set of the form1:

{ Reg 0 x0 , Reg 1 x1 , Reg 2 x2 , · · · , Reg 15 x15 ,
Mem 0 y0 , Mem 1 y1 , Mem 2 y2 , · · · , Mem (230−1) y(230−1) ,
Status (sn, sz, sc, sv), Undef b, Rest z }

Fox’s ARM model uses a tuple-like state representation, thus in order to spe-
cialise our general Hoare logic to his ARM model, we need a translation function
from Fox’s state representation to our set-based representation. Such a trans-
lation is defined as follows. Let reg a s extract the value of register a from
state s, mem a s extract the value of memory location a from s and status
extract the value of the four status bits from s. Also let s.undefined indicate
whether s is considered as a state from which unpredictable behavior may occur

1 Numerals denote both bit strings and natural numbers. Type annotations in the
syntax of HOL4: Reg (i:word4) (x:word32) and Mem (j:word30) (y:word32).
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and let hidden project the remaining part of an ARM state, i.e. the part that is
not observable by reg, mem, status and undefined. We can then define:

arm2set(s) = { Reg a (reg a s) | any a } ∪
{ Mem a (mem a s) | any a } ∪
{ Status (status s), Undef s.undefined, Rest (hidden s) }

The translation does not loose any information and therefore has an inverse
set2arm such that ∀s. set2arm(arm2set(s)) = s.

The general theory is formally specialised to reason about ARM machine code
by instantiating a 6-tuple (Σ, α, β, next, pc, inst) that parametrises the general
theory. Here Σ is the set of states, next is a next-state function next : Σ → Σ,
and pc : α → Σ → B and inst : α × β → Σ → B are elementary assertions over
states. The general theory is instantiated to the ARM model by setting Σ to be
the range of arm2set, α to be the set of 30-bit addresses and β to be the set
of 32-bit words. The next-state function is defined using the next-state function
for the ARM model (next arm) and translations arm2set and set2arm.

next(s) = arm2set(next arm(set2arm(s)))

In what follows addr is a function that transforms a 30-bit address to a 32-
bit (word-aligned) address by appending two zeros as new least significant bits.
The program-counter assertion pc(p) is defined to check that a subset of a state
implies that the program counter is set to p and that the state is well-defined.
The instruction assertion inst(p, c) makes sure that instruction c is stored in
the location which is executed when the program counter has value p. These
assertions are predicates on sets of basic state elements: pc(p) is true of a set if it
is { Reg 15 (addr(p)), Undef F } and inst(p, c) is true of a set if it is { Mem p x }.
Thus:

pc(p) = λs. s = { Reg 15 (addr(p)), Undef F }
inst(p, x) = λs. s = { Mem p x }

3 Instruction Specifications

The previous section discussed how we instantiate our abstract Hoare logic to
ARM machine code. This section shows how the new Hoare triples capture the
behaviour of basic ARM instructions. We start by explaining how a simple speci-
fication relates to the ARM model and then go on to show how the full generality
of ARM instructions is captured by the new Hoare triples.

Consider the following specification of SUB a,a,#1 (subtract by one).

{R a x}
SUB a,a,#1

+1{R a (x−1)}+1

This specification states that register a is decremented by one and that the pro-
gram counter is incremented by one. Let R r x = λs. (s = {Reg r x}). In terms
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of the set-based state representation the specification ought to be read as fol-
lows: whenever SUB a,a,#1 is executed, the part of the state corresponding to
{Reg a x} is updated to {Reg a (x−1)} and simultaneously the part correspond-
ing to the program counter is updated by function +1 (abbreviates λn. n+1),
i.e. the subset corresponding to {Reg 15 (addr(p)), Undef F}, for some value p,
becomes {Reg 15 (addr(p+1)), Undef F}.

In terms of the ARM model, the above specification is formally equivalent to
the following. Let run(k, s) be a function that applies next arm k times to state
s, and let �·� be a function that produces the 32-bit encoding of a given ARM
instruction. Also let frame = { Reg a x | any x } ∪ { Reg 15 x | any x }.

∀s p. (reg a s = x) ∧ (reg 15 s = addr(p)) ∧ (a 	= 15) ∧
(mem p s = �SUB a,a,#1�) ∧ ¬s.undefined ⇒
∃k. let s′ = run(k, s) in

(reg a s′ = x−1) ∧ (reg 15 s′ = addr(p+1)) ∧ (a 	= 15) ∧
(mem p s′ = �SUB a,a,#1�) ∧ ¬s′.undefined ∧
(arm2set(s) − frame = arm2set(s′) − frame)

For most part this expansion contains no surprises: whenever registers a is x,
the program counter points at an encoding of SUB a,a,#1 and the state is well-
defined, then register a is decremented, the program counter is updated by func-
tion +1 and the state remains well-defined. The interesting part of the above
specification is the last line. The last line states that the initial state is the same
as the result state, if one removes registers a and 15 from both states. The last
line specifies what is left unchanged, i.e. the scope of the operation.

The Hoare triples satisfy a frame rule similar to that of separation logic [8].
The frame rule uses a separating conjunction (∗), which we define as follows:
Define split s (u, v) to mean that the pair of sets (u, v) partitions set s, i.e.
split s (u, v)= (u ∪ v = s) ∧ (u ∩ v = ∅), and then define P ∗ Q to be true for
states that can be split such that P and Q are true for disjoint parts of the state:
P ∗ Q = λs. ∃u v. split s (u, v) ∧ P u ∧ Q v. The frame rule:

{P} c {Q}h

∀F. {P ∗ F} c {Q ∗ F}h

The frame rule can be used to expand the basic specification of SUB a,a,#1 to
say that the value of register b stays constant, if b is distinct from a:

{R a x ∗ R b y}
SUB a,a,#1

+1{R a (x−1) ∗ R b y}+1

The expansion of the extended specification is equal to the above expansion with
the inclusion of (reg b s = y) ∧ (a 	= b) ∧ (b 	= 15) for both s and s′. The sep-
arating conjunction implies necessary inequalities as a result of its requirement
of disjointness. We use ∗ as a basic building block in all our specifications.

The remainder of this section describes the generalisations that are made in
order to accommodate the full features of real ARM instructions.
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3.1 Conditional Execution

Every 32-bit ARM instruction can execute conditionally according to a condi-
tion code that is encoded in each instruction. The instruction is executed if the
condition associated with the given condition code is satisfied by the status bits.
If the condition is not satisfied then the instruction has no effect (other than
incrementing the program counter). The behavior of conditional execution is
captured by giving each instruction two specifications, one for the case when
it has an effect and one for the case when it has no effect. Let pass(c, z) as-
sert that bits z satisfy condition code c. Let ¬pass(c, z) be its negation. Let
S z = λs. (s = {Status z}).

{R a x ∗ S z ∗ pass(c, z)}
SUB c a,a,#1

+1{R a (x−1) ∗ S z}+1

{S z ∗ ¬pass(c, z)}
SUB c a,a,#1
+1{S z}+1

3.2 Status Bits

Most ARM instructions have a flag called the s-flag. When this flag is set,
executing the command will update the status bits. Let sub status(x, y) calculate
the value of the four status bits for the subtraction x−y.

{R a x ∗ S z ∗ pass(c, z)}
SUB c s a,a,#1

+1{R a (x−1) ∗ S (if s then sub status(x, 1) else z)}+1

3.3 Addressing Modes

The SUB instruction, used above, can of course do more than subtract by one.
It can subtract by any small (shifted/rotated) constant or a (shifted/rotated)
register value. The form of the second term in a subtraction is specified by
an addressing mode (for SUB: ARM Addressing Mode 1). Our specifications
parametrise the addressing mode as a variable m. The functions encode am1
and value am1 construct, respectively, the instruction encoding and second ar-
gument of an arithmetic operation for a given instance m of ARM Addressing
Mode 1. Examples:

{R a x}
SUB a,a,encode am1(m,a)

+1{R b (x−value am1(m, x))}+1

{R a x ∗ R b y}
SUB b,b,encode am1(m, a)

+1{R a x ∗ R b (y−value am1(m, x))}+1

Specifications, such as those shown below, can be produced, if we instantiate m
appropriately and rewrite using the definitions of encode am1 and value am1.

{R a x}
SUB a,a,#1

+1{R a (x−1)}+1

{R a x ∗ R b y}
SUB b,b,a

+1{R a x ∗ R b (y−x)}+1

{R a x ∗ R b y}
SUB b,b,a,LSL #5

+1{R a x ∗ R b (y−(x�5))}+1
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3.4 Aligned Addresses

A 32-bit address is word aligned if it is divisible by four. On ARM, memory ac-
cesses to word-sized entities generally result in rotations of the accessed words,
if the accessed address is not word aligned. In order to avoid cluttering specifi-
cations with details of word rotations, we specify word-aligned memory accesses
separately from the general case. The specification for aligned load-word LDR

requires no rotations. Let R′ r x assert that register r holds a word-aligned
address x, i.e. R′ r x = R r (addr(x)), and let M a x = λs. (s = {Mem a x}).

{R a z ∗ R′ b x ∗ M (address am2(m, x)) y}
LDR a,encode am2(m, b)

+1{R a y ∗ R′ b (writeback am2(m, x)) ∗ M (address am2(m, x)) y}+1

The above can be specialised to the following by instantiation of m:

{R a z ∗ R′ b x ∗ M x y}
LDR a,[b]

+1{R a y ∗ R′ b x ∗ M x y}+1

{R a z ∗ R′ b x ∗ M (x−1) y}
LDR a,[b,#-4]!

+1{R a y ∗ R′ b (x−1) ∗ M (x−1) y}+1

3.5 Branch Instructions

Branch instructions are given one postcondition for each exit point. The speci-
fication of a conditional relative branch:

{S z}
B c #k

+(k+2){S z ∗ pass(c, z)}+(k+2)

+1{S z ∗ ¬pass(c, z)}+1

The intuition for multiple postconditions is that one of the postconditions will
be reached. Whenever B c #k is executed, there will either be a jump of k + 2
instructions or a jump to the next instruction. The formal semantics is based on
disjunction, for details see our earlier paper [5].

3.6 Automation

The above specifications are rather hard to use in practice if addressing modes
and condition codes have to be instantiated by hand. We found it useful to
write an ML function that maps string representations of the instructions to
their respective instantiations of the general specifications. The instantiating
ML function was connected to an ML function that calculates the composition
of a given list of instruction specifications using the composition rule from our
earlier paper [5], e.g. the input ["LDR a,[b],#16","SUBS a,a,#1","BNE k"] gives:

{R a z ∗ R′ b x ∗ M x y ∗ S }
LDR a,[b],#16; SUBS a,a,#1; BNE #k

+(k+2){R a (y−1) ∗ R′ b (x+4) ∗ M x y ∗ S ∗ 〈y−1 	= 0〉}+(k+2)

+3{R a (y−1) ∗ R′ b (x+4) ∗ M x y ∗ S ∗ 〈y−1 = 0〉}+3
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Here the ML function treats x as a word-aligned address and hides the initial and
final value of the status bits using an underscore ( ) which denotes ‘some-value’
(formally is a postfix function: P = λs. ∃x. P x).

4 Case Studies

This section demonstrates how specifications from the previous section can be
reformulated and combined in order to prove specifications for ARM code with
loops, procedures and pointer-based data structures.

4.1 Factorial Program

As an initial example, we will show how loop rules can be proved and used. A
loop rule will be proved for a count-down loop and then used in the proof of the
following factorial program:

MOV b, #1 ; b := 1
L: MUL b, a, b ; b := a× b

SUBS a, a, #1 ; decrement a and update status bits
BNE L ; if a is nonzero then jump to L

This program stores the factorial of register a (modulo 232) in register b, if a is
initially non-zero. It calculates the factorial by executing a count-down loop:

b := 1; repeat { b := a× b; a := a - 1 } until (a=0)

Loop. A specification for a loop of the form “L: body; SUBS a,a,#1; BNE L” can
be devised using the specification of the combined effect of SUBS and BNE. For the
proof we will require that body has a specification of the following form. Let m
be the length of the code sequence body.

{Inv(x) ∗ R a x ∗ S ∗ 〈x 	= 0〉}
body

+m{Inv(x−1) ∗ R a x ∗ S }+m
(1)

The technique described in Section 3.6 can be used to construct a specification
for “SUBS a,a,#1; BNE #k”, which can be composed with (1) to give:

{Inv(x) ∗ R a x ∗ S ∗ 〈x 	= 0〉}
body; SUBS a,a,#1; BNE #k

+(m+k+3){Inv(x−1) ∗ R a (x−1) ∗ S ∗ 〈x−1 	= 0〉}+(m+k+3)

+(m+2){Inv(x−1) ∗ R a (x−1) ∗ S ∗ 〈x−1 = 0〉}+(m+2)

A loop is constructed if k is assigned value −(m+3), since the program counter
update is then +0, i.e. the program counter returns to its original value. With a
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few other simplifications we can reveal that the precondition is satisfied by each
jump to the top of the loop. Let < denote less-than over unsigned 32-bit words.

{Inv(x) ∗ R a x ∗ S ∗ 〈x 	= 0〉}
body; SUBS a,a,#1; BNE #-(m+3)

+0{∃z. Inv(z) ∗ R a z ∗ S ∗ 〈z 	= 0〉 ∗ 〈z < x〉}+0

+(m+2){Inv(0) ∗ R a 0 ∗ S }+(m+2)

Postconditions that describe a jump to a precondition, with some bounded
variant that decreases at each jump, can be removed since the loops they describe
will terminate and thus a different postconditions will eventually be reached [5].
The postcondition with update +0 is removed:

{Inv(x) ∗ R a x ∗ S ∗ 〈x 	= 0〉}
body; SUBS a,a,#1; BNE #-(m+3)

+(m+2){Inv(0) ∗ R a 0 ∗ S }+(m+2)
(2)

We have proved a loop rule: any code body and invariant Inv that satisfies
specification (1) will also satisfy specification (2).

Factorial. The factorial program is easily proved in case we can find a spec-
ification of MUL that fits specification (1) from above. Notions of factorials and
partial factorials are needed in order to create a suitable specification for MUL.
Let fac be the factorial function over natural numbers:

fac(n) =
{

1 if n = 0
n × fac(n−1) if n > 0

Let factorial and partial factorial (e.g. 5 × 4 × 3 = fac(5)/fac(2)) over 32-
bit words be defined using conversion to and from the natural numbers, w2n :
word32->num and n2w : num->word32.

x! = n2w(fac(w2n(x)))
y ·· x = n2w(fac(w2n(y))/fac(w2n(x)))

Notable features of the partial factorial (··) are that x ·· 0 = x! and y ·· y = 1
and (z ·· y) × y = z ·· (y−1), if y ≤ z and y 	= 0.

A specification for MUL can now be molded into the required form:

{R a x ∗ R b (z ·· x) ∗ S ∗ 〈x 	= 0〉}
MUL b,a,b

+1{R a x ∗ R b (z ·· (x−1)) ∗ S }+1

The loop rule from the previous section then gives the following result:

{R a x ∗ R b (z ·· x) ∗ S ∗ 〈x 	= 0〉}
MUL b,a,b; SUBS a,a,#1; BNE #-4
+3{R a 0 ∗ R b (z ·· 0) ∗ S }+3
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sum: CMP a,#0 ; compare a with 0
MOVEQ r15,r14 ; return, if a = 0
STR a,[r13,#-4]! ; push a
STR r14,[r13,#-4]! ; push link-register
LDR r14,[a] ; temp := node value
ADD s,s,r14 ; s := s + temp
LDR a,[a,#4] ; a := address of left
BL sum ; s := s + sum of a
LDR a,[r13,#4] ; a := original a
LDR a,[a,#8] ; a := address of right
BL sum ; s := s + sum of a
LDR r15,[r13],#8 ; pop two and return

Fig. 1. BINARY SUM: ARM code to sum the values at the nodes of a binary tree

Instantiating z to x and composing a specification for MOV at the front yields a
specification for the factorial program:

{R a x ∗ R b ∗ S ∗ 〈x 	= 0〉}
MOV b,#1; MUL b,a,b; SUBS a,a,#1; BNE #-4

+4{R a 0 ∗ R b x! ∗ S }+4

The final specification states that the program stores the factorial of register a
(modulo 232) in register b, if the initial value of register a was non-zero.

4.2 Sum of Nodes in Binary Tree

Next we illustrate the proof of a recursive procedure that sums the values stored
at the nodes of a binary tree. The implementation we prove is called BINARY SUM.
Its code is shown in Figure 1. BINARY SUM makes a depth-first pass through a
binary tree, where nodes are stored as blocks of three consecutive memory el-
ements: one 32-bit value and two aligned addresses pointing to the root of the
subtrees (called left and right). The procedure adds the sum of the tree with
root at address a into register s. When executing BINARY SUM on the tree de-
picted below, it adds the values 5, 2, 6, 1, 3, 8 to register s. The recursive calls
are realised by the BL instruction.

� �5

�

�

� �2

× ×6

× ×1

�

�

× �3

× ×8�

Binary Tree. The trees BINARY SUM traverses are modelled as trees that are
either empty (Leaf) or a branch (Node(x, l, r)). Each branch holds a 32-bit value x
and two subtrees l and r. The sum of such a tree is defined as follows:
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sum(Leaf) = 0
sum(Node(x, l, r)) = x + sum(l) + sum(r)

A predicate tree(x, t) is defined to assert that tree t is stored in memory
with its root at address x. For ease of presentation we require that subtrees are
stored in disjoint parts of the memory (which is implied by the occurrence of ∗
between the recursive assertions of tree). Here and throughout M ′ a x asserts
that memory location a holds aligned address x, i.e. M ′ a x = M a (addr(x)).

tree(a, Leaf) = 〈a = 0〉
tree(a, Node(x, l, r)) = ∃a1 a2. M a x ∗ M ′ (a+1) a1 ∗ M ′ (a+2) a2 ∗

tree(a1, l) ∗ tree(a2, r) ∗ 〈a 	= 0〉
The tree assertion allows us to prove that “LDR b,[a]; ADD s,s,b” adds the

value of a node, addressed by register a, to register s. Notice that the specification
must mention register b, since the value of register b is updated by this operation.

{R′ a x ∗ R s z ∗ tree(x, Node(y, l, r)) ∗ R b }
LDR b,[a]; ADD s,s,b

+2{R′ a x ∗ R s (z+y) ∗ tree(x, Node(y, l, r)) ∗ R b }+2

The above specification is a result of a composition of the specifications for LDR

and ADD, an application of the frame rule, and a reformulation that introduces
the existential quantifier hidden in tree(x, Node(y, l, r)).

Stack. BINARY SUM uses the stack to store local variables. In order to specify the
stack operations, a notion of a stack segment is formalised. On ARM processors
the stack is by convention descending, i.e. it grows towards lower addresses. The
stack pointer, register 13, holds the address of the top element of the stack.

A stack predicate is defined using two auxiliary definitions: ms(a, [x0; · · · ; xm])
specifies that the 32-bit words x0, · · · , xn are stored in sequence from address
a upwards in memory and blank(a, n) asserts that n memory locations from
address a downwards have ‘some value’. The stack predicate stack(sp, xs, n) is
defined to assert that the aligned address sp is stored in register 13, that xs is
the sequence of elements pushed onto the stack (above sp) and that there are n
unused slots on top of the descending stack (immediately beneath sp).

ms(a, [x0; x1; · · · ; xm]) = M a x0 ∗ M (a+1) x1 ∗ · · · ∗ M (a+m) xm

blank(a, n) = M a ∗ M (a−1) ∗ · · · ∗ M (a−(n−1))

stack(sp, xs, n) = R′ 13 sp ∗ ms(sp, xs) ∗ blank(sp−1, n)

The predicate blank is needed in the above definition in order to state how
much stack space is allowed to be used. As an example, consider the specification
for a stack push given below. The push instruction consumes one slot of stack
space. Here cons is defined by cons x0 [x1; · · · ; xn] = [x0; x1; · · · ; xn].

{R a x ∗ stack(sp, xs, n+1)}
STR a,[r13,#-4]!

+1{R a x ∗ stack(sp−1, cons x xs, n)}+1
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The verification of BINARY SUM requires the pushed elements to be separated
from the stack predicate at one point. The pushed elements can be extracted
using the following equivalence. Let [] denote an empty list.

stack(sp, xs, n) = ms(sp, xs) ∗ stack(sp, [], n)

Procedures. On ARM, procedures are by convention passed a return address
in register 14 to which they must jump on exit. The control-flow contract of a
procedure is enforced by a specification that requires the code to have a single
exit point that updates the program counter to the address passed in register 14.
If the program counter is initially p then the function λx.y updates the program
counter to y, since (λx.y) p = y.

{P ∗ R′ 14 y} code {Q ∗ R 14 }λx.y

BINARY SUM has the following procedure specification:

{R′ a x ∗ R b ∗ R s z ∗ S ∗
tree(x, t) ∗ stack(sp, [ ], 2 × depth(t)) ∗ R′ 14 y}

BINARY SUM

{R a ∗ R b ∗ R s (z + sum(t)) ∗ S ∗
tree(x, t) ∗ stack(sp, [ ], 2 × depth(t)) ∗ R 14 }λx.y

Let pre x t z y and post x t z be the pre- and postcondition from above.

Procedure Calls and Recursion. The specification for BINARY SUM is proved
using induction. We induct on depth(t) and assume that there is some code C
that executes recursive calls correctly for any t′ such that depth(t′) < depth(t).

∀t′. depth(t′) < depth(t) ⇒ ∀x z y. { pre x t′ z y } C { post x t′ z }λx.y

With this assumption we can derive specifications for the BL instruction which
perform the recursive calls in BINARY SUM. The specifications are constructed us-
ing the proof rule derived in our earlier paper [5]. The code in these specifications
is the union of the assumed code and the BL instruction:

{ pre x t′ z } BL #k ∪ C { post x t′ z }+1

The rest of the verification is simple: compose the specifications for each instruc-
tion of BINARY SUM in order to produce:

{ pre x t z y } BINARY SUM ∪ C { post x t z }λx.y

An application of the following instance of complete induction over the natural
numbers removes the imaginary code C and the assumption on t′.

∀t C. (∀t′. depth(t′) < depth(t) ⇒ ψ(t′, C)) ⇒ ψ(t, code ∪ C)
∀t. ψ(t, code)
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Tail-Recursion. BINARY SUM, proved above, was constructed with clarity of
presentation in mind. A good implementation would make use of the fact that
the second recursive call can be made into a tail-recursive call. The last two
instructions of BINARY SUM are the following.

BL sum ; s := s + sum of a
LDR r15,[r13],#8 ; pop two and return

These are turned tail-recursive by reversing the order as follows:

LDR r14,[r13],#8 ; restore stack and link register
B sum ; s := s + sum of a

The new code copies the return address of the stack into the link register (regis-
ter 14) rather than the program counter (register 15). It then performs a normal
branch to the top of the procedure.

The optimised variant of BINARY SUM is no harder to prove than the original
version, normal composition is used instead of the rule for procedure calls. One
can prove that the tail-recursive version requires only 2× ldepth(t) slots of stack
space during execution. ldepth is defined as follows.

ldepth(Leaf) = 0
ldepth(Node(x, l, r)) = max(ldepth(l)+1, ldepth(r))

5 ARM Model

In Section 2.2, a Hoare logic for ARM machine code was constructed by placing
a general Hoare logic on top of an operational model of the ARM instruction
set. This section gives a brief overview of the ARM model that was used.

In the model underlying the Hoare triples, the state space is represented as a
concrete HOL type (as opposed to a set of sets). The HOL type is a record type
with four fields: registers (a mapping from register names to 32-bit words), psrs
(a mapping from names of program status registers to 32-bit words), memory (a
mapping from 30-bit words to 32-bit words) and undefined (a boolean indicating
whether implementation specific behaviour follows from the current state).

The ARM Hoare triples only have access to 16 registers. However, the un-
derlying model includes all 37 registers of an ARM processor. System modes
have their own copies of some of the general purpose registers, thus the large
number of register in total. The conceptual layout of the actual register bank
is illustrated in Figure 2. The ARM Hoare triples convey the image of only 16
registers by presenting only the registers usable by the instructions of the current
operation mode (for any mode, in case the Rest element is not mentioned in the
precondition). This view of the registers is achieved by defining the functions
reg, status and hidden (used in the definition of arm2set) to project the values
of registers and status bits as viewed by the current operation mode, e.g. when
operating in supervisor mode (svc), reg 14 s denotes the value of register r14 svc,
reg 2 s is the value of register r2 and reg 8 s is the value of register r8 fiq.



Hoare Logic for ARM Machine Code 285

r13_und
r14_und

r13_irq
r14_irq

r13_abt
r14_abt

r13_svc
r14_svc

r13_fiq
r14_fiq

r12_fiq
r11_fiq
r10_fiq

r9_fiq
r8_fiq

r13
r14

r12
r11
r10
r9
r8

r6
r7

r5
r4
r3
r2
r1
r0

r15 (PC)

usable in user mode

system modes only

SPSR_undSPSR_irqSPSR_abtSPSR_svcSPSR_fiqCPSR

user mode fiq
mode

svc
mode

abort
mode

irq
mode

undefined
mode

NZCV unused I F mode

31 28 27 8 7 5 4 0

T

6

Fig. 2. ARM register banks and format of the Program Status Registers (PSRs)

The memory model deserves a comment, since a simple memory model is
adopted: it is assumed that only data transfer instructions (memory stores) can
alter the state of the memory i.e. the memory cannot be updated by the en-
vironment ; when loading an instruction from memory, instruction pre-fetching
(pipelining) is not considered; pre-fetch and data aborts are never raised i.e. it
is assumed that one can always successfully access any memory address. Fur-
thermore, input from the environment is not modelled i.e. it is assumed that
there are no hardware interrupts. The Hoare logic that was instantiated in Sec-
tion 2.2 can handle a more realistic model of memory, provided that it behaves
as described above, for the part of memory mentioned in the precondition.

The ARM model used here is a conservative extension of a previously reported
ARM model [7]. A well-understood path (by virtue of HOL theorems) exists
between the ARM Hoare triples and a detailed register-transfer-level model of
the hardware of an ARM processor. The path can be depicted as follows.

Data and temporal
abstraction

Data
abstraction

Hoare triple 
model

ARM ISA model 
(with memory)

ARM ISA model 
(stream based)

ARM6 model 
(stream based)arm2set

set2arm

6 Summary

In this paper we have placed a general machine-code Hoare logic on top of a de-
tailed model of the ARM machine language. By doing this we have constructed
a framework that lifts reasoning from the tedious operational model to a man-
ageable level. We have illustrated how specifications capture the generality of
ARM instructions and demonstrated the use of the framework on examples that
include loops, stacks, pointer data structures, procedures, procedural recursion
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and tail recursion. We have not yet applied the framework to large case studies,
but we believe we have a methodology and implemented tools that will scale.
Demonstrating this is the next phase of our research.
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Abstract. This paper discusses action abstraction in timed process al-
gebras. It is observed that the leading approaches to action abstraction
in timed process algebra all maintain the timing of actions, even if these
actions are abstracted from.

This paper presents a novel approach to action abstraction in timed
process algebras. Characteristic for this approach is that in abstracting
from an action, also its timing is abstracted from. We define an abstrac-
tion operator and a timed variant of rooted branching bisimilarity and
establish that this notion is an equivalence relation and a congruence.

1 Introduction

One of the main tools in analysing processes in a process-algebraic setting is
abstraction. Abstraction allows for the removal of information that is regarded
as unobservable (or irrelevant) for the verification purpose at hand. Abstraction
is introduced in the form of an action abstraction operator, called hiding, or in
the form of data abstraction through abstract interpretations. In action hiding,
certain action names are made anonymous and/or unobservable by replacing
them by a predefined silent step (also called internal action) denoted by τ .

In the field of untimed process algebra, there is reasonable consensus about
the properties of the silent step. In ACP-style process algebras [1] the notion of
(rooted) branching bisimilarity, as put forward by Van Glabbeek and Weijland in
[2,3], is mostly adopted. The few timed versions of rooted branching bisimilarity
found in the literature (see [4,5,6]) and of weak bisimilarity (see [7,8,9,10]) all
agree on maintaining the timing of actions, even if these actions are abstracted
from. In all of these approaches the passing of time by itself (i.e., without subse-
quent action execution or termination) can be observed. As a consequence, not
as many identifications between processes can be made as is desirable for verifi-
cation purposes. This hinders the verification of correctness of real-time systems
and therefore this situation needs to be improved.

In this paper, we study an action abstraction mechanism that not only ab-
stracts from an action, but also from its timing. We introduce an untimed silent
step into a timed process algebra. We define a timed version of rooted branching
bisimilarity based on this untimed silent step, show that it is an equivalence and

F. Arbab and M. Sirjani (Eds.): FSEN 2007, LNCS 4767, pp. 287–301, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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a congruence, and present a remarkably straightforward axiomatisation for this
notion of equivalence. We give a short account of the identifications between
processes that can be obtained using this equivalence. This is done by showing
simplifications of the PAR protocol using the notions of equivalence from the
literature and the notion introduced in this paper.

It should be mentioned that when studying timed process algebras (or timed
automata for that matter), one encounters a number of different interpretations
of the interaction between actions and time. There are the so-called two-phase
models, where the progress of time is modeled separately from action execution,
and there is the time-stamped setting, where time progress and action execution
are modeled together. Two-phase models are used in [11], and time-stamped
models are found in timed μCRL [12], for example. In this paper, we study timed
rooted branching bisimilarity in the context of an absolute time, time-stamped
model.

Structure. First, we introduce a simple timed process algebra with absolute
timing and a time-stamped model (Sect. 2). This process algebra serves as a
vehicle for our discussions on abstraction and equality of processes. It contains
primitives that are fundamental to virtually every timed process algebra. In
Sect. 3, we discuss the notions of timed rooted branching bisimilarity as they
are encountered in the literature. In Sect. 4, we adapt the timed process algebra
to incorporate our ideas for abstraction and equality for timed processes inter-
preted in a time-stamped model. In Sect. 5, we illustrate the consequences of our
definitions on the PAR protocol. In Sect. 6, we present axioms for timed strong
bisimilarity and timed rooted branching bisimilarity. In Sect. 7, we discuss the
possibilities and impossibilities of adapting our notions to other settings in timed
process algebra from the literature. Section 8 wraps up the paper.

2 The Universe of Discourse

In this section, we introduce a simple time-stamped process algebra without
abstraction. This process algebra serves well for a more formal exposition of our
discomfort with the existing ways of dealing with abstraction in timed process
algebra and for a discussion of the possible solutions. Also, this process algebra
will be used for the treatment of the chosen solution.

The timed process algebra presented in this section, BSP@
abs (for Basic Se-

quential Processes with absolute time and time-stamping), is an extension of
the process theory BSP from [13] with absolute-timing and time-stamping (both
syntactically and semantically) inspired by the process algebra timed μCRL [12]1.

We first present the starting point of our deliberations. We assume a set Time
that is totally ordered by ≤ with smallest element 0 that represents the time
domain2. We also assume a set Act of actions, not containing τ .
1 Note that in the original semantics of timed μCRL [14], a two-phase model is used

with states consisting of a closed process term and a moment in time, and separate
action transitions a→ and a time transition ι→.

2 It does not matter for the treatment whether this time domain is discrete or dense.



Action Abstraction in Timed Process Algebra 289

The signature of the process algebra BSP@
abs consists of the following constants

and operators:

– for each t ∈ Time, a timed deadlock constant 0@t. The process 0@t idles up
to time t and then deadlocks.

– for each t ∈ Time, a timed termination constant 1@t. The process 1@t idles
up to time t and then terminates successfully.

– for each a ∈ Act and t ∈ Time, an action prefix operator a@t._. The process
a@t.p represents the process that idles up to time t, executes action a at that
time and after that behaves as process p insofar time allows.

– the alternative-composition operator _ + _. The process p + q represents
the nondeterministic choice between the processes p and q. The choice is
resolved by the execution of an action or an occurrence of a termination.

– for each t ∈ Time, a time-initialisation operator t � _. The process t � p
is p limited to those alternatives that execute their first action not before
time t.

Terms can be constructed using variables and the elements from the signature.
Closed terms are terms in which no variables occur. We decide to allow the
execution of more than one action at the same moment of time (in some order).
There are no fundamental reasons for this choice: we could equally well have
adopted the choice to disallow such urgent actions.

Next, we provide a structured operational semantics for the closed terms from
this process algebra. We define the following transition relations and predicates:

– a time-stamped action-transition relation _ a→t _ (with a ∈ Act and t ∈
Time), representing the execution of an action a at time t.

– a time-stamped termination predicate _ ↓t (with t ∈ Time), representing
successful termination at time t.

– a time-parameterised delay predicate _ �t (with t ∈ Time), representing
that a process can idle until time t (at least).

The reason for including the delay predicate is to discriminate between dif-
ferently timed deadlocks: 0@3 �3, whereas 0@2 ��3. These transition relations
and predicate are defined by means of a so-called term deduction system [15].
The deduction rules are presented in Table 1. In this table and others in the rest
of this paper, x, x′, y and y′ are variables representing arbitrary process terms,
a ∈ Act is an action name, I ⊆ Act and t, u ∈ Time.

Note that the time-initialisation operator is used in the structured operational
semantics to impose upon a process the absolute time point that has been reached
by previous activity.

Timed strong bisimilarity (as defined in [12], for example) is a congruence for
all operators from this process algebra. One can quite easily obtain a sound and
complete axiomatisation of timed strong bisimilarity. The details are omitted as
they are of no importance to the goal of this paper.
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Table 1. Structured Operational Semantics of BSP@
abs

0@t �u
[u ≤ t]

1@t ↓t 1@t �u
[u ≤ t]

a@t.x
a→t t � x

a@t.x �u
[u ≤ t]

x
a→t x′

x + y
a→t x′

y + x
a→t x′

x ↓t

x + y ↓t

y + x ↓t

x �t

x + y �t

y + x �t

x
a→u x′

t � x
a→u x′ [t ≤ u]

x ↓u

t � x ↓u
[t ≤ u]

t � x �u
[u ≤ t]

x �u

t � x �u

3 Abstraction and the Timed Silent Step

In order to facilitate abstraction of actions, usually a special atomic action
τ �∈ Act is assumed that represents an internal action or silent step. Also, an
abstraction operator τI (for I ⊆ Act) is used for specifying which actions need
to be considered internal. This leads to the following extensions to the signature
of the process algebra:

– for each t ∈ Time, a silent step prefix operator τ@t._. The process τ@t.p
represents the process that idles up to time t, executes silent step τ at that
time and after that behaves as process p insofar time allows.

– for each I ⊆ Act, an abstraction operator τI . The process τI(p) represents
process p in which all actions from the set I are made invisible (i.e., replaced
by silent step τ).

To express execution of a silent step at a certain time t the predicate _ τ→t _
is used. The silent step prefix operator has precisely the same deduction rules as
the action prefix operator (with a replaced by τ). The deduction rules for the
abstraction operator are given below.

x
a→t x′

τI(x) a→t τI(x′)
[a �∈ I]

x
a→t x′

τI(x) τ→t τI(x′)
[a ∈ I]

x
τ→t x′

τI(x) τ→t τI(x′)

x ↓t

τI(x) ↓t

x �t

τI(x) �t

Again, congruence of timed strong bisimilarity is obvious and obtaining a sound
and complete axiomatisation of timed strong bisimilarity is not difficult either.

Timed Rooted Branching Bisimilarity. In the rest of this section, we discuss
several timed versions of the well-known notion of rooted branching bisimilarity
[2,3]. We refer to the relevant literature for definitions of these notions. We
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only present some characteristic equalities and inequalities between processes to
illustrate the notions.

In [4, Chapter 6], Klusener defines notions of timed rooted branching bisimi-
larity for a timed process algebra in a setting that does not allow for consecutive
actions at the same moment in time, i.e., non-urgent actions. Two semantics and
equivalences are defined, both in a setting with time-stamped action transitions.
The first semantics, the so-called idle semantics employs idle transitions to model
time passing. The second, called the term semantics, uses an ultimate delay pred-
icate instead. Characteristic for the equivalences is that an action transition a
at time t in one process may be mimicked in another process by a well-timed
sequence (i.e., a sequence in which the timing of the subsequent actions does not
decrease) of silent steps that is ultimately followed by an a-transition at time t.
The intermediate states need to be related with the original state (at the right
moment in time). Klusener shows that in his setting these two semantics and
equivalences coincide. In almost the same setting3, using the term semantics,
Fokkink proves a completeness result for the algebra of regular processes [16,17].
By means of the following examples we will discuss the equivalences of Klusener.
For these examples it is possible to eliminate the abstraction operator from the
process terms. We have not done so in order to be able to use these examples
again in their current form in the next section (where we have a slightly different
syntax).

Example 1 (No-Choice Silent Step). The three processes τ{b}(a@1.b@2.c@4.0@5),
τ{b}(a@1.b@3.c@4.0@5) and a@1.c@4.0@5 are obviously considered equal. Thus, the
timing of the action that is hidden is of no importance insofar it does not disallow
other actions from occurring (due to ill-timedness).

Example 2 (Time-Observed Silent Step). The processes τ{b}(a@1.(b@2.(c@3.0@4+
d@3.0@4)+d@3.0@4)) and a@1.(c@3.0@4+d@3.0@4) are distinguished by the notion
of timed rooted branching bisimilarity from [4, Chapter 6]. The reason is that
in the first process at time 2 it may be determined that the d will be executed
at time 3, while in the latter process term the choice between the c and the d at
3 can not be done earlier than at time 3.

Example 3 (Swapping). The processes τ{b}(a@1.(b@2.c@3.0@4 + d@3.0@4)) and
τ{b}(a@1.(c@3.0@4+b@2.d@3.0@4)) are considered equal with respect to Klusener’s
notion of equality, since in both processes it is decided at time 2 whether the c
or the d will be executed at time 3.

It is interesting to note that, if one considers Klusener’s definition of timed
rooted idle branching bisimilarity in a setting in which urgent actions are al-
lowed, the swapping of silent steps as portrayed in this example does not hold
anymore. With timed rooted branching bisimilarity as defined for the term se-
mantics though, it remains valid. This is due to the fact that the latter notion
explicitly limits the behaviour of processes.
3 Fokkink uses a relative-time syntax and semantics and defines the ultimate delay

predicate slightly different.
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Example 4 (Time-Choice). According to [4] the processes τ{b}(a@1. (b@3.0@4 +
c@2.0@4)) and a@1.(0@4 + c@2.0@4) are equal, since the passage of time already
decides at time point 2 whether or not the alternative c@2.0@4 occurs or not.

Baeten and Bergstra introduce the silent step to relative time, absolute time and
parametric time (i.e., a mixture of both relative and absolute time) versions of
ACP with discrete time in [5]. A difference with the work of Klusener is that
time steps are represented explicitly in the syntax in [5]. In [18], a complete
axiomatisation for timed rooted branching bisimilarity is provided, for a variant
of this theory. With respect to the four examples presented before, the only
difference between Klusener’s notion and Baeten and Bergstra’s notion is that
the latter does not consider the processes from Example 3 (Swapping) equal.

In [6], Van der Zwaag defines a notion of timed branching bisimilarity for
a process algebra that has almost the same syntax and semantics as ours. In
the setting studied by Van der Zwaag there is no successful termination. In
[19], Fokkink et al. show that the notion of timed branching bisimilarity as put
forward by Van der Zwaag is not an equivalence for dense time domains and
therefore they present a stronger notion of timed branching bisimilarity that is
an equivalence indeed. Also, the definitions are extended to include successful
termination. These notions of timed rooted branching bisimilarity are similar to
that of Baeten and Bergstra for the examples presented before.

The way in which abstraction of actions leads to very precisely timed silent
steps can be considered problematic (from a practical point of view). This was
also recognised by Baeten, Middelburg and Reniers in [20] in the context of a
relative-time discrete-time process algebra with two-phase time specifications.
The equivalences as described above are not coarse enough in practical cases
such as the PAR protocol. An attempt is made to establish a coarser equivalence
(called abstract branching bisimilarity) that “treats an internal action always as
redundant if it is followed by a process that is only capable of idling till the next
time slice.” This leads to an axiom (named DRTB4) of the form τ{a}(a@t.x) =
τ{a}(t � x) (in a different syntax).

Although we support the observation of the authors from [20] that a coarser
notion of equivalence is needed, we have a major problem with the treatment of
this issue in [20]. The authors have sincere difficulties in defining the equivalence
on the structured operational semantics. This difficulty is ultimately solved by
using the (standard) definition of rooted branching (tail) bisimilarity from [18]
in combination with a structured operational semantics that is a silent-step-
saturated version of the original semantics.

4 Untimed Silent Step

In this section, we present a novel abstraction mechanism in timed process al-
gebra that is inspired by the opinion that the timing of a silent step as such is
not observable. Therefore, one might consider defining an abstraction operator
that abstracts from an action and from its timing. One should be careful though,
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that abstraction from the timing of action a may not result in an abstraction of
the consequences of this timing of a for the rest of the process!

In the next section, we formally present our novel approach to action abstrac-
tion in timed process algebras. First we give the consequences of our intuition
about the equality (called timed rooted branching bisimilarity, denoted by ↔rb ,
see Sect. 4.2 for a definition) of the example processes from the previous section.

The timing of the action that is hidden is of no importance insofar it does
not disallow other actions from occurring (due to ill-timedness). Therefore, the
processes from Example 1 (No-Choice) should be considered equal:

τ{b}(a@1.b@2.c@4.0@5) ↔rb τ{b}(a@1.b@3.c@4.0@5) ↔rb a@1.c@4.0@5

The processes from Example 2 (Time-Observed Silent Step) are equal in our
setting since we do not wish to consider the timing of the internal step relevant:

τ{b}(a@1.(b@2.(c@3.0@4 +d@3.0@4)+d@3.0@4)) ↔rb a@1.(c@3.0@4 +d@3.0@4)

The processes from Example 3 (Swapping) are different processes, since by
executing the silent step, an option that was there before has disappeared:

τ{b}(a@1.(b@2.c@3.0@4 + d@3.0@4)) �rb τ{b}(a@1.(c@3.0@4 + b@2.d@3.0@4))

Since we do not allow to take the timing of the abstracted action into account,
we cannot have the equality of the processes from Example 4 (Time-Choice):

τ{b}(a@1.(b@3.0@4 + c@2.0@4)) �rb a@1.(0@4 + c@2.0@4)

In contrast with the other equivalences discussed in this paper, the process
τ{b}(a@1.(b@3.0@4 + c@2.0@4)) can only be ‘simplified’ to a@1.(τ.0@4 + c@2.0@4).
Thus the silent step remains.

In our opinion, in [20] too many silent steps can be omitted. Consider for ex-
ample the process τ{a}(a@1.0@2+b@3.0@4). In [20], it is considered to be equal to
b@3.0@4. In our opinion, the execution of the internal step disables the execution
of action b altogether.

4.1 Abstraction Using the Untimed Silent Step

We propose to extend the process algebra from Sect. 2 with the following primi-
tives instead of the timed silent action prefix operators and abstraction operator
from Sect. 3:

– the silent step prefix operator τ._. The process τ.p performs an internal
action (not at any specific time) and thereafter behaves as p. Note that the
occurrence of such an internal action cannot result in disabling an action
from p.

– for each I ⊆ Act, the abstraction operator τI . The process τI(p) represents
process p where all actions from the set I are made invisible (replaced by
the untimed silent step τ). It should be noted that the consequences of the
timing of the abstracted action are not abstracted from.
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In the structured operational semantics, we add a relation _ τ→ _ that rep-
resents the execution of an untimed silent step. For alternative composition and
time initialisation we add deduction rules for this new transition relation (the first
two deduction rules in Table 2). In the second deduction rule for the abstraction
operator one can see that a timed action is replaced by an untimed silent step

Table 2. Structured Operational Semantics of untimed silent step and abstraction
operator

x
τ→ x′

x + y
τ→ x′ y + x

τ→ x′
x

τ→ x′

t � x
τ→ t � x′ τ.x

τ→ x

x �t

τ.x �t

x
a→t x′

τI(x) a→t τI(x′)
[a �∈ I ]

x
a→t x′

τI(x) τ→ τI(x′)
[a ∈ I ]

x
τ→ x′

τI(x) τ→ τI(x′)

x ↓t

τI(x) ↓t

x �t

τI(x) �t

in case the action is to be abstracted from. Also note that the consequences of
the timing of the action are imposed on the rest of the process by means of the
time-initialisation operator in the deduction rule for action-transitions of the
action prefix operator (in Table 1). This means that the process x′ incorporates
the fact that time t has been reached.

Example 5. Somewhat surprisingly, the process p = a@2.τ{b}(b@1.0@4) is not ill-
timed. This is a consequence of our decision that the timing of abstracted actions
is not observable. Thus the process p is equal to a@2.0@4 and of course also to
a@2.τ{b}(b@3.0@4) (which can hardly be considered ill-timed).

4.2 Timed Rooted Branching Bisimilarity

In the following definition we use the notation p ⇒ q to denote that q can be
reached from p by executing an arbitrary number (possibly zero) of τ -transitions.

The notation p
(τ)→ q means p

τ→ q or p = q.

Definition 1 (Timed Rooted Branching Bisimilarity). Two closed terms
p and q are timed branching bisimilar, notation p ↔b q, if there exists a sym-
metric binary relation R on closed terms, called a timed branching bisimulation
relation, relating p and q such that for all closed terms r and s with (r, s) ∈ R:

1. if r
a→t r′ for some a ∈ Act, t ∈ Time and closed term r′, then there exist

closed terms s∗ and s′ such that s ⇒ s∗ a→t s′, (r, s∗) ∈ R and (r′, s′) ∈ R;
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2. if r
τ→ r′ for some closed term r′, then there exist closed terms s∗ and s′

such that s ⇒ s∗
(τ)→ s′, (r, s∗) ∈ R and (r′, s′) ∈ R;

3. if r ↓t for some t ∈ Time, then there exists a closed term s∗ such that
s ⇒ s∗ ↓t and (r, s∗) ∈ R;

4. if r �t for some t ∈ Time, then there exists a closed term s∗ such that
s ⇒ s∗ �t and (r, s∗) ∈ R.

If R is a timed branching bisimulation relation, we say that the pair (p, q)
satisfies the root condition with respect to R if

1. if p
a→t p′ for some a ∈ Act, t ∈ Time and closed term p′, then there exists

a closed term q′ such that q
a→t q′ and (p′, q′) ∈ R;

2. if p
τ→ p′ for some closed term p′, then there exists a closed term q′ such

that q
τ→ q′ and (p′, q′) ∈ R;

3. if p ↓t for some t ∈ Time, then q ↓t;
4. if p �t for some t ∈ Time, then q �t.

Two closed terms p and q are called timed rooted branching bisimilar, notation
p ↔rb q, if there is a timed branching bisimulation relation R relating p and q
such that the pairs (p, q) and (q, p) satisfy the root condition with respect to R.

Note that we have actually defined a timed version of the notion of semi-
branching bisimilarity of [21].

4.3 Properties of Timed Rooted Branching Bisimilarity

In this section, we show that timed rooted branching bisimilarity as defined in
the previous section is indeed an equivalence. Moreover we show that it is a
congruence for the rather restricted set of operators introduced. Proofs of the
theorems given in this section can be found in [22].

Theorem 1. Timed rooted branching bisimilarity is an equivalence relation.

Theorem 2. Timed strong bisimilarity and timed rooted branching bisimilar-
ity are congruences for all operators from the signature of the process algebra
BSP@

abs.

Furthermore, obviously timed rooted branching bisimilarity identifies strictly
more processes than timed strong bisimilarity does.

Theorem 3. Timed strongly bisimilar processes are timed rooted branching
bisimilar: i.e., ↔ ⊂ ↔rb .

From the examples presented in the previous sections, we can easily conclude
that our notion of equality is incomparable with the notions from Klusener [4],
Baeten and Bergstra [5] and Van der Zwaag [6]. We claim that the notion of
abstract branching bisimilarity from [20] is coarser than ours.
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5 Case Study: PAR Protocol

In [20] the Positive Acknowledgement Retransmission protocol is used to illus-
trate the need for a coarser equivalence. In this paper, we will use the same pro-
tocol to illustrate our notion of timed rooted branching bisimilarity. An informal
description of the protocol can be found in [20]. For comparison, we present a
linearised version of the protocol in which the internal communications are ab-
stracted from and as many silent steps as possible have been removed/omitted
using the notion of abstraction and timed rooted branching bisimilarity from [5].
This result is obtained by translating the result from [20] to our setting. Note
that we have used notations such as

∑

t′
p that describe a potentially infinite al-

ternative composition consisting of one alternative of p for each t′. We refrain
from giving operational semantics for this operator, called summation [12] or
alternative quantification [23].

Xb,t =
∑

t′

∑

d∈D

r1(d)@t+t′
.Yd,b,t+t′+tS

Yd,b,t = τ@t+tK .s2(d)@t+tK+tR .Zd,b,t+tK+tR+t′
R

+
∑

k≤tK

τ@t+k.Yd,b,t+t′
S

Zd,b,t = τ@t+tL .Xb,t+tL
+

∑

l≤tL

τ@t+l.Ud,b,t+t′
S−tK−tR−t′

R

Ud,b,t = τ@t+tK .Vd,b,t+tK+t′
R

+
∑

k≤tK

τ@t+k.Ud,b,t+t′
S

Vd,b,t = τ@t+tL .Xb,t+tL
+

∑

l≤tL

τ@t+l.Ud,b,t+t′
S−tK−t′

R

Below, we present a linearised version based on the notion of abstraction and
timed rooted branching bisimilarity as proposed in this paper:

Xb,t =
∑

t′

∑

d∈D

r1(d)@t+t′
.Yd,b,t+t′+tS

Yd,b,t = τ.s2(d)@t+tk+tR .U ′
d,b,t,tR

+ τ.Yd,b,t+t′
S

U ′
d,b,t,u = τ.Xb,t+tK+u+t′

R+tL
+ τ.U ′

d,b,t+t′
S,0

The silent steps that are left are essential. The silent steps in Y determine
whether or not an error occurred in channel K and those in U ′ determine the
same for channel L. As these errors result in an additional delay before the next
action occurs, they are not redundant. In [22] a more detailed discussion of this
case study can be found.
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6 Axioms for Timed Rooted Branching Bisimilarity

In Table 3 we present axioms for timed strong bisimilarity. The axioms (A1)-(A3)
express some standard properties of alternative composition. Axiom (WT) (for
well-timedness) describes that the time that is reached by executing an action
is passed on to the subsequent process. The axioms (A6a)-(A6d) describe the
properties of timed deadlocks, especially the circumstances under which they
can be removed from the process description. An important equality that can
be derived for closed terms p is p + 0@0 = p.

Axioms (I1)-(I7) describe how the time-initialisation operator can be elimi-
nated from terms. Note that the silent step neglects this operator (axiom (I6)).
Axioms (H1)-(H6) describe how the abstraction operator can be eliminated. Note
that the timing of an action that is abstracted from is passed on to the rest of
the process (axiom (H4)). The time-initialisation operator in the right-hand side
of axiom (H3) is needed in order to enforce the timing restriction from the action
prefix before applying further abstractions.

Table 3. Axioms for timed strong bisimilarity and timed rooted branching bisimilarity

(A1) x + y = y + x (A6a) 0@t + 0@u = 0@max(t,u)

(A2) (x + y) + z = x + (y + z) (A6b) u ≤ t ⇒ 1@t + 0@u = 1@t

(A3) x + x = x (A6c) u ≤ t ⇒ a@t.x + 0@u = a@t.x

(WT) a@t.x = a@t.t � x (A6d) u ≤ t ⇒ τ.(x + 0@t) + 0@u = τ.(x + 0@t)

(I1) t � 0@u = 0@max(t,u) (H1) τI(0
@t) = 0@t

(I2) u < t ⇒ t � 1@u = 0@t (H2) τI(1
@t) = 1@t

(I3) u ≥ t ⇒ t � 1@u = 1@u

(I4) u < t ⇒ t � a@u.x = 0@t (H3) a �∈ I ⇒ τI(a
@t.x) = a@t.τI(t � x)

(I5) u ≥ t ⇒ t � a@u.x = a@u.x (H4) a ∈ I ⇒ τI(a
@t.x) = τ.τI(t � x)

(I6) t � τ.x = τ.t � x (H5) τI(τ.x) = τ.τI(x)
(I7) t � (x + y) = t � x + t � y (H6) τI(x + y) = τI(x) + τI(y)

We claim that the axioms from Table 3 are sound and complete for timed
strong bisimilarity on closed terms. These axioms are (of course; see Theorem
3) also valid for timed rooted branching bisimilarity. In Table 4, one additional
axiom is presented for timed rooted branching bisimilarity. The reader should
notice that this axiom resembles the untimed axiom for rooted branching bisim-
ilarity a.(τ.(x + y) + x) = a.(x + y) meticulously. Also, it is expected that the
axioms from both tables provide a sound and complete axiomatisation of timed
rooted branching bisimilarity on closed terms.
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Table 4. Axiom for timed rooted branching bisimilarity

(B) a@t.(τ.(x + y) + x) = a@t.(x + y)

7 Other Timed Process Algebra Settings

The process algebra that we have chosen as our universe of discourse can be clas-
sified (both syntactically and semantically) as an absolute-time time-stamped
process algebra. As mentioned before, in the literature there are some other ver-
sions available, with respect to both the syntax used and the semantics adopted.
In this section, we discuss, with respect to the semantics, how the abstraction
technique presented here for an absolute-time time-stamped process algebra can
be carried over to other types of timed process algebras and what problems are
expected to arise in doing so.

In a setting where the time-stamping mechanism uses relative time the treat-
ment becomes even simpler. In such a setting a@t.p means that a is to be executed
t time after the execution of the previous action (or after the conception of the
process). As a consequence of this relative-timing the problem of ill-timedness is
avoided. Therefore, the time-initialisation operator can be left out. Instead, one
needs to have a mechanism for updating the relative time-stamp of the initial
actions of the subsequent process due to abstraction:

x
a→t x′ a ∈ I

τI(x) τ→ t � τI(x′)

where t � p means that t time has to be added to the time-stamp of the first
visible action from p. For example 3 � a@5.p behaves as a@8.p. An example of
such an operator is the time shift operator (t)_ (also with negative t!) that has
been used by Fokkink for defining timed branching bisimilarity in [16].

We have chosen to carry out our deliberations in a time-stamped setting be-
cause this setting allows for a very natural definition of the abstraction operator
since the timing of the action (before abstraction) and the action itself are tightly
coupled in the model. To illustrate the difficulties that arise in defining abstrac-
tion in a two-phase model, we look at the following processes (in the syntax of
[24,25]). Note that σ._ is a time step prefix operator and a._ is an immediate
action prefix operator.

a

σ
a

τ
σ

a

b

a σ

a

b

Fig. 1. Processes a.(σ.a.0 + τ.σ.(a.0 + b.0)) and a.σ.(a.0 + b.0)
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As we have discussed in Sect. 4, we consider these processes equivalent. How-
ever, to express this in an equivalence, we need to be able to relate the states
of both processes. In the diagram above one can see that the first process can
make a time transition that results in a state (the black one) that has no cor-
responding state in the second process. The essence of this problem is that one
tries to relate states that are reached solely by time steps such as the black one.
We thus believe the solution is to not necessarily relate such states, even if they
exist.

8 Concluding Remarks

In this paper, we have introduced a notion of abstraction that abstracts from
the identity of an action as well as its timing, resulting in an untimed silent
step. We have developed an accompanying notion of equality of processes, also
called timed rooted branching bisimilarity. We have shown that this notion is
an equivalence relation and a congruence for all operators considered in this
paper and as such may be a meaningful tool in analysing and verifying systems.
A first experiment, on the PAR protocol, indicates that our notions allow for a
much clearer and smaller representation of the abstract system than the standard
notions do. An axiomatisation of timed rooted branching bisimilarity for closed
process terms is given with an axiom for the removal of untimed silent steps that
resembles the well-known axiom from untimed process algebra.

In this paper, we have made many claims about the timed process algebra
with untimed silent steps. Of course, these claims need to be substantiated fur-
ther. Also, it is worthwhile to study our notion of abstraction in other timed
settings, most notably those with relative timing and where timing is described
by separate timing primitives (decoupled from actions) as in [11] and most other
mainstream timed process algebras.

We have illustrated the differences and similarities between the different def-
initions of timed rooted branching bisimilarity from literature and the version
introduced in this paper by means of examples only. A more thorough compari-
son is needed. Also, a comparison with timed versions of weak bisimilarity (e.g.,
[7,8,9,10]) should be performed.

In order to illustrate that our restriction to the limited set of operators is not
inspired by fundamental limitations, in [22], we have extended the timed process
algebra with sequential composition and parallel composition as these operators
are frequently encountered in timed process algebras in the ACP community.
It turns out that the deduction rules are standard. Also it is shown that timed
rooted branching bisimilarity as defined in this paper in a congruence for those
operators.

The success of an abstraction mechanism and notion of equality not depend
only on the theoretical properties (though important) of these notions, but much
more so on the practical suitability of these notions. Therefore, we need to per-
form more case studies to observe whether these notions contribute to a bet-
ter/easier verification of correctness and/or properties of relevant systems. In
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this direction, we are also interested in a weaker version of the notion of equiv-
alence presented in this paper that additionally considers the processes from
Example 4 (Time-Choice) equal.

We are, in line with our previous work ([24,25]), very interested in obtaining
a collection of theories that are nicely related by means of conservativity results
and embeddings. Therefore, it is interesting to extend the rather limited timed
process algebra from this paper with untimed action prefix operators a._ in order
to formally study, in one framework, the relationship between rooted branching
bisimilarity on untimed processes and our timed version.

A complementary way of specifying a timed system is by means of a timed
(modal) logic. It is worthwhile to get a deeper understanding of our notion of
action abstraction and timed rooted branching bisimilarity by considering the
relationship with modal logics for timed systems as has been done for strong
bisimilarity [26] and Hennessy-Milner logic [27]. We have good hope that the
majority of the logics that are used for the specification of properties of timed
systems are preserved by our notion of timed rooted branching bisimilarity.

Acknowledgements. We acknowledge useful comments from Jos Baeten, Pieter
Cuijpers, Wan Fokkink, Jan Friso Groote, Bas Luttik, Bas Ploeger, Yaroslav
Usenko and Tim Willemse.
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Abstract. We study methods to statically approximate “first-order” process cal-
culi (Pi, Join) by “propositional” models (CCS, BPP, Petri nets). We consider both
open and closed behavior of processes. In the case of open behavior, we propose a
type system to associate pi-calculus processes with restriction-free CCS types. A
process is shown to be in simulation relation with each of its types, hence safety
properties that hold of the types also hold of the process. We refine this approach
in the case of closed behavior: in this case, types are BPP processes. Sufficient
conditions are given under which a minimal BPP type can be computed that is
bisimilar to a given process. These results are extended to the Join calculus using
place/transition Petri nets as types.

1 Introduction

The behavior of large, possibly distributed programs that heavily rely on reference-
passing is generally difficult to comprehend, both intuitively and formally. Process cal-
culi like Pi [1] and Join [2] posses “first-order” features, like value passing and dynamic
name creation, difficult to recast into well-analyzable operational formats. This situa-
tion should be contrasted with that found in “propositional” formalisms like CCS and
Petri nets, that enjoy simpler and more tractable operational models, studied and uti-
lized for decades (the terminology “first order” and “propositional” is not standard in
the present context, and should be taken with a grain of salt.)

For many purposes it may be sufficient to take an abstract view of name-passing
processes, hopefully easy to recast into propositional terms. Imagine one specifies a
context Γ associating values and free names of a pi-process P with tags drawn from a
finite set. Tags might represent particular events an external observer is interested in.
Different names/values can possibly be collapsed onto the same tag (e.g., different val-
ues could be mapped to a unique tag representing their type). Imagine further that P’s
code specifies how to make such associations at run-time for newly generated names. If
one observes P “through” Γ, that is, dynamically maps values/names to tags in transi-
tion labels as prescribed, one obtains an abstract process PΓ. The latter is operationally
described by a possibly infinite, yet simpler propositional transition system. In many
cases, it may be sufficient to further limit one’s attention to the closed behavior of PΓ,
that is, to communication actions suitably decorated with tags, such as the identity of

� The first author is supported by the French government research grant ACI TRALALA. The
second author is supported by the EU within the FET-GC2 initiative, project SENSORIA.

F. Arbab and M. Sirjani (Eds.): FSEN 2007, LNCS 4767, pp. 302–317, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Type Abstractions of Name-Passing Processes 303

the service that is called, types of the passed parameters and so on. In other words, PΓ
provides a bird’s eye view of the system under observation, which is often sufficient to
establish interesting properties of the system, typically safety ones.

The goal of this paper is to study means to statically computing finitary representa-
tions of PΓ, or at least suitable approximations of PΓ. The proposed methods will take
the form of behavioral type systems for process calculi. Such systems can be used to
assign a process P a propositional type T that, in general, over-approximates the be-
havior of PΓ. This technique should in principle allow one to verify certain properties
of T, being assured that the same properties also hold for PΓ. In each of the considered
type systems, the emphasis will be on keeping the class of types tractable. In particular,
(bi)similarity and model-checking for interesting modal logics should be decidable for
the given class. In other words, the aim here is laying a basis for property verification
by a combination of type-checking and model-checking techniques. This approach is
along the lines of the work on behavioral types by Igarashi and Kobayashi [3] .

More specifically, we start by introducing an asynchronous, “tagged” version of the
pi-calculus and the notion of abstract process PΓ (Section 2). In the first type system
(Section 3), types are a class of asynchronous, restriction-less CCS processes, which we
name CCS−. Both bisimulation and model checking for interesting logics are decidable
for CCS− (e.g., by translation into Petri nets [4]). Our main result here shows that PΓ
is in simulation relation with the types inhabited by P; hence safety properties that hold
for the types also holds for the abstract process PΓ. The absence of restriction causes an
obvious loss of precision in types; note however that in practice this can be remedied
by hiding certain actions at the level of modal logic formulae. In the second system
(Section 4), we focus on closed behavior. The goal is to obtain simpler and hopefully
more efficient behavioral approximations, by getting rid of synchronization in types. We
achieve this goal by directly associating each output action with an effect corresponding
to the observable behavior that that output can trigger. Input actions have no associated
effect, thus an inert type is associated to input processes. Types we obtain in this way
are precisely Basic Parallel Processes (BPP, [5]): these are infinite-state processes for
which, however, a wealth of decidability results exists [6,7]. We show that if we restrict
ourselves to a class of pi-processes satisfying a generalized version of uniform recep-
tiveness [8], a type can be computed that is bisimilar to PΓ. These techniques will be
illustrated using a concrete example (Section 5). We finally move to the Join calculus
(Section 6) and generalize some of the results obtained for the pi-calculus. At the level
of types, the main step is moving from BPP to the more general class of place/transition
Petri nets, for which again interesting decidability results are known [6,7]. We end the
paper with some remarks on related and further work (Section 7).

2 The Asynchronous Pi-Calculus

2.1 Processes

Let N , ranged over by a,b,c, . . . ,x,y, . . ., be a countable set of names and Tag, ranged
over by α,β, . . . , be a set of tags disjoint from N ; we assume Tag also contains a distinct
“unit” tag (). The set P of processes P, Q, . . . is defined as the set of terms generated by
the following grammar:
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P,Q ::= a〈b〉
∣
∣ ∑

i∈I

ai(b).Pi
∣
∣ ∑

i∈I

τ.Pi
∣
∣ if a = b then P else P

∣
∣ !a(b).P

∣
∣ (νa : α)P

∣
∣ P|P .

This language is a variation on the asynchronous π-calculus. A non-blocking output
of a name b along a is written a〈b〉. Nondeterministic guarded summation ∑i∈I ai(b).Pi

waits for a communication on ai, for i ∈ I. An internal choice ∑i∈I τ.Pi can choose to
behave like any of the Pi via an invisible τ transition. Conditional if a = b then P else Q
behaves as P if a equals b, as Q otherwise. Replication !a(b).P provides an unbounded
number of copies of a(b).P. Restriction (νa : α)P creates (and assigns a tag α to) a
new restricted name a with initial scope P. As usual, the parallel composition P |Q
represents concurrent execution of P and Q.

In an output action a〈b〉, name a is the subject and b the object of the action. Sim-
ilarly, in a replicated input prefix !a(b).P and in ∑i∈I ai(b).Pi, the names a and ai for
i ∈ I are said to occur in input subject position. Binders and alpha-equivalence arise as
expected and processes are identified up to alpha-equivalence. Substitution of a with b
in an expression e is denoted by e[b/a]. In what follows, 0 stands for the empty summa-
tion ∑i∈ /0 ai(x).Pi. We shall sometimes omit the object parts of input and output actions,
when not relevant for the discussion; e.g. a stands for an output action with subject
a and an object left unspecified. Similarly, we shall omit tag annotations, writing e.g.
(νa)P instead of (νa : α)P, when the identity of the tag is not relevant.

2.2 Operational Semantics

The (early) semantics of processes is given by the labelled transition system in Tab. 1.
We let �, �′, . . . represent generic elements of N ∪ Tag. A transitions label µ can be a
free output, a〈b〉, a bound output, (νb : α)a〈b〉, an input, a(b), or a silent move, τ〈�,�′〉.
We assume a distinct tag ι for decorating internal transitions (arising from conditional
and internal chioce; see Table 1) and often abbreviate τ〈ι, ι〉 simply as τ. In the following
we indicate by n(µ) the set of all names in µ and by fn(µ), the set of free names of µ,
defined as expected. The rules are standard, except for the extra book-keeping required
by tag annotation of bound output and internal actions. In particular, in (RES-TAU)
bound names involved in a synchronization are hidden from the observer and replaced
by the corresponding tags. Note that if we erase the tag annotation from labels we get
exactly the usual labelled semantics of asynchronous pi-calculus.

2.3 Γ-Abstractions of Processes

A context Γ is a finite partial function from names to tags, written Γ = {a1 : α1, · · · ,an :
αn}, with distinct ai. In what follows Γ � a : α means that a : α ∈ Γ. A tag sorting system
E is a finite subset of {α[β] |α,β are tags and α 	= ()}. Informally, α[β] ∈ E means that
subject names associated with tag α can carry object names associated with tag β. In
what follows, if α[β1], · · · , α[βn] are the only elements of E with subject α, we write
α[β1, · · · ,βn] ∈ E .

A triple (P,Γ,E), written PΓ;E , is called Γ-abstraction of P under E . In what follows,
we shall consider a fixed sorting system E , and keep E implicit by writing PΓ instead of
PΓ;E . Next, we define a labeled transition system with process abstractions as states and
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Table 1. Operational semantics of pi-calculus processes

(OUT) a〈b〉 a〈b〉−−→ 0

(I-SUM) ∑i∈I τ.Pi
τ−→ Pj, j ∈ I (G-SUM) ∑i∈I ai(bi).Pi

aj(c)−−→ Pj[c/b j], j ∈ I

(REP) !a(c).P
a(b)−−→ P[b/c] | !a(c).P (OPEN) P

b〈a〉−−→ P′ b 	= a

(νa : α)P
(νa:α)b〈a〉−−−−−−→ P′

(COM) P
a〈b〉−−→ P′ Q

a(b)−−→ Q′

P |Q τ〈a,b〉−−−→ P′ |Q′
(CLOSE) P

(νb:β)a〈b〉−−−−−−→ P′ Q
a(b)−−→ Q′

P |Q τ〈a,β〉−−−→ (νb : β)(P′ |Q′)

(IF-T) if a = a then P else Q
τ−→ P (IF-F) if a = b then P else Q

τ−→ Q, a 	= b

(PAR) P
µ−→ P′

P|Q µ−→ P′|Q
(RES)

P
µ−→ P′ a /∈ n(µ)

(νa : α)P
µ−→ (νa : α)P′

(RES-TAU) P
τ〈�1,�2〉−−−−→ P′ a ∈ {�1, �2} � = �1[α/a] �′ = �2[α/a]

(νa : α)P
τ〈�,�′〉−−−→ (νa : α)P′

Symmetric rules not shown.

transition labels λ, which can be output, α〈β〉, input, α〈β〉 or annotated silent action,
τ〈α,β〉. The set of labels generated by this grammar is denoted by Λ. The labeled tran-
sition system is defined by the rules below. Here, µΓ denotes the result of substituting
each a ∈ fn(µ)∩ dom(Γ) by Γ(a) in µ. Informally, PΓ represents the abstract behavior
of P, once each concrete action µ has been mapped to an abstract action λ. Note that in
both rule (A-OUTN) and rule (A-INPN) the context Γ grows with a new association b : β.
In rule (A-INPN), a tag for b is chosen among the possible tags specified in E . Note that
no type checking is performed by these rules, in particular (A-OUTN) does not look up
E to check that β can be carried by α.

(A-OLD) P
µ−→ P′ µ ::= τ〈�,�′〉|a(b)|a〈b〉 n(µ) ⊆ dom(Γ) λ = µΓ

PΓ
λ−→ P′

Γ

(A-OUTN) P
(νb:β)a〈b〉−−−−−−→ P′ Γ � a : α

PΓ
α〈β〉−−→ P′

Γ,b:β

(A-INPN) P
a(b)−−→ P′ Γ � a : α α[β] ∈E b /∈ dom(Γ)

PΓ
α〈β〉−−→ P′

Γ,b:β

2.4 Simulation, Bisimulation and Modal Logic

Let T any labelled transition system with labels in Λ. As usual, the (strong) simulation
relation over T , written �, is the largest binary relation over states of T such that when-

ever s1 � s2 and s1
λ−→ s′

1 then there is a transition s2
λ−→ s′

2 such that s′
1 � s′

2. The
relation � is easily seen to be a preorder. (Strong) Bisimulation over T , written ∼, is



306 L. Acciai and M. Boreale

the largest binary relation over states of T such that both ∼ and ∼−1 are simulations.
The closed versions of simulation and bisimulation, written �c and ∼c, respectively,
are defined in a similar manner, but limited to silent transitions.

Next, we introduce a simple action-based modal logic that will help us to formulate
concisely properties of processes and types. The logic is very simple and only serves
to illustrate the approach presented in the paper. More precisely, we let L be given by
φ ::= true

∣
∣ 〈A〉φ

∣
∣ 〈〈A〉〉φ

∣
∣ ¬φ

∣
∣ φ∧φ, where /0 	= A ⊆ Λ. These formulae are interpreted

in the expected manner, in particular, a state s satisfies 〈A〉φ, written s � 〈A〉φ, if there

is a transition s
λ−→ s′ with λ ∈ A and s′ � φ. The interpretation of modality 〈〈A〉〉φ is

similar, but the phrase “a transition s
λ−→ s′ with λ ∈ A” is changed into “a sequence of

transitions s
σ−→ s′ with σ ∈ A∗”. We shall make use of standard notational conventions,

like abbreviating ¬〈A〉¬φ as [A]φ, omitting a trailing “true”, and so on. Note that L can
be regarded as a fragment of the modal mu-calculus [9].

3 CCS− Types for Open Behavior

In the first type system we propose, types are essentially CCS expressions whose behav-
ior over-approximate the (abstract) process behavior.

3.1 CCS− Types

The set TCCS of types, ranged over by T, S, . . . , is defined by the following syntax:

T ::= α〈β〉
∣
∣ ∑

i∈I

αi〈βi〉.Ti
∣
∣ ∑

i∈I

τ.Ti
∣
∣ !α〈β〉.T

∣
∣ T|T

where α,αi 	= (). The empty summation ∑i∈ /0 αi〈βi〉.Ti will be often denoted by nil, and
T1 | · · · |Tn will be often written as ∏i∈{1,··· ,n} Ti. As usual, we shall sometimes omit
the object part of actions when not relevant for the discussion or equal to the unit tag (),
writing e.g. α and τ〈α〉 instead of α〈β〉 and τ〈α,β〉.Types are essentially asynchronous,
restriction-free CCS processes over the alphabet of actions Λ. The standard operational
semantics of CCS, giving rise to a labelled transition system with labels in Λ, is assumed
(Table 2).

Table 2. Operational semantics of CCS− types

(C-OUT) α〈β〉 α〈β〉−−→ nil (C-GSUM) ∑i∈I αi〈βi〉.Ti
α j〈β j〉−−−→ T j, j ∈ I

(C-ISUM) ∑i∈I τ.Ti
τ−→ T j, j ∈ I (C-REP) !α〈β〉.T α〈β〉−−→ T | !α〈β〉.T

(C-COM) T
α〈β〉−−→ T′ S

α〈β〉−−→ S′

T|S τ〈α,β〉−−−→ T′|S′
(C-PAR) T λ−→ T′

T|S λ−→ T′|S
Symmetric rules for | not shown.
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3.2 The Typing Rules

Let E be a fixed tag sorting system and Γ a context. Judgements of the type system are
of the form Γ �E P : T. The rules of the type system are presented in Tab. 3.

A brief explanation of some typing rules follows. In rule (T-OUT), the output process
a〈b〉 gives rise to the action a〈b〉Γ = α〈β〉, provided this action is expected by the tag
sorting system E . The type T of an input process depends on E : in (T-INP) all tags
which can be carried by α, the tag associated with the action’s subject, contribute to
the definition of the summation in T as expected. In the case of (T-REP), summation
is replaced by a parallel composition of replicated types, which is behaviorally – up
to strong bisimulation – the same as a replicated summation. Note that, concerning
guarded summation, the case with a single input |I| = 1, (T-INP), is kept separate from
the case with |I| 	= 1, (T-GSUM), only for ease of presentation. In (T-IF), the behavior
of a conditional process is approximated by a type that subsumes both branches of the
if-then-else into an internal choice. The subtyping relation � is the simulation preorder
over E , (T-SUB). The rest of the rules should be self-explanatory.

Table 3. Typing rules for CCS− types

(T-OUT)
Γ � a : α α[β] ∈ E Γ � b : β

Γ �E a〈b〉 : α〈β〉

(T-INP)
Γ � a : α α[β1, · · · ,βn] ∈ E ∀i ∈ {1, · · · ,n} : Γ,b : βi �E P : Ti

Γ �E a(b).P : ∑
i∈{1,··· ,n}

α〈βi〉.Ti

(T-REP) Γ � a : α α[β1, · · · ,βn] ∈ E ∀i ∈ {1, · · · ,n} : Γ,b : βi �E P : Ti

Γ �E !a(b).P : ∏
i∈{1,··· ,n}

!α〈βi〉.Ti

(T-GSUM)

|I| 	= 1 ∀i ∈ I : Γ �E ai(bi).Pi : ∑
j∈Ji

αi〈β j〉.Ti j

Γ �E ∑
i∈I

ai(bi).Pi : ∑
i∈I, j∈Ji

αi〈β j〉Ti j
(T-ISUM) ∀i ∈ I : Γ �E Pi : Ti

Γ �E ∑
i∈I

τ.Pi : ∑
i∈I

τ.Ti

(T-PAR) Γ �E P : T Γ �E Q : S
Γ �E P|Q : T|S (T-RES) Γ,a : α �E P : T

Γ �E (νa : α)P : T

(T-IF) Γ �E P : T Γ �E Q : S
Γ �E if a = b then P else Q : τ.T+ τ.S (T-SUB)

Γ �E P : T T � S
Γ �E P : S

3.3 Results

The subject reduction theorem establishes an operational correspondence between the
abstract behavior PΓ and any type T that can be assigned to P under Γ.

Theorem 1 (subject reduction). Γ �E P : T and PΓ
λ−→ P′

Γ′ imply that there is T′ such

that T λ−→ T′ and Γ′ �E P′ : T′.
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As a corollary, we obtain that T simulates PΓ; thanks to Theorem 1, it is easy to see that
the relation R =

{
(PΓ,T)

∣
∣Γ �E P : T

}
is a simulation relation.

Corollary 1. Suppose Γ �E P : T. Then PΓ � T.

A consequence of the previous result is that safety properties satisfied by a type are also
satisfied by the processes that inhabit that type – or, more precisely, by their Γ-abstract
versions. Consider the small logic defined in Section 2.4: let us say that φ ∈ L is a
safety formula if every occurrence of 〈A〉 and 〈〈A〉〉 in φ is underneath an odd number of
negations. The following proposition, follows from Corollary 1 and first principles.

Proposition 1. Suppose Γ �E P : T and φ is a safety formula, with T � φ. Then PΓ � φ.

As a final remark on the type system, consider taking out rule (T-SUB): the new system
can be viewed as a (partial) function that for any P computes a minimal type for P, that
is, a subtype of all types of P (just read the rules bottom-up).

In the examples we describe below, we shall consider a calculus enriched with
polyadic communication and values: these extensions are easy to accommodate.
Polyadic communications are written as τ〈α1,α2, · · · ,αn〉, where α1 is the subject and
α2, · · · ,αn are the objects; we omit objects that correspond to the unit tag.

Example 1 (factorial). Consider the process F defined below, which is the usual RPC

encoding of the factorial function, and the system S, where F is called with an actual
parameter n, a result is received on a private channel r and then the received value is
printed.

F
�
= ! f (n,r). if n = 0 then r〈n〉 else (νr′ : ret)

(
f 〈n − 1,r′〉 |r′(m).r〈n ∗ m〉

)

S
�
= (νr : ret)( f 〈n,r〉 |r(m).print〈m〉) |F .

Let E = {fact[ret], ret[()], pr[()]} and Γ = { f : fact, print : pr,n : ()}. It is not difficult
to check that Γ �E F : TF and Γ �E S : TS, where:

TF
�
= !fact〈ret〉.

(
τ.ret + τ.(fact〈ret〉 |ret.ret)

)
TS

�
= fact〈ret〉 |ret.pr |TF

and that

TS � φ1
�
= ¬〈〈Λ−{fact〈ret〉,ret}〉〉 〈ret〉 〈〈Λ−{fact〈ret〉}〉〉 〈fact〈ret〉〉

TS � φ2
�
= ¬〈〈Λ−{fact〈ret〉,ret}〉〉 〈pr〉 〈〈Λ−{fact〈ret〉}〉〉 〈fact〈ret〉〉

meaning that no call at f can be observed after observing a return (φ1) or a print (φ2),
that is, as expected, after receipt of 0 as argument, no other calls to f can be produced.
Note that in both formulas we are forced to restrict certain actions so as to avoid inter-
action with the environment (e.g. in the first case we disallow action fact〈ret〉): this is
the price to pay for getting rid of restriction in types. Formulas φ1 and φ2 express safety
properties, thus thanks to Proposition 1, we can conclude that SΓ � φ1 ∧φ2.
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4 BPP Types for Closed Behavior

We focus here on the closed behavior of abstract processes. Although the system in the
previous section already takes into account closed behavior, it is possible in this case to
obtain a “direct style” behavioral type system by getting rid of synchronization in types.
This is achieved by directly associating each output action with an effect, corresponding
to the observable behavior that that output can trigger. Input actions have no associated
effect, thus an inert type is associated to input guarded processes. The types we obtain
in this way are precisely Basic Parallel Processes (BPP, [5]). We show that if we restrict
ourselves to a particular class of processes, notably to (a generalization of) uniform
receptive processes [8], a bisimulation relation relates processes and their types.

4.1 BPP Types

The set TBPP of BPP types, ranged over by T, S, . . . , is defined by the following syntax:

T ::= α[β] (Invocation)
∣
∣ ∑

i∈I
τ.Ti (Internal Choice)

∣
∣ T ‖ T (Interleaving)

where α 	= (). We consider an extended tag sorting system where each element α[β] is
enriched with an effect T, written α[β] → T. More precisely, we let E be a set of rules
of the form {αi[βi] → Ti | 1 ≤ i ≤ n}. This can be viewed as a set of rules defining a set
of BPP processes. In particular, a process invocation α[β] activates the corresponding
rule in E ; the rest of the syntax and operational semantics should be self-explanatory
(Table 4). In what follows we write nil for ∑i∈ /0 τ.Ti, and often omit dummy nil’s, writing
e.g. T|nil simply as T.

Table 4. Operational semantics of BPP types

(BPP-INV)
α[β] → T ∈ E

α[β]
τ〈α,β〉−−−→E T

(BPP-INT)∑i∈I τ.Ti
τ−→ET j ( j ∈ I)

(BPP-PARL) T λ−→E T′

T ‖ S λ−→E T′ ‖ S
(BPP-PARR) T λ−→ET′

S ‖ T λ−→ES ‖ T′

4.2 Typing Rules

Again, we consider contexts Γ of the form {a1 : α1, ...,an : αn}. The new type system
is defined in Tab. 5. Derivable statements take now the form Γ �E ;E ′P : T, where Γ and
E are respectively a fixed context and extended tag sorting system. The parameter E ′

is used to keep track of rules of E actually used in the derivation: this extra parameter
will be useful to formulate a condition under which a bisimulation relation, rather than
simply a simulation, can be established between a type and its inhabiting processes.

A brief explanation of the typing rules follows. Rule (T-BPP-O) ensures that there are
some effects associated to the output action. In (T-BPP-INP) and (T-BPP-REP), dom(E)
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denotes the set of all elements α[β]’s occurring in E : hence all object tags βi associated
with the subject tag α are taken into account. For each of them, it is checked that the
effects produced by the continuation process P are those expected by the corresponding
rule in E . As previously mentioned, input has no associated effect, hence the resulting
type is nil. In (T-BPP-SUB), note that the subtyping relation is now the closed simulation
preorder �c. The other rules are standard. In what follows we write Γ �E P if there exist
E ′ and T such that Γ �E ;E ′P : T.

Table 5. Typing rules for BPP

(T-BPP-INP)

Γ � a : α ∀βi s.t. α[βi] ∈ dom(E) ∃Ti s.t. α[βi] → Ti ∈ E and:

Γ,b : βi �E ;Ei
P : Ti E ′ =

�
i(Ei ∪{α[βi] → Ti})

Γ �E ;E ′a(b).P : nil

(T-BPP-REP)

Γ � a : α ∀βi s.t. α[βi] ∈ dom(E) ∃Ti s.t. α[βi] → Ti ∈ E and:

Γ,b : βi �E ;Ei
P : Ti E ′ =

�
i(Ei ∪{α[βi] → Ti})

Γ �E ;E ′ !a(b).P : nil

(T-BPP-O)
Γ � a : α Γ � b : β ∃T : α[β] → T ∈ E

Γ �E ; /0 a〈b〉 : α[β] (T-BPP-RES)
Γ,a : α �E ;E ′ P : T

Γ �E ;E ′(νa : α)P : T

(T-BPP-GSUM)
|I| 	= 1 ∀i ∈ I : Γ �E ;Ei

ai(bi).Pi : nil E ′ =
�

i Ei

Γ �E ;E ′ ∑
i∈I

ai(bi).Pi : nil

(T-BPP-ISUM)
∀i ∈ I : Γ �E ;Ei

Pi : Ti E ′ =
�

i Ei

Γ �E ;E ′ ∑
i∈I

τ.Pi : ∑
i∈I

τ.Ti
(T-BPP-SUB)

Γ �E ;E ′ P : T T �c S
Γ �E ;E ′ P : S

(T-BPP-PAR)
Γ �E ;E1

P : T Γ �E ;E2
Q : S E ′ = E1 ∪E2

Γ �E ;E ′P|Q : T ‖ S

(T-BPP-IF)
Γ �E ;E1

P : T Γ �E ;E2
Q : S E ′ = E1 ∪E2

Γ �E ;E ′ if a = b then P else Q : τ.T+ τ.S

4.3 Results

The results obtained in Section 3.3 can be extended to the new system.

Theorem 2 (main results on �E ;E ′). Suppose Γ �E ;E ′P : T. Then: (a) PΓ
λ−→ P′

Γ′ implies

that there are a T′ and E ′′ ⊆ E ′ such that T λ−→ET′ and Γ �E ;E ′′ P′ : T′; (b) PΓ �c T;
(c) safety formulas satisfied by T are also satisfied by PΓ.

Example 2 (factorial). Consider the processes defined in Example 1, the same context
Γ and a new system augmented with a (stub) printing service: S′ = S | !print(d). In
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what follows, we omit the unit tag and write e.g. α → β for α[()] → β[()] Consider the
following extended tag sorting system

E = {fact[ret] → (τ.ret + τ.fact[ret]), ret → ret, ret → pr, pr → nil} .

Let Λτ ⊆ Λ be the set of communication labels (all labels of the form τ〈α, β̃〉). It is
not difficult to prove that Γ �E S′ : fact[ret] (note that subtyping plays an essential role
in this derivation). Moreover, it holds that fact[ret] � φ′

1,φ′
2, where φ′

1 and φ′
2 are the

versions of φ1 and φ2 defined in Example 1 with visible actions replaced by silent ones:

φ′
1

�
= ¬〈〈Λτ〉〉 〈τ〈ret〉〉 〈〈Λτ〉〉 〈τ〈fact,ret〉〉 φ′

2
�
= ¬〈〈Λτ〉〉 〈τ〈pr〉〉 〈〈Λτ〉〉 〈τ〈fact,ret〉〉 .

Formulas φ′
1 and φ′

2 express safety properties, hence thanks to Theorem 2, we can con-
clude the analog of what shown in Example 1: S′

Γ � φ′
1 ∧φ′

2.

In several cases, the simulation preorder relating processes and their types is unneces-
sarily over-approximating. The rules for conditional and subtyping are obvious source
of over-approximation, as well as the presence in E of dummy rules that are not actu-
ally used in type-checking the process: these are sources of “fake” transitions in types,
that is, transitions with no correspondence in processes. A subtler problem is raised by
input prefixes. Input prefixes correspond to rules in E : but while an input prefix may
never become available, and a (non-replicated) input disappears upon synchronization,
the corresponding rules in E are always available and may give rise to fake transitions
in types. In the rest of the section we show that, for processes enjoying a certain “uni-
form receptiveness” condition with respect to Γ (Definition 1), a bisimilarity relation
between processes and types can be established. In this case, the abstract process and
its type satisfy the same properties.

Let us introduce some extra notation and terminology first. In what follows, ≡ will
denote the standard structural congruence in pi-calculus (see e.g. [1]), while out(P)
(resp. inp(P)) will denote the set of free names occurring in some output (resp. input)
action in P. Moreover, we define Γ−1(α) as the set {a|Γ � a : α} and define contexts as
C ::= (νa : α)C | P|C | a(b).C | [ ]. A process P is input-local if for every action prefix
a(x).Q in P, replicated or not, it holds x /∈ inp(Q). Finally, a receptor is a process of the
form (νa)

(
∑i∈I ai(x).Pi | ∏ j∈J!a(x).Q j

)
such that a /∈ inp(Pi,Q j) for each i, j.

The definition below has a simple explanation: each tag should correspond to a
unique receptor, and the latter should be immediately available to any potential sender.
This somehow generalizes Sangiorgi’s uniform receptiveness [8]. In particular, it is
straightforward to modify the type system in [8] so that well-typed processes are uni-
form receptive in our sense. A more general technique for proving Γ-uniform receptive-
ness in concrete cases is given by its co-inductive definition: that is, finding a relation
that satisfies the conditions listed in the definition and contains the given Γ and P. Be-

low, we use → as an abbreviation of
τ〈α,β〉−−−→ for some α and β.

Definition 1 (Γ-uniform receptiveness). Let θ : α �→ Rα be a function from tags to
receptors. We let �θ be the largest relation over contexts and input-local processes
such that whenever Γ �θ P then:
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1. for each α such that Γ−1(α)∩out(P) 	= /0 it holds that
(a) ∀a ∈ Γ−1(α) there are R and Q such that (νa)P ≡ (νa)(R|Q) with a /∈ inp(Q)

and (νa)R = Rα;
(b) whenever P ≡ C[(νa : α)P′] there are R′ and Q′ such that P′ ≡ R′|Q′ with

a /∈ inp(Q′) and (νa)R′ = Rα;
2. whenever P ≡ (νa : α)P′ with a ∈ out(P′) then Γ,a : α �θ P′;
3. whenever P → P′ then Γ �θ P′.

We write Γ � P, and say P is Γ-uniform receptive, if Γ �θ P for some θ.

In what follows, we write Γ �−
E P : T if Γ �E ;E ′P : T is derived without using rules

(T-BPP-SUB) and (T-BPP-IF), and E = E ′.

Theorem 3. Suppose P is Γ-uniform receptive and that Γ �−
E P : T. Then PΓ ∼c T.

5 An Extended Example

A simple printing system is defined where users are required to authenticate for being
allowed to print. Users are grouped into trusted and untrusted, which are distinguished
by two groups of credentials: {ci | i ∈ I} (also written c̃i) for trusted and {c j | j ∈ J}
(also written c̃ j) for untrusted, with c̃i ∩ c̃ j = /0. Process A is an authentication server
that receives from a client its credential c, a return channel r and an error channel e and
then sends both r and e to a credential-handling process T . If the client is untrusted, T
produces an error, otherwise a private connection between the client and the printer is
established, by creating a new communication link k and passing it to C. C simulates the
cumulative behavior of all clients: nondeterministically, it tries to authenticate by using
credential cl , for an l ∈ I ∪ J, and waits for the communication link with the printer,
on the private channel r, and for an error, on the private channel e. After printing, or
receiving an error, C’s execution restarts.

We expect that every printing request accompanied by trusted credentials will be
satisfied, and that every print is preceded by an authentication request.

Sys
�
= (νa : aut, c̃i : ok, c̃ j : nok, M : (), print : pr)

(
T | C |A | !print(d)

)

T
�
= ∏i∈I!ci(x,e).(νk : key)

(
x〈k〉 | k(d).print〈d〉

)
| ∏ j∈J!c j(x,e).e

A
�
= !a(c,r,e).c〈r,e〉

C
�
= (νi : iter)

(
i | !i.(νr : ret, e : err)

(
∑l∈I∪J τ.a〈cl,r,e〉 | r(z).((z〈M〉 | i) + e.i

))

Example 3 (CCS− types). Consider the tag sorting system

E = {aut[ok,ret,err], aut[nok,ret,err], ok[ret,err],

nok[ret,err], ret[key], pr[()], err[ ], key[()], iter[ ]} .

It is easy to prove that /0 �E Sys : TT |TA |TC | !pr = T, where

TT
�
= !ok〈ret,err〉.

(
ret〈key〉 | key.pr

)
| !nok〈ret,err〉.err

TA
�
= !aut〈ok,ret,err〉.ok〈ret,err〉 | !aut〈nok,ret,err〉.nok〈ret,err〉
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TC
�
= iter | !iter.

(
(τ.aut〈ok,ret,err〉+ τ.aut〈nok,ret,err〉)|(ret〈key〉.(key|iter)+ err.iter)

)
.

Furthermore, it holds that

T � φ3
�
= ¬〈〈Λ−{nok〈ret,err〉,aut〈nok,ret,err〉,τ〈aut,nok,ret,err〉}〉〉 〈err〉

T � φ4
�
= ¬〈〈Λ−{ok〈ret,err〉,aut〈ok,ret,err〉,τ〈aut,ok,ret,err〉}〉〉 〈pr〉

that is, error is always generated by an authentication request containing untrusted cre-
dentials, and every pr action is preceded by a successful authentication request. Both
formulas express safety properties, hence Proposition 1 ensures that are both satisfied
by the abstract process Sys /0.

Example 4 (BPP types). Consider the system Sys previously defined; in this example
we show that a BPP type for Sys, which allow a more precise analysis of the system can
be obtained. Consider the following extended tag sorting system

E = { aut[ok,ret,err]→ok[ret,err], ok[ret,err]→ret[key], err→ iter,

aut[nok,ret,err]→nok[ret,err], nok[ret,err]→err, key→pr, pr → nil,

ret[key]→(key | iter), iter → τ.aut[ok,ret,err]+ τ.aut[nok,ret,err])}.

First, it is easy to see that /0 �−
E Sys : iter. Moreover it is not difficult to prove, by co-

induction, that Sys is /0-uniform receptive. Hence from

iter � φ′
3

�
= [[Λτ]] [τ〈aut,ok,ret,err〉] 〈〈Λτ〉〉 〈τ〈pr〉〉

iter � φ′
4

�
= [[Λτ]] [τ〈aut,nok,ret,err〉] 〈〈Λτ〉〉 〈τ〈err〉〉

and Theorem 3, Sys /0 � φ′
3 ∧ φ′

4, that is, every authentication request accompanied by
trusted credentials will be followed by a pr, while every untrusted request will be fol-
lowed by an err.

6 Join Calculus and Petri Nets Types

We extend the treatment of the previous section to the Join calculus [2]. We shall only
consider the case of closed behavior; the open case requires some more notational bur-
den and we leave it for an extended version of the paper. The essential step we have
to take, at the level of types, is now moving from BPP to Petri nets. Technically, this
leap is somehow forced by the presence of the join pattern construct in the calculus. In
the context of infinite states transition systems [7,6], the leap corresponds precisely to
moving from rewrite rules with a single nonterminal on the LHS (BPP) to rules with
multisets of nonterminals on the LHS (PN).

6.1 Processes and Types

The syntax of the calculus is given in Tab. 6. Note that we consider a “pure” ver-
sion of the calculus without conditionals. Adding if-then-else is possible, but again
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implies some notational burden at the level of types (notably, simulating an internal
choice operator with Petri nets), which we prefer to avoid. Over this language, we pre-
suppose the standard notions of binding, alpha-equivalence, structural congruence ≡
and (tag-annotated) reduction semantics

µ−→ , where µ ::= τ〈(�1, �
′
1), . . . ,(�n, �

′
n)〉. Here

(�1, �
′
1), . . . ,(�n, �

′
n) must be regarded as a multiset of pairs (subject, object). For a con-

text Γ, the transitional semantics
λ−→ of the abstract processes PΓ is defined as expected,

where λ = τ〈(α1,β1), . . . ,(αn,βn)〉. A type is a multiset T ::= α1[β1] , . . . ,αn[βn] that
is, “,” is an associative and commutative operator with the empty multiset as unit. Types
will play the role of markings in a Petri net. We consider a tag sorting system E con-
taining elements of the form T → S, to be interpreted as transitions of a Petri net. More
precisely, we shall fix a set of rules E = {Ti → Si | 1 ≤ i ≤ n}, where the following
uniformity condition is satisfied by E : let dom(E) be the set of all α[β]’s occurring in
E ; then for every α, β and β′ such that α[β],α[β′] ∈ dom(E), if α[β],T → S ∈ E then
also α[β′],T → S′ ∈ E for some S′. The operational semantics of types is then defined
by the rules below, which make it clear that E is a Petri net, and a type T is a marking
of this net.

(J-T-COM)
α1[β1], . . . ,αn[βn] → T ∈ E

α1[β1] , · · · ,αn[βn]
τ〈(α1,β1),...,(αn,βn)〉−−−−−−−−−−−−→ T

(J-T-PAR) T λ−→ T′

T ,S λ−→ T′ ,S

Table 6. Syntax of the Join calculus

Processes P,Q ::= a〈b〉 Output
∣
∣ def D in P Definition
∣
∣ P|P Parallel

Definitions D ::= J � P Pattern
∣
∣ D ∧ D Conjunction

Patterns J ::= aα(b) Input pattern
∣
∣ J ‖ J Join pattern

6.2 Typing Rules and Results

The typing rules are defined in Tab. 7. The rules generalizes as expected those of
Section 4. In the rules, we use a function tags(D) that extracts tags associated with
definitions, as follows:

tags(D1 ∧ ·· · ∧ Dn) =
�

i=1,...,n tags(Di) tags(J � P) = tags(J)

tags(J1 ‖ · · · ‖ Jn) =
�

i=1,...,n tags(Ji) tags(aα(c)) = {a : α}
.

We have the following result.
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Table 7. Typing rules for the Join calculus and Petri nets

(T-J-DEF)
Γ �E D : nil Γ, tags(D) �E P : T

Γ �E def D in P : T (T-J-PAR) Γ �E P : T Γ �E Q : S
Γ �E P|Q : T ,S

(T-J-CON) Γ �E Di : nil i = 1, . . . ,n
Γ �E D1 ∧ ·· · ∧ Dn : nil (T-J-SUB)

Γ �E P : T T �c S
Γ �E P : S

(T-J-OUT)
Γ � a : α Γ � b : β α[β] ∈ dom(E)

Γ �E a〈b〉 : α[β]

(T-J-PAT)

J = a1
α1(c1) ‖ · · · ‖ an

αn(cn) ∀βk1 , . . . ,βkn
s.t. αi[βki

] ∈ dom(E) ∃Tk s.t.

α1[βk1 ], . . . ,αn[βkn
] → Tk ∈ E ∧Γ, tags(D),c1 : βk1 , . . . ,cn : βkn

�E P : Tk

E ′ =
�

k{α1[βk1 ], . . . ,αn[βkn
] → Tk}

Γ �E J � P : nil

Theorem 4. Suppose Γ �E P : T. Then: (a) if PΓ
λ−→ P′

Γ′ then there exists a T′ such

that T λ−→ET′ and Γ′ �E P′ : T′; and (b) PΓ �c T.

7 Conclusions and Related Works

We have proposed methods for statically abstracting propositional approximations of
first-order process calculi (pi-calculus and Join). These methods take the form of be-
havioral type systems. Correspondingly, three classes of types have been considered:
restriction-free CCS, BPP and Petri nets. Concerning type reconstruction, we give meth-
ods to compute minimal types under certain assumptions on processes, but leave the
development of explicit type inference algorithms for future work.

In Igarashi and Kobayashi’s work [3], types are restriction-free CCS processes and
output prefixes are allowed. Roughly, types are obtained from pi-processes by replac-
ing any bound subject with the corresponding tag, and turning each object into a
CCS-annotation describing the behavior of the prefix continuation. Depending on the
actual instantiation of this framework, the type checking algorithm of [3] may need
to call analysis procedures that check run-time properties of types (well-formedness).
Our work is mostly inspired by [3], but we try to simplify its approach by consider-
ing an asynchronous version of the calculus and by extracting a tag-wise, rather than
channel-wise, behavior of processes. On one hand, this simplification leads to some
loss of information, which prevents us from capturing certain liveness properties such
as race- and deadlock-freedom. On the other hand, it allows us to make the connection
between different kinds of behavior (open/closed) and different type models (CCS/BPP)
direct and explicit. As an example, in the case of BPP we can spell out reasonably simple
conditions under which the type analysis is “precise” (Γ-uniform receptiveness). Also,
our approach naturally carries over to the Join calculus, by moving to Petri nets types.

The papers [10,11] present type systems inspired by [3]. The main difference be-
tween these works and Igarashi and Kobayashi’s, is that behavioral types here are more
precise than in [3], because described by using full CCS. An open (in the sense of [12])
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version of simulation is used as a subtyping relation. Undecidability of (bi)simulation
on CCS with restriction is somehow bypassed by providing an ad-hoc assume-guarantee
principle to discharge safety checks at name restriction in a modular way.

Igarashi and Kobayashi’ type system was inspired by work on the analysis of
various properties of concurrent programs, notably linearity [13] and deadlock-
freedom [14,15,16]. Nowadays, the list of such properties has grown, so as to include
several forms of refined lock-freedom and resource usage analyses [17,18,19].

Concerning the Join calculus, previous work on type systems [20,21] proposed a
functional typing à la ML and a type system à la Hindley/Milner. The analogy be-
tween Join and Petri nets was first noticed in [22] and then in [23]. In [24], Buscemi
and Sassone classify join processes by comparison with different classes of Petri nets.
Four distinct type systems are proposed, that give rise to a hierarchy comprising four
classes of join processes. These classes are shown to be encodable respectively into
place/transition Petri nets, Colored nets, Reconfigurable nets and Dynamic nets. While
only the last class contains all join terms, note that only place/transition Petri nets are
actually “propositional” and enjoy effective analysis techniques. In other words, the em-
phasis of [24] is on assessing expressiveness of Join rather than on computing tractable
approximations of processes.

More loosely related to our work, there is a strong body of research on behavioral
types for object calculi. Notably, [25,26] put forward behavioral types for object in-
terfaces; these types are based on labelled transition systems that specify the possible
sequences of calls at available methods (services). Our extended tag sorting systems
are reminiscent of this mechanism. Similarly, in [27], a behavioral typing discipline for
TyCO, a name-passing calculus of concurrent objects, is introduced. Types are defined
by using graphs and the type compatibility relation is a bisimulation. This work is re-
lated to Yoshida’s paper [28], where graph types are used for proving full abstraction of
translations from sorted polyadic pi-terms into monadic ones.
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Abstract. The behavior of e-commerce agents can be defined at differ-
ent levels of abstraction. A formalism allowing to define them in terms of
their economic activities, Utility State Machines, has been proposed. Due
to its high level of abstraction, this formalism focuses on describing the
economic goals rather on how they are achieved. Though this approach
is suitable to specify the objectives of e-commerce agents, as well as to
construct formal analysis methodologies, this framework is not suitable
to define the strategic behavior of agents. In this paper we develop a
new formalism to explicitly define the strategic behavior of agents in a
modular way. In particular, we reinterpret the role of utility functions,
already used in USMs in a more restrictive manner, so that they define
strategic preferences and activities of agents. We apply the formalism
to define the agents in a benchmark e-commerce agent environment, the
Supply Chain Management Game. Since the strategic behavior of agents
is located in a specific part of the formalism, different strategies can be
easily considered, which enhances the reusability of the proposed speci-
fication.
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1 Introduction

One of the most interesting applications of agent-oriented computation is the
area of agent-mediated e-commerce [1,2,3,4,5]. These agents can look for prof-
itable offers, recommend products, negotiate with other agents, or, even au-
tonomously, perform transactions on behalf of their respective users. However,
users may be reluctant to delegate activities that dramatically affect their pos-
sessions. On the one hand, they may think that agents are biased by the man-
ufacturer for commercial reasons. On the other hand, some users would never
(voluntarily) delegate critical activities to intelligent entities.
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The use of formal methods through the different stages of a system develop-
ment increases the chance of finding and isolating mistakes in early phases of
the system creation. Formal languages are used to define the critical aspects of
the system under consideration, that is, to create a model of the system. Formal
specification languages and formal semantics have been already used in the field
of agent-oriented systems (see e.g. [6,7,8]). Then, some theoretical machinery
allows to analyze the model and extract some relevant properties concerning the
aspects included in the model. In this line we can mention model checking [9]
and its application to agent systems [10]. We can also consider that the model
is the specification of the system under construction. Thus, we can compare its
behavior with that of a real system and test whether it correctly implements
the model [11]. Such approach is taken in the agents field, for instance, in [12].
Regarding agent-mediated e-commerce, formal methods can be used to analyze
the high-level requirements of agents. These requirements can be defined in eco-
nomic terms. Basically, the high-level objective of an e-commerce agent is “get
what the user said he wants and when he wants it”. Let us note that what the
user wants might include not only what goods or services he wants (e.g., DVD
movies) but also other conditions (e.g., he wants to keep his information private,
he wants to perform only legal transactions, etc).

Following these ideas, a formalism allowing to specify the high-level behavior
of autonomous e-commerce agents, as well as to test agents with respect to their
specifications, is proposed in [13,14,15]. Users objectives are defined in terms of
their preferences, denoted in turn by means of utility functions. A utility function
associates a numerical value with each basket of resources, where a resource is
any scarce good that can be traded in the market. Preferences may change as
long as the time passes and objectives are fulfilled. Regarding the former, time
is used as a parameter in utility functions, that is, if x̄ and ȳ are baskets of
resources and f is a utility function, f(x̄, t) > f(ȳ, t) means that, at time t, x̄
is preferred to ȳ. Concerning the latter, the formalism allows agents to behave
according to different utility functions depending on the current state of the
agent. We called Utility State Machines to our formalism. A USM is inspired
in the notion of finite state machine but it is more powerful. A set of variables
denote the current possessions of the user (i.e., the resources it can exchange
with other agents) and each state is provided with a utility function denoting
the objectives in the state. USMs evolve by changing their state, by performing
an exchange with other USMs, or by waiting for some time. By performing these
activities, they represent the economic behavior of an autonomous e-commerce
agent. The work in USMs has also been supported by the specification of small
case studies such as the specification of all the entities involved in the Kasbah
system [16].

Even though there is a well-founded theory underlying USMs, the application
of this formalism to the specification of complex agents has not been as suc-
cessful as expected. In fact, our experimentation has detected some features of
the original formalism that are almost not needed when specifying a wide range
of different agents. In contrast, although USMs have a big expressive power,



320 M.G. Merayo, M. Núñez, and I. Rodŕıguez

this experimentation has also revealed that there are several agents character-
istics that can be expressed only in a very difficult and intricate way. Thus, we
have decided to create a new formalism based on USMs but overcoming most
of its drawbacks. We call this new specification language extended utility state
machines, in short, EUSM. The term extended indicates not only that these new
machines are an extension of the previous formalism; it also shows that these new
machines are more powerful since the specification of some agent properties can
be done in a more straight way. Among the several modifications and additions,
we can remark the following structural contributions. First, utility functions al-
low now to specify not only short-term behavior but also strategic behavior.
Second, EUSMs allow to create general patterns to build agents; by modifying
some utility functions located in specific places, it is easy to define agents that,
following the same behavior, present completely different characteristics.

In order to illustrate the features of our formalism, we apply it to the specifi-
cation of a system that can be considered as a benchmark in the agent-mediated
e-commerce community: The Supply Chain Management Game [17]. In a few
words, in this system, agents face a simulated environment where they interact
with suppliers and customers to stock up with components and sell constructed
products, respectively. Next we briefly introduce the main components in the
Supply Chain Management Game. We restrict ourselves to the most relevant as-
pects of the system. The system simulates an environment where PCs are traded.
Thus, the system contains final consumers, vendors, and component providers.
The global behavior is very simple: Clients buy PCs to vendors, which in turn
buy the needed components to providers, ensemble them, and sell the final PCs
to clients. While consumers and providers are simulated by the system, vendors
have to be implemented by the different teams taking part in the game. As ex-
pected, the goal of these agents is to earn as much money as possible. Once
these agents simulating vendors are added to the system, they have to take
autonomous decisions. Each agent communicates with clients and component
providers by following a simple protocol. Agents receive requests for quotes from
the clients. Then, the agent sends quotes to the chosen clients (each agent can
decide with which clients it wants to make business). Next, the clients accept the
quotes that they like. Finally, the last communication is the transaction itself. It
is worth to point out that each quote contains not only the price and the number
of desired pieces, but also the reception date as well as the penalty to be paid in
case of late delivery. The communication of agents with providers is similar, but
exchanging in the previous dialogue the role of agent by the role of provider and
the role of client by the role of agent. That is, an agent sends a request for quotes
to the providers, and so on. In each game turn, the agents send to their factories
the requests for assembling some PCs by using the available components that
they bought in previous turns. The production capacity of each factory is not
unlimited. Moreover, to store both components and PCs has an associated cost.

The rest of the paper is structured as follows. In the next section we relate
the approach presented in this paper with some previous work. In Section 3, we
introduce the language constructions to define EUSMs. We will use the Supply
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Chain Management Game to show, along this section, the main EUSMs charac-
teristics. In Section 4 we define the operational behavior of EUSMs in terms of
their transitions. In Section 5 we show how to extend the concepts underlying
EUSMs to deal with multi-agent systems. In Section 6 we present some general
guidelines to define EUSMs. Finally, in Section 7 we present our conclusions and
some lines for future work.

2 Related Work

Several approaches have been proposed to formally define the behavior of e-
commerce systems. Most of them focus on providing models for checking the
validity of communications in these systems (see e.g.[18,19]). Clearly, these as-
pects are critical for the reliability of these systems. For instance, features such as
authentication, non-repudiation, integrity, and privacy are required in this kind
of systems [20]. These requirements are critical in other system domains as well,
so they are not specific to the e-commerce domain. Moreover, in these formal ap-
proaches entities are defined in terms of low level activities (e.g. messages), not in
terms of their high level behavior (which, in this case, is the economic behavior).
Thus, considering their behavior in terms of economic concepts such as prefer-
ences, utilities, profit or Pareto equilibria might be tricky or cumbersome. Sim-
ilarly, other formalisms allowing to formally define the behavior of autonomous
agents have been proposed (see e.g. AgentSpeak(L) [21] or 3APL [22]). Since they
are generic and do not focus on any specific agent-oriented application domain,
the decision-making procedures of entities are not defined in economic terms
either. Some formalisms for defining and analyzing decision-making scenarios
have been proposed. For example, we may consider Markov Decision Processes
(MDP) [23] and Partially Observable Markov Decision Processes (POMDP) [24].
In these formalisms, the specifier totally or partially defines the consequences of
the agent decisions. For example, we may specify that, in a given state s, the
decision a will lead us to either a state s1 with profit 2 or to a state s2 with profit
3, with probabilities 0.25 and 0.75, respectively. Given this kind of information,
optimal sequences of decisions can be computed in some cases. Let us note that
composing these specifications requires to (partially or totally) know the actual
(probabilistic) consequences of taking each decision. Such a condition may be
unfeasible in several scenarios where the uncertainty about the environment is
too high to approximately define its behavior. However, providing entities with a
strategy is also required in these cases. In the approach presented in this paper,
we consider that models are provided with a strategy, but we are not concerned
with the data or the method followed to choose this strategy. On the contrary,
the formalism will focus on analyzing the behaviors of systems where each entity
is provided with a given strategy, regardless of its origin. That is, we will focus
on checking the consequences of taking these strategies (though this feedback
could be useful to choose them).

As we said before, the formalism presented in this paper, extended utility
state machines (EUSMs), are constructed from a previous formalism presented
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in [13,14,15], utility state machines (USMs). One could think that, in order to
consider the strategic behavior of agents, it is enough to reinterpret the meaning
of the utility functions associated to states in EUSMs so that they denote strategic
preferences rather than true preferences. For instance, let us suppose that I have
two apples and that, according to my true preferences, I assign the same utility
to one apple and to two oranges. Besides, let us suppose that, according to
my knowledge, I suspect that the relative price of apples is raising. In this case,
perhaps I should not accept now an exchange where I give one apple and I receive
two oranges, despite of the fact that it is acceptable for my true preferences (note
that my true utility would not decrease). Instead, I should act according to some
strategic preferences. For example, strategic preferences could denote that now
I give the same value to one apple and to five oranges.

Reinterpreting utility functions in this way in USMs is necessary but not suffi-
cient to properly denote agents with strategic behaviors. USMs have other char-
acteristics that have to be modified in order to provide a formalism allowing to
denote strategic behaviors. First, USMs require that agents have a positive utility
outcome before a given deadline is reached. Since utility functions will not de-
note true preferences in the new formalism, this is not suitable. Besides, in USMs
variables only denote the amounts of resources owned by the agent and the time.
However, in order to take strategic decisions, other variables (e.g., a historic file
of last transactions) are required. In USMs, utility functions are used only to en-
able/disable exchanges of resources. However, in order to define strategies in the
long term, utility functions should also be able to affect other decisions not di-
rectly involving transactions. In USMs, the only available kind of communication
between agents is the exchange of resources, but it is not suitable for defining
strategic scenarios where a transaction could be just the last step of a long term
negotiation process. Actually, since in USMs only resource variables are modified
in exchanges, it is not possible to affect other variables that could be relevant
for the future strategy (e.g., the historic file). Finally, in USMs actions associated
to transitions do not depend on the actual values that are taken to make condi-
tions to hold, though registering these values could be useful for the strategy. As
we will see in the next section, the new formalism, EUSMs, will overcome these
problems by providing new constructions that enhance the expressivity in these
cases.

3 Introducing Extended Utility State Machines

In this section we formally define the state machines that we propose as an
appropriate formalism to define agents that incur in e-commerce activities. We
put a special emphasis in the novelties with respect to USMs. Essentially, an
extended utility state machine is a state machine where we introduce some ad-
ditional features to help in defining e-commerce autonomous agents. Thus, we
have several states and transitions among them. Transitions have an associated
condition, that is, a transition can be performed only if the condition holds.
Each transition also contains an action. This action can be either to change the
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value of some variables that the agent is controlling or to send a message to
another agent. A particular case of action is associated with exchanges of re-
sources, that is, two agents exchange messages, inducing a common transaction.
The configuration of a EUSM is given by the current state and the current value
of the variables. Finally, the operational semantics of our machines, indicating
how such a machine evolves, is defined as follows:

– If there exists a transition from the current state where the condition holds
then this transition can be performed.

– If there is more than one transition with the condition holding then there is
a non-deterministic choice among all the possibilities.

– If there does not exist such a transition then the machine can let the time
pass until one of the conditions hold.

The previous description of our state machines coincides with the classical
notion. The important difference so far comes from the introduction of util-
ity functions. In our framework, each EUSM has a function associating a utility
function with each state. These functions have three parameters (the value of
the variables V , an agent identifier id, and a time t) and return a real number
indicating the utility of having the values of the variables V , at time t, after
interacting with agent id. Thus, one of the main roles of utility functions con-
sists in deciding whether a future exchange of resources with a certain agent will
be good according to the current available information. So, utility functions are
used to guide both current and future exchanges. However, we can give more
sophisticated uses. For example, since the utility function takes as parameter all
the available variables, we can decide to refuse a purchase at a low price because
our record indicates that the prices are decreasing very fast. In this line, utility
functions will be used to decide whether a vendor purchases components, at a
given price, by taking into account the requests previously received. So, utility
functions can be used to define complex strategies. This is a big advantage with
respect to USMs [13,15]. In particular, in order to define agents as EUSMs, their
strategies will be codified in the utility functions. Thus, by leaving the utility
functions undefined, we are providing a reusable pattern to create new agents
having a similar behavior but taking decisions in completely different ways.

We have already mentioned that utility functions will be taking as parameter
a set of variables. Next, we describe the different types of variables as well as their
roles in the framework of EUSMs. A distinguished set of variables will represent
resources. The idea is that all the agents participating in a multi-agent system
denote a specific resource with the same name; the rest of the variables will be
considered private and they can have arbitrary names. A distinguished variable
will be associated with the buffer (organized as a fifo queue) storing incoming
messages. Symmetrically, another variable will refer to the port for outgoing
messages. Any message sent to this port will be received in the buffer associated
to the destination agent. The last distinguished variable is time.

In order to perform operations, agents will communicate with each other via
messages. A special kind of message are exchange messages. We consider two
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types of exchange messages: Proposal (denoted by expr) and acceptance (de-
noted by exac). The agent sending a proposal does not modify its resources until
it receives an acceptance from the partner. In both cases, these messages include
the exchanged resources as well as the id of the agent proposing the exchange.
This identifier is useful to keep a record of transactions and, in particular, to
refer to deals that were reached but not concluded yet (e.g. the goods or the
payment were not received yet). For example, if an agent receives the message
(id4, expr({oranges =♦ 6, money =♦ −3})), this means that the id4 agent is
offering 3 euros to purchase 6 oranges. Similarly, if the agent has as identifier
id7 and, after evaluating the exchange with the utility function corresponding
to its current state, the deal is acceptable then the agent will send the mes-
sage (id7, exac({oranges =♦ −6, money =♦ 3})), indicating that it accepts the
exchange.

Definition 1. Let M be a data type. A data type L is a list data type for M if
it is defined as follows: [ ] ∈ L; if l ∈ L and m ∈ M then m · l ∈ L.

Let l ∈ L. We consider that li denotes the i-th element of l. Besides, tail(l)
represents the result of eliminating l1 in l, while enqueue(l, m) represents the
result of inserting m as the new last element of l.

Let v1, . . . , vn be different identifiers and t1, . . . , tn be data types. We say that
V = {v1 : t1, . . . , vn : tn} is a set of variables.

Let R and A be disjoint sets of identifier names. We consider

S =
{

{r1 =♦ x1, . . . , rk =♦ xk}
∣
∣
∣
∣
∀ 1 ≤ i ≤ k : (ri ∈ R ∧ xi ∈ IR) ∧
∀ 1 ≤ i, j ≤ k, i �= j : ri �= rj

}

Let ExchProposal = {expr(s)|s ∈ S} and ExchAccept = {exac(s)|s ∈ S}.
We say that M = A × Info, for some type Info such that ExchProposal ∪
ExchAccept ⊆ Info, is a messages data type for resources R and agents A. 	


Example 1. Let us consider the set of agents A = {Jimmy, Mary, Johnny} and
the set of resources R = {oranges, apples}. Any messages data type for R and
A includes, e.g., the messages (Johnny, expr({oranges =♦ 3, apples =♦ −2}))
and (Mary, exac({apples =♦ 4})). Moreover, depending on the definition of the
type Info considered in the previous definition, other messages not involving an
exchange proposal (expr) or an exchange acceptance (exac) could be included
as well. For example, if hello ∈ Info then (Jimmy, hello) is also a message
included in the messages data type. 	


Next we introduce some concepts related to variables in EUSMs. An extended set
of variables includes some special variables that must be present in the machine
(time, buffer of incoming messages, port for outgoing messages). In this set,
variable representing resources are explicitly marked. An assignment associates
each variable identifier with its current value.

Definition 2. Let V = {v1 : t1, . . . , vn : tn} a set of variables. Let R and A be
disjoint sets of identifier names, Messages be a messages data type for resources
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R and agents A, and MessagesList be a list data type for Messages. We say
that (V, R) is an extended set of variables if the following conditions hold:

– {v : IR|v ∈ R} ⊆ V . Each resource is represented by a variable in the set.
– t : IR+ ∈ V represents the time.
– ib : MessagesList ∈ V represents the input buffer.
– op : Messages ∪ {⊥} ∈ V represents the message to be sent through the

output port. The symbol ⊥ indicates that no message is waiting to be sent.

Let us consider an extended set of variables E = (V, R). We say that a set
V = {v1 =♦ a1, . . . , vp =♦ ap} is an assignment for E if for all 1 ≤ i ≤ p we
have vi ∈ V and ai ∈ ti. The set of all assignments is denoted by Assign.

Let V ∈ Assign and v be an identifier such that v ∈ {v′|∃ y′ : v′ =♦ y′ ∈ V}.
The update of the variable v with the value x in V , denoted by V [v := x], is the
substitution of the former value of v by x. Formally,

V [v := x] = {v′ =♦ y′|v′ =♦ y′ ∈ V ∧ v′ �= v} ∪ {v =♦ x}

We extend this operation to update k variables in the expected way:

V [v1 := x1, v2 := x2, . . . vk := xk] = (. . . ((V [v1 := x1])[v2 := x2]) . . . [vk := xk])

Let V , V ′ ∈ Assign be assignments. The addition of V and V ′, denoted by
V + V ′, is defined as

{v′ =♦ x′|v′ =♦ x′ ∈ V ∧ � ∃ y′ : v′ =♦ y′ ∈ V ′}
∪

{v′ =♦ x′|v′ =♦ x′ ∈ V ′ ∧ � ∃ y′ : v′ =♦ y′ ∈ V}
∪

{v′ =♦ x′ + y′|v′ =♦ x′ ∈ V ∧ v′ =♦ y′ ∈ V ′}

Let A be a set of agent identifier names. A utility function is any function f :
A × Assign → IR+. The set of all utility functions is denoted by UtilFuncs. 	


Example 2. The EUSM representing a vendor in the Supply Chain Management
Game communicates with clients and suppliers by using some messages. Be-
sides, they will keep some variables to control their interactions. Figure 1 shows
the messages agents can send/receive to/from customers and suppliers, as well
as the set of variables that agents keep. Vendors use some variables to regis-
ter past interactions with clients and suppliers (requests for quotes to be at-
tended, proposed quotes, actual commitments, and historical transactions). In
this way, they know what to expect from them in subsequent turns. These vari-
ables are sets where each element keeps the corresponding interaction message
as well as the sender/receiver of the message and other relevant data. Other vari-
ables represent resources, the time consumed in the current state, the remain-
ing capacity of the factory in this turn, and all mandatory variables previously
introduced. 	
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Types of messages: Variables:

ClientRFQ : Client requests a quote to agent
crfq(pcModel, units)

AgentRFQ : Agent requests a quote to supplier
arfq(compModel, units)

AgentQ : An agent sends a quote to a client
aq(pcModel, units, price, deadline, penalty)

SupplierQ : A supplier sends a quote to an agent
sq(compModel, units, price, deadline, penalty)

AcceptAgentQ : Client accepts quote from agent
aaq(pcModel, units, price, deadline, penalty)

AcceptSupplierQ : Agent accepts quote from sup.
asq(compModel, units, price, deadline, penalty)

expr(E) : The exchange E is proposed
E ∈ Assign

exac(E) : The exchange E is accepted
E ∈ Assign

Resources:
money: money units
pcModelx: units of model x PC
compModely : units of component y

Mandatory variables: t, ib, op
st: Time EUSM moved to the current state
factoryCap: # PCs the EUSM can still build
- Registering interactions with clients:
RFQfromClients: received RFQs

(client, clientRFQ)
QtoClients: quotes sent to clients

(client, agentQ)
CwithClients: commitments with clients

(client, agentQ)
HwithClients: past transactions with clients

(client, agentQ, delay, finalPrice)
- Registering interact. with suppliers:
RFQtoSuppliers: RFQs asked to suppliers

(supplier, agentRFQ)
QfromSuppliers: Qs from suppliers

(supplier, supplierQ)
CwithSuppliers: commitments with sup.

(supplier, supplierQ)
HwithSuppliers: past transactions with sup.

(supplier, supplierQ, delay, finalPrice)

Fig. 1. Messages and variables managed by vendors

Next we introduce our notion of state machine. In the next definition we use
the term explicit transition to denote all the transitions contained in the set of
transitions. The idea is that there are other transitions that are not included in
that set: Time transitions.

Definition 3. An Extended Utility State Machine, in the following EUSM, is a
tuple M = (id, S, E, U, s0, V0, T ) where:

– id is the (unique) agent identifier of M .
– S is the set of states and s0 is the initial state.
– E is the extended set of variables and V0 is the initial assignment.
– U : S −→ UtilFuncs is a function associating a utility function with each

state.
– T is the set of explicit transitions. For all transition γ = (s1, C, Z, s2) ∈ T

we have
• s1, s2 ∈ S denote the initial and final states of the transition, respectively.
• C : Assign× Extra −→ Bool is the transition condition, where Extra is

a data type.
• Z : Assign× Extra → Assign is the transition transformation.

A configuration of M is a tuple (s, V) where s ∈ S and V is an assignment
for E. 	


We consider that all the variables belonging to the extended set of variables
appear in the initial assignment. As we will see later in Definition 4 the C and
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Fig. 2. EUSM denoting an agent

Z functions work as follows: If there exists e such that C(V , e) holds then V
is substituted by Z(V , e). Let us note that there may exist several values of e
such that C(V , e) holds. In these cases, the EUSM will be provided with different
nondeterministic choices. Next we introduce the EUSM defining the behavior of a
vendor in our case study. In particular, we show how C and Z can coordinate
to find/use the extra parameter e.

Example 3. We consider that the interactions of the vendor with the environ-
ment are defined by using several states. Exchange proposals, on the basis
of the utility function of the agent associated with the current state, are ac-
cepted/rejected. The objective of each state conforming the EUSM consists in
dealing with a kind of messages or agent activities. The resulting EUSM will be
denoted by A. The graphical presentation of A is given in Figure 2.

In order to illustrate the behavior of the C and Z functions, let us con-
sider the agent transition tran1

2 = (s2, C
1
2 , Z1

2 , s2), which links the state s2 with
itself. This transition defines how the agent takes a client RFQ from its set
RFQfromClients and composes a quote q to be sent back to the client. For the
sake of simplicity, in this approach the quote penalty (i.e., the price reduction
due to a delayed delivery per time unit) will be 0. The transition condition C1

2
requires that a client RFQ of the form (client, crfq(pcModelz, units)) is found
in RFQfromClients. Besides, C1

2 requires finding a quote that is profitable for
the agent, that is, a quote that would improve the utility in s2. In order to do
that, it searches for some values price and deadline such that exchanging units
PCs of model pcModelz by price at time deadline would improve the utility of
the agent, given by U(s2). If such values of price and deadline are found then
C1

2 returns True and these parameters are passed to function Z1
2 . The function

Z1
2 removes the concerned client RFQ to avoid processing it again. Besides, it

composes a quote q with the considered parameters price and deadline. The
quote is inserted in the set of quotes QtoClients and it is written in the output
port op so that it is sent to the client. Formally, we have
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C1
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V,
(price,

deadline)

�
�=
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�����������

True if (client, crfq(pcModelz, units)) ∈ RFQfromClients
∧

U(s2)

�
�client, V +

��
�

pcModelz =♦ −units,
t =♦ deadline,
money =♦ price

	

�

�
�

>
U(s2)(client, V + {t =♦ deadline})

False otherwise

Z1
2

�
�

V,
(price,

deadline)

�
�= V

�
�

RFQfromClients :=
RFQfromClients\(client, crfq(pcModelz, units)),
QtoClients := QtoClients ∪ {(client, q)},
op := (client, q)

�
���

where q is defined as aq(pcModelz, units, deadline, price, 0).
Next we show a possible utility function to analyze the suitability of transac-

tions in s2. In the next expression, prodCosti denotes the estimated production
cost of a model i PC. It can be calculated by taking into account CwithClients,
CwithSuppliers, HwithClients, and HwithSuppliers. Besides, the utility func-
tion will discourage sending quotes that are clearly unacceptable for the other
part, which would be a waste of time. A value maxAcceptablePriceid,z denotes
the maximal price the agent estimates the client id would pay for a PC of
model z. This value can be computed from HwithClients by considering previ-
ous interactions with this or other clients. Let us note that sending a quote to an
entity or accepting a quote from one of them (in our system, a supplier) are very
different activities in terms of strategy. In the latter case, which is considered in
the next state s3, we would actually accept excessively profitable (low) prices,
because the other part implicitly accepted the transaction by sending the quote.

U(s2)(id, V)= money+
�

z min(maxAcceptablePriceid,z, (prodCostz + δ))·pcModelz

	

Let us comment on the previous expression. It is the addition of some terms.
The first term denotes the value given to money, while the rest ones denote the
value given to PCs of each model. The relation between the value of money and
the value of a given PC model is the key to decide whether an exchange (in
this case, a sale) involving this model is acceptable or not. Let us note that the
number of PCs of each model is multiplied by a factor. This multiplicative factor
implicitly denotes the exchange ratio that is acceptable for the agent when PCs
of this model are sold. For example, if this factor is equal to 1500, then 1500
units of the resource money (that is, $1500) receive the same value than one
PC of the model where this factor is applied. Thus, selling this PC at any price
higher than or equal to this value will be acceptable, because in this case the
value returned by the utility function will be at least the same as before. Finally,
let us note that the multiplicative factor is the minimum between the maximal
price the agent thinks the buyer would pay for a PC of this model and the cost
of producing it (plus a small amount δ).
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4 Evolutions in EUSMs

In order to define the operational behavior of a EUSM, as we said before, we
consider two types of evolutions: Explicit evolutions (labelled by exp) and tem-
poral evolutions (labelled by tm). An evolution is denoted by a tuple (c, c′)K ,
with K ∈ {exp, tm}, where c is the former configuration and c′ is the new
configuration. Let us note that, for a given c and K, there might exist several
configurations c′ such that (c, c′)K is an evolution. Single evolutions of a EUSM
can be concatenated to conform a trace.

Definition 4. Let M = (id, S, E, U, s0, V0, T ) be a EUSM and c = (s, V) be a
configuration of M . Let us consider that t =♦ time ∈ V . An evolution of M
from c is a pair (c, c′)K , where c′ = (s′, V ′) and K ∈ {exp, tm} are defined in
such a way that one of the following conditions holds:

(1) (Explicit evolution) If there exists (s, C, Z, s′′) ∈ T and e such that C(V , e) =
True then K = exp, s′ = s′′, and V ′ = Z(V , e).

(2) (Passing of time) If the condition of (1) does not hold then K = tm, s′ = s,
and V ′ = V [t := β], where

β ≤ min {β′ |β′ > time ∧ ∃ (s, C, Z, s′′) ∈ T , e : C(V [t := β′], e) = True}

We denote by Evolutions(M, c) the set of evolutions of M from c.
Let M = (id, S, E, U, s0, V0, T ) be a EUSM and c1, . . . , cn be configurations

such that c1 = (s0, V0) and for all 1 ≤ i ≤ n − 1 we have (ci, ci+1)Ki ∈
Evolutions(M, ci). Then, we say that c1 =⇒ cn is a trace of M . The set of
traces of M is denoted by Traces(M, c1). 	


Example 4. Next we show an evolution in the context of our running example.
We will suppose that the variable t denotes the time in days, and money denotes
the amount of dollars owned by the agent. Let c = (s2, V) be a configuration
where pcModel8 =♦ 10, money =♦ 200, t =♦ 5, and QtoClients =♦ ∅ are in V ,
that is, the agent owns 10 PCs of model 8 and $200, it is day 5, and the set of
quotes sent to clients is empty. Besides, let us consider RFQfromClients =♦
{(client15, crfq(pcModel8, 1)} ∈ V , that is, client 15 requested a quote to buy
one PC of model 8.

Besides, let U(s2)(client15, V+{t =♦ 2, pcModel8=♦−1, money=♦999}) >
U(s2)(client15, V + {t =♦ 2}), that is, the agent would accept to sell a PC of
model 8 to client 15 by $999 in day 5 + 2 = 7. In this case, tran1

2 can be taken:
By setting the parameters price and deadline to 999 and 7, respectively, C1

2
holds.

Let V ′ = Z1
2 (V , (999, 7)), i.e., the only variations between V and V ′ are that

RFQfromClients=♦ ∅, QtoClients=♦ {(client15, aq(pcModel8, 1, 7, 999, 0))},
and op =♦ (client15, aq(pcModel8, 1, 7, 999, 0)). Let c′ = (s′, V ′). Then, we have
(c, c′)exp ∈ Evolutions(A, c) and c =⇒ c′ ∈ Traces(A, c), being A the EUSM of
our running example. 	
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5 Defining Multi-agent Systems with EUSMs

In our formalism, a system is just a tuple of agents. The evolutions of a system
are defined from the ones corresponding to the individual agents by taking into
account the following: If an agent can perform an explicit transition (that is,
the condition of a transition from the current state holds) then the transition
is performed. If the transition creates a message in the port of outgoing mes-
sages then the message is enqueued in the buffer of incoming messages of the
corresponding agent. Afterwards, the message must be removed from the port
of outgoing messages (this is simulated by setting the message to the ⊥ value).
Finally, if no condition holds then all the agents idle an amount of time less than
or equal to the time needed for a condition to hold.

Definition 5. Let M1, . . . , Mn be EUSMs such that for all 1 ≤ i ≤ n we have
Mi = (idi, Si, Ei, Ui, s0i, V0i, Ti) and Ei = (Vi, Ri). If R1 = . . . = Rn then we
say that the tuple S = (M1, . . . , Mn) is a system of EUSMs. A configuration of S
is a tuple (c1, . . . , cn), where for all 1 ≤ i ≤ n we have that ci is a configuration
of Mi.

Let S = (M1, . . . , Mn) be a system. Let c = (c1, . . . , cn) be a configuration of
S, where for all 1 ≤ i ≤ n we have ci = (si, Vi). An evolution of S from c is a
pair (c, c′)K , where c′ = (c′1, . . . , c

′
n) and K ∈ {exp, tm} are defined in such a

way that one of the following conditions hold:

(1) (Explicit evolution) If there exist 1 ≤ i ≤ n and d = (s′, V ′) such that
(ci, d)exp ∈ Evolutions(Mi, ci), then K = exp and we consider the following
possibilities:

(1.a) (No communication) If op =♦ ⊥ ∈ V ′ then we have c′i = d and for all
1 ≤ j ≤ n with j �= i we have c′j = cj .

(1.b) (The agent communicates) If op =♦ (idj , m) ∈ V ′, for some 1 ≤ j ≤ n,
then c′i = (s′, V ′[op := ⊥]), c′j = (sj , Vj [ib := enqueue(ib, (idi, m))]) and
for all 1 ≤ k ≤ n, with k �= i, j, we have c′k = ck.

(2) (Passing of time) If there exists newtime ∈ IR+ such that for all 1 ≤ i ≤ n
we have (ci, c

′′
i )tm ∈ Evolutions(Mi, ci), with c′′i = (si, Vi[t := newtime]),

then for all 1 ≤ i ≤ n we have c′i = c′′i and K = tm.

We denote by Evolutions(S, c) the set of evolutions of S from c.
Let S = (M1, . . . , Mn) be a system with Mi = (idi, Si, Ei, Ui, si0, Vi0, Ti)

for all 1 ≤ i ≤ n. Besides, let c1, . . . , cn be configurations such that we have
c1 = ((s10, V10), . . . , (sn0, Vn0) and for all 1 ≤ i ≤ n − 1 we have (ci, ci+1)Ki ∈
Evolutions(S, ci). We say that c1 =⇒ cn is a trace of S. The set of traces of S
is denoted by Traces(S, c1). 	


6 Defining EUSMs: General Guidelines

In this section we provide some general guidelines to properly define agents by
means of EUSMs. First, let us note that our language focuses on splitting the
behavior of each agent in two separate parts:
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(a) Tasks: They are the actions the agent must perform. In order to properly
define their behavior, states, transitions, and variables of the EUSM can be
used.

(b) Strategic decisions: They refer to all the situations where the agent must
choose among some choices in such a way that its decision may affect the
future chances of success. This part of the agent should be defined by means
of utility functions associated to states of the EUSM.

In general, the strategy of an agent is defined by the utility functions gov-
erning each state. Thus, the selection of suitable utility functions dramatically
depends on the kind of strategic behavior we want to provide the agent with. In
fact, if we leave undefined the utility functions associated to states, an EUSM pro-
vides a reusable framework to design agents with different strategy choices. For
example, if we consider the specification described in the previous section and
we remove utility functions, we obtain a generic reusable framework for defining
vendor agents in the Supply Chain Management Game. In particular, the same
specification allows to consider different strategies by just associating different
suites of utility functions to states.

Tasks involving decision-making, optimization, etc. should be abstracted by
means of the utility functions. Let us note that utility functions provide an
implicit definition of what is preferable: In any situation where some choices
are available, the best choice is, by definition, the one returning the highest
utility. Sometimes, finding the values that maximize a utility function may be a
hard task, specially if the form of utility functions is not constrained to a given
form (in general, if the searching space is finite, it is an NP-hard problem).
Hence, given a specification defined by means of an EUSM, an implementation
should not be required to find the optimal choices in general. Depending on the
time/optimality necessities, the method followed by an implementation to find
good enough suboptimal choices should be based on a suitable tradeoff. Let us
note that these issues do not concern the EUSM because they are implementation
details.

Due to space limitations we cannot include the remaining parts of the case
study that we are using along the paper. The objective of each state consists
in dealing with a certain kind of messages by considering the agent preferences
established by means of utility functions.

7 Conclusions and Future Work

In this paper we have presented a formalism called extended utility state ma-
chines, in short EUSMs. We have illustrated the behavior of these machines with
a medium-size example: The specification of vendors in the Supply Chain Man-
agement Game. EUSMs are a big improvement with respect to the original USM
formalism. In particular, strategic behavior can be now defined in an easier and
more direct way. In this paper we tried to keep a balance between theory (by
introducing a formal language) and practice (by applying the language to the
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specification of a benchmark in e-commerce agents). Our work needs a natural
continuation in both directions. Regarding the more theoretical component, our
previous results for USMs should be adapted to the new framework. Regarding
the more practical component, we are assessing the formalism with other case
studies that are not related to e-commerce. Specifically, we are continuing the
work initiated in [25] by specifying in our formalism not only the Interactive
Driving System, but the next layer of the system containing it.
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Abstract. We study the notion of safe realizability and implied scenar-
ios for Message Sequence Chart (MSC) specifications with the following
contributions: (1) We investigate the cause of implied scenarios and show
that even though implied scenarios are an artifact of the distributed and
global system behaviour, nevertheless, they are the result of the non-
determinism in the local behaviour of processes, (2) Instead of deadlock
states and safe realizability for MSC specifications, we introduce the
notions of stuck states and strong safe realizability. Moreover, we use
emergent scenarios to name both implied scenarios and those anomalies
of MSC specifications that are captured by the notion of strong safe real-
izability, (3) We give an algorithm that reduces strong safe realizability
(or safe realizability) of MSC specifications to strong safe realizability
(or safe realizability) of a set of MSCs.

Keywords: Strong safe realizability, stuck states, emergent scenarios.

1 Introduction

Message Sequence Chart (MSC) specifications ([1]) are one of the popular ap-
proaches for representing requirements specifications for concurrent systems that
consist of multiple autonomous agents or processes. In an MSC (see Fig. 1) ver-
tical lines correspond to asynchronous processes or autonomous agents. Arrows
are used to represent messages that are communicated between processes. The
tail of each arrow corresponds to the event of sending a message, while the head
corresponds to the event of receiving a message. An MSC depicts exchange of
messages among communicating processes in a distributed system and corre-
sponds to a single execution of the system.

One of the problems that is usually encountered for an MSC specification
is whether there exists a distributed implementation (also called a realization)
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for it that covers the behaviours described by the specification, where a dis-
tributed implementation is the concurrent execution of the automata models of
the processes. If there exists such a realization whatsoever that is deadlock free
and shows exactly the behaviours specified by an MSC specification, it is said
that the specification is safely realizable [2]. If on the other hand, there is no
such realization, there would be some implied scenarios that are not part of the
specification but part of the behaviour of any concurrent automata covering the
specification [2], [3], [4].

Our motivation in this work derives from multiple problems related to real-
izability and implied scenarios for MSC specifications. First, even though some
methods have been developed for detecting implied scenarios both in a set of
MSCs and high-level MSCs (hMSCs allows sequential, alternative and iterative
compositions of MSCs) [2], [3], [4], [5], however, the exact cause of implied sce-
narios has remained as a debate causing confusion and some errors in the current
works (see [3] and [6] for the practical consequences of having the exact cause of
implied scenarios undefined).

Second, because usually the same semantics is assumed for MSC specifications
and automata, the current definition for realizability is based on the concept of
deadlock defined in automata machinery [2], [7]. While this assumption helps to
detect deadlocks caused by an MSC specification, it will overlook some anomalies
that cannot be captured by the definition of deadlocks in automata theory.

Third, although there are some methods that address complexity of safe real-
izability problem [8], [9], there exists no specific algorithm for checking safe real-
izability in the presence of hMSCs. The methods and the relevant algorithms in
[4] and [3] work only for detecting implied scenarios in the synchronous setting
and in fact check for a weaker notion of realizability called weak realizability
that ignores deadlocks.

Fourth, methods for detecting implied scenarios are divided between those
that work on a set of MSCs in one hand [2], and on the other hand, those that
work in the presence of hMSCs [3], [4]. In other words, there is not a unique
method that can explain and address implied scenarios for a set of MSCs as well
as for hMSCs.

Our work in this paper is an attempt to address the above problems with the
following contributions. First, we give a localized cause for implied scenarios in
terms of non-determinism in the local behaviour of individual processes. In fact,
we prove that whenever an implied scenario happens for an MSC specification
with autonomous processes, some processes show non-deterministic behaviours
in the sense that a non-deterministic behaviour will be defined in this paper.
This will provide the first step to devise a common way of addressing implied
scenarios in a set of MSCs and hMSCs.

Second, instead of deadlock states, we introduce a stronger condition devel-
oped by MSC specifications called stuck states and reformalize safe realizability
in terms of this condition such that it captures such anomalies for MSC specifi-
cations that cannot be addressed by the current definitions of implied scenarios
and deadlock states. We call this new notion strong safe realizability because
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whenever an MSC specification is Strongly Safe Realizable, it will be safely re-
alizable as well. Also, to stick to the current definition for implied scenarios we
use emergent scenarios to name both implied scenarios and those misbehaviours
that are captured by our definition of stuck states.

Third, we give an approach that reduces strong safe realizability in the presence
of hMSCs to strong safe realizability of a set of MSCs (see [10] for more details and
the proofs for theorems, propositions and lemmas presented in this paper).

2 Background

The MSC syntax and semantics that we use in the sequel are both subsets of
ITU definition for MSCs [1]. Let P be a finite set of processes (with the total
number of processes |P | ≥ 2) and C be a finite set of message contents. Denote
Σi = {i!j(c), i?j(c)|j ∈ P\ {i} , c ∈ C} to be the alphabet of process i ∈ P , where
i!j(c) denotes an event that sends a message from process i with content c to
process j, whereas i?j(c) denotes an event that receives on process i a message
with content c from process j. Also, the alphabet (of all processes i ∈ P ) will be
Σ =

⋃
i∈P Σi.

Definition 1. (partial Message Sequence Chart): A partial Message Sequence
Chart (pMSC) over P and C is defined to be a tuple m = (E, α, β, ≺) where:
- E is a finite set of events.
- α : E → Σ maps each event to its label. The set of events located on process
i is Ei = α−1(Σi). The set of all send events in the event set E is denoted
by E! = {e ∈ E|∃i, j ∈ P, c ∈ C : α(e) = i!j(c)} and the set of receive events as
E? = E\E!.
- β : F ! → E?, F ! ⊆ E!, is a bijection mapping between send and receive events
such that whenever β(e1) = e2 and α(e1) = i!j(c), then α(e2) = j?i(c).
- ≺ is a partial order on E such that for every process i ∈ P , the restric-
tion of ≺ to Ei is a total order, and ≺ is equal to the transitive closure of
{(e1, e2)|e1 ≺ e2, ∃i ∈ P : e1, e2 ∈ Ei} ∪ {(e, β(e))|e ∈ F !}.
Usually pMSCs are restricted to a FIFO condition, which means that for all
e1, e2 ∈ E!, if e1 ≺ e2, α(e1) = i!j(c), α(e2) = i!j(d), and e2 ∈ F !, then also
e1 ∈ F ! and β(e1) ≺ β(e2). In the rest of this paper, we assume the FIFO
restriction. Moreover, if for a pMSC m there exist no unmatched send events,
which means F ! = E!, then m is called a Message Sequence Chart (MSC ) over
P and C.

Definition 2. (Syntactical causality between events): For a pMSC m = (E, α, β,
≺) and e′ ∈ E, define the set Se′ = {e|e′ ≺ e : e ∈ E} to be the set of events in
m that must occur after e′ as defined by ≺. Then, we say e′ is a syntactical cause
for Se′ and denote it by e′ C

→
sy

Se′ . If e /∈ Se′ , we write e′ NC
→
sy

e.

For example, the event of receiving of message b in MSC1 in Fig. 1 is a syntactical
cause for the events of sending of message c, receiving of message c, sending of
message d, and receiving of message d.
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Definition 3. (Process’s projection): The projection m|i for process i in pMSC
m is the ordered sequence of messages that corresponds to the events occurring
on process i in the pMSC m. For m|i, ‖m|i‖ indicates its length, which equals
to the total number of events of m on process i, and m|i[k] refers to kth element
of m|i, so that if ek is the kth event on process i according to the total order of
the events of i in m, then αm(ek) = m|i[k − 1], 0 < k < ‖m|i‖.

For example, the projection for process C1 in MSC1 of Fig. 1 will be “C1!C2(a)
C1?C2(b) C1!C2(c) C1?C2(d)”. In the rest of this section, we recall some con-
cepts from [2].

2.1 Scenarios as Words in a Formal Language

In [2], scenarios are treated as words in a formal language, which is defined
over the alphabet Σ. To account for the definition of an MSC, well-formed and
complete words are defined. A well-formed word captures the definition of a
pMSC and defined to be a word over the alphabet Σ that for every receive event
its corresponding send event exists in it. A complete word over the alphabet Σ
is the one that for every send event, its corresponding receive event also exists
in it. Therefore a complete and well-formed word addresses an MSC.

For any MSC m in a set of MSCs M , any word ω over Σ obtained by first
considering a sequence of events of m that respects the partial order ≺, and then
replacing each event by its label (as defined by the mapping α in the definition of
a pMSC) is called a linearization of m. The language L(M) of M consists of all
the words ω over Σ such that ω is a linearization of m, ∀m ∈ M . Furthermore,
similar to Definition 3, for a word ω ∈ L(M) its projection ω|i on process i is
defined to be the subsequence of ω that involves the send and receive events of
process i.

2.2 Concurrent Automata

With asynchronous message setting and FIFO buffers between processes, the
behaviour of process i can be specified by an automaton Ai over the alphabet
Σi with the following components: 1) a set Qi of states, 2) a transition relation
δi ⊆ Qi × Σi × Qi, 3) an initial state q0 ∈ Qi, and 4) a set Fi ⊆ Qi of accepting
states. Then, the joint behaviour of automata Ai is defined as their asynchronous
product

∏
i∈P Ai.

In order to define
∏

i∈P Ai, for each ordered pair (i, j) of processes, two mes-
sage buffers Bs

i,j and Br
i,j are defined. Bs

i,j is a pending buffer which stores the
messages that have been sent by process i but are still in transit and not yet
accessible by process j. On the other hand, Br

i,j stores messages that have al-
ready reached process j but are not accessed and removed from the buffer by
process j. All the buffers are words over the set of message contents C. Then,
the product automaton A =

∏
i∈P Ai over the alphabet Σ is given by:

States. A state q of A consists of the local states qi of component processes Ai,
along with the contents of the buffers Bs

i,j and Br
i,j .
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Initial state. The initial state q0 of A is given by having the component for each
process i be in the start state q0

i , and by having every buffer be empty.

Transitions. The transition relation δ ⊆ Q × (Σ ∪ {τ}) × Q (the τ transitions
model the transfer of messages from the sender to the receiver) is defined as:

1. For x ∈ Σi, (q, x, q′) ∈ δ iff (a) the local states of processes k �= i are identical
in q and q′, (b) the local state of process i in q is qi and in q′ is q′i such that
(qi, x, q′i) ∈ δi, (c) for x = j?i(c), the buffer Br

i,j in state q contains the
message c in the front, and the corresponding buffer in state q′ is obtained
by deleting c, (d) for x = i!j(c), the buffer Bs

i,j in state q′ is obtained by
appending the message c to the corresponding buffer in state q, and (e) all
other buffers are identical in states q and q′.

2. There is a τ -labeled transition from state q to q′, iff states q and q′ are
identical except that for one pair (i, j), the buffer Bs

i,j in state q′ is obtained
from that in q by deleting the first message c, and the buffer Br

i,j in state q′

is obtained from that in q by adding that message c at its end.

Accepting states. A state q of A is accepting if for all processes i, the local states
qi of process i in q is accepting, and all the buffers in q are empty.
The language L(A) over the alphabet Σ of the product automaton A is defined
as all possible execution of A where τ transitions are interpreted as ε transitions
in the usual automata theory.

2.3 Safe Realizability as Defined in [2]

In [2], a set of MSCs M is said to be safely realizable if there exists a concurrent
automata A =

∏
i∈P Ai such that A is deadlock free and L(M) = L(A), where

a deadlock is defined as follows:

Deadlock: A reachable state q of the product A =
∏

i∈P Ai is said to be a
deadlock state if no accepting state of A is reachable from q.

A path in A that leads to a deadlock is an implied partial scenario (implied
pMSC) and a closure condition is used to capture implied pMSCs as follows. For
a language L, let pref(L) denotes the set of all prefixes of the words in L.

Closure condition CC3: A language L over the alphabet Σ is said to satisfy
closure condition CC3 iff for all well-formed words ω: if for each process i there
is a word νi ∈ pref(L) such that ω|i = νi|i, then ω is in pref(L).

Those words that have the condition described in CC3 and falsify the closure
of the language of the set of MSCs M under this closure condition are called
implied partial scenarios for the set M . A straightforward check for CC3 has
exponential complexity. So, an equivalent condition, which can be checked by a
polynomial time algorithm is defined.

Closure condition CC3
′
: A language L over the alphabet Σ is said to satisfy

closure condition CC3
′
iff for all ω, ν ∈ pref(L) and all processes i: if ω|i = ν|i,

and ωx ∈ pref(L) and νx is well-formed for some x ∈
∑

i, then νx is also in
pref(L).
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On the other hand, closure condition CC3 as it is shown in [9] cannot com-
pletely address safe realizability. Thus, safe realizability is given as a combination
of CC3 and another closure condition CC2

′
given below:

Closure condition CC2
′
: A language L over the alphabet Σ satisfies closure

condition CC2
′

iff for all well-formed and complete words ω over Σ such that
ω ∈ pref(L): if for all processes i there exists a word νi in L such that ω|i = νi|i,
then ω is in L.

Then, a language L is proved to be safely realizable iff it satisfies both
CC3

′
(equivalent to CC3) and CC2

′
.

3 Safe Realizability Revisited

3.1 Non-determinism and Implied Scenarios

In this section, we (informally) explain how implied scenarios are related to a
local property of process’s behaviour. Fig. 1 shows two scenarios for a system in
MSC notation with three processes C1, C2 and C3. In these scenarios, process
C1 has the same sequence of messages before message d in MSC1 and message
e in MSC2. Every Finite State Machine (FSM) for describing the behaviour of
process C1 would have this common sequence, which can be better seen in Figs.
2 and 3 (to simplify the presentation, we only use the message content instead of
the whole message in terms of Definition 1, i.e. instead of the complete message
C1!C2(a), we only use its content a). Fig. 2 shows two FSMs for describing the
behaviour of process C1 in MSC1 and MSC2 and Fig. 3 shows the combination
of two FSMs of Fig. 2 in a single deterministic FSM. In Fig. 3 and from C1’s

C1 C2

a

b

c

d

C3 C1 C2

a

b

c

e

C3

f

MSC1 MSC2

Fig. 1. Two scenarios for a system

S1 S2 S3
a b

S1
c

S'2 S'3 S'4
a b c

S1 S'5

S5d

e

Fig. 2. Two FSMs for description of the be-
haviour of process C1 in two scenarios of
Fig. 1

perspective, after sending message c, there exists no rule to tell the next event
that must happen on process C1. The immediate consequence of this lack of
rule for process C1 is that starting by MSC1 and after message c, C1 can send
message e instead of what it is supposed to do in MSC1, which is receiving of
message d. This choice of action for a process is what we call non-deterministic
behaviour for the process. Because of this non-deterministic behaviour in the
specification, we get an implied partial scenario depicted in Fig. 4 (see closure
condition CC3). The circle at the head of an arrow indicates that the receive
part of that message may not exist (resulting in a partial scenario or a pMSC).
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Fig. 3. The combination of two FSMs of
Fig. 1
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Fig. 4. An implied partial scenario
from two scenarios of Fig. 1

As another case for non-deterministic behaviour of processes consider Fig. 5.
Again, from C1’s perspective and based on MSC3 and MSC4, after sending
message c there exists no rule to tell the next event that must happen on this
process. Therefore, the rule that says whether to receive message e or f will be
determined by the processes that are sending these messages. Consider message
f . By looking into MSC3, there is no rule for sending message f by process C2
after receiving of message e by process C1 (there is no order between them).
In other words, the receive event of message e is not a syntactical cause for the
send event of message f . Thus, in MSC3 message f can be sent by process C2
without waiting for the receive of the message e by process C1 and the behaviour
of process C1 in MSC4 gives the required certificate to process C1 to receive f
instead of e. So, we can get a new behaviour shown in Fig. 6 that is a partial
implied scenario with respect to MSC3 and MSC4 (see closure condition CC3).

Formally, non-deterministic behaviour of a process in a pMSC m is defined as
follows.

Definition 4. (Non-deterministic behaviour of a process): In a pMSC m =
(E, α, β, ≺), we say process i ∈ P has a non-deterministic behaviour because
of pMSC n, if one of the followings holds:

i) For the smallest index k that m|i[k] �= n|i[k]: n|i[k] = i!j(c), 0 ≤ k ≺ ‖n|i‖,
j ∈ P , c ∈ C

ii) For the smallest index k that m|i[k] �= n|i[k]: n|i[k] = i?j(c), 0 ≤ k ≺ ‖n|i‖,
j ∈ P , c ∈ C, and for α(e) = m|i[k], e ∈ E, ∃e′ ∈ E such that α(e′) = j!i(c),
e′ /∈ Se and β(e′) ∈ Se

iii) n|i is a prefix of m|i and m|i[‖n|i‖] = i!j(c), j ∈ P , c ∈ C

C1 C2
a
b
c

e
f

C3
MSC3

C1 C2
a
b
c

f

C3

g

MSC4

Fig. 5. Two scenarios for a system

C1 C2
a

b
c

f

C3

e

Fig. 6. An implied partial scenario
from two scenarios in Fig. 5
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If a FIFO architecture is assumed for the communication between processes and
m|i[k] is a receive message, then for Case ii) of Definition 4, it is also required that
m|i[k] is sent by a process other than j. Essentially, Definition 4 is saying that
a process i in pMSC m shows non-deterministic behaviour because of another
pMSC n, if one of the followings holds: i) for the first events e and e′ on process
i respectively in m and n that have different message contents, e′ is a send event
(see Figs. 1 and 4); ii) e′ is a receive event like i?j(c), j ∈ P , c ∈ C, and a message
j!i(c) exists in m such that event e is not a cause for it (so that by removing e,
j!i(c) still can happen) and this message does not have a corresponding receive
event before e (see Figs. 5 and 6); iii) n|i is a prefix of m|i and the immediate
event after the sequence n|i in m|i is a send event (see the next section and Figs.
7 and 8).

Note that, non-deterministic behaviour of processes that captures the choice
of local actions for a process is different from non-determinism defined for non-
deterministic automata ([11]) and Definition 4 is only meaningful in the context
of MSCs. Furthermore, although the choice of local actions for a process that is
captured by the Definition 4 is not in the first look problematic for the process,
nevertheless, when the process is collaborating with other processes to fulfill a
scenario, it might hinder the completion of the intended scenario.

3.2 Strong Safe Realizability and Emergent Scenarios

Case iii) of Definition 4 can result in new behaviours that cannot be captured
by the closure conditions CC3 and CC2

′
. Consider MSC5 and MSC6 in Fig. 7.

Based on these two MSCs, process C1 in MSC6 will be able to stop sending
message e because MSC5 provides the required certificate for process C1 to stop
after sending message c. This is the intuition behind Case iii) of Definition 4 by
which the choice of a process to send a message or stop at a final state can result
in unwanted scenarios for a system. Note how in the scenario of Fig. 8 processes
C1 and C3 have reached their final states and stopped there, while process C2
is waiting to receive message e, which might never receive.

To see how Case iii) of Definition 4 can be problematic, observe that based
on the MSCs of Fig. 7 there is no mechanism (in terms of some synchronizing
messages) to force process C1 to send message e in Fig. 8, because according
to MSC5 the behaviour of process C1 is already a valid behaviour in Fig. 8.
However, Fig. 8 is a prefix of MSC6, and therefore, it fulfills the closure condition
CC3. On the other hand, since the projection of process C2 in Fig. 8 is neither
the same as its projection in MSC5 nor in MSC6, the MSC of Fig. 8 does not
have the condition of the words specified in the closure condition CC2

′
, and so,

it is not addressed by CC2
′
. This situation is similar to a property defined under

the notion of stuck in the context of Communicating Sequential Processes (CSP)
[12]. Informally, stuck-freeness means that a message sent by a sender will not
get stuck without some receiver ever receiving it, and a receiver waiting for a
message will not get stuck without some sender ever sending it. Analogously,
we define stuck states in the context of MSC specifications and in terms of the
product automata A =

∏
i∈P Ai, as follows.
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nario from two scenarios
of Fig. 7

Definition 5. (Stuck state): A reachable state q in A =
∏

i∈P Ai, is called a
stuck state either if q is a deadlock state or if for every process i ∈ P for which
its local state qi in the state q is an accepting state of Ai we remove all outgoing
transitions i!j(c) from q (for some j ∈ P and c ∈ C), none of the accepting
states of A is reachable from q.

Then, because of the definition of stuck states (that also covers the definition of
deadlock states), instead of safe realizability, we define the notion of strong safe
realizability that captures stuck states in the concurrent automata of processes.
However, first we define the closure condition CCss that captures stuck states
in the concurrent automata.

Closure condition CCss: A language L over the alphabet Σ satisfies closure
condition CCss iff for all well-formed words ω over Σ such that ω ∈ pref(L),
there exists an x in L such that ω is a prefix of x and for all processes i ∈ P , for
which ω|i = νi|i for some νi ∈ L, either x|i = ω|i or x|i[‖ω|i‖] is a receive event.

Note that CCss is a stronger condition than CC2
′
. This fact is stated by the

following proposition.

Proposition 1. A language L satisfies CC2
′
if it satisfies CCss.

Now, we define the notion of strong safe realizability of a set of MSCs M , and
then relates it to the closure conditions CC3 and CCss by Theorem 1.

Definition 6. A set of MSCs M is said to be Strongly Safe Realizable (SSR) iff
there exists a concurrent automata A =

∏
i∈P Ai such that A is stuck free and

L(M) = L(A).

Theorem 1. A set of MSCs M is SSR iff it is closed under both CC3 and CCss.

It is easy to see that based on Theorem 1 and Proposition 1, strong safe realiz-
ability implies safe realizability.

In [2], those words that falsify the closure of language L under closure con-
ditions CC3 or CC2

′
are called implied (partial) scenarios. Analogously, we call

those words that falsify the closure of language L under closure conditions CC3
or CCss, emergent (partial) scenarios or emergent pMSCs. In this way, emer-
gent pMSCs include implied (partial) scenarios, together with the new scenarios
developed by stuck states.
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Now, we show how emergent pMSCs are related to the non-deterministic
behaviour of processes. If we look at the closure conditions CC3 and CCss and
the words that might falsify them, it comes out that we need to check the set
of MSCs against those words that their projections on processes are the same
as or a prefix of the projections of some of the current MSCs on the processes.
Alternatively, we can define a candidate emergent pMSC for every MSC in the set
of MSCs M to account for those words that have the conditions of the closure
conditions CC3 and CCss. More specifically, a kth order candidate emergent
pMSC mk for the MSC m has |P |−k process’s projections from m, and the rest
k process’s projections (0 ≤ k < |P |) from other MSCs different from m. In mk,
if there exists an MSC n ∈ M , such that mk|i is a prefix of n|i for some i ∈ P and
either mk|i is not a prefix of m|i, or n|i is a prefix of m|i and m|i[‖n|i‖] = i!j(c),
j ∈ P , c ∈ C (see Definition 4), then we say the projection of process i in mk is
from n. Otherwise, the projection of process i in mk is from m.

In a kth order candidate emergent pMSC mk, we call those process’s pro-
jections that are not from m, the replaceable process’s projections for m. For
example, in Figure 3, the projection of MSC5 on process C1 is a replaceable
process’s projection for MSC4. It is not hard to see that for all MSCs m in the
set of MSCs M , when k varies from 0 to |P | − 1, candidate emergent pMSCs
are the same words that have the conditions of the closure conditions CC3 and
CCss. Thus, a kth order emergent pMSC (including implied pMSCs) for M is a
kth order candidate emergent pMSC for an MSC m ∈ M that falsifies the closure
of L(M) under CC3 or CCss. On the other hand, candidate emergent pMSCs
have a close relation to the non-deterministic behaviour of processes expressed
in the following proposition.

Proposition 2. For any kth order (1 ≤ k ≤ |P |−1) candidate emergent pMSC
mk for the MSC m ∈ M , there exists a k − 1th order candidate emergent pMSC
mk−1 for the MSC m such that there is a non-deterministic behaviours for a
process i ∈ P in mk−1 because of an MSC n ∈ M , and mk can be obtained from
mk−1 by replacing mk−1|i by a prefix of n|i.

Then, an implication of Proposition 2 is the following corollary.

Corollary 1. A set of MSCs M is SSR iff there exist no 1st order emergent
pMSCs for all m ∈ M .

As the result of Corollary 1, checking strong safe realizability for M is equivalent
to finding a 1st order candidate emergent pMSC for some m ∈ M that falsifies
the closure of M under CC3 or CCss.

4 Strong Safe Realizability of MSC Specifications

4.1 High-Level Message Sequence Charts

A high-level Message Sequence Chart (hMSC) is a way to structure multiple
scenarios. An hMSC h = (V, →, ν0, Vt, μ) is a graph with a set of nodes V , a
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binary relation → over V , an initial node ν0, an optional set of terminal nodes
Vt ⊆ V , and a labeling function μ that maps each node to an MSC in a set of
MSCs M or another hMSC (resulting in hierarchy). An hMSC h together with
its set of MSCs M defines an MSC specification Spec = (h, M). Any sequence of
nodes ν0ν1· · · νk· · · of h that starts at initial node ν0 and νl→νl+1, for 0 ≤ l < k,
is an execution of h. An execution of h that is not a prefix of other executions
is called a maximal execution. An acceptable execution of h either is a finite
execution that terminates at a terminal node or is a maximal execution (which
could be an infinite execution).

To associate a language with Spec = (h, M) we need to define concatenation
of two MSCs m and m′. The concatenation of MSCs m = (E, α, β, ≺) and
m′ = (E′, α′, β′, ≺′) defines the MSC m.m′ = (E∪E′, α∪α′, β∪β′, ≺′′), where ≺′′

is the transitive closure of: ≺ ∪ ≺′ ∪{(e, e′) ∈ Ei × E′
i, for some i ∈ P}. Then,

the language L(Spec) of Spec = (h, M) is all the MSCs (or words over the
alphabet Σ) of the form μ(ν0).μ(ν1).· · · .μ(νk).· · · , ν0, ν1, · · · , νk ∈ V , in which
the sequence ν0ν1· · · νk· · · is an acceptable execution of h.

Analogous to concurrent automata, a distributed implementation T =
∏

i∈P Ti

of an MSC specification with asynchronous messages and FIFO buffers between
processes is defined where Ti is a Labeled Transition System (LTS) over alphabet
Σi that specifies the behaviour of process i (see also [4]). An LTS is defined
similar to an automaton except that having accepting states that is a part of
the definition of an automaton is optional for an LTS. In fact, for Spec = (h,
M), an LTS Ti can be obtained for each process i in this way (see also [4]):

1. Obtain an automaton Am
i that accepts m|i for all the MSCs m ∈ M

2. For each node νl ∈ V for which μ(νl) = m, m ∈ M , obtain all the nodes
νk ∈ V , μ(νk) = n, n ∈ M , that are reachable from νl through one edge

3. Beginning with the initial node ν0 and for all νl ∈ V , connect the accepting
state of Am

i to the initial state of each An
i with an ε transition to obtain a

non-deterministic LTS T ′
i with ε transitions. If νl is a terminal node of h,

then mark the accepting state of Am
i as an accepting state of T ′

i

4. Remove ε transitions of T ′
i and use the minimization and the deterministic

operators on T ′
i to obtain Ti

Like an automaton, any word ω over the alphabet Σi that brings an LTS Ti

from its initial state to any state in Ti is an execution of Ti. A path in Ti is a
sequence of states and transitions developed by an execution of Ti. A maximal
execution of Ti is an execution of Ti that is not a prefix of other executions.
The language L(Ti) consists of all the words ω over the alphabet Σi such that ω
either is a finite execution of Ti that ends in an accepting state or is a maximal
execution of Ti (which can be infinite). Some examples for process’s LTS are
given in Section 4.3.

4.2 Algorithm

In this section, we give an algorithm that reduces strong safe realizability of
an MSC specification strong safe realizability for a set of MSCs. We fix our
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setting to asynchronous message passing, FIFO buffers, and bounded hMSCs.
In a bounded hMSC h, communication between processes in every loop in h is
performed in such a way that prevents flooding a process by the messages sent
by another one (see [8] or [9] for a precise definition).

Let T =
∏

i∈P Ti be a distributed implementation of Spec = (h, M) obtained
through parallel execution of the process’s LTSs Ti, i ∈ P . Then, a stuck state
(or a deadlock state) q in the concurrent LTSs T is defined similar to a stuck
state (or a deadlock state) in the concurrent automata A, except that instead
of unreachability of accepting states from q, we require that starting from q
only finite executions are possible that none of them ends in an accepting state
of T . Apparently, L(Spec) ⊆ L(T ), meaning that all the words in L(Spec) are
included in L(T ). Furthermore, T is minimal in the sense that all the executions
of T starting from its initial state, including L(T ) and those that end at a
stuck state are included in any other distributed implementation T ′ of Spec in
the form of prefixes of some execution of T ′ (see [4] for the proof). Thus, if
L(Spec) �= L(T ) or T has a stuck state it means that Spec is not SSR. To check
these two conditions, the bottom line of our approach is to characterize those
paths that their length (in terms of the transitions of T ) is as short as possible
and guarantee to capture emergent (partial) scenarios (if there is any) of Spec.
First, we define basic words and basic paths.

Definition 7. (Basic words of an LTS): Let ω = ω0ω1 · · ·ωk be a word over the
alphabet Σi that brings the LTS Ti to a state qk through a path r = q0ω0qjω1 · · ·
ωkqk in Ti (q0 is the initial state of Ti) such that r goes through loops at most
once and skips self loops. Then, x is called a basic word of Ti either if x = ω
and qk is an accepting state of Ti or x is obtained from ω with the following
conditions:
- For all reachable nodes qk+1 from qk, qk+1 is a state in the path r
- x = ω0ω1 · · · ωu, where starting from the end of ω every ωv for which qtωvqs is
a repeated sequence in r is deleted, 0 ≤ u ≤ k, 0 < v ≤ k

Then, a basic execution of Ti is a basic word of Ti that is not a prefix of other
basic words.

Definition 8. (Basic paths of an hMSC): Let s = ν0ν1 · · · νk, νl→νl+1, 0 ≤
l < k be an execution of h that goes through loops at most once and skips self
loops. Then, b is called a basic path of h either if b = s and νk is a terminal
node of h or b is obtained from s with the following conditions:
- For all reachable nodes νk+1 from νk, νk+1 ∈{ν0, ν1, · · · , νk}
- b = ν0ν1 · · · νu, where starting from the end of s all the nodes νz for which
νz−1νz is a repeated sequence (or edge in the graph representation of h) in s is
deleted, 0 ≤ u ≤ k, 0 < z ≤ k

A basic execution of h is an execution ν0ν1 · · · νk of h such that for m =
μ(ν0)μ(ν1) · · · μ(νk), m|i is a basic execution of Ti for some i ∈ P . Since loops
of LTSs Ti are the projections of loops in h, projections of a basic path of h that
is not a prefix of another basic path of h results in basic executions for local
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LTSs Ti, ∀i ∈ P . Thus, a basic path of h that is not a prefix of other basic paths
will be a basic execution for h.

The first condition in the definition of a basic path (word) ensures that the
path is extended to include as much as reachable nodes or states. After it is
found that the path cannot be extended further, the second condition removes
repeated nodes (in h) or transitions (in Ti) that have been traversed by the path
before and their inclusion in the path only increases its length without exploring
new nodes or transitions. Finally, since when a basic word x′ is a prefix of another
basic word x, all the transitions and their sequencing in x′ are included in x,
we only keep x and call it a basic execution for Ti. Thus, when all the basic
executions of an LTS (or an hMSC) are executed, all the states and transitions
in that LTS (or nodes and edges in that hMSC) are traversed at least once.

Now, we relate strong safe realizability of an MSC specification Spec = (h,
M) to strong safe realizability of the set B where members of B are the MSCs
obtained from basic executions of h. Note that, this result also holds for safe
realizability of Spec = (h, M).

Lemma 1. The language L(Spec) of an MSC specification Spec = (h, M)
is SSR iff the language L(B) is SSR where members of B are all the MSCs
μ(ν0)μ(ν1) · · · μ(νk) such that ν0ν1 · · · νk is a basic execution of h.

Based on Lemma 1, the following algorithm checks whether a given MSC speci-
fication is SSR or not.

Algorithm 1. Checking strong safe realizability for an MSC specification Spec =
(h, M).

1. Compute all the basic executions of h
2. For each basic execution obtained in Step 1 construct an MSC that corre-

sponds to the concatenation of the MSCs of its nodes to obtain a set B of
finite MSCs

3. Check whether there exists any 1st order emergent pMSC for B. If there ex-
ists no 1st order emergent pMSC (B is SSR), output Spec is SSR; otherwise,
output Spec is not SSR

In the worst case, the algorithm terminates in time O(K624K2+2KK ′3K ′′3) where
for Spec = (h, M), K is the number of nodes in h, K ′ is the number of events
in the set of MSCs M , and K ′′ = |P | is the number of processes [10]. Also,
completeness and correctness of the algorithm is provided by Lemma 1 (for
Steps 1 and 2) and Corollary 1 (for Step 3).

4.3 Application of the Algorithm

To illustrate the algorithm, consider an MSC specification for the Boiler Control
system shown in Fig. 9 [4]. The LTS models for the processes in this system
are also shown in Fig. 10. Because the hMSC of Fig. 9 is not bounded for
asynchronous message passing (see the self loop of ν1), we assume synchronous
(or hand-shake) message passing between processes. However, in general the
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Fig. 9. MSC specification for a Boiler Control system

algorithm can be applied to asynchronous setting as long as the hMSCs are
bounded.

As shown in Fig. 9, mapping between nodes and MSCs are: μ(ν0) = Initialize,
μ(ν1) = Register, μ(ν2) = Analysis, and μ(ν3) = Terminate. To compute basic
executions of the hMSC of Fig. 9, note that most of the time computing basic
paths of h gives all the basic executions of h and there is no need to compute
other paths in h that goes through loops more than once or goes through self
loops. For instance, basic executions of the hMSC of Fig. 9 are only the basic
paths s1 = ν0. ν1. ν3. ν0. ν1. ν2. ν1 and s2 = ν0. ν1. ν2. ν1. ν3. ν0 (Step 1).
The reason is that the projections of s1 and s2 on each of the processes Control,
Actuator, Sensor, and Database gives all the basic executions of the LTS’s of
these processes (in other words, non-deterministic LTS T ′

i obtained for each
process i is the same as its deterministic LTS Ti).

The corresponding MSCs resulting from concatenating of the MSCs in the
basic executions s1 and s2 are respectively: m1=Initialize. Register. Terminate.
Initialize. Register. Analysis. Register and m2=Initialize. Register. Analysis.
Register. Terminate. Initialize, which are shown in Fig. 11 (Step 2).

For the MSCs of Fig. 11, the Sensor process in m2 has a non-deterministic
behaviour because of the MSC m1, which makes it possible to replace the second
Pressure message for this process in m2 with the message Off and get the emer-
gent scenario of Fig. 12 (Step 3). Fig. 12 is an emergent scenario since while the
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Fig. 10. LTS models of the processes in the Boiler Control system
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Database, the Actuator, and the Control processes are acting according to the
path ν0. ν1. ν2. ν1. ν3. ν0 (path s2), the Sensor process is acting according to the
path ν0. ν1. ν3. ν0. ν1 (a prefix of path s1). As the result, the set of MSCs m1
and m2 obtained from the basic executions of the hMSC of Fig. 9 has a 1st order
emergent MSC m1

2 (it is not closed under CC3 and CCss). Thus, the algorithm
outputs that the specification shown in Fig. 9 is not SSR.

5 Related Work

Our work for a set of MSCs is different from [2] in the following. First, we
localized the cause of implied scenarios in the non-deterministic behaviour of
processes, which provides a better insight for studying implied scenarios. Sec-
ond, we characterized and defined stuck states that captures such anomalies for
MSC specifications that are not addressed by the current definitions of deadlock
states and implied scenarios. Third, based on the definition of stuck states we
introduced a new notion of realizability for MSC specifications called strong safe
realizability.

On the other hand, our work is different from [3] and [4] in the following. First,
in order to detect implied scenarios, [4] builds a distributed implementation from
the specification in terms of parallel execution of process’s LTSs and checks this
model against another behavioural model that represents the exact behaviour of
the specification. Second, [3] and [4] assume synchronous message passing while
we assume asynchronous setting, which from a practical point of view is more
realistic. Third, [3] and [4] only detect implied scenarios and in fact checks for
a weaker notion of realizability (weak realizability) that ignores deadlocks while
our method checks for (strong) safe realizability that implies weak realizability.

6 Conclusions

We localized the cause of implied scenarios in the non-deterministic behaviour
of processes in a concurrent system. Also, the notions of stuck states and strong
safe realizability are introduced that capture such anomalies for MSC specifica-
tions that are not covered by safe realizability. Furthermore, an algorithm was
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given that reduces (strong) safe realizability of MSC specifications to (strong)
safe realizability of a set of MSCs. Finally, our work bridges the gap between
realizability for a set of MSCs studied in [2], and realizability in the presence of
hMSCs studied in [3] and [4].
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contrast, under-approximation techniques systematically remove irrelevant be-
haviors from the system. Intuitively, abstraction could be regarded as an ap-
proximation of the original system by hiding “irrelevant” details. Verifying the
simplified approximations is in general more efficient than verifying the original
models. Therefore, abstraction could enable BMC to go deeper in a given time
limit.

In this paper, we introduce an iterative framework called approximating
bounded model checking (ABMC). We use a set of visible variables V i to con-
struct approximations of the original system for bounded model checking. V i

corresponds to the part of the system that is currently believed to be important
for verifying the desired property. Along BMC iteratively deepens the search for
counterexamples, BMC(M, f, k) may become too large to solve in a limit time.
We construct two approximations of M over V i: an over-approximation Mo and
an under-approximation Mu. Mo guides to search deep counterexamples. Mu

establish the counterexamples’ existence in the original model.

Related Work: One common feature of many existing work on approximation
(abstraction) is the application of a BDD-based model checker to the approxi-
mate models, and of SAT solvers to the original ones. In [4,5], BMC is used to
check whether counterexamples found in over-approximations are real. A new
SAT-based approach of model checking using approximations has been proposed
in [6]. Given an unsatisfiable problem, and a proof of unsatisfiability derived by
a SAT solver, a Craig interpolant can be efficiently computed to characterize the
interface between two partitions of the problem. The interpolant serves directly
as an over-approximation. Thus the state space exploration could potentially be
deep. Recently, a new approach on abstraction refinement for bounded model
checking is present in [7]. Their work is related because they also suggest using
the approximations to perform deeper searches with BMC.

Contribution: Applying approximation (abstraction) in bounded model check-
ing is not a new idea. Almost all approaches to generate approximations must
balance the efficient construction against the necessary accuracy. Most existing
efforts define the approximations based on simulation relation [8]. Usually, gen-
erating such an accurate approximation requires exponential number calls to a
deduction tool. Simulation relation is not suitable for bounded model checking,
because the unrolled path is represented as a propositional formula with the
satisfiability checking instead of state space exploration.

In this paper, we introduce implication as a partial order relation to de-
fine approximations. The implication-based approximation could be generated
in linear time without calls to deduction tools, although it may loss some ac-
curacy in general. For some particular structures of transition relations, such
as conjunctive normal form (CNF) and disjunctive normal form (DNF), we
prove that implication-based approximations are as accurate as simulation-based
ones. Furthermore, through an experiment on a suite of Petri nets, we show the
effectiveness of implication-based BMC.
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On the other hand, most existing efforts [6,7] only use over-approximation in
BMC. However, it is a tedious task to understand the complex counterexamples
generated by BMC [9]. It is valuable to eliminate irrelevant variables from coun-
terexamples. Combined with under-approximation, the output counterexamples
always contain fewer variables, thus it is easier to understand.

Overview: This paper is organized as follows. In the next section, we introduce
some basic concepts of SAT and bounded model checking. Section 3 presents the
framework of approximating bounded model checking. In section 4 and section 5,
we start with a sound mathematical definitions and reason about the proposed
method in a rigorous way. Practical experience for Petri nets is described in
section 6. The conclusion is drawn in the last section.

2 Preliminaries

2.1 SAT Notations

A propositional formula is said to be satisfiable if there is at least one satisfying
assignment. If a formula has no satisfying assignment then the formula is called
unsatisfiable. F |= F ′ if any satisfying assignment of F satisfies F ′. F ≈ F ′ if
F |= F ′ and F ′ |= F , i.e., F ′ is equivalent to F .

A literal l is an atomic Boolean variable x or its negation ¬x. A clause Ci is a
disjunction of literals (l1 ∨ · · · ∨ lm). A cube Di is a conjunction of literals (l1 ∧
· · · ∧ lm). A formula is in Negation Normal Form (NNF) if the only connectives
in it are ∧, ∨, and ¬, where ¬ is only applied to atomic variables. A formula
is in Conjunctive Normal Form (CNF) if it has the conjunction form of clauses
C1 ∧ · · · ∧ Cn. A formula is in Disjunctive Normal Form (DNF) if it has the
disjunction form of cubes D1 ∨ · · · ∨ Dn. A clause and a cube could be regarded
as a set of literals. A CNF formula could be regarded as a set of clauses. A DNF
formula could be regarded as a set of cubes.

In this paper, SAT is the class of all satisfiable formulas, UNSAT is the class
of all unsatisfiable formulas. F ⇒ F ′ means that if F ∈ SAT then F ′ ∈ SAT .
var(F ) is the set of variables in F . F [x/i] is the resulting formula by replacing
each x in F where i ∈ {0, 1}.

2.2 Bounded Model Checking

Definition 1. Considering a system with a set of boolean variables V over
{true, false}. The system model is 3-tuple M := (S, T, I), where:

1. S is a set of states.
2. T ⊆ S × S is a transition relation.
3. I is a set of initial states.

Without loss of generality, we can assume that S, T and I are in NNF and
there is only one initial state. In particular, each state s is represented as a cube
(l1 ∧ · · · ∧ ln) or considered as a set {l1, ..., ln}. The transition relation T (s, s′)
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can be represented as a propositional formula. We say that the current state of
system is s if the values (assignments) of system variables satisfies s. There is a
transition from s to s′ if and only if (s ∧ s′) |= T .

Given a model M , a property f , and a positive integer k representing the
depth of search, a bounded model checker generates a propositional formula
BMC(M, f, k) that is satisfiable if and only if there is a counterexample of
length k or less to f in M . The basic idea is to iteratively deepen the search for
counterexamples until either a bug is found or the problem becomes too hard to
solve in a given time limit. BMC(M, f, k) is in general represented as follows.

BMC(M, f, k) := I(s0) ∧ T (s0, s1) ∧ ... ∧ T (sk−1, sk) ∧ F (f, k) (1)

I(s0) and T (si, si+1) is described above. F (f, k) is a translation of property
f , and it could be regarded as a small CNF formula with variables in f . More
details could be found in [1].

3 Approximating Bounded Model Checking

For a realistic system, the number of variables is usually more than hundreds
even thousands. The number of all potential states would be astronomical. In
order to reduce the state space, we extract a set of variables from V (called
visible variables), denoted by V i. V i corresponds to the part of the system that
is currently believed to be important for verifying the desired property. We use
V i to generate approximations to enable BMC to find deeper counterexamples,
namely approximating bounded model checking (ABMC). The underlying prin-
ciples behind the ABMC framework are the following:

1. It needs to generate an over-approximation Mo and an under-approximation
Mu, such that

BMC(Mu, f, k) ⇒ BMC(M, f, k) ⇒ BMC(Mo, f, k)

That is, if BMC(Mu, f, k) is satisfiable then BMC(M, f, k) is satisfiable;
If BMC(Mo, f, k) is unsatisfiable then BMC(M, f, k) is unsatisfiable. Mo

guides to search deep counterexamples. Mu establish the counterexamples’
existence in the original system.

2. Mo and Mu should be much simpler than M , i.e., they always contain much
fewer variables than M . Therefore solving Mo and Mu is much efficient than
solving M , special for deep search (large k).

3. If BMC(Mo, f, k) is satisfiable and BMC(Mu, f, k) is unsatisfiable, i.e. it
does not prove the property, then a variable minimal unsatisfiable (VMU)
[10] sub-formula is extracted form BMC(Mo, f, k). The refined approximate
model based on the VMU sub-formula would rule out all spurious counterex-
amples of maximum length k.

We apply these principles to guide the SAT-solvers. The pseudo-code of Ap-
proximating Bounded Model Checking is shown in algorithm 1.
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Algorithm 1. ABMC
ABMC(M ,f)
1: k = 0; V i = var(f);
2: k = k + 1;
3: if BMC(Mo, f, k) ∈ UNSAT then
4: goto line 2;
5: else if BMC(Mu, f, k) ∈ SAT then
6: return “bug found in length k”;
7: else Enlarge V i, such that
8: case BMC(Mo, f, k) ∈ UNSAT :
9: goto line 2;
10: case BMC(Mu, f, k) ∈ SAT :
11: return “bug found in length k”;

We start with an initial approximate model based on V i = var(f) and an
initial search depth k = 1. In each iteration of the ABMC loop, we first try
to find a counterexample in the over-approximate model Mo (line 3). If there
is no counterexample in Mo, we make a deeper search (line 4). Otherwise, we
check it in the under-approximate model Mu (line 5). If it is “true”, then it
reports a bug and exits (line 6). Otherwise, we try to find a new subset V i to
rule out the spurious counterexamples (line 7), and make a deeper search (line
8-9). Otherwise, i.e., BMC(Mu, f, k) ∈ SAT , we report a bug and finish the
verification (line 10-11).

Following the above description, the performance of ABMC largely depends on
efficient construction and necessary accuracy of approximations. In the following
subsections, we introduce two different types of approximations. One is based
on simulation for exact accuracy, the other is based on implication for efficient
construction.

3.1 Simulation-Based Approximations

Firstly, we introduce simulation � [8] as a partial order to define approximations.
Given two models M = (S, T, I) over V and M ′ = (S′, T ′, I ′) over V ′ ⊆ V , a
relation H ⊆ S × S′ is a simulation relation if and only if for all s and s′, if
H(s, s′) then the following conditions hold [8]:

1. s	V ′ = s′. 	V ′ could be considered as a sub-cube which is projected on V ′.
(The details could be found in section 5.)

2. For every state s1 such that T (s, s1), there is a state s′1 satisfying T ′(s′, s′1)
and H(s1, s

′
1).

For two states s from M and s′ from M ′, (M ′, s′) simulates (M, s), denoted
by (M, s) � (M ′, s′), if there is a simulation relation H(s, s′). If for each initial
state s ∈ I, there exists s′ ∈ I ′, (M, s) � (M ′, s′), then M ′ simulates M , denoted
by M � M ′.
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Definition 2 (Simulation Approximation [3]). Given a model M over V
and a set V ′ ⊆ V , a model M ′ over V ′ is an over-approximation (resp. to under-
approximation) of M w.r.t. V ′ if and only if M � M ′ (resp. to M ′ � M).

Given a system model M = (S, T, I) over V and a set of visible variables V i ⊆ V ,
let Sa be the set of approximate states, in which each approximate state sa is
a sub-cube of s by hiding variables not in V i (details in definition 10). sa could
be regarded as a set of original states, i.e. a subset of S. Similarly, Ia is a sub-
cube of I by hiding variables not in V i (details in definition 10). In order to
reason about the approximations for model checking, we describe two transition
relation of the approximations, T ∃∃ and T ∀∃.

Definition 3 (Approximate Relation [3]). Let S be a set of states, T ⊆ S×S
and Sa ⊆ P(S) be a set of approximate states. The approximate relations T ∃∃,
T ∀∃ ⊆ Sa × Sa are defined as follows.

– T ∃∃(sa, s′a) ⇐⇒ ∃s ∈ sa∃s′ ∈ s′a : T (s, s′)
– T ∀∃(sa, s′a) ⇐⇒ ∀s ∈ sa∃s′ ∈ s′a : T (s, s′)

T ∃∃(sa, s′a) if and only if there exists a original state s represented by sa and
there exists a original state s′ represented by s′a such that T (s, s′). T ∀∃(sa, s′a) if
and only if for each original state s represented by sa and there exists a original
state s′ represented by s′a such that T (s, s′). Furthermore, we draw the following
theorem. Let M∃∃ := (Sa, R∃∃, Ia) and M∀∃ := (Sa, R∀∃, Ia). It is not difficult
see that M∃∃ is an over-approximation of M and M∀∃ is an under-approximation
of M .

Theorem 1 (Preservation Theorem [3])

M∀∃ � M � M∃∃ (2)

For two set of variables V ⊂ V ′, one would expect that the approximation over
V ′ is more accurate than the one over V , i.e., it is monotonic. Unfortunately,
M∃∃ is monotonic but M∀∃ is non-monotonic [11], that is, M ′∀∃ over V ′ may not
simulate M∀∃ over V . In [11], must hyper-transition is introduced to overcome
the non-monotonic problem. However, this definition is not intuitive and hard
to implement. We aim at simple and monotonic approximate relations.

On the other hand, the exact computation of T ∃∃ and T ∀∃ is problematic,
requiring in the worst case an exponential number of calls to a deduction tool.
For this reason, model checkers typically use weak approximations, which could
be constructed efficiently.

3.2 Implication-Based Approximations

Many typical tasks of system design could be formulated as an instances of
Boolean satisfiability. The satisfying assignment could be regarded as a behavior
of system. In this section, we introduce implication, “|=”, as a partial order for
propositional formulas.
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Definition 4 (Implication Approximation). Given a formula F and a sub-
set of variables V ⊆ var(F ), a formula F ′ over V is an over-approximation
(resp. to under-approximation) of F w.r.t. V if and only if F |= F ′ (resp. to
F ′ |= F ).

F ′ is called a minimal over-approximation of F w.r.t. V if and only if (1) F ′ is
an over-approximation of F w.r.t. V . (2) for any over-approximation F ′′ of F
w.r.t. V , F ′ |= F ′′. Similarly, F ′ is called a maximal under-approximation of F
w.r.t. V if and only if (1) F ′ is an under-approximation of F w.r.t. V . (2) for
any under-approximation F ′′ of F w.r.t. V , F ′′ |= F ′.

An interesting problem is how to generate a minimal over-approximation and
a maximal under-approximation for a given formula. Please notice that F [x/0]
remains the satisfying assignments with x = 0 of F , F [x/1] remains the satisfying
assignments with x = 1 of F . We use F [x/0] and F [x/1] to generate the minimal
over-approximation and maximal under-approximation.

Lemma 1. Given a formula F and a variable x, F [x/0] ∨ F [x/1] is a minimal
over-approximation of F w.r.t. var(F ) − {x}; F [x/0] ∧ F [x/1] is a maximal
under-approximation of F w.r.t. var(F ) − {x}.

Proof. (1) For any satisfying assignment A of F , x is assigned either 0 or 1,
then A satisfies F [x/0] or F [x/1], thus A satisfies F [x/0] ∨ F [x/1]. Therefore,
F |= F [x/0] ∨ F [x/1], F [x/0] ∨ F [x/1] is an over-approximation of F .

For any formula F |= F ′(var(F ′) ⊆ var(F ) − {x}), if A is a satisfying as-
signment of F [x/0] ∨ F [x/1], then A ∪ {x = 0} or A ∪ {x = 1} is a satisfying
assignment of F . Since F |= F ′, A ∪ {x = 0} or A ∪ {x = 1} is a satisfying as-
signment of F ′. Since x �∈ var(F ′), A is a satisfying assignment of F ′. Therefore,
F [x/0] ∨ F [x/1] is a minimal over-approximation of F w.r.t. var(F ) − {x}.

(2) For any satisfying assignment A of F [x/0]∧F [x/1], i.e. A satisfies F [x/0]
and F [x/1]. Both A ∪ {x = 0} and A ∪ {x = 1} satisfy F , thus A satisfies F .
F [x/0] ∧ F [x/1] is an under-approximation of F .

For any formula F ′ |= F (var(F ′) ⊆ var(F ) − {x}), if A is a satisfying as-
signment of F ′, then both A ∪ {x = 0} and A ∪ {x = 1} satisfy F ′, because
x �∈ var(F ′). Since F ′ |= F , both A ∪ {x = 0} and A ∪ {x = 1} satisfy F , thus
A satisfies F [x/0] and F [x/1], that is it satisfies F [x/0] ∧ F [x/1]. Therefore,
F [x/0] ∧ F [x/1] is a maximal under-approximation of F w.r.t. var(F ) − {x}.

Please notice that F [x/k1][y/k2] = F [y/k1][x/k2] for any x, y and k1, k2 ∈ {0, 1}.
Suppose that it need to hide the variables x1, · · · , xn in F , let F∨

0 = F , F∨
i =

F∨
i−1[xi/0] ∨ F∨

i−1[xi/1], 1 ≤ i ≤ n. If we exchange xi and xj for any i, j, then it
does not affect the resulting formula F∨

n . That is, the replacement of variable,
F [x/i], is order-independent. Therefore, we could use F [V ]∨ and F [V ]∧ to denote
the resulting formula by replacing each variable which is not in V .

Theorem 2. Given a formula F and a subset of variables V , F [V ]∨ is a mini-
mal over-approximation of F w.r.t. V ; F [V ]∧ is a maximal under-approximation
of F w.r.t. V .
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The sizes of F [V ]∨ and F [V ]∧ would grow exponential in the size of var(F )−V
in the worst case. However, for CNF and DNF formula, there may be some
simple constructions.

Given a CNF(DNF) formula F and a variable x, the formula can be divided
into three sets: (1) Clauses(Cubes) that contain x in positive phase will be de-
noted as the set F+(x). (2) Clauses(Cubes) that contain x in negative phase will
be denoted as the set F−(x). (3) Clauses(Cubes) that do not contain x will be
denoted as the set F/x.

F+
∗ (x) denotes the resulting set by removing the positive occurrences of x from

F+(x) and F−
∗ (x) denotes the resulting set by removing the negative occurrences

of x from F−(x). For a CNF formula F , F [x/0] = F+∗ (x)∧F/x, F [x/1] = F−∗ (x)∧
F/x. F [x/0]∨F [x/1] = (F+

∗ (x)∨F−
∗ (x))∧F/x, which is the resulting formula of

Davis-Putnam Resolution [12] w.r.t. x. F [x/0]∧F [x/1] = F+
∗ (x)∧F−

∗ (x)∧F/x,
which is the resulting formula by removing all occurrences of x from F . It is
similar to DNF formulas. A generalization approximation operations for NNF
formulas is defined as follows.

Definition 5 (Approximation Operations ). Given an NNF formula F and
a set of variables V , F 	V (resp. to F �V ) is a formula obtained from F by
substituting each literal l, where var(l) �∈ V , by 1 (resp. to 0).

Please notice that ∧ and ∨ are monotonic connectives, that is, if F1 |= F ′
1 and

F2 |= F ′
2, then F1 ∧ F2 |= F ′

1 ∧ F ′
2 and F1 ∨ F2 |= F ′

1 ∨ F ′
2. For any literal l,

0 |= l and l |= 1. F 	V has more satisfying assignments than F , thus F 	V is an
over-approximation of F w.r.t. V . F �V has fewer satisfying assignments than F ,
thus F �V is an under-approximation of F w.r.t. V .

For a CNF formula F , F 	V is obtained from F by removing all clauses which
contain variables not in V ; F �V is obtained from F by removing all occurrences
of literals whose variables not in V , i.e. F [V ]∧. For a DNF formula F , F �V is
obtained from F by removing all cubes which contain variables not in V ; F 	V
is obtained from F by removing all occurrences of literals whose variables not in
V , i.e. F [V ]∨. It is not difficult to see that F �V and F 	V could be generated in
linear time for a CNF or DNF formula F .

Corollary 1. For a DNF formula F , F 	V is a minimal over-approximation of
F w.r.t. V . For a CNF formula F , F �V is a maximal under-approximation of
F w.r.t. V .

Proof. (1) For a DNF formula F and x ∈ var(F ), F [x/0] ∨ F [x/1]=F+
∗ (x) ∨

F−∗ (x) ∨ F/x=F 	(var(F ) − x). Thus F [V ]∨ = F 	V .
(2) For a CNF formula F and x ∈ var(F ), F [x/0] ∧ F [x/1]=F+

∗ (x) ∧ F−
∗ (x) ∧

F/x=F �(var(F ) − x). Thus F [V ]∧ = F 	V .

Please recall that, for a system model M = (S, T, I), s is in DNF; I is in DNF;
T could be represented in NNF. Following by operations 	 and �, we could hide
some variables to generate approximations.

Definition 6 (Implication-based Approximate Model). Given a model
M = (S, T, I) over a set of boolean variables V and a set of visible variables
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V i ⊆ V , the over-approximate model M 	 and under-approximate model M 
 of
M w.r.t. V i is 3-tuples M 	 := (Sa, T 	, Ia) and M 
 := (Sa, T 
, Ia) defined as
follows:

1. Sa is a set of approximate states, in which sa := s	V i.
2. T 	 := T 	V i is an over-approximate transition relation.
3. T 
 := T �V i is an under-approximate transition relation.
4. Ia := I	V i is a set of approximate initial states.

M 	 and M 
 could be generated much more efficiently than M∀∃ and M∃∃,
because 	 and � are linear time operations. As we know, for existential LTL
formula f [13], if M1 � M2, then BMC(M1, f, k) ⇒ BMC(M2, f, k). M 	 and
M 
 could be regarded as weak approximations of M∃∃ and M∀∃, respectively.
Formally, we draw the following conclusion.

Theorem 3 (Preservation Theorem)

BMC(M 
, f, k) ⇒ BMC(M∀∃, f, k) ⇒ BMC(M, f, k) ⇒

BMC(M∃∃, f, k) ⇒ BMC(M 	, f, k) (3)

Proof. It is shown that M∀∃ � M � M∃∃ in [3]. Therefore, BMC(M∀∃, f, k) ⇒
BMC(M, f, k) ⇒ BMC(M∃∃, f, k).

(1) For BMC(M 
, f, k) ⇒ BMC(M∀∃, f, k), notice that Sa and Ia in M 
 are
the same ones in M∀∃. It just need to compare T 
 and T ∀∃. Suppose T 
(sa, s′a),
for any two states (i.e. assignment) s and s′, if s ∈ sa and s′ ∈ s′a, then T (s, s′).
That is, T 
(sa, s′a) ⇔ ∀s ∈ sa∀s′ ∈ s′a : T (s, s′) ⇒ ∀s ∈ sa∃s′ ∈ s′a : T (s, s′)
⇔ T ∀∃(sa, s′a). Thus T 
(sa, s′a) ⇒ T ∀∃(sa, s′a). Therefore, BMC(M 
, f, k) ⇒
BMC(M∀∃, f, k).

(2) For BMC(M∃∃, f, k) ⇒ BMC(M 	, f, k), it just need to compare T 	 and
T ∃∃. ∧ and ∨ are monotonic connectives. The resulting formula by replacing some
literals l with 1 will contain more satisfying assignments. Thus T ∃∃(sa, s′a) ⇒
T 	(sa, s′a). Therefore BMC(M∃∃, f, k) ⇒ BMC(M 	, f, k).

From the above theorem, we could find that M 
 and M 	 are not the exact accu-
rate approximations. However, profiting from the simpleness of approximation
operations 	 and �, the approximate models M 
 and M 	 could be generated
efficiently.

4 Practical Experience

In many cases, BMC does not work well for asynchronous systems like Petri
nets, because the encoding scheme into propositional formulas is not suited for
such systems [14]. In this section, we discuss how to exploit the results of the
previous sections in practice through a suite of Petri nets [14,15]. The primary
experimental evaluation is to demonstrate the effectiveness of implication-based
ABMC.
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4.1 Encoding of Petri Nets

A Petri net [16] is a 4-tuple PN = (P, T, F, I), where P = {p1, ..., pm} is a
finite set of places, T = {t1, ..., tn} is a finite set of transitions (P ∩ T = ∅),
F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation), I : P → N is the initial
marking. The marking is also called state. A place p is called an input place
of a transition t iff there exists a directed arc from p to t. Place p is called an
output place of transition t iff there exists a directed arc from t to p. We use •t
to denote the set of input places for a transition t. The notations t•, •p and p•
have similar meanings.

A pair of a place p and a transition t is called a self-loop if p is both an
input and output place of t. In this paper, we consider pure Petri nets, i.e.,
without self-loop. A Petri net is said to be 1-bounded or safe if the number of
tokens in each place does not exceed one for any state reachable from the initial
state. For a safe Petri net, a state s can be viewed as a cube(Boolean vector)
s = (l1, · · · , lm) of length m such that li = pi iff place pi is marked with a token,
li = ¬pi otherwise. This section describes how a safe Petri net can be represented
symbolically.

For Petri nets, I is the only initial state. Thus we have:

I(s) :=
∧

pi∈I

pi ∧
∧

pi∈P−I

¬pi (4)

Any relation over states can be similarly encoded since a relation is simply a
set of tuples. We denote by Ent(s) the characteristic function of the set of states
in which transition t is enabled, i.e.,

∧
pi∈•t pi . For simplicity, we assume that

there is no deadlock in Petri nets, that is, for each state s, at least one transition
is enabled. Let Tt(s, s′) be the characteristic function for the transition t. Tt(s, s′)
is represented as follows:

Tt(s, s′) :=
∧

pi∈•t

pi ∧
∧

pi∈•t

¬p′i ∧
∧

pi∈t•
p′i ∧

∧

pi∈P−(•t∪t•)
(pi ↔ p′i) (5)

T (s, s′) :=
∨

t∈T

Tt(s, s′) (6)

4.2 Encoding of Approximation

Given a Petri net PN = (P, T, F, I) and a set of visible variables V ⊆ P , the
approximations project states on V , that is, hide the variables(places) not in V ,
denoted by sa = s	V . For approximate initial states, we have

Ia(sa) :=
∧

pi∈I∩V

pi ∧
∧

pi∈(P−I)∩V

¬pi (7)

For Petri nets, T could be regarded as a DNF formula, because pi ↔ p′i con-
tains only one variable. For implication-based over-approximate relation T 	V ,
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the literals, whose variables are not in V , are replaced with true, i.e., removed
from T . The expression is formalized as follows.

T 	V (sa, s′a) :=
∨

t∈T

Tt	V (sa, s′a) (8)

Tt	V (sa, s′a) :=
∧

pi∈•t∩V

pi ∧
∧

pi∈•t∩V

¬p′i ∧
∧

pi∈t•∩V

p′i ∧
∧

pi∈(P∩V )−(•t∪t•)
(pi ↔ p′i)

(9)
It is not difficult to see that if Tt	V (sa, s′a), then there exists x ∈ sa and

y ∈ s′a, such that T (x, y). It is similar to simulation-based over-approximate
relation T ∃∃(sa, s′a). However, we could not guarantee that x and y are original
states, i.e., reachable states from I.

For implication-based under-approximation T �V , the literals, whose variables
are not in V , are replaced with false. That is, if there is an input place or
output place of transition t not in V , Tt is removed from T �V . The expression
is formalized as follows.

T �V (sa, s′a) :=
∨

(•t∪t•)⊆V

Tt�V (sa, s′a) (10)

Tt�V (sa, s′a) :=
∧

pi∈•t

pi ∧
∧

pi∈•t

¬p′i ∧
∧

pi∈t•
p′i ∧

∧

pi∈(P∩V )−(•t∪t•)
(pi ↔ p′i) (11)

In particular, we could generate an efficient and more precise under-
approximation T u. In T u, the input place not in V is replaced with false, the
output place not in V is replaced with true. The formal expression is described
as follows.

T u(V )(sa, s′a) :=
∨

(•t)⊆V

T u
t (V )(sa, s′a) (12)

T u
t (V )(sa, s′a) :=

∧

pi∈•t

pi∧
∧

pi∈•t

¬p′i∧
∧

pi∈t•∩V

p′i∧
∧

pi∈(P∩V )−(•t∪t•)
(pi ↔ p′i) (13)

Obviously, T 
 |= T u |= T . Let Mu := (Sa, T u, Ia), then, a corollary of ABMC
could be drawn as follows.

Corollary 2 (Improved Under-approximation)

BMC(M 
, f, k) ⇒ BMC(Mu, f, k) ⇒ BMC(M, f, k) (14)

4.3 Experimental Results

In this subsection, we conducted experimental evaluation on safe Petri nets,
which are taken from [14,15]. We implemented our techniques on top of the
Petri net tool PEP [17] and the model checker NuSMV [18]. All experiments
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Table 1. Experimental Results

Time CNF-var CNF-cla

Problem |P | |T | k BMC ABMC M M� Mu M M� Mu

ELEV(1) 63 99 7 12.056 5.341 47774 1665 1683 141436 4414 4603
ELEV(2) 146 299 5 65.866 1.900 225953 945 980 674359 2503 2608
ELEV(3) 327 783 11 NA 208.05 NA 4792 4924 NA 13372 13768

MMGT(2) 86 114 8 36.041 8.632 84599 2279 2343 250963 6181 6373
MMGT(3) 122 172 5 27.518 2.850 110707 1559 1604 329197 4201 4336
MMGT(4) 158 232 4 43.765 1.668 152847 1203 1239 455227 3214 3322

were run on a Windows 2000 server with a 2.6GHz Pentium IV processor and
1024MByte memory. Table 1 shows the experimental results. The columns are:

– Problem: The problem name with the size of the instance in parenthesis.
– |P |: The number of places in Petri net.
– |T |: The number of transitions in Petri net.
– k: The depth of search.
– Time: The running time in seconds.
– CNF-var: The number of variables of resulting CNF formula.
– CNF-cla: The number of clauses of resulting CNF formula.

For comparison purposes, the standard BMC of NuSMV [18] was tested. We
used the PEP tool [17] to generate the input programs to NuSMV from the Petri
nets. For each problem instance, we select one safety property, of the form G(!pi).
pi is a place selected randomly form Petri nets. All the properties are inconsistent
in the system model, thus it could report counterexamples. In each refinement
cycle, we select the new variables depending on the transition relation of Petri
net manually. Therefore, the “Time” of ABMC mentioned in table 1 includes
verification time and approximation time, but it is not the whole verification
period.

From the results in table 1, it can be seen that ABMC outperformed BMC in
both execution time and the size of CNF formulas. The results of our experiment
are very encouraging, although the set of benchmarks we used is too small to
say anything conclusive about the performance of the method.

5 Conclusion

In this paper, we have present a framework of implicant-based approximating
bounded model checking (ABMC). ABMC combines over-approximation and
under-approximation to iteratively enable BMC to search deeper counterexam-
ples. In order to generate suitable approximations efficiently, implication is in-
troduced as a partial order relation to define approximations M 	 and M 
. They
are weak approximations but could be generated efficiently and monotonously.
The experimental results for Petri nets show the effectiveness of our approach.
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Abstract. Developing a theory of bisimulation in higher-order
languages can be hard. Particularly challenging can be the proof of con-
gruence and, related to this, enhancements of the bisimulation proof
method with “up-to context” techniques.

We present logical bisimulations, a form of bisimulation for higher-
order languages, in which the bisimulation clause is somehow reminiscent
of logical relations. We consider purely functional languages, in particu-
lar untyped call-by-name and call-by-value lambda-calculi, and, in each
case: we present the basic properties of logical bisimilarity, including
congruence; we show that it coincides with contextual equivalence; we
develop some up-to techniques, including up-to context, as examples of
possible enhancements of the associated bisimulation method.

1 Introduction

Applicative bisimulations and behavioral equivalence in higher-order languages.
Equivalence proof of computer programs is an important but challenging prob-
lem. Equivalence between two programs means that the programs should behave
“in the same manner” under any context [1]. Finding effective methods for equiv-
alence proofs is particularly challenging in higher-order languages (i.e., languages
where program code can be passed around like other data).

Bisimulation has emerged as a very powerful operational method for prov-
ing equivalence of programs in various kinds of languages, due to the associated
co-inductive proof method. Further, a number of enhancements of the bisimu-
lation method have been studied, usually called up-to techniques. To be useful,
the behavioral relation resulting from bisimulation—bisimilarity—should be a
congruence. Bisimulation has been transplanted onto (sequential) higher-order
languages by Abramsky [2]. This version of bisimulation, called applicative bisim-
ulations, and variants of it, have received considerable attention [3,4,5,6,7]. In
short, two functions P and Q are applicatively bisimilar when their applications
P (M) and Q(M) are applicatively bisimilar for any argument M .
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Applicative bisimulations have two significant limitations. First, they do not
scale very well to languages richer than pure λ-calculus. For instance, they are un-
sound under the presence of generative names [8] or data abstraction [9] because
they apply bisimilar functions to an identical argument. Secondly, congruence
proofs of applicative bisimulations are notoriously hard. Such proofs usually rely
on Howe’s method [10]. The method appears however rather subtle and fragile,
for instance under the presence of generative names [8], non-determinism [10], or
concurrency (e.g., [11,12]). Also, the method is very syntactical and lacks good
intuition about when and why it works. Related to the problems with congru-
ence are also the difficulties of applicative bisimulations with “up-to context”
techniques (the usefulness of these techniques in higher-order languages and its
problems with applicative bisimulations have been extensively studied by Lassen
[7]; see also [6,13]).

Congruence proofs for bisimulations usually exploit the bisimulation method
itself to establish that the closure of the bisimilarity under contexts is again a
bisimulation. To see why, intuitively, this proof does not work for applicative
bisimulation, consider a pair of bisimilar functions P1, Q1 and another pair of
bisimilar terms P2, Q2. In an application context they yield the terms P1P2 and
Q1Q2 which, if bisimilarity is a congruence, should be bisimilar. However the
arguments for the functions P1 and Q1 are bisimilar, but not necessarily identical:
hence we are unable to apply the bisimulation hypothesis on the functions.

The above congruence argument would work if the bisimulation were required
to apply bisimilar functions to bisimilar arguments. This definition of bisimula-
tion, that in this discussion we call BA-bisimulation1, breaks the monotonicity
of the generating functional (the function from relations to relations that rep-
resents the clauses of bisimulation). Indeed, BA-bisimulations in general are
unsound. For instance, take the identity function I = λx. x and Σ = EE where
E = λx. λy. xx. Term Σ is a ”purely convergent term” because it always re-
duces to itself when applied to any argument, regardless of the input received.
Of course I and Σ should not be regarded as bisimilar, yet {(I, Σ)} would be a
BA-bisimulation (the only related input is the pair (I, Σ) itself, and the result
of the application is again the pair) according to the definition above.

Logical bisimulations. In this paper we investigate a different approach to defin-
ing bisimilarity on functions. The main feature of our bisimulations, that we call
logical bisimulations, is to apply related functions (i.e., functions in the bisimu-
lation relation) P and Q to arguments in the context closure of the bisimulation,
that is, arguments of the forms C[V1, . . . , Vn] and C[W1, . . . , Wn] for a context C
and related values (V1, W1), . . . , (Vn, Wn). Thus the arguments can be identical
terms, as for applicative bisimilarity, or related terms, as in BA-bisimulation, or
combinations of these. As in BA-bisimulation, so in logical bisimulations the gen-
erating functional is non-monotone. However, as in applicative bisimilarity—and
in contrast with BA-bisimulations—logical bisimulations are sound and the cor-
responding functional has a greatest fixed-point which coincides with contextual
equivalence.
1 BA indicates that the bisimilarity uses “Bisimilar Arguments”.
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The intuition behind the bisimulation requirement of logical bisimulations is
the following. Consider an observer that is playing the bisimulation game, test-
ing related terms. Values produced by related terms are like outputs towards
the observer, who can use them at will: they have become part of the observer’s
knowledge. Thus the observer can check the consistency of such values (for in-
stance, the outermost construct should be same). In addition, however, the ob-
server can use them to build more complex terms (such as C[V1, . . . , Vn] and
C[W1, . . . , Wn] above) and use them as arguments when testing pairs of related
functions. Of course this power is useless if the values are first-order, since re-
lated values must then be identical. But it is relevant in a higher-order language
and yields the bisimulation requirement described above.

A possible drawback of logical bisimulations over applicative bisimulations is
that the set of arguments to related functions that have to be considered in the
bisimulation clause is larger (since it includes also non-identical arguments). As
a remedy to this, we propose the use of up-to techniques, as enhancements to
the bisimulation proof method. We consider a number of such enhancements in
the paper, including forms of up-to context and up-to expansion.

Another difference of logical bisimulations over applicative bisimulations (as
well as most definitions of bisimulation for functions in the literature) is that
we use a small-step, rather than big-step, semantics. For this reason, logical
bisimulations are defined on arbitrary closed terms, rather than values. The
use of small-step semantics may seem cumbersome—in particular for languages
without non-determinism—because it seems to require more elements in bisim-
ulations than big-step semantics. However, again, this disadvantage disappears
by means of up-to techniques. In fact, the extension to small-step semantics of-
ten simplifies an equivalence proof, because we can now compare terms in the
middle of evaluations without reducing them to values. Further, big-step ver-
sions of logical bisimulations will be derived as a corollary of the soundness of
certain up-to techniques (precisely “up-to reduction”). Another reason for choos-
ing a small-step semantics is that this is often required for non-determinism or
concurrency.

In summary, with logical bisimulations we aim at (1) maintaining the defini-
tion of the bisimulation as simple as possible, so to facilitate proofs of its basic
properties (in particular congruence and up-to-context techniques, which are
notoriously hard in higher-order languages); and (2) separately developing en-
hancements of the bisimulation method, so as to have simple bisimilarity proofs
between terms.

The bisimulation clause on functions of logical bisimulations is somehow rem-
iniscent of logical relations, see, e.g., [14, Chapter 8] and [15]. (The analogy
is stronger for the BA-bisimulations discussed earlier; we recall that in logical
relations two functions are related if they map related arguments to related re-
sults.) However, logical relations represent a type-directed technique and as such
remain quite different from bisimulations, which can be untyped. Logical rela-
tions work well in pure simply-typed or polymorphic λ-calculus, but they tend
to become incomplete and/or require more advanced meta theory in languages
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with recursive types [16,17,18,19], existential types [15,17,20,19], store [20], or
encryption [21], to give just a few examples.

The idea of logical bisimulations stems from bisimulations for higher-order
calculi with information hiding mechanisms (such as encryption [22], data ab-
straction [9], and store [13]), where the use of context closures of function ar-
guments was necessary because of the information hiding. In this respect, our
contribution in this paper is to isolate this idea and propose it as a general
method for higher-order languages. Moreover, we simplify and strengthen the
method and develop its basic theory.

In this paper we consider purely functional languages, in particular untyped
call-by-name and call-by-value lambda-calculi. It seems difficult to adapt logical
bisimulation, at least in the form presented here, to non-functional languages;
for instance, languages with information hiding constructs (e.g., for store, en-
cryption, data abstraction) or with parallelism. To treat these languages we have
added an explicit notion of environment to the bisimulations. The technical de-
tails become rather different, and can be found in [23].

2 Preliminaries

In this section, we introduce general notations and terminologies used throughout
the paper. Familiarity with standard terminologies (such as free/bound variables,
and α-conversion) for the λ-calculus is assumed.

We use meta-variables M, N, P, Q, . . . for terms, and V, W, . . . for values (in
untyped λ-calculus the only closed values are the abstractions). We identify α-
convertible terms. We write M{N/x} for the capture-avoiding substitution of
N for x in M . A term is closed if it contains no free variables. The set of free
variables of a term M is fv(M). A context C is an expression obtained from a term
by replacing some sub-terms with holes of the form [·]i. We write C[M1, . . . , Mn]
for the term obtained by replacing each occurrence of [·]i in C with Mi. Note that
a context may contain no holes, and therefore any term is a context. A context
may bind variables in M1, . . . , Mn; for example, if C = λx. [·]1 and M = x, then
C[M ] is λx. x, not λy. x. The set Λ of λ-terms is defined by:

M, N ::= x | λx. M | MN

We write Λ• for the subset of closed terms.
We use meta-variables R, S, . . . for binary relations; RS is the composition

of R and S, whereas R� is the closure of relation R under contexts, i.e.

{(C[M1, . . . , Mn], C[N1, . . . , Nn]) | MiRNi for each i}

By definition R� contains both R and the identity relation. By default, we restrict
R� to closed terms unless noted otherwise.

Sequences M1, . . . , Mn are often abbreviated to M̃ , and notations are ex-
tended to tuples componentwise. Hence, we often write C[M̃ ] for C[M1, . . . , Mn],
and M̃RÑ for (M1RN1) ∧ · · · ∧ (MnRNn).
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We have some remarks on the results in the remainder of this paper:

– Although the results are often stated for closed values only, they can be
generalized to open terms in a common way. This can be done by defining
an ad hoc relation—the least congruence containing (M, (λx. M)x) for every
M—and proving its preservation under evaluation, as in Sumii-Pierce [22]
and Koutavas-Wand [13]. (Alternatively, we may also consider a bisimula-
tion between M and (λx. M)x. The proof is straightforward in either case.)
Thus properties between open terms M and N can be derived from the
corresponding properties between the closed terms λx̃. M and λx̃. N , for
{x̃} ⊇ fv(M) ∪ fv(N).

– The results in this paper are stated for untyped languages. Adapting them
to languages with a simply-typed discipline is straightforward. (We will use
a simply-typed calculus in an example.)

3 Call-by-Name λ-Calculus

The call-by-name reduction relation −→ is the least relation over Λ• closed under
the following rules.

β : (λx. M)N −→ M{N/x} μ :
M −→ M ′

MN −→ M ′N

We write =⇒ for the reflexive and transitive closure of −→. The values are the
terms of the form λx. M .

3.1 Logical Bisimulations

If R is a relation on closed terms, then we extend it to open terms thus: if
fv(M, N) = {x̃}, then M Ro N holds if for all M̃, Ñ ∈ Λ• with M̃ R� Ñ we
have M{�M/�x} R N{ �N/�x}.

Definition 1 (logical bisimulation). A relation R ⊆ Λ• × Λ• is a logical
bisimulation if whenever M R N ,

1. if M −→ M ′ then N =⇒ N ′ and M ′ R N ′;
2. if M = λx. M ′ then N =⇒ λx. N ′ and M ′ Ro N ′;
3. the converse of (1) and (2) above, on N .

We write ≈ for the union of all logical bisimulations, and call it logical bisimi-
larity.

As R occurs in negative position in the definition of logical bisimulation, the
existence of the largest bisimulation is unclear. Indeed the union of two logical
bisimulations is not necessarily a logical bisimulation. We however prove below
that ≈ itself is a bisimulation, so that it is also the largest bisimulation. We often
omit “logical” in the remainder of the paper.
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Remark 1. The negative occurrence of R in the definition of logical bisimula-
tion breaks the monotonicity of the generating functional (the function from
relations to relations that represents the clauses of bisimulation). Therefore we
cannot appeal to the Knaster-Tarski’s fixed point theorem for the existence of
a largest bisimulation. (Such a theorem guarantees the existence of the greatest
fixed point for a monotone function on a complete lattice; moreover this point
coincides with the greatest post-fixed point of the function; see [24] for discus-
sions on the theorem and on coinduction). Thus, if we take Knaster-Tarski as the
justification of coinduction, then we could not call coinductive the proof method
for logical bisimulations. However we can show that the largest logical bisimu-
lation exists, and therefore the proof method given by logical bisimulations is
sound and complete. We call the method coinductive because it has the form of
standard coinductive proof methods. We thus take coinduction with a meaning
broader than that given by Knaster-Tarski’s theorem, namely as a notion for
reasoning about functions on complete lattices that have a greatest post-fixed
point.

First we prove that ≈ is an equivalence relation; the only non-trivial case is
transitivity.

Lemma 1. Suppose R is a bisimulation, M R N , and M =⇒ M ′. Then there
is N ′ such that N =⇒ N ′ and M ′ R N ′.

Proof. Induction on the length of M =⇒ M ′.

Lemma 2. Suppose R1 and R2 are bisimulations. Then also R1 R2 (the rela-
tional composition between them) is a bisimulation.

Proof. We prove that R1 R2 is a bisimulation. As an example, consider clause
(2) of the bisimulation. Thus, suppose M R1 R2 N because M R1 L R2 N , and
M = λx. M ′.

Since R1 is a bisimulation, there is L′ such that L =⇒ λx. L′ and M ′ Ro
1 L′.

Using Lemma 1, since also R2 is a bisimulation, there is N ′ such that N =⇒
λx. N ′ and L′ Ro

2 N ′.
We have to prove that for all (M1, N1) ∈ (R1 R2)�, we have M ′{M1/x} R1 R2

N ′{N1/x}. If (M1, N1)∈(R1 R2)�, then there is a context C and terms M̃ ′
1, Ñ

′
1

with M̃ ′
1 R1 R2 Ñ ′

1 such that M1 = C[M̃ ′
1] and N1 = C[Ñ ′

1]. By definition of
relational composition, there are L̃′

1 such that M̃ ′
1R1L̃′

1R2Ñ ′
1. Hence, since R1

and R2 are bisimulations, we have

M ′{C[�M ′
1]/x} R1 L′{C[�L′

1]/x} and L′{C[�L′
1]/x} R2 N ′{C[�N ′

1]/x}.

We can therefore conclude M ′{C[�M ′
1]/x} R1 R2 N ′{C[�N ′

1]/x}.

Next we prove that ≈ is preserved by contexts, which allows us to conclude
that ≈ is a congruence relation. In bisimilarities for higher-order languages, the
congruence properties are usually the most delicate basic properties to estab-
lish. In contrast with proofs for applicative bisimilarity, which usually involve
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sophisticated techniques such as Howe’s, for logical bisimilarity simple inductive
reasoning on contexts suffices.

Lemma 3. If R is a bisimulation, then also R� is a bisimulation.

Proof. We prove that R� is a bisimulation. Suppose (C[M̃ ], C[Ñ ])∈R� with
M̃ R Ñ . We prove clauses (1) and (2) of the bisimulation by induction on the
size of C. There are three cases to consider.

The case C = [·]i is immediate, using the fact that (R�)�=R�.
In the case C = λx. C′, only clause (2) of bisimulation applies: let M1, N1 be

the arguments of the functions, with M1 R� N1; we have also C′[M̃ ]{M1/x} R�

C′[Ñ ]{N1/x}, and we are done.
It remains the case C = C1C2, where only clause (1) of bisimulation applies.

There are two possibilities of reduction for C1[M̃ ]C2[M̃ ]: the left-hand side C1[M̃ ]
reduces alone; the left-hand side is a function, say λx. P , and the final derivative
is P{C2[�M ]/y}. The first possibility is dealt with using induction. In the second
one, by the induction hypothesis, we infer: C1[Ñ ] =⇒ λy. Q and P (R�)o Q.
Hence P{C2[�M ]/y}R�Q{C2[ �N ]/y}, and we are done.

Corollary 1. ≈ is a congruence relation.

Finally, we prove that ≈ itself is a bisimulation, exploiting the previous results.

Lemma 4. ≈ is a bisimulation.

Proof. In the proof that ≈ is a bisimulation, clause (1) of Definition 1 is straight-
forward to handle.

We consider clause (2). Thus, suppose λx. M ≈ N . By definition of ≈, there is
a bisimulation R such that λx. M R N ; hence there is N ′ such that N =⇒ λx. N ′

and M Ro N ′. We have to prove that also M ≈o N ′ holds.
Take M1 ≈� N1; we want to show M{M1/x} ≈ N ′{N1/x}. If M1 ≈� N1, then

there is a context C and terms M ′
1, . . . , M

′
n, N ′

1, . . . , N
′
n with M ′

i Si N ′
i for some

bisimulation Si such that M1 = C[M ′
1, . . . , M

′
n] and N1 = C[N ′

1, . . . , N
′
n]. We

have:

M{C[M ′
1, . . . , M

′
n]/x} R N ′{C[M ′

1, . . . , M
′
n]/x} (since M Ro N ′)

S�
1 N ′{C[N ′

1, M
′
2, . . . , M

′
n]/x}

. . .

S�
n N ′{C[N ′

1, , . . . , N
′
n−1N

′
n]/x}

This closes the proof, because each S�
i is a bisimulation (Lemma 3) and because

bisimulations are closed under composition (Lemma 2).

Example 1. We have I1 ≈ I2 for I1
def= λx. x and I2

def= λx. (λy. y)x, by taking
R def= {(M, N), (M, (λy. y)N) | M S� N}, for S

def= {(I1, I2)}. Note that the
singleton relation {(I1, I2)} by itself is not a logical bisimulation because of the
implicit use of R� in clause (2) of bisimulation. Burdens like this are frequent
in bisimulation proofs, and will be removed by the up-to techniques described
later in this section. Specifically, the singleton relation {(I1, I2)} will be a logical
bisimulation “up to reduction and contexts”.
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3.2 Up-to Techniques

We show a few “up-to” techniques, as enhancements of the bisimulation proof
method. They allow us to prove bisimulation results using relations that in gen-
eral are not themselves bisimulations, but are contained in a bisimulation. Rather
than presenting complete definitions, we indicate the modifications to the bisim-
ulation clauses (Definition 1). For this, it is however convenient to expand the
abbreviation M ′ Ro N ′ in clause (2) of the definition, which thus becomes “for
all (M1, N1) ∈ R� it holds that M ′{M1/x} R N ′{N1/x}”, and to describe the
modifications with respect to this expanded clause.

We also omit the statements of soundness of the techniques.

Up-to bisimilarity. This technique introduces a (limited) use of ≈ on tested
terms. This can allow us to avoid bisimulations with elements that, behaviorally,
are the same. In clause (1), we replace “M ′ R N ′” with “M ′ R ≈ N ′”; in (2),
we replace “M ′{M1/x} R N ′{N1/x}” with “M ′{M1/x} ≈ R ≈ N ′{N1/x}”. We
cannot strengthen up-to bisimilarity by using ≈ also on the left-hand side of R in
clause (1), for the technique would be unsound; this is reminiscent of the prob-
lems of up-to bisimilarity in standard small-step bisimilarity for concurrency.
[25].

Up-to reduction. This technique exploits the confluent property of reduction so
to replace tested terms with derivatives of them. When reduction is confluent
this technique avoids the main disadvantage of small-step bisimulations over the
big-step ones, namely the need of considering each single derivative of a tested
term.

In clause (1), we replace “M ′ R N ′” with “there are M ′′, N ′′ with M ′ =⇒ M ′′

and N ′ =⇒ N ′′ such that M ′′ R N ′′”; similarly, in (2) we replace “M ′{M1/x} R
N ′{N1/x}” with “there are M ′′, N ′′ with M ′{M1/x} =⇒ M ′′ and N ′{N1/x} =⇒
N ′′ such that M ′′ R N ′′”.

The technique allows us to derive the soundness of the “big-step” version of
logical bisimulation, in which clauses (1) and (2) are unified by requiring that

– if M =⇒ λx. M ′ then N =⇒ λx. N ′ and M ′ Ro N ′.

Up-to expansion. In concurrency, a useful auxiliary relation for up-to techniques
is the expansion relation. (A similar relation is Sands’ improvement for functional
languages [6]). We adapt here the concept of expansion to the λ-calculus. We
write M =⇒n M ′ if M reduces to M ′ in n steps. We present the big-step version
of expansion, since we will use it in examples. As for bisimilarity, so for expan-
sion the small-step version is equally possible. Similarly, the up-to techniques
described for bisimilarity can also be used to enhance expansion proofs, and
then the big-step version of expansion below can be derived from the small-step
version plus a “weighted” version of up-to reduction.

Definition 2. A relation R is an expansion relation if whenever M R N ,

1. M =⇒m λx. M ′ implies N =⇒n λx. N ′ with m ≤ n, and M ′ Ro N ′;
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2. The converse, i.e., N =⇒n λx. N ′ implies M =⇒m λx. M ′ with m ≤ n and
M ′ Ro N ′;

Expansion, written �, is the union of all expansion relations.

Thus if M −→ M ′ then M � M ′ holds, but not necessarily M ′ � M .

Lemma 5. � is a pre-congruence and is an expansion relation itself.

Proof. Similar to the proofs for ≈.

In the bisimulation up-to expansion technique, in Definition 1, we replace the
occurrence of R in clause (1), and that in clause (2), with � R �.

Since −→ ⊆ �, the up-to expansion technique subsumes, and is more powerful
than, up-to reduction. Still, up-to reduction is interesting because it can be
simpler to combine with other techniques and to adapt to richer languages.

Up-to values. Using up-to expansion, and exploiting the basic properties of ex-
pansion (notably pre-congruence, and the fact that any pair of closed divergent
terms is in the expansion relation) we can prove that the quantification over R�

in clause (2) can be restricted to R̂
�
, where R̂ indicates the subset of R with

only pairs of values.

Up-to contexts. This technique allows us to cancel a common context in tested
terms, requiring instead that only the arguments of such context be pairwise
related. Thus in clauses (1) and (2) the final occurrence of R is replaced by R�.

Up-to full contexts. The difference between “up-to contexts” and “up-to full
contexts” is that in the latter the contexts that are cancelled can also bind
variables of the arguments. As a consequence, however, a relation for the “up-to
full contexts” is on open terms. Clauses (1) and (2) of Definition 1 are used only
on closed terms, but with the last occurrence of R in each clause replaced by
R�. We add a new clause for open terms:

– If M R N then also M Ro N (i.e., if x̃ = fv(M, N), then for all (M̃1, Ñ1) ∈
R�, it holds that M{�M1/�x} R� N{�N1/�x}).

Again, the up-to full contexts subsumes, and is more powerful than, up-to con-
texts, but the latter is simpler to establish and use.

Remark 2. An up-to-full-contexts technique similar to the one above has been
proposed by Lassen [26, Lemma 7] and proved sound with respect to applicative
bisimilarity. (Lassen was actually hoping to prove the soundness of the up-to-
full-contexts technique for applicative bisimilarity itself, but failed; indeed forms
of up-to contexts for applicative bisimilarities are notoriously hard). Further,
Lassen’s paper contains a number of interesting examples, such as least-fixed
point properties of recursion and a syntactic minimal invariance property, that
are proved for applicative bisimilarity by making use of up-to techniques. Similar
proofs can be given for logical bisimilarity.
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Big-step versions and combinations of up-to. The previous techniques can be
combined together, in the expected manner. Further, for each technique both
the small-step and the big-step versions are possible. We give two examples.
The (small-step) “up-to expansion and full contexts” is defined as “up-to full
contexts”, but expansion appears in the conclusions. Thus clause (1) becomes:

– if M, N ∈ Λ• and M −→ M ′ then N =⇒ N ′ and M ′ �R�� N ′

Clause (2) is modified similarly; and in the clause for open terms, “M{�M1/�x} R�

N{�N1/�x}” is replaced by “M{�M1/�x} �R�� N{�N1/�x}”.
In the big-step up-to expansion and context, the bisimulation clause becomes:

– if M =⇒ λx. M ′ then N =⇒ λx. N ′ and for all (M1, N1) ∈ R� it holds that
M ′{M1/x} �R�� N ′{N1/x}. (*)

Of course, in general the more powerful the up-to is, the more work is required
in its proof of soundness.

3.3 Contextual Equivalence

Definition 3 (contextual equivalence). Terms M and N are contextually
equivalent, written M ≡ N , if, for any context C such that C[M ] and C[N ] are
closed, C[M ] ⇓ iff C[N ] ⇓.

Theorem 1 (soundness and completeness of bisimulation). Relations ≡
and ≈ coincide.

Proof. For closed terms, we prove that M ≡ N implies M ≈ N by showing that
≡ is a bisimulation; the proof is simple, proving first that ≡ is an equivalence,
that ≡� = ≡ and that reduction is included in ≡. The converse implication
(M ≈ N implies M ≡ N) immediately follows from the congruence of ≈. The
result for open terms is obtained as discussed in Section 2.

3.4 Example 1

This example gives the proof of the equivalence between the two fixed-point
combinators:

Y
def= λy. y(Dy(Dy))

Θ
def= ΔΔ

where
Δ

def= λx. λy. (y(xxy))
D

def= λy. λx. y(xx)

We establish Y ≈ Θ using a relation R that has just one pair, namely (Y, Θ), and
proving that R is a big-step logical bisimulation up to expansion and context.
First, we note that, for any term M ,

DM(DM) � Y M (1)
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This holds because DM(DM)=⇒2 M(DM(DM)) and Y M =⇒1 M(DM(DM)).
We now check the bisimilarity clause (*) on the pair (Y, Θ). Term Y is a function;
the other term, Θ, becomes a function as follows:

Θ −→ λy. (y(ΔΔy)) def= Θ1

Consider now any argument M R� N for Y and Θ1. The results are M(DM
(DM)) and N(ΔΔN), respectively. Now, by (1), it holds that

M(DM(DM)) � M(Y M)

and we are done, since M(Y M) R� N(ΔΔN) = N(ΘN).

4 Call-by-Value λ-Calculus

The one-step call-by-value reduction relation −→ ⊆ Λ• × Λ• is defined by these
rules:

βv : (λx. M)V −→ M{V/x}

μ :
M −→ M ′

MN −→ M ′N
νv :

N −→ N ′

V N −→ V N ′

We highlight what changes in the theory for call-by-name of the previous
sections. For a relation R we write R�� for the subset of R� that only relate pairs
of values.

– The input for two functions must be values. Therefore, in the definition
of bisimulation, the input terms M1 and N1 should be in R�� (rather than
R�). A similar modification on the quantification over inputs of functions is
needed in all definitions of bisimulations and up-to techniques.

– In clause (2) of bisimilarity we add the requirement that the two functions
themselves are related, i.e., λx. M ′ R λx. N ′. Roughly, this is needed be-
cause, in call-by-value, by definition, function arguments are evaluated be-
fore applications. The proof of congruence itself for bisimilarity requires this
addition. We will nevertheless be able to remove the requirement later, ex-
ploiting appropriate up-to techniques.

Remark 3. To make the definition of logical bisimulation uniform for call-by-
name and call-by-value, the requirement “λx. M ′ R λx. N ′” could also be added
in call-by-name. This would not affect the proofs of the result presented. As in
call-by-value, the requirement could then be removed by means of appropriate
up-to techniques.

For ease of reference, we report the complete definition of bisimulation. If R is a
relation on closed terms, and fv(M, N) = x̃, then M R�o N holds if for all Ṽ , W̃

with Ṽ R�� W̃ it holds that M{�V/�x} R N{�W/�x}.

Definition 4. A relation R ⊆ Λ• × Λ• is a logical bisimulation if whenever
M R N ,
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1. if M −→ M ′ then N =⇒ N ′ and M ′ R N ′
2. if M = λx. M ′ then N =⇒ λx. N ′ and

(a) λx. M ′ R λx. N ′
(b) M ′ R�o N ′

3. the converse of (1) and (2) above.

With these modifications, all definitions and results in Section 3 are valid for call-
by-value. The structure of the proof also remains the same, with the expected
differences in technical details due to the change in reduction strategy. It is
however worth revisiting the proof of Lemma 3; although the structure of the
proof is the same, the few differences are important, in particular to understand
the requirement (2.a) in Definition 4.

Lemma 6. If R is a bisimulation, then also R� is a bisimulation.

Proof. As before we prove that R� is a bisimulation reasoning by induction on
the size of the common contexts of terms (C[M̃ ], C[Ñ ]) ∈ R� with M̃ R Ñ . In
the case C = [·]i we use the fact that (R�)��=R��.

The interesting case is C = C1C2 when both C1[M̃ ] and C2[M̃ ] are values,
say λx. P and V , respectively. By the induction hypothesis, we infer:

C2[Ñ ] =⇒ W,

for some W with V R�� W . (Note that here we exploit the requirement (2.a) of
Definition 4.) Similarly we infer C1[Ñ ] =⇒ λx. Q, for some Q with P (R�)�o Q.
This implies, since V R�� W , that P{V/x} R� Q{W/x}.

4.1 Up-to Techniques

All up-to techniques described for call-by-name are valid also for call-by-value,
modulo the technical differences in definitions that we have discussed in the
previous subsection. In addition, however, we can also derive the soundness (and
completeness) of a form of logical bisimulation with big-step restricted to values
(in call-by-value, applicative bisimulation is normally defined this way) and that
we call value big-step logical bisimulation.

Definition 5. A relation E on closed values is a value big-step logical bisimu-
lation if for all V E W and V1 E�� W1, if V V1 =⇒ V ′ then there is W ′ such that
WW1 =⇒ W ′ and V ′EW ′; and the converse, on the reductions from W .

We also provide a further up-to technique, that we call up-to environment
whereby clause (2.a) of bisimilarity (the requirement λx. M ′ R λx. N ′) is re-
moved. Its soundness is proved as follows. If R is a bisimulation up-to environ-
ment, define

R1
def= {(λx. M, λx. N) | ∃M ′, N ′. M ′RN ′ and M ′ =⇒ λx. M, N ′ =⇒ λx. N}

and then take
R2

def= R ∪ R1

We then show that R2 is a bisimulation up-to bisimilarity.
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4.2 Example 2

This example uses a simply-typed call-by-value extended with integers, an op-
erator for subtraction (−̂), a conditional, and a fixed-point operator Y . The
reduction rule for Y is Y V −→ V (λx. Y V x). As mentioned in Section 2, it is
straightforward to accommodate such additions in the theory developed. (We
could also encode arithmetic into the untyped calculus and adapt the example,
but it would become harder to read.) Let P, Q be the terms

P
def= λf . λg. λx. λy. if x = 0 then y else g(f g (x−̂1) y)

Q
def= λf . λg. λx. λy. if x = 0 then y else f g (x−̂1) (g y)

Let F1
def= λz. Y P z and F2

def= λz. Y Q z.
The terms F1 g n m and F2 g n m (where g is a function value from integers to

integers and n, m are integers) computes gn(m) if n ≥ 0, diverge otherwise. In
both cases, however, the computations made are different. We show F1 g n m ≈
F2 g n m using an up-to technique for logical bisimulations. For this, we use the
following relation R:

{(gr(F1 g n m), F2 g n (gr(m))) |
r, m, n ∈ Z, r ≥ 0, and g is a closed value of type int → int}.

We show that R is a bisimulation up-to expansion and context.
Let us consider the pair (gr(F1 g n m), F2 g n (gr(m))). If n = 0, then we have:

gr(F1 g 0 m) −→=⇒ gr(m)
R�

F2 g 0 (gr(m)) −→� gr(m)

So, the required condition holds. If n �= 0, then we have

gr(F1 g n m) −→=⇒ gr(g(F1 g (n−̂1)m))
� gr+1(F1 g (n − 1)m).

and
F2 g n (gr(m)) −→� F2 g (n−̂1) (g(gr(m)))

� F2 g (n − 1) (gr+1(m)).

Here, the first � comes from the fact that y is not copied inside the function F2.
We are done, since

(gr+1(F1 g (n − 1)m), F2 g (n − 1) (gr+1(m))) ∈ R.

The example above makes use of key features of logical bisimulations: the
ability to compare terms in the middle of evaluations, and (some of) its up-to
techniques.
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5 Data Hiding and Concurrency

To handle higher-order calculi with information hiding mechanisms, such as
store, encryption, data abstraction, we have to enrich logical bisimulations with
environments, which roughly collect the partial knowledge on the transmitted
values, acquired by an observer interacting with the terms. The same happens
in concurrency, where bisimulations with forms of environment have been first
proposed, for instance to handle information hiding due to types [27,28] and
encryption [29] (this in π-calculus-like languages; information hiding in higher-
order concurrency remains largely unexplored). Bisimulations with environments
have also been used in λ-calculi with information hiding mechanisms (such as
encryption [22], data abstraction [9], and store [13]); as pointed out in the in-
troductions, these works have motivated and inspired ours. The resulting form
of bisimulation, that we have called environmental bisimulation, seems robust.
The technical details—which are non-trivial—are presented in [23].

6 Conclusions

In this paper we have developed the basic theory of logical bisimulations and
tested it on a few representative higher-order calculi.

Bisimulation and co-inductive techniques are known to represent a hard prob-
lem in higher-order languages. While we certainly would not claim that logical
bisimulations are definitely better than applicative bisimulations or other co-
inductive techniques in the literature (indeed, probably a single best bisimulation
for this does not exist), we believe it is important to explore different approaches
and understand their relative merits. This paper reports our initial experiments
with logical bisimulations. More experiments, both with concrete examples and
with a broader spectrum of languages, are needed.
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Abstract. State space reduction for automata is important to automata-
theoretic model checking. Optimizing automata by simulation relation is
a practical method. We propose an approach to simplify Büchi automata
by fair simulation, which is based on integrating the method of [6] and con-
ditions of [7]. The approach can optimize an automaton without changing
the language of each state and apply the optimization immediately after
finding one pair of states with fair simulation equivalence. The experimen-
tal result shows our approach needs less time than that of [6].

1 Introduction

State space reduction for automata is important to automata-theoretic model
checking. For LTL model checking, there are two possibilities, one is to simplify
the property automaton transformed from a formula or provided by an user, the
other is to optimize the transformation procedure from an LTL formula to an
automaton [1]. Simulation relation is a pre-order relation of states and can be
computed in polynomial time, therefore most of automata optimizations use the
simulation method.

The general simulation notion for LTS (Label Transition System) in [2] has
been studied thoroughly. Considering the automaton’s accepting condition, we
get the following simulation concepts: direct simulation [3], delayed simulation
[4] and fair simulation [5]. These simulations can be used to reduce state space
of Büchi automata [4,6,7], generalized Büchi automata [8], and alternating au-
tomata. Fair simulation has the least restriction on the acceptance condition in
the above simulation concepts for automata. Although fair simulation by itself
is not a sufficient condition for collapsing two states or deleting one transition
without affecting the original language, the experimental result in [6] shows that
given a Büchi automata, there are more pairs of states with fair simulation than
that of direct or delayed simulation, and according to it, we can reduce states
and transitions safely.
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In our paper, we also use fair simulation to minimize Büchi automata, the goal
is to efficiently reduce the number of states and transitions by fair simulation.
We propose an approach based on integrating the method of [6] and conditions
of [7], such that each state in the reduced automaton has the same language
as that of the corresponding state in the original. Moreover, we can apply the
optimization technique immediately after finding a pair of states with fair simu-
lation equivalence. Since we find each pair with fair simulation from the reduced
automaton thus our approach requires less time than the method which needs
finding all candidates before applying optimization.

Section 2 is the background knowledge. Section 3 gives theoretical basis for our
approach. Section 4 describes the whole optimization procedure. In Section 5,
the experimental result shows the efficiency of our approach. Concluding remarks
are given in Section 6.

2 Preliminaries

Definition 1. A Büchi automaton is a tuple A = 〈Q, Σ, s0, Δ, F 〉 where Q is a
finite set of states, Σ is the input alphabet, s0 ∈ Q is the initial state, F ⊆ Q is
the set of accepting states, Δ ⊆ Q × Σ × Q is the transition relation.

A run of A on an infinite word α = α(0)α(1) · · · is a sequence r = r(0)r(1) · · ·
such that r(0) = s0, and for every i ≥ 0, (r(i), α(i), r(i + 1)) ∈ Δ. Let inf(r) be
the set of states that r visits infinitely often. If inf(r) ∩ F �= ∅, then the run r
is an accepting run and α is in the language of A. The language of A is denoted
by L(A). For convenience, we write q ∈ A for q being a reachable state of A. We
write QA, ΔA, FA for respectively the set of states of A, the set of transition
relations of A, and the set of accepting states of A. If A = 〈Q, Σ, s0, Δ, F 〉 is an
automaton and q ∈ Q, then A[q] denotes the modified automaton 〈Q, Σ, q, Δ, F 〉.
In our paper, the language of q of A means the language of A[q].

Now we give the definition of fair simulation from the game perspective [4].
Let q0 ∈ A and q′0 ∈ A′, fair simulation game Gf

A,A′(q0, q
′
0) is played by two

players: Spoiler and Duplicator. At the first round, Spoiler puts a red pebble
on q0 while Duplicator puts a blue pebble on q′0. Suppose in the ith round,
Spoiler is in qi, and moves the pebble to qi+1 according to (qi, αi, qi+1) ∈ ΔA,
Duplicator must have a matching transition (q′i, αi, q

′
i+1) ∈ ΔA′

to move the
pebble from q′i to q′i+1. If someone cannot move, then the game halts and the
one who cannot move loses. Otherwise, there are two infinite paths π = q0...qi...
and π′ = q′0...q′i..., we call (π, π′) an outcome of the game. Then the outcome is
winning for Duplicator iff there are infinitely many j in π′ such that q′j ∈ FA′

,
or there are finitely many i in π such that qi ∈ FA.

A strategy for Duplicator is a partial function f : Q(Q′ΣQ)∗ → Q′. It deter-
mines the next move of Duplicator according to the history of the play. That
is, f(q0) = q′0 and q′j = f(q0q

′
0a0q1q

′
1a1 · · · aj−1qj) where (qi, ai, qi+1) ∈ ΔA and

(q′i, ai, q
′
i+1) ∈ ΔA′

for i < j. A strategy for Duplicator is a winning strategy if
whenever π = q0a0q1 · · · is a run of A and π′ = q′0a0q

′
1 · · · is a run defined by

q′i+1 = f(q0q
′
0a0q1q

′
1 · · · aiqi+1), then (π, π′) is winning for Duplicator.
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Definition 2. [4] Let q ∈ A and q′ ∈ A′, q′ fair simulates q if there is a winning
strategy for Duplicator in Gf

A,A′(q, q′). We denote such relation by q ≤f q′.

For convenience, we use q ∼f q′ to denote q′ ≤f q′ and q′ ≤f q.

Proposition 1. [4] Let q ∈ A, q1 ∈ A1 and q′ ∈ A′ (1)if q ≤f q1 and q1 ≤f q′,
then q ≤f q′ (2)if q ≤f q′, then L(A[q]) ⊆ L(A′[q′])

Now we give the definition of parity game which can be used to represent fair
simulation.

Definition 3. [9] A parity game graph is a tuple G = 〈V, V0, V1, E, p〉, where V
is the set of vertexes, V0 and V1 are two disjoint sets such that V = V0 ∪ V1,
E ⊆ V × V is the set of edges, and p is a priority function that maps V to
{0, ..., d − 1}, d ∈ N.

There are two players: One and Zero in G. At the beginning, Zero puts a pebble
on v0, then the players play the game according to the following rule: if the
pebble is currently on vi, and vi ∈ V0(V1), Zero(One) moves the pebble to the
next position vi+1, where (vi, vi+1) ∈ E. The winning conditions which judge the
winner of a play are: (1) If a player cannot move the pebble, then this player loses
and this is a finite play in G. (2) Otherwise, there is an infinite path π = v0v1 · · ·
in G. We denote by inf(π) the set of vertexes that appear infinitely in π, and
∀vi ∈ inf(π), p(vi) is the priority of vi. Let kπ be the minimal number of all
p(vi). Then Zero wins the play if kπ is even, whereas One wins if kπ is odd.

Given two Büchi automata A1, A2, we can represent fair simulation by a parity
game with three priorities [4]. Thus the game between One and Zero on GA1,A2

represents the fair simulation game between Spoiler and Duplicator on Gf
A1,A2

.
Therefore One represents Spoiler, and Zero represents Duplicator.

3 Reduction of States and Transitions

[6] provided an approach to reduce state space of Büchi automata by fair simu-
lation. First it finds all pairs of states with fair simulation, which are candidates
for merging states and deleting transitions. Second according to each candidate,
it optimizes the automaton and checks whether this optimization is correct, i.e.
whether there exists a fair simulation equivalence between the initial state of the
reduced automaton A′ and that of the original automaton A. One of important
contributions of this approach is that it does not create a parity game graph
GA,A′ or GA′A for each candidate when checking the correctness of the opti-
mization, GA,A′ or GA′A is implemented by adding or deleting the edges from
the game graph GA,A. Therefore it is an efficient approach.

However, there exist two disadvantages in this approach. The first one is that
after each optimization, it only guarantees that the language of the initial state
of A′ is the same as that of A, the language of other states of A′ may not be the
same as that of the states of A. Then we can’t use this method to reduce the
state space of a Büchi automaton as a model of some system, because we may
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need to verify the system from any given state, therefore we must preserve the
langauge of every state after optimization.

The second is that it must find all candidates in advance. However, the method
that simplifies the automaton as soon as a candidate is detected is more efficient,
because if merging or deleting successes at this time, then at the next time, we can
find a candidate from a new Büchi automaton with fewer states or transitions.

3.1 Merging and Deleting States

In this subsection, we first introduce a criterion to judge the correctness of
merging two states, base on this criterion, we prove the language of each state
in the reduced automaton keeps unchanged. Then we prove that deleting one
state directly by the condition in [7] also has this property. Additionally, the
new reduced automaton constructed by above two methods preserves the fair
simulation relation of the original automaton.

Merging Two States. For convenience, we use [s1, s2] to denote a new state
in Am which is an automaton created by merging s1 and s2, where (s1, s2) is a
pair in the fair simulation equivalence relation of A. Since there may form some
new cycles in Am when s1 reaches s2 or s2 reaches s1 in A. So if there exists an
accepting state in these new cycles, then L(A[s2]) = L(A[s1]) ⊂ L(Am[[s1, s2]]).
Thus the language of some state in Am which reaches [s1, s2] may be changed even
L(Am) = L(A). The following proposition shows that in order to keep the lan-
guage of remaining state unchanged, we require [s1, s2] be fair simulated by s1.

Since a state s may belong to A, Am and Ad(built by deleting states or
transitions from A) at the same time, for convenience, we use sA, sAm and sAd

to denote s ∈ A, s ∈ Am and s ∈ Ad respectively.

Proposition 2. If [s1, s2]Am is fair simulated by s1 of A, then sAm ∼f sA.

The proof of the above proposition is to construct a winning strategy f such
that the state chosen by Duplicator is identical with the state chosen by Spoiler
or is decided by the winning strategy f ′ which decides [s1, s2] ≤f s1.

Therefore, [s1, s2]Am is fair simulated by s1 of A guarantees the correctness
to merge s1 and s2. While [6] judges the correctness by whether the initial state
of Am is fair simulated by that of A. Since there may be a situation that two
states is merged in [6] but not in our approach, so the condition we use to merge
states is more restrictive.

According to Proposition 2 and item 1 of Proposition 1, we get an important
property of Am, it shows that Am preserves the fair simulation relation of A.

Proposition 3. If [s1, s2]Am is fair simulated by s1 of A, then sA ≤f qA iff
sAm ≤f qAm .

Deleting One State. Given two states with the same language, if they do
not reach each other, then we can get a reduced automaton Ad by deleting one



384 J. Yi and W. Zhang

state and it’s transitions [7]. Since fair simulation equivalence implies language
equivalence, thus given a candidate with fair simulation equivalence, we may
delete one state and it’ transitions. Therefore using the condition in [7] is efficient
for it does not need to check the correctness and deletes states and transitions at
the same time. Note that [7] just proved that L(Ad) = L(A). Now we show that
if two states with the same language is judged by fair simulation equivalence,
then Ad has two important properties: (1) sAd

and sA fair simulate each other,
therefore any state of Ad has the same language as that of the corresponding
state in A. (2) Ad preserves the fair simulation relation of A.

Proposition 4. sAd
∼f sA

Proposition 5. sA ≤f qA iff sAd
≤f qAd

.

Note that the detail proof of each proposition of this paper is in [10].

3.2 Deleting Transitions

Given A and a pair of states (s, s′) with L(A[s]) ⊆ L(A[s′], if ∃p ∈ A such
that (p, a, s), (p, a, s′) ∈ ΔA and s′ cannot reach p, we can construct Ad by
deleting the transition (p, a, s) directly [7]. Since fair simulation implies language
containment, so we can use the method of [7] to delete transitions.

Now we strengthen the conclusion L(Ad) = L(A) of [7] by the following propo-
sition which shows that each state of Ad has the same language as that of A.

Proposition 6. Given A and s ≤f s′, let p be a state such that (p, a, s), (p, a, s′)
∈ ΔA, if s′ cannot reach p, then tAd

∼f tA, where Ad is constructed by deleting
(p, a, s) from A.

However, if s′ can reach p, we need check the correctness, like the method in [6].
In order to make the reduced automaton preserve the language of each state of
A, the following proposition shows a more restricted criterion than that in [6].
That is, we require pAd

fair simulate pA, while [6] require the initial state of Ad

fair simulate the initial state of A.

Proposition 7. Given A and s ≤f s′, let p be a state such that (p, a, s), (p, a, s′)
∈ ΔA, if pA ≤f pAd

, then tAd
∼f tA, where Ad is constructed by deleting (p, a, s)

from A.

So Proposition 6 and 7 help us overcome the first disadvantage of [6].

3.3 Efficiently Finding Candidates

The approach of [6] finds all candidates before applying any optimization. Our
approach aims to delete one state or merge two states immediately after finding
one successful candidate. Thus in the next time, we find new candidates on the
reduced automaton Ad or Am, which needs less time than that on A.
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Since we do not find all candidates from one parity game GA,A, we have to
build and resolve the parity game for each time to find new candidates on the
reduced automaton. In order to improve the efficiency of the whole optimization
procedure, we reuse the information.

We describe how to reuse information in detail. Given a pair (s1, s2) and a
Büchi automaton Ai which is built from Ai−1 by merging states or deleting
states according to the method in the section 3.1 (let A0 = A). In order to
check whether a pair of states with fair simulation(i.e., whether the pair is a new
candidate to be reduced), we create game G. By Propositions 1, 3 and 5, for any
0 ≤ j < i, Ai preserves the fair simulation relation of Aj . So if s ≤f s′ is true in
Aj , then s ≤f s′ is true in Ai. Therefore, if v = v(s,s′) is one of vertexes of G, then
v is the winning state for One in G. Thus we need not compute v when resolving
G, for we can reuse the information from some game which computes s ≤f s′

before building Ai. Therefore we save the time to computing fair simulation on
G when we check the pair on Ai.

4 Algorithm

The whole optimization procedure has two phases:

– Remove states based on fair simulation equivalence.
– Remove transitions based on fair simulation.

In first stage, we will check all pairs of states in A. Suppose the current pair
is (s1, s2). If we do not know whether s1 ∼f s2, we need construct and resolve
two parity game graphs GA[s1],A[s2] and GA[s2],A[s1]. If s1 ∼f s2, we first check
whether s1 and s2 can reach each other, if it is not, then we delete one of states
and its transitions from A directly. Otherwise, we construct Am from A by
merging s1 and s2, and build a parity game GAm[[s1,s2]],A[s1] to check whether
[s1, s2] is fair simulated by s1. If the candidate (s1, s2) is safe, replace A by
Am. So in this stage, we do optimization immediately after finding one suitable
candidate. After this stage, we find all pairs of states in the fair simulation
relation of the current A, which is the basis of the next stage.

Before beginning the second stage, we construct a parity game GA,A. Then
for each pair of A with fair simulation, we do the following. Suppose the current
pair is (s, s′). If ∃p ∈ A such that (p, a, s) ∈ ΔA and (p, a, s′) ∈ ΔA, then we first
check whether s′ reaches p, if it is not, we delete the transition (p, a, s) from A
directly. Otherwise, we delete some edges (v, v′) from GA,A where v = v(t,p,a) ∈
V0, v

′ = v(t,s) ∈ V1, t ∈ A . In fact, now GA,A becomes GA,Ad
. Therefore, if the

vertex v = v(p,p) of the new GA,A is a winning state for Zero, then we delete
(p, a, s) from A. Otherwise, we must restore the game GA,A.

Although our algorithm has the same worst time complexity as that of [6],
since we use the conditions [7] which delete states and transitions without any
additional checking, and we find candidates on the reduced automaton which has
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smaller and smaller state space in the optimizing procedure, thus our algorithm
needs less time than that of [6].

5 Experiment

We have implemented our algorithm in C which runs on a PC with 3.2 GHz Intel
Pentium 4 and 1G RAM. Büchi automata to be optimized are transformed from
LTL formulae based on lbtt [11] and LTL2BA [1].We use lbtt to create random
LTL formulae and LTL2BA to transform LTL formulae to transition-labeled
Büchi automata.

We also have implemented the algorithm [6], because the original implemen-
tation is based on Wring [7] by Perl, which translates a random LTL formula to
a generalized state-labeled Büchi automaton, but the algorithm in [6] can only
optimize Büchi automata but not the generalized Büchi automata.

We use ERSS (Efficiently Reduce State Space) to denote our algorithm. We
have tested three groups of automata, each group has 200 Büchi automata. In
the following table, the column marked by state and trans shows the average
number of states and transitions respectively. The column Original is the data
obtained using the original Büchi automaton without any optimization.

Table 1 shows ERSS and GBS02 have the similar abilities to reduce state space
of Büchi automata. Moreover, ERSS needs less computing time than that of
GBS02, and these advantages become more obvious when increasing the number
of states and transitions.

Table 1. Compare ERSS with GBS02

Original Reduced ERSS GBS02
state transition state transition time time

69.865 652.33 50.62 441.615 49.686 71.936
140.115 1897.35 93.065 1215.235 370.955 574.948
241.84 3849.315 140.715 2197.2 1312.083 3026.622

6 Conclusion

In our paper, based on [6], we provide the restricted criteria to check the correct-
ness of the optimization. At the same time, we use the conditions in [7] to delete
states and transitions without any additional checking. In the whole optimization
procedure, the language of each state of the reduced automaton is same as that of
the corresponding state of the original one. According to this property, we reduce
states without waiting for finding all candidates, thus we find each candidate in a
new reduced automaton with fewer states and transitions. We have implemented
our algorithm (ERSS) described in Section 3. The experimental result shows that
ERSS needs less optimization time than that of [6].
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Abstract. We present Trio2Promela, a tool for model checking TRIO specifica-
tions by means of Spin. TRIO is a linear-time temporal logic with both future
and past operators and a quantitative metric on time. Our approach is based on
the translation of TRIO formulae into Promela programs guided by equivalence
between TRIO and alternating Büchi automata. Trio2Promela may be used to
check both purely descriptive TRIO specifications, a distinguishing difference
with other model checking tools, and usual Promela programs for which the user
needs to verify complex temporal properties. Then, we report on extensive and en-
couraging experimentation results, and compare Trio2Promela with similar tools.

Keywords: temporal logic, model checking, Spin.

1 Introduction and Background

TRIO is a first order, linear-time temporal logic with both future and past operators and
a quantitative metric on time, which has been extensively applied to the specification,
validation and verification of large, critical, real-time systems [1,2]. TRIO formulae are
built much in the same way as in traditional mathematical logic, starting from variables,
functions, predicates, predicate symbols, and quantifiers over finite or infinite, dense
or discrete, domains (a detailed and formal definition of TRIO can be found in [3]).
Besides the usual propositional operators and the quantifiers, one may compose TRIO
formulae by using a pair of basic modal operators, called Futr and Past , that relate the
current time, which is left implicit in the formula, with another time instant: the formula
Futr(F, t), where F is a formula and t a term indicating a time distance, specifies
that F holds at a time instant at t time units in the future from the current instant
(symmetrically for past). Notice that the usage of both past and future modalities in
TRIO is widely recognized to make specifications simpler and more concise than using
either only future or only past operators.
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Many derived temporal operators can be defined from the basic operator through
propositional composition and first order quantification on variables representing a time
distance. The traditional operators Since and Until of linear temporal logics, as well as
many other operators, can easily be obtained as TRIO derived operators. For instance,
SomF (F ) (Sometimes in the Future) is Until(true, F ) and corresponds to the “Even-
tually” operator of temporal logic; AlwF (F ) (Always in the Future) is ¬SomF (¬F )
(F will always hold), that is the “Globally” operator. Moreover, TRIO adds another
level of succinctness because of the metric operators Lasts and Lasted and their du-
als WithinF and WithinP . Lasts(F, c) means that F will hold for c instants in the
future and WithinF (F, c) means that F will hold within c instants in the future. For
instance, a TRIO formula such as: WithinF (Lasts(B, h), k) for some h, k > 0, may
be expressed in LTL only with a formula of length proportional to h · k.

Over the years a variety of methods and tools have been defined to support typi-
cal validation and verification activities in TRIO, such as: 1) testing, by generation of
execution traces or checking of such simulations for consistency against the TRIO spec-
ification [4], 2) derivation of system properties in the form of theorems, based on the
definition of a suitable axiomatization of the logic and on its encoding in the notation
of a general purpose theorem prover, such as PVS [5].

In the present paper, we present another tool, called Trio2Promela, for the mechan-
ical verification of a decidable subset1 of TRIO specifications, by using a well-known
model checker such as Spin [6] to perform proof of properties and simulation. The ap-
proach and background theory upon which Trio2Promela is constructed was originally
presented in [7,8]. The main aim of the present paper is to report on our experience of
actually using the tool, now fully implemented and publicly available, together with
examples and the experiments summarized in the paper (at http://www.elet.
polimi.it/upload/sanpietr/Trio2Promela.zip.

Trio2Promela can be used, at various levels of generality, to support satisfiability
checking of generic TRIO formulae (and hence property proof) and model checking.
In the former activity, every possible interpretation structure for the formula is poten-
tially enumerated (but great care is of course taken to allow Spin to determine, dur-
ing a verification, that many structures can be safely ignored as early as possible). In
the latter activity, Trio2Promela translates the property to be checked from TRIO into
Promela, combining the resulting code with a pure-Promela model to perform verifica-
tion. When the desired property is fairly complex or contains several bounded temporal
statements, which is typical e.g. of real-time systems, the traditional approach of gen-
erating a so-called never claim for Spin, i.e., an automaton specifying the negation of
a temporal logic property over the already available state-transition system, becomes
unfeasible. Both the internal LTL to Büchi automata translator, and other more recent
tools, like LTL2BA [9] and Wring [10], simply cannot manage a complex real-time
statement with metric operators, as we report in Sect. 3. For instance, the LTL version
of a statement of the form “every occurrence of event A must be followed within 20
time units by an occurrence of event B”, which in TRIO can be modeled as simply as
AlwF (A → WithinF (B, 20)) cannot be translated by LTL2BA or Wring (the system

1 Essentially, a concise (thanks to metric operators) version of LTL with past operators. For
instance, Lasts(A, 3) corresponds to X(A ∧ X(A ∧ X(A))) in LTL.

http://www.elet.polimi.it/upload/sanpietr/Trio2Promela.zip
http://www.elet.polimi.it/upload/sanpietr/Trio2Promela.zip
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was stopped after waiting for 24 hours), even if it actually corresponds (if one time
unit is taken to correspond to one transition) to a Büchi automaton with only 21 states.
Trio2Promela is able to translate the above statement into a short Promela program
almost instantaneously.

The Trio2Promela tool is ideally based on the translation of TRIO formulae into
a set of Promela processes, derived from a well known correlation between tempo-
ral logic and alternating automata [11]. As opposed to previous approaches, however,
the Promela code generated from TRIO formulae performs an actual simulation of an
alternating automaton, rather than simulating a Büchi automaton equivalent to the al-
ternating one, resulting in a Promela code whose size is essentially proportional to the
length of the TRIO specification (although of course the state space may not be af-
fected in either way). This is by itself a remarkable result since TRIO, which contains
metric and past operators, is quite concise compared with propositional, future-time
temporal logics like LTL. Our approach can be naturally compared with recent works
appeared in the literature (such as those on LTL2BA and Wring) that aim at the transla-
tion of LTL properties into Büchi automata and then Promela programs). We point out,
however, that the result of those tools is usually the construction, as in the traditional
model-checking scenario, of a never claim. In our approach, instead, the Promela pro-
cesses obtained from the translation of the TRIO specification define an acceptor of a
language over the alphabet of the specification, and therefore it must be coupled with
some additional Promela program fragments generating the values, over time, for the
logical variables that constitute the specification alphabet. Our translation techniques,
combined with other optimizations, related for example with the management of TRIO
past-time operators, allowed us to perform efficiently the verification in Spin of some
significant benchmarks.

2 Trio2Promela

Trio2Promela translates a TRIO specification, i.e., a complex TRIO formula, into Pro-
mela code. The translation is based on a correspondence between TRIO and Alternating
Modulo Counting Automata (AMCA) described in [8]. The main idea is based on the
well-known correspondence between Linear Temporal Logic and Alternating Automata
(which are a generalization of non-deterministic automata: see for instance [12]), to-
gether with counters, associated with states of the AMCA, that are used to express
TRIO’s metric temporal operators in a natural and concise manner.

Each temporal subformula, i.e., one of the form Z( ) for a temporal operator Z , of the
original specification is translated into a single state of the AMCA. Then, an AMCA is
directly translated into a Promela program: every state of the automaton will correspond
to a single type of process (i.e., a Promela proctype), to be instantiated when needed.
An or-combination of states s1 ∨ s2 in the transition function corresponds to a non-
deterministic choice (if ::s1; ::s2; fi), while an and-combination s1 ∧ s2
corresponds to the starting of two new Promela process instances, having type s1 and
s2, respectively. Hence, the produced code consists of a network of processes, each
corresponding to a temporal subformula of the original specification. Each Promela
process receives as input a chronological sequence of values taken by the propositional
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letters that constitute the alphabet of the associated TRIO formula, and then it returns
its computed truth value to the network. When the process representing the whole TRIO
formula being analyzed returns false, every process in the network is stopped, and
the analysis terminates.

When Trio2Promela is used to translate a complex TRIO property in the context
of traditional model-checking, the input values to the processes come from a Promela
program that encodes the operational model under analysis. On the other hand, when
Trio2Promela is used to check satisfiability of a TRIO specification, the input values
come from a purely generative Promela component that exhaustively enumerates all
possible values over time of the propositional letters.

Notice that in the translation we encode time (integer-valued) constants of TRIO
formulae into int variables, so the size of the resulting Promela code is linear in the size
of the AMCA, and therefore also in the size of the original TRIO specification. Here our
approach differs substantially from others (such as LTL2BA and Wring): these translate
LTL formulae (which in the first place are less compact than TRIO formulae, as they
cannot include integer values representing time constants, and therefore must use long
chains of nested X operators), into Spin never claims or Büchi automata whose size can
grow to become unmanageable even for relatively simple specifications, as it will be
shown in Sect. 3 on experimental results.

As TRIO past operators are concerned, we take advantage of the fact that time is
unlimited only towards the future (there is a start time instant) to treat past operators
differently, using a technique illustrated in our paper [7] that stores a bounded amount
of information derived from the past portion of the sequence of input values.

Our approach becomes practically feasible in Spin by adopting a set of optimizations,
such as:

– Processes representing future operators are in general, with the only exception of
Futr , grouped in a unique process.

– Process instances for Futr are reused (since every new process is very costly for
verification).

– Various kinds of TRIO subformulae are simplified (e.g., the nesting of a bounded
future and a bounded past operator is replaced by one equivalent operator).

– Communication channels are used to abort related processes when a process pro-
duces a false result.

Tool Description. The translator front-end, implemented in Java with ANTLR2, takes
a TRIO file in input, containing the declarations of variables, constants and the logic
formulae of the specification; each variable is associated with an integer domain. The
output of the parsing phase is an array of abstract syntax trees, one for each formula
in the specification. Each tree in the array is processed by a chain of tree walkers that
perform optimizations on the propositional connectives of the TRIO formula and nested
operators (such as Futr(WithinF ( , ), ) or Past(WithinP( , ), ), apply derivation
rules for derived operators as defined in TRIO (e.g., the formula NextTime(A, t) be-
comes Futr(A, t) ∧ Lasts(¬A, t), push inward in the formula all the negations, tak-
ing into account the definition of TRIO operators (e.g., ¬Lasts(A, t) is equivalent to

2 http://www.antlr.org
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WithinF (¬A, t)). The back-end is composed of a set of translation procedures, each
one implementing the translation schema for a TRIO operator; they produce: the tem-
poral constant characterizing the metric operator, the local variables needed in the main
Promela process, the body code for an autonomous Promela process and the associated
launching and error propagation code, the additional code for formula evaluation, and
the logic expression corresponding to the truth value of the formula. The code resulting
from the translation of each operator is then composed with the generative component
to produce the final Promela program.

3 Experimental Results and Comparisons

We extensively experimented with the tool and compared it with the main toolkits avail-
able for translating from temporal logic to Büchi automata. In particular, we compared
Trio2Promela with LTL2BA, which is probably one of the most efficient LTL-to-Büchi
automata translators. We also experimented with Wring, but we do not report the re-
sults here because its translation times were always worse than those of LTL2BA. The
same happens for other translators, such as LTL→NBA [13] (which may lead to slightly
smaller automata than LTL2BA, but it is significantly slower).

The setup for all experiments was the following: we used a laptop with an Intel
Pentium M 1.2 GHz, and 632 Mb RAM. Spin’s version was 4.2.3, LTL2BA’s was 1.0.

The comparison was conducted with reference to two case studies: the Kernel Rail-
road Crossing Problem (KRC, see [14]) and a version of Fischer’s protocol (FP, [15]).
KRC and FP are two fairly good representatives of very different problems: the for-
mer is a typical real-time system, with a limited number of reachable configurations
but with quantitative timing requirements; Fischer’s protocol instead has basically very
weak quantitative timing requirements, but it has strong combinatorial aspects, making
the number of possible configurations grow quickly with the number of processes.

Satisfiability Checking and Model Checking. It is well-known that LTL model
checking, while being PSPACE-complete, is linear in the number of the states of the
automaton and exponential in the size of the LTL formula to be checked. On the other
hand, LTL satisfiability checking is exponential in the size of the formula. Hence, our
first set of experiments has studied the unavoidable loss in efficiency of going from
model checking to satisfiability checking. Hence, we developed one logic model, de-
fined in TRIO assuming an underlying discrete time model, and one automaton model
of both KRC and FP, which were coded in Promela. Table 1 shows the experimen-
tal results. The KRC models used various integer values for the time constants of the
problem, with KRC1 having the smaller constants and KRC3 the highest. The prop-
erty proved was a safety property. Also, the results on Fischer’s protocol FP are shown,
with a number of processes going from 2 to 5, for checking a simple mutual exclusion
property.

Clearly, the comparison of satisfiability checking and model checking may be af-
fected by the choice of the two different, although equivalent, models for the same
system: one could have defined a “smart” logic model and a “sloppy” automaton, or
viceversa. The results are nonetheless of some interest. The exponential blow-up for
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Table 1. Comparison of satisfiability checking and model checking using KRC and FP

Satisfiability checking
(Trio2Promela)ab

Model checking of a Promela
model against a safety formula
translated with Trio2Promelac

Model checking of a Promela
model against a safety formula
translated with LTL2BAc

Mem (MB) States Time (s) Mem (MB) States Time (s) Mem (MB) States Time (s)
KRC1 8.2 105151 2 2.6 298 1 2.6 909 1
KRC2 31.8 361627 8 2.6 674 1 2.6 2233 1
KRC3 171.0 1371870 46 2.6 1390 1 2.7 3658 1
FP2 3.0 13179 1 2.6 345 1 2.6 326 1
FP3 13.3 304047 2 2.7 3355 1 2.6 3240 1
FP4 241.1 6321520 59 3.5 27977 1 3.3 41694 1
FP5 EXd NCe NCe 9.7 215886 1 9.8 222940 1

a A temporal logic model has been translated into Promela, along with a safety property.
b Satisfiability checking with LTL2BA is infeasible (i.e. no translation can be generated) for

every example shown in the table.
c Only the safety property has been translated into Promela.
d Memory exhausted (>400 MB).
e Not completed.

satisfiability checking against model checking tends to show up, but still the tool can
manage with fairly large time constants in the KRC model (case KRC3). With Fischer’s
protocol, instead, the state explosion is more substantial. These data show also a large
improvement over our previous work [8], where, for instance, the case KRC1 required
four times the number of states and the case KRC3 could not be dealt with.

Satisfiability checking of KRC and FP temporal logic models is infeasible in LTL2-
BA, i.e., LTL2BA ran for more than 24 hours without providing a translation, while the
translation time of both examples with Trio2Promela is negligible (under one second).
When Trio2Promela is used for model checking (hence, only a short TRIO formula is
translated into Promela), the performance of the verification does not appear substan-
tially different from the case when LTL2BA is used for checking the same Promela pro-
gram. Hence, even though Trio2Promela is geared towards translation of large metric-
temporal logic formulae, rather than applying sophisticated optimizations to small LTL
formulae as LTL2BA does, it appears that in practice Trio2Promela works at least as
well (or even better) than LTL2BA even on small LTL formulae, at least when used for
model checking.

Translation of Short Formulae. To better understand the relative strength of LTL2BA
and Trio2Promela, we also ran both tools on a set of short formulae. The comparison
could be done only on formulae without past operators, since, while the theory under-
lying LTL2BA has been extended to deal with past formulae [16], the toolkit publicly
available for LTL2BA can only deal with the future fragment LTL. Purely past formulae
are anyway translated by Trio2Promela into very small Promela programs with only one
process (e.g., the formula AlwF (A → WithinP(B, 20)) is translated into one single
Promela process with 21 states).

In Table 2 we give translation times and also a measure of the size of the Promela
code. For LTL2BA, we give the number of states of the corresponding Büchi automaton
(since every state is explicitly listed), while for Trio2Promela we give the sum of the
states of each Promela process defined by the translation, and also the total number of
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Table 2. Comparison of translation times and size

Translation time (s) Size
LTL2BA Trio2Promela LTL2BAa Trio2Promelab

Safety-KRC < 1 < 1 2 9–1

Mutex-Fischer < 1 < 1 2 8–1

AlwF(A → WithinF (B, 10)) < 1 < 1 11 218–11

AlwF(A → WithinF (B, 15)) 222 < 1 16 308–16

AlwF(A → WithinF (B, 17)) 3127 < 1 18 308–18

AlwF(A → WithinF (B, 20)) infeasible < 1 21c 398–21

AlwF(A ∧ SomF (B)) < 1 < 1 1 20–1

AlwF(A ∧ SomF (B) ∧ Lasts(C, 5)) < 1 < 1 5 26–1

a Number of states of the corresponding Büchi automaton.
b Sum of states of each Promela process – total number of processes.
c Estimated.

processes. For Trio2Promela, this is a very indirect measure of the number of states of
the corresponding Büchi automaton, which can only be determined dynamically.

The results show that LTL2BA’s translation times grow quickly also on very small
formulae with metric temporal operators, even though the resulting Büchi automaton is
small. For instance, a formula like AlwF (A → WithinF (B, c)), where c is a constant,
corresponds to a Büchi automaton with c+1 states, and it is translated by Trio2Promela
into c processes of 18 states each, and one process of 38 states. However, LTL2BA fails
to translate the formula within 24 hours for c greater than 19. The reason for LTL2BA’s
failure is that on this (and other) kind of formulae, the construction method of LTLBA
must pass through a stage where a (generalized) Büchi automaton is built, describing all
possible configurations of the original alternating automaton. LTL2BA then performs
an optimization phase that may, at least for this kind of formulae, lead to an optimal
Buchi automaton. However, the number of states of the intermediate automaton may be
so large that it cannot be handled, causing the tool’s failure.

4 Conclusions

We presented experimental evidence that, when dealing with metric temporal logic, the
Trio2Promela toolkit has many advantages over existing toolkits that address the same
goal. In fact, Trio2Promela always derives a Promela code whose size is linear in the
size of the original TRIO formula (which may be substantially smaller than an equiv-
alent LTL formula). This is obtained by avoiding, at least at translation time, the state
explosion problem, thanks to the fact that we generate a Promela program that will sim-
ulate (at verification time) the alternating automaton. The alternation removal is then
left to the model checker, allowing the verification of many temporal logic formulae
which could not be translated into Promela by means of other techniques. In fact, if
the alternation is removed during the translation phase, as all techniques we know of
do, then there are many cases where a translator cannot even build the resulting au-
tomaton (where all states are explicitly enumerated). This happens, for instance, when
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specifications are very large, or use metric temporal operators, or mix past and future
temporal operators.

Our experiments also support the conclusion that, even when the translation of an
LTL formula is possible with other tools, the performance of model checking in
Trio2Promela leads to comparable performance results. Hence, current experimental
evidence shows that Trio2Promela could be used also for LTL model checking. Future
work will be devoted to further optimization of the translation, trying to incorporate
other techniques into Trio2Promela.

We have also shown that Trio2Promela can be used for satisfiability checking of
large TRIO formulae. Therefore, we plan to assess the merit of satisfiability checking by
means of a translation into Spin’s Promela (as currently done by Trio2Promela) against
the translation into the language of boolean satisfiability solvers, which are well-known
for their efficiency in many practical cases.
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Abstract. Futurecommunicationandcomputationdevices requiremech-
anisms for on-the-fly reconfiguration in their protocol stack to operate in
different situations and networks. This paper proposes a component-based
framework fordynamic-reconfigurableprotocol stack.Considering that ev-
ery running protocol component communicates with at least one peer
component, unlike related work our framework supports synchronous re-
configuration of two peer protocol components in two communicating pro-
tocol stacks.

1 Introduction

Future communication and computation world, known as pervasive comput-
ing environment, includes a lot of wireless networks, networked systems and
devices with heterogeneous standards and protocols for different contexts and
situations[1]. Protocol stacks of such systems and devices can dynamically be
reconfigured to present applications like changing the network of a device due
to its mobility, changing routing algorithms of switches, and adding or changing
the security module in protocol stacks for better performance.

In general, dynamic reconfiguration process for a software component includes
some phases, namely, freezing (to stop the current execution of the component),
changing (to add and bind a new component to as well as unbind and remove
unnecessary old component from the system), state transferring (find a proper
state in the new component and valuate its parameters in order to resume the
execution) and re-execution (resuming the execution from a non-initial state in
the new component) [2].

For reconfiguration in protocol stack context, since every protocol is defined
at least between two peer components, reconfiguring a running component of
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a protocol stack may require corresponding reconfiguration in the peer compo-
nents in the other systems. For example, consider a running networked system
with Internet protocol stack and a reconfiguration that changes TCP component
in the stack into SCTP component [3]. In order to ensure the reconfiguration
correctness, not only SCTP component should be “compatible” with its upper
and lower layers, it should preserve the protocol stack “compatibility” with the
peer protocol stacks. For this purpose, it is necessary to change the TCP com-
ponents in two stacks into SCTP components at the same time (synchronously).
Unlike related work (e.g. [4,5] among others), we do not suppose a running pro-
tocol stack as a stand-alone system. We propose a framework that can change
the protocol components of two communicating protocol stacks.

In this paper, in Section 2, we explain the proposed DRAPS framework. The
main design issues of DRAPS including the mechanisms for assurance and also
reconfiguration algorithm are presented in Section 3. In Section 4, we describe
the performance evaluation of the algorithm. Section 5 concludes the paper.

2 DRAPS Overview

DRAPS (Dynamic Reconfigurable Architecture for Protocol Stack) is an extend-
able middleware framework1 that presents synchronous dynamic reconfiguration
for two communicating protocol stacks. Architectural components of DRAPS
are shown in Figure 1. The framework has been built out from a core frame-
work and some plug-in components. Core framework is responsible to perform
synchronous dynamic reconfiguration and consist of three components, namely,
Reconfiguration Management and Control (RMC), Stack Factory (SF) and Ex-
ecution Environment (EE). RMC is responsible for coordinating dynamic and
synchronous reconfigurations. SF is a component that is responsible to initial-
ize protocols specifically when they are started from non-initial states. EE is a
component for installation and execution of the protocol components.

Plug-in components in DRAPS present extendability for the framework. They
perform supplementary tasks for the dynamic reconfiguration.

For synchronous and dynamic reconfiguration of two peer stacks in two sys-
tems, DRAPS frameworks in two systems cooperate. RMCs in both frameworks
implement a distributed algorithm for the reconfiguration. They send or receive
messages through the stacks to perform the reconfigurations.

3 DRAPS Design

In following subsections, we explain important design issues of DRAPS.

3.1 Protocol Component Model

We consider every protocol component as a processing unit that takes input
packets and produces output packets. The component has two interfaces; an
1 The source code of the framework is available at

http://mehr.sharif.edu/∼niamanesh/RG.htm
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Fig. 1. Architecture of DRAPS including core components and some plug-ins

interface with the upper layer and an interface with the lower layer that are also
buffers for the component to send or receive packets.

Protocol components in DRAPS should provide some functionalities to sup-
port dynamic reconfiguration. For this reason, DRAPS presents an
implementation-level component model for reconfigurable protocols. Every pro-
tocol component should implement the ReconfigurableComponent interface. As
shown in flowing saveState() and restoreState() methods are used for state
transferring. Methods start() and stop() are used to start and stop execution
of the component. Method semiFreeze() helps the component to start report-
ing its state to the framework. Method setStateListener() sets a listener to
use it in semiFreeze stage for reporting the component state.

public interface ReconfigurableComponent {
void saveState(String path);
void restoreState(String path);
void start();
void stop();
void semiFreeze();
void setStateListener(StateListener listener);

}

3.2 Protocol Wrappers

A wrapper is a component that implements the interface of a service in com-
ponent protocol. It is used to provide an indirect communication between two
components in order to present a transparent run-time reconfiguration. Every
reconfigurable component in DRAPS should have one wrapper that handles re-
quests for the component delivering that service. For example, as depicted in
Figure 2, TCP wrapper that implements TCP interface, manages application
requests to the TCP component.

Several applications may request a reliable transport protocol. All these re-
quests are managed by a wrapper using Java synchronized mechanism. The
wrapper may be a general wrapper such as, Reliable Transport Wrapper (RTW)
or a specific wrapper such as, UDP wrapper that provides services of UDP pro-
tocol. General wrapper presents a general interface to the upper layer to manage
more than one protocol component.
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Fig. 2. TCP wrapper for TCP and Secure TCP components

3.3 DRAPS Plug-in Components

Five types of plug-in components exist in the framework to satisfy supplementary
requirements for dynamic reconfigurable protocol stacks:

Request Initiator (RI). This type of component is responsible to detect the
need for a reconfiguration.

Condition Checker (CC). In every reconfiguration to preserve required cor-
rectness properties and avoid inconsistencies some conditions should be
checked before the reconfiguration process. A CC component checks situ-
ation and context to start the reconfiguration.

Component Provider (CP). Given the name or service name of a protocol,
CP component can deliver the right component or components that match.

Installation Assistant (IA). An IA component is responsible for provisioning
of the installation. It performs operations before and after the change.

Execution Assistant (EA). An EA component performs required operation
before and after the re-execution of a component.

Plug-in components are options that can be added to DRAPS core framework.
They are used by the RMC component to present reacher set of features.

3.4 Stack Factory

Stack Factory (SF) component provides all required knowledge for initializing
the starting state (the non-initial state in which the component should be exe-
cuted) in the new component; For this purpose, it has three responsibilities; first,
it contains state mapping functions (MF ) that each function is used for one re-
configuration and maps the states of the old component to some corresponding
states in the new one. Second, SF should valuate the starting state in the new
component to start the execution. Third, SF should prepare and initialize some
parts of the state of the peer component as well. For example, SF may require
to send the port number to the peer stack to establish a connection.

To model the state of a protocol we introduce protocol control block (PCB)
that contains state information of a protocol component. This information is
about the connection state, its associated local process, and other parameters
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about the connection’s transmission properties that are stated in the protocol
standard. Moreover, for the protocols in one category (TCP and its extensions)
we define Basic PCB (BPCB) that is the PCB for the basic protocol specified in
the standards and RFCs. For example, for TCP protocol and its extensions we
consider TCP control block for the original TCP (RFC793) as the BPCB that
contains the state of TCP connection.

To store the mapping functions, for each reconfiguration from one protocol
to another one, for instance changing from protocol P1 into P2, SF has a table
that maps the states2 of P1 protocol to a corresponding states of P2. This table
explains a mapping function between P1 and P2.

For transferring the state of the old component to the new one, we use BPCB
as the temporary data structure to transfer the PBC of the old component to
the PCB of new component. Three sources exist for filling the PCB entries;
first, BPCB that is initialized based on the old PCB; second, user-defined han-
dlers that should be provided through the reconfiguration adminstration; third,
remote peer component that sends required parameters value to the component.

3.5 Reconfiguration Management and Control

The reconfiguration process is started upon receiving a reconfiguration com-
mand, which comprises of all necessary information to perform the reconfigu-
ration. The information includes a map that describes the change, a state for
the freezing and starting the reconfiguration, and some initialization parameters
to valuate the starting state in the new component. The map for the reconfig-
uration includes set of reconfiguration operations for changing such as adding,
or removing of components. It is provided by a reconfigurer. The state for the
reconfiguration can be either provided by the reconfiguration administrator or
can be determined by the framework.

Finding a Global Safe State. We define safe reconfiguration point (SRP) as
a point of execution of a component in which the component is in the beginning
or at the end of the processing input packet. In another words, the states just
after writing a packet in the output buffer or before reading a packet from the
input buffer are SRP. In these points, either no operation is started on the packet
or all the operations are completed. In fact, we do not limit the buffers to be
free in SRP. Developers of protocol components should determine and set some
SRPs in the source code of reconfigurable components.

However, not every SRP in a component is safe state for the peer component
either. A state in a component is safe for the peer component if it can satisfy
the requirements of the current state of the peer after the reconfiguration. In
other words, SRP state s in the currently running component is a global SRP
if the mapped state MF (s) (the starting state in the new component) has a
compatible state in the new peer component in the peer stack.

2 It is not necessary to define the mapping function for all states of the component.
We consider only states that exist in the standard for the specification.
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To freeze a component in a SRP point, we introduce “semiFreezing” mode
for execution of a component. In this mode which should be implemented by
protocol developers, the component reports its state in every pre-defined SRP
point. For each reported state, we check whether MF (s) has a compatible state
in the new component. If so, the reported state together with its compatible
state in the peer component is the global SRP for the reconfiguration. Two
states from two components are called compatible if all inputs and outputs of
the components on those states “match” with each other [6].

3.6 Reconfiguration of Communicating Peers

Now, we explain the proposed distributed algorithm for reconfiguration of com-
municating peer components. The algorithm uses 3 types of message (START,
RECON and READY) for communication between two RMCs in two peer sys-
tems. Message START is the command for reconfiguration and consists of the
elements stated in Subsection 3.5. Message RECON, is an announcement that
the initiator stack sends to itself and the peer to indicate that the reconfiguration
can be started. Message READY is a control message that each RMC sends to
the peer after finishing the reconfiguration.

The algorithm is started upon receiving a reconfiguration command to a RMC.
The RMC prepares a proper reconfiguration command and sends it to its peer
and then starts installing the new component determined in the reconfiguration
command. The peer stack upon receiving the command, starts this algorithm
too. Each stack after sending START message to its peer and installing new
component waits for a response message.

The initiator stack, upon receiving a START message, prepares a RECON mes-
sage and sends it to own and its peer stack. Each stack upon receiving the RE-
CON message, invokes semiFreeze() to enter semi-freeze mode and then freezes
the execution by stop() and finally transfers the state using saveState(), and
restoreState() methods. Afterwards each stack sends a READY message to
its peer and finally waits for receiving a READY message from its peer. Both
stacks upon receiving the READY message execute the new component by in-
voking start() method.

Algorithm 1 Synchronous Reconfiguration of Two Peers
(Code of RMC Component)

//initializations: set active reconfiguration lists empty
//Peer_i as a initiator, Peer_j

upon receive START = (m_i, s_i, delta_i, id) message
If id is not in active reconfiguration list

(1) s_j = find compatible state with s_i in the peer
(2) m_j = find the corresponding change in the peer
(3) delta_j = set of remote parameters initialization

send START = (m_j, s_j, delta_j, id) to the peer
put id in active reconfiguration list
install new components
wait for response message from the peer

else
Send RECON to yourself and the Peer_j

//Peer_i, Peer_j:
upon receive RECON from the peer

semi-Freeze the current component
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(4) find a global SRP
freeze the current component

(5) transfer the state
send READY message to the peer
wait for READY message from the peer

//Peer_i, Peer_j:
upon receive READY message

re-execute the new component
remove id from active reconfiguration list

4 Implementation and Evaluation

We have implemented a prototype of DRAPS framework to demonstrate the
feasibility of our approach as well as to test the basic functionalities of the
architecture. The configuration of the experimental environment is a Celeron
1.5 GHz IBM personal computer with 256 MB memory and Linux (Debian
3.1 distribution) is the operating system. We have considered two peer stacks,
Stack1 and Stack2, as two communicating stacks. Applications on the top each
stack exchange data with each other. Both applications use a light version of
TCP protocol for the transport layer. The IP layer is simulated using two Linux
FIFOs, one for outgoing data and the other for incoming data.

For a file transfer, we measure its time in a normal transfer (as t1) and in a
situation that transfer layers (TCP) of both stacks during the file transfer are
changing to a secure version (Secure TCP) (as t2). Overall reconfiguration time
(tR), includes the time for installation (tI), semi-freezing (tS), freezing (tF ) and
waiting time for receiving the response from the peer. Note that, only freeze time
(tF ) is the time that the application is blocked.

Table 1 shows our 8 experiments with two different file sizes. Numbers in
columns 2-5 are the times in milliseconds for each phase of reconfiguration.
Overhead of the dynamic reconfiguration in DRAPS can be calculated by t1/t2
ratio, in which it is in average 5 percentage in our experiments.

For the experiments, we have set the input buffer of TCP component (“send
buffer” parameter in TCP standard) to 180Kb; however, by restricting the TCP
“send buffer” to become empty for starting a reconfiguration our experiments
shows that the average amount of tF is very low and less than 5 ms.

Table 1. The performance of synchronous reconfiguration of TCP with SecureTCP

FILE-SIZE t1 t2 tR tF tI

222K 2281 2320 372 99 32
222K 2175 2182 366 97 33
222K 2181 2305 376 103 31
222K 2198 2314 366 89 31
152K 1517 1655 306 47 129
152K 1514 1580 308 42 62
152K 1544 1581 302 40 71
152K 1509 1655 312 45 118
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5 Conclusion

This paper proposed a framework for dynamic-reconfigurable protocol stack to
overcome the limitation of current dynamic protocol stacks. DRAPS offers ex-
tendability in framework by means of plug-in components. Compared with other
frameworks, DRAPS is based on the realistic requirements for reconfiguration
of communicating protocol components; related frameworks have not consid-
ered peer components in a dynamic reconfiguration of a protocol component.
Our experimental results on dynamic reconfigurations show that an acceptable
transparency can be maintained using DRAPS.
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Abstract. Vulnerabilities are now part of all software systems. To handle vul-
nerabilities, many approaches have been proposed till now. Many of these ap-
proaches try to analyze vulnerabilities based on model checking techniques. 
However, the models used in these approaches handle authorized and unauthor-
ized rules separately. This basically cause in weaker modeling abilities and con-
sequently weaker vulnerability analysis. From authorized and unauthorized 
rules, we mean those emanated from access control model and those originated 
from vulnerabilities respectively. Currently, a new general graph-based protec-
tion system concentrating on vulnerabilities called VGBPS is proposed to over-
come the mentioned problem. VGBPS combines vulnerabilities and their  
related rules in an access control system, in a way that no extra effort is needed 
to handle them. In contrast, vulnerability analysis in this model can be done by 
answering safety problem. Using this model, we propose a new approach for 
vulnerability analysis based on Prolog inference engine. In this approach, we 
show how to express modeling graph and rules set of a VGBPS model using 
Prolog facts and rules. Safety problem is also defined by Prolog rules. Finally, 
we use Prolog inference engine to answer safety problem which is the base of 
vulnerability analysis in VGBPS. We provide a case study to show how this ap-
proach can help us find possible exploits of a specific configuration in a system. 
Using Prolog, we can also find all possible scenarios of these exploits which 
can be used in many security analyses.  

Keywords: Protection System, Safety Problem, Vulnerability Analysis, Prolog. 

1   Introduction 

Vulnerabilities are those software failures which may allow unauthorized access to 
attackers [1]. It is almost impossible to implement a software component without bugs 
or failures. Thus, some approaches are required to deal with specifying, designing, 
and implementing a computer system without vulnerabilities, discovering unknown 
vulnerabilities, and detecting possible exploits of them. This is usually referred to as 
vulnerability analysis. One of the usual ways to analyze vulnerabilities is to use 
model checking approaches. Generally in these approaches, an abstract model of the 
designated system will be constructed, and security constraints of the model will be 
specified formally. Using a model checker, it is examined whether the model meets its 
specified security conditions or not.  
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Till now, various models have been proposed to deal with safety problem and vul-
nerability analysis in operating systems and computer networks. Some of these ap-
proaches employ logics such as Computational Tree Logic (CTL) or Linear Temporal 
Logic (LTL) to express their models and verify them. Gutteman et al. analyzed in-
formation flow in the access control system of SELinux using a tool called SLAT [2] 
and [3]. In their approach, the security policies of the access control are expressed by 
a formal language.  

One of the first tools for modeling vulnerabilities and their interactions is COPs 
[4]. Later, many other works have been proposed to analyze vulnerabilities and to 
realize their effects using model checkers [5], [6], [7], and [8].  

Centric problem in model checkers is the state explosion problem. To alleviate this 
problem, one can use a descriptive language to define his access control rules. He can 
then employ the inference engine of some tools such as Prolog and Clips to check his 
model. A good example of this approach is the one proposed in [9]. In this approach, 
vulnerabilities emanated from bad configuration of some commercial products such 
as Adobe and Multimedia in Windows are analyzed. Similarly, Ramakrishnan and 
Seker proposed a model based on Prolog and attempted to use a new model checking 
approach to identify vulnerabilities in a part of UNIX [8]. They claimed that using 
this approach, they can solve the state explosion problem partially.  

The models used in these approaches are usually weak in modeling the interaction 
of different types of rules. In protection systems, two main types of rules should be 
considered; authorized and unauthorized rules. From the former, we mean those ema-
nated from access control model. The latter one indicates those emanated from vul-
nerabilities. Previous models mostly deal with these two types of rules separately. 
This basically cause in weaker modeling abilities and consequently weaker vulner-
ability analysis. Currently, a new general graph-based protection system concentrating 
on vulnerabilities called VGBPS is proposed to overcome this problem [10]. VGBPS 
combines vulnerabilities and their related rules in an access control system in a way 
that no extra effort is required to handle them. 

In this paper, introducing protection system VGBPS, we will propose a new ap-
proach to automatically answer the safety problem in VGBPS. In this approach, we 
express VGBPS models using Prolog language, and verify some specific security 
policies in it using Prolog inference engine. The main advantage of this approach is 
that we can automatically analyze vulnerabilities considering all possible interactions 
between authorized and unauthorized rules in the protection system containing them. 
Using Prolog inference engine can also alleviate the problem of state explosion [8]. 
Moreover, knowing that most of attack scenarios are containing a limited number of 
steps, we can reduce these states to a reasonable number. Another important feature of 
the approach is that we can find all possible scenarios of attacks. This kind of infor-
mation is very important in vulnerability analyses. For example, with this informa-
tion, we can find weak points of the system which are those parts participating in 
many scenarios of possible attack.  

The paper is organized as follows; in section 2, we describe VGBPS in brief. We 
show how VGBPS can be expressed by Prolog rules and facts, and how we can define 
the safety problem in VGBPS using this language in section 3. Section 4 contains a 
case study of our approach. Finally, we conclude the paper in section 6. 
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2   VGBPS Protection System 

In this part, we explain VGBPS protection system briefly. Formally, VGBPS is de-
fined as a tuple (G, R), where G is the current modeling graph and R is the set of rules 
indicating how G can be changed. In this section, we discuss the modeling graph G, 
the rules set R, and the safety problem in VGBPS respectively.  

Let Vall be all entities (vertices or nodes) in the system and Eall be all potential 
edges. G(V, E) is the modeling graph where V ⊆ Vall and E ⊆ Eall. For the sake of 
simplicity, edges are defined as a triple (v, u, l) in G, where v and u are source and 
destination vertices (nodes) and l denotes the edge’s associated label. The label set L 
consists of four sets Lvul, Lattr, Lrgt, and Lrel, to demonstrate vulnerabilities, attributes, 
access rights, and relations respectively. 

Using this definition of edges, vulnerabilities, attributes, access rights, and rela-
tions can be dealt with similarly. To depict that a node v has read access over u, we 
can use the edge (v, u, read). To demonstrate a vulnerability vul in node a, the loop 
edge (a, a, vul) can be used. To assign an attribute attr to the node a, the loop edge (a, 
a, attr) may be employed. Having a relation rel between a and b, the edge (a, b, rel) 
can be used.  

Edge pattern plays an important role in VGBPS rule definition. An edge pattern is a 
triple (a, b, t) where a and b belongs to the set of defined phrase called PV (Pattern 
Variables), and t∈L. Set of all possible edge patterns are referred as EP. The most im-
portant concern regarding edge patterns is to identify edges matching an edge pattern.  

Definition 1. We say edge e(v, u, l) matches edge pattern ep(a, b, t); if and only if l 
and t be identical and if a = b then v = u. In this case, we say a and b respectively 
match v and u or vice versa. Formally: 

match: EP×Eall → {true, false} 
match((a, b, t), (v, u, l)) = true ⇔ t = l ∧ (a = b → v = u)  

(1) 

For example, the edge pattern ep(a, b, r) matches all edges labeled r, or ep(a, a, o) 
matches all loop edges labeled o. An edge pattern is not individually useful in rule 
definition; a set of edge patterns is required to be matched with a set of edges. 

Definition 2. Suppose that EPS is a subset of EP, (that is EPS is a set of edge pat-
terns). EPS matches with Em ⊆ Eall, if and only if: 
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(2) 

where e.a and e.b are the first and the second items of tuple e. We call Em a setmatch 
of EPS. The definition implies that if any a∈PV matched with a vertex v in one of the 
edge-match, it can not match with any other vertex. 
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Definition 3. Rule set R is the set of rules that each of them is a tuple (EPe, EPn, EPa, 
EPd) where EPe, EPn, EPa, EPd are all subsets of EP. 

Informally, EPe and EPn are two sets of edge patterns indicating which edges 
should exist/not exist in order that the rule can be applied, and EPa and EPd respec-
tively represent new edges which will be added to and the edges which will be re-
moved from graph G after the rule application.  

Although safety problem is not part of the model, we define it in this section. Be-
fore defining the safety problem we should first understand the concept of witness and 
also predicate can●share [11]. Having a protection system PS(G0, R), a witness is a 
sequence of rules, r1, r2 … rn (ri∈R, 1≤ i ≤ n) which the first one is applicable to the 
current modeling graph G0 and ri+1 is applicable to the resulted modeling graph after 
application of the first i rules in the sequence. That is G0 1r

a G1 2ra G2… nra Gn. 

Let l be a label (l∈L) and, v and u be two vertices in the protection system PS(G, R). 
Predicate can●share(v, u, l) is true in PS if and only if there is a witness whose appli-
cation to modeling graph G generates a new graph containing the edge (v, u, l). Hav-
ing the protection system PS(G, R) and a set of can●share predicate P, the Safety 
Problem is the problem of finding witness w whose application to graph G violates 
(makes true) at least one of the predicates included in P. 

We can define other predicates for P set too. Another important predicate is 
can●revoke which can be define as follows; Let v and u be two vertices in the model-
ing graph G0 of protection system PS(G0, R) and there is an edge between v and u 
labeled r∈L. Predicate can●revoke(v, u, r) is true in PS if and only if there is a wit-
ness whose application to G0 generates a new graph containing no edge from v to u 
labeled r. 

3   Expressing VGBPS Using Prolog 

In this section, we show how a VGBPS protection system can be expressed using 
Prolog language. To this end, we divide the section into 3 parts; 1) expressing model-
ing graph G of VGBPS, 2) rules set R, and 3) safety problem in VGBPS.  

3.1   Expressing Modeling Graph G 

First of all, we should express basics of graphs which are vertices and edges using 
Prolog rules. To express vertex v and an edge from v to u labeled r, we use ver-
tex(v)and edge(v, u, r) rules in Prolog respectively. 

For simplicity, we define four primitives; exists, not-exist, add, and de-
lete. Using exists and not-exist, we can check for the existence and absence 
of an edge respectively. To add a new edge and remove an exiting edge, add and 
delete predicates should be used respectively. The definitions of these rules are as 
follows. 

 

exists(v, u, r) :- vertex(v), vertex(u), edge(v, u, r). 
not-exist(V, U, R) :-  \+ vertex(V). 
not-exist(V, U, R) :-  \+ vertex(U). 
not-exist(V, U, R) :-  \+ edge(V, U, R). 
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add(v, u, r) :- vertex(v), vertex(u), 
 \+ edge(v, u, r), assert(edge(v, u, r)). 
delete(v, u, r) :- vertex(v), vertex(u), 
 edge(v, u, r), retract(edge(v, u, r)). 

3.2   Expressing Rules 

Till now, we showed how to express the modeling graph of VGBPS. In this part, we 
show how to express a rule in VGBPS with Prolog rules. Suppose that Rule1(EPe, 
EPn, EPa, EPd) is a rule in VGBPS where EPe={Pe1, Pe2, …}, EPn={Pn1, Pn2, …}, 
EPa={Pa1, Pa2, …}, and EPd={Pd1, Pd2, …}. We can express Rule1, with following one 
in Prolog: 

 
Rule1 (Pa1.A, Pa1.B, Pa1.r, … , 
 Pd1.A, Pd1.B, Pd1.r, …)  
:-  exists(Pe1.A, Pe1.B, Pe1.r), …, 
 not-exist(Pn1.A, Pn1.B, Pn1.r), …, 
 add(Pa1.A, Pa1.B, Pa1.r), …, 
 delete(Pd1.A, Pd1.B, Pd1.r), … . 
 

where P.A and P.B indicate the first and the second elements of pattern P, and P.r 
shows the related label of the pattern P. The only remaining thing is that for each rule 
we need another rule to remove its effects from the modeling graph: 
 

rev-Rule1 (Pa1.A, Pa1.B, Pa1.r, … , 
 Pd1.A, Pd1.B, Pd1.r, …)  
:-  delete(Pa1.A, Pa1.B, Pa1.r), …, 
 add(Pd1.A, Pd1.B, Pd1.r), … . 

3.3   Expressing the Safety Problem 

As already mentioned, we usually define safety problem using can●share and\or 
can●revoke predicates. In other words, to answer safety problem, we should be able 
to answer these two predicates. Consider that PS is a VGBPS model with rule set 
R={rule1, rule2, …}. Thus, we can define can●share(v, u, r) predicate as follows. 

 
can-share (V, U, r, depth) :- exists(V, U, r). 
can-share (V, U, r, depth) :- depth = 0, !. 
can-share (V, U, r, depth) :- rule1(A, B, C, …),  
 can-share (V, U, r, depth-1) -> write(‘Rule1’); 
 rev-rule1(A, B, C, …), fail. 
can-share (V, U, r, depth) :- rule2(A, B, C, …),  
 can-share (V, U, r, depth-1) -> write(‘Rule2’); 
 rev-rule2(A, B, C, …), fail. 
… . 
 

In this definition, we used depth to limit the number of states in the model. Note 
that since the rules can both increase and decrease edges to and from the model,  
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without definition of depth, the recursive rule can●share may never be ended. We 
used a simple mechanism to print the scenario of the exploits using write command. 
Finally, we remove effect of each rule before moving to next clause. Similarly, 
can●revoke(v, u, r) predicate can be also defined. 

4   Case Study 

In this part, we propose a simple case study. Modeling graph G in this protection 
system is depicted in Fig. 1. As you can see, there is a node m monitoring all other 
nodes in the system. Two nodes n2 and n3 have buffer overflow vulnerability. Other 
access rights are shown in the figure. The protection system contains following rules 
in its rule set R too: 

 

rTakeFromChild ({(P, C, take), (P, C, parent), (C, O, R)}, ∅, {(P, O, R)}, ∅) 
rManagedGrant ({(B, A, grant), (B, O, own), (B, O, R)}, ∅, {(A, O, R)}, ∅) 
rUnmanagedGrant1 ({(B, O, own), (B, O, R)}, {(M, B, mntr)}, {(A, O, R)}, ∅) 
rUnmanagedGrant2 ({(B, A, grant), (B, O, R)}, {(M, B, mntr)}, {(A, O, R)}, ∅) 
rbof ({(A, App, execute), (App, App, bof)}, ∅, {(A, App, comp)}, ∅) 
rWXComp ({(A, App, write), (B, App, execute)}, ∅, {(A, B, comp)}, ∅) 
rTakeCompRight ({(A, B, comp), (B, O, R)}, ∅, {(A, O, R)}, ∅) 
 
Using the definition of rules, you can easily understand the meaning of each rule. 

For example, the first rule indicates that if there exist any 3 vertex P, C, and O and 
any right (label) R where P has take access over C, P is the parent of C, and C has 
access R over O then P can gain (take) access R over O. Informally, this rule shows 
how a node can take the access rights of another one. Comparing to Take-Grant 
Model (TG) [11], in this system, only can parents take the access rights of their  
children. 

The system also has three kinds of grant rules. In managed grant (ManagedGrant), 
node B can grant its access rights over those nodes that B is their owner. Of course, B 
should have grant access to the node it wants to grant in this rule. We have also two 
types of unmanaged grants. In the first type (UnmanagedGrant1), Attacker A can gain 
access rights of a node B over those nodes which B owns if B is not being monitored.  
 

 

Fig. 1. Modeling graph for the case study 
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Similarly, in second type of unmanaged grant rules (UnmanagedGrant2), node B can 
grant its access rights to A if B is not being monitored and B has grant access over A. 
Another rule (bof) is considered to deal with access leakage because of buffer over-
flow vulnerability. Other vulnerability can be dealt with in a similar way too. 

You should note that this is actually a very simple case. In more complex models, 
rules may have decreasing nature too. In that case, the safety problem will be a harder 
problem, usually a NP-Complete one. That is where our approach can be beneficial. 

Using the approach introduced in previous section, we can define VGBPS rules in 
this case study using following Prolog rules. Because of the lack of space, we include 
only three of these rules here. Other rules can be defined similarly: 

 
rule_take_from_child(P, C, O, R) :-  
 exists(P, C, take), exists(P, C, parent),  
 exists(C, O, R), add(P, O, R). 
rule_managed_grant(B, A, O, R):- 
 exists(B, A, grant), exists(B, O, own),  
 exists(B, O, R), add(A, O, R). 
rule_unmanaged_grant(B, A, O, R) :- 
 exists(B, O, own), exists(B, O, R),  
 not_exists(M, B, monitor), add(A, O, R). 

 
Completing the translation of modeling graph and rules to Prolog language, we 

should specify the security policy too. For example in the proposed system, it is 
desired that node p be not able to gain read access over target node t (Fig. 1.). To 
check this out, we can use predicate can●share(p, t, read). This is equivalent to the 
rule can_share(p, t, read, d) in Prolog, where d is a reasonable depth. 
Using Prolog inference engine, it can be understood that this predicate is true. In 
other worlds, the security policy can be violated. The scenario of this attack is as 
follows: 

 
rule_managed_grant  (n1, a, n2, execute) 
rule_bof     (a, n2) 
rule_taking_comp_right (a, n2, n3, write) 
rule_w_xcomp    (a, n3, n4) 
rule_taking_comp_right (a, n4, n5, take) 
rule_unmanaged_grant2   (a, p, n5, take) 
rule_take_from_child   (P, n5, t, read) 

 
This is not the only possible scenario. Using prolog we can find all other scenarios. 

The computed scenarios can give a valuable insight of the system. For example, we 
can find nodes or edges which are involved in all scenarios. In this case, edges (n1, a, 
grant) and (n2, n2, bof) are involved in all scenarios. This basically shows that elimi-
nating one of these can potentially resolve the problem of the leakage of read access 
on node t. We tested both cases and the results showed that eliminating one of them 
makes predicate can_share(p, t, read, d) fail in the model. 
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5   Conclusion and Future Works 

Introducing the protection system VGBPS, we proposed a new approach to solve the 
safety problem in VGBPS automatically. In this approach, we use Prolog language to 
express both the model and the safety problem. After, we use Prolog inference engine 
to answer safety problem in VGBPS. We also provide a simple case study to show the 
approach in practice. We showed how we can resolve possible attacks in the system. 

Knowing the possible scenario of an attack in a system gives a valuable insight of 
the system. In this paper, we showed how these scenarios can be found automatically, 
but a good future work is to use these peaces of information to analyze the status of a 
system from the security respects. As an example, one can give weight to edges re-
sulting from different rules and find more probable scenarios of attack in a way. 
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Abstract. Reo is a language for exogenous coordination of component
connectors based on a calculus of channels. Constraint automata has
been proposed as Reo formal semantics. The corresponding constraint
automata of a Reo circuit is compositionally constructed by the prod-
uct of all the constituent constraint automata. We introduce a simple
alternative algorithm for computing product of two constraint automata
in this paper. We also give a greedy algorithm for finding the order of
selection of two constraint automata when we have to compute product
of more than two constraint automata. The order of our algorithm is
less than the other algorithms proposed earlier by a constant factor. We
propose an algebraic representation for constraint automata which our
product algorithm is based on. Input and output of the provided tool
are consistent with the other tools supporting Reo join and constraint
automata product.

Keywords: Reo, Constraint Automata, Constraint Automata Product.

1 Introduction

Components that work together need to be synchronized. Instead of endogenous
component synchronization in which components should obey mutual exclusion
rules themselves, Reo [1,2] uses exogenous component synchronization mecha-
nism. It introduces an open-ended set of channels which data can move through.
Channel-ends can be collocated in a node which has special rules for passing data
through itself. Building automated tools to address such concerns as equivalence
or containment of the behavior of two given connectors, and verification of the
behavior of a connector requires an operational semantics model suitable for
model checking. Constraint automata which are introduced in [3,4] give a solu-
tion to this problem. Using constraint automata that describe the input/output
behavior at the ports of the components it is possible to check Reo models.

Working with constraint automata as a compositional semantics of Reo, we
need to construct the product of constraint automata. Tools and the correspond-
ing algorithms are introduced in [5] and [6]. In this paper our main concern is
to introduce an algorithm for computing product of two constraint automata
which is simpler to understand, easier to implement, and also faster than the
algorithm in [6] by a constant factor. We use a dynamic programming algorithm

F. Arbab and M. Sirjani (Eds.): FSEN 2007, LNCS 4767, pp. 412–422, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



An Alternative Algorithm for Constraint Automata Product 413

in the case that we have to compute product of more than two constraint au-
tomata which is based on better selection of constraint automata to be joined.
We propose an algebraic representation for constraint automata which is the
basis of our algorithm. This representation makes the intuition of the constraint
automata product more clear. Basic algorithms in automata theory are consid-
ered in our work [7,8,9]. We also implement a tool to construct the product of
two constraint automata. It gets the input in XML format and produces the
result again in XML format, which makes it more portable to the other tools.
Using this tool we compare our algorithm with the one in [6].

Plan of the paper. The rest of this paper is organized as follows. Section 2 and
3 is a brief overview of Reo and constraint automata, respectively. In Section 4
we show our algebraic representation for constraint automata. Then in Section
5 we explain our alternative algorithm for computing product of two constraint
automata based on the algebraic representation introduced in Section 4. A small
example is used to show the approach. We present our algorithm for better
selection of constraint automata to be joined, in Section 6. In Section 7 we show
a case study and explain our experimental results, comparing the running time
of our algorithm with the one used in [6]. We conclude in Section 8, by pointing
out our current and future work on building the product of two automata, and
the methods for building larger and more complex constraint automata in a more
structural way.

2 Reo: A Coordination Language

Reo is a model for building component connectors in a compositional man-
ner [1,2]. It allows modeling the behavior of such connectors, formally reasoning
about them, and once proven correct, automatically generating the so-called
glue code from the specification. Each connector in Reo is, in turn, constructed
compositionally out of simpler connectors, which are ultimately composed out
of primitive channels.

A channel is a primitive communication medium with exactly two ends, each
with its own unique identity. There are two types of channel ends: source end
through which data enters and sink end through which data leaves a channel. A
channel must support a certain set of primitive operations, such as I/O, on its
ends; beyond that, Reo places no restriction on the behavior of a channel. This
allows an open-ended set of different channel types to be used simultaneously
together in Reo, each with its own policy for synchronization, buffering, ordering,
computation, data retention/loss, etc.

Channels are connected to make a circuit. Connecting (or joining) channels
is putting channel ends together in a node. So, a node is a set of channel ends. A
node in Reo has certain semantics: for all the source channel ends on a node, a
fork operation takes place which is copying the outgoing data to all the channel
ends; for all the sink channel ends on a node, a merge operation takes place
which is a nondeterministic choice between incoming data.
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A component can write data items to a source node that it is connected to.
The write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently
written to every source end coincident on the node. A source node, thus, acts
as a replicator. A component can obtain data items, by input operation, from a
sink node that it is connected to. A take operation succeeds only if at least one
of the (sink) channel ends coincident on the node offers a suitable data item; if
more than one coincident channel end offers suitable data items, one is selected
nondeterministically. A sink node, thus, acts as a nondeterministic merger. A
mixed node nondeterministically selects and takes a suitable data item offered
by one of its coincident sink channel ends and replicates it into all of its coincident
source channel ends.

3 Constraint Automata: Compositional Semantics of Reo

Using constraint automata as an operational model for Reo connectors, the au-
tomata states stand for the possible configurations (e.g., the contents of the
FIFO-channels of a Reo connector) while the automata-transitions represent the
possible data flow and its effect on these configurations. The operational seman-
tics for Reo presented in [2] can be reformulated in terms of constraint automata.
Constraint automaton of a given Reo connector can be defined in a compositional
way. For this, composition operators for constraint automata corresponding to
the Reo connector primitives are presented.

The definition of constraint automata is as follows:

Definition 1. [Constraint automata] A constraint automaton (over the data
domain Data) is a tuple A = (Q, Names,−→, Q0) where

– Q is a set of states,
– Names is a finite set of names,
– −→ is a subset of Q × 2Names × DC × Q, called the transition relation of A,

where DC is the set of data constraints,
– Q0 ⊆ Q is the set of initial states.

We write q
N,g−→ p instead of (q, N, g, p) ∈−→. We call N the name-set and g

the guard of the transition. For every transition

q
N,g−→ p

we require that (1) N �= ∅ and (2) g ∈ DC (N,Data). A is called finite iff Q, −→
and the underlying data domain Data are finite. �

3.1 Constraint Automata for the Basic Channels

Figure 1 shows the constraint automata for some of the standard basic channel
types: synchronous channels with source a and sink b, synchronous drain with
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)()( bdad ab )()( bdad

Fig. 1. Some primitive Reo’s channels, and their constraint automata

sources a and b, FIFO1 channels with source a and sink b, lossy synchronous
channels with source a and sink b. In all the cases the automata are deterministic.
There are operators defined on constraint automata that capture the meaning
of Reo join operator [4,3] which will be explained next.

3.2 Product of Two Constraint Automata

Definition 2. [Product-automaton (join)] The product-automaton of the two
constraint automata A1 = (Q1, N1, −→1, Q0,1) and A2 = (Q2, N2, −→2, Q0,2),
is:

A1 �� A2 = (Q1 × Q2, N1 ∪ N2, −→, Q0,1 × Q0,2)

where −→ is defined by the following rules:

q1
N1,g1−→ 1 p1, q2

N2,g2−→ 2 p2, N1 ∩ N2 = N2 ∩ N1

〈q1, q2〉
N1∪N2,g1∧g2−→ 〈p1, p2〉

and

q1
N,g−→1 p1, N ∩ N2 = �
〈q1, q2〉

N,g−→ 〈p1, p2〉

In the next section we will show our algebraic notation based on Definition 1
and in Section 5 the product algorithm based on Definition 2 is explained. It is
shown that in our approach instead of computing two intersections of N1 ∩ N2
and N2 ∩ N1, we only need to compute one intersection at each step and hence
reduce the order of the computation with a constant factor.

4 An Algebraic Representation for Constraint Automata

To have a simple product algorithm, we show a constraint automaton as the
sum of transitions. Each transition is tagged by its name-set N and its guard g.
The main difference is that in the name-set of each transition we also include
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the negation of absent names, N − N . For that we introduce an expanded name
set for a constraint automata which also includes the negation of each name. We
show the set of negated names as N and the expanded set is N ∪ N . For every
transition we include all the names either in their positive form or negated form.

Our approach is that for each transition −→ in (Q, N , −→, Q0) we expand
its name-set N by adding negation of N − N to it. For example if N = {a, b}
and N = {a, b, c} then N is going to be {a, b, c}. We show negation of i by i
which means non-existence of i in that transition. In addition for each q in Q, we
add a new transition from q to itself with a set of names consisting the negation
of all names in N . This denotes staying in the state while no action (name) is
present.

Definition 3. [Constraint automata algebraic representation] We show a con-
straint automaton (over the data domain Data) A = (Q, N , −→, Q0) as

m∑

i=1
p,q∈Q

(Ni, gi)
p
q , Q0

where

– each (Ni, gi)
p
q denotes a transition (−→) of constraint automata from state

p to state q with the name-set Ni and guard gi, e.g., p
Ni,gi−→ q,

– Names is a finite set of names,
– each Ni is a logical product of names a in N appearing as a or a for every

a ∈ N ,
– gi is the corresponding data constraint for the transition i,
– p, q denote states of the constraint automata,
– m is the number of transitions in A,
– Q0 denotes set of initial states. �

Note: For the sake of simplicity, when convenient, we abstract from data con-
straints in our discussions. Data constraints are essential components of con-
straint automata, but in our approach we cope with them exactly like the other
existing approaches (according to the two rules in Definition 2).

It is clear from the definition that there is a simple one-to-one mapping from a
constraint automata and its algebraic representation. For mapping a constraint
automata to its algebraic representation we have the sum of the name-sets of all
the transitions, and for each name-sets (transition) we write source and destina-
tion states as a superscript and subscript, respectively. For example in Figure 2-i
there are two transitions in constraint automata with ab and ab, so its algebraic
representation is ab1

1 + ab
1
1. We also denote the initial state by {1}.

For the opposite directed; constructing a constraint automata from its alge-
braic notation is clear. Figure 2 shows some of the primitive channels with their
corresponding constraint automata and their algebraic representation.
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Fig. 2. Some primitive Reo channels, their constraint automata and algebraic repre-
sentations

5 An Alternative Algorithm for Constraint Automata
Production

Based on the Definition 3 and the mapping between constraint automata and its
algebraic representation we have the following definition for finding the product
of two constraint automata represented in the algebraic form.

Definition 4. [Automaton-algebraic-product] The product-automaton of the
two constraint automata A1 = (Q1, N1, −→1, Q0,1) and A2 = (Q2, N2, −→2
, Q0,2) is A = (Q, N , −→, Q0) where

A1 =
m1∑

i=1
p,q∈Q1

N1i

p
q , Q0,1 , A2 =

m2∑

i=1
r,s∈Q2

N2i

r
s , Q0,2

and

A = A1 �� A2 =
m1∑

i=1
p,q∈Q1

N1i

p
q ×

m2∑

i=1
r,s∈Q2

N2i

r
s , Q0 =

m1×m2∑

i=1
t,u∈Q

Ni
t
u , Q0

where t and u are new combined source and destination states in result of logical
product of two transitions with p and r as source and q and s as destination
states. State t ∈ Q is an initial state iff p ∈ Q0,1 and r ∈ Q0,2; and the new name
set N is N1 ∪ N2.

Logical product of two transitions (which are logical products themselves)
produces a new transition according to the common rules, so we will have a new
transition iff there is no name appears in both with different signs (e.g. x and
x). In a new transition with name set N , the set of names appearing in the
product is N1 ∪N2. All the names in N1 ∪N2 appear in all the transitions either
in their positive or negative form. Data constraint of the new transition is the
conjunction of data constraints of two corresponding transitions of A1 and A2
(not shown in the formulas).

Figure 3 gives an example for applying this algorithm on two FIFO1 chan-
nels connected to each other and making a FIFO2. Figures 3-i and ii show the
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Fig. 3. Constraint automata for FIFO2 channels created by adding to FIFO1 channels
to each others

constraint automata for FIFO1 channels, and iii shows the result. The algebraic
representation is also included in the figure.

If we convert the algebraic representation of the result constraint automata
to its corresponding diagram we will have a directed graph which can be un-
connected. States that are not reachable from the initial states can be removed
from the constraint automata. By using a simple graph traversal algorithm like
DFS (Depth First Search) or BFS (Breadth First Search), it is possible to mark
reachable states, and remove the other ones.

5.1 Pseudo Code of Our Algorithm

We use graph data structure to show each constraint automaton which enable
us to produce reachable states without doing any extra computation (any graph
traversal after constructing the constraint automata). Before explaining how
this algorithm works, we explain the data structure containing a constraint
automaton.

names denotes according to Definition 3
ca the constraint automaton : A
states the set of states of constraint automaton : Q
init the set of initial states of constraint automata : Q0
names the set of names in constraint automaton : N
trans the set of outgoing transitions for each state
dest destination of each transition : q
fires the set of names for ith transition : Ni
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Now suppose we have two constraint automata ca1 and ca2, and want to com-
pute their production. The following is the algorithm written as a pseudocode:

1. New constraint automata ca as the result
2. Add ca1.names and ca2.names to ca.names
3. New two empty sets set and tmp //set for current states and tmp for visited states
4. For all w in (ca1.init, ca2.init) do
5. add w to set and tmp
6. While set is not empty do
7. Remove one pair of set as (s1, s2)
8. New state s corresponding to (s1, s2)
9. If s is not member of ca.states Then
10. Add s to ca.states
11. If s1 ∈ ca1.init and s2 ∈ ca2.init Then
12. Add s to ca.init
13. For each transition t1 in s1.trans and t2 in s2.trans do
14. New transition t
15. t.f ires = t1.f ires × t2.f ires //according to Definition 4
16. If t.f ires �= φ Then
17. Add t to s.trans
18. Set t.dest to the state corresponding to (t1.dest, t2.dest)
19. If pair of (t1.dest, t2.dest) is not member of tmp Then
20. Add (t1.dest, t2.dest) to set and tmp
21. End For
22. End While

5.2 The Order of the Algorithm

Using our algebraic representation, it is easy to compute the worst case running
time of the algorithm. For computing product of constraint automata A1 and A2
which is defined in Definition 4 we need to compute product of each element N1i

in A1 with all N2j in A2 where i=1,m1, and j=1,m2, and computing each product
needs |N1 ∪ N2| operations. So the worst case running time of our algorithm is:

m1 × m2 × |N1 ∪ N2|
Using graph notations for showing constraint automata improves running time
of the algorithm in average case, and as mentioned earlier, because we only need
to compute one product in each step and the algorithm used in [6] needs to
compute two intersections, so, we expect that our algorithm be faster by at least
a constant factor of two.

We have two constraint automata with n1, n2 for number of names; b1, b2
number of initial states; m1, m2 number of transitions; s1, s2 number of states;
and nc = n1 + n2 − n where n is number of elements of N1 ∪ N2 (nc shows the
number of common names of two constraint automata).

The probability in which product of two transition produced a new one is:
2−nc . And there are m1

s1
and m2

s2
transitions with the same state as their desti-

nation in each constraint automata. So the probability of producing a state is
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1− (1 − 2−nc)
m1m2
s1s2 . The upper bound for the average running time of algorithm

is:

m1m2n ×
[
1 −

(
1 − 2−nc

)m1m2
s1s2

]

6 Order of Selection of Two Constraint Automata

The result of product of more than two constraint automata does not depends
on the order of selection of them, but the number of intermediate operations
depends on the order of selection of two constraint automata.

The order of product of two constraint automata with m1 and m2 transitions
respectively, is m1 × m2 × |N1 ∪ N2|. Part |N1 ∪ N2| of this formula suggest to
select those constraint automata which have more common names. We choose
an order to decrease the number of N1 ∪ N2 and increase the probability of φ
in the product of two transitions. Dynamic programming is used in finding the
two constraint automata with the largest set of common names.

7 Case Study and Experimental Results

In this section we show applying of the algorithm on a case study which computes
the product of four constraint automata (Figure 4). In algebraic representation
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Fig. 4. Constraint automata for two Sync and one FIFO1 channel
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of the result, a state named 1.2.3.4 shows that this state is made by joining
states 1, 2, 3, and 4. In Figure 4-v you can see the states and transitions of the
final constraint automata.

We implement a tool for constraint automata production based on the pro-
posed representation and algorithm. We applied the tool on the same examples
used in [6]. The result of this experiment confirms that our algorithm is two
times faster than the one proposed in [6].

8 Conclusion and Future Work

In Reo, complex connectors are built out of simpler ones using join operator.
Constraint automata is proposed as the compositional semantics of Reo. The
composition operator in Reo, join, is captured by product of automata. In build-
ing the constraint automata of a connector we may reach to intermediate results
with large number of transitions and states. So, we need efficient algorithms for
generating automata product.

In this work, we proposed a simple and efficient algorithm for product. The
algorithm is more efficient than the already proposed algorithms by a constant
factor. We applied the algorithm on a set of examples and the experimental
results clearly show the efficiency. We use an intuitive algebraic representation
which simplifies the implementation. The representation can also help us when
we are joining small automata by hand.

In our future work we will focus on the order of joining more than two con-
straint automata and how the structure of Reo circuits can be used to find a
more efficient algorithm.
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Abstract. Applying an appropriate formal model to specify software architec-
ture makes a reliable foundation to formally verify non-functional properties 
and therefore, leads to early detection of defects. In this paper we make a com-
parison between automata-based models and evaluate their abilities to model 
different aspects of components interaction in software architectures. We try to 
use Team automata as a middleware to formally specify well-known architec-
tural descriptions in UML2.0. A Limitation of current automata models, so 
called "actions interleaving" is also discussed and some approaches to over-
come this limitation described. 

Keywords: Software architectures, Automata-based models, Components  
interaction. 

1   Introduction 

Software architecture has become one of the most active research areas in software 
engineering during recent years. Well designed software architecture may provide: 
better understanding of system structure, multiple levels of reuse, clear dimensions for 
system evolution, and ease for system management [1]. Additionally, a rigorous ap-
proach toward specifying the software architecture can be used to evaluate non-
functional attributes of the software even before implementation and leads to early  
detection and correction of errors, thus to reduce overall development cost. 

Formally specifying of software architecture makes it possible to use formal verifi-
cation tools to support automatic verification of both functional and non-functional 
aspects which can be deduced from overall structure and the interactions between 
components. A key feature of these descriptions is the ability to specify the dynamics. 
Finite state machines (FSMs), Petri nets or labeled transition systems (LTSs) can be 
used to model the dynamics of software architectures, describing the set of all possi-
ble behaviors as a whole. 

In this paper we make a comparison between automata-based models and their ca-
pabilities and drawbacks in specifying software architectures. The paper is organized 
as follows. In Section 2, three of extended automata models which are suitable for  
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describing interactions in a component-based system are briefly introduced.  These 
models are: I/O automata, Interface automata and Team automata. In Section 3, bene-
fits and drawbacks of each model is considered and their abilities are compared based 
on a software architecture point of view, in this section an example of modeling com-
ponents interaction by team automata also will be taken. We try to show how can cre-
ate TA model of an architecture modeled by UML2.0 diagrams. In Section 4, a  
general limitation of all described models in the specification of architectural artifacts 
i.e. action interleaving is discussed and a solution to overcome this limitation is intro-
duced. Conclusions and future work are discussed in Section 5. 

2   Automata-Based Models for Specifying Software Architectures 

Automata-based models have been widely used in the literature for the specification 
of behavioral properties of systems. Since software architecture refers to software 
components and interconnections between them (i.e. connectors), the behavioral as-
pects of components and interaction through connectors need to be effectively mod-
eled for further evaluations. Therefore applying automata-based models in the field of 
software architecture has emerged [2],[3],[4],[5]. 

Despite the many abilities, some of the extended automata models have been less 
take in to consideration by software engineers. This is because of the models com-
plexity and difficult use of them for practical purposes. However, specification and 
verification of various features of components interaction in software architectures 
needs more powerful formal models. In this section we briefly introduce three of 
those models that are used in the literature for purposes which are related to model 
cooperating components. 

2.1   Input/Output Automata 

I/O automata model was defined by Nancy A. Lynch and Mark R. Tuttle in [6] as a 
labeled transition system. I/O automata provide an appropriate model for discrete 
event systems consisting of concurrently operating components with different input, 
output and internal actions. I/O automata can be composed to form a higher-level I/O 
automaton and thus form a hierarchy of components of the system. 

 

Definition 1. A (safe) I/O automaton is a tuple ( )IQ outinp ,,,,, int δΣΣΣ=Α , where: 

• Q is a set of states. 
• int,, ΣΣΣ outinp are pair wise disjoint sets of input, output and internal actions, 

respectively. Let 
intΣΣΣ=Σ UU outinp

be called a set of actions. 

• QQ ×Σ×⊆δ is a set of labeled transitions such that for each a inpa Σ∈  an Qq ∈ 
there is a transition δ∈′),,( qaq  (input enableness). 

• QI ⊆ is a nonempty set of initial states. 

2.2   Interface Automata 

An interface automaton (IA) [7], introduced by de Alfaro and Henzinger, is an auto-
mata-based model suitable for specifying component-based systems. The two main 
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characteristics of IA are that they assume a helpful environment and support top-
down design. A helpful environment for an interface provides the inputs it needs and 
always accepts all its outputs. Therefore, interfaces are optimistic, and do not usually 
specify all possible behaviors of the systems. For example, they often do not include 
fault scenarios. Top-down design is based on a notion of refinement, which relates 
two instances of a model. A refinement of a model can be substituted for the original. 
This feature can be considered as a benefit of IA over the other models, and makes the 
modeling of hierarchical nature of the architectures easier. 

The composition of two IAs consists of all possible interleaved transitions of the 
two IAs, except for those actions that are shared. Two IAs are composable if they do 
not take any of the same inputs, do not produce any of the same outputs and the hid-
den actions of the two components do not overlap. A hidden action is created through 
the composition of IA when an output action of one component is internally con-
sumed by an input action of another component.  

2.3   Team Automata 

The Team automata model was first introduced in [8] by Clarence A. Ellis. This com-
plex model is primary designed for modeling groupware systems with communicating 
teams but can be also used for modeling component-based systems. The main differ-
ence of Team automata, compared with previous models, is the freedom of choosing 
the transition set of the automaton obtained when composing a set of automata, and 
thus are not limited to one synchronization only. M.H. ter Beek et. al. in [9] have a 
detailed introduction of  Team automata which we do not present in this paper be-
cause of the limitation of space. 

Component automata are the basic building blocks of team automata. A component 
automaton is a labeled transition system. The labels represent the actions of the automa-
ton. Three types of actions are distinguished. Component automata interact by synchro-
nizing on common actions. Not all automata sharing an action have to participate in 
each synchronization on that action. This leads to the notion of a complete transition 
space, consisting of all possible combinations of identically labeled transitions. 
 

Definition 2. Let Ν⊆Γ be a finite set and let for each Γ∈i and let S be a 
composable set of component automata. Then a team automaton over S is a transition 
system ( )( )IQ outinp ,,,,, int δΣΣΣ=Τ , with set of states 

ii QQ Γ∈Π= and set of initial 

states
ii II Γ∈Π= , actions 

ii Σ=Σ Γ∈U specified by 
int,int ii Σ=Σ Γ∈U  , 

outiiout ,Σ=Σ Γ∈U ,
outinpiiinp ΣΣ=Σ Γ∈ \)( ,U  and transitions QQ ×Σ×⊆δ  such that 

)(SΔ⊆δ  and moreover )(Saa Δ=δ  for all intΣ∈a . )(SaΔ is the complete tran-

sition space of action a is S, and )()( SS aa Δ=Δ Σ∈U . 

3   Comparing Models, Based on Software Architecture View 

In this section we compare abilities of automata-based models introduced in section 2, 
for the purpose of modeling software architectures.  In this way their benefits and 
drawbacks regarding to different aspects of component interactions will be discussed.  



426 M. Sharafi, F. Shams Aliee, and A. Movaghar 

I/O Automata. I/O automata are input enabled in all states; they can never block the 
input. Some limitations are to be mentioned regarding to this feature;  For example 
suppose that a component A is ready to send output action a to a component B which 
is not ready to receive it (e.g. needs to finish some computation first), we are unable 
to directly model such situations with IOA. 

Moreover, as it is defined in [6], a set of I/O automata is strongly compatible if the 
sets of output actions of component automata are pair wise disjoint and the set of in-
ternal actions of every component automaton is disjoint with the action sets of all 
other component automata. Therefore a set of automata where two or more automata 
have the same output action is not strongly compatible and cannot be composed ac-
cording to the definition. Suppose that two components are using the same service of 
another component, this situation could be modeled without relabelling of the transi-
tions.  

Another drawback that could be mentioned about this model is that in the composi-
tion of strongly compatible I/O automata each input action a, for which an appropriate 
output action a exists, is removed to preserve the condition of disjoint input and out-
put action sets. The input actions then cannot be used in a higher level of composition. 
It is a weakness for modeling hierarchical structure of  components. 

 
Interface Automata. Firstly, IA needs not to be input enabled and therefore it dos not 
have the limitation which mentioned about Input/Output Automata. Secondly, impor-
tant benefit of IA over I/O Automata is the binary operator composition and the re-
finement relation that are introduced in the literature of IA. These approaches allow 
stepwise refinements of models into their more concrete equivalents. It is obvious 
that, the feature would be effective in architectural design of software systems. 

IA has also the similar drawback of I/O Automata : each input (output) action after 
linking to an appropriate output (input) action becomes internal action and therefore is 
not allowable for other linking. Additionally in the literature of Interface automata the 
composition, is defined for only two IA, therefore  it not be directly used for modeling 
interaction between more than two components, so in the literature of software archi-
tecture we can use it only to model client-server styles and it is difficult to generalized 
IA for example, for multicast/broadcast communications between components. 

Moreover, because of the assumption of a helpful environment, neither component 
should have to wait to synchronize, i.e., if one component is ready to send an action, 
the other should be ready to receive the action immediately. A state of the product 
where one component would have to wait is considered an illegal state and is elimi-
nated (with transitions leading to it) from the composed IA, hence this type of interac-
tion would be difficult to model with IA. 

Another shortcoming of this approach is the explicit indication of erroneous behav-
ior (illegal states) that limits it to modeling solely the component-based systems with 
equivalent notion of what is and is not considered as an error (respecting one type of 
synchronization) [2]. 

 

Team Automata. One of the important and useful properties of TA compared with 
other models is that there is no unique Team automata composed over a set of com-
ponent automata, but a whole range of Team Automata distinguishable only by their 
synchronizations can be composed over this set of component automata. This feature 
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enables Team automata to be architecture and synchronization configurable, more-
over, makes it possible to define a wide variety of protocols for the interaction be-
tween components of a system. TA in comparing with other models has more benefits 
(almost all of the benefits previously mentioned) and is flexible enough to be best fit 
for modeling different situations of components interaction. 

For representing how TA can be used for modeling component interactions in 
software architecture, let us consider an example. In Figure 1, two components 
Merge and Sort are shown in UML2.0 notation [10]. Each of these components has 
its own required and provided interfaces and communicates through its ports. These 
components can be composed and create an aggregate component called Mer-
gAndSort which has new interfaces and ports. In UML2.0 one can define protocol 
state machines for specifying detailed behaviors of each port.  Suppose that compo-
nent Merge receives actions a and b through ports P1 and P2 respectively and sends 
an action c to the component Sort through port P3. Component Sort receives action 
c through its port, P4 and sends action d through port P5. Component Automata A1,  
A2 (equations 1 and 2) are models of components Merge and Sort from Figure 1, 
respectively:  

{ } { } { } { }( ),,,,,,,, 01101 mcbamm δφ=Α  (1) 

( ) ( ) ( ){ }1000001 ,,,,,,,, mcmmbmmamwhere =δ  

{ } { } { } { }( ),,,,,,, 02102 sdcss δφ=Α  (2) 

( ) ( ){ }11102 ,,,,, sdsscswhere =δ  

 

Fig. 1. Composition of components (UML2.0) 

According to definition of  TA we can define a set of Team Automata over com-
ponent automata A1 and A2, differing by their transition relation. Each of those TAs 
could be used for modeling specific design of interaction between components. We 
choose TA showing in Figure 2. Note that the complete state space of Team automata 
in this case includes four states but because of ignoring some transitions, two of re-
lated states (which are not reachable) are also eliminaed.  
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Fig. 2. TA for MergeAndSort component 

Team automata of Figure 2. is the external behavioral model of composed compo-
nent, MergeAndSort  which could be in its turn a constituent component automata of 
a higher level Team automata. Another point in modeling software components by 
TA is that, whenever we model the assembly connectors between components [10], 
i.e. one component provides a services which is requested by another components 
(Like the connector that exists between tow components Merge and Sort in Figure 1.) 
one can consider that output  action (request) is consumed by receiving component 
and it must not appear as output action of composed component. As we can see from 
definition 2, such actions consider as output actions of Team automata. However a 
useful operator introduced in the literature of Team automata i.e. hide operator has 
made the model more flexible and can solve previous problem.  Let us define hide 
operator from [9]: 
 

Definition 3. Let ( )( )IQ outinp ,,,,, int δΣΣΣ=Τ  be a TA and let .extΣ⊆τ Then 

( )( ).,,,,,)( int IQThide outinp δττττ UΣ−Σ−Σ=  

In )(Thideτ , the subset of τ of external actions of  T have thus become unobservable 

for other TA by turning them in to internal actions. By this definition, action c of 
composed TA in our example could be turn to internal, using { } )( tMergAndSorhide c

. 

Hide operator can also be used for a more important purpose which is discussed as 
follow: Composition of automata hides every input action that is also an output action 
of some other automata in the composition, therefore the input action can not be used 
on a higher level of compositional hierarchy later on. Hence it may be necessary to in-
ternalized certain external actions of a TA before using this TA as a building block in 
order to prohibit the use of these actions on a higher level of the abstraction. In this 
way, hide operator could be used to make the needed actions unobservable for other 
TAs by turning them in to internal actions. 

In addition to architectural aspects described and comparisons made over the mod-
els in this section, there is an important weakness that all of the introduced models are 
involved. This weakness is that all of actions execution in a system should be consid-
ered to be interleaved. This would be a limitation to model some software architecture 
artifacts. Interleaving and necessity of extending current models and ways to over-
come this limitation will be discussed in next Section.  

4   Interleaving and Necessity of Extending Current Models 

In this section we describe a limitation which is common between all the mentioned 
models and many other formalisms, i.e. Interleaving. This limitation makes it  
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difficult to model some important aspects of software architectures. Interleaving is a 
common choice to model the concurrent behavior between components and relies on 
a very basic assumption of "atomicity" of actions. Atomicity means that an action is 
indivisible in time. Interleaving means that at each point in time only one component 
takes a step. The result is all possible interleaving of the actions of the components. 
Many formalisms, both algebraic and non-algebraic, have adopted interleaving se-
mantics. For example Lamport, L. in [11] indicates that messages exchanged among 
distributed components can always be totally ordered we can refer to [12], [13], 
[14],[15] as another examples. 

However, interleaving is not always appropriate to characterize the behavior of 
software architectures accurately because it can be a limitation to model some soft-
ware artifacts. Software artifacts which have multiple constituent elements but repre-
sent a single one, thus, we may wish to group multiple actions such that their behavior 
cannot be interleaved with the behavior of another component. If in the software ar-
chitecture, we can realize a certain level of abstraction that all components can be 
modeled in, then interleaving allows us to model concurrency very nicely. Process al-
gebras (CCS, CSP) all are based on a notion of concurrency, or the famous model 
checker SPIN is a pure asynchronous/interleaving formalism. But, if we cannot agree 
on a certain level of atomicity, then we face some limitations of applying common 
models [16]. 

In component-based systems, at its signature level, a method of a component can 
be characterized by the method’s name and a set of parameters. Some formalism 
chooses to model methods by abstracting away their details using, for example, only 
its name, e.g., [7]. To model the details of the parameter communication, the arrival 
of the inputs should not be interleaved with the behavior of another component. Thus, 
we have difficulties to model the semantics of the concurrent behavior of component-
based systems at this level of detail. 

Speaking in terms of message passing, we may consider a message not merely a 
single indivisible item; rather it is a sequence of items that arrive as one complex ac-
tion. One can say, why don't we interleave those small actions? The answer is that we 
don't want and we cannot, since it will change the semantics of the system which is 
being modeled. In Web services, for example, an XML message may consist of mul-
tiple parts, but those parts are not really independent messages. In fact, we receive ei-
ther the whole message or none. By limiting interleaving we can try to capture these 
requirements .Of course, this result in more complexity, but that's a separate issue 

All of the models mentioned in Section 2 of this paper, follow the principle of In-
terleaving and therefore have limitations for modeling of software architectures. S. 
Esmaeilsabzali et al. in [16] introduced an extended Interface Automata with complex 
actions. These actions extend interface automata with the ability to declare a sequence 
of transitions to be a complex action, which cannot be interleaved with transitions 
from another component in composition.  This extension makes the model more pow-
erful for modeling real interactions between software components. 

5   Conclusion and Future Work 

An appropriate formal model for specifying software architecture makes a reliable 
foundation to formally verify non-functional properties. In this paper, automata–based 
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models suitable for modeling software architectures was compared and their robust-
ness and weakness, regarding to different aspects of interactions between software 
components was described. The characteristics of the models described in this paper 
make their applicability for the full description of interactions in software architecture 
difficult. It is natural because studied models were often designed for a slightly differ-
ent purpose. Among the compared models, Team automata has more abilities and less 
limitations because of its unique properties especially freedom of choosing the transi-
tion set what allows its configurability according to the architecture description. 

Interleaving was also discussed and its limitation in modeling of real interactions 
was described. This limitation is common between other introduced models; so, ex-
tending Team Automata (as selected model) with complex action one can create a 
powerful formal model suitable for specifying architectures.  

We are trying to develop a framework for transforming well-known architectural 
descriptions like UML2.0 diagrams to TA formal model and to exploit and evaluate 
non-functional properties such as security and performance at the architectural level 
of software design. 
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Abstract. In this paper a new architecture description language called ArchC#, 
is introduced. ArchC# is an extension of ArchJava for C#. It is mainly focused 
on describing architecture of distributed systems. ArchC# provides built-in 
constructs for describing distributed components and their interconnections. 
Specific features of distributed code such as remote asynchronous calls and 
activation of remote objects can be described in ArchC#. ArchC# unifies 
software architecture with an object-oriented implementation.   

1   Introduction 

ADLs describe the structure of software systems, enabling more effective design, 
program understanding and formal analysis. Despite, the growing application of 
distributed programming, there has not been many considerations for the development 
of architecture description languages (ADLs) covering specific architectural features 
of distributed code. There are a few ADLs for distributed systems. However, these 
ADLs are mostly domain-specific and focus on specific architectural issues [1, 2, 3, 4, 
5, 6]. This article is aimed at the design and implementation of an ADL called 
ArchC# to describe the architecture of distributed programs code implemented in C#. 
Most of the existing ADLs decouple implementation from architecture, allowing 
inconsistencies, causing confusion, violating architectural properties and inhibiting 
software evolution. ArchC# embeds software architecture into source code and 
guarantees that there is no inconsistency between implemented code and the designed 
architecture.  

ArchC# is an extension of ArchJava[1]. ArchC# models architectures using 
components, communicating through connection ports like ArchJava[1, 7]. Unlike 
ArchJava, it provides built-in constructs to define asynchronous calls within 
distributed environments. ArchJava does not include any built-in feature for defining 
asynchronous calls and the software designer has to define a subclass of its Connector 
class that supports asynchronous calls. Within a distributed environment remote 
objects are either server activated or client activated. This clarification of object types 
is not considered by current ADLs such as C2[8], ArchJava [1, 7, 9, 10], ComponetJ 
[2] and also ComponentC [11]. As described in Section 2, in ArchC# to enhance 
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reusability of architectural components, certain component connection configurations 
such as address of the server or client, physical layer protocol, remote object type and 
object activation type, can be defined in a separate XML file.  

In Section 3, a new scheme for code generation from an architecture description is 
presented. It is shown, in this Section that the resultant code may run faster than the 
code generated by ArchJava. The specific capabilities and features of ArchC# makes 
it possible to have an architectural plan of distributed systems and components that 
are strongly coupled with the implementation code. As described in Section 2, 
ArchC# makes it possible to model remote components, asynchronous method calls 
and many other things which are required to describe architecture of a distributed 
system.  Section 4 presents a worked example to demonstrate the applicability of 
ArchC# in describing the architecture of a real software system.  

2   ArchC# and Distributed Systems 

ArchC# implements distributed systems using .Net Remoting [12]. We have enhanced 
some of the .Net Remoting capabilities. Although we use .Net Remoting in code 
generation phase of ArchC# compiler for distributed systems, it is possible to apply 
other technologies like Indigo[13] by making some changes to the compiler. The 
structures that will be introduced in the following sections are designed so that the 
change of technology makes no effect on the written code.   

2.1   Remote Components in ArchC# 

In ArchC# the keyword "remote component" is used to declare those components 
which may be accessed, remotely. Whenever, a class within a component is declared 
as a remote class, its instances can be created, remotely. ArchC#, facilitates the use of 
.Net Remoting, by automatically creating the required set of instructions to access and 
use it. To define a class as a remote class using .Net Remoting in C#, the class has to 
be defined as a subclass of MarshalbyRef class[12]. Therefore, since multiple 
inheritances are not allowed in C#, a remote class can not be a subclass. The difficulty 
is resolved in ArchC# compiler by applying the approach applied in Eiffel [14]. Eiffel 
makes use of interfaces to generate code for remote classes. Below, is the definition 
of a remote component in ArchC#.  

 public remote component class RemoteSellClient {  
 public port WantMainList { requires public DataSet    
getMainList(); }... } 

2.2   Defining Distributed Architectures in ArchC# 

Within a distributed environment client and server ports facilitate communications 
between a program components. Each server port is defined as a class which can be 
accessed, remotely. Within a server port the communication protocols and the type of 
connections with the clients is also defined. Client ports define the address of the 
server port, the type of remote objects and also some information about the 
connection with the server. In ArchC# every component that has a server port can be 
used as a server. There can be more than one server ports defined in a component. 



434 S. Parsa and G. Safi 

Both client/server and peer to peer architectures can be constructed by defining the 
interconnections between client and server ports. In Figure 1, the interconnection 
between a shopping center component and a main shop is shown. The 
ShoppingCenter component has one client port, MainList, which manages the 
connection to MainShopCenter for retrieving the items list. It has also one server port 
which provides information about sailed items for the clients.  

Server Port
Mainlist

RReemmootteeSSeellll
CClliieenntt

RReemmootteeSSeellll
SSeerrvveerr

ShoppingCenter

WantSoledItemsReturnSoledItems
WantMainList ServeMainList

Server Port
SoledItems

Client Port
Mainlist

Client Port
SoledItems

MainShoppingCenter

 

public component class ShoppingCenter { 
  client port MainList{RegisterChannel TcpChannel; 
  ServerActivated; 
  URI @"http://www.mainshopcenter.com:6791/server2 "; 
  RemoteType RemoteSellServer; } 
  server port SoledItems{Channel HttpChannel http,6792; 
                        ClientActivated; 
                        CallMode Singleton; URI "server1"; 
                        RemoteType RemoteSellClient;} 
//A xml file can be used to define the above configurations, 
//using the tags applied in .Net Remoting 
static void Main(string[] args){   … 
       RemoteSellClient SellClient=new RemoteSellClient(); 
       client connect ShoppingCenter.MainList; 
       server init ShoppingCenter.SoledItems; 
       RemoteSellServer SellServer=new RemoteSellServer(); 
connect SellClient.WantMainList,SellServer.ServeMainList; 
Asynch_Begin  asynchcontrol,SellClient.WantMainList. 
getMainList();... 
  if (asynchcontrol.IsCompleted()){new DataSet d=  
Asynch_End asynchcontrol,SellClient.WantMainList.getMainList; 
}  … /*working with DataSet d */ … } } 

Fig. 1. The architecture of a distributed shopping system defined in ArchC# 

As shown in Figure 1, a server keyword is inserted before the definition of the 
server port class. In a server port definition, the first element defines the channel type 
that the server may use. A server can define multiple channels. In the above server 
port definition, there is one channel called http which uses HTTP protocol to deliver 
messages between client and server. The HTTP channel uses port number 6792 to 
listen to client connections. After declaration of channels, ClientActivated primitive 
can be used to enable clients to activate remote objects. Applying this primitive, the 
client can mange the life time of the remote object on the server.  If the remote object 
is to be activated by the server, then the next element to define is the connection type. 
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If the connection type is defined as Singleton, then the remote object will be created 
at the server side when the first request is received from one of the clients. The same 
remote object will be used for the next requests from other clients. Locking may be 
required for preventing deadlocks. On the other hand, if the connection type is defined 
as SingleCall then the server will not keep any history of the client and no client state 
will be persisted on the server side.  

To define the name of a server port, the keyword URI followed by a string name is 
inserted in the server port, after the connection type definition. RemoteType keyword 
is used to define remote object types. The server port starts listening to the connection 
requests, after the following primitive is executed: server init {portname}; 

It is possible to use an xml file to define the configuration of server and client 
ports. The structure of this xml file is very similar to the one used by .Net Remoting 
for defining server and client configurations. A component may have more than one 
client port because of different remote objects that it needs. It is also possible that a 
component class has both client and server ports. As it is shown in Figure 1, the 
RegisterChannel keyword is used to define the channel type through which the client 
may connect to the server. The ServerActivated keyword enables the server to 
activate remote objects. Server activated objects are especially useful when the 
remote object acts like a service such that the state of the remote object is not required 
after the completion of the remote call. The server receives a request and replies the 
request and does not keep any information about the request and its response. To get a 
client port ready for remote access the primitive "client connect" can be used.   

2.3   Asynchronous Remote Method Calls 

In ArchC#, the Async_Begin keyword is inserted before any call statement which is 
supposed to be performed asynchrony. The keyword is followed by a state variable 
which is used by the clients to monitor the progress of the asynchronous call. The 
Asynch_End keyword highlights the position where the caller waits for the 
termination of the callee to receive the returned value from the called remote method. 
As an example, refer to Figure 1.  Polyphonic C# [15] is an extension of C# which 
supports asynchronous method calls. However, Polyphonic C# does not provide any 
primitive for collecting the values returned or affected by asynchronous remote 
method calls.  

3   ArchC# Implementation 

The ArchC# compiler is implemented by applying a parser generator called Coco/R 
[16]. The compiler translates ArchC# files (.archc) into C# source code. Each 
component class is translated into a separate class in C#, leaving the fields and 
method bodies substantially unchanged. The component ports are translated into inner 
classes. Also, the ArchC# compiler automatically delegates the required and provided 
methods of each component port to the inner classes in the component. Delegate 
primitive in C# is similar to the function pointers in C++. 

In ArchJava each connection is compiled into a “connection class” that implements all 
the interfaces of the connected ports. The connect expression returns a new connection 
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object, passing the connected components to the connection object’s constructor. The 
constructor assigns the connected components to the internal fields of the class 
component. Whenever a required method is invoked through the connection object, the 
object invokes the corresponding provided method on the targeted component [1]. In 
ArchC# in order to increase the speed of the connection between the components, the 
connection object is not created by the compiler. Instead the ArchC# compiler sets all the 
required delegates to point to the provided methods of the targeted component. ArchC# 
compiler also generate an XML file which includes information about component, ports, 
connections and other language structures in the ArchC# code. It also provides 
information about these architectural blocks. Using a XSLT document, some graphical 
plan about system architecture will be generated. 

4   Online Shopping Systems Architecture  

In this section an example of applying ArchC# to describe the architecture of a real 
distributed system is presented. In order to demonstrate the applicability of ArchC# , the 
architecture of a shopping center C# code described in ArchC# is presented. The code 
was reverse engineered and its class dependency graph and architecture was extracted. In 
Figure 2.a the overall architecture of the online shopping center is sketched. The 
architecture of each shopping center is also sketched in Figure 2.b by the developers. 
Many developers draw something on the paper and then start the implementation of the 
drawing. The implemented architecture may be quite different[17]. The overall 
architecture of the shopping center application software is shown in Figure 1.  

 

(a) Overall architecture of online shopping

(b) The architecture of an online shopping center
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Fig. 2. The sketch of the architecture of an online shopping center drawn by developer 
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public component class MainShopCenter{client port ShopCenter{ 
… } server port MainShopCenterServerForOthherShopCenters{...}  
public port ConnectToShopCenters{requires public DataSet 
SelledItems(…); provides update(…){…} } …} 

Fig. 3. ArchC# description of the architecture of the main shopping center 
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Fig. 4. Architecture of the shopping center system software 

As shown in Figure 2.a the shopping center distributed software architecture consists 
of four components. These components interact with each other remotely. Every hour 
the information stored in the main center computer is directly updated by the shopping 
centers. Also, the information stored in any one of the shopping centers could be 
directly updated by the main center computer. The structure of the online shopping 
center software system made the reengineering process difficult. For instance it was not 
obvious where in the code and how a remote method call appears. A major difficulty 
has been to find and identify dependencies between different classes.   

After examining the code we understood that a new component, called opening the 
shopping, could be augmented to the architecture of the shopping centers. We also set 
the relation between shopping centers and the main center to be server activated, 
because it is very similar to a web service and the server does not need to save the 
state. In the main office the type of connection was client activated. If there were so 
many differences between the sketched architecture which is drawn by the developers 
and the implemented code then it would take us longer to perform the reengineering 
process. This work took us fifty hours. 
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In Figure 1, an ArchC# description of the architecture of the application software 
for a distributed shopping center application software is given. The ArchC# 
description of the architecture of the main shopping center software is presented in 
Figure 3.  The ShoppingCenter client port is used to connect to a shopping center 
remotely. In this code there is also a server port to serve connection requests from the 
shopping centers to the main center. 

In Figure 4.a and 4.b the architecture of the shopping center program code 
considering the ArchC# description presented in Figure 3, is shown. This architecture 
model is more precise in compare with the one shown in Figure 2. Apparently, when 
adding ArchC# primitives to a program code, to describe the program architecture, 
the program code can be tracked easier and the architecture of the program code can 
be easily extracted from within the code.  

5   Conclusions 

There are certain features of distributed system architectures which acquire specific 
ADL primitives. As a part of distributed architecture plan, it may be required to 
clarify whether remote objects are server activated or client activated. When defining 
asynchronous calls, the very last position where the caller may proceed in parallel 
with the callee, should be defined as a part of the program architecture description. In 
order to enhance reusability of architectural components, certain component 
connection configurations such as address of the server or client, physical layer 
protocol, remote object type and object activation type, can be defined in a separate 
XML file. A software system source code should embody its architectural plan and 
the compiler should ensure that there are no violations of the planned architecture 
within the program code. ArchC# embeds architecture description within the source 
code and guarantees that there are no inconsistencies between the implemented code 
and the designed architecture.  In ArchC#, a remote class may extend any other class. 
This is an enhancement made to .net remoting.  

Acknowledgments. We would like to thank Jonathan Aldrich for his helpful 
comments. 
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Abstract. In this paper we study how roles can be added to patterns modelling
relationships in Object Oriented programming. Relationships can be introduced
in programming languages either by reducing them to attributes of the objects
which participate in the relationship, or by modelling the relationship itself as a
class whose instances have the participants of the relationships among their at-
tributes. However, even if roles have been recognized as an essential component
of relationships, also in modelling languages like UML, they have not been intro-
duced in Object Oriented programming when it is necessary to model relation-
ships. Introducing roles allows to add attributes and behaviors to the participants
in the relationship, rather than to the relationship itself, and to distinguish the
natural types of the participants in the relationships from the roles the partici-
pants acquire in the relationships. We show how the role model of the language
powerJava can be used to endow the relationship as attribute pattern with roles.

1 Introduction

The need of introducing the notion of relationship as a first class citizen in Object Ori-
ented (OO) programming, in the same way as this notion is used in OO modelling,
has been argued by several authors, at least since Rumbaugh [1]. Rumbaugh [1] claims
that relationships are complementary to, and as important as, objects themselves. For
example, a student can be related to a university by an enrollment relationship, he can
attend a course, and have a tutor. Thus, relationships should not only be present in mod-
elling languages, like ER or UML, but they should also be available in programming
languages, either as primitives, or, at least, represented by means of suitable patterns.

Two main alternatives have been proposed for modelling relationships by means of
patterns, e.g., by Noble [2]:

– The relationship as attribute pattern: the relationship is modelled by means of an
attribute of the objects which participate in the relationship. E.g., the Attend rela-
tionship between a Student and a Course can be modelled by means an attribute
attended of the Student and of an attribute attendee of the Course.

– The relationship object pattern: the relationship is modelled as a third object linked
to the participants Student and Course. A class Attend must be created and
its instances related to each pair of objects in the relationship. This solution under-
lies programming languages introducing primitives for relationships, e.g., [3].

F. Arbab and M. Sirjani (Eds.): FSEN 2007, LNCS 4767, pp. 440–448, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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class Student {
String name;
int number;
HashSet<BasicCourse> attends;

}

class BasicCourse {
String code, title;
HashSet<Student> attendees;
void enrol(Student s) {

attendees.add(s);
s.attends.add(this); }}

Fig. 1. The relationship as attribute pattern

These two solutions have different pros and cons, as Noble [2] discusses. But they
both fail to capture an important modelling and practical issue. If we consider the kind
of examples used in the works about the modelling of relationships, we notice that
relationships are also essentially associated with another concept: students are related to
tutors or professors [3,4], courses are basic courses and advanced courses [4], customers
buy from sellers [5], employees are employed by employers, underwriters interact with
reinsurers [2], etc. From the ontological point of view these concepts are not natural
kinds like person or organization: rather, they all are roles involved in a relationship [6].

Roles have different properties than natural kinds, and, thus, are difficult to model
with classes: they are dynamically acquired, they depend on other entities - the rela-
tionship they belong to and their players - and they add properties and behaviors to the
objects playing roles. Moreover, roles can be played by objects of different classes. In
particular, when an object of some natural type plays a certain role in a relationship, it
acquires new properties and behaviors. For example, a student in a course has a tutor,
he can give the exam and get a mark for the exam, another property which exist only as
far as he is a student of that course.

As Steimann [7] argues, there is an intrinsic role of roles as intermediaries between
relationships and the objects that engage in them. Thus, in this paper, we focus on the
following research question: How to introduce roles in relationships? And as subques-
tion: Which are the advantages given by roles in the relationship as attribute pattern?

In this paper as methodology we use our model of roles in OO programming lan-
guages which has been added to an extension of the Java programming language, called
powerJava, described in [8,9].

The language powerJava introduces roles as a way to structure the interaction of
objects (callee) with other objects calling their methods (caller). Roles express the pos-
sibilities of interaction offered by a callee to another one, i.e., the methods it can call.
First, these possibilities change according to the class of the caller of the methods. Sec-
ond, a role maintains the state of the interaction with a certain caller. As roles have a
state and a behavior, they share some properties with classes. However, roles can be
dynamically acquired and released by an object playing them. Moreover, they can be
played by different types of classes. This is why roles in powerJava can be added to
model relationships, where the behavior of an object changes when it enters a relation-
ship until it subsequently abandons it.

In Section 2 we discuss how relationships are introduced in OO programming. In
Section 3 we summarize our model of roles in powerJava and in Section 4 we use it to
introduce roles in the relationship as attribute pattern.
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2 Introducing Relations in OO

We will describe in this section the relationship as attribute pattern with reference to a
university domain. Consider a student who can attend different kinds of courses: basic
ones and advanced ones. The same course can be a basic one in the curriculum of a
senior student and an advanced one for junior student. A student can give the exam of
the basic course he is attending, and his mark is reported on a registry, and it is possible
to send a message to the student of the course. Finally, a course is associated with a
tutor if it is taken as a basic course; the tutor, which is not present in advanced courses,
can be different for every student attending a given course.

The relationship as attribute pattern is described in Figure 1: the relationship be-
tween a student and a course he attends is modelled by means of an attribute attends
of the instances of class Student which participate in the relationship. The type of
the attribute is a set of BasicCourses. Symmetrically, the Student appears in the
attribute attendees of the type set of Students in the class BasicCourse.

This solution, however, does not allow to add a state and behavior to the pairs of
elements related by the relationship. For example, it is not possible to specify a different
tutor for each Student of the BasicCourse.

This is possible in the alternative pattern, the relationship object, where the partic-
ipants in the relationship are linked to an object representing a relationship instance.
This alternative solution can be modelled in UML, which specifies information proper
of an association via an association class, which can be endowed with properties and
behaviors. An association class has exactly one instance for each set of objects linked
through the association and a lifetime delimited by the existence of the association. If
a link is dissolved, the association class instance is destroyed. Due to the association,
certain information exists that is specific to the association.

But the relationship object solution shares with the relationship as attribute a limita-
tion. We would like to model the scenario introducing natural types like Person rather
than the Student class only. The reason for such modelling choice is that a Person
is not always a Student, but only as long as he attends courses. Moreover, he can give
exams or receive communications concerning the course, only if he is registered and,
thus, related by the relationship with a Coursewhich he follows as a BasicCourse.
He has different marks in different exams, and even different students can have different
tutors for the same course. Analogously a Course has a tutor only if it plays the role
of BasicCourse. Note that Person instances can play also other roles while they
are Student, like, e.g., employee.

Moreover, even if the relationship object pattern allows to add new properties and
behaviors, it does not allow to satisfy completely the requirement that properties and
behaviors are associated to the participants: this pattern does not distinguish which
properties and behaviors belong to the Student and which ones to the Course. All
properties and behaviors are associated to the instance of the class representing the
relationship.

We leave modelling this pattern for future work, even if its realization in powerJava
is straightforward.



Relationships Meet Their Roles in Object Oriented Programming 443

class Printer {
private int printedTotal;

definerole User {
private int printed;
public void print(){ ...
printed = printed + pages;
printedTotal = printedTotal

+ printed;
Printer.print(that.getName());

}}}

role User playedby UserReq
{ void print();
int getPrinted(); }

interface UserReq
{ String getName();
String getLogin();}

jack = new AuthPerson();
laser1 = new Printer();
laser1.new User(jack);
((laser1.User)jack).print();

Fig. 2. A role User inside a Printer

3 Roles in Powerjava

Baldoni et al. [8,9] introduce roles in powerJava, an extension of the object oriented
programming language Java. Java is extended with:

1. A construct specifing the role with its name, the methods required to play the role,
and the operations it offers to its players.

2. The implementation of a role, inside another object and according to its definition.
3. How an object can play a role and invoke the operations offered by the role.

Figure 2 shows the use of roles in powerJava by means of the example of a printer
which can be accessed via roles, e.g. User. First of all, a role is specified as a sort of
interface (role - right column) by indicating via an interface which classes can play
the role (playedby) and which are the operations acquired by playing the role (e.g.,
print). Second (left column), a role is implemented inside an object as a sort of inner
class which realizes the role specification (definerole). The inner class implements
all the methods required by the role specification as it were an interface.

In the bottom part of the right column of Figure 2, the use of powerJava is de-
picted. First, the candidate player jack of the role is created. It implements the re-
quirements of the roles (the class AuthPerson implements UserReq). Before the
player can play the role, however, an instance of the object hosting the role must be
created first (a Printer laser1). Once the Printer is created, the player jack
can become a User too. Note that the User is created inside the Printer laser1
(laser1.new User(jack)) and that the player jack is an argument of the con-
structor of role User of type UserReq, which becomes the value of the special vari-
able that, thus allowing to refer to the player from the role implementation.

The player jack to act as a User must be first classified as a User by means of
a so-called role casting ((laser1.User) jack). Note that jack is not classified
as a generic User but as a User of Printer laser1. Once jack is casted to
its User role, it can exercise its powers, in this example, printing (print()). Such
method is called a power since, in contrast with usual methods, it can access the state of
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role Student playedby Person {int giveExam(String work);}
role BasicCourse playedby Course {void communicate(String text);}

class Person{
String name;
private Queue messages;
private HashSet<BasicCourse> attended; //BasicCourse followed
definerole BasicCourse {
Person tutor;
// the method communicate access the state of the outer class
void communicate (String text) {Person.this.messages.add(text);}
BasicCourse(Person t){
tutor=t;
Person.this.attended.add(this); }//add link

}
}
class Course {
String code;
String title;
private HashSet<Student> attendees; //students of the course
private HashTable registry = new HashTable();
private int evaluate(String x){...}
definerole Student {
int number;
int mark;
int giveExam(String work){ mark = Course.this.evaluate(work);

registry.set(that.name.hashCode(), mark); ... }
Student (){ Course.this.attendees.add(this); }}}//add link

Fig. 3. Relationship-role as attribute pattern in powerJava

other objects: the role namespace shares the one of the object including the role (called
institution). In the example, the method print() can access the private state of the
Printer and invoke Printer.print() or modify printedTotal.

4 The Relationship-Role as Attribute Pattern

In this section we describe how a new pattern for modelling relationships with roles can
be defined, in analogy with the relationship as attribute pattern. We will use the example
of Section 2 to present it.

First of all, using powerJava we can distinguish natural types like Person and
Course from the respective roles Student and BasicCourse. Person and
Course become, respectively, Student and BasicCourse when they enter the
relationship. Roles are represented in powerJava by instances dynamically associated
with the players of the roles, which include the state and behaviors acquired by the
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class University{
public static void main (String[] args){
Course c = new Course();
Person p = new Person();
Student s = c.new Student(p); //create role Student for p
BasicCourse b = p.new BasicCourse(c,tutor);
//p as a Student of Course c gives the exam by submitting work
((c.Student)p).giveExam(work);
//a message is sent to p since he attends c as a BasicCourse
((p.BasicCourse)c).communicate(text); }

Fig. 4. Using the relationship-role as attribute in powerJava

players of the roles in the relationship (see Figures 3 and 5 where the UML representa-
tion is illustrated1).

Second, in the relationship as attribute pattern, a relationship is reduced only to two
symmetric attributes attended and attendees. In the new pattern, the relationship
is modelled also by means of a pair of roles implemented in the two classes representing
the natural types. Thus, the attribute attendees in Course of type Student in
Course becomes Course.Student, and its values will be role instances which are
played by instances of type Person. The role Student is associated with players
of type Person in the role specification, which specifies that a Student can give
an exam (giveExam). Analogously, the attribute attended of Person becomes
of type Person.BasicCourse and its values are associated with players of type
Course as in the role specification, which specifies that a Course can communicate
with the attendee.

The role Student is implemented locally in the class Course by the class
Course.Student, and, viceversa, the role BasicCourse is implemented locally
in the class Person by the class Person.BasicCourse. Note that this is not con-
tradictory, since roles describe the way an object offers interaction to another one: a
Student represents what a Course offers a Person to interact with it, and, thus,
the role is implemented inside the class Course. Moreover the methods associated
with the role Student, i.e., giving exams, and implemented in Course.Student,
modify the state of the class including the role (Course) or call its private methods,
thus violating the standard encapsulation. Analogously, the communicate method
of Person.BasicCourse, implementing the method signature specified in the role
BasicCourse, modifies the state of the Person hosting the role by adding a mes-
sage to the queue. These methods, in powerJava terminology, exploit the full potentiality
that powers have of violating the standard encapsulation of objects.

To associate a Person and a Course in the relationship, the role instances must
be created starting from the objects offering the role, e.g.: c.new Student(p) (see
the main in Figure 4) where the player p is passed as a parameter.

When the player of a role must invoke a power it must be first role casted to the
role. For example, to invoke the method giveExam of Student, the Person must

1 The arrow starting from a crossed circle, in UML, represents the fact that the source class can
be accessed by the arrow target class.
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first become a Student. To do that, however, also the object offering the role must
be specified, since the Person can play the role Student in different instances of
Course; in this case the Course c: ((c.Student)p).giveExam(...).

The pattern has different pros and cons; the following list integrates Noble [2]’s
discussions on them. Advantages of the Relationship-role as attribute pattern:

– It allows simple one-to-one relationships: it does not require a further class and its
instance to represent the relationship between two objects.

– It allows to introduce a state and operations to the objects entering the relationship,
which was not possible without roles in the relationship as attribute pattern.

– It allows the integration of the role and the element offering it by means of powers.
– It allows to show which roles can be offered by a class, and, thus, in which rela-

tionships they can participate, since they are all defined in the class.

Disadvantages of the Relationship-role as attribute pattern:

– It requires that the roles are already implemented offline inside the classes which
participate in the relationship.

– It does not assure coherence of the pair of roles like student-course, buyer-seller,
bidder-proponent, since they are defined separately in two different classes.

– The role cast to allow a player to invoke a power of its role requires to know the
identity of the other participant in the relationship.

– It does not allow to distinguish which is the role played in the other object partici-
pating in the relationship (e.g., a Student in the attendees set of a Course
can follow the Course as a BasicCourse or an AdvancedCourse).

In summary, we can define an informal program transformation, to add roles to the
relationship as attribute pattern using powerJava:

1. Identify the natural types of the objects playing the roles (e.g., Person for
Student, or Person and Organization for Customer).

2. Change the type of the classes which participate in the relationship from the name
of the role to the name of the natural kinds playing the role (now there can be more
than one class playing the role); e.g., the class Student becomes Person.

3. Add a role definition relating the role to the natural types which can play the role,
or to an interface implemented by these natural types, and insert in the role specifi-
cation the signature of the powers (e.g., communicate, giveExam).

4. Identify the two links to the participants in the relationships in the classes repre-
senting the participants (e.g., attendees of type Student in Course), now of
natural types.

5. In the same class the link belongs to, add a role class implementing the role defini-
tion with the same name as the type of the link (e.g., Student in the
BasicCourse class which is now called Course). Add to this role class the
attributes and the implementation, according to the role specification, of the pow-
ers.

6. In the code which relates the two participant instances to the relationship, instead
of adding the players to the links, first create two roles instances played by the
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respective players (of natural types), and, second, add these instances to the links
modelling the relationship in the class of the players, e.g., Person (this can be
done in the role constructors).

7. When a method added by the relationship must be invoked, first, make a role cast
from the object playing the role to the role it plays.

+ communicate(String)

Course

+ name: John

+ tutor: person

+ number: 1234

− ...

− messages: ...

− attended: ...

− evaluate(String)

− attendees: ...

+ title: "programming"

RQ

RQ

+ mark: 10

+ Student(Person)

+ BasicCourse(Course)

+ giveExam(String)BasicCourse.this

that

that

:Person.BasicCourse

:Course.Studentp:Person

Student.this

c.Course

+ code: CS110

Person

Fig. 5. The UML representation of the relationship-role as attribute pattern example

5 Conclusion

In this paper we discuss why roles need to be introduced when relationships are mod-
elled in OO programs: it is possible to distinguish between the natural type of objects
populating the program and the roles they play, and objects acquire new states and
behaviors when they participate in a relationship. The state and behaviors which are
dynamically acquired are modelled by roles.

Using the language powerJava, a role endowed version of Java, we show how to in-
troduce roles in the the relationship as attribute pattern and we discuss the pros and cons
of the pattern when roles are introduced. In particular, we show that the relationship as
attribute pattern extended with roles enables to model the extension of behavior of the
objects entering a relationship, without the introduction of a further class modelling the
relationship. Future work is introducing roles in the relationship as object pattern and
designing new patterns where both patterns can be considered at the same time.
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Núñez, Manuel 160, 318

Ouaknine, Joël 98
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