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Abstract. An increasing number of computationally enhanced objects
is distributed around us in physical space, which are equipped – or at
least can be provided – with sensors for measuring spatial contexts like
position, direction and acceleration. We consider spatial relationships be-
tween them, which can basically be acquired by a pairwise comparison
of their spatial contexts, as crucial information for a variety of applica-
tions. If such objects do have wireless communication capabilities, they
will be able to build up an ad-hoc network and exchange their spatial
contexts among each other. However, processing detailed sensor informa-
tion and routing it through the network lowers their battery lifetime or
even may exceed the capabilities of embedded systems with limited re-
sources. Thus, we present a novel and efficient approach for inferring and
distributing spatial contexts in multi-hop networks, which builds upon
qualitative spatial representation and reasoning techniques. Simulation
results show its behavior with respect to common network topologies.

1 Introduction

People are nowadays interacting with an increasing number of real-world ob-
jects with embedded computing capabilities like vehicles, household appliances,
notebook computers, mobile phones and portable music players. As they are by
nature distributed throughout physical space, their inherent spatial properties
as well as spatial relationships between them are valuable context information
for a variety of applications. We refer to technology-enriched physical objects as
artifacts in the following, and use the term spatially-aware if they are able to
acquire and use spatial context information. They usually contain an embedded
processing platform, wireless communication capabilities, a power management
unit and possibly sensors and actuators.

A simple vehicular application scenario for the computational use of spatial
relations can be seen in Figure 1. It shows four vehicles approaching a crossroads,
whereas vehicle b sends information about its current position and moving di-
rection as well as its relations to others in vicinity – namely that c and d are
close behind and moving in the same direction – to vehicle a. Upon receiving
this information, a recognizes that b is in front and for example alerts the driver
if it is still moving too fast. Moreover, from the information that b is in front of
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Fig. 1. Application scenario vehicle-to-vehicle communication

a, and c and d are behind b, a can infer that two more vehicles with priority
will soon be approaching from the right hand side.

In this paper we study how such autonomous and spatially-aware artifacts
recognize spatial relationships to others in their vicinity, and how this knowl-
edge can be distributed among artifacts out of communication range (i.e. packets
cannot be delivered directly, but only via other artifacts). In [1], we have pre-
sented an approach that is based on the idea that each artifact exchanges its
own spatial context with others in proximity, recognizes spatial relationships
by comparing its own with received context information, and infers relations to
artifacts out of range by exploiting the transitivity-property of spatial relations.

We present an extension of this approach by using qualitative spatial rep-
resentation and reasoning techniques in the following, which comprises several
aspects that are surveyed in Section 2. In this regard, we point out which ones
we consider particularly useful with respect to resource efficiency in order to
cope with limited battery lifetime and processing constraints of embedded sys-
tems. A comparison of related approaches is discussed in Section 3, and a new
spatial calculus for composing qualitative positional and directional relations is
presented afterwards. In Section 4, we finally propose an algorithm that builds
upon this calculus for distributing spatial relationship information throughout
a multi-hop network of artifacts, and discuss simulation results showing its be-
havior by means of different network topologies with varying numbers of nodes.

2 Spatial Representation and Reasoning

2.1 Static Spatial Contexts

We observe that an increasing number of real-world objects with integrated
computing capabilities is distributed around us in physical space. For this reason,
they basically do have a certain position, direction and extension, which can be
changed through translation, rotation and scaling, correspondingly [2]. We refer
to the first three properties as static spatial context, as they describe an artifact’s
spatial situation at a particular point in time, while the latter three are referred
to as dynamic spatial context, as they describe how its static situation is changing
at that point in time.

Similarly to [3], we classify the spatial context of an artifact both in terms
of its inherent characteristics and with respect to other objects, which describe
its spatial properties independently of other artifacts and its spatial relations to
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others, respectively. In Table 1, the static characteristics of an artifact, namely
its position (i.e. where it is located) and direction (i.e. how it is positioned)
as well as its topology (i.e. a description of parts of which it consists of) and
extension (i.e. its shape and size), are classified along these two categories. The
scope of our work is on positional and directional relations among artifacts,
their spatial extension, inherent topology (i.e. holes and separations) and thus
also topological relations like containment and overlapping as well as extensional
relations between them are not considered. The main reason is that taking into
account the spatial extension of artifacts requires much more computational
resources [4], which often exceeds the capabilities of embedded systems with
limited resources.

Table 1. Static characteristics of an object’s spatial situation

Inherent spatial properties Spatial relations to artifacts

Position geographic position orientation and distance relations
Direction intrinsic direction axis relations between direction axes
Topology holes and separations spatial arrangement
Extension shape and size relation between extensions

2.2 Qualitative Spatial Representation

The computational processing of spatial relations requires a formal represen-
tation, wherefore the mathematics of Euclidean space probably comes to mind
first [5]. However, such precise quantitative approaches have numerous disadvan-
tages compared to qualitative representations, especially with regard to resource-
constrained embedded systems. First, qualitative models allow to deal with
coarse and imprecise spatial information, which is an important property as
exact sensor information is often not available or precise answers are not re-
quired [5] [6]. Second, processing quantitative knowledge is more complex and
thus computationally more expensive [3] [7]; moreover, quantitative models are
often intractable or even unavailable [4]. A huge field of research is qualitative
spatial representation and reasoning [4] [8], which is concerned with abstracting
continuous spatial properties and relations of the physical world, and inferring
knowledge from the respective qualitative representations.

In order to represent spatial relations in a qualitative way, it is necessary
to decide on a certain kind of spatial primitive first. We decided to use points
as abstractions of physical artifacts and define relations between these basic
spatial entities in a two-dimensional plane. For both orientation and directional
relations, a common approach is to partition the 360◦ range into intervals, where
each one of the respective regions is associated with a certain relation. In the case
of orientation relations, which describe where a certain object (i.e. the primary
object p) is placed relative to another object (i.e. the reference object r) [4] [8],
the space around the reference object is partitioned and the relation is denoted
by the region in which the primary object is located.
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Directional relations on the other hand relate the direction of the primary
object, as given by its intrinsic direction axis, with that of the reference object;
therefore, the space around the primary object is partitioned according to the
direction axis of the reference object, and the region in which the direction axis
of the primary object points denotes the directional relation. The most common
representation systems used are cone- or projection-based [9], where we consider
the cone-based system as the most suitable with regard to embedded systems, as
it easily allows to change the granularity of relations just by adding or removing
axes and thus allows to cope with senors of different accuracy.

For representing distance relations, we use Euclidean distances and assume an
isotropic space, where points at the same distance are connected with concentric
circles. Each of the qualitative distances conforms to an interval of quantitative
ones [3], defining the qualitative relation between the reference object and the
primary object; the number of intervals again determines the granularity of the
relations. Figure 2 shows common qualitative representations of orientation and
distance relations, which partition the space in the eight cardinal directions
north, east, south, west, north-east, south-east, south-west, and north-west, and
in the five distance levels very close, close, commensurate, far and very far,
respectively [3] [9].

Fig. 2. Cone- and projection-based directions, and qualitative distances [3]

Another issue related to qualitative spatial representations are frames of ref-
erence, which influence the semantics of spatial relationships. For orientation
relations, the frame of reference fixes the front-side of the reference object and
thus defines its reference direction. A distance frame of reference is presented
in [10], which is however not important in the following. According to [3], our
scope is on intrinsic reference frames, where the relation is given by inherent
properties of the reference object like its intrinsic direction axis, and on extrin-
sic frames of reference, which are determined by external factors like the earth
reference frame; in this regard, its scale defines distances between objects and
the North Pole serves as a fixed reference point for orientation relations. In both
cases, the reference frame is centered in the reference object (i.e. referred to
as egocentric [11]), as we only consider artifacts that recognize spatial relations
with respect to themselves and never between other artifacts. Deictic frames of
reference, which represent relations from an external viewpoint, are thus out of
scope. The resulting four types of spatial relations can be seen in Figure 3.
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Fig. 3. Intrinsic/extrinsic positional and directional relations

2.3 Qualitative Spatial Reasoning

Many applications for the use of spatial relations can be found in literature,
for example their visualization on a display [12], triggering of certain actions
when entities get into spatial proximity [13], or reasoning [2] [4] about spatial
configurations. Our scope is on the latter, namely to use qualitative reasoning
techniques for inferring relationship information among artifacts. Qualitative
spatial reasoning is commonly realized in form of calculi over sets of jointly
exhaustive and pairwise disjoint spatial relations (i.e. non-overlapping relations
covering the whole space), which are in turn defined over sets of spatial entities
(cf. Section 3.1).

A relation R between two objects x and y (i.e. (x, y) ∈ R) is often denoted as
R(x, y), and it is read as “x is in relation R to y”. A spatial calculus consists of a
domain D containing the spatial entities, a finite set BR of n-ary base relations
on the domain and the powerset R of these base relations, as well as a set of
operations [14]. The result of an operation may be the union of multiple base
relations, wherefore the operations of a calculus have to be defined for all possible
unions of base relations. We use the following operations on binary relations for
inferring and distributing relations in Section 4.1, where R, S ∈ R [14]:

– Union: R ∪ S = {x|(x ∈ R) ∨ (x ∈ S)}
– Intersection: R ∩ S = {x|(x ∈ R) ∧ (x ∈ S)}
– Composition: R ◦ S = {(x, z)|∃y ∈ D : (x, y) ∈ R ∧ (y, z) ∈ S}
Of particular interest for this work is the composition of relations [4] [8]: given

the relation between two objects x and y as well as between y and z, what is
the relation between the objects x and z? It may result in a set of neighboring
relations, which means that any of them can be the relation between x and z;
such a set is referred to as compound relation [8]. The results are commonly
stored in composition tables, which define the resulting relations of all possible
compositions of base relations; compound relations of R can be computed as
the union of the compositions of base relations. In contrast to the set-theoretic
operations union and intersection, the composition has to be computed from
the meaning of the respective relations [6]. A related concept in qualitative
spatial reasoning is that of conceptual neighborhood ; two relations are conceptual
neighbors if and only if they can be directly transformed into each other (i.e.
without passing other relations) [15]. In Section 3.2, an iconic notation of the
neighborhood structure is used for defining the composition table.
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3 Reasoning About Positional and Directional Relations

3.1 Comparison of Related Approaches

In Section 2.2, we distinguished four types of qualitative spatial relations which
are shown in Figure 4 by means of an exemplary configuration, where two ar-
tifacts p and r are placed in two-dimensional Euclidean space. For orientation
and direction relations, a cone-based qualitative representation with four equally
sized sectors is used, and distance relations partition the space around the refer-
ence object r in circular ranges of the same size – except the outer range which
is open. Solid arrows represent intrinsic direction axes, and the dotted one an
extrinsic reference direction. The resulting relation of artifact p with respect to
r is written boldface for the example in Figure 4. In addition to the relations
shown in Figure 4, the identity relations straight-front (for orientation), here (for
distance) and same-dir (for direction) can be defined. While the former two are
however practically impossible due to sensor inaccuracies and objects that have
a physical extension respectively, the latter corresponds to using an extrinsic
frame of reference.

Fig. 4. Qualitative positional and directional relations

As stated in Section 2.3, qualitative spatial reasoning is commonly realized
in form of calculi over sets of qualitative spatial relations. Many of such qual-
itative spatial calculi have been developed during the past decades, mainly for
topological or positional reasoning; however, they are often not fully specified,
and mostly no implementation is made available [14]. Table 2 shows a compar-
ison of popular qualitative spatial calculi which are classified according to the
four relation types presented above. Many of them incorporate the spatial con-
text orientation only, for example the ternary double-cross calculus presented
by Freksa [7] [14] and the flip-flop calculus of Ligozat et.al. [16], which describe
the deictic orientation of a point in the plane with respect to a vector that is
given by two further points. However, they can represent intrinsic orientation
relations by viewing them as positional binary relation between a dipole and an
isolated point. On the other hand, there are only few calculi dealing with spatial
distance only, as for example Hernández et.al. [10] who particularly addressed
the composition of distances depending on intrinsic orientation relations.

Early work that combines orientation and direction relations is that of Abdel-
moty et.al. [2], which allows for representing extrinsic and intrinsic orientation
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relations by computing the intersections of orientation lines; directional relations
are represented through the inverse orientation relation. The binary dipole re-
lation algebra of Moratz et.al.[17] uses straight line segments, which are formed
by a pair of points at a time, for representing orientation relations between ob-
jects with an intrinsic direction axis. A continuative calculus of Moratz et.al. is
the oriented point relation algebra [18], where oriented points are used instead
of dipoles, and the granularity is adjustable with a single parameter; the exact
set of base relations thus depends on the chosen level of granularity. A similar
approach with arbitrary granularity is presented by Renz et.al. in [9], which de-
veloped the star calculus for relating two points in a plane with respect to an
extrinsic reference direction.

However, there is only few existing work about the combination of orienta-
tion and distance relations. Zimmermann et.al. [19] add distance to their ternary
calculus for representing intrinsic orientation, and show how distance informa-
tion restricts the possible orientation relations; this dependency is also shown
by Sharman in [20]. Clementini et.al. [3] show the interplay between orientation
and distance relations, but do not present a calculus for homogeneous reasoning
about orientation and distance relations. To the best of our knowledge, there is
no existing work which deals with compositional reasoning about combined ori-
entation and distance relations as presented in Section 3.2, neither taking into ac-
count directional relations nor without considering them. Moreover, in Section 4
we apply this composition for distributing relationships among autonomous ar-
tifacts, which also seems to be new.

Table 2. Comparison of approaches for reasoning about static spatial relations

extr. orient. intr. orient. extr. dist. intr. direct.
Freksa [7] [14] x

Ligozat et.al. [16] x
Hernández et.al. [10] x
Abdelmoty et.al. [2] x x x

Moratz et.al. [18] [17] x x
Renz et.al. [9] x x

Zimmermann et.al. [19] x x
Clementini et.al. [3] x x
Proposed approach x x x x1

3.2 Composition of Positional and Directional Relations

Motivated by characteristics of pervasive and ubiquitous computing applications,
primarily the distribution of huge numbers of artifacts in the real world which do
have limited processing, storage and communication resources, we are addressing
a combined analysis of position and direction relations within a single framework

1 For composing positional relations with intrinsic orientation (cf. Section 3.2).
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in the following. We discuss the composition of static positional and directional
relations, which is used in the subsequent section for inferring relations between
artifacts out of range by repeatedly applying it to triples of artifacts.

We developed composition tables for the four orientation base relations front,
right, back and left as well as the three distance base relations near, medium-dist
and far. The result of a composition operation depends on the directional rela-
tion between the involved objects, which can be similar-dir, right-dir, opposite-
dir and back-dir ; the relation same-dir is additionally considered, meaning that
x and y do have exactly the same direction in space (e.g. due to using the extrin-
sic earth reference frame). Thus, dedicated composition tables for distance and
orientation relations are required, depending on the artifact’s intrinsic direction.
We thus get a total number of 12 base relations in the case of an extrinsic, and
48 in the case of an intrinsic reference direction.

Fig. 5. Composition of the two positional relations front(y,x) ∧ near(y,x) and right(z,y)
∧ near(z,y), with the directional relations same-dir(y,x) (left) and similar-dir(y,x)
(right). Possible alternative positions of z are shown with white dots.

How the composition of positional relations among three artifacts x, y and z
is acquired can be seen in Figure 5, exemplarily for the extrinsic earth reference
frame (same-dir(y,x)) and with a similar direction between the objects x and y
(similar-dir(y,x)). While the former composition results in just four possible rela-
tions due to the range of possible positions (i.e. front(z,x) ∧ near(z,x), front(z,x)
∧ medium-dist(z,x), right(z,x) ∧ near(z,x) or right(z,x) ∧ medium-dist(z,x)), the
latter results in a set of even seven relations as a consequence of the additional
range of possible alternative directions of object y with respect to x. Due to a
lack of publication space, just extrinsic orientation and distance are dealt with
in the following.

Figure 6 shows the separate composition tables for extrinsic orientation and
distance, wherefore an iconic notation is used (cf. Section 2.3). The four orien-
tation base relations are visualized with black dots indicating their orientation,
and the three distance base relations are visualized with filled areas indicating
their possible ranges; disjunctions of base relations, which represent possible al-
ternative relations, are visualized by superimposing their icons. However, it can
be seen that the composition operation often leads to coarse results ; e.g., the
compositions of front and left or of near and medium-dist result in the union
of all orientation or distance base relations, respectively, which are referred
to as universal relations and represent the complete lack of knowledge about
the spatial relation between two artifacts. The composition tables for combined
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orientation and distance relations can be seen in Figure 7, partially for six base
relations at a time; all others can be acquired by simply rotating the table. The
combined consideration allows for more accurate conclusions [8]; for example,
composing the extrinsic distance relations medium-dist(z,y) and far(y,x) only
yields the universal relation, but taking into account the orientation relations
front(z,y) and front(y,x) results in just one distance relation, namely far(z,x).

Fig. 6. Composition tables for ex-
trinsic orientation (top) and distance
relations (bottom), which are algorith-
mically managed separately

Fig. 7. Extraction of the composition
table for an algorithmically combined
extrinsic orientation and distance rela-
tions management

4 Distribution of Spatial Relationship Information

4.1 Distribution Algorithm

In this section, we address the question of how a whole collective of artifacts,
namely all artifacts which are connected directly or via multiple hops, can be
provided with an awareness about positional relations among each other. We
distinguish two general approaches therefore: (i) exchanging quantitative sen-
sor data among all artifacts, or (ii) exchanging sensor data between artifacts
within communication range only, together with their knowledge about qualita-
tive spatial relations to other artifacts. We refer to data packets which contain
these spatial contexts as the artifacts’ self-descriptions. While the former one
can be done by simply flooding them throughout the network, we developed a
new approach for the latter.

The basic idea is that a certain artifact starts to broadcast its self-description
containing quantitative sensor data (e.g. its position from a GPS receiver) to
others in vicinity, which recognize qualitative spatial relations to the broadcast-
ing one, put them in their own self-descriptions and broadcast them, too. This
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initial broadcast may be for example due to significant changes of its sensor
readings as a result of movement, or periodically after a certain time period has
elapsed. An artifact in turn broadcasts its own self-description either upon re-
ceiving that of another artifact the first time, or if its qualitative spatial relations
to others changed. This process of distributing relations terminates if no artifact
recognized further changes in its qualitative spatial relations. The broadcast-
ing step can be delayed by performing broadcasts in short fixed intervals only,
which avoids multiple broadcasts due to successively received self-descriptions
and thus reduces the induced traffic (i.e. the total number of packets received by
artifacts).

Additionally, an artifact may infer further relations by composing its relation-
ship to the broadcasting one with those contained in the received self-description.
In [1], the inference is done by processing the transitive closure, which is equiv-
alent to a composition of relations where all three – the two composed relations
as well as the resulting one – are the same; the respective cases for extrinsic
orientation relations are emphasized in Figure 6. Although this approach is uni-
versal in the sense that it can be applied to arbitrary relations, it is quite limited
as many relations like distance and intrinsic orientation are not transitive. We
thus extended it by composing spatial relations as described in Section 3.2. In
the first version, the composition of orientation and distance relations is algo-
rithmically managed separately using the composition tables of Figure 6, which
leads to more accurate results than the previous approach as the composed re-
lations need not be the same. The best results – i.e. those which constrain the
resulting possible relations most, particularly with regard to distance relations –
are acquired by an algorithmically combined management of orientation and dis-
tance relations using the composition table of Figure 7.

Algorithm 1 describes the operations an artifact performs upon receiving a
self-description, whereas the composition step can be one of the three described
above. If the composed relations R and S are compound ones, the composition
result RS is the union of the compositions of base relations, whereas resulting
universal relations are not stored. In order to retain the most accurate result, RS
is eventually intersected with relations to the respective artifact that are possibly
contained in the local self-description. An example therefore is given in Figure 8
by means of a simple network topology, where each node represents an artifact
and edges between the nodes indicate that they are within communication range.

4.2 Simulation and Discussion

We have implemented the flooding algorithm as well as the proposed one with its
three ways for composing spatial relations as described Section 4.1, and simulated
them with the J-Sim2 simulation environment using different network topologies
with varying numbers of nodes. The simulation was done without taking into
account certain wireless communication technologies or transmission protocols,
just the protocol logics have been implemented. The aim was to compare our

2 http://www.j-sim.org/
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Algorithm 1. artifact x receives self-description of artifact y
1: if self-description of y received the first time then
2: recognize qualitative relation of y to x and put it to self-description of x;
3: end if
4: R ← get qualitative relation of y to x from self-description of x;
5: for all artifacts z which are in relation to y do
6: if z �= x then
7: S ← get qualitative relation of z to y from self-description of y;
8: RS ← perform composition R ◦ S;
9: if self-description of x already contains relation of z to x then

10: intersect known relation with composition-result RS;
11: else
12: put composition-result RS to self-description of x;
13: end if
14: end if
15: end for
16: if first self-description received or relations in self-description of x changed then
17: broadcast self-description of x;
18: end if

algorithm and the flooding approach both with regard to the achieved spatial
relation awareness of all artifacts after its termination, and the traffic induced
therefore due to broadcasts of self-descriptions.

We first simulated the four algorithms with the topology shown in Figure 8,
the resulting spatial awareness of all n = 5 artifacts can be seen in Figure 9.
With the flooding approach, each artifact gets to know the self-descriptions of
all others in the network, and it is possible to compute exactly one base relation
from the sensor data of each artifact. Flooding is thus the most accurate algo-
rithm, resulting in a total number of n ∗ (n − 1) = 20 relations, and it causes
a total number of 50 received self-descriptions over all n artifacts. The transi-
tive closure algorithm on the other hand is the least accurate one, mainly for
two reasons. First, all three relations have to be the same for processing the
transitive closure, wherefore artifact a is not able to infer any relation to ar-
tifact c and vice versa, as the orientation on the path from a to c is changing
(i.e. right(b,a) and back(c,b)). Second, the spatial relations have to be transitive,
which is not the case e.g. for distances; for this reason, no distance relation can
be inferred from the artifacts c, d and e to a, and from e to b and c. It results
in 58 relations, as a missing distance or orientation relation corresponds to 3 or
4 base relations (i.e. the respective universal relations), and no positional rela-
tion at all (e.g. from c to a) corresponds to their product with 12 alternative
positional relations. The simulation also showed that it induced a traffic of 36
received self-descriptions; with delayed broadcasts, it could be reduced to 25
which is 50% compared with flooding. In both cases, the simulation was started
once from each artifact and the average of the resulting traffic was taken. Addi-
tionally, we investigated the relative accuracy achieved by a certain algorithm,
which we define as the complement of the ratio between the difference of the
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Fig. 8. Topology of the simulated network (left), and an example scenario (right) show-
ing the composition of the relations R(b,d) and R(d,c) as well as the intersection of
the resulting relation R(b,c) with the more accurate one which is recognized due to a
received self-description SDb of artifact b

actual and the minimum number of relations, and the difference of the maxi-
mum and the minimum number of relations. For the transitive closure algorithm,
it is 1 − (58 − 5 ∗ 4 ∗ 1)/(5 ∗ 4 ∗ 11) = 83% compared with flooding.

Taking into account the separate composition of orientation and distance,
more accurate conclusions can be drawn. For example, artifact a is now able
to infer the two alternatively possible base relations right(c,a) and back(c,a) as
defined in the composition table of Figure 6, and artifact c is able to narrow

Fig. 9. Comparison of simulation results for the topology shown in Figure 8, where
the columns show the acquired spatial relation awareness of the artifacts a . . . e after
termination of the distribution process
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down the possible distance relations to artifact e to near(e,c) and medium-
dist(e,c). It results in a total number of 42 relations, and induces a traffic of
38 self-descriptions without and 26 with using delayed broadcasts. The accuracy
raises to 90% and the traffic for delayed broadcasts to 52%. Nevertheless, the
composition of distances often results in the universal relation, which does not
provide any information about the spatial distance between artifacts. With a
combined composition of orientation and distance relations as shown in Figure 7
however, the accuracy of the relations between some artifacts can be increased.
For example, while artifact a is only able to infer the relation right(e,a) due
to the resulting universal relation by composing the distance relations medium-
dist(b,a), near(d,b) and near(e,d) without combining orientations and distances,
their combined consideration allows to exclude the distance relation near(e,a).
The total number of relations can eventually be refined to 38, the induced traffic
is the same with 38 and 26 self-descriptions, respectively. The accuracy thus
raises to 92% and the traffic remains 52%, which means that a higher accuracy
is achieved with the same traffic necessary.

Fig. 10. Traffic induced by different algorithms depending on the network topology

Figure 10 shows the induced traffic for the common network topologies full
binary tree, line, mesh and ring, with varying numbers of nodes at a time; the
topologies are included as small images in the diagrams. First, it can be seen
that it is in any case reduced by using qualitative composition in comparison
to flooding. The transitive closure algorithm is always equal or below the traffic
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induced by a separate or combined composition of positional relations, which is
due to the smaller number of inferred relations and thus the fewer broadcasts.
Second, the induced traffic for separate and combined composition is quite dif-
ferent for the binary tree topology, whereas it is virtually the same for line,
mesh and ring topologies. Third, using delayed broadcasts significantly reduces
the traffic with an increasing number of nodes, for example to less than 40% for
the mesh and binary tree topology with 15 nodes. We also experimented with
complete graphs and star topologies, leading to similar results; combined com-
position with delayed broadcast even allows to decrease the traffic to less than
30% for a complete graph topology.

The respective relative accuracies for the four topologies are finally shown
in Figure 11. First, it can be seen that the transitive closure approach leads to
the least accuracy, as it only supports a subset of the possible compositions.
Second, the accuracy decreases with an increasing number of nodes, which is
due to the coarser composition results coming along with the higher number of
hops between artifacts. Third, the percentage-wise reduction of traffic is in all
simulated scenarios higher than the loss of accuracy; for example, the induced
traffic for the mesh-topology with 16 nodes drops to 27% in the case of separate
composition, whereas the accuracy is reduced to 73% only.

Fig. 11. Relative accuracy of the proposed composition algorithms depending on the
network topology, compared with the flooding approach

5 Conclusions and Outlook

In this paper we present an efficient approach for distributing spatial contexts
in multi-hop networks, which builds upon qualitative spatial representation and
reasoning techniques. We argue for four types of spatial relationships we con-
sider particularly useful regarding autonomous artifacts with limited resources:
extrinsic orientation and distance relations, which we used for evaluating the pro-
posed approach by simulation means, as well as intrinsic orientation relations
that rely on directional relations between artifacts. A new spatial calculus for
composing qualitative positional and directional relations is presented, which
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allows to infer spatial relations over multiple hops without the need for ex-
changing quantitative sensor data. This is achieved by repeatedly applying the
composition operation to triples of artifacts, wherefore both the algorithmically
separate and combined management of orientation and distance relations have
been investigated. We propose an algorithm for inferring and distributing quali-
tative relationship information, which has been implemented and evaluated using
a Java-based simulation environment. The simulation results show the feasibil-
ity of the presented algorithm, the reduction of network traffic compared with
exchanging sensor data among all artifacts as well as the achieved accuracy of
relationship information depending on the network topology and the number of
nodes.

With regard to future work, we plan to put our focus on dynamic spatial
relations as well as their combined consideration with static ones. Another issue
is to investigate the impacts of moving artifacts and changing sensor data in
detail, which both lead to relation changes and build up the basis for spatial
reasoning over time.
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