
G. Kortuem et al. (Eds.): EuroSSC 2007, LNCS 4793, pp. 239–254, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Deployment Experience Toward Core Abstractions for
Context Aware Applications

Matthias Finke1, Michael Blackstock2, and Rodger Lea1

1 Media and Graphics Interdisciplinary Centre, University of British Columbia
FSC 3640 - 2424 Main Mall, Vancouver, B.C., Canada

2 Department of Computer Science, University of British Columbia
201-2366 Main Mall, Vancouver, B.C., Canada

{martinf@ece, michael@cs, rodgerl@ece}.ubc.ca

Abstract. Despite progress in the development of context aware applications
and supporting systems, there is still significant diversity in the models and ab-
stractions they expose. This work describes an effort to gain a better under-
standing of the situation and develop a core set of abstractions by deploying
several context aware applications, using a rapid prototyping platform. From
this experience we propose and demonstrate a set of abstractions shown to be
useful for a range of context aware applications. Combined with a survey and
analysis reported elsewhere [1] we then provide an analysis toward providing a
core set of abstractions that we argue can be used as the basis for modeling
many context aware systems, including not only context, but other aspects such
as entities, their relationships and associated events, services and content. We
then provide several practical lessons learned from the use of our model and ab-
stractions during analysis and our iterative platform development process.

1 Introduction

Despite significant experimentation and deployment of context aware platforms and
applications over the last 15 years, there is surprisingly little agreement on core ab-
stractions and models for such systems. Individual research groups have developed
abstractions suited to their application or research target [2-5] and often built bespoke
systems to implement these [6-12]. While there is some overlap in the models and
abstractions they have developed, there is also significant diversity. In an attempt to
understand this situation, and in particular to try and develop a core set of common
abstractions for context aware applications, we have, over the last two years, taken a
dual research approach. First, we have surveyed and analyzed a set of key ubicomp
systems with a goal of identifying abstractions and models in support of context
aware applications. Secondly, and in parallel, we have implemented and deployed a
set of context aware applications using a rapid prototyping platform with a goal of
using practical experience to design, experiment with and validate core abstractions
and models suitable for a range of context aware services. We have reported on the
survey and analysis elsewhere [1]. This paper reports on our experiences developing

240 M. Finke, M. Blackstock, and R. Lea

and deploying four context aware applications and the underlying evolution of our
platform as we improve our abstractions and model.

Our work has been carried out within the framework of the Mobile Multimedia ur-
ban shared experience (MUSE) project, a multi-disciplinary research project focused
on exploring mobile multi-media services suitable for an urban environment. A key
aspect of this project is its use of context aware services and its focus on real-world
deployments [13]. To date Mobile MUSE has explored a variety of services deployed
using traditional carrier networks as well as experimental WiFi based infrastructure
and WiFi enabled cell phones. These include location aware games [14, 15] context
aware tourist guides [16], tagging and folksonomy applications [17] as well as local
event support services such as location based film festival services. Although Mobile
MUSE has a strong technology and deployment focus it also includes significant
research on business and sociological aspects of context aware services [18]. Within
Mobile MUSE, the work of the MAGIC lab at the University of British Columbia
(UBC) has primarily been to explore advanced services that exploit broadband wire-
less networks. As a basis for this research, we have developed the MUSE context
aware platform (MUSEcap) and deployed a variety of services across the UBC WiFi
network, one of the largest campus WiFi networks in North America with over 1700
access points.

1.1 Background and Motivation

While there have been many research applications and systems developed for places
such as tourist destinations [19], campuses [20], meeting rooms [21], homes [9], and
hospitals [22], there has been little consensus on the high level abstractions exposed
to context aware applications from supporting platforms. With the wide variety of
research and commercial systems available, using the same system for all context
aware application domains is not realistic. One environment may differ significantly
from another in terms of the entities (people, places and things) and the capabilities
such as context, and services available. Researchers have justifiably proposed and
built systems deemed important for different context aware application types and
paradigms.

That said, when the same systems are used in different situations, practitioners
have shown it is possible to seamlessly move user tasks between domains allowing
them to make use of resources there [11]. However, given the variety of systems
available and their specialization for different domains, using the same system in all
places is not realistic. To address this, practitioners have demonstrated that data and
control level interoperability can be achieved using various techniques. For example,
the use of an intermediary such as the Patch Panel [23] to transform control
messages as they flow through the iROS Event Heap [3] has been shown to be
useful in addressing control flow interoperability. Component oriented systems like
Obje/SpeakEasy [5] and the Equip Component Toolkit [24] have shown that the use
of a small, standard set of component interfaces with mobile code or the use of com-
ponent properties can allow users to configure components to interoperate. Friday
et al [25] demonstrated the provision of an abstraction layer on top of heterogeneous

 Deployment Experience Toward Core Abstractions for Context Aware Applications 241

service architectures from within the infrastructure, while the ReMMoC system shows
that it is possible to provide a generic service abstraction in device-side middleware
[26] to address service interoperability. Henrickson et al. designed a model for con-
text [4] as the basis for a context aware application supporting infrastructure [10].

Based the experience outlined in this paper and previous analysis [1] we believe
that it is possible to express the run time environment of any context aware applica-
tion or supporting system using a set of common abstractions. We can use these
abstractions for analysis and design, and to provide an abstraction layer for not only
heterogeneous context producers or service infrastructures, but on the environment's
computing resources as a whole. Our immediate aim is to develop a common model
that we can use as a base set of abstractions for our MUSEcap platform for a variety
of context aware applications.

This paper provides 3 key contributions: (1) it proposes a common model and ab-
stractions we believe are suitable for a variety of context aware applications and
services, (2) it validates this model and abstractions using deployed context aware
applications and (3) it offers practical lessons learned from real world deployment and
several iterations of the underlying systems platform.

This paper is organized as follows: In section 2 we discuss two initial context
aware applications/services we have developed and explore the abstractions they
needed. In particular, we explain the evolution of the abstractions to support increased
application functionality and our experiences balancing abstractions against domain
specific services. In addition, we briefly outline the implementation of our architec-
ture and how we supported our core abstractions. In section 3 we present two further
prototype deployments we used to validate our initial model and explore its ability to
support a range of context aware services. In section 4 we combine the results of our
practical experience with our parallel survey and analysis of existing context aware
platforms to propose a more generic common model for context aware services. We
then relate this common model to our practical experiences and discuss the mapping
between our initial abstractions and those supported by the common model. In
section 5 we discuss some of the lessons we have learned during this practical inves-
tigation with a particular focus on two issues; the tension between core system
abstractions and domain specific services and secondly on the drawback of a purely
practical approach to exploring and developing common abstractions and underlying
system models. Finally in section 6 we conclude and discuss future work.

2 Context Aware Model and Abstractions: Evolution

We began our practical experimentation in late 2005 with the development of a sim-
ple location aware game played by teams on campus. Our goal was to develop an
initial platform for context aware services driven out of the application needs. Dur-
ing early 2006 we deployed the service and used our experiences to refine our model
and evolve our implementation. We deployed our second context aware service in
summer of 2006 again using our experiences to refine the model and improve the

242 M. Finke, M. Blackstock, and R. Lea

implementation. We adopted a standard web services architecture for our underlying
platform to ensure rapid prototyping and ease of development. Below we discuss the
two deployments and the platform development.

2.1 CatchBob! to the Fugitive

The Fugitive [27] is a mobile multi-user location based game that extends the func-
tionality of CatchBob! [28]. The game is played on a university campus by a team of
three using Tablet PCs. The team attempts to locate a virtual character (the Fugitive)
that is initially hidden on a digital map displayed on each participant’s Tablet PC. The
playing field (digital map) on the Tablet PC shows every player’s present position
while providing visual cues to signal one’s proximity to the Fugitive.

Fig. 1. The Fugitive user interface

The goal of the game involves two parts, a catch phase and a chase phase. In the
catch phase, players physically move around the campus with their position being
updated accordingly on their digital map. The objective is to trap the Fugitive by
physically forming a triangle with the team members. When the triangle area has been
reduced to a certain size by the team, the Fugitive becomes visible and starts to move
to other locations on campus: the chase phase begins. In the chase phase, participants
re-position themselves on the digital map to chase and trap the now visible, moving
Fugitive by again forming an even smaller physical triangle than before. Map and ink
messaging are available to enable communication in the game. Communications are
augmented by auditory beeps to alert players of incoming messages from other team-
mates. Figure 1 shows a screenshot of the application installed on a Tablet PC.

 Deployment Experience Toward Core Abstractions for Context Aware Applications 243

2.1.1 Discussion
The Fugitive has a very simple set of system abstractions as shown in Figure 2. The
core abstractions include the notion of users (with the Fugitive itself a special case)
and context - primarily location information. A containment abstraction, the environ-
ment, was added to provide a framework for the overall application. Initially we
considered associating communications, that is, ink messages with a particular user,
but eventually placed this as a service associated with the environment since map
annotations and ink messages are broadcast to all users in the environment.

User B Fugitive

Location
Hidden
State

InkMessage

Map
Annotation

exposes

contains
continued

Environment

User A User C

Fig. 2. The Fugitive environment model

2.2 PlaceMedia

PlaceMedia is a more ambitious system designed to explore how users can create
and share media via the notion of location (or place). It allows users to define and
maintain their personal profiles, to create and manage contact list of friends, to com-
municate with friends using instant messaging and to share media with friends. The
physical location of all friends is visualized on a digital map as part of the user inter-
face along with their profile and present status (i.e. online, busy, offline, etc.) as
shown in Figure 3. Instant messaging enables friends to see each other’s presence and
to chat with each other while moving around campus.

Fig. 3. PlaceMedia Tablet PC user interface

244 M. Finke, M. Blackstock, and R. Lea

Users can create multimedia artifacts that are combined with context data such as
location, creation time etc. This content can then be uploaded on a server to share
with friends. When media is shared, icons representing the content on the digital map
indicate the place where artifacts were created. One key feature of the PlaceMedia
application is support for Context Sensitive Alerts. These alerts are triggered by a
context variable, e.g. person or place, and can be used to build dynamic context aware
applications. For example, with our prototype users can create an alert containing a
multimedia message combined with a specific place (e.g. a coffee bar) and a prox-
imity variable. Other users will get the alert when they approach the predefined loca-
tion (i.e. within the proximity distance). Our location tracking subsystem supported
either GPS or WiFi triangulation using Intel's PlaceLab [29].

Environment

Device Marker

Location

ChatServiceNearEvent

1…*

Type Name

User

*friends

Location ContentIdentity Presence Location

UploadService

contains

1
**

owned by

owns

exposes exposes exposes

Fig. 4. PlaceMedia environment model

The abstractions exposed by the PlaceMedia prototype extended the simple Fugi-
tive model as shown in Figure 4. The Fugitive game was designed for a specific de-
vice, the Tablet PC, and so there was an implicit mapping between the device and the
user. In the more generic PlaceMedia system, we aimed to support multiple devices
for a given user, and so we introduced Devices as a core abstraction in our model and
provided support for a one-to-many relationship between User and Device entities.
Devices now expose their location context rather than the end user. Where the Fugi-
tive game structure defined a fixed number of users, in PlaceMedia we support an
unlimited number of users. The PlaceMedia application required several new types of
context such as device location, type and name, user identity and presence. In addition
to these simple context types, each user in PlaceMedia has a friends list or a roster to
relate friends to one another. Communications in PlaceMedia is now supported
through a Chat service associated with a User entity. Messages are directed to a sin-
gle user, rather than broadcast to all users in the environment as in the Fugitive.

The notion of place was another important abstraction introduced into PlaceMedia
so that content like photos, videos and text could be left by users at particular places.
To support these content-enhanced places, we introduced a Marker abstraction that
not only exposes its location context but also allows users to associate multimedia
artifacts such as pictures or video recordings with these Markers. To support context-
sensitive alerts, an event abstraction called a NearEvent was added to the model. This
event, associated with a user, supports the subscription of events that are fired when a

 Deployment Experience Toward Core Abstractions for Context Aware Applications 245

user is within a specified range of another user, or a Marker. Finally, we added two
services to facilitate direct user communications and to upload marker content. To
reflect that Chat is between two users, the Chat services are associated with users
involved in communications. A user can retrieve messages exchanged with another
user, and send messages to another user. To send messages to many users, they must
be sent individually in contrast to the broadcast model in the Fugitive.

2.2.1 Discussion
As can be seen from Figure 4, the core abstractions of PlaceMedia have been ex-
panded and are more generic than the original Fugitive model. The types of entities
and our support for context has also been expanded to include device, user and
marker, position, identity, type, and content. The Marker entity is interesting in that it
elevates location to a first class object. Typically in context aware systems, location is
a key context attribute associated with users or other objects. However, the PlaceMe-
dia application forced us to rethink location – in some cases it is simply a context
attribute like a longitude and latitude, but in others it constitutes a first class object in
its own right. We found that the PlaceMedia application required friendship and own-
ership relationships between registered users and markers to more easily find other
relevant entities in the system for display. Another key abstraction that PlaceMedia
required was the notion of context sensitive alerts which we generalized through an
event system.

2.3 MUSE Context Aware Platform Implementation (MUSEcap)

MUSEcap was developed using the JBoss [30] Java 2 Platform Enterprise Edition
(J2EE) [31] application server following a classic three tier system architecture; a
simplified system diagram is shown in Figure 5. As is typical in three tier architec-
tures, the top tier is for presentation and user interface, the middle tier for functional
processing logic, and the bottom tier for data access. This architecture allows the user
interface, application logic and database to change independently without affecting
the other tiers.

To map the PlaceMedia system model (see section 2.2) to this architecture, we
used standard entity-relationship modeling techniques1 for the persistent data in our
system. This included database tables for Markers, Users, Devices, and the relation-
ships between them such as friendship and ownership (see Data Tier in Figure 5). We
then refactored the single application-specific PlaceMedia interface into several, more
general purpose interfaces in the logic tier, with each corresponding to an entity in the
system such as Users, Device and Markers for easier reuse in subsequent applica-
tions. These interfaces provide functions to find, add and remove the entities they
handle (e.g. Users and Devices). Methods are also provided to get and set context
values such as location and presence, to call the associated service methods such as
sending and retrieving messages, and to subscribe to events. The SessionBean logic
accesses objects in the data tier wrapped using J2EE EntityBean interfaces. In the
presentation tier we provided servlets, HTML and Java Server Pages (JSP) and a
J2ME based application for access using a Tablet PCs, handheld PCs, and mobile
phones.

1 http://en.wikipedia.org/wiki/Entity-relationship_diagram

246 M. Finke, M. Blackstock, and R. Lea

Presentation Tier

Logic Tier
(SessonBeans)

Data Tier
(EntityBeans & Database)

Roster
Id
user
friend
…

NearEvent
Subscription
Target Id
User Id
…

DeviceBean UserBean MarkerBean

UserDevice Servlet Marker Servlet

Device
Id
name
position
owner
…

User
Id
name
currDev
…

Marker
Id
name
owner
position
…

add()
remove()
setName()
setPosition()
…

add()
remove()
setPosition()
setOwner()
…

add()
remove()
setCurrDev()
subscribe()
…

Fig. 5. Simplified MUSEcap architecture

3 Validating the Model Through Additional Prototypes

To evaluate MUSEcap and its associated abstractions and model we developed two
additional applications. The first application developed and deployed in late 2006
focused on the notion of a Tour while the second application called MoCoVo supports
mobile social networking and was deployed in spring of 2007.

3.1 Tour Prototype

The Tour prototype supports the notion of tours: a set of connected locations, organ-
ized around a theme and employing media and context data to guide people from
location to location. This prototype was created as a logical extension of the Place-
Media application and as another instantiation of the canonical 'tour guide' context
aware application [19].

We created a mobile phone application using Java Micro Edition (J2ME) [32] that
automatically records location and content captured by the end user over time. The
idea is to allow friends to create tours for each other using mobile phones. Users can
see these tours on the screen, download them to their mobile phones, and then "play
back" these downloaded tours when walking around later. This could be extended to
support hikers, cyclists or tourists who carry a mobile device. The application tracks
their location and allows them to annotate places with media such as photographs,
video clips and audio commentaries.

When the trip is captured, the user can upload the tour data to the platform. A digi-
tal map visualization is created on a web page that shows the locations and content
recorded during the tour. Icons are placed on the map along the tour path to indicate
where multimedia artifacts were created. A simple web-based editing tool allows tour
creators to edit, add locations and media after the basic location data has been cap-
tured. Finally, any tour can be published and can be downloaded to a mobile device
and followed by others. Friends can visualize tours, and download them to their mo-
bile phone to follow a tour. During tour playback on a mobile phone, location is again

 Deployment Experience Toward Core Abstractions for Context Aware Applications 247

tracked to trigger play back of media when a user is within a defined distance of a
tour location. In addition users can add media to an existing tour thus building up a
richer tour narrative over time.

Fig. 6. Mobile phone tour prototype user interface. The tour capture interface is shown along
the top row, and the tour playback along the bottom row.

3.1.1 Discussion
The purpose of our Tour prototype is to attempt to reuse the core abstractions devel-
oped for the Fugitive and PlaceMedia and implemented in MUSEcap in an effort to
assess how useful these abstractions were in building additional applications. Despite
the tour prototype’s additional requirements, we found that the abstractions provided
by PlaceMedia did facilitate reuse. The tour application made use of users, markers,
and associated context including location and content provided by the MUSEcap
platform, requiring no changes to the underlying model or abstractions. However, the
Tour application did require new application-specific code for grouping Markers into
tours, adding support for paths between markers, and the association of content with
these paths, and services for uploading and downloading tours.

3.2 Mobile Comments and Voting (MoCoVo) Prototype

MoCoVo is a social networking application that allows groups of users to share media
via their phones and to network based on the media. One of the major objectives of
the application idea is the creation and sharing of new multimedia artifacts paired
with group-based communication support. Users can easily create a new group and
invite friends to join it. Such a group has a more of dynamic character than our friends
roster in PlaceMedia and is designed to support dynamic ad-hoc groupings such as
special interest groups organized around events or locations. For instance, a group of
people visiting "New York" could create a group that shares pictures (including loca-
tion context) and comments about the city – obviously the grouping is dynamic and
time limited to the visit.

248 M. Finke, M. Blackstock, and R. Lea

Fig. 7. Mobile phone interface for the MoCoVo application. The first row illustrates taking and
commenting on a picture, the second row browsing, and voting on a picture.

Once part of a group, users are able to create media, such as pictures, using their
mobile phone and write comments or tag them before uploading to the server for
sharing within the group. Once shared on the server any group member can access the
media and download it back on their phones. While browsing pictures or other media,
group members have the ability to comment and vote on each media clip. Current
vote results are presented with media while browsing. Furthermore, each member of
the group can provide comments/tags that will be associated with the pictures and can
be accessed by others.

3.2.1 Discussion
Despite the different application domain, we were able to reuse several facilities of
MUSEcap - specifically user management, and content uploading, in the development
of MoCoVo. We decided to refactor the platform to support Content as a separate
entity in itself, associated with either Users or Markers, recognizing that content may
be associated with other entities in the environment, not just Markers. Group entities
were also added to the application to contain multiple users. We added support for
ranking, comments and tags context types associated with Content. While there were
some changes made to the platform to support MoCoVo, most of the development
work of this prototype was spent on the client application and only limited work on
the server side implementation was needed.

While the Tour and MoCoVo application highlighted the fact that our core model
and abstractions were adaptable to a range of context aware applications we realized
that to go beyond this class of applications, we would need to extend and generalize
our model further. We must be able to easily add new reusable entity types such as
social groups, and new capabilities such as a “ranking” context, voting services and
text comments that can be reused by new classes of social networking applications.
To accomplish this we found the need to generalize our context aware application
models further. We describe our analysis toward these general abstractions in the
following section.

 Deployment Experience Toward Core Abstractions for Context Aware Applications 249

4 Analysis

During the development of our context aware applications, we found that we could
generalize our abstractions further for greater reuse during analysis and in future plat-
form iterations. The Fugitive, for example, can be modeled as a game hosting a set of
players and the Fugitive itself. If we generalize a game to an environment, and the
users and fugitive as entities, the Fugitive environment hosts several entities: the play-
ers of the game (users), and the Fugitive, a virtual agent. To generalize further, an
environment hosts entities.

The user entities in the Fugitive expose context: their location. The agent entity has
two types of context: its hiding state, and current location. In general, entities like
users expose different forms of context. Finally, the Fugitive platform provides sev-
eral services. In the case of the Fugitive, these are most obviously associated with the
environment as a whole: a map annotation service, and an ink chat service to facilitate
group communications. To generalize, the environment entity exposes these services.

Placemedia extended the capabilities of the Fugitive. Like the Fugitive it included
mobile user entities in a campus environment model, but we also introduced Device
entities as shown in Figure 4. PlaceMedia users expose not only location, but a pres-
ence-state context associated to indicate their instant messaging status (on-line, away,
busy), and information about registered users’ identity. Marker entities were added to
the system to mark places of interest on the campus. Markers have static location
context and content associated with them. In PlaceMedia, Devices, and Markers enti-
ties are owned by specific users. That is, there is an ownership entity relationship
between PlaceMedia users, and their Devices and Markers. Similarly, users can be
friends with one another, in this case a social entity relationship using the roster func-
tionality. PlaceMedia also introduced support for event notifications that are signaled
when one user is near another, or near a Marker on the campus. Event support has
been found to be useful in supporting follow-on applications such as the tour to notify
the user when a tour marker is nearby. In general events are also a capability associ-
ated with an entity.

While the Tour application was able to reuse specific entities and exposed capabili-
ties in MUSEcap, the MoCoVo application required more changes to the platform to
satisfy its new requirements. For a platform to support MoCoVo, the Tour applica-
tion, PlaceMedia and the Fugitive without changes to the system’s API, we need to
move toward a more general set of abstractions.

Environment

Context

Entity Service

Eventexposes

hosts

relationship

Content

Entity

Fig. 8. Core abstractions of the Ubicomp Common Model

250 M. Finke, M. Blackstock, and R. Lea

Based on the experience outlined in this paper and on an analysis of other ubiqui-
tous computing systems [1] we have identified the abstractions common not only to
PlaceMedia and follow on applications, but to a significant number of infrastructure-
based context aware applications independent of the environment domain and
infrastructure used. These abstractions represent a more generic model than those
supported in MUSEcap and can be summarized as follows:

• Environment Model that encapsulates the current state of the environment includ-

ing entities in the environment such as users and devices, the types of context and
services components provide, and other aspects of the environment as a whole.

• Entities are base-level abstractions such as people, places, computing devices and
other things, groups and activities. They can be specialized to environment-specific
entities such as game players, living rooms, class rooms, mobile phones and
meetings.

• Entity Relationships such as location, social, ownership, and activity-related rela-
tionships between people, places and things.

• Context associated with entities. Context information can include values such as
location, status.

• Services or functionality associated with entities such as users, places and devices.
Ubiquitous systems either provide their own service infrastructure or build on ex-
isting middleware systems.

• Events that can signal a change of state such as a person entering a room, a light
turning on or a presence state change (online to offline).

• Data or Content related to an entity such as a place, user, or activity. This could
include a user’s personal photo, or an audio description of a location.

To summarize, all of the context aware applications outlined in this paper expose an
environment model to the user, hosting the entities (people, places and things) that are
relevant to the application. These entities have capabilities associated with them,
where capabilities are the types of context, relationships, events, content or services
they expose to the application. The abstractions and how they relate to one another in
an environment model are illustrated in Figure 8.

The deployment of these applications and a survey of existing systems has in-
formed the design of a general model for all ubiquitous computing environments
called the Ubicomp Common Model [1]. The UCM not only describes entities and
their capabilities as in our analysis, but three related aspects of a context aware envi-
ronment. The first aspect, called the Environment State contains entity instances, their
types, and current context values. The Environment Meta-State aspect contains entity
types and their capabilities: the context, events, relationships and services they ex-
pose. The Environment Implementation aspect contains information about the compo-
nents of an underlying system that implement the capabilities described in the Meta
State. For example, if a location context is supported by User entities, a SessionBean
in the PlaceMedia system is the component that will implement this context.

With the UCM and a supporting platform called the Ubicomp Integration Frame-
work (UIF) we have begun to integrate the MUSEcap capabilities described here with
other context aware systems [6, 24, 33] into a single environment model in an effort
to evaluate our model's suitability for addressing interoperability and portability

 Deployment Experience Toward Core Abstractions for Context Aware Applications 251

across smart spaces. The UIF has also been designed to support native context aware
development, where the environment model and implementation components are
hosted by the UIF itself, rather than an integrated system. Due to space limitations,
for more information please refer to [1].

5 Lessons Learned

Based on our experience developing our applications and platform, and our subse-
quent analysis, we have derived some useful guidelines for context aware application
and systems designers related to the use of our abstractions, and platform deployment
experience summarized here.

Abstractions: Model applications and systems as environments. We have found
that it is possible and useful to model all of our systems as an environment that hosts
entities and their capabilities. We have found this technique to be valuable in deter-
mining how the requirements of applications supporting systems are similar or differ-
ent since the model highlights the new entities and capabilities required by a context
aware application. We have also found it to be valuable in designing an API for
context aware applications that is independent of the underlying sensor and service
implementations [1].

Abstractions: Associate capabilities with entities. We have found that it is possi-
ble to not only associate context with an entity as suggested by Dey et al. [34], but
also the other capabilities of an underlying system, such as the services, events, and
content. While the location of a user is obviously related to the user entity, the chat
service and “near event” should also be associated with the users they serve. When a
service is not obviously associated with one entity in particular, such as a user, place
or device, it can be associated with the environment entity as a whole, as is in the case
for the map annotation and ink chat facilities of the Fugitive.

Abstractions and Platform: Clearly differentiate application-specific services
from reusable platform abstractions. During our iterative development of MUSE-
cap we initially implemented a requirement as part of the PlaceMedia application,
only later realizing that it was more appropriate as a reusable MUSEcap platform
service. For example, the Marker entities were developed as part of the PlaceMedia
abstraction, and then were found to be a useful abstraction for the Tour application.
We recognized that the supporting platform, such as the enterprise application plat-
form we used, should provide a general purpose and extensible facility for providing a
range of reusable capabilities. This way, application-specific services can be migrated
into the general purpose platform when they have been found to be reusable by more
than one application.

Platform: Traditional three tier enterprise application environments are ex-
cellent rapid prototype platforms. There is a tendency in the context aware and
ubiquitous computing (ubicomp) systems community to develop bespoke platforms in
support of experimental context aware applications. Our experience has shown us that
by using existing web services and enterprise application infrastructures (e.g. J2EE
and JBoss) and standard 3 tier architectures, we are able to rapidly develop and more
importantly, evolve and change, our underlying platform, MUSEcap. While we un-
derstand the eventual need for more sophisticated middleware systems, we were

252 M. Finke, M. Blackstock, and R. Lea

surprised by how far a more standard systems environment could carry us. Given their
ease of development, reliability, sophisticated tool chains and rapid deployment sup-
port we believe that such development environments have a stronger role to play in
the systems and middleware community.

Platform: Development of architectural models through practice needs to be
augmented with survey and analysis. Our exploration of a context aware platform
and common abstractions in support of context aware applications has reinforced the
lesson that prototyping and real world deployment is necessary but not sufficient to
develop generic system abstractions. The breadth and scope of the ubicomp space
dictates that any group will struggle to prototype context aware applications which
cover more than a small subset of the possible application domains. It is crucial there-
fore that when considering common models and abstractions, a comprehensive survey
and analysis of existing systems and applications is carried out. While this lesson may
be perhaps obvious it is surprising how many ubicomp systems are developed that
provide little evidence of wide applicability.

6 Conclusions

From the deployment experience described here we have found that several context
aware applications and their supporting infrastructure can be described by an envi-
ronment model consisting of related entities (people, places, things), and their associ-
ated capabilities as described in our analysis. Furthermore, we have implemented this
model using a standard three tier architecture. We have described the development of
an evolving platform to deploy four context aware applications, and how the features
of these systems can be categorized into one of seven high level abstractions: an envi-
ronment model, entities, entity relationships, context, events, services and content.

With this work in parallel with an analysis and survey of other ubicomp systems
[1] we have designed the Ubicomp Common Model (UCM), a comprehensive model
for context aware computing environments. We have provided some guidelines into
how to use this model for context aware systems analysis, and lessons learned based
on our deployment experience. In future work we aim to evaluate the model and
integration system further by integrating several existing ubicomp systems into a
composite environment model.

References

1. Blackstock, M., Lea, R., Krasic, C.: Toward Wide Area Interaction with Ubiquitous Com-
puting Environments. In: Havinga, P., Lijding, M., Meratnia, N., Wegdam, M. (eds.) Eu-
roSSC 2006. LNCS, vol. 4272, Springer, Heidelberg (2006)

2. Dey, A.K.: Understanding and Using Context. Personal Ubiquitous Comput. 5, 4–7 (2001)
3. Johanson, B., Fox, A.: The Event Heap: A Coordination Infrastructure for Interactive

Workspaces. In: Proceedings of the Fourth IEEE Workshop on Mobile Computing Sys-
tems and Applications, IEEE Computer Society, Los Alamitos (2002)

4. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling Context Information in Perva-
sive Computing Systems. In: Proceedings of the First International Conference on Perva-
sive Computing, Springer, Heidelberg (2002)

 Deployment Experience Toward Core Abstractions for Context Aware Applications 253

5. Newman, M.W., Sedivy, J.Z., Neuwirth, C.M., Edwards, W.K., Hong, J.I., Izadi, S.,
Marcelo, K., Smith, T.F.: Challenge: Recombinant Computing and the Speakeasy Ap-
proach. In: Proceedings of Mobicom 2002 (2002)

6. Ponnekantia, S.R., Johanson, B., Kiciman, E., Fox, A.: Portability, extensibility and ro-
bustness in iROS. In: Proceedings of IEEE International Conference on Pervasive Comput-
ing and Communications, Dallas-Fort Wirth (2003)

7. Dey, A.K.: Providing Architectural Support for Building Context-Aware Applications.
PhD Thesis. College of Computing, Georgia Institute of Technology (2000)

8. Román, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt, K.:
Gaia: A Middleware Infrastructure to Enable Active Spaces. IEEE Pervasive Computing,
74–83 (2002)

9. Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S.A.: EasyLiving: Technologies for
Intelligent Environments. In: Proceedings of the 2nd international symposium on Hand-
held and Ubiquitous Computing, Springer, Bristol (2000)

10. Henricksen, K., Indulska, J.: A Software Engineering Framework for Context-Aware Per-
vasive Computing. In: PerCom 2004. Proceedings of the Second IEEE International Con-
ference on Pervasive Computing and Communications, IEEE Computer Society, Los
Alamitos (2004)

11. Sousa, J.P., Garlan, D.: Aura: an Architectural Framework for User Mobility in Ubiquitous
Computing Environments. In: Proceedings of the 3rd IEEE/IFIP Conference on Software
Architecture, Kluwer, B.V (2002)

12. Bardram, J.E.: The Java Context Awareness Framework (JCAF) - A Service Infrastructure
and Programming Framework for Context-Aware Applications. In: Pervasive Computing:
Third International Conference, Springer, Berlin (2005)

13. Mobile MUSE, http://www.mobilemuse.ca/
14. The Digital Dragon Boat Race (DDBR). Mobile MUSE (2005),

http://www.mobilemuse.ca/projects/digital-dragon-boat-race
15. Jeffrey, P., Blackstock, M., Deutscher, M., Lea, R.: Creating Shared Experiences and Cul-

tural Engagement through Location-Based Play. In: Computer Games and CSCW work-
shop at ECSCW 2005, Paris, France (2005)

16. The Re:call Project. Mobile MUSE (2005), http://www.mobilemuse.ca/projects/re-call-
project

17. Metrocode. Mobile MUSE (2007), http://www.mobilemuse.ca/projects/metrocode
18. Smith, R.: Cell in the city: Is cellular phone use eroding the distinction between public and

private space? In: Greenberg, J., Elliott, C. (eds.) Communications in question: Canadian
perspectives on controversial issues in communication studies, Thomson-Nelson, Toronto,
Canada (2007)

19. Cheverst, K., Davies, N., Friday, A., Mitchell, K.: Experiences of Developing and Deploy-
ing a Context-Aware Tourist Guide: The Lancaster GUIDE Project. In: Mobicom 2000,
Boston, USA (2000)

20. Griswold, W.G., Shanahan, P., Brown, S.W., Boyer, R., Ratto, M., Shapiro, R.B., Truong,
T.M.: ActiveCampus: Experiments in Community-Oriented Ubiquitous Computing,
vol. 37. IEEE Computer Society Press, Los Alamitos (2004)

21. Johanson, B., Fox, A., Winograd, T.: The Interactive Workspaces Project: Experiences
with Ubiquitous Computing Rooms. IEEE Pervasive Computing 1, 67–74 (2002)

22. Bardram, J.E., Hansen, T.R., Mogensen, M., Soegaard, M.: Experiences from Real-World
Deployment of Context-Aware Technologies in a Hospital Environment. In: Dourish, P.,
Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 369–386. Springer, Heidelberg
(2006)

254 M. Finke, M. Blackstock, and R. Lea

23. Ballagas, R., Szybalski, A., Fox, A.: Patch Panel: Enabling Control-Flow Interoperability
in Ubicomp Environments. In: PerCom 2004 Second IEEE International Conference on
Pervasive Computing and Communications, Orlando, Florida, USA (2004)

24. Greenhalgh, C., Izadi, S., Mathrick, J., Humble, J., Taylor, I.: ECT: a toolkit to support
rapid construction of ubicomp environments. In: Davies, N., Mynatt, E.D., Siio, I. (eds.)
UbiComp 2004. LNCS, vol. 3205, Springer, Heidelberg (2004)

25. Friday, A., Davies, N., Wallbank, N., Catterall, E., Pink, S.: Supporting service discovery,
querying and interaction in ubiquitous computing environments. Wirel. Netw. 10, 631–641
(2004)

26. Grace, P., Blair, G.S., Samuel, S.: A reflective framework for discovery and interaction in
heterogeneous mobile environments. SIGMOBILE Mob. Comput. Commun. Rev. 9, 2–14
(2005)

27. Jeffrey, P., Blackstock, M., Finke, M., Tang, T., Lea, R., Deutscher, M., Miyaoku, K.:
Chasing the Fugitive on Campus: Designing a Location-based Game for Collaborative
Play. Loading..Journal 1(1). Special Issue from Canadian Games Studies Association
(CGSA) Workshop, vol. 1 (2006)

28. Nova, N., Girardin, F., Dillenbourg, P.: ’Location is not enough!’: an Empirical Study of
Location-Awareness in Mobile Collaboration. In: IEEE International Workshop on Wire-
less and Mobile Technologies in Education, Tokushima, Japan (2005)

29. Place Lab: A Privacy-observant location system. Intel Research Seattle,
http://www.placelab.org/

30. JBoss Home Page (2006), http://www.jboss.com/
31. Java 2 Platform, Enterprise Edition (J2EE) Overview. Sun Microsystems,

http://java.sun.com/j2ee/overview.html
32. Java Platform Micro Edition at a Glance, http://java.sun.com/javame/index.jsp
33. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: aiding the development of con-

text-enabled applications. In: Proceedings of the SIGCHI conference on Human factors in
computing systems, ACM Press, Pittsburgh, Pennsylvania (1999)

34. Dey, A.K., Abowd, G.D.: Toward a Better Understanding of Context and Context-
Awareness. Georgia Institute of Technology, College of Computing (1999)

	Deployment Experience Toward Core Abstractions for Context Aware Applications
	Introduction
	Background and Motivation

	Context Aware Model and Abstractions: Evolution
	CatchBob! to the Fugitive
	PlaceMedia
	MUSE Context Aware Platform Implementation (MUSEcap)

	Validating the Model Through Additional Prototypes
	Tour Prototype
	Mobile Comments and Voting (MoCoVo) Prototype

	Analysis
	Lessons Learned
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

