
G. Kortuem et al. (Eds.): EuroSSC 2007, LNCS 4793, pp. 223–238, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Capturing Context Requirements*

Tom Broens, Dick Quartel, and Marten van Sinderen

Centre for Telematics and Information Technology, ASNA group, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

{t.h.f.broens, d.a.c.quartel, m.j.vansinderen}@utwente.nl
http://asna.ewi.utwente.nl

Abstract. Context-aware applications require context information to adapt their
behaviour to the current situation. When developing context-aware applications,
application developers need to transform specific application context
requirements into application logic to discover, select and bind to suitable
sources of context information. To facilitate the development of context-aware
applications, we propose a Context Binding Transparency that simplifies the
process of retrieving context information. A major element of this transparency
is the declarative approach to capturing context requirements. This enables
application developers to specify their context requirements at a high level of
abstraction rather than in programming code, and thus to separate the
transformation of context requirements into context binding logic from the
development of the actual application logic. In this way, we try to decrease
the development effort and facilitate maintenance and evolution of context-
aware applications. This paper discusses the design of this binding
transparency; especially focusing on the language we developed to capture
context requirements.

Keywords: Context-Aware applications, Context Requirements, Context
Binding Transparency, Context Binding Description Language (CBDL).

1 Introduction

Ubiquitous computing envisions a situation in which users are surrounded by
computing devices that offer unobtrusive services. Unobtrusiveness is defined by
Merriam-Webster’s dictionary as not being undesirably prominent. In relation to
ubiquitous computing this means that, amongst others, offered services should take
the current situation of the user into account to tailor the service behaviour to that
situation. For example, when a user receives a telephone call but his situation is such
that disturbance by audible signals would be inappropriate, his phone should vibrate
rather than ring.

A way to enable unobtrusive services is context-aware computing. Context-aware
applications use, besides explicit user inputs, context information to adapt the

* This work is part of the Freeband AWARENESS Project. Freeband is sponsored by the Dutch

government under contract BSIK 03025. (http://awareness.freeband.nl).

224 T. Broens, D. Quartel, and M. van Sinderen

application behaviour to the situation at hand. Context is defined as any information
that characterizes the situation of an entity [1] (e.g. user location, availability, weather
conditions).

Context information is provided by so-called context sources. These context
sources are software entities distributed in the user’s environment that acquire context
information and make it available to context-aware applications. For a context-aware
application to use context information, it has to associate with a suitable context
source that can provide the required context information. The association between a
context-aware application and a context source that can provide the required context
information is called a context binding.

Context sources exhibit certain characteristics that make developing context
bindings complex: (i) context information can be offered by a multitude of physically
distributed context sources. Problems that arise are how to discover relevant context
sources and how to retrieve context information from these (remote) context sources,
(ii) (similar) context sources can be provided by different context providers using
different data models for storing and accessing context information. Problems that
arise are how-to interoperate between context sources and their discovery
mechanisms and (iii) context sources are dynamic. Firstly, they can appear and
disappear at arbitrary moments (i.e. dynamic availability). Secondly, their quality,
which is called Quality of Context (QoC) [2], can vary in time or it can be different
from other context sources.

To facilitate the development of context-aware applications, we propose the
Context Binding Transparency that facilitates the process of developing context-
aware applications by simplifying the creation and maintenance of context bindings.
Our Context Binding Transparency includes the following three main elements:

1. A context binding description language that enables developers to specify
their context requirement at an abstract level rather then directly
programming them.

2. A context binding mechanism that, based on a context requirement
specification, creates and maintains context bindings, thereby hiding the
distribution, heterogeneity and especially the dynamicity of context
producers for the application developer.

3. A context discovery interoperability mechanism which hides the
heterogeneity and dynamic availability of context discovery mechanisms.

In this paper, we focus on the first element of our proposed transparency: the
Context Binding Description Language (CBDL). This language enables application
developers to specify their context requirements at a high level of abstraction rather
than in programming code, and thus to separate the transformation of context
requirements into context binding logic from the development of the actual
application logic. In this way, we try to decrease the development effort and facilitate
maintenance and evolution of context-aware applications. Furthermore, we briefly
discuss the second element (i.e. context binding mechanism), however, for details the
reader is referred to [3, 4]. For more information on the third element of the proposed
transparency (i.e. context discovery interoperability) see [5]. For more information on
the overall AWARENESS project see [6].

 Capturing Context Requirements 225

The remainder of this paper is structured as follows: Section 2 gives a high-level
overview of our proposed Context Binding Transparency. Section 3 identifies the
requirements of the context binding description language (CBDL). Section 4 presents
the design of CBDL. Section 5 discusses the usage of CBDL in the development
process of context-aware applications, and it discusses the integration of CBDL with
our context binding mechanism. Section 6 gives an example how to apply CBDL in
developing a context-aware application and presents a generic reflection on the
usability of CBDL. Section 7 discusses related work. Finally, in Section 8, we present
a summary and future work.

2 Overview of the Context Binding Transparency

The transparency concept was introduced in the context of distributed system in the
Open Distributed Processing (ODP) reference model [7]. Transparencies are offered
by mechanisms that hide certain complexities for the application developer to
simplify the development of the application at hand. For example, location
transparency [7] hides the problems of locating distributed objects by enabling them
to be found using logical names rather than physical addresses.

Our Context Binding Transparency hides certain complexities of developing a
context binding. A context binding exists between a context consumer and a context
producer (see Figure 1). A context consumer is typically a context-aware application,
which consumes context information to be able to adapt its behaviour. A context
producer is typically a context source, which acquires (produces) context information
and makes it available to its environment. We propose to shift the recurring problem
of creating and maintaining a context binding from the application to (context)
middleware that offers a Context Binding Transparency. This transparency offers a
context retrieval and publishing service used for easy exchange of context
information. By using these services, the application developer of a context-aware
application (context consumer) is unaware of the context producer with which a
binding is created, how this binding is created and how this binding is maintained to
overcome the dynamicity of context producers.

Fig. 1. Context Binding Transparency

Key features of our binding mechanisms offering the proposed Context Binding
Transparency are:

226 T. Broens, D. Quartel, and M. van Sinderen

• Initialization: based on the context requirement specification (expressed in
CBDL) the context binding mechanism tries to resolve a context binding by
discovering (using available underlying discovery mechanisms), selecting and
binding to one ore more suitable context sources.

• Maintenance: based on specified criteria (e.g. QoC) the binding mechanism
maintains the binding by:

o Re-binding at run-time to other suitable context sources when already
bound context sources disappear.

o Re-bind at run-time to other suitable context sources when the QoC that
is provided by the already bound context source may fall below a
specified level.

o Re-bind to context sources with a higher QoC when they become
available.

• Releasing: when the application no longer needs context information, the
established bindings are released.

For a more elaborate discussion on the Context Binding Transparency, see [8].

3 Context Requirement Analysis

In this section, we discuss the requirements for our context binding description
language (CBDL). The context requirement specifications, expressed in CBDL, are
used by the binding mechanism to create and maintain context bindings. Thereby, the
context binding mechanism has to bridge the gap between the requirements specified
by the developers of context-aware applications and the (heterogeneous) context
delivery capabilities of underlying context discovery mechanisms capable of
discovering available context producers (see Figure 2).

Context-Aware Application

Context Requirements

Context Delivery
Capabilities

Context Binding
Transparency

Context Binding Mechanism

Context Discovery
Mechanism

Context Discovery
Mechanism

Context Discovery
Mechanisms

Context Discovery
Mechanism

Context Discovery
Mechanism

Context Producers

CBDL
documents

Fig. 2. Bridging the gap between context requirements and context delivery capabilities

We consider the following generic non-functional requirement in the design of
CBDL:

 Capturing Context Requirements 227

• Generality: specification of context requirements in CBDL should not be
restricted to specific application domains. CBDL should apply to a broad range
of context-aware applications.

• Usability: specification of context requirements in CBDL should be easy and
should not require a steep learning curve.

To capture the functional requirements of CBDL, we take a two-step approach.
First, we analyse the capabilities of current context (discovery) middleware
mechanisms to identify common capabilities currently offered (Section 3.1).
Secondly, we analyse use-cases (from which we present two) to complement our
requirements (Section 3.2). Together, these lead to requirements on what should be
possible to express in CBDL to be able to capture context requirements used for
creation and maintenance of context bindings by our underlying context binding
mechanism (Section 3.3).

3.1 Analysis of Context Discovery Middleware

Currently several context middleware mechanisms are developed to facilitate the
development of context-aware applications [9]. These mechanisms solve recurring
development problems, such as dealing with privacy issues when exchanging context
information, creating new context information by reasoning on existing context
information, and discovery of distributed context sources. In this section, we analyse
current context discovery mechanisms. First, because they implement solutions that
fulfil context requirements application developers have and secondly, because our
proposed Context Binding Transparency builds on top of these solutions.

We analyse nine different context discovery mechanisms. The first four originate
from the Freeband AWARENESS project (CMF, CCS, CDF and Jexci) [10]. These
mechanisms are developed for different domains (e.g. telecommunication operator
domain, different administrative domains, ad-hoc situations) [10]. Secondly, we
review the context discovery mechanism originating from the IST Amigo project
(CMS) [11]. Thirdly, we complete our analysis with four external context middleware
mechanisms (Context Toolkit [12], PACE [9], Solar [13], and JCAF[14]).

The analysis consisted of reviewing the following aspects of the different
discovery mechanisms:

• Interaction mechanism: What interaction mechanism do the analyzed
discovery mechanisms support?

• Interaction data: what type of information is expressed in the context
discovery request and response?

The result of our analysis is presented in table 1. From the analysis, we distinguish
the following common aspects provided by current context discovery mechanisms:

• All mechanisms support the common request-response and subscribe-
notify interaction mechanism to retrieve context information.

• All mechanisms require information on the type of context and the entity
to which the context relates, to discovery context sources.

• The majority of the mechanisms introduce the notion of quality of context
in the request for context information.

228 T. Broens, D. Quartel, and M. van Sinderen

• Some mechanisms require a form of security token (i.e. identity
information on the entity that is requesting context) to be able to discover
context sources.

Table 1. Comparing context discovery mechanisms

Interaction mechansism
Frameworks Req-Resp Sub-Not Entity Type QoC Sec. info Format
CMF v v v v v v RDF
CCS v v v v v v SQL/PIDF
CDF v v v v v - RDF/PIDF
Jexci v v v v v v Negotiable (PIDF/java objects)
CMS v v v v v - RDF
Context Toolkit v v v v - v XML
Pace v v v v v - Context Modelling Language
Solar v v v v - - N/A
JCAF v v v v - - Java objects

Interaction data

3.2 Analysis of Use-Cases

We complement the previous results by analysing use cases. Here we present two
uses cases, which we consider representative for a broad range of context-aware
application.

Healthcare Use-Case: Epilepsy Safety System (ESS)
The ESS monitors vital signs of epilepsy patients and determines upcoming epileptic
seizures. When a likely seizure is detected, the system notifies nearby and available
caregivers with instructions on the location (e.g. in lat/long context format) of the
patient and route information to the patient. The application uses context information
on the location of the patient and the caregiver and context information on availability
of the caregivers to provide this functionality. The quality of the location data of the
patient should have a minimal precision of 5m (i.e. the specified location of
the patient may differ 5m from the actual location) to be able to dispatch caregivers to
the right location. The location data of caregivers only has to be minimally 100m
precise to be able to determine which one is nearby.

Additionally, the vital signs of the patient are transferred to the healthcare centre
where care professionals monitor the patient’s state and stays in contact with the
dispatched caregiver. Context information on the available bandwidth (e.g. in kb/s) of
the patient’s device is used to tailor the granularity of transferred vital signs (e.g.
increase or decrease sample frequency) and the amount of vital signs (e.g. decrease
the number of send channels) to ensure transfer of vital signs to the healthcare centre.

Office Use-Case: My Idea Recorder (MIR)
During meetings, users can use their camera phones to take high-resolution pictures of
whiteboard sketches to capture their ideas for future use. The MIR system distributes
copies of these pictures to meeting participants. The phone automatically determines
the persons that are currently in the meeting based on meeting information (e.g. in
Boolean context format) from user’s calendars and nearby Bluetooth devices. When
the meeting information is not at least 75% correct (i.e. probability of 75% that the
participant is actually in/out a meeting), the application asks the participant if he is in

 Capturing Context Requirements 229

the meeting. The system delays the data transfer until an adequate network becomes
available (i.e. GPRS, UMTS, WLAN or Bluetooth) taking into account the cost and
bandwidth characteristics of each network type and the battery status of her phone.

Discussion
We analysed multiple use-cases, from which we consider the previously discussed
two, representative for a broad range of context-aware applications. From these
use-cases, we derive the following characteristics of context and context-aware
applications:

• Context is defined by its context type (e.g. location, availability,
bandwidth, meeting status).

• Context is always related to a context entity (e.g. patient, doctor, voluntary
care giver, meeting participant).

• Context information can be offered in different context formats (e.g.
lat/long, xyz, nmea, Boolean).

• Relevancy of context information for applications can depend on different
QoC criteria (e.g. precision, probability of correctness). See also [2, 15].

• Context transfer might occur during the whole life-span of the application
or during a limited period (e.g. during a seizure).

• Delivery costs resulting from using context (e.g. use of a certain
communication mechanism, commercial value of context) might pose
criteria for the suitability of context bindings.

3.3 Overall Conclusions and Identification of CBDL Requirements

Based on the analysis of current discovery mechanisms and use cases, we identify the
following requirements for CBDL:

• Basic context elements: Context type, entity and format are basic elements
needed in CBDL to describe context requirements.

• QoC criteria: Application have QoC requirements and may react differently
when these QoC are not met. Therefore, CBDL should enable application
developers to specify quality levels on the required context information.

• Costs: Additionally to QoC, context delivery costs pose additional criteria
on the suitability of a context binding. Application developers should be
able to specify in CBDL cost criteria related to QoC criteria.

• Binding characteristics: Transfer of context information can be continuous
during the life span of the application or can be limited to a certain period in
the life span of the application. Context bindings are therefore not always
required. An application developer should be able to specify in CBDL the
characteristics of the required binding. This includes re-binding strategy (in
case of losing a bound context source) and scope of the discovery.
Furthermore, they should be able to specify if re-binding is necessary in
case a QoC level cannot be maintained or better quality context sources may
appear.

230 T. Broens, D. Quartel, and M. van Sinderen

• Notification: Although our transparency strives for continuous availability
of high quality context information, this might not always be possible.
Application developers have to be able to specify in CBDL a notification
strategy in case a lost binding cannot be recovered or QoC level cannot
maintained, such that the context-aware application can adapt its behaviour
to these situations.

4 Design of the Context Binding Description Language

We distinguish three types of information in a CBDL document:

• Context specification: basic information on what context information the
context-aware application requires.

• Quality criteria: information on the quality levels which are acceptable
for the context-aware application to function.

• Binding options: configuration information required to control the
discovery, selection, binding, and maintenance process of a context
binding.

These categories are represented in the UML meta-model of the CBDL language as
depicted in Figure 3.

Fig. 3. CBDL language meta-model

The root of the CBDL language is the CBDLDocument element, which specifies
which user is requesting a context binding (UserID) and to which application this
binding belongs (ApplicationID). This information can be used as security information
(e.g. identity to retrieve a security token) to be able to invoke underlying context
discovery mechanisms. Furthermore, a CBDL document (CBDLDocument) enables
application developers to specify multiple context requirements (ContextRequirement).

 Capturing Context Requirements 231

These requirements have to be uniquely identified by an ID (ContextRequirementID).
This ID can be used to retrieve a handle on the established binding, to enable the
context-aware application to retrieve context information.

Every context requirement (ContextRequirement) consists of mandatory context
specification information. This information specifies: (i) a single type of context
information that the application requires (Element), (ii) one entity to which the
required context is related (Entity) and (iii) zero or more data formats the required
context may have (Format).

Optionally, an application developer can specify multiple quality levels
(QualityLevel). These quality levels consist of one or more quality criteria coupled
with an optional cost criterion. We distinguish five possible types of QoC criteria
based on [2, 15]. These are: (i) Precision: “granularity with which context information
describes a real world situation”, (ii) Freshness: “the time that elapses between the
determination of context information and its delivery to a requester”, (iii) Temporal
Resolution: “the period of time to which a single instance of context information is
applicable”, (iv) Spatial Resolution: “the precision with which the physical area, to
which an instance of context information is applicable, is expressed” and (v)
Probability of Correctness: “the probability that an instance of context accurately
represents the corresponding real world situation, as assessed by the context source, at
the time it was determined” [15].

Additionally, the application developer may specify if the application needs to be
notified when the QoC/Costs of the delivered context information comes into the
range of the specified level or falls out of the range (Notify, default= true).
Furthermore, the application developer specifies if the re-binding mechanisms needs
to be triggered when the QoC of the delivered context information falls below the
specified QoC level (Optional, default=false).

Furthermore, an application developer can optionally specify binding options
(BindingOptions) to control the binding process of the context binding mechanisms.
The following options can be specified:

• Notify: the application developer can specify the level of notification he
wants to receive on the binding process. The following cumulative levels
are identified:

o 0: no notifications.
o 1: notification when a binding is established.
o 2: notification when a binding is established and broken.
o 3: notification when a binding is (re-)establishing and broken

(default).
• Policy: the application developer can specify what binding policy should

be taken:
o Static: when a binding is broken, no re-binding is necessary.
o Dynamic: when a binding is broken re-binding is necessary

(default).
• Scope: the application developer can specify if context sources should be

searched only inside the scope of the local infrastructure (i.e. producers
deployed inside the local application container) or also in external context
discovery mechanisms (default = global).

232 T. Broens, D. Quartel, and M. van Sinderen

5 Using CBDL and the Context Binding Mechanism

First, we present a general discussion on how to use CBDL in the development of
context-aware applications (Section 5.1). Secondly, we describe how CBDL is
integrated with our context binding mechanism (Section 5.2).

5.1 Using CBDL for the Development of Context-Aware Applications

Figure 4 presents the development trajectory of a CBDL based context-aware
application using our underlying context binding mechanism, called Context-Aware
Component Infrastructure (CACI). CACI is the implementation of the context binding
mechanism exposing the proposed Context Binding Transparency.

On design-time, the application developer creates the application logic of the
context-aware application. Furthermore, he specifies the context requirements
relevant for its application in a CBDL document. During the design of the application
logic, the application developer has to take the following aspects in mind:

• Create application logic that is able to retrieve context using the interfaces
offered by the context binding mechanisms and the context requirement
identifiers (ContextRequirementID) specified in the CBDL document.

• Create application logic that can receive notification by the underlying binding
mechanisms of changes in QoC and binding status based on the notify flags
(notify) specified in the CBDL document.

• Create application logic that can adapt to unavailability of context or
availability of context with too low quality.

Both the application logic and the CBDL document are bundled into a context-
aware application component, which can be deployed in the Context-Aware
Component Infrastructure (CACI).

Fig. 4. Development trajectory of CBDL-based context-aware applications

5.2 Integration of CBDL and CACI

Figure 5 presents a functional decomposition of the binding mechanism deployed
in the CACI infrastructure. After deployment of the context-aware application

 Capturing Context Requirements 233

component, binding requests are extracted from the CBDL document by the parser.
These request are transformed in a discovery request forwarded to available context
discovery mechanisms (see [5]). The discovery results are analyzed and a context
producer that can fulfil the context requirement (i.e. binding request) is selected. The
selected context producer is bound to an internally created context producer proxy
(see [3, 8]) from which the context-aware application component can retrieve context
information. This proxy is monitored for disappearing of its bound physical context
producer. In case of a lost binding to a context source, this triggers a re-binding
processes starting from discovery of suitable context producers for a new binding.
Furthermore, some context discovery mechanisms offer active discovery, which
enable the binding mechanisms to subscribe to discovery changes (e.g. new producers
become available), this triggers a new selection process to determine if the new
producer is more suitable for the context-aware application component. Status
information on the binding can be notified to the application component based on the
flags in the CBDL document.

Fig. 5. Functional decomposition of the CACI Context Binding Mechanisms

We chose to represent the CBDL language using XML, as it is currently the
de-facto standard for structured data. Consequently, tool support for creating CBDL
document is widely available. Furthermore, usage of XML enables easy parsing and
validation of the correctness of CBDL documents using for example XML Schema.
Therefore, we derived a XML Schema of the CBDL language meta-model. The
proof-of-concept of the CACI infrastructure is implemented using java and the OSGi
component framework (see [4]). Context-aware components are OSGi components,
which have in their component descriptor a pointer to the XML-based CBDL
document.

6 Case Example and Reflection

Here we present an example on how to use CBDL for describing context requirements
for the Epilepsy Safety System (Section 6.1). Furthermore, we present a general
reflection on the usability of CBDL (Section 6.2).

234 T. Broens, D. Quartel, and M. van Sinderen

6.1 Case Example: ESS

Let’s reconsider the Epilepsy Safety System discussed in section 3.2. The ESS
deploys a sensor system on the patient’s body (called a Body Area Network (BAN))
which collects and transfers vital signs when a seizure is detected. This data is stored
and analyzed in healthcare centres for diagnosis, first aid and treatment. In case a
seizure is detected, caregivers dispatched by the healthcare centres may offer help to
the patient in this life-threatening situation.

Amongst others, possible beneficial context types in the ESS are: patient and
caregiver location, caregiver availability and patient BAN bandwidth usage. Location
information helps to decrease travelling time to the patient in case of emergencies.
First, because the precise location of the patient (destination) is known and second
because a nearby caregiver can be dispatched to the patient. Availability information
of caregivers helps to decrease false dispatches of unavailable caregivers. Bandwidth
usage information assists to tailor the transferred vital sign data to decrease costs in
case a of non-emergency situation, while this information also assists to prevent
congestion and failing transfer of vital sign data in case of emergency situations.

Developers create bindings by adding CBDL specifications to their application
components. In these descriptions, they describe the context requirements of the
application. Figure 6 presents a simplified CBDL description, which is added to the
ESS component at the health-care centre to create the binding to location and
availability producers. For the other components at the patient and caregiver side, the
descriptions are similar.

<?xml version="1.0" encoding="UTF-8"?>
<CBDLDocument xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CBDL-schema.xsd" UserID="Healthcarecentre"
ApplicationID="ESS_Healthcarecentre">
 <ContextRequirement BindingID="patient_location">
 <Element>Location</Element>
 <Entity>Patient.Tim</Entity>
 <Format>lat/long</Format>
 <QualityLevel>
 <QoCCriteria>
 <Precision>5m</Precision>
 </QoCCriteria>
 </QualityLevel>
 </ContextRequirement>
 <ContextRequirement BindingID="patient_bandwidth">
 <Element>Bandwidth</Element>
 <Entity>Patient.Tim</Entity>
 <Format>kb/s</Format>
 </ContextRequirement>
 <ContextRequirement BindingID="caregiver_location">
 <Element>Location</Element>
 <Entity>Caregiver.John</Entity>
 <Format>lat/long</Format>
 <QualityLevel>
 <QoCCriteria>
 <Precision>100m</Precision>
 </QoCCriteria>
 </QualityLevel>
 </ContextRequirement>
 <ContextRequirement BindingID="caregiver_availability">
 <Element>Availability</Element>
 <Entity>Caregiver.John</Entity>
 <Format>boolean</Format>
 </ContextRequirement>
</CBDLDocument>

Fig. 6. Example of CBDL document specifying context requirement of part of the ESS

 Capturing Context Requirements 235

The CBDL documents are handled by the CACI binding mechanism. The
application developer only needs to retrieve the bound producer (see figure 7) by
subscribing a call-back to the IContextProducerManager service (i.e. the local
services mechanism is provided by OSGi) offered by CACI. This notification strategy
is applied to cope with timing differences between the application and the binding
performed by CACI. CACI notifies the component when a producer is bound.

// standard OSGi code to retreive the CACI service
ServiceReference ref = bc_.getServiceReference(IContextProducerManager.class.getName());
IContextProducerManager manager = (IContextProducerManager)bc_.getService(ref);
// Retreival of the bound context producers (id’s correspond with the CBDL document from
fig6)
IContextProducerCallback cb = new Callback(this);
try{
 manager.subscribe("patient_location", cb);
 manager.subscribe("patient_bandwidth", cb);
 manager.subscribe("caregiver_location ", cb);
 manager.subscribe("caregiver_availability", cb);
} catch(ConsumerSubscribeException e){
 System.out.println("Wrong binding ID.");
}

Fig. 7. Retrieval of context bindings

6.2 Reflection

Usability of CBDL depends on three major factors (see Figure 8). The first is
expressiveness; are context-aware application developer capable of expressing
context requirements suitable for their applications. Secondly, learning curve; how
difficult is it for the context-aware application developer to learn the CBDL language.
Finally, performance; how does the introduced layer of indirection (i.e. transformation
of CBDL specification to context bindings) perform.

Fig. 8. CBDL usability triangle

• Expressiveness: By performing an extensive requirement analysis thereby
reviewing current context management mechanisms and analyzing use cases,
we created a language capable of specifying a broad range of context-aware
applications. Furthermore, we added support for QoC criteria levels and
binding process control.

• Learning curve: The application developers are required to learn how-to
specify context requirements using CBDL and how-to use the CACI
infrastructure. We do not think this presents a serious drawback, for two
reasons. First, CACI provides simple interfaces to use the established bindings
Furthermore, CBDL uses XML to express context requirements. XML

236 T. Broens, D. Quartel, and M. van Sinderen

schemas are provided to ease this process. Future extensions could include a
GUI that can enable developers to graphically generate CBDL descriptions
and CACI integration code. Second, CA application development without
CBDL and CACI also requires similar learning efforts to cope with the
underlying discovery mechanism.

• Performance: Another possible drawback of adding a layer of indirection by
CACI is its performance penalty. We performed some initial measurements on
the time spent deploying a component, parsing the CBDL, discovery of context
producers (making sure a discovery match can be made), selection of a context
producer and returning the selected producer to the deployed component. This
resulted both on the PC and the windows mobile device in insignificant
overhead (less than 1ms time spent). Although more performance measurements
are needed, our preliminary conclusion is that the delay introduced by CACI is
considerably less or can be neglected compared to the delay for the (remote)
discovery of context producers (i.e. communication and processing delay).

7 Related Work

In this paper, we propose a language to specify context requirements, which can be
interpreted by our CACI infrastructure [3-5], to create and maintain context
bindings in dynamic environments. The importance of coping with the dynamicity of
(context) bindings in the infrastructure has also been recognized by others, who
proposed several mechanisms for this purpose, such as context-sensitive bindings
[16], service-oriented network sockets [17] and OSGi (Extended) Service Binder
[18, 19]. Compared to CACI, these mechanisms have a similar goal but are not
tailored to more advanced context-aware applications. Context producers and
consumers have distinct characteristics that have to be incorporated in the binding
mechanism to be able to fully support the application developer. For example, context
binding mechanisms should be based on an extensible context model and the notion
of quality of context (QoC) should be incorporated in the mechanisms.

To the best of our knowledge, no other initiatives exist to develop a language,
which enables application developers to specify requirements for bindings with
context producers at a high level of abstraction. Although Hong [20] recognizes the
need for such a language, coined the context specification language (CSL), this
language has not been detailed.

On the other hand, several types of languages have been proposed for other
purposes, facilitating the development of context-aware applications in different
ways. For example, Chan et al. [21] define a mathematical rule-based context request
language. This language, implemented in XML, enables developers to specify context
reasoning rules, using predicate calculus, interpreted by an infrastructure inference
engine to retrieve required context information. Yau et al. [22] define a Situation-
Aware object interface definition language (SA-IDL), which can be used to generate
base classes for a situation-aware object. Etter et al. [23] describe a rule-based
approach to specify context-aware behaviour in the ECA-DL language and to delegate
the execution of this behaviour to the infrastructure using Event-Condition-Action
rules. Robinson et al. [24] describe the Context Modelling Language (CML) which
can be used to capture context information requirements to be used in the design of

 Capturing Context Requirements 237

context-aware applications. Chen [25] discusses a context ontology (SOUPA) that can
be used to exchange context among entities in a uniform manner.

8 Summary and Future Work

In this paper, we discuss the Context Binding Description Language (CBDL). This
language enables application developers of context-aware applications to specify
their context requirements at a high level of abstraction rather than at the programming
code level. CBDL thus enables a separation between the development of the
application logic and the development of context bindings. The responsibility for
creating and maintaining context bindings is shifted to our Context-Aware Component
Infrastructure (CACI), which can interpret context requirements and use these to drive
its discovery and binding mechanisms. In this way, we try to decrease the development
effort and facilitate maintenance and evolution of context-aware applications.

The requirements for CBDL are derived from an analysis of current context
management systems and future use scenarios. Elements incorporated in the CBDL
language support (i) specification of context, (ii) specification of quality criteria, and (iii)
specification of binding control information. We implemented the language using XML
and integrated it with our CACI infrastructure. We believe that the CACI infrastructure
offers a useful new transparency, which we call the Context Binding Transparency.

We plan the following research activities to further improve the CBDL concept and
CACI prototype:

• Extending the CBDL language to support the development of applications
with context producer capabilities or both context consumer and producer
capabilities.

• Further evaluation of usability of the Context Binding Transparency featuring
the CBDL language for development of context-aware applications.

References

1. Dey, A.: Providing Architectural Support for Context-Aware applications, Georgia
Institute of Technology (2000)

2. Buchholz, T., Kupper, A., Schiffers, M.: Quality of Context: What it is and why we need
it. In: 10th Workshop of the HP OpenView University Association (HPOVUA 2003),
Geneva, Switzerland (2003)

3. Broens, T., Halteren, A., Sinderen, M.v.: Infrastructural Support for Dynamic Context
Bindings. In: Havinga, P., Lijding, M., Meratnia, N., Wegdam, M. (eds.) EuroSSC 2006.
LNCS, vol. 4272, Springer, Heidelberg (2006)

4. Broens, T., et al.: Dynamic Context Bindings in Pervasive Middleware. In: Middleware
Support for Pervasive Computing Workshop (PerWare 2007) White Plains, USA (2007)

5. Broens, T., Poortinga, R., Aarts, J.: Interoperating Context Discovery Mechanisms. In: 1st
Workshop on Architectures, Concepts and Technologies for Service Oriented Computing
(ACT4SOC 2007), Barcelona, Spain (2007)

6. Sinderen, M.v., et al.: Supporting Context-aware Mobile Applications: an Infrastructure
Approach. IEEE Communications Magazine 44(9), 96–104 (2006)

238 T. Broens, D. Quartel, and M. van Sinderen

7. Blair, G., Stefani, J.: Open Distributed Processing and Multimedia. Addison-Wesley,
Reading (1998)

8. Broens, T., Quartel, D., Sinderen., M.v.: Towards a Context Binding Transparency. In:
Broens, T. (ed.) 13th EUNICE Open European Summer School, Enschede, the
Netherlands. LNCS, vol. 4606, Springer, Heidelberg (2007)

9. Henricksen, K., et al.: Middleware for Distributed Context-Aware Systems. In: DOA 2005,
Agia Napa, Cyprus, Springer, Heidelberg (2005)

10. Benz, H., et al.: Context Discovery and Exchange. In: Pawar, P., Brok, J. (eds.) Freeband
AWARENESS Dn2.1, Freeband AWARENESS Dn2.1 (2006)

11. Ramparany, F., et al.: An Open Context Management Information Management
Infrastructure. In: Intelligent Environments (IE 2007) Ulm, Germany (2007)

12. Dey, A.: The Context Toolkit: Aiding the Development of Context-Aware Applications.
In: Workshop on Software Engineering for Wearable and Pervasive Computing, Limerick,
Ireland (2000)

13. Chen, G., Kotz, D.: Solar: An open platform for context-aware mobile applications. In:
International Conference on Pervasive Computing, Zurich, Zwitserland (2002)

14. Bardram, J.: The Java Context Awareness Framework (JCAF) - A Service Infrastructure
and Programming Framework for Context-Aware Applications. In: Pervasive Computing,
Munchen, Germany (2005)

15. Sheikh, K., Wegdam, M., Sinderen, M.v.: Middleware Support for Quality of Context in
Pervasive Context-Aware Systems. In: PerWare 2007. IEEE International Workshop on
Middleware Support for Pervasive Computing, New York, USA (2007)

16. Sen, R., Roman, G.: Context-Sensitive Binding, Flexible Programming Using Transparant
Context Maintenance, in Technical Report WUCSE-2003-72. Technical Report WUCSE-
2003-72, Washington University (2003)

17. Saif, U., Palusak, M.: Service-oriented Network Sockets. In: MobiSys 2003. International
conference on mobile systems, applications and services, San Francisco, USA (2003)

18. Cervantas, H., Hall, R.: Autonomous Adaptation to Dynamic Availability Using a Service-
Oriented Component Model. In: 26st International Conference on Software Engineering,
Edinburgh, Scotland (2004)

19. Bottaro, A., Gerodolle, A.: Extended Service Binder: Dynamic Service Availability
Management in Ambient Intelligence. In: FRCSS 2006 International Workshop on Future
Research Challenges for Software and Services, Vienna, Austria (2006)

20. Hong, J.: The Context Fabric: An Infrastructure for Context-Aware Computing. In: CHI
2002. Doctoral Workshop, Human Factors in Computing Systems Minneapolis, USA
(2002)

21. Chan, A., Wong, P., Chuang, S.N.: CRL: A Context-Aware Request Language for Mobile
Computing. In: Cao, J., Yang, L.T., Guo, M., Lau, F. (eds.) ISPA 2004. LNCS, vol. 3358,
Springer, Heidelberg (2004)

22. Yua, S., Wang, Y., Karim, F.: Development of Situation-Aware Application Software for
Ubiquitous Computing Environments. In: COMPSAC 2002. International Software and
Applications Conference, Oxford, England (2002)

23. Etter, R., Dockhorn Costa, P., Broens, T.: A Rule-Based Approach Towards Context-
Aware User Notification Services. In: ICPS 2006. International Conference on Pervasive
Services, Lyon, France (2006)

24. Robinson, R., Henricksen, K.: XCML: A runtime representation for the Context Modelling
Language In: PerCom 2007. Pervasive Computing White Plains, USA (2007)

25. Chen, H., Finin, T., Joshi, A.: The SOUPA Ontology for Pervasive Computing. Ontologies
for Agents: Theory and Experiences (2005)

	Capturing Context Requirements
	Introduction
	Overview of the Context Binding Transparency
	Context Requirement Analysis
	Analysis of Context Discovery Middleware
	Analysis of Use-Cases
	Overall Conclusions and Identification of CBDL Requirements

	Design of the Context Binding Description Language
	Using CBDL and the Context Binding Mechanism
	Using CBDL for the Development of Context-Aware Applications
	Integration of CBDL and CACI

	Case Example and Reflection
	Case Example: ESS
	Reflection

	Related Work
	Summary and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

