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Abstract. Recent work by Krawczyk [12] and Menezes [16] has high-
lighted the importance of understanding well the guarantees and limita-
tions of formal security models when using them to prove the security
of protocols. In this paper we focus on security models for authenti-
cated key exchange (AKE) protocols. We observe that there are several
classes of attacks on AKE protocols that lie outside the scope of the
Canetti-Krawczyk model. Some of these additional attacks have already
been considered by Krawczyk [12]. In an attempt to bring these attacks
within the scope of the security model we extend the Canetti-Krawczyk
model for AKE security by providing significantly greater powers to the
adversary. Our contribution is a more compact, integrated, and compre-
hensive formulation of the security model. We then introduce a new AKE
protocol called NAXOS and prove that it is secure against these stronger
adversaries.

1 Introduction

In this paper we extend the Canetti-Krawczyk [11,12] security model for au-
thenticated key exchange (AKE) to capture attacks resulting from leakage of
ephemeral and long-term secret keys. Our security model for authenticated key
exchange is defined in the spirit of Bellare and Rogaway [3] and Canetti and
Krawczyk [11] by an experiment in which the adversary is given many corrup-
tion powers for various key exchange sessions and must solve a challenge on a
test session. We extend adversarial capabilities to the following extent: the only
corruption powers we do not give an adversary in the experiment are those that
would trivially break an AKE protocol. We also define a new AKE protocol
which is secure in our new model.

More specifically, in an authenticated key exchange protocol, two parties ex-
change information and compute a secret key as a function of at least four pieces
of secret information: their own long-term (static) and ephemeral secret keys
and the other party’s long-term and ephemeral secret keys. Of the four pieces of
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information, we allow an adversary to reveal1 any subset of the four which does
not contain both the long-term and ephemeral secrets of one of the parties. To ex-
plain this more precisely, we divide AKE test sessions (sessions which are subject
to attack by an adversary) into two types. In sessions of the first type (“passive”
sessions), the adversary does not cancel or modify communications between the
two parties. In sessions of the second type (“active” sessions), the adversary
may forge the communication of the second party. Another way to phrase the
distinction, as done by Krawczyk in the analysis of the HMQV protocol [12],
is whether the adversary actively intervenes in the key exchange session or is a
passive eavesdropper.

In addition to distinguishing between passive and active sessions, we identify
which pieces of secret information the adversary can reveal without being able
to trivially break the AKE protocol (compute the session key for any AKE
protocol). In both types of sessions, if an adversary can reveal the long-term and
the ephemeral secret keys of one of the parties in the session, then the adversary
can trivially compute a session key as it has all the secret information of one of
the legitimate parties in the session.

For passive sessions, an adversary may reveal both ephemeral secret keys,
both long-term secret keys, or one of each from the two different parties without
trivially breaking the protocol. Thus security in our model implies weak Per-
fect Forward Secrecy, defined by Krawczyk to be security against revelation of
long-term secret keys after the session is completed (without active adversarial
intervention in the session establishment).

For active sessions, the adversary may forge communications from one of the
parties. Thus, if the adversary can also reveal the long-term secret key of that
same party, then the adversary can trivially compute the session key. The same
argument was used by Krawczyk to show that no 2-round AKE protocol can
achieve full perfect forward secrecy (PFS). Still, an adversary can reveal a long-
term secret key or ephemeral secret key of the other party without trivially
breaking the session. So for another example, our extension to the Canetti-
Krawczyk model also implies security against Key Compromise Impersonation
(KCI) attacks, where the adversary first reveals a long-term secret of a party
and then impersonates others to this party.

Considering attacks involving both types of sessions, it is natural to define a
single security model which captures all of them. In our model, in passive test
sessions we allow the adversary to reveal any subset of the four pieces of secret
information which does not contain both the long-term and ephemeral secrets of
one of the parties. In active test sessions, we allow the adversary to reveal only
the long-term secret or the ephemeral secret key of the party which is executing
the test session. In our security experiment, a test session is still considered clean
even if the adversary has revealed any of the allowable combinations of secret
keys of the two parties.

1 We say that an adversary “reveals” a piece of secret information when that adversary
chooses to learn the value of that information by performing the corresponding key
reveal query as defined in Section 3.2.
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Security in this extended Canetti-Krawczyk model also implies security
against a number of other attacks not covered by the Canetti-Krawczyk model
(see Section 2.2). In a sense, our model is just an extension of an instance of
the Canetti-Krawczyk model, since we define the session state of a party to be
the ephemeral secret key. On the other hand, some instance of the Canetti-
Krawczyk model must be chosen when considering the security of any pro-
tocol, since the definition of the session-state reveal query must be specified,
and our model is stronger than a model which does not include the ephemeral
secret key as part of the session state for the session state reveal query. In
addition, the Canetti-Krawczyk model does not allow the adversary to attack
sessions against which a session state reveal query has been made. They con-
sider such sessions broken, while our definition covers the security of these par-
tially corrupted sessions. Krawczyk does extend the model in [12], but still some
attacks are not covered because those sessions are not considered clean. Our
model extends the notion of a clean session further, giving the adversary more
power to reveal long-term and ephemeral secret keys. Our motivation to in-
clude revelations of ephemeral secret keys in the model comes from “practical”
(i.e. engineering) considerations and scenarios such as active adversarial attacks
or compromise of the random number generator (RNG) used by one of the
parties.

We stress that our extension of the security model allows the adversary to
register arbitrary public keys for adversary-controlled parties without any checks
such as proof-of-possession done by the certificate authority. In contrast, some
of the protocols in the literature [13,14] were proved secure assuming that the
key registration is done honestly. Namely, that initially a trusted party generates
keys for all, even adversary-controlled parties.

Finally, we present a new AKE protocol, called NAXOS, which provably meets
our definition of AKE security. We prove the security of NAXOS under the
standard Gap Diffie-Hellman assumption. We also improve the concrete security
of NAXOS under the related Pairing Diffie-Hellman assumption. A version of
the NAXOS protocol with key confirmation is also possible.

In Figure 1 we compare the efficiency and security of NAXOS with four other
recent authenticated key exchange protocols: HMQV, KEA+ [15], protocol T S3
by Jeong, Katz and Lee [13] and Kudla-Paterson [14]2. The second column in the
table, “Efficiency,” lists the relative efficiency of the protocol as measured by the
number of exponentiations executed by one party. (Communication costs in all of
these protocols, except for Jeong-Katz-Lee, is the same as in the original Diffie-
Hellman protocol.) Column 3, “Key Registration,” specifies whether adversary-
controlled parties can register arbitrary public keys or if honest key-registration is
assumed. The fourth column, labeled “Ephemeral,” indicates whether an adver-
sary is allowed to reveal ephemeral secret information of the parties. Column 5 lists

2 Kudla and Paterson [14] define partnership via matching session identifiers (computed
by the parties), although for their protocol this appears to be equivalent to matching
conversations.
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Protocol Effic. Key Reg. Ephemeral Security Assumptions
NAXOS 4 Arbitrary yes Extended CK GDH (or PDH) + RO
HMQV 2.5 Arbitrary yes CK + wPFS + KCI GDH + KEA1 + RO
KEA+ 3 Arbitrary yes CK + wPFS + KCI GDH (or PDH) + RO

Jeong-Katz-Lee 3 Honest no BR + wPFS DDH + secure MACs
Kudla-Paterson 3 Honest no BR + KCI GDH + RO

Fig. 1. Comparison of recent AKE protocols

the security model for each protocol3. Finally, the sixth column (“Assumptions”)
lists the security assumptions upon which each protocol depends4. We refer the
reader to Chapter 7 of [6] for a good overview of Diffie-Hellman assumptions.

We begin with a brief review in Section 2 of the Canetti-Krawczyk security
model and discuss some attacks not covered by their definition in Section 2.2. We
introduce our extension of the Canetti-Krawczyk security model in Section 3. In
Section 4 we describe the NAXOS protocol and prove its security in the extended
model.

2 Previous Models

2.1 Overview of the Canetti-Krawczyk Model

The Canetti-Krawczyk security model is among a family of security models for
authenticated key exchange that includes those of Bellare and Rogaway [3,5]
and Bellare, Pointcheval and Rogaway [2]. We refer the reader to Choo et al.
[9] for a concise summary of the differences among these various models. We
give a high-level overview of the Canetti-Krawczyk model and introduce some
notation which will be useful later in the paper. We remark that the model
we describe differs from the original definition in that we use session identifiers
defined via matching conversations. The same definition was used by Krawczyk
when analyzing the security of the HMQV protocol [12] and it is now a commonly
used variant of the Canetti-Krawczyk model.

The AKE security experiment involves multiple honest parties and an adver-
sary M connected via an unauthenticated network. The adversary selects parties
to execute key-exchange sessions and selects an order in which the sessions will
be executed. Actions the adversary is allowed to perform include taking full

3 CK denotes Canetti-Krawczyk security without perfect forward secrecy, assuming
that partnership is defined via matching conversations. BR denotes the Bellare-
Rogaway model [3], which appears to be equivalent to the Canetti-Krawczyk model
with no ephemeral reveals allowed and key-registration done honestly [9]. KCI denotes
security against key-compromise impersonation. wPFS denotes weak perfect forward
secrecy. Extended CK denotes our extension of the Canetti-Krawczyk model.

4 RO – random oracle model [4], DDH – Decisional Diffie-Hellman, GDH – Gap Diffie-
Hellman [17], PDH – Pairing Diffie-Hellman [15] and KEA1 – knowledge of exponent
assumption [1].
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control of any party (a Corrupt query), revealing the session key of any session
(a Reveal query), or revealing session-specific secret information of any session
(a Session-State Reveal query).

We stress that an AKE session is executed by a single party: since all commu-
nication is controlled by an adversary, a party executing a session cannot know
for sure with whom it is communicating. The party executing the session is called
the owner of the session and the other party is called the peer. The matching
session to an AKE session (by the owner with the peer) is the corresponding
AKE session which is supposed to be executed by the peer with the owner.
The matching session might not exist if the communications were modified by
the adversary. The session identifier of an AKE session consists of the parties’
identities concatenated with messages they exchanged in the session5. In [12], a
completed session is definied to be “clean” if the session as well as its matching
session (if it exists) is not corrupted (neither session key nor session state were
revealed by M) and if none of the participating parties were corrupted.

At some point in the experiment, the adversary is allowed to make one Test
query: it can select any clean completed session (called the test session) and it
is given a challenge which consists either of the session key for that session or a
randomly selected string. The adversary’s goal is to guess correctly which of the
cases was selected.

Additionally, the Canetti-Krawczyk [11] definition has an optional perfect for-
ward secrecy (PFS) requirement. In the variant of Canetti-Krawczyk security with
PFS, the adversary is allowed to corrupt a participant of the test session (either
owner or peer) after the test session is completed. As noted by Krawczyk [12],
the PFS requirement is not relevant for 2-round AKE protocols since no 2-round
protocol can achieve PFS. Krawczyk introduced the notion of weak perfect forward
secrecy (wPFS) which can be achieved by 2-round protocols and which he demon-
strated is achieved by HMQV [12]. Weak PFS guarantees perfect forward secrecy
only for those AKE sessions where the adversary didn’t modify communications
between the parties. (Using the above terminology, the matching session exists for
the test session and both test and matching sessions are clean.)

2.2 Attacks Not Covered by the Existing Definitions

We point out several attacks which are not captured by the previous defini-
tions and explain which components of the Canetti-Krawczyk model prohibit
these attacks from being considered. First, we observe that although the adver-
sary is allowed to reveal the session state of the parties, he is not allowed to
make Session-State Reveal queries against the session he wants to attack (the
test session). That is, existing security models do not provide any security guar-
antees for a session if the ephemeral secret key of either party has been leaked.
While Krawczyk ([12]) extends the Canetti-Krawczyk model by making a defini-
tion of clean session that allows him to consider resistance to Key Compromise
5 We remark that for protocols, where participants do not have full view of the mes-

sages exchanged (for example, see [10]), it might not be possible to define such session
identifiers.



6 B. LaMacchia, K. Lauter, and A. Mityagin

Impersonation (KCI) attacks and achieve weak Perfect Forward Secrecy (wPFS),
this extension still does not include attacks such as revelation of both ephemeral
secret keys or both long-term secret keys. Krawczyk does consider resistance to
revelation of both ephemeral secret keys separately, and proves HMQV secure
against this attack under the stronger assumptions of GDH and KEA1.

Second, when the adversary corrupts an honest party, he takes full control over
this party and reveals all its secret information. This definition of the Corrupt
query does not allow attacks where the adversary reveals a long-term secret key
of some party prior to the time when that party executes the test session. Here
we summarize some attacks which are not allowed by the Canetti-Krawczyk
model but are permitted under our new definition:

– Key-compromise impersonation (KCI) attack [7,12]: the adversary reveals a
long-term secret key of a party and then impersonates others to this party.

– An adversary reveals the ephemeral secret key of a party and impersonates
others to this party.

– Two honest parties execute matching sessions, and the adversary reveals the
ephemeral secret keys of both of the parties and tries to learn the session
key.

– Two honest parties execute matching sessions. The adversary reveals the
ephemeral secret key of one party, the long-term secret key of the other
party and tries to learn the session key

– Two honest parties execute matching sessions. The adversary reveals the
long-term keys of both of the parties prior to the execution of the session
and tries to learn the session key.

3 Definitions

3.1 Motivation for Our Security Definition

We modify the Canetti-Krawczyk model in the definition of adversarial power
and in the notion of cleanness of the test session. Specifically, we replace the
Session-State Reveal query with an “Ephemeral Key Reveal” query which reveals
the ephemeral secret key of the party. Additionally, we give the adversary the
power to reveal a long-term secret key, by making a Long-Term Key Reveal query,
without corrupting the party. We remove the Corrupt query as it is no longer
necessary: the adversary can achieve the same result as the Corrupt query by
revealing all the secret information of the party through Long-Term Key Reveal,
Ephemeral Key Reveal and Reveal queries and by computing everything on behalf
of that party. We also modify the definition of a “clean session” by allowing the
adversary to reveal the maximum possible amount of data. We disallow only
those corruptions which allow the adversary to trivially break any AKE protocol.

We classify the test sessions as either “passive” or “active” depending on
whether the adversary is able to cancel or modify the information sent between
two honest participants. Formally, passive sessions are those where the matching
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session was completed at some point in the experiment, and active sessions are
those where no matching session was completed at any time in the experiment.

For passive sessions we allow the adversary to reveal any subset of the four
secret keys (each party’s ephemeral and long-term secret keys) which does not
contain both the ephemeral and long-term secret keys of a single party. Note that
the knowledge of both the ephemeral and long-term keys of one of the parties
allows the adversary to compute the session key for any AKE protocol.

For active sessions the communication sent by the peer might be corrupted
and thus we cannot define the ephemeral key of the peer. In this case we only
allow the adversary to reveal either the ephemeral or the long-term secret key of
the owner, as revealing both keys would trivially compromise the protocol. Note
that we cannot allow the adversary to reveal the long-term secret of the peer
(even after the test session is completed), since Krawczyk [12] shows that in this
case one can break any AKE protocol. (This is the same attack which shows the
impossibility of the full perfect forward secrecy requirement.)

3.2 Security Experiment for Extended Canetti-Krawczyk

Assume that the identities of the parties are binary strings (they can be derived
from the actual names of the parties). We will use letters A, B, C, . . . , both for
referring to the parties and for their identities. The adversary is given the power
to select each party’s identity (the binary string) if it so chooses.

There are a number of honest parties which are connected to the certificate
authority, CA, and to the adversary, M. That is, the communication between the
parties is fully controlled by M (and M cannot interfere with communication
between a single party and the CA). M is also connected to the certificate
authority and can register fictitious parties. The adversary plays a central role
in the experiment and is responsible for activating all other parties.

We call a particular instantiation of an AKE protocol executed by one of the
parties an AKE session. Since all communication is controlled by the adversary, a
party can never know if the second party actually exists and if the communication
it receives was computed by an honest party or by the adversary. Legitimate
execution of an AKE protocol by two parties A and B consists of two AKE
sessions, matching sessions executed by A and by B respectively. Note that an
instantiation of the AKE protocol is different depending on whether the executor
is the owner or the peer.

We do not assume the existence of explicit session identifiers. Instead, we
define a session identifier to consist of the identities of the 2 participants and
the information they exchanged. Specifically, a session identifier

sid = (role, ID, ID∗, comm1, . . . , commn),

where ID ∈ {0, 1}∗ is the identity of the party executing the session, role ∈
{O, P} is its role (owner/peer) in the protocol, ID∗ is the identity of the other
party and commi ∈ {0, 1}∗ is the i-th communication sent by the parties. As in
the Canetti-Krawczyk model, we define the matching session to an AKE session
to be the session executed by the other party with the same communications
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being transmitted, albeit in different order. For example, in a 2-round protocol,
if A executes the session (O, A, B, commA, commB), then the matching session
is executed by B and has session identifier (P, B, A, commA, commB).

A party computes a communication commi as a function of its own ephemeral
and long-term secret keys, its partner’s public key and previous messages ex-
changed. Once a party receives all the communications, it computes a session
key as a function of its own ephemeral and long-term secret keys, its partner’s
public key, and all communications, and completes the session.

The experiment proceeds as follows. Initially M selects the identities of all
honest parties (which can be arbitrary distinct binary strings) and honest parties
generate and register their public keys with the CA. The adversary can register
arbitrary public keys (even the same as those of some honest parties) on behalf
of adversary-controlled parties. Then the adversary makes any sequence of the
following queries:

– Send(A, B, comm). Sends a message comm to A on behalf of B. Returns A’s
response to this message. This query allows M to order A to start an AKE
session with B and to provide communications from B to A.

– Long-Term Key Reveal(A). Reveals a long-term key of a party A.
– Ephemeral Key Reveal(sid). Reveals an ephemeral key of a session sid (pos-

sibly incomplete).
– Reveal(sid). Reveals a session key of a completed session sid.

Eventually (at any time in the experiment), M selects a completed session
sid, makes a query Test(sid) and is given a challenge value C. M continues the
experiment after the Test query. The experiment terminates as soon as M makes
the Guess(b′) query. The experiment answers the adversary’s queries as follows:

– Test(sid) // can be made only once.
Pick b

$← {0, 1}. If b = 1, let C ← Reveal(sid); otherwise pick C
$← {0, 1}λ.

Return C.
– Guess(b′) // M terminates after making this query.

If b′ = b, return 1, otherwise return 0.

An adversary M wins the experiment if the selected test session is clean and
if he guesses the challenge correctly (that is, if the Guess query returns 1).

We now define what it means for a test session to be clean. Let sid be an
AKE session completed by a party A with some other party B, and denote by
sid∗ the matching session to sid, supposedly executed by B (sid∗ may not exist
in the experiment). Denote by skA and skB long-term secret keys of A and B.
Denote by eskA and eskB ephemeral secret keys generated by A and B in sid
and sid∗ (the latter is defined only if sid∗ exists). We say that an AKE session
sid is not clean if an adversary can trivially compute the session key. That is, a
session sid is not clean if any of the following conditions hold:

– A or B is an adversary-controlled party. This means in particular that M
chooses or reveals both the long-term and ephemeral secret keys for the party
and performs all communications and computations on behalf of the party.
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– M reveals the session key of sid or sid∗ (if the latter exists).
– Session sid∗ exists and M reveals either both skA and eskA, or both skB

and eskB.
– Session sid∗ doesn’t exist and M reveals either skB or both skA and eskA.

A session sid is clean if none of these conditions hold. We remark that the clean-
ness of the test session can be identified only after the experiment is completed:
the third and fourth conditions above can only be determined in the end of the
experiment. That is, the adversary wins the experiment if he correctly guesses
the challenge for the test session and this session remains clean until the end of
the experiment.

Definition 1 (Extended Canetti-Krawczyk security). The advantage of
the adversary M in the AKE experiment with AKE protocol Π is defined as

AdvAKE
Π (M) = Pr[M wins] − 1

2
.

We say that an AKE protocol is secure (in the extended Canetti-Krawczyk model)
if matching sessions compute the same session keys and no efficient adversary
M has more than a negligible advantage in winning the above experiment.

4 NAXOS AKE Protocol

4.1 Assumptions

All the arithmetic in this section is assumed to be in a mathematical group G
of known prime order q. We denote by g a generator of G and write the group
operation multiplicatively.

The discrete logarithm function DLOG(·) in G takes input an element a ∈ G
and returns x ∈ Zq such that a = gx. The computational Diffie-Hellman (CDH)
function CDH(·, ·) takes as input a tuple of elements (a, b) ∈ G2 and returns
gDLOG(a)·DLOG(b). The Decisional Diffie-Hellman (DDH) function DDH(·, ·, ·)
takes as input a triple of elements (a, b, c) ∈ G3 and returns 1 if c = CDH(a, b)
and 0 otherwise.

The advantage of an algorithm M in solving the Discrete Logarithm prob-
lem, AdvDLOG(M), is the probability that, given a

$← G, M correctly returns
DLOG(a). Similarly, the advantage of an algorithm M in solving the Gap Diffie-
Hellman (GDH) problem, AdvGDH(M), is the probability that, given as input
(a, b) $← G2 and oracle access to DDH(·, ·, ·), M correctly outputs CDH(a, b).
We say that G satisfies the GDH assumption if no feasible adversary can solve
the GDH problem with non-negligible probability. The GDH assumption was in-
troduced by Okamoto and Pointcheval [17] and is now a standard cryptographic
assumption used to establish the security of many protocols.

Let G′ be another group of order q. A function e : G × G → G′ is a bilinear
pairing if it is non-degenerate and if for any pair ga, gb ∈ G, e(ga, gb) = e(g, g)ab.
The Pairing Diffie-Hellman (PDH) problem recently introduced by Mityagin and
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Lauter [15] is to solve the CDH problem when given access to the pairing oracle e.
The advantage AdvPDH(M) of an algorithm M in solving the PDH problem
is the probability that M, given (a, b) $← G2 and a pairing oracle e, computes
CDH(a, b). We say that G satisfies the PDH assumption if no feasible adversary
solves the PDH problem with non-negligible probability. In groups which have
a bilinear pairing, the PDH problem is equivalent to the original CDH problem,
although one can also consider the PDH problem in groups where no efficient
pairing operation is known. We find the Pairing Diffie-Hellman assumption to
be as justified as the GDH assumption since the only known way to compute
DDH in groups where CDH is hard is via a pairing function.

4.2 Protocol Description

The NAXOS AKE protocol uses a mathematical group G and two hash functions,
H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → {0, 1}λ (for some constant λ). A long-term
secret key of a party A is an exponent skA ∈ Zq, and the corresponding long-term
public key of A is the power pkA = gskA ∈ G. In the following description of an
AKE session of NAXOS executed between the parties A and B we assume that
each party knows the other’s public key and that public keys are in the group
G. Additionally, we use the syntax H(x1, x2, ...) to represent the application of
the hash function H to the concatenation of its arguments x1||x2||....

The session execution proceeds as follows. The parties pick ephemeral secret
keys eskA and eskB at random from {0, 1}λ. Then the parties exchange values
gH1(eskA,skA) and gH1(eskB,skB), check if received values are in the group G and
only compute the session keys if the check succeeds. The session key K ∈ {0, 1}λ

is computed as

H2(gH1(eskB,skB)skA , gH1(eskA,skA)skB , gH1(eskA,skA)H1(eskB,skB), A, B).

The last two components in the hash are the identities of A and B, which we
assume to be binary strings. Figure 2 depicts the protocol.

Theorem 1. NAXOS satisfies Extended Canetti-Krawczyk security if H1 and
H2 are modeled by independent random oracles.

A B

eskA
$← {0, 1}λ X = gH1(eskA,skA)

�

Y = gH1(eskB,skB)
�

eskB
$← {0, 1}λ

A : K ← H2(Y skA , pk
H1(eskA,skA)
B , Y H1(eskA,skA), A, B)

B : K ← H2(pk
H1(eskB,skB)
A , XskB , XH1(eskB,skB), A, B)

Fig. 2. NAXOS AKE Protocol
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For any AKE adversary M against NAXOS that runs in time at most t,
involves at most n honest parties and activates at most k sessions, we show that
there exists a GDH solver S, a PDH solver R and a DLOG solver T such that

AdvGDH(S) = AdvPDH(R)

≥ 1
2

(
min

{
2
k2 ,

1
nk

}
· AdvAKE

NAXOS(M) − 2n · AdvDLOG(T ) − O

(
k2

2λ

))
,

where S runs in time O(tk), R runs in time O(t log t) and T runs in time O(t).

The proof of Theorem 1 is given in Appendix A.
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A Security Proof for NAXOS

Let A be any AKE adversary against NAXOS. We start by observing that since
the session key of the test session is computed as K = H2(σ) for some 5-tuple
σ, the adversary M has only two ways to distinguish K from a random string:

1. Forging attack. At some point M queries H2 on the same 5-tuple σ.
2. Key-replication attack. M succeeds in forcing the establishment of another

session that has the same session key as the test session.

A similar argument was used in the security proofs of the HMQV [12] and
KEA+ [15] AKE protocols. If random oracles produce no collisions, the key-
replication attack is impossible as equality of session keys implies equality of
the corresponding 5-tuples (which are hashed to produce session keys). In turn,
distinct AKE sessions must have distinct 5-tuples. Therefore, if random oracles
produce no collisions (collisions happen with probability O(k2/2λ)), M must
perform a forging attack. Next we show that if M can mount a successful forging
attack, then we can construct a Gap Diffie-Hellman solver S which uses M as a
subroutine. Most of the remaining proof is devoted to the construction of S.

S takes as input a GDH challenge (X0, Y0). Then S executes the Extended
Canetti-Krawczyk (ECK) experiment with M the adversary against the NAXOS
protocol, and modifies the data returned by the honest parties in such a way
that if M breaks security of NAXOS, then S can reveal the solution to the GDH
problem from M.

We distinguish between two cases of M’s behavior: whether M selects a test
session for which the matching session exists or if the test session has no matching
session. We handle analysis of these cases differently and note that at least one
of them happens with probability ≥ 1/2.
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A.1 Matching Session Exists

Assume that M selects a test session for which the matching session exists. Then
S modifies the experiment as follows. S selects at random matching sessions
executed by some honest parties A and B (in fact, S selects two sessions at
random and continues only if they are matching – S successfully guesses them
with probability 2/k2). Denote by commA and commB the communications sent
by the respective parties in these matching sessions. When either of these sessions
is activated, S does not follow the protocol. Instead, S generates eskA and eskB
normally but sets commA ← X0 (in place of gH1(skA,eskA)) and commB ← Y0
(in place of gH1(skB,eskB)).

With probability 1/k2 M picks one of the selected sessions as the test session
and another as its matching session. We claim that if M wins in the forging
attack, S can solve the CDH challenge. Indeed, the supposed session key for the
selected session is H2(σ), where the 5-tuple σ includes the value CDH(X0, Y0).
To win, M must have queried σ to the random oracle H2.

If the selected session is indeed the test session, M is allowed to reveal a
subset of { skA, skB, eskA and eskB }, but it is not allowed to reveal both
(skA, eskA) or both (skB, eskB). We observe that in this case, the only way that
M can distinguish this simulated ECK experiment from a true ECK experiment
is if M queries (skA, eskA) or (skB, eskB) to H1 (this way, M will find out that
commA and commB were not computed correctly). Proposition 1 shows that the
probability that M makes such queries is at most

2n · AdvDLOG(T )

for some discrete logarithm solver T .
Therefore (assuming that M always selects a test session which has a matching

session)

AdvGDH(S) ≥ 2
k2 · AdvAKE

NAXOS(M) − 2n · AdvDLOG(T ) − O

(
k2

2λ

)
.

Note that in this case S doesn’t make any queries to the DDH oracle and runs
in time O(t).

A.2 No Matching Session

Now assume that M selects a test session for which no matching session exists.
In this case S modifies the experiment as follows. S selects a random party B and
sets pkB ← X0. Note that S doesn’t know the secret key corresponding to this
public key and thus it cannot properly simulate ECK sessions executed by B. S
handles ECK sessions executed by B as follows (assume that B is the owner).
S randomly selects eskB, picks h at random from Zq and sets commB = gh

instead of gH1(eskB,DLOG(X0)). S sets a session key K (which is supposed to be
H2(CDH(X0, commC), pkh

C , commh
C , B, C)) to be a random value. Note that S

can handle session key and ephemeral secret key reveals by revealing K and
eskB, but cannot handle long-term secret key reveals.
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If C is an adversary-controlled party, M can compute the session key on its
own, reveal K and detect that it is fake. To address this issue, S watches M’s
random oracle queries and if M ever queries (Z, pkh

C , commh
C , B, C) to H2 (for

some Z ∈ G), S checks if DDH(X0, commC , Z) = 1 and if yes, replies with the
key K. Similarly, on the computation of K, S checks if K should be equal to
any previous response from the random oracle. Because of these checks S runs
in quadratic time of the number of random oracle’s queries.

M cannot detect that it is in the simulated ECK experiment unless it either
queries (eskB, DLOG(X0)) to H1 or reveals a long-term secret key of B. The
first event reveals DLOG(X0) and allows S to solve the CDH problem – by
Proposition 1 it happens with probability at most

n · AdvDLOG(T )

for some discrete logarithm solver T . The second event is impossible as otherwise
the test session will no longer be clean.

S also randomly selects an ECK session in which B is the peer. Denote the
owner of this session by A. When the selected session is activated, S follows the
protocol only partially: S generates eskA normally but sets commA ← Y0 (in
place of gH1(skA,eskA)).

With probability at least 1/nk (1/n to pick the correct party B and 1/k to
pick the correct session), M picks the selected session as the test session, and
if it wins, it solves the CDH problem. The supposed session key for the selected
session is H2(σ), where the 5-tuple σ includes the value CDH(X0, Y0). To win,
M must have queried σ to the random oracle H2.

If the selected session is indeed the test session, M is not allowed to reveal both
skA and eskA and is not allowed to corrupt B. In this case, the only way that
M can distinguish this simulated ECK experiment from a true ECK experiment
is if M queries (skA, eskA) to H1. However, by Proposition 1 it happens with
probability at most

n · AdvDLOG(T )

for some discrete logarithm solver T .
Overall, if M always selects a test session which doesn’t have a matching

session then the success probability of S is at most

AdvGDH(S) ≥ 1
nk

· AdvAKE
NAXOS(M) − 2n · AdvDLOG(T ) − O

(
k2

2λ

)
,

where T is some discrete logarithm solver. S runs in time O(kt).

A.3 Efficiency Analysis

We observe that the running time of S is O(kt). For each session key compu-
tation done by B (where Y is the incoming communication in that session) the
solver S has to go over all previous H2 queries and for each H2 query of the
form (. . . , Z, . . . ) check if DDH(X0, Y, Z) = 1. Similarly, on each DDH query
of the form (. . . , Z, . . . ), S has to go over all previous session key computations
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done by B and for each such computation S checks if DDH(X0, Y, Z) (where Y
the incoming communication in that session). Since M can activate at most k
sessions and make at most t H2 queries, the total running time is O(tk).

The running time of the solver can be improved if the solver has access to
the pairing oracle instead of to the DDH oracle. We construct the PDH solver
R in the same way as S with the only difference being that R must also han-
dle the checks discussed above. Note that DDH(X0, Y, Z) = 1 if and only if
e(Z, g) = e(X0, Y ). Therefore R can store corresponding values e(Z, g) in a
balanced binary tree and on each session executed by B check for X0, Y by
computing e(X0, Y ) and searching for this value in the binary tree (which can
be done in log t steps). Therefore, R has the same advantage as S and runs in
time O(t log t).

A.4 Reduction to the Discrete Logarithm Problem

Finally, we are left to prove the proposition which reduces breaking secret keys
of honest parties to solving the Discrete Logarithm problem.

Consider any adversary M against the NAXOS protocol. M can obtain long-
term secret keys of some honest parties via Long-Term Key Reveal queries and
can attempt to break long-term keys of uncorrupted parties. We claim that he
cannot do so unless he solves the discrete logarithm problem. Let “M breaks a
secret key” denote an event that M makes a random oracle query H1(∗, skA) for
some honest party A against which M didn’t make the Long-Term Key Reveal
query.

Proposition 1. For any adversary M against the NAXOS protocol who runs
in time t and involves at most n honest parties, there exists a discrete logarithm
solver T such that

Prob[“M breaks a secret key”] < nAdvDLOG(T ),

where T runs in time O(t).

Proof. Since the security experiment involves at most n honest parties, we can
assume that M queries (∗, skA) to H1 for a certain party A with probability at
least

1
n

Prob[“M breaks a secret key”].

The discrete logarithm solver T is given a challenge X ; T runs the AKE exper-
iment with M and sets the public key of a party A to be X .

T can perfectly simulate all actions of the parties except for computing
H1(eskA, skA) during key-exchange sessions involving A (here skA is supposed
to be DLOG(X)). In these cases T randomly selects distinct random oracle
values for distinct values of eskA.

The only way that M can distinguish this simulation from the true experiment
is by querying (eskA, DLOG(X)) to the random oracle. However in this case (as
we see below) T automatically wins the DLOG experiment.
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Whenever M makes a query of the form (y, z) to the random oracle H1,
T verifies whether X = gz and if true, submits z as an answer to the DLOG
experiment. Note that in the simulated experiment M makes a random oracle
query (∗, skA = DLOG(X)) with probability at least

1
n

Prob[“M breaks a secret key”].

Therefore, T succeeds in solving discrete logarithm of X at least with this
probability.
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