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Abstract. At Indocrypt 2005, Viet et al., [20] have proposed an anony-
mous password-authenticated key exchange (PAKE) protocol and its
threshold construction both of which are designed for client’s password-
based authentication and anonymity against a passive server, who does
not deviate the protocol. In this paper, we first point out that their
threshold construction is completely insecure against off-line dictionary
attacks. For the threshold t > 1, we propose a secure threshold anony-
mous PAKE (for short, TAP) protocol with the number of clients n
upper-bounded, such that n ≤ 2

√
N − 1 − 1, where N is a dictionary

size of passwords. We also show that the TAP protocol provides seman-
tic security of session keys in the random oracle model, with the reduc-
tion to the computational Diffie-Hellman problem, as well as anonymity
against a passive server. For the threshold t = 1, we propose an effi-
cient anonymous PAKE protocol that significantly improves efficiency in
terms of computation costs and communication bandwidth compared to
the original (not threshold) anonymous PAKE protocol [20].

1 Introduction

In 1976, Diffie and Hellman published their seminal paper that introduced how to
share a secret over public networks [9]. Since then, many researchers have tried
to design secure cryptographic protocols for realizing secure channels. These
protocols are necessary because application-oriented protocols are frequently
developed assuming the existence of such secure channels. In the 2-party set-
ting (e.g., a client and a server), this can be achieved by an authenticated
key exchange (AKE) protocol at the end of which the two parties authenti-
cate each other and share a common and temporal session key to be used for
subsequent cryptographic algorithms (e.g., AES-CBC or MAC). For authen-
tication, the parties typically share some information in advance. The shared
information may be the form of high-entropy cryptographic keys: either a secret
key that can be used for symmetric-key encryption or message authentication
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code (e.g., [7,16]), or public keys (while the corresponding private keys are kept
secret) which can be used for public-key encryption or digital signatures (e.g.,
[10,22,2,16,12]).

In practice, low-entropy human-memorable passwords such as 4-digit pin-code
or alphanumerical passwords are commonly used rather than high-entropy keys
because of its convenience in use. Many password-based AKE protocols have
been extensively investigated for a long time where a client remembers a short
password and the corresponding server holds the password or its verification
data that is used to verify the client’s knowledge of the password. However, one
should be careful about two major attacks on passwords: on-line and off-line dic-
tionary attacks. The on-line dictionary attack is a series of exhaustive searches
for a secret performed on-line, so that an adversary can sieve out possible secret
candidates one by one communicating with the target party. In contrast, the
off-line dictionary attack is performed off-line in parallel where an adversary ex-
haustively enumerates all possible secret candidates, in an attempt to determine
the correct one, by simply guessing a secret and verifying the guessed secret with
recorded transcripts of a protocol. While on-line attacks are applicable to all of
the password-based protocols equally, they can be prevented by letting a server
take appropriate intervals between invalid trials. But, we cannot avoid off-line
attacks by such policies, mainly because the attacks can be performed off-line
and independently of the party.

1.1 Password-Authenticated Key Exchange and Anonymity

In 1992, Bellovin and Merritt [4] discussed an interesting problem about how to
design a secure password-only protocol where a client remembers his/her pass-
word only (without any device and any additional assumption) and the coun-
terpart server has password verification data. Their proposed protocols are good
examples (though some are turned out insecure) that a combination of sym-
metric and asymmetric cryptographic techniques can prevent an adversary from
verifying a guessed password (i.e., doing off-line dictionary attacks). Later, their
AKE protocols have formed the basis for what we call Password-Authenticated
Key Exchange (PAKE) protocols. Such protocols have been in standardization
of IEEE P1363.2 [11].

In PAKE protocols, a client should send his/her identity clearly in order to au-
thenticate each other and share a master-secret that may be the Diffie-Hellman
key or a shared secret to be used for generating authenticators and session keys.
Let us suppose an adversary who fully controls the networks. Though the ad-
versary cannot impersonate any party in PAKE protocols with non-negligible
probability, it is easy to collect a client’s personal information about the com-
munication history itself (e.g., history of access to ftp servers, web-mail servers,
Internet banking servers or shopping mall servers). These information may re-
flect the client’s life pattern and sometimes can be used for spam mails. For this
problem, Viet et al., [20] have proposed an anonymous PAKE protocol and its
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threshold construction1 that simply combine a PAKE protocol [1] for generat-
ing secure channels with an Oblivious Transfer (OT) protocol [19,8] for client’s
anonymity. The anonymity is guaranteed against an outside adversary as well
as a passive server, who follows the protocol honestly but it is curious about
identity of client involved with the protocol. They also gave an application for a
company’s public bulletin board to which any employee can upload opinions in
a password-authenticated and anonymous way. As discussed in [20], their (not
threshold) anonymous PAKE protocol can not provide anonymity against an
active server, who deviates the protocol by changing messages at its own (see
Section 5 of [20]). Though they did not mention anything about their threshold
construction, it may prevent an active server from obtaining information on the
client’s identity since any client can blend him/herself to the subgroup.

1.2 Our Contributions

Partly motivated from Nguyen’s insights [14] on the relationship between PAKE
protocols and other cryptographic primitives, we carefully revisit Viet et al’s
anonymous PAKE protocols [20]. In this paper, we first point out that Viet et
al’s threshold anonymous PAKE protocol is insecure against off-line dictionary
attacks. For the threshold t > 1, we propose a secure threshold anonymous
PAKE (for short, TAP) protocol that provides not only semantic security of
session keys in the random oracle model with the reduction to the computational
Diffie-Hellman problem but also anonymity against a passive server, who does
not deviate the protocol but is curious about the clients’ identities. We also
give the condition on the number of clients n, such that n ≤ 2

√
N − 1 − 1,

for the optimal security result against on-line dictionary attacks where N is a
dictionary size of passwords. For the threshold t = 1, we propose an efficient
anonymous PAKE protocol that can be easily obtained from the TAP protocol.
The resultant protocol significantly improves efficiency in terms of computation
costs and communication bandwidth compared to the original (not threshold)
anonymous PAKE protocol [20].

1.3 Organization

This paper is organized as follows. In the next section, we show that the previous
threshold anonymous PAKE protocol is insecure against off-line attacks. Section
3 is assigned to security model. In Section 4, we propose a secure threshold
anonymous PAKE (TAP) protocol. Section 5 is devoted to its security proofs,
followed by discussion about the condition on n in Section 6. For the threshold
t = 1, we also propose an efficient anonymous PAKE protocol in Section 7.
Finally, we conclude in Section 8.
1 Here, the ”threshold” number of clients are involved with the protocol. In a differ-

ent context, MacKenzie et al., [13] proposed a threshold PAKE protocol where the
”threshold” number of servers collaborates one another to resist against compromise
of the password verification data. However, the collaborations in the former/latter
protocols assume secure channels among clients/servers, respectively.
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2 The Previous Threshold Anonymous PAKE Protocol

In this section, we first give some notation to be used throughout this paper.
Then we explain how the previous threshold anonymous PAKE protocol [20,21]
works and show its insecurity against off-line dictionary attacks.

2.1 Notation

Let Gp be a finite, cyclic group of prime order p and g be a generator of Gp,
whose elements are quadratic residues modulo p. Let h be another generator
of Gp so that its discrete logarithm problem with g (i.e., computing b = logg h)
should be hard. The parameter (Gp, p, g, h) is given as public information. In the
aftermath, all the subsequent arithmetic operations are performed in modulo p
unless otherwise stated.

Let l denote the security parameter for hash functions. Let N be a dictionary
size of passwords. Let {0, 1}∗ denote the set of finite binary strings and {0, 1}l the
set of binary strings of length l. If D is a set, then d

R← D indicates the process of
selecting d at random and uniformly over D. Let ”||” denote the concatenation
of bit strings in {0, 1}�. Let ”

⊕
” denote the exclusive-OR (XOR) operation of

bit strings. The hash functions F and F ′ are full-domain hash (FDH) functions,
mapping {0, 1}� to Z�

p. While G : {0, 1}� → Gp is another FDH function, the
others are denoted Hk : {0, 1}� → {0, 1}l, for k = 1, 2 and 3, where G and Hk

are distinct secure one-way hash functions. Let C and S be the identities of a
set of all clients and server, respectively, with each ID ∈ {0, 1}�.

2.2 Protocol Description

Here we describe the threshold anonymous PAKE (TA-PAKE) protocol [20,21]
where any subgroup SG, consisting of at least t (t ≤ n) clients among n clients,
generates a session key with server S in a password-authenticated and anony-
mous way.2 We assume that each client in the subgroup are connected via secure
channels. See Fig. 1 for graphical description of the TA-PAKE protocol.

Step 1
1.1 By collaborating with one another, the subgroup SG chooses a random

number x from Z�
p and computes X ≡ gx.

1.2 Each client Ci (1 ≤ i ≤ t) chooses two random numbers (ri, si)
R← (

Z�
p

)2,
and then computes wi ≡ hri·F(i,pwCi

) and Ai ≡ wi × gsi where i and
pwCi are the index and the password, respectively, for client Ci. The ri

and si are kept secret by Ci.

2 The only difference of [21] from [20] is that the subgroup SG chooses wl
R← Gp, for

t+1 ≤ l ≤ n, and sends {wj}1≤j≤n along with other values in the first flow. In fact,
the TA-PAKE protocol of [20] doesn’t work correctly since server S has no idea on
wj .
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Public information: (Gp, p, g, h),F ,F ′,G,H1,H2, C = {C1, · · · , Cn}

Subgroup SG = {C1, · · · , Ct} Server S
(
pwCj , 1 ≤ j ≤ n

)

x
R← Z

�
p, X ≡ gx

For each Ci (1 ≤ i ≤ t),

(ri, si)
R← (

Z
�
p

)2
,

wi ≡ hri·F(i,pwCi
),

and Ai ≡ wi × gsi .

For l = t + 1 to n, wl
R← Gp.

C, X, {Ai}1≤i≤t, {wj}1≤j≤n�

(y, z)
R← (

Z
�
p

)2
, Y ≡ gy, Z ≡ gz

f(x) ≡∑t−1
k=0 uk · xk where

u0 = y and uk
R← Z

�
p

For j = 1 to n,

yj ← f(j),

Yj ≡ gyj ,

and αj ← G
(
wz

j

) ⊕ (
Yj × g

F′(pwCj
)
)
.

For i = 1 to t, Di ≡ Az
i .

KS ≡ Xy

VS ← H1(T ||Y ||KS)
S, Z, {Di}1≤i≤t, {αj}1≤j≤n, VS�

For each Ci (1 ≤ i ≤ t),

Yi ≡ (αi

⊕ G(Di/Z
si))×

(
gF′(pwCi

)
)−1

.

Y ≡ ∏t
i=1 Y λi

i where λi ≡ ∏
1≤k≤t,k �=i

k
k−i

,

and KC ≡ Y x

If VS �= H1(T ||Y ||KC), reject.

Otherwise, SK ← H2(T ||Y ||KC)

and accept.

SK ← H2(T ||Y ||KS)

Fig. 1. The threshold anonymous PAKE (TA-PAKE) protocol [20,21] where T =
C||S||X||Z||{Di}1≤i≤t||{αj}1≤j≤n

1.3 The subgroup SG chooses n− t random numbers wl from Gp, and then
sends C, X, {Ai}1≤i≤t and {wj}1≤j≤n to server S.

Step 2
2.1 The server chooses two random numbers (y, z) R← (

Z�
p

)2 and computes
(Y ≡ gy, Z ≡ gz) where the exponent y is distributed as shares by using
Shamir’s secret sharing scheme [15]. Specifically, server S generates the
respective share f(j), for n clients, from a random polynomial f(x) of
degree t− 1 with coefficients uk (1 ≤ k ≤ t− 1) in Z�

p

f(x) ≡
t−1∑

k=0

uk · xk (1)

and sets u0 = y.
2.2 For j (1 ≤ j ≤ n), server S computes Yj ≡ gf(j) and αj ← G

(
wz

j

) ⊕
(
Yj × gF

′(pwCj
)
)
.
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2.3 For i (1 ≤ i ≤ t), server S computes Di ≡ Az
i .

2.4 The server computes KS ≡ Xy, from which its authenticator VS and
session key SK are derived as follows: VS ← H1(C||S||X ||Z||{Di}1≤i≤t||
{αj}1≤j≤n||Y ||KS) and SK ← H2(C||S||X ||Z||{Di} 1≤i≤t||{αj}1≤j≤n||
Y ||KS). Then, server S sends S, Z, {Di}1≤i≤t, {αj}1≤j≤n and VS to sub-
group SG.

Step 3

3.1 Each clientCi (1≤ i≤ t) extractsYi≡(αi

⊕G(Di/Z
si))×

(
gF

′(pwCi
)
)−1

.
3.2 By collaborating with one another, subgroup SG recovers Y from Yi

and computes KC ≡ Y x. Note that the Y can be reconstructed from the
shares of any qualified subgroup of clients by Lagrange interpolation.

3.3 If VS is valid, subgroup SG computes a session key SK as follows:
SK ← H2(C||S||X ||Z||{Di} 1≤i≤t||{αj}1≤j≤n||Y ||KC). Otherwise, it
terminates.

2.3 Insecurity of TA-PAKE Protocol

We show that the TA-PAKE protocol [20,21] is insecure against off-line dictionary
attacks. First we suppose that an adversary A impersonates the subgroup SG
without knowing any password.

Step 1’
1.1 An adversary A chooses a random number x from Z�

p and computes

X ≡ gx, and also chooses n random numbers wj
R← Gp, for 1 ≤ j ≤ n.

1.2 For each client Ci (1 ≤ i ≤ t), adversary A chooses a random num-
ber si

R← Z�
q and then computes Ai ≡ wi × gsi . The adversary sends

C, X, {Ai}1≤i≤t and {wj}1≤j≤n to server S.
Step 3’

3.1 After receiving the message from server S, adversary A performs the
following: compute Y ′

i , as the honest client Ci of subgroup SG would do,
with all of the possible password candidates pw′

Ci
and store N different

Y ′
i , for each client Ci (1 ≤ i ≤ t).

Y ′
i ≡

(
αi

⊕
G(Di/Z

si)
)
×

(
gF

′(pw′
Ci

)
)−1

(2)

.
3.2 With tN different Y ′

i , the adversary recovers Y ′ ≡∏t
i=1 Y ′λi

i and the lat-
ter is used to compute K ′

C ≡ Y ′x. Finally, adversaryA can find out the cor-
rect {pw′

C1
, · · · , pw′

Ct
} by checking whether a subgroup of password can-

didates satisfies VS = H1(C||S||X ||Z||{Di}1≤i≤t||{αj}1≤j≤n||Y ′||K ′
C) or

not. Note that each subgroup guarantees a unique polynomial f ′(x) of
degree t− 1.
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In the worst case, adversary A can find out {pw′
C1

, · · · , pw′
Ct
} after N t trials.

Though the number of trials goes exponentially with the threshold t, one can
see that if t is small it is easy for an adversary to get the correct passwords.

More importantly, the above attack implies that a legitimate client in C can
also obtain all passwords of the other clients with the linear trials. Suppose that
there are two legitimate clients C1 and C3 who make up a subgroup SG =
{C1, C2, C3}. After running the TA-PAKE protocol, as an adversary would do in
the above, with server S, C1 and C3 can know the password of C2 by checking
possible N password candidates in the same way as above. By repeating this
off-line dictionary attack n − 2 times, C1 and C3 find out all passwords of the
remaining clients in C.

3 The Model and Security Notions

In this section, we introduce the model based on [5,3], security notions and the
underlying mathematical assumption.

The Model. We consider SG (i.e., a subgroup of C) and S as two parties that
participate in the key exchange protocol P . Each of SG and S may have several
instances called oracles involved in distinct, possibly concurrent, executions of
P . We denote SG (resp., S) instances by SGμ (resp., Sν) where μ, ν ∈ N, or by
U in case of any instance. In the TAP protocol, each client Ci (1 ≤ i ≤ n) of C
and server S share a low-entropy secret pwCi drawn from a small dictionary of
password DPassword, whose cardinality is N . Here we assume that an adversary
A is not any client and server (i.e., A /∈ {C, S}). However, the adversary has
the entire control of the network during the protocol execution which can be
represented by allowing A to ask several queries to oracles. Let us show the
capability of adversary A each query captures:

– Execute(SGμ, Sν): This query models passive attacks, where the adversary
gets access to honest executions of P between the instances SGμ and Sν by
eavesdropping.

– Send(U, m): This query models active attacks by having A send a message to
instance U . The adversary A gets back the response U generates in process-
ing the message m according to the protocol P . A query Send(SGμ, Start)
initializes the key exchange protocol, and thus the adversary receives the
first flow.

– Reveal(U): This query handles the misuse of the session key (e.g., use in
a weak symmetric-key encryption) by any instance U . The query is only
available to A, if the instance actually holds a session key, and at that case
the key is released to A.

– Test(U): This oracle is used to see whether or not the adversary can obtain
some information on the session key by giving a hint on the key. The Test-
query can be asked at most once by the adversary A and is only available to
A if the instance U is ”fresh” in that the session key is not obviously known
to the adversary. This query is answered as follows: one flips a private coin
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b ∈ {0, 1} and forwards the corresponding session key SK (Reveal(U) would
output) if b = 1, or a random value with the same size except the session
key if b = 0.

Security Notions. The adversaryA is provided with random coin tosses, some
oracles and then is allowed to invoke any number of queries as described above,
in any order. The aim of the adversary is to break the privacy of the session key
(a.k.a., semantic security) or the authentication of the parties in the context of
executing P .

The AKE security is defined by the game Gameake(A, P ), in which the ul-
timate goal of the adversary is to guess the bit b involved in the Test-query
by outputting this guess b′. We denote the AKE advantage, by Advake

P (A) =
2 Pr[b = b′]− 1, as the probability that A can correctly guess the value of b. The
protocol P is said to be (t, ε)-AKE-secure if A’s advantage is smaller than ε for
any adversary A running time t.

Another goal is to consider unilateral authentication of either SG (SG-auth) or
S (S-auth) wherein the adversary impersonates a party. We denote by
SuccSG−auth

P (A) (resp., SuccS−auth
P (A)) the probability that A successfully im-

personates an SG instance (resp., an S instance) in an execution of P , which
means that S (resp., SG) agrees on a key while the latter is shared with no
instance of SG (resp., S). A protocol P is said to be (t, ε)-Auth-secure if A’s
success probability for breaking either SG-auth or S-auth is smaller than ε for
any adversary A running time t.

By following the definition of anonymity from [20], we can say that a protocol
P is anonymous if a passive server cannot get any information about clients’
identities (in SG) involved with the protocol, whereas the subgroup SG estab-
lishes a session key with the server. In other words, any subgroup can prove that
it consists of legitimate members of the set C by sending its authenticator at
the end of the protocol. Nevertheless, the server does not know who they are.

3.1 Computational Diffie-Hellman Assumption

A (t1, ε1)-CDHg,Gp attacker, in a finite cyclic group Gp of prime order p with
g as a generator, is a probabilistic machine B running in time t1 such that its
success probability Succcdh

g,Gp
(B), given random elements gx and gy to output gxy,

is greater than ε1. We denote by Succcdh
g,Gp

(t1) the maximal success probability
over every adversaries running within time t1. The CDH-Assumption states that
Succcdh

g,Gp
(t1) ≤ ε1 for any t1/ε1 not too large.

4 A Secure Threshold Anonymous PAKE (TAP) Protocol

In this section, we propose a secure threshold anonymous PAKE (for short, TAP)
protocol that has the following properties: 1) semantic security of session keys
against an outside adversary; and 2) anonymity against a passive server, who
follows the protocol honestly but is curious about clients’ identities involved with
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the protocol. Here we assume that all clients Ci (1 ≤ i ≤ n) of the set C has
registered their passwords pwCi to a server S and the server holds the password
verification data in an asymmetric form (i.e., hF(i,pwCi

)). For simplicity, we as-
sign the clients consecutive integer i (1 ≤ i ≤ n) where Ci can be regarded as
the i-th client of C. In the TAP protocol, any subgroup SG consisting of at least
t (t > 1) clients wants to share a session key securely and anonymously with
server S (see Fig. 2).

Rationale. A naive approach for secure threshold anonymous PAKE proto-
col is performing the existing (not threshold) anonymous PAKE protocol up
to t times. This apparently entails a lot of messages to be exchanged between
subgroup SG and server S. In order to construct efficiently, the TAP protocol
has the following rationale. The first is that, instead of client’s password itself,
the output of F(i, pwCi) is used as an exponent in order to compute the verifi-
cation data Wi as in [20]. In fact, this plays a very important role when t = 1
(see Section 7) in that an adversary is enforced to make an on-line dictionary
attack on a specific client, not the others. The second is that server generates
only one Diffie-Hellman public value and its exponent is used to compute all
of the possible Diffie-Hellman key Kj. As we will show in the proof, this is the
reason why an adversary can get a factor n in the second term of the security
result of Theorem 1. The third is that server sends {Zj}1≤j≤n by encrypting a
share of the secret S with the hash of each Diffie-Hellman key. This is enough to
guarantee clients’ anonymity against an honest-but-curious server (see Theorem
2 in Section 5).

Step 1
1.1 Each client Ci, who belongs to the subgroup SG, chooses a random

number xi from Z�
p and computes the Diffie-Hellman public value Xi ≡

gxi . The client Ci also computes the password verification data Wi ≡
hF(i,pwCi

) where i and pwCi are the index and the password, respectively,
for Ci. The Wi is used to mask Xi, so that its resultant value X∗

i can be
obtained in a way of X∗

i ≡ Xi ×Wi. The chosen xi is kept secret by Ci.
1.2 By collaborating with one another, subgroup SG (or any client Ci)

chooses X∗
j

R← Gp for each Cj (1 ≤ j �= i ≤ n), who belongs to C
but not to SG. Then the subgroup sends the threshold t, the masked
public values {X∗

i }1≤i≤n, to the server, together with the set C of clients’
identities.

Step 2
2.1 The server S chooses a random number y from Z�

p and a random secret
S from Gp, and computes its Diffie-Hellman public value Y ≡ gy. The
secret S is distributed as shares by using Shamir’s (t, n) secret sharing
scheme [15]. Specifically, server S generates the respective share f(j),
for all clients, from a polynomial f(x) ≡∑t−1

k=0 uk · xk with u0 = S and
coefficients uk (1 ≤ k ≤ t− 1) randomly chosen from Gp.

2.2 For the received X∗
j (1 ≤ j ≤ n), server S computes Xj ≡ X∗

j /Wj and
the Diffie-Hellman key Kj ≡ Xy

j . The Zj is derived from XORing Sj
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Public information: (Gp, p, g, h),F ,G,H1,H2, C = {C1, · · · , Cn}

Subgroup SG = {C1, C4, · · · , Cn−3︸ ︷︷ ︸
t

} Server S
(
Wj ≡ h

F(j,pwCj
)
, 1 ≤ j ≤ n

)

For each Ci ∈ SG,

xi
R← Z

�
p, Xi ≡ gxi ,

Wi ≡ hF(i,pwCi
),

and X∗
i ≡ Xi ×Wi.

For each Cj ∈ C\SG (1 ≤ j �= i ≤ n),

X∗
j

R← Gp. C, t, {X∗
i }1≤i≤n�

y
R← Z

�
p, Y ≡ gy, S

R← Gp

f(x) ≡∑t−1
k=0 uk · xk where

u0 = S and uk
R← Gp

For j = 1 to n,

Sj ← f(j),

Xj ≡ X∗
j /Wj ,

Kj ≡ Xy
j ,

and Zj ← G(j, Kj)
⊕

Sj .

VS ← H1(C||S||Trans||S)S, Y, {Zj}1≤j≤n, VS�
For each Ci ∈ SG,

look for Zj=i,

Ki ≡ Y xi and Si = Zi

⊕ G(i, Ki).

S′ =
∑t

k=1 λk · Sk where λk ≡
∏

1≤m≤t,m�=k
m

m−k

If VS �= H1(C||S||Trans||S′), reject.

Otherwise, SK ← H2(C||S||Trans||S′)

and accept.

SK ← H2(C||S||Trans||S)

Fig. 2. A secure threshold anonymous PAKE (TAP) protocol where the threshold t > 1
and Trans = t||{X∗

i }1≤i≤n||Y ||{Zj}1≤j≤n

and the hashed output of index j and Kj: Zj ← G(j, Kj)
⊕

Sj where
Sj ← f(j).

2.3 Also server S generates an authenticator VS ← H1(C||S||t||{X∗
i }1≤i≤n||

Y ||{Zj}1≤j≤n||S) and a session key SK ← H2(C||S||t||{X∗
i }1≤i≤n||Y ||

{Zj}1≤j≤n||S). Then the server sends its identity S, the Diffie-Hellman
public value Y , {Zj}1≤j≤n and the authenticator VS to subgroup SG.

Step 3

3.1 Each client Ci, who belongs to SG, first looks for Zj=i and computes
the Diffie-Hellman key Ki with xi: Ki ≡ Y xi . Now, client Ci extracts Si

from Zi in an obvious way: Si = Zi

⊕G(i, Ki).
3.2 By collaborating with one another, subgroup SG reconstructs S′ from the

t shares Si by Lagrange interpolation: S′ =
∑t

k=1 λk · Sk where λk ≡∏
1≤m≤t,m �=k

m
m−k . If the received VS is not valid (i.e., VS �= H1(C||S||t||

{X∗
i }1≤i≤n||Y ||{Zj}1≤j≤n||S′)), the subgroup terminates the protocol.

Otherwise, subgroup SG generates its session key SK ← H2(C|| S||t||
{X∗

i }1≤i≤n||Y ||{Zj}1≤j≤n||S′). Obviously, any subgroup of less than t
clients cannot generate a common session key SK.
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Instead of collaborating with one another at Step 1.2 and 3.2, one client in the
subgroup SG can choose X∗

j and reconstruct S′ by collecting t shares from the
other t− 1 clients.

Remark 1. In order to provide mutual authentication in the above protocol, we
can simply add the subgroup’s authenticator VSG ← H3(C||S||t||{X∗

i }1≤i≤n||Y ||
{Zj}1≤j≤n||S), as the third flow from subgroup SG to server S, before completing
the TAP protocol. This is due to the well-known fact that the basic approach in
the literature for adding authentication to an AKE protocol is to use the shared
Diffie-Hellman key to construct a simple ”authenticator” for the other party
[5,3].

5 Security

At first, we show that the TAP protocol of Fig. 2 distributes session keys that
are semantically-secure and provides unilateral authentication of server S in the
random oracle model [6].

Theorem 1. (AKE/UA Security) Let P be the TAP protocol of Fig. 2 where
passwords are independently chosen from a dictionary of size N and n is the
number of clients such that n ≤ 2

√
N − 1 − 1.3 For any adversary A within a

polynomial time t1, with less than qs active interactions with the parties (Send-
queries), qe passive eavesdroppings (Execute-queries) and asking qf (resp., qg)
hash queries to F (resp., G), Advake

P (A) ≤ 4ε and AdvS−auth
P (A) ≤ ε, with ε

upper-bounded by

3qs

N
+

3nq2
g

2
× Succcdh

g,Gp
(t1 + 3τe) +

qs

2l1
+

(qe + qs)
2

|Gp|2 +
q2
f

2p
+

q2
g + 2(qs + qe)

2|Gp| ,

where l1 is the output length of H1 and τe denotes the computational time for
an exponentiation in Gp.

This theorem shows that the TAP protocol is secure against off-line dictionary
attacks since the advantage of the adversary essentially grows with the ratio of
interactions (number of Send-queries) to the number of passwords when n ≤
2
√

N − 1− 1. We can easily see that the adversary gets a factor n in the second
term since the server generates only one Diffie-Hellman public value and its
exponent is used to compute all of the Diffie-Hellman keys Kj.4 Due to the lack
of space, we leave the proof in the full version of this paper.

Next we prove that the TAP protocol provides client’s anonymity against a
passive server.

Theorem 2. The TAP protocol provides client’s anonymity against a passive
server in an information-theoretic sense.
3 In practice, N = 237 for MS-Windows passwords. It is sufficiently large for n.
4 If we allow an adversary to corrupt up to t − 1 clients, the factor n in the security

result becomes 1.
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Proof. Consider server S who follows the protocol honestly, but it is curious
about clients’ identities (in SG) involved with the TAP protocol. It is obvious
that server S cannot get any information about SG’s identities since, for each
i (1 ≤ i ≤ n), the X∗

i has a unique discrete logarithm of g and, with the randomly
chosen xi, it is the uniform distribution over Gp. This also implies that the server
cannot distinguish X∗

i (of Ci ∈ SG) from X∗
j (of Cj ∈ C\SG) since they are com-

pletely independent one another. In addition, even if server S receives the sub-
group’s authenticator VSG ← H3(C||S||t||{X∗

i }1≤i≤n||Y ||{Zj}1≤j≤n||S) at the
end of the TAP protocol (in the case of mutual authentication), the {X∗

i }1≤i≤n

does not reveal any information about SG’s identities from the fact that the
probability for any subgroup, consisting of t or more than t clients, to compute
S is equal. �

6 The Condition on n

Here we deduce the condition on n, appeared in Theorem 1, which is crucial in
order to make the security result more meaningful. First, we give an informal
definition of security against on-line dictionary attacks: a protocol is said to
be secure against on-line dictionary attacks if an adversary can do no better
than guess a password during each Send-query (i.e., an impersonation attack).
However, the success probability of on-line attacks in the TAP protocol is greater
than that in the 2-party PAKE protocols (see below).

Theorem 3. Consider an adversary who impersonates one party (i.e., subgroup
SG or server S) for on-line dictionary attacks in the TAP protocol. Then the
probability of the adversary is upper-bounded by

⌈n

2

⌉2 1
N(N − 1)

.

Proof. When an adversary invokes Send-queries at Game G5 in the proof, we
explain why the probability of on-line dictionary attacks is upper-bounded by
the above. In order to maximize Pr[AskH1-WithSG5], the strategy the adversary
can take is to first determine the threshold t and guess t passwords, each of which
should be a password of one of n/t clients. Then the adversary sends the t and
{X∗

i }1≤i≤n, as an honest party SG would do, to server S. After receiving the
message from the server, the adversary can check whether the guessed passwords
are correct or not by seeing the authenticator VS . The maximal probability can
be obtained when t = 2. That one password is correct with respect to n/2 clients
happens with probability of n/2N . On the other hand, the probability for the
other password is n/2(N − 1). For any n, one can get the upper-bound as above
since the probability becomes smaller as t grows. As for Pr[AskH1-WithS5], the
same discussion can be applied. �
Now the condition on n can be easily obtained by restricting the probability of
Theorem 3 to 1/N :

⌈n

2

⌉2 1
N(N − 1)

≤ (n + 1)2

4N(N − 1)
≤ 1

N
.
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Public information: (Gp, p, g, h),F ,G,H1,H2, C = {C1, · · · , Cn}

Client Ci (pwCi) Server S
(
Wj ≡ h

F(j,pwCj
)
, 1 ≤ j ≤ n

)

x
R← Z

�
p, X ≡ gx

Wi ≡ hF(i,pwCi
), X∗ ≡ X ×Wi

C, X∗
�

y
R← Z

�
p, Y ≡ gy, S

R← {0, 1}l
For j = 1 to n,

Xj ≡ X∗/Wj ,

Kj ≡ Xy
j ,

and Zj ← G(j, Kj)
⊕

S.

VS ← H1(C||S||Trans||S)S, Y, {Zj}1≤j≤n, VS�
For i = j, S′ = Zi

⊕ G(i, Y x).

If VS �= H1(C||S||Trans||S′), reject.

Otherwise, SK ← H2(C||S||Trans||S′)

and accept.

SK ← H2(C||S||Trans||S)

Fig. 3. An efficient anonymous PAKE protocol when t = 1 and where Trans =
X∗||Y ||{Zj}1≤j≤n

7 When the Threshold t = 1

If we only consider a passive server in an anonymous PAKE protocol, an efficient
construction for the threshold t = 1 can be easily derived from the TAP protocol
(see Fig. 3). The main modification from the TAP protocol is that client Ci only
computes his masked Diffie-Hellman public value X∗ and the hash function G
has the range of {0, 1}l. In fact, the resultant protocol can be seen as another OT
protocol for the case that all the messages of sender is the same. By following
the security proof, we can remove the condition on n because the on-line attacks
at Game G5 is limited to one client.

Here, we show how much our protocol of Fig. 3 is efficient compared to the
original (not threshold) anonymous PAKE protocol (in Section 3.2 of [20]) in
terms of computation costs and communication bandwidth to be required (see
Table 1 and 2). In general, the number of modular exponentiations is a major
factor to evaluate efficiency of a cryptographic protocol because that is the most
power-consuming operation. So we count the number of modular exponentiations
as computation costs of client Ci and server S. The figures in the parentheses
are the remaining number of modular exponentiations after excluding those that
are pre-computable. In terms of communication bandwidth, | · | indicates its bit-
length and hash denotes hash functions.

With respect to computation costs in our protocol, client Ci (resp., server
S) is required to compute 3 (resp., n + 1) modular exponentiations. When pre-
computation is allowed, the remaining costs of client Ci (resp., server S) are
2 (resp., n) modular exponentiations. One can easily see that our protocol has
more than 50% reduction from the APAKE protocol in the number of modu-



A Secure Threshold Anonymous PAKE Protocol 457

Table 1. Comparison of anonymous PAKE protocols as for computation costs where
n is the number of clients

The number of modular exponentiations
Protocols Client Ci Server S

APAKE [20] 6 (4) 4n + 2 (3n + 1)

Our protocol of Fig. 3 3 (2) n + 1 (n)

Table 2. Comparison of anonymous PAKE protocols as for communication bandwidth
where n is the number of clients

Protocols Communication bandwidth

APAKE [20] |C|+ |S|+ (n + 1)|hash|+ (n + 2)|p|
Our protocol of Fig. 3 |C|+ |S|+ (n + 1)|hash|+ 2|p|

lar exponentiations for both client and server. With respect to communication
bandwidth, our protocol requires a bandwidth of ((n + 1)|hash|+ 2|p|)-bits ex-
cept the length of identities C and S where the bandwidth for the modulus
size |p| is independent from the number of clients while the APAKE protocol is
not. Let us consider the minimum security parameters recommended in practice
(|p| = 1024 and |hash| = 160). The gap of communication bandwidths between
our and APAKE protocols becomes larger as the number of clients increases.

8 Conclusions

After showing insecurity of the previous threshold anonymous PAKE proto-
col, we have proposed a secure construction (the TAP protocol) which provides
not only semantic security of session keys but also anonymity against a passive
server. We also proved its security of the TAP protocol in the random oracle
model with the reduction to the computational Diffie-Hellman problem. More-
over, we showed the condition on n in order to get the optimal security result
against on-line dictionary attacks. For the threshold t = 1, we have proposed
an efficient anonymous PAKE protocol that can be obtained by slightly modi-
fying the TAP protocol. The resultant protocol significantly improves efficiency
in terms of computation costs and communication bandwidth compared to the
original (not threshold) anonymous PAKE protocol [20].
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