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Preface

The International Workshop on Security (IWSEC 2007) was the second in the
annual series that started in 2006. IWSEC 2007 was held at the New Public Hall
in Nara, Japan, during October 29–31, 2007.

This year there were 112 paper submissions, and from these 30 papers were
accepted. Accepted papers came from 27 different countries, with the largest
proportion coming from Japan (12). Estonia, China, Korea, Spain, Taiwan and
the USA contributed 2 papers each and Canada, Germany, Greece, Poland,
Turkey and Vietnam contributed 1 paper each. We would like to thank all of the
authors who submitted papers to IWSEC 2007.

The contributed papers were supplemented by one invited talk from the em-
inent researcher Prof. Doug Tygar (UC Berkeley) in information security.

We were fortunate to have an energetic team of experts who formed the
Program Committee. Their names may be found overleaf, and we are sincerely
grateful for all their great efforts. This team was supported by an even larger
number of individuals who reviewed papers in their particular areas of expertise.
A list of these names is also provided; we hope it is complete.

We are delighted to acknowledge the generous financial sponsorship of IWSEC
2007 by Carnegie Mellon CyLab Japan, the International Communication Foun-
dation (ICF), and the National Institute of Information and Communications
Technology (NICT). The workshop was co-sponsored jointly by ISEC, a techni-
cal group on information security of IEICE (The Institute of Electronics, Infor-
mation and Communication Engineers) and CSEC, a special interest group on
computer security of IPSJ (Information Processing Society of Japan). The excel-
lent Local Organizing Committee was led by the IWSEC 2007 General Chairs,
Prof. Masakatu Morii and Dr. Masato Terada.

October 2007 Atsuko Miyaji
Hiroaki Kikuchi
Kai Rannenberg
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A Note on the (Im)possibility of Using

Obfuscators to Transform Private-Key
Encryption into Public-Key Encryption

Satoshi Hada1 and Kouichi Sakurai2

1 Tokyo Research Laboratory, IBM Research, 1623-14, Shimotsuruma, Yamato,
Kanagawa 242-8502, Japan

satoshih@jp.ibm.com
2 Dept. of Computer Science and Communication Engineering, Kyushu University,

744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
sakurai@csce.kyushu-u.ac.jp

Abstract. Transforming private-key encryption schemes into public-key
encryption schemes is an interesting application of program obfuscation.
The idea is that, given a private-key encryption scheme, an obfuscation
of an encryption program with a private key embedded is used as a pub-
lic key and the private key is used for decryption as it is. The security
of the resulting public-key encryption scheme would be ensured because
obfuscation is unintelligible and the public key is expected to leak no
information on the private key. This paper investigates the possibility of
general-purpose obfuscators for such a transformation, i.e., obfuscators
that can transform an arbitrary private-key encryption scheme into a
secure public-key encryption scheme. Barak et al. have shown a negative
result, which says that there is a deterministic private-key encryption
scheme that is unobfuscatable in the sense that, given any encryption
program with a private key embedded, one can efficiently compute the
private key. However, it is an open problem whether their result extends
to probabilistic encryption schemes, where we should consider a relaxed
notion of obfuscators, i.e., sampling obfuscators. Programs obfuscated by
sampling obfuscators do not necessarily compute the same function as
the original program, but produce the same distribution as the original
program. In this paper, we show that there is a probabilistic private-key
encryption scheme that can not be transformed into a secure public-key
encryption scheme by sampling obfuscators which have a special prop-
erty regarding input-output dependency of encryption programs. Our
intention is not to claim that the required special property is reasonable.
Rather, we claim that general-purpose obfuscators for the transforma-
tion, if they exist, must be a sampling obfuscator which does NOT have
the special property.

1 Introduction

1.1 Obfuscation

An obfuscator is a tool to convert a program into a new program which is
unintelligible while preserving the functionality. Several formal definitions have

A. Miyaji, H. Kikuchi, and K. Rannenberg (Eds.): IWSEC 2007, LNCS 4752, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 S. Hada and K. Sakurai

been proposed so far [13,1,17,18,10,14]. Informally, obfuscators should satisfy
the following two requirements: (1) functionality: the new program has the same
functionality as the original one and (2) virtual black-box property: whatever one
can efficiently compute given the new program can be computed given oracle
access to the functionality. The functionality requirement is a syntactic require-
ment while the virtual black-box property represents the security requirement
that the obfuscated program should be unintelligible.

As discussed in [1], obfuscators, if they exist, would have a wide variety of
cryptographic applications including software protection, homomorphic encryp-
tion, removing random oracles, and transforming private-key encryption schemes
into public-key encryption schemes. Unfortunately, the impossibility of generic
obfuscation have been shown in [1,10] (even under very weak definitions based on
the virtual black-box property). For example, as shown in [1], there exists a fam-
ily of functions F that are unobfuscatable in the sense that there is a boolean
property of functions such that, given any program that computes a function
f ∈ F , the property of f can be efficiently computed, yet given oracle access
to a randomly selected function f ∈ F , no efficient algorithm can compute the
property of f much better than random guessing. However, such negative results
do not rule out the possibility that there exists an obfuscator for a specific set
of programs (a specific application). Indeed, some positive results are known for
point functions [2,3,17,18,10,6,14] and re-encryption [15].

When we consider obfuscation of probabilistic algorithms (such as probabilistic
encryption algorithms), we must be careful; There are two different definitions of
the functionality requirement. We recall them informally in terms of obfuscation
of probabilistic encryption algorithms. Let EK(M, R) be a private-key encryption
program, where K is an embedded private key, M is a plaintext, and R is a
set of random coins. Similarly, let E ′

K(M, R) be an obfuscation of it. The first
definition is the usual one and requires that the two programs compute the
same function, i.e., for every pair (M, R), we have EK(M, R) = E ′

K(M, R). In
this paper, obfuscators satisfying this functionality requirement are called circuit
obfuscators1. On the other hand, the second definition requires that, for every
M , the two distributions obtained by evaluating EK(M, R) and E ′

K(M, R) on
independent random coins R are the same. This is a relaxed requirement, but
it would be sufficient for cryptographic applications as noted in [14,15]. We call
obfuscators satisfying this functionality requirement as sampling obfuscators as
in [1, Section 6].

1.2 Transforming Private-Key Encryption into Public-Key
Encryption

Transforming private-key encryption schemes into public-key encryption schemes
is an interesting application of obfuscation. The idea is that, given a private-key
encryption scheme, an obfuscation of an encryption program with a private key
embedded is used as a public key and the private key is used for decryption as

1 In this paper, programs are defined by boolean circuits.
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it is. Let EK(M, R) be a probabilistic private-key encryption program, where K
is an embedded private key, M is a plaintext, and R is a set of random coins.
Then we obfuscate it into a new encryption program E ′

K(M, R), which we use
as the public key. When we want to encrypt a message M by the public key,
we pick a set of random coins R and execute the public key, i.e., the obfuscated
program E ′

K on (M, R). We expect that the public key reveals no information on
the private key because the obfuscated program is unintelligible. In this sense,
the resulting public key encryption scheme could satisfy some sort of security
requirement. As mentioned above, the generic impossibility results of [1,10] does
not rule out the possibility that we have a general-purpose obfuscator for such a
transformation. By “general-purpose obfuscators”, we mean obfuscators that can
transform an arbitrary private-key encryption scheme into a secure public-key
encryption scheme.

The transformation is very interesting for at least two reasons.

1. Impagliazzo and Rudich showed that there exists no black-box reduction
from private-key encryption schemes into public-key encryption schemes [16].
The transformation by an obfuscator can bypass their impossibility result.

2. It was an original idea suggested by Diffie and Hellman in their seminal paper
[5] to design a public-key encryption scheme (Recall that, when the paper
was published, there was no candidate public-key encryption scheme). So we
can say that it is a natural principle for the design of public-key encryption
schemes. We may be able to construct a (totally) new public-key encryption
scheme using this idea.

It is important to note that we should consider probabilistic private-key en-
cryption schemes for this transformation to make sense. When we transform a
deterministic private-key encryption scheme, the resulting candidate public-key
encryption scheme is deterministic as well. No deterministic public-key encryp-
tion scheme is secure in the usual sense [11].

Hofheinz et al. provided a formal treatment of the transformation under their
proposed definitions of the virtual black-box property [14]. They showed that
a probabilistic private-key encryption scheme secure against chosen-plaintext
attacks can be transformed into a probabilistic public-key encryption scheme se-
cure against chosen-plaintext attacks if an obfuscator for the private-key scheme
exists according to their definitions.

1.3 Motivating Question

Our motivating question is: Does such a general-purpose obfuscator exist? We al-
ready have at least two negative answers to this question. Both answers are based
on the existence of private-key encryption schemes that are “unobfuscatable” in
some sense. We need to be careful because the meaning of “unobfuscatable” is
different.

The first answer is by [1, Section 4.3]. They constructed a deterministic
private-key encryption scheme that is unobfuscatable in the sense that, given any
encryption program with a private key embedded, one can efficiently compute
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the private key (but it is hard to do so given oracle access to the encryption
function). This means that no matter how we define the security (the virtual
black-box property) of obfuscators, the resulting public-key encryption scheme
is totally insecure. However, their argument does not extend to obfuscation of
probabilistic private-key encryption schemes by sampling obfuscators.

The second answer is by [14]. They showed that there exist probabilistic
private-key encryption schemes that are unobfuscatable in the sense that they can
not be obfuscated under their specific definitions of the virtual black-box prop-
erty2. Therefore, the meaning of “unobfuscatable” is different from the above.
Their answer would be less negative than the first one in the sense that we may
be able to relax the virtual black-box property so that the encryption schemes
become obfuscatable and the resulting public-key encryption schemes still sat-
isfy some meaningful security. However, it would be stronger for two reasons: (1)
it deals with probabilistic encryption and (2) it deals with sampling obfuscators
while the first answer deals with circuit obfuscators.

In summary, it is an open problem whether there exists a probabilistic private-
key encryption scheme that is unobfuscatable even by sampling obfuscators in the
sense of the first answer.

1.4 Our Contribution

In this paper, we will give some observations on the above open problem by
constructing probabilistic private-key encryption schemes that no obfuscator can
transform into a secure public-key encryption scheme. Our approach is differ-
ent from the approaches taken by [1, Section 4.3] and [14]. The both papers
focused on the impossibility of obfuscating encryption programs, which in turn
implies that the transformation does not work. In this case, using the term “un-
obfuscatable” makes sense. On the other hand, our approach will focus on the
impossibility of the transformation itself directly. Basically, our results say that
there exists a probabilistic private-key encryption scheme that can not be trans-
formed into a secure public-key encryption scheme even though it is obfuscatable
under a security definition based on the virtual black-box property. Therefore,
we don’t say that the private-key encryption schemes that we will construct
are “unobfuscatable.” Instead, we say that they are “untransformable.” Readers
may think that our results could contradict the positive result of [14], which
says that a probabilistic private-key encryption scheme secure against chosen-
plaintext attacks can be transformed into a probabilistic public-key encryption
scheme secure against chosen-plaintext attacks if an obfuscator satisfying a vir-
tual black-box property exists for it. However, there is no contradiction because
the virtual black-box property defined in [14] is different from the one discussed
in this paper (See Section 3.3 for more details).
2 More specifically, any scheme that enjoys ciphertext integrity in a publicly verifi-

able way is unobfuscatable in the sense that the virtual black-box property of their
proposed definition requires that a simulator can produce an obfuscated signing
key given oracle access to the encryption oracle, but it would be hard due to the
unforgeability of the underlying signature scheme. See [14] for more details.
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First, we will show that there exists a probabilistic private-key encryption
scheme that is untransformable by circuit obfuscators. It is untransformable in
the sense that, given oracle access to any encryption program with a private key
embedded, it is easy to decrypt any ciphertext (even if it could be hard to recover
the private key). It is the standard encryption scheme based on pseudorandom
functions.

EK(M, R) = (C1 = M ⊕ fK(R), C2 = R)

where fK is a pseudorandom function. Note that the ciphertext (C1, C2) can
be decrypted using oracle access to the encryption algorithm, i.e., EK(C1, C2)
outputs (M, C2). Therefore, no matter how we obfuscate the encryption program,
we can use the obfuscated program as a black-box to decrypt every ciphertext
and the transformation does not work at all.

The next question is whether there exists a probabilistic private-key encryp-
tion scheme that is untransformable even by sampling obfuscators. This time,
the obfuscated program E ′

K(M, R) does not necessarily compute the same func-
tion as EK(M, R) and so there is no guarantee that E ′

K(M, R) can be used for
decryption. We will construct a probabilistic encryption scheme that is untrans-
formable even by sampling obfuscators by modifying the above standard scheme
as follows:

EK(M, (R1, R2)) = (M ⊕ fK(R1), R1, fK(R2 ⊕ M), R2)

We will show that, given oracle access to any obfuscated encryption program that
samples the same distribution, we can efficiently compute the pseudorandom
function fK , which enables us to decrypt every ciphertext. However, we require
that sampling obfuscators satisfy a special property, that is, preserve an input-
output dependency of programs (to be defined formally in Section 3). Therefore,
we cannot say that we completely solve the open problem.

We stress that our intention is NOT to claim that the required special prop-
erty is reasonable. Our emphasis is on its implication. That is, general-purpose
obfuscators for the transformation from private-key encryption into public-key
encryption, if they exist, must be a sampling obfuscator which does NOT pre-
serve the input-output dependency.

Remark 1. As it is clear from the above description, we allow adversaries to set
the random coins when they execute a given public key (an obfuscated encryption
program). This ability for adversaries to set the random coins is inherent with
the transformation.

2 Preliminaries

We say that a function ν(·) : IN → IR is negligible in n if for every polynomial
p(·) and all sufficiently large n’s, it holds that ν(n) < 1/p(n). PPT stands for
“probabilistic polynomial time”.
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Given a probability distribution S, we denote by x ← S the operation of select-
ing an element according to S. IfA is a probabilistic machine thenA(x1, x2, . . . , xk)
denotes the output distribution of A on inputs (x1, x2, . . . , xk). Let Pr[x ← S1;
x2 ← S2; . . . ; xk ← Sk : E] denote the probability of the event E after the pro-
cesses x1 ← S1, x2 ← S2, . . . , xk ← Sk are performed in order.

Definition 1. An (lin, lout, ls)-function ensemble is a sequence F = {Fn}n∈N

of function family Fn = {fs : {0, 1}lin(n) → {0, 1}lout(n)} s∈{0,1}ls(n) , such that
there exists a polynomial-time machine EvalF (called the evaluator) so that for
all s ∈ {0, 1}ls(n) and x ∈ {0, 1}lin(n), EvalF(s, x) = fs(x). We call s the seed
of fs.

Definition 2. An (lin, lout, ls)-function ensemble F is called pseudorandom if,
for every PPT oracle machine D (distinguisher), every polynomial p(·), all
sufficiently large n ∈ IN, and every non-uniform advice string z ∈ {0, 1}∗,
|Pr[s ← {0, 1}ls(n); b ← Dfs(1n, z) : b = 1] − Pr[u ← Ulin(n),lout(n); b ←
Du(1n, z) : b = 1] < 1

p(n) .

2.1 Private-Key Encryption

We consider block-ciphers which can operate on plaintexts of a specific length.
A private-key encryption scheme consists of three algorithms (K, E , D). The key
generation algorithm K is a randomized algorithm that takes as input the se-
curity parameter 1n and returns a common private key K. The encryption
algorithm E is a randomized algorithm that takes a key K and a plaintext
M ∈ {0, 1}poly(n) to return a ciphertext C, where poly(·) is a fixed polyno-
mial representing the length of plaintexts. The encryption process is denoted by
C ← E(K, M). When we need to make explicit the random coins R used by E , we
write C = E(K, M, R). The decryption algorithm D is a deterministic algorithm
that takes a key K and a ciphertext C to return the plaintext M , and the decryp-
tion process is denoted by M = D(K, C). It is required that, for every n and every
plaintext M ∈ {0, 1}poly(n), Pr[K ← K(1n); C ← E(K, M) : D(K, C) = M ] = 1.

When we consider a fixed key K, we denote by EK(·, ·) an encryption program
with the key K embedded. We can view such a program as a boolean circuit.

We review the standard private-key encryption scheme based on (lin, lout,
ls)-pseudorandom function ensembles [7, Construction 5.3.9].

– K(1n) uniformly generates a string K of length ls(n).
– E(K, M, R) = (M ⊕ fK(R), R), where R and M are of length lin(n) and

lout(n), respectively. We denote by C1 the first part of ciphertexts (M ⊕
fK(R)) and by C2 the second part (R).

– D(K, (C1, C2)) = C1 ⊕ fK(C2)

We don’t formally define the security definitions of encryption schemes, but
we informally recall the security against chosen-plaintext attacks. A private-
key encryption scheme is secure against chosen-plaintext attacks if no adversary
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with oracle access to an encryption program3 (with a randomly generated key
embedded) can pick two plaintexts (of equal length) such that it can distinguish
between ciphertexts of the two plaintexts. The above standard scheme is secure
against chosen-plaintext attacks [7, Section 5.4.3].

As discussed in Section 1.2, any private-key encryption scheme can be trans-
formed into a (candidate) public-key encryption scheme by publishing as the
public key an obfuscation of an encryption program with a key K, i.e., O(EK). It
is easy to see that if a private-key encryption scheme is insecure against chosen-
plaintext attacks, then the resulting public-key encryption scheme is insecure
as well (against chosen-plaintext attacks). Therefore, for the transformation to
work, original private-key encryption schemes must be secure against chosen-
plaintext attacks.

2.2 Obfuscators

We recall the definitions of obfuscators in [1]. Barak et al. deal with two kinds
of obfuscators; one is for Turing machines (TMs) and the other is for boolean
circuits. Here we focus only on circuit obfuscators due to a subtlety we have in
TM obfuscators (although our argument to be followed basically applies to TM
obfuscators as well). Note that TMs can take input of arbitrary length. Therefore,
given a description of a TM that computes an encryption algorithm (with a
private key embedded), it is easy to modify it so that, if it takes an irregular
input (such as an empty string and strings shorter or larger than expected), it
outputs the private key. Clearly, no matter how we obfuscate the modified TM
description, the resulting public-key encryption scheme is insecure. Due to this
subtlety, we focus only on circuit obfuscators.

We focus only on syntactic (functionality) requirements because our argument
won’t depend on any specific security requirement, i.e., how to define “unintel-
ligible” (as in the negative result of [1]). As discussed in Section 1, we consider
two kinds of functionality requirements: (1) circuit obfuscators and (2) sampling
obfuscators.

Definition 3 (Circuit Obfuscator). A PPT algorithm O is a circuit obfus-
cator if, for every circuit C, O(C) is a circuit that computes the same function
as C with probability 1 (taken over the coin tosses of O), i.e., Pr[C′ ← O(C) :
∀x, C(x) = C′(x)] = 1.

Take for example the above standard encryption scheme. Let EK(M, R) be an
encryption program with a key K embedded. We view it as a boolean circuit.
Let E ′

K(M, R) be a program obfuscated by a circuit obfuscator. It requires that
EK(M, R) = E ′

K(M, R) for every pair (M, R).

3 In the definition of chosen-plaintext attacks, adversaries are NOT allowed to choose
the random input when they use oracle access to encryption programs. That is, the
oracle internally flips its coins. However, in this paper, when we talk about oracle
access to obfuscated encryption programs, we allow adversaries to set the random
input. See Remark 1.
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Remark 2. [1, Section 4.2] considers approximate obfuscators which has a relaxed
functionality requirement in the sense that we allow the obfuscated circuit to
only approximate the original circuit. Since the relaxed definition would cause
decryption errors in resulting public-key encryption schemes, we don’t deal with
it in this paper.

Next, we define sampling obfuscators. Here, we distinguish between the regular
input and the random input to circuits. Let C(x, r) be a circuit which takes the
regular input x and the random input r. Given a regular input string x, we can
view C(x, ·) as a sampling algorithm for the distribution obtained by evaluating
C(x, r) on random coins r.

Definition 4 (Sampling Obfuscator). A PPT algorithm O is a sampling
obfuscator if, for every circuit C, O(C) is a circuit satisfying the following re-
quirement with probability 1 (taken over the coin tosses of O): for every regular
input x, the two distributions obtained by evaluating C(x, r) and C′(x, r) on in-
dependent random coins are the same, where C′ is the circuit produced by O(C).

Again, take for example the above standard encryption scheme. Let EK(M, R)
be an encryption program with a key K embedded. This time, we view M as
the regular input and R as the random input, respectively. Let E ′

K(M, R) be
an obfuscated program of it. It requires that the two distributions obtained by
evaluating EK(M, R) and E ′

K(M, R) on independent random coins R are the
same.

Remark 3. We can relax the definition by allowing the distribution by the ob-
fuscated circuit is statistically close to the distribution by the original circuit.
However, we don’t deal with it because it would cause decryption errors in re-
sulting public-key encryption schemes.

In order to prove our result regarding sampling obfuscators, we need to require
that the obfuscation preserves an input-output dependency of circuits in the
following sense: We partition the output of a circuit into two: (1) the part whose
value depends on the random input, but not on the regular input and (2) the
other part.

Definition 5 (Sampling Obfuscator that Preserves Input-Output De-
pendency). Given a circuit C, let RO(C) be the part of the output whose value
depends only on the random input. We say that a sampling obfuscator O pre-
serves input-output dependency if, for every circuit C, RO(O(C)) depends only
on the random input with probability 1 (taken over the coin tosses of O).

Again, take for example the above standard encryption scheme. Let EK(M, R) =
(M ⊕ fK(R), R) be an encryption program with a key K embedded, where M is
the regular input and R is the random input. Let E ′

K(M, R) = (M ⊕ fK(R′), R′)
be an obfuscated program of it, where the output R′ may not be equal to the
input R. If the obfuscator preserves input-output dependency, then R′ should
be computed only from R.
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3 Our Results

We say that a probabilistic private-key encryption scheme is untransformable
by circuit (resp., sampling) obfuscators if, for every circuit (resp., sampling) ob-
fuscator, the resulting public-key encryption scheme is totally insecure in the
sense that, given any public key, one can efficiently decrypt every ciphertext
(encrypted under the public key). In this section, we construct two untrans-
formable probabilistic private-key encryption schemes. One is untransformable
by circuit obfuscators (Section 3.1) and the other is by sampling obfuscators
that preserve input-output dependency (Section 3.2). When we show that the
resulting public-key encryption schemes are totally insecure, we use obfuscated
encryption programs (i.e., public keys) as a black-box. Therefore, we can say that
they are untransformable even if they are obfuscatable under a definition of the
virtual black-box property (Section 3.3).

Our results assume the existence of pseudorandom function ensembles, i.e., the
existence of one-way functions. Also, recall that we allow adversaries to set the
random coins when they execute a given public key (an obfuscated encryption
program).

3.1 Private-Key Encryption Untransformable by Circuit
Obfuscators

Theorem 1. There exists a probabilistic private-key encryption scheme satisfy-
ing the following two:

1. it is secure against chosen-plaintext attacks,
2. it is untransformable by circuit obfuscators.

Proof: We consider the standard private-key encryption scheme based on pseu-
dorandom functions [7, Construction 5.3.9]. EK(M, R) = (M ⊕ fK(R), R). We
denote by C1 the first part of ciphertexts (M ⊕ fK(R)) and by C2 the second
part (R). It is secure against chosen-plaintext attacks [7, Section 5.4.3].

We note that the ciphertext (C1, C2) can be decrypted given oracle access to
any encryption program, i.e., EK(C1, C2) outputs (M, C2). Therefore, for every
key K and every circuit obfuscator O, the obfuscated program E ′

K ← O(EK)
can be used as a black-box to decrypt every ciphertext because EK(M, R) =
E ′

K(M, R). ��

Remark 4. We note that the argument used to construct the deterministic un-
obfuscatable scheme in [1, Section 4.3] can be easily extended to construct a
probabilistic unobfuscatable scheme as long as we consider circuit obfuscators.
That is, their argument implies Theorem 1. However, as mentioned in Section 1.3,
it is unclear how to extend the argument to obtain a probabilistic scheme that
is unobfuscatable even by sampling obfuscators.

Remark 5. The argument might remind readers of the notion of weak keys [4]. In
the case of deterministic encryption schemes, we mean by a weak key a key under
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which encryption and decryption are the same function. In the case of proba-
bilistic encryption schemes, we mean a key under which encryption algorithm
can be used for decryption as in our argument. Our result can be generalized to
a class of secure private-key encryption schemes such that the fraction of weak
keys is not negligible (although we need to extend our definitions so that we can
take into account the distribution of keys).

3.2 Private-Key Encryption Untransformable by Sampling
Obfuscators That Preserve Input-Output Dependency

The argument in the proof of Theorem 1 does not go through when we use
sampling obfuscators for the transformation. In this section, we will construct a
probabilistic private-key encryption scheme that is untransformable by sampling
obfuscators that preserve input-output dependency.

Theorem 2. There exists a probabilistic private-key encryption scheme satisfy-
ing the following two:

1. it is secure against chosen-plaintext attacks,
2. it is untransformable by sampling obfuscators that preserve input-output de-

pendency.

Proof: We modify the standard scheme using an additional randomness R2 as
follows:

E(K, M, (R1, R2)) = (M ⊕ fK(R1), R1, fK(R2 ⊕ M), R2)

Note that the first half of the ciphertext is the same as the ciphertext of the
standard scheme, and the second half is appended. The key generator is the
same. We use the same decryption algorithm although we don’t use the second
half of the ciphertext for decryption.

The modified scheme is secure against chosen-plaintext attacks by the same
argument in [7, Proposition 5.4.12].

We will use the second half of the ciphertext to show that oracle access to
any obfuscated program E ′

K(M, (R1, R2)) that samples the same distribution as
EK(M, (R1, R2)) can be used to compute the pseudorandom function fK as long
as the obfuscator preserves input-output dependency. Given an input string x,
we can use such an oracle access to compute fK(x) as follows:
Step 0. Let M be any plaintext and (R1, R2) be any set of random coins.
Step 1. Invoke E ′

K on (M, (R1, R2)) to obtain (fK(R′
2 ⊕M), R′

2), where R2 may
not be equal to R′

2.
Step 2. Invoke E ′

K on (x ⊕ R′
2, (R1, R2)) to obtain (fK(x), R′

2), where M is
replaced by x ⊕ R′

2 and the same random input is used. Note that, because
the input-output dependency of EK is preserved, R′

2 at Step 1 and 2 are the
same.

Step 3. Output fK(x).

It is easy to see that we can efficiently decrypt every ciphertext using the ability
to compute fK . ��
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3.3 Discussion

Our argument in the two theorems uses only oracle access to obfuscated programs
while the argument in [1, Section 4.3] needs to use an obfuscated program itself.
Therefore, the transformation from the two private-key encryption schemes does
not work at all even though they are obfuscatable under a security definition based
on the virtual black-box property. In this sense, our result would be more negative
than the result of [1]. On the other hand, the positive result of [14] says that a
probabilistic private-key encryption scheme secure against chosen-plaintext at-
tacks can be transformed a probabilistic public-key encryption scheme secure
against chosen-plaintext attacks if an obfuscator satisfying a virtual black-box
property exists for it. Readers may wonder if our results contradict the positive
result. However, it is not the case because the virtual black-box property defined
in [14] is different from the one we discuss in this paper. Recall that the virtual
black-box property requires that whatever one can efficiently compute given an
obfuscated program can be computed given oracle access to the functionality.
What do we mean by “given oracle access to a functionality” when the function-
ality is probabilistic? There are two distinct meanings4. In this paper, it means
that we can choose both the regular and random inputs and tell the functionality
to compute the output from the two inputs. On the other hand, in [14], it means
that we can choose only the regular input and that the functionality internally
flips its coins. As a result, the virtual black-box property defined in [14] would be
stronger than the one we discuss in this paper. Therefore, even if we can prove
Theorem 2 without assuming that sampling obfuscators preserve input-output
dependency (still by using only oracle access to obfuscated programs), it won’t
contradict the positive result of [14].

4 Concluding Remarks

We have shown that there is a probabilistic private-key encryption scheme that
is untransformable by sampling obfuscators that preserve input-output depen-
dency. Interestingly, the scheme is untransformable even if it is obfuscatable
under a definition of the virtual black-box property.

Our result implies that, general-purpose obfuscators for the transformation
from private-key encryption into public-key encryption, if they exist, must be
a sampling obfuscator which does not preserve input-output dependency. In
other words, it would be an interesting open question whether we can construct
a probabilistic private-key encryption scheme that is untransformable even by
sampling obfuscators that do NOT preserve input-output dependency.
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Abstract. Recent viruses, worms, and bots, called malwares, often have
anti-analysis functions such as mechanisms that confirm connectivity to
certain Internet hosts and detect virtualized environments. We discuss
how malwares can be kept alive in an analyzing environment by disabling
their anti-analyzing mechanisms. To avoid any impacts to/from the In-
ternet, we conclude that analyzing environments should be disconnected
from the Internet but must be able to make malwares believe that they
are connected to the real Internet. We also conclude that, for executing
environments to analyze anti-virtualization malwares, they should not
be virtualized but must be as easily reconstructable as a virtualized en-
vironment. To reconcile these cross-purposes, we propose an approach
that consists of a mimetic Internet and a malware incubator with swap-
pable actual nodes. We implemented a prototype system and conducted
an experiment to test the adequacy of our approach.

1 Introduction

Malwares[1], such as viruses, worms, and bots, are daily becoming more so-
phisticated. To confront the malwares threat, it is necessary to observe their
behavior, analyze their mechanisms, and identify issues. Isolated sandboxes are
good analyzing environments for carrying out such observations because they
have tolerance to attacks and infections from the outside.

Isolated sandboxes are now easy to build because of improvements in tech-
nologies such as OS and hardware virtualizations. Since malwares often damage
analyzing environments, the environments must frequently be rebuilt. Because
of this, virtualization technologies have been widely used because analyzing en-
vironments introduced to a virtualization technology are easy to rebuild. We had

A. Miyaji, H. Kikuchi, and K. Rannenberg (Eds.): IWSEC 2007, LNCS 4752, pp. 13–27, 2007.
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developed a isolated sandbox based on a VMM (Virtual Machine Monitor) that
called “VM Nebula.”[2]

Unfortunately, some recent malwares have anti-analysis mechanisms for ex-
amining the environment in which they are being executed. Therefore, such
malwares cannot be efficiently analyzed in isolated sandboxes and virtualized
environments because they are capable of detecting analyzing environments.
Our developed “VM Nebula” could not clearly avoid these issues.

We discuss how malwares that have anti-analysis mechanisms can be safely
live observed, analyzed, and identified in analyzing environments. On the basis
of the discussion, we propose two approaches. The first is the mimetic Internet,
which cannot be recognized as an isolated environment by these malwares. The
second is the malware incubator that is based on swappable actual (not virtu-
alized) nodes for easy reconstruction. We also implemented a prototype system
that incorporates our approaches and used it to conduct a proof-of-concept ex-
periment to test its efficiency and clarify issues in using it.

In this paper, we will use the following terminology: an experimental envi-
ronment for analyzing malwares is called an analyzing environment, a malware
on an executable format is called an executable instance, and an environment
for executing a malware is called an executing environment. A mechanism de-
signed to avoid any impacts to/from the outside, i.e., the Internet, from/to the
analysis in an isolated analyzing environment is called an isolated sandbox. Fi-
nally, a virtualized computing environment with OS virtualization technologies
or hardware virtualization technologies is called a virtualized environment.

2 Anti-analysis on Malwares

As mentioned above, mechanisms to disrupt analysis have been introduced on
the latest malwares. In this section, we describe these anti-analysis mechanisms.

Anti-analysis mechanisms can be classified into two types:

– Obfuscate executable instances
– Restrict executing environments

We describe these briefly below.

2.1 Obfuscating Executable Instances

The purpose of obfuscating executable instances is to disrupt static code analysis
with offline reversing tools such as disassemblers and debuggers. The two major
techniques for disrupting static analysis[3] are:

– Program code obfuscation
– Binary code transformation

These techniques have often been combined to enhance anti-analysis capability.
In this paper, we will not discuss elaborate on them because the static analysis
is not our target.
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2.2 Restricting Executing Environments

The purpose of restricting executing environments is to disturb live code analysis
by analyzing environments such as isolated sandboxes and virtualized environ-
ments. The two major techniques are:

1. Detecting executing environment
2. Controlling execution and hiding instance

These malware techniques are usually used sequentially, with the first being used
to determine whether or not the second must be implemented.

Detecting an Executing Environment. When a malware detects an exe-
cuting environment, it decides whether to execute itself in an analyzing envi-
ronment. The malware checks whether it is stepping on debuggers or executing
itself in isolated sandboxes or in virtualized environments. Then, it carries out a
controlling execution of itself and a hiding instance of itself based on the result
of its decision to prevent live code analysis.

Certain countermeasures for debugger analysis, such as inspecting abnormal
running time, which can detect step execution on debuggers, and overwriting the
interrupt vector table for watch points, which can cancel watch point debugging,
are well-known[3]. These countermeasures have been used to protect software.
Malwares, however, have been introducing countermeasures to prevent analyzing
of themselves.

Two common countermeasures used by malwares against isolated sandboxes
are confirming the executing environment’s IP address and checking reachabil-
ity to the Internet from the environment. Some malwares use the former coun-
termeasure to check whether or not their own IP addresses on the executing
environment are private IP addresses because isolated sandboxes often use IP
addresses on private IP address spaces. Malwares use the latter countermea-
sure to check whether specific targeted hosts and services are reachable because
isolated sandboxes often are disconnected from the Internet. These countermea-
sures are widely used because they are easy to implement. They are also essential
functions for some malwares that must connect to the Internet to download their
own main bodies while it is running and to join the commandment network.

Virtualized environments counter malware mechanisms by detecting whether
or not malware executes itself in a virtualized environment with virtualization
technologies. One countermeasure is to use special processor codes (cf. section 3)
that cause results that differ for malwares that are and are not in a virtualized
environment with processor virtualization technologies. Another countermeasure
is to match BIOS banners and device names that are specific to each virtual-
ized environment. In recent years, particular malwares have been introducing
these countermeasures because virtualized environments have been widely used
as analyzing environments.

Controlling Execution and Hiding Instance. A malware controls its exe-
cution and hides its instance by disturbing the live code analysis when it detects
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a poorly executed environment, such as an analyzing environment that may be
able to analyze it, or an environment too insignificant for its execution.

Common techniques for malwares to control their execution are changing their
behavior to non-native behavior by, for example, impersonating well-known at-
tacking behavior, and halting their execution. Many malwares halt their execu-
tion when they determine that they are in an insignificant environment.

Some malwares hide their executable instances to disrupt collection of the
unpacked instance, which could be used to analyze them. Common techniques
for hiding an executable instance are eliminating the instance of itself and im-
planting itself or a part of itself. These are set up to restrictively execute to the
disk area for system or system files based on system events. Trojan horses, a
particular kind of virus, have long been using these techniques, and the latest
malwares now also use them.

3 Related Work

Honeypot technologies such as the Honeynet project[4] are major technologies
for mimicking sites and hosts on the Internet. Honeypots mimic an analyzing
environment as generic hosts and local sites to intruders. The Honeynet project
has been developing mimicking technologies with virtualization technologies and
mimicking techniques for large-scale sites, which have been using them to analyze
actual incidents. Our approach is related to Honeypot technologies, but has some
differences. Our current target is automatic intrusions by malwares, and our
interest is mimicking parts of the Internet.

Virtualization technologies[5] build a virtualized computer in an actual com-
puter. Therefore, they should provide the following functions:

– A single computer should perform as well as multiple computers.
– A virtualized environment, which is generally called a “guest environment,”

should be easily managed by a virtualization technology’s executing envi-
ronment, which is generally called a “host environment.”

– The host environment should be easily concealed from the guest environ-
ment.

Because of these functions, virtualization technologies have been widely used on
high-availability server technologies and testbeds for testing and experimenting
with systems.

In a recent year, support mechanisms for virtualization technologies have
been introduced on some processors for personal computers. In response to
this, malware techniques that conceal themselves using processor virtualiza-
tion technologies[6] have been developed. These techniques cannot always be
detected by a host OS because host OSs sometimes execute in ultra thin host
environments[7] prepared by the malware. To counter these techniques, tech-
niques for detecting a virtualized environment using specific processor instruc-
tions have been proposed[8]. Different results are returned by these counter
techniques when they are running in a virtualized environment. Techniques for
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avoiding[9] detection have also been discussed. In other words, a cat-and-mouse
game is developing into a vicious spiral.

Strider HoneyMonkeys[10] is capable of exploit detection with virtualization
technologies. To detect exploitation, it drives the Internet Explorer browser and
some programs in a way that mimics a human user’s operation, and analyzes
behaviors of the drived programs. Many web sites that exploit browser vulnera-
bilities could be found with it. Although the HoneyMonkeys seems to be efficient
to detect exploitation, yet it seems to have issues of anti-virtualization malwares
as mentioned the above.

Potemkin Virtual Honyefarm[11] is a honeyfarm with XEN[12] virtual ma-
chine monitor which modified to support their virtual honeyfarm architecture.
Potemkin goal is high-fidelity honeypots over a large number of IP address, and
prototype Potemkin implementation achived high-fidelity host emulation, based
on the paravirtualization of modified XEN, for hundreds of thousands of IP ad-
dress while using only tens of physical servers. Although the Potemkin seems
to provide real Internet connectivity and high-fidelity emulated hosts to execute
specimens, yet it seems to have issues of anti-virtualization malwares as same as
the HoneyMonkeys.

4 Design Issues

To account for the anti-analysis mechanisms in the malwares mentioned above,
we focused on techniques of detecting executing environments. In this section,
we will discuss how we can fool the detection.

This paper focuses on developing analyzing environments. Methodologies of
static and live code analysis, such as using debuggers, are outside the focus of
this paper.

4.1 Requirements

Live malware codes might attempt to infect and attack other hosts and sites
based on the malware’s purposes. Therefore, when there are live codes in a
sandbox, the sandbox helps the infections and attacks. The Internet enables
attacks. If an analyzing environment is directly connected to the Internet, it will
suffer from impacts from the Internet. Therefore, environments for analyzing live
malware codes must be isolated from the Internet to avoid impact to/from the
Internet.

Since malwares often damage analyzing environments, to observe malware
behavior, the analyzing environment must be rebuilt to recover from damages
caused by the malware. Therefore, analyzing environments must be easy to re-
build. They must also be constructed so that they are able to fool the detecting
mechanisms of malwares:

1. Check whether or not specific targeted hosts and services are reachable
2. Detect virtualized environments
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There is no simple approach to the reachability check (1) technique because
providing reachability from the isolated sandbox causes a troublesome conflict
between isolating from and connection to the Internet. Two common approaches
are capable of reconciling the conflict. The first, called the online approach, pro-
vides reachability to specific hosts and services on demand. In this approach,
curious and intelligent traffic filters must be provided because attacking and
infecting traffic from malware must not be able to pass through to the Inter-
net. The second, called the offline approach, provides counterfeit reachability.
In this approach, counterfeit hosts and services must be prepared based on the
malware’s targets.

There are also two fundamental approaches to the virtualized environment
detection (2) technique. The first is making virtualized environments seem not
virtualized. The second is providing the same functions as virtualized environ-
ments provide in non-virtualized environments. In the second approach, the fol-
lowing advantages must be kept in an executing environment based on actual
nodes instead of virtualized environments. Virtualized analyzing environments
have the advantages of:

– making it easy to construct an isolated sandbox because a virtualized envi-
ronment usually has a closed executing environment,

– making it easy to rebuild an environment using snapshotting itself, and
rolling back previous states which are provided in many implementations
of the virtualization technology.

Based on these issues, we discuss below how to make an isolated sandbox
appear to be connected to the real Internet and how to retain the advantages of
virtualized environments in an executing environment based on actual nodes.

4.2 End-Host View of the Internet

A function that enables an analyzing environment to pass a malware’s reacha-
bility check even though it is executed in an isolated sandbox is called “mimetic
Internet.” To construct a mimetic Internet, what is important is whether or
not malwares mistake the mimetic Internet for the real one. This may amount
to what could be observed in the real Internet from an end-host and how our
mimetic Internet mimics the real Internet to the end-host.

An end-host should be able to observe the behavior of:

1. neighboring hosts on the same network segment,
2. local services and server hosts on the same site,
3. global services and server hosts on the Internet,
4. and opened hosts on the Internet.

It must also be able to observe environmental parameters on the network routes
from the communications with them. Environmental parameters such as
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Fig. 1. End-host view of Internet

bandwidth and round trip time (RTT) of an observed target host, a count of
transit gateways, and RTTs to each gateway can be observed by the end-host.
However, it is difficult, based only on these environmental parameters, for the
end-host to get an overview of the Internet and where it is because the parameters
are independent for each target host.

We can therefore conclude that the end-host view of the Internet could be
modeled as a collection of behavior of target hosts involving some services, a
count of gateways, and link qualities such as bandwidths and RTTs, for each
target host and gateway. Figure 1 shows this model. In the sections below, we use
the term target host to mean the targeted host of malwares checking reachability.

4.3 Actual Nodes Instead of Virtualized Environment

The executing environment based on actual nodes would not ordinarily be able
to provide an isolated executing environment that could ordinarily be provided in
virtualized environments. Also, when actual nodes are used, it usually takes more
time and work for the nodes to be configured and for the executing environment
to be built based on the nodes.

In the sections below, the term “actual node” is used to mean an actual
computer that is not virtualized.

Isolated Sandbox Based on Actual Nodes. An isolated sandbox based on
actual nodes can easily be built to function as a strictly disconnected analyzing
environment. However, in this disconnected environment, management of the
environment through actions such as introducing and executing specimens and
observations such as capturing packet dumps and collecting related logs must
be carried out without network connections to the environment. Thus, in con-
structing the isolated sandbox based on actual nodes, the manner in which the
analyzing environment is permitted to control and observe the isolated sandbox
is important.
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Rebuilding Environment Based on Actual Nodes. In live code analysis of
malwares, an executing environment must frequently be rebuilt to recover from
damage caused by malwares. This is time consuming and difficult. Though the
amount of work could be reduced by using support software, the amount of time
required cannot easily be reduced.

5 Approaches and Prototyping

In light of the design issues mentioned above, we designed a prototype system
to implement our approaches. In this section, we describe our approaches and
the design of the prototype system.

5.1 Our Approaches

In response to the reachability check technique mentioned in section 4.1, we use
the offline approach, which fools reachability checks by using a function that
we call the mimetic Internet. We chose this approach because, with the online
approach, it is difficult to eliminate the risk of violating isolation because traffic
filters not only pass through traffic for the reachability check but also attack and
infect traffic.

For the virtualized environment detection technique, we use a non-virtualized
environment that is capable of providing the same functionality as a virtualized
environment. This is because techniques for concealing virtualizations probably
interact with techniques for detecting concealed virtualizations, causing a vicious
circle (cf. section 3). We attempt to avoid the vicious circle.

5.2 Functions

The function called “mimetic Internet” must mimetically provide targeted hosts,
services, and network environments. Some functions must be provided because
the advantages of virtualized environments must be kept in an executing envi-
ronment based on actual nodes instead of in virtualized environments. These
functions are called the “malware incubator.”

Figure 2 shows a functional image of our proposed environment. We discuss
these functions in detail below.

5.3 Mimetic Internet

According to the model of the end-host view of the Internet (cf. section 4.2), if
we could emulate the behavior, number of gateways, and link qualities of each
target host and gateway, malwares would misidentify as themselves on the real
Internet. Therefore, our proposed mimetic Internet will be composed of:

– Mimetic target hosts
– Emulated routes
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Fig. 2. Functional image of proposed environment

Mimicking Target Hosts. If a malware has information about all the hosts on
the Internet and can check them all, the same number of hosts must be mimicked
on a mimetic Internet. The malware, however, cannot inspect all the hosts on the
Internet because there is far too much information involved. Therefore, malwares
should be able to choose target hosts from the following classes and combinations
of them:

1. hosts that are easy to inspect,
2. principal or fundamental hosts that are always present, and
3. hosts specific to the malware.

Accordingly, the proposed system uses mimetic target hosts from each class.
For the easy-to-inspect (1) class, neighboring hosts on the same network seg-
ment and server hosts for major local services such as SMTP, POP, Web, and
DNS, which are provided on generic sites, were prepared. For the principal or
fundamental (2) class, global DNS services such as root DNSs, famous search
engines Yahoo! (http://www.yahoo.com/) and Google (http://www.google.com/),
and time.windows.com, which is a default NTP server for Microsoft Windows
XP hosts, were prepared. A dynamic configuration of specific target hosts based
on the results of a pre-experiment that executes the malware and collects com-
munication history were discussed as examples of the class (3) specific to the
malware.

Emulating Routes. On the real Internet, an observed route would perhaps
be changed for each observation because the route would be chosen by routing
mechanisms from many possible routes. However, the observed route usually has
only a single gateway count because there usually is no other route to the target
host, and the route should be stably chosen.

http://www.yahoo.com/
http://www.google.com/
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The proposed method emulates a route to a target host using the route emu-
lator and the link quality emulator. The route emulator emulates as each target
host transits a fixed count of gateways, and the link quality emulator emulates
bandwidths and delays to each gateway using a network emulation software.

5.4 Malware Incubator

The malware incubator cannot ordinarily provide an isolated executing environ-
ment, and an actual node usually takes more time and work to rebuild. To solve
these problems, our method was designed as discussed below.

Isolated Sandbox Based on Actual Nodes. Our proposed method provides
the isolated sandbox with separated VLANs, a security gateway, and sensor
nodes. The analyzing environment is separated on specified VLANs, which are
disconnected from other environments, and the security gateway, which is built
up between the isolated sandbox and a management terminal, provides com-
munication channels for controlling and observing the isolated sandbox. Sensor
nodes provide captured packet dumps with a packet capture software and collect
related logs via FTP or SCP.

Rebuilding an Environment Based on Actual Nodes. In our method,
the environment would be built up on large-scale practical estimation testbeds,
such as the StarBED[13], to solve these problems. The testbed is composed of
a large number of the same kind of actual nodes and provides easily chang-
ing network topologies and strictly controls experimental steps with its sup-
porting software. This supporting software should reduce the amount of work
required.

However, the time required cannot easily be reduced. Therefore, an enormous
number of the same kind of actual nodes must be prepared on the large-scale
testbed. The proposed method will use a node swapping technique. In this tech-
nique, the same executing environments would be previously installed on many
actual nodes. Then an actual node can be swapped to other nodes installed in
the same executing environment when the executing environment sustains dam-
age. After swapping, the damaged executing environment can be rebuilt in the
background.

Figure 3 shows an overview of the node swapping method. First, executing
environment A for a malware is installed on actual node 1. Then, the same
environment would also be installed on actual nodes 2 and 3 as spares. After
executing the malware, damage would be done to environment A on node 1.
Then, executing environment A could be swapped from node 1 to node 2, and
the malware would be continuously analyzed. After being swapped, environment
A could be rebuilt on node 1 in the background of the analysis.

In this method, the time required to rebuild, which naturally involves stop-
ping the analysis, could be reduced because executing environments would be
swapped to already built spare nodes and be rebuilt in the background.
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Fig. 3. Overview of Node swapping

6 Evaluation

We conducted a proof-of-concept experiment to test the efficiency and clarify
issues of our approaches. In this section, we describe the experiment and its
results.

6.1 Experiment

The purposes of the experiment were to determine what kinds of malwares the
mimetic Internet could fool and how much the time between each re-experiment
could be reduced by the swappable actual nodes method.

To determine these things, a conceptual prototype of our analyzing envi-
ronment was constructed on the StarBED. Then, some unknown specimens,
which had been collected in our Nepenthes[14] environment were filtered out by
ClamAV[15]. We observed the behavior of their live codes in the environment
with tcpdump, snort[16], and system monitoring tools for Microsoft Windows
[17](FileMon, RegMon, TCPview, and Process Explorer).

Figure 4 shows an overview of the environment. The environment included:

– Five actual nodes, which were installed in non-patched Microsoft Windows
XP professional for the executing environment that included four spare nodes

– A sensor node using tcpdump and snort, which was in bridge mode, for cap-
turing packets, and a sensor node for injecting specimens

– A mimetic local site with four actual nodes that were installed in fully patched
Windows, SMTP/POP/Web/DNS local servers, and a firewall router

– Four simple link quality emulators with qdisc (netem)[18] to emulate routes
to mimetic global servers and sites

– Mimetic time.windows.com, which is a default NTP server for Windows XP,
as an NTP server on the mimetic global server

– Mimetic Google and Yahoo! as web servers on the mimetic major sites
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Fig. 4. Overview of Experimental Environment

– An isolated sandbox, which is composed of all of the above
– The security gateway, which is a simple firewall router

And note that there are no support mechanism for specific mimetic hosts for each
malware because no mechanism for dynamic configuration of specific targets was
implemented.

The isolated sandbox must be disconnected from the Internet. In this experi-
ment, it was isolated using separated VLANs and physically disconnected wires.
We verified its separateness with a penetration test using nmap[19].

Table 1 shows classification of collected specimens. We had been collecting
specimens, which included 23 unknown specimens, on Nepenthes from December
27, 2006 to February 16, 2007. We analyzed 14 specimens, all of which are valid
Windows executables.

We should noticed that this experiment could not verify reducing works be-
cause we manually constructed the isolated sandbox, injecting specimens and
collecting data for the analysis of this experiment.

6.2 Results

Results are shown in Table 2. We observed that six specimens, fooled by our
mimetic global sites and global servers, accessed our mimetic Internet and that
their behavior changed based on whether or not they were fooled. In the ob-
servations, the expected behavior, accessing Google or Yahoo! via HTTP and
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Table 1. Classification of Specimens

Classifications Counts

Collected specimens on our Nepenthes 1069
Unified specimens by MD5 163
Unknown specimens (filtered out by ClamAV) 23
Analyzed specimens (Windows executables) 14

Table 2. Results of Analysis

Observed Behavior Counts

HTTP access to Google 4

NTP access to time.windows.com 2
Access to windowsupdate.microsoft.com
DNS retrieve specific hosts 14

time.windows.com via NTP, were observed in some specimens. An unexpected
behavior, an attempt to access to windowsupdate.microsoft.com, was also ob-
served. In another behavior, which was expected and observed but not addressed,
all specimens attempted to access each specific target. One expected behav-
ior, attempts to probe network routes, was not observed. This shows that our
mimetic Internet can fool malwares and that dynamically introducing targets is
an important issue. It also shows, unexpectedly, that emulated routes are not
important for current malwares.

We also showed that time intervals between each re-experiment were nearly
zero because we prepared five nodes in the environment, and each re-experiment
took 20 minutes. Because of this we were able to spend an hour rebuilding and
an hour installing Windows XP, drivers, and tools. Thus, we can conclude that
the node swapping method can reduce the time required to rebuild a virtualized
environment.

7 Conclusion and Future Work

We focused on anti-analysis mechanisms of malwares and discussed how we can
fool these mechanisms in an isolated sandbox. We used the mimetic Internet
and the malware incubator with swappable actual nodes. We also conducted
a proof-of-concept experiment on StarBED to test our proposed method and
clarify issues. The results of the experiment show that the mimetic Internet is
effective and the node swapping method is efficient, although some improvements
must be made.

In the furure we plan to:

– Demonstrate that malwares that contain countermeasures against virtual-
ized environments can be executed in our sandbox

– Implement an automated sandbox development and operation environment
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– Design the dynamic introduction of specific target hosts for each malware to
the mimetic Internet

– Design the mimetic dynamic contents generation on mimetic servers
– Enable specimens to access cryptographic services such as SSL
– Enable specimens to download files and join command through real networks

from the isolated sandbox

We hope that by using our methods, malwares, which have anti-analysis mech-
anisms, such as the ability to detect isolated sandboxes and virtualized environ-
ments, will be analyzed correctly.
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Abstract. Digital fingerprinting is a scheme to insert user’s own ID
information into digital contents in order to identify illegal users who
distribute unauthorized copy. One of the important problems is a collu-
sion attack such that several users combine their copies of a same content
to modify/delete the embedded fingerprint. In this paper, we propose a
collusion-resilient fingerprinting scheme based on the CDMA technique.
By combining spread spectrum sequence with orthogonal transform, we
allocate the combination of spectrum components to users as their fin-
gerprints. At a detector side, a threshold for the detection of colluded
users is determined considering the false positive probability. We then
estimate the parameters in the scheme for both optimal embedding and
detection, and improve the accuracy of the detection of colluders. Ex-
perimental results show the effectiveness of proposed scheme.

1 Introduction

Accompanying with technology advancement, multimedia content (audio, im-
age, video and etc.) has been closer to us and we have been able to easily access
it. However, such an advantage also causes a serious problem that unauthorized
users can duplicate digital content and redistribute it. In order to solve this prob-
lem, digital fingerprinting is used to trace back the illegal users, where unique
IDs known as digital fingerprints [1], are embedded into content before distri-
bution. When a suspicious copy is found, the owner can identify illegal users by
extracting the fingerprint. A powerful cost-effective attack to the fingerprinting
technique is a collusion such that several users with a same content that con-
tains different fingerprints combine them together in order to generate a new
version. One of the simplest approaches about the collusion attack is to average
multiple copies of the content together. By combining many copies sufficiently,
the fingerprints will be weakened or removed by the attack. Therefore, it is im-
portant to generate fingerprints that can be not only identify the colluders, but
also resilient against collusion.

A number of works on designing fingerprints that are resistant against col-
lusion attack have been proposed. Many of them can be categorized into two
approaches. One is to devise an exclusive code, known as collusion-secure code
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[3,4], which has traceability of colluders. However, making use of this code is
not very practical since its code length is extremely long. The other is to exploit
Spread Spectrum (SS) technique [2,5,6]. In the scheme, sequences which follow
a normal distribution are assigned to each user as a fingerprint, and an excellent
collusion resilience property is archived. Kirovski et al. proposed a dual water-
mark/fingerprint system that allows the use of different watermark signals in
embedding and extraction [7], and an attack analysis and evaluation for the sys-
tem are discussed in [8]. In [7], each user is supposed to have own media player
that contains a watermark detector and its detection key which is sum of a com-
mon watermark and a fingerprint, and distributed contents are marked with the
common watermark. When an attacker obtains the detection key from the player
and subtracts the key from the watermarked content, not only will the water-
mark not be completely removed but also a fingerprint will be inserted in the
attacked copy. Thus, our fingerprinting scheme different from their system with
respect to the contents distribution model. The framework of SS embedding in
[2] is extended using the coding technique [9,10]. However, several disadvantages
are commonly remained in [2,7,9,10], such that high computational complexity
is required in detection and a lot of fingerprints are needed for large number of
users.

In this paper, we focus on the latter approach and propose a fingerprinting
scheme based on the CDMA technique. The basic idea of our fingerprinting
scheme is to allocate two spectrum components, which are orthogonal to the
other components, and to express an unique ID as a fingerprinting by the com-
bination of the components. In order to improve the allowable number of users
in the system, we combine the quasi-orthogonal property of PN sequence [12]
with orthogonal transform. Using this orthogonality, the inserted signals don’t
interfere with each other under averaging collusion. Therefore, it is possible to
assign the combination of spectrum components to each user and to provide
the hierarchical structure to the sequences. At a detection of the fingerprint in-
formation, we list up the components which signal energy exceeds a threshold,
and identify the corresponding colluders whose fingerprints are expressed by the
combination of the components. By applying the statistical property of the SS
sequence, we give how to calculate a proper threshold according to the proba-
bility of false positive detection. Furthermore, we estimate the parameters used
in the procedure of embedding and detection in the basic scheme. By giving a
weight to the parameters, we improve the correct detection rate of colluders in
the basic scheme. We demonstrate the performance of proposed scheme through
computer simulation, in which the optimal parameters are estimated and their
efficiency is clarified.

2 Preliminaries

2.1 Spread Spectrum Watermarking

A number of fingerprinting techniques have been proposed recently concerning
to the robustness against collusion attack. On the technique, Cox et al.[2] first
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proposed watermarking scheme in which exploiting SS technique. In the work, SS
sequence, which is assigned to each user as a fingerprint, consists of a sequence of
real numbers, X = {x1, . . . , xn}, where each element xi is chosen independently
according to N(0, 1) (where N(μ, σ2) denotes a normal distribution with mean
μ and variance σ2).

Let V = {v1, . . . , vn} be the frequency components of a digital image. We
insert X into V to obtain a watermarked sequence V ′, for example, v′i = vi+αxi,
where α is a embedding strength. At the detector side, we determine which SS
sequence is present in a test image by evaluating the similarity of sequences. From
the suspicious copy, a sequence X∗ is detected by calculating the difference of
the original image, and its similarity with X is obtained as follows.

sim(X, X∗) =
X · X∗

√
X∗ · X∗ , (1)

If the value exceeds a threshold, the embedded sequence is regarded as X .
In a fingerprinting scheme, each watermarked copy is slightly different, hence,

malicious users will collect t copies D1, . . . , Dt with respective watermark
X1, . . . , Xt in order to remove/alter the watermark. A simple, yet effective way
is to average them because when t copies are averaged, D∗ = (D1 + . . . + Dt)/t,
the similarity value calculated by Eq. (1) results in shrinking by a factor of t,
which will be roughly

√
n/t [2]. Even in this case, we can detect the embed-

ded watermark and identify the colluders by using an appropriately designed
threshold.

This scheme has excellent robustness against signal processing, geometric
distortions and subterfuge attacks [2]. However, it is not theoretically proven
whether each SS sequence used in the scheme is (quasi-)orthogonal to each
other. If some of them were correlated each other, the performance might be
degraded. In order to get more robustness against averaging collusion, we have
to use (quasi-)orthogonal sequences. In addition, this technique has a weakness
such that the required number of SS sequences and computational complexity in
detection increase with the number of users linearly. In our scheme, we exploit
the sequences which consist of frequency components and allocate one of the
spectrum components in the sequence to one user in order to let watermark be
orthogonal to those for others. And, at the detection, we use only the difference
between the test sequence and the original one without such a correlation de-
tector as Eq. (1). So the computational complexity of detection is lower than
the conventional scheme, and the preparation of the fingerprint sequences is not
required.

2.2 Orthogonal Property

It is well-known that orthogonal transform such as DFT, DCT, etc. divides a se-
quence in mutually independent components like frequency elements. Since each
spectrum component is orthogonal to the other components, changing only one
component does not influence the other components. Considering its property,
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in our scheme, we allocate one of the components to the corresponding wa-
termark information. For example, the components are denoted by a sequence
v = {v(0), . . . , v(� − 1)}. Then, we can insert one of � kinds of watermarks to
v by adding α to corresponding one component in v, where α is an embed-
ding strength. Since each component is mutually independent because of its
orthogonality, we can assign it to each user as a fingerprint. In such a case,
however, the allowable number of user is just that of components. In order to
increase the number of user efficiently, it will be advisable to use two sequences;
v0 = {v0(0), . . . , v0(� − 1)} and v1 = {v1(0), . . . , v1(� − 1)}, and to allocate
the combination of two components from different sequences to each user. In
this case, �2 users can be admitted with 2� spectrum components because the
selection of two components has �2 candidates. However, under averaging at-
tack, it causes a serious problem such that the combination of two components
can’t be identified uniquely even if we could detect some components containing
watermark from test sequences. For example, we assign two components as a
fingerprint to each user as shown in Table 1. If user 1 and user 6 collude to
average two fingerprinted contents, then two components, v0(0) and v0(1) will
be detected from v0, and similarly, two components, v1(0) and v1(2) from the
other sequence v1 at a detector side. Here, even if we can detect such water-
marked components, we can’t identify the users uniquely since collusion pattern
has two cases such as user 1 and user 6, or user 3 and user 4. In order to solve
this problem, we exploit the quasi-orthogonal property of PN sequence such as
M-sequence, Gold-sequence, etc [12]. It is noted that our method is similar to
the CDMA technique for communication. Before embedding at the sequence v1,
a specific PN sequence related to v0 is multiplied and then orthogonal trans-
form is performed. As the results, each components in the obtained spectrum
sequence is mutually independent, and if the applied PN sequence is different,
the spectrum sequence is also mutually independent to other ones. Thus, we give
hierarchical structure to the sequences for embedding, which increases the num-
ber of users; �2 users with only 2 �spectrum components. Then, we can identify
colluders from the combination of detected IDs.

Table 1. An example of assigned fingerprint to 9 users

v0(0) v0(1) v0(2)

v1(0) user 1 user 4 user 7
v1(1) user 2 user 5 user 8
v1(2) user 3 user 6 user 9

In our technique, we suppose that each user’s fingerprint consists of two parts
of information. One is to identify the group where a user belongs to and the other
represents an individual user in the group. Then, we call the group information
“group ID” and the information for distinguishing individual users “user ID”.
The hierarchical structure in the sequences is illustrated in Fig.1. The details to
embed and detect user’s fingerprint are discussed in Section 3.
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spectrum sequence  (group ID )

spectrum sequence  (user ID )

user 1 in group 1
user 2 in group 1

user 3 in group 1

spectrum sequence  (user ID )

user 1 in group 2
user 2 in group 2

user 3 in group 2

group 1 group 2

Fig. 1. Hierarchical structure of two sequences

2.3 Statistical Property

In conventional fingerprinting schemes [2,5], illegal users are detected by calcu-
lating correlations with original fingerprint. If an original data is available, the
reliability of the detector can be increased. Here, it is strongly required for the
detector to detect only illegal users, not innocent users. Therefore, the design
of a threshold is to guarantee a probability of false positive detection. In this
subsection, we exploit statistical properties to obtain the proper threshold for a
given probability.

We call the sequence obtained by subtracting the host sequence from the
watermarked sequence, “detection sequence”, and it is denoted by d = {d(0), . . . ,
d(� − 1)}. To apply statistical decision theory, we assume that d is composed of
random variables and the sequence except watermarked component d(k), which
is denoted by d′, are distributed according to N(0, σ2). If we insert a watermark
to add α to d(k) in order to satisfy d(k) > maxi{d(i)}(i �= k), then we can
detect the embedded watermark by setting a threshold T to be imposed d(k) >
T > d(i). Then, T can be put according with the probability of false detection,
which is illustrated in Fig.2. The probability that a random variable d(i) exceeds
T , Prob(d(i) > T ), is equal to the marked area in Fig. 2. If d(i) > T , then a
detector decides that d(i) is watermarked and false detection occurs. Therefore,
Prob(d(i) > T ) is the probability of false positive detection. We can, then, say
that

P (d(i) > T )

0 T
Detection Statics

d′

d(k)

# 
of

 o
cc

ur
en
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s

Fig. 2. Distribution of d′ to be approximated to N(0, σ2)
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Prob(d(i) > T ) ≤ 1
2
erfc

(
T√
2σ2

)
, (2)

from study in [13]. By imposing, for example, that Prob(d(i) > T ) ≤ 10−8, we
find

T = 3.97
√

2σ2. (3)

If the variance σ2 is known, we can obtain a proper threshold corresponding to
a given probability of false detection.

3 Proposed Hierarchical Spread Spectrum Watermarking

In this section, we present our spread spectrum watermarking scheme. In our
scheme, a fingerprint consists of two kinds of IDs, group ID and user ID, where
group ID represents information of the group where a user belongs to and user
ID is to distinguish individual user in the group, and each ID is embedded into
one of the spectrum components extracted from host signal. In our embedding
procedure, we realize the hierarchical structure between the sequences using PN
sequence, which increase the number of users admitted in our fingerprinting
system. Furthermore, assigning one spectrum component for embedding each
ID, the watermark signal resists against averaging attack since the components
forming the sequence are independent to each other. At a detection of the water-
mark, an optimal threshold is calculated for a given probability of false positive
detection.

3.1 Approach

A fingerprint is embedded into the sequences which consists of the spectral com-
ponents especially extracted from an host signal using a secret key. At inserting
each ID, we multiply the sequence by PN sequence and further compute orthog-
onal transform of its sequence to obtain the orthogonal sequence for embedding.
Each component in the sequence one-to-one corresponds to the position used for
embedding the corresponding watermark and it is independent to each other.
And each ID is embedded by adding α to the component which index is equal
to each ID, where α is a watermark strength. Since the component is mutually
independent from the other components, the watermarked signal dose not in-
terfere with each other. Therefore, even when averaging attack is performed, a
watermarked signal does not interfere with other watermarked ones, but each
watermark energy is reduced by averaging. If the parameter α is properly de-
signed, it is possible to immunize such an attack.

In addition, after adding α to the component, we compute inverse orthogonal
transform to the watermarked sequence and multiply it by PN sequence. Then,
embedded signal is spread over the sequence initially extracted from an host sig-
nal. Therefore, spreading the watermark throughout the former sequence ensures
robustness against intentional or unintentional attacks. It is difficult to identify
the location of the extracted because the embedded watermark is placed in the
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frequency domain. Only the owner knows the precise patterns of the watermark
that is modulated by combination of DCT and PN sequence. In contrast, for an
attacker the strategy to get the watermarked sequence is not realistic because he
must know each parameters containing secret key used in the embedding proce-
dure. Since an attacker only has knowledge of the possible range of modification,
an attacker must create audible/visible defects in the data to eliminate a water-
mark. As other collusion attack, we assume that colluders obtain the difference
by subtracting the watermarked signal from the other watermarked one, and
exploit it to add noise to the watermarked signal in order to eliminate a water-
mark. However, since the additive noise is spread throughout the watermarked
sequence by exploiting PN sequence, serious effects to a particular component
in the watermarked sequence is difficult [5,10].

3.2 Embedding

We give the procedure to embed a user’s fingerprint into N×N image. In our
scheme, the allowable number of users is �2, and the fingerprint is denoted by
(i0, i1), where i0 represents group ID and i1 represents user ID. The embedding
procedure is summarized as follows.

1) Apply full-domain DCT to host image.
2) Extract 2� DCT coefficients randomly from the low or middle frequency

elements using a secret key, and create 2 sequences, v0 and v1 of length �.
3) Embed i0 and i1 to v0 and v1, respectively, by the following procedure.

• group ID i0
a) Generate PN sequence PN(s) of length � using a secret key s as

a seed, where the PN sequence consists of ±1. (Specifically, we use
M-sequence in our scheme.)

b) Multiply v0 by PN(s) and apply 1- dimensional DCT (1-D DCT) to
obtain an orthogonal sequence for embedding i0, which is denoted
by v̂0 = {v̂0(0), v̂0(1), . . . , v̂0(� − 1)}.

c) Add α0 to v̂0(i0) to obtain v̂0
′.

d) Apply 1-D IDCT of v̂0
′ and multiply it by PN(s) to obtain a water-

marked sequence v0
′.

• user ID i1
a) Generate PN sequence PN(i0) with length � using i0 as a seed.
b) Multiply v1 by PN(i0) and apply 1-D DCT to obtain an orthogonal

sequence for embedding i1, which is denoted by v̂1 = {v̂1(0), v̂1(1),
. . . , v̂1(� − 1)}.

c) Add α1 to v̂1(i1) to obtain v̂1
′.

d) Aplly 1-D IDCT of v̂1
′ and multiply it by PN(i0) to obtain a wa-

termarked sequence v1
′.

4) Substitute v0
′ and v1

′ for original DCT coefficients, and apply IDCT to
obtain a watermarked image.

We add αm to v̂m(im), (m = 0, 1) in order to assign im-th spectrum component in
v̂m. Note that we have to decide a watermark strength αm carefully since a larger
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αm increases the robustness against attacks but it also causes more degradation
to the watermarked image. The detail of αm is discussed in Section 4. After
embedding im, we apply 1-D IDCT and multiply it by respective PN sequence,
hence, the embedded watermark is spread over vm

′. It is remarkable that the
exploitation of PN(i0) enables us to make the sequence depended on the group
ID i0 for embedding user ID i1, and to create the hierarchical structure among
the sequences. Combination of the sequences can bring increase of allowable
users comparing with the method based on one sequence.

3.3 Extraction

At the detector side, an host image and secret keys used in embedding are
required. Since a user’s fingerprint is embedded separately by two kinds of IDs,
i0 and i1, a two-level detection algorithm is conducted. We first determine which
group ID is present in a watermarked image to identify the group to which the
illegal user belongs, and then we focus on the identified group to examine user
ID. The latter operation is performed to the sequence using the PN sequence
generated from the identified group ID as a seed. At the detection of each ID,
we examine through comparing the components in detection sequence with a
threshold. Here, we assume that two sequences extracted from a tested image is
denoted by v∗

0 and v∗
1 .

– group ID i0
1) Generate PN sequence PN(s) of length � using a secret key s as a seed.
2) Subtract v0 from v∗

0 to obtain the sequence d0.
3) Multiply d0 by PN(s) and apply 1-D DCT of it to obtain the detection

sequence d̂0 = {d̂0(0), d̂0(1), . . . , d̂0(� − 1)}.
4) If d0(k) is more than a threshold T0, detect k as group ID i0.

– user ID i1.
1) Generate PN sequence PN(i0) of length � using i0 as a seed.
2) Subtract v1 from v∗

1 to obtain the sequence d1.
3) Multiply d1 by PN(i0) and apply 1-D DCT to obtain the detection

sequence d̂1 = {d̂1(0), d̂1(1), . . . , d̂1(� − 1)}.
4) If d1(k) is more than a threshold T1, detect k as user ID i1.

Note that when some group IDs are detected, we examine each user ID cor-
responding to each group ID in order to identify all colluders. Therefore, our
scheme is designed for catch many-type fingerprinting [1]. Then The details of
deciding the threshold T0 and T1 according to the probability of false detection
is discussed in Section 4.

4 Optimization

In this section, we propose an optimal method to obtain a proper threshold and
corresponding parameters. We first describe the specific technique in setting the
threshold for examining the watermark, and then consider the parameters used in
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the fingerprinting scheme, estimating the parameters for optimal embedding and
detection to our basic scheme presented in Section 3. The idea of our optimized
scheme is to give weight to watermark strengths α0 and α1 at embedding two
kinds of IDs and to also give bias to setting the corresponding thresholds T0 and
T1 used in a two-level detection.

4.1 Threshold

In this subsection, we apply the statistical property discussed in subsection 2.3
for our basic scheme. In order to obtain a threshold which guarantees a given
probability of false positive detection, we focus on the distribution of the detec-
tion sequence. Considering the property of the sequence, we obtain an approx-
imation of variance σ2 required for setting a threshold. In Fig. 3, for instance,
we illustrate the detection sequence d̂0 where group ID is embedded with the
following conditions. For the adaption of Fast DCT, we choose � = 210(= 1024).
A watermark is embedded into different groups with a strength α0 = α1 = 500
in order to estimate the effects of averaging attack. For the evaluation of its
practicality, we perform JPEG compression with quality 35% as well as the
averaging attack. Fig. 3 depicts the detected signals from the attacked image,
where the numbers in parenthesis represent group IDs. Each watermark energy
is decreasing to 1/10 of α0 by averaging and additional noise interfered with both
watermarked components and components which are not containing the water-
mark signal. However, 10 spikes which indicate the presence of the 10 group
IDs. Then, the appropriately calculated threshold enables us to detect 10 groups
where colluders come from. Further, we can similarly detect embedded user IDs,
and finally identify the colluders. Note that the additional noise caused by JPEG
compression shown in the non-watermarked components approximately follows
a normal distribution. So we assume that the histogram of the signals in d̂0
is illustrated in Fig. 4, where the histogram except for the watermarked signal
is approximated to normal distribution. If we know σ2 of the distribution of
non-watermarked signals, then we can set the ideal threshold by using Eq. (2).
In order to estimate σ2, we focus on symmetric property of the distribution of
non-watermarked components. Since we can easily choose the minimum compo-
nent d̂0(min) in d̂0, the components, which are in the range D0 from d̂0(min) to
−d̂0(min), are assumed to non- watermarked signals. Similarly, for the detection
sequence d̂1, we can apply for these consideration as follows.

σ2
m =

1
n

∑
d̂m

′(k)∈Dm

(
d̂m

′
(k) − d̂m

′
)2

, (4)

where d̂m
′

denotes the detection sequence which components are in the range
Dm at detecting each ID im, n denotes the number of components in d̂m

′
, and

d̂m
′

is the mean of d̂m
′
. Therefore, we can set a threshold according to the

probability of false detection Pem.
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Fig. 4. The distribution of the detection
sequence d̂0 under averaging attack and
JPEG compression with quality 35%

4.2 Weight

In this subsection, we consider the parameters in our scheme to improve the
accuracy of detection of user’s fingerprint under averaging attack. Our improved
method is to give weight to the watermark strength αm, and also to give weight
to the probability Pem for setting the threshold Tm.

We first review the procedure to detect the watermark, in which a two-level
detection scheme is conducted. At detection, after we detect group ID of each
colluder, we detect each user ID which is corresponding to each group ID since
group ID is necessary for generating the detection sequence to examine user ID
in the group. Therefore, if we fail to detect the group ID in the first detection, the
following procedure to detect user ID does not conducted, hence the probability
of correct detection of user’s fingerprint falls. In order to solve this problem, we
provide weight to Pe0 and Pe1 which decide a threshold T0 and T1 respectively.
By setting T0 lower, the detection rate of group ID can be improved, however,
the false positive detection rate will be also increased. Considering the false
detection for detecting user ID, we put T1 higher in order not to detect innocent
user ID. Even if wrong group IDs are accidentally detected, user IDs associated
with the wrong group IDs will be excluded with high probability. Thus, in our
optimized scheme, we set Pe0 > Pe1 at the detecting procedure.

In our technique, we add a watermark with the strengths, α0 and α1 to each
sequence for embedding. If the strengths are increased, the robustness against
intentional or unintentional attack will be improved, but they also cause degra-
dation. Hence, the watermark energy to be inserted is limited and we should
apportion the limited energy between α0 and α1. If a strong energy is allocated
to α1, user IDs are more accurately detected. However, a larger α1 also reduces
the detection accuracy of group ID and makes it harder to narrow down the in-
dividual user in the group. From the above paragraph, a threshold T0 should be
lower in order to detect more group IDs of colluders even if wrong group IDs are
detected. With a small α0, we could expect to archive a maximum performance
because a large α1 brings the improvement on detection of user ID. Thus, we set
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α0 < α1 at embedding procedure in our optimized fingerprinting scheme. The
optimal parameters are estimated by computer simulation in Section 5.

5 Simulation Results

In this section, we implement the proposed scheme and evaluate the tolerance
for collusion attack through computer simulation. We use the 256 × 256 “lenna”
image as the host signals, and choose � = 1024, hence the total number of
allowable users is �2 � 106. The detection of the fingerprint is performed with
the knowledge of the host image.

5.1 Perceptual Quality

We evaluate the relation between a watermark strength and image quality. Con-
sidering that the degradation in the image will be noticeable when PSNR is less
than 39 dB, we suppose that α0 = α1 = 500 are the maximum strength and as-
sume them as the criterion of the image quality. Fig. 5 shows the original image
and the watermarked image with 39.26 dB.

(a) Original image (b) Watermarked image 
α0 = α1 = 500

Fig. 5. Perceptual quality of “lenna”

5.2 Evaluation of Statistical Property

In our scheme, we set a threshold based on the statistical property of the dis-
tribution of each detection sequence. In order to examine the property, we first
show the histogram of detection sequence d̂0 and d̂1 in Fig. 6 (a) and (b), re-
spectively. In the simulation, watermarked images are averaged by 10 colluders
with random groups and performed JPEG compression with quality 35 %. We
set the watermark strength α0 = α1 = 500, and evaluate the performance using
randomly selected 103 patterns of user ID. In Fig. 6 (a) and (b), it is confirmed
that two distributions are contained; one is the distribution of non-watermarked
and the other is that of watermarked components. The former distribution will
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follow a normal distribution with zero mean, and the mean value of the latter
one will be 50 since watermarked signals are shrinking by a factor 10 from α0
and α1. When colluders belong to a small number of groups, the shrinking factor
is decreased. For example, if 2 users out of 10 colluders belong to a same group,
the corresponding watermarked component is distributed close to 100 in d̂0.

Next, we examine whether the variance σ2
m calculated by Eq. (4) approxi-

mate to that of non-watermarked components, which is an ideal estimation. In
a basic scheme, all components are used to calculate σ2

m, which accuracy will be
degraded by the watermarked components. In order to exclude such components
efficiently, Eq. (4) is applied in our optimized scheme. The results are shown in
Table 2. It is certified that the optimized scheme can obtain proper variances,
hence thresholds can be designed based on the statistical property.
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Table 2. The estimation of variances

group ID (σ2
0) user ID (σ2

1)
non-watermarked 28.33 46.68
basic scheme 49.07 48.77
optimized scheme 28.09 46.24

5.3 Optimized Combination of Watermark Strengths

In the optimized scheme discussed in Section 4, we give weight to watermark
strengths, α0 and α1. In order to obtain the optimum combination, we evalu-
ate the detection rate of colluders for watermarked image with the watermark
strength, which combination is decided with the PSNR about 39.26 dB con-
sidering α0 = α1 = 500. In the simulation, watermarked images are averaged
by 10 colluders and performed JPEG compression with quality 35 %. We set
Pe0 = 10−3 and Pe1 = 10−8, and use 104 patterns of colluders. The results are
shown in Fig. 7. We observe from Fig. 7 that optimum α0 is 370 and then α1 is
605. In the following simulation, we use the combination as optimized scheme.



40 N. Hayashi, M. Kuribayashi, and M. Morii

 30

 35

 40

 45

 50

 55

 300  350  400  450  500de
te

ct
io

n 
ra

te
 f

or
 c

ol
lu

de
rs

 [
 %

 ]
watermark strengthα0

Fig. 7. Detection rate for colluders versus a watermark strength

10−6

10−7

10−8

basic 

optimized

 0

 20

 40

 60

 80

 100

de
te

ct
io

n 
ra

te
 o

f 
co

llu
de

rs
 [

%
]

 6  8  10  12  14  16  18  20  22
number of colluders

2 4  24  26

Fig. 8. Detection rate of colluders

5.4 Robustness Against Collusion

We evaluate the robustness against collusion attack of our scheme, and show
the detection rate of colluders under averaging attack in Fig. 8. Watermarked
images are averaged and performed JPEG compression with quality 35 %, and
the simulation is iterated 104 times. We set Pe0 = 10−3 and Pe1 = 10−6 ∼ 10−8.
From Fig. 8, the detection rate of optimized scheme has up to approximately
20∼30% improvement over that of basic scheme when the number of colluders
is from 12 to 18. In optimized scheme, If the number of colluders is less than 10,
we can catch almost all colluders with very high probability. Fig. 9 shows the
average number of false positive detection on the same conditions. Under less
than 10 colluders for the optimized scheme, and 6 and 22 colluders for the basic
scheme, the false positive detection does not occur. The false positive detection is
slightly increased in the optimized scheme because the opportunity of detecting
user ID is increased according to the detected number of group ID. Considering
the improvement of the correct detection rate, however, such a slight shortcoming
may be ignored.

We apply optimized scheme to the other images, “baboon”, “peppers” and
“barbala” of the 256× 256 pixels, and the detection rate of colluders is shown in
Fig. 10. We set Pe0 = 10−3 and Pe1 = 10−8. We observe from Fig. 10 that there
is no big difference on the performance of proposed scheme among the images,
and we also confirm that the average number of false detection is close to that of
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Fig. 10. Detection rate of colluders on the 256 × 256 images and the image “lenna” of
512 × 512

“lenna”. We evaluate the performance of different size of images with a constant
watermark energy. Fig. 10 also shows the detection rate on the image “lenna”
of different size; 512 × 512 pixels, which is evaluated using randomly selected
103 patterns of colluders. We leave the consideration about the difference of
performance between two images on future works.

5.5 Consideration

In the proposed scheme, 2� DCT coefficients are used for the embedding of fin-
gerprint information which is a pair (i0, i1). In order to realize the hierarchical
structure, each � coefficients are assigned for one of (i0, i1) without overlapping.
Here, if each of them is multiplexed and embedded into 2� coefficients based
on CDMA technique, the hierarchical structure can also be realized. In such a
case, the allowable number of users is 4�2, but the false positive detection rate
will be doubled because the number of each elements are 2� and the rate is pro-
portionally increased by the number. In order to evaluate the positive detection
rate under the same false detection rate as the proposed scheme, only half of
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the 1-D DCT coefficients computed from the 2� coefficients are assigned for each
of (i0, i1). Thus, the allowable number of users is also same. The comparison
is depicted in Fig.11, and it indicates that spreading over 2� coefficients based
on CDMA technique superior. It is noted that the computational cost is also
doubled since 1-D DCT is performed to 2� coefficients.

6 Conclusion

In this paper, we proposed a collusion resilient fingerprinting scheme based on
the CDMA technique. In the proposed scheme, each user’s fingerprint consists of
two information, group ID and user ID, and we assign these IDs to the combina-
tion of spectrum components. By exploiting the hierarchical structure provided
from PN sequences, we can allow a larger number of users than conventional
fingerprinting schemes. During fingerprint detection, we can put a threshold ac-
cording to the probability of false positive detection. Since we do not calculate a
similarity with a watermark, computational complexity is rather small. We then
study the parameters in the scheme in order to obtain a maximum performance.
By giving a weight to the probability for setting a threshold, we improved the
correct detection rate of colluders. Using this improvement, moreover, we can
give a weight to watermark strengths effectively, and improved the collusion
resilience. We showed the effectiveness of the proposed scheme through experi-
mental results.
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Abstract. The ηT pairing for supersingular elliptic curve over GF(3m)
has been paid attention because of its computational efficiency. Since
most parts of computation of the ηT pairing are multiplications over
GF(3m), it is important to improve the speed of the multiplication when
implementing the ηT pairing. In this paper we consider software imple-
mentation of multiplication over GF(3m) and propose to use irreducible
trinomials xm + axk + b over GF(3) such that w, bit length of word
of targeted CPU, divides k. We call the trinomials “reduction optimal
trinomials (ROTs)”. ROTs actually exist for several m’s and typical val-
ues of w = 16 and 32. We list them for extension degrees m = 97, 167,
193 and 239. These m’s are derived from security considerations. Using
ROT it is possible to implement efficient modulo operation (reduction)
in multiplication over GF(3m) comparing with the case using other type
of trinomials (e.g., trinomials with minimum k for each m). The reason
of this is that for the cases of reduction by ROT the number of shift
operations on multiple precision data reduces to less than half compar-
ing with the cases by other trinomials. Implementation results show that
reduction algorithm specialized for ROT is 20–30% faster on 32-bit CPU
and around 40% faster on 16-bit CPU than algorithm for irreducible tri-
nomials with general k.

Keywords: pairing, software implementation, irreducible polynomial,
reduction optimal trinomial, characteristic three, finite field.

1 Introduction

Recently pairings on elliptic curves are used as tools for cryptographic protocols.
After firstly proposed to use pairings for ID-based non-interactive key sharing
by Sakai, Ohgishi and Kasahara [18] and for tripartite generalization of Diffie-
Hellman by Joux [13], many applications based on pairings have been proposed
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such as ID-based cryptosystems by Boneh and Franklin [6], short signatures by
Boneh, Lynn and Shacham [8], efficient broadcast cryptosystems by Boneh, Gen-
try and Waters [7], etc. Among two types of pairing, the Weil pairing and the
Tate pairing, the Tate pairing is preferred for application because of its lower
computational cost than that of the Weil pairing. However, since the cost of
the Tate pairing is still high comparing with the cost of RSA cryptography for
example, various techniques to realize fast computation of the Tate pairing were
developed, and are still being developed.

Supersingular elliptic curves over finite field with characteristic three
(GF(3m)) for cryptographic applications are used by Koblitz [14], and by Gal-
braith [10]. The ηT pairing by Barreto, Galbraith, Ó’ hÉigeartaigh and Scott
[2] (also the Duursma-Lee algorithm by Duursma and Lee [9]) has been stud-
ied for speeding-up of the Tate pairing. It also uses supersingular elliptic curves
over finite field with characteristic three and needs multiplication over GF(3m)
in most parts of the pairing computation. Thus it is important to improve the
speed of the multiplication when implementing the ηT pairing.

In this paper we focus on a class of monic irreducible polynomials over GF(3)
that realizes efficient modulo operation in multiplication over GF(3m). We call
the modulo operation reduction. For efficient reduction irreducible polynomials
with minimum number of terms are preferable. It is easy to see that two-term ir-
reducible polynomial xm +a over GF(3) for m ≥ 2 is x2 +1 only, thus three-term
irreducible polynomials (trinomials) xm+axk+b over GF(3) have been used if m
allows their existence. However, it seems there are not so many published mate-
rials with arguments about choice of the degree k of the second term. Galbraith,
Harrison and Soldera [11] shows irreducible polynomials used for implementa-
tion without stating the reason of choice. Bertoni, Guajardo, Kumar, Orlando,
Paar and Wollinger [4] and Barreto [1] discuss their choices: Bertoni et al. used
trinomials with k < m/3 for computation of cubing in GF(3m). This choice in
fact leads to search for irreducible trinomials with minimum k corresponding
to m. Barreto pointed out that trinomials with k ≡ m (mod 3) are useful for
efficient computation of cube roots in GF(3m). Since these choices are for cubing
or cube root, the effectiveness of the choices depends on pairing algorithm used.
Actually there is a version of the ηT pairing (and the Duursma-Lee algorithm)
without cube roots and costs of cubings are rather small comparing with those
of multiplications. Thus it would be useful to seek another method of choosing
k, where main concern is to reduce the cost of multiplication.

Our Contributions:
We propose to use irreducible trinomials xm + axk + b over GF(3) such that
w, bit length of word of targeted CPU (typical values of w are 16 and 32),
divides k. We call the trinomials “reduction optimal trinomials (ROTs)”. (The
word “optimal” is used in the similar sense such as “optimal extension fields”
or “optimal normal bases”.) Using ROT we are able to reduce the number of
shift operations in reduction to less than half comparing with the case to use
trinomials with general (including minimum) k.
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ROTs actually exist and not all k’s are minimum for corresponding m’s. We
can determine them for extension degrees m = 97, 167, 193 and 239 with w=16
or 32. These m’s are derived from security considerations of pairing cryptography
without relation to k or w. Note that since reduction by ROT is in layer of finite
field, our approach can be used simultaneously with many other speeding-up
techniques being in higher layers for efficient pairing computation.

2 Preliminaries

2.1 The Tate Pairing

Let q be a power of a prime p and let E be an elliptic curve defined over finite
field GF(q), then the Tate pairing is defined as a map

〈·, ·〉l : E(GF(q))[l] × E(GF(qκ))/lE(GF(qκ)) → GF(qκ)∗/(GF(qκ)∗)l

where l is a positive integer s.t. gcd(l, q) = 1 and l|#E(GF(q)). κ is called the
embedding degree that is the smallest positive integer s.t. l|(qκ − 1). Although
the image of the map is a quotient set, not an unique element in GF(qκ), one
can obtain unique value through operation called the final powering or the final
exponentiation. This is called the reduced Tate pairing.

2.2 From Tate to ηT

The Miller algorithm by Miller [16] is the first algorithm that calculates the Tate
pairing efficiently. Then improvements of performance of the algorithm have been
achieved by many researchers. In this subsection we briefly follow some of these
improvements.

The BKLS algorithm by Baretto, Kim, Lynn and Scott [3] uses supersingular
elliptic curve Eβ : y2 = x3 −x+β ; β = ±1 defined over finite field with charac-
teristic three (GF(3m)) for efficient computation of the Tate pairing. The curve
has property that tripling of a point P = (xp, yp) ∈ Eβ(GF(3m)) is calculated
simply as [3]P = (x9

p −β, −y9
p). This property leads to compute the Miller algo-

rithm by the triple-and-add method that is faster than usual the double-and-add
method.

The Duursma-Lee (DL) algorithm [9] chooses extension degree m of GF(3m)
such that gcd(m, 6) = 1. In this case #Eβ(GF(36m)) is (33m + 1)2 and this
reduces exponent of the final powering from 36m − 1 to 33m − 1. Furthermore,
this algorithm computes the Miller algorithm in closed form with m iteration
loops and needs no conditional branch inside the loop.

The Modified Duursma-Lee algorithm by Kwon [15] removes cube roots from
the DL algorithm. This increases the number of cubings instead but in charac-
teristic three cost of cubing is lower than that of cube root.

The ηT pairing [2] also has closed form of the Miller algorithm and the number
of its iteration loops are almost half of those of the DL algorithm in characteristic
three. Calculation cost inside the loop of the ηT pairing is nearly equal to that
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of the DL algorithm. On the other hand, exponent of the final powering of the
ηT pairing is larger than that of the DL algorithm.

Beuchat, Shirase, Takagi and Okamoto [5] removes cube roots from the ηT

pairing. Like as [15], this increases the number of cubings but reduces total cost
of calculation of the ηT pairing. Moreover, Shirase, Takagi and Okamoto [19]
improves performance of the final powering of the ηT pairing by utilizing the
fact that part of the final powering is in torus T2(GF(33m)) and the fact that
inverse of the torus is calculated with almost costless.

2.3 Algorithm of the ηT Pairing

The ηT pairing algorithm in characteristic three without cube roots [5] is shown
in Algorithm 1 for the case of m ≡ 1(mod 12). Since the embedding degree
of the ηT pairing in characteristic three is six, Algorithm 1 shows that most
of the calculations are performed over GF(3m) and GF(36m). Calculations over
GF(36m) can be performed over GF(3m) by representing elements in GF(36m)
using basis of GF(36m)/GF(3m). Therefore efficient implementation of GF(3m)
operations benefits for speeding-up of calculation of Algorithm 1. So we focus
on calculations over GF(3m) from now on, but before that we choose extension
degree m from security considerations in the next subsection.

Algorithm 1. The ηT pairing (with final powering) for m ≡ 1 (mod 12) [5]

· Basis of GF(36m)/GF(3m): {1, σ, ρ, σρ, ρ2, σρ2}, σ2 = −1, ρ3 = ρ + β

Input: P = (xp, yp), Q = (xq, yq) ∈ Eβ(GF(3m))[l]
Output: ηT (P, Q) with final powering
1 : for i = 1 to (m − 1)/2 do
2 : xp ← x9

p − β, yp ← −y9
p (in GF(3m))

3 : end for
4 : if β = 1 then yp ← −yp (in GF(3m))
5 : d ← β (in GF(3))
6 : R0 ← −yp(xp + xq + β) + yqσ + ypρ (in GF(36m))
7 : for i = 0 to (m − 1)/2 do
8 : r0 ← xp + xq + d (in GF(3m))
9 : R1 ← −r2

0 + ypyqσ − r0ρ − ρ2 (in GF(36m))
10 : R0 ← (R0R1)

3 (in GF(36m))
11 : yp ← −yp, xq ← x9

q, yq ← y9
q (in GF(3m))

12 : d ← d − β (in GF(3))
13 : end for

14 : return R
(33m−1)(3m+1)(3m+1−β3(m+1)/2)/3m

0 (in GF(36m))

2.4 Choice of Extension Degree m

The ηT pairing using supersingular elliptic curve Eβ over GF(3m) has embed-
ding degree six that is maximum. Let r be the largest prime factor of order
#Eβ(GF(3m)) and let | · | denote bit length, then to achieve 1024-bit RSA equiv-
alent security level |r| should be larger than around 160 bits and |36m| should
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be larger than around 1024 bits. |r| and |36m| are called security parameters. If
we need 2048-bit RSA equivalent security level, |r| should be larger than around
224 bits and |36m| should be larger than around 2048 bits. Since #Eβ(GF(3m))
is calculated as follows [2], we are able to determine extension degree m.

#Eβ(GF(3m)) =
{

3m + 1 + β3(m+1)/2 (m ≡ 1, 11(mod 12)),
3m + 1 − β3(m+1)/2 (m ≡ 5, 7 (mod 12)).

Table 1 shows |r| and |36m| for several m’s (with gcd(m, 6) = 1). From this table
we choose m = 97, 167(β=1), 193 and 239. Security levels are around 1024 bits
for m = 97, and around 2048 bits for m = 193 and 239. m = 167(β=1) has
maximum security parameters between m = 149 and 187 in the table.

Table 1. Security parameters of Eβ

m β |r| |36m|
91 +1 116 866
97 +1 151 923

149 +1 220 1417
163 +1 256 1551
163 −1 259 1551
167 +1 262 1589
167 −1 237 1589
187 +1 245 1779
193 −1 306 1836
239 −1 379 2273

3 Multiplication over GF(3m) and Reduction

For implementation of finite field operations, elements of finite field are rep-
resented by polynomial basis or normal basis. Granger, Page and Stam [12]
compared both bases for software implementation of the DL algorithm and
showed timing results that say pairing calculation by polynomial basis is much
faster than those by normal basis. Since calculations inside the iteration loop
of the DL algorithm are same as those of the ηT pairing (both are the cube
roots removed versions), and since these loop calculations are dominant for to-
tal costs, we also adopt polynomial basis for software implementation of the ηT

pairing.
Using polynomial basis, costs of addition and subtraction are negligible com-

pared with multiplication. No division or inversion is needed inside the iteration
loop of the ηT pairing. Multiplication over GF(3m) with polynomial basis con-
sists of two kinds of operations: (1) multiplication of two polynomials over GF(3)
and (2) modulo operation by degree m irreducible polynomial over GF(3). We
call this modulo operation reduction. Our aim in this paper is to choose suitable
irreducible polynomials for efficient software implementation of reduction.
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4 Reduction by Trinomial

Irreducible polynomials for efficient reduction should have minimum number
of terms as long as such polynomials exist. Since x2 + 1 is the unique two-term
irreducible polynomial over GF(3) for m ≥ 2, we focus on three-term polynomials
(trinomials) xm + axk + b (m > k > 0; a, b ∈GF(3)∗). Reduction algorithm by
irreducible trinomial is shown in Algorithm 2. Since m is already determined in
subsection 2.4 by security considerations of pairing-based cryptography, we have
to choose rest parameters k, a, b for efficient implementation of Algorithm 2.

Algorithm 2. Reduction by trinomial

Input: Degree n(> m − 1) polynomial over GF(3) C(x) =
∑n

i=0 cix
iC

Irreducible trinomial over GF(3) p(x) = xm + axk + b.
Output: C(x) ← C(x) mod p(x)
1 : for i = n downto m do
2 : ci−m+k ← ci−m+k − aci

3 : ci−m ← ci−m − bci

4 : ci ← 0
5 : end for

4.1 Implementation of Reduction Algorithm

When applying Algorithm 2 to software implementation for general-purpose
CPUs (including CPUs for embedding systems), it is efficient to process multiple
number of coefficients of degree n input polynomial simultaneously. The number
is width (bit length) of word of targeted CPU. We assume this number w is
equal to bit length of CPU’s general-purpose registers.

Since ci of Algorithm 2 is in GF(3), we store each coefficients by bit-slicing
as mentioned in Page and Smart [17], that is, higher bits and lower bits of
w coefficients are stored separately in two array elements with bit length w.
Using two arrays H and L, each has M := �(n + 1)/w	 elements, we store
c0 = cH0||cL0, . . . , cn = cHn||cLn as follows:

H [M − 1] = 0|| . . . ||0||cHn|| . . . ||cHn+1−{(n+1) mod w},
L[M − 1] = 0|| . . . ||0||cLn|| . . . ||cLn+1−{(n+1) mod w},

· · ·
H [0] = cHw−1|| . . . ||cH0,

L[0] = cLw−1|| . . . ||cL0.

Where cHi and cLi(i = 0, . . . , n) are higher and lower bits of ci, respectively, and
|| is bit concatenation. Then we are able to calculate w operations over GF(3)
simultaneously like a SIMD instruction.

Reduction scheme and algorithm with above data structure are shown in
Figure 1 and Algorithm 3, respectively. We restrict degree of input polynomial
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Fig. 1. Reduction scheme

is at most 2m − 2 (the number of coefficients is at most 2m − 1). Algorithm 3 is
for irreducible trinomials over GF(3) with arbitrary parameters k, a, b.

Functions ShiftdataA, ShiftdataB, ShiftdataC and GF3 in Algorithm 3 are
described as follows:

First, we define a function R(k) that determines word boundary of shifted
data.

R(k) := [{�{(m − 1) + (k mod w)}/w	}w − (m − 1) − (k mod w)]
+ {(2m − 1) mod w}.

Then the four functions in Algorithm 3 are as follows:
ShiftdataA(X, Y, m, k):

Returns shifted data corresponding to step 2 in Algorithm 2:
(R(k) bits from LSB of X)||(w − R(k) bits from MSB of Y ).

ShiftdataB(X, Y, m):
Returns shifted data corresponding to step 3 in Algorithm 2:
(R(0) bits from LSB of X)||(w − R(0) bits from MSB of Y ).

ShiftdataC(X [s], m, k):
Returns last shifted data corresponding to step 2 in Algorithm 2:
(w − (k mod w) bits from (m mod w)-th bit (LSB=0th) of X [s])||
((k mod w) bits of 0).
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Algorithm 3. Reduction with word-wise data

Input:
Array H, L that store higher and lower bits of coefficients of degree 2m − 2
polynomial, respectively,
Degree m irreducible trinomial p(x) = xm + axk + b,
Width of word w in bits,
Maximum index of array max = �(2m − 1)/w� − 1,
Index s. H [s] and L[s] store cHm and cLm, respectively.

Output:
Array H, L that reduction results are stored in.

0 : Allocate unsigned one-word length variables th, tl
1 : j1 ← �{(m − 1) + (k mod w)}/w�
2 : j2 ← �(m − 1)/w�
3 : for i = max downto s + 1 do
4 : th ← ShiftdataA(H [i], H [i − 1], m, k)
5 : tl ← ShiftdataA(L[i], L[i − 1], m, k)
6 : j1 ← j1 − 1
7 : j3 ← j1 + �k/w�
8 : GF3(H [j3], L[j3], th, tl, a)
9 : th ← ShiftdataB(H [i], H [i − 1], m)
10 : tl ← ShiftdataB(L[i], L[i − 1], m)
11 : j2 ← j2 − 1
12 : GF3(H [j2], L[j2], th, tl, b)
13 : H [i] ← 0, L[i] ← 0
14 : end for
15 : th ← ShiftdataC(H [s], m, k)
16 : tl ← ShiftdataC(L[s], m, k)
17 : j3 ← �k/w�
18 : GF3(H [j3], L[j3], th, tl, a)
19 : All w − (m mod w) bits from MSB of H [s] ← 0
20 : All w − (m mod w) bits from MSB of L[s] ← 0

GF3(H [j], L[j], th, tl, X):
Stores higher and lower bits of GF(3) operation A − XB in H [j] and L[j],

respectively. Where A := H [j]z||L[j]z, B := thz||tlz ; and suffix z is z-th bit from
LSB (0 ≤ z ≤ w − 1).

Note that there is another case of R(k) that the last term of its RHS is replaced
with −[w −{(2m−1) mod w}]. In this case Algorithm 3 is modified slightly but
we omit the detail to keep arguments clear.

5 Proposed Method for Choice of Degree k

For efficient software implementation of reduction, we propose to choose degree
k of irreducible trinomial xm + axk + b over GF(3) as w|k where w is bit length
of word of targeted CPU. We call such irreducible trinomial “reduction optimal
trinomial (ROT)”.
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5.1 Existence of ROTs

There are 320 ROTs with 8|k for m ≤ 256. List of them is shown in Appendix.
We found these trinomials using Risa/Asir, an open source computer algebra
system [21]. Among these 320 ROTs there are 108 ROTs with gcd(m, 6) = 1.

For typical values of w = 16 and 32, ROTs corresponding with predetermined
m = 97, 167, 193 and 239 (subsection 2.4) do exist:

x97 + ax16 + b,

x167 + ax96 + b = x167 + ax3·32 + b,

x193 + ax64 + b = x193 + ax2·32 + b,

x193 + ax112 + b = x193 + ax7·16 + b,

x239 + ax96 + b = x239 + ax3·32 + b.

Where (a, b) = (1, 2) or (2, 1).
Note that if m is odd and k is even, irreducibility of xm +xk +2 coincides with

that of xm +2xk +1 because xm +xk +2 = 2(2x)m +(2x)k +2 = 2(xm +2xk +1).
A necessary condition for irreducibility of a trinomial over GF(3) is given by von
zur Gathen [20].

5.2 Efficient Implementation of Reduction Algorithm

Using ROT we are able to improve Algorithm 3 because in this case we have same
th (step 4 and 9), and same tl (step 5 and 10) by function ShiftdataB. Moreover,
actual data in th and tl are word-aligned thus last call of function GF3 (step 18)
can be omitted (choice of (a, b) = (1, 2) or (2, 1) does not affect execution time
of function GF3). Figure 2 and Algorithm 4 show improved version of Figure 1
and Algorithm 3, respectively.

5.3 Comparison of Function Calls in Algorithm 4 and 3

We compare efficiency of Algorithm 4 that uses ROT with efficiency of Algo-
rithm 3 that uses other type of irreducible trinomial by counting function calls
in each algorithm. The ROTs we concern are with (m, k) = (97,16), (167,96),
(193,64) and (239,96) corresponding with w = 16, 32, 32 and 32, respectively,
while other irreducible trinomials are with (m, k) = (97,12), (167,92), (193,12)
and (239,24), i.e., each k is minimum for corresponding m. We call three func-
tions ShiftdataA, ShiftdataB and ShiftdataC simply “shift” and denote by S.
We also call function GF3 simply “addition” and denote by A. Counting the
function calls for m = 97, there are 26 shifts and 13 additions in Algorithm
3 while in Algorithm 4 the number of shifts are reduced to less than half: 12
shifts and 12 additions. This result is similar for other cases of m as shown in
Table 2.
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Fig. 2. Reduction scheme by ROT

Algorithm 4. Reduction by ROT

Input and Output: Same as Algorithm 3.
0 : Allocate unsigned one-word length variables th, tl
1 : j2 ← �(m − 1)/w�
2 : for i = max downto s + 1 do
3 : th ← ShiftdataB(H [i], H [i − 1], m)
4 : tl ← ShiftdataB(L[i], L[i − 1], m)
5 : j2 ← j2 − 1
6 : j3 ← j2 + �k/w�
7 : GF3(H [j3], L[j3], th, tl, a)
8 : GF3(H [j2], L[j2], th, tl, b)
9 : H [i] ← 0, L[i] ← 0
10 : end for
11 : All w − (m mod w) bits from MSB of H [s] ← 0
12 : All w − (m mod w) bits from MSB of L[s] ← 0

Table 2. Number of shifts and additions

m Algorithm 4 Algorithm 3

97 12S+12A (k = 16) 26S+13A (k = 12)
167 12S+12A (k = 96) 26S+13A (k = 92)
193 12S+12A (k = 64) 26S+13A (k = 12)
239 16S+16A (k = 96) 34S+17A (k = 24)

S: shift, A: addition

6 Implementation Results

We compare timings of software implementations of Algorithm 4 and 3. Irre-
ducible trinomials are same as those in subsection 5.3. Coding is in C language
and targeted CPUs are Fujitsu’s 32-bit RISC [22] and 16-bit CISC [23] that are



54 T. Nakajima, T. Izu, and T. Takagi

for embedded systems. In the implementation for m = 97, 16-bit unsigned vari-
ables are used and for other m’s 32-bit unsigned variables are used. Timings are
measured in clock cycles using the simulator for the CPUs. Optimizations for the
C code are loop unrolling and function inlining. Tunings by hand in assembly
language are not applied.

Table 3 shows the timing results of the implementation in clock cycles for each
m and CPU. Ratios of clock cycles in Algorithm 4 to those in Algorithm 3 are
also shown. We can see from Table 3 Algorithm 4 is about 20–30% faster than
Algorithm 3 for 32-bit CPU, and about 40% faster for 16-bit CPU (The increase
of clock cycles in the case of m = 97 for 32-bit CPU is because 16-bit variables
were used). The reason of the speeding-up is that the decrease of the number
of shifts in Algorithm 4 results in less use of high-cost load/store instructions
between the register and the memory.

Table 3. Implementation results

32-bit CPU 16-bit CPU

m Algorithm 4 Algorithm 3 ratio Algorithm 4 Algorithm 3 ratio

97 562cc 720cc 0.78 1180cc 1929cc 0.61
167 253 361 0.70 1884 3008 0.63
193 265 375 0.71 1996 3234 0.62
239 340 477 0.71 2556 4057 0.63

(cc: clock cycles)

7 Summary and Conclusions

We proposed to use reduction optimal trinomials (ROTs) for efficient software
implementation of reduction in multiplication over GF(3m). An ROT is an irre-
ducible trinomial xm + axk + b over GF(3) with property that w (bit length of
word of targeted CPU) divides k. Using ROTs for reduction it is able to reduce
the number of shift operations to less than half comparing with the number using
trinomials with other k’s. For predetermined m’s that are derived from security
considerations of pairing-based cryptography, ROTs exist for typical values of
w = 16 (m = 97, 167, 193 and 239) and w = 32 (m = 167, 193 and 239). Im-
plementation results show that reductions by ROTs are about 20–30% faster for
32-bit CPU and about 40% faster for 16-bit CPU compared with reductions by
trinomials with minimum k for each m. Since reduction by ROT is in layer of
finite field, our approach can be used simultaneously with many other speeding-
up techniques being in higher layers for efficient pairing computation. Future
work will be to extend the concept of ROT to irreducible polynomials with four
or more terms in the case of degree m with which no ROTs exist.
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Appendix: Irreducible trinomials with 8|k for m ≤ 256

x11 + x8 + 2 x141 + x64 + 2 x241 + x88 + 2 x107 + 2x104 + 1 x203 + 2x8 + 1 x176 + 2x136 + 2
x15 + x8 + 2 x141 + x136 + 2 x253 + x136 + 2 x109 + 2x88 + 1 x203 + 2x32 + 1 x192 + 2x32 + 2
x16 + x8 + 2 x144 + x56 + 2 x253 + x184 + 2 x109 + 2x96 + 1 x203 + 2x200 + 1 x192 + 2x160 + 2
x17 + x16 + 2 x144 + x88 + 2 x256 + x40 + 2 x110 + 2x64 + 1 x205 + 2x144 + 1 x208 + 2x56 + 2
x19 + x8 + 2 x145 + x24 + 2 x256 + x64 + 2 x110 + 2x88 + 1 x205 + 2x168 + 1 x208 + 2x152 + 2
x21 + x16 + 2 x145 + x64 + 2 x256 + x96 + 2 x115 + 2x32 + 1 x206 + 2x112 + 1 x224 + 2x16 + 2
x23 + x8 + 2 x145 + x72 + 2 x256 + x112 + 2 x118 + 2x40 + 1 x209 + 2x40 + 1 x224 + 2x104 + 2
x32 + x8 + 2 x147 + x8 + 2 x256 + x128 + 2 x121 + 2x40 + 1 x209 + 2x160 + 1 x224 + 2x120 + 2
x32 + x16 + 2 x147 + x104 + 2 x256 + x144 + 2 x121 + 2x120 + 1 x214 + 2x64 + 1 x224 + 2x208 + 2
x32 + x24 + 2 x157 + x88 + 2 x256 + x160 + 2 x127 + 2x8 + 1 x214 + 2x192 + 1 x240 + 2x8 + 2
x37 + x24 + 2 x159 + x32 + 2 x256 + x192 + 2 x131 + 2x48 + 1 x214 + 2x208 + 1 x240 + 2x232 + 2
x39 + x32 + 2 x160 + x40 + 2 x256 + x216 + 2 x131 + 2x104 + 1 x218 + 2x176 + 1 x256 + 2x40 + 2
x41 + x40 + 2 x160 + x120 + 2 x10 + 2x8 + 1 x133 + 2x88 + 1 x218 + 2x192 + 1 x256 + 2x64 + 2
x47 + x32 + 2 x163 + x80 + 2 x11 + 2x8 + 1 x134 + 2x112 + 1 x218 + 2x200 + 1 x256 + 2x96 + 2
x48 + x8 + 2 x163 + x104 + 2 x15 + 2x8 + 1 x137 + 2x136 + 1 x225 + 2x16 + 1 x256 + 2x112 + 2
x48 + x40 + 2 x165 + x88 + 2 x17 + 2x16 + 1 x138 + 2x104 + 1 x227 + 2x120 + 1 x256 + 2x128 + 2
x53 + x40 + 2 x167 + x96 + 2 x18 + 2x8 + 1 x139 + 2x80 + 1 x227 + 2x216 + 1 x256 + 2x144 + 2
x55 + x32 + 2 x169 + x24 + 2 x19 + 2x8 + 1 x141 + 2x64 + 1 x229 + 2x72 + 1 x256 + 2x160 + 2
x64 + x16 + 2 x169 + x64 + 2 x21 + 2x16 + 1 x141 + 2x136 + 1 x230 + 2x64 + 1 x256 + 2x192 + 2
x64 + x24 + 2 x176 + x40 + 2 x22 + 2x16 + 1 x142 + 2x40 + 1 x234 + 2x104 + 1 x256 + 2x216 + 2
x64 + x32 + 2 x176 + x136 + 2 x23 + 2x8 + 1 x145 + 2x24 + 1 x235 + 2x152 + 1
x64 + x40 + 2 x179 + x104 + 2 x26 + 2x8 + 1 x145 + 2x64 + 1 x238 + 2x232 + 1
x64 + x48 + 2 x179 + x120 + 2 x26 + 2x24 + 1 x145 + 2x72 + 1 x239 + 2x24 + 1
x67 + x56 + 2 x181 + x40 + 2 x30 + 2x16 + 1 x146 + 2x144 + 1 x239 + 2x56 + 1
x73 + x72 + 2 x181 + x144 + 2 x34 + 2x32 + 1 x147 + 2x8 + 1 x239 + 2x96 + 1
x77 + x16 + 2 x185 + x64 + 2 x37 + 2x24 + 1 x147 + 2x104 + 1 x239 + 2x104 + 1
x81 + x40 + 2 x187 + x8 + 2 x38 + 2x16 + 1 x154 + 2x32 + 1 x241 + 2x88 + 1
x83 + x32 + 2 x187 + x32 + 2 x39 + 2x32 + 1 x154 + 2x104 + 1 x242 + 2x80 + 1
x83 + x56 + 2 x187 + x56 + 2 x41 + 2x40 + 1 x157 + 2x88 + 1 x242 + 2x240 + 1
x85 + x16 + 2 x191 + x120 + 2 x42 + 2x32 + 1 x159 + 2x32 + 1 x250 + 2x104 + 1
x89 + x64 + 2 x192 + x32 + 2 x46 + 2x16 + 1 x162 + 2x80 + 1 x253 + 2x136 + 1
x95 + x48 + 2 x192 + x160 + 2 x46 + 2x40 + 1 x163 + 2x80 + 1 x253 + 2x184 + 1
x96 + x16 + 2 x193 + x64 + 2 x47 + 2x32 + 1 x163 + 2x104 + 1 x254 + 2x16 + 1
x96 + x80 + 2 x193 + x112 + 2 x53 + 2x40 + 1 x165 + 2x88 + 1 x16 + 2x8 + 2
x97 + x16 + 2 x195 + x104 + 2 x54 + 2x40 + 1 x166 + 2x64 + 1 x32 + 2x8 + 2
x99 + x80 + 2 x201 + x88 + 2 x55 + 2x32 + 1 x166 + 2x88 + 1 x32 + 2x16 + 2
x103 + x56 + 2 x203 + x8 + 2 x58 + 2x8 + 1 x166 + 2x112 + 1 x32 + 2x24 + 2
x107 + x32 + 2 x203 + x32 + 2 x62 + 2x40 + 1 x167 + 2x96 + 1 x48 + 2x8 + 2
x107 + x96 + 2 x203 + x200 + 2 x66 + 2x56 + 1 x169 + 2x24 + 1 x48 + 2x40 + 2
x107 + x104 + 2 x205 + x144 + 2 x67 + 2x56 + 1 x169 + 2x64 + 1 x64 + 2x16 + 2
x109 + x88 + 2 x205 + x168 + 2 x73 + 2x72 + 1 x170 + 2x32 + 1 x64 + 2x24 + 2
x109 + x96 + 2 x208 + x56 + 2 x74 + 2x24 + 1 x178 + 2x128 + 1 x64 + 2x32 + 2
x112 + x8 + 2 x208 + x152 + 2 x74 + 2x48 + 1 x178 + 2x152 + 1 x64 + 2x40 + 2
x112 + x104 + 2 x209 + x40 + 2 x77 + 2x16 + 1 x179 + 2x104 + 1 x64 + 2x48 + 2
x115 + x32 + 2 x209 + x160 + 2 x78 + 2x64 + 1 x179 + 2x120 + 1 x96 + 2x16 + 2
x121 + x40 + 2 x224 + x16 + 2 x81 + 2x40 + 1 x181 + 2x40 + 1 x96 + 2x80 + 2
x121 + x120 + 2 x224 + x104 + 2 x82 + 2x80 + 1 x181 + 2x144 + 1 x112 + 2x8 + 2
x127 + x8 + 2 x224 + x120 + 2 x83 + 2x32 + 1 x185 + 2x64 + 1 x112 + 2x104 + 2
x128 + x32 + 2 x224 + x208 + 2 x83 + 2x56 + 1 x187 + 2x8 + 1 x128 + 2x32 + 2
x128 + x48 + 2 x225 + x16 + 2 x85 + 2x16 + 1 x187 + 2x32 + 1 x128 + 2x48 + 2
x128 + x56 + 2 x227 + x120 + 2 x89 + 2x64 + 1 x187 + 2x56 + 1 x128 + 2x56 + 2
x128 + x64 + 2 x227 + x216 + 2 x90 + 2x56 + 1 x190 + 2x96 + 1 x128 + 2x64 + 2
x128 + x72 + 2 x229 + x72 + 2 x94 + 2x64 + 1 x191 + 2x120 + 1 x128 + 2x72 + 2
x128 + x80 + 2 x235 + x152 + 2 x95 + 2x48 + 1 x193 + 2x64 + 1 x128 + 2x80 + 2
x128 + x96 + 2 x239 + x24 + 2 x97 + 2x16 + 1 x193 + 2x112 + 1 x128 + 2x96 + 2
x131 + x48 + 2 x239 + x56 + 2 x99 + 2x80 + 1 x194 + 2x24 + 1 x144 + 2x56 + 2
x131 + x104 + 2 x239 + x96 + 2 x103 + 2x56 + 1 x194 + 2x32 + 1 x144 + 2x88 + 2
x133 + x88 + 2 x239 + x104 + 2 x106 + 2x80 + 1 x195 + 2x104 + 1 x160 + 2x40 + 2
x137 + x136 + 2 x240 + x8 + 2 x107 + 2x32 + 1 x198 + 2x160 + 1 x160 + 2x120 + 2
x139 + x80 + 2 x240 + x232 + 2 x107 + 2x96 + 1 x201 + 2x88 + 1 x176 + 2x40 + 2
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Abstract. This paper shows experimental results of the linear algebra
step in the number field sieve on parallel environment with implemen-
tation techniques. We developed an efficient algorithm that shares the
sum of vectors in each node, and the network structure among the nodes
only requires to include a ring. We also investigated the construction
of a network for the linear algebra step. The construction can be real-
ized through switches and network interface cards, whose prices are not
expensive. Moreover, we investigated the implementation of the linear
algebra step using various parameters. The implementation described in
this paper was used for the integer factoring of a 176 digit number by
GNFS and a 274 digit number by SNFS.

Keywords: integer factoring, number field sieve, block Lanczos, parallel
computation, ethernet.

1 Introduction

This paper presents the results of our implementation of the linear algebra step
for the number field sieve [1], which is the asymptotically-fastest integer factor-
ing algorithm known. The linear algebra step in the number field sieve seems to
require a shorter execution time than the sieving step based on past experiments,
but the linear algebra step also theoretically dominates the execution time of the
number field sieve. Reviewing the recent factoring records of the general number
field sieve [2], the linear algebra step requires approximately one fourth of the
total complexity, and some articles, for example [3], estimate that the linear al-
gebra step will dominate the execution time of factoring larger numbers. When
comparing the linear algebra step to the sieving step one will find that the diffi-
culty lies in the parallel computation. A simple split of the computation seems
to require a high-bandwidth and low latency network connection. However, it
seems that the problem can gradually be solved because recent factoring reports
show that a cluster of PCs can be used, for example [4], but the details were not
given.

This paper shows our implementation in a parallel environment, and describes
the extensive experiments based on the implementation of the linear algebra
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step. The experiments include the tradeoff between sieving and linear algebra
steps using block Lanczos algorithm, timing details in the linear algebra steps
for factoring 176 digit number.

2 Preliminaries

This section defines the notations used in the paper through the explanation of
algorithms in the number field sieve. We sometimes omit the correct and precise
description whose property is not used for the following sections.

2.1 Number Field Sieve

This section briefly describes the number field sieve that is relevant to the scope
of this paper. Details regarding the algorithm can be found in, e.g. [1].

Let N be a composite number and it will be factored. Find irreducible polyno-
mial f(X) ∈ ZZ[X ] and its root r such that f(r) ≡ 0 (mod N). Let FR = {p |
p: prime, p ≤ BR} and FA = {(q, s) | q: prime, q ≤ BA, f(s) ≡ 0 (mod q)}.
We call F = FR ∪ FA factor base. The purpose of the sieving step is to col-
lect coprime pairs (a, b) ∈ ZZ2 such that NR(a, b) = |a + br| =

∏
p∈FR

pep and

NA(a, b) = |(−b)deg ff(−a/b)| =
∏

(q,s)∈FA

qeq . Such a coprime pair, (a, b), is called

a relation. The number of collected relations should roughly exceed #F , where
# denotes the number of elements in the set.

For each relation (a, b), let v(a,b) be a vector that consists of exponents mod2
in the factorization of NR(a, b) and NA(a, b), and V be the matrix that consists
of such vectors v(a,b). The purpose of the linear algebra step is to find several
non-trivial solutions x that satisfy V x = 0. The matrix produced by the world-
record class factorization is sparse but gigantic. The linear algebra step usually
consists of two steps:

1. Filtering that generates a sparse matrix M from V 1.
2. Solving the sparse matrix M that is generated by Step 1.

Mathematically speaking, the filtering step is a kind of Gaussian elimination.
Before using the algorithm to solve a sparse matrix, this kind of clever Gaus-
sian elimination greatly reduces the execution time for solving the matrix. We
can use the block Lanczos [6] or block Wiedemann [7] algorithms to solve the
sparse matrix generated by the filtering step. We do not know which algorithm
is superior, but block Lanczos was used for recent factorization records2 except
for the RSA-200 factorization [2].

1 According to [5], the size of V is 455 989 949×328 707 916 and that of M is 8 526
749×8 525 751 and its weight is 1 707 545 745, for example.

2 http://www.crypto-world.com/FactorWorld.html

http://www.crypto-world.com/FactorWorld.html
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2.2 Block Lanczos Algorithm

The block Lanczos algorithm solves linear equation AX = B of symmetric matrix
A over GF(2) and nonzero vector B. This algorithm is more suitable for a sparse
matrix than a general purpose algorithm. Since the algorithm can find several
Xs simultaneously for each B, we regard an element in B as a small vector over
GF(2). We call the element word block.

The block Lanczos algorithm requires a symmetric matrix A and a nonzero
vector B as an input; however, output matrix M of the filtering step is probably
not symmetric, and a solution must be obtained in the case of B = 0. Then, in
order to use the block Lanczos algorithm, we set the input such that A = MT M
where MT is the transpose matrix of M and B = AC for any nonzero random
vector C. In this case, if X is an output of the block Lanczos algorithm, we will
obtain the final non-trivial solution X − C.

Algorithm 1 (Block Lanczos algorithm)
Input: m × m matrix A and nonzero vector B of t-bit word blocks
Output: Vector X such that dim(AX − B) � t

1. Set up the initial values. Let V1 ← B, U0 ← 0, and W0 ← 0.
2. Loop the following procedure from i = 1.

(a) Extract maximum subvector Wi from Vi such that Wi ⊃ Ui−1 and
det((Wi, Wi)A) 	= 0, where (W1, W2)A = WT

1 AW2.
(b) If Wi = ∅ then exit from the loop.
(c) Let Ui ← Vi \ Wi.
(d) Set Ci,j for (Wj , Wj)A

−1(Wj , [Ui|AWi])A and calculate the following vec-
tor, where [Ui|AWi] is the concatenation of vectors Ui and AWi.

Vi+1 ← [Ui|AWi] + WiCi,i + Wi−1Ci,i−1 + Wi−2Ci,i−2

3. Let m = i and output vector X calculated as follows.

X ←
m−1∑
j=0

Wj(Wj , Wj)A
−1(Wj , B)

We note the complexity of the block Lanczos algorithm for a single processor
as follows. For an m × l matrix with d nonzero elements in each columns for
average and a vector with a t-bit block length, O(mld) + O(mlt) bit memory
accesses and O(mld) + O(mlt2) bitwise logical operations are required. For the
details on the block Lanczos algorithm, refer to [6].

2.3 Ethernet and Its Switch

This section describes the characteristics of the ethernet and its switch relevant
of this paper.

The ethernet is the most typical way to connect between PCs. At the time of
writing the paper, one ethernet port of a PC can bidirectionally transmit data
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and its throughputs are 1 Gb/s per one-way, and it is available at cheap price.
The most simple ethernet network is realized by a switch connected through
cables with PC. It looks like star architecture, but the ethernet is logically bus
architecture. A switch can exchange data at the same time among all PCs con-
nected to the switch. So, the network can be considered as complete graph among
all connected PCs. We explain the detail using the following example. Assume
that PC A, B, and C are connected to the switch. A can send data to B, and
B can send data to C, and C can send data to A, at the same time, and the
throughput of all connections are probably 1 Gb/s, but this depends on the
specification of the switch.

The following limitations should be concerned when constructing a network
using ethernet. If more PCs are required to be connected to an ethernet than
the number of ports of a switch, switches with cross cables can be used to
extend the number of ports in the ethernet. In this construction, only 1-to-1
data transmission is available through plural switches at a moment. Moreover,
a loop in one ethernet is forbidden because of bus architecture.

A network interface controller in a PC has usually sufficient amount of buffer
for transmitting and receiving data. That is, the network transactions do not
require much CPU cycles. A part of the network communication time can be
hidden in the computation time, using thread programming.

3 Sharing of the Sum of Vectors

For implementing linear algebra step, an efficient algorithm to share the sum
of vectors that is stored in each node is useful. We propose an algorithm to
accomplish this.

Let l-dimensional vector v(i) = (v(i)
0 , v

(i)
1 , . . . , v

(i)
l−1) ∈ Sl, and S be a commu-

tative semi-group S. For the scope of this paper, S is GF(2). So, we use the
notation

⊕
instead of

∑
. Assume that node i holds v(i) and l � n, where n is

the number of nodes. The goal of the following algorithm is to share
n−1⊕
i=0

v(i).

The simplest way to achieve the goal is to employ the following.

1. For i ← 1, 2, . . . , n − 1, node i sends v(i) to node 0.

2. Node 0 computes s ←
n−1⊕
i=0

v(i), and sends s to all nodes.

If we assume that one element of S can be sent in time 1, the above algorithm
requires time 2l(n− 1). Of course, there are more sophisticated algorithms. The
most famous algorithm is executed based on the tree structure. The algorithm
requires time 2l �log2 n and the network should include many edges.

The above algorithms compute the sum in a node, but the sum may be com-
puted at any node. We develop the following algorithm. Let (b(i)

0 , b
(i)
1 , . . . , b

(i)
n−1) =

v(i), and each b
(i)
j contains roughly the same number of elements (≈ l

n ).
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Algorithm 2 (Vector Sum Sharing)

Before: Node i (0 ≤ i < n) has the vector (b(i)
0 , b

(i)
1 , . . . , b

(i)
n−1) (= v(i)).

After: All nodes have
n−1⊕
i=0

v(i).

for τ ← 0 to 2n − 3
for i ← 0 to n − 1 do parallel

node i sends b
(i)
τ+i to node i − 1

node i − 1
if τ ≤ n − 2 /* generating sum */

receive b
(i)
τ+i from node i and b

(i−1)
τ+i ← b

(i−1)
τ+i + b

(i)
τ+i

else /* τ ≥ n − 1. distributing sum */
receive b

(i)
τ+i from node i and b

(i−1)
τ+i ← b

(i)
τ+i

mod n should be applied to the node number and the suffix of b(i). The proposed
algorithm requires time 2(n − 1)

⌈
l
n

⌉
, and the network structure should include

a ring3 with length n and full-duplex.

4 Block Lanczos Algorithm for a Parallel Environment

The block Lanczos algorithm, described in Algorithm 1, essentially uses three
kinds of operations: The first is the multiplication of a large sparse matrix and
a vector, and the other two are the vector operations, i.e., an inner product
of two vectors and a product of a vector and a tiny matrix. To implement the
block Lanczos algorithm on a PC cluster, we must consider both parallelization
of the above procedures and network connectivity. In this section, we discuss the
implementation of these operations. Most of the algorithm are not new, but we
describe the details, because what is implemented is important to understand
the timing data described in Section 6.

4.1 Multiplication of a Large Sparse Matrix and a Vector

The multiplication of a large sparse matrix and a vector is one of the most
time consuming parts in the block Lanczos algorithm. We use the following
notations. An m× l matrix M on GF(2) has ld number of nonzero elements, (so
called “weight” of the matrix), so it has d nonzero elements in each column on
average and we assume d � l. Each element in l-dimensional vector X is a word
with t-bit data (so called “length” of the vector). In this section, we consider the
calculation of Y = MT (MX) in parallel.
3 Initially, we believed that a complete graph is required to execute the algorithm,

however, Dr. Yamamoto of NTT pointed out that a ring network is sufficient.
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Data format of the matrix. Since we consider a sparse matrix based on
GF(2), the matrix should be represented by the index of the coordinates of
nonzero elements. Moreover, we can assume that each row and column in the
matrix has at least one element. From the implementation viewpoint, the prop-
erty is not required, but the property is important to get the enough number
of effective solutions. Our data format of the matrix can be described as the
repetition of the format (m, a1, . . . , am), whose m is the number of nonzero ele-
ments of each column and a1, . . . , am are the coordinates of the row of each of
nonzero element in the columns. Since data access of the matrix is sequential,
by counting the number of repetition of the above format, an index of a column
can easily be recovered. Then the index of the coordinates of the columns can be
omitted in the matrix data. Using this data format, l(1 + d) words are required.

4.2 Matrix Operation in a Parallel Environment

This section describes our implementation for matrix operations, which would
help to understand Section 6. Note that the most of the ideas comes from [8].

We simulate the operation for the computation of Z = MX . Let Z be a zero
vector at first. For each element ai in the j-th format of the matrix data, the
j-th coordinate element Xj in vector X is added to the ai-th coordinate element
Zai in vector Z. This operation requires one sequential memory access (for Xj)
and one random memory access (for Zai). To compute Y = MT Z, Zai is added
to Yj , where element ai is in the j-th format of the matrix data. This operation
requires one random memory access (for Zai) and one sequential memory access
(for Yj). By taking into account two sequential memory accesses of the matrix
data, four sequential memory accesses and two random memory accesses are
required according to each element in the matrix data format.

Now, we consider parallel computation of the matrix operation. For simplicity,
we assume that the nonzero elements in the matrix are uniformly distributed,
and the number of nodes is square (n × n).

Comment 1 . Actually, nonzero elements in the input matrix data may not dis-
tribute uniformly. Partitioning matrices that have almost the same weights can
be constructed through the systematic shuffling of the matrix columns and rows.

A large matrix must be partitioned into each node. To accomplish this, the
following methods are considered.

1. Partition the matrix into rectangles based on the matrix row (or column).
2. Partition the matrix into squares based on the matrix row and column.

We need to consider not only the parallel operation of the multiplication of
the matrix and the vector, but also the vector sum sharing using the network
communications. Table 1 shows for the available number of nodes, the number
of operations for the random memory accesses, the sequential memory accesses,
and the amount of data in the network transaction in a parallel environment.
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We assume that Algorithm 2 is used for the network transactions. Both parti-
tioning methods have the same number of memory access operations4. However,
the rectangle partitioning method requires a higher level of complexity for the
network transaction part compared to that for the square partitioning method.
Therefore, we select the square partitioning method in the implementation.

Rectangle partitioning Square partitioning

Fig. 1. Partitioning of large matrix

Table 1. Bitwise Complexity for MT MX on Each Node

Partitioning Rectangle Square

number of random memory accesses for a vector 2dlt/n2 2dlt/n2

number of sequential memory accesses for a vector 2dlt/n2 2dlt/n2

number of sequential memory accesses for a matrix 2(1 + d)wl/n2 2(n + d)wl/n2

number of network transaction 2l(n2 − 1)t/n2 4l(n − 1)t/n2

n2: Number of nodes l: Dimension of a vector
t: Bit length of a vector (ex. 256)
d: Average of nonzero elements of each column in a matrix
w: Bit length of the word in the matrix format (ex. 32)

In Algorithm 3, we show the procedure for the multiplication of a large sparse
matrix and a vector in a parallel environment using the square partitioning
method. Let Ui,j (i, j = 0, . . . , n − 1) be �m/n × �l/n submatrices from the
matrix M divided based on square partitioning. Each (i, j)-th node holds the
submatrix Ui,j in memory5. For vector X , let X0, . . . , Xn−1 be the vectors ob-
tained by partitioning l-dimensional vector X into vectors with �l/n elements.
Let Xi,j be the vectors obtained by partitioning vector Xi into vectors with

4 Using our data format for storing the matrix, for generating the sub-matrices by
square partitioning into n × n, we need to set the data “m” of the number of non-
zero elements in each columns of the sub-matrices. Therefore, it is a few difference
between the number of the memory access of the square partitioning and that of the
rectangle partitioning.

5 Using square partitioning, there is some possibility that a column with null elements
appears in Ui,j ; therefore, careful coding must be performed in order to deal with
these submatrices.
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��l/n/n elements. We use zero-padding for the shortage of the vector ele-
ments. Let vector Xi,j be stored in the (i, j)-th node. Output vector Y is also
partitioned into Yi,j and stored in the (i, j)-th node in the same manner.

Algorithm 3 (Multiplication of a Matrix and a Vector)

1. For each i = 0, . . . , n − 1, vector Xi, which is a concatenation of the vectors
from Xi,0 to Xi,n−1, will be stored in n nodes from (i, 0) to (i, n − 1).

2. In all the nodes, execute the multiplication of submatrix Ui,j and vector Xi,
and store the results in �m/n-dimensional vector Zi,j ← Ui,jXi.

3. For each j = 0, . . . , n − 1, share the sum of vectors Zj ←
n−1⊕
i=0

Zi,j with

n-nodes from (0, j) to (n − 1, j).
4. In all the nodes, execute the multiplication of submatrix UT

i,j and vector Zj ,
and store the results in �l/n-dimensional vector Wi,j ← UT

i,jZj .
5. For each i, j = 0, . . . , n − 1, store ��l/n/n-dimensional vector Yi,j on the

(i, j)-th node which is a part of the sum of vectors Yj ←
n−1⊕
j=0

Wi,j .

Note that the resulting vectors are stored in the suitable nodes for computing
Y ← MT Z after executing Algorithm 3 for Z ← MX , that is, we do not need
to store MT .

4.3 Vector Operations

This section shows an implementation of the vector operations that appear in
the block Lanczos algorithm, which would help to understand Section 6.

We set each vector as an l-dimensional vector with coordinates of t-bit words
(ex. t = 256). In the block Lanczos algorithm, there are two kinds of vector
operations, one is an inner product, and the other is a product of a vector and a
tiny-matrix with t × t elements. The output of the inner product of two vectors
is a tiny-matrix, and the output of the product of a vector and a tiny-matrix
is a vector. In this implementation, both vector operations are achieved using
the combination of an XOR operation and a 1-bit rotation on t-bit words. Let
work[j] be the j-th row of a temporal tiny-matrix of work, and a≪j denotes
the j-bit cyclic left rotation of word a.

Algorithm 4 (Inner Product)
Input: l-dimensional vectors X and Y , Output: t × t tiny-matrix mat = XT Y

1. For temporary tiny-matrix work, initialize the elements in work as zero.
2. For i ← 0, . . . , l − 1, execute the following.

(a) Set a ← X [i] and b ← Y [i].
(b) For j ← 0, . . . , t − 1, work[j] ← work[j] ⊕ ((a≪j)&b).

3. For each i, j ← 0, . . . , t − 1, mat[(i + j) mod t][j] ← work[i][j].
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Algorithm 5 (Product of a Vector and a Tiny-matrix)
Input: l-dimensional vector X and a tiny-matrix mat
Output: l-dimensional vector Y = X · mat

1. For i, j ← 0, . . . , t − 1
work[i][j] ← mat[(i + j) mod t][j].

2. Initialize all the elements in the vector Y as zero.
3. For i ← 0, . . . , l − 1, execute the following.

(a) Set a ← X [i].
(b) For j ← 0, . . . , t − 1, Y [i] ← Y [i] ⊕ ((a≪j)&work[j]).

On Algorithms 4 and 5, if t is small and the program can use large cache mem-
ory, the table lookup method described in [7] may improves the performance.

VectorOperations in aParallel Environment. LetX and Y be l-dimensional
vectors. We assume that vectors X and Y are partitioned into ��l/n/n-
dimensional vectors Xi,j and Yi,j , which are stored in the corresponding nodes.
The inner product of vectors X and Y can be executed in the following manner.

Algorithm 6 (Inner Product in a Parallel Environment)

1. Calculate the inner product of Xi,j and Yi,j on all nodes.
2. Share the sum of the inner products of all nodes.

Since the results of the inner products on all nodes are tiny-matrices, which
are very very tiny, the network transaction time for the inner products using
parallel computation can be ignored. The product of a vector and a tiny matrix
can be executed in a parallel environment in almost the same manner as the
procedure for the inner product.

4.4 Network Construction

According to the analysis in Section 4.1, a squared number of nodes is appro-
priate to execute the block Lanczos algorithm, and each column and row should
be connected to a ring network. Figure 2 shows an example of 4 × 4 nodes. If
the number of nodes is less than 16, a switch connected with all nodes is a good
candidate for use in the construction of the network, because we can consider
that the network is complete. If the number of nodes is large, for example, 64,
a switch is not a good candidate for use in the construction of the network,
because the price of a switch with 64 ports is expensive.

For the case that the number of nodes is large, we prepared several switches
and the nodes have two network interface cards (NICs). We assign a switch to
each row or column, i.e., the network for n × n nodes is constructed using a
2n-many switches, each having n ports, and each node has two NICs. In general,
if the total price of 2n-many switches, each having n ports, and 2n2 NICs is
less than the price of an n2-port switch and n2 NICs, our construction is less
expensive. Figures 3 and 4 are examples of a network for 8 × 8 nodes, using the
idea with realistic configuration parameters. Each square consists of a node, and
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P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

Fig. 2. Network connec-
tion for 4 × 4 nodes

1- 1- 1- 1- 12 12 12 12
1- 1- 1- 1- 12 12 12 12
1- 1- 1- 1- 12 12 12 12
1- 1- 1- 1- 12 12 12 12
12 12 12 12 -2 -2 -2 -2
12 12 12 12 -2 -2 -2 -2
12 12 12 12 -2 -2 -2 -2
12 12 12 12 -2 -2 -2 -2

Fig. 3. 8 × 8 nodes with
two 48-port switches

1- 12 13 14 15 16 17 18
12 2- 23 24 25 26 27 28
13 23 3- 34 35 36 37 38
14 24 34 4- 45 46 47 48
15 25 35 45 5- 56 57 58
16 26 36 46 56 6- 67 68
17 27 37 47 57 67 7- 78
18 28 38 48 58 68 78 8-

Fig. 4. 8 × 8 nodes with
eight 15-port switches

a digit means that the node is connected to a specific switch#. The construction
of the network in Fig. 3 requires 96 NICs and 2-many switches, each having
48 ports, and Fig. 4 construction requires 120 NICs and 8-many switches, each
having 15 ports, while the simplest construction requires 64 NICs and one switch
with 64 ports.

Comment 2 . We can construct a network that is appropriate to execute the
block Lanczos algorithm without a switch using four NICs at each node and
cross-cables. However, currently it seems to cost expensive price to use this
construction to compose any large network such as one comprising hundreds or
thousands of nodes. The strategy of using four NICs with a cross-cable, however,
may be applicable to a portion of the network construction.

5 Other Techniques

This section describes other optimization techniques that do not directly relate
to a parallel environment.

5.1 Inner Product Using 128-Bit XMM Registers

As described in Section 2.2, the inner product incurs one of the heaviest com-
putation loads in the block Lanczos algorithm. Focusing on the inner product
subroutine, generating all rotation patterns (x, x≪1, . . . , x≪t−1) dominates the
performance, when we use Algorithms 4 and 5, where ≪ denotes the left ro-
tation and t is the word length used in the block Lanczos algorithm. We found
that the code in Fig. 5 efficiently computes 1-bit rotation of the XMM register
pairs on a Pentium 4 [Northwood] in the case of t = 128. Note that all rotation
patterns are generated using a t/2− 1 calls of the code. Using the idea in Fig. 5,
we developed an efficient rotation code for t = 256.

5.2 Fault Tolerance by Orthogonality Check

In our consideration of the block Lanczos algorithm, we assumed that the PC
clusters function without any computational error. When operating the
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; compute: xmm1 <<<= 1 and xmm5 <<<= 1
; assumption1: xmm5 == xmm1 <<< 64
; assumption2: MSB of xmm2 and xmm6 is cleared
por xmm2, xmm1 ; MSB(xmm2) = MSB(xmm1)
psrlq xmm2, 63
por xmm6, xmm5 ; MSB(xmm6) = MSB(xmm5)
psrlq xmm6, 63
paddq xmm1, xmm1 ; xmm1 <<= 1
paddq xmm5, xmm5 ; xmm5 <<= 1
paddq xmm1, xmm6 ; fill LSB with crossing
por xmm5, xmm2

Fig. 5. Rotation of XMM register pair on Pentium 4

computer systems for several weeks, however, some errors may occur such as
memory error, network transmission error, and CPU error. Refer Section 6.2 as
an example.

If an error occurs, continuing the computation becomes meaningless. There-
fore, we must prepare some mechanism such as fault tolerance, i.e., fault de-
tection, and recover the data from the previous computations. Based on our
experience, we consider that the following algorithm is sufficient to detect errors
and recover the computation data.

Algorithm 7 (Orthogonality Check)

1. Periodically, backup inner variables to a file.
2. Check the following condition just after Step 2a in Algorithm 1.

(B, Wi)A = 0 (1)

3. If the condition does not hold, load the backup file and restart from that
step.

The cost for Step 2 in the above algorithm is equivalent to that of one inner
product of vector W and vector AW , which is less than 5% of total execution
time of block Lanczos algorithm according to our experience. If the orthogonality
is broken at some time, Eq. (1) never holds for the following computation. We do
not need to confirm Eq. (1) for every loop. Note that we stored inner variables
every 500 loops and confirmed Eq. (1) every loop for the experiments described
in Section 6.

6 Experiments on c176

According to the previous sections, we implemented a block Lanczos algorithm.
C language with XMM intrinsic functions is used except for inner product, and
LAM/MPI6 is used for the communication.
6 http://www.lam-mpi.org/

http://www.lam-mpi.org/
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We used data obtained in the c176 factorization [5]. c176 is the 176-digit com-
posite cofactor of 11281 + 1 in the Cunningham table7. We selected the block
length of 256 in the block Lanczos algorithm. Note that we removed 224 heavy
rows, which are probably associated to small factor bases, before executing the
block Lanczos implementation. These rows do not include the rows for quadratic
characters. These rows can be recovered through Gaussian elimination after find-
ing sufficiently many solutions. Refer to [5] for detailed parameters used in the
factorization of c176.

6.1 Our Cluster

We constructed the cluster for factoring integers organized as described here-
after. We used a maximum of 36 nodes, where each node consists of 1 CPU
with 2GB RAM using the FreeBSD 4R operating system. We used 32 Pentium
4 3.2GHz [Northwood] PCs, 2 Pentium 4 Xeon 2.8GHz [Northwood] PCs, and
2 Pentium 4 Xeon 3.6GHz [Prescott] PCs employing 32-bit processing. Hyper-
threading technology is enabled on all CPUs, but we only used one thread at a
node. These nodes are connected through gigabit Ethernet, and the network is
structured based on the concept in Section 4.4. We used 3-many switches, each
having 24 ports, to construct the network. Each node has 1 on-board and 1 PCI
network interface. The PCI bus length is 32-bit and functions at 33MHz. Note
that, at the time of the cluster construction, dual CPU and dual core were not
widely available or not cheap, and we already had the block Lanczos code that
is optimized for Pentium 4 [Northwood]. We did not choose AMD CPU as main
components of the cluster.

We confirmed the performance of gigabit Ethernet using ttcp8. The results
are described in Table 2. Because the ideal throughput is only 32-bit×33 MHz =

Table 2. Gigabit Ethernet Throughput

Duplex Source Destination Speed (Mb/s)

Half On-board On-board 884
Half PCI PCI 602
Half On-board PCI 750
Half PCI On-board 602
Full On-board On-board 566
Full PCI PCI 318
Full PCI(On-board) On-board(PCI) 556(862)

1056 Mb/s, we cannot occupy all the network resources. Moreover, we confirmed
that the switches used in the cluster can independently send data to each node.
The maximum throughput described in Table 2 can be achieved even in the case
of full-duplex communication for 12 nodes.
7 http://homes.cerias.purdue.edu/~ssw/cun/
8 http://ftp.arl.mil/~mike/ttcp.html

http://homes.cerias.purdue.edu/~ssw/cun/
http://ftp.arl.mil/~mike/ttcp.html
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6.2 Tradeoff Between Sieve and Block Lanczos

When actually factoring c176, we used lattice sieving [9] as a sieving method9.
10.6M special-Qs from the range of 30.5M ≤ Q ≤ 226.0M, where M represents
106, were used. When factoring a 248-digit composite using SNFS [10], many
hardware troubles were experienced, i.e., bit-flipping during the block Lanczos
computation, and the block Lanczos algorithm was needed to be executed several
times10. At that time, our block Lanczos code did not have error detection
mechanism such as Algorithm 7. Considering this trouble, we wanted to reduce
the matrix, which is the input for the block Lanczos algorithm, to as small as
possible. To accomplish this, a large number of relations was collected. As a
result, the block Lanczos solution was obtained in the first execution.

From the viewpoint of minimizing the factoring time, it is worth considering
the number of relations that should be collected to factor c176. We varied the
number of special-Qs and estimated the execution time. Table 3 summarizes
these varied sizes. The “Number of sp-Q” column represents the number of the

Table 3. Number of Special-Q and Matrix Size

Number of Block Lanczos input
sp-Q Yields Unique relations Rows Columns Weight

5.0M 266 055 527 226 579 930 14 422 588 13 534 462 —
5.5M 294 129 265 248 486 770 12 147 652 12 148 903 1 999 094 097
6.0M 322 054 398 269 959 762 11 069 972 11 071 197 1 757 293 033
7.0M 378 318 016 311 189 917 10 110 782 10 112 015 1 545 012 150
8.0M 434 328 082 352 916 978 9 499 644 9 500 869 1 439 900 177

10.6M 576 372 161 455 989 949 8 525 527 8 526 749 1 394 050 132

small special-Qs that are used to construct the matrix. We cannot construct a
matrix in which the number of rows is less than the number of columns in the
case of 5.0M special-Qs.

When sieving, various PCs were used. We completely occupied tens of PCs for
this sieving, and we used idle time of other PCs. Pentium 4 3.2GHz [Northwood]
chips are the most frequently used in these PCs. Their sieved resource can be
scaled to 131 Pentium 4 3.2GHz [Northwood] PCs. Table 4 summarizes the
number of days required for sieving and executing the block Lanczos algorithm
assuming that 131 Pentium 4 3.2GHz [Northwood] PCs are used for sieving and
our cluster is used for the block Lanczos algorithm. According to the table, 6.0M
special-Qs optimize the total execution time for our computational resources.
Note that we did not fully execute the block Lanczos algorithm for the matrices
generated from a smaller number of special-Qs. We estimated the total execution
9 Lattice sieving only sieves relation (a, b) whose NA(a, b) is divisible by Q. We call

such Q special-Q.
10 We bought very cheap PCs. So, the components in a PC are not sufficiently examined

at shop, and the shop hardly recognize this kind of errors, that will not detect in
short time, say a week.
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Table 4. Tradeoff Between Sieve and Block Lanczos

Number of sp-Q Sieve days Block Lanczos days Total days

5.5M 15.6 10.4 26.0
6.0M 17.2 8.5 25.7
7.0M 20.4 7.0 27.4
8.0M 23.7 6.2 29.9

10.6M 27.0 5.3 32.3

time using the first 500 main iterations of our block Lanczos implementation.
Sieve days for 5.5M-8.0M in Table 4 are estimation by interpolating the result
of several sieving samples, so we may not choose the best range of special-Qs.

6.3 Details in Computation Time

We investigate the details in our block Lanczos implementation and the rela-
tionship between the number of nodes and the execution time using the matrix
generated from 10.6M special-Qs. The results are summarized in Table 5. The

Table 5. Ratio of Execution Time and Tradeoff Between Number of Nodes and Exe-
cution Time

Number of nodes 6 × 6 5 × 5 4 × 4 3 × 3

Matrix multiplication 33.0% 43.0% 47.6% 54.1%
Communication 21.1% 28.9% 24.4% 19.0%
Inner product 20.0% 22.3% 24.6% 26.6%

Synchronization 25.9% 0.7% 0.3% 0.3%

Occupied RAM @node ≈400 MB 470 MB 700 MB 1180 MB

Estimated number of days for execution 5.3 5.3 7.5 12.1

Note that used PCs for 6 × 6 nodes are not homogeneous and the used compiler for
6 × 6 nodes is different from other number of nodes.

number of execution days is estimated based on the first 100 main iterations of
the block Lanczos implementation except for 6×6 nodes. We only used Pentium
4 3.2GHz [Northwood] PCs for 5× 5, 4 × 4, and 3× 3 nodes. We cannot execute
our program on less than 3 × 3 nodes, because the required amount of RAM in
each node exceeds 2 GB. We obtained “occupied RAM @node” from the output
of ps command at the main iteration. We used gcc 3.4 for 6 × 6 nodes, and icc
8.1 is used for the other number of nodes tested. For 6 × 6 nodes, there is no
record of the precise amount of occupied RAM, and we only have the results
using the gcc compiler. We want to collect comparable numbers using a smaller
number of nodes with the icc compiler, however a few of the nodes always seem
to fail. Although repairs were made, other nodes failed subsequently. Thus, we,
unfortunately, were unable to obtain data generated by 6 × 6 nodes.
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If we focus on the synchronization row in Table 5, we need a long time for 6×6
nodes. This is because 6×6 nodes include various CPUs and our implementation
does not consider the difference in each node.

Focusing on the matrix multiplication and inner product rows for column
5 × 5, 4 × 4, and 3 × 3 in Table 5, we summed up the total number of days
for computation among all nodes, and the results are shown in the first and
second rows in Table 6. According to the rows, we can confirm that the total
computational complexity is almost the same among the different numbers of
nodes.

Table 6. Invariant Numbers in Our Block Lanczos Implementation

Number of nodes (n × n) 5 × 5 4 × 4 3 × 3

Number of days for n2 × matrix multiplication 57.0 57.1 58.9
Number of days for n2 × inner product 29.5 29.5 29.0

Number of days for
n2

n − 1
× communication 9.6 9.8 10.3

Focusing on the communication rows for columns 5 × 5, 4 × 4, and 3 × 3 in
Table 5, we anticipate that the communication time is expected to be roughly
proportional to the required time of Algorithm 2. Thus, the communication

time is roughly proportional to
n − 1
n2 , when we have n2 nodes. We show the

communication time multiplied by
n2

n − 1
in the third row in Table 6. These

numbers seem roughly the same.

7 Concluding Remarks

We developed an efficient vector sum sharing algorithm, investigated the net-
work construction, and implemented the block Lanczos algorithm in a parallel
environment. Moreover, we extensively investigated the implementation using
various parameters. Our experiments were done in 2005. We certainly notice
that some of our experiments are incomplete. Moreover, we are aware that block
Wiedemann algorithm may have some advantage than block Lanczos algorithm
that we used for the linear algebra step. To fulfill the experimental data requires
long time and it is hard to reconstruct the same computational environment as
was at 2005. However, we believe that the results in this paper are useful for
future factoring efforts.
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Abstract. Pairing-based cryptography (PBC) has enabled the construc-
tion of many cryptographic protocols. However, there are scenarios when
PBC is too heavyweight to use, such as when the computing devices are
resource-constrained. Pairing delegation introduced in [19] provides a so-
lution by offloading the computation to more powerful entities.

In this paper, we introduce the concept of, and construct several pro-
tocols for, batch pairing delegation, which offers significantly improved
efficiency over multiple runs of state-of-the-art (non-batch) delegation
protocols. We prove the security of our proposed protocols in the model
we formalized for batch pairing delegation. Also, we have implemented
our protocols in software for experimentation.

Moreover, we argue that the secure delegation of pairing computation,
batched or not, requires different protocols depending on the semantic
meaning of the pairings. We propose a taxonomy that classifies pairings
into seven types to assist in choosing the right delegation protocol.

Finally, we propose a novel application of pairing delegation in trusted
computing — we show how pairing delegation can be leveraged to build
a secure coprocessor for pairing computation more cost-effectively.

1 Introduction

Pairing-based Cryptography. Since the first constructive uses of pairings over
elliptic curves in cryptography such as tripartite key exchange [31] and identity-
based encryption (IBE) [8,36], Pairing-Based Cryptography (PBC) has enabled
for the first time secure and efficient construction of many novel cryptographic
schemes such as attribute-based encryption [4,28], broadcast encryption [1,11],
certificateless encryption [21,24], forward-secure encryption [14,40], searchable
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encryption [12,38], aggregate signatures [9], short signatures [7], perfect non-
interactive zero-knowledge (NIZK) [29] and multi-theorem NIZK [16].

Pairing Delegation. Pairing delegation, first introduced by Chevallier-Mames
et al. [19], is a protocol during which an entity offloads the computation of
pairings to another entity. In this paper, we refer to the entity who delegates
the computation as the Delegator, or Ron, and the entity who actually does the
work as the Delegatee, or Ellen.1 The fact that computationally limited devices
such as smartcards are slow and resource-constrained for computing pairings
has been a major motivation for pairing delegation in [19,32]. By delegating the
computation to more powerful machines such as PCs on which more efficient
architecture and libraries for pairing computation exist, it becomes possible for
those devices to execute various pairing-based cryptographic algorithms.

Security becomes a concern when the delegatee is not fully trusted by the
delegator, and/or the two parties are communicating over an insecure channel.
A pairing computation should be delegated as if the delegator computed the
pairing himself. More precisely, neither the delegatee nor an eavesdropper should
be able to learn anything about the pairing being computed, except perhaps the
fact that the delegator is trying to compute a pairing. Furthermore, the delegator
should be able to tell if he ends up with a correct answer to the computation of
the pairing despite the adverse environment.

The only follow-up work (that the authors are aware of) gives several new
protocol constructions with better efficiency and is due to Kang et al. [32].

Batch Processing. Under certain circumstances, processing tasks in batch
rather than individually yields better efficiency. In batch signature verification
[3], for instance, if verification returns valid, the verifier is assured that all sig-
natures in the batch are valid with overwhelming probability. Otherwise, the
verifier knows there is at least one bad signature. Further work on this topic
studies efficient means to identify bad signatures [34,35]. Similarly, our idea of
delegating pairing computation in batch tries to improve overall efficiency by
delegating in batch rather than one by one independently.

Our Contributions. We make the following contributions in this paper:

– We introduce the concept of batch pairing delegation and provide four proto-
col constructions, which offer better efficiency than independently invoking
state-of-the-art non-batch delegation protocols. We also obtain new non-
batch delegation protocols. We formalize a new security model for batch
pairing delegation and prove the security of our protocols in the model.

– We observe that the security requirements for pairing delegation protocols,
batch or not, depend on the types of pairings being delegated. We thus
propose a taxonomy of pairings and survey the literature extensively.

– We propose a novel use of pairing delegation in the arena of trusted com-
puting and discuss some practical issues of pairing delegation.

1 A mnemonic guide: Ron is the delegatoR and Ellen is the delegateE.
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Paper Organization. In Section 2, we classify pairings into types and illus-
trate each type with extensive examples. We propose a security model for batch
pairing delegation protocols in Section 3. Section 4 presents our batch pairing
delegation protocol constructions and evaluates their efficiency. We show how
pairing delegation can be used in trusted computing, and discuss some less ap-
parent costs of pairing delegation in Section 5. Section 6 concludes the paper.

2 A Taxonomy of Pairing Types

Definition. Let G1 and G2 be two additive cyclic groups and GT be a multi-
plicative cyclic group, all of prime order p.2 Suppose P and Q are generators of
G1 and G2 respectively. A function e : G1 × G2 → GT is a pairing if it satisfies
the following properties:

– (Bilinearity.) e(xA, yB) = e(A, B)xy for all A ∈ G1, B ∈ G2 and x, y ∈ Zp.
– (Non-degeneracy.) e(P, Q) �= 1, where 1 is the identity element in GT .
– (Efficient Computability.) e(A, B) can be computed in polynomial time for

all A ∈ G1 and B ∈ G2.

Depending on the pairing, G1 may or may not be the same as G2, and homo-
morphism from G2 to G1 may or may not be efficiently computable. While these
variations have implications on many cryptographic schemes [26], they are not
our concern as our delegation protocols work securely irrespective to them.

Taxonomy. We can classify pairings e(A, B) into 16 types according to whether
each of the points A and B is public or secret, and a constant or a variable, which
is governed by the semantic meaning of the points at the protocol level.3 While
the type of a pairing is relatively unimportant when the pairing is computed
locally, it makes a huge difference in how the pairing should be delegated due to
different security requirements and optimization possibilities.4

Consequently, one must devise, and prove the security of, a delegation protocol
with respect to a specific pairing-type. Also, it is important to understand the
type of a pairing in a cryptographic protocol in order to select a secure delegation
protocol. We therefore propose a taxonomy of pairings into types. In addition,
the taxonomy indicates that some pairing-types are more utilized than the others
(in the literature today), which may be used as a heuristic to evaluate the impact
of an efficient delegation protocol.
2 Recently, composite-order groups with a bilinear map have been constructed [10] and

used (e.g. [11,12,13,16,29]). In this paper, we assume groups are of prime order for
simplicity, even though our results remain valid for composite-order groups.

3 For example, the decryption algorithms of many IBE schemes [8,27,36] require the
computation of e(S, U), where S is the decryption key and U is a part of the cipher-
text. Thus, S is a secret constant while U is a public variable.

4 For instance, the delegator does not need to hide a point from the outside if the
point is public. Also, it may be possible for the delegator to pre-compute some of
the operations if one of the points is a constant.
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Note that not all 16 types require a distinct delegation protocol. Half of them
are duplicates of the rest due to the symmetry between the roles played by points
A and B in the protocols.5 Also, there is no need to delegate when both A and
B are constant. As a result, we propose a taxonomy of pairings into 7 types.

Type-SV2. Pairings of this type are such that both points are a secret variable.
We call this the “general” type because intuitively a secure delegation protocol
for this type should also work securely if one or both of the points are instead
public, and/or a constant. To the authors’ best knowledge, no cryptographic
construct in the literature requires the computation of Type-SV2 pairings. Nev-
ertheless, existing works [19,32] use delegation protocol for this general type as
a basis to construct protocols for delegating pairings of other types.

Type-SVSC. Type-SVSC pairings have a secret variable point and a secret con-
stant point. Their common usage is to prevent the leakage of partial knowledge
about some secrets, exemplified in the following. Decryption in the inversion IBE
scheme in [6] requires the computation of e(A+rB, K), where A and B are from
the ciphertext and (r, K) is the private key. When delegating the computation,
one should treat A + rB as a secret variable, or otherwise partial information
about r would be leaked.6 Another example is the ID-based key agreement proto-
col due to [18], wherein one has to compute the pairing of a secret key and a point
derived from an ephemeral Diffie-Hellman secret exponent. Public knowledge of
the latter point means partial information of such an exponent is leaked, which
is not covered by the security guarantee in many key agreement protocols [22].

Few cryptographic schemes use Type-SVSC pairings. However, our delegation
protocol for pairings of this type forms the basis for our other proposed protocols.

Type-SVPV. Pairings of this type are such that one point is a secret variable
and the other is a public variable. We give several examples of their use here.
In searchable encryption [12,38], the search gateway is delegated with different
trapdoor for different keywords, so a pairing of secret variables (the trapdoors)
and public variables (ciphertext) will be used. In trace-and-revoke broadcast
system [11], the secret variable is a temporary key derived from the private
key in a way depending on the set of legitimate decryptors, while the public
variable comes from the ciphertext as usual. Pairings of this type also appear
in the private ciphertext validity checking in [27], wherein the secret variable is
determined by a function of the private key and the ciphertext while the public
variable comes from the ciphertext. A less obvious example is an ID-based key
agreement protocol due to Chow and Choo [22]. One might think that the point
associated with the secret key is essentially an ID-based signature due to [15]
and can be made public. However, the other point is also a public variable so it
is the only secret knowledge for ensuring the confidentiality of the session key.

5 This is true even for asymmetric pairings.
6 It is not stated explicitly in [6] whether r in private key is just an auxiliary data for

decryption that is safe to be publicly known.
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Finally, we note that the some computations appeared as Type-SVPV can
actually be replaced by Type-PVPC (the secret variable is replaced by a public
constant) if the secret variable A is chosen by the one who computes the pairing.
Instead of choosing A directly, one can choose a ∈R Zp and set A = aP instead.
The required value for the pairing can be obtained from exponentiating a Type-
PVPC pairing with the secret exponent a. Examples include the signcryption
step in Chow et al.’s scheme [23], and a zero-knowledge proof for the correctness
of the partial decryption in Baek and Zheng’s ID-based threshold decryption [2].

Type-SVPC. Pairings of this type have a secret variable point and a public
constant point, and are rarely used in the cryptographic constructs nowadays.
Type-SVPC pairings appear when one wants to verify the private key obtained
from the key generation center. An example is the ciphertext-policy attribute-
based encryption in [4], where the secret variables come from the different com-
ponents of the private key. Again, similar to Type-SVPV pairings, some pairings
that appear to be Type-SVPC can be treated as pairings of two constants in-
stead, e.g. in the proving step of Kurosawa and Heng’s ID-based identification
protocol [33] and in the signing step of Hess’s ID-based signature [30].

Type-PVSC. Type-PVSC pairings have a public variable point and a secret
constant point, and commonly appear in the decryption algorithm, in which
the decryption key is the secret constant and the ciphertext contributes to the
public variable. Examples include IBE [8,27,36], certificateless encryption [21,24],
and other related encryption schemes such as attributed-based encryption [4,28],
ID-based broadcast encryption [1] and forward-secure encryption [14,40]. Type-
PVSC pairings also exist in some key agreement protocols [17,18].

Type-PV2. Pairings of this type pair up two public variables. They are present
in many cryptographic constructs. In particular, they are commonly found in
verification of signature schemes and ciphertext validity checks in encryption
schemes. Examples include Boldyreva’s multisignature and blind signature [5],
Boneh et al.’s aggregate signature and ring signature [9], Boneh and Boyen’s
short signature [7], Chow’s verifiable pairing [20], Dodis and Yampolskiy’s ver-
ifiable random function (VRF) [25], the public ciphertext validity checking in
[2,21], and Groth et al.’s witness-indistinguishable homomorphic proof commit-
ments [29]. The multiplication of ciphertext in the doubly homomorphic encryp-
tion in [10] also uses this type of pairings. Type-PV2 pairings also appear in many
cryptographic schemes involving an implicit tripartite key exchange [31]. The
public variables come from the public keys and the proof/signature/ciphertext.

We note that one may treat the varying public key as a constant when batch-
verifying signatures from the same signer, and hence classify the pairings as the
Type-PVPC (see below) for better efficiency. However, if a point is a combination
of a public key and a signature, this trick is not possible (unless a single pairing
computation is split into two). An example is Cha and Cheon’s scheme [15].
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Type-PVPC. Pairings of this type are such that one of points is a public vari-
able and the other is a public constant. They commonly appear in the encryption
algorithm of IBE schemes based on full-domain hash [8,40], and the verification
of pairing-based schemes such as Boldyreva’s multisignature and blind signature
[5], Boneh et al.’s aggregate signature, ring signature and verifiably encrypted
signature [9], Boyen and Water’s group signature [13], Chow’s verifiable pairing
[20], the VRF of Chase and Lysyanskaya [16] and Dodis and Yampolskiy [25],
and Hess’s ID-based signature [30]. In these examples, the public constant is
either the master public key or a group generator, and the public variable comes
from the identity of the decryptor or the signature respectively.

Summary. We end this section by noting that pairings of type PVSC, PV2
and PVPC are widely used by cryptographers today. Delegation protocols for
these types can thus be considered very applicable. As we shall see, our proposed
protocols cover two of these three types. Type-SV2 pairings, on the contrary, is
not being used today. A delegation protocol for pairings of this type could be
considered practically useless.

3 Security Model

We formalize the security requirements of batch delegation protocols for pairings
in which one of the points is a constant, which are sufficient for our proposed
protocols. The requirements can however be generalized for other pairing-types.

Let A ∈ G1 be the constant point, and B1, . . ., Bn ∈ G2 be the variable points
to be paired up with A. The protocol’s goal is to compute {e(A, Bi) : i ∈ {1,
. . ., n}}. Let R and E be two probabilistic polynomial time (PPT) algorithms
modeling the Delegator and the Delegatee respectively. Let out

R← R(in1)E(in2)
denotes out is the output of R(in1) in the interaction with E(in2), where the
inputs in1 and in2 may or may not be equal. Finally, BDH(k) denotes a instance
generator for groups G1, G2, GT with orders 2k and a pairing function e : G1 ×
G2 → GT . Desired properties of a batch delegation protocols for pairings include:

Completeness. The Delegator R obtains {e(A, Bi) : i ∈ {1, . . ., n}} after
interacting with an honest Delegatee E .

Secrecy. Even a cheating Delegatee E cannot learn any information about A
and {Bi : i ∈ {1, . . ., n}}. The simulator is given A (respectively B1, . . .,
Bn) if and only if A (respectively B1, . . ., Bn) is public.
We start by giving definition for the case in which A is public. The definition
for any subset of {B1, . . ., Bn} being public can be defined similarly. We need
to define two more notations about simulatability:
– TransB(param, A, B1, . . ., Bn) denotes a PPT algorithm outputting

the transcript of communication between the interaction of the Delegator
R(param, A, B1, . . ., Bn) and the Delegatee E(param, A).
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– SimB(param, A) denotes a PPT algorithm outputting a transcript sim-
ulating the one between the interaction of the Delegator R(param, A,
B1, . . ., Bn) and the Delegatee E(param, A).

The protocol has secrecy if for all PPT adversaries A, there exists a PPT
simulator Sim such that | Pr [GamesecrB

A (k) = 1]− 1
2 | is negligible in k, over

the random coins of all algorithms.
GamesecrB

A (k)
param ← (G1, G2, GT , e) R← BDH(k)
b

R← {0, 1};
if (b = 0)

then Γ
R← Trans(param, A, B1, . . ., Bn);

else Γ
R← Sim(param, A);

b̂
R← A(param, A, Γ );

if (b = b̂) then return 1 else return 0;
Correctness. The Delegator R can detect (with non-negligible probability)

when the Delegatee E is cheating (i.e. the final result leads to a wrong value).

Gamecorr
E (k)

param ← (G1, G2, GT , e) R← BDH(k)
(t1, t2, . . ., tn) R← R(param, A, B1, . . ., Bn)E(param,A,B1,...,Bn);
if (∃i ∈ {1, . . ., n}, (ti �= e(A, Bi))) return 0; else return 1;

The protocol is correct if the probability that Gamecorr
E (k) = 1, for all

param generated by BDH, for all (A, B1, . . ., Bn) ∈ G1 × G2
n, and for all

PPT adversary E (that may deviate from the protocol in arbitrary way),
over the random coins of all algorithms, is non-negligible in k.

This game is basically saying that, for any cheating Delegatee E and for
any (A, {Bi : i ∈ {1, . . ., n}}), the Delegator R outputs either {e(A, Bi) :
i ∈ {1, . . ., n}} or ⊥, denoting invalid, except with negligible probability,
even (A, {Bi : i ∈ {1, . . ., n}}) is given to the cheating Delegatee E .

Note that the definition of correctness in [19,32] does not specify whether
A and/or B are known to the adversary (or a malicious delegatee). Such an
ambiguity could lead to insecure delegation protocols. For example, we were
able to come up with a delegation protocol by simplifying one of the protocols
in [32] that is secure if and only if A is private. Our adversarial model explicitly
equips the adversary with the knowledge of all points, which is stronger than
what is expected since E is not given some of the points in some cases.

We also remark that even both points are public, a secure pairing delegation
protocol is still necessary due to the correctness requirement.

4 Our Protocols

We present our construction of four protocols for delegating the computation
of pairings in batch, each for a different type of pairings. In all four proto-
cols, the interaction is between delegator Ron and delegatee Ellen during which
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Ron, given a list of n pairs of points 〈(A, B1), . . . , (A, Bn)〉, tries to compute
〈e(A, B1), . . . , e(A, Bn)〉 with the help of Ellen. The common input and private
input to each of the two parties vary from one protocol to another, but the dis-
tinction should be clear from the context. At the end of the protocol runs, Ron
outputs either the correct answers, or ⊥, which indicates a failure.

In our protocols, Ron is equipped with a secret constant e(A, Q) for a random
and private Q. The value of such a constant may be obtained through a one-time
pre-computation either by Ron himself, or by a trusted third party.

All four proposed protocols are secure under the security model defined in
Section 3. The security proofs can be found in Appendix A.

4.1 Our Four Constructions

Protocol-SVSC. This protocol delegates in batch the computation of n Type-
SVSC pairings as follows.

1. (Precompute.) Ron picks rA, rQ ∈R Zp and computes Ã = rAA, Q̃ = rQQ

and e(Ã, Q̃) = e(A, Q)rArQ . This step may be precomputed before knowing
the values of Bi’s.

2. (Request.) Ron sends to Ellen 〈Ã, B̃0, B̃1, . . . , B̃n〉, where ri, bi, ∈R Zp and
B̃i = riBi for i = 1 to n, and B̃0 = Q̃ +

∑n
i=1 biB̃i.

3. (Respond.) Ellen sends to Ron 〈α0, α1, . . . , αn〉, where αi = e(Ã, B̃i) for all
i = 0 to n.

4. (Verify.) Ron verifies if αi ∈ GT for i = 0 to n and e(Ã, Q̃)
∏n

i=1 αbi

i = α0.
5. (Output.) Ron returns ⊥ if the above verification failed. Otherwise he returns

〈α1/rAr1
1 , . . . , α

1/rArn
n 〉.

Protocol-SVPC. To batch delegate Type-SVPC pairings, follow the steps in
Protocol-SVSC, except that rA is set to 1 instead of a random element so that Ã
is equivalent to A. As a result, the computation and the transmission of Ã = rAA
in Step 1 and 2 are eliminated.

Protocol-PVSC. To batch delegate Type-PVSC pairings, follow the steps in
Protocol-SVSC, except that all ri’s are set to 1 instead of random elements so
that B̃i is equivalent to Bi for all i = 1 to n. The steps related to of all B̃i’s of
the protocol are also eliminated.

Protocol-PVPC. To batch delegate Type-PVPC pairings, follow the steps in
Protocol-SVSC, except that rA and all ri’s are set to 1 so that Ã is equivalent
to A and B̃i is equivalent to Bi for i = 1 to n. As a result, the computation of
Ã in Step 1, the computation of all B̃i’s in Step 2, the transmission of Ã in Step
2, and the exponentiation of all αi’s in Step 5 of the protocol are all eliminated.

Remarks. In the last two protocols, all the points are public and we do not
care secrecy. Nevertheless, a secure pairing delegation protocol is still necessary
for the correctness requirement.
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Each of our four batch protocols degenerates to a non-batch protocol if we
set n to 1. We therefore obtain as a side-product four protocols for conventional
pairing delegation. As will become clear in the next section, the degenerated
version of our proposed protocols either performs better or is as good as the
existing state-of-the-art protocols.

4.2 Performance Analysis

We now analyze the performance of the four protocols presented above in terms
of both time and space complexities. Specifically, we contrast each of our four
protocol constructions for delegating n pairing computations in batch to n par-
allel and independent invocations of traditional (non-batch) protocol for dele-
gating pairings of the same type. We look at several aspects in our compari-
son, namely the size of communication, the online computational cost and total
computational cost on the delegator and the total computational cost on the
delegatee.

All four protocols selected for comparison are state-of-the-art in the literature
in terms of efficiency. Two of them are due to Chevallier-Mames et al. [19] and
the other two are due to Kang et al. [32] (see Table 1). It has been assumed in all
their four protocols that the delegator already knows e(X, Y ) for some random
X and constant Y before the protocol execution. Ron must therefore either com-
pute e(X, Y ) himself or obtain the value from a trusted third party. While it is
not explicitly suggested in [19,32] which should the case, we believe that the lat-
ter is much less favorable in practice.7 Consequently, we assume, for the sake of a
fair comparison, that it is Ron himself who computes e(X, Y ) in these protocols,
by picking a x ∈R Zp and calculating X = xP and e(X, Y ) = e(P, Y )x, where
e(P, Y ) is a constant already known to Ron. This adds 1 G1/G2 Scalar Multipli-
cation (SM) and 1 GT Exponentiation (EXP) to the offline computational costs
of Ron in their protocols.

The comparison is detailed in Table 1. We make a few observation here. First,
the size of communication is at least halved in all four cases. Hence, our proto-
cols give a speedup in communication of a minimum of 2. Second, Ellen sees a
speed up of 2 in all four cases because she has to compute only half the num-
ber of pairings using our protocols. Also, online computational costs on Ron are
roughly the same except that our Protocol-SVPC is slightly worse than that
in [32, §4.3]. Finally, the total computational costs on Ron are always smaller
in all our protocols. Specifically, if we ignore the computation of G1/G2 point
additions and GT multiplications (as their costs are dominated by the costs of
the computation of G1/G2 scalar multiplication and GT exponentiation respec-
tively), the speed up ranges from 1.3 to 4, depending on the relative speed of
computing SMs and EXPs.

7 The following must hold for the protocols to remain secure: the value of e(X, Y ) is
correct, e(X, Y ) is known only to Ron, and Y is known only to Ron in cases where
Y represents some secret of Ron’s. These imply a trusted third party with high
trustworthiness is required, the maintenance of which is costly.
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Table 1. Performance comparison between our proposed protocols and multiple runs
of state-of-the-art non-batch protocols when the batch size is n

Communication Computation at Ron Computation
Type Protocol Complexities (#SMs,#PAs,#EXPs,#MULs)* at Ellen

#rounds (#G1/G2, #GT ) Online cost Total cost (#Pairings)

SVSC [32, §4.2] 2 (4n,2n) (n,n,4n,n) (5n,n,5n,n) 2n
Our Protocol-SVSC 2 (n+2,n+1) (2n,n,3n,n) (2n+2,n,3n+1,n) n+1

SVPC [32, §4.3] 2 (2n,2n) (n,n,3n,n) (3n,n,4n,n) 2n
Our Protocol-SVPC 2 (n+1,n+1) (2n,n,3n,n) (2n+1,n,3n+1,n) n+1

PVSC [19, §6.2] 2 (4n,2n) (n,n,3n,n) (4n,n,4n,n) 2n
Our Protocol-PVSC 2 (n+2,n+1) (n,n,3n,n) (n+2,n,3n+1,n) n+1

PVPC [19, §6.1] 2 (2n,2n) (n,n,2n,n) (2n,n,3n,n) 2n
Our Protocol-PVPC 2 (n+1,n+1) (n,n,2n,n) (n+1,n,2n+1,n) n+1

* PA and MUL denote G1/G2 point addition and GT multiplication respectively.

4.3 Implementation and Experimentation

The fact that computationally limited devices such as smartcards are slow and
resource-constrained for computing pairings has been a major motivation for
delegation in [19,32]. By delegating the computation to more powerful entities
such as PCs on which efficient libraries for pairing computation exist, it becomes
practical for those devices to execute pairing-based cryptographic algorithms.

In this regard, pairing delegation makes sense only if it is faster for an entity
to delegate the computation than doing the work itself. For instance, Scott et al.
suggested recently in [37] that delegation might not offer any benefit because it
does not offer significant gain in speed. In particular, the time for computing a
pairing is comparable to the time for doing other underlying group operations.8

Nevertheless, one should not project from such a result, that was obtained
from one experimental testbed with a particular set of parameter choices, and
conclude that pairing delegation does not make sense in all scenarios. In fact, the
relative speed of computing pairings and various underlying group operations can
vary greatly depending on numerous factors ranging from the choices of curves
and fields and their representation, to instruction sets, compilers and libraries
in case of general-purpose processors, or architecture and level of parallelism
in case of dedicated hardware coprocessor implementation. Pairing delegation
speeds up pairing computation at the protocol level independent of the choice of
any parameters mentioned above. We believe that the pairing delegation offers
significant benefits in many real-world settings.

To gain some empirical data, we implemented our four proposed protocols
in C using the PBC library9 (version 0.4.7) for its elliptic-curve and pairing
operations. The machine we used for the experiments was a Lenovo T60 laptop
PC with an Intel dual-core 2GHz CPU and 1.5GB of Ram, running Ubuntu
6.10. Timing figures collected using such a platform serve as a heuristic of the
lower bound on the efficiency gain using our batch delegation protocols because
pairing computation has already been made very efficient on such a platform.
8 This is indeed an exciting result because it demonstrates researchers’ success in

speeding up pairing computation and hence making PBC ever-increasingly practical.
9 http://crypto.stanford.edu/pbc/

http://crypto.stanford.edu/pbc/
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We did experiments to compare the latency of computing pairings locally
(without any delegation) to that of using our four protocols, over various types
of underlying elliptic curves.10 In particular, we measured the sum of the time
our protocols spent on performing the Request and the Verify steps. This mea-
surement reflects the latency experienced by the delegator if we ignore the com-
munication overhead and assume that the delegatee can compute pairings in
relatively no noticeable time. Experiments were repeated 10 times using random
input points over which timings were averaged. We used a batch size of 100.11

We calculated the speedups gained from using our protocols over computing
pairings locally. For example, using a Type-F curve, it took 7.87s to compute the
100 pairings locally while a latency of 3.34s was measured when our Protocol-
SVSC was used. The speedup was thus 7.87s/3.34s=2.34. Empirical results for
other experimental parameters are summarized in Table 2. As shown by the ex-
istence of speedups that are less than 1, delegation did not always outperform
local computation in terms of speed. This happens, for example, for curves over
which computing a pairing and computing an SM and/or an EXP take compa-
rable time. However, delegation did shorten the latency of pairing computation
in the majority of cases and some of the speedups were significant.

Table 2. The speedup gained by using our proposed protocols over computing the 100
pairings locally using different types of curves as defined in the PBC Library

Curve Protocol-SVSC Protocol-SVPC Protocol-PVSC Protocol-PVPC
Type-A 0.75 1.75 0.73 2.20
Type-A1 1.13 2.59 1.13 3.23
Type-D225 0.49 1.01 0.49 1.48
Type-E 1.17 3.22 1.20 3.60
Type-F 2.34 2.67 2.36 6.73
Type-G 0.69 1.29 0.67 2.04

5 An Application Scenario

In this section, we propose a new application of pairing delegation and discuss
some less apparent costs of delegation.

A Novel Application in Trusted Computing. An application for pairing
delegation that has not been considered so far falls into the arena of trusted
computing. Research in trusted computing strives to raise the trustworthiness
of computing devices such as PCs by guaranteeing that they operate correctly
and securely even under certain software and/or hardware attacks. To achieve
this goal, trusted computing almost always uses some kind of tamper-resistant,
tamper-evident, and/or tamper-responsive hardware. For example, the IBM
4758/4764 secure coprocessor [39] is a general-purpose PC built into a PCI card
10 Please refer to the PBC Library for the characteristics of these curves.
11 As shown earlier, the batch size has little effect on the timing of the delegator.
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that is wrapped around in an armor made of layers of material capable of detect-
ing tampering attempts. Trusted Computing Group (TCG)’s Trusted Platform
Module (TPM)12 takes a radically different approach—TPMs provide minimal
tamper-resistant storage barely enough for storing a handful of cryptographic
key material, leaving most of the operation outside the physical protection
boundary. Being cheap enough to be deployed in all PCs was one of the design
goals.

The Challenge. In general, we are faced with the following dilemma when build-
ing any trustworthy device, be it a general-purpose machine that runs arbitrary
software, or a dedicated chip devised for a specific application—On one hand, we
would like to put as much circuitry as possible into the Trusted Computing Base
(TCB) to make the device more powerful. But on the other, it gets very pricey
as the protection boundary grows due to increased complexity in configuration,
maintenance and upgrade. Heat dissipation also places a practical limit on how
powerful the hardware inside the TCB could possibly get.

A specific instance of the above challenge we would like to solve in this paper
is how to build a cost-effective pairing coprocessor with high assurance in physical
security. We would like to compute pairings correctly and securely despite the
potential presence of various software and/or hardware attacks, because insecure
pairing computation implies whatever cryptographic protocols for which these
pairings are computed become insecure.

Our Solution. Pairing delegation provides a solution to the problem. One could
build a secure coprocessor for pairing computation using two co-operating mod-
ules that are unbalanced in their size, power and trustworthiness. Specifically,
one of the modules is lightweight but physically secured, which plays the role of
the pairing delegator. The other is powerful but physically unprotected, and acts
as the pairing delegatee, as shown in Figure 1. The security of pairing delegation
guarantees that a pairing coprocessor built in this way operates correctly and
securely even if only the small delegator module is physically armored. Conse-
quently, such a coprocessor is lower in cost thanks to a smaller TCB, but still
achieves good performance because the actual heavyweight pairing computation
is now performed by the more powerful delegatee module.

Building a pairing coprocessor using the delegation approach as described
above also allows more fine-grained engineering decisions for higher flexibility
and better optimization. It is possible, for instance, that the delegator uses a
multiplier module of smaller digital size for the underlying field arithmetics owing
to limitation on space and/or cost while the delegatee does field multiplication
in software on a multi-core PC for lower non-recurring engineering costs. This
approach also permits upgrade, maintenance and reconfiguration of the delegatee
accelerators without having to re-engineer the TCB.

Some Less Apparent Costs. Pairing delegation incurs additional costs that
must be taken into account so as to correctly decide whether it is more

12 https://www.trustedcomputinggroup.org/home

https://www.trustedcomputinggroup.org/home
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Fig. 1. An architecture for a cost-effective and trustworthy secure coprocessor for pair-
ing computation that leverages pairing delegation

cost-effective to delegate the computation of pairings. Below we mention some
of the less apparent costs that might get ignored.

Denial-of-Service (DoS) Attacks. Delegation protocols are inherently vulnera-
ble to DoS attacks as the delegator needs cooperative help from the delegatee.
An adversary can launch DoS attacks by corrupting the delegatee, or simply
jamming the channel. Batch delegation protocols are even more vulnerable as
corrupting the value of one pairing in the batch renders all the pairings useless.13

Timing-analysis Attacks. Cryptographic protocols are in general more suscep-
tible to timing attacks than cryptographic algorithms due to the existence of
communication events, the timing of which may be correlated to some internal
secret values. Additional measures must be taken to compensate this extra attack
surface opened up due to the delegation protocols’ necessity to communicate.

Source of Randomness. Pairing delegation requires a cryptographically secure
Random Number Generators (RNG), while computing pairings locally does not.
A secure RNG relies on special hardware to collect random physical events and
incurs costs that vary depending on platform architectures.

Communication Costs. Communication could dominate the whole protocol exe-
cution time in the case when the communication channel has a low bandwidth,
and/or a high latency. Delegation would thus be undesirable. Also, energy-
constrained devices such as sensor nodes may prefer not to delegate because
communication is very costly in terms of power consumption.

Latencies. Gains in efficiency by delegating pairings in batch grow with the size
of the batch. However, computation latencies also grow with batch sizes, as the
answer to the computation of any pairing in the batch won’t be available until
the delegatee has completed computing the whole batch. There is thus a tradeoff
between efficiency and latencies. For instance, while batch protocols are useful
in case of verifying aggregate signatures, they might be unsuitable if pairing
computation occurs rarely, or answers to the computation are needed promptly.

13 A potential solution would be to employ some error-detection techniques to identify
the “bad” pairings in a batch.
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6 Conclusions

In this paper, we have introduced the concept of batch pairing delegation and
provided four protocol constructions, each for a different pairing-type. The se-
curity of our protocols has been proven under a new security model we for-
malized. We have implemented our protocols in software for experimentation,
and shown that our batch delegation protocols are more efficient than both in-
dividually delegating pairing computation using the state-of-the-art non-batch
protocols and computing the pairings locally without any delegation. Moreover,
we have proposed how to build a secure coprocessor for pairing computation
cost-effectively using delegation, and discussed some of the less apparent costs of
delegation.
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A Security Proofs

Completeness is trivial. Secrecy is also easy to see. The random choice of rA

and/or the random choices of r1, · · · , rn (depends on which of A and B’s are
public) each time makes the view of the delegatee follows the same distribution.

The following proves that all of our four proposed delegation protocols satisfy
the requirement of correctness. A single proof is sufficient since its crux depends
on the randomness of rQ that is present in all our proposed protocols.

Note that we give an information theoretic argument here. Moreover, all our
protocols are single-round, so they are secure against “concurrent attacker”.

Since e(P, Q) is a generator of GT , we assume without loss of generality that
the adversary returns the values of {α′

i : i ∈ {0, 1, · · · , n}} in the following forms:

α′
i = e(Ã, B̃i)e(P, Q)βi , ∀i ∈ {0, 1, · · · , n}, where βi ∈ Zp, ∀i ∈ {0, 1, · · · , n}

To break the correctness, ∃j ∈ {1, · · · , n} such that βj �= 0. Note that any
other βis, in particular β0, can take any value arbitrarily.

Suppose αi =e(Ã, B̃i), ∀i ∈ {0, 1, · · · , n}, which means α0 = e(Ã, Q̃)
∏n

i=1 αbi

i .
For verification not to return ⊥, we have the following equation holds:

http://eprint.iacr.org/
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α′
0 = e(Ã, Q̃)

n∏
i=1

α′bi

i

α0 · e(P, Q)β0 = e(Ã, Q̃)
n∏

i=1

(αi · e(P, Q)βi)bi

e(P, Q)β0 =
n∏

i=1

e(P, Q)βi·bi

β0 =
n∑

b=1

biβi

bjβj = β0 −
∑

i∈{1,··· ,n}\{j}
biβi

From B̃0 = rQQ +
∑n

i=1 biB̃i, as long as rQ is randomly chosen each time,
there are always p possibilities for bj . Without loss of generality, we assume
α′

j �= e(A, Bj)1/rArj , i.e. βj �= 0. With bj being an unknown, the probability that
the above equality holds is at most 1/p. Note that we made no assumption on
other α′

is for i �= j are correct or (A, {Bi : i ∈ {1, · · · , n}}) being unknown to the
cheating delegatee. However, we do assume Q is kept secret from the delegatee,
otherwise partial information about rQ will be leaked when the delegatee knows
A and/or {Bi : i ∈ {1, · · · , n}}.
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Abstract. Bots, which are new malignant programs are hard to detect
by signature based pattern matching techniques.

In this research, we focused on a unique function of the bots the re-
mote control channel (C&C session). We clarified that the C&C session
has unique characteristics that come from the behavior of bot programs.
Accordingly, we propose an alternative technique to identify computers
compromised by the bot program for the classification of the C&C ses-
sion from the traffic data using a machine learning algorithm support
vector machine (SVM). Our evaluation resulted in 95% accuracy in the
identification of the C&C session by using SVM. We evaluated that the
packet histogram vector of the session is better than the other vector
definitions for the classification of the bot C&C session.

1 Introduction

We are facing a new type of malware called bot[1] whose attacks are increasing.
The bots spread widely and infect many computers through the Internet. They
are designed for distributed attacks such as DDoS and port scanning, for recon-
naissance of networks and computers, and as a SPAM mail dispatcher. These
bot activities are different from existing malware such as viruses and worms.
Their main activities do not focus on attacking the infecting host; instead, the
hosts are compromised to use them in a distributed attack platform.

The bot program creates a communication and control channel to the attacker
and it is used to conduct over then thousands of the compromised computers
by them. This communication and control channel is called the command and
control (C&C) channel. The attacker controls bots using this channel to execute
distributed attacks and other activities. That is called botnet, and it is causing
serious security problems. Until the bot receives a command from the attacker,
it stays dormant in the compromised host. This makes bots harder to detect
than other viruses and worms.

The other peculiar feature of bots is that they have generated many variants
in a short time, like an explosion. Attacker communities share the source code
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of bots and breed them to be more powerful. It is easy to generate more bots by
sharing the source codes. However, the attackers do not have many programming
skills, so they find and use the bot program development kit to make their own
bots.

Furthermore, the bot program uses the packer techniques to encrypt and
archived itself with a self-extraction and decryption function to generate unique
binary files from a single source. This combination generates many kinds of
unique binary files of the bot program, which are spread throuhgh the Internet.

1.1 Related Works

There are several approaches to detect bots and computers compromised by
them. Here, we summarize them and address the related issues.

Signature- and Rule-based Detection. For bot detection, the most popular
method is signature-based pattern matching. This approach has been used typi-
cally for malware detection. In this approach, it is necessary to prepare signature
data for each malware if its binary file is different. Therefore, signature-based
pattern matching cannot find the malware program if the signature is not avail-
able. As described above, bots are generated with many short-term valiants and
each variant is not widely propagated to the Internet. Therefore, it is hard for
a security vendor to capture entire bot programs. As a result of not capturing
entire bot programs, signature-based pattern matching technique has a low bot
detection rate[2].

On the other hand, a different approach based on IDS/IPS such as snort[3] is
used to detect the bots. This alternative method uses packet-matching rules to
detect those security attacks using the well-known security vulnerabilities. This
approach can detect any variant of the bot when it uses the same security vul-
nerability for infection. This approach depends on the knowledge of the security
vulnerability and exploits; therefore, it cannot detect any new security attack,
called a zero day attack. We cannot prepare for the zero day attacks until we
have analyzed and identified conceptual or real attacks.

Behavior and Activity Detection. James et al.[4] proposed an algorithm to
detect bot communication channels on an IRC[5] server using the work weight of
the channel members. They defined the work weight as the ratio of the count of
TCP control packets to all TCP packets. The TCP control packet is enabled by
some TCP flag bit such as RST. If the compromised computer performs a port
scan or exhibits some network attacking behavior, the work weight increases.
Therefore, the scanning activities by malwares such as bots are identified. Based
on this work weight, James et al. monitored an IRC server channel and detected
which IRC channel is used by bots to communicate. However, the compromised
computer cannot be detected until the bot is activated by the attacker to execute
network attacking activities. The infection activities of bots uses not only secu-
rity vulnerabilities but other methods as well, such as email, P2P file sharing,
uploading to web sites and instant messenger services.
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Anirudh et al.[6] used the activities to lookup a DNS-based black list (DNSBL)
by the botnet owner. One of the purposes of the bots is to dispatch SPAM
mail. The DNSBL is commonly used to block the server that relays SPAM.
The mail server refers the list to identify the SPAM relay server and rejects mail
transfer from it. Once it is listed in the DNSBL, the mail server does not transfer
the mail to the other mail relay server and hence blocks incoming SPAM mail
from the mail relay. The study found that the bot owners periodically look up
the DNSBL to check if their own compromised computer is listed. The botnet
owners can confirm, whether the compromised computer still has the capability
of sending SPAM mail by checking the DNSBL. This unique activity of checking
the DNSBL is useful in identifing the compromised computer which is used
for dispatching SPAM mail. However, it could not be applied to detect the
compromised computer infected by any other kind of bot.

C&C Session Detection. Christopher[7] report the bots C&C session de-
tection using snort. This approach analysis IRC packet payload and define de-
tection rule for specific bot command strings. It can detect well known bots,
but cannot detect any variant of bots that uses different command strings.
The attacker easy to decieve these detection rules to modify their own bot
programs.

Carl et al.[8] attempted two stage identification approach to detect the bots
C&C session using machine learning algorythms . The first stage, they split the
IRC session from whole traffic data. The second stage, identify the bots C&C
session from classified IRC session data. They achieved the low false-positive
rate (7.89%) for the bots IRC session detection using Näıve Bayes. However,
they prepared single kind of bot program to collect the bots C&C sessions for
training data.

1.2 Motivation

We addressed the issue of bot detection in the previous section. The motivation
for this research is to find a generic approach to detect the computer compro-
mised by any kind of bot; one that does not depend on any single instance of the
bot program and specific activities. Therefore, we focused on the communication
channel used by the attacker to control compromised computers remotely. This
is a generic activity of bots. We can identify the computer compromised by a
bot from the source IP address of the C&C sessions, if we can identify the C&C
sessions from the entier network traffic.

2 Analysis of Bot C&C Session

First, we explain the collection of the malware dataset which we used to learn the
characteristics of the bot C&C session traffic. Then, we discuss the characteristics
of the bot C&C session learned from our analysis.
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2.1 Dataset

We used the collection of malware data set which is captured by our honeypot
system. The honeypot system uses nepenthes[9] collect bots from the Internet. It
is operated by the bot analysis team of the Institute of Information Security. In
this research, we used 2161 unique binary files that were captured by this system.
The malware collection was scanned by ClamAV[10] antivirus tool (version 0.88.2
and signature file number 2416) and the result are shown in Table 1.

The antivirus program identified 1473 files as bots and 366 unknown files.
(”Unknown” means ClamAV does not have a signature to identify the bot.)
Exploit.DCOM.Gen is detected as generic DCOM exploit code in the file. It
cannot identify any existing malware, but most of them are a viruses, worms, or
new bot programs that are not identified exactly by the signature.

We captured all IP packets during execution of each malware on the sandbox
environment for traffic analysis. We executed a malware under Windows XP
(with no service pack applied) in VMware[11] for 3 minutes. All packets from/to
this sandbox environment were captured and stored as files in tcpdump format.

We found that some of the malwares were corrupted. Some of them tried to
connect to an IRC server as the C&C server; they gave the error that the server
was shoutdown or not reachable. In other cases, the domain name of the server
was deleted from the DNS entry.

Table 2 shows the result of malware execution. By hand-analysis, we identi-
fied 957 active bots and 1229 C&C server sessions. Those bots accessed to 97
unique servers. Some of them were running on the same machine. That ma-
chine was compromised by attackers and multiple C&C servers were installed
and configured. We used these 1229 sessions as bot C&C sessions for analysis
of characteristics and used for classification. More details of their analysis and
examination of the classification are given in the following section.

Table 1. Contents of Malware Specimen Collection

malware type sub type num. percentage

SDBot 123 598 27.67%
MyBot 197 539 24.94%
PoeBot 19 243 11.24%
IRCBot 18 93 4.30%
Others 84 205 9.49%
Exploit.DCOM.Gen 117 5.41%

Unknown 366 16.94%

total 2161 100.00%

2.2 Analysis of Bot C&C Session Characteristics

We analyzed the captured packet data to identify specific characteristics of C&C
sessions. In this analysis, the payload of the packets and protocol header infor-
mation such as protocol types, source and destination IP addresses, and port
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Fig. 1. Packet Histogram of the Session
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Table 2. Detection of Active Bots and C&C Servers

Active bot programs (C&C session detected) 957

Unknown (ClamAV not detected as a malware) 67 (7%)

Total C&C Sessions 1229

Unique Servers (pair of IP addresses & port number) 97

Unique IP addresses 71

number was not inspected. However, the protocol identification that checks some
unique protocol signature such as command strings is easy to invalidate by en-
cryption or modification of the protocol. In addition, there are privacy issues if
we apply this technique to an ISP or some backbone network to check the packet
payload data. Therefore, we focused on minimum information such as the packet
size and packet interval time.

The traffic management research field contains many reports on the classifi-
cation of sessions and traffic. Andrew et al.[12] used Bayesian analysis to classify
Internet traffic. They categorized applications in several groups by their traffic
characteristics. They achieved 95% accuracy to classify the traffic to catego-
rized groups by 248 discriminators per flow data. Laurent et al.[13] proposed a
technique that relies on the observation of the first five packets of a TCP connec-
tion to identify the application. It has a better detection rate even when using
minimal discriminators such as first five packets.

Based on these reports, we used background information such as packet pay-
load size and packet interval time. These discriminators should be as minimal as
possible and easy to collect on the network. Our challenge was to find any iden-
tical characteristics between the C&C session and the IRC chat session. Both
sessions are based on same protocol with minimum differences.

Fig.1 shows the packet histogram plot with respect to the packet payload data
size and the interval time from the previous packet.

We can see unique characteristics of the C&C sessions that are compared with
HTTP sessions and IRC chat sessions; however, these are derived from simple
information. For example, in the Web session plot, the send packet size was
plotted around 200 through 500 bytes. It is represented that request command
of HTTP protocol from the client. The receive packet size was plotted and had
maximum packet payload size near 1500 bytes. Most packet interval times where
short.

Even though both sessions were using same protocol, the IRC protocol, we
can see some differences between them. This means some information and char-
acteristics do not depend on the protocol but on usage and behavior.

The application behavior and functionality appear in that information.
In contrast, the bot program uses the IRC servers installed into the com-

promised computers as the C&C servers. Therefore the compromised computer
has lower bandwidth and processing performance than typical open relay IRC
servers. This also effect the interval time of the packet sequence. The attackers
maintain their own IRC servers for bot control to prevent the operator from
shuting down the communication channels to block the bot activities. Attackers
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need to use some customized version of the IRC server that is optimized for han-
dling to over 10,000 bots as an IRC client. There are many functional trade-offs
and requirements to support some specific features of the bot activities. Those
characteristics are difficult to modify and mimic for other applications. Some
functionality and architecture of the specific activities of the bots appear sim-
ilar. It is the unique characteristics of the session for bot programs that have
similar functionality.

Therefore, we can use this information for the classification and identification
of the bot C&C session.

3 Experiment of C&C Session Classification

3.1 Definition of the Feature Vector

To evaluate the effectiveness and accuracy of the session classification using the
vector definition as discriminators, we defined three kinds of vectors for session
classification (Fig. 2). These are session information vector, packet sequence
vector, and packet histogram vector.

Session Information Vector. The vector is defined as total receive packet
numbers, total receive packet data size, total send packet numbers, total send
packet data size and session time. This session information vector is generated
using these five values for each session from the packet capture data file. It is
the most simple vector definition.

Packet Sequence Vector. The packet sequence vector consists of the packet
size, and packet interval time of the first 16 packets from the session established.
It does not include packet payload size of 0 bytes such as control packets like
SYN packets.

The difference in protocol appears at the beginning after the session estab-
lished. For most protocols, the first few packets represent the protocol negotiation
stage, therefore there are unique characteristics shown by each protocols.

Packet Histogram Vector. The packet histogram vector is the histogram data
by packet payload size and packet interval time in the session. We divided the
packet payload size in 16 ranges of 100 bytes each, and the packet interval time
in 10 ranges on a log scale. Send and receive packets are separated by count
histogram data. The send packets were defined as packets outgoing from the
sandbox environment and the receive packets are defined as incoming packets.

This vector has the 320 vector values; 160 vectors for the send packets his-
togram and the rest for the receive packets histogram.

3.2 Dataset for Experimentation

We prepared 4 datasets for the C&C session classification. We used them as a
set to create three experimental vector data.
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Fig. 2. Feature Vector Definitions

Training Dataset. We used 1029 sessions for the training dataset as the bot
C&C sessions. Also, we used 6581 sessions as a background noise which were
not identified as the C&C sessions during execution of malware on the sandbox
environment. We labeled them as ’bot’ and ’other’ for training of the classifier.

Testing Dataset. This dataset includes 200 sessions of the C&C session and
800 sessions from background sessions.

IRC Chat Dataset. We prepared a typical IRC chat sessions dataset to verify
the classification functionality between a C&C session and a normal IRC chat
session.

HTTP Dataset. This dataset includes 132 HTTP sessions which are generated
by normal web browsing operation by us within 1 hour. We used this dataset as
typical session data of the network traffic.

3.3 Support Vector Machine

The support vector machine (SVM)[14] is known as a better machine learning al-
gorithm for two class discrimination. It shows good accuracy in the classification
of voice dictation, image recognition, and other pattern-matching applications.
The SVM has better classification functionality and processes the high dimen-
sion of the vector data well for training and classification. Therefore, we used
the SVM for the C&C session classification. In the experimentats, we evaluated
the performance of the SVM and compared it with the other algorithms such as
Näıve Bayes and k-Nearest Neighbor (k-NN)[15].
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3.4 Experiment Environment

In this experimentats, we used R[16] to verify the classification functionality by
SVM. The SVM module is provided as the e1071 package[17] for R; it is based
on LIBSVM[18] implementation.

4 Results

In this section, we show the result of the C&C session classification by SVM
using each vector definition.

4.1 Session Information Vector

Table 3 shows the result of C&C session classification by the session information
vector. It correctry detects 863 sessions as bot C&C session from 1029 sessions
in the training data set and detects 162 sessions as bot C&C session from 200
sessions in the testing data set. In other words, the detection rate for C&C
sessions of the training dataset is 83.87% and 81.00% for the test dataset. That
was a good classification for the bot C&C session using simple vector data to
represent the session characteristics. However, the false-positive rate is higher
(46.15%) for the IRC chat session. It misclassified the normal IRC chat session
as the C&C session. The session information vector data does not reveal the
differences between the C&C and normal IRC chat session, because they are
using the same protocol.

4.2 Packet Sequence Vector

Table 4 shows the classification result using the packet sequence vector. In this
result, all of the C&C sessions in the training dataset were correctly identified as
such. However, there is an 82.00% false-negative results for classification of the
C&C sessions in the testing dataset. That is, it does not have better classification
for the non-training dataset.

4.3 Packet Histogram Vector

Table 5 shows the classification result using the packet histogram vector. The
result was better than the other two vector definitions. It classified the C&C
session in the training dataset and testing dataset well. The false-positive rate
is 0.03% in the training dataset; the other data had no false-positive result. The
false-negative rate is 2.62% in the training dataset and 5.00% in the testing
dataset.

Comparing with the signature based detection, this has the better false-
negative rate result (7% in the Table 2).
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Table 3. MI : The Detection Rate of the Session Data Vector

result training set testing set IRC HTTP
bot other bot other

bot 863 4 162 2 12 1
other 166 6577 38 798 14 131

total sessions 1029 6581 200 800 26 132

detection rate 83.87% 81.00%
false-positive 0.06% 0.25% 46.15% 0.76%
false-negative 16.13% 19.00%

Table 4. MS : The Detection Rate of the Packet Sequence Vector

result training set testing set IRC HTTP
bot other bot other

bot 1029 0 36 0 0 0
other 0 6581 164 800 26 132

total sessions 1029 6581 200 800 26 132

detection rate 100.00% 18.00%
false-positive 0.00% 0.00% 0.00% 0.00%
false-negative 0.00% 82.00%

4.4 Comparison of SVM with Other Classification Algorithms

We compared the result of C&C session classification using SVM with other
classification algorithms. We used the same dataset and a three feature vector
definition data format for Näıve Bayes and k-Nearest Neighbor (k-NN).

Fig. 3 shows that we recognized that SVM is better than the other algorithms
for classifying the ession information. SVM provides a better result than the
other algorithms for the false-positive rate (Fig. 3). The Näıve Bayes misclassified
all sessions as the C&C session in all feature vector data format. The result by
k-NN is similar to SVM except for the false-positive rate.

As Table 6 shows, the processing speed of the session classification using
SVM was faster than other algorithms. The testing machine was Linux kernel
2.6.15 running on Intel Pentium M 2GHz CPU and 1Gbyte of memory. The
classification processing by SVM took less than 1 ms per session. On the other
hand, Nav̈e Bayes and k-NN took more than ten times longer to classify a session
with the packet histogram vector. In particular, the processing took a long time
at the session sequence vector and the packet histogram vector. In contrast, the
feature vector does not significantly affect the processing speed by SVM. The
result shows better scalability for high dimension vector data such as the packet
histogram vector.

The training processing cost was expensive in the SVM. However, SVM needs
to be trained only at the beginning and it can be preprocessed. The total process-
ing of the SVM was faster than other algorithms. k-NN does not need training
for the classification; therefore, it uses all training data for the classification to
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Table 5. MH : The Detection Rate of the Packet Histogram Vector

result training set testing set IRC HTTP
bot other bot other

bot 1002 2 190 0 0 0
other 27 6579 10 800 26 132

total sessions 1029 6581 200 800 26 132

detection rate 97.38% 95.00%
false-positive 0.03% 0.00% 0.00% 0.00%
false-negative 2.62% 5.00%
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Fig. 3. Comparison of the C&C Session Detection Rate

calculate the distance between the target session vector data and training ses-
sions vector datas for each session. The k-NN needs to optimize the training
dataset to minimize the processing cost, but for unknown session data, it is diffi-
cult to simultaneously reduce the processing cost and maintain better accuracy
of the classification.
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Table 6. Processing Time for Training and Classification

Vector Definitions SVM Näıve Bayes k-NN

Session Information Vector
Total (s) 3.03 6.85 1.62
Training (s) 2.15 0.04 –
Classification (ms/session) 0.10 0.78 0.18

Session Sequence Vector
Total (s) 47.46 50.66 88.36
Training (s) 38.60 0.72 –
Classification (ms/session) 1.01 5.70 10.08

Packet Histogram Vector
Total (s) 6.73 159.42 393.91
Training (s) 5.41 1.99 –
Classification (ms/session) 0.15 17.96 44.93

5 Discussion

We discuss here the contribution of this research and the issue, to be verified in
future work.

5.1 Training Dataset

We prepared the sample dataset generated from the sandbox environment. It
does not include any other sessions belonging to user activities that appear in
the real network traffic data. Those session data are effective for C&C session
classification accuracy in providing a contrast between the characteristics of C&C
sessions and other sessions. We predict that those session data provide better
optimization of the support vector after training on SVM. However, it can have
a negative effect on detection rate if those sessions have characteristics similar
to the C&C session.

5.2 Feature Vector Definition

The detection result was strongly affected by feature vector definition from ses-
sion information. In particular, it creates false-positive rates for a non-C&C ses-
sion. This means we have to choose better definitions to represent characteristic
differentiation between C&C sessions and other sessions.

In our research, we identified that the packet histogram vector provides a
better result than the others. There may be some better vectors for the session
classification.

5.3 Deceiving the Bots C&C Session Characteristics

The attacker can modify the C&C session characteristics to deceive our detection
technique. For example, bots can emulate regular chat sessions and messages and
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mixed control command and messages into them. However, the attacker installs
C&C server on the computer compromised by bots to construct the botnets to
avoid to identified and shutdown. There are differences network behavior between
open IRC server and these installed bots C&C servers for example band width
and system performance. It will affect the packet histgram data and still we have
a chance to detect them. However, we have to consider these counter approach
to compromised our detection technique.

5.4 Application to the Various of C&C Session Protocols

In this research, we targeted the C&C sessions that are based on IRC protocols.
In the facts, most of bots use IRC protocols, and some of them use modified
protocol commands and encrypt the command and control messages.

Our approach in applicable to these bots, but some bots using other protocols
for command and control exist.

These different protocol-based C&C sessions appear to have different traffic
characteristics. However, They would have similar behavior that comes from the
objectives and motivation of bots and functionality of botnet.

6 Conclusion

We conclude that our alternative approach is valid for detecting the computer
compromised by bots. The difference in characteristics of the bot C&C sessions
are useful for session classification, even though we used limited information such
as the packet size and packet interval time. This difference was related to the
functionality of the bot program; therefore it appeared for all bot programs.

We showed that the feature vector definition greatly influenced the identifi-
cation accuracy, and using the packet histogram among the definitions of three
feature vectors, we obtained a 95% detection rate for the non-training dataset.
In particular, it had minimum false-positives and false-negatives in classifying
C&C sessions and normal IRC chat sessions, which both use the same IRC pro-
tocol. Compared with other algorithms, SVM showed better accuracy in the
classification of the C&C session and better scalable performance.

However, there are several issues need to be considered in the above. In par-
ticular, the counter approach of our proposed detection technique and targeting
the non-IRC protocol based C&C sessions are required to concern in the next
step from this research.
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Abstract. This work proposes a new global authentication system for
Mobile Ad-hoc Networks. The component algorithms are designed in
a self-organizing way so that most needs of this sort of networks are
covered. In particular, characteristics such as adaptation to the varying
topology of the network, open availability of broadcast transmissions,
and strong access control have received special attention when defining
the new scheme. The described protocol is based on the cryptographic
paradigm of Zero-Knowledge Proofs. In this paper the design is thought
for the Hamiltonian Cycle Problem, but it might be easily adapted to
other NP-complete graph problems.
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1 Introduction

Confidentiality, integrity and authentication are the three main security aspects
that have to be taken into account when designing a secure network. Among
them, authentication, which guarantees the proper identities of nodes, is the
most remarkable one because the other security characteristics depend totally
on the right authentication of entities.

Authentication is usually based on weak schemes of maximum-disclosure proofs
with secret time-invariant passwords [14]. Their major security concern is pos-
sible eavesdropping and subsequent replay of secret passwords. Two well-known
solutions to this security problem exist. The simplest of both methods uses vari-
able passwords, whereas the strongest schemes are minimum-disclosure proofs.
The protocol here proposed combines both concepts in order to define an authen-
tication scheme specifically thought for Mobile Ad-hoc Networks.

Mobile Ad-hoc NETworks (MANETs) are autonomous networks formed by
mobile nodes that are free to move at will. The set of applications for MANETs
is diverse, ranging from small, static networks that are constrained by power
sources, to large-scale, mobile and highly dynamic networks. Conventional wired
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networks mainly use a globally trusted Certificate Authority (CA) for solving
the authentication problem. However, authentication in MANETs is in general
much more difficult than that in wired networks due to several reasons such as
limited physical protection of broadcast medium, frequent route changes caused
by mobility, lack of a structured hierarchy, etc [12].

Many authentication protocols have been recently proposed for ad-hoc net-
works [1] [7] [11]. On the one hand, the paper [1] states the need for an au-
thentication management architecture for ad-hoc networks. On the other hand,
both papers [7] and [11] propose two different solutions. However, the first one
is based on RSA signature, which conducts to the problem of public key certifi-
cation, while the second solution works well just for short-lived MANETs.

In general, one of the most elementary approaches found in the bibliography
uses a Trusted Third Party (TTP) to guarantee the validity of all nodes identi-
ties, so that every node who wants to join the network has to get a certificate
from the TTP. A second identification paradigm that has been used in wire-
less ad-hoc networks is the notion of chain of trust [8]. A third typical solution
is location-limited authentication, which is based on the fact that most ad-hoc
networks exist in small areas and physical authentication may be carried out be-
tween nodes that are close to each other. The special nature of ad-hoc networks,
where most applications are collaborative and group-based, suggests that such
traditional approaches to node identification may not be always appropriate.
Consequently, the design of a scheme that fulfils all the requirements for this
type of networks continues being considered an open question.

This work proposes a different type of scheme based on the established cryp-
tographic primitive of Zero-Knowledge Proofs (ZKPs), which provide an elegant
solution to the problem of self-organized node authentication for MANETs. Un-
til now very few publications have mentioned the proposal of authentication
systems for ad-hoc networks using ZKPs [6] [2] [13], and none of them has dealt
with the related problem of topology changes in the network. A recent ZKP-
based hierarchical proposal for MANETs related with the one proposed here
was described in [4], where two different security levels were defined through
the use of a hard-on-average graph problem, and no topology changes were
considered.

This work is organized as follows. The following section provides a complete
description of the new proposal is given, including general aspects, notation and
specific details about network initialization, node insertion, access control, proofs
of life and node deletion.Assumptions on the scheme and security are commented
in Section 3. A performance analysis is provided in Section 4. Finally, some
conclusions and open questions complete the paper.

2 Proposal

The following sub-sections give, respectively, an overview of the proposal, a de-
scription of the used notation and specific details about network initialization,
node insertion, access control, proofs of life and node deletion.
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2.1 Overview

The proposal has been designed as an authentication scheme for group mem-
bership because when a node wants to be part of the network, it has to be
previously authorized by a legitimate node. According to the authors of [10],
in any group member authentication protocol it is necessary to provide robust
methods to insert and to delete nodes, as well as to allow the access only for
legitimate members of the group. For that reason, not only the ZKP used for
access control is described later, but also the upgrade procedures associated to
insertions and deletions are carefully defined. The procedure to delete nodes in
this paper is based on the fact when a node is too long (according to a parameter
previously agreed by the members of the network) disconnected of the network,
a deletion of such a node is carried out.

The access control described below is based on the general scheme of Zero-
Knowledge Proof introduced in [3], for the particular case of the Hamiltonian
Cycle Problem (HCP). A hamiltonian cycle of a graph is a cycle that visits each
vertex exactly once and returns to the starting vertex. Determining whether
such cycles exist in a graph is the Hamiltonian Cycle Problem, which is NP-
complete. Such a problem was chosen for our design mainly because the up-
grade of a solution due to an insertion or a deletion of a vertex in the graph
does not demand a great computational effort. Such operations will be frequent
in our implementation due to the high dynamism of MANETs. Anyway, sim-
ilar schemes might be described based on different NP-complete graph prob-
lems where the actualization of a solution after single changes on the graph is
easy. Such is the case of Vertex Cover, Independent Set or Clique Problems, for
instance.

One of the key points for the correct operation of the proposed scheme is the
use of a chat application through broadcast that makes it possible for legitimate
on-line nodes to send a message to all on-line users of the network. Such an ap-
plication allows publishing all the information associated to the upgrade of the
network. Although secrecy is not necessary for chat messages that are broadcast
because they are useless for illegitimate nodes, since that information is nec-
essary for updating authentication information, it is required that only on-line
legitimate nodes of the network may execute the chat application.

The information received through the chat application during an interval
of time must be stored by each on-line node in a FIFO queue. Such data
stored by each on-line node allow the updating of the authentication information
both for it and for all the off-line legitimate nodes whose access is authorized
by that on-line node. The length of such a period is an essential parameter
because it states both the maximum off-line time allowed for any legitimate
node, and the frequency of broadcasts of proofs of life. Consequently, such a
parameter should be previously agreed among all the legitimate nodes of the
network.

A generic life-cycle of a MANET has three major phases as shown in Figure 1.
Initialization is the first phase, where each initial member of the original network
is securely provided, either off-line or on-line, with a secret piece of information.
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Fig. 1. Network Life-Cycle

The knowledge of the secret network key will be used during access control in
order to prove the nodes eligibility to access protected resources or to offer service
to the network.

When the initialization phase is completed, the initial legitimate nodes are
ready to participate in the network, so node life-cycle starts (see Figure 2). The
access control process is where a legitimate node proves its membership to an on-
line node of the network. These legitimate nodes must demonstrate knowledge
of the secret network key by using a challenge-response scheme.

Once the legitimate node access to the on-line state in the network is allowed,
such a legitimate node gets full access to protected resources such as the chat
application, and may offer services such as the insertion of new nodes. The secret
network key is continuously being updated according to the development of the
network, so the secret key of a legitimate node expires if this node is off-line
too long. In such a case, the legitimate node would have to be re-inserted by an
on-line legitimate node if it wants to enter the network again.

Since in our proposal the secrecy of the network key is provided by the diffi-
culty of the HCP, and the number of legitimate nodes is an influential parameter
in such a difficulty, as soon as the number of legitimate nodes is too small, the
network termination is carried out and the life-cycle of the network ends.

A remarkable aspect of our proposal is that no possible adversary is able to
succeed to steal any meaningful information even if it reads all the information
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Fig. 2. Node Life-Cycle

published through the chat application, or if it eavesdrops all the information
exchanged between a prover legitimate node and a verifier legitimate node during
an access control.

2.2 Notation

In this section we give basic notations that are used throughout the proposal.

– Gt = (Vt, Et) denotes the undirected graph used at stage t of the network
life-cycle.

– vi ∈ Vt represents both a vertex of the graph and a legitimate node of the
network.

– n = |Vt| is the order of Gt, which coincides with the number of legitimate
nodes of the network.

– NGt(vi) denotes the neighbours of node vi in the graph Gt.
– Π(Vt) represents a random permutation over the vertex set Vt

– Π(Gt) denotes the graph isomorphic to Gt corresponding to the permutation
Π(Vt).

– c ∈r C indicates that an element c is chosen at random with uniform distri-
bution from a set C.

– HCt designates the hamiltonian cycle used at stage t.
– Π(HCt) represents the hamiltonian cycle HCt in the graph Π(Gt).
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– NHCt(vi) denotes the neighbours of node vi in the hamiltonian cycle HCt.
– S and A stand for the supplicant and the authenticator, respectively, both

during an insertion phase and during the execution of a ZKP-based access
control.

– S � A symbolizes when node S contacts A.
– A ↔ S : information means that A and S agree on information
– A

s→ S : information means that A sends information to S through a
secure channel.

– A
o→ S : information means that A sends information to S through an

open channel.
– A

b→ network : information represents when A broadcasts information to
all on-line legitimate nodes of the network.

– A
b↔ network : information represents a two-step procedure where A

broadcasts information to all on-line legitimate nodes of the network, and
receives their answers.

– h stands for a public hash function.
– T denotes the threshold length of the off-line period for legitimate nodes.

2.3 Network Initialization

Such as it happens in most access control schemes for MANETs [5] [15], the
proposed protocol requires the definition of an initialization phase where the
secret information associated to the process of identification is generated and
distributed within the initial network. This initialization phase consists in the
definition of the graph used for the development of the protocol, jointly by all the
original members of the network. Furthermore, the initialization phase implies
that each legitimate member will know an initial and jointly generated solution
of the HCP in such a graph.

In our proposal, as in trust graphs [9], the set of vertices of the graph corre-
sponds exactly to the set of nodes of the real network during the whole life-cycle
of the network. Consequently, the initialization process starts from a set V0
of n vertexes corresponding to the nodes of the initial network. Furthermore,
each vertex sub-index may be used as ID (IDentification) for the corresponding
node. The first step of the initialization process consists of generating jointly
and secretly a random permutation Π of such a set. Once this generation is
completed, each legitimate node should know a hamiltonian cycle HC0 corre-
sponding exactly to such a permutation. Finally, the partial graph formed by the
edges corresponding to such a hamiltonian cycle HC0, is completed by adding n
groups of 2m

n edges, producing the initial edge set E0. Each one of these n groups
of edges must have endvertex vi, i = 1, 2, ..., n, and be randomly generated by
the node vi. Note that the cardinality 2m

n of those groups of edges must be large
enough so that the cardinality of the resulting edge set |E0| = m guarantees the
difficulty of the HCP in the graph G0.
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Initialization Algorithm
Input: V0, with |V0| = n
1. The n nodes of the network generate jointly, secretly and randomly the

cycle HC0 = Π (V0).
2. Each node vi ∈ V0 builds the set NG0(i) = {{vj ∈r V0} ∪ NHC0(i)} with

|NG0(i)| = 2m
n .

3. Each node broadcasts vi
b→ network : NG0(i)

4. Each node merges E0 =
⋃

i=1,2,...,n {(vi, vj) : vj ∈ NG0(i)}
Output: G0 = (V0, E0), with |E0| = m

Once the construction of the initial instance of the problem has been carried
out by means of the contribution of all the nodes that are part of the network,
each node will know a hamiltonian cycle in the resulting 2m

n -regular graph. From
then on, each time a new user S wants to become a member of the network, it
has to contact a legitimate member A in order to follow the insertion procedure
explained in the following section.

2.4 Node Insertion

Let us suppose that we are at stage t of the network life-cycle when a user S con-
tacts a legitimate member A of the network to become a member of the network.
Once S has convinced A to accept its entrance to the network, the first step that
A should do is to assign to S the lowest vertex number vi not assigned to any
node in the vertex set Vt. Afterwards, A should broadcast such an assignment
to all on-line legitimate nodes of the network in order to prevent another simul-
taneous insertion with the same number, and receive their answer. If A receives
less than n/2 answers, she stops the insertion procedure because the number of
nodes that are aware of the insertion is not large enough. Otherwise, A chooses
the corresponding upgrade of the secret hamiltonian cycle HCt by selecting at
random two neighbour vertexes vj and vk in order to insert the new node vi

between them, chooses at random a set of 2m
n − 2 nodes in Vt such that none of

them are neighbours in HCt, and broadcasts the set of neighbours NGt+1(vi) of
S in the new graph Gt+1 to all on-line legitimate nodes of the network.

Each time a node receives an updating of the graph, it should secretly update
the corresponding hamiltonian cycle by using the information provided in order
to identify the unique position in the cycle where the new node can be inserted
according o the new edge set Et+1. In this way, it will be able to easily update
the secret network key by simply inserting the vertex vi between the vertexes
vj and vk. At the same time the authenticator node A must send the supplicant
node S both the graph Gt+1 in an open way, and the hamiltonian cycle HCt+1
through a secure channel.

Insertion Algorithm
Input: At stage t a supplicant node S wants to become a member of the
network.
1. S � A and node S convinces node A to accept its entrance to the

network.
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2. A assigns to S the vertex number vi such that i = min{l : vl �∈ Vt}
3. A broadcasts A

b↔ network : vi

4. – If A receives less than n/2 answers, she stops the insertion procedure.
– Otherwise:

(a) A chooses at random {vj ∈r Vt, vk ∈r NCHt(vj)}
(b) A chooses at random NGt+1(vi)={vj , vk}∪{w1, w2, ..., w 2m

n −2 ∈r

Vt such that ∀wl1 , wl2 : wl1 �∈ NCHt(wl2)}
(c) A broadcasts A

b→ network : NGt+1(vi)
(d) Each on-line node computes Vt+1 = Vt ∪ {vi}, Et+1 = Et ∪

NGt+1(vi) and HCt+1 = {HCt \ (vj , vk)} ∪ {(vj , vi) ∪ (vi, vk)}
(e) A sends openly A

o→ vi : Gt+1

(f) A sends securely A
s→ vi : HCt+1

Output: The supplicant node S is a legitimate member of the network.

2.5 Access Control

If a legitimate member of the network S that has been off-line or out-of-coverage
from stage t wants to connect on-line to the network at stage r, its first step
should be to contact a legitimate on-line member A. Afterwards, A should check
whether the off-line period of S is not greater than T . In this case, S has to be
authenticated by A through a ZKP of its knowledge of the secret solution HCt

on the graph Gt.
The aforementioned ZKP begins with the agreement between A and S on

the number of iterations l of the ZKP. From there on, in each iteration, S will
choose a random permutation Πj(Vt) on the vertex set that will be used to
build a graph Π(Gt) isomorphic to Gt. The hash value of that permutation
h(Πj(Vt)) and of the hamiltonian cycle in the graph h(Πj(HCt)) are then sent
to A. When this information is received by A, it chooses a bit bj at random
(bj ∈r {0, 1}). Depending on the selected value, S will provide A with the image
of the hamiltonian cycle through the isomorphism, or with the specific definition
of the isomorphism. In the verification phase, A will check that the received
information was correctly built.

Once the authentication of supplicant S has been successfully carried out,
the authenticator A gives S the necessary information to have full access to
protected resources such as the chat application.

Access Control Algorithm
Input: At stage r a supplicant node S that has been off-line from stage t
wants to connect on-line to the network.
– S � A
– S sends openly S

o→ A : Gt

– A checks whether t ≤ r − T
• if t ≤ r − T then S is not authenticated
• otherwise:

∗ A and S agree A ↔ S : l
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∗ ∀j ∈ {1, 2, . . . , l}
1. S chooses Πj(Vt) and builds Πj(Gt) and Πj(Vt), isomorphic

graph to Gt and correspondent hamiltonian cycle, respectively
2. S sends openly S

o→ A : {h(Πj(Vt)), h(Πj(HCt))}
3. A chooses the challenge bj ∈r {0, 1}
4. A sends openly the challenge A

o→ S : bj

(a) If bj = 0 then S sends openly S
o→ A : {Πj(Gt), Πj(HCt)}

(b) If bj = 1 then S sends openly S
o→ A : Πj

5. A verifies
(a) that Πj(HCt)) is a valid hamiltonian cycle in Πj(Gt), if

bj = 0
(b) that the hash function h on the result of Πj on Gt produces

h(Πj(Gt)), if bj = 1
∗ if ∃j ∈ {1, 2, . . . , l} such that the verification is negative, then S

is isolated.
∗ otherwise A sends securely A

s→ S : the necessary information
to have full access to protected resources of the network.

Output: Node S is connected on-line to the network.

2.6 Proofs of Life

All on-line legitimate nodes have to confirm their presence in an active way. Such
a confirmation is carried out every certain interval of time of length T so that
each on-line node must broadcast a proof of life to all on-line legitimate nodes
of the network.

If some insertion happens during such a period, a proof of life of every on-line
legitimate node will be distributed together with the broadcast necessary for
the insertion procedure. If no insertion happens during the period, the first node
that has to prove its life starts a proof-of-life broadcast. During such a broadcast
every node adds its own proof of life to the broadcast so that when the broadcast
reaches the last node, a broadcast back starts so that when the starting node
receives the proofs of life of all on-line legitimate nodes, it rebroadcasts them.

Proof-of-Life Algorithm
Input: At stage t node A is an on-line legitimate node of the network of the
network.
– A initializes its clock = 0 just after its last proof of life
– if clock > T then

1. A broadcasts A
b↔ network : A′s proof of life

2. • If A receives less than n/2 proofs of life as answers to her broad-
cast, she stops her proof of life and puts back her clock.

• Otherwise: A broadcasts A
b→ network : Received proofs of

life

Output: At stage t + 1 node A continues being an on-line legitimate node of
the network of the network.
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2.7 Node Deletion

The deletion procedure is mainly based on the confirmation of the active presence
of on-line legitimate nodes through their proofs of life. Each node should update
its stored graph by deleting all those nodes that have not sent any proof of life
after a period T . This fact implies that each node that has not proven its life
will be deleted from the network, and the corresponding vertex will be deleted
from the graph and from the hamiltonian cycle.

Node deletions are explicitly communicated to all on-line legitimate nodes in
the second step of broadcasts of proofs of life. In this way, any node that is
off-line in that moment will be able to update its stored graph as soon as it gets
access to the network.

Deletion Algorithm
Input: At stage t a node vi is an off-line legitimate node of the network of
the network.
– A initializes her clock = 0
– if clock > T then

1. ∀vi ∈ Vt: A checks vi’s proof of life in A’s FIFO queue
2. A updates Vt+1 = Vt \ {vi ∈ Vt with no proof }
3. A updates Et+1 = Et \ {(vi, vj) : vi ∈ Vt with no proof, vj ∈

NGt(vi)} ∪ {(vj , vk) : vj , vk ∈ NHCt(vi)}
4. A updates HCt+1 = HCt \ {(vj , vi), (vi, vk)} ∪ (vj , vk) : vi ∈ Vt with

no proof, vj , vk ∈ NHCt(vi)
– If A was the starter of the broadcast used for the vi’s deletion, A adds

this information to the second step of the proof-of-life broadcast: A
b→

network : vi is deleted.
Output: At stage t + 1 the node vi has been deleted both from the network
and from the graph.

This way to proceed guarantees a limited growth of the graph that is used
in authentication, and at the same time, allows that always legitimate nodes of
the network correspond exactly to vertexes in that graph. Apart from this, it
is remarkable the fact that thanks to this procedure the recovery of legitimate
members of the network that have been disconnected momentarily due to a
shortcut of the network is possible, if such a shortcut does not last too much
(i.e. if it is lesser than T ).

3 Assumptions and Security Analysis

This proposal assumes initially the ideal environment where all legitimate nodes
are honest and where no adversary may compromise a legitimate node of the
network in order to read its secret stored information. Such assumptions are
well suited as a basic model in order to decide under which circumstances the
designed authentication scheme is applicable to MANETs. For instance, a pos-
sible adaptation of the proposal in order to avoid those hypothesis could be the
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consideration of a threshold scheme for every step of the scheme, so that every
proof of life, insertion, access control or deletion should be done by a group
of on-line nodes each time. In this way, a dishonest node would not affect the
correct operation of the network.

It is also clear that the proposal inherits inherent problems of the distributed
trust model such as the important necessity that legitimate nodes cooperate.
Consequently, it is advisable that some scheme to stimulate node cooperation is
used in conjunction with the proposal.

Finally, another requirement of the scheme is the necessary establishment of
a secure channel for the insertion procedure. However, that aspect may be easily
fulfilled thanks to the fact that most wireless devices communicate with each
other via Bluetooth wireless technology.

With respect to possible attacks, due to the lack of a centralized structure,
it is natural that possible DOS (Denial Of Service) attacks have as their main
objective the chat application. In order to protect the scheme against this threat
it must be assured that chat messages, although are publicly readable, may
be only sent by legitimate on-line members of the network. Another important
aspect related to the use of the chat application is the necessary synchronization
of the on-line nodes, so a common network clock is necessary. this requirement
has been implemented during simulations through the chat application.

MANETs are in general vulnerable to different threats such as identity theft
(spoofing) and the man-in-the-middle attack. Such attacks are difficult to pre-
vent in environments where membership and network structure are dynamic and
the presence of central directories cannot be assumed. However, our proposal is
resistant to spoofing attacks because access control is proved through a ZKP
that makes useless the reading of any information published through the chat
application or sent openly during an access control. On the other hand, the goal
of the man-in-the-middle attack is either to change a sent message or to gain
some useful information by one of the intermediate nodes. Again the use of ZKPs
in our protocol implies that reading any transferred information does not reveal
any useful information about the secret, so changing the message is not possi-
ble since only legitimate nodes whose access has been allowed can use the chat
application.

Another active attack that might be especially dangerous in MANETs is the
so-called Sybil attack. It happens when a node tries to get and use multiple iden-
tities. The most extreme case of this type of attacks is the establishment of a
false centralized authority who states the identities of legitimate members. How-
ever, this specific attack is not possible against our scheme due to its distributed
nature. In our scheme, the responsibility of controlling general Sybil attacks will
be shared among all the on-line nodes. If an authenticator node detects that a
supplicant node is trying to get access to the network by using an ID that is yet
being used on-line, such access control must be denied and the corresponding
node must be isolated. The same happens when any on-line node detects that
an authenticator node is trying to insert a new node to the network with a new
ID, and such a node has yet assigned a vertex ID. Again, such insertion must
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be denied and the corresponding supplicant node must be isolated. Anyway, if a
Sybil attacker enters the network, any of its neighbours will detect it as soon as
it sends proofs of life for different vertexes ID.

4 Performance Analysis

We now analyze the efficiency of the proposal both from the energy consump-
tion and from computational complexity points of view. We consider the energy
consumption which is the result of transmissions of data and processor activities
due to authentication tasks. In the proposal there are two phases when com-
putational overhead is more significant: the ZKP-based access control and the
periodic checking of stored FIFO queue. A reduction on the number of rounds of
ZKP has a direct effect on the total exchanged messages size in insertions, but a
trade-off should be maintained between protocols robustness and performance.
Indeed, regarding total data transmission over wireless links, the ZKPs take less
than 10% in a usual situation.

The periodic proofs of life accounts for approximately 90% of the total ex-
changed message size in many cases. However, we have found that these com-
pulsory proofs of life imply an incentive technique for stimulating cooperation

Fig. 3. Example of Network Simulation with NS-2
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Table 1. Example of Trace

Time Event H.C.

0.1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 are legitimate 8,3,9,7,4,2,6,5,1,10,0
1.29 Insertion of Node 14 is broadcast by Node 4 8,3,9,7,4,14,2,6,5,1,10,0
1.30 Nodes 3, 1, 0 do not answer to the proof of life
3.29 Node 0 reaches 8 and starts a ZKP for re-insertion
8.69 Node 3 reaches 4 and starts a ZKP for re-insertion
9.40 Node 1 reaches 10 and starts a ZKP for re-insertion
11.65 Node 1 turns off
13.97 Proof of life started by Node 3
14.27 Nodes 1, 2 do not answer to the proof of life
14.82 Node 2 reaches 14 and starts a ZKP for re-insertion
17.27 Proof of life started by Node 2
17.57 Nodes 1, 5 do not answer to the proof of life
21.71 Node 5 turns off
31.40 Node 1 turns on and Node 2 is chosen for the ZKP
31.46 Node 4 turns off
32.51 Proof of life started by Node 1
32.78 Nodes 4, 5, 6 do not answer to the proof of life
34.29 Node 6 reaches 2 and starts a ZKP for re-insertion
38.51 Proof of life started by Node 6
38.79 Nodes 4, 5 do not answer to the proof of life
41.46 Node 1 turns off
53.25 Node 1 turns on and Node 0 is chosen for the ZKP
59.61 Proof of life started by Node 6
59.99 Nodes 4, 5 do not answer to the proof of life
64.26 Node 5 is deleted 8,3,9,7,4,14,2,6,1,10,0
64.71 Node 2 turns off
72.58 Node 4 turns on and Node 0 is chosen for the ZKP
75.41 Insertion of Node 13 is broadcast by Node 14 8,3,9,7,4,14,2,13,6,1,10,0
75.43 Node 2 does not answer to the proof of life

in authentication tasks. This is due to the fact that nodes that are broadcasters
of deletions or authenticators in insertions or access controls are exempted from
their obligation to broadcast their proofs of life.

In order to reduce data communication cost of the protocol, an increase on the
threshold period T might be an option, but again an acceptable balance should
be kept. According to our experiments, T should depend directly on the number
of legitimate and/or on-line nodes in order to prevent a possible bandwidth
overhead of large networks.

For the performance analysis of the proposal we used the Network Simulator
NS-2 with DSR routing protocol. We created several Tcl based NS-2 scripts in
order to produce various output trace files that have been used both to do data
processing and to visualize the simulation. Within our simulation we used the
visualization tool of Network Animator NAM and the NS-2 trace files analyzer
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of Tracegraph. For the simulation of mobility we used the setdest program in
order to generate movement pattern files using the random waypoint algorithm.

An example of simulation is shown graphically in Figure 3. Basically it consists
of generating a scenario file that describes the movement pattern of the nodes
and a communication file that describes the traffic in the network. These files
are used to produce trace files that are analyzed to measure various parameters.
An excerpt of the trace files corresponding to the same example is shown in
Table 1.

The trace files are used to visualize the simulation using NAM, while the
measurement values are used as data for plots with Tracegraph. The final graph
and hamiltonian cycle associated to the example network is shown in Figure 4
where green is used to indicate the hamiltonian cycle, blue is used for the inserted
nodes and red is used for the edges deleted from the hamiltonian cycle when
inserting new nodes.

We conducted many different simulations in order to see the effects of different
metrics by varying network density and topology. In particular, we varied the
number of nodes from 15 to 100, the area from 400x400 to 800x800 m2, and the
period of simulation from 60 to 200 seconds. We also changed the probabilities
of insertions and deletions in each second from 5% to 25%, in order to modify
the mobility rate and antenna range of nodes from 2 to 15 m/s and 100 to 250

Fig. 4. Example of Final Associated Graph and Hamiltonian Cycle
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meters respectively. This range also defines different frequencies of accesses to
the network.

The first conclusions that we have obtained from the simulations are:

– The protocol scales perfectly to any sort of networks with different levels of
topology changes.

– Node density is a key factor for the mean time of insertions, but such a factor
is not as big as it might be previously assumed since nodes do not forward
two packets of data corresponding to the same proof of life coming from two
different nodes.

– A right choice of parameter T should be done according to number of nodes,
bandwidth of wireless connections and computation and storing capacities
of nodes.

– A positive aspect of the proposal is that the requirements in the devices’
hardware are very low.

5 Conclusions and Open Questions

This work describes a new authentication scheme that has been specially de-
signed for MANETs. Such a protocol supports knowledge-based member au-
thentication in server-less environments. The overall goal of this proposal has
been to design a strong authentication scheme that is able to react and adapt to
network topology changes without the necessity of any centralized authority. Its
core technique consists of a Zero-Knowledge Proof, in order to avoid the trans-
ference of any relevant information. Furthermore, the proposal is balanced since
the procedures that the legitimate members of the network have to carry out
when the network is upgraded (insertion or deletion of nodes) imply identical
work for every legitimate member of the network.

The development of an initial simulation of the proposal through the NS-2
network simulator has been carried out. The definitive simulation results will
be included in a forthcoming version of this work. Also, the study of different
applications, practical limitations and possible extensions of the proposed scheme
may be considered open problems.
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Abstract. In vehicular networks, supporting user mobility is one of the
most challenging issues. Recently, as the desires for the high mobility
and high-quality real-time services increase, fast handoff among base
stations comes to a center of quality of connections. Therefore, minimiz-
ing re-authentication latency during handoff is crucial for revolutionizing
the driving environment on public vehicular networks in terms of safety
and convenience. In this study, we propose an efficient pre-authentication
scheme for fast and secure handoff in IEEE 802.11-based vehicular net-
works. The proposed scheme reduces the handoff delay by reducing 4-way
handshake to 2-way handshake between an access point and a mobile ve-
hicle station during the re-authentication phase. Furthermore, the pro-
posed scheme gives little burden over the proactive key pre-distribution
scheme while satisfying 802.11i security requirements.

Keywords: proactive key distribution, fast handoff, pre-authentication,
IEEE 802.11 network, vehicular network.

1 Introduction

The vehicular network has the potential to significantly enhance the driving en-
vironment providing increased safety and convenience. For many applications,
vehicular networks will require real-time, or near real-time, responses as well as
hard real-time guarantees. Differing from traditional sensor networks, or ad hoc
networks, vehicular networks typically require faster responses [1]. From these
perspectives, for instance, a real-time emergency application notifying vehicles
of a sudden deceleration or accidents neighboring them would prevent potential
accidents entirely. This network environment motivates the need for an infras-
tructure that will provide drivers with access to a variety of vital vehicular and
roadside information.

Nowadays, the dedicated short range communications (DSRC) [2], based on
an extension to the IEEE 802.11 standard [4] is emerging as a competent tech-
nology to meet the requirements of users for disseminating traffic information
and accessing to roadside base stations for quality services [3]. Due to the lack
of mobility support of IEEE 802.11, however, seamless mobile services, partic-
ularly for real-time applications are hard to be served in IEEE 802.11-based
vehicular networks when a vehicle station (STA) moves from one access point

A. Miyaji, H. Kikuchi, and K. Rannenberg (Eds.): IWSEC 2007, LNCS 4752, pp. 121–136, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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(AP) to another on the roadside. Especially, Authentication, Authorizing, and
Accounting (AAA) servers are supposed to be located far away from each AP
so that the full authentication delay requires about 1000ms [16]. This excessive
latency of complete user authentication and security negotiations which should
be performed at each AP during handoff can be a main obstacle to seamless
services for real-time applications in a high mobile vehicular network. Therefore,
fast re-authentication and re-association schemes are essential during handoff
between APs.

A logical handoff procedure in IEEE 802.11-based wireless networks consists
of three phases: detection, search, and execution. In the detection phase, the
STA discovers that it is out of range of its current AP. At this point, the STA
launches the search phase where the STA seeks to identify a candidate set of
next APs via active or passive means [4]. Once the candidate set of next APs
has been identified, the STA selects the next AP and begins re-association and
re-authentication with it. The current IEEE 802.11i [5] security architecture rec-
ommends an authentication process to follow EAP/TLS [8]. In addition, IEEE
802.11i makes use of IEEE 802.1x [7] model to authenticate the STA to the
AAA server using AAA protocols like a Remote Authentication Dial-In User
Service (RADIUS) [9] to prohibit unauthorized access to the network. The com-
plete EAP/TLS authentication, however, causes too large latency to support
multimedia services whose overall latency should not exceed about 50ms [15].

To solve this problem, many previous studies proposed fast handoff schemes
in diverse aspects. A. Mishra et al. proposed the proactive key distribution
(PKD) scheme using the mobility topology of the network, Neighbor Graph,
which tracks the potential APs to which a STA may handoff in the near future
[10]. This scheme reduces the handoff delay by pre-authenticating the STA to
the next neighbor APs before handoff. To predict more precise neighbor graph
considering handoff pattern of the STA, S. Pack et al. gathered statistics on the
mobility pattern of a STA and introduced the frequent handoff region (FHR)
which have the highest probabilities to be the next AP in the selective neighbor
caching (SNC) scheme [12]. To reduce the authentication exchange duration,
M. Kassab et al. proposed two pre-authentication schemes: PKD with antici-
pated 4-way handshake, and PKD with inter AP protocol (IAPP) caching [13].
However, these schemes heavily burden the current AP with additional com-
munication and computation efforts in that the current AP should pre-establish
independent private session keys for its neighbor APs and transmit the keys to all
of its neighbor APs. To make matters worse, the security cannot be guaranteed
because APs are supposed to know private keys of their neighbor APs.

In this study, an efficient pre-authentication scheme enhancing the proactive
key distribution method is proposed. The proposed scheme reduces the num-
ber of exchanges for private session key generation between an STA and an AP
of the re-association phase by exchanging key-generating materials in the pre-
authentication phase before handoff. Therefore, the re-authentication delay of
4-way handshake during handoff can be reduced to that of 2-way handshake. In
addition, the proposed scheme guarantees security requirements of IEEE 802.11i
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Supplicant Authenticator

Authentication 
Server

LAN

Uncontrolled 
port

Controlled port

Fig. 1. IEEE 802.1x architecture

standard and secure communications between an STA and each AP. The pro-
posed scheme can be adapted to a typical IEEE 802.11-based local area network
(LAN) where the requirement for real-time responses is crucial as well as the
high mobile vehicular networks.

The paper is organized as follows. In Section 2, we describe IEEE 802.11i-
based handoff mechanisms using the PKD method. In Section 3, we propose an
efficient pre-authentication scheme enhanced from the PKD method. In Section
4, we evaluate the performance of the proposed scheme compared with the PKD-
based pre-authentication methods and make a security analysis. In Section 5, we
show a simulation result, and remark the conclusion of the paper in Section 6.

2 Related Work

In this section, a brief description on the handoff mechanism in IEEE 802.11
wireless networks is introduced. IEEE 802.11i uses IEEE 802.1x [7] framework
to authenticate and authorize devices connected to the network at the link layer
for various link technologies. The IEEE 802.1x has three main entities: the sup-
plicant, authenticator, and authentication server (AS). In a vehicular network
scenario using the IEEE 802.11i, the roadside access point AP, vehicle station
STA, and AAA server take the role of the authenticator, supplicant, and AS of
the IEEE 802.1x architecture, respectively. In the architectural framework of the
IEEE 802.1x standard as described in Fig. 1, a supplicant who desires to use
a service authenticates to the central AS via the uncontrolled port on the au-
thenticator. The authentication process between the AS and the supplicant via
the authenticator is carried over an extensible authentication protocol (EAP) [8]
like an EAP/TLS. Once the AS and the supplicant mutually authenticated each
other, the authenticator and the supplicant establish keying materials through
an EAPOL-key exchange [6]. After that, the AS directs the authenticator to
allow the STA to access the network through the controlled port on the authen-
ticator. Typically, the AS and authenticator communicate with each other using
RADIUS [9] protocol.



124 J. Hur, C. Park, and H. Yoon

STA AP AAA

(Re) association

EAPOL-Start

EAPOL-Req(ID)

EAPOL-Resp(ID)

EAP-TLS(ServerHello,ServerCert,Done)

EAP-TLS(Client Key Exchange,[Cert], 
Change Cipher,Finished)

EAP-TLS(Change Cipher, Finished)

EAP-TLS:empty

EAP-Success

EAPOL-Key:Message(A)

Access Request

Access Accept

EAPOL-Key:Message(B)

EAPOL-Key:Message(C)

EAPOL-Key:Message(D)

Association 
Delay

Authentication 
Delay

MKMK

PMKPMK

PMKPTK

PTK

EAP-TLS:Start

EAP-TLS(ClientHello)

GTKGroup key handshakeGTK

4-way handshake 
delay

Group key 
handshake delay

Fig. 2. Complete EAP/TLS authentication exchange

2.1 EAP/TLS Authentication

In the IEEE 802.11i authentication process using the EAP/TLS, the STA and
the AAA server mutually authenticate each other based on a certificate from a
common trusted certificate authority (CA). The mutual authentication process
drives the STA and the AAA server to share a strong secret master key (MK)
and to initialize one-way pseudo-random functions (PRF) for generating further
key materials. The STA and the AAA server generate a pairwise master key
(PMK) separately using the following equation (1):

PMK = PRF (MK, ‘client EAP encryption’ |
ClientHello.random | ServerHello.random).

(1)

The AAA server then sends the PMK to the associated AP. After that, the STA
and the associated AP perform 4-way handshake through the EAPOL protocol
[6] to confirm the PMK between them and to derive a session key, pairwise
transient key (PTK). The 4-way handshake is described as follows:
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1. Message(A): EAPOL-Key(ANonce, Unicast)
– This message contains ANonce, which is a nonce value generated by the

AP. Once the STA has received this message, the STA can derive a PTK.
This message is not encrypted or integrity-verified.

2. Message(B): EAPOL-Key(SNonce, Unicast, MIC)
– This message contains SNonce, which is a nonce value generated by the

STA, and a message integrity check (MIC) to protect its integrity. The
AP derives the PTK using SNonce and verifies the MIC. If this step
succeeds, the AP can confirm that the STA has the correct PMK and
PTK, and that there is no man-in-the-middle attack.

3. Message(C): EAPOL-Key(Install PTK, Unicast, MIC)
– This message tells the STA that the AP is ready to begin encryption

using PTK. If this step succeeds, the STA can verify that the AP has the
correct PMK and PTK, and that there is no man-in-the-middle attack.

4. Message(D): EAPOL-Key(Unicast, MIC)
– After this message is sent, both sides install the PTK and begin data

encryption using the PTK.

During the 4-way handshake, the STA and the AP generate PTK separately
using following equation (2):

PTK = PRF (PMK, ANonce, SNonce, STAmac, APmac), (2)

where STAmac and APmac represent the MAC addresses of the STA and the
AP, respectively. The PTK is shared only between the STA and the currently
associated AP for secure communication between them. The confidentiality of
the PTK is only based on a secrecy of the PMK because other key-generating
materials are exposed. Fig. 2 describes the complete message exchanges and the
point of each key generation time during a complete EAP/TLS authentication.

The latency of the full EAP/TLS authentication exchanges is estimated to
about 1000ms, which takes an excessive delay compared with the 50ms for real-
time applications [16]. Thus, to support a fast authentication during handoff
in IEEE 802.11-based networks, the proactive key distribution scheme using
neighbor graphs of APs was proposed recently [10].

2.2 Proactive Key Distribution

The proactive key distribution (PKD) scheme [10] pre-authenticates an STA
to next APs by pre-distributing authentication keys, PMKs, to the neighbor
APs of the currently associated AP before handoff. Thus, upon handoff, re-
authentication exchange between the STA and the AP is reduced to the 4-way
handshake and the group key handshake. The neighbor graph for all APs in the
network is managed by the AAA server en masse. To predict and make a precise
neighbor graph can be one of the challenging issues in the wireless handoff,
however, it is out of our interests in this paper.
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Fig. 3. Authentication exchange process with PKD

In the PKD method, the PMK is generated through following equations (3):

PMK0 = PRF (MK, ‘client EAP encryption’ |
ClientHello.random | ServerHello.random),

PMKn = PRF (MK, PMKn−1 | APmac | STAmac), (3)

where n represents the nth re-association. The PMK0 is generated during a
first mutual authentication between an STA and an AAA server. The AAA
server pre-distributes the PMKn to next neighbor APs for pre-authentication.
This prevents other dissociated APs from generating the PTK of the currently
associated AP and the STA, which follows the IEEE Task Group I (TGi) trust
assumption that the only associated AP and the AAA server are trusted [10].

The pre-authentication processes with PKD method are described in Fig.
3(a). After a first authentication, the current AP requests the AAA server to
pre-authenticate the associated STA to its neighbor APs for a predictive handoff
via Accounting-Request message. Upon receiving it, the AAA server multicasts
Notify-Request messages to the neighbor APs, and the neighbor APs respond to
the AAA server with Notify-Response messages. Then, the AAA server generates
PMKn using equation (3) and sends it to the neighbor APs.

Next, the re-authentication processes are described as follows. As soon as the
STA moves to a next AP, the STA gets the MAC addresses of the AP, generates
a new PMKn, and compares it with the PMKn of the AP which was given by
the AAA server in the pre-authentication phase.

Thus, the mutual authentication process between an STA and an AAA server
after handoff is reduced to perform 4-way handshake and group key handshake
as shown in Fig. 3(b). The PKD method reduces the full authentication delay
of about 1000ms to the re-authentication delay of 60ms [16], but it still exceeds
the expected latency for real-time applications in vehicular networks.
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Fig. 4. Authentication exchange process with ‘PKD with IAPP Caching’

2.3 Other Approaches for Pre-authentication

Recently, M. Kassab et al. proposed two pre-authentication methods based on
the PKD method [13]. The main idea of these methods is to reduce the re-
authentication delay by performing 4-way handshake in the pre-authentication
phase at the expense of additional loads at the AP and the STA, and security
degradation.

PKD with IAPP Caching. In the PKD with IAPP caching method, a current
AP calculates all the PTKx for its neighbor APx separately using the PMK,
and pre-distributes the PTKx and its valid time value to the corresponding
neighbor APx through the inter access point protocol (IAPP) [6] as described
in Fig. 4(a). Upon handoff to a new APx, the STA derives the PTKx and
authenticates itself to the AP with the PTKx through the group key handshake.
Thus, the re-authentication phase is reduced to the group key handshake process
without 4-way handshake as shown in Fig. 4(b). This re-authentication, however,
is temporary authentication, which remains valid only within the time limit.
After the time limit, the STA and the AP should authenticate each other and
generate a permanent PTK for secure channel again.

PKD with Anticipated 4-way Handshake. In the PKD with anticipated
4-way handshake method, an STA and neighbor APs perform 4-way handshake
through the current AP in the pre-authentication phase in advance. Thus, this
method also reduces the re-authentication delay to the only group key handshake
delay. To carry out 4-way handshake, the STA receives a list and MAC addresses
of neighbor APs of the current AP from the AAA server. So, the STA can
generate PTKs with the neighbor APs through its current AP using PMKns.
Each authentication exchange process is described in Fig. 5.
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3 Efficient Proactive Key Distribution

In this section, a pre-authentication scheme based on the PKD method is pro-
posed for fast handoff in the IEEE 802.11-based vehicular network environment.
The main idea of the proposed scheme is to perform 2-way handshake during a
pre-authentication phase and perform remaining 2-way handshake during a re-
authentication phase while satisfying security requirements of the IEEE 802.11i
standard.

3.1 Modified EAP/TLS Authentication

To exchange the nonce values between the STA and its neighbor APs in pre-
authentication phase, the full EAP/TLS authentication exchange should be little
modified as described in Figure 6. Note that the STA and AP exchange their
nonce values before 4-way handshake in the modified EAP/TLS authentication.

The STA transmits its nonce values to an AAA server through the following
modified message exchange during the first full EAP/TLS authentication:

EAP-TLS:empty −→ EAP-TLS(SNonce).

Then, the AAA server stores the nonce value received from the STA and delivers
it with the PMK to the associated AP. Upon receiving the nonce value, the AP
can generate the PTK for the STA. Then, the AP transmits its nonce value and
MIC to the STA to verify that the AP has the correct PMK and PTK through
the modified EAP-Success message exchange:

EAP-Success −→ EAP-Success(ANonce, MIC).
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Therefore, thereafter only 2-way handshake is required to establish the PTK
between the STA and the AP, and check the integrity of the keying materials.
The 2-way handshake process is described as follows:

1. Message(A): EAPOL-Key(Install PTK, Unicast, MIC)
– This message tells the AP that the STA is ready to begin encryption

using the PTK. If this step succeeds, the AP can verify that the STA
has the correct PMK and PTK, and that there is no man-in-the-middle
attack.

2. Message(B): EAPOL-Key(Unicast, MIC)
– After this message is sent, both sides install the PTK and begin data

encryption using the PTK.

3.2 Authentication with the Efficient PKD

After the first mutual authentication between an STA and an AAA server, the
AAA server requests neighbor APs of the current AP to pre-authenticate the
STA by sending the corresponding PMK and SNonce of the STA. Upon receiving
them from the AAA server, the neighbor APs generate their own PTK for the
STA during a pre-authentication phase and respond to the AAA server with
their own nonce values and MICs of the message. Upon receiving them, the
AAA server transmits a list of neighbor APs, their nonce values, and MICs to
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the STA. After that, the STA generates PMKs and PTKs corresponding to each
neighbor AP and verifies that each neighbor AP has the correct PMK and PTK.
If these steps succeed, the AAA server completes the pre-authentication phase
by transmitting an access accept message to the neighbor APs as described in
Fig. 7(a).

Upon handoff, the STA selects the corresponding PMK and PTK to the re-
associated AP among the keys which were generated in the pre-authentication
phase. Then, the STA and the AP check for the integrity of the keys and install
the PTK by performing 2-way handshake. Therefore, re-authentication exchange
between the STA and the AP is reduced to the 2-way handshake and the group
key handshake as in Fig. 7(b). Compared to the PKD method, the proposed
scheme requires one more additional communication exchange for the list of
neighbor APs in the pre-authentication phase while reducing 4-way handshake
to 2-way handshake in the re-authentication phase.

4 Protocol Analysis

4.1 Performance Analysis

In this section, we analyze and compare the performance of the authentication
schemes: PKD, PKD with IAPP caching, PKD with anticipated 4-way hand-
shake, and the proposed scheme. The overall results of the analysis are summa-
rized in Table 1 in which m denotes the average number of neighbor APs per
each AP.

In Table 1, the communication factor represents the necessary number of mes-
sage exchanges for the PMK and PTK establishment among the entities. The
common exchanges of the first full EAP/TLS authentication exchanges, or group
key handshake are not included in this analysis. The computation factor repre-
sents secret keys, which should be generated by each entity per handoff except
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Table 1. Performance analysis of authentication schemes

PKD PKD with PKD with anticipated Proposed

IAPP caching 4-way handshake scheme

Communi- Pre-auth. m (PMK) m (PMK), m (PMK) + 1 (list), m (PMK)

cation m (PTK) 2m×4-way handshake + 1 (list)

Re-auth. 4-way <permanent> 0 2-way

handshake 4-way handshake, handshake

group key handshake

Compu- STA PMKn, PTK, <temporary> PMKn, GTK, PMKn, PTK,

tation GTK PTK, GTK, m× PTK GTK

<permanent>

PMKn, PTK, GTK

AP 0 m× PTK 0 0

Memory STA 0 0 local NG local NG

Requirement AP 0 local NG 0 0

IEEE 802.11i Security Y N Y Y

the common key PMK0 and MK. The memory requirement factor represents
the memory consumption for a neighbor graph (NG) of the current AP, which
should be maintained by each entity for key generation in the pre-authentication
phase. The AP in Table 1 indicates the current AP.

The IEEE 802.11i security factor represents whether the schemes satisfy the
security requirements of the IEEE 802.11i standard: (1) There should be mu-
tual authentication and fresh key derivation at each AP, (2) Mutual authentica-
tion should not cause man-in-the-middle attack. The PKD with IAPP caching
method is very vulnerable to the AP’s compromise and the man-in-the-middle
attack because each AP should participate in the process of secret key establish-
ment for other APs. Thus, even a single AP’s compromise can be a great threat
to the security of the whole network.

The total communication exchanges for authentication of the proposed scheme
is the least compared to the other schemes. The PKD with anticipated 4-way
handshake scheme has the shortest re-authentication delay; however, as the net-
work size and the velocity of mobile vehicle STAs increase, the total authenti-
cation efforts of the scheme may increase most greatly due to the overburdened
pre-authentication process.

Compared to the PKD method, the proposed scheme requires one more com-
munication exchange in the pre-authentication phase and additional storage from
the STA for a neighbor list, but reduces the 4-way handshake to the 2-way hand-
shake while keeping the other protocol exchanges intact and satisfying IEEE
802.11i security requirements. This can make the secure and seamless multi-
media services in IEEE 802.11-based vehicular network to be practical whose
handoff latency should be less than 50ms in that the re-authentication delay
would be reduced from 60ms to the half.
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4.2 Security Analysis

Key Freshness. To guarantee the freshness of a key derived at each AP, how
to refresh the nonce value of an STA can be one of the considerable issues in the
proposed scheme. Although the freshness of the PTK can be guaranteed by the
freshness of the ANonce, a reuse of the SNonce may make a system vulnerable to
the replay attack. An attacker who masqueraded as a participant in the system
by forging a MAC address can eavesdrop on every message, remember nonces
and MICs of each message, insert forged messages, and replay stored messages
with a combination of known nonces and MICs. To refresh the nonce value of
the STA, it can be one solution for a trusted AAA server to regenerate the
SNonce on behalf of the STA and distribute it to neighbor APs like the PMKn

pre-distribution. That is,

SNoncen = PRF (MK, SNoncen−1, STAmac, APmac),

where n represents nth re-association of the STA. This nonce value generation
process can achieve the freshness of the PTK. In addition, because the MK is
securely shared between the STA and the AAA server, no other participants
but they can generate or predict the appropriate SNonce per handoff. Under
the assumption that the AAA server is totally trusted and cannot be exploited
by an outsider adversary, the randomness of the SNonce can be guaranteed to
the adversary since an adversary cannot guess the secret MK. Thus, the key
refreshness is guaranteed.

DoS Attack. According to the security verification of 4-way handshake using
Murϕ model in [17], the 4-way handshake is analyzed to be vulnerable to a
simple attack on Message(A) that causes PTK inconsistency between the AP
and the STA. The attacker who is impersonating the authenticator sends a forged
Message(A) to the STA after Message(B) of the 4-way handshake. The STA
will then calculate a new PTK corresponding to the nonce for the newly received
Message(A), leading to PTK inconsistency so that the subsequent handshakes
to be blocked. The vulnerability of the 4-way handshake to DoS attack on the
Message(A) is actualized by the AP-initiated 4-way handshake in which the
STA should must accept all messages to allow the handshake to proceed while
the AP can initiate only one handshake instance and accept only the expected
response within the expected time. So, the memory exhaustion attack on the
STA always exists.

In the proposed scheme, however, the STA initiates the handshake, thus the STA
needs not store all the unexpectedly received nonces and derived PTKs. This pre-
vents the memory exhaustion attack on the typically resource-constrained STA.
However, the STA-initiated 4-way handshake is still vulnerable to the DoS attack
on the Message(A). One possible solution is to add a MIC to the Message(A)
using a common secret such as a PMK to prevent an attacker from forging it, and
to use a sequence counter to defend against a replay attack.
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4.3 Correctness Analysis

Here, we analyze our pre/re-authentication scheme using a logic-based formal
analysis tool [18],[19] to ensure that our authentication protocol functions cor-
rectly. We deem that authentication is complete between the STA and AP if
there is a PTK such that both believe(|=) the share of it(P T K↔ ):

STA |= STA
PT K↔ AP, AP |= STA

PT K↔ AP.

We idealize the protocol below, with STA and APn as the principals, AS as
the AAA server, Ns and Na as the nonce values, and MICk{m} as the MIC of
the message m encrypted under the key k.

(Pre-authentication)
Message 1. AS → APn : PMK, Ns

Message 2. APn → AS : Na, MICPTK{Na}
Message 3. AS → STA : MACAP , Na, MICPTK{Na}
(Re-authentication)
Message 4. STA → APn : MICPTK{}
Message 5. APn → STA : MICPTK{}

To analyze this protocol, we first give the following assumptions:

STA |= STA
PMK↔ AS, AS |= STA

P MK↔ AS,

AS |= STA
PMK↔ APn, STA |= AS| ∼ Ns(AS conveyed Ns),

APn |= AS � Ns(AS is told Ns), STA |= �(Na)(Na is fresh),
APn |= �(Ns).

We analyze the idealized version of our authentication protocol by applying logi-
cal postulates of [18] and [19] to the assumptions; the analysis is straightforward.
For brevity, we do not describe our deductions, and simply list the final results:

Analysis of Message 1. APn |= STA
PT K↔ APn

Analysis of Message 2,3. STA |= STA
PT K↔ APn

Analysis of Message 4. APn |= STA |= STA
P T K↔ APn

Analysis of Message 5. STA |= APn |= STA
P T K↔ APn

This state achieves more than the complete condition of the authentication. Each
principal, STA and neighbor APs, knows a shared secret, PTK, with each other
and has a knowledge of a shared secret that he believes the other will accept
as being shared by the two principals. From this point, they can transfer data
securely.

5 Simulation

In this section, the maximum velocity of a vehicle that each authentication
scheme can support is analyzed and the simulation result is shown. In the
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simulation, it is assumed that the pre-authentication of a vehicle is performed to
m one-hop neighbor APs. Let ΔTx and RTTAAA be the time duration needed to
perform a process x and round-trip time to AS, respectively. Let ΔTIAPP and
ΔTNoIAPP be the association latency using the IAPP protocol and using no
IAPP protocol, respectively. Let D denote the radius of cell coverage of an AP,
and C denote the length of the intersected cell coverage between two neighbor-
ing APs. For simplicity, a vehicle is assumed to go through the center of service
cells of APs. Then, the maximum velocity V of a vehicle in each scheme is cal-
culated using the pre-authentication latency (ΔTpreauth) and re-authentication
latency (ΔTreauth) in Table 2 as V = MIN((D − 2C)/ΔTpreaut, C/ΔTreauth),
where MIN is represented as a minimum function. V is the maximum veloc-
ity that guarantees the complete key exchanges needed for fast handoff in the
authentication schemes.

According to the latency budget estimated in [16], the simulation environ-
ments are set as follows: ΔTscan = 40ms, ΔT4way = 60ms, ΔTreassoc = 10ms,
RTTAAA = 50ms, ΔTIAPP = 40ms, ΔTNoIAPP = 2ms. D is set to 30m and C
is set to 5m. Then the simulated maximum velocity of a vehicle in each scheme

Table 2. Authentication latency

ΔTpreauth ΔTreauth

PKD (3m + 1)/2 × RTTAAA ΔTscan + ΔT4way + ΔTreassoc

PKD with m × ΔTIAP P + <permanent> ΔTscan + ΔT4way + ΔTreassoc

IAPP caching (3m + 1)/2 × RTTAAA <temporary> ΔTscan + ΔTreassoc

PKD with anticipated 4m × (ΔTIAP P + ΔTNoIAPP ) ΔTscan + ΔTreassoc

4-way handshake +(3m + 2)/2 × RTTAAA

Proposed scheme (3m + 2)/2 × RTTAAA ΔTscan + 1/2 × ΔT4way + ΔTreassoc
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can be shown like Fig. 8. The x-axis represents the number of m, and y-axis
represents the maximum velocity that each scheme can support.

Fig. 8 shows that as m increases, the maximum velocity of a vehicle tends to
be more affected by the pre-authentication latency than by the re-authentication
latency. When m = 1, the PKD with anticipated 4-way handshake can support
the highest velocity of a vehicle except the PKD with IAPP caching of temporary
authentication (that is not a secure protocol). As m increases, however, the pre-
authentication latency exceeds the re-authentication latency, thus the maximum
velocity of a vehicle decreases drastically due to the pre-authentication process.
The proposed scheme shows higher velocity than PKD when m < 6, but as m
increases more than 6, V is also restricted by the pre-authentication latency,
thus it can support almost the same velocity as PKD.

6 Conclusion

An efficient key distribution scheme for fast and secure handoff is an essential
technology for secure and quality services in IEEE 802.11-based vehicular net-
works. In this study, an efficient pre-authentication scheme based on the PKD
method is proposed. The proposed scheme clearly improves the PKD method by
reducing the re-authentication delay to 2-way handshake by transmitting nonce
values between the STA and APs in the pre-authentication phase without se-
curity degradation. Since the proposed pre-authentication scheme is simple and
does not require any impractical trust relationship among network entities, it is
expected to be extensively adapted to IEEE 802.11-based vehicular networks for
fast and secure handoff.
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Abstract. Presently, most computers authenticate a user’s ID and password be-
fore the user can log in. However, if the two items are known to hackers, there 
is a risk of security breach. In this paper, we propose a system, named the Intru-
sion Detection and Identification System (IDIS), which builds a profile for each 
user in an intranet to keep track of his/her usage habits as forensic features. In 
this way the IDIS can identify who the underlying user in the intranet is by 
comparing the user’s current inputs with the features collected in the profiles 
established for all users. User habits are extracted from their usage histories by 
using data mining techniques. When an attack is discovered, the IDIS switches 
the user’s inputs to a honey pot not only to isolate the user from the underlying 
system, but also to collect many more attack features by using the honey pot to 
enrich attack patterns which will improve performance of future detection. Our 
experimental results show that the recognition accuracy of students in the com-
puter science department of our university is nearly 99.16% since they are  
sophisticated users. The recognition accuracy of those other than computer  
science students is 94.43%.  

Keywords:  Forensic Features, Intrusion Detection, Data Mining, Identifying 
Users. 

1   Introduction 

Being widely used and quickly developed in recent years, network technologies have 
provided us with new life and shopping experiences, particularly in the fields of e-
business, e-learning and e-money. But along with network development, there has 
come a huge increase in network crime. It not only greatly affects our everyday life, 
which relies heavily on networks and Internet technologies, but also damages com-
puter systems that serve our daily activities, including business, learning, entertain-
ment and so on. Forty million user files of MasterCard and VISA were exposed in 
2005 when the company cooperating with CardSystem Solutions was hacked [1, 2]. 
Many people were forced to renew their credit cards to avoid any financial loss. This 
event shows the importance of network security. Besides, internal hacking is difficult 
to detect because firewalls and IDSs usually only defend against outside attacks. 

Currently, many systems can identify who the user logging into a system is by  
deploying biotechnical verifications [3-9]. Most current computers check UID  
and password as an authentication. But hackers may install Trojans to pilfer victims' 
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security patterns, or issue a large scale of trials with the assistance of a dictionary to 
access users’ passwords before they can “legally” log in to a system. When success-
ful, hackers may access users’ private files or even destroy system settings. Most 
host-based security systems can discover an intrusion from a user’s logged history af-
terward. And most network-based systems can detect an intrusion online [10-12]. 
However, to identify who the attacker is in real-time is difficult since attack packets 
are often issued with forged IPs. 

In this paper, we propose a security system, named the Intrusion Detection and 
Identification System (IDIS), which mines log data to identify commands and their 
sequences (together named command sequences (C-sequences in short)) that a user 
habitually submits and follows respectively as the user’s forensic features. When an 
unknown user logs in to a computer, the IDIS starts monitoring the user’s input com-
mands to detect whether he/she is issuing an attack. In the following, we use 
“hacker”, “attacker” and “intruder” interchangeably as the same terms are even de-
fined differently by different authors.  

The rest of this article is organized as follows. Section 2 introduces the related re-
search. Section 3 describes the framework and details of the IDIS. Experimental re-
sults are shown in section 4. Section 5 concludes this paper and addresses our future 
work. 

2   Related Research  

Computer Forensics, which views computer systems as scenes of a crime, is computer 
security technologies that analyze what attackers have done. Most of their applica-
tions focus on how to identify malicious network behaviors and the characteristics of 
attack packets, and the way to identify attack patterns based on their analyses. Abdul-
lah et al. [13] used package dump tools, such as tcpdump and pcap, to collect and ana-
lyze network packets and to identify network attacks from different network states 
and packets’ distribution. 

Yu et al. [14] provided another example of integrating computer forensics with 
IDS. A knowledge-based system was deployed to collect forensic features from mali-
cious network behaviors. This system performed excellently in improving the hit rate 
of intrusion alerts. 

Yin et al. [15] proposed an approach that built a Markov chain to describe users’ 
normal operations. A state of the chain records the probability of entering the next 
state. However, this approach focuses on system calls generated instead of commands 
submitted. Chau et al. [16] used a pattern extraction technique to identify particular 
crime data, such as segmenting and extracting a suspect from a picture on a security 
video. Cabrera et al. [17] deployed sequential pattern mining to identify attack pat-
terns that hackers frequently submit, and classified the modus operandi that suspects 
used in the commission of crimes into predefined crime types. 

These techniques and applications truly contribute to network security. However, 
they cannot easily authenticate remote-login users, and cannot detect specific types of 
intrusions, e.g., when an unauthorized user logs in to a system with a legal UID and 
password. Authentication based on the user’s operation habits is what we propose.  
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The IDIS uses data mining and forensic techniques to respectively analyze and iden-
tify user operation characteristics, which as a kind of biological characteristics are  
essential in identifying a user. This system can identify attack patterns that hackers of-
ten use as well. By long-term observation, user habits can be effectively identified.  

3   System Framework 

The IDIS consists of a command monitor, detection server, mining server and honey 
pot. The command monitor bridges the system kernel and shell, collects input com-
mands from the underlying user and transfers the collection to a detection server, 
which not only stores these commands in the user’s log file, but also compares these 
commands with attack patterns in real-time to identify the sources of attacks. In the 
IDIS, attack patterns are represented by a reverse tree, a tree on which commands are 
organized in the reverse order of their arrival from the root. If the input commands 
and attack patterns match, the detection server notifies the command monitor to iso-
late the user from the system kernel and redirects his/her inputs to a honey pot. The 
honey pot is a virtual system that conceals the protected system from the user and col-
lects many attack patterns to increase the IDIS’s detection capability. By deploying a 
reverse tree, we can lightweight the IDIS and speed up online detection. The mining 
server analyzes log data with data mining techniques to identify user habits. The IDIS 
can identify who an underlying user is in a given intranet by comparing the user’s cur-
rent inputs with all others’ habits.  

3.1   Command Monitor 

As an extended portion of an operating system, the command monitor comprises an 
input interceptor and system call filter. It records sensitive system calls, which are de-
fined as system calls that may change system settings (e.g., kill process and close ser-
vice) and access sensitive data (e.g., open a file that has system attributes), in a table 
named a sensitive call table. When a user submits a command, at least one interrupt 
for receiving and processing the command will be generated. The system kernel on 
accepting the interrupt or the first interrupt will notify the input interceptor, a subsys-
tem that intercepts user commands, to receive the command and pass it to the shell 
(command interpreter). A system call generated by the shell in executing a command 
is compared with a sensitive call table. Once matched, the system call will be trans-
ferred to a system call filter to check whether the call is safe or not based on the safety 
level of the call and the access limitation of the user. Unsafe system calls will be re-
tained for further analysis. Safe ones will be sent to the system kernel to perform their 
corresponding service. 

In fact, many user operations, including mouse movement and key press, will gen-
erate interrupts. Our goal is to extract the characteristics of user inputs. Therefore, 
only commands are addressed in this research so as to simplify the scope. 

Besides, we divide users into groups according to their occupations. Each group G 
has its corresponding inhibited commands, named a class-limited command list (G), 
e.g., an unauthorized office receptionist should not submit network administrating 
commands [18]. 
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Fig. 1. Control flow of the generation of a user profile 

3.2   Mining Server 

A mining server extracts commands that a user has habitually used from his/her log 
file, identifies C-sequences, counts the times that a C-sequence appears in the log file, 
and stores the result in the user's habit file, in which a C-sequence is followed by its 
appearance count. The user's habit file is then compared with all others’ habit files in 
the underlying system to identify the user- specific C-sequences and C-sequences that 
are commonly used by all or most users. After that, a C-sequence’s discrimination 
score, used to identify whether the probable user who submits the C-sequence is 
among the users of the system, is calculated to generate the user’s profile [19, 20], 
which is a copy of his/her habit file, but a C-sequence’s appearance count is replaced 
by its discrimination score. Fig. 1 illustrates the control flow. The way to calculate a 
discrimination score will be described later.  

3.2.1   Mining User Habits and Attack Patterns 
A log file consists of many sessions. Each comprises commands a user has submitted 
within the period of time between his/her login and the corresponding logout. Given a 
user’s log file, the IDIS processes the commands with a size 10 sliding window, 
named a Log-sliding window (Log-window), to partition the commands along their 
submitted sequence into k-grams where k is the number of consecutive commands, k 
=2, 3, 4....10. The reader may ask why the window size is 10. The reason is that ac-
cording to our data the longest user habit we collected in this research was 6 com-
mands, and the longest command sequence, e.g., L, that contains a user habit, e.g., H, 
constrained on first(L)=first(H) and last(L)=last(H) was 10 commands where first(X) 
and last(X) respectively represent the first and last commands of a sequence of com-
mands X where X=L or H.  In addition, another sliding window of 10 commands, 
named a Compared-sliding window (Com-window), is deployed on another con-
cerned session. This time, k’ consecutive commands, preserving their submitted se-
quence, are extracted from a Com-window generating a total of (10 – k’ + 1) k’-

grams, k’=2, 3, 4,...10. The mining server compares each of 
10

2

(10 1)
K

k
=

− +∑  k-grams 

with
10

' 2

(10 ' 1)
K

k
=

− +∑ k’-grams by using the longest common sequence algorithm which 

can reveal the similarity between two strings by skipping noises. After that, the Com-
window shifts one command right. The procedure is repeated until the last session of 
the log file is involved. Then the Log-window shifts one input command right. The 
whole procedure is repeated until the last ten or all (if less than ten) commands of the 
last second session are encountered by the Log-window.  

Here is an example. Assume that a log file has r sessions. Each of the first r-1 ses-
sions, e.g., session x, x=1,2,…r-1, is compared with each of its following sessions  
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(i.e., sessions x+1 to r), denoted by session y. That is, a total of ( 1) / 2r r − session 

comparisons are performed. During the comparison of sessions x and y, each of the 
|session x|-9 Log-windows will be compared with each of the |session y|-9 Com-
windows where |session u| is the number of commands session u has, and u=x or y. 
Hence, a total of (|session x|-9) • (|session y|-9) window comparisons are performed. 

On each comparison of two windows, 
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comparisons. 
Fig. 2 gives two examples. The solid-line rectangles list two log sessions, sessions 

r and p. The shaded areas are Com-windows. The dotted-line rectangle contains a C-
sequence, a k-gram, extracted from a Log-window on session m where k= 7. “ls”, 
“cat”, “ping”, “ping”, and “telnet” in session r are matched in order to the k-gram at 
k’ = 7. “telnet” and “man” are noises, and thus are ignored. The longest common se-
quence between the k-gram and k’-gram in sessions m and p, respectively, is “ls”, 
“cat”, and “cp”. 

 C om-w indow  1 on session r

 Com -w indow 2 on session p

A  k-gram  in Log-w indow  on session m , k=7

...                                                                                 ping    ls    ls    cd  ...

...   telnet                                                                                     ... ls   m an   telnet   cat   ls   m t   ls   cd   ls   cp    

ls   cd   cat   ping   ping  cp   telnet

k ’ -gram , k ’ =7

 k ’ -gram , k ’ =10

ls    telnet    cat    m an    ping    ping    telnet 

 
Fig. 2. Two examples of comparisons between a k-gram in a Log-window on session m and a 
k’-gram in a Com-window (the shaded area) of 10 commands on session p (7 on session r) with 
the longest common sequence algorithm 

Fig. 3 shows an example of a habit file in which a line is a habit, also a C-
sequence, ended by its appearance count. The more frequently a C-sequence appears, 
the higher probability the sequence is the user’s habit. After the habit file is con-
structed, each time the user logs in and logs out, comparison algorithm described 
above will be invoked under the situation that the current session is treated by a Log-
window and log file sessions are processed by a Com-window to generate new habits 
and to increase habit counts. 

Furthermore, we can apply this algorithm to known attackers’ log files to extract 
their usage habits. After legal operations have been ripped off, what remains is attack 
patterns that form a signature file [12]. 
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telnet  exit = 98 
save  telnet  exit = 6 
save  pine = 8 
save  exit  pine = 3 

… 

 
Exit  pine  exit  = 0.559 
save  exit  pine  exit  = 0.379 
save  telnet  exit  pine  exit  = 0.379 
save  exit  who  = 0.550 

… 
 

Fig. 3. A part of a user’s habit file. Each line 
is a habit ended by its appearance count. 

Fig. 4. A part of a user profile. Each line is a 
habit ended by a corresponding discrimination 
score. 

3.2.2   Creating User Profiles 
As stated above, a user’s profile is a habit file, but each habit is ended by a discrimi-
nation score instead of an appearance count. Let DScij be the discrimination score of 
C-sequence j, a usage habit, submitted by a user i. 
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where n is the number of users in the intranet concerned, and Hij is C-sequence j’s ap-
pearance count in user i's habit file. ijDSc  is a floating number ranging from 0 to 1 for 
all i and j. A user’s habitual C-sequence, that rarely appears or has not appeared in 
others’ habit files, will obtain a high score. Those given low scores are commonly 
used C-sequences. Fig. 4 shows a part of a user profile.  

An attack pattern which is hacker-specific or commonly used can be identified in 
the same way. However, only hackers’ habit files (or a signature file) and illegal C-
sequences are considered. Similarly, an attack pattern that a hacker frequently submits 
but others have seldom or never submitted should be one of the hacker's representa-
tive attack patterns, and is thus given a representative high score. Those obtaining low 
scores are attackers' common behaviors which can help to determine quickly whether 
a set of input commands is an attack or not by comparing these commands with at-
tackers' common behaviors. Hacker-specific patterns can help to identify who the 
hacker is. 

3.2.3   Similarity Scores 
We deploy formula (2) [21], which is a formula commonly used to assign a weight to 
a term in the information retrieval domain, e.g., to calculate a weight for a C-
sequence. Given a set of user habit files 1 2{ , ,... }ND UP UP UP= where N is the num-

ber of users (also, number of habit files) in an intranet, let 1 2{ , ,... }kT CS CS CS= be 

the set of C-sequences retrieved from D, and 1 2{ ' , ' ,... ' }i MiD UP UP UP= the set of 

habit files that contain iCS , iCS T∈ . The weight Wij of CSi in UPj is defined as  
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where sfij is the appearance count of CSi in UPj, nsj the total number of C-sequences 
in UPj, AVG(ns) the average number of C-sequences an element of D has, and 
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log((N+0.5)/Mi)/log(N+1) is the ICPF (inverse characteristics profile frequency) [21]. 
Given an unknown user x’s current input commands CMDs (1≦x≦N), the similarity 

score between CMDs and UPj is defined as 
1

p

xj ij
i

SimS W
=

=∑  where p is the number of 

C-sequences appearing in both the CMDs and UPj. The higher a similarity score, the 
higher probability the user is the person who submits these input commands. 

3.3   Detection Server 

As stated above, attackers' common behaviors are represented by a reverse tree, 
named common reverse tree. Fig. 5 gives an example. Nodes of the first level, includ-
ing format, del and reboot, are the last commands of attackers' common behaviors. All 
hacker-specific attack patterns are also organized in a reverse tree, denoted by specific 
reverse tree, in which a leaf node is accompanied by the corresponding hacker’s ID. A 
monitored command list consists of two lists, a common monitored command list and 
a specific monitored command list, which respectively comprise all commands of the 
first levels of the common and specific reverse trees.  

fo rm a t

d e l

reb o o t

lo g

cd

a ttr ib

h o ld te ln e t

d ir

ca t

su

su

d ir p o p

ro o t
C d   fo rm a t
P o p   d ir   fo rm a t
D ir   lo g   a ttr ib   d e l
C a t  te ln e t  h o ld   d e l
S u   h o ld   d e l
S u   d e l
S u   re b o o t

 
(A) Attack patterns  (B) The corresponding common reverse tree 

Fig. 5. Representation of attackers' common behaviors 

Assume that a user has entered m commands {C1, C2,…Cm} after his/her login 
where Ci is submitted prior to Ci+1, i = 1, 2, … , m-1. To detect intrusion online, the 
underlying input command Ci, 1≦i≦m, is compared with the common monitored 
command list first. If they match, a modified deep-first search traversal algorithm will 
start traversing the sub-tree of the common reverse tree which is rooted at Ci to de-
termine whether the user’s inputs, Cj to Ci-1, j = 1, 2,….or i-2, in the reverse order of 
their arrival can finally reach a leaf node or not.  

In this algorithm, when one input command Cj matches node Nk, a node at level k, 
in the common reverse tree, and Cj-q, q = 1, 2, …, or j-1, with the smallest q (if there 
are several such Cj-q) also matches one of Nk’s immediate child nodes, e.g., Nk+1, then 
let Cj = Cj-q (i.e., skip q-1 consecutive noisy input commands) and try to find another 
Cj-q that matches one of Nk+1’s immediate child nodes. Each time when no such Cj-q 
can lead the algorithm to arrive at a leaf, the algorithm backtracks to the last second 
matched node, e.g., Nk (note the last matched one is Nk+1), and tries to find Cj-q’ that 
matches Nk’s other immediate child where Cj-q’ is located between C1 and Cj-q (since 
on the last match on Nk, the smallest q is chosen as the next command that matches 
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Nk+1, therefore, it should be that q’≧q), and q’ is the smallest integer if several q’s ex-
ist. When one is found (at level k+1), the algorithm looks for a matched node at level 
k+2. The procedure is repeated until no such Cj-q can match Nk’s immediate child or 
the algorithm reaches a leaf node.  

The latter is considered as an attack. The detection server replies to the command 
monitor with an “unsafe” message. The former will trigger the IDIS to perform the 
algorithm again but, this time, on the specific reverse tree instead of on the common 
reverse tree to check whether there is a hacker-specific attack or not. If yes, the detec-
tion server replies with an “unsafe” message accompanied by the hacker’s ID; other-
wise, it sends a “safe” message to the command monitor. 

3.4   Attack Types 

In this study, there are three types of intrusions. Type 0 is defined as the situation 
where a user of a specific group submits a command that the group members are pro-
hibited from using. Type I attack is an attack that intrudes into a system using a sensi-
tive command, which is defined as a command that erases or modifies sensitive data 
or system settings, to change the environmental settings of the system, or to attack the 
system. A type I command is often preceded by several legal and safe commands. A 
type II attack consists of several attack patterns, and each can be considered as a 
stage. In fact, a hacker mixing specific commands with commands of an attack pattern 
can sometimes successfully penetrate a security system. 

Generally, a command that generates a buffer-overflow attack is a normal com-
mand with a parameter longer than legal length. With this kind of attack, a hacker can 
shut down the target system with one command, or grant higher access right to further 
his/her intrusion, e.g., download passwords. The former belongs to type I. The latter is 
type II since it has at least two stages, e.g., grants a higher access right and then at-
tacks the system. Hence, a type I command is also called a single command attack 
pattern. The commands to launch a type II intrusion are called a multi-stage attack 
pattern. Basically, a single command attack pattern is a special multi-stage attack pat-
tern when the number of stages = the number of commands = 1. 

Type 0 attacks can be detected by comparing an input command with a class-
limited command list. However, this detection cannot protect a system completely, 
especially when a user is able to switch from one account to that of a user in another 
group. 

3.5   Honey Pot 

To prevent hackers from realizing that they are facing a virtual environment and to 
protect the concerned environment, a honey pot should provide a platform similar to 
the protected one, and safeguard its own disk and kernel since all programs and data 
that a hacker wants to access are saved and handled by the two subsystems, respec-
tively. Also, a honey pot collects attack patterns in its own log file. 

3.5.1   Disk Subsystem 
Initially, the IDIS duplicates the contents of a protected server’s hard disks to a honey 
pot. The operating systems of the server and honey pot are the same. Once the server 
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is under attack, the IDIS switches control to the honey pot in which disk files are all 
in read-only mode, and all operations onto disks are redirected to a ram disk. To 
achieve this, we re-write disk and file service routines, and replace the original service 
routine of a system call in a system call table with a corresponding routine of our 
own, which performs I/O and file operations on ram instead of on disk and file.  

The first time a file is accessed by an attacker, the honey pot’s file service routine 
retrieves the corresponding file description information from the physical disk subsys-
tem, and records it in a virtual file table, a table constructed in ram disk to map file 
paths to their contents. Table 1 shows an example in which /usr/dz0/setting.txt after 
being loaded to ram disk is placed in frames 1, 2 and 4. The table contains a deletion 
flag for each path to indicate whether the path has been deleted or not. All file con-
tents that have been modified are also saved in ram disk without having their physical 
disk contents updated. 

When an attacker deletes a file, only memory is released. The corresponding record 
in the virtual file table remains, with deletion flag= true. The second re-
cord/root/command.log in Table 1 is an example. Frames 3, 5, 6, and 7 were given 
back to the operating system. If a hacker tries to access the file again, a file service 
routine based on the record will not reload the file to the ram disk and the hacker will 
assume that the file has been deleted. 

Table 1. An example of a virtual file table 

File path Frame # in ram disk Deletion flag 
/usr/dz0/setting.txt 1, 2, 4 false 
/root/command.log 3, 5, 6, 7 true 

… … … 

Valuable files, e.g., account books and documents regarding special techniques, 
and important system settings, e.g., boot, network and firewall setting files, are often 
hackers’ targets. Hackers access the information for specific purposes (e.g., stealing 
business secrets) or modify these settings to set up a back door for future intrusion. 
Hence, for each important file, an understudy is created as a hidden file, and is placed 
on the same path as that of the important file with the same file name but extended by 
“uds”, e.g., an important file, named config.sys, of which the understudy is con-
fig.sys.uds. Further, file contents of an understudy are produced by randomly generat-
ing or providing fake contents to prevent the original contents from being stolen. 

On a hacker’s first access to an important file, the command monitor looks up the 
corresponding record in the virtual file table based on the given path, and checks to 
see whether an understudy exists or not. If yes, the command monitor loads the file 
instead of the original from the disk. Fig. 6 shows the control flow. 

The reader may assume that if a false positive occurs, what the authorized user has 
done will be ignored, and the updated data will remain unchanged. We solve this 
problem by saving all the updated files and data in a honey pot with a file extension, 
e.g., .susp, and redo all operations if necessary, e.g., after the updated files and data 
have been authenticated by the system manager. If no one complains that his/her op-
erations have been ignored, the saved files and data will be deleted after a pre-defined 
period of time. 
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Fig. 6. File accessing flow in a honey pot 

3.5.2   System Kernel 
In a single-user multi-tasking system, e.g., MS-Windows operating system, only the 
disk system needs to be protected. All modifications to ram disk performed by hack-
ers will disappear after system shutdown. The system kernel and settings remain in 
the same state as at the time point when the command monitor switched the hacker’s 
inputs to the honey pot. Rebooting can recover them. 

In a multi-user multi-tasking system, both disk and kernel need to be protected. 
There are two ways to implement a honey pot as a multi-user multi-tasking system. In 
the first approach, an extra machine such as a mirror is required. All user operations, 
including submitting and executing commands, key strikes and mouse moving and 
clicking, are sent to both the mirror and the protected system, but responses generated 
by the mirror are suppressed. When an attack is discovered, the hacker’s inputs are 
transferred to the honey pot (i.e., the mirror) only, not to the protected system. System 
responses now come from the honey pot. The advantage is that normally the honey 
pot is an online system, and the time required to switch an attacker from the protected 
system to the mirror is almost zero. Attackers will unsuspectingly face the honey pot. 
The disadvantage is that an extra machine is required. 

In the second approach, the honey pot is implemented as a virtual machine plat-
form, which tracks user operations normally. When the command monitor discovers 
that there is an attack, it notifies the honey pot to build a virtual machine for each 
hacker, transfers memory image generated for the hacker to the virtual machine, and 
then redirects the hacker’s inputs to the virtual machine. The disadvantage is that it 
requires transferring memory image to the honey pot, causing extra network flow, 
e.g., for a 32-bits system, probably up to 4 GB data have to be transferred. An attacker 
may issue several attacks at the same time to generate a mass of inner network flow 
(i.e., a DoS/DDoS attack) which will paralyze the system, thus preventing it from per-
forming normal services. 

Fig. 7 shows our framework, mirror twin, which is a compromise between the two 
approaches, and in which the mirror is a virtual machine platform. Both the honey pot 
and the backup system of the protected system are virtual systems running on the plat-
form. The mirror mirrors the protected system like the first approach stated above.  

When an attack is discovered, the command monitor running on the mirror creates 
a virtual machine for the hacker and moves his/her memory image to the virtual ma-
chine. All the hacker’s inputs are redirected to the virtual machine to continue serving 
the hacker. The hacker now enters a honey-pot mode from a protection mode.  
Meanwhile, the command monitor in the protected system kills the process originally 
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generated for serving the hacker and notifies the router (firewall) to stop routing the 
hacker’s input commands to the protected system. Fortunately, due to limitation of 
memory by the operating system (i.e., virtual memory), the size of a memory image is 
seldom huge. However, once too much network flow is issued between the protected 
system and the mirror, the firewall will disconnect the sessions established for the 
hackers to avoid an internal DoS/DDoS attack. 
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Fig. 7. Framework of a mirror twin 

4   Experiments 

We collected 655 students' log files between October 1, 2006 and January 31, 2007 
from the Tunghai University Computer Center as the experimental data. None of the 
students was told that his/her computer habits would be observed. Hence, they all 
acted normally. Among the students, 424 were computer science students, and 231 
were in the Management and Social Science colleges. Three characteristics of user 
habits were examined, including commands that were frequently used, the order in 
which they were submitted, and commands that users mistyped. Interestingly, some 
logged arguments are much more user representative than commands. According to 
our observation, mistyped commands submitted by sophisticated users are powerful 
tools for distinguishing one user from another, e.g., several students very often type 
“cpoy”, “dell” and “form” instead of typing “copy”, “del” and “from” (an SQL state-
ment), respectively. Hence, we decided to keep them in history files for future  
research. 

All commands extracted from a user log file were saved in the user’s habit file in 
accordance with their originally submitted sequence. Other parameters, e.g., time and 
date, were removed to simplify the scope of the following experiments. To perform 
privacy preserving experiments [22], we hid user IDs for all users in the data set  
involved.  

4.1   Identifying Unknown Users 

The first experiment, identifying an unknown user, was performed ten times, and each 
time we selected a different 75% of commands from each log file as the training data 
to generate his/her profile. The remaining 25% were the test data (a test file). Given 
an unknown user’s test data, if a user's similarity score, the average of its ten-fold  
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Table 2. A portion of experimental results generated by a cross comparison by comparing each 
user’s test data (25% of a profile) with 655 user profiles (75%). (sXX28XX and sXX29XX are 
computer science students). 

 User’s test file Rank Decisive rate % Cost (msec) 
1 sXX2808.tst 0 100.00 34 
2 sXX2959.tst 77 90.12 382 
3 sXX2811.tst 165 79.43 331 

… … … … … 
108 sXX2849.tst 7 102.15 67 
… … … … … 

655 sXX3103.tst 15 104.73 839 
A total of 655 user profiles (75%) A total of 655 test files (25%) 
Avg._rank = 5.51 Average decisive rate = 99.16% 
Total cost = 53719 msec  
Average number of commands per user profile = 166.24 
Average number of commands per test file = 41.56  

values, is within the first x% of all users, we say the decisive rate is x (=(|UPs|-
avg_rank)/|UPs|*100%)%, 0 ≤ x ≤ 100, where |UPs| is the number of user profiles, 

and avg_rank, the average of all users’ ranks, is defined as
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where q 

(=10) is the number of the experiment and
ijrank is the average of user i’s ten-fold 

ranks. The experimental result, shown in Table 2, indicates that avg_rank=5.51, and 
the average decisive rate x of all users was 99.16% (= (655-5.51)/655*100%). “Rank 
P” and “Cost Y ms” respectively show that a user profile is ranked P and the time re-
quired to compare the user’s test file (i.e., 25%) with 655 profiles (i.e., 75%) is Y ms. 

Students not majoring in computer science often use simple, common commands. 
Many of their logged commands are submitted under the guidance of sophisticated 
users, e.g., teachers or highly computer literate students. Their log sessions are often 
short and highly similar. Thus, the average decisive rate of these students was 
94.43%.  

Also, we implemented the algorithm proposed by [15] to run the experimental data 
again.  Avg_rank= 32.54, and the decisive rate was 95.03%. For non-computer sci-
ence students, the decisive rate was 90.82. 

4.2   Detecting a Single Command Attack Pattern 

To detect a single command attack pattern, we randomly inserted twenty different at-
tack commands AC1 to AC20 into a legal user’s log file. Before retrieving the user’s 
habits, we ripped off three types of patterns including those that are legal and safe, 
that contain more than one attack command, and that are not ended by an attack 
command. We deleted the third because those located after an attack command are 
safe according to the definition of a single command attack pattern. In addition, if 
there is a pattern S = “ls cat AC1 vi ls” in a user profile, then in this profile there must 
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exist two patterns “ls cat AC1” and “ls cat AC1 vi” which are subsets of S, forming 
redundant patterns.  

After that, we selected a% of user log contents from each log file and b% of col-
lected attack patterns, and mixed them to simulate attackers’ inputs, which will be de-
scribed below. 

From 655 user log files, we extracted 108,888 commands, from which 2012 attack 
patterns were identified. Let a = b = 15 and a size-ten sliding window is used to mix 
an attack pattern and legal commands. Table 3 shows the mixed patterns and the de-
tection results. The field “ID of an inserted pattern (inserted location)” lists IDs of 
single command attack patterns followed by their locations. They were generated by 
the following procedure. Given an attack pattern (C1, C2, … , Cx) where Ci is ith com-
mand of the pattern, the last command Cx was first inserted into the corresponding 
session of a given log file at position q as the qth command. The remaining x-1 com-
mands were mixed with the leading 10-x log file commands R={ C’q-(10-x), C’q-(10-

x)+1,…, C’q-1} in the underlying session by randomly inserting Ci, i = 1, 2, 3, …x-1, 
into any position among the elements of R under the constraint that Ci should be prior 
to Ci+1. After insertion, Ci might be adjacent to Ci+1 or separated by several com-
mands, and now the location of Cx became q+x-1. For example, #793(11) in the first 
record of Table 3 indicates that the last command of attack pattern #793 (cd cd ls 
AC2), x=|#793| = 4, and is inserted into the 8th (i.e., qth) position of log 01982. Origi-
nal C’8 becomes C’9. Commands cd, cd and ls are mixed with those in {C’2, C’3, … , 
C’7}. After that, Cx becomes the 11th command. Nevertheless, the commands coming 
from both #793 and R individually follow their original submitted sequence.  

Table 3. Patterns obtained by mixing log contents with a single command attack pattern and the 
detection results 

 Mixed patterns Detected attack patterns 
User log 

file 
No. of  

inserted 
patterns 

ID of an inserted pattern 
(inserted location) 

No. of de-
tected 

patterns 

ID of a detected pattern (de-
tected location) 

log01982 2 #632(4), #793(11) 2 #2000(4), #1657(11) 
log02864 19 #7(5), #1603(12), … 19 #1(5), #100(12), #2001(20), 
log02871 9 #1515(6), #1845(15), … 9 #1991(6), #2006(15), … 
… … … … … 

The field “ID of a detected pattern (detected location)” in Table 3 represents the ID 
of a detected pattern followed by a detected location, which is the position of the pat-
tern’s last command. For example, #1657(11) in the first record shows that attack pat-
tern #1657 (ls AC2), which ended at position 11 of log01982, was detected. Basically, 
a shorter pattern may be contained in a longer one. Hence, the ID of a detected pattern 
may be different from that of the one inserted since #1657 is a proper subset of #793. 
From Table 3, we can conclude that the number of patterns inserted is equal to that of 
those discovered, i.e., precision = recall = 100%. The detection process costs 326 ms, 
which is short enough to detect attacks in real-time, i.e., the two reverse trees can ef-
fectively help users to identify hacking behaviors. 
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A1_Stage_1 A1_Stage_2 A1_Stage_3 
A2_Stage_1 A2_Stage_2 
A3_Stage_1 A3_Stage_2 A3_Stage_3 A3_Stage_4 
… 

Fig. 8. A part of a log file consisting of multi-stage attack patterns. Each line has several stages. 
Each stage is a user habit ended by a single command attack pattern. 

Table 4. Patterns obtained by mixing log contents and multi-stage attack patterns, and the 
detection results 

 Mixed patterns Detected attack patterns  
User log 

file 
No. of  

inserted 
patterns 

ID of an inserted pattern 
(inserted location) 

No. of de-
tected 

patterns 

ID of a detected pattern (detected 
location) 

log12815 7 #1(4), #3(13), #4(20)… 7 #1(4), #3(13) , #4(20)…. 
log12826 25 #1(7), #6(16), #8(26)… 25 #1(7), #6(16), #8(26),… 
log12838 7 #6(6), #9(15), #2(22)… 7 #6(6), #9(15), #2(22)… 

… … … … … 

4.3   Detecting a Multi-stage Attack Pattern 

Fig. 8 shows a log file consisting of multi-stage attack patterns. Each line has several 
stages. Each stage in turn is a user habit ended by a single command attack pattern. 
For detecting multi-stage attack patterns, again, let a = b = 15 given nineteen stages, 
S1 to S19, from which 85 different attack commands are retrieved, 

i.e.,
19

1

| { | , } | 85r r r i

i

C C is a command C S
=

∈ =∪ where { | , }p p p iC C is a command C S∈ ∩

{ | , }q q q jC C is a command C S φ∈ = , i, j = 1, 2, …19, and i ≠ j. That means, S1 to S19 

are non-cross-reference patterns so that all the IDs of detected patterns, as shown in 
Table 4, are exactly the same as those of the inserted ones. The two reverse trees are 
both six levels in height, and 108,888 commands extracted from 655 user log files 
were compared, costing 469 ms which is also short enough to discover attacks in real 
time and which is also longer than that for detecting single command attack patterns 
since reverse trees are higher and tree traversal time, of course, is longer. Also, the 
precision = recall = 1. 

5   Conclusions and Future Work 

In this article, we proposed an approach to find out users' habits deploying data min-
ing and forensic techniques. To identify the representative C-sequences for a user, the 
times that a habitual C-sequence appears in the user’s log file is counted and its dis-
crimination score is calculated so that the user’s profile can be established. By com-
paring a user's current input commands with all others’ profiles, the IDIS can identify 
who the user is. The accuracy is high enough to make the IDIS a valuable auxiliary 
subsystem in a closed environment where it can assist in the identification of an inter-
nal hacker. Of course, a new user whose user profile has not been established will not 



 Intrusion Detection and Identification System 151 

be a candidate for identification. Meanwhile, a user’s input commands are compared 
with two reverse trees in which all commands of an attack pattern are organized in 
their reverse order so as to real-time detect whether underlying inputs are attacks or 
not. By comparing these inputs with specific reverse trees, we can further identify 
who the hacker is. Attack patterns are extracted from attackers' log files by ripping off 
legal operations. Employing reverse trees can lightweight IDIS and lower the load of 
the detection server. 

Moreover, accurately and completely collecting user behaviors on much more ba-
sic operations, such as system calls instead of commands, is much more helpful in de-
tecting hackers and identifying a user. Such procedures will also help to collect intru-
sion behaviors in a system that employs GUI interface. 

However, how to process and mine such a huge volume of data may be the first 
challenge. Several papers have addressed this topic [15, 23]. But many systems have 
not been implemented, and many did not describe their implementation. Additionally, 
to detect an attack and respond in real time, we need a fast algorithm and a distributed 
computing environment to speed up data processing since the time complexity of the 
algorithm that compares k-grams and k’-grams is high--about 6( )O n . Cluster and/or 

Grid computing should be the best candidates. A mathematical analysis of the IDIE’s 
behaviors which would lead to the building up of its formal performance and cost 
models may be interesting. As stated above, the records of mistyping are also helpful 
in identifying underlying users, and can increase detection accuracy and improve the 
decisive rate. These are our future research topics. 
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Abstract. The problem of defending software against tampering by a
malicious host is not expected to be solved soon. Rather than trying
to defend against the first attack, randomization tries to minimize the
impact of a successful attack. Unfortunately, widespread adoption of this
technique is hampered by its incompatibility with the current software
distribution model, which requires identical physical copies. The ideas
presented in this paper are a compromise between distributing identical
copies and unique executions by diversifying at run time, based upon
additional chaff input and variable program state. This makes it harder
to zoom in on a point of interest and may fool an attacker into believing
that he has succeeded, while the attack will work only for a short period
of time, a small number of computers, or a subset of the input space.

1 Introduction

Protecting software against attacks from the outside is a problem that has been
largely solved in theory. In practice, however, vulnerabilities continue to be dis-
covered at an astonishing rate. Buffer overflows, for example, were a solved prob-
lem as early as the 1960s, yet continue to be the most common type of security
issue [19].

Due to the complexity of modern software and the increasing body of legacy
code, this and other types of vulnerabilities continue to exist. Run-time random-
ization acknowledges this and tries to mitigate attacks at a different level: by
removing predictability and consistency between different executions. Address
space layout randomization (ASLR), for example, is an acknowledgment that
buffer overflows and related types of attack will continue to emerge. ASLR is
available for mainstream operating systems such as Linux (PaX) and Windows
Vista.
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Protecting software against a malicious host is sometimes a theoretically un-
solvable problem [3]. Intuitively, any protection scheme other than a physical
one depends on the operation of a finite-state machine. Ultimately, given physi-
cal access, any finite-state machine can be examined and modified at will, given
enough time and effort [8]. This intuition is confirmed by many examples: Users
cheat in games, DRM systems are compromised, software is installed and used
without the proper license, pay-TV suffers from piracy, etc.

Most defenses against malicious hosts are about delaying the first attack. The
success of these techniques varies in terms of the additional time and effort re-
quired by a tamperer. However, no actively attacked protection has remained
unbroken for an extended period of time. Randomization is a promising addi-
tional layer of defense: Rather than trying to postpone the first attack, it is about
limiting the impact of a successful attack in space and time. However, surpris-
ingly little research is publicly available on randomization against malicious-host
attacks.

Existing proposals for randomization against malicious hosts randomize the
program before distribution. Unfortunately, diverse copies are in conflict with
the current software-distribution model, which requires identical copies to lever-
age the near-zero marginal cost of duplication. Not surprisingly, commercial
implementations of this technique can be found in situations where a network
connection can be assumed to distribute the copies digitally: DRM implementa-
tions for on-line music stores and digital broadcasters [27]. We suggest combining
the best of both worlds by introducing diversity after distribution.

The ideas are discussed against a specific model of a tamperer’s behavior: the
locate-alter-test cycle (Section 2). It has been long understood implicitly that
there are many similarities between tampering and debugging. In this model,
we make these similarities explicit. As a result, the techniques presented to
counter tampering leverage known difficulties from the domain of debugging:
non-deterministic behavior (from the viewpoint of the program) and the funda-
mental limitations of testing (for every input and every environment). Despite
originating from a specific model, the techniques increase the workload to create
a fully functional patched version in a more general attack model, which assumes
only that behavioral changes are made by modifying the program itself.

In this line of work, we make the run-time execution of the code unique,
based upon additional chaff inputs (such as time, hardware identifiers, etc.) and
variable program state, including additional fake input dependencies. The goal
is twofold: (i) To make it harder for an attacker to zoom in on a point of failure
and (ii) to limit the impact of a successful attack to a short period of time,
a particular computer, a subset of the input space, etc. The underlying ideas
are that (i) an attacker typically repeats the execution of the program with a
particular input and slowly zooms in on the part where he thinks a vulnerability
may occur. This becomes harder if the execution cannot be replayed at will, and
(ii) if we can fool an attacker into believing that he has succeeded for a longer
period of time, we can delay the feedback-loop of software tampering. These
goals and high-level ideas are motivated in Section 3.
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On a lower level, the technique requires a number of basic operations. Some
of these operations have been dealt with extensively in academic literature. This
paper contains a discussion of operations which have received less attention:
(i) a concealed way to augment the user-observed input with chaff input, (ii)
a criterion to select fake state and input dependencies and (iii) a diversifier
to generate syntactically different, yet semantically equivalent pieces of code.
These operations are discussed in Section 4-5. An experimental evaluation of
the diversity that can be achieved by a practical implementation and the cost of
these techniques in terms of code size and execution time is given in Section 6.
Related work is the topic of Section 7, and conclusions are drawn in Section 8.

2 Low-Level Debugging Versus Tampering

Debugging and tampering are similar in many respects: many of the same tech-
niques and tools are used in both disciplines. Debugging software is about finding
and reducing the number of defects in a computer program to make it behave as
the software provider intends. Likewise, tampering is about finding and reducing
the number of undesired features to make it behave as the user desires.

The incentive to tamper with software thus originates from the difference
between the behavior intended by the software provider and the behavior desired
by the user. This difference can take on many forms; e.g.:

– Some software does not want to install without a valid license key. To some
users, this is undesired behavior.

– Software may prohibit the printing of certain documents if a user does not
have the right privileges. Many users find this cumbersome.

– Gamers may find it annoying that, e.g., they cannot see through walls, or
that their health decreases when they get shot.

– Many users do not want their evaluation version to stop working after the
evaluation period.

– Some people find it annoying that their credit card gets charged when they
listen to music in a digital container, or when they watch pay TV.

Put another way, debugging is about transforming the semantics encoded in
the program to the semantics intended by the software provider. Tampering is
about transforming the semantics encoded in the program to the semantics de-
sired by the user. Therefore, it should be no surprise that both disciplines are
alike. Many tools, such as IDAPro and SoftICE, and many techniques, such
as breakpoints and slicing, have been originally designed for debugging, but
are heavily used in tampering. The main difference is that during debugging, a
higher-level representation of the program is often available (source code, speci-
fication, etc.), while tampering typically starts from machine code or bytecode.

Similar to the edit-compile-test cycle of debugging, tampering is typically a
cyclic process. Since tampering is usually done at a low level, the compile phase
can be eliminated. Furthermore, we can split up the edit phase, leading to the
following cycle:
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1. Locate the origin: To turn the observed undesired behavior into desired
behavior, a tamperer first needs to find the origin of the undesired behavior.
For example, the displayed health of a gamer is only a manifestation of
the internal state. Locally changing the code that displays his health will
not result in the desired behavior: He needs to trace it back to where the
internal representation of his health actually gets decreased.

2. Alter the behavior: Once the origin is determined, a tamperer needs to
determine and apply a set of changes that will alter the undesired behavior
into desired behavior.

3. Test: In this phase, the tamperer checks if the behavior of the software is
as desired. If so, his work is done. Otherwise, more cycles are required.

3 Slowing Down the Locate-Alter-Test Cycle

If tampering is similar to debugging, we can argue along the same lines that
making tampering harder is the opposite of making debugging easier.

One of the key concepts in making software easier to debug and maintain is
modular design. Such design facilitates local changes and thus minimizes the
need to verify the impact of a local change on other parts of the program. Most
tamper-resistance techniques [6,7,17] have focused on doing the opposite: making
the program more inter-dependent. Existing techniques are thus about slowing
down the alter phase by requiring an understanding of a larger portion of the
program and more binary changes to possibly unrelated sections of the program
to effect a small change in the behavior of the program.

In this paper, we focus on slowing down the locate and test phases.

Slowing down the Locate Phase. Looking again at debugging, the first task
when dealing with a bug report is to reproduce the problem. This is vital, since
one cannot observe a problem and learn new facts if one cannot reproduce it.
Furthermore, it is essential to find out if the problem is actually fixed. Repro-
duction is one of the toughest problems in debugging. One must recreate the
environment and the steps that led to the problem [26].

Similarly, reproducing undesired behavior is indispensable for tampering. The
manifestation of undesired behavior needs to be traced back to its origin. Typi-
cally, a tamperer repeatedly executes the application with a particular input and
slowly zooms in on a part where he thinks the undesired behavior may originate.

This requires that execution can be replayed at will. We try to hamper this
process by choosing between different control paths based on pseudo-random
numbers, timing results, thread scheduling, etc.

In software tamper-resistance, the “bugs” are features that we want to mani-
fest every time, so it seems illogical to make their appearance non-deterministic.
We can, however, make sure that these features manifest themselves in different
ways by duplicating parts of the program, diversifying them and choosing more
or less randomly among the alternatives at run time. This makes it harder for a
tamperer to zoom in on the vulnerable part of the program, since the semantics
of the program may be constant, but the execution paths will not be identical.
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Slowing down the Test Phase. Testing is also a major issue in debugging and
software maintenance. It is very hard to foresee every input, every environment,
every usage scenario and every combination of applications [12]. Testing can
show only the presence of undesired behavior, not its absence.

The techniques discussed in this section increase the number of tests required
to manifest all occurrences of the undesired behavior. The underlying idea is
that the impact of a successful patch for a small subset of the input space, for a
limited number of computers or for a short period of time does not pose a great
threat to the software or content provider.

The time required to create a fully functional tampered version of the software
is increased by letting the tamperer believe that he has succeeded, while it works
only for a subset of the input space, or for a short period of time. Tamperers
often work by trial and error. Using incomplete knowledge about the program,
they change parts, hoping that the desired results will arise. When it is easy to
evaluate whether these results have been obtained, this process can be repeated
many times. If this evaluation takes longer (e.g., because it works for most of
the input sets most of the time), the workload increases.

Furthermore, the credibility of the tamperer in the cracker community may
decrease if he claims to have successfully patched a program, while it still behaves
as intended by the software provider on other computers.

We could for example use one type of license check in 90% of the cases and
another one in the remainder. This way, the tamperer may be fooled into believ-
ing that he has succeeded for a longer period of time. In this case, the tamperer
has done a good job if the undesired behavior appears randomly: he can just
restart the program and hope that it will work next time. However, if it is linked
to certain input patterns or hardware identifiers, the usability of the tampered
version is decreased significantly.

4 Tools of the Trade

The core mechanism behind the discussed techniques is illustrated in Figure 1.
In its simplest incarnation, a piece of code c ∈ C is duplicated, both copies
are diversified and one of them is selected at run time more or less randomly.
Note that C represents the set of syntactically correct pieces of code in whatever
language it is written.

This section provides more detail on two aspects related to the input of the
opaque predicates. Firstly, we present techniques to augment the user-observed
input with chaff input as a source of randomness. Secondly, we discuss the usage
of variable program state at a program point – e.g., as fake input dependencies.
Finally, we also look into more detail on how to generate diverse copies of a piece
of code, as we believe that this has not been discussed in sufficient detail in other
publications. Due to the extent of the discussion, it is in a separate section (5).
Other aspects, such as the creation of the opaque predicates and the rewriting
of software, have been discussed elaborately elsewhere.
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Fig. 1. The basic mechanism behind the implementation

4.1 Chaff Input

We say that run-time randomization delays the locate phase if it introduces
diversity during a single “tamper session” – i.e., if the randomization takes place
even on a single computer, for the same user-observed input, and for a limited
period of time (one or a few days). Conversely, run-time randomization is said to
delay the test phase if it requires multiple tamper sessions – i.e., the tampering
itself needs to be repeated for different computers, for different user-observed
inputs, and for different periods of time.

Under these specifications, chaff input is needed to delay the locate phase. This
will be used as a source of pseudo-randomness, which will then serve as input to
the opaque predicates. Note that chaff input is likely to stand out in command-
line applications, as there is typically little difference between the user-observed
and the fully specified input. However, real-life interactive applications already
make use of threads, timing information, information about mouse movement,
on-line content, etc., making them more suited for this technique.

We now discuss some sources of chaff input.

– Scheduling of Threads. In multi-threaded applications, several threads
may interact with one another in a non-deterministic manner (from the view-
point of the application). The actual scheduling depends on the operating
system (and the virtual machine, if applicable), and is influenced by asyn-
chronous events such as user interaction, other processes, thread priority, etc.
Therefore, the actual scheduling is an excellent source of pseudo-randomness.
If necessary, additional threads can be created to perform part of the original
functionality, or to perform other software-protection tasks.

– Return Values of System Calls. System calls also provide a source of
randomness from the viewpoint of the application. Many system (or library)
calls return information that is changeable over different runs: system time,
unallocated memory, network traffic, load of the machine, file system, etc.
The Underhanded C Code Contest 2005 (www.brainhz.com/underhanded/)
contains examples on how to obtain pseudo-randomness in a covert way.
One of the entries leaves a matrix partially uninitialized, as a result of which
it still contains information from a previous stat()-call (stat returns file
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info, including time of last access). This type of call is common in regular
programs and will thus not quickly raise suspicion.

An interesting way of randomizing the program is to change the code
executed (not the behavior) based on the presence of a debugger. This way
an attacker could spend much time making the program behave as desired in
the debugger, only to find that it behaves differently without the debugger.

– External Service. Alternatively, we may require access to an external ser-
vice, which provides a source of randomness. Such an external service could
be a piece of trusted hardware or an on-line service.

Record/replay mechanisms and omniscient debuggers. Clearly, given a
fully specified input, the behavior will be deterministic. While the fully specified
input is often a superset of what the user perceives as input, a tamperer could
ultimately use a perfect record/replay system [22] to make the fully specified
input (including data, user interaction, communication, system calls, schedules,
etc. [26]) repeatable, thus making the execution repeatable. This way he can
track down and tamper with one of the copies of the origins of the undesired
behavior. Alternatively, he could use an omniscient debugger [5], such as the
Simics Hindsight Debugger, to back-track to the origin. Note that the general
application of these techniques can be very expensive in terms of memory re-
quirements. Therefore, a potential defense against such capabilities is to increase
the amount of state necessary for the debugger to be able to trace backwards.
This can be accomplished by maximizing the number of irreversible operations
in the program.

In any case, there will be more origins of the undesired behavior. Unless the
tamperer finds a way to automate detecting copies of that specific origin, which
is undecidable in general, he must either (i) repeat this labor-intensive method
for every copy of the origin, or (ii) make the choice between the different copies
fixed. As a result, the workload of the tamperer increases.

Fixing the choice between different copies may be complicated as well. It may
be easy automatically to find points where the different executions digress, but
some of these points may be part of the original functionality of the program.

4.2 Variable Program State and Fake Input Dependencies

The internal state at a program point is itself highly variable, and therefore
serves as an excellent source of input for the opaque variables. Furthermore, it is
less suspicious to select different execution paths based upon the internal state.

Through profiling [20], we can easily spot tuples (p, s), for which either (i) the
state s is constant at program point p for a fixed input, but variable for different
inputs; or (ii) the state s is variable at program point p even for a fixed input.
Note that, due to the nature of profiling, we cannot be certain that a state s is
fixed; we can conclude only that a state s is fixed for the tested inputs.

Tuples for which the first property holds are then candidates for introducing
fake input dependencies. As a result, execution for different inputs will differ at
places where it originally overlapped. This can thus delay the test phase.
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Tuples for which the second property holds are useful to delay the locate phase,
because they will increase the amount of information in the static representation
of the program and the number of different instructions in a trace of a particular
execution. As a result, the trace will be less “foldable,” by which we mean that
constructing a Control-Flow Graph (CFG) from the trace will result in a larger
CFG than from the original program.

Using the same argument as earlier, an attacker needs to patch at least one of
the copies, and needs to patch additional ones or remove the fake dependencies
on the program state. The latter may be harder than in the earlier case. These
kinds of choices during execution of the program are bound to be less suspicious,
since this type of choice occurs regularly during normal operation.

5 Diversity Systems

Diversity (also referred to as individualization or randomization) can be applied
in a number of different ways. The most heard-of form of randomization is prob-
ably Address Space Layout Randomization (ASLR). ASLR is a specific form
of randomization that requires no changes to the program itself. Instead, the
operating system positions key code and data areas in a random way to make it
harder to predict target addresses.

This type of defense is less viable in the malicious-host model, since we cannot
rely on the environment. The only aspect that we can control is the program
itself; thus, the randomization needs to be an integral part of it. Under these
circumstances, there are still a number of possibilities on when and where to
randomize:

– Before distribution: The static representation of the program is random-
ized before distribution.

– During installation: The static representation of the program is random-
ized when it is installed (e.g., based upon hardware, the license key, etc.)

– Between runs: The static representation of the program is randomized
between executions, comparable to metamorphic viruses.

– During execution: The dynamic execution trace of the program is ran-
domized, as discussed in this paper.

All of these types have in common that some system is needed to generate
semantically equivalent, but syntactically different versions of a piece of code.

A schematic diagram of such a “diversity system” is given in Figure 2. A
diversifier D takes as input a piece of code c and a set of nonces (numbers used
once) {1, . . . , k}, and produces a set of code pieces {D(c, 1), . . . , D(c,k )} so that
∀i ∈ [1, k] : D(c, i) has the same functionality as c, yet ∀(i, j) ∈ [1, k]2, D(c, i) is
syntactically different from D(c, j).

Similar to Kerckhoffs’ principle for cryptography (a cryptosystem should be
secure even if everything about the system, except the key, is public knowledge),
we must assume that everything about the system is public knowledge. We
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Fig. 2. Schematic of a diversity scheme

should also assume that an attacker will have access to one or more of the diver-
sified versions. Note that this is obvious in the case of run-time randomization,
as everything is embedded in the program.

5.1 Combining Diversity Systems

Rather than trying to build a single monolithic diversity system from scratch, we
chose to build upon the vast body of existing research on semantics-preserving
program transformations. Semantics-preserving transformations have been de-
veloped for a wide range of applications, such as refactoring, optimization for
size and speed, obfuscation, watermarking, instrumentation, etc.

Combining many small transformations also makes it easier to prove (or de-
bug) their semantics-preserving nature independently. If every transformation is
semantics-preserving, the combination is guaranteed to be semantics-preserving.

The goal of combining these transformations is to enlarge the set of semanti-
cally equivalent pieces of code that can be generated by the resulting diversity
system D from a piece of code c ∈ C. As usual, this is referred to as the “range”
property, ran(D, c).

The cardinality of the range of a diversity system can easily become very large.
Consider the diversity system which chooses for every instruction in the original
code whether or not to precede it by a nop-instruction. If that piece of code
consists of n instructions, then the cardinality of the range is 2n. This diversity
system has a big range, yet can be easily circumvented in most applications of
diversity. Therefore, the cardinality of the range is not a good indication of the
quality of a diversity system.

On the other hand, a diversifier E of which the range is a superset of the
range of another diversifier D (∀c ∈ C : ran(D, c) ⊆ ran(E, c)) will typically
be preferred, as this indicates that more diversity can be achieved. We will
abbreviate this relation as follows: D ⊆ E.

Choice operation. Fortunately, given two diversity systems D and E, it is easy
to create a third diversifier F for which ran(D) ⊆ ran(F ) and ran(E) ⊆ ran(F )
through the choice operation (Figure 3a): F = D∨E. This corresponds to making
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Fig. 3. Two combining operations for diversity schemes

a preliminary choice as to whether system D or E is to be used. When this is
done, D or E is used as originally defined. Note that D ∨ E = E ∨ D.

Product operation. A second combining operation (Figure 3b): F = E ◦ D,
corresponds to diversifying the program with the first diversifier D and diver-
sifying the resulting program with the second diversifier E, the nonces for D
and E being chosen independently. This total operation is a diversifier whose
transformations consist of all the products (in the usual sense of products of
transformations) of transformations in E with transformations in D.

Logging the applied transformations. Keeping track of the applied trans-
formations is important, since some applications may need to be able to recreate
the diversified copies. For example, consider randomizing programs before dis-
tribution. When updates are needed afterwards, the software provider may need
to tailor them to a specific copy. Maintaining a database of nonces requires less
storage than keeping a copy of every distributed version.

This choice operation is recorded in the resulting nonce as follows: If [1, k]
(respectively [1, l]) is the range of nonces accepted by D (E respectively), then
for i ∈ [1, k], j ∈ [1, l], the nonce becomes 0|i ∨ 1|j. (’|’ is the concatenation
operator). The nonce of the product operation then becomes i|j.

5.2 Injective Properties of a Diversity System

Nonce-injective. An important property of a diversity system is that the re-
sulting programs be in fact diverse. Therefore, we want different nonces to lead
to different programs – i.e.,

∀c ∈ C, ∀i, j ∈ [1, k], i �= j : D(c, i) �= D(c, j)

Note that the relation =: P × P denotes syntactical equivalence. We call this
property nonce-injective – i.e., ∀c ∈ C, D(c, .) is injective.

Typically, this will not be a problem for basic transformations (not a compo-
sition of other transformations). However, it may become an issue when many
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transformations are combined using the combination operations described ear-
lier, since the product of two nonce-injective transformations is not necessarily
nonce-injective.

Injective. A transformation is injective in the traditional sense if:

∀(c1, c2) ∈ C2, ∀(i, j) ∈ [1, k]2, c1 �= c2 ∨ i �= j : D(c1, i) �= D(c2, j)

Clearly, the composition of two injective transformations is injective. Further-
more, if E is an injective transformation and D is a nonce-injective transforma-
tion, then E◦D is nonce-injective. Note that if c1 and c2 have different semantics,
c1 cannot be syntactically equal to c2. This definition is useful when c1 and c1
are two semantically equivalent, but syntactically different versions of a piece of
code (e.g., after applying a diversity system).

Disjoint diversity systems. We say that two diversity systems D and E are
“disjoint” if and only if

∀c ∈ C, ∀i ∈ [1, k], � ∃j ∈ [1, l] : D(c, i) = E(c, j)

The choice of two disjoint injective transformations (D ∨ E) is injective.

5.3 Diversity Systems in Practice

A practical diversity system may be composed of a number of transformations:
(D1 ∨D2 ∨ ...∨Dn)◦(D1∨D2 ∨ ...∨Dn)◦(D1 ∨D2∨ ...∨Dn).... The probabilities
that determine which transformation to choose in every iteration are assignable,
and may change as the result of earlier transformations. For example, it may
be useless to apply the same transformation twice. This can be recorded by
setting its probability to zero for subsequent iterations once it is selected. For a
more elaborate discussion on the selection of transformations with dependencies,
we refer to closely related work on selecting transformations in the domain of
obfuscation by Heffner and Collberg [16].

Iterated transformations. To increase the range and complexity of random-
ization, a tool can iterate and recombine a number of diversifying operators. Each
such primitive can be quite simple – e.g., referencing variables through newly
created pointers or duplicating a program statement, along with a new obfus-
cated predicate to choose one of the individualized copies. While such operators
may be insecure when used alone, iterated application can create complexity, in-
cluding emergent properties due to interaction among various transformations.
This is similar to behavior found in complex systems such as cellular automata,
and also helps to create confusion and diffusion, as in iterated application of
rounds in block ciphers and hash functions.

Selecting transformations for the composed diversity system. The in-
jective property and related properties discussed earlier prove to be a useful
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guideline in the selection of transformations to add to the mix. For example, it
is not useful to add a transformation D to a diversity system E if the range is
not increased as a result (D ⊆ E).

Clearly, injective transformations disjoint with the already present diversity
system are preferred. In practice, however, this requirement is not so stringent:
Due to the large range, the chance of actually obtaining two identical code pieces
after a number of transformations is small. If required, a hash can be computed
of every generated code piece, and newly generated code pieces can simply be
discarded if their hash matches one of the earlier ones.

Selecting nonces. In practice, it proves to be complicated to determine the
range of nonces accepted by a composed diversity system. The application of one
transformation will lead to more or fewer possibilities for the next transformation
in a way that is hard to predict without actually applying the transformation.
As the range quickly becomes unmanageable, generating all possibilities to de-
termine the range in advance is also not practically viable. Therefore, we cannot
predetermine a uniform range of nonces from which to choose in advance. Rather,
every transformation will return its range once it is selected as the next trans-
formation (and all previous transformations have been applied), after which an
element from its range is selected. The nonces are thus built dynamically during
the randomization, as shown in Figure 3, and can have variable lengths.

6 Evaluation

To get an idea of the achievable range of practical diversity systems, we have
implemented a number of diversifying transformations in the binary rewriting
framework Diablo [11]:

1. Splitting basic blocks by a two-way opaque predicate (as shown in Figure 1).
2. Inlining basic blocks with multiple incoming edges (as shown in Figure 4).
3. Inlining functions.
4. Replacing instructions by semantically equivalent instructions.
5. Reordering instructions within a basic block.
6. Inverting the condition of branches.
7. Reordering chains of basic blocks.

We have evaluated these transformatiosn on the C programs of the SPEC
2006 benchmark suite, compiled with gcc 3.2.2 and statically linked against
glibc 3.2.2. The number of choices that need to be made for the transformations
when applied to the entire benchmark is given in Table 1, normalized to choices
between 10 options. For perlbmk, e.g., we can choose independently for 83, 759
basic blocks whether or not to split them with a two-way opaque predicate. This
leads to 283,759 possible output programs (assuming we use the same predicate
every time), or a range of about 1025,214; hence the value 25, 214 in the table.
The second transformation has been limited to one round, meaning that the
candidates for inlining, namely (basic-block, edge) pairs, are all taken from the
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Fig. 4. Inlining basic blocks with multiple incoming edges

Table 1. Number of available choices x, normalized to 10 options. The range is 10x.
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1. split bbl 25214 6704 63948 6093 7289 16519 8355 7679 6380 12150 6146 8066
2. inline bbl 16434 3908 46098 3541 4313 10384 5037 4561 3732 6947 3585 4834
3. inline fun 2734 594 6800 508 803 2254 944 697 545 1039 513 999
4. select ins 20630 7340 51413 6603 7464 16203 8495 8251 6876 13210 7301 8228
5. schedule 14330 5679 31032 4741 5972 15462 6518 5985 5161 13617 4813 6450
6. flip branch 11516 3106 29803 2781 3184 7171 3676 3540 2888 5547 2803 3572
7. layout 76379 19319 183010 17954 21160 51065 23913 22655 18646 34457 18159 22777

original control-flow graph. If more rounds are allowed, the transformation can be
reapplied endlessly for constructs such as loops (a loop can be unrolled infinitely).

The bars in the table aim intuitively to indicate the per-benchmark relation
among the available choices for the different transformations.

In order to evaluate the cost of the techniques discussed in this paper, we
have evaluated the impact on the code size and execution time resulting from
the following setup: Transformations 1-3 are applied with a probability drawn
from a Bernoulli distribution with p = 0.05. As a result, the transformations
are applied about 5% of the times they could be applied. Both the original and
copied version are then diversified by randomly applying transformations 4-7.

Over the entire benchmark suite, we notice an increase of about a quarter in
code size. This is slightly higher than what one may expect at first (about 15,8%
from three times 5% increase), because the candidates for transformation 2 are
(basic-block, edge) pairs, which is more than just basic blocks. The same holds
for transformation 3 where the candidates are (function, call-site) pairs.

The slowdown is on average 7%. This slowdown results from (i) the evaluation
of the opaque predicates, (ii) additional control-flow instructions, and (iii) worse
cache behavior due to less code locality and increased code size. Note that the
slowdown is more variable than the code-size increase, as it depends on the
execution count of the transformed code.

7 Related Work

Software Diversity. Software diversity was first used for fault tolerance as an
extension of the idea of using redundant hardware to mitigate physical faults.
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Fig. 5. Code bloat and slowdown for an exemplary transformation

The two main directions are recovery-block software [21] and N-version program-
ming [2]. Both rely on hand-written, semantically equivalent modules. Recovery-
block software requires an acceptance test, and the implementation with the
highest priority to pass the test wins. N-version programming compares the out-
puts produced by several versions and propagates only consensus results.

Software diversity or individualization as a security mechanism against mali-
cious code attacks was proposed by Cohen [8] under the term “program evolu-
tion.” Since then, numerous transformation techniques have been presented, in-
cluding memory-layout randomization [13] and instruction-set randomization [4].
It has been shown that these techniques are also vulnerable to attacks [23,24].

Other research assumes the presence of diversity and studies the assignment
of distinct software packages to individual systems in a network [18], or uses
different versions in a framework for detection and disruption of attacks, similar
to N-version programming for fault tolerance [10].

Software diversity as a protection mechanism against a malicious host seems
to have received less attention. Existing work is focused on randomization before
distribution. Anckaert et al. [1] propose to rewrite the program in a custom
instruction set and to ship it with a matching virtual machine. Zhou et al. [27]
present code transformations based upon algebraic structures compatible with
32-bit operations commonly present in code.

Software diversity has also been used to hide malicious code, such as viruses.
Self-modifying viruses will typically change their binary representation before
propagation. Early implementations simply encrypt the body of the virus with
a different key, leaving the decryption routine vulnerable to signature-based de-
tection. More recent viruses diversify the decryption routine as well, or contain
a metamorphic engine to rewrite themselves completely (e.g., W32.simile1).

Tamper-Resistance. Most techniques to protect the integrity of a program are
based on checksumming segments of the code [6,17]. A generic attack against
such schemes has been devised for the x86 through the manipulation of processor-
level segments, and for the UltraSparc through a special translation look-aside
buffer load mechanism [25]. A countermeasure against this type of attack relies
on self-modifying code [15]. Related techniques [7] hash the execution of a piece

1 http://securityresponse.symantec.com/avcenter/venc/data/w32.simile.html
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of code, while others have looked at the reaction mechanism in more detail. Once
tampering is detected, appropriate action needs to be taken. If the manifestation
of this action is too obvious, it can be easily tracked down. Delayed and controlled
failures [14] are a way to make it harder to locate the reaction mechanism.

Obfuscation. Software obfuscation [3,9] aims to make programs harder to un-
derstand and has many parallels with software diversity. While the goals are
different, many of the techniques developed for obfuscation can be parameter-
ized for diversity purposes. Typically, the versions of a piece of code generated
by a diversity system will be obfuscated. If the different versions are too easy to
understand, it may be easy to match or find semantically equivalent code.

8 Conclusion

We modeled the tamperer’s behavior starting from parallels between debug-
ging and tampering. As such, the techniques presented to mitigate tampering
leverage known difficulties from debugging: non-deterministic behavior and the
fundamental limitations of testing. An experimental evaluation shows that diver-
sity systems can generate many different semantically equivalent code sequences
and that the cost of the applied techniques is acceptable for most applications.
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Abstract. With the evolution of e-commerce, privacy is becoming a
major concern. Many e-companies employ collaborative filtering (CF)
techniques to increase their sales by providing truthful recommendations
to customers. Many algorithms have been employed for CF purposes; and
Eigentaste-based algorithm is one of them. Customers’ preferences about
products they purchased previously or showed interest are needed to
provide recommendations. However, due to privacy concerns, customers
refuse to contribute their ratings at all; or they might decide to give
false data. Providing truthful referrals based on such inadequate and
false data is impossible. Therefore, providing privacy measures is vital
for collecting truthful data and producing recommendations.

In this paper, we investigate how to achieve CF tasks (predictions and
top-N recommendations) using Eigentaste, which is a constant time CF
algorithm, without greatly exposing users’ privacy. To accomplish pri-
vacy, we employ randomized perturbation techniques (RPT). We modify
and/or simplify original Eigentaste algorithm in such a way to provide
private referrals efficiently with decent accuracy. We investigate our pro-
posed schemes in terms of privacy. To evaluate the overall performance
of our schemes, we conduct experiments using real data sets. We then
analyze our outcomes and finally provide some suggestions.

1 Introduction

CF techniques are widely used by many e-companies for recommendation pur-
poses. With the number of users accessing the Internet and the products avail-
able online growing, CF techniques are becoming increasingly popular as part
of online shopping sites. These sites incorporate recommendation systems that
suggest products to customers based on items that like-minded users have or-
dered before, or have indicated as being of interest. CF has many important
applications in E-commerce, direct recommendations, and search engines [4,5].
With the help of CF, users can get referrals about many of their interests and
activities; including, but not limited to restaurants, bars, movies, books, news,
music CDs, and interesting things to do in a city.

To provide accurate referrals efficiently in terms of computational complexity,
many algorithms have been proposed. Since accuracy and efficiency are conflict-
ing, the goal might become to find a balance between them. Eigentaste [10] is a
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CF algorithm that uses universal queries on a common set of items and applies
principal component analysis (PCA). It requires constant time to compute pre-
dictions, given a database of n users. Some of the computations in Eigentaste can
be done off-line, while recommendation computations are done online. Recursive
rectangular clustering (RRC) is employed to cluster users. CF systems perform
two types of tasks [19]: Providing prediction for a single item (target item, q)
showing how much a customer (an active user, a) will like q and producing a
sorted list of items (top-N recommendations) that will be liked by a.

There is a great potential for individuals to share all kinds of information
about places and things to do, see and buy; but the privacy risks are many and
severe. E-commerce personalization poses various privacy risks [6]. The first one
is unsolicited marketing. Secondly, many users are concerned about the use of
computers to pry into their personal lives. People are also worried that vendors
will profile them to facilitate price discrimination. Another risk is that data in
users’ profiles might be used in a criminal case. And finally, data collected for
CF purposes might be used for government surveillance. Moreover, customer
data is a valuable asset, and it has been sold when some e-companies suffered
bankruptcy [5]. Although some people might be willing to selectively divulge
information, a significant number of people are not willing to divulge their in-
formation, due to privacy concerns, according to a survey conducted in 1999 [7].
Users also dislike data transfer and data being shared with other companies.
Due to such concerns, it becomes a challenge to collect data, especially truth-
ful and trustworthy data, for CF purposes. Providing privacy measures plays a
vital role to collect truthful data and to produce accurate referrals. How can
customers give their data for CF purposes without jeopardizing their privacy? Is
it still possible to generate recommendations based on perturbed data?

We investigate how to achieve CF tasks while preserving users’ privacy. We
study how to disguise customers’ ratings to produce recommendations based on
disguised ratings using Eigentaste algorithm with privacy. The main merit of
Eigentaste algorithm is that it is a linear time algorithm and different kinds of
clustering algorithms can be used with it. Our goal is to provide referrals with
privacy via an algorithm that can utilize various types of clustering algorithms
in linear time. CF algorithms should be accurate and efficient [10]. Moreover,
when privacy is an issue, they should preserve users’ privacy, as well. On the
other hand, privacy, accuracy, and efficiency are conflicting goals. Increasing one
or two of them decreases the other (s). Therefore, we wish for proposing so-
lutions to find an equilibrium among them while achieving privacy-preserving
Eigentaste-based CF. We analyze the proposed schemes in terms accuracy, pri-
vacy, and efficiency. We conduct experiments to assess the overall performance
of our proposed schemes. We analyze the outcomes of the experiments.

2 Related Work

Privacy-preserving collaborative filtering (PPCF) is becoming increasingly pop-
ular with the evolution of e-commerce. Canny proposes alternative models for
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PPCF allowing users to control their data [4,5]. A community of users can com-
pute a public “aggregate” of their data without disclosing any individual user’s
data. The aggregate allows personalized referrals to be computed by members of
the community, or by outsiders. Homomorphic encryption is employed to allow
sums of encrypted vectors to be computed and decrypted without exposing indi-
vidual data. Unlike his schemes, in our schemes, users do not actively participate
in CF process after they contribute their data to the server. His schemes are based
on distributed computations, while ours are based on central computations. We
employ randomized perturbation techniques (RPT) for data disguising, while
privacy achieved using cryptographic techniques in his schemes.

Polat and Du employ the RPT for PPCF [14]. They have shown that it is pos-
sible to provide accurate predictions while preserving users’ privacy. They employ
neighborhood- and singular value decomposition (SVD)-based algorithms. How-
ever, we discuss Eigentaste-based CF with privacy, where we investigate provid-
ing clustering based-CF services on disguised data. In [18], providing predictions
based on inconsistently disguised data using memory- or correlation-based algo-
rithms is discussed. However, in this paper, we show how to achieve private CF
services (both predictions and top-N recommendations) using Eigentaste-based
algorithms. In [17], achieving referrals using item-based algorithms on binary rat-
ings without unduly eroding users’ privacy is discussed. Randomized response
techniques (RRT) is employed to perturb users’ data while still producing accu-
rate predictions. Although they use item-based algorithms and the RRT, we use
Eigentaste-based algorithms and the RPT. In our work, we employ the RPT,
which seems proper for non-binary ratings in contrast to the RRT, which is just
feasible for binary ratings.

In [15,16], providing private referrals on partitioned data is discussed. Two
vendors want to conduct CF on the integrated data without revealing their
private data to each other. They exchange some aggregate data off-line and
online while preserving their privacy. Unlike such schemes, where data is parti-
tioned between different parties, our scheme is based on existing databases. The
server collects perturbed data from many users and creates a database containing
masked data. It then performs CF tasks based on such existing database.

3 Background: Principal Component Analysis (PCA)
and Eigentaste-Based CF

Principal component analysis (PCA) is a closely-related factor analysis technique
and reduces dimensionality by optimally projecting highly correlated data along
a smaller number of orthogonal dimensions [10]. PCA facilitates dimensional-
ity reduction for off-line clustering of users and rapid computation of referrals.
Goldberg et al. [10] apply eigen-analysis to solve for matrices E and Λ such that

C = ET ΛE (1)

and
ECET = Λ, (2)
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where C is correlation matrix, E is orthogonal matrix of eigenvectors of C, and
Λ is diagonal matrix of eigenvalues of C. After finding eigenvectors, they keep
principal eigenvectors only. The number of eigenvectors to retain depends on
eigenvalues and it is small. If v eigenvectors are retained, data is projected along
the first v principal eigenvectors:

x = AET
v , (3)

where A is normalized matrix of users ratings of items in gauge set. The popular
choice is to set v at 2, so that data are projected onto eigen-plane.

Eigentaste algorithm can be described, as follows: Given an n × m matrix
of raw ratings from n users and m items, Goldberg et al. [10] select k of these
items to form a gauge set. They normalize the gauge set to produce A, which is
an n × k matrix. Each rating is normalized by subtracting its mean rating over
all users, and then dividing by its standard deviation. They define the global
correlation matrix C over all users:

C =
1

n − 1
AT A, (4)

where C is symmetric and positive definite. After projecting data onto eigen-
plane, users can be clustered. They implement a recursive rectangular cluster-
ing (RRC) to cluster users. Each cell is treated as a cluster of neighbors in the
eigen-plane. For each cluster, the mean for each non-gauge item is computed
based on the number of users who rated that item. Sorting the non-gauge items
in order of decreasing mean ratings yields a lookup table of recommendations
for that cluster. The computations so far are done off-line.

To compute recommendations online, a new user (an active user, a) contribute
his/her ratings for all items in the gauge set. Using principal components, the
data entered is projected onto the eigen-plane. After finding representative clus-
ter, recommendations are presented with the help of lookup table.

4 Privacy-Preserving Eigentaste-Based CF

Our goal is to provide private referrals efficiently with decent accuracy. Efficiency
can be explained, as follows: Additional online costs like storage, communication,
and computation costs should be small and negligible because off-line costs are
not critical to overall performance. We can define accuracy, as follows: Predic-
tions computed based on perturbed data should be close to true rating values.
And finally, although it is a challenge to define privacy clearly, we can explain
privacy in the context of CF, as follows: The server or the data collector should
not be able to learn the true ratings and the rated items of users including ac-
tive users. Users do not want to reveal their true ratings about products they
bought or showed interest. Moreover, it might be more damaging to disclose the
purchased products than revealing the true votes. For example, nobody wants to
reveal that he/she bought pornographic magazine or visited pornographic sites.
Therefore, besides perturbing true ratings, users disguise unrated items’ cells, as
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well. Since privacy, accuracy, and efficiency are conflicting goals, we aim to find
a good balance between them.

4.1 Modified Eigentaste-Based CF Algorithm

We modified original Eigentaste algorithm in such a way to achieve our goals,
as follows: To normalize ratings into z-scores, we use user-mean votes rather
than item-mean ratings. Each user is able to compute z-scores of his/her ratings
without the help of other users if user-mean votes are used for normalization, as
follows:

zuj =
vuj − vu

σu
, (5)

where vuj is the true rating of user u on item j, vu is the mean rating of user u,
σu is the standard deviation of user u’s ratings, and zuj is the z-score value of
user u on item j.

Besides employing the RRC as done in Eigentaste algorithm, there are al-
ternative clustering algorithms like k-means, fuzzy-C means, etc. It is possible
to apply different clustering algorithms to achieve privacy while providing ac-
curate referrals efficiently. We propose to use k-means clustering algorithm to
cluster the projected data into 57 clusters because recent results show that PCA
components provide solutions to k-means clustering [8,13].

In Eigentaste, to create the lookup table, non-gauge items’ means are used.
We propose to use the z-score values’ means to create the lookup table. Once
the cluster of a is found, the mean value of z-scores of the target item (q) is
provided to a. Then, a can de-normalize it and finds the prediction (paq) for q,
as follows:

paq = va + σa × zq, (6)

where va is the mean rating of a’s ratings, σa is the standard deviation of a’s
ratings, and zq is the mean z-score value of q.

In addition to employing lookup table, alternative methods can be applied to
calculate the referrals online. Using lookup table is advantageous due to small
computation time. On the other hand, it might be possible to increase accuracy
while sacrificing on computation complexity. It is possible to use well-known
memory-based CF algorithms to compute the referrals online. After finding a’s
representative cluster, we can find predictions by computing the weighted sum
of co-rated items between a and users in that cluster.

4.2 Data Masking

There are various methods to mask private data. One method is to employ ran-
domized perturbation techniques (RPT). To disguise a number x, a simple way
is to add a random value r to it. x+r, rather than x, will appear in the database,
where r is a random value drawn from some distribution with mean (μ) being 0.
The basic idea of the RPT is to perturb the data in such a way that the server
can only know the range of the data, and such range is broad enough to preserve
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users’ privacy. Although information from each individual user is scrambled, if
the number of users and/or items are significantly large, the aggregate infor-
mation of these users can be estimated with decent accuracy. Such a property
is useful for computations that are based on aggregate information. For those
computations, we can still generate meaningful outcomes without knowing the
exact values of individual data items because the required aggregate information
can be estimated from scrambled data. Since Eigentaste-based CF is also based
on aggregate information rather than individual data items, the RPT can be
applied to them. Therefore, we integrate the RPT and Eigentaste CF algorithm
to provide accurate recommendations with privacy.

After generating random data, users disguise their data by adding those ran-
dom data to their corresponding ratings vector’s cells. We can summarize the
data masking process, as follows:

1. Each user u computes z-score values of their ratings.
2. Users and the server decide γ, θ, and δ values.
3. Each user u selects the standard deviation of the random numbers (σu) uni-

formly randomly over the range [0, γ]. Users generate the random numbers
from a distribution with μ being 0 and σu. Each user u then uniformly ran-
domly selects a random number ru over the range [0, 1]. If ru ≤ θ, uniform
perturbing data; otherwise Gaussian perturbing data is used for data per-
turbation. Each user u finally uniformly randomly selects an integer xer over
the range [0, δ]. We define xer as the percentage of unrated items’ cells to
be filled with noise data. They then randomly select the xer percent of their
unrated items’ cells to be disguised.

4. Each user u creates mu number of random numbers using uniform or Gaus-
sian distribution with the selected σu values, where mu is the number of
noise data required to disguise the user u’s private data including ratings
and unrated cells. Such value depends on the number of ratings and the
number of unrated items’ cells to be disguised.

5. Users mask their private data by adding noise data to each of the cells to be
perturbed. Finally, they send the disguised data to the server.

In uniform perturbing data, random values are generated using uniform dis-
tribution over the range [−α, α], where α is a constant number and α =

√
3σu.

In Gaussian perturbing data, noise data is created using Gaussian distribution
with σu. To obtain a balance between accuracy, privacy, and efficiency, γ, δ, and
θ values can be adjusted.

4.3 Eigentaste-Based CF with Privacy

After collecting perturbed data from users, the server creates a disguised user-
item matrix, D′, which is an n×m matrix including disguised z-scores collected
from n users for m items. k of those m items are selected to form the gauge set,
A′, which is an n × k matrix. Note that all users rated all items in gauge set.
Therefore, A′ is a dense set. The server then starts providing recommendations
based on this perturbed matrix.
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To provide recommendations, the server first estimates correlation matrix
from perturbed data off-line, as follows:

C′ =
1

n − 1
A′T A′, (7)

where C′ is the estimated correlation matrix from perturbed data. We should
show how the server can estimate C′ from masked data. The entries other than
the diagonal ones are computed, as follows:

1
n − 1

(A′T A′)fg =
1

n − 1

n∑
u=1

(zuf + ruf )(zug + rug) =
1

n − 1

n∑
u=1

zufzug +

1
n − 1

n∑
u=1

zufrug +
1

n − 1

n∑
u=1

zugruf +
1

n − 1

n∑
u=1

ruf rug ≈ 1
n − 1

n∑
u=1

zufzug,(8)

where f and g show the row and column numbers, respectively, and f �= g. Since
random values ruf s and rugs are independent and drawn from a distribution with
μ = 0, the expected value of 1

n − 1
∑n

u=1 ruf rug is 0. Similarly, the expected

values of 1
n − 1

∑n
u=1 zufrug and 1

n − 1
∑n

u=1 zugruf are 0. However, since the
scalar product is computed between the same vectors for the diagonal entries
(f = g), we can estimate them, as follows:

1
n − 1

(A′T A′)ff =
1

n − 1

n∑
u=1

(zuf + ruf )(zuf + ruf ) =
1

n − 1

n∑
u=1

z2
uf +

1
n − 1

2
n∑

u=1

zufruf +
1

n − 1

n∑
u=1

r2
uf ≈ 1

n − 1

n∑
u=1

z2
uf +

1
n − 1

n∑
u=1

r2
uf . (9)

The expected value of 1
n − 1

∑n
u=1 zufruf is 0 due to the same reasons. However,

since we only need 1
n − 1

∑n
u=1 z2

uf values for diagonal entries, we need to get

rid of 1
n − 1

∑n
u=1 r2

uf in Eq. (9), as follows, assuming n ≈ n − 1 for large n

values:

1
n − 1

(A′T A′)ff ≈ 1
n − 1

n∑
u=1

z2
uf +

1
n − 1

n∑
u=1

r2
uf − σ2

r ≈ 1
n − 1

n∑
u=1

z2
uf , (10)

where σr is the average standard deviation of random numbers. As explained
before, with increasing n or in the long run, since random numbers are inde-
pendently generated and drawn from distributions with μ being 0, the relative
errors due to random numbers will converge to zero.

Since users disguise their private data using random numbers generated from
some distribution with μ being 0 and σu, the server is able to estimate C′ from
perturbed data off-line, as explained previously. After estimating C′, the server
can apply eigen-analysis and estimate E′, which is a k × k orthogonal matrix of
eigenvectors of C′. It only keeps the v principal eigenvectors. v is usually small
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and generally set to 2. It then projects the data along the first v = 2 principal
eigenvectors, as follows:

x′ = A′E′T
2 , (11)

where x′ is an n × 2 estimated matrix. The entries of x′ can be estimated for
all i = 1, 2, . . . , n and for all j = 1, 2, as follows, where e values represent the
entries of E and R values represent the contributions of random values to true
values of eigenvectors because they are estimated from perturbed data:

x′
ij =

k∑
l=1

(zil + ril)(elj + Rlj) =

k∑
l=1

zilelj +
k∑

l=1

zilRlj +
k∑

l=1

rilelj +
k∑

l=1

rilRlj ≈
k∑

l=1

zilelj . (12)

Due to the same reasons explained previously, the expected values of the last
three summations in Eq. (12) is zero. Since summations are computed over k,
with increasing number of gauge items (k), the relative errors due to random
numbers will become smaller. Therefore, the server is able to project the dis-
guised data along with the first two principal eigenvectors.

After projecting the masked data onto eigen-plane, the server clusters the
projected data into various clusters. We prefer to use k-means clustering over
the RRC because recent results show that PCA components provide solutions
to k-means clustering [8,13]. The server finally generates lookup tables off-line.
For each cluster, it finds the mean of the z-scores for each non-gauge items. Such
average z-score values are stored in corresponding lookup tables.

The computations so far are conducted off-line. Once the server creates the
model (generating clusters and lookup tables) off-line, it can start providing
CF services to users. When an active user, a, wants recommendations, he/she
sends his/her z-score values of items in gauge set together with a query to the
server. We propose to use three different methods to preserve a’s privacy and
explained such schemes in the following subsection. The server can easily project
a’s data and find his/her corresponding cluster when a is used the first method
to protect his/her privacy because a sends his/her true z-scores vector together
with random vectors. When a employs the second or the third scheme to disguise
the z-scores of items in the gauge set, the server first can project his/her z-scores,
as follows, for all j = 1, 2:

x′
aj =

k∑
l=1

(zal + ral)(elj + Rlj). (13)

Since random numbers are drawn from some distribution with μ being 0, we can
write the following approximation of Eq. (13):

x′
aj =

k∑
l=1

(zal + ral)(elj + Rlj) ≈
k∑

l=1

zalelj . (14)
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After projecting a’s data, the server can now find the representative cluster. It
finally sends the required average z-score for the target item q to a, who can
de-normalize such value and estimates prediction for q.

4.4 Preserving Active Users’ Privacy

We propose to use three methods to protect active users’ privacy. The first
method (M1) is based on the 1-out-of-n Oblivious Transfer protocol [3,9], which
refers to a protocol where at the beginning of the protocol one party, Bob has n
inputs X1, . . . , Xn and at the end of the protocol the other party, Alice, learns
one of the inputs Xi for some 1 ≤ i ≤ n of her choice, without learning anything
about the other inputs and without allowing Bob to learn anything about i. By
combining efficient protocols, the 1-out-of-n Oblivious Transfer protocol could be
achieved with poly-logarithmic (in n) communication complexity. When a uses
this method, he/she sends Y -1 randomly generated vectors and his/her true z-
scores vector including z-scores of items in the gauge set to the server. After
finding referrals, the server uses the 1-out-of-n Oblivious Transfer protocol to
send them to a that receives only one prediction instead of Y recommendations.
Although this method is advantageous for the server in terms of business pur-
poses, it introduces additional computation costs due to the 1-out-of-n Oblivious
Transfer protocol. Moreover, it also introduces additional communication costs.

In the second and the third methods, active users also perturb their data as
other users do. Note that a only sends the ratings for the items in the gauge set
to the server. In the second method (M2), a generates k random numbers drawn
from a distribution with μ being 0. a then adds them to his/her ratings in the
gauge set, and sends the disguised ratings in the gauge set to the server to get
recommendations. In the third method (M3), a creates ma random numbers,
where ma represents the number of rated items by a. After that, a uses the first
k random numbers to disguise his/her ratings in the gauge set. After perturbing
ratings in gauge set, a sends them to the server. The last two solutions do
not introduce additional communication costs. Additional computation costs
are negligible. Due to random numbers, they make accuracy worse compared to
the first solution.

4.5 Providing Referrals

After estimating the correlation matrix C′ from the masked data, the server
clusters the users and finds the lookup tables for each cluster off-line. When an
active user a wants a prediction for a single item q or top-N recommendations
for his/her unrated items, he/she sends his/her data in a private manner to
the server together with the query. The server first projects a’s data and finds
the representative cluster for a. Then, it finds the estimated value, which we
call it P ′, from the corresponding lookup table. It sends it to a, who can now
de-normalize P ′ and finds prediction p′aq for q, as follows: p′aq = va + σa × P ′.
The server will only be able to know the estimated value of P ′ because it does
not have the mean rating and the standard deviation of a who is looking for



178 I. Yakut and H. Polat

prediction. Therefore, it will not be able to learn how much a likes or dislikes
q. To provide top-N recommendations, a sends a query stating that he/she is
looking top-N recommendations for Na items, where N < Na < m − mr, and
mr is the number of items rated by a. The server then computes P ′ values for
all Na items and sorts them decreasingly. Finally, it selects the first N items and
sends the list to user a as top-N recommendations. Since the same mean and
the standard deviation are used to de-normalize P ′ values, the server does not
need them to find the sorted list.

5 Overhead Costs and Privacy Analysis

Off-line costs are not critical to overall performance. Therefore, we are inter-
ested in additional online costs rather than off-line ones. Since privacy, accuracy,
and efficiency are conflicting goals, providing privacy measures makes accuracy
and/or efficiency worse. We show how accuracy changes with privacy measures
in the subsequent section. We now show how much additional costs introduced
due to privacy concerns. The communication cost, in terms of number of com-
munications, does not change due to privacy-preserving schemes when a protects
its privacy using the second and the third methods. However, the amount of data
to be sent increases due to the appended random values. The communication
costs increase due to 1-out-of-n Oblivious Transfer protocol when a uses the
first method for privacy-preserving. Although the amount of data to be stored
increases due to random values, the server stores the collected perturbed data
into the same n × m matrix. Additional computation costs due to privacy con-
cerns are also small. Moreover, data disguising is performed without the help of
a third party. The only additional computation cost is the computations that
the server conducts to get rid of the contribution of random values in diagonal
entries of correlation coefficient matrix.

The server tries to figure out the actual values of the ratings and the rated
items. The server wants to obtain true ratings from masked z-scores. Since users
perturb their z-score values, it becomes difficult to obtain true ratings from per-
turbed z-scores. To obtain such values, the server needs the standard deviations
and means of users’ ratings, which are only known by the users. It should know
the type of the perturbing data, as well. Since each user u employs uniform or
Gaussian perturbing data based on θ and ru, the server can guess that uniform
or Gaussian perturbing data is used with probability θ and 1-θ, respectively.
The standard deviations of random numbers are also critical. The server does
not know such values, because they are uniformly randomly generated over the
range [0, γ] by the users. It only knows the γ, not σu values. The privacy measure
should indicate how closely the original value of an item can be estimated from
the perturbed data. To quantify privacy introduced the RPT, various measures
are employed [1,2]. Privacy introduced due to uniform or Gaussian perturbing
data is analyzed in [14] and can be similarly analyzed. As expected, different
perturbing data provide various privacy levels. Moreover, with increasing level
of perturbation (with increasing σu values), privacy improves due to increasing
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randomness. We can say that our proposed schemes improve privacy because the
server does not know the means and the standard deviations of users’ true rat-
ings, type of perturbing data, and the standard deviations of random numbers.

We can analyze our proposed method for preventing the server from learning
the rated items, as follows: The server does not know the rated items due to
appended random numbers. However, it can guess the randomly selected unrated
items’ cells. We should compute the probability of guessing such cells for the
server. The probability of guessing the correct xer value for the server is 1 out of
δ. After guessing such value, the server can figure out the number of filled unrated
items’ cells (d) with the help of empty cells in the perturbed vector because the
number of empty cells equals 1-xer percent of unrated items’ cells. After finding
d, the server can guess the randomly filled unrated items’ cells. If the number
of filled cells is mu including rated items’ cells and filled unrated items’ cells,
the probability of guessing d randomly selected unrated items’ cells is 1 out of
Cmu

d , Cmu

d represents the number of ways of picking d unordered outcomes from
mu possibilities. Therefore, the probability of guessing the randomly selected
unrated items’ cells of one user is 1 out of (δ × (Cmu

d )).

6 Experiments

To assess the overall performance of our schemes, we performed experiments
using real data. We analyzed the outcomes and displayed the final results.

6.1 Data Set and Evaluation Metrics

We performed trials using a well-known real data set, Jester, which is a web-
based joke recommendation system, developed at the University of California,
Berkeley [11]. In Jester, users rate a core set of jokes, and then receive recom-
mendations about others that they should like. The database has 100 jokes and
records of 17,988 users. Almost 50% of all possible ratings are present. The rat-
ings range from -10 to +10, and the scale is continuous. Each user rated the first
10 jokes and these 10 jokes represent the gauge set. The ratings for the remaining
90 jokes are used for generating lookup table. Since Jester is the only available
data set, which contains ratings for the gauge set, we performed experiments
using Jester only. However, our results based on Jester can be generalized.

Several evaluation criteria for CF have been used in literature [5,10,20]. The
most common criteria are the Mean Absolute Error (MAE) and the Normalized
Mean Absolute Error (NMAE). We also employed them as our choice of evalua-
tion criteria in our testings. The MAE and the NMAE should be minimized. The
lower the MAE and the NMAE, the more accurate our schemes are. The MAE
is a measure of the deviation of recommendations from their true user-specified
values [20]. If p1, p2, . . . , pd are true ratings, and p

′

1, p
′

2, . . . , p
′

d are predicted val-
ues from disguised data, then ξ = {ξ1, ξ2, . . . , ξd} = {p

′

1−p1, p
′

2−p2, . . . , p
′

d−pd}
represents errors. Therefore, the MAE is computed, as follows:

MAE =
∑d

i=1 |ξi|
d

. (15)
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As it is used in Goldberg et al. [10], we also employ the NMAE as an evaluation
metric, which can be defined, as follows, where rmax and rmin represent the
maximum and the minimum ratings, respectively:

NMAE =
MAE

|rmax − rmin| . (16)

6.2 Methodology

We first randomly divided the data set into training and test sets, where training
set contains 9,000, while test set includes the remaining 8,988 users’ ratings. We
used these randomly selected 9,000 users’ data as training data. For testing, we
randomly selected 5,000 users from test set. For each test user (active user, a),
we randomly selected 10 rated items among non-gauge items. We normalized the
train and test users’ ratings by converting them into z-scores using user-mean
votes. We perturbed the private data as explained previously. To obtain trust-
worthy results, we run data disguising 100 times. Throughout the experiments,
we set k at 10 (there are 10 items in gauge set), v at 2, and clustered users
into 57 clusters using k-means clustering. For each test user, we withheld one
of the test items’ rating and tried to find prediction for it. We compared the
predictions with true ratings. We computed the MAE and the NMAE values.
We finally displayed the final overall average values.

6.3 Experimental Results

Note that we employed user-mean votes rather than item-mean votes to nor-
malize the ratings into z-scores. Then, we used k-means clustering instead of
recursive rectangular clustering. Finally, we generated lookup tables based on z-
scores. Therefore, we first performed experiments to evaluate the overall perfor-
mance of the modified and/or simplified Eigentaste algorithm. For this purpose,
we used 9,000 users for training while 5,000 test users and randomly selected 10
test items for each test user were used for testing. After finding recommenda-
tions for each test user and test item, we compared them with the withheld true
ratings. We calculated the MAE and the NMAE values. We displayed the final
values together with the results for Eigentaste found by [10] in Table 1.

Table 1. Eigentaste vs. Modified Eigentaste

MAE NMAE

Eigentaste 3.740 0.187

Modified Eigentaste 3.334 0.167

As seen from Table 1, our modified Eigentaste gives better results than Eigen-
taste algorithm. Our proposed variations improves accuracy 10%. In the fol-
lowing, we performed experiments using modified Eigentaste while considering
privacy concerns.
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After evaluating the overall performance of our proposed alternative varia-
tions to the original algorithm, we then performed testings to assess our pro-
posed privacy-preserving Eigentaste schemes. Since we proposed three different
schemes to protect a’s privacy, we conducted experiments to compare those three
schemes in terms of accuracy. Again, we used 9,000 training and 5,000 test users,
where we found predictions for 10 test items for each test user. To disguise pri-
vate data, we set θ at 0.5, γ at 4, and δ at 100. We run data disguising 100
times. We found predictions for withheld items for each a based on perturbed
data, where we protected a’s privacy using three different methods. We then
computed overall MAE and the NMAE values. We displayed overall MAE and
NMAE values in Table 2, where M1, M2, and M3 represent the first, second,
and third methods, respectively.

Table 2. Comparing Methods for Protecting a’s Privacy

M1 M2 M3

MAE 3.3508 3.4710 3.4807

NMAE 0.1676 0.1735 0.1741

The first method gives the best results, as seen from Table 2. However, since
it is based on the 1-out-of-n Oblivious Transfer protocol, which introduce addi-
tional communication and computation costs. The second and the third methods
provide similar results. Compared to the first method, the additional costs they
introduce are negligible. Therefore, we used the second method in the following
experiments to protect a’s privacy. The MAE, 3.3508, for the first method is very
close the one for the modified Eigentaste, which is 3.334. This means that the
errors due to model creation based on perturbed data is very small. However,
the second and the third methods also give decent results.

To show how accuracy changes with varying numbers of users (n), we per-
formed experiments, where we varied n from 500 to 8,000. We used the same
5,000 test users and found predictions randomly selected 10 test items for each
test user. To protect a’s privacy, we used the second method. Again, we set θ at
0.5, γ at 4, and δ at 100. We run data disguising 100 times. We calculated the
MAE and the NMAE values and display our outcomes in Table 3.

Table 3. Accuracy vs. Varying Numbers of Users (n)

n 500 1,000 2,000 4,000 8,000

MAE 4.678 4.242 3.832 3.624 3.483

NMAE 0.234 0.212 0.192 0.181 0.174

As expected and seen from Table 3, the results are getting better with in-
creasing n values. The reason for this phenomenon can be explained, as follows:
In estimation of the matrix C′, the relative errors due to random numbers will
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converge to zero with increasing n values. Although the results are worse for
n values less than 2,000, the results for n values bigger than or equal to 2,000
are promising. Therefore, it is possible to provide accurate recommendations
without violating users’ privacy when there are sufficient data.

To prevent the server from learning the rated items, the users perturb some
of their randomly selected unrated items’ cells by inserting random values. We
hypothesize that accuracy varies with different numbers of perturbed unrated
items’ cells. Therefore, we conducted experiments using 9,000 and 5,000 train-
ing and test users, respectively. We run data disguising 100 times and found
recommendations for 10 test items for each test user. We varied δ from 0 to 100.
When δ is 0, users do not disguise any empty cells while it is 100, the number
of disguised cells is the most. With increasing δ, randomness increases. We com-
puted the MAE and the NMAE values for various δ values and displayed them
in Table 4.

Table 4. Accuracy with Varying δ Values

δ 0 35 70 100

MAE 3.4460 3.4567 3.4615 3.4710

NMAE 0.1723 0.1728 0.1730 0.1735

As expected, accuracy slightly becomes better with decreasing δ values due to
diminishing randomness. However, the gain is very small. This can be explained
with the density of Jester data set. Our scheme gives acceptable results even
with larger δ values. Therefore, our privacy-preserving Eigentaste-based schemes
provide referrals with decent accuracy with varying δ values.

Accuracy and privacy also depend on some other factors other than n, δ,
and the methods to protect a’s privacy, such as the perturbing data, level of
perturbation, σ selection methods, and so on. Since it has been shown that how
accuracy and privacy vary with these factors when the RPT is employed [14],
we did not conduct experiments to evaluate our proposed schemes with varying
of such factors.

6.4 Summary of Our Results

Our proposed schemes allow the users and the server to adjust the parameters
of data perturbation methods to achieve required levels of privacy and accuracy.
With increasing γ and δ values, we add more randomness to original data. With
increasing randomness, privacy improves, while accuracy diminishes. Therefore,
the server and the users should select γ and δ values in such a way to obtain
a balance between them. Although our schemes provide recommendations with
decent accuracy for γ and δ being 4 and 100, respectively, we can even further
improve accuracy by using smaller γ and δ values. On the other hand, privacy
diminishes with decreasing such values. Users and the server are able to decide
the values of such parameters in such a way to achieve required levels of privacy
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and accuracy. Although Gaussian perturbing data slightly provides more privacy
and accurate results then uniform perturbing data, the results are still very close
to each other. The users can select either of them to mask their data while still
obtaining good results in terms of accuracy and privacy. Although we propose
three methods to protect a’s privacy, the second and the third methods should be
preferred over the first one. When considering accuracy and efficiency together,
the last two methods are better because they do not introduce additional on-
line communication and computation costs while sacrificing little on accuracy.
Kargupta et al. [12] state that when standard deviation (σ) of perturbing data
is less than or equal to 1, actual data can be predicted from disguised data rea-
sonably well. However, as seen the experiment results, our schemes can provide
recommendations with decent accuracy when σ is bigger than 1.

7 Conclusions and Future Work

We showed how to achieve private recommendations using Eigentaste algorithm.
We proposed schemes to produce accurate referrals without jeopardizing users’
privacy. We evaluated the overall performance of our schemes in terms of ac-
curacy conducting various experiments based on real data. We analyzed the
outcomes of the experiments. Moreover, we analyzed the proposed schemes in
terms of additional costs and privacy. We will study whether we can employ
other clustering methods or not besides k-means clustering. In the future, we
will investigate how to improve recommendation qualities by using well-known
correlation-based CF algorithms after clustering. We will also study providing
private recommendations using Eigentaste algorithm based on partitioned data
between various parties.
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Abstract. Advertisement dissemination is a promising M-commerce ap-
plication which exploits the capabilities of mobile ad hoc networks to
increase the visibility of the products being offered by merchants. The
starting point is a merchant who generates an advertisement that is sub-
sequently disseminated by citizens who carry mobile devices acting as
network nodes. In this paper we present a novel system where users col-
laborating in offer dissemination are incentivized with e-coin rewards.
Our system is proven to be secure and to preserve the privacy of nodes.

Keywords: Advertisement dissemination, Incentive, M-Commerce, Mo-
bile ad hoc network, Privacy, Security.

1 Introduction

In the recent years, e-commerce has become a valid alternative to classic commerce.
This has been possible due to the proliferation of home computers equipped with
Internet access, cost reduction, special promotions and the possibility of shopping
from our home. In spite of its acceptation, e-commerce has not displaced classic
shopping which is still the most popular way of trading [1].

New-generation mobile devices (e.g. cell phones, PDAs ...) are enabled with
wireless communications technologies which paves the way to a broad range
of services based on mobile ad-hoc networks (MANET). These networks are
formed by mobile nodes which are connected in a self-organized way without
any underlying hierarchical infrastructure. In a MANET, nodes not only send
or receive but also route data exchanged between other nodes.

The big proliferation of this kind of mobile devices enables the extension of e-
commerce (named m-commerce in mobile networks) to traditional shoppers (e.g.
the users of physical malls). This blurs the distinction between the online and
offline worlds and implies the emergence of new trading models which represent
new opportunities and challenges.

In this work we present a new m-commerce application based on advertise-
ment dissemination between the nodes of an ad hoc network established in a
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certain city. In such a system, a merchant generates advertisements related to
her products. These advertisements are spread by incentivized volunteers who
carry mobile devices and act as network nodes. The high mobility of nodes fa-
cilitates the dissemination of advertisements around the city.

Such a system must consider the following aspects:

– Nodes should obtain some reward for disseminating an advertisement. Oth-
erwise, they may refuse to collaborate.

– When incentives for collaborating nodes are established, the system should
prevent a malicious node or a malicious collusion of nodes from being able
of obtaining higher rewards than due.

– An incentivized system requires accounting the collaboration carried out by
nodes. But since a MANET consists of peer nodes operated by users, this
accounting information should not allow tracking of users, who should retain
their privacy.

In light of the above, an advertisement will contain metadata fields such as the
merchant’s reward offer per purchase and accounting information corresponding
to nodes having collaborated so far in the dissemination of the advertisement.
The system ought to be designed so that accounting cannot be maliciously al-
tered but the privacy of the users is guaranteed.

In a MANET, nodes are constantly changing their location. This can cause any
pair of nodes to lose direct connectivity any time. In this way, communication
systems for MANETs should not depend on centralized authorities that need
to be permanently accessible. As to computational capabilities, nodes can be
assumed to be able to perform any cryptographic operation.

1.1 Previous Work

There are several proposals in literature which provide incentivized information
sharing among mobile devices in a MANET (shared information does not need
to be restricted to announcements).

The authors in [5] and [7] propose incentive-based schemes where the network
nodes maintain an account with a special node that gives them credit depending
on the information they have shared so far. The network nodes can later redeem
their credit for money. Nevertheless, both proposals only ensure content integrity.
Thus, malicious nodes could claim more credit than they have actually earned.

Providing incentives to intermediate nodes requires a secure way of collecting
them. In [4] a lightweight and cheat-resistant micropayment scheme is proposed
to stimulate and compensate collaborative peers that devote some of their re-
sources to relay packets for other peers. This scheme focuses on providing a
secure and stable channel to exchange data between two peers within an ad
hoc network. Intermediate nodes are incentivized to keep this channel operative.
However, this work does not address secure dissemination of advertisements
across a large set of mobile nodes.
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The authors in [6] present AdPASS. This is a system designed to spread digital
advertisements among interested mobile nodes in an urban MANET. There are
three types of participants in this scheme:

– A merchant disseminates digital advertisements within her vicinity. Cus-
tomer devices learn about advertisements while their customers are browsing
around the shop.

– A customer device collects advertisements and transmits them to other inter-
ested customers while moving around the city. If a customer uses a received
advertisement to buy something at the merchant’s (the one originating the
advertisement), all the users who have co-operated in relaying the advertise-
ment to the buyer receive some bonus points. Such bonus points can later
be traded for goods at the merchant’s.

– A mediator keeps track of the users’ accumulated bonus points. The mediator
is similar to a central database accessible to both the merchant and the
customer. In addition, the mediator acts as an anonymizer to guarantee the
anonymity of customers.

AdPASS relies on a Virtual Bonus Points scheme to manage the bonus points
obtained by a user from dissemination of a certain advertisement. According to
this scheme, the merchant initially fixes the total number of bonus points which
she is willing to pay for each purchase of the product. Each user who participates
in the dissemination decides how many of the remaining bonus points she takes.
This decision has an influence on the probability of further dissemination of the
advertisement. If a greedy user takes nearly all the bonus points left for a certain
advertisement, no other user is likely to be interested in further disseminating
the advertisement; this may result in loss of sales opportunities, so a rational
user might be expected to take only a fair share of the bonus points allocated
per product purchase.

Even though AdPASS is supposed to provide security and privacy to the users
who disseminate advertisements, it is not without problems. For one thing, the
authors only explain how to get the bonus points but they do not mention how
such points are later spent. This issue must be addressed since privacy could be
compromised at the time of spending. Besides, this approach requires the users
to register with a trusted authority named mediator which acts as an anonymizer
and keeps track of the users’ accumulated bonus points. We claim that a good
system should not require the presence of a trusted third party (TTP).

On the other hand, the virtual bonus points scheme in AdPASS offers no
guarantees of fairness: even though a reasonable behavior can be expected, the
fact is that each user disseminating an advertisement can take as many points as
she wishes, regardless of how many she actually deserves. Worse yet, collusions
are conceivable where colluders exclude other users from dissemination in order
to monopolize bonus points. AdPASS must definitely be repaired to thwart those
roguish attitudes. Last but not least, the total number of bonus points assigned
by the merchant to an advertisement is a de facto upper bound on the number
of feasible transfers to new disseminators: due to the limited range of MANET
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nodes, this implies some limitation in the geographical dissemination range and
the sales potential.

To summarize, to the best of our knowledge, none of the existing proposals
in the literature addresses all the requirements needed to provide advertisement
dissemination through MANETs in an effective, secure and privacy-preserving
fashion.

1.2 Contribution and Plan of This Paper

In this work, we present a new scheme designed to disseminate the advertise-
ments of a merchant in mobile ad hoc networks. Our system offers incentives to
stimulate the collaboration of nodes. Cryptographic techniques are used to pre-
vent manipulation and preserve the privacy of users. Specifically, the AdPASS [6]
system is outperformed in the following aspects:

– Security is achieved against (individual or colluding) dishonest nodes trying
to modify transmitted advertisements in order to unlawfully increase their
share of incentives.

– Privacy is preserved without resorting to any trusted third party. Our system
only requires a certification authority (CA) to certify the merchant’s public
key. In any case, this authority can not disclose users’ identities.

– The incentives rewarding a certain purchase are distributed among all co-
operating users given on how long they have held the advertisement leading
to that purchase before transferring it to another user. This is a fair proposal
which does not restrict the advertisement’s dissemination range.

This paper is structured as follows. Section 2 presents some background on
public key cryptography over Gap Diffie-Hellman groups. Section 3 describes the
new scheme. Section 4 contains a security and privacy analysis. Conclusions are
summarized in Section 5.

2 Cryptography over Gap Diffie-Hellman Groups

The construction we propose uses multisignatures over a Gap Diffie-Hellman
group [2]. Next, we briefly introduce its mathematical background. A Gap Diffie-
Hellman (GDH) group G is an algebraic group of prime order q for which no
efficient algorithm can compute gab for random ga, gb ∈ G, but such that there
exists an efficient algorithm D(ga, gb, h) to decide whether h = gab. GDH groups
are suitable for public-key cryptography. The secret key is a random value x ∈ Zq

and its corresponding public key is y ← gx. The signature on a message m is
computed as σ ← H(m)x (H is a cryptographic one-way hash function). In the
rest of the paper we will denote such a signature on m as {m}x. The validity of
a signature can be tested by checking D(y, H(m), σ).

GDH groups are convenient to compute multisignatures. Given two signatures
of the same message m under two different public keys y1, y2, a signature of
m under the combined public key y ← y1y2 = g(x1+x2) can be obtained as
H(m)x1H(m)x2 = H(m)x1+x2 .



Secure and Private Incentive-Based Advertisement Dissemination 189

3 Our Proposal

Our protocol assumes the existence of a merchant and several mobile nodes
that communicate through a MANET. We assume the existence of dishon-
est users (who may act individually or in collusion) interested in obtaining
a higher reward than that they are entitled to. We do not require the users
to be registered with any central entity. Thus, our system is appropriate for
very dynamic environments where connectivity to a central entity may not be
guaranteed.

Functionally speaking, a user holding an advertisement actively contacts users
within her range and sends them the content of the advertisement. Initially,
the advertisement is held by the merchant. Some of the contacted nodes may
purchase the advertised good and/or be interested in holding the advertisement
themselves for further dissemination.

On the occasion of a purchase request, the buyer sends to the merchant the
advertisement (if any) which has motivated her purchase; attaching the adver-
tisement entitles the buyer to a discount. The incentives rewarding that purchase
are distributed among the nodes in the path from the merchant to the buyer
proportionally to the time they have held the advertisement. E-coins are used
to pay those incentives.

In order to facilitate the distribution of incentives, when an advertisement is
transferred to a new holder, a time stamp indicating the moment of the trans-
fer is added to the advertisement. In this way, when an advertisement comes
back to the merchant together with a purchase request, the merchant can as-
certain the incentive that corresponds to each collaborating node. The system
is totally anonymous, i.e., the information that nodes add to an advertisement
does not allow to identify them. Also, different contributions of a node to differ-
ent advertisements cannot be related. In this way, unlinkability is also provided.
Obviously, we are assuming that the appropriate measures are being taken to
avoid node tracking by other means (for instance, frequent change of MAC and
IP addresses).

The above system is sustainable for the merchant, who never loses money,
because incentives are only paid for advertisements which generated a purchase.

In the following subsections, we describe the protocols and procedures that
conform our system. They are:

– Advertisement generation
– Advertisement dissemination
– Advertisement transfer
– Advertisement checking
– Advertisement deposit
– Incentive payment

An advertisement dissemination example in given in Subsection 3.7.
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3.1 Advertisement Generation

Merchant M has its public key, PKM , and its digital certificate issued by a
Certification Authority, CertAut{PKM}. We denote by SKM the secret key
corresponding to PKM .

1. When M wants to promote a product, it generates an advertisement α con-
taining its public key certificate, the offer description and the expiration time
of this offer:

α = {CertAut{PKM}, Description, ExpirationT ime}

This advertisement is signed by M to obtain {α}SKM .
2. A node Ui interested in disseminating the advertisement contacts M and

receives the following message:

β = {α, PubKeyChain, Multisignature, T imeChain}

The fields of β are initialized as follows:
– PubKeyChain is an ordered list initially left empty;
– Multisignature is initialized to {α}SKM ;
– T imeChain is an ordered list initially containing a single element that

is a tuple formed by T ime and its signature {T ime}SKM ; T ime corre-
sponds to the time this operation has been performed.

3. Ui checks β (see Section 3.4). If all checks are correct, Ui accepts the adver-
tisement from M and starts its dissemination.

3.2 Advertisement Dissemination

Upon accepting an advertisement, Ui informs other nodes about the offer it
contains. Due to the inherent mobility in the nodes, Ui is likely to disseminate
the offer quite far from M .

Additionally, when Ui contacts a nearby node Uj , Ui asks whether Uj is inter-
ested in disseminating the advertisement (our scheme is not linked to any specific
framework to perform such initial contact between users, the one presented in
AdPASS [6] can be used). If she is, they will start the advertisement transfer. In
order to guarantee anonymity and unlinkability, nodes must change their MAC
and IP addresses after each contact.

Note that, after an advertisement transfer from Ui to Uj, Ui still holds the
advertisement and can continue its dissemination and transfer to other nodes. In
this way, the number of nodes disseminating a certain advertisement can grow
exponentially.

3.3 Advertisement Transfer

The advertisement transfer protocol requires users U to have a public/private
key pair (PKU/SKU). To provide unlinkability, this key pair has to be changed
after each execution. Before renewing her key pair, a user stores the secret key.
This key will be needed in order to receive the incentives (as will be detailed
next in Section 3.6).
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1. A user Uj interested in an advertisement α held by another user Ui asks Ui

to transfer it.
2. Ui appends her public key to the value PubKeyChain in β. This is

PubKeyChain′ := PubKeyChain ∪ PKUi

3. Ui Computes the signature sig := {α}SKUi
. Then she computes

Multisignature′ := Multisignature · sig

4. Ui obtains the current time, signs it and appends the signed time to the time
chain, that is: T imeChain′ := T imeChain∪ {T ime || {T ime}SKUi

} (at the
end).

5. Ui generates

β′ := {α, PubKeyChain′, Multisignature′, T imeChain′}

and sends it to Uj .
6. Ui stores the secret key SKUi and generates a new key pair that will be used

at the next transfer.
7. Uj checks β′ (see Section 3.4). If all checks are correct, Uj informs other

nodes about the offer in β′.

3.4 Advertisement Checking

A user Ui receiving a message β should check its validity prior to accepting it.
This is done as follows:

1. Check the validity of CertAut{PKM} (obtained from α). This requires check-
ing the signature by the authority, its expiration date and, if possible, its
revocation status.

2. Compute the product of all public keys contained in PubKeyChain and
PKM . Let us denote by GlobalKey the result of this operation.

3. Check that Multisignature is a correct signature over α that is validated
using GlobalKey.

4. Check that ExpirationT ime (obtained from α) has not expired.
5. Check that the first element of T imeChain is a correct signature generated

by the Merchant.
6. For each key contained in PubKeyChain, check that the j-th public key in

PubKeyChain can validate the (j + 1)-th signature in T imeChain.
7. Finally, check that the values of elements in T imeChain are sorted in as-

cending order and that the last element corresponds to the current time.

3.5 Advertisement Deposit

A user Ui interested in the product advertised in β contacts the merchant and
buys it. By sending β to the merchant, Ui will obtain the price reduction detailed
in β. This price reduction motivates users to deposit advertisements.
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3.6 Incentive Payment

Once a merchant sells a product to a customer who has deposited an adver-
tisement, it has to pay the incentives to all users who have collaborated in its
dissemination.

The merchant gives a fixed amount of money for each received advertisement.
This amount of money is divided between collaborating nodes proportionally
to the time each collaborating node has held the advertisement along the path
from the merchant to the buyer (see Section 3.8 for details about the model
used to reward incentives). This information can be obtained from the values
in T imeChain. The merchant does not know the identity of the nodes that
collaborated in the advertisement distribution. It only knows their public key.
For each payment the merchant authorizes her bank to issue an e-coin. Let us
assume user Ui (who remains anonymous and is only known by her public key)
has to receive an e-coin for a given value v.

The merchant sends a message to her bank indicating that she can issue
an e-coin with value v to any person providing password p. Then, the merchant
publishes a message in a public repository containing p encrypted with the public
key of Ui. This indirect procedure through a public repository is needed because
Ui is anonymous and may be temporarily out of range.

Later, Ui checks the repository, decrypts the message and obtains p. Using this
password, the bank permits her to obtain an e-coin (through the corresponding
e-coin issuing protocol). The e-coin system must be anonymous such as the
one proposed by Chaum in [3]. This is because the e-coin may later be spent
non-anonymously (for instance, if the purchased product has to be delivered by
courier). If the e-coin system was not anonymous, it could be possible to link
the identity of the person spending the e-coin to the public key used in the
dissemination protocol.

3.7 Example of the Protocol

We next clarify the operation of our dissemination protocol following the com-
munication steps described above. We base our explanation on the graphical
example shown in Figure 1.

1. Advertisement generation. The merchant wants to promote a certain
product and generates an advertisement and informs about it the users
within range. User A is interested in disseminating this advertisement and
contacts the merchant to request transfer of the advertisement β. Then A
checks the validity of β and starts its dissemination. This occurs at time T0.

2. Advertisement dissemination. A roams around while informing other
nodes she meets about advertisement β. Then, A transfers the advertisement
to two interested nodes B and D at times T0+T1 and T0+T1+T2 respectively.
At time T0 + T1 + T3, node B transfers the advertisement to node C.
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Fig. 1. Graphical example

3. Advertisement transfer. In each transfer, the node which receives the
advertisement checks its correctness (see Section 3.4) prior to accepting it.

4. Advertisement deposit. User C is interested in the product advertised
in β. Therefore, she contacts the merchant and buys it. By sending β to the
merchant, C will benefit from the price reduction detailed in the offer.

5. Incentive payment. The merchant uses the values in the T imeChain em-
bedded in β to determine that A has carried this advertisement during time
T0 +T1 and B has carried it during T3. Then, the merchant sends a message
to its bank indicating that it can issue two e-coins for values v1(T0 +T1) and
v2(T3) to any person providing passwords p1 and p2 respectively. The joint
value of those two e-coins is the fixed amount that the merchant is willing to
pay for each completed sale of the product. Finally, the merchant publishes
p1 and p2 encrypted with the public key of A and B respectively in a public
repository.

Later, A and B check the repository and obtain their respective password.
Then, they contact the bank and obtain their respective e-coin through the
corresponding e-coin issuing protocol.
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3.8 Comparison to Other Reward Models

As explained before, in our scheme the merchant divides a fixed amount of money
between the nodes which have collaborated in an advertisement dissemination.
The money earned by a certain node is proportional to the time which such
collaborating node has held the advertisement along the path from the merchant
to the buyer. We next explain the advantages of this approach in comparison
with the model presented in [6] and with a simple model where each node receives
money each time it collaborates (this scheme does not consider how long a node
has held the advertisement, only if such node has held it or not).

In [6], the merchant fixes an amount of points as reward to a certain advertise-
ment. Each user which collaborates in the dissemination will claim the number
of points that she desires. It means that if a greedy user Ui claims too many
points, such advertisement will not be disseminated by any other user since it
will not have enough remaining points. Thus, it represents a strong restriction
in the advertisement’s dissemination range. Besides, users are not rewarded in a
fair way and this motivates the users to apply strategies of keeping and passing
along points instead of collaborating in the dissemination.

The simple model is more fair than [6]. Each Ui which takes part in a dis-
semination will receive the same amount of money. However it has two main
problems:

1. If there is no limit in the number of hops, also there is no limit in the amount
of money that the merchant must give as incentives. It represents a major
concern for the merchant. We can solve this problem applying a limit but
then the advertisement’s dissemination range will be restricted like in [6].

2. Since the merchant gives incentives to each user which collaborates, a certain
user with n identities can transfer a certain advertisement to herself n − 1
times (using her n − 1 alternative identities). At the end of the process, this
user will get incentives for each of her n identities.

To solve these two problems we propose to add a second dimension (the time
which a user holds an advertisement) to the simple model. Besides, the merchant
establishes a fixed amount of money (incentives) that will be divided between the
collaborating users. We next explain how our proposal affects the two problems
stated:

1. The merchant after each sale divides the money, assigned to pay adver-
tisement dissemination, between collaborating nodes proportionally to the
time each collaborating node has held the advertisement. It means that the
merchant never loses money. Besides, users will always receive incentives,
although a node which has hold a certain advertisement for a little time in
comparison with others, will probably get a very small amount of money.

2. A certain user which holds an advertisement within n epoch (interval of
time) will get the same amount of money than a dishonest user which has
n different identities and holds the advertisement within 1 epoch with each
identity.
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4 Security and Privacy Analysis

We next explain the adversary model and the possible attacks the system has
to be robust against. We refer to such attacks to prove the security properties
achieved by our scheme: integrity, authentication and non-repudiation. We also
explain how privacy (anonymity and unlinkability) is obtained.

4.1 Adversary Model

In our system, an adversary is any entity or group of entities wishing to disrupt
normal system operation or aiming to collect information on nodes who have
collaborated in advertisement dissemination. The nodes that can take part in a
dishonest coalition are:

– The merchant. It may wish to identify and/or trace nodes who collaborate by
spreading announcements. It may also repudiate having generated a certain
offer.

– The bank. It may wish to identify and/or trace nodes who collaborate in
message dissemination.

– Dishonest users. They may wish to alter advertisements so as to increase
the amount of their assigned reward. They may also wish to inject false
disrupting data or identify and/or trace other users.

Possible attacks. On the whole, an adversary can try to perform the following
attacks:

– Modify the offer description.
– Repudiate having issued a certain advertisement (when the adversary is the

merchant).
– Remove the contribution made by some user to message dissemination.
– Issue a fake advertisement.
– Collect incentives corresponding to other users.
– Obtain the identity of a collaborating node and/or profile her by relating

different interactions.

4.2 Attacks and Security/Privacy Properties

Modification of an offer description. This attack refers to the integrity
property. Offer descriptions are issued by the Merchant, so we assume it does
not take part in the coalition. In our system, an advertisement consists of a
message with the following structure:

β = {α, PubKeyChain, Multisignature, T imeChain}

The advertisement itself is α which contains its public key certificate, the offer
description and its expiration time:

α = {CertAut{PKM}, Description, ExpirationT ime}
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Integrity of the offer description is ensured since α is signed by the merchant
(this signature is included in the Multisignature field) and the signature scheme
is unforgeable.

Advertisement repudiation. In our scheme, the merchant cannot repudiate
having issued an advertisement since it has been signed and the signature on it
is verifiable with a certified public key.

Note that, since collaboration in advertisement dissemination is anonymous,
users do not need to repudiate having collaborated.

Removal of user contribution to dissemination. Another integrity aspect
to be considered is whether users having contributed to the distribution of an
advertisement can be unlawfully dropped and forgotten about. Let us assume
an advertisement coming from merchant M that has been distributed by users
U1, U2, . . . , Un. Let us assume that an intruder wishes to remove Ui from β. The
intruder must remove the public key PKUi from PubKeyChain and remove
{T ime || {T ime}SKUi

} from T imeChain. Both removals can be done without
any difficulty.

The difficulty for the intruder is to alter the Multisignature field. This field
contains the value

Multisignature = H(α)SKM +SKU1+SKU2+...+SKUn .

The intruder must be able to obtain

Multisignature′ = Multisignature · (H(α)SKUi )−1

Since discrete logarithms are hard to compute in a GDH group, the only way to
obtain such value by an intruder is to get the Multisignature field before Ui’s
contribution. This value can only be obtained if the intruder contacts directly
the user who transferred β to Ui. This cannot be done due to the anonymity of
the system.

Issuance of a fake advertisement. This attack refers to the authentication
property. Our system requires the merchant to sign advertisements using a public
key certified by an accepted authority. Generation of a certain advertisement
that will be accepted as authentic coming from a valid merchant M , requires
knowledge of its private key SKM . As long as this secret key is not compromised
and the signature scheme is unforgeable (a valid signature can only be computed
if the secret is known) the system provides authentication and remains secure
against this attack.

Collecting incentives from other users. This situation refers to the au-
thentication property too. In our system, E-coins given as incentives can only be
collected by the users who have earned them. This is ensured by the incentive
payment procedure. During this procedure, the merchant publishes the password
required to obtain an e-coin encrypted with a public key whose corresponding
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private key is only known by the authentic user. In this way, only the authentic
user will be able to obtain this password and request the e-coin.

Disclosure of the identity and/or tracing of users. This attack compro-
mises the privacy of the users. This property consists of two components that
must be guaranteed:

– Anonymity: Interaction with the system should not reveal the identity of the
user.

– Unlinkability: It should not be possible to relate different interactions by the
same user.

The anonymity of users collaborating in the dissemination of an advertisement
is ensured because they simply are requested to provide a public key that does
not reveal anything about their identity. Obtaining the password that permits to
request an e-coin does not require the user to identify herself either. Finally, an
anonymous e-coin system like [3] also provides anonymity when obtaining and
spending an e-coin.

Unlinkability is provided if users use a different key pair each time they per-
form an advertisement transfer. Each user U is able to randomly generate a new
public/private key pair (SKU/PKU) at will and there is no connection between
all the key pairs used by a certain user. Thus, two different public keys from the
same user cannot be related by an observer.

5 Conclusions

We have presented a new scheme designed to disseminate advertisements through
mobile ad hoc networks. Our scheme outperforms the current proposals in liter-
ature by offering security and privacy without requiring the participation of any
trusted third party (except for a certification authority that certifies the mer-
chant’s public key). In addition to that, we propose a new approach to reward
nodes that collaborate in the dissemination according to the time they have been
holding an advertisement. Such proposal does not bound the number of transfers
for an advertisement (and thus its spreading range) and rewards collaborative
nodes with e-coins proportionally to their task.
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Abstract. We present a voter verifiable Internet voting scheme which
provides anonymity and eliminates the danger of vote selling even if the
computer used by the voter cannot be fully trusted. The ballots cast
remain anonymous - even the machine does not know the choice of the
voter. It makes no sense to buy votes - the voter can cheat the buyer
even if his machine cooperates with the buyer. Nevertheless, the voter
can verity that his vote has been counted.

Keywords: electronic voting, vote selling, coercion resistance, anonymity.

1 Introduction

Recently, there is a lot of public interest in electronic voting schemes. There are
expectations that in a near future modern technologies may significantly improve
current election procedures. However, while it became evident that traditional
procedures have many inevitable flaws, it is still an unsolved problem how to
design electronic voting schemes that fulfill all security demands – not only on
the level of a cryptographic protocol, but also concerning the voting equipment
as a potential adversary. In this paper we concern the problem of casting a vote
via Internet, which is the most challenging problem.

Problems and Risks of the Internet Voting. To some extent anonymity
can be achieved by traditional voting on paper ballots. (Of course, there is no
longer guarantee that the ballots do not contain hidden features invisible for the
voter.) Electronic ballots are much harder to handle: if the ballots are identical,
then there will be plenty of ways to attack the system by casting additional
votes. If the ballots are unique, then they might be used for uncovering voters’
preferences and for vote selling. If they contain random values, then these values
may be used to leak secrets. Another practical issue for Internet voting is voter
authentication, but we assume that the voters can authenticate themselves with
digital signatures.

Verifiability of the election results is one of the major issues for electronic vot-
ing: while for the paper ballots there are some procedures against election frauds
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(they work as long as the commissions are honest), electronic voting is virtual
and the voter may distrust the security mechanism of mixing and counting the
votes. Therefore, one of the important features would be to provide the voter
a (printed) trace that enables her to check that her vote has been counted and
included in the final result. This concept of voting receipts is a central feature
in many schemes (see for instance [1]). However, it is also a major problem for
system design. At the same time two requirements should be satisfied:

– a receipt must convince a voter that her ballot was properly counted,
– a receipt must not reveal voter’s choice.

Vote selling is the most important problem for Internet voting with profound
consequences. Unlike in the case of the traditional voting process, buying votes
might be very efficient, non-risky and performed with no direct supervision of
the buyer. Simply, the voter downloads and installs a special program that su-
pervises his voting activities on his computer. This software sends appropriate
information in an encrypted form to some unknown remote server. Finally, the
voter receives some reward. One may try to guard voter’s PC against such pro-
grams, but this seems to be hopeless. Even if it would be possible for today’s
operating systems (it is not), an overwhelming majority of the users will not
change the operating system or make efforts to reconfigure it only for the sake of
Internet voting. Moreover, a voter may want to sell a vote. In this case he would
not install security system or he would unmount them, if they were already
deployed. Necessary tools would be provided by vote buyers.

Systems in which vote buying is easy are extremely dangerous due to the cost
of potential vote-buying systems compared to the cost of election campaign.

(Un)trusted Platforms. Voting software and hardware are practically black
boxes. Even if they have been checked, the voters has no real guarantee that
the systems checked are identical with the systems installed on the voters’ PC.
Even if it is so, the voter may distrust the authorities involved in the audits. In
particular, one may fear that the authorities could have installed some features
for supervising a voter or manipulating his or her vote.

Previous Solutions. Many electronic voting systems have been proposed so
far. One can classify them into three groups:

- Paper Based - a voter votes in a booth on a paper ballot which is scanned
and then electronically counted by the system [2, 4, 16],
- Machine Based - in a booth a voter operates some voting machine [1,12,14,
15],
- Internet Based - a voter uses her PC to cast a vote [9, 13].

Many schemes are receipt-free [9,13], but assume that that the machines used
for voting are honest. This approach seems to be unsuited for Internet voting –
one would require a detailed audit at least of the operating system and of the
application used for voting. Such a verification of voter’s hardware and software
is practically infeasible.
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In [8] a model of electronic voting schemes have been introduced. In the same
paper, a coercion-resistant voting system was presented. Still, presented scheme
does not take into account that cryptographic operations cannot be performed
by a a voter herself (“Voter Vi includes non-interactive proofs of knowledge of
σi · · ·”), so in fact, indirectly assumes honesty of the hardware and software used
by the voter.

The problem of untrusted voting machines can be partially solved with re-
ceipts. Chaum [1] presented a solution for which a voter gets a receipt proving
that her vote was counted and at the same time it is meaningless for anybody
else. Hence the voter cannot convince a buyer about the vote cast. Later other
schemes with receipts were proposed. All they use a two stage verification. First,
a voter can check that her vote appears on a certain bulletin board. The second
stage should convince her that her vote was properly processed by an array of
mix-servers. Two major techniques are used here: Randomized Partial Check-
ing [10] and Neff’s zero knowledge proof procedures [15].

Many Internet voting schemes allow a voter to cast a vote only once (or
from a single machine). This makes vote selling very easy: a machine may have
a special software installed that monitors voting activities and reports them to
the buyer. A solution of this problem was implemented in Estonia: a voter can
revoke her electronic ballot and cast a traditional paper ballot. Each electronic
ballot is signed digitally by the voter, so it is possible to check which ballot
has to be removed (the signatures are removed before decryption of the ballots
starts). The main problem of this system is that it provides no verifiability and
that vote buying still makes sense (only a fraction of sellers will revoke the vote).

Klonowski et al. [12] proposed a quite different scheme for voting machines.
Each vote contains two parts, each part consists of two halves. One part contains
an encoded vote, the other part contains a random identifier. The halves of each
part should appear after the final decoding, lack of any half is an evidence of
a fraud during mixing and decoding. Each of the halves is processed separately
and the processing servers cannot link them together until the final decoding.

In case of [1, 12] the voting machines must be trusted to a certain degree
- they know the preferences of the voters; still, they cannot change them. No
solution that would work regardless of dishonest voter’s PC has been designed
so far. Current research concentrates rather on providing a secure environment
(like Trusted Platform proposals) - however this approach has basic limitations.

Internet Voting - Threats: Let App denote the voting application run on
the PC of a voter. For Internet voting protocols, there are three main types of
threats:

Type A: A voter can be cheated by App:
(1) App can cast a vote for a different specified candidate,
(2) App can cast a vote for a random candidate,
(3) App can cast an invalid vote.

Type B: A voter may want to sell a vote:
(1) a vote buyer/coercer is physically present when a voter is casting a vote
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via Internet or he can impersonate the voter,
(2) the buyer/coercer provides appropriate application to be run on a machine

used for vote casting (to monitor a voter’s choice).

Type C: A voter can be cheated by a voting system that implements gathering
the ballots, decoding them and computing the results. This problem concerns
the protocols which do not provide verifiability:

(1) lack of global verifiability (schemes without audit procedures),
(2) lack of local verifiability (schemes which does not allow a voter to
check if her vote was counted as intended).

From a practical point of view the threats of type A and type C are much
different. In case of a system concerned in point C detailed audit procedures
may take place. On the other hand, there is no control over voter’s PC used for
Internet voting. In particular, the voter can use any software as App that yields
an output according to the specification of the protocol.

Our Results: We design a protocol that generalizes the scheme from [12]. Let
us list the main technical features of our proposal:

1. Each encoded ballot is processed through a sequence of tallying authorities
that perform mixing and partial decoding; if at least one of these tallying au-
thorities is honest, then the vote remains anonymous.
2. While casting a vote the user obtains a digital receipt that can be used to
check if his vote has been properly processed. If a single ballot has been manip-
ulated, then it become detected with a fairly high probability and at least one
of the cheating authorities can be identified.
3 The receipt and the transcript of the voting session on the computer of the
voter do not suffice to determine the preferences of the voter. Before casting a
ballot the voter obtains a short message through an independent communication
channel that is hidden for the machine used for voting.
4 A voter can change his decision by casting another ballot, which cancels the
previous vote. Both ballots: the first one and the canceling one appear in the
final tally, but they cannot be linked together.

It follows that we combine two properties that are somewhat contradictory: a
voter can be convinced that his ballot has been counted, but simultaneously
buying votes does not make sense. Even if the buyer supervises the computer of
the voter (and can see what the voter is doing on this PC), he cannot be sure
that the vote will not be revoked later from another machine.

2 Background of Encoding Techniques

RSA-RE Ciphertexts and Signatures. Let us recall a construction of ci-
phertexts that may be signed and re-encrypted later together with the signature.
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The idea has been already used for e-voting [12], and originates from [6,11]. The
main advantage of re-encryption is that it allows certain instant verification of
the mixing process without revealing anything about the plaintexts.

Key Setup and Ciphertext Creation. Let N = pq be an RSA number, and
let g be an arbitrary generator of a cyclic subgroup G ⊆ Z∗

N such that dis-
crete logarithm problem is hard in G. We skip the notation “modN” whenever
operations within ZN are concerned.

The authority responsible for vote creation chooses e, which is co-prime with
ϕ(N) and d such that e · d = 1 mod lcm(p − 1, q − 1). Then d is the private
signing key, whereas e is the public key for signature verification. The key ĝ = gd

is published.
Assume that each ballot has to be processed by λ mix servers before getting

decrypted. For 1 ≤ j ≤ λ, let yj be the public key (for encryption) of the jth
mix, and let xj be the corresponding private key, where yj = gxj . Every server
obtains also a public key for signature verification, which is equal to ŷi = yd

i .
A ciphertext of m is created with a randomly chosen k1 and has the following

form:

(α, β, γ, δ) := (m · (y1 · . . . · yλ)k1 , gk1 , md · (ŷ1 · . . . · ŷλ)k1 , ĝk1) . (1)

We call it an RSA-RE-onion, since there are many “layers” of encryption and
we have to remove these layers in order to decode it.

Decoding Process. When after some decoding and re-encryption such a ci-
phertext is delivered to mix i, it has the following form:

(αi, βi, γi, δi) = (m · (yi · . . . · yλ)ki , gki , md · (ŷi · . . . · ŷλ)ki , ĝki) .

The following operations are executed with ri chosen at random:

(αi+1, βi+1, γi+1, δi+1) :=

(αi/βxi
i · (yi+1 · . . . · yλ)ri , βi · gri , γi/δxi

i · (ŷi+1 · . . . · ŷλ)ri , δi · ĝri) .

It is easy to see that we get the following tuple with ki+1 = ki + ri:

(m · (yi+1 · . . . · yλ)ki+1 , gki+1 , md · (ŷi+1 · . . . · ŷλ)ki+1 , ĝki+1) .

Observe that for re-encryption we need to know only the public keys concerned.

Signature Verification. If a RSA-RE-onion signature is correct, then for some
k we have α = m · yk , γ = md · ŷk, so γ = αd. Similarly, δ = βd. So we say that
the outcome of verification is positive iff α = γe and β = δe.

Notation. Obviously, the first two parts of an onion, (α, β), is a regular ElGamal
ciphertext obtained for the public key y1 · . . . ·yλ. We will write ue(m) for a RSA-
RE-onion of a message m, and e(m) for its first two components corresponding
to an ElGamal ciphertext.

Raising to a Power. Let us observe that one can raise m hidden in ue(m) to
an arbitrary power l without destroying the signature. Indeed:

ue(m)l = (ml · (y1 · . . . · yλ)k·l, gk·l, md·l · (ŷ1 · . . . · ŷλ)k·l, ĝk·l) .
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The last expression is ue(ml), an RSA-RE-onion of a message ml, with the
exponent k · l used for encryption.

Opening an Onion. It can be checked that an onion (α, β, γ, δ) has been created
according to formula (1) by opening it. Namely, the party that has created the
onion reveals the exponent k1 used. Note that no private keys are necessary.

Coupled Ciphertexts. Assume that two ciphertexts for two different recipients
have to be processed together, but in the meantime they have to be re-encrypted.
If we do it in a standard way, then the link between the ciphertexts considered is
lost after re-encryption and one could replace one of these ciphertexts. However,
we can couple the ciphertexts of m1 and m2 by constructing: (m1 ·αk, m2 ·βk, gk),
where k is chosen at random, and α, β are the public keys of the addressees of the
ciphertexts. We can re-encrypt such a ciphertext by multiplying its components
by, respectively, αh, βh, gh for a random h. It is easy to see that use of the
same k for encrypting m1 and m2 does not introduce any security risks, since
a procedure to break the scheme (even with a private key corresponding to β)
would yield a method to break ElGamal ciphertexts created with α.

3 Scheme Construction

Since the number of details in the final scheme might be confusing, we present a
family of schemes, each time discussing improvements introduced. This should
explain the final construction; in the next section, one can find a (high level)
step-by-step description of the protocol.

Model. The physical setup of the system is following. Voters use their PC’s
which are connected to Internet. PC’s are running a voting application - App.
PC’s are also equipped with smart card readers for implementing trustworthy
digital signatures. A specialized server named BGS (Ballot Generation Server)
is responsible for preparing ballots. A registration server named RS is respon-
sible for verifying signatures of the voters. There are public bulletin boards of
authorities responsible for mixing and decoding votes.

Version 0 - Estonian like Solution. Let y1, . . . , yλ denote the public keys of
the authorities responsible for mixing and decoding the ballots. App prepares a
ballot containing m as an ElGamal ciphertext

(m · (y1 · . . . · yλ)k, gk)

for a random k. Such an encrypted ballot, signed digitally by the voter, is sent
to the bulletin board. At the end of an election day: each signature is verified
and it is checked that no voter cast more than one vote. Then decoding and
mixing the ballots is performed by the tallying authorities after stripping off the
signatures. Correctness of decoding should be checked, e.g. with RPC ( [10]).
An electronic ballot can be revoked by the voter in a polling station before the
end of the election day.

Advantages: (A.0.1) If at least one tallying authority is honest, then voter’s
preferences remain hidden.
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(A.0.2). A buyer cannot be sure that the voter will not revoke a vote after selling
it (however, the buyer may pay after checking that the buyer has not revoked
his e-ballot).

Disadvantages: (D.0.1) All threats of type A apply. A fraud cannot be de-
tected, since the random exponent k should be erased immediately in order to
protect voter’s privacy.

(D.0.2). Practically, the threats of type B apply - revoking personally is tedious
and indicates that the voter might be a (dishonest) vote seller.
(D.0.3). Local verification is impossible (threat C.2), only global verifiability can
be implemented.

Version 1 - Locally Verifiable Scheme
We apply an idea from [12]. A ballot consists of four ciphertexts: two of them
encode the voter’s choice (just the identifier of the candidate, the same for all
ballots), the next two encode an identifier known to a voter and used for ver-
ification. The order of the ciphertexts in the ballot is random. After the first
decoding and re-encryption all ciphertexts are permuted at random so that the
link between the ciphertexts from the same ballot is lost.

Advantages: All advantages of Version 0 are preserved. Additionally, the scheme
is immune against threats of type C:

(A.1.1). Ballot decoding process is in some extent locally verifiable - a voter can
check that the identifier of his ballot appears on the final list.
(A.1.2). Removing, modifying and adding one vote can be detected with prob-
ability at least 5

6 in the case of the first tallying authority – equal to the prob-
ability of removing 2 parts encoding a vote without removing 2 parts encoding
an identifier (= 1 − 2

4 · 1
3 ). The probability that m manipulated ballots remain

undetected is lower than ( 1
4W )m in case of the remaining authorities, where W

is the number of votes cast [12].

Disadvantages: The scheme is not immune against threats of type A and B.

Version 2 - Securing the Scheme Against a Dishonest App
Let us assume that there is N candidates. The ballots are created by an inde-
pendent authority, so called Ballot Generating Server (BGS); the following steps
are executed in order to create a single ballot:

(1) BGS generates N 4-tuples of onions, where each tuple is generated as for
Version 1 of the protocol and the ith tuple encodes a vote for the ith candidate.
(2) The list of 4-tuples is shifted circularly by a random shift s.
(3) BGS sends the tuples to the PC of a voter.
(4) BGS sends the shift s through an independent channel directly to the voter.
(5) The voter indicates which of the 4-tuples should be cast as the vote.
(6) App re-encrypts the tuple chosen, permutes at random the onions obtained
and presents them to the voter for signing.
(7) The voter signs the onions and App sends them to the bulletin board.
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Advantages: The scheme is still immune against threats of type C. Additionally:

(A.2.1). Voter’s PC does not know voter’s preferences (as long as PC and BGS
do not collude) – it is the first step to eliminate threats of type A.1.

Disadvantages: (D.2.1) PC can change the vote at random - it can send for
signing a different tuple than indicated by the voter. Nothing will be detected.
However, App cannot change the vote to a vote for a chosen candidate.

(D.2.2). The voter has to trust BGS - the threats of type C apply in case of
BGS.
(D.2.3). App may pretend that it is taking onions from BGS, but in fact generate
them itself. So all threats of type A still apply.

Version 3 - Enforcing Cooperation with BGS
Instead of onions, BGS creates RSA-RE-onions. Two ciphertexts from a 4-tuple
indicating a vote for a candidate i encode the plaintexts ci and c′i, where ci, c

′
i are

chosen at random from G for all ballots (so in particular, the discrete logarithms
of ci and c′i with respect to g are unknown).

Advantages: (A.3.1). At any level of decoding it can be checked that an onion
originates from BGS (by verifying signature that will be inserted into an onion).
Hence App cannot create own onions. Together with the property (A.2.1) it
prevents threats of type A.1.

(A.3.2). The RSA-RE onions do not eliminate manipulations through raising to
power. However, it is unknown how to make a valid vote for another candidate
from a vote for candidate i. Together with property (A.2.1) it guarantees that
App cannot create random valid votes. So threats of type A.2 are prevented.

Disadvantages: The scheme is immune against threats of type B.2, but threats
of type B.1 still apply. Threats of type C exist with respect to BGS.

Version 4 - Securing the Scheme Against Malicious BGS
In order to enforce honest behavior of the BGS, the following additional steps
are executed:

(1) Instead of one card containing N 4-tuples, two cards are presented on re-
quest by the BGS to App (optionally more than two). The onions are still not
composed as RSA-RE-onions (there is no signature inside). However, each card
is signed digitally in a conventional way for non-repudiation purposes.
(2) Together with the cards App receives cryptographic commitments of:

(a) the shifts used for both cards,
(b) the identifiers.

The commitments can be printed by the voter or mailed in a traditional way on
scratch cards.
(3) The shifts are sent to the voter through a secure channel (without involve-
ment of her PC).
(4) The voter chooses one of the cards for checking.
(5) BGS responds with values opening the commitments and onions for the card
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requested. Moreover, BGS creates RSA-RE-onions from the onions of the second
card.
(6) App presents the result of opening to the voter, who checks the results.

Advantages: As Version 3, it is immune against threats of types A.1, A.2, B.2.
Additionally:

(A.4.1). Even a single fraud of BGS becomes detected with a constant proba-
bility. So the scheme is immune against threats of type C as long as BGS and
App do not cooperate.

Disadvantages: Still, the scheme does not prevent threats of type B.1 and A.3.
Unfortunately, this solution enables effective vote selling (B.2): A vote’s seller
can input obtained shifts to App, then App (not the voter!) chooses a card for
voting and verifies the shifts obtained from the voter once BGS reveals the shifts
from the unused cards.

Version 4a - Securing against vote seller. BGS, generates s1, s2, and derives
shift, as s = s1 + s2. Instead of sending commitment of s to an App, BGS sends
commitments of s1 and s2. At the same time, BGS sends values of s, s1, s2 of each
card to a voter. For each card only one of the commitments of values s1, s2 is
revealed to App. The choice is made deterministically, based on a deterministic
signature of a voter under a publicly known value z.

Advantages: Now, a voter cannot prove to App her shifts, because she can check
in advance which shift-components will be revealed by BGS. Still, BGS cannot
cheat, because it does not know the voter’s signature under z. It eliminates
threat B.2.

Version 5 - Ballot Revoking
Instead of a set of N 4-tuples (each tuple for a different candidate) we have
two 4-tuples for each candidate: a voting tuple and a revoking tuple. The voting
tuple for candidate i contains ciphertexts of ci and c′i, while two ciphertexts
of the revoking tuple for candidate i encode di and d′i, where di, d

′
i are chosen

similarly as ci and c′i and serve as “anti-votes” canceling ci, c
′
i. The identifiers in

the revoking tuple are chosen independently of the identifiers contained in the
voting tuple.

For the purpose of revoking the following additional steps are executed:

(1) Registration Server (RS) sends a random challenge r to App,
(2) App derives a symmetric key K from the voter’s signature of r (a determin-
istic scheme like RSA has to be used),
(3) App re-encrypts the revoking tuple and encrypts it with K, the resulting
ciphertext is signed by the voter,
(4) App sends the ciphertext of the revoking tuple together with the voter’s
signature to RS.

At a due time, when the voter decides to revoke his ballot, the following steps
are executed (the voter may use a different PC):
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(1) the voter signs r once more and sends the signature to RS,
(2) the RS checks the signature, derives K, retrieves the revoking tuple and puts
it on the bulletin board just like a voting tuple.

Advantages: (A.5.1) Even if a buyer is present when a vote is cast, he cannot
be sure if a voter does not revoke this vote and casts another vote later (from
a different PC). So the threat type B.1 is minimized.

Disadvantages: Still, the scheme does not prevent threats of type A.3. More-
over, App may cheat and send to the bulletin board a different revoking tuple
than it should. In particular, a voter may create own App in order to revoke
votes for a candidate, she hates.

Version 6 - Enforcing App to Play Fair
Version 5 of the algorithm requires a pair of 4-tuples per candidate in a ballot
obtained from BGS. We change it: now we have two pairs of 4-tuples with iden-
tical contents for each candidate - let us call them the lower and the upper pair.
To each pair, BGS attaches two encrypted marks, the first mark is either A or A,
the second hidden mark is either X or X. For each candidate the BGS assigns
mark A to the upper pair and mark A to the lower pair or vice verse, each option
with probability 1

2 , independently of the choices for other candidates. Similarly,
BGS assigns hidden marks X and X to the pairs, independently from other
choices.

Now let us describe how to attach the marks chosen for each pair. We use two
public keys of the bulletin board, say γ and χ. Then to each onion from a pair of
4-tuples we attach the marks chosen. Namely, instead of an ElGamal ciphertext
(m · (y1 · ·yλ)k, gk), BGS creates

(m · (y1 · . . . · yλ)k, M1 · γk, M2 · χk, gk)

where M1 and M2 are the marks chosen for this pair. (In fact, the RSA-RE
signatures have to be attached to the resulting tuple.) As already seen, such a
coupled ciphertext can be re-encrypted.

The following additional steps are executed while casting a vote:

(1) Together with commitments the voter obtains information about configura-
tion of A and A marks in the ballot (and no information about configuration of
X and X marks).
(2) After choosing a candidate the voter indicates which pair of marked 4-tuples
to use: the upper or the lower pair corresponding to her candidate. The cipher-
texts chosen are re-encrypted, signed traditionally and sent to RS. The marked
revoking tuple is encrypted with the key K, and sent to RS as before.
(3) RS decrypts the first mark (either A or A) and attaches it to the voting tuple
published on the first bulletin board.
(4) The voter checks whether the right mark is published together with her vot-
ing tuple.

When a voter demands to revoke her vote, the following additional steps are
executed:
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(1) the bulletin board decrypts the second mark from the voting tuple obtained
from the voter,
(2) after decrypting the ciphertext containing the revoking tuple the bulletin
board retrieves both marks attached. The first mark is published together with
the revoking tuple.
(3) The bulletin board checks whether both marks are the same for the voting
tuple and for the revoking tuple. If not, then a fraud of App is detected.

Advantages: (A.6.1) Since there is a voting tuple with mark A (respectively,
A) for each candidate, marks published on the bulletin board do not betray the
choices of the voters even to BGS.

(A.6.2). If App performs the steps of the protocol for a different candidate than
indicated by the voter (as described by threat A.2), then it has to choose either
the upper or the lower pair of this candidate. With probability 1

2 the chosen pair
is wrong- it has a mark different than expected by the voter. So App cannot
send a random vote instead of the one chosen by the voter without a fair chance
of being detected.

(A.6.3). The voter may collude with App and indicate a revoking tuple for
a different candidate than chosen for a voting tuple. The voter can choose a
tuple with the correct first mark. However, the voter does not know the hidden
mark, so with probability 1

2 the fraud attempt will be discovered while revoking
the vote. Of course, we can increase the chances to detect a fraud: instead of
a lower and an upper pair, we might have 2k pairs for each candidate, where
each k-bit mark is assigned to exactly one pair. This decreases the chances of an
unnoticed fraud to 2−k.

4 Scheme Construction - Details

Building Blocks
During system setup we choose c0, c1, . . . , cN−1, c

′
0, c

′
1, . . . , c

′
N−1 – the values

corresponding to the voting options (e.g. list of candidates). Similarly,
cN , cN+1, . . . , c2N , c′N , c′N+1, . . . , c

′
2N is the list of the values corresponding to

the anti-votes, namely anti-vote cN+m or c′N+m corresponds to the vote for can-
didate/option m. One of the values corresponds to an invalid vote, i.e. c0 = void
= c′0, to allow voters cast invalid votes.

Card. For every card, random s1, s2 define a random cyclic shift: π(j) = j +
s mod N , for s = s1 + s2. Two pairs of random identifiers are used: (id, id′)
and (rid, rid′). The identifiers are coupled in some way (for instance id′ =
signBGS(id), rid′ = signBGS(rid)).

The jth row of a card contains an upper and a lower part. Each of them
contains six ciphertexts for casting a vote and six ciphertexts for revoking a vote.
Each 6-tuple contains 2 ciphertexts of marks: either of A or of A and either of
X or of X . The choice of marks is indicated by random N -bit sequences TA and
TX . For t ∈ {A, X}, fu,t,j = t, if Tt(j) = 1, and fu,t,j = t, otherwise. For the
lower part, fl,t,j ∈ {t, t} and is different from fu,t,j .
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For x ∈ {u, l} (u, l stand for upper and lower), row i contains the following
6-tuples for voting (the order of components is of a tuple is random):

px,i = [ueγ(fx,A,i) ueχ(fx,X,i) uey(cπ(i)) uey(c′π(i)) uey(id) uey(id′)]

(γ and χ denote public keys of RS, y = y1 · . . . · yk is the joint public key of
tallying authorities).

A 6-tuples apx,i used for revocation have the following form (again, the com-
ponents indicated are permuted at random):

[ueγ(fx,A,i) ueχ(fx,X,i) uey(cπ(K+i)) uey(c′π(K+i)) uey(rid) uey(rid′)]

A ballot. If a voter has chosen t (upper/lower) part of the row j, then a voting
ballot has the form v = [pt,j ], and the anti-vote contains: av = [apt,j; pt,j ].

4.1 Voting Process

Part I: Ballot Generation Procedure
This part of the protocol is executed in interaction between BGS, Alice and
application App running on her PC:

1. Alice requests n ≥ 2 cards.
2. App sends a request for n cards to BGS (may be through an anonymous

channel),
3. BGS responds for each request with the following data :

– voting cards,
– commitments to the identifiers contained in these cards,
– tokens A, A,
– commitments to the components s1, s2 of the cyclic shifts s used.
– digital signature under all these data.

4. Alice obtains information about the cyclic shifts (s) and components of cyclic
shifts (s1, s2) used in cards, TA and the identifier id. Those information is
sent through a channel that is inaccessible to the PC running App (e.g.
phone, SMS, . . . ).

5. Alice chooses a card i for voting.
6. Alice together with App generates the deterministic signature under publicly

known value z.
7. App sends signature signAlice(z) - this signature determines uniquely which

shift component should by revealed,
8. BGS sends RSA-RE signatures to the card chosen for voting, data for open-

ing the ciphertexts in other cards and checking the corresponding commit-
ments, the shift component from the voting card indicated by signAlice(z)
and data for checking its commitment.

9. App checks if received values satisfy commitments and displays to Alice the
plaintexts and the requested shift component of the card chosen for voting.
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Part II: Vote Casting

1. Alice makes her choice: she chooses a part t (upper/lower) of a row w from the
card, according to the cyclic shift used and her voting preferences. Namely,
if she chooses the jth candidate, then the row w has to contain a ciphertext
of cj in the voting card, that is π(w) = j.

2. App performs the following steps:

(2.1) it creates a ballot by selecting v = [pt,w] and revoking-ballot av =
[apt,w; pt,w],

(2.2) App modifies the values contained in v and av by re-encrypting every
ciphertext contained in it.

(2.3) App contacts RS and obtains a challenge r.
(2.4) Alice signs the challenge obtaining signAlice(r), a deterministic signa-

ture scheme is used.
(2.5) App derives (in a deterministic way) an encryption key

K := R(signAlice(r)) with a pseudorandom generator R.
(2.6) Alice signs v and EncK(av); then App sends these data together with

the signatures created to RS.
3. RS checks the signatures and the correctness of v. Then v is stored in the

set of votes cast on the public Bulletin Board, the second (encrypted) packet
is stored in a repository of revocation codes. RS also provides a receipt for
Alice which is a signature of RS under both packets.

4. Alice checks, with the help of Bulletin Board, if ueγ(ft,A,i) sent with her
vote agrees with the value indicated by TA known to her.

Part III: Vote revocation. A voter can cancel his previous vote by signing
a challenge which was used during the previous vote casting. The procedure of
voting for the second (third, ...) time contains an additional step. It is a fair
exchange between a commission and a voter. The voter sends a signature for
the challenge used during the previous vote generation to the commission. The
commission uses it for decryption of the revocation vote, posts it on Bulletin
Board and increments the number of the canceled votes.

Before accepting a revocation vote, RS checks if plaintexts of ueχ(ft,X,i) con-
tained in vote v and revoking-vote av are the same (this prohibits canceling a
vote for a different candidate).

Part IV: Tallying process. After closing the polling stations the RS servers are
closed as well. From every vote v and revoking-vote av, RS takes the ciphertexts
containing voting options and identifiers and sends them to the first tallying
authority.

Now, the mixing procedure is executed by an array of mix servers run by
independent tallying authorities. For 1 ≤ i ≤ λ, the ith tallying authority runs
a server that executes the following steps:

– it reads the RSA-RE ciphertexts from Bulletin Board i − 1 and checks the
signatures of BGS,

– it partially decodes the ciphertexts in each block with its private key,
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– it re-encrypts each ciphertext,
– it permutes the ciphertexts at random and posts them on Bulletin Board i.

The last tallying authority gets, after decryption, plaintexts of the ciphertexts
included in the ballots. It presents them in the Bulletin Board λ together with
a Zero Knowledge Proof of correct decoding. Now, on Bulletin Board λ one can
see election results.
Part V: Vote Counting. It is checked that there are exactly two occurrences of
each identifier r. Then, one counts number of votes for every candidate, subtracts
the number of anti-votes and divides by 2.

5 Final Remarks

Communication Complexity. A voting card contains N positions of can-
didates or voting options, so there are N parts (upper/lower, vote/anti-vote).
Each of those parts contains 4-tuples (id, id′, ci, c

′

i) of RSA-RE-onions and two
encrypted marks A/A, X/X, hence together 18 ciphertexts. There are 4K parts,
so there are about 100N ciphertexts. If 1024-bit encryption is used, then the
total size of the card is about 10N kB, so for K = 20 it is about 200 kB.

Social Aspects. We have presented an Internet voting scheme which is coercion-
free without assumption of certified software on a secure machine used in a voting
process. As far as we know this is the only solution so far that works without any
trusted element. The main weak point is quite complex design incomprehensible
for an average voter, so social acceptance might be a problem.
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Abstract. The main focus of Trusted Operating System (TOS) research
these days is on the enhanced access control of reference monitors which,
in turn, control the individual operations on a given access instance. How-
ever, many real-life runtime attacks involve behavioral semantics. It is
desirable, therefore, to enforce an integrated security policy that includes
both behavioral security and access control policies. We have proposed
an extended reference monitor to support both access and behavior con-
trols. This results in a sequence of operations which is also of concern
in security enforcement. This paper presents the design of the extended
reference monitor for integrated policy enforcement and describes its im-
plementation in Linux operating systems.

1 Introduction

The design and implementation of TOSs have received due attention as the OS
is the last line of IT defense. A TOS includes a security kernel with which attacks
by illegal access operations are adequately countered. Beyond the Discretionary
Access Control (DAC) – the default in Unix – most efforts concentrate on the
enforcement of enhanced non-discretionary access controls such as Mandatory
Access Control (MAC), or Role-Based Access Control (RBAC).

Although conventional access control schemes support confidentiality and in-
tegrity acknowledging the necessary organizational security policy, there is an
evident inadequacy. This stems from the fact that the access control mechanism
makes decisions with the precision of a single access operation. The well-known
example is the set-user-id (setuid) mechanism in generic Unix or Linux OS. Usu-
ally, a privilege transition is needed when a user has to perform a special task
such as changing the password, configuring the system, or enabling/disabling
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hardware devices. Security administrators insist on safe execution of such pro-
grams, i.e., bounded execution by operations defined (compiled) in the program
binary. However, we have constantly witnessed runtime bugs in such programs
from security advisories. If the program is subverted by Stack Overflow attack
[1], for example, the attacker can hold the transferred privilege of the program;
and this is clearly not the intention of the administrators. If we carefully observe
the attack process, we find that the underlying DAC access control context is
valid even though the attack has succeeded. This subversion relies on the change
of behavior of the program under legitimate access control context. The situation
with TOS is no different if it (the TOS) includes the privilege transition mecha-
nism in its access control scheme for whatever reason. This deficiency is due to
the lack of another dimension in security enforcement besides access control.

We have proposed an extended reference monitor [2,3] with a view to incor-
porate the behavioral dimension in security enforcement. A TOS with the ex-
tended reference monitor can enforce an integrated security policy that manages
not only a single access operation but also a sequence of consecutive operations.
We find that the control of a relation of operations (an operation sequence) by
a reference monitor is indeed behavior control as opposed to the usual access
control.

This paper proposes the design of the extended reference monitor that at-
tempts to enforce an integrated security policy in TOSs. The fundamental struc-
ture is based on Domain and Type Enforcement (DTE) [5]. DTE facilitates ef-
ficient access control configuration for a TOS. It is also very simple and highly
flexible in managing access entities. As for access control, we provide Role-Based
Access Control (RBAC) [6]. The incorporation of RBAC into DTE provides
much needed flexibility as further abstraction of subjects is possible with RBAC.
We borrow the concept of a fluent from Event Calculus (EC) [7]. With the help
of fluents, we can express the behavioral constraints of processes which go a
long way in behavior control. We also describe the design of an integrated policy
language. An implementation of the extended reference monitor in Linux kernel
has also been provided.

The rest of this paper is organized as follows: In section 2, the motivation
for extending the reference monitor is indicated. Section 3 describes the protec-
tion structure of the extended reference monitor that is relevant in enforcing an
integrated policy. Section 4 presents the design of the policy language. Implemen-
tation of the reference monitor is described in section 5. Section 6 summarizes
related work. We conclude this paper in section 7.

2 The Motives of Extended Reference Monitor

We encounter various types of program attacks on OSs on a regular basis. Attacks
such as Stack and Heap Overflow, Double Free, and Format String accompany shell
code aiming to mess up the privilege beyond the currently operative rights of users.
Attacks exploiting race condition of some processes also lead to security hazards.
We note that these attacks are related to the two functions described below.
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The first function is the privilege transition that is very helpful in system
management. Generic UNIX involves DAC and the setuid is the mechanism
for privilege transition. As for TOSs whose access control functions go beyond
DAC, researchers tend to adopt analogous mechanisms in their implementations.
GRSecurity’s role transition [14] and SELinux’s domain transition [9] provide ex-
amples of the trend. With these mechanisms, extracting privileges out of one’s
duty is possible if a program contains a bug that becomes active during pro-
gram execution. None of the access contexts of the attack sequence violates the
underlying DAC enforcement rules. For example, each individual access oper-
ation is legal in a typical Stack Overflow attack. The behavior encoded in the
program binary is replaced with the behavior of the attacker starting from the
shell code, and the latter violates security requirements. As the privilege mode
is transited by a successful attack, the reference monitor cannot spot the subject
of the compromised process [17]. For more details on this situation, see [2]. If a
TOS includes any such privilege transition and contains a bug, then a similar
situation obtains: we have investigated such a possibility in SELinux [8].

The other function is process concurrency. Needless to say, it is a very im-
portant feature in OSs. However, there exists a set of attacks which exploit this
feature, i.e., time-of-check-to-time-to-use (TOCTTOU) attacks [4]. The attack is
caused by the programmer’s dubious assumption that between two consecutive
operations – one checking a resource and the following one using the resource
– the reference of the resource does not change. This assumption is not true
and the attackers have exploited this misunderstanding. As in the case of stack
overflow, access contexts of involved operations do not violate the given access
control enforcement rules. The problem arises because of the specific sequence
(behavior) of operations, the effect of scheduling made by the attacker, of the
involving processes.

The above situation arises because access control with conventional reference
monitors does not consider the (semantic) relation among consecutive access
operations, although many real-life program runtime attacks do involve such
behavioral semantics. The hazard is that even though all the invoked access
operations are legal individually, the sequence of operations may result in an
attack. Therefore, without behavior control, a conventional reference monitor
can not counter real life attacks effectively even though the monitor implements
correct access control.

We have proposed an extended reference monitor [2,3] with a view to involve
the behavioral dimension in security enforcement. Our monitor model attaches
a behavior control component to the access control unit, thereby providing both
access and behavior controls in the system. In [2], we have defined the behavioral
control unit as a security automata [16] which can guarantee the safety property
which ensures that if a trace is not in accordance with the behavioral policy,
then the execution must be terminated at the earliest. We have extended the
RBAC model [3] with the procedural restriction; thus, the monitor makes access
decisions based on continuous access information in RBAC-enabled TOSs. This
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paper modifies the extant protection model [2] and also describes a new policy
language implementation.

3 Protection Structure for the Integrated Security Policy

In this section, we propose a protection structure model for the extended refer-
ence monitor in order to realize security enforcement under an integrated policy.

In any OS, the user invokes an operation on a target object within a process
context. We allow basic system entities to be users, operations, objects, and
processes. In accordance with the DTE, processes and objects are labeled by do-
main and type respectively. We define an event as an invocation of an operation
on an object that is labeled with a certain type. Operation-type-object (object)
semantic is created when an event occurs [Fig. 1]. Here is how the entities are
defined:

– USER, OPR, OBJ : the set of users, operations and objects.
– PROC: the set of processes.
– exec(u : USER)→ 2PROC : executing processes activated by a user u.
– DOMAIN, TY PE: the set of domains and types.
– d label(p : PROC)→ DOMAIN : domain label of a process p.
– t label(ob : OBJ)→ TY PE: type label of an object ob.
– EV ENT ⊆ OPR× TY PE: the set of events.

We support two types of policy: open or closed. An open policy specifies
prohibited events. The enforcement with an open policy initially allows all the
(access) events and restricts events which are specified as rules. A closed policy,
on the contrary, specifies allowable events, initially prohibiting all the events.
Usually, the enforcement of a closed type policy in an OS incurs considerable
performance penalty: the tightly regimented processes under a closed policy need
to be checked for all the operations, while the reference monitor checks only
the concerned operations with open policies. The access control enforcement
in an OS can be open or closed. However, the behavior control enforcement
with a closed policy may lead to a slower system (due to state management).
Thus it might be better to enforce behavior control with open policies. However,
if an administrator wants to make a process – which maybe introduced into
the systems for the first time (thus, untrustworthy) – to be tightly regimented,
recourse may be taken to a closed behavior policy. The other reason is that the
policy expression for behavior control is easy with an open policy type rather

EVENT

OPR TYPE OBJUSER ROLE

DOMAIN

Fig. 1. Our protection structure for the extended reference monitor
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Fig. 2. Security decisions

than with a closed one. The ordinary host based intrusion detection system
checks the condition for attacks and denies access if the condition is detected.

Each domain is under an open or a closed policy.

– POLICY TY PE = {open, closed}: there are two types of policy.
– policy type(d : DOMAIN)→ POLICY TY PE: policy type of a domain d.

For the access control part of an integrated policy, we rely on the RBAC. In an
OS, a user executes an executable and the execution instance creates a user-role-
domain (subject) semantic [Fig. 1]. This means that a program process (being
executed by some user), and access operations of the program are controlled by
the eligibility of the role. A user can be assigned to a set of roles in order to
execute relevant job functions.

Access control is implemented in such a way that a user in a subject semantic
can produce an event by eligibility of user’s role in the event [Fig. 2(a)]. The
reference condition on eligibility may be positive (+) or negative (−). Positive
eligibility of a role leads to the condition: “when a user executing a program of
the domain is assigned to the role.” In contrast, negative eligibility refers to the
condition: “when a user executing a program of the domain is not assigned to
the role.” The access decision function (adf) checks the conditions. Note that
the adf does not compute the final decision.

– ROLE: the set of roles
– UA ⊆ USER×ROLE: a many-to-many user-to-role relation.
– ROLE COND ⊆ ROLE × {+,−}: the set of role reference condition.
– adf(u : USER, r cond : ROLE COND) → {true, false}: on user’s role

assignment, access decision function returns true in accordance with the
role reference condition, i.e,
• (∀u : USER, ∀r cond : ROLE COND)adf ⇒ (∃r : ROLE)[((r, u) ∈

UA ∧ (r, +) ∈ r cond) ∨ ((r, u) /∈ UA ∧ (r,−) ∈ r cond)]

We were motivated by Event Calculus (EC) [7] in configuring the behavior
control policy. The concept of fluent, a time-variant property, is included to
capture the behavioral aspect of processes. A fluent is initiated by an event
thereby making the fluent hold (value: true). Conversely, an event may terminate
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the fluent in which case the fluent does not hold (value: false). In behavior
control, fluents are defined to reflect certain states in a behavior. As the fluents
are updated by concerned events [Fig. 2(b)] the reference monitor can compute a
decision by considering not just a single event but a sequence of events. Behavior
decision function (bdf) checks whether the fluent is hold (for positive condition)
or not hold (for negative condition).

– FLUENT : the set of fluents.
– f val(f : FLUENT )→ {true, false}: the value of a fluent f .
– FLUENT COND ⊆ FLUENT × {+,−}: the set of fluent reference

condition.
– bdf(f cond : FLUENT COND) → {true, false}: behavior decision func-

tion returns true if the given fluent reference condition is satisfied, i.e,
• (∀f cond : FLUENT COND)bdf ⇒ (∃f : FLUENT )[(f val(f) ∧

(f, +) ∈ f cond) ∨ (¬f val(f) ∧ (f,−) ∈ f cond)]

Security decisions are made based on the subject and the object semantics;
and, this can be achieved by relating a domain and an event with appropriate
reference conditions. We define an integrated policy rule as follow:

– RULES ⊆ DOMAIN × EV ENT
×ROLE COND × FLUENT COND: the set of security rules.

A rule refers to a user’s restricted events (permission, i.e., operation on an
object) if the domain associated with the user’s executing process is under an
open policy; and, a user’s allowed events in the case of closed policy.

Security decision function (sdf) provides final decisions for allowing an event
based on encoded rules. The function refers to adf and bdf for access and behavior
control conditions. Under an open policy, if both the conditions are satisfied, then
the process’ event with a certain domain should be denied. On the contrary,
under a closed policy, the event should be permitted.

– sdf(u : USER, p : PROC, op : OPR, ob : OBJ) → {true, false}: On invo-
cation of an operation op with an object ob by a user u within a process
context p, security decision function returns true for a permitted operation
and returns false for a rejected operation, i.e,
• (∀u : USER, ∀p : PROC, ∀op : OPR, ∀ob : OBJ)sdf ⇒ (∃r cond :

ROLE COND, ∃f cond : FLUENT COND)
[p ∈ exec(u) ∧ ¬((policy type(d label(p)) = open) ∧
(d label(p), (op, t label(ob)), r cond, f cond) ∈ RULES∧adf(u, r cond)∧
bdf(f cond)) ∨ ((policy type(d label(p)) = closed) ∧
(d label(p), (op, t label(ob)), r cond, f cond) ∈ RULES∧adf(u, r cond)∧
bdf(f cond))]

4 Security Policy Configuration

This section describes the integrated policy language for the extended reference
monitor.
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4.1 Declarations and Domain/Type Labeling

First of all, we need to define entities involved in a configuration before they
are used. The declarations of users, roles, domains, and types are very similar
to what we have been doing in variable declarations in programming languages:
we place keywords user, role, domain, and, type before the name of each entity.

We may define a user john, a role admin r, a domain admin config d, and a
type etc passwd t as follows:

user john;
role admin_r;
domain admin_config_d;
type etc_passwd_t;

A domain defines a restricted execution semantic of programs. A set of pro-
grams are labeled with a specific domain with domain assign keyword in the
following way:

domain assign (-r) domain name → { executable program paths };
The executable program path designates the exact path of a specific program
without the recursive option (-r); and, with the option, directories are specified
and all the executables in the directories are labeled with the domain name.

The init process executed from /sbin/init can be labeled with init d, and pro-
cesses invoked from executables in /sbin, /usr/sbin, /usr/local/sbin, /usr/bin/
kerberos/sbin be labeled with admin d as follows:

domain_assign init_d -> { /sbin/init };
domain_assign -r admin_d ->
{ /sbin, /usr/sbin, /usr/local/sbin, /usr/bin/kerberos/sbin };

Type labeling can be done in a way similar to domain labeling with type assign
keyword. The difference is that a type can be assigned to any file object including
normal files, directories, or even devices (for example, we may assign console t to
control read or write operation to console).

4.2 Event and Fluent Definitions

As our policy language is influenced by the EC, defining events and fluents are
crucial to policy configuration. In our TOS framework, access operations to be
controlled are all defined by events. The event definition is an expression of the
form:

event event name { op: operation; ob: object ; arg; argument expression; };
The event definition is comprised of three fields: operation type (op), target ob-
ject (ob), and argument expression (arg). The operation field must be specified,
but the object and the argument fields are optional. Our TOS implementation
depends on Linux Security Module (LSM) [12]; thus, the operation type is the
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part of operations hooked by LSM, such as stat, setuid, execve, and so on. The
target object can be of any type on which the operation is valid. Just as system
call functions take arguments, we can specify the arguments for the operation
and this enhances the granularity of event control.

Example 1. The event chroot non root dir e specifies chroot operation on the
directories except the system root directory. The set euid zero e event expresses
setuid operation with both ruid and euid arguments to be zero.

event chroot_non_root_dir_e { op: chroot; ob: !root_dir_t; };
event set_euid_zero_e { op: setuid; arg: ruid = 0, euid = 0; };

A fluent starts to hold by initiating events. It enters not hold state by terminating
events. The fluent definition is of the form:

fluent fluent name { i : initiating events ; t : terminating events ; (hold/!hold ;) };
We can set the initial value of the fluent by specifying hold or !hold for initially
holding and initially not holding. Without the setting, the fluent is initially in
the !hold state. In our policy language, a fluent can have a valid range. By
default, events enlisted in a fluent are limited to the local boundary: the fluent
is only affected by the events within the local process. However, it is reasonable
to suppose that the security of a process may be in the shadow of other processes
in the OS; hence, we let the fluent be influenced by events in external domains.
We include domain name.event name for this purpose. This means that the
event of a specific domain can influence the fluent which includes that event
(in initiating or terminating the fluent). The keyword ext domain is included
to define alias of a domain name for the external event definition in order to
abstract domain names.

Example 2. The fluent euid zero f starts to hold when the event set euid zero e
has occurred; the event unset euid zero e terminates the fluent. The checked f
can be terminated by the use open1 e local event, and also by the event unlink e
which is triggered by the external domain normal d.

fluent euid_zero_f {
i: set_euid_zero_e;
t: unset_euid_zero_e; };

fluent checked_f {
i: check_stat_e;
t: use_open1_e, attacker_d.unlink_e; };

ext_domain attacker_d -> { normal_d };

4.3 Policy Specification and Its Assignment

The integrated security policy consists of two parts: access and behavior control
specification. We describe access control part first. We declare an access control
specification to be open (a spec with open declaration) and make a list of pro-
hibited events with access control expressions. We declare a closed policy with
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a spec with close keyword. If there is no policy type for a policy specification,
it is considered to be an open policy. The access control specification has the
following form:

a spec spec name { (open/close;) access control expressions };
Access control expression presents an allowed or a disallowed event depending on
the role which is assigned to the user who is executing a process of some domain.
The check for role assignment can be positive (+) or negative (-): the positive
condition checks for the assignment of the role, and the negative condition checks
for the negation of role assignment. Access control expression has the following
form:

(+/-) role name → allow/deny event name;

One can incorporate access control specifications to some domains with the
a assign definition.

Example 3. The specification no access to some config file implies that a user
who is executing programs of normal d, or ftp d cannot trigger the event open
http config e if the user is assigned to the role user r. Also the user cannot
trigger the event open php config e, if he or she is not assigned to admin r.

a_spec no_access_to_some_config_file {
+user_r -> deny open_http_config_e;
-admin_r -> deny open_php_config_e; };

a_assign no_access_to_some_config_files -> { normal_d, ftp_d };

The main entities of behavior control specification are event and fluent. When
an event is about to occur, it is disallowed or allowed based on the involved flu-
ents’ state; and the states may be affected by the event. The syntax for behavior
control specification is very similar to the access control specification. The be-
havior control specification is of the form:

b spec spec name { (open/close;) involving fluents ;
behavior control expressions };

A behavior control expressions has the following form:

(+/-) fluent name → allow/deny event name;

For the positive case, the expression is interpreted in terms of the holdsat pred-
icate in the EC; therefore, it means that if a fluent is in the hold state, then the
event is allowed/disallowed. The negative expression is interpreted as ¬holdsat.

Example 4. The specification prevent chroot to root dir means that if the fluent
chroot non root dir invoked f is in the hold state, then the event chroot root
dir e must not be allowed.

b_spec prevent_chroot_to_root_dir {
fluent chroot_non_root_dir_invoked_f;
+chroot_non_root_dir_invoked_f -> deny chroot_root_dir_e; };

b_assign prevent_chroot_to_root_dir -> { normal_d };
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4.4 Behavior Specification Examples

Configuring access control with our policy is straightforward. Here we describe
how the EC based behavior specification can be expressed to reflect real life
examples of attack.

A runtime attack such as Buffer Overflow tries to change the execution flow
in the user mode. If the attacker succeeds, he/she usually spawns a shell in the
privileged mode. The shell code usually contains a sequence of setreuid(0, 0)
followed by execve(SHELL) system calls. The following example configuration
monitors the behavior. The fluent euid zero f checks the status of effective uid
(euid) which is set by the family of set∗uid system calls; the execution of a shell
is disallowed if the fluent is in the hold state. If the process is not affected by
the attacks, and if the privileged mode is normally exited, the fluent is flipped
so that we can restore its first state.

Example 5. No shell execution after setting the euid to be zero.

The following example configuration prevents a TOCTTOU attack: i.e. the file
race condition. With this policy, the monitor prohibits the time-of-use if unlink
and symlink operations are invoked on files labeled tmp t followed by the time-
of-check. The value of involved fluents is affected by both local and external
processes thereby achieving adequate monitoring.

Example 6. Preventing TOCTTOU attack.

event check_stat_e { op: stat; ob: tmp_t; };
event use_open1_e { op: access; ob: tmp_t; }; # normal use
event use_open2_e { op: access; ob: !tmp_t; }; # abnormal use
event unlink_e { op: unlink; ob: tmp_t; };
event symlink_e { op: symlink; ob: config_t; };

fluent checked_f {
i: check_stat_e;
t: use_open1_e, attacker_d.unlink_e; };

fluent unlinked_f {
i: attacker_d.unlink_e;
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t: use_open1_e, attacker_d.symlink_e; };
fluent symlinked_f {

i: attacker_d.symlink_e;
t: use_open1_e; };

b_spec tocttou {
fluent checked_f, unlinked_f, symlinked_f;
+symlinked_f -> deny use_open2_e; };

b_assign tocttou -> { admin_config_d };
ext_domain attacker_d -> { normal_d };

5 Implementation

Here we present a proof-of-concept implementation of the integrated security
policy enforcement.

5.1 Policy Compiler

We have implemented a policy compiler and some utilities for the extended
reference monitor. The compiler has been developed in the Python version of
Lex/Yacc module [28]. It parses access and behavior control specifications (in-
tegrated policy) and generates a policy binary. The binary is loaded into the
Linux kernel module which implements the extended reference monitor. The do-
main and the type labeling utilities are also built in order to appropriately label
domains and types for numerous access entities, especially file objects, in the
system.

5.2 Extended Reference Monitor

We have patched Linux kernel version 2.6.17 to include our extended reference
monitor functionality. Our system architecture follows the general enforcement
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structure [Fig. 3] to clearly discriminate between security enforcement and de-
cision facilities [10,11]. We have adopted Linux Security Module (LSM) [12] as
access enforcement facility (AEF) which redirects the system call invocation
to Security Decision Subsystem (SDS), the implementation of security decision
function sdf which is shown in section 3. The query for security decision is made
by the SDS which refers to Security Policy DB (SPDB), which contains the in-
tegrated security policy that governs access and behavior control configuration
built by the policy compiler.

The access control information (ACI) for objects is accompanied by the object
itself. For example, the type information for file object is labeled in the extended
attributes of files which are supported by EXT3 filesystem. The ACI for the
subject is encoded in the process management subsystem (task struct structure
in Linux process definition) as a security label (S-Label) wherein the role and
fluent information is labeled in the process creation stage (referring the SPDB).
At decision time, SDS makes security decisions from sdf based on those ACIs.

5.3 Performance Evaluation

We have conducted performance evaluation tests on our implementation on a 2.4
GHz PC with 1GB memory. The kernel level measurement of the system call 1

shows that 4.7% overhead on process creation involves fork and execve system
calls. The overhead may be incurred due to security labeling of subjects.

When defining an event, we can include objects and argument expressions for
an operation and those can influence the system call performance. The overhead
due to mmap system call without specifying anything in the event definition was
1.17%. With a target object specification, the overhead due to stat was 4.3%.
The overhead due to setreuid with full argument specification was 12.6%. Using
the UnixBench [27] benchmark test tool, we have measured the file copy overhead
(which involve permission routine in LSM, and the routine is frequently used in
system calls which handle files) with 256, 1024, and 4096 bytes; and the results
were 6.2%, 3.7%, and 4.7%, respectively.

In our system, processes not associated with policies are not affected by the
enforcement. Here we present the performance of a process that is tightly reg-
imented: i.e., all the operations are checked by the SDS. It is meaningful to
consider it as it shows an upper bound on the performance of the process. Fig-
ure 4 shows the result of comparison between the original kernel and the patched
kernel. Each kernel executes a simple program with a closed policy. We measured
the execution time of the program; and the result shows that the patched kernel
has a small overhead.

It is natural that the decision time would increase with the number of flu-
ents in a behavior policy. We also observed that the computational cost of a
setreuid system call with increasing number of fluents and the result is depicted
in Figure 5. The numbers in the graph specify time in nanoseconds. It appears

1 We use the process’s time stamp counter (TSC) for the measurement of cycles and
refer the cycles to time conversion routine in timer tsc.c in Linux kernel source tree.
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Fig. 4. Comparison of the execution time between the original kernel and the patched
kernel

Fig. 5. Performance of security decision: the computational cost is the instruction
cycles measured with rdtscll registers, and the numbers on the curve indicate time in
nanosecond

that a load of more than 40 fluents in a process brings down the performance.
However, we use policies with a view to invoke the concerned operations. Real
enforcement is expected to be quite different: the number of behavior policies
is not very large, in general. Access control covers a large part of the security
enforcement in operating systems; and a small number of structured behavior
policies would be enough to cope with a class of attacks.

The main objective of our implementation is to investigate the operativeness
of the extended reference monitor functionality. Current implementation does
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not aim at optimized performance. Inclusion of a cache mechanism for access
rules appears to be promising in this regard.

6 Related Work

There are many TOS projects that employ kernel-based reference monitors. The
architecture of Rule-Set Based Access Control (RSBAC) for Linux Kernel [13]
is based on Generalized Framework for Access Control (GFAC) and it supports
multiple access control policies, especially MAC. The Security-Enhanced Linux
(SELinux) [9] implements the Flask architecture to support several access con-
trol policies with a high degree of flexibility. The major access control schemes
of SELinux are RBAC and DTE (Domain and Type Enforcement). Both RS-
BAC and SELinux make a clear separation of enforcement from decision facility;
and these architectures are now commonly incorporated. REMUS [15] also has
similar enforcement architecture, but its access control mechanism is based on
a detailed analysis and empirical classification of Linux system calls. RSBAC,
SELinux, and REMUS make access decisions on a given single access solely
through access control policy; and this point sets our approach apart. We also
incorporate behavior as well as a given single access operation for decisions. Thus
we enforce integrated security policies with the extended reference monitor.

On the other hand, there are also efforts that constrain the behavior by speci-
fying a behavioral policy. Linux Intrusion Detection System (LIDS) [18] and Blue
Box [19] are policy-driven intrusion detection systems in the kernel layer. Both
can specify the policy about behavior based on process’ capability. However,
their specification model is based on an empirical approach rather than a formal
one. SASI (Security Automata SFI Implementation) [21] is a reference monitor
framework that enforces security policies based on Security Automata. Its im-
plementation layer is at a lower level than ours as their target operation unit
is x86 machine instruction. The intrusion detection based on the specification
language [20] also describes behavioral policy to detect the unknown behavior
of applications. The above systems do not provide a provision for the enhanced
access control schemes such as MAC or RBAC.

Zimmermann et al. presented very similar observations in respect of deficien-
cies of conventional reference monitor [17]. However, their approach is different
from ours. They adopted the information flow concept in security enforcement.
Although their monitor considers relation of consecutive actions, it checks infor-
mation flows between objects rather than explicitly constraining each operation.

Other than TOS area, there is some work on access control based on the EC.
Efstratiou et al. have developed a policy language based on simple EC for mobile
adaptive systems [23]. While their work is on the implementation of a specific
system, Bandra et al. have presented a reasoning framework for general security
policies [24]. Baker [22] has applied the simplified EC to RBAC. Tishkov et al.
presented an architecture for access control policy management mainly dealing
with RBAC [25].
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In our implementation, we have used the LSM [12] to be AEF: i.e. hook-
ing security-relevant operations of kernel. Many kernelized monitors are imple-
mented on this because it supports generic hooking method replacing the system
call interception. SELinux represents work of the LSM type. Early versions of
RSBAC [13] and GRSecurity [14] were also on top of the LSM. Jaeger et al. have
worked on the verification of hook placement of the LSM [26].

7 Conclusions

In this paper, we have proposed a protection model for the enforcement of an
integrated security policy in TOSs. Our protection structure has attempted to
integrate DTE with RBAC. The monitor checks the eligibility conditions while
controlling the access. We adopted the fluent concept to effectively enforce the
behavioral policy. Various behavioral features of real-life runtime attacks can
be configured in this way. Our reference monitor can accommodate behavioral
dimension of the security policy. A policy language suitable for security config-
uration has been described with examples that show its effectiveness. We have
also described the proof-of-concept implementation of the reference monitor in
the Linux kernel. We believe that our enforcement of an integrated security pol-
icy enhances the operativeness of conventional access control systems.

Acknowlegements. The authors gratefully acknowledge the reviewer’s helpful
comments in preparing the final manuscript. This research was supported in part
by the BK21 of Ministry of Education of Korea, and in part by Strategic Inter-
national Cooperative Program, Japan Science and Technology Agency (JST), of
Japan.

References

1. Alphe One. Smashing the stack for fun and profit. Phrack Magazine 7 (49), File
14 of 16 (1996)

2. Kim, H.C., Shin, W., Ramakrishna, R.S., Sakurai, K.: Design and implementation
of an extended reference monitor for trusted operating systems. In: Chen, K., Deng,
R., Lai, X., Zhou, J. (eds.) ISPEC 2006. LNCS, vol. 3903, pp. 235–247. Springer,
Heidelberg (2006)

3. Shin, W., Park, J.Y., Lee, D.I.: Extended role based access control with procedural
constraints for trusted operating systems. IEICE Trans. Inf. & Syst. E88-D(3),
619–627 (2005)

4. Lowery, J.C.: A Tour of TOCTTOUs. SANS GSEC practical v.1.4b (August 2002)
5. Badger, L., Sterne, D.F., Sherman, D.L., Walker, K.M., Haghighat, S.A.: A domain

and type enforcement unix prototype. In: Proc. of the 5th USENIX UNIX Security
Symposium (1995)

6. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Chandramouli, R.: Role-based access
control models. IEEE Comput. 29(2), 38–47 (1996)

7. Miller, R., Shanahan, M.: Some Alternative Formulations of the Event Calculus.
In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and
Beyond. LNCS (LNAI), vol. 2408, pp. 452–490. Springer, Heidelberg (2002)



Enforcement of Integrated Security Policy in Trusted Operating Systems 229

8. Kim, H.C., et al.: On the privilege transitional attack in secure operating systems.
In: CSS2004. Proc. of Computer Security Symposium 2004, vol. II, pp. 559–564
(2004)

9. Loscocco, P., Smalley, S.: Integrating flexible support for security policies into the
linux operating system. In: USENIX Annual Tech. Conf. (2001)

10. Abrams, M.D., LaPadula, L.J., Eggers, K.W., Olson, I.M.: A generalized frame-
work for access control: An informal description. In: Proc. of the 13th Nat’l Com-
put. Sec. Conf. pp. 135–143 (1990)

11. Spencer, R., Smalley, S., Loscocco, P., Hibler, M., Andersen, D., Lepreau, J.: The
flask security architecture: system support for diverse security policies. In: Proc.
of The 8th USENIX Sec. Symp. pp. 123–139 (1999)

12. Wright, C., Cowan, C., Morris, J., Smalley, S., KroahHartman, G.: Linux Security
Modules: General Security Support for the Linux Kernel. In: Proc. of USENIX
Security Symposium (2002)

13. Ott, A.: The rule set based access control linux kernel security extension. In: Int’l
Linux Kongress 2001 (2001), http://www.rsbac.org

14. Spengler, B.: Increasing performance and granularity in role-based access control
systems (A case study in Grsecurity), http://www.grsecurity.net/

15. Bernaschi, M., Gabrielli, E., Mancini, L.V.: REMUS: A security-enhanced operat-
ing system. ACM Trans. on Inf. & Syst. Sec. 5(1), 36–61 (2002)

16. Schneider, F.B.: Enforceable security policies. ACM Trans. on Inf. & Syst. Sec. 3(1),
30–50 (2000)
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Abstract. We have developed a privacy-aware operating system that
focuses on preventing leakage of sensitive data such as personal infor-
mation. The existing mandatory access control model is too restrictive
for processes required to sustain the operations of user programs such as
FTP, e-mail client applications, etc. In order to solve this problem, the
proposed approach employs two techniques. First, the operating system
kernel limits the execution of system calls only if the process could con-
tribute to data leakage. Second, we implemented contexts; contexts are
parameter or hints facilitating the evaluation of the risk of data leakage.
These contexts also determine whether the kernel allows or disallows the
execution of system calls. These techniques make it possible to realize a
more adaptive and flexible data protection mechanism than the existing
ones. This study describes the proposed approach.

1 Introduction

Recently, several incidents of information leakage have occurred making them a
serious problem. In particular, if the leaked information contains sensitive data
such as a company’s confidential information or private data (name, telephone
numbers, e-mail addresses, credit card numbers, etc.), the threat of leakage be-
comes even more dangerous. These incidents could not only result in fraudu-
lent or fictitious claims but also a loss of trust in the company associated with
the incidents. A report on information leakage incidents in Japan (by National
Consumer Affairs Center of Japan) lists the following primary reasons for the
occurrence of the information leakage: a member or an operator of a company
leaks data accidentally, a member or an operator of a company contributes to
the leakage of data by carrying mobile computers or portable storage devices
outside the company, theft of computers or storage devices, or illegal intrusion
into network servers due to misconfiguration.

A file is the basic unit of data storage in conventional operating systems and
most operating systems provide file systems to manage files. One of the most
important functions of a file system is file protection. Discretionary access control
(DAC) is a popular access control model for realizing file protection. DAC is used
to limit users’ access to a file based on the file’s permissions. However, DAC is
unaware of the purpose for which a process accesses a file. Thus, it is impossible
to distinguish between a proper file access and a malicious one. Further, it is
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impossible to prevent a process from accessing other files, pipes, and/or sockets.
On the other hand, mandatory access control (MAC) is a fine-grained access
control model that has been adopted by certain trusted operating systems to
protect computation resources. MAC enforces access restrictions on all processes
or users regardless of their privileges. The Bell-LaPadula Model [1], which is one
of the most famous access control models for MAC, and the other models for
MAC, impose restrictions that are too strict to sustain user processes.

Typically, users want their private data to be used by data administrators
or operators under an agreement such as the “Privacy Policy Declaration” of a
company. Therefore, it is necessary to be able to restrict the purposes of data
manipulation and the scope of data distribution according to an agreement.

In this study, we address cases wherein a person with valid access privileges
to sensitive data contributes to data leakage and propose an operating-system-
level approach for the prevention of data leakage. We have developed Salvia – a
privacy-aware operating system – to address the abovementioned shortcomings
of DAC and MAC and satisfy the requirements of private data owners. Salvia
employs an adaptive data protection mechanism that is suitable for preventing
data leakage. The remainder of this paper is organized as follows: Sect. 2 de-
scribes the shortcomings of DAC and MAC that need to be addressed to prevent
data leakage; Sect. 3 presents Salvia’s data protection mechanism, especially the
specifications, and describes how to configure data protection policies with con-
texts; Sect. 4 provides an overview of Salvia’s implementation; Sect. 5 discusses
the evaluation of Salvia; Sect. 6 presents related works; and Sect. 7 presents the
conclusion.

2 Background

We describe two (example) scenarios to discuss the shortcomings of DAC and
MAC in preventing data leakage. In the first scenario, an operator who manip-
ulates customers’ private data unintentionally attaches a file containing private
data to an e-mail and unaware of the fact that the file is attached he/she sends
the e-mail to someone. Thus, in this scenario, the operator’s mistake leads to
data leakage.

DAC is not suitable for protecting a file against being sent via the e-mail. If
operators are denied access to a file (no read permissions), they cannot acciden-
tally attach the file to an e-mail, but neither can they perform tasks that involve
the use of the file. If they are denied access to the e-mail program, they cannot
send/receive any e-mails, even when necessary.

In MAC, security labels or classifications are assigned to each computation
resrouce, and the access requests of only those processes and/or users are al-
lowed who possess the required levels of authorization or clearance. In order to
clarify the shortcomings of MAC in this scenario, we consider several additional
conditions: The file that contains customers’ personal information and needs to
be protected is stored on a hard disk drive as a plaintext file. The operator
uses a text editor such as GNU Emacs to edit the file. If GNU Emacs has read
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permission for the file and has all permissions for the TCP sockets, the file may
be leaked via an e-mail program executed from GNU Emacs. If GNU Emacs
does not have any permissions for the TCP sockets, the operator cannot send
any e-mails. This pattern is similar to the one posed by the way of DAC.

In the second scenario, an operator carries a mobile computer containing a
confidential file outside the company against the company’s policy. The opera-
tor’s act leads to data leakage in this case. Even though the company does not
allow operators to use confidential files outside the company, it is impossible
to reject any access requests to the files because both DAC and MAC deter-
mine whether to allow/disallow access requests based on the file’s permissions
(DAC) or security classification (MAC) regardless of the circumstances (loca-
tion and/or time) under which the file is being accessed. Thus, in this scenario,
conventional operating systems allow users to access confidential file if they have
valid permissions (DAC) or a higher-level classification (MAC).

3 Adaptive Data Protection Mechanism

3.1 Overview of Salvia’s Data Protection Mechanism

The guidelines for the protection of privacy data [2] declared by the Organisation
for Economic Co-operation and Development (OECD) or the ordinance based
on OECD’s guidelines oblige companies or persons who manipulate privacy data
to use and manage it according to the intentions of the data owners. Thus,
protecting privacy data does not imply enforcing the access restrictions defined
by the data administrator, but thoes based on the policies configured by the data
owner under the mutual agreement between the owner and the administrator.
Therefore, it is necessary to apply individual access restrictions for each data
entity. The goals of this research project are as follows:

– to realize a data protection mechanism suitable for protecting privacy data
– adapt this data protection mechanism to contexts
– make it compatible with the existing application programs

Note that in this study, we use the term “contexts” to refer to the parameters
or hints for evaluating the threat of data leakage. Details regarding contexts are
described in Sect. 3.2.

In the proposed approach, the operating system (Salvia) provides the data
protection mechanism because it is capable of applying the mechanism transpar-
ently to existing application software without modifying or recompiling them.
Thus, the proposed mechanism can ensure the compatibility of the existing ap-
plications. There are two file types in Salvia. One consists of regular files that are
protected by conventional data protection mechanisms such as DAC. The other
comprises of files that are protected by Salvia’s data protection mechanism. The
difference between the former and latter is that the latter has certain related to
data protection policies, but the former does not. Note that in this study, we use
the term “privacy file” to refer to a file that has certain data protection policies
associated with it.
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To solve the problems described in Sect. 2, we propose a data protection mech-
anism with context-aware access control. The proposed mechanism can restrict
data flows to within the proper scope of distribution. To achieve this function-
ality, we need to restrict the usage of computation resources that could serve
as output channels for data leakage by any process accessing privacy files; these
computation resources include files, pipes, sockets, and shared memory regions.
In addition, if processes that have opened a privacy file (using the open() system
call) invoke specific functions that could lead to data leakage, Salvia needs to
determine whether to allow the process to invoke these functions or not. There-
fore, according to the configuration of the data protection policies, Salvia needs
to check and limit the execution of system calls that provide a service access to
the resources that could lead to data leakage.

3.2 Contexts

In Salvia, the contexts are classified into “attribute contexts” and “environmen-
tal contexts” based on their acquisition method. Details regarding both attribute
and environmental contexts are described in this subsection.

Attribute Contexts
Attribute contexts consist of the attributes and system call histories of a process.
It is possible to acquire both of these from certain parameters managed by
the kernel. The process attributes consist of user ID (UID), effective user ID
(EUID), and process ID (PID). The system call histories consist of a system call
number, its arguments and return value, and the time of which it was invoked.
If the arguments contain pointers to user address space, Salvia copies the real
arguments from the pointer-specified locations. The system call number is used
by Salvia to determine whether a system call should or should not be controlled.
These arguments are used to generate conditional expressions to control the
system calls. The return value is used to record the result of execution of the
system call or an identifier such such as a file descriptor.

Environmental Contexts
Environmental contexts comprise absolute time, relative time, and location in-
formation of users’ computer. These parameters can be acquired from the device
drivers of peripheral devices. The absolute time context represents the current
time (real-world clock) and can be acquired from RTC. The relative time context
represents the elapsed time from a particular absolute time that is regarded as
time zero.

In Salvia, the radio wave intensities of wireless LAN; extended service set ID
(ESSID), which is an identifier of the wireless LAN’s access point; and the global
positioning system (GPS) position data are available as environmental contexts
representing location information. It is possible to acquire ESSID, radio wave
intensity, and GPS position data from device drivers. If GPS position data is
used as the context for location information, it is possible to obtain latitude and
longitude data in order to express the location of a computer.
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3.3 Classification of Controlled System Calls

From the viewpoint of preventing data leakage, the system calls based on the
POSIX 1003.1 and controlled by Salvia are classified into three classes – restrict
class, context class, and manage class. The system calls belonging to each
of these classes are listed in Table 1.

restrict class: This class comprises system calls that could lead to data leak-
age (e.g., read(), write(), and send()). These system calls are controlled
according to the data protection policies and contexts. Moreover, in order
to use the results of the execution of these system calls as contexts, Salvia
records the system call histories for this class.

context class: This class comprises system calls that could modify certain pa-
rameters related to context (e.g., EUID can be modified by setuid()). If
these parameters are modified illegally, it could become impossible to enforce
access restrictions on user processes. Therefore, Salvia records the system
call histories for this class and prevents the parameters from being modified
illegally.

manage class: This class comprises system calls that trigger the execution of
pre-/post-processing procedures for managing system call histories. Since
the system calls belonging to this class do not lead to data leakage, Salvia
always permits these system calls. But in order to invoke pre-processing or
post-processing functions, Salvia monitors these system calls.

Table 1. System call classification

Class System calls (based on the POSIX 1003.1)

restrict
read, write, readv, writev, pread, pwrite, mmap, munmap, shmat, send,
sendmsg, sendto, execve

context
ioctl, setuid, setgid, setpgid, setreuid, setregid, settimeofday,
stime, clock settime

manage
open, close, socket, pipe, fork, vfork, exit, kill, dup, dup2, mknod,
fcntl, mq open, mq unlink

In order to avoid data leakage, it is necessary to assign appropriate permis-
sions to the system calls belonging to the restrict class. However, if one data
protection policy is configured for each system call, the number of policies will
increase. Subsequently, this approach will make it difficult to configure policies
and/or will result in an increase in the probability of errors in the policy de-
scriptions. To avoid these problems, we classify the system calls into four groups
based on their procedure or scope of data propagation. These groups allow for
the reduction in the number of data protection policies and ease the task of con-
figuration. These groups are read group, write group, send local group,
and send remote group. The system calls belonging to each of these groups
are listed in Table 2.
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read group: This group comprises system calls that read data from files.
write group: This group comprises system calls that write data to local files.
send local group: This group comprises system calls that write data to other

processes running on the local computer.
send remote group: This group comprises system calls that write data to

other processes running on remote computers.

Table 2. System call groups for the restrict class

Group System calls

read read, readv, pread, mmap, munmap
write write, writev, pwrite, mmap, munmap

send local write, writev, mmap, send, sendto, sendmsg, shmat
send remote write, writev, send, sendto, sendmsg

3.4 Description of Data Protection Policies

The data protection policies consist of three parts – default policies, conditional
expressions with contexts, and control directions for each system call group (Ta-
ble 2). If no access control lists are specified in the data protection policies,
all system calls are rejected fundamentally (according to the “default deny”
principle); otherwise, the system calls may be permitted according to the data
protection policies. Every time a system call is invoked, Salvia verifies whether
the corresponding data protection policies are satisfied. These policies are writ-
ten in XML. One of the advantages of using XML is that it ease the task of
syntax verification by allowing the use of a program to automatically check the
syntax.

Figure 1 shows the data type definition (DTD) for describing the data protec-
tion policies in Salvia; a brief example is shown in Fig. 2. In this figure, the read,
write, send local, and send remote tags, which are the system call groups
listed in Table 2, define the permissions for the execution of the corresponding
system calls.

In particular, the write and the send remote tags contain a few additional
tags and attributes. The write access tag defines the write access permission for
files associated with the policies themselves; the update attribute also defines
the write access permissions. The difference between the write access tag and
update attribute is that the permission defined by the write access tag is
enforced on a process after it has read the file, while the permission defined
by the update attribute is enforced regardless of whether the process has read
the file or not. As a result, all write accesses are always disallowed if both the
write access tag and update attribute are set to “deny,” but the write accesses
generated before the file is read are allowed if the write access tag and the
update attribute are set to “deny” and “allow,” respectively. The filename tag
defines the file or directory names to which write access is granted when the
write access tag is set to “deny.” As a result, processes cannot write data to
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<!ELEMENT data protection policy (default access?,data protection domain+)>

<!ELEMENT default access (read?,write?,send local?,send remote?,syscall*)>

<!ELEMENT read (#PCDATA)>

<!ELEMENT write (write access,filename*)>

<!ELEMENT write access (#PCDATA)>

<!ATTLIST write access update (deny|allow) "deny">

<!ELEMENT filename (#PCDATA)>

<!ELEMENT send local (#PCDATA)>

<!ELEMENT send remote (send remote access,ip address*)>

<!ELEMENT send remote access (#PCDATA)>

<!ELEMENT ip address (#PCDATA)>

<!ATTLIST ip address version (4|6) "4">

<!ELEMENT syscall (#PCDATA)>

<!ELEMENT data protection domain (ACL)>

<!ATTLIST data protection domain type (read|receive|both|none) "both">

<!ELEMENT ACL (context,(access?|ACL*))>

<!ELEMENT user (user id+)>

<!ELEMENT user id (#PCDATA)>

<!ATTLIST user id type (effective|real) "real">

<!ELEMENT group (group id+)>

<!ELEMENT group id (#PCDATA)>

<!ATTLIST group id type (effective|own) "own">

<!ELEMENT time (second*)>

<!ELEMENT second (#PCDATA)>

<!ATTLIST second mode (relative|absolute) "relative">

<!ELEMENT location (device+)>

<!ELEMENT device (value+)>

<!ATTLIST device id CDATA "unknown">

<!ELEMENT value (#PCDATA)>

<!ATTLIST value type CDATA "integer">

<!ELEMENT frequency (read?,write?)>

<!ELEMENT read (#PCDATA)>

<!ELEMENT write (#PCDATA)>

<!ELEMENT access(read?,write?,send local?,send remote?,syscall*)>

<!ELEMENT read (#PCDATA)>

<!ELEMENT write (write access,filename*)>

<!ELEMENT write access (#PCDATA)>

<!ATTLIST write access update (deny|allow) "deny">

<!ELEMENT send local (#PCDATA)>

<!ELEMENT send remote (send remote access,ip address*)>

<!ELEMENT send remote access (#PCDATA)>

<!ELEMENT ip address (#PCDATA)>

<!ATTLIST ip address version (4|6) "4">

<!ELEMENT syscall (#PCDATA)>

Fig. 1. Document type definition (DTD) for Salvia’s data protection policies
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<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE data protection policy SYSTEM "policy.dtd">

<data protection policy>

<default access>

<read>allow</read>

<write>

<write access update="allow">deny</write access>

</write>

<send local>deny</send local>

<send remote>

<send remote access>deny</send remote access>

</send remote>

</default access>

<data protection domain type="none">

<ACL>

<context>

<gourp>

<group id type="own">1004<group id>

</group>

<location>

<device id="net radio">

<value type="character">officeroom</value>

<value>50</value>
</device>

</location>

</context>

<access>

<read>allow</read>

<write>

<write access update="allow">deny</write access>

</write>

<send local>deny</send local>

<send remote>

<send remote access>deny</send remote access>

</send remote>

</access>

</ACL>

</data protection domain>

</data protection policy>

Fig. 2. Brief example of data protection policies

any file except those specified by the filename tag. The ip address tag, which
is a subclass of the send remote tag, specifies the destination hosts to which
the file associated with the data protection policies can be sent.

The default access tag defines the default action of processes and limits their
permissions when none of the access control lists defined by the ACL tag are
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satisfied. The data protection domain tag defines the sets of access control
lists and the ACL tag defines an access control list that consists of conditional
expressions and control directions. The ACL tag entry can be defined to be
greater than zero. An ACL tag entry of zero implies that only the default
policies are defined in the data protection policies. The context tag defines
conditional expressions with contexts. The access tag defines control directions
for each system call group. In ACL and its subclass tags, nested tags have
“AND relationships” and paralleled tags (declared at the same depth) have “OR
relationships.” If there are several policies that are satisified when a system call
is invoked, Salvia chooses the first one according to the “first-match” principle.

The example data protection policy shown in Fig. 2 disallows all processes
from making copies of associated files. However, the update attribute of the
write access tag is set to “allow,” thus, the processes that do not read the file
are allowed to write data to the file. This implies that access to the file is granted
only those processes that intend to append and/or overwrite data.

Let us consider a case where a process reads a file associated with data pro-
tection policies and tries to send the file to another process. In this scenario, it is
impossible to determine in the data protection policies whether the send request
is legal or could cause data leakage. Thus, it becomes necessary to configure
“fail-safe” policies, which are similar to the filtering rules of a packet firewall.

3.5 Enforcing Data Protection Policies with Contexts on Processes

All processes invoke the open() system call before they read and/or write a
file. Therefore, in Salvia, open() is regarded as a trigger for enforcing access
restrictions on these processes and Salvia reads the data protection policies as a
pre-processing task for open().

For example, if a process tries to read a file for which the data protection
policies are configured, as shown in Fig. 2, Salvia refers to the system call histo-
ries in order to restrict system calls such as write() and send(). Salvia makes
it possible to restrict write access to all files, pipes, and sockets as it refers to
system call histories. Further, if additional access control lists with contexts are
defined in the data protection policies, as shown in the latter part of Fig. 2 (e.g.,
if ESSID is officeroom and the radio wave intensity1 is greater than or equal
to 50, then read and write are allowed but send local and send remote are
disallowed), Salvia acquires the contexts (ESSID and radio wave intensity from
device drivers) every time the system calls for the file are invoked and determines
the permissions.

Salvia’s data protection mechanism uses contexts in order to determine system
call permissions. In particular, since Salvia refers a process’s system call histories,
the past operations of a process affect its current operations. Thus, a process
that opens a file protected by data protection policies is restricted by Salvia
until it is terminated.
1 We regard the “link quality” status, which can be acquired via the device driver

as shown in Fig. 5, as the radio wave intensity. Users may try to measure the link
quality status before configuring the data protection policies if they use it.
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3.6 Additional Examples

In this subsection, we discuss the effectiveness of Salvia’s data protection mech-
anism by providing practical data protection policies for the examples described
in Sect. 2. In the first example, in which an operator unintentionally attaches a
privacy file to an e-mail, the e-mail program process should not be permitted
to use all sockets after it has read the privacy file. In order to achieve this in
Salvia, both send local and send remote entries need to be set to “deny,” as
shown in Fig. 2. Even though the write entry is changed to “allow” to relax the
restriction, Salvia still restricts the access to sockets. If the process tries to ac-
cess a TCP socket via write(), the access request is rejected by Salvia’s kernel
because (1) the kernel can detect which process invokes write(), (2) the kernel
can also detect what kind of computation resources the process tries to access,
and (3) the kernel rejects the execution of write() on TCP sockets according
to the data protection policies.

In the second example, wherein a mobile computer in which confidential files
are stored is carried illegally outside a company by the company’s operator,
Salvia does not permit any user processes to read the confidential files unless
the contexts, especially the location of the mobile computer, satisfy the condi-
tional expressions stated in the data protection policies, as shown in Fig. 2. User
processes can read the confidential files only if the contexts satisfy both group
and location. In this case, Salvia acquires the ESSID and radio wave inten-
sity from the device driver whenever a process invokes read() and compares the
acquired contexts (ESSID and radio wave intensity) with the conditional expres-
sions (ESSID and radio wave intensity specified in the data protection policies).
Salvia also compares the GID of the process with the configured GID. If both
comparisons are successful, Salvia allows the process to access the confidential
files according to the control directions in the data protection policies; in this
case, the process is only allowed to read the confidential files.

4 Implementation

An early (prototype) version of Salvia has been implemented based on the Linux-
2.6.6 kernel and now Salvia is being ported to the Linux-2.6.18 kernel. Figure 3
depicts the structure of Salvia’s data protection mechanism.

The memory pool provides memory allocation and object (a specialized data
structure used in Salvia) caching functions for the other modules in Salvia. The
context watcher acquires contexts by copying specific variables from the device
drivers of peripheral devices such as wireless LAN or specific data streams from
peripheral devices such as GPS and RFID.

The history logger is statically embedded in the kernel and the system call
capture module, which is customized for each system call, is implemented by the
loadable kernel module (LKM), as shown in Fig. 3. The history logger is invoked
by the system call handler whenever system calls belonging to the restrict,
context, or manage class (Table 1) are invoked by user processes. In Salvia,
if a process controlled by Salvia (parent process) spawns a new (child) process,



240 K. Suzuki, K. Mouri, and E. Okubo

: Alternative system call module (LKM)

User process
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Fig. 3. Structure of Salvia’s data protection mechanism

the child process is also controlled by Salvia because the computation resources
are shared by both the parent and the child processes. Therefore, Salvia makes
the child process inherit the access restrictions and system call histories from
the parent process in order to restrict the execution of the system calls. The
history logger records histories as time-sequential data in the history repository.
These histories are referred to by the action controller when it makes decisions
regarding the permissions assigned to system calls. When a process is terminated,
the process’s histories are erased. Since the number and types of arguments differ
for each system call, their acquisition functions are separated from the common
functions of the history logger and are implemented for each system call by
using LKM. However, in order to avoid bypassing or subverting Salvia’s access
restrictions, Salvia needs to prevent user processes from disabling system call
capture. Therefore, Salvia must restrict the invocation of init module() and
delete module() because these system calls control the loading/unloading of
LKMs.

The action controller is an embedded module that consists of the common
functions of action controller, process state manager, and policy manager. The
policy manager consists of the policy parser for the data protection policies and
the policy list, which is a data structure for storing data protection policies
parsed by the policy parser. Moreover, the alternative system call module is a
subset module for restricting the system calls belonging to the restrict class.
The alternative system call module is also implemented for each system call using
LKM. The action controller controls file access operations (functions) invoked
via system calls in order to realize file access restrictions. Therefore, the action
controller overwrites the pointers of the access operations in a file object, which
is generated by open(), with pointers of the alternative functions that determine
file access permissions such as read() and write(). Moreover, pipe and socket
access are also realized by pipe/socket access operations via a pipe/socket ob-
ject generated by pipe() or socket(); thus, a method similar to the one used
to enforce file access restrictions can be adapted to realize pipe/socket access
restrictions.

Salvia needs to distinguish controlled processes (on which data protection
policies are enforced) from other processes. In Salvia, we define several access
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control states in order to identify the processes that need to be controlled. These
states are as follows: FREE, WATCHED, CONTROLLED, EXITING, and TER-
MINATED. The process state manager manages these access control states. All
processes are forced to inherit the access control state of their parent process
when they are spawned. This implies that a child process spawned by a parent
process whose access control state is CONTROLLED inherits this state (CON-
TROLLED); further, this state is registered as the initial access control state
of the spawned child process by the process state manager. The process state
manager refer to the latest system call history to detect the changes in the access
control state. If a process invokes open() with the write access permission, (for
example, if the process state manager detects that a process is attempting to
acquire a writable file that may serve as an output channel for data), the access
control state of the process will be changed as follows: (1) if the latest state of the
process is FREE, the state is changed into WATCHED, (2) if the latest state is
WATCHED, it remains unchanged, or (3) if the latest state is CONTROLLED,
it remains unchanged. In addition, the EXITING and TERMINATED states are
used for managing system call histories. Salvia decreases the retain counters of
each system call in the history for the EXITING state and deletes the history
of the system call whose retain counter becomes zero for the TERMINATED
state.

5 Evaluation

5.1 Overheads Involved in Logging System Call History

The proposal method for preventing data leakage may add certain overheads
to the execution of each restricted system call. In this section, we evaluate the
overheads involved in access restrictions in Salvia. The evaluation experiments
were performed on an IBM compatible PC equipped with an Intel Pentium III
1.0 GHz processor, 256 MB RAM, and 40 GB Ultra ATA100 hard disk drive.

There may be two reasons for these overheads. One is the logging of system
call histories and the other is determining system call permissions. In order to
measure the overhead involved in logging system call histories, we prepared a
microbenchmark that opens ten privacy files; this microbenchmark was executed
on both Salvia (based on Linux-2.6.6) and on normal Linux-2.6.6. However, the
disk access time hides the overhead of logging system call histories; this is because
the files had been cached in the kernel’s disk cache beforehand. In addition, we
enabled the history logger but disabled the action controller in order to evaluate
only the overhead of logging system call histories.

The results of the microbenchmark are shown in Fig. 4. It can be seen that
the maximum difference between the processing times for the files (except file 1)
in Salvia and normal Linux is 10.35 us. This implies that the additional 10.35 us
is the overhead that consists of the times required for copying the arguments of
open() and registering the system call history to the history repository. Figure 4
also shows that the processing time for file 1 in Salvia is 26.59 us more than
normal Linux. This indicates that the time required to initialize the several data
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Fig. 4. Processing times of the open() system call

structures needed for managing system call histories is added to the overhead
discussed above.

In addition, we conducted another experiment to measure the memory con-
sumption of registering system call histories. According to one of the practical
examples discussed in Sect. 2, we used Wanderlust 2.10.1, which is an e-mail
client program running on GNU Emacs, to send an e-mail with a privacy file
attached. We prepared three privacy files (sizes: 1 KB, 10 KB, and 100 KB) for
this experiment.

The results of this experiment are shown in Table 3. These results indicate
that the number of entries being registered in the system call histories increases
with the size of the file being attached. In this experiment, about 2000 entries
were registered in the system call histories and 62.80 KB of RAM was used.

Table 3. Memory consumptions for registering system call histories

File Open Read Write Socket Connect Send Recvfrom Total
Size Sock Other Sock Other Count Size

1 KB 29 10 62 46 41 5 5 4 4 206 7.42 KB

10 KB 30 9 33 208 36 5 5 4 4 334 11.49 KB

100 KB 31 8 47 1825 47 5 5 4 4 1976 62.80 KB

5.2 Adaptive System Call Limitation Based on Contexts and Data
Protection Policies

We conducted an experiment to demonstrate the limitation of implementing
system calls with context awareness. In this experiment, we used a popular
command – cat – to display the contents of a privacy file. The data protection
policies were configured as follows: (1) the data protection policies shown in
Fig. 2 were used as the template policies, (2) all default access entries were
changed to “deny,” and (3) both ESSID and GID were modified in the data
protection policies – ESSID was changed to solnet, GID was changed to UID,
and its value was changed to 1000.
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The results of this experiment are shown in Fig. 5. When the radio wave
intensity (link quality) was 50 2, Salvia allowed the cat command to invoke
the read() operation. Therefore, the cat command successfully displayed the
contents of the privacy file. However, when the radio wave intensity was 14, Salvia
disallowed the execution of the read(); therefore, the cat command failed to
display the contents of the privacy file.

Fig. 5. Demonstration of the limitation of implementing context-aware system calls

6 Related Work

The trusted platform module (TPM) [3] is a specification for hardware controller
chips that provide safe storage spaces for storing information, safe work spaces
for encryption/decryption, and ensure the integrity of information stored in the
module itself. TPM is required by Microsoft’s Next-Generation Secure Comput-
ing Base [4]. TPM can guarantee integrity of sensitive data such as the data
protection policies. Moreover, Salvia can limit the scope of data propagation.

Information flow control is a software-based technique for data protection.
The Bell-LaPadula Model [1] realizes information flow control and is one of the
most popular model for MAC. In this model, the flow of information from the
classified to the declassified level is not permitted but however, the Bell-LaPadula
Model and other models for MAC impose access restrictions that are too strict
to sustain the operation of user processes.

REMUS [5] is a kernel-level reference monitor for the prevention of the sub-
verting execution of privileged programs such as daemon processes. In REMUS,
all system calls are classified according to their level of threat with respect
to system penetration; REMUS restricts the execution of system calls accord-
ing to the policies configured for each system call. However, REMUS is not a

2 The value (threshold) has been decided by our measurement. If the value is greater
than or equal to 50, it indicates the computer that is used for the experiment is
inside the room where the experiment has been made.
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context-aware system; therefore, it is impossible to prevent data leakage in the
situations described in Sect. 2.

Deeds [6], which is an extension of Java, provides a secure runtime envi-
ronment for executing programs. Deeds records access histories of computation
resources that need to be protected and imposes access restrictions on programs
based on the histories. This approach is similar to that employed in Salvia; how-
ever, Salvia adapts its access control mechanism to not only the histories but
also the attribute and environmental contexts described in Sect. 3.2. Moreover,
Deeds has a limitation – it terminates a process if it dynamically loads a class
during its exection. Salvia does not have this limitation.

Java information flow (Jif) is another extension of Java and is a privacy-aware
programming language based on the decentralized label model [7]. The features
of this model are as follows:

– assigning security labels to each data entity
– the label comprises two parts – data owner and reader – and controls read

access
– this label can be modified by a user who is the owner of the data or who has

the same authority as the owner
– if a variable is copied to another variable, the label of the copied variable is

also copied

In Jif, it is possible to control information flows for protecting each variable;
however, it is impossible to apply these control methods to existing applications
without modifying of them. On the other hand, it is possible to apply Salvia’s
access restriction mechanism without modifying existing applications.

7 Conclusion

In this study, we propose a data protection mechanism suitable for preventing
leakage of privacy data. In particular, we describe the design, implementation,
and evaluation of a privacy-aware operating system – Salvia. The features of
Salvia are as follows:

– relating data protection policies to files containing privacy data
– protecting both protected file and data protection policies against illegal

access
– limiting the execution of system calls adaptively based on data protection

policies and context
– adopting system call histories as a form of context

Thus, Salvia is capable of preventing the leakage of privacy data regardless
of users’ mistakes or illegal operations. In addition, a child process spawned
by a parent process whose access control state is either WATCHED or CON-
TROLLED is forced to inherit the system call histories of the parent process;
thus, it is possible to restrict the execution of the system calls invoked by a child
process according to the context it inherits from the parent process.
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In Sect. 5.1, we show that the overheads of logging system call history and ini-
tializing data structures for registering them are 10.35 us and 25.69 us, respec-
tively. Moreover, we also conduct several experiments to demonstrate the effec-
tiveness of Salvia’s context-aware data protection mechanism. Salvia can restrict
the execution of system calls according to the data protection policies and con-
texts, especially system call histories, relative/absolute time, and location.
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Abstract. Information leakage from client PCs has grown into a serious
problem in recent years. To address the problem, we propose file lifetime
monitoring technology that enables users to accurately trace modifica-
tions of confidential documents by user commands such as copy, rename,
and save, as well as copy/paste editing operations. The File Lifetime
Monitoring Technology is based on analyzing primitive events from the
file system and GUI and anticipates confidentiality risks using prepared
knowledge of applications. Using monitoring results effectively, confiden-
tial information can be managed on workers’PCs. The prototype system
has been successfully operated, and 243 co-workers tried it out. The trial
shows that our system is practical in terms of performance degradation.
Experiments show that both the quality and quantity of monitoring re-
sults are better than conventional monitoring software. In particular, the
log size of our system can be reduced eleven times from the size of con-
ventional software.

Keywords: Secure Office, Information Leakage Countemesure, Opera-
tion Monitoring, Log Analysis, Knowledge Base.

1 Introduction

This paper describes an information leakage countermeasure system based on
our File Lifetime Monitoring Technology that enables users to accurately trace
modifications of confidential documents by user commands such as copy, rename,
and save, as well as copy/paste editing operations.

The motivation behind this research was two-fold. First, there seems to be
no end to information leakage. A recent CSI/FBI computer crime and security
survey said that information leakage continued to be the source of the greatest
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financial losses [1]. In particular, leakage from end-user devices such as laptops
and USB memories has emerged as a social issue in Japan because the number
of this type of incident is increasing. So we decided to tackle the problem of
leakage from end-user devices in order to meet such social needs.

Second, in enterprises, most confidential digital information is distributed as
document files from word processors, spread sheet applications and so on. In fact,
confidential document files have been leaked in many incidents. The simplest
countermeasure might be to encrypt all confidential files. However, we don’t
think that will work well for the following reasons.

– Encrypted document files are inconvenient because users must decode them
to their original files before use.

– It takes time to retrieve encrypted files because search engines cannot index
them

– Key servers for encrypting documents are necessary, so their installation and
operation costs become problematic.

We think it is important that end-user usability should not change before or
after the installation of a countermeasure system. So we focus instead on moni-
toring the state of enormous numbers of confidential document files distributed
in an enterprise.

2 Analysis of File Monitoring Method

2.1 Outline of Usual Method

We will begin by considering the usual method of client PC monitoring. There are
some client PC monitoring products for grasping changes in files [2][3][4]. These
systems capture a lot of events from an OS such as file open, mouse click, and
application program launch, and output logs as monitoring results to the client
PC’s disk or monitoring server. The important point to note is that logs give
only very primitive monitoring results. So the distinction between an illegal act
and an unintentional act leading to an information leak cannot be made without
detailed analysis. Conventional client monitoring products have log analysis tools
and a security administrator can inspect and predict a user’s behavior by using
the log analysis tools. However, that is painstaking work. Therefore, it can be
said that it’s very difficult to detect a malicious act in real time. The products
are used for their deterrent effect and for grasping the situation after an incident.

2.2 Problems of Usual Method

From the point of view of analyzing logs more easily and understanding file
movements more exactly, the limits or problems of the usual client PC monitoring
method are as follows.

File Name Change Problem. Usual methods monitor file movement based
on the file name. So when a file name is changed, the log analyzer often
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cannot determine the relation between the original file and the file with a
new name. Therefore, the movement of the file cannot be traced when a user
changes the file name.

Data Reuse Problem. Almost all of the documents are editable and are mod-
ified by user copy buffer operations such as cut and paste commands among
two or more files. So data flow between applications should be monitored in
order to understand file movements exactly. However, monitoring is difficult
because the file name isn’t included in an event of copy buffer operation.
Log analyzing administrators have to collect circumstantial evidence from
another events such as an application use event, file system use event or GUI
operation event.

Log Amount Problem. Original events from the OS are very primitive and
all usual monitoring software outputs subsets of the events as monitoring re-
sults. Monitoring results are primitive, too. So an analysis of logs formulates
a hypothesis and inspects logs from various angles. The more logs there are,
the more the analytical accuracy improves. However, as the number of logs
increases, the performance of a PC decreases. For this reason, the usual PC
monitoring methods pose a dilemma.

3 Basic Idea of File Lifetime Monitoring

To address the problems, we propose file lifetime monitoring technology that
enables users to accurately trace modifications of confidential documents by
user commands such as copy, rename, and save, as well as copy/paste editing
operations. In this section, we will begin by explaining what kind of log to
output. We call the log an intelligent log. We also discuss whether the problems
are solved by the intelligent log and explain how to make our intelligent log.

3.1 Intelligent Log

An example of our lifetime monitoring log is shown in Fig1. One record in the
table in Fig.reffig:idea corresponds to one log instance. All log instances include
the following five main fields:

– The time field represents the date-time of a user operation.
– The context field represents an advanced situation that our system

presumed.
– The type field represents our category of file movement such as File Copy,

Data Copy, Rename, and Attached Mail.
– The before operation hfield represents our file ID of the target file when

beginning operation, e.g. the file ID of the source file when copying a file.
– The after operation field represents our file ID of the target file after

operation, e.g. the file ID of the destination file when copying a file.

The important feature is that all records of the log have a before-operation field
and an after-operation field. These fields are used for tracing file movement. We
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show the tracing of file movement using Fig.1. The first record shows that the
document with ID12345 was created at time 1, and our system started monitor-
ing it. At time 10, the record shows that the user cut from the ID12345 document
and pasted to the ID09876 document. After that, the ID12345 and ID09876 docu-
ments were also copied by the ”Save As” command. Fig. 1 shows the parent-child
relation. A source file is a parent, and a destination file is a child.
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Fig. 1. Example of File Lifetime Log. The important feature is that all records of the
log have a before-operation field and an after-operation field. These fields are used for
tracing file movement.

3.2 Solving Problems by the Intelligent Log

File Name Change Problem. The intelligent log does not use a file’s name.
All target files are assigned our file ID based on UUID (Universally Unique
Identifier). In case of a change in a file’s name, the intelligent log shows that
the old file name is the parent and the new file name is its child. When a file
name changes, we can trace its movement using the parent-child relation.
Thus, the file name-change problem is solved.

Data Reuse Problem. The intelligent log includes the target file name of a
user operation. Even when using a copy buffer on some applications, the log
includes the source file name and the destination file name. The intelligent log
is created by analyzing primitive events from the file system and GUI in real
time and anticipates the context by matching knowledge of the applications.
So the intelligent log is not primitive but advanced, and the data reuse
problem is solved.

Log Amount Proble. The intelligent log is not primitive but advanced as
stated. In the case of primitive logs, the analysis of logs formulates a hy-
pothesis and inspects logs from various angles. So a lot of logs are necessary
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to improve analytical accuracy. On the other hand, the advanced log analy-
sis succeeds even if the amount of logs is small. Trials with 243 co-workers
showed that the log size of our system can be reduced eleven times from the
size of conventional software.

4 File Lifetime Monitoring Technology

4.1 Comparison of the Processing Flow

In this section, to explain the features of our File Lifetime Monitoring Tech-
nology, we first explain the differences between the macro processing flows of
conventional monitoring methods and those of our monitoring method. Conven-
tional systems operate with the following flow.

1. A lot of primitive events from the OS are captured.
2. A necessary event is selected by a user’s filtering configurations.
3. Selected events are output as monitoring logs.
4. Huge numbers of logs are managed by security administrators.
5. A log is analyzed if necessary.

On the other hand, our system works with the following flow.

1. A lot of primitive events from the OS are captured.
2. Captured events are analyzed by defining user behaviors in the knowledge

base in real time.
3. Analyzed results are output as monitoring logs.
4. Huge numbers of logs are managed by security
5. A log is analyzed if necessary.

The most important point is the difference in the processing of (2). Our
method analyzes primitive events and predicts the context in real time while
the conventional method only chooses primitive events. So the quality of the
logs processed in (3) is quite different. Our logs are advanced while conventional
logs are primitive. Though both methods are basically the same in (4) and (5),
the conventional method is more time-consuming than our method. This is be-
cause the amount and the quality of the logs are significantly different. After all,
it is a key point how high the quality of analysis is in the processing of (2). We
have developed File Lifetime Monitoring Technology to achieve this processing
of (2).

4.2 Architecture of File Lifetime Monitoring Technology

The architecture of our system is shown in Fig.2.
The File Lifetime Monitoring Technology is a technology that presumes the

semantics from a user’s operation events and events from the file system. A
user’s operation events are primitive GUI operation events such as a menu click
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Fig. 2. Architecture of our File Lifetime Monitoring Technology. The technology pre-
sumes the semantics from a user’s operation events and events from the file system.

with a mouse device or input from a keyboard. Events from the file system are
primitive file system API calls from applications such as open(), read(), write(),
and close(). A conventional system outputs these events directly. n the other
hand, our system infers semantics.

The semantic inference consists of a context inference and a file name in-
ference. Context inference means what the user is doing with a client PC at
the present time and file name inference means what the file names are of the
documents a user is using on a client PC at the present time.

The semantic inference is performed by unifying a user’s operation events,
events from the file system and application knowledge.

Application knowledge is a set of defined application behaviors. Application
knowledge is described by defining the semantics for the sequences of the user
operation event and the sequences of the file operation event. For example, appli-
cation knowledge assigns the ”Save As” function for a series of following events
as:

1. User clicks ”File” menu item
2. User clicks ”Save As ...” submenu item
3. Application opens dialog of file name input
4. User inputs file name by keyboard
5. User presses OK button by mouse
6. Application calls Open() API
7. Application calls Write() API
8. Application calls Close() API.

Items (1)–(5) are concerned with user operation, and items (6)–(8) are con-
cerned with file operation. In this example, unification means checking consis-
tency in the user input file name in (4) and the file name of the file access in
(6)–(8).
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Finally, our system outputs an intelligent log that includes the client PC
context, source file name and destination file name. This information shows
the parent-child relation of the files, so a security administrator can trace file
movement.

4.3 File Name Inference

The logs based on File Lifetime Monitoring Technology include the source file
name, destination file name, operation, use application, user information, PC
information and so on. In particular, the file name and correlation between
documents can be monitored exactly. So analyzing the logs enables a user to
trace a document to its source. In this section, we propose two technologies to
infer the file name.

File Access Consistency Check Method. This is mainly used in order to
infer the destination file name. The method of extracting file names is based on
the side effects of unifying a user’s operation events, file access events and the
application knowledge. The file names in the application knowledge are described
as variable. After unifying them successfully, all values of the variables that
include the source file name are determined. In the above example, the file name
in (4) and the file name of file access in (6)–(8) correspond with the same variable
of the application knowledge. In this case, the variable means the destination
file. So the value of the variable that is the result of unification is used as the
destination file name in the log.

Active File Extraction Method. This is mainly used in order to infer the
source file name. Though a user can use plural files on plural applications at the
same time through the multitask function of an OS, the file in the top window is
unique. The top window file, called the active file, corresponds with the source
file in almost all contexts. This method infers the file name based on the active
file history that is information on the chronological changes in the active file
in every application. The active file history is built by paying attention to the
change in the window title at each read file, and relating the file to the window
title.

5 InfoCage: Confidential File Movement Trace
Application

5.1 Outline of InfoCage

We have developed a client PC security application based on our File Lifetime
Monitoring Technology for feasibility assessment. We call the application In-
foCage. InfoCage allows a user to trace movements of many confidential files in
a client PC.InfoCage is a client-server type system. In InfoCage, client means a
worker’s PC in which a monitoring agent resides. A server means a log manage-
ment server for an organization or a task group (see Fig. 4).
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Fig. 3. File name inference by active file monitoring

–CLIENT–
Target File Configuration Tools. InfoCage does not monitor all files but

only user selected files. This tool enables a user to define monitored files
in a variety of ways. For example, a user can define documents that are
carried from a certain server to a client PC as monitoring targets.

Monitoring Agent. This is resident software in a client PC for monitoring.
This is based on our File Lifetime Monitoring Technology. This uploads
monitoring results to the Log Management Server through a network. In
order to defend against a malicious user, the log is encrypted and no user
can kill the process of the agent.

Application Knowledge. Application knowledge is not built by users but is
built and distributed by security administrators. In this trial, we investi-
gated applications to use with subjects beforehand, and we built application
knowledge and distributed it. The application knowledge includes the most
typical applications such as Microsoft Office, Microsoft Internet Explorer,
and Firefox.

–SERVER–
Log Management Server. This is a database that collects the log uploaded

from the monitoring agents. It is usually implemented in a conventional
relational database.
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Fig. 4. InfoCage is a client-server type system. In InfoCage, client means a worker’s
PC in which a monitoring agent resides. A server means a log management server for
an organization or a task group.

Log Viewer. This is a viewer that refers to the logs accumulated in the log
management server. This viewer indicates the parent-child relationships of
monitored files, a list of the confidential files in the client PC and a list of
the files copied to USB memory or a network drive (see Fig.6) Usage of the
tool is explained in the next section.

5.2 Examples of Use

In case of daily office job of worker. A user can work using a PC as in the
past except for the following two points.

– At the time of making a confidential document: A user should define it as
a monitored document using the Target File Configuration Tools just after
the user has made a confidential file.

– At the time of using a confidential document: The usage is basically no
different from ordinary usage, except that when opening a confidential file,
a user is warned that the file will be monitored as shown in Fig.5.

In case of log analysis of security administrator. When an administrator
can specify the file that he/she wants to examine to some extent, he/she inputs
conditions such as a file name, a file extension, a kind of operation, the date and
time and searches for it. He/She selects a file from a list of files in the search
results and can see its movement. He/She can also observe the parenthood of
this file and can follow the log of a corresponding file in succession (see Fig.6).

5.3 System Implementations

The InfoCage prototype system has been successfully operated on Microsoft
Windows XP and 2000. Capturing GUI operation is implemented by MSAA
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Fig. 6. Example of Log Viewer screen shot. This viewer indicates parent-child relation-
ships of monitored files.

(Microsoft Active Accessibility) API[5], which provides a standard mechanism
in order to exchange GUI operation information. Capturing file access is imple-
mented by an API hook technique that injects a user library into the applica-
tion process and captures the Win32 API calls of the applications [6]. Our File
Lifetime Monitoring Technology and Log Viewer are implemented by Microsoft
Visual C++. The data format of the application knowledge and log is XML.
The log management server is implemented by the Microsoft SQL Server 2000
Desktop Engine (MSDN2000).

What one should note here is that InfoCage isn’t dependent on the kind of
platform, e.g. OS, computer language, and database, for implementations. For
example, if the filter driver is used, the capturing of file access and GUI operation
is possible for UNIX.
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6 Evaluations

6.1 Method

Subjects. Two hundred forty-three workers in our research section and a busi-
ness development department tested the system for 3 months.

(Experiment-1) Evaluation for Quantity of Logs. The subjects performed
certain work both on a PC installed with InfoCage and on a PC installed with
a conventional monitoring system. We compared the quantity of the logs from
these systems. The work consisted of 14 kinds of operations related to informa-
tion leakage such as file copying to USB memory, data recycling using a copy
buffer, and document name change using the ”Save As” menu item. InfoTrace
(Version 1.4) [2] was adopted as the conventional monitoring system for the
following reasons.

– InfoTrace is single function software for file monitoring in a client PC and is
comparatively similar to the purpose of our system.

– InfoTrace is used widely in the Japanese market, and it seems to perform
well.

– InfoTrace is customizable for monitoring certain items.

However, we have selected six subjects at random among the 243 workers in the
interest of saving time.

(Experiment-2) Evaluation for Quality of Logs. We analyzed the logs
from Experiment-2 and evaluated them from the point of view of how many of
the following kinds of files could be detected:

– List of confidential documents open to the public to network drive
– List of confidential documents in the client PC
– List of confidential documents that should be deleted and have been deleted.

(Experiment-3) Evaluation for Decline of Performance. We compared
performances of a PC installed with InfoCage and a PC installed with InfoTrace
using a performance benchmark tool. We selected two portable PCs and two
desktop PCs. We also asked all subjects the following two questions:

”Did you feel a decrease in performance?”
”If you did feel a decrease in performance, when did you feel so?”

6.2 Results

(Experiment-1) Evaluation for Quantity of Logs. As for InfoTrace, the
amount of logs changes according to the filtering setting of the monitoring items.
To make conditions fair between InfoCage and InfoTrace, the following were set
as the monitor items:

– File access by filers such as Microsoft Explorer
– File access by applications such as Microsoft Office
– Copy buffer access.
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The logs of InfoTrace include fields where it seems not to use the domain name,
the mac-address and the logon user name for this analysis. So we evaluated the
number of records as the amount of logs. The result is shown in Fig.7. The log
amount of InfoCage can be reduced eleven times from the amount of InfoTrace.
Therefore, we can reasonably conclude that the quantity of monitoring results
of InfoCage is better than that of InfoTrace.

(Experiment-2) Evaluation for Quality of Logs. The result for the quality
of logs is shown in Fig.8. We think a factor in this gap is that InfoTrace cannot
trace, but InfoCage can trace, file movement in the following operations.

– Operations of document name change using application, i.e. the Save As
command

– Operations of data copy using copy buffer between certain documents, i.e.
the Cut and Paste commands

InfoCage could detect all of the file movements except the following case.

User Operation 1. Open new file. (We call it NewDoc.)
2. Open a monitored file. (We call it ConfidentialDoc.)
3. Open a non-monitored file. (We call it NormalDoc.)
4. A part of the data on ConfidentialDoc is copied to NewDoc.
5. A part of the data on NewDoc is copied to NormalDoc.

In this case, NormalDoc is a related document of ConfidentialDoc because
NewDoc is a child document of ConfidentialDoc, and NormalDoc is a child doc-
ument of NewDoc. However, InfoCage cannot trace such parent-child relations
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Fig. 7. Result of amount of logs. The log amount of InfoCage can be reduced eleven
times from the amount of InfoTrace.
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change using application, and operations of data copy using copy buffer between certain
documents.
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Fig. 9. Results of evaluation for decline in performance. We think a factor in this
gap is that InfoTrace cannot trace, but InfoCage can trace, file movement in certain
operations.

because NewDoc doesn’t have file name yet. We think this issue can be improved
by assigning NewDoc a dummy file until a user saves it with a new file name
explicitly. We think that InfoCage can solve this problem by remodeling the ap-
plication knowledge. Therefore, we can reasonably conclude that our InfoCage is
not a perfect monitoring system, but its architecture is improvable by remodeling
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the application knowledge and the quality of its monitoring results is better than
that of InfoTrace.

(Experiment-3) Evaluation for Decline of Performance. To make the
conditions fair between InfoCage and InfoTrace, we experimented only with set-
tings that did not use any function that either InfoCage or InfoTrace doesn’t
have. For example, we didn’t use the encryption function of logs because In-
foTrace doesn’t have that function. The result of PC performance is shown in
Fig.9. Unfortunately, the measure of performance is a peculiar measure of the
benchmark software, and we are not sure how to estimate performance. But this
standard means that performance is high so the value is big. For InfoCage, it
was a decline in performance of around 5% with all PCs. On the other hand,
it was a decline of around 20% for InfoTrace. Results of questionnaires show
that InfoCage is faster than InfoTrace. Some subjects said that they often felt
stressed because of a decline in the performance of InfoTrace. No subject felt
stressed by the decline in performance of InfoCage. Therefore, we can reasonably
conclude that InfoCage is practical in terms of performance degradation.

7 Discussions

7.1 Application Knowledge

The most time-consuming part in the introduction of InfoCage is to make the
application knowledge. We have to describe the knowledge of all behaviors of all
applications that should be monitored. The numbers of the rules of application
knowledge for the trial are as follows:

– The Number of Registered Applications: 59
– The Number of Registered Contexts: 658

The programmer should build these rules with a special tool [7]. We think that
it’s simple work for those who know how to use the tool, but it’s a troublesome
task. In addition, the method of testing the application knowledge is a problem.
The application knowledge should be evaluated from the following viewpoints.

– Soundness: This means that no rule includes mistakes.
– Completeness: This means that rules cover all behaviors of all applications.

This time, we used the same technique as the test for software development. This
method can check for soundness. However the check for completeness is difficult.
The methods for building the application knowledge efficiently and for checking
its completeness remain as challenges for the future.

7.2 Cooperation with Other Countermeasure Systems

The purpose of this research is to make a client PC secure. The approach of
monitoring is one among several countermeasures. For example, other approaches
are shown below.
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Encryption. Countermeasure for theft of portable PC by coding hard disk and
removable disk entirely.

Antivirus. Countermeasure for information leakage by virus.
Limiting Operation. Countermeasure by prohibiting application operation

when possibility to leak information exists.
Configuration Check. Countermeasure by determining mistakes in security

settings of PCs.

No countermeasure is perfect. It is most important to coordinate these counter-
measures. In the following, we give examples of coordination between InfoCage
and other countermeasures.

Coordination between InfoCage and Encryption Tools. Encrypted doc-
ument files are inconvenient because a user must decode them to their original
files before using them. In other words, usability is a problem for encryption
tools. InfoCage can manage important files and related files of important files,
so it can distinguish important files from non-important files. When coordinat-
ing InfoCage with encryption tools, only important sentences can be encrypted.
The coordination system can improve end-user usability.

Coordination between InfoCage and Configuration Check Tools. We’ll
consider the example of checking whether the following security policy is
defended.

Security Policy: Important sentences prohibit putting a file in the net-
work shared folder.

A conventional configuration check tool can check the document only superfi-
cially. T he tool cannot check based on the importance of a document, so it
cannot check the above security policy. When coordinating InfoCage with a con-
figuration check tool, it can check for an inconsistent point in the importance of
a file and in equipment settings. So the coordinated system can check the above
security policy.

8 Conclusion

Information leakage from client PCs has grown into a serious problem in recent
years. To address the problem, we have proposed File Lifetime Monitoring Tech-
nology that enables users to accurately trace modifications of confidential docu-
ments by user commands such as copy, rename, and save, as well as copy/paste
editing operations. The File Lifetime Monitoring Technology is based on analyz-
ing primitive events from the file system and GUI and anticipates confidential
risks using prepared knowledge of applications. Using monitoring results effec-
tively, confidential information can be managed on workers’PCs. The prototype
system has been successfully operated, and 243 co-workers tried out our system.
The trial shows that our system is practical in terms of performance degradation.
Experiments show that both the quality and quantity of monitoring results is
better than conventional monitoring software. In particular, the log size of our
system can be reduced eleven times from the size of conventional software.
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Abstract. With the digitization of society and the continuous migra-
tion of services to the electronic world, individuals have lost significant
control over their data. In this paper, we consider the problem of protect-
ing personal information subjects. More specifically, we propose a new
primitive allowing a data subject to decide when, how, and by whom
his data can be accessed, without the database manager learning any-
thing about his identity, at the time the data is retrieved. The proposed
solution, which we call Accredited SPIR, combines symmetrically pri-
vate information retrieval and privacy-preserving digital credentials. We
present three constructions based on the discrete logarithm and RSA
problems. Despite the added privacy safeguards, the extra cost incurred
by our constructions is negligeable compared to that of the underlying
building blocks.

Keywords: Symmetrically private information retrieval, anonymous
credentials, policy enforcement.

1 Introduction

In a transaction-based world, with continuously shrinking resources, access con-
trol has always been, and still continue to be a central issue. Oftentimes, to
benefit from a service or a resource, one is asked to show his identity, or prove
possession of a set of qualifications and privileges. In many cases, this forces
individuals into leaving identity trails behind them, which could be used for
criminal activities such as unlawful monitoring and identity theft. The data col-
lected from such interactions, although generally rich in personal information, is
in most cases stored in databases lying outside the control of the data subject.
Various techniques have been proposed in the past to strengthen users’ pri-
vacy and help protect their personal information. Among these we note privacy
preserving digital credentials [Cha85, Bra00, CL02], and symmetrically private
information retrieval protocols [GIKM98,CMO00,KO97,AIR01,Lip05].

In a symmetrically private information retrieval (SPIR) system, there are gen-
erally two players: a Sender and a Receiver. The Sender has a database DB of
records, and the Receiver submits a query Q to the Sender in order to retrieve
a particular record. The main requirement in a SPIR system is privacy for both
the Sender and the Receiver. That is, on the one hand the Sender should not

A. Miyaji, H. Kikuchi, and K. Rannenberg (Eds.): IWSEC 2007, LNCS 4752, pp. 262–277, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Accredited Symmetrically Private Information Retrieval 263

learn any information about the index of the record the Receiver is interested in,
and on the other hand, the Receiver should not learn any information about the
database, beyond the content of the record defined in the query Q, and what is
already publicly known. In particular, the Receiver should not be able to learn
information about more than one record per query. For instance, the Receiver
should not be able to learn, through one query, the value of any function on a
set of more than one record. SPIR systems have many real-life applications; for
instance, consider a scenario where the inventor of a new drug needs information
on a number of chemical components that will constitute his final product. This
information can be accessed for a fee at some central database. This database
could be managed, however, by parties with possibly competitive interests, and
the inventor fears that his intellectual property (IP) will be compromised. He
would like, therefore, that his queries remain concealed from the database man-
ager. The latter, on the other hand, wants to be paid for all information retrieved
from his database. It is clear that the SPIR system described above, can be a
solution to this set of conflicting requirements.

There are similar applications however, that are closely related to the IP ex-
ample above, which cannot be solved by a SPIR primitive. Consider for example
the following e-health scenario where three types of participants are involved:
(1) a patient, (2) a medical database containing the health records of patients,
and (3) a doctor querying the medical database on patients’ health records. The
medical database and the doctor can be thought of as the Sender and Receiver,
respectively, in a traditional SPIR setting. The requirements in the e-health
application are as follows:

1. Privacy for the Receiver: The Receiver (doctor) wants to retrieve records
from the medical database, without the Sender (DB) learning the index of
those records, and thus the identity of his patient.

2. Privacy for the Sender: The Sender (DB) wants to be sure that, for each
query, the Receiver (doctor) learns information only on one record (defined
in the query) and nothing about the other records.

3. Privacy for the data subject: In order to comply with privacy legislation,
the Sender wants to be sure that the Receiver has an valid reading autho-
rization from the owner of the targeted record (i.e., the patient). We call the
latter, an Authorizer. Notice that the Sender should not be able to learn the
Authorizer’s identity, otherwise the first requirement will be violated.

The example above shows a typical scenario where plain SPIR primitives fall
short of protecting the interests of the Sender, the Receiver, and the Authorizer
at the same time. The solution we provide in this paper, addresses the interests of
all three parties, and solves the problems described above. We call the presented
solution: Accredited SPIR. In what follows, we sometimes refer to the latter set of
requirements, namely privacy for the data-subject, the Sender, and the Receiver,
as the Accredited SPIR problem.
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Solution highlight. In the Accredited SPIR setting we have three players:
a Sender, a Receiver, and an Authorizer. The Receiver submits a query Q to
the Sender, who replies with a response R. The Receiver recovers the answer
to his query from R. The main contribution of Accredited SPIR, is to assure
the Sender, before processing the query Q, that the Receiver has obtained an
explicit consent from the owner of the record defined in Q, without revealing the
identity of this owner (i.e., the Authorizer).

The Accredited SPIR architecture we propose, combines three cryptographic
primitives: privacy-preserving digital credentials, homomorphic encryption, and
SPIR systems. Privacy-preserving digital credentials [Cha85,CP92,Bra00,CL02,
CL04] are cryptographic tokens issued by a certification authority CA to indi-
viduals. The CA encodes in each credential a set of attributes about the identity
of its recipient. The latter is called a credential holder. A credential holder may
later show his credential to a verifier in return for a service or a privilege (e.g.,
to receive medical treatment). Unlike traditional PKI certificates (e.g., X.509),
privacy-preserving digital credentials allow their holders to selectively disclose
information about their attributes [Bra00]. In particular, if a credential holder
has a set of attributes (x1, · · · , xn), then he can prove any predicate P satisfied
by those attributes, without the verifier learning any extra information beyond
the status of P(x1, · · · , xn).

Assume the Authorizer has a CA-issued identity credential Cred containing
a set of attributes (ID,Age,· · · ). The idea is to first make the Authorizer and
Receiver jointly compute the query Q, and then have the Authorizer produce a
signed proof of knowledge of the secret attributes embedded in Cred. Along with
the latter, the Authorizer proves that the ID attribute embedded in Cred is the
same as the one contained in the query Q. The Receiver then deposits the signed
proof along with the query to the Sender. The Sender first checks the validity
of the proof. If accepted it carries on with the SPIR protocol and processes the
query, otherwise it rejects.

As mentioned earlier, the signed proof does not reveal any information about
the credential holder, and yet guarantees that the content of the query is consis-
tent with the secret identity attribute embedded in the credential. Furthermore,
owing to the fact that it is hard for a polytime adversary to forge credentials,
or make proofs about credentials he does not own, the Sender can be sure that
the Receiver has indeed obtained an explicit consent from the targeted record’s
owner.

This paper presents three constructions to solve the accredited SPIR prob-
lem. The first is based on a modified version of one of Brands DL-based cre-
dentials [Bra00, Section 4.5.2], the ElGamal cryptosystem, and a SPIR system
proposed by Lipmaa in [Lip05]. The two additional constructions are variants
of the first, and use an RSA-based version of Brands credentials [Bra00, Section
4.2.2], in combination with the ElGamal, and the Okamoto-Uchiyama [OU98]
cryptosystems. In the following, we describe previous results and related work
available in the literature.
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2 Related Work

Much research has gone into the problem of managing personal data in accor-
dance with a user-defined privacy policy. In [GMM06], for instance, Golle et
al. propose a mechanism by which data collectors can be caught and penalized
if they violate an agreed-upon policy, and disclose sensitive data about a data-
subject. The main idea there is that a data-collector would place a bounty, which
it must forfeit if a privacy violation is uncovered. The bounty could be explicit
in the form of a bond, or implicit in the form of penalties imposed if privacy
is violated. This technique however is geared towards violation detection after
the fact, and assumes the existence of active bounty hunters who seek to induce
dishonest data collectors into committing unlawful disclosures.

Another related approach is that of policy-based encryption by Bagga et
al. [BM05, BM06]. Policy-based encryption allows a user to encrypt a message
with respect to a credential-based policy, formalized as a monotone boolean ex-
pression. The encryption is such that only a user having access to a qualified
set of credentials, complying with the policy, is able to successfully decrypt the
message. The context in [BM05, BM06], however, is different from the one in
this paper, since the goal there is to allow the user to send a secret message to
a designated set of players defined by a policy. In our context, the user’s data
is already stored in a database, and the goal is to allow user-authorized parties
to retrieve the user’s data, without the database manager learning which data
has been retrieved or the identity of the data subject. It is also not clear how
revocability can be implemented in the context of [BM05,BM06].

In [SWP00], Song et al. present a scheme for the problem of searching key-
words on encrypted data. The setting there consists of a user, and a server storing
encrypted data owned by the user. The server can process search queries on the
user’s stored ciphertext, only if given proper authorization from the user. The
proposed scheme also supports hidden user queries, where the server conducts
the search without learning anything about the content of the query. Although
somewhat related to our context, it is not clear how the work in [SWP00] can
be applied to the problem we describe in this paper, since delegating querying
capabilities to a third party, may require the user to reveal his encryption key,
and thus share all of his past and future secrets. Besides, it is not clear how the
identity of the data-owner can be hidden from the server, or how to impose (e.g.,
time or usage) restrictions on search capabilities delegated to a third party.

Finally, in [AIR01] Aiello et al. consider a scenario where a database contains
a set of priced data items, and users privately retrieve data from it. The proposed
protocol is called priced oblivious transfer, and allows a user U, who made an
initial deposit, to buy different data items, without the database manager learn-
ing which items U is buying, as long as U’s balance contains sufficient funds. We
believe the construction in [AIR01] is the first to impose additional requirements
on oblivious transfer protocols. While interesting in their own right, the added
requirements do not address the identity of the data-subjects, and hence do not
seem to help in solving the problem we consider in this paper.
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3 Summary of Contribution and Paper Organization

We propose a solution to the accredited SPIR problem, and three constructions
to implement it. The solution we present allows a user to issue authorizations to a
Receiver to privately retrieve his records, without the database manager learning
anything about the retrieved data, or the data subject’s identity. The authoriza-
tions contain computationally non-modifiable, unforgeable, user-defined policies
and limitations, governing their use. The authorizations can also be anonymously
revoked by their issuer if needed.

To the best of our knowledge, this work is the first to give a solution to the
accredited SPIR problem, and to address the more general issue of enforcing user-
defined privacy policies, by combining SPIR protocols and privacy-preserving
digital credentials.

The remainder of this paper is organized as follows. In Section 4, we describe
the main building blocks used in the first construction and throughout the paper.
In Section 5, we present a DL-based accredited SPIR construction. In Sections
6 and 7, we discuss the security, privacy features, and performance of the first
construction. In Section 8.2, we present a second construction based on a RSA
version of Brands credentials. In Section 8.4, we give a third variant based on
the Okamoto-Uchiyama cryptosystem. We conclude in Section 9.

4 Building Blocks for the DL-Based Construction

4.1 Brands-CP Credentials

In [Bra00], Brands proposes various credential systems based on the hardness of
the discrete logarithm problem in groups of prime order, and the RSA problem in
groups of composite order (RSA groups). Brands has also proposed other variants
of the above systems, based on DSA and the Chaum-Pedersen signatures [Bra00,
Section 4.5.2]. For the purpose of our first construction, we will use the latter
variant, and will refer to it as the Brands-CP system. The security of the Brands-
CP system is based on the hardness of the discrete logarithm problem in groups
of prime order. The Brands-CP system allows a certification authority CA to
issue to a user U a set of credentials encoding attributes about U’s identity. The
credential itself consists of (1) a public key h embedding the user’s attributes and
(2) a special CA-supplied digital signature on it, denoted σCA(h). At the end of
the issuing protocol, the credential that user U has obtained is perfectly hidden
from the CA, and perfectly indistinguishable from any other credential the CA
has previously issued. Later, user U can show his credential to individuals and
organizations in return for a service. Showing a credential does not necessarily
require the revealing of the attributes encoded in it. A credential holder can
selectively and verifiably disclose any information he wishes about his attributes,
which may include revealing the actual values of the attributes, or just proving
a predicate about them. In [Bra00, Section 3.6], Brands shows how to prove a
class of linear predicates about the attributes. At a later stage, and depending
on the application, the verifying individual or organization may want to deposit
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the credential showing transcript to the certification authority. This deposit can
be thought of as a cheque deposit in the context of e-banking or as a ballot
submission in the context of e-voting. The deposited transcript is unlinkable
to the instance of the issuing protocol that generated the credential. For the
sake of completeness, we give in the following a brief description of the issuing,
and showing protocols of the Brands-CP system, as well as an overview of the
parameters and setting.

System setting. On input the security parameter κ, the CA chooses κ-sized
primes p and q such that 2q|p − 1. Let Gq be the unique subgroup of Z

∗
p

of order q, and let g0 be one of its generators. The CA also chooses H :
{0, 1}∗ → Z∗

q , a public collision-resistant hash function. In the setup phase,
the certification authority randomly chooses y1, y2, · · · , y� and x0 ∈R Z∗

q , and
computes (g1, g2, · · · , g�, h0) := (gy1

0 , gy2
0 , · · · , gy�

0 , gx0
0 ) mod p. The parameters

(g1, g2, · · · , g�, h0) are then made public along with g0, q, and Gq.

Credential issuing. To obtain a credential, a user first convinces the certification
authority that he fulfills a set of application-specific requirements necessary to
receive that credential. The certification authority then encodes a set of � of user
attributes in the credential. Let x1, · · · , x� denote the attributes to be encoded.
The credential’s public key is then computed as h := (gx1

1 · · · gx�

� h0)α, where α
is a secret blinding factor randomly chosen in Z∗

q by the user. The certification
authority’s signature on the credential is a triplet (c′0, r

′
0, z

′) ∈ Z2
q×Gq, satisfying

the relation c′0 = H(h, z′, gr′
0

0 h
−c′

0
0 , hr′

0z′−c′
0). At the end of the issuing protocol,

the certification authority knows neither h nor the signature (c′0, r
′
0, z

′).

Credential showing. In order to have access to a service, user U can show his
credential without the verifying party being able (1) to learn information about
the encoded attributes beyond what U willingly discloses, or (2) to link the
credential to the user’s identity even if it colludes with the certification author-
ity. In practice, to show his credential to a verifying party, user U reveals (1)
the credential’s public key h along with a signature σCA(h) := (z′, c′0, r

′
0), and

(2) a signed proof of knowledge of a representation of h, with respect to ba-
sis (g1, g2, · · · , g�, h0). This signature is performed on a verifier-chosen challenge
m. The verifier checks the validity of the credential by verifying if the relation
c′0

?= H(h, z′, gr′
0

0 h
−c′

0
0 , hr′

0z′−c′
0) holds. If the credential is valid, the verifier moves

on to check the validity of the signed proof of knowledge.
More details on the Brands-CP credential issuing and showing protocols, as

well as their security and privacy properties, can be found in [Lay07].

4.2 ElGamal Homomorphic Encryption

Our DL-based accredited SPIR construction relies on the ElGamal encryption
scheme because of its homomorphic properties and because it fits well the set-
ting of the Brands-CP credentials. In the following we recall the settings of the
ElGamal cryptosystem.



268 M. Layouni

Settings. Let p, q, and Gq, be the public parameters chosen by the CA in the
setup of the Brands-CP credential system. User U randomly chooses gElG, a
generator of Gq, and xu ∈R Z∗

q , and computes yElG := gxu mod p. User U then
publishes his ElGamal public key (Gq, gElG, yElG), and keeps his private key xu

secret. A message m ∈ Gq, can be encrypted by choosing a random r ∈R Z∗
q ,

and computing c = (gr
ElG, yr

ElGm) = (c1, c2). Using U’s private key, the plaintext
can be recovered as m = c2/cxu

1 . Given a constant α, and encryptions of m and
m′, it is easy to compute randomized encryptions of m×m′ and mα.

4.3 AIR-Based Lipmaa
(1
n

)
-OT

In [Lip05], Lipmaa proposes a SPIR scheme based on ideas from a construction
by Aiello et al. [AIR01]. Lipmaa’s SPIR scheme is computationally private for
the Receiver and perfectly private for the Sender. Its security relies on the hard-
ness of the decisional Diffie-Hellman and the decisional composite residuosity
problems [Lip05]. The SPIR scheme in [Lip05] has a log-squared communication
complexity (in the size of the database).

Main idea. Let DB denote the Sender’s private database, and let s be the index
of the record the Receiver is interested in. The receiver computes c := Epkhom(s),
a homomorphic encryption of s, and sends it to the Sender. Using the ho-
momorphic properties of the encryption, the Sender computes for each record
DB[j] in the database, DB′[j] := Epkhom(δj(s − j) + DB[j]), where δj is a ran-
dom blinding factor chosen by the Sender. The encrypted records DB′[j] are
then sent to the Receiver, who will be able to retrieve something meaningful
only from DB′[s] := Epkhom(DB[s]); everything else will decrypt to randomness.
The construction in [Lip05] follows a similar methodology to the above, ex-
cept that the Sender uses an extra loop of superposed encryptions that leads
to a randomized ciphertext of DB′[s]. Only the latter is sent back to the Re-
ceiver. This is done as follows. The database (DB[1], · · · , DB[n]) is arranged
in an α-dimensional λ1 × · · · × λα hyper-rectangle for some pre-defined pos-
itive integers λj , such that n =

∏α
j=1 λj . Each record DB[i] is indexed by

a tuple (i1, · · · , iα) on this hyper-rectangle, where ij ∈ Zλj . To retrieve a
particular record (s1, · · · , sα), the Receiver submits to the Sender a homo-
morphic encryption βjt := HomEncpk(bjt), for 1 ≤ j ≤ α, 0 ≤ t < λj , where
bjt = 1 if t = sj , and bjt = 0 otherwise. The Sender exploits the homo-
morphic properties of the encryption scheme HomEncpk(.) to create a new
(α − 1)-dimensional database DB1, such that ∀(i2, · · · , iα) ∈ Zλ2 × · · · × Zλα ,
DB1(i2, · · · , iα) is equal to an encryption of DB0(s1, i2, · · · , iα), where DB0
is the the Sender’s original database DB. The same procedure is repeated,
and at the jth iteration, an (α − j)-dimensional database DBj is obtained by
the Sender, such that DBj(ij+1, · · · , iα) is equal to a j-times encryption of
DB0(s1, · · · , sj−1, ij, · · · , iα). After α iterations, the Sender obtains DBα, an α-
times encryption of DB0(s1, · · · , sα). The Sender returns DBα to the Receiver,
who needs to decrypt it α times to recover DB(s). In [Lip05], Lipmaa uses a
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special Length Flexible Additively Homomorphic encryption scheme to imple-
ment HomEncpk(.). Notice that in the hyper-rectangle construction above, the
Receiver can cheat by maliciously sending βjt := HomEncpk(1), for t �= sj .
To stop such attacks, the Sender performs the repeated encryptions above, on
DB0 = DB′ rather than on the Sender’s original DB. Let s′ be the index cor-
responding to the βjt’s. At the end of the protocol, the Receiver obtains DBα,
which he decrypts α times to recover DB′[s′] = Epkhom(δs′(s−s′)+DB[s′]). Next,
the Receiver decrypts DB′[s′] once again, and recovers something meaningful
(DB[s]) only if s′ = s. More details can be found in [Lay07].

Remark. Both [Lip05] and [AIR01] propose the ElGamal cryptosystem to im-
plement Epkhom . It is worth noting however, that using plain ElGamal, it is not
possible to compute Epkhom(δj(s − j) + DB[j]) given Epkhom(s), since ElGamal is
only multiplicatively homomorphic. We fix this problem in the next section.

5 Accredited SPIR Based on the DL Problem

The DL-based accredited SPIR scheme we propose, is achieved by combining
the three building blocks above, modulo few adaptations. We first give a high-
level overview of the construction, before getting into the details. We assume
the public parameters of the three building blocks are already known to all
parties. Let IDA be an attribute, that uniquely identifies the Authorizer (e.g.,
an SSN). This IDA will determine the index by which the Receiver will query the
Sender’s database. Let us first assume that the Authorizer possesses a Brands-
CP credential of the form (h, σCA(h)), where h = (gIDA

1 gx2
2 · · · gx�

� h0)α. The
Authorizer computes c := Epkhom((gdb)IDA) := EpkElG((gdb)IDA) := (c1, c2), where
pkElG is the Receiver’s ElGamal public key, and gdb is a public generator of Gq

chosen by the Sender. Next, the Authorizer produces a signed proof of knowledge
asserting that the logarithm, to the base gdb, of the plaintext encoded in c, is the
same as the first attribute embedded in credential h. We call this last assertion
an ID-consistency proof.

Notice that this latter proof cannot be done in a straightforward way using the
original Brands-CP credentials, because h has the form h := gβ1

1 · · · gβ�

� hα
0 , where

βi = αxi for some random blinding factor α. Establishing ID-consistency in this
case requires proving a non-linear predicate on secret exponents (α, β1, IDA), de-
fined by P ≡ “β1 = α× IDA”, which cannot be done efficiently. To fix this prob-
lem we propose a modified version of the Brands-CP credentials, with exactly
the same security and privacy properties. In the modified version, the creden-
tial’s public key h is computed as h := (gx1

1 · · · gx�−1
�−1 gα

� h0), where x1, · · · , x�−1
are identity attributes, and α is a secret random blinding factor chosen by the
credential recipient. This modification is of general interest, and can be used in
other contexts as well. For lack of space, a summary of the modified credential
system is outlined in [Lay07].

In what follows, we assume the Authorizer possesses a credential of the new
type. Let us denote the public key of the Authorizer’s new credential by h :=
(gIDA

1 · · · gx�−1
�−1 gα1

� h0). To prove ID-consistency between h and the SPIR query
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(c1, c2) := EpkElG((gdb)IDA), it suffices for the Authorizer to produce a signed
proof of knowledge of a DL-representation of (h/c2 mod p) with respect to
basis ((g1g

−1
db ), g2, · · · , g�, h0, gElG, yElG). We denote the latter signed proof by

SPK{(ε1, · · · , ε�, μ, ν) : h = gε1
1 · · · gε�

� h0 ∧ c2 = yμ
ElGgν

db ∧ ε1 = ν}(m). The mes-
sage m to be signed, can be a concatenation of several fields, including a fresh
nonce. In addition, it may contain the identity of the Receiver, which will allow
the Authorizer to exclusively tie the authorization to the Receiver, and discour-
age him from sharing it with a third party. The Authorizer may also include
an expiry date in m to make sure his authorization remains valid only for the
appropriate amount of time. More generally, the Authorizer may encode in m
any application-specific policy he wants the Receiver to follow.

Running the SPIR. Now let us assume the signed proof above was accepted.
The next step, would be for the Receiver to compute the query messages as
indicated in the OT scheme of Section 4.3. First let (IDA(1), · · · , IDA(α)) be
the representation of the Authorizer’s IDA in the α-dimensional hyper-rectangle
λ1 × · · · × λα used by the Sender’s database. The Receiver then computes, for
1 ≤ j ≤ α, 0 ≤ t < λj , the homomorphic encryptions βjt := HomEncpk(bjt),
where bjt = 1 if t = IDA(j), and bjt = 0 otherwise. Next, the Receiver sub-
mits to Sender: (1) the credential (h, σCA(h)), (2) the first part of the query
(c1, c2) := EpkElG((gdb)IDA), (3) an ID-consistency proof SPK{(ε1, · · · , ε�, μ, ν) :
h = gε1

1 · · · gε�

� h0 ∧ c2 = yμ
ElGgν

db ∧ ε1 = ν}(m), and (4) the second part of the
query consisting of the βjt’s for 1 ≤ j ≤ α, 0 ≤ t < λj .

Note that there is no need for the Receiver to prove consistency between the
βjt’s and (c1, c2). As we will show later, any attempt by the Receiver to incor-
rectly compute the βjt’s, will prevent him from learning anything meaningful at
the end of the SPIR protocol.

Once the ID-consistency check succeeds, the Sender starts processing the Re-
ceiver’s query as explained in the following. But first, we make few practical
assumptions. We assume that n, the size of the Sender’s database, is bounded
above by q, the order of Gq. In practice, q is chosen to be at least 160-bit long,
which means the Sender’s database could have up to 2160 different records. Al-
though we think this should be sufficient in practice, the size of q can always
be increased if needed. Moreover, we assume that each record DB[i] contains a
field for storing (g−i

db mod p), in addition to a large field containing application-
specific data (e.g., health, financial data).

Now the query is processed as follows. Using the first part of the query, and
the multiplicatively homomorphic properties of ElGamal, the Sender computes
for j ∈ [1, n], DB0[j] = EpkElG((gdb)δj(IDA−j)×DB[j]) = ((EpkElG(gIDA

db )× g−j
db )δj ×

DB[j]), where δj is a random blinding factor chosen by the Sender. Note that g−j
db

has already been precomputed and stored in with DB’s jth record. The Sender
then proceeds with computing DBα by repeated encryptions of the records of
DB0 as indicated in the OT scheme of Section 4.3. Upon receiving DBα, the
Receiver recovers DB0[IDA] by repeated decryption using his secret homomor-
phic key sk. Next the sender obtains the desired record DB[IDA] by decrypting
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DB0[IDA] using his ElGamal private key. A figure summarizing the protocol can
be found in [Lay07].

6 Security and Privacy Properties

Theorem 1. Assuming the DL problem is hard, the ElGamal and HomEnc(.)
cryptosystems IND-CPA secure, and that the none of the three parties colludes
with the other, the protocol of Section 5 solves the Accredited SPIR problem
in the random oracle model, and provides computational privacy for both the
Authorizer and Receiver, and perfect privacy for the Sender.

Proof Sketch.1 Correctness. easy to check and relies on the homomorphic prop-
erties of the ElGamal and the HomEnc(.) cryptosystems.

Soundness. Assume the Receiver does not follow the protocol, and maliciously
uses an index s �= IDA in the second part of the query. This will lead DBα

computed by the Sender to be an α-time encryption under HomEncpk(.) of
DB0[s] = EpkElG((gdb)δs(IDA−s) × DB[s]), where δs is a secret blinding factor.
DB0[s] decrypts to random, which results in perfect privacy for the Sender.

Privacy for the Receiver. The Sender’s view consists of a credential, an ElGa-
mal encryption, a signed proof of knowledge, and a HomEnc(.) encryption of
an α-dimensional coordinate. Because the proof of knowledge is honest-verifier
zero-knowledge for any distribution of the attributes (cf. [Bra00, Prop. 3.3.4]),
seeing the signed proof of knowledge, together with the credential, does not leak
any information to the Sender about the content of the Receiver’s query. The
Sender could only hope to extract information from the ElGamal ciphertext c
and the homomorphic encryptions βjt’s. But this should not be possible, because
it implies breaking the security of ElGamal, or the HomEnc(.) cryptosystems,
which contradicts our assumption.

Privacy for the Authorizer. Assuming the Receiver and the Sender do not col-
lude, there are two ways to violate the Authorizer’s privacy. Either by learning
information from the Receiver’s query, or by forging a signed proof of knowledge
on behalf of the Authorizer. The former attack is computationally impossible
and follows from the Receiver’s privacy. To achieve the second however, one
could either (1) forge a new credential from scratch with the Authorizer’s iden-
tity embedded in it, (2) forge a signed proof on a legitimately-obtained creden-
tial that was not issued to the Authorizer, and thus does not initially contain
his identity, or (3) forge a signed proof on behalf of the Authorizer on a cre-
dential owned by the Authorizer. Attack (1) can be ruled out based on the
computational unforgeability of the Brands-CP credentials in the random ora-
cle model (cf. [Bra00, Prop. 4.3.7]). Similarly, attack (2) is impossible because
of the non-modifiability property of Brands-CP credentials [Bra00, Prop. 3.3.8].

1 Complete details will be given in the full version of the paper.
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The non-modifiability feature states that, assuming the DL problem is hard, it is
infeasible, in the random oracle model, to construct a signed proof for a formula
that does not in fact apply to the prover’s representation. Finally, attack (3) can
be ruled out as well, owing to the unforgeability of signed proofs on Brands-CP
credentials [Bra00, Prop. 3.3.6].

6.1 Additional Privacy for the Authorizer

User-centricity and policy enforcement. When issuing an authorization, the cre-
dential holder could specify in the message of the signed proof of knowledge, a
set of rules that he wishes the authorization recipient to comply with. For in-
stance, he could specify an expiry date, an upper bound on the number of times
the authorization is used, or any other usage policy. The Sender is supposed to
refuse processing queries from a Receiver who does not satisfy the usage policy
specified in the signature.

Revocability. The Authorizer may decide to revoke a previously issued autho-
rization. This can be done anonymously as follows. The Authorizer first needs
to prove knowledge, over an physically anonymized channel (e.g., a MixNet
[Cha81]), of a representation of the credential used in the authorization to be
revoked. Once the proof of knowledge is accepted, the Authorizer requires the
Sender (DB manager) to add the credential in question to a black list of revoked
authorizations. Later, it is easy for the Sender to check whether the credential
contained in a submitted query is on the black list or not. This can be done
efficiently using hash tables for instance. Note that an authorization can be re-
voked only by its issuer, since an polytime adversary cannot find a discrete-log
representation with non-negligeable probability.

Authenticated personal information retrieval. In the special case, where the Au-
thorizer and Receiver are the same entity, the construction we propose provides
the data-subject with a mechanism to retrieve his own personal data anony-
mously. Our construction also ensures that the stored data can be retrieved only
by its owner. The channel between the Receiver and Sender in this case has to
be physically anonymized.

7 Performance Analysis

The accredited SPIR construction of Section 5 does not lead to a significant in-
crease in computation and communication complexity, compared to the under-
lying SPIR scheme [Lip05]. If we assume the Authorizer has a credential with
(� − 1) attributes, then the added computation complexity is as follows. The
Authorizer needs to make (� + 6) offline exponentiations (all precomputable),
while the Receiver and Sender, both need to make (� + 8) online exponentia-
tions. This is negligeable compared to the complexity of the underlying SPIR
scheme which is linear in n, the size of the database. In practice, � is in the
range of 20, while n ≈ 2160. In terms of communication complexity, both the
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Authorizer and Receiver need to send (� + 8) log(n) + 5 extra bits to the Re-
ceiver and Sender respectively. Again this does not change the overallO(

log2(n)
)

asymptotic communication complexity of the underlying SPIR scheme [Lip05].

8 Accredited SPIR Based on RSA

The constructions we present in this section are based on a RSA-version of
Brands’ credentials [Bra00, Section 4.2.2]. For the sake of completeness, we
briefly introduce them in the following.

8.1 Brands-RSA Credentials

Settings. On input the security parameter κ, the credential issuer chooses: (1) κ-
sized primes P and Q, and computes N := PQ, (2) a prime v smaller than N , and
co-prime to φ(N), (3) random elements (g1, · · · , g�) ∈R (Z∗

N )�, and (4) a one-way
hash function H(.) = HN,v(.) : {0, 1}∗ → Zs, for some s superpolynomial in κ.

The credential issuer makes the parameters N, v, (g1, · · · , g�),H public, and
keeps P and Q secret. In addition, the issuer chooses x0 ∈R Z∗

v, such that given
h0 := xv

0 mod N , computing the vth root of h0 is hard. The issuer then publishes
h0 and keeps x0 secret.

Credential issuing. Assume after making the necessary identity checks, the cer-
tification authority accepts to issue a credential to the user. Let (x1, · · · , x�) ∈
(Z∗

v)� be the attributes the CA wants to encode in the credential, and let
h := gx1

1 · · · gx�

� mod N . The xi’s are known to both the user and the CA.
The user then chooses a random blinding factor α1 ∈ Z∗

N and computes the
credential’s public key h′ := hαv

1. The certification authority’s digital signa-
ture on the credential is a pair (c′0, r

′
0) ∈ Zs × Z∗

N , satisfying the relation
c′0 = H(h′, r′0

v(h0h
′)−c′

0). At the end of the issuing protocol, the certification
authority knows neither h′ nor the signature (c′0, r

′
0).

Credential showing. Similar to the Brands-CP system, a user can show his
credential to a verifying party, by first revealing the credential’s public key
h′ and CA-signature (c′0, r

′
0). The verifier checks if the validity relation c′0

?=
H(h′, r′0

v(h0h
′)−c′

0) holds. Once the validity check succeeds, the user produces
a signed proof of knowledge of a RSA representation (x1, · · · , x�, α1) of h′ with
respect to basis the (g1, · · · , g�, v). The signed proof can also be computed with
respect to a predicate P on exponents (x1, · · · , x�), agreed-upon by the user and
the verifier at the time of the showing.

More details on the Brands-RSA credential issuing and showing protocols can
be found in [Lay07].

8.2 Combining ElGamal Encryption with Brands RSA-Based
Credentials

We assume the Authorizer possesses a Brands-RSA credential h′, and certificate
σCA(h′) := (c′0, r

′
0), with h′ of the form h′ = (gIDA

1 gx2
2 · · · gx�

� αv) mod N . Recall
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that IDA, x2 · · ·x� are elements of Zv, and that IDA represents a record index
in the Sender’s DB. To accommodate all possible DB indexes IDJ (ranging over
[1, n] = [1, q]), the prime v is chosen to be greater than q, the order of Gq in the
ElGamal setting. Also, for reasons that will become clear shortly, the prime v is
chosen to be coprime to p − 1, where p denotes the public prime parameter in
the ElGamal setting. Finally, the RSA factors P and Q are chosen to be greater
than p.

As in the first construction based on Brands-CP credentials, the Authorizer
(data subject) and Receiver use the ElGamal cryptosystem to compute the SPIR
query. Assuming the same setting for the Sender and Receiver as in Section 5,
the Authorizer computes (c1, c2) := EpkElG((gdb)IDA). To prove ID-consistency
between h′ and the SPIR query, it suffices for the Authorizer to produce a signed
proof of knowledge of a RSA-representation of (h′/c2 mod Np) with respect to
basis ((g1g

−1
db ), g2, · · · , g�, y

−1
ElG, v).

Putting the pieces together. As in the Brands-CP case, the Authorizer proves
ID-consistency between his credential and the query by sending to the Re-
ceiver a signed proof of knowledge of the form SPK{(ε1, · · · , ε�+1, μ) : h′/c2 =
(g1g

−1
db )ε1gε2

2 · · · gε�

� (y−1
ElG)ε�+1μv mod Np}(m). The Authorizer can use the mes-

sage m to encode any usage policy he wants the Receiver to follow.
After accepting the signed proof, the Receiver proceeds with the SPIR proto-

col of Section 5 without any further changes.

8.3 Security and Privacy Properties

Theorem 2. Assuming the (multi-prime) RSA problem is hard, the ElGamal
and HomEnc(.) cryptosystems IND-CPA secure, and that none of the three
parties colludes with the other, the protocol of Section 8.2 solves the Accredited
SPIR problem in the random oracle model, and provides computational privacy
for both the Authorizer and Receiver, and perfect privacy for the Sender.

Complete details of the proof will be given in the full version of the paper. The
properties of user-centricity, revocability, and authenticated PIR described in
Section 6.1, do apply for the new scheme as well.

8.4 Variant Based on the Okamoto-Uchiyama Cryptosystem

The construction of Section 8.2, can be modified by using the Okamoto-Uchiyama
cryptosystem [OU98] instead of ElGamal. The Okamoto-Uchiyama cryptosystem
is a probabilistic public key cryptosystem whose security is equivalent to the prob-
lem of factoring moduli of the form n = p2q, for p and q prime. The Okamoto-
Uchiyama cryptosystem is additively homomorphic.

Setting of the Okamoto-Uchiyama cryptosystem. Given security parameter κ,
choose κ-sized primes p and q, and let n = p2q. The choice of p and q should
be such that gcd(p, q − 1) = gcd(q, p − 1) = 1. Choose random g ∈ Z∗

n, such
that gp = gp−1 mod p2 has order p. Let h = gn mod n. The tuple (n, g, h, κ)
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is published as the public key, while (p, q) are kept secret.To encrypt a message
0 < m < 2κ−1, select random r ∈ Zn, and compute EpkOU(m, r) := gmhr mod n.
The decryption function uses a special ”logarithmic function” [OU98].

Putting the pieces together. The Authorizer uses the Receiver’s public key (in
this case the Okamoto-Uchiyama public key) to produce the SPIR query and
prove ID-consistency between the latter and an Authorizer’s credential. Let
c := EpkOU(IDA, r) = gIDAhr mod n be a randomized encryption of the Au-
thorizer’s ID. Moreover, let (h′, σCA(h′)) be the Authorizer’s Brands-RSA cre-
dential, with h′ = (gIDA

1 gx2
2 · · · gx�

� αv) mod N . The Authorizer computes h′/c =
((g1g

−1)IDAgx2
2 · · · gx�

� h−rαv) mod Nn, and produces a signed proof of knowl-
edge of a RSA representation of h′/c with respect to basis ((g1g

−1), g2, · · · ,
g�, h

−1, v). With very high probability, parameters g and h are coprime with N ,
otherwise they can be used to factor N and break the security of the Brands-
RSA credential system. Therefore, with very high probability, g−1 and h−1 exist
modulo Nn. Similarly, with very high probability gcd(v, φ(Nn)) = 1, other-
wise v can be used to factor n and break the Okamoto-Uchiyama cryptosystem.
Therefore, the RSA representation above is well defined. Once the signed proof is
accepted, the Receiver deposits the SPIR query together with the signed proof to
the Sender. The Sender in turn checks the validity of the credential, and signed
proof, and proceeds with the remaining steps of the original SPIR scheme of
Section 4.3.

9 Conclusion

The paper describes a new access control scheme, where access policies are defined
by the data subjects. More specifically, the proposed scheme allows database man-
agers to be convinced that each of their stored data is being retrieved according to
the policies of the data subjects, without learning which data has been retrieved
or the identity of its owner. We present three constructions based on the discrete
logarithm and RSA problems. The constructions we propose rely on anonymous
authorizations, and combine SPIR systems and privacy-preserving digital creden-
tials. The authorizations contain non-modifiable, unforgeable, user-defined poli-
cies governing their use. Moreover, authorizations can be anonymously revoked by
their issuers. The proposed solutions yield only a negligeable increase in complex-
ity compared to that of the underlying SPIR scheme. This work can be extended
in a number of ways. For example it would be interesting to add a mechanism to
support the “authorized and anonymous editing of records”. One could also try to
improve efficiency, and propose additional constructions based on other building
blocks and assumptions.
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Abstract. Despite the large number of certificateless encryption schemes
recently proposed, many of them have been found to be insecure under a
practical attack called malicious-but-passive KGC attack, since they all
follow the same key generation procedure as that of the one proposed byAl-
Riyami and Paterson in ASIACRYPT2003. The only scheme that remains
secure against this attack is due to Libert and Quisquater (PKC 2006).
However, the security can only be shown in the random oracle model. In
this paper, we first show that a scheme which has a different key genera-
tion procedure from that of Al-Riyami and Paterson also suffers from the
malicious-but-passive KGC attack. Our attacking techniques are differ-
ent and may cause greater extent of damage than the previous ones. We
also propose a generic construction of certificateless encryption which
can be proven secure against this attack in the standard model. This
generic scheme not only is the first one proven secure in the standard
model, but is also very efficient to instantiate. We also describe how to
use short signature and hybrid encryption to construct highly efficient
instantiations of this generic scheme.

1 Introduction

In traditional public key cryptography, a user selects a public/private key pair
(pk, sk) and publishes pk. A certificate, which essentially is a signature on the
user’s identity and pk issued by a certification authority (CA), will then be
employed for indicating the relationship between the user and pk. This method
works under the public key infrastructure (PKI) involves a lot of additional work
for managing the certificates that include revocation, storage and distribution.

In 1984, Shamir [18], introduced the notion of identity-based cryptography,
aiming to alleviate the existing problems in PKI by getting rid of certificates. A
user can use an email address, an IP address or any other information related to
his identity, that is publicly known and unique in the whole system, as his public
key. There is a trusted party, called Key Generation Center (KGC), which is in
charge of the user private key generation. The advantage of an identity-based
� The work was supported by grants from CityU (Project Nos. 7001844, 7001959 and
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cryptosystem is that anyone can simply use the user’s identity to encrypt mes-
sages. This can be done even before the user gets its private key from the KGC.
However, the user must also completely trust the KGC, which can impersonate
the user and decrypt any of the user’s ciphertexts. This issue is generally referred
to as key escrow problem in identity-based cryptography.

In 2003, Al-Riyami and Paterson [1] introduced certificateless cryptography,
which is intended to solve the key escrow problem that is inherent in identity-
based cryptography, while at the same time, eliminate the use of certificates as
in the traditional PKI. In a certificateless cryptosystem, the KGC is involved to
issue a user partial key pskID for a user with identity ID. The user independently
generates a user public/private key pair (upkID, uskID), and publishes upkID. A
message will then encrypted under both upkID and the user’s identity ID. To
decrypt a ciphertext, the user must have the knowledge of both the user partial
key pskID and secret key uskID. Knowing only one of them does not allow the
recovery of the plaintext.

Related Work. Since the introduction of certificateless cryptography [1], there
have been many schemes proposed [21,14,16,12,13,2,17]. The original definition
of certificateless encryption [1] consists of seven algorithms. It has recently been
simplified to five [12,13] and has shown to be more versatile than the original
one. In this paper, we also adopt the five-algorithm simplified version for defining
a certificateless encryption scheme.

Yum and Lee proposed a generic certificateless encryption scheme in [20]
which has later been shown to be insecure under the model of [1] by Libert and
Quisquater [16] and Galindo et al. [10] independently. In [16], the authors also
proposed a generic certificateless encryption scheme. However, their scheme is
only proven secure in the random oracle model, which is a heuristic method for
showing the security of cryptographic schemes. The security may not preserve
when the random oracle is replaced by a hash function, even if the scheme is
reduced to some complexity (or number-theoretic) assumption. Recently, Liu et
al. [17] proposed another certificateless encryption scheme which, to the best of
our knowledge, is the first one in the standard model. However, as we will show
in this paper, their scheme is insecure against malicious-but-passive KGC attack
which is introduced as follows.

In [2], Au et al. considered another strong security model for certificateless
cryptography, in which the user’s trust on the KGC is further relaxed. By using
the term introduced in [2], the KGC of a certificateless cryptosystem can be
malicious-but-passive. This means the KGC can be malicious so that it may not
follow the scheme specification for generating system parameters and master
key, while it does not actively replace a user’s public key or corrupt the user’s
secret key. The purpose of such a malicious-but-passive KGC is to compromise
a user’s secret key without being detected. Since the KGC does not need to
replace the user’s public key or compromise the user’s machine for corrupting
the user’s secret key, in practice, it is very difficult to find out the occurrence of
this attack. Consider a user who is the president of a country or an organization.
It may have a great incentive for the KGC to launch the malicious-but-passive
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attack as ciphertexts for the president may contain some valuable and profitable
information. The attack is practical, and the new security model would become
much stronger and realistic than the old ones in this aspect if the attack is
properly formalized.

Under the malicious-but-passive KGC attacking model, certificateless cryp-
tosystems proposed in [1,14,15] have been shown to be insecure, since they all
follow the same key generation procedure as that of [1]. The only provably se-
cure certificateless encryption scheme against malicious-but-passive KGC attack
currently available is due to Libert and Quisquater [16]. The proof is given in
[2]. They showed that the IND-CPA-secure certificateless encryption scheme in
[16] is also IND-ID-CPA secure under the malicious-but-passive KGC adversarial
model. Then, by applying the transformation technique of [16], any IND-ID-
CPA-secure scheme can be converted to an IND-ID-CCA2-secure one. However,
the final scheme is only secure in the random oracle model. There is no con-
crete or generic construction of certificateless encryption which is proven secure
against malicious-but-passive KGC attacks in the standard model.

Our Results. As a motivation, we first show that a recently proposed cer-
tificateless encryption scheme [17] also suffers from the malicious-but-passive
KGC attack. As mentioned above, schemes in [1,14,15] are vulnerable to the
malicious-but-passive KGC attack described in [2] as they all follow the same
key generation procedure as that of [1]. However, the attacking technique of [2]
does not apply to the scheme in [17] as the key generation procedure is different.
We propose two malicious-but-passive KGC attacks against the scheme in [17].
The first attack causes the same extent of damage as the attack described in
[2] against [1,14,15]. The second attack may cause greater impact to the system
since in this attack, the malicious-but-passive KGC is able to decrypt cipher-
texts which are for any user in the system without pre-selecting a target user
to attack. Note that our attacks do not refute the security claims made in [17],
since in their security model, it is assumed that the KGC can launch attacks
only after honestly generating the master public/private key pair (and system
parameters).

Then we propose the first generic certificateless encryption scheme which is
proven secure against malicious-but-passive KGC attacks in the standard model.
The idea of our construction is simple. It is constructed based on three well-
formalized primitives and can be considered as a sequential encryption as in
[21,2], with an additional signature-based mechanism to defend against attacks
discussed in [16], but without relying on the assumption of random oracles. The
construction is also efficient. We will describe how to use short signature [3] and
hybrid encryption to implement highly efficient instantiations of this generic
scheme.

It’s worthy to note that, similar ideas were used by Dolev et al. [8] to construct
non-malleable encryption schemes, and by Canetti et al. [6,4] to build public key
encryption schemes from a weak variant identity-based encryption schemes.

Paper Organization. In Sec. 2, we define the certificateless encryption scheme
and its security. In Sec. 3, we show that the certificateless encryption scheme in
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[17] is vulnerable to some new malicious-but-passive KGC attacks. Our generic
construction of secure encryption schemes and its security analysis are provided
in Sec. 4. We also describe some instantiations of the generic scheme based on
short signature and hybrid encryption. The paper is concluded in Sec. 5.

2 Definition and Adversarial Model

A certificateless encryption scheme [1,2] consists of five (probabilistic) polynomial-
time (PPT) algorithms:

– MasterKeyGen: On input 1k where k ∈ N is a security parameter, it generates
a master public/private key pair (mpk, msk).

– PartialKeyGen: On input msk and an identity ID ∈ {0, 1}∗, it generates a
user partial key pskID.

– UserKeyGen: On input mpk and a user identity ID, it generates a user pub-
lic/private key pair (upkID, uskID).

– Enc: On input mpk, a user identity ID, a user public key upkID and a message
m, it returns a ciphertext c.

– Dec: On input a user private key uskID, a user partial key pskID, and a
ciphertext c, it returns the plaintext m.

In practice, the KGC (Key Generation Center) performs the first two algorithms:
MasterKeyGen and PartialKeyGen. The master public key mpk is then published
and it is assumed that everyone in the system can get a legitimate copy of mpk.
It is also assumed that the partial key is issued to the corresponding user via a
secure channel so that no one except the intended user can get it. Every user in
the system also performs UserKeyGen for generating its own public/private key
pair and publishes the public key. The correctness requirement is defined in the
conventional way. We skip the details and refer readers to [1,2] for details.

Adversarial Model. There are two types of security for a certificateless en-
cryption scheme, Type-I security and Type-II security, along with two types of
adversaries,A1 andA2, respectively. AdversaryA1 models a malicious adversary
which compromises the user private key uskID or replaces the user public key
upkID, however, cannot compromise the master private key msk nor get access
to the user partial key pskID. Adversary A2 models the malicious-but-passive
KGC which controls the generation of the master public/private key pair, and
that of any user partial key pskID. The following are five oracles which can be
accessed by the adversaries.

– CreateUser: On input an identity ID ∈ {0, 1}∗, if ID has not been cre-
ated, the oracle runs pskID ← PartialKeyGen(msk, ID) and (upkID, uskID)
← UserKeyGen(mpk, ID). It then stores (ID, pskID, upkID, uskID) into a list
List1. In both cases, upkID is returned.

1 Note that the list List is shared among all these five oralces.
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– RevealPartialKey: On input an identity ID, the oracle searches List for an
entry corresponding to ID. If it is not found, ⊥ is returned; otherwise, the
corresponding pskID is returned.

– RevealSecretKey: On input an identity ID, the oracle searches List for the
entry of ID. If it is not found, ⊥ is returned; otherwise, the corresponding
uskID is returned.

– ReplaceKey: On input an identity ID along with a user public/private key
pair (upk′, usk′), the oracle searches List for the entry of ID. If it is not
found, nothing will be carried out. If usk′ = ⊥, the oracle sets usk′ = uskID.
Then, it updates (ID, pskID, upkID, uskID) to (ID, pskID, upk′, usk′).

– Decryption: On input an identity ID and a ciphertext c, the oracle searches
List for the entry of ID. If it is not found, ⊥ is returned. Otherwise, it
runs m ← Dec(pskID, uskID, c) and returns m. Note that the original upkID

(which is returned by CreateUser oracle) may have been replaced by the
adversary.

Remark 1(On the Decryption Oracle): In the original adversarial model of
certificateless encryption [1,16], it is required that the Decryption oracle should
provide correct decryptions even after the user public key has been replaced
by the adversary while the corresponding user secret key is not known to the
oracle. We believe that the model is hardly realistic. Hence in this paper, we
only require the Decryption oracle to perform the decryption task by using the
current user keys. This also captures the case that the user public key is re-
placed by the adversary, but the user secret key remains the same. It is possible
that the message m recovered from the ciphertext by using the current uskID

is ⊥.

Remark 2 (On the Stronger Decryption Oracle Again): It seems to be
somewhat self-contradictory if we require a certificateless encryption scheme to
be secure against both the adversaries with access to the stronger Decryption or-
acle and the malicious-but-passive KGC. Suppose that it is secure against Type-I
adversaries with access to the stronger Decryption oracle. The game simulator,
which also plays the role of the KGC, has to simulate the Decryption oracle for
the adversary. In order to provide correct decryption without the user private
key, the simulator usually needs to play tricks in setting the system parameters.
However, in the same way, the malicious-but-passive KGC should also be able
to compute the correct plaintext with a high probability, without knowing user
private keys.

Let C be the game challenger/simulator, and k ∈ N be the security parameter.
We denote by A the Type-I adversary (or the Type-II adversary) in the following
game:

Game-I (or, Game-II) :
1. If this is Game-I, C runs (mpk, msk) ← MasterKeyGen(1k), and then

invokes A1 on input 1k and mpk. If this is Game-II, C runs A on input
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1k, which returns a master public key mpk to C. Note that A cannot
make any oracle query at this stage2.

2. In the game, A can issue CreateUser, RevealPartialKey, RevealSecretKey,
ReplaceKey and Decryption queries adaptively. If this is Game-II, the
oracle RevealPartialKey is no more needed by A since it has the master
secret key, and when A issues a query to CreateUser oracle, it has to
additionally provide the user partial key pskID.

3. A submits two equal-length messages (m0, m1) along with a target iden-
tity ID∗. C then selects a random bit b ∈ {0, 1}, computes a challenge
ciphertext c∗ by running c∗ ← Enc(mpk, ID∗, upkID∗ , mb), and returns c∗

to A, where upkID∗ is the user public key currently in List for ID∗.
4. A continues to issue queries as in step 2. Finally it outputs a bit b′ as

its guess for bit b.

A is said to win the game if b′ = b, and (1) A did not query RevealPartialKey on
ID∗, (2) A did not query Decryption on (ID∗, c∗), (3) if this is Game-II, A did
not query ReplaceKey on ID∗. We denote by Pr[A Succ] the probability that A
wins the game, and define the advantage of A in Game-I (or, Game-II) to be
AdvA =

∣∣Pr[A Succ]− 1
2

∣∣.
Definition 1. A certificateless encryption scheme CLE is said to be Type-I se-
cure (resp. Type-II secure) if there is no probabilistic polynomial-time adversary
A which wins Game-I (resp. Game-II) with non-negligible advantage. CLE is
said to be IND-ID-CCA2 secure if it is both Type-I secure and Type-II secure.

3 Malicious-But-Passive KGC Attack

We describe two new malicious-but-passive KGC attacking techniques (under
Game-II) to compromise schemes that follow the key generation procedure
described in [17]. The techniques are different from that in [2], which is used
to compromise schemes based on another type of key generation procedures
[1,14,15].

We briefly describe the certificateless encryption scheme proposed in [17] to a
certain extent that our attacking technique can be understood without referring
to the complete description of the original scheme. In the MasterKeyGen of [17],
the KGC first generates a pairing e : G1 × G1 → G2 such that each group has
order p. Then, a generator g of G1 is selected. This is followed by the selection of
a set of random elements in G1. The parameters we are going to use in the attack
below are g2, g

′
1, h1, u

′ ∈R G1 and Û = {ûi} where ûi ∈R G1, for i = 1, · · · , n,
and some n ∈ Z. We skip the description of the remaining steps of MasterKeyGen
and also the entire PartialKeyGen. In UserKeyGen, the user public key upkID∗ for

2 One exception is that if a scheme is analyzed under the random oracle model, A
can query the random oracle. In this paper, we do not consider this exception as the
security of our scheme proposed in the subsequent section (Sec. 4) will be shown in
the standard model.
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a user with identity ID∗ is denoted by (pk(1), pk(2)) ∈ G2
1. We do not need to

look into how these two elements are generated. Our first attack is described as
follows.

Attack 1. The malicious-but-passive KGC (that is A2 in Game-II) arbitrarily
selects a target identity ID∗. It computes u = Hu(ID∗), where Hu : {0, 1}∗ →
{0, 1}n is a collision-resistant hash function pre-defined for this scheme. Let u[i]
be the i-th bit of u. Define U ⊆ {1, · · · , n} to be the set of indices such that
u[i] = 1. The KGC then randomly selects s ∈R Zp, and sets g2 = (U∗)s, where
U∗ = u′ ∏

i∈U ûi. Other parameters in the master public/private key pair are gen-
erated normally by the KGC. In the challenge phase of Game-II, the KGC sub-
mits two distinct equal-length messages, (m0, m1), and ID∗ as the target iden-
tity. The challenger C2 randomly selects a bit b, computes the challenge cipher-
text C∗ = (Ĉ∗, com∗, tag∗) according to the encryption algorithm of [17]. Let the
challenge ciphertext Ĉ∗ = (C∗

1 , C∗
2 , C∗

3 , C∗
4 ). According to the specification of the

encryption algorithm in [17], we have

C∗
1 = e(pk(2), g2)tM, C∗

2 = gt, C∗
3 = (U∗)t, C∗

4 = ((g′1)com∗
h1)t

where t ∈R Zp and M = mb‖dec for some binary string dec. The KGC can get
the plaintext of Ĉ∗ by computing the following

C∗
1

e(pk(2), (C∗
3 )s)

=
e(pk(2), gt

2)M

e(pk(2), (U∗)st)
=

e(pk(2), gt
2)M

e(pk(2), (g2)t)
= M = mb‖dec

By comparing mb with m0 and m1, the KGC can easily find out the message
corresponding to C∗. This attack causes the same extent of damage as that
described in [2] against [1,14,15]. Both attacks require the KGC to pre-select a
target identity. The KGC is not able to compromise two users in the system
under the Game-II. Specific to this certificateless encryption scheme described
in [17], there is a more powerful malicious-but-passive KGC attacking technique
which allows the KGC to decrypt any ciphertext in the system regardless which
user is the corresponding decryptor. Therefore, the KGC does not need to pre-
select a target identity.

Attack 2. Note that the message M is ‘masked’ in C∗
1 by e(pk(2), g2)t. Instead

of selecting g2 randomly from G1, suppose the malicious-but-passive KGC ran-
domly picks β ∈ Zp and sets g2 = gβ. We can see that the KGC can remove the
mask of any ciphertext by simply computing the mask value as e(pk(2), C∗

2 )β .
The certificateless signature scheme of [17] also suffers from the first malicious-

but-passive KGC attack described above. We also remark that our attacks do
not refute the security claims made in [17] as their security model does not
consider/capture the malicious-but-passive KGC attacks.

A Design Philosophy : To design a certificateless scheme, no matter it is
an encryption scheme or a signature scheme, for security against malicious-but-
passive KGC attacks, we have a great concern on its security if the scheme
requires the user to make use of the parameters generated by the KGC when
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generating its own user public/private key pair (via UserKeyGen). The attacks
above illustrate how subtle an attack can be if the malicious-but-passive KGC
has certain control on the parameters used for user key pair generation. In the
first attack above, the KGC can simply modify the generation of g2 which is one
of the many parameters generated/controlled by the KGC. The user has no way
to tell if g2 is generated accordingly or maliciously. In fact, there are many other
ways for the KGC to break the scheme in [17], as there are many parameters
generated by or under control of the KGC. One can easily come up with more
attacks against the one in [17] in addition to the two attacks described above. In
addition, even if the KGC only generates a set of group parameters, for example,
a bilinear pairing operation and its associated groups, we cannot guarantee that
any malicious-but-passive KGC attack cannot be launched. The reason is that
the groups generated and the bilinear operation chosen by the malicious KGC
may not be ‘generic’ [19]. There may exist some trapdoor such that only the one
who generates the group parameters, in our case, it is the malicious KGC, can
perform some operations efficiently. Therefore, those schemes which require the
user to use group parameters generated by the KGC may either be broken by
some newly discovered malicious-but-passive KGC attacking techniques, or have
their security left unproven.

In our generic scheme proposed below, we design our scheme such that the
user partial key and user secret key are generated and used totally independently,
while retaining high efficiency.

4 Our Scheme

In this section, we propose a generic certificateless encryption scheme CLE and
show that it is secure under the adversarial model defined in Sec. 2. In particular,
this generic scheme is the first one proven secure against the malicious-but-
passive KGC attacks in the standard model.

4.1 The Scheme

Let IBE = (KG, Extract, Enc, Dec) be an IND-ID-CCA2 secure identity-based en-
cryption scheme, PKE = (KG, Enc, Dec) an IND-CCA2 secure public key encryp-
tion scheme, and S = (KG, Sign, Vrfy) a strong one-time signature scheme. Due
to page limitation, we skip the formal definitions of them. In the following, we
propose a generic certificateless encryption scheme CLE, which is based on these
three primitives.

– MasterKeyGen: The KGC runs (mpk, msk) ← IBE.KG(1k), publishes mpk
and keeps msk secret.

– PartialKeyGen: On input an identity ID, the KGC runs pskID ← IBE.Extract
(msk, ID) and returns pskID.

– UserKeyGen: The user (with identity ID) runs (upkID, uskID)← PKE.KG(1k),
publishes (ID, upkID) and stores uskID.
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– Enc: To encrypt a message m for user ID, the encryptor computes the fol-
lowing and returns c

def= (c2, σ, vk):

(vk, sk)← S.KG(1k)
c1 ← IBE.Enc(mpk, ID, m‖vk)
c2 ← PKE.Enc(upkID, c1)
σ ← S.Sign(sk, c2)

– Dec: On input an identity ID and a ciphertext c = (c2, σ, vk), if 0 ←
S.Vrfy(vk, σ, c2), ⊥ is returned. Otherwise, the decryptor computes the
following:

c1 ← PK.Dec(uskID, c2)
m‖vk′ ← IBE.Dec(pskID, ID, c1)

If vk′ �= vk, the decryptor outputs ⊥; otherwise, it outputs m.

Our construction has some similarity with Yum and Lee’s [20], both can be con-
sidered as sequential combination of public key encryption and identity-based
encryption. However, their scheme is insecure under our model. Our construc-
tion additionally employs a strong one-time signature which ensures the ‘well-
formedness ’ of a ciphertext and can be proven secure under our model. In [7],
Dodis and Katz considered the security of multiple encryption and presented a
generic construction of it. They applied the parallel encryption technique, used
a freshly generated one-time verification key as the tag for each (tag-based) en-
cryption scheme, and signed the ciphertext using the one-time signing key. Our
scheme employs the sequential encryption, and uses a simpler idea. We do not
need to consider tags in the encryption schemes.

4.2 Security Analysis

Theorem 1. The certificateless encryption scheme CLE is Type-I secure, pro-
vided that the underlying identity-based encryption scheme IBE is IND-ID-CCA2
secure, and the one-time signature scheme S is strongly unforgeable.

Proof. Suppose that A1 is a PPT adversary that tries to break the Type-I secu-
rity of CLE. Let the challenge ciphertext that A1 receives be c∗ = (c∗2, σ

∗, vk∗).
We say a ciphertext c = (c2, σ, vk) is valid if σ is a valid signature on c2 with re-
gard to the verification key vk. We denote by Forge1 the event that vk∗ appears
in a decryption query (ID, c = (c2, σ, vk∗)) issued by A1 such that c is valid and
(c2, σ) �= (c∗2, σ∗). Then we have:

Lemma 1. Pr[Forge1] is negligible in the security parameter k.

Lemma 2.
∣∣Pr[A1 Succ ∧ Forge1] + 1

2Pr[Forge1]− 1
2

∣∣ is negligible (in k).
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Intuitively, since S is a strong one-time signature scheme, a PPT adversary can-
not produce a valid forgery using the verification key in the challenge ciphertext
with non-negligible probability, so Lemma 1 holds. On the other hand, if an
adversary breaks the Type-I security of CLE, we can easily derive an algorithm
to break the IND-ID-CCA2 security of IBE. Due to page limitation, we omit the
proofs here and will present them in the full paper. Therefore, by these two
lemmas, we have

AdvA1 =

∣∣∣∣Pr[A1 Succ] − 1

2

∣∣∣∣
=

∣∣∣∣Pr[A1 Succ ∧ Forge1] − 1

2
Pr[Forge1] +

1

2
Pr[Forge1] + Pr[A1 Succ ∧ Forge1] −

1

2

∣∣∣∣
≤

∣∣∣∣Pr[A1 Succ ∧ Forge1] − 1

2
Pr[Forge1]

∣∣∣∣ +

∣∣∣∣Pr[A1 Succ ∧ Forge1] + Pr[Forge1] ·
1

2
− 1

2

∣∣∣∣
≤ 1

2
Pr[Forge1] +

∣∣∣∣Pr[A1 Succ ∧ Forge1] +
1

2
Pr[Forge1] − 1

2

∣∣∣∣
which is also negligible in k. This completes the proof of Theorem 1. 
�

Theorem 2. The certificateless encryption scheme CLE is Type-II secure if the
underlying public key encryption scheme PKE is IND-CCA2 secure and the one-
time signature scheme S is strongly unforgeable.

Proof. Suppose that A2 is a PPT adversary that tries to break the Type-II
security of CLE. Let c∗ = (c∗2, σ

∗, vk∗) be the challenge ciphertext that A2
receives, and let Forge2 be the event that vk∗ appears in a decryption query
(ID, c = (c2, σ, vk)) issued by A2 (i.e., vk∗ = vk) such that c is valid and
(c2, σ) �= (c∗2, σ

∗). We have the following two lemmas:

Lemma 3. Pr[Forge2] is negligible in k.

This proof is similar to that of Lemma 1, and thus is omitted here.

Lemma 4.
∣∣Pr[A2 Succ ∧ Forge2] + 1

2Pr[Forge2]− 1
2

∣∣ is negligible in k.

Proof. We construct a PPT algorithm C2 to break the IND-CCA2 security of PKE
by using A2 as a subroutine. Given the challenge public key pk and a decryption
oracle ŌD, C2 runs A2 on input 1k, which returns a master public key mpk.
Assume that A2 issues at most q distinct CreateUser queries. Then, C2 randomly
selects i ∈ {1, 2, · · · , q}, runs (vk∗, sk∗)← S.KG(1k), stores (vk∗, sk∗) which will
be used in the generation of the challenge ciphertext of A2, and simulates all the
oracles for A2 as follows:

– CreateUser: On input an identity ID and the user partial key pskID, we
assume that this is the j-th distinct CreateUser query. If j �= i, C2 runs
(upkID, uskID) ← PKE.KG(1k), stores (ID, pskID, upkID, uskID, 0) into a list
List, and returns upkID. If j = i, C2 simply stores (ID, pskID, pk,⊥, 0) into
List and returns pk.
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– RevealSecretKey: On input an identity ID, C2 searches List for the entry of
ID. If there is no such an entry, C2 returns ⊥. If upkID = pk, C2 outputs a
random bit and aborts. Otherwise, it returns the corresponding uskID.

– ReplaceKey: On input (ID, upk′, usk′), C2 searches List for the entry of ID.
If there is no such an entry, C2 does nothing. If upkID = pk, C2 aborts and
outputs a random bit. If usk′ = ⊥, C2 sets usk′ = uskID. Then, it updates
(ID, pskID, upkID, uskID) to be (ID, pskID, upk′, usk′).

– Decryption: On input (ID, c = (c2, σ, vk)), C2 searches List for the entry of ID.
If it is not found, C2 returns ⊥. If ID is not the i-th distinct query made by
A2 to CreateUser, C2 simulates the Decryption oracle using its knowledge of
pskID and uskID. Otherwise (upkID = pk), after the validity check of σ on c2
with respect to vk, C2 makes a Decryption query to oracle ŌD which returns
with c1. Then it completes the rest using its knowledge of pskID. Note that
if event Forge2 occurs during the simulation of Decryption oracle, namely, σ
is a valid signature on c2 with respect to vk and vk = vk∗, C2 outputs a
random bit and aborts.

At some pointA2 submits two equal-length messages (m0, m1) along with a target
identity ID∗. If uskID∗ �= pk, C2 outputs a random bit and aborts. Otherwise, it
computes (c1)0 ← IBE.Enc(mpk, ID∗, m0‖vk∗) and (c1)1 ← IBE.Enc(mpk, ID∗,
m1‖vk∗), submits (c1)0 and (c1)1 to its challenger, and is returned c∗2 which is
a ciphertext of (c1)b, where b ∈ {0, 1}. It then computes σ∗ ← S.Sign(sk∗, c∗2)
and returns c∗ = (c∗2, σ

∗, vk∗) to A2 as the challenge ciphertext. C2 continues to
simulate all the oracles forA2 as above. Finally it outputs the bit b′ output byA2.

Obviously, the probability that C2 doesn’t abort in simulating ReplaceKey and
RevealSecretKey oracles is at least 1/q. If C2 doesn’t abort in simulating the two
oracles, the probability that it wins its own game is 1

2Pr[Forge2] + Pr[A2 Succ∧
Forge2]. Thus, we get that the advantage that C2 wins its game is

AdvC2 =

∣∣∣∣Pr[C2 Succ] − 1

2

∣∣∣∣
≥

∣∣∣∣12 ·
(

1 − 1

q

)
+

(
Pr[A2 Succ ∧ Forge2] +

1

2
Pr[Forge2]

)
· 1

q
− 1

2

∣∣∣∣
=

∣∣∣∣Pr[A2 Succ ∧ Forge2] +
1

2
Pr[Forge2] − 1

2

∣∣∣∣ · 1

q

Guaranteed by the IND-CCA2 security of PKE, we have that AdvC2 is negligible
in k. Thus,

∣∣Pr[A2 Succ ∧ Forge2] + 1
2Pr[Forge2]− 1

2

∣∣ is negligible as well since
1/q is polynomial in k. 
�
By the two lemmas above, we have

AdvA2 =

∣∣∣∣Pr[A2 Succ] − 1

2

∣∣∣∣
≤

∣∣∣∣Pr[A2 Succ ∧ Forge2] − 1

2
Pr[Forge2]

∣∣∣∣ +

∣∣∣∣Pr[A2 Succ ∧ Forge2] +
1

2
Pr[Forge2] − 1

2

∣∣∣∣
≤ 1

2
Pr[Forge2] +

∣∣∣∣Pr[A2 Succ ∧ Forge2] +
1

2
Pr[Forge2] − 1

2

∣∣∣∣
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which is negligible as well. This completes the proof of Theorem 2. 
�

The following corollary is obtained immediately from Theorem 1 and
Theorem 2.

Corollary 1. The certificateless encryption scheme CLE described above is IND-
ID-CCA2 secure.

4.3 Efficiency

In practice, for high performance in the encryption process, we usually use the
hybrid encryption method which combines a public key encryption and a sym-
metric encryption to encrypt the message instead of using the public key en-
cryption directly to encrypt bulk data. To apply this to our generic scheme CLE,
we first generate a random symmetric key key for a secure symmetric encryption
scheme SE, then use SE to encrypt m‖vk under key, and finally encrypt key
using CLE. The decryption algorithm is modified accordingly. One of the key
advantages of applying the hybrid encryption onto CLE (besides efficiency) is
that the message space will not be restricted by the size of the verification key
vk. We elaborate more on the size of vk below.

The (strong) one-time signature in our generic scheme CLE provides a certain
assurance on that the encryptor did encrypt the message itself (or the ‘well-
formedness ’ of a ciphertext). Since most of the one-time signature schemes in
the literature follow the ‘one-way function paradigm’ [9,11], the verification key
and the signature are both of large size. An immediate consequence is that the
message encrypted (i.e., m‖vk) and the resulting ciphertext (i.e., c = (c2, σ, vk))
of our scheme also suffer from the large size. We describe two methods which
can significantly reduce the size in the actual implementation of CLE.

One simple solution is to replace the strong one-time signature scheme with
a conventional signature scheme which is strongly unforgeable under adaptive
chosen message attack. This does not weaken the security of CLE because any
strongly unforgeable signature scheme is also a strong one-time signature scheme.
A good candidate is the short signature proposed by Boneh and Boyen [3] as
the verification key and the signature of the scheme in [3] are both small in size.
The tradeoff is that the resulting scheme requires more computation than that
of a strong one-time signature scheme.

Another solution is to first map the one-time verification key into a much
shorter string using a collision-resistant hash function H, and then encrypt
m‖H(vk) rather than m‖vk. The decryption algorithm is changed accordingly.
That is, the user checks if the second part of the plaintext (decrypted from the
ciphertext) is the hash of vk. To analyze the security of this modified scheme,
we need to show that it is negligible for the adversary to issue a Decryption
query on input ID and c = (c2, σ, vk) such that vk �= vk∗ but H(vk) = H(vk∗),
where vk∗ is the verification key in the challenge ciphertext. It is guaranteed by
the collision-resistance property of H. This method reduces the impact on the
message size by the size of the verification key while adding only slightly on the
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computation cost. However, the ciphertext is not much shorter than that of the
original scheme.

We also observe that the verification key vk could be removed from the cipher-
text without any influence on the security of the resulting encryption scheme. In
addition, there is no need to use the asymmetric version of one-time signature.
Instead, we can use the symmetric version - a (strong) one-time message authen-
tication code (MAC) [5,4]. The construction of the new scheme CLE′ remains
the same as CLE, except that the one-time signature is replaced with a MAC. It
is readily to see that CLE′ enjoys better efficiency and much shorter ciphertext
than CLE does.

5 Conclusion

In this paper, we considered the security of certificateless encryption schemes
in the presence of a malicious-but-passive KGC, and proposed the first generic
certificateless encryption scheme in the standard model. We also described how
to use short signature or hybrid encryption to implement efficient instantiations
of our generic scheme.

On the study of malicious-but-passive KGC attacks, we showed that although
the scheme in [17] does not have the same key generation procedure as that of
[1], there are two new attacks which can compromise the Type-II security of
their scheme. In particular, our second attack allows the KGC to decrypt any
ciphertext without pre-selecting a target user.

It still remains an open problem to determine the exact relationship between
strong decryption oracle introduced in [1] and the malicious-but-passive KGC
adversarial capability.
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A., Gavrilova, M., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA
2004. LNCS, vol. 3043, pp. 802–811. Springer, Heidelberg (2004)

21. Yum, D.H., Lee, P.J.: Generic construction of certificateless signature. In: Wang,
H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 200–
211. Springer, Heidelberg (2004)

http://eprint.iacr.org/2006/373


On Security Models and Compilers for Group Key
Exchange Protocols
(Extended Abstract�)

Emmanuel Bresson1, Mark Manulis2,��, and Jörg Schwenk2

1 DCSSI Crypto Lab Paris
emmanuel@bresson.org

2 Horst Görtz Institute, Ruhr University Bochum, Germany
{mark.manulis, joerg.schwenk}@nds.rub.de

Abstract. Group key exchange (GKE) protocols can be used to guarantee con-
fidentiality and authentication in group applications. The paradigm of provable
security subsumes an abstract formalization (security model) that considers the
protocol environment and identifies its security goals. The first security model for
GKE protocols was proposed by Bresson, Chevassut, Pointcheval, and Quisquater
in 2001, and has been subsequently applied in many security proofs. Their defini-
tions of AKE-security (authenticated key exchange; a.k.a. indistinguishability of
the key) and MA-security (mutual authentication) became meanwhile standard.

In this paper we analyze the BCPQ model and some of its variants and identify
several risks resulting from its technical core construction – the notion of partner-
ing. Consequently, we propose a revised model extending AKE- and MA-security
in order to capture attacks by malicious participants and strong corruptions.

Then, we turn to generic solutions (known as compilers) for AKE- and MA-
security in BCPQ-like models. We describe a compiler C-AMA which provides
AKE- and MA-security for any GKE protocol, under standard cryptographic as-
sumptions, that eliminates some identified limitations in existing compilers.

1 Introduction

MOTIVATION. Security of many privacy-preserving multi-party applications like
encrypted group communication for audio/video conferences, chat systems, computer-
supported collaborative workflow systems, or secure server replication systems de-
pends on group key exchange (GKE) protocols. Security of those latter is therefore
critical. Security of earlier GKE protocols [29, 41, 17, 42, 2, 38, 33, 34] has been ana-
lyzed heuristically based on informal definitions so that some of them have been bro-
ken later, e.g., [37]. By contrast, the paradigm of provable security is used across the
modern literature to prove in a mathematical way, and under reasonable assumptions,
that a cryptographic scheme achieves the required security goals. Such a proof usu-
ally uses a formal setting that specifies: (1) the computing environment (involved users,
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their trust relationship, cryptographic parameters, communication. . . ), (2) the adversar-
ial environment and (3) the definitions of some concrete security goals. In 2001 Bres-
son, Chevassut, Pointcheval, and Quisquater [14] introduced the first security model
(BCPQ model) designed for GKE protocols. They adopted some ideas previously pro-
posed by Bellare and Rogaway [5, 7] in the context of two- and three-party key es-
tablishment protocols. The BCPQ model, as well as its refinements [11, 12] and vari-
ants [31, 13, 27, 30], have been meanwhile used in many GKE security proofs includ-
ing [14, 11, 12, 13, 31, 10, 32, 27, 26, 30, 1] and became de facto standard.

MODULARITY OF PROTOCOL DESIGN. Seeing GKE protocols as building blocks for
high-level applications, it is worth designing protocols that have specific security goals.
Modular design allows to build such “à la carte” protocols. In order to provide these
modular constructions in a generic way, so-called “compilers” have been developed,
e.g., [31, 30]. They allow designers to enhance security of a protocol in a black-box
manner, that is, independently of the implementation of the protocol being enhanced.

CONTRIBUTIONS AND ORGANIZATION. We start with a brief overview of the BCPQ;
in Section 2.1 we point out a problem in the BCPQ model between its technical core
– the notion of partnering – and its definition of MA-security. Next in Section 2.2 we
analyze some variants of the BCPQ model, from the perspective of MA-security, in
particular in presence of malicious participants. By malicious participants we mean le-
gitimate protocol participants who are fully controlled by the adversary. We emphasize
that consideration of malicious participants makes sense in the scope of MA-security
but not of AKE-security.

After identifying some drawbacks in the mentioned variants we describe in Section 3
an extended security model for revised definitions of AKE- and MA-security with con-
sideration of malicious participants. Our model is based on the more powerful BCPQ
refinement from [12] that considers AKE-security in the presence of (partial) internal
state corruptions (strong corruptions). We also introduce an additional notion of back-
ward secrecy which leads to new corruption models in case of AKE-security.

In Section 4.2 we provide a brief analysis of some known security-enhancing com-
pilers for GKE protocols. In particular, we show that the compiler proposed by Katz and
Yung in [31] needs some additional assumptions in order to be considered as a really
generic solution. To overcome this, and in order to show that our extended security defi-
nitions are feasible enough for the construction of practical reductionist security proofs,
we describe in Section 4.3 a compiler C-AMA that satisfies our stronger definitions of
AKE- and MA-security. We further prove its security under standard cryptographic
assumptions.

2 The BCPQ Model and Its Variants

The BCPQ model extends the methodology introduced by Bellare and Rogaway [6, 7]
to a group setting. The model considers a set ID of n participants. Each Ui ∈ ID has
a long-lived key LLi and an unlimited number of instances called oracles and denoted
Πsi

i (si-th instance of Ui) involved in different executions of P. The BCPQ model uses
session ids to define a “partnering” relation which is used to define security goals.
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The session id of an oracle Πs
i is defined as SID(Πs

i ) := {SIDij | Uj ∈ ID} where
SIDij is the concatenation of all flows that Πs

i exchanges with any oracle Πt
j . Then

two oracles Π and Π ′ are called directly partnered, denoted Π ↔ Π ′, if both oracles
accept (compute the session key) and if SID(Π) ∩ SID(Π ′) �= ∅. Further, oracles Π
and Π ′ are partnered, denoted Π � Π ′, if, in the graph GSIDS := (V, E) with V :=
{Πs

l | l ∈ [1, n], s ∈ N} and E := {(Πi, Πj)| Πi ↔ Πj}, there exists a sequence of
oracles (Π1, Π2, . . . , Πk) with Π = Π1, Π ′ = Πk, and Πl−1 ↔ Πl for all l ∈ [2, k].
The partner id for an oracle Πs

i is PIDS(Πs
i ) = {Πt

l | Πs
i � Πt

l ∀ l ∈ [1, n] \ {i}}.
The BCPQ model considers a Probabilistic Polynomial-Time (PPT) active adversary

A which can send messages to the oracles via a Send query, reveal the session key
via a Reveal query, obtain a long-lived key via a Corrupt query, and ask a Test query
to obtain either a session key or a random number. Using this adversarial setting two
security goals are specified for a GKE protocol: AKE-security and MA-security.

The AKE-security requires that adversary A asks a single Test query to a fresh or-
acle. An oracle Πsi

i is fresh if (1) it has accepted, (2) no oracle has been asked for
a Corrupt query before Πsi

i accepts, and (3) neither Πsi

i nor any of its partners have
been asked for a Reveal query. A GKE protocol is said to be AKE-secure if A cannot
guess which value it has received in response to its Test query, i.e., the session key or
a random number, significantly better than at random. This definition of AKE-security
encompass earlier informal definitions:

– key secrecy [24] (a.k.a. implicit key authentication [36]) which ensures that no other
party except for legitimate participants learns the established group key;

– resistance against known-key attacks [43,16] (a.k.a. key independence [33]) mean-
ing that an adversary knowing group keys of other sessions cannot compute subse-
quent session keys;

– perfect forward secrecy [28, 24, 36] requiring that the disclosure of long-term key-
ing material must not compromise the secrecy of the established keys from earlier
protocol runs.

The MA-security means that A cannot impersonate a participant Ui through its or-
acle Πsi

i . Impersonation would imply that there exists one oracle Πsi

i which accepts
with |PIDS(Πsi

i )| �= n − 1 must be negligible. In other words, if each oracle Πsi

i ac-
cepts with |PIDS(Πsi

i )| = n−1 then no impersonation attacks could have occurred —
thus the informal notion of mutual authentication [6] is satisfied. Further, we recall the
following claims given by the authors of [14]:

“In the definition of partnering, we do not require that the session key computed
by partnered oracles be the same since it can easily be proven that the probability that
partnered oracles come up with different session keys is negligible.” [14, Footnote 3]

“We are not concerned with partnered oracles coming up with different session
keys, since our definition of partnering implies the oracles have exchanged exactly the
same flows.” [14, Section 7.4]

If these claims hold then MA-security captures the following informal earlier security
goals:
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– key confirmation: all participants that have accepted1 hold identical group keys;
– explicit key authentication [36]: both key confirmation and mutual authentication.

2.1 Problems with the Definition of MA-Security in the BCPQ Model

In this section, we explain why the definition of MA-security might not be general
enough for GKE protocols. We do not pretend having broken some provably MA-
secure scheme. In contrast, we explain why, if every participating oracle Πsi

i accepts
with |PIDS(Πsi

i )| = n − 1, it does not necessarily mean that the considered protocol
provides mutual authentication and key confirmation:

1. There exist GKE protocols where an active adversary A can impersonate one of
the participants through its oracle but nevertheless every participating oracle Πsi

i

accepts with |PIDS(Πsi

i )| = n − 1.
2. There exist GKE protocols where each oracle Πsi

i accepts with |PIDS(Πsi

i )| =
n−1 but there are at least two partnered oracles that have computed different keys.

We start from the protocols presented in [14, 11, 12, 13]. We first study the case at
an abstract level. On Figure 1, we show an execution with 3 participants in which A
impersonates U1 and modifies message m1 to m̃1 (Figure 1) such that SID21 = m̃1
(Figure 2 for the construction of sessions ids).

Πs1
1 Πs2

2 Πs3
3

m1 m̃1 m2 m2

m3m3m3

Fig. 1. Protocol execution where A imperson-
ates U1

SID(Πsi
i ) SIDi1 SIDi2 SIDi3

SID(Πs1
1 ) ∅ m1 m3

SID(Πs2
2 ) m̃1 ∅ m2|m3

SID(Πs3
3 ) m3 m2|m3 ∅

Fig. 2. SID(Πsi
i ) in the protocol execution

with impersonation of U1

We may assume that there exists protocols for which all oracles accept after this
modification. Here every oracle Πsi

i accepts with |PIDS(Πsi

i )| = 2. To check this
we first note that SID12 = m1. Though SID(Πs1

1 ) ∩ SID(Πs2
2 ) = {m1, m3} ∩

{m̃1, m2|m3} = ∅ and thus Πs1
1 �↔ Πs2

2 , we still have SID(Πs1
1 ) ∩ SID(Πs3

3 ) =
{m1, m3} ∩ {m3, m2|m3} = m3 and SID(Πs3

3 ) ∩ SID(Πs2
2 ) = {m3, m2|m3} ∩

{m̃1, m2|m3} = m2|m3 so that Πs1
1 � Πs2

2 : all oracles are still partnered despite the
impersonation attack. However, oracle Πs2

2 has received a modified message and this
may result in different keys computed by Πs1

1 and Πs2
2 .

CONCRETE EXAMPLE. As a concrete example, we illustrate how a replay attack would
work on the protocol from [14] if the additional confirmation round is missing. On
Figure 3, [m]Ui denotes a message m signed by Πsi

i , and V (m) =? 1 its verification; g
is a generator of a finite cyclic group.

1 This is a slightly modified definition from [36] wrt. to the arguments from [39] on impossibility
of the assurance of some participant that other participants have actually accepted the key.
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Πs1
1 Πs2

2 Πs3
3

X3 := {gx1x2 , gx1x3 , gx2x3}

x1 ∈R Z
∗
p; X1 := {g, gx1}

Fl1 := {ID, X1} [Fl1]U1

x2 ∈R Z
∗
p; X2 := {gx1 , gx2 , gx1x2}

V (Fl1)
?
= 1

Fl2 := {ID, X2}

[Fl2]U2

x3 ∈R Z
∗
p;

V (Fl2)
?
= 1

Fl3 := {ID, X3}
K := (gx1x2)x3

[Fl3]U3

V (Fl3)
?
= 1 V (Fl3)

?
= 1

K := (gx2x3)x1 K := (gx1x3)x2

Fig. 3. Execution of the protocol in [14] with three participants

Here A drops the flow [Fl1]U1 and replays a previously sent message. The re-
played message is likely to be [F̃ l1]U1 with F̃ l1 := (ID, {g, gx̃1}) for some x̃1 �= x1.
Obviously, V (F̃ l1) = 1 holds. It is easy to see that X2 = {gx̃1, gx2 , gx̃1x2} and
X3 := {gx̃1x2 , gx̃1x3 , gx2x3} so that Πs1

1 computes K = gx1x2x3 whereas Πs2
2 and

Πs3
3 compute another value, i.e., K = gx̃1x2x3 . Moreover, it is easy to check that

|PIDS(Πsi

i )| = 2 for every Πsi

i , i ∈ {1, 2, 3}.
Thus |PIDS(Πsi

i )| = n−1 does not ensure mutual authentication and key confirma-
tion. We stress that this does not contradict the MA-security of the proposed protocol
when the additional round is executed. However, it is worth studying the notion of MA-
security independently from some concrete protocol design.

Furthermore, we stress that a more general definition of MA-security should also
consider attacks by malicious protocol participants (AKE-security in such setting is
hopeless). As noted in [21], this is the reason the BCPQ model fails to provide security
against unknown key-share attacks [9]. The same remark is done in [20] for the protocol
from [10].

2.2 MA-Security in Some BCPQ-Variants

VARIANTS BY KATZ-YUNG AND DUTTA et al. These are two modifications [31,27] to
the BCPQ model, that propose a different construction of partnering. However neither
of them propose a specific definition of MA-security, and they just refer to BCPQ.

A VARIANT BY KATZ AND SHIN. Katz and Shin [30] proposed a different security
model (KS) for GKE protocols, and provide a security analysis in the framework of
Universal Composability (UC) [18]. This provides the first formal treatment of GKE
protocols security in the presence of malicious participants. Here unique session ids are
assumed to be provided by some high-level application mechanism [3], and partner ids
is just the set of users whose oracle intend to establish a key. In addition to their model,
Katz and Shin proposed a compiler to turn any GKE protocol which is secure in the
BCPQ model into a protocol which is secure in the KS model.
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Among other things, the KS model defines security against insider attacks as a com-
bination of two requirements: agreement and security against insider impersonation
attacks:

– the adversary A violates agreement if two partnered, uncorrupted oracles accept
with different session keys.

– the adversary A impersonates uncorrupted Uj to accepting Πs
i if Uj belongs to the

(expected) partner id of Πs
i but in fact no oracle Πt

j is partnered with Πs
i . In other

words, the instance Πs
i computes the session key and Ui believes that Uj does so,

but in fact an adversary has participated in the protocol on behalf of Uj .

Intuitively, agreement considers key confirmation in case that all other participants
are malicious (corrupted); and security against insider impersonation attacks considers
mutual authentication and unknown key-share resilience in the presence of malicious
participants.

EXTENSIONS BY BOHLI et al. AND DESMEDT et al. These extensions of the BCPQ
model takes consideration of attacks whose goal is to “bias” the value of the group
key: Bohli et al. [8] consider malicious participants who deliberately wish to influence
the key. Desmedt et al. [22] formalized a related notion called non-malleability. In
our parallel work [15] we propose a generic compiler C-MACON which addresses these
security requirements from the perspective of malicious participants.

3 The Revised “Game-Based” Security Model

In the following we extend the BCPQ model under consideration of malicious partici-
pants. We revisit the definition of MA-security, so that the unified definition can replace
both definitions of agreement and security against insider impersonation attacks of the
KS model.

Our refinements are in two directions: strong corruptions (in the sense of [12]), and
a new requirement which we call backward secrecy.

3.1 Protocol Participants, Variables

USERS, INSTANCE ORACLES. We consider U as a set of N users in the universe.
Each user Ui ∈ U holds a long-lived key LLi. In order to handle participation of Ui in
distinct concurrent protocol executions we consider that Ui has an unlimited number of
instances called oracles; Πs

i , with s ∈ N, denotes the s-th instance oracle of Ui.

INTERNAL STATES. Every Πs
U maintains an internal state information states

U which
is composed of all private, ephemeral information used during the protocol execution.
The long-lived key LLU is, in nature, excluded from it (moreover the long-lived key is
specific to the user, not to the oracle).

SESSION GROUP KEY, SESSION ID, PARTNER ID. In each session we consider a new
group G of n ∈ [1, N ] participating oracles. Each oracle in G is called a group member.
Every participating oracle Πs

U ∈ G computes the session group key ks
U ∈ {0, 1}κ.
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Every session is identified by a unique session id sids
U known to all oracles in the

session. Similarly, each oracle Πs
U ∈ G gets a value pids

U that contains the identities of
participating users (including U ). We say that two oracles, Πsi

i and Π
sj

j , are partnered
if Ui ∈ pid

sj

j , Uj ∈ pidsi

i , and sidsi

i = sid
sj

j .

INSTANCE ORACLE STATES. An oracle Πs
U is originally unused and becomes used,

initialized with LLU , when it becomes part of a group G. Then it turns into the stand-
by state where it waits for an invocation to execute the protocol. Upon invocation, the
oracle Πs

U learns its partner id pids
U (and possibly sids

U ) and turns into a processing
state where it sends, receives and processes messages. During this phase, the internal
state states

U is maintained by the oracle. When oracle Πs
U has enough information to

compute the session key, it accepts. After some possible auxiliary steps, it terminates
meaning that it would not send or receive further messages. If the execution fails (due
to any adversarial actions) then Πs

U terminates without having accepted, and the key
ks

U is set to some undefined value.

Definition 1 (GKE Protocol). A group key exchange protocol P consists of the key
generation algorithm KeyGen, and a protocol Setup defined as follows:

P.KeyGen(1κ): On input a security parameter 1κ each user in U is provided with a
long-lived key LLU .
P.Setup(S): On input a set S of n unused oracles a new group G := S is created
and a probabilistic interactive protocol is executed between oracles in G.

We call P.Setup an operation. We say that a protocol is correct if all oracles in G accept
with the same group key k and assume it is always the case in this paper.

3.2 Adversarial Model

QUERIES TO THE INSTANCE ORACLES. The adversary A (passive or active) is repre-
sented by a PPT machine and may interact with group members by making the follow-
ing oracle queries:

– Setup(S): This query models A eavesdropping an honest operation execution.
P.Setup(S) is executed and A is given the transcript of the execution.

– Send(Πs
U , m): This query models A sending messages to the oracles. A receives

the response which Πs
U would have generated after having processed the message

m. When asking Send(Πs
U , S), A gets the first message of the protocol.

– RevealKey(Πs
U ): A is given the session group key ks

U , provided Πs
U has accepted.

– RevealState(Πs
U ): A is given the internal state information states

U .2

– Corrupt(U): A is given the long-lived key LLU .
– Test(Πs

U ): This query will be used to model the AKE-security of a GKE protocol.
It can be asked at any time, but only once. It is answered as follows: the oracle
generates a random bit b. If b = 1 then A is given ks

U , and if b = 0 then A is given
a random string.

In spirit of [19], we restrict a passive adversary not to replay, modify or inject messages;
but, it can still change their delivery order, drop or delay them.

2 This kind of the adversarial query has previously been mentioned by Canetti and Krawczyk in
their model for two-party protocols [19].
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FORWARD SECRECY. A completed session is “forward-secure” if its security remains
whatever the adversary does in the future. Similar to [12] we distinguish between weak-
forward secrecy (wfs) where A is allowed to ask Corrupt queries, and strong-forward
secrecy (sfs) where it can also ask RevealState queries.

BACKWARD SECRECY. The notion of backward secrecy is symmetric to forward se-
crecy in the sense that it considers damages to the AKE-security of future sessions after
actions of the adversary in the past/current sessions. The notion might seem useless at
first glance (such actions can make secrecy just impossible), however, there might exist
intermediate actions, such as corruptions of internal states, that do not compromise fu-
ture session keys (or at least not all of them). We distinguish between weak-backward
secrecy (wbs) where A is allowed to ask RevealState queries, and strong-backward
secrecy (sbs) where it can also ask Corrupt queries3.

ORACLE FRESHNESS, CORRUPTION MODELS, ADVERSARIAL SETTINGS. To prop-
erly deal with forward and backward secrecy, we need to distinguish cases where the ad-
versary may have participate in the protocol. In order to consider only non-participating
adversaries we introduce the following notion of α-fresh sessions.

The notion of freshness for an oracle Πs
U is needed to distinguish between various

definitions of security wrt. different flavors of backward or forward secrecy. Each flavor
α ∈ {∅, wbs, wfs, sbs, sfs} leads to a different definition of freshness.

Definition 2 (α-Freshness). Let α ∈ {∅, wfs, wbs, sfs, sbs}. The oracle Πs
U ∈ G is

∅-fresh: neither Πs
U nor any of its partners have been asked for a RevealKey query

after having accepted;
wbs-fresh: (1) neither Πs

U nor any of its partners have been asked for a RevealState
query after G is created, and (2) neither Πs

U nor any of its partners have been asked
for a RevealKey query after having accepted;

wfs-fresh: (1) no Ui ∈ pids
U have been asked for a Corrupt query prior to a query of

the form Send(Πsj

j , m) such that Uj ∈ pids
U before Πs

U and all its partners accept,
and (2) neither Πs

U nor any of its partners have been asked for a RevealKey query
after having accepted;

sbs-fresh: (1) no Ui ∈ pids
U have been asked for a Corrupt query prior to a query

of the form Send(Πsj

j , m) such that Uj ∈ pids
U after G is created, (2) neither Πs

U

nor any of its partners have been asked for a RevealState query after G is created,
and (3) neither Πs

U nor any of its partners have been asked for a RevealKey query
after having accepted;

sfs-fresh: (1) no Ui ∈ pids
U have been asked for a Corrupt query prior to a query

of the form Send(Πsj

j , m) such that Uj ∈ pids
U before Πs

U and all its partners
accept, (2) neither Πs

U nor any of its partners have been asked for a RevealState
query before they accept, and (3) neither Πs

U nor any of its partners have been
asked for a RevealKey query after having accepted.

We say that a session is α-fresh if all participating oracles are α-fresh.

3 In case of backward secrecy Corrupt queries are more damageable than RevealState queries
because the long-lived keys are usually used for authentication and their knowledge allows the
adversary to impersonate users in subsequent sessions and learn the session group key.
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Obviously, the wfs-freshness allows Corrupt queries to any user after the oracles in G
have accepted (and the sfs-freshness allows, additionally, RevealState queries). Beside
this, Corrupt and RevealState queries are allowed for oracles outside of G.

The notion of α-fresh sessions becomes important in security proofs in order to dis-
tinguish between “honest” and “corrupted” sessions. Intuitively, the adversary will not
be allowed to ask some “bad” queries. To properly manage the adversarial capabilities
for each scenario of freshness, we distinguish between the following corruption models.

Definition 3 (Corruption Model β). An adversary A, in addition to Setup, RevealKey,
Send, and Test, may ask RevealState and Corrupt queries as specified by the used cor-
ruption model β, which can be one of the following:

weak corruption model wcm: A may ask neither RevealState nor Corrupt.
weak corruption model for forward secrecy wcm-fs: A may ask just Corrupt.
weak corruption model for backward secrecy wcm-bs: A may ask just RevealState.
strong corruption model scm: A may ask both queries, RevealState and Corrupt.

A concrete proof of AKE-security needs to specify capabilities of the adversary de-
pending on the intended freshness type. Combining definitions for freshness and cor-
ruptions, we obtain a set of reasonable adversarial settings (α, β) ∈ {(∅, wcm), (wfs,
wcm-fs), (wbs, wcm-bs), (sbs, scm), (sfs, scm)}. Note that other imaginable settings
are not reasonable from the perspective of the attacks.

Remark 4. In practice long-lived keys are used to achieve authentication, and thus if an
adversary is able to corrupt a group member (obtaining its long-lived key) then it can
impersonate that member in subsequent sessions. Therefore, achieving AKE-security
in the (sbs, scm) appears tricky. To the contrary, the adversarial setting (wbs, wcm-bs)
appears of great interest since it is independent of any long-term secrets. Moreover we
argue that (wbs, wcm-bs) is important since in previous models [12, 30] a persistent
internal state is used in both past and future sessions, and thus, while forward secrecy
looks at (state) corruptions in later sessions, backward secrecy must legitimately look
at state corruptions in previous sessions.

3.3 Security Goals

In this section we describe security goals for a GKE protocol. We give a formal def-
inition of (Authenticated)KeyExchange-security (indistinguishability of session group
keys), and a new definition of MA-security that considers malicious participants and
internal state corruptions of honest participants.

Definition 5 ((A)KE-Security). Let P be a correct GKE protocol and b a uniformly
chosen bit. Consider a reasonable adversarial setting (α, β) and an (active) adversary
A. We define game Game(a)ke−b

α,β,P (A, κ) as follows:

– after initialization A interacts with instance oracles using queries;
– if A asks a Test query to an α-fresh oracle Πs

U which has accepted, it receives
either key1 := ks

U (if b = 1) or key0 ∈R {0, 1}κ (if b = 0);
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– A continues interacting with instance oracles;
– when A terminates, it outputs a bit trying to guess which case it was dealing with.

The output of A is the output of the game. The advantage function (over all adversaries
running within time κ) in winning the game is defined as

Adv(a)ke
α,β,P(κ) := max

A
∣∣2 Pr

[
Game(a)ke−b

α,β,P (A, κ) = b
]

− 1
∣∣

We say that P is an (A)KE-secure protocol with α-secrecy, denoted (A)GKE-α, if the
advantage Adv(a)ke

α,β,P(κ) is negligible. If α = ∅, we just say that P is (A)KE-secure.

Definition 6 (MA-Security). Let P be a correct GKE protocol and Gamema
P (A, κ) the

interaction between the instance oracles and an active adversary A which can query
Send, Setup, RevealKey, RevealState, and Corrupt. We say that A wins if at some
point during the interaction there exist an uncorrupted user Ui whose instance oracle
Πsi

i has accepted with ksi

i and another user Uj with Uj ∈ pidsi

i that is uncorrupted at
the time Πsi

i accepts, such that

1. there exists no instance oracle Π
sj

j with (pidsj

j , sid
sj

j ) = (pidsi

i , sidsi

i ), or
2. there exists an instance oracle Π

sj

j with (pidsj

j , sid
sj

j ) = (pidsi

i , sidsi

i ) that
accepted with k

sj

j �= ksi

i .

The maximum probability of this event (over all adversaries running within time κ)
is denoted Succma

P (κ). We say that a GKE protocol P is MA-secure (MAGKE) if this
probability is a negligible function of κ.

Note that Ui and Uj must be uncorrupted, however, A is allowed to reveal internal states
of their oracles. Hence, our MA-security definition seems to be stronger than definitions
of security against insider attacks in the KS model.

4 Compiler for AKE- and MA-Security in the Standard Model

4.1 Security-Enhancing Compilers and Their Goals

Imagine, there exists a black-box implementation of a GKE protocol which should be
used by some group application and assume this implementation does not satisfy all
security requirements desired for the group application. Instead of designing and im-
plementing a new GKE protocol in an ad-hoc fashion, it is desirable to have a generic
technique which can be applied to the given black-box implementation in order to en-
hance its security.

Obviously, a good strategy (though not always optimal) is to implement a GKE pro-
tocol in a modular way: one starts with the basic implementation that satisfies the most
common set of security requirements, then continues with the implementation of op-
tional modules that can be added to provide extended security requirements. The main
goal of security-enhancing GKE protocol compilers is to enable secure construction of
GKE protocols in such a modular way.

Definition 7 (Security-Enhancing GKE Protocol Compiler C). A security-enhancing
GKE compiler C is a procedure which takes as input a GKE protocol P and outputs a
compiled GKE protocol CP with additional security properties possibly missing in P.
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4.2 Discussion on Existing Compilers for GKE Protocols

In the following we provide some analysis on currently known security-enhancing com-
pilers for GKE protocols.

Compiler for AKE-Security. KE-security, i.e., key indistinguishability with respect to
passive adversaries is the basic security requirement for a GKE protocol. Authentication
may be optional if a network or a high-level application already provides it. Seeing AKE
as an additional property, Katz and Yung designed the corresponding compiler in [31].

Definition 8 (Compiler for AKE-Security [31])). Let P be a GKE protocol and Σ :=
(Gen, Sign, Verify) a digital signature scheme. A compiler for AKE-security consists
of an initialization algorithm and a modified protocol execution:

Initialization: each Ui ∈ U generates his own additional private/public key
pair (sk′

i, pk′
i) using Σ.Gen(1κ′

).
The protocol: prior to any operation execution of P:

– Each Πs
i chooses a nonce ri ∈R {0, 1}κ and sends Ui|0|ri to its partners.

– After Πs
i receives the Uj|0|rj ’s it computes sids

i := U1|r1| . . . |Un|rn.
Then, members of G execute P with the following changes:

– When Πs
i is supposed to send a message Ui|t|m, it computes σi :=Σ.Sign(sk′

i,
t|m|sids

i ) and sends the modified message Ui|t|m|σi.
– When Πs

i receives Uj |t|m|σj it checks whether (1) Uj ∈ pids
i , (2) t is the next

expected sequence number, and (3) Σ.Verify(pk′
j , t|m|sids

i , σj) =?1. If all
checks pass, it proceeds as in P upon receiving Uj |t|m.

– After Πs
i computes the session key ks

i in P, it accepts with this key.

Missing Generality of Katz-Yung Compiler. Katz and Yung proved security of this com-
piler assuming an unreliable asynchronous broadcast channel and a passive adversary,
which is only an eavesdropper. We show that in this case their compiler is not really
generic: there exist GKE protocols that are secure against eavesdroppers but become
insecure against active adversaries (even after the execution of the above compiler).

We consider the following (pathologic, but illustrative) protocol between Πs
1 and

Πs
1 . First Πs

1 chooses his exponent x1 ∈R Z�
q and sends X1 := gx1 to Πs

2 . If Πs
2

receives X1 within some specified time period δ then Πs
2 replies with X2 := gx2 for

some randomly chosen x2 ∈R Z
�
q and accepts with the Diffie-Hellman session key

gx1x2 . Similar if Πs
1 receives X2 within time δ then it accepts with gx1x2 too. However,

if an oracle does not receive data in time, it accepts with g. If the passive adversary is
just an eavesdropper, messages are delivered on time, and the protocol is “passively”
secure. But an active adversary can drop messages so that both participants accept with
g. Obviously, it is insufficient to restrict passive adversaries to be just eavesdroppers.
Passive attacks should also model the unreliability of the communication, like we do.

Compilers for MA-Security. The first compiler for key confirmation and mutual au-
thentication was proposed by Bresson et al. [14]. However, their definition of MA is
(de facto) the old one, and the proof is conducted in the Random Oracle Model [6].

Katz and Shin [30] showed how to turn an AKE-secure GKE protocol into a UC-
secure GKE protocol that provides security against insider attacks (see Section 2.2).
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Definition 9 (Compiler for Security against Insider Attacks by Katz and Shin).
Let P be a GKE protocol, Σ := (Gen, Sign, Verify) a digital signature scheme, F :={
fk

}
k∈{0,1}κ a function ensemble with range {0, 1}λ, λ ∈ N and domain {0, 1}κ, and

sids
i is a unique session id. A compiler for security against insider attacks consists of

an initialization algorithm and a protocol defined as follows:

Initialization: each Ui ∈ U generates his own additional private/public key
pair (sk′

i, pk′
i) using Σ.Gen(1κ′

).
The protocol: After an oracle Πs

i accepts with (ks
i , pids

i , sids
i ) in P:

– it computes μi := fks
i
(v0) where v0 is a constant public value;

– it computes Ks
i := fks

i
(v1) where v1 �= v0 is another constant public value;

– it erases its local state information except for μi, Ks
i , pids

i , and sids
i ;

– it computes a signature σi := Σ.Sign(sk′
i, μi|sids

i |pids
i ) and sends Ui|σi to

its partnered oracle Πs
j .

After Πsi

i receives Uj|σj from all its partnered oracle Πs
j :

– it checks whether Σ.Verify(pk′
j , μi|sids

i |pids
i , σj) =? 1;

– if all checks pass, it accepts with the session key Ks
i .

4.3 Compiler C-AMA

In the following we describe a compiler (denoted C-AMA) which provides both AKE-
and MA-security. C-AMA uses nonces to achieve uniqueness of protocol sessions and
security of concurrent executions without relying on session ids given by high-level
applications.

Definition 10 (Compiler for AKE- and MA-Security C-AMA). Let P be a GKE pro-
tocol, Σ := (Gen, Sign, Verify) a digital signature scheme, F :=

{
fk

}
k∈{0,1}κ a

function ensemble with range {0, 1}λ, λ ∈ N and domain {0, 1}κ. A compiler for
AKE-security and MA-security, denoted C-AMA, consists of an algorithm INIT and a
protocol AMA defined as follows:

INIT: each Ui ∈ U generates own private/public key pair (sk′
i, pk′

i) using Σ.Gen(1κ′
).

AMA: prior to the execution of P:
– Each Πs

i chooses a AMA nonce ri ∈R {0, 1}κ and sends Ui|ri to its partners.
– After Πs

i receives all Uj |rj , it computes sids
i := r1| . . . |rn.

Then it invokes the execution of P and proceeds as follows:
– If Πs

i in P outputs a message Ui|m then in C-AMAP it computes additionally
σi := Σ.Sign(sk′

i, m|sids
i |pids

i ) and outputs a modified message Ui|m|σi.
– On receiving Uj |m|σj from a partner Πs

j it checks whether Σ.Verify(pk′
j ,

m|sids
i |pids

i , σj) =? 1. If this fails then Πs
i terminates; otherwise it proceeds

as in P upon receiving Uj |m.
– After an oracle Πs

i computes ks
i in P it computes an AMA token μi := fks

i
(v0)

where v0 is a constant public value, a signature σi := Σ.Sign(sk′
i, μi|sids

i |
pids

i ) and sends Ui|σi to every Πs
j with Uj ∈ pids

i .
– On receiving Uj|σj from its partner, Πs

i checks ifΣ.Verify(pk′
j , μi|sids

i |pids
i ,

σj) =? 1.
– If all checks pass, Πs

i computes Ks
i := fks

i
(v1) where v1 �= v0 is another con-

stant public value, erases all private state information from states
i (including

ks
i ) and accepts with Ks

i .
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PERFORMANCE ANALYSIS. C-AMA requires two further rounds: one to exchange ran-
dom nonces and another one to exchange signatures on AMA tokens. As for the com-
putation costs, every participant generates one signature for every message sent during
P and one additional signature on the computed AMA token. Furthermore, every par-
ticipant must verify one signature for every incoming message in P and n−1 signatures
during the additional confirmation round. The computation of the AMA token μ and of
the session key K can be seen as negligible.

SECURITY ANALYSIS. Our first theorem (full proof will be given in the full version)
shows that C-AMA adds AKE-security to any KE-secure GKE protocol. Following Re-
mark 4, we do not consider the adversarial setting (sbs, scm). For the definition of
collision-resistance for F we refer for example to [30].

Theorem 11 (AKE-Security of C-AMAP). Let (α, β)∈{(∅, wcm), (wbs, wcm-bs), (wfs,
wcm-fs), (sfs, scm)} be an adversarial setting, let P be a GKE-α protocol, and A an
active adversary in the corruption model β launching at most qs sessions of C-AMAP. If
Σ is EUF-CMA and F is pseudo-random then C-AMAP is AGKE-α, and

Advake
α,β,C-AMAP(κ) ≤ 2NSucceuf−cma

Σ (κ) +
Nq2

s

2κ−1 + 2qsAdvke
α,β,P(κ) + 4qsAdvprf

F (κ).

Proof (Sketch). We define a sequence of games [40] Gi, i = 0, . . . , 6 and denote by
Winake

i the event that the adversary correctly guesses the bit b in Gi.

Game G0:This is the real Gameake−b
α,β,C-AMAP(A, κ) played between the simulator S and

an active adversary A.
Game G1:Here the simulation fails and bit b′ is set at random if A asks a Send query
on some Ui|m|σ (or Ui|σ) such that σ is a valid signature that has not been previously
output by an oracle Πs

i before querying Corrupt(Ui), i.e., if a forgery occurs. One can
show that | Pr[Winake

1 ] − Pr[Winake
0 ]| ≤ NSucceuf−cma

Σ (κ).
Game G2:In this game the simulation fails and bit b′ is set at random if an AMA
nonce ri is used by any uncorrupted user’s oracle Πs

i in two different sessions. Con-
sidering collisions for the choice of AMA nonces one can show that | Pr[Winake

2 ] −
Pr[Winake

1 ]| ≤ Nq2
s

2κ . This game excludes replay attacks.
Game G3:In this game we add the following rule: S chooses q∗s ∈ [1, qs] as a guess
for the number of sessions invoked before A asks the query Test. If this query does not
occur in the q∗s -th session then the simulation fails and bit b′ is set at random. One can

show that Pr[Winake
2 ] = qs

(
Pr[Winake

3 ] − 1
2

)
+ 1

2 .

Game G4:In this game S acts as a passive adversary against the KE-security of P that
participates in Gameke−1

α,β,P(κ), i.e., the Test query of S to an accepted α-fresh oracle Πs
i

in P is answered with the real session group key ks
i . In the full version we show how S

answers the queries of A such that Pr[Winake
4 ] = Pr[Winake

3 ].
Game G5:The only difference to G4 is that S participates as a passive adversary

in Gameke−0
α,β,P(κ), i.e., the Test query is answered with a random bit string. Hence,

| Pr[Winake
5 ] − Pr[Winake

4 ]| ≤ Advke
α,β,P(κ).
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Game G6:This game is identical to G5 except that in the q∗s -th session K and the AMA

token μ are replaced by random values sampled from {0, 1}κ. Hence, | Pr[Winake
6 ] −

Pr[Winake
5 ]| ≤ 2Advprf

F (κ) and Pr[Winake
6 ] = 1

2 . This results in the desired inequality.
	


Our next theorem shows that C-AMA provides MA-security (with malicious participants
and strong corruptions) for any GKE protocol P.

Theorem 12 (MA-Security of C-AMAP). Let P be a GKE protocol and A an active ad-
versary launching at most qs sessions of C-AMAP. If Σ is EUF-CMA and F is collision-
resistant then C-AMAP is MAGKE, and

Succma
C-AMAP(κ) ≤ NSucceuf−cma

Σ (κ) +
Nq2

s

2κ
+ qsSucccoll

F (κ).

Proof (Sketch). We define a sequence of games Gi, i = 0, . . . , 2 and events Winma
i

meaning that A wins in Gi. A’s queries are answered by a simulator S.

Game G0:This is the real Gamema
C-AMAP(A, κ) played between S and A. The goal of A

is to achieve that there exists an uncorrupted user Ui whose corresponding oracle Πs
i

accepts with Ks
i and another user Uj ∈ pids

i that is uncorrupted at the time Πs
i accepts

and either does not have a corresponding oracle Πs
j with (pids

j , sid
s
j) = (pids

i , sid
s
i )

or has such an oracle but this oracle accepts with Ks
j �= Ks

i .
Game G1:Here the simulation fails if a forgery occurs. Similar to the previous proof
we have: | Pr[Winma

1 ] − Pr[Winma
0 ]| ≤ NSucceuf−cma

Σ (κ).

Game G2:Her we abort in case of nonces collision. | Pr[Winma
2 ]−Pr[Winma

1 ]| ≤ Nq2
s

2κ .
Having excluded forgeries and replay attacks, we follow that for every Uj ∈ pids

i

that is uncorrupted when Πs
i accepts, there exists a corresponding Πs

j with (pids
j ,

sids
j) = (pids

i , sid
s
i ). Thus, according to Definition 6 A wins in this game only if

any of these oracles has accepted with Ks
j �= Ks

i . Arguing by contradiction one can

show that Pr[Winma
2 ] = Pr[Ks

i �= Ks
j ∧ fks

i
(v0) = fks

j
(v0)] ≤ qsSucccoll

F (κ) and
obtain the desired inequality. 	


5 Conclusion

In this paper we found some problems with the definition of MA-security in the founda-
tional BCPQ model. We proposed a revised definition which considers malicious partic-
ipants and unifies many of the well-known informal notions. Additionally, we extended
the (strong) forward secrecy in AKE-security by the symmetrically opposed notion of
(strong) backward secrecy. Further we described the provably secure generic compiler
C-AMA that adds AKE- and MA-security to any GKE protocol which is passively secure
(wrt. to an adversary which can change the delivery order of messages, and delay or
drop them).

We refer to our parallel work in [15,35] for further development, in particular, in the
light of the contributory nature of GKE protocols and the appropriate generic solution
for this security goal.
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Abstract. Authors extend the multi-parameter attacktree model to include inac-
curate or estimated parameter values, which are modelled as probabilistic interval
estimations. The paper develops mathematical tools to extend the computation
rules of the attacktree model to work with interval estimations instead of point
estimates. We present a sample computation routine and discuss how to interpret
the analysis results and how to choose the optimal or an economically justified
security level.

1 Introduction

Recent developments in information technology have changed the way we live and
work. We can communicate faster and in larger volumes than ever before, our produc-
tivity has increased dramatically due to task automation and parallelization, etc. Unfor-
tunately, information technology has also helped the dark side. Besides legitimate work,
attacking someone’s (digital) assets has become much more efficient as well. Properties
of the digital world make attacks highly parallelizable, the traces easily hidable and the
damage occurring almost instantly.

Thus, in order to perform one’s duties under such conditions, applying adequate
security mechanisms becomes a necessary prerequisite. Still, the number of possible
attack countermeasures is large and the task of picking the right set is far from being
trivial. Accordingly, there are several approaches for this task.

Parker [1] emphasizes the importance of planning and selecting information safe-
guards to achieve due diligence toward achieving enablement of trustworthy business
and engineering systems and compliance with the regulations and legislation. For Parker,
compliance is nowadays more important than security risk reduction considering the
penalties being applied to organizations that fail to meet regulatory requirements.

The authors of the current paper however feel that even though compliance to reg-
ulatory requirements may ensure a sufficient security level, several aspects of security
management remain uncovered. For example, business management usually does not
only require security level to be sufficient, but also optimal in the sense that no over
exaggerated investments have been made. Thus, a good security manager must be able
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to explain to the board, what the company is getting in return for the money invested
into security [2,3].

This question is very hard to answer without a thorough risk assessment. Thus, de-
veloping methods for IT risk analysis is a major challenge requiring a solution when
building large computer-dependent infrastructures.

Since attacks are human created and constantly evolving, it is not possible to es-
tablish any fully automatic risk analysis mechanisms (even though several promising
approaches exist based on attack graphs [4,5]). Expert knowledge will always play a
substantial role with security analysis. However, expert evaluations are generally rather
rough and can not cope with very complicated threats. For instance, [6] provides us with
approximate expert-assigned probabilities of a number of threats with the precision of
0.1 on the scale 0 . . . 1. Even with such level of roughness, we only see estimates for
relatively simple events “Attempted Unauthorized System Access by Outsider”, “Abuse
of Access Privileges by Other Authorized User”, etc., but not for complicated scenar-
ios like “Loss of profits due to lost user base after online service inaccessibility for 5
hours”.

Thus a method needs to be developed that on one hand is able to handle complicated
threats, but at the same time could still make use of approximate expert knowledge. In
this paper we study a method related to attack graphs as considered by Sheyner et. al.
[5,7,8], where one is interested in describing and comparing different event sequences
that will eventually result in successful penetration of security mechanisms. However,
we will assume some extra structure from these graphs so that different subattacks are
organized hierarchically and form a tree. The next Section will cover this issue in more
detail.

2 Hierarchical Security Assessment – State of the Art

In order to better assess security level of a complex and heterogeneous system, a gradual
refinement method called threat tree or attack tree method can be used. Basic idea of
the approach is simple – the analysis begins by identifying one or more primary threats
and continues by splitting the threat into subattacks, either all or some of them being
necessary to materialize the primary threat. The subattacks can be split further etc.,
until we reach the state where it no more makes sense to split the resulting attacks any
further; these kinds of non-splittable attacks are called elementary or atomic attacks and
the security analyst will have to evaluate them somehow. During the splitting process, a
tree is formed having the primary threat in its root and elementary attacks in its leaves.
Using the structure of the tree and the estimations of the leaves, it is then (hopefully)
possible to give some estimations of the root node as well.

Threat tree approach to security evaluation is several decades old. It has been used
for tasks like fault assessment of critical systems [9] or software vulnerability analysis
[10,11], and was adapted to information security by Bruce Schneier [12,13].

Earlier works in this field considered attack trees using only one estimated parameter
like cost or feasibility of the attack, skill level required, etc. [11,12,14]. Opel [15] con-
sidered also multi-parameter attack trees, but the actual tree computations in his model
still used only one parameter at a time. Even though single-parameter attack trees can
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capture some aspects of threats reasonably well, they still lack the ability to describe
the full complexity of the attacker’s decision-making process.

A substantial step towards better understanding the motivation of the attacker was
made in 2006 by Buldas et. al. [16]. Besides considering just the cost of the attack,
they also used success probability together with probabilities and amount of penalties
in the case of success or failure of the attack in their analysis. As a result, a much more
accurate model of the attack game was obtained.

The model of [16] has a significant drawback when it comes to practical application.
Namely, the authors of [16] consider all the parameter values to be precise point esti-
mates. Still, in practice security analysts rarely tend to provide exact numerical values
for costs, probabilities etc. Instead, it feels much more natural to talk about intervals
where the parameters belong to with some confidence.

The purpose of this paper is to extend the research of Buldas et. al. [16] by replac-
ing exact values with interval estimations. The paper is organized as follows. First, in
Section 3 we give a more formal definition of attack trees. In order to be able to give
estimations of higher level attacks based on more elementary ones, rules of computa-
tion with interval estimations must be developed and this is done in Section 4. Section 5
presents an example of the computation routine and gives general rules for result inter-
pretation. Finally, in Section 6 we draw some conclusions and give directions for future
work.

3 Attack Trees

As mentioned in Section 2, attack tree is a result of a top-down process of splitting
complex attacks into simpler ones. In this paper, we will consider two types of splits –
AND-splits and OR-splits.1 Thus, there are altogether three types of nodes in the tree.

1. Leaf node or elementary attack, which does not have any subattacks and which
success does not depend on any other attacks. The parameter values of the leaf
nodes are assigned by the experts.

2. OR-node, which has child nodes; for the OR-node attack to succeed, at least one of
the sub-attacks must succeed.

3. AND-node, which has child nodes; for the AND-node attack to succeed, all of the
sub-attacks must succeed as well.

Following [16], we will use the parameters in Table 1 that are to be evaluated in the
leaf nodes and computed throughout the tree.

It will later prove useful to denote the expected loss in case the attack was successful
qS ·kS by πS and the expected loss in case the attack was not successful qF ·kF by πF .

We will denote the cost of the elementary attack A as Cost(A) and similar notation
will be used for other parameters as well.

We will later use the example attack tree given in Figure 1 describing a simple se-
curity analysis of information leak from a company. The tree has four leaf nodes, two

1 Even though the approach using only AND and OR splits is not flexible enough to cover
all possible security settings (e.g. threshold security), they have proven to be enough in all
practical threat trees analyzed by the authors.
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Table 1. Parameters of the attacks

Parameter Definition
Cost cost of performing the attack

p probability of success of the attack
qS probability of catching the attacker, if the attack was successful
kS penalty of the attacker, if the attack was successful and attacker was caught
qF probability of catching the attacker, if the attack was not successful
kF penalty of the attacker, if the attack was not successful and attacker was caught

≥ 1 Leak information

≥ 1 Leak without internal help

Electronic
espionage

Regular
espionage

& Leak with internal help

Recruite
privileged person

Use privileged person
to leak information

Fig. 1. Attacktree of leaking sensitive information from a company

OR-nodes (one of them denoting the primary threat at the root) and one AND-node.
We are using notion similar to AND-gates ( & ) and OR-gates ( ≥ 1 ) to distinguish
between AND-nodes and OR-nodes.

3.1 Tree Computations

The authors of [16] give the following formulae for computing the parameters of parent
node C based on the values of child nodes A and B. If C is an AND-node, we get

Cost(C) = Cost(A) + Cost(B), (1)

p(C) = p(A) · p(B), (2)

πS(C) = πS(A) + πS(B), (3)

πF (C) = 1
1−p(A)p(B) · [p(A)(1 − p(B))(πS(A) + πF (B)) +

+(1− p(A))p(B)(πF (A) + πS(B)) +
+(1− p(A))(1 − p(B))(πF (A) + πF (B))]. (4)
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The following formula is used in case the node C is an OR-node.

(Cost(C), p(C), πS(C), πF (C))

=
{

(Cost(A), p(A), πS(A), πF (A)) if Outcome(A) ≥ Outcome(B)
(Cost(B), p(B), πS(B), πF (B)) if Outcome(A) < Outcome(B) ,

(5)

where Outcome(A) is the outcome of the attack A for attacker. Its value is computed
as

Outcome(A) = p(A) · Gain− p(A) · πS(A)− (1− p(A)) · πF (A) − Cost(A) , (6)

where Gain is a global parameter expressing the total gain of the attacker in case the
primary threat is materialized.

4 Modeling Parameter Estimations

As discussed above, security experts may find it more comfortable working with in-
tervals, rather than exact values. When talking about the value of some parameter be-
longing to an interval, such claims are usually not absolute, but hold with some level of
confidence. So we can write

pX = Pr[k1 ≤ X ≤ k2] , (7)

where pX is the probability of the unknown value of the parameter X being within
the interval of [k1, k2]. We will later refer to pX as confidence or confidence level and
X = (pX , k1, k2) as estimation. The set of all estimations will be denoted as IP.

4.1 Motivation and Connections with Bayesian Networks

In order to handle the estimations in intuitively comprehensible manner, we will con-
sider estimated parameters as random variables. The probabilistic inference between
random variables has been extensively studied in the Bayesian Networks (BN) theory
and used e.g. in the fields of artificial intelligence and machine learning. Attack trees
can be viewed as a special kind of BN graphs, which try to investigate the likelihood of
the primary threats, given the information about leaf attacks. Attack tree structure repre-
sents causality connections between attacks and the node parameters represent random
variables in the BN graph. One way to ”convert” attack trees to the causal networks
has been presented by Qin and Lee [17]. In case of multi-parameter attack trees, each
node has many variables and the inference between nodes is a bit more complex, as
expressed by the formulae (1) – (6).

The general structure of operations on estimations follows a simple pattern – given
argument estimations, we first convert them to random variables, then perform our
computation operations and then convert the resulting random variable back to the es-
timation based on its distribution. In order to do the first conversion, we need some
assumptions about the corresponding distributions, and in the current paper we will
take all our distributions to be normal. Additionally, we assume that all our estimations
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in leaf nodes and therefore the random variables as well are independent of each other,
which in practice is roughly usually the case. This allows us to simplify the operations
on random variables.

The assumption about normal distributions is natural for most of the parameters,
since security experts evaluating them are humans and humans tend to estimate values
using normal distribution. The concept of using imprecise data and estimations in the
BN graphs is not new and has been explored in [18] and [19]. However, in this paper,
we do not try to compute the exact (conditional) distributions of all our variables, but
simply use normal distributions as is generally done when trying to simplify the BN
calculations. Note that we merely use the normality assumption as a heuristic that helps
our expert to deduce estimations of parent nodes based on estimations of the child nodes
in the attack tree, and we make no formal claims concerning what these distributions in
reality might be.

One can think of the analyst’s task to find out whether the system is vulnerable
with respect to the primary threat. While completing this task, the analyst considers
the leaves of his current tree (which just consists of one root node in the beginning
of the process) and if (s)he is unable to evaluate some parameters of some leaf, (s)he
must develop it further. After “solving” the resulting subtree, only the estimations of
the parameters of the current node are important, and several heuristics can be used
to achieve a reasonable result. The heuristic assuming normal distributions is just one
possibility; other possibilities definitely exist, but they remain outside of the scope of
the current paper.

There is another detail to note. Some of our parameters have fixed value domains, e.g.
are probabilities and hence belong to [0, 1], so we can not claim that they follow normal
distribution. However, considering probabilities itself as imprecise values (second-order
probability distribution) is well known in Bayesian statistics and for our estimations
it is enough that [k1, k2] ⊂ [0, 1]. There is no harm caused when the corresponding
parameter is internally interpreted as a normally distributed random variable, even if its
original value represents a probability. We will cover this issue in more detail in the end
of Section 4.

4.2 Estimation Arithmetic

Our goal is to replace exact parameter values in formulae (1) – (6) by estimations. To do
so, we will have to define addition, subtraction, multiplication, division and comparison
of estimations, but also multiplication by and adding to a real number.

To use estimations in our formulae, we next discuss how to define the required oper-
ations in such a way that IP would become closed under these operations.

Conversion between estimations and random variables. To convert the estimation
X to a random variable X , we have to find out the mean aX and standard deviation σX .
From the assumption above and from equation (7) we can get the following formulae:

aX = EX =
k1 + k2

2
, (8)

pX = Pr(k1 ≤ X ≤ k2) = Φ

(
k2 − aX

σX

)
− Φ

(
k1 − aX

σX

)
, (9)
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Fig. 2. Conversion X = (0.8, −1, 3) → X ∼ N(1, 1.56061)

where the Φ(x) is the Laplace’s function. Although we cannot give explicit formula
for calculating σX , we can certainly solve the equation (9) to compute the standard
deviation σX using a computer.

We denote conversion of estimation X to normally distributed random variable X
as X = (pX , k1, k2) → X ∼ N(aX , σX). An example is depicted in Figure 2 for the
conversionX = (0.8,−1, 3)→ X ∼ N(1, 1.56061).

To convert the probabilistic variable X back to an estimation X , we would need to
know the confidence p′X , at which we would like to express the estimation. After we
have specified p′X , we can compute the appropriate interval [k1, k2] from equation (9).
We denote such back-conversion as X ∼ N(aX , σX)→ X = (p′X , k′

1, k
′
2.)

To simplify the operations with our estimations of the attack-tree node parameters,
we will convert all estimations to the same confidence level pT , which will be defined
globally for the attack-tree. In effect, pT defines the confidence level or the margin of
error at which we would like to have the answer of our attack-tree analysis given. If
the original estimation X of an expert is given using some other confidence level pX ,
we first convert X = (pX , k1, k2) → X ∼ N(aX , σX) and then find the new interval
[k′

1, k
′
2] by X ∼ N(aX , σX)→ X = (pT , k′

1, k
′
2.)

Next, we need to define the computation rules for estimations, i.e. operations + and ·
as functions of type IP×IR→ IP, operations +, · and / as functions of type IP×IP→ IP
and a binary relation >= on the set IP.

Adding a real number to an estimation. Given r ∈ IR together with estimation
X = (pT , k1, k2) and wanting to compute X + r = Y , we first convert X → X ∼
N(aX , σX). After that we can compute Y = r + X using the properties aY = r + aX

and σY = σX . Finally, we have Y → Y = (pT , k1 + r, k2 + r).
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Multiplying an estimation by a real number. It is known that given X ∼ N(aX , σX)
and r ∈ IR we have r · X = Y ∼ N(r · aX , |r · σX |). To simplify the computation,
X = (pT , k1, k2) is first centralized to X̊ = X − aX . Then σY = |r · σX | and now we
obtain Y̊ → Y̊ = (pT ,−k, k), where the interval [−k; k] is found from the equation

pT = 2Φ

( |k|
σX

)
. (10)

After that Y̊ is de-centralized by shifting its interval by r · aX . Thus, we finally get
Y = (pT ,−k + r · aX , k + r · aX).

Adding two estimations X1 and X2. When adding two estimationsX1 = (pT , k1, k2)
and X2 = (pT , k′

1, k
′
2), we first convert both of them to X1 ∼ N(a1, σ1) and X2 ∼

N(a2, σ2). Then, assuming X1 and X2 to be independent, we can compute Y = X1 +
X2, where aY = a1+a2 and σY = σ1+σ2. In case of subtracting, we get aY = a1−a2,
but σY = σ1 + σ2.

Now we have the necessary information to convert Y → Y . First we convert Y̊ →
Y̊ = (pT ,−k, k), where k is found from equation (10) by replacing σX with σY .
Now, Y̊ can be de-centralized by shifting its interval by a1 + a2. So, we get the final
result Y = (pT ,−k + a1 + a2, k + a1 + a2), or in case of the subtraction, Y =
(pT ,−k + a1 − a2, k + a1 − a2).

Multiplying two estimations X1 and X2. When multiplying two estimations X1 and
X2 we first centralize them to X̊1 and X̊2. Then Y̊ = X̊1 · X̊2 is calculated using
the assumption of independent variables and the fact that σY = σ1 · σ2, however, the
distribution of Y̊ is not normal, but Bessel distribution.

To convert Y to Y , we compute Y̊ → Y̊ = (pT ,−kB, kB), where kB is found from
equation

pT = Pr[−kB ≤ Y ≤ kB] =
∫ kB

−kB

fB(y, σY )dy , (11)

where

fB(y, σY ) =
1

πσY
K0

( |y|
σY

)

is the probability density function of the Bessel distribution. Now, Y̊ needs to be de-
centralized. The mean of Y could be computed as aY = E(X1 ·X2) = EX1 · EX2 =
a1 · a2. Therefore, we can shift Y̊ interval by a1 · a2. So, we get the final result Y =
(pT ,−kB + a1 · a2, kB + a1 · a2).

Dividing two estimations X1 and X2. Using centralized independent variables X̊1
and X̊2, it is known that X̊1/X̊2 = Y̊ ∼ Cauchy(0, σY ), where σY = σ1

σ2
.

Using the global confidence value pT , we convert the Y to Y . In order to do that, we
first convert Y̊ → Y̊ = (pT ,−kC , kC), where kC is found from the equation

pT = Pr[−kB ≤ Y ≤ kB] =
∫ kB

−kB

fC(y, y0, σY )dy , (12)
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where

fC(y, y0, σY ) =
σY

π
· 1
σ2

Y + (y − y0)2

is the probability density function of the Cauchy distribution. Now, Y̊ needs to be de-
centralized. The mean of Y can be computed as aY = E(X1/X2) = EX1/EX2 =
a1/a2. Therefore, we can shift Y̊ interval by a1/a2. So, we get the final result Y =
(pT ,−kC + a1/a2, kC + a1/a2).

Comparing two estimations X1 and X2. The last operation to enable us to use esti-
mations as operands in our formulae is the comparison. To decide the order of the es-
timations, we compare the means of the corresponding random variables. Formally, we
can define the comparison as the binary relation >== {(X1;X2)|X1 = (pT , k1, k2) →
X1 ∼ N(a1, σ1),X2 = (pT , k′

1, k
′
2)→ X2 ∼ N(a2, σ2), a1 ≥ a2}.

4.3 Soundness of Computations

Almost all parameters of the nodes have a limited value domain predefined by the in-
terpretation of the parameter, e.g. Cost should be a non-negative real number and p is
a probability belonging to the interval [0, 1]. When estimations are considered instead
of specific values, it is still natural to assume that the respective intervals [k1, k2] are
subsets of the value domains (e.g. [k1, k2] ⊂ [0,∞) for Cost and [k1, k2] ⊂ [0, 1] for
p). Even if expert estimations given to leaf node parameters satisfy these assumptions,
it may happen that as a result of tree computations, some of the parameters in other
nodes do not.

Generally, such a situation indicates that no sound conclusions can be drawn on the
given confidence level pT . This problem can be solved in a number of ways.

– The global confidence level pT can be decreased in order to achieve soundness of
estimations in all the nodes. It is possible to find the largest value pT ensuring sound
conclusions and this value can be considered as the confidence level of the whole
tree.

– It is possible to define the required confidence level locally for each node.
– It is possible to adjust one or both of the bounds k1 and k2 to fit into the required

interval; this will automatically decrease the confidence level of the respective node
as well.

Each of these approaches has its pros and cons; selecting the best one may be applica-
tion specific and remains the subject for future research.

5 Tree Computations with Estimations

First consider as an illustration a simple attack tree computation routine based on the
example given in Figure 1. First we fix the level of confidence of our estimations to be
pT = 0.9 and second we let out experts to evaluate the parameters of the leaves with
this confidence. Assume we get the estimation interval for the Cost parameter in the leaf
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“Use privileged person to leak information” at this confidence to be [7.56 · 104, 1.24 ·
105], etc, as given in Table 2.

Next we use the computation rules developed in Section 4 to obtain parameter esti-
mations for non-leaf nodes as well (see Table 2). Finally, in the root node we use (6) in
its interval form to find Pr[2.51 · 107 ≤ Outcome ≤ 5.36 · 107] = 0.9, which shows
that the outcome of the attack is with high probability positive for the attacker, hence
some measures must be introduced in order to counter it.

Table 2. Attacktree of leaking sensitive information from a company

ID Description Type Parameter estimations
Gain of the attacktree Pr[5.23 · 107 ≤ Gain ≤ 2.48 · 108] = 0.9

A Leak information OR Pr[8.58 · 104 ≤ Cost ≤ 2.14 · 105] = 0.9
Pr[0.0561 ≤ p ≤ 0.544] = 0.9
Pr[4.86 · 106 ≤ πS ≤ 6.14 · 106] = 0.9
Pr[4.86 · 106 ≤ πF ≤ 6.14 · 106] = 0.9
Pr[2.51 · 107 ≤ Outcome ≤ 5.36 · 107] = 0.9

A.1 Leak without internal
help

OR Pr[8.58 · 104 ≤ Cost ≤ 2.14 · 105] = 0.9
Pr[0.0561 ≤ p ≤ 0.544] = 0.9
Pr[4.86 · 106 ≤ πS ≤ 6.14 · 106] = 0.9
Pr[4.86 · 106 ≤ πF ≤ 6.14 · 106] = 0.9
Pr[2.51 · 107 ≤ Outcome ≤ 5.36 · 107] = 0.9

A.1.1 Electronic espionage LEAF Pr[9.86 · 106 ≤ Cost ≤ 1.11 · 107] = 0.9
Pr[0.186 ≤ p ≤ 0.314] = 0.9
Pr[4.86 · 106 ≤ πS ≤ 6.14 · 106] = 0.9
Pr[4.86 · 106 ≤ πF ≤ 6.14 · 106] = 0.9
Pr[1.71 · 107 ≤ Outcome ≤ 2.59 · 107] = 0.9

A.1.2 Regular espionage LEAF Pr[8.58 · 104 ≤ Cost ≤ 2.14 · 105] = 0.9
Pr[0.0561 ≤ p ≤ 0.544] = 0.9
Pr[4.86 · 106 ≤ πS ≤ 6.14 · 106] = 0.9
Pr[4.86 · 106 ≤ πF ≤ 6.14 · 106] = 0.9
Pr[2.51 · 107 ≤ Outcome ≤ 5.36 · 107] = 0.9

A.2 Leak with internal help AND Pr[8.66 · 106 ≤ Cost ≤ 2.15 · 107] = 0.9
Pr[0.0779 ≤ p ≤ 0.0871] = 0.9
Pr[9.72 · 106 ≤ πS ≤ 1.23 · 107] = 0.9
Pr[−3.33 · 106 ≤ πF ≤ 2.53 · 107] = 0.9
Pr[−2.05 · 107 ≤ Outcome ≤ −6.98 · 106] = 0.9

A.2.1 Recruite privileged per-
son

LEAF Pr[8.58 · 106 ≤ Cost ≤ 2.14 · 107] = 0.9
Pr[0.0858 ≤ p ≤ 0.214] = 0.9
Pr[4.86 · 106 ≤ πS ≤ 6.14 · 106] = 0.9
Pr[4.86 · 106 ≤ πF ≤ 6.14 · 106] = 0.9
Pr[−8.16 · 106 ≤ Outcome ≤ 1.22 · 107] = 0.9

A.2.2 Use privileged person to
leak information

LEAF Pr[7.56 · 104 ≤ Cost ≤ 1.24 · 105] = 0.9
Pr[0.428 ≤ p ≤ 0.672] = 0.9
Pr[4.86 · 106 ≤ πS ≤ 6.14 · 106] = 0.9
Pr[4.86 · 106 ≤ πF ≤ 6.14 · 106] = 0.9
Pr[6.98 · 107 ≤ Outcome ≤ 8.4 · 107] = 0.9
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In general, we may have three possible classes of estimations X = (pX , k1, k2) for
Outcome of the root node:

1. 0 < k1 < k2, in which case we say that the vulnerability level of the primary threat
under consideration with respect to the required confidence level is high;

2. k1 < k2 < 0, in which case we say that the vulnerability level is low;
3. k1 ≤ 0 ≤ k2, in which case we say that the vulnerability level is medium.

If needed, the last class can be further divided into lower medium and higher medium
vulnerability levels depending on whether the mean value k1+k2

2 of the estimation (con-
sidered as a normally distributed random variable) is less or greater than zero.

If the security analyst finds out that the security level is not acceptable, (s)he con-
cludes that some measures must be implemented. The possible measures are usually
targeted towards lowering attack success probability or increasing expected penalties
(e.g. by increasing probability of getting caught). When some set of protection mea-
sures is considered, the tree computations can be performed again for a new setting and
if the security level becomes acceptable, we know that the set of measures is sufficient.
It only remains to pick the most adequate set of such measures (this step is identical to
the one described in [16]).

Following the tree computation routine, we can also find out which nodes of the tree
are critical ones and must be addressed with our security enhancements. E.g. in the
example presented above we see that parameters of the root node are derived from the
parameters of the leaf “Regular espionage”, which is thus the most vulnerable node in
this setting.

6 Conclusions and Further Work

We presented an extension of the multi-parameter threat tree model to the case where
the parameters of elementary attacks are given as interval estimations rather than ex-
act values. Clearly, such a problem setting implies the need to compute the values of
primary threat parameters as estimations as well. A suitable method for defining neces-
sary algebraic operations and relations on evaluations was developed in this paper and
illustrated with a simple attack scenario.

There are still several directions our research can be continued in. First, our current
heuristic used to compute with estimations is to consider all the parameters as nor-
mally distributed with suitable parameters. This simplification can turn out to be too
restrictive for some applications, hence further studies are needed to find out how other
distributions behave under the given tree computation rules.

Second, our tree computation routine can give out-of-bounds values for some pa-
rameters (e.g. probabilities) in some nodes. There are several possible solutions to this
problem and selecting the best one remains the subject for future research as well.

And, last but not least, even though the authors have used attack tree approach suc-
cessfully in several security analyses, its extension to interval estimations still needs
further practical evaluation.
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Abstract. We adapt game theoretic methods for studying the security of two e-
voting systems: the Estonian E-Voting System (EstEVS) and Secure Electronic
Registration and Voting Experiment (SERVE) performed in the United States of
America. While these two systems are quite similar from technical side, security
experts have made totally different decisions about their security—EstEVS was
indeed used in practical elections while SERVE was decided to be insecure. The
aim of this work is to clarify if the minor technical differences between these two
systems were indeed a sufficient reason to distinguish between their security. Our
analysis is oriented to practical security against large-scale attacks. We define
a model for the real-life environment in which voting takes place and analyze
the behavior of adversaries. We show that in our model EstEVS is secure and
SERVE is not. The reliability of the results is still questionable because of our
limited knowledge about many of the parameters. It turns out though that our
main results are quite robust with respect to the choice of parameters.

1 Introduction

Many of us have dealt with electronic commerce transactions. This is already a part of
everyday life. However, e-voting is not yet so widely used. A secure electronic voting
system is still one of the most challenging tasks, because of the need for finding a
trade-off between seemingly contradictory requirements like privacy vs. auditability.
Thereby, it is difficult to adopt ordinary mechanisms of e-commerce. For example, in
e-commerce there is always a possibility to dispute about the content of transactions.
Buyers get receipts to prove their participation in transactions. E-voters, in turn, must
not get any receipts, because this would enable voters to sell their votes.

In 2003, Estonia initiated the development of an e-voting system (further referred to
as Estonian E-Voting System: EstEVS) [12]. The aim was to use e-voting in the elec-
tions of the local government councils in 2005. In January 2004, a group of American
security experts revealed the security report of Secure Electronic Registration and Vot-
ing Experiment (SERVE) [1]. The SERVE system was planned for deployment in the
2004 primary and general elections and allows eligible voters to vote electronically via
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Internet. After examining the security of SERVE, the group of security experts recom-
mended that SERVE should be shut down. They also declared that they do not believe
that differently constituted projects could be more secure than SERVE. Their conclu-
sion was that the real barriers to success in e-voting are not skills, resources, etc; it is
the fact that given the current Internet and PC security technology, e-voting is an es-
sentially impossible task. The SERVE project was indeed terminated in January 2004.
At the same time, Estonia continued to develop an e-voting system and implemented
it according to the plans. In their security analysis [2] estonian experts declared that
EstEVS is sufficiently secure in practice.

This contradicting situation was the main initiator of this work. From closer view,
both security reports are consistent and contain truthful and convincing arguments. One
of the main reasons for two totally different decisions was the lack of unified rational
security analysis in both reports. Some of the arguments were quite emotional, being
based on experts’ subjective opinions and ”common wisdom”. The aim of this work
is to adapt rational security analysis methods for studying the two e-voting systems. It
gives us the possibility to compare practical security levels of these systems.

One of the rational approaches of security is known from theoretical cryptography:
security reductions, which are proofs that security conditions held under certain com-
binatorial assumptions, such as hardness of factoring or Diffie-Hellman problem. For
estimating practical security, we also need empirical assumptions about the real world.
Moreover, in theoretical cryptography the adversaries are considered to be Turing ma-
chines, which are well-defined and relatively easy to study. The real world adversaries
are human beings with unpredictable behavior and different motives. Hence, for ana-
lyzing practical security, we need models for real world adversaries. In this work, we
adapt multi-parameter attack trees [3] for analyzing the security of e-voting systems.

Real-world security is not just a technical issue. In many cases, it would be more
beneficial for an adversary to bribe employees of organizations rather than to break into
their computer system from outside. Hence, the model for real-life environment must
consider many ”social parameters” like the costs of bribing people. We create a model
for real-life environment in which these parameters are accounted.

We show that EstEVS is practically secure in our model but SERVE has vulnerabil-
ities, which make certain voting-specific attacks possible. Additionally, we show that
reasonable changes in the model will not change the results of the analysis. This means
that if our environment model indeed reflects the reality, then EstEVS is more secure
than SERVE and the security experts’ opinions were reasonable. It turns out that the
main technical disadvantages of SERVE are: (1) ballot decryption in e-voting servers,
(2) lack of independent audit log systems, (3) online votes counting server that contains,
besides votes, also the identities of voters, (4) ballots are not signed by voters.

We tried to choose the parameters of the model so that they were as close as pos-
sible to real society. We used information from Internet, research reports, interviews
with public prosecutors and well-studied attack scenarios. In spite of that, our model
is obviously not perfect—the estimation of environment characteristics is quite subjec-
tive. Still, this work emphasizes the need for better measurements of these environment
characteristics, in case we have to analyze the practical security of e-voting systems.
Better measurements definitely would improve this security analysis. Unfortunately, it
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was not possible to include all details of the analysis into this paper. A somewhat more
complete representation can be found in the master thesis of Triinu Mägi [13].

2 Security Properties of E-Voting

High security is essential to elections. Democracy relies on broad confidence in the
integrity of elections. There has been a lot of attention to electronic voting by cryp-
tographers because of the challenging need to simultaneously achieve many seemingly
contradictory properties, like privacy, auditability, and correctness. The most important
requirements of e-voting are the following:

i. Eligible voters are able to cast ballots that are counted in the final tally.
ii. Non-eligible voters are disfranchised.

iii. Eligible voters are unable to cast two ballots that are both counted in the final tally.
iv. Voting is private and incoercible. This apparently contradicts correctness, because

eligible voters must be identified to distinguish them from non-eligible ones.
v. It is possible for auditors to check whether the final tally is correctly computed.

This requirement says that a group of dedicated auditors or Electoral Committee
can check the correctness of voting.

vi. The results of voting must be secret until the official end of voting. No one, includ-
ing votes’ counting officers, must be able to reveal the final tally before the official
date. Otherwise, the result of voting could affect voters’ decisions.

Some researches suggest stronger security properties of e-voting but we concentrate
only to the most important properties that directly correspond to the requirements of
traditional voting. One of the main starting points of this work is that the security of
e-voting should be comparable to that of traditional voting, though we might achieve
more by using contemporary cryptographic techniques. The properties listed above are
relevant for almost all voting systems and they are the the basis of our security analysis.

For securely implementing e-voting systems in real-life elections cryptographic
schemes are clearly not the main problem. A far deeper concern is whether the work-
stations of ”average citizens” (in which computer viruses are everyday visitors) can be
used for such a security-critical task.

3 State of the Art

Internet voting systems have been implemented in Europe in couple of places, for ex-
ample in the Netherlands in 2004 in the European Parliamentary elections. The tar-
get group consisted of the Dutch electors’ resident abroad and electors resident in the
Netherlands who are temporarily abroad on the Election Day. In Great Britain, remote
electronic voting systems were used in the local elections of 30 municipalities in 2003.

In the United States of America, many attempts have been made to use e-voting
systems. The Voting over the Internet (VOI) project was used in the general elections of
2000 in four states. The Internet votes were legally accepted, but their amount was small
(84 votes) [11]. VOI’s experiment was too small for being a likely target of attacks.
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Another e-voting project named Secure Electronic Registration and Voting Experi-
ment (SERVE) was developed for primary and general elections in 2004 in the United
States of America. The eligible voters of SERVE were mainly overseas voters and mil-
itary personnel. The US Department of Defense terminated SERVE in 2004 because a
group of security experts had found that SERVE was not sufficiently secure.

The Estonian e-voting system was applied first time in the municipal elections in
2005. The second implementation was in 2007 in Parliamentary elections. There were
5.4 per cent of e-votes among all votes.

4 Description of E-Voting Systems

In the following, we describe EstEVS and SERVE and emphasize their main differ-
ences. The Estonian e-voting system is implemented from the sixth day up to the fourth
day before the Election Day. There are two main principles in EstEVS.

(1) Each eligible voter is able to re-vote, so that the older votes are deleted.
(2) Traditional voting cancels electronic votes.

In EstEVS the national Public Key Infrastructure is applied and voters use their authen-
tication and digital signature certificates for casting votes. In SERVE, it is possible to
vote any time within 30 days before the Election Day until the closing time of polls on
the Election Day. Every voter can vote only once. There are no Public Key Infrastructure
and ID-cards used in SERVE. In both e-voting systems if considerable attacks against
e-voting have been detected, Electoral Committee might stop e-voting and cancel the
result of voting. In general terms, e-voting systems consist into four main components:

– Voter Applications - a web application for casting votes.
– Network Sever - an server that provides voters an interface for casting their votes.
– Votes Storing Server - an server for storing, managing, and maintaining votes.
– Votes Counting Server - a server for counting the final tally.

In SERVE, Votes Counting Server is online while in EstEVS it is off-line. Additionally,
EstEVS has an independent audit log system which consists of traces of all voting
procedures. All log records are cryptographically linked. Log files enable to audit the

Fig. 1. Components of the Estonian e-voting system
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e-voting system. SERVE has a similar architecture to that of EstEVS, except the log
files system and the off-line Votes Counting Server.

We now briefly describe the processes of e-voting in EstEVS and SERVE. Fig. 1
depicts the components of the EstEVS. Voting procedure is started with a voter con-
necting to Network Server via the SSL protocol. Voters enter their personal data for
authentication. In EstEVS, national Public Key Infrastructure is applied and voters use
their authentication certificates. In SERVE, there is a voters’ registration process before
the e-voting and voters authenticate themselves with passwords. When the connection
is established, then a signed ActiveX control is downloaded to voter’s computer in both
e-voting systems. An authenticated voter makes his/her choice from a list of candidates
transferred from Network Server. In EstEVS the application encrypts the vote by using
the public key of Votes Counting Server, however in SERVE the application use the
public key of Votes’ Storing Server for encrypting the votes.

In SERVE, Voter Application sends an encrypted ballot and voter’s personal data
to Network Server, which forwards the encrypted ballot and voter’s personal data to
Votes Storing Server. In EstEVS, voters sign the encrypted ballots with their digital
signature certificates. Network Server checks whether the session owner is the same
person who signed the encrypted ballot (via ID-card authentication) and in case of
positive acknowledgment, transfers the signed and encrypted ballot to Votes Storing
Server.

Votes Storing Servers verify voter’s franchise and if the voter had already voted.
The systems reply to each correctly cast vote with a textual receipt. In EstEVS, after
the end of the e-voting period Votes Storing Server cancels multiple ballots and saves
the trace of canceled ballots into the log file system. Next, the server separates digital
signatures and encrypted ballots. In SERVE, Votes Storing Server decrypts the ballots,
and separates ballots from personal data. After that, Votes Storing Server encrypts the
ballots again without voters’ personal data with the public key of Votes Counting Server.

In SERVE, Votes Counting Server downloads the list of voters and the encrypted
ballots from Votes Storing Server when Votes Counting Server updates its database. In
EstEVS, encrypted ballots are transferred to the off-line Votes Counting Server by using
data carriers. For counting votes, Votes Counting Server decrypts the encrypted ballots
by using the private key of Votes Counting Server. Only accepted format of votes are
counted to the final tally. In EstEVS, Votes Counting Server outputs the final tally and
in the SERVE system it outputs the final tally and the list of voters. Table 1 depicts the
main differences between the two systems.

Table 1. Differences between the two e-voting systems

Characteristic EstEVS SERVE

e-voting used on the Election Day No Yes
Possibility to re-vote at the polling station Yes No
National Public Key Infrastructure Yes No
Voters sign the ballots Yes No
State of votes in Votes Storing Server Encrypted Not encrypted
State of Votes Counting Server Off-line On-line
Audit log system Yes No
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5 Analysis Method

To measure the real security of e-voting, we should analyze the security in an objective
way. It would be insufficient (at least for the purposes of this work) to rely on subjective
opinions of security experts—we try to put their opinions to solid ground by providing
them with a method to determine whether the system is secure.

In order to declare that e-voting system is secure it must be as secure as traditional
voting, which is considered to be practically secure and resistant to large-scale threats.
This means that the e-voting systems must also be secure against the large-scale voting-
specific attacks. A large-scale attack may cause considerable changes in the final tally or
reveal large number of votes. Therefore, for estimating practical security of the systems,
we try to create an environment model as close as possible to the real-life environment
in which e-voting systems are used. In addition to technological parameters, we have
to make assumptions about society, people, and motives of attackers. We assume that
adversaries are gain-oriented and attack on purpose—to affect the result of elections.
We analyze adversarial behavior by using the game-theoretical setting suggested in [3].
According to this setting, attacks are viewed as games the profitability of which (for
attackers) depends on the following parameters of the environment model:

– Gains - the gains of the attacker, in case the attack succeeds.
– Costs - the cost of the attack.
– p - the success probability of the attack.
– q - the probability of getting caught (if the attack was successful).
– Penalties - the penalties in case the attacker is caught (if the attack was successful).
– q− - the probability of getting caught (in case the attack was not successful).
– Penalties− - penalties if the attacker was caught and the attack was unsuccessful.
– Outcome - average outcome of an attacker.

Considering all these parameters, rational attackers calculate the expected outcome of
the game, which determines their decision about whether to attack or not:

Outcome = −Costs + p · (Gains − q · Penalties) − (1 − p) · q− · Penalties− .

Attackers do not attack, if the outcome of the attack-game is negative and they always
choose the most profitable ways for attacking. For the sake of simplicity we denote:

– by π the average penalty if the attack was successful, i.e. π = q · Penalties;
– by π− the average penalty if the attack was unsuccessful, i.e. the outcome is equal

to −Costs + p · (Gains − π) − (1 − p) · π−.

For better estimation of the parameters, attacks are split into simpler ones by two rules.
AND-rule states that the component-attacks are all necessary for the original attack,
whereas OR-rule states that at least one of the components is needed for the original
attack. Such a decomposition procedure is iterated until we can estimate the parame-
ters of all components, i.e. they can be deduced from our model of environment. The
composition tree that corresponds to this process is called an attack tree [5]. Each node
of an attack tree represents an attack. Leaf nodes represent atomic attacks for which all
parameters are known. For simplicity, it is assumed [3] that Gains is the same for all
nodes. To compute the parameters of the root node, we need the following rules [3]:
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– For an OR-node with children (Costs1, p1, π1, π1−) and (Costs2, p2, π2, π2−) the
parameters (Costs, p, π, π−) are computed as follows:

(Costs, p, π, π−) =
{

(Costs1, p1, π1, π1−), if Outcome1 > Outcome2
(Costs2, p2, π2, π2−), if Outcome1 ≤ Outcome2

,

where Outcomei = −Costsi + pi · Gains − pi · πi − (1 − pi) · πi− for i = 1, 2.
– For a AND-node with children (Costs1, p1, π1, π1−) and (Costs2, p2, π2, π2−) the

parameters (Costs, p, π, π−) are defined as follows (where p̃i will denote 1 − pi):

Costs = Costs1 + Costs2; p = p1 · p2; π = π1 + π2; and

π− =
p1p̃2(π1 + π2−) + p̃1p2(π1− + π2) + p̃1p̃2(π1− + π2−)

1 − p1p2
.

6 Adversarial Model and Threats

In our analysis, we consider adversaries as a rationally thinking persons who always
choose the most profitable attacks and who will not attack if all possible attacks are un-
profitable. We do not model adversaries as inside attackers. We assume that the develop-
ment team of e-voting has been created carefully and the team members are benevolent
by themselves. However, we assume that the team members can be influenced from
outside (for example, bribing) in order to affect an e-voting system maliciously. In this
work, we do not analyze crimes against person because they pose an equal threat to
traditional voting. Hence, we do not consider that anybody is involved in an attack by
coercion or violence. We analyze the behavior of attackers through the components of
e-voting systems by using multi-parameter attack trees [3]. For example an adversary
has the following activities:

– to attack Voter Application in order to affect the votes’ casting process;
– to attack the connection between Voter Application and Network Server in order to

affect the votes before they are received by Network Server;
– to attack Network Server in order to affect the votes’ reception.

By using the activities that are allowed in the adversarial model, the aim of attacker is to
perform a large-scale attack. Small-scale attacks, which affect a small number of votes,
do not affect the overall result of voting and hence do not pose a threat to democratic
society as a whole. So, we will study large-scale attacks that cause considerable changes
in the final tally or a large scale of votes to become revealed.

How big is large number? How many votes should be changed or revealed in e-voting
systems so that we may talk about a large-scale attack? For estimating this parameter
we analyzed elections in Estonia and in the United States of America. We saw that the
minimum average per cent of votes to affect the result of voting could be 4 per cent
[4,9]. There has been an exception in the presidential elections of the USA in 2004.
The difference between the rates of parties was only 0.0246. The number of target
voters of EstEVS and of SERVE was 1 million and 6 millions, respectively. Obviously,
one hundred infected computers do not affect the overall result of elections. If 1,000
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computers are infected, it would be possible to affect 0.1 per cent of the Estonian votes
and 0.016 per cent of the United States votes. To summarize, we consider that infecting
1,000 computers is sufficient for having a large-scale attack in e-voting systems.

We say that e-voting is practically secure if it resists the following large-scale attacks:

1) Large-scale votes’ theft. The aim of the attack is to change votes or to give more
(forged) votes for favorite candidates. Such an attack is possible only if the adver-
sary is able to cast ballots in the name of many users or the system enables voters
to cast multiple ballots that are all counted in the final tally.

2) Large-scale disfranchisement of votes. It means that a large number of correctly en-
crypted ballots from eligible voters never reach Votes Storing Server. Attack could
also selectively disfranchise eligible votes in order to eliminate undesirable ones.
Note that the aim of a rational (and well-prepared) attacker is not to cause the over-
all failure of e-voting and hence such an attack should stay unnoticed.

3) Large-scale votes’ buying and selling. It means that a large number of votes are
sold. The aim of the attack is to increase the amount of votes for certain candidates.

4) Large-scale privacy violation. The aim of the attack is to reveal how voters have
voted. This my cause violence and persecution in the society.

7 Security Assumptions

We make several simplifying assumptions which will eliminate many irrelevant details
of our empirical analysis and thereby keeps the ”big picture” of the analysis observable
to the reader. For example, we assume that the cryptographic schemes used in e-voting
systems are secure. Our analysis uses the following assumptions:

– Assumption I: It is impossible to forge signatures without private keys.
– Assumption II: It is impossible to deduce votes from encrypted ballots.
– Assumption III: Adversaries do not have access to the private keys of voting servers.

Key management at the server side is sufficient to prevent key compromise.
– Assumption IV: Voters’ registration is secure. EstEVS uses national PKI and does

not need voters’ registration—ID-cards with authentication and digital signature
certificates are issued to all citizens. In this work, we assume that sharing of au-
thentication data and digital signature certification is secure in EstEVS. For fair
comparison of the two systems, we also assume that the phase of voter’s registra-
tion in SERVE is secure.

– Assumption V: The phase of votes’ counting behaves as specified. All correctly
cast votes that are received by Votes Counting Server are counted correctly. This
assumption might be unjustified in voting systems, because the insider threats are
even more common than the outsider threats. However, in this analysis the insider
threats of votes’ counting phase are not taken into account.

– Assumption VI: The log file system of EstEVS is secure. All records in audit logs
are cryptographically linked and it is impossible to modify them without detection.

– Assumption VII: If considerable attacks are detected that cause misbehavior of e-
voting then e-voting is immediately stopped and the results of e-voting canceled.
Both EstEVS and the SERVE project have justified this property in the require-
ments of the systems. This is decided by court or Electoral Committee.
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8 Model of Environment

A meaningful comparison of two systems must be based on equal or comparable bench-
marks. Hence, we create the same environment for the both e-voting systems. It is clear,
that the environments of EstEVS and SERVE are different in real life. Moreover, it is
even hard to describe these environments adequately and give real characteristics of en-
vironment. For example, it is hard to estimate what is the probability of catching and
convicting attackers, if voters deliberately create connections to an actively compro-
mised voting server. For adequately specifying the characteristics of an environment
for e-voting systems, it is necessary to study the motives and purposes of attacks, suc-
cess probabilities of attacks, detection probabilities of attacks, awareness of comput-
ers’ users, punishments for cyber-crimes, etc. In order to make rational decisions about
practical security of e-voting systems, we have to know these parameters with sufficient
accuracy. Note that if we are unable to do it, then this would also mean that we do not
know whether these systems are secure. Hence, the way to go here is to obtain better
estimates for these parameters.

We create a hypothetical environment for analyzing security of the two e-voting sys-
tems. We try to estimate the parameters of the environment as close as possible to the
real society. For estimating these parameters we have used information from Internet,
from research papers, interviews with specialists and typical attacking scenarios. We
assume that typical attackers do not make extensive social research for getting informa-
tion on whether it is profitable to attack. Quite probably, gain-oriented attackers would
analyze the same information from Internet and make decisions intuitively. Definitely,
this hypothetical environment is not perfect, but it is the best we can do for comparing
the security of the two e-voting systems. Our model contains assumptions about: (1)
society, (2) people, (3) technical vulnerabilities, and (4) detection. These assumptions
are commented in the following subsections.

8.1 Assumptions About Society

Voting is a fundamental tool of democracy and one of the main rights in democratic
society. We assume that the environment we model is a well-developed democratic
society in which the aim of crime determines the seriousness of crime. If the aim of
the crime is to affect the result of voting then it is viewed as a serious crime against
society, no matter how it was performed and whether the crime was ”technically suc-
cessful”. Hence, we assume that Penalties ≈ Penalties−. Moreover, the punishment for
crime is at least dispossession of the gains obtained from the crime. Thus, we assume
that Gains ≤ Penalties. For simplicity, we study the limit case Penalties ≈ Gains ≈
Penalties−, which implies

Outcome ≈ −Costs + Gains · [p · (1 − q) − (1 − p) · q−] .

Parties spend lots of money for campaigns of election. Probably, the gain is even bigger.
In Estonia, parties spend about $2 million [10] for a campaign of election. We assume
that Gains of affecting the result of election is at least 5 times bigger, so $10 million.

By the data available in Internet the price of obtaining malicious code is about $50.
A person can be bribed for about $50,000 [7]. We assume that attackers are rationally
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and economically thinking. Hence, to calculate the cost of attack, we focus on self-cost.
Even, if the price of developing a forged Network Server is $2 million, the expenses of
attacks are small compared to the gains.

Considering the specificity of elections, Costs are always much smaller than Gains.
Hence, the value of Costs does not affect attacker’s final decision to attack an e-voting
system or not. Therefore, we may even assume that Costs ≈ 0. If the e-voting system
is secure when Costs = 0 then the system is also secure when Costs > 0. Therefore,
under these simplification we conclude that

Outcome ≈ −Costs + Gains · [p · (1 − q) − (1 − p) · q−] < 0 ,

whenever p · (1 − q) − (1 − p) · q− < 0. To summarize, considering the particularity
of e-voting we may estimate only three parameters p, q and q− of the attack game
for estimating the profitability of attacks. In the following we list the characteristic
probabilities (Char. 1-15) of the environment that we use in our analysis:

8.2 Characteristic Probabilities

In the following, we list 15 characteristic probabilities of the environment that we use in
our security analysis. These probabilities are divided into assumptions about: (1) people
(Char. 1-7), (2) technical vulnerabilities (Char. 8-11), and (3) detection (Char. 12-15).

Char. 1. About 1 per cent of voters will notice that their computers are infected and
will inform the authorities about it. Thereby, the success probability of attacking large
number (1000) of voters’ workstations (without this being noticed) is p ≤ 0.991000.

Char. 2. At least 1 per cent of electronic voters verify the authenticity of the Network
Server certificate, the signature of ActiveX component and wait for the confirmation
of e-voting. We assume that if a voter is aware of the need to verify the certificate of
Network Server, then he is also aware of the need to verify the signature of ActiveX
component and to wait for the confirmation about accepted vote. The probability that
1,000 voters do not verify the certificate of Network Server or the signature of Ac-
tiveX component or do not wait for the signed confirmation from the e-voting server is
p ≤ 0.991000. Such a modeling of voters is somewhat idealistic, because all voters are
assumed to have the same values of probability. In practice, the attacker may estimate
these values by guessing the technical skills and carefulness of the voters and then to
attack those with lower skill and careless.

Char. 3. About 33 per cent of people can be bribed for $50,000 [7].

Char. 4. The probability that voters click on a (well-created) malicious link is ≈ 0.6.
Hence, the probability that a fixed set of 1000 people will use the link is p ≤ 0.61000.

Char. 5. About 1 per cent of people involved in attacks will reveal information that
causes the attackers to be caught. Hence, the probability that a group of 10 people will
get caught is q ≥ 1 − 0.9910 ≈ 0.096.

Char. 6. We assume intuitively that voter would sell his vote with probability 0.5 by
using active votes’ selling environment. The probability that voter would sell the vote
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by using more anonymous ways is 0.7. It means that a voter would feel more secure
to participate in a scheme of votes’ selling and buying by using computer based voting
data saving and proving software.

Char. 7. The probability that voters agree to vote many times (for an attacker) is 0.9.

Char. 8. The probability of exploiting a bug in an operating system or hardware and
getting access to a system is ≈ 0.002. We assume that bugs in operating systems or in
hardware are discovered once in 3 years on average. Within 2 days, viruses can exploit
the bug. Within 7 days, there will be countermeasures available. Hence, attackers have
one week per three years to exploit the bug. Thereby, at every moment, there is bug
to exploit with probability 0.0064. The probability of getting unauthorized access to
administrative areas of a system or to other internal modules is 0.21 [8]. Hence, the
probability of exploiting a bug and getting access to the system is 0.0064·0.21 ≤ 0.002.

Char. 9. The probability that a forged Network Server or malicious code succeeds in
attack is p ≈ 0.95. Usually, the accordance between functions of developed information
system and claimed system requirements is not 95 per cent. However, for estimating the
security of system we promote attackers. If the system is secure against powerful and
penetrating attacks, then it is secure against weaker attacks.

Char. 10. The probability that voters’ computers are vulnerable is about 0.31 [6].

Char. 11. The probability that adversaries have succeeded to gain control over the con-
nection between the e-voting servers is 0.15. We assume intuitively that if the proba-
bility that voters’ computers are vulnerable for session controlling is 0.31 [6], then the
control over the session between servers is harder at least twice as hard, i.e. p ≤ 0.15.

Char. 12. Code review and auditing can detect about 30% of software errors.

Char. 13. Bribing that causes damage is detected with probability q ≤ 0.3 [7].

Char. 14. Attacks against insecure server conf. are detected with probability 0.05.

Char. 15. The probability that a successful crime against the e-voting system will be
convicted is 0.8. Unsuccessful crimes will be convicted with probability 0.2 [7].

9 Attack Game Analysis

First, we decompose the four large-scale attacks (listed in Sec. 6) by using the OR-rule,
i.e. we created a list of alternative ways of attacking the two e-voting systems. After
that, we analyzed all alternatives separately by using the security assumptions (Sec. 7),
the environment characteristics (Sec. 8), and the attack tree method (Sec. 5). Table 2
depicts the decomposition of the large-scale attacks.1 For example, we studied seven
alternatives for large-scale votes’ theft and four alternatives (so called sub-attacks) for
large-scale disfranchisement attack. For the lack of space, we will not present detailed
analysis of all possible attacks and alternatives. First, we focus on a few sub-attacks and
then present a more complete analysis for the large-scale votes’ buying attack.

1 The table is not complete and does not contain decomposition of all four large scale attacks.
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Table 2. Sub attacks for large-scale voting specific attacks. By ’-’ we mean that the sub-attack is
impossible or insufficient.

Attack Sub-attacks EstEVS SERVE

Large-scale votes’ theft Large-scale control over voters’ processes unprofitable unprofitable
Large-scale access to voters’ private keys unprofitable unprofitable
Eligible voters cast votes more than once unprofitable unprofitable
Large-scale disfranchisement in two servers unprofitable -
Large-scale modification of ballots in the
connection between Voter Application and - unprofitable
Network Server
Control over processes of Votes Storing Server - profitable
Large-scale votes’ adding in Votes Counting Server - unprofitable

Large-scale disfranchisement Large-scale control over voter processes unprofitable unprofitable
of votes Large-scale disfr. before receiving votes unprofitable unprofitable

Large-scale disfr. in two servers unprofitable unprofitable
Control over processes of Votes Storing Server - profitable

Large-scale votes’ buying/selling (decomposition omitted) unprofitable profitable
Large-scale privacy violation (decomposition omitted) unprofitable profitable

Large-scale control over voters’ processes. In EstEVS and in SERVE, large-scale
control over voters’ processes is possible either by infecting computers one-by-one or
by using automatically propagating attacking software (viruses etc.). We assume that
both methods have the same expenses. By assumptions, with probability p ≤ 0.991000

attackers are able to smuggle malicious code into voters’ computers and get the desired
data by Char. 1. A large-scale access to voters’ private keys is a serious attack and the
estimation of detecting the attack is 0.8 by Char. 15. If we assume that the attack was
not successful, then the probability of getting caught is q ≥ 0.096 by Char. 5. For
estimating the profitability, we compute Outcome as follows:

Outcome ≤ −Costs+Gains · [p · (1 − q)−(1 − p) · q−]
= −Costs + Gains · [0.991000 ·(1−0.8)−(1−0.991000) · 0.096]
< −Costs−Gains·0.096 < 0 .

As Gains � Costs, the value of Costs does not affect the attacker’s final decision. The
attack is unprofitable, if p(1−q)−(1−p)q− < 0. Additionally, even if the probabilities
q and q− of getting caught are 0.096, the attack is not profitable. Therefore, an attack
via large-scale control over the voters’ processes is unprofitable in both systems.

Large-scale access to voters’ private keys. An average voter is unable to keep its own
workstation secure enough to exclude all possible abuses of the private key. For ex-
ample, adversaries can steal voter’s password for activating the ID-card. Still, it is not
possible to arrange a large-scale theft of cards, because voters would notice it imme-
diately and elections will be canceled by Assumption VII. The success probability of
large-scale access to voters’ private keys is p ≤ 0.991000 by Char. 1. The argumen-
tations used here are similar to the previously analyzed large-scale attack. Therefore,
large-scale access to the voters’ private keys is unprofitable for rational attackers in
both e-voting systems.

Large scale votes’ buying. Large-scale buying and selling of votes is possible only
if there is a possibility to prove a vote. In case the voter could not prove how he/she
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had voted, the votes’ buying and selling is not a trustful deal. There is a theoretical
advantage for adversaries in the e-voting systems compared to adversaries in traditional
voting. The adversaries do not have to physically contact with every voter for affecting
his choice. The adversaries should affect at least 1,000 voters for affecting the result of
e-voting. Obviously, the easiest way to affect many voters is to offer votes’ buying and
selling services. In Section 8, we assumed that Gains of an attack could be $10 million.
Let us analyze, whether it is possible to eliminate the parameter Costs like we did
previously. Obviously, the price of organizing and preparing the attack is much smaller
than Gains. The biggest expense is the price of votes. In the case when adversaries
spend 20 per cent of the profit for buying 1,000 votes, the price of vote is $2,000. We
assume that such price is attractive for vote sellers. Therefore, Costs for buying at least
1,000 votes is smaller than Gains. In the following, we create attack trees for large scale
votes’ buying in SERVE and in EstEVS.

9.1 Analysis of SERVE

An attack tree for large-scale votes’ buying in SERVE is depicted in Fig. 2 (left) and
the computations in Table 3. There are three possibilities to arrange votes’ buying and
selling in SERVE. First, by using votes selling and buying web server (Sub tree A).
Voters connect to votes buying server for casting their votes. The server saves voters’
choices and sends ballots to Network Server. Second, voters use votes saving software
for getting the receipt of voting and cast a vote directly to Network Server (Sub tree
B). A receipt consists of voter’s data, a vote, a random number and an encrypted ballot.
The voters send the receipts to the adversary for proving how they voted. The adversary
attacks the e-voting server for getting a proof that a ballot is received. For inserting
malicious code into servers there are four possibilities: software developer of a server is
bribed (B.3.2.1.), server administrator is bribed (B.3.2.2.), insecure configuration man-
agement is exploited (B.3.2.3.). Third, the adversary attacks the servers of e-voting for
checking how voters voted (Sub tree C). Votes Storing Server of SERVE decrypts the
ballots. Adversary attacks against Votes Storing Server for the purpose of stealing pairs
of voters’ data and ballots. These pairs give a proof how voters voted. In the following,
we analyze these sub-trees.

Sub-tree A: With probability 0.95 votes’ buying and selling information system is de-
veloped successfully by Char. 9. To consider the active and public attack, the probability
of detecting the attacking group is 0.8 by Char. 15. For analyzing voters connection to
votes’ buying server, we assume that that 50 per cent of voters would sell their vote by
Char. 6. The probability of detecting voters who have voted by using votes buying server
is 0.8 because this is the probability of detecting the votes buying server. To summarize,
it is not profitable for attacker to attack through votes’ buying and selling server.

Sub-tree B: The probability of the votes’ saving software functioning correctly is 0.95
by Char. 9. The probability of detecting the votes’ saving software is 0.096 by Char. 5.
The success probability of voters using the software is p = 0.7 by Char. 6. If there are
at least 1,000 people involved and Char. 5 is justified then the probability of detection
and punishment of saving the receipt is q = q− = 1 − 0.991000. The probability of
the malicious code successfully getting voters’ data and encrypted ballots from a voting
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server is 0.95 by Char. 9. The detection probability is 0.096 by Char. 5. According to
Char. 3, a software developer and a server administrator are bribed with probability
0.33. Based on the assumption that development teams use code reviews, misbehavior
in software is detected with probability 0.3 by Char. 12. Therefore, for estimating the
probability of a software developer getting caught, we consider information leaking
and the detection rate of misbehavior in server. Hence, the probability of getting caught
without succeeding is q− = 0.096 + 0.3 = 0.396 by Char. 5 and Char. 12. Bribery
is detected with probability 0.3 by Char. 13. The success probability of detecting a
software developer is q ≈ 0.096 + 0.3 + 0.3 ≈ 0.7 by Char. 5, Char. 12 and Char. 13.
In the event that the attack was not successful, the probability of detecting that the
server administrator was bribed is at least q− ≥ 0.096 by Char. 5. Considering the
value of q− and Char. 13, the probability of a server administrator being caught is
q ≈ 0.096 + 0.3 ≈ 0.4. Insecure configuration management is successfully exploited
with probability p ≤ 0.002 by Char. 8. We assume intuitively that the probability of
detection of the exploiting configuration management is 0.05 by Char. 14. Control over
the connection between servers is successful with probability 0.15 and the probability
of the detection of the attack is 0.096 by Char. 11 and Char. 5. To summarize, spreading
votes’ receipt software does not give a profitable attack in our model.

Sub tree C: The analysis of sub-tree is analogous to the analysis of sub-tree B.3. At-
tacking Votes Storing Server for getting voters’ ballots is successful with probability
p ≈ 0.32 and it has positive Outcome of the attack game. Therefore, Large-scale votes’
buying in SERVE is profitable, considering our model.

9.2 Analysis of EstEVS

The attack tree Large-scale votes’ buying for EstEVS is depicted in Fig. 2 (right) and
the computations in Table 4. Votes buying attack against EstEVS has just one option.

Table 3. Large-scale votes’ buying in SERVE

Node Description of attack Type p q q− π π− Outcome
A Votes buying server. AND 0.475 0.64 0.64 1.6 · 107 8.7 · 106 −7.45 · 106

A.1 Attacking software is developed. 0.95 0.8 0.8 8.0 · 106 8.0 · 106 1.5 · 106

A.2 Voters connect to the server. 0.5 0.8 0.8 8.0 · 106 8.0 · 106 −3.0 · 106

B Spreading votes’ receipt software. AND 0.208 0.0037 0.00089 1.59 · 107 1.42 · 107 −1.23 · 107

B.1 Developing data-saving software. 0.95 0.096 0.096 9.6 · 105 9.6 · 105 8.54 · 106

B.2 Voters use software to save receipts. 0.7 0.999957 0.999957 1.0 · 107 1.0 · 107 −3.0 · 106

B.3 Obtain ballots from server. AND 0.3135 0.0384 0.0092 4.96 · 106 1.40 · 106 6.21 · 105

B.3.1 Developing malicious code 0.95 0.096 0.096 9.6 · 105 9.6 · 105 8.54 · 106

B.3.2 Inserting code into server. OR 0.33 0.4 0.096 4.0 · 106 9.6 · 105 1.34 · 106

B.3.2.1 Software developer is bribed. 0.33 0.7 0.396 7.0 · 106 3.96 · 106 −1.6 · 106

B.3.2.2 Server administrator is bribed. 0.33 0.4 0.096 4 · 106 9.6 · 105 1.34 · 106

B.3.2.3 Insecure configuration is exploited. 0.002 0.05 0.05 5.0 · 105 5.0 · 105 −4.8 · 105

B.3.2.4 Control connections between servers. 0.15 0.096 0.096 9.6 · 105 9.6 · 105 5.4 · 105

C Get ballots from Votes Storing Server. AND 0.3135 0.0384 0.0092 4.96 · 106 1.40 · 106 6.21 · 105

C.1 Develop malicious vote-saving code. 0.95 0.096 0.096 9.6 · 105 9.6 · 105 8.54 · 106

C.2 Inserting code into server. OR 0.33 0.4 0.096 4.0 · 106 9.6 · 105 1.34 · 106

C.2.1 Software developer is bribed. 0.33 0.7 0.396 7.0 · 106 3.96 · 106 −1.6 · 106

C.2.2 Server administrator is bribed. 0.33 0.4 0.096 4 · 106 9.6 · 105 1.34 · 106

C.2.3 Insecure configuration is exploited. 0.002 0.05 0.1 5.0 · 105 1.0 · 106 −9.79 · 105
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Fig. 2. Attack trees for large-scale votes’ buying attack in SERVE (left) and in EstEVS (right)

Adversaries develop software for saving voting data as a receipt. Voters who wish to
sell their votes use the software in their computers for delivering the voting receipt.
Adversaries attack an e-voting server for getting pairs of voters’ data and encrypted
ballots. The comparison of receipts and encrypted ballots gives the proof how voters
had voted. Without getting control over one of the voting servers it would not be sure
whether the ballots were really sent to the voting server.

In EstEVS, it would be impossible to sell votes via votes’ buying server because
Network Server verifies if the session owner is the same person who signed the ballot.
Votes’ buying server cannot impersonate voters without having access to their ID-cards.

In EstEVS, the ballots stay encrypted until the votes’ counting phase. Hence, without
the private key of Votes Counting Server it is insufficient to attack the voting server for
checking how voters voted. By Assumption III, adversaries do not have the key.

The tree for votes’ buying in EstEVS is similar to the sub-tree B of the corresponding
tree of SERVE. Outcome of this tree is negative and hence EstEVS is secure against
large-scale votes’ buying in our model.

Modification of environment characteristics. For getting some more justification to
our choices of parameters, we made some non-systematic robustness tests. We tried to
change the environment characteristics so that the value of attack game would change
its sign (from positive to negative, or vice versa). For example, we had to decrease Char
2. about 10 times for inverting a value of an attack game. It turned out that several
parameters had to be changed simultaneously for inverting game values and keeping

Table 4. Large-scale votes’ buying in EstEVS

Node Description of attack Type p q q− π π− Outcome

Large-scale votes’ buying. AND 0.2085 1.59 · 107 1.42 · 107 −1.25107

A Develop data-saving software. 0.95 0.096 0.096 9.6 · 105 9.6 · 105 8.54 · 106

B Voters use the software. 0.7 0.999957 0.999957 1.0 · 107 1.0 · 107 −3.0 · 106

C Obtain ballots from voting server. AND 0.3135 0.0384 0.0092 4.96 · 106 1.4 · 106 6.21 · 105

C.1 Develop malicious code. 0.95 0.096 0.096 9.6 · 105 9.6 · 105 8.54 · 106

C.2 Insert the code into server. OR 0.33 0.4 0.096 4.0 · 106 9.6 · 105 1.34 · 106

C.2.1 Software developer is bribed. 0.33 0.7 0.396 7.0 · 106 3.96 · 106 −1.66 · 106

C.2.2 Server administrator is bribed. 0.33 0.4 0.096 4.01̇06 9.6 · 105 1.34 · 106

C.2.3 Insecure configuration is exploited. 0.002 0.05 0.05 5.0 · 105 5.0 · 105 −4.8 · 105

C.2.4 Control the connection between servers. 0.15 0.096 0.096 9.6 · 105 9.6 · 105 5.4 · 105
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changes reasonable (10 times is clearly too much!). Also the punishment and detection
characteristics had to be changed approximately 10 times in order to invert game values.
So, it turned out that reasonable changes do not have much influence on the final results
of our analysis, which to some extent increases our belief about the truthfulness of the
results. However, limited knowledge about the real values and the embryonic state of
the robustness analysis do not enable to make any conclusions about the real security
of these two systems.

10 Further Work

The results of the work are still disputable and need further improvement and justi-
fications, because the characteristics of the defined environment model are arguable.
However, this work is one of the first attempts to rationally analyze the security of e-
voting by combining both the technical and the social aspects, which are all necessary
for making any reliable decisions about the real security of e-voting systems (i.e. when
they are applied in real elections in a real society). It is therefore necessary to continue
the study about society characteristics for creating more realistic environment models.
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Documents
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IBM Research, Tokyo Research Laboratory
1623-14 Shimo-tsuruma, Yamato, Kanagawa, 242-8502, Japan

Abstract. Current business situations require improved confidentiality and in-
tegrity for oÆce documents. However, existing content management systems for
oÆce documents lack required security properties such as the �-property, or have
problems such as label creep. In this paper we propose a meta-data format called
sticky provenance and a fine-grained information flow control architecture using
the sticky provenance. The sticky provenance contains the change history and the
labels of an oÆce document in a secure form, and it ensures the verifiability of
the change history of the documents in distributed environments. The Provenance
Manager, which is a key module of the architecture, reduces the label creep prob-
lem of the information flow control models with the sticky provenance. In other
words, the sticky provenance and the Provenance Manager can introduce a prac-
tical fine-grained information flow control capability to oÆce applications so that
we can ensure both the confidentiality and the verifiability of oÆce documents.

1 Introduction

In this paper we tackle the security problems of oÆce documents. To solve the prob-
lems, we design a fine-grained information flow control architecture with sticky prove-
nance. The sticky provenance is a cryptographically attached provenance to oÆce
documents. We redefine the term “provenance” as “a protected record of the changes of
the content and the security labels of a document,” and we define the data structure of
the sticky provenance to ensure both the confidentiality and the integrity of the oÆce
documents.1

There are two main reasons to focus on oÆce document security. One is that the of-
fice documents often contain confidential information belonging not only to the owner’s
organization but also to their customers. The other is that there are gaps between exist-
ing content management systems and information flow control models.

Now let us show several concrete examples of threats to oÆce documents.

� This study was sponsored by the Ministry of Economy, Trade and Industry, Japan (METI)
under contract for the New-Generation Information Security R&D Program.

1 Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both. Microsoft, Windows, Windows NT and the Windows logo are
trademarks of Microsoft Corporation in the United States, other countries, or both. Linux is
a registered trademark of Linus Torvalds in the United States, other countries, or both. Other
company, product or service names may be trademarks or service marks of others.

A. Miyaji, H. Kikuchi, and K. Rannenberg (Eds.): IWSEC 2007, LNCS 4752, pp. 336–351, 2007.
c� Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. An example of a content management system and confidential documents

Example 1 (Information leak via legitimate users). Figure 1 shows an example situation
of an information leak. The system in Fig. 1 consists of four entities and one system: (1)
an oÆce document d1, which contains company’s strategy with label L1, (2) an oÆce
document d2, which is just an agenda for a group meeting with label L2, (3) a user called
“Alice,” who has a clearance for L1 and L2 (denoted �L1� L2�), (4) a user called “Bob,”
who has a clearance for L2, and (5) a content management system which has a access
control capability. If Bob attempts to read d2 via the path (A) in Fig. 1, the system denies
the read access, and therefore d1 can be secure. However, if Alice copied the data from
d2 to d1, then Bob can at least read a part of the confidential information belonging to
L1 via the path (B). No malicious user exists in the example, but the documents are
threatened with an internal information leak risk.

The Bell-LaPadula model [1], which is one of the Multi-Level Security (MLS) mod-
els, is designed for the purpose of controlling information flows to ensure informa-
tion confidentiality. A system based on the Bell-LaPadula model can prevent the indi-
rect information leaks such as the flow via the path (B) in Fig. 1. However, the Bell-
LaPadula model-based systems have some drawbacks and limitations for the purpose of
the document management. The following three examples reveal the drawbacks and the
limitations.

Example 2 (Information flows cause exclusion of legitimate users). Suppose the system
in Fig. 1 has an information flow control capability. If Alice copied data from d1 to d2,
then the system automatically raises the label of d2 to �L1� L2� to comply with the �-
property of the Bell-LaPadula model. After the copy operation, Bob can no longer read
d2 even if d2 does not contain information belonging to L1 (e.g., d2 is just a harmless
summarization of the strategy and it can be disclosed to Bob).

Example 3 (Labeling diÆculties). In Example 2, Alice may attempt to remove the la-
bel L1 from d2. However, in actual cases it is diÆcult to decide whether or not the
labels of the components should be removed because there are plenty of components
(paragraphs, shapes, images, etc.) which have various labels in the document.

Example 4 (Security policies cannot be enforced outside of the system). In Example 1,
Bob can send some content of d2 to an external person against the policy on d2. Even
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if d2 is encrypted at the central storage of the content management system, the oÆce
application in Bob’s client computer will decrypt d2 before editing it because the oÆce
application and the user cannot handle the document in an encrypted form.

Example 5 (The integrity of the history of a document cannot be verified). Suppose
an employee of a company, and the employee creates a financial report as an oÆce
document. Other employees may update the document several times. Before disclosing
the document, the company’s CFO (Chief Financial OÆcer) has to approve it. the CFO
can verify the integrity of the latest version of the document with the digital signature
of the document, but cannot verify the update history of the document.

The examples reveal that the existing content management systems are not enough
to ensure the oÆce document security, and that it is not straightforward to apply the
MLS capability to the content management systems. There are security and practicality
gaps between the existing content management systems and MLS-capable systems. The
practicality gap seems to be a small problem, but actually practicality a�ects the security
of a system seriously. Fine-grained labeling, which is a technique of labeling compo-
nents instead of labeling its container document for reducing the label creep problem,
is one of the solutions to bridge the gaps, but it has several weak points. It requires an
implementation in the upper layer of the software stack (e.g., in the applications layer),
so we need to implement multiple label management modules for each application.
Another weak point is that it introduces a number of costly operations such as label
management. In addition to the gaps, both deployment and enforcement of security
policies are needed to ensure the oÆce document security in distributed environments.

To solve the problems, we propose a new architecture and a new data structure. Our
contributions are listed below:

– We propose a new paradigm for oÆce document security (Sect. 3). The paradigm
is called Information flow control with fine-grained sticky provenance. The key idea
of the paradigm is applying the information flow control model with fine-grained
labels (Sect. 3.1) to the oÆce applications and the oÆce documents. To define the
labels semi-automatically, we employ the notion of provenance (Sect. 3.2). The
sticky provenance (Sect. 3.3) is an e�ective meta-data exchange format for the of-
fice documents in distributed environments.

– We design a new architecture for the fine-grained information flow control
for oÆce documents (Sect. 4.1, 4.2, and 4.3). The Provenance Manager is a key
module of the architecture, and it serves several roles: label management, linkage
of the labels to the components, conversion of data management, and information
flow control.

– We define a data structure for the sticky provenance (Sect. 4.4) to solve the
challenges introduced by the sticky provenance paradigm (Sect. 3.4). The paradigm
consists of some ideas: removing sensitive information from the content part of an
oÆce document, splitting the meta-data into multiple parts that each of the parts
represents a pair of a domain and a confidentiality level. We apply the sticky prove-
nance to the existing data format such as the clipboard data structure and the Open
Document Format (ODF).
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This paper covers the first step based on our previous work [2], especially in the
applications layer provenance monitor and the data exchange format.

2 Problem Statement

2.1 Target Definition and Situation

In this paper we address the security problems of oÆce documents. There are huge
numbers of oÆce documents in an organization, and oÆce documents are the main
storage form for business information. The oÆce documents have several features: they
are updated frequently, exchanged between multiple organizations, and form aggrega-
tions of multiple document with sources. The security policies of the documents may
be lost in the processes of document exchanges. Such features increase the information
leak risk of oÆce documents.

Current business situations such as an increase of business outsourcing, alliances
with other companies, and frequent mergers and acquisitions are making the security is-
sues for oÆce documents complicated. Another big concern is compliance. Regulations
such as Sarbanes-Oxley Act and Basel II require the integrity of internal documents in
an organization.

There are two reasons to restrict the target of our study to the oÆce documents. One
is that a fine-grained labeling engine has to be implemented in the applications layer.
Therefore, if we implement a fine-grained labeling engine for oÆce applications, we
can achieve maximum of eÆciency at a minimum of e�ort. The other is the popular-
ization of open source software and open standard file formats. Both of them improve
the interoperability of the fine-grained labeling engine and the sticky provenance. The
OpenOÆce.org [3] and the Open Document Format (ODF) [4, 5] are the examples of
the open source software and the open standard file formats.

2.2 Assumptions and Goal

Before setting the goal of this study, we make the following assumptions:

– The runtime environment for our architecture contain no program that the user does
not intend to execute.

– The authorized users may make errors, or the users (except for the trusted subject2)
may be malicious.

– The information flow channels are limited to files and the clipboard service of op-
erating systems. Other channels such as the shared memory are not assumed as
information flow channels.

Now we set the goal and the assuming threats as follows:

– Ensuring the confidentiality of an oÆce document. Each document cannot be
read except for legitimate users wherever the document is located, and both the
content and the meta-data of the document cannot be removed or altered.

2 The trusted subject is a trustworthy subject who is not restricted by the �-property in the Bell-
LaPadula model.
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– Ensuring the integrity of an oÆce document. Each document including its change
history can be verifiable. A verifier can verify the integrity of the di�erence between
versions of the document, and the author of each version.

2.3 Problems

There are several problems such as the examples in Sect. 1. Now we state the problems.

Problem 1 (Lack of the �-property). Most of the existing content management systems
lack the �-property, and this may cause confidential information leaks and informa-
tion contamination. The lack of the �-property could allow information to leak from a
higher-level document to a lower-level document via the outside of the system bound-
aries.

Problem 2 (Label Creep). In the Bell-LaPadula model, the label assigned to each in-
formation can rise, but cannot fall. Therefore information flows finally cause all of the
labels to rise to the least upper bound of the label lattice. This phenomenon is called
“label creep,” and the label creep lowers the accessibility for legitimate users. In the
strict sense, the label creep is necessary to ensure the confidentiality of information.
However, indiscriminate label creep may cause unnecessarily label rising (Example 2).
The declassification [6, 7] (reduce the label for a component in cases where the label is
too strict for the component) is required to support the accessibility for the legitimate
users.

Problem 3 (Declassification diÆculties). Declassification operation can be diÆcult de-
cisions for trusted subjects as to whether or not an object (document) can be declassi-
fied. In the practical situations, the declassification decisions can not be straightforward
because there is a lot of information, including paragraphs, shapes, and images.

Problem 4 (Enforcement capabilities). The enforcement capabilities of a content man-
agement system are limited to the inside of the system, and it cannot enforce any poli-
cies on the documents which have gone outside of the system. The limited enforcement
capabilities are irreconcilable with the features of oÆce documents that they are often
sent to external organizations.

Problem 5 (The verifiability of the history of a document). According to the legisla-
tions, every company has to ensure the integrity of the internal processes. In other
words, the company has to ensure the verifiability of the history of internal documents.
However, most of the oÆce document formats do not provide the verifiability for the
change history.

3 Overview of Our Idea

The core idea of our proposal is information flow control for oÆce documents based on
fine-grained sticky provenance. This idea is based on an MLS (Multi-Level Security)
system which has the �-property, and the idea protects the MLS system from the label
creep problem and supports declassification operations. Now we show solutions to the
problems.
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Solution 1 (Fine-grained information flow control for Problem 1, Problem 2, and Prob-
lem 3). Assigning a security label to each component (paragraphs, shapes, images, etc.)
in each oÆce document, and warn a user if the user is about to produce an information
flow causing a label creep problem. The information flow control model reduces the risk
of label creep (Example 1), and the rich meta-information given by the fine-grained la-
bel supports users in the declassification decisions (Example 2).

Solution 2 (Provenance). Tracking and recording the provenance of an oÆce docu-
ment. This solution supports users to determine the labels of components (Example 3).

Solution 3 (Sticky provenance for Problem 4 and Problem 5). Attaching the provenance
data and the security labels to each oÆce document in a cryptographic sense. The con-
tent and meta-data are sealed3 so that applications which do not enforce the policy for
the document (e.g., existing oÆce application without the extension we implemented)
cannot read any data in the document (Example 4). The provenance data is structured
to allow users to verify not only the latest revision of the document but also the change
history of the document (Example 5).

In the rest of this section we will give an overview of our ideas (e.g., the definition
of the term “provenance”), and then we will mention how to realize the solutions in
Sect. 4.

3.1 Fine-Grained Labeling

In our architecture, we label the components such as paragraphs, shapes, and images
in an oÆce document, whereas most of the existing content management systems label
objects at a coarse granularity (such as files). Under the fine-grained labeling, informa-
tion flow control is performed at the granularity of components, and therefore the oÆce
documents are free from the label creep problem. The fine-grained labeling also pro-
vides the users with rich meta-information for declassification, and thus the danger of
inappropriate declassification can be decreased. The fine-grained labeling engine needs
to be implemented as an application extension, not as a middleware extension or as an
operating system extension (Sect. 1).

As we mentioned above, the fine-grained labeling capability forces users to pro-
vide rich information for the labels. However, it is costly for the users to provide rich
meta-information to the labeling engine. To support the users, we introduce a notion
of provenance. The rich information given by the provenance allows semi-automatic
definitions of the labels.

3.2 Provenance

The term provenance generally means “the place of origin or earliest known history of
something” or “a record of ownership of a work of art or an antique, used as a guide
to authenticity or quality.”4 One of the definitions of provenance (or data provenance)

3 “Seal” means an encryption operation with keys corresponding to the labels (Sect. 4.4).
4 Oxford Dictionary of English, 2nd Edition, 2003.
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Fig. 2. The notion of the provenance-enabled oÆce document

in the field of computer science is “broadly to refer to a description of the origins of
a piece of data and the process by which it arrived in a database” [8]. E-science is the
most popular data provenance utilization which aims to make it possible for a third
party to verify the results of scientific calculations [9].

In our proposed architecture we redefine provenance as “a protected record of the
changes of the content and the labels of a document.” The reason why we use a di�erent
definition is that we need to ensure the confidentiality of oÆce documents in addition
to the integrity of them in distributed environments. A typical oÆce document is a
snapshot of the latest content, and the history of the information flows has been lost.
Some oÆce document formats have the capabilities to record the change history, but
meta-data such as the change history of the author information is not preserved.

We extend the oÆce document format into a provenance-enabled format, as shown in
Fig. 2. The extended oÆce document has a sequence of records containing author infor-
mation or label information of the objects related to the information flow as provenance
data. The combination of the fine-grained labeling and provenance-enabled data struc-
ture supports both confidentiality and declassification. We will show the data structure
of the provenance in Sect. 4.4.

3.3 Sticky Provenance Paradigm

The sticky provenance is the provenance that is cryptographically attached to oÆce
documents. This notion is derived from the notion of a sticky policy [10, 11], suitable
for distributed environments. The sticky provenance contains the change history and
the labels of an oÆce document in a secure form, and it ensures the verifiability of
the change history of document in distributed environments. In contrast to the central-
ized data management systems, sticky provenance allows the powerful enforceability
of policies on the document. For example, if a user opens an oÆce document with
the sticky provenance using an oÆce application without the capability for handling the
sticky provenance, the user cannot alter or remove any provenance data in the document
because the user cannot update the cryptographic link (Sect. 4.4 and Fig. 4).
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3.4 Challenges of Fine-Grained Sticky Provenance Paradigm

The sticky provenance paradigm introduces some technical challenges in addition to
the problems described in Sect. 2.3.

Challenge 1 (Confidentiality of the provenance data). The provenance data may con-
tain confidential information because it contains a history of content and its labels.

Challenge 2 (Impact for document verifiability). Fine-grained information flow
degrades the verifiability of an oÆce document. Only a verifier having a clearance to
all of the components in an oÆce document can verify the entire oÆce document.

In the centralized content management systems, meta-data is stored at the central stor-
age, and therefore it can be protected by the access control capability of the system. In
contrast to the centralized systems, our architecture need to encrypt the sticky prove-
nance need to protect it against illegal operations. We will define the data structure of
the sticky provenance in Sect. 4.4 so that we can solve the challenges.

4 Fine-Grained Sticky Provenance Architecture

Our architecture consists of an oÆce application extension module called Provenance
Manager and a data structure called sticky provenance. In this section we will show
them in detail.

4.1 Design Principles

Based on the goal and the assumptions (Sect. 2.2), we set our design principles for the
solutions (Sect. 3) as follows:

1. Attaching labels at a fine granularity.
2. Controlling (accepting or denying) the information flows of the components both

within an oÆce document and between multiple oÆce documents.
3. Ensuring the enforcement capability of components even if they leave their con-

tainer oÆce document.

4.2 Architecture Overview

Figure 3 shows the fine-grained sticky provenance architecture. The Provenance Man-
ager, an extension for an oÆce application, plays the key role for the architecture. Prove-
nance Manager serves the following roles:

– Appending security labels to user input (1).
– Managing the visibility and the security label of each oÆce component (2). The

Provenance Manager stores the security labels of oÆce components in the Prove-
nance Store (3), and it controls the visibility of oÆce components based on their
security label and the document editor’s clearance5. It also provides graphical user
interfaces (4) to show or update the meta-information including the provenance and
the security label of each oÆce component.

5 This can be thought of as information flow control between a document and a document editor.
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Fig. 3. The fine-grained sticky provenance architecture. The Provenance Manager controls in-
formation flows among oÆce documents using the oÆce application’s API and external domain
services.

– Controlling information flow between an oÆce document and external resources
such as the system clipboard and the file system. At the timing of any input or
output, the Provenance Manager extracts combines the provenance information
from�with an oÆce document (5).

– Use “domain” for the notion of “compartment” in the MLS systems. The Prove-
nance Manager retrieves domain-related information such as label definitions, poli-
cies, users, and role definitions from external domain services (6) managed by do-
main administrators.

4.3 Fine-Grained Labeling

Definition 1. Define the label L for an oÆce document d (d � �c1� c2� � � � � cn�)), and the
label Li for an oÆce component ci in an oÆce document d as follows.

Li :� �dom� conf � (1)

L :�
�

ci�d

Li (2)

�
denotes the least upper bound of the labels in the document. The definition means

that the label of an component can have only one pair of a domain dom (e.g., “Sales De-
partment”) and a confidentiality level conf (e.g., “Confidential”) at the same time, and
the label of an oÆce document is the least upper bound of the labels of the components
it contains. The least upper bound is suitable for the operating-system-layer security
label of an oÆce document if the document protection is performed by the operating
system which employs the lattice model [12].
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4.4 Sticky Provenance

We organize the provenance data as shown in Fig. 4, and Fig. 5 shows an example of
the sticky provenance. The data structure definition of the sticky provenance is the key
of the proposal to solve the challenges caused by the sticky provenance paradigm. The
ideas are as follows:

1. Removing (sanitizing) sensitive information from the content part of an oÆce doc-
ument. The sensitive information is securely stored in the meta-data part of the
oÆce document. We call the meta-data part sticky provenance.

2. Splitting the sticky provenance into multiple parts. Each of the parts represents a
pair of a domain and a confidentiality level, and it may be “sealed” and signed.

“Seal” means an encryption operation with a domain-specific key which is protected
and provided by the domain service in Fig. 3. The seal feature prevents unauthorized
users from accessing the confidential oÆce components in a document, and the signa-
tures enable document receivers to verify the integrity of the portions (oÆce compo-
nents) of the document.

Although the seal operation and the signatures are useful for access control and in-
tegrity verification, such cryptographic operations increase performance overhead of
the system. To minimize the performance overhead, we organize the components into
the sets that each of them contains the components having the same security label, and
we perform the cryptographic operations only once per set.

Definition. We define the sticky provenance as follows:

prov(rev�) :�
�
dom� Sig(rev�)� Sig(prov)

��� dom � domset
�

(3)

dom :�
�
conf (dom)

��� conf (dom) � confset(dom)
�

(4)

conf (dom) :�
�
change(dom� conf � t)� Sig (conf (dom))

��� 1 � t � �
�

(5)

change(dom� conf � t) :� Seal
�
�di� (dom� conf � t� t � 1)� auth(dom� conf � t)�

prev(dom� conf � t)�� sealpol(dom� conf )
�

(6)

prov(rev�) denotes the provenance meta-data entry for the �-th revision of the docu-
ment where di� denotes the di�erence between revisions, auth denotes the authoriza-
tion information, and prev denotes the reference to its previous revision.

Seal (d� sealpol(dom� conf )) is a seal operation and we define it as follows:

Seal (d� sealpol(dom� conf )) :�

�		
		�
Enc(d� k(dom� conf )) if sealpol(dom� conf ) is true

d if sealpol(dom� conf ) is false
(7)

sealpol(dom� conf ), a part of the domain policy, returns true if the policy requires
that the data belonging to (dom� conf ) have to be sealed where k(dom� conf ) denotes a
symmetric encryption key for the data belonging to (dom� conf ).
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Fig. 4. The data structure of the sticky provenance
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Fig. 5. An example of the sticky provenance in XML. ���������	
�����
�
�,
����������	�	�������
�
�, and ����������
�
��
��� represent dom, conf (dom), and
change(dom� conf � t) respectively. If the policy (���������	
���	�) requires a seal operation
for the confidentiality ������������, the contents of ����������
�
��
��� will be sealed.

Applying to Document Fragment. We call the data format for in-memory data ex-
change Document Fragment, especially for the data exchange through the clipboard
service provided by operating systems. In a Document Fragment format, the data to be
“copied” is replaced by its provenance meta-data to ensure the enforcement capability
on the outside of the oÆce application.

The OpenOÆce.org converts the target components into its native XML (eXtensible
Markup Language) format at the timing of a copy operation in addition to the common
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Fig. 6. An example of the ODF file containing the sticky provenance data as a ����������
�
�
element. Each oÆce component is an empty (sanitized) element, and it has a user-defined attribute
���������
�
��� to be identified by the Provenance Manager.

data types such as Windows Bitmap (����). We use the XML format as the source
content of the Document Fragment to generate the custom data.

Applying to the Open Document Format. The Open Document Format (ODF) is
a standardized format for oÆce documents, and it is the native format for the Open-
OÆce.org. An ODF file is a ZIP archive which consists of several XML files and binary
files including the content part (����	���
��), the meta-data part (�	���
��), and
the other files such as inserted images. Each of the components such as paragraphs and
shapes is represented as a standardized XML element.

We define a new format called Open Document Format with Sticky Provenance
(ODFP) as a combination of a sanitized original ODF content and its provenance. The
meta-data (prov(rev�) in (3)) is attached as a child element of the �	�� element defined
in the ODF standard as shown in Fig. 6.

4.5 Information Flow Control Rules

We assign three choices to the Provenance Manager for an inbound information flow
such as a paste operation or a file load operation as follows.

accept. If a user has a clearance for the object of the information flow, and if the target
oÆce document has a higher label than that of the object.

warn (conditional accept). If a user has a clearance for the object of the information
flow but there exists a component which has a label di�erent from that of the object
in the target oÆce document, the Provenance Manager warns the user of label creep.
If the user accept the warning, the label of the oÆce document automatically rises.

deny. If a user does not have a clearance for the target object, the information flow is
automatically denied because the user fails to unseal the target object.

Outbound information flows such as copy operations and file storing operations are
always accepted because all of the information is sealed (Sect. 4.4). Security decisions
and their enforcement will occur at the time of inbound information flow operations.
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5 Related Work

Content Management Systems such as an Enterprise Content Management (ECM) sys-
tems or a Digital Rights Management (DRM) systems manage documents in a central
repository and controls access to the documents. The products for ECM and DRM are
suitable for documents that are managed only in one organization6, or documents that
are updated infrequently. From the viewpoint of our problem statement, a Content Man-
agement System is not suitable because it does not have the �-property, and therefore it
cannot prevent users from doing unintended operations that cause information leaks. A
Collaborative environment is our target environment. Tolone et al. [13] clarified techni-
cal problems with access control for such environments. Bertino et al. [14] proposed an
infrastructure to ensure the security for XML documents which are exchanged among
di�erent parties using XPath [15]. Their proposed infrastructure and its data structures
also ensure both the confidentiality and the integrity of documents. In contrast to their
proposal, our architecture employs label-based information flow control instead of the
(X)path-based access control. Pan et al. [16] proposed middleware which enables ac-
cess control to data that is stored in a centralized database and shared across di�erent
organizations. Jin et al. [17] also proposed a framework to enable secure sharing of sci-
entific data over a distributed environment. Provenance is mainly discussed in the area
of e-science as mentioned in Sect. 3.2. There are general discussions [9, 18, 19] about
the verifiability of e-science results, and some concrete studies [20]. Recently, update
operations [21, 22] and workflow integration [23] are hot topics.

Information flow control frameworks for the operating systems such as SELinux [24]
can enforce security policies around a computer platform. However, policy granularity
of the OS layer framework is more coarse than that of an application layer informa-
tion flow framework. Language-based information flow control [25, 26, 27] enables
considerably fine-grained information flow control, and such approaches can be inte-
grated with our work. XML Access Control is one of the most active research areas,
and there is a lot of previous work [28, 29] including XACML [30], an open standard
to express access control policies. Mazzoleni et al. [31] proposed an algorithm to in-
tegrate multiple XACML policies to enable collaborative works between multiple par-
ties. Combining access control and XML Versioning [32, 33] is another active research
area. Iwaihara et al. [34] proposed a new expression called “XVerPath” to designate a
version-aware XML element. Fine-grained access control is also important for XML
documents [35].

Our architecture requires partial verifiability because the content of the document
fragment is an aggregate consisting of the encrypted data belonging to each domain.
Sanitizable signature algorithms [36, 37, 38] allows documents to provide a capability
for partial verifiability. The sticky provenance provides the verifiability for the docu-
ments even if the document consists of encrypted fragments.

Reasonable performance is always demanded of practical security systems. E�ective
di� creation [39], access control performance improvement [40], and e�ective change
detection [41] can be integrated with our work to improve its performance.

6 Some products provide document administrators to enforce security policies for the documents
which have gone out of the organization’s computers.
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6 Conclusion

In this paper we proposed a new paradigm information flow control for oÆce docu-
ments based on fine-grained sticky provenance that improves the confidentiality and the
integrity for oÆce documents while reducing the label creep problem and the declassi-
fication diÆculties. We also design a fine-grained information flow control architecture
based on the paradigm, and define the data structure of the sticky provenance.

Currently we are working to implement the Provenance Manager as an extension
for OpenOÆce.org. When the implementation is finished, we need to evaluate the per-
formance overhead of the implementation. We also need further studies on the policy
definition (e.g., domset, confset, sealpol(dom� conf ), and declassification policies) and
key management. The notion of Trusted Virtual Domains [42] can also be integrated
with our architecture to support the domain management and the software component
validation. The other important future project will be a collaboration with reference
monitors on the operating system layer to retrieve the meta-information originated in
the operating system layer.
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Abstract. We propose an anonymous communication scheme using a
multistage cryptographic anonymous proxy to make malicious users trace-
able. For the purpose of preventing illegal use of an anonymous channel,
the proposed scheme can identify an illegal anonymous user or his accom-
plice who joins a conspiracy if a threshold number of third parties or more
agrees on anonymity revocation. Expected applications of the proposed
scheme include real-time web services over the Internet in which both user
anonymity and preventing illegal use are desired such as anonymous bul-
letin board services, auctions, and peer-to-peer file exchange. Moreover,
we implemented the proposed scheme to verify the degree of practicality.
The implementation results include that the case for the received data of
100 KB from an HTTP request and a ten-stage relay for the anonymous
proxy on an Intel Pentium 4 3.0 GHz PC took approximately 1 sec to re-
ceive, and the received data of 1 MB and a two-stage relay required 2 sec.

1 Introduction

1.1 Background

In the TCP/IP based World Wide Web, there is apprehension that on the basis
of IP addresses, malicious web site administrators or eavesdroppers will invade
the privacy of users or launch attacks on user computers. An anonymous proxy,
which accesses web sites instead of the users and conceals the IP address of
each user terminal from the sites, is an effective tool to prevent these types of
security violations. Furthermore, if a multistage cryptographic anonymous proxy
(or router) such as Chaum’s Mix-net[4] or Onion Routing[9] is employed for
anonymous communications, even for each proxy administrator the information
pertaining to “who sent what” or “who accessed where” can be concealed and
therefore the user security level can be relatively increased.

However, anonymous communications using such proxies may foster user fraud.
If a relay proxy is corrupt or administered abroad, it may be difficult to inves-
tigate thoroughly the specifics of an illegal user. Moreover, since many existing
anonymous proxies rely on volunteers, mismanagement by administrators should
be carefully considered.
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From the above observation, it is desirable that anonymous communication
schemes provide some mechanism for restraining fraudulent user behavior. A
practical and technical solution to the problem would be to provide an anonymity
revocation mechanism to anonymous communications. That is, a mechanism in
which only a system manager (or distributed system managers) can identify an
anonymous user.

1.2 Related Work

There are two approaches to provide revocable anonymity to a communication
scheme using a multistage cryptographic anonymous proxy.

One is to backtrack the route with the help of all the relay proxies. In such
a case, all proxies retain a communication log and in particular the proxy con-
nected to a user terminal must identify the user. However, one problem with this
approach is the reliability of the relay proxies or their administrators as stated
in Sec. 1.1.

The other approach is to employ a group signature scheme. The group signa-
ture scheme, which was introduced by Chaum and Heyst[5], allows a group mem-
ber to sign messages anonymously on behalf of the group. Most group signature
schemes also provide both anonymity and membership revocation mechanisms.
However, existing group signature schemes with practical revocation mechanisms
[2,1,3,10,8] impose heavy signing and verification costs. To the best of our knowl-
edge, [8] is the most efficient one with regard to the signing and verification costs.
Specifically, the scheme requires 36 and 21 multi-exponentiations in Z/NZ for
signing and verification, respectively, where N is an RSA composite number.
When a group signature scheme is employed in a communication scheme using
a multistage anonymous proxy, a user terminal generates a group signature for
messages and the receiver terminal verifies the signature. A potential problem
with this approach is the difficulty of preventing DoS attacks. If a corrupted user
sends a large amount of messages without the group signature to a receiver using
an anonymous channel, an investigating authority becomes increasingly harder
to identify the user compared to the case that a normal channel was used. To
prevent this kind of attacks, the first relay proxy additionally has to authenticate
a user by an authentication protocol using a group signature and preserve the
authentication log.

1.3 Our Contribution

We propose a new approach to provide a revocable anonymity mechanism to
the communication scheme using a multistage cryptographic anonymous proxy.
The proposed scheme employs not a group signature scheme but a mixture of a
general signature scheme and threshold cryptosystem to revoke anonymity. Un-
like the group signature based schemes, in the proposed scheme only a receiver
preserves a certain part of communication data to identify the anonymous user
or his accomplice who improperly supports the user communication. A thresh-
old cryptosystem[7] consists of an encryption function and the corresponding
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decryption function in which a secret key is distributed to multiple parties, and
if a threshold number of parties who retain the distributed keys cooperate, de-
cryption is possible.

Due to the mixture model of the proposed scheme, any user or his accomplice
can be specified if a threshold number, t, of k third parties cooperate, and con-
versely as long as t third parties do not conspire, the proposed scheme provides
anonymity for every user equivalent of the scheme that employs a multistage
cryptographic anonymous proxy.

Moreover, we report on the implementation results of the proposed scheme to
verify the degree of practicality. The results verify that generally the performance
is sufficient for practical purposes. For example, the case for the received data
of 100 KB from an HTTP request and a ten-stage relay for the anonymous
proxy on an Intel Pentium 4 3.0 GHz PC took approximately 1 sec to receive,
and the received data of 1 MB and a two-stage relay required 2 sec. Thus, the
proposed scheme is considered available for real-time web services in which both
user anonymity and preventing illegal use are desired, for example, anonymous
bulletin board services, auctions, and peer-to-peer file exchange.

2 Underlying Scheme

There are three types of anonymous communications using a multistage cryp-
tographic anonymous proxy. One is an asynchronous scheme typified by Onion
Routing. The asynchronous scheme targets real-time anonymous communica-
tions by complexifying the communication route going through some relay prox-
ies, but it is assumed that monitoring of a certain network is intractable. Second
is a synchronous scheme typified by Chaum’s Mix-net. The synchronous scheme
aims to establish anonymous communications against a strong adversary who
can observe the entire network by shuffling and re-encrypting multiple messages.
The scheme provides anonymity among a certain group in the presence of the
adversary under general cryptographic assumptions. However, it is not suitable
for real-time communication applications because of shuffling multiple messages.
The last is a semi-asynchronous scheme that is a hybrid mode consisting of asyn-
chronous and synchronous schemes for providing both strong anonymity and fast
anonymous communications. As stated in [6], the semi-asynchronous scheme op-
erates such that every relay proxy outputs either two messages with shuffling
by storing the previous input ciphertext or only the stored message by being a
certain time. Please see [6] for details. On the other hand, all of the schemes
depends on the reliability of the relay proxies, that is, the anonymity is lost
immediately if all relay proxies conspire.

The proposed scheme employs a route-hiding technique based on Onion Rout-
ing for real-time anonymous communications. We first give an example of Onion
Routing below.

Indicated below is a procedure for a message, msg, sent from a user terminal
to a receiver terminal, R, via two relay proxies, M1 and M2. Here, Addr1, Addr2,
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and Addr3 are the published addresses for M1, M2, and R, respectively, and Ei

represents the encryption function of proxy Mi.

1. A user terminal performs the following.
(a) Generate multiplexed ciphertext C0

def= E1(Addr2‖E2(Addr3‖msg)) (here,
“‖” represents data concatenation).

(b) Send C0 to M1 according to Addr1.
2. The first proxy, M1, performs the following.

(a) Decrypt C0 and obtain (Addr2‖E2(Addr3‖msg)).
(b) Send a portion of the decrypted result, C1

def= E2(Addr3‖msg), to M2
according to Addr2, which is also a portion of the decryption result.

3. The second proxy, M2, performs the following.
(a) Decrypt C1 and obtain (Addr3‖msg).
(b) Send a portion of the decrypted result, msg, to R according to Addr3,

which is also a portion of the decryption result.

In the above protocol, a user can select relay proxies and their order for
message delivery. This aspect of routing flexibility is superior in terms of the
privacy of the route even for proxy administrators.

If Ei represents a public key encryption function, then the decryption pro-
cedure becomes obvious. However, if we consider a large message, this method
is not efficient. A hybrid encryption protocol is desirable in which a public key
encryption is performed to obtain session keys and a message is encrypted with
the session keys using a symmetric key encryption algorithm. In that case, the
previously described multiplexed ciphertext C0 can be the form, for example, as
C0

def= E1(K1)‖EK1(Addr2‖E2(K2)‖EK2( Addr3‖msg)) where EK is a symmetric
key encryption function using session key K, and Ki is a session key between a
user terminal and Mi.

3 Proposed Scheme

3.1 Model

The proposed scheme basically supports semi-asynchronous and asynchronous
modes for real-time anonymous communications due to the Onion Routing pro-
tocol as stated in the previous section. The entities in the proposed scheme are
user U, which hopes to protect the privacy of the user; anonymous proxy group
M = {M1, . . . , Mm}, which provides user anonymity; receiver R, which receives
the message from the anonymous user; and third party group T = {T1, . . . , Tk},
which performs anonymity revocation when fraud of an anonymous user is de-
tected. We suppose that many U and R exist. Note here that only in the case that
t(≤ k) parties cooperate from among T, the user anonymity can be invalidated.
We denote the collaborative subset consists of t parties as T’ hereafter.

The proposed scheme is divided into two processes, the anonymous commu-
nication and the anonymity revocation as shown in Figs. 1 and 2, respectively.
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Fig. 1. An overall picture for the proposed anonymous communication scheme

Third party group T Receiver group R

Third party

terminal

R3

Receiver

Terminal

Fig. 2. An overall picture for the proposed anonymity revocation scheme

3.2 Anonymous Communication

We first present the processing for anonymous communications. Here, Ei and
P are threshold encryption functions such that Mi can decrypt ciphertext Ei(·)
and T’ can decrypt ciphertexts Ei(·) and P(·). As practical functions for Ei and
P , we implemented hybrid encryption functions based on [6]. The implementa-
tion results are given in Sec. 5. Also, U and Mi in advance maintain signature
generation functions S0 and Si, respectively, and their corresponding verification
functions are V0 and Vi, respectively. We suppose that every signature is publicly
linked with a signer, for example, using a certificate.

The processing is as follows.

1. U performs the following.
(a) Select relay proxies and their order for message delivery.
(b) Acquire the address of R, Addrn+1 where n is the number of relay proxies,

and that of Mi, Addri (i = 1, . . . , n).

(c) For message Cn
def= msg, compute Ci

def= Ei+1(Addri+2‖Ci+1) for i =
n − 1, . . . , 0.

(d) Compute σ0
def= S0(C0) and send (C0, σ0) to M1 according to Addr1.
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2. For i = 1, . . . , n, Mi performs the following.
(a) Verify that Vi−1(Ci−1‖Γi−1, σi−1) = 1 holds1(Γ0: null).
(b) Decrypt Ci−1 and obtain (Addri+1‖Ci).
(c) Compute Γi

def= P(Ci−1‖Γi−1‖σi−1) and σi
def= Si(Ci‖Γi), and send

(Ci, Γi, σi) to Mi+1 (if i = n, then R) according to Addri+1.
3. R performs the following.

(a) Verify that Vn(Cn‖Γn, σn) = 1 holds.
(b) Save input (Cn, Γn, σn) and execute processing on message Cn(= msg).

3.3 Anonymity Revocation

Next, we describe the processing for anonymity revocation. The process is as
follows.

1. R transmits (Cn, Γn, σn) to T, and requests disclosure of the originator who
sent message Cn (= msg).

2. T’ (⊆ T) decides on the need for user disclosure based on some reason or
another, and if disclosure is determined, T’ performs the following.
(a) Verify that Vn(Cn‖Γn, σn) = 1 holds. If not, the request from R is dis-

missed and the process is terminated.
(b) For i = n, . . . , 1, the following is performed.

i. Decrypt Γi(= P(Ci−1‖Γi−1‖σi−1)) and obtain the result,
(Ci−1‖Γi−1‖σi−1).

ii. Decrypt Ci−1(= Ei−1(Addri+1‖Ci)).
iii. Verify that Vi−1(Ci−1‖Γi−1, σi−1) = 1 and the decryption result of

Ci−1 equals (Addri+1‖Ci) holds2. If not, Mi is determined as the
criminal (i.e., an accomplice of the anonymous user) and the process
is terminated.

3. The illegal user is specified from (C0, σ0).

3.4 Efficiency

In the present anonymity revocation scheme, generally the communication chan-
nel is retraced using the receiver as the starting point to the illegal user. In the
proposed scheme however, the relay proxies are not required to take part in the
anonymity revocation process due to a set that consists of messages, ciphertexts,
and signatures, (Cn, Γn, σn). This characteristic is very advantageous if anony-
mous proxies are constructed by peer nodes such as in peer-to-peer networks.
Also, as described before, all entities except R do not have to preserve any log
data while in a group signature based scheme a first relay proxy has to preserve
the authentication log with a sender.

Additional operations by U and R compared to the operation in the underly-
ing scheme described in Sec. 2 are just one-time signing and verification, respec-
tively. This is much more efficient compared to a group signature based scheme
1 Here, verification function V(C, σ) will return 1 only when (C, σ) satisfies σ = Si(C).
2 Addri+1 and Ci are already restored to T’ before decrypting Ci−1.
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described in Sec. 1.2. On the other hand, Mi also generates Γi as an additional
operation, however, the operation is considered to be reasonable if the encryption
function of Γi, P , is a hybrid encryption scheme, as described in Sec. 5.

4 Security Analysis

4.1 Anonymity

In order to discuss the anonymity of the proposed anonymous communication
processing, we first define a security requirement regarding anonymity as follows.

Definition 1 (Anonymity). Consider an anonymous communication model
with an anonymity revocation mechanism consisting of user U, which hopes to
protect the privacy of the user, anonymous proxy group M = {M1, . . . , Mm},
which provides user anonymity, receiver R, which receives the message from the
anonymous user, third party group T = {T1, . . . , Tk}, which performs anonymity
revocation when fraud of an anonymous user is detected, and communication
channel CC connected between any two players above. Suppose adversary A who
tries to find out the linkage between a user and a message sent to R through CC
but can corrupt neither at least one proxy, Mj, nor equal or more than a threshold
number of third parties and cannot monitor a path in CC between from Mj to
Mj+1 (or R if j = n). Then, we call the communication channel anonymous if
A cannot find out the linkage.

Suppose that the encryption functions used in the proposed scheme, Ei and P ,
are semantically secure. Then, we see that all data Γi and Ci for i �= j provide
no information in regard to Addrj+1, which is the address of Mj+1 or R, due to
the encryption, and of course every signature, σi, for i ≥ 1 provides no linkage.
In addition, A cannot find out the linkage between Cu and Cv for any u(< j)
and v(> j) because the linkage between Cj−1 and Cj , which are intermediates
between Cu and Cv, is lost for A due to the assumptions of Ei and that A cannot
corrupt Mj. Similarly, we see that the linkage between Γu and Γv is intractable for
A. This means the linkage between the data sent from a user terminal, (C0, σ0),
and the data sent to a receiver terminal, (Cn, Γn, σn), is broken for A. Therefore,
A cannot find out the linkage between a user and a message sent to R and we
reach the following theorem regarding Definition 1.

Theorem 1. The communication channel constructed by the proposed scheme
is anonymous if the encryption functions, Ei and P, are semantically secure.

4.2 Robustness of Anonymity Revocation

Next, we discuss the proposed anonymity revocation processing. It is clear that
the user identifier is properly output in the processing if the user, proxies, re-
ceiver, and third parties perform the operation correctly. That is to say that
integrity is satisfied. Our concern here is robustness of the proposed anonymity
revocation processing. Specifically, we address the following security requirement.
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Definition 2 (Robustness of Anonymity Revocation). Considerananony-
mous communication model with an anonymity revocation mechanism consisting of
U,M,R,T, andCC similar to them inDefinition 1.Thenwe call the revocationmech-
anism of a scheme based on the model robust if a corrupted player involved with an
illegal communication can be identified with overwhelming probability.

Definition 2 above is, in other words, the revocation mechanism is required to
identify a corrupted player except negligible error based on cryptographic oper-
ations.

The following theorem is obtained regarding Definition 2.

Theorem 2. The anonymity revocation mechanism of the proposed scheme is
robust if,

(i) equal or more than a threshold number of third parties T’ perform his/her
operation correctly,

(ii) the threshold cryptosystem, P, is non-malleable,
(iii) correctness of decrypting operation of P by a third party is verifiable to all

the other parties,
(iv) the signature function, Si, is unforgeable,
(v) and an adversary cannot corrupt at least one relay proxy.

Proof. To prove the theorem, we consider possible illegal acts by user, proxies,
receiver, and third parties. We can see easily that an incorrect act by a third
party and receiver can be prevented by the assumptions (iii) and (iv), respec-
tively. Therefore, in regard to third party and receiver impropriety, the proposed
anonymity revocation processing is said to be robust. Next, we consider the fraud
by a user or proxy. Neither a user nor proxy can repudiate the sending data be-
cause of their signature, however, a proxy may disguise the received data. The
received data of proxy Mi are encrypted as Γi and the data are correctly de-
crypted with the cooperation of T’ by the assumption (i). Also, Ci, which is a
portion of the data sent by Mi, must be a portion of the decrypted result of
Ci−1, which are data that Mi claims as a portion of the received data, due to
the assumption (iii). This means that adversary Mi cannot falsify the received
data unless Mi can obtain C′

i−1(�= Ci−1) from an uncorrupted relay proxy such
that a portion of the decryption result of C′

i−1 is Ci. We see that the success
probability of this fraud by Mi is negligible due to the assumptions (ii) and (v).
Therefore, the identifier of the illegal user, σ0, is obtained or the interference by
a corrupted proxy is detected by performing the proposed anonymity revocation
protocol based on the assumption (i). ��

The assumptions of Theorem 2 are considered realistic, however, third parties
may identify not an illegal user but a proxy manager who improperly supports
the user communication. This property of the scheme is somewhat weaker than
a group signature based scheme, which can identify an illegal user as described
in Sec. 1.2.
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5 Implementation

5.1 Overview

The implemented system establishes portal site P in addition to other entities
described in Sec. 3.1, which discloses the addresses and public keys of Mi and
R and keeps a user revocation list to manage membership. P can easily and
dynamically control the access of each user based on the user revocation list as
opposed to the group signature based scheme.

A user first inputs the address for P, and after password authentication, the
user can start to use anonymous web services. Due to the password authentica-
tion, the user can access services from various terminals by merely entering a
password. Note that, P cannot know where the user tries to communicate due
to a multistage anonymous proxy.

In the reply process from R to U, the reply route follows the reverse of the
transmission route. Each Mi reuses the generated session key at the time of
transmission and only needs to encrypt the received data from Mi+1 or R. If
the reply data are simply forwarded, anonymity will be decreased since the data
linkage in a transmission channel is easily specified. U finally obtains the mul-
tiplexed ciphertext of reply data from R and decrypts it using n session keys
between the user and each relay proxy. Furthermore, for the second and subse-
quent communications that take place in the same session, we specify that since
the initially generated session key is reused based on session ID management,
additional key generation is unnecessary. That is, as long as this takes place in
the same session, the second and subsequent communications can be performed
faster than the initial communications.

The concrete processes for anonymous communication and the anonymity
revocation have the following characteristics.

– The anonymous communication scheme proposed in [6], which is a hybrid
encryption scheme and is superior to other schemes in regard to communi-
cation cost, is implemented as a basic anonymous communication scheme.

– Ei and P are hybrid encryption schemes based on [6].

Also, some notations and symbols are followed by [6] and Secs. 2 and 3 in this
paper, in particular,

– p and q are primes such that q|p − 1 holds,
– g is an element of (Z/pZ)× whose order is q,
– 〈g〉 is a unique subgroup of (Z/pZ)× generated by g,
– ai ∈ Z/qZ and hi

def= gai mod p are respectively secret and public keys of the
i-th proxy,

– K is the space for keys,
– and H and F are hash functions that map 〈g〉 → K and 〈g〉 → Z/qZ,

respectively.
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The procedure for proposed anonymous communication scheme is as follows.

Processing flow during communications in implemented scheme

1. U performs the following.
(a) Afterpasswordverification,accessPandacquire theaddressofR,Addrm+1,

and the relayed anonymous proxy address, Addri (i = 1, . . . , m).
(b) Select r ∈ Z/qZ, compute G−1

def= gr, the key exchange public key sent
to P, and as Λ−1

def= 1 compute Gi
def= h

rΛi−1
i , Λi = F(Gi)Λi−1, and

common key Ki = H(Gi) for i = 0, 1, . . . , m, m + 1.
(c) For message Cm+1

def= msg compute C′
i = (Addri+2‖Ci+1) and ciphertext

Ci = EKi+1(C′
i) for i = m, m − 1, . . . , 0, −1. Then send (G−1, C−1) to P

(Addrm+2:null).
2. P performs the following.

(a) Compute T0 = Ga0
−1, the public key for the key exchange sent to M1,

G0 = G
F(T0)
−1 , and the two common keys K0 = H(T0) and K0 = H(Ga0

0 ).
Decrypt C−1 as DK0(C−1) and obtain C′

−1 = (Addr1‖C0).
(b) Compute the illegal user tracking ciphertext Γ0 = EK0(G0‖UID) and

signature σ0 = S0(G0‖C0‖Γ0), and send M1 (G0, C0, Γ0, σ0) according
to Addr1, where UID represents a unique ID of U.

3. Mi performs the following for i = 1, . . . , m.
(a) As a signature authentication for σi−1, after verifying that

Vi−1(Gi−1‖Ci−1‖Γi−1‖σi−1) = 1 holds, compute Ti = Gai

i−1, the public
key for the key exchange sent to Mi+1 (if i = m, then R), Gi = G

F(Ti)
i−1 ,

and the two common keys Ki = H(Ti) and Ki = H(Gai

i ). Decrypt Ci−1
as DKi(Ci−1) and obtain C′

i−1 = (Addri+1‖Ci).

(b) Compute ciphertext Γi
def= EKi(Gi−1‖Γi−1‖σi−1) for tracking the illegal

user and signature σi = Si(Gi‖Ci‖Γi), and send Mi+1 (Gi,Ci,
Γi) according to Addri+1.

4. R performs the following.
(a) Verify that Vm(Gm‖Cm‖Γm‖σm)=1 holds, and compute Tm+1 = G

am+1
m

and common key Km+1 = H(Tm+1). Decrypt Cm as DKm+1

(Cm) and obtain C′
m = Cm+1 = msg.

(b) Save input (Cm, Γm, σm), and execute processing for message Cm(=
msg). Compute ciphertext Rm+1

def= EKm+1(resp) for reply data resp
to U and send Mm response Rm+1.

5. For Mi (if i = 0, then P) where i = m, m − 1, . . . , 1, 0, calculate ciphertext
Ri

def= EKi(Ri+1), and reply to Mi−1 with Ri (if i = 1, then P; and if i = 0,
then U).

6. U decrypts R0 as DKm+1(DKm(· · · (DK0(R0)) · · · )) = resp, and obtain reply
data resp from R.
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The procedure for proposed anonymous revocation scheme is as follows.

Processing flow of implemented scheme when tracking an illegal user

1. R transmits LOG = (Gm, Cm, Γm, σm) to P, and requests that the users that
support the LOG be disclosed.

2. P decides on the need for user disclosure based on some reason or another,
and if disclosure is determined, P performs the following.

3. Verify that Vm(Gm‖Cm‖Γm‖σm) = 1 holds. If not, R is determined to be
illegal and the process is terminated.

4. For i = m, . . . , 1, 0, the following is performed.
(a) With the cooperation of Tj (j = 1, . . . , t), compute Ki = H(Gai

i ),
DKi(Γi) = (Gi−1‖Γi−1‖σi−1), Ki = H(Gai

i−1), and Ci−1 = EKi(
Addri+1‖Ci) (if i = 0, then DKi(Γi) = (Gi−1‖UID)).

(b) If i > 0, after verifying the legal processing of Tj based on zero-knowledge
proof technology, confirm that Vi−1(Gi−1‖Ci−1‖Γi−1‖
σi−1) = 1 holds. If not, Mi is determined to be illegal and the process is
terminated.

5. The illegal user is specified from UID.

5.2 Performance

We performed the following measurements.

[Table 1 ] shows the processing time in the proposed anonymous communica-
tion process where the number of relay proxies, n, is set to 3, 4, 5, 10, 15,
20, and 30 by setting the received data size to 100 KB.

[Table 2 ] shows the processing time in the proposed anonymous communica-
tion process where the received data size is set to 1, 10, 100, and 1000 KB
for a two-stage anonymous proxy.

[Table 3 ] shows the processing time in the proposed anonymity revocation
process where n is set to 2, 3, 5, 10, 20, and 30 by setting the received data
size to 100 KB.

In Tables 1, 2, and 3, the data size of the transmission HTTP request (= msg)
is set to approximately 260 Bytes. The test environment parameters are given
in Table 4. The network comprises 100Base-TX switching hubs.

5.3 Evaluation

Based on the results in Table 1, we confirmed that the processing time for the
transceiver increases roughly in proportion to the number of relay proxies. This
means every relay proxy requires about the same cost while the processing costs
for Ci−1 decryption and Γi encryption vary for each proxy Mi. On the other hand,
in the case where the transmission message, msg, or the received data, resp,
are sufficiently large, we can predict different consequences from the increasing
trends shown in Table 1.
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Table 1. Required Processing Time For Number of Stages in Anonymous Proxy [sec]

Number of relay proxies (= n)
3 4 5 10 15 20 30

Transmission (U → R) 0.238 0.290 0.343 0.630 0.893 1.169 1.759

Response (R → U) 0.310 0.362 0.388 0.568 0.807 1.035 1.495

Transceiver as a whole 0.549 0.674 0.741 1.213 1.703 2.212 3.261

Table 2. Required Processing Time During Communications [sec]

Received data size
1KB 10KB 100KB 1MB

Transmission (U → R) 0.189 0.189 0.184 0.189

Response (R → U) 0.030 0.041 0.213 2.151

Transceiver as a whole 0.227 0.241 0.430 2.347

Table 3. Processing Time Required to Identify Illegal Person [sec]

Number of relay proxies (= n)

2 3 5 10 20 30

1.122 1.269 1.547 2.250 3.587 4.828

Table 4. Test Environment

CPU Pentium 4 3.0 GHz

RAM 1 GB

NIC 1000BASE-T

OS Windows 2000 Professional SP4

Language C or Java

Protocol SOAP over HTTP

From the results in Table 2, even if the size of the received data is around
100 KB, we find that the processing cost for response exceeds that for trans-
mission, which includes the key exchange and ciphertext generation for revoking
anonymity. In addition, we verified that even if the size of the received data is
around 1 MB with a two-stage relay it takes only around 2 sec. and in terms
of viewing as web services, the performance is generally sufficient for practical
purposes.

The processing for identifying an illegal user or his accomplice is not gener-
ally considered to require immediate promptness compared to when conducting
communications; however, as shown in Table 3 even if the number of stages n
of relay proxies is large (e.g., 30), it was confirmed that the processing can be
accomplished within a few seconds.
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6 Conclusion

We proposed a scheme that provides anonymous communications with a func-
tion to track malicious users over a communication channel in which monitoring
of the channel is intractable. The proposed scheme supports semi-asynchronous
and asynchronous modes using Onion Routing. We also reported on the imple-
mentation results of the asynchronous mode of proposed scheme to verify the
degree of practicality. The results verified that generally the performance is suf-
ficient for real-time web services in which both user anonymity and preventing
illegal use are desired such as anonymous bulletin board services, auctions, and
peer-to-peer file exchange.
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Abstract. Anonymity is considered as a valuable property as far as
everyday transactions in the Internet are concerned. Users care about
their privacy and they seek for new ways to keep secret as much as of
their personal information from third parties. Anonymizing systems exist
nowadays that provide users with the technology, which is able to hide
their origin when they use applications such as the World Wide Web or
Instant Messaging. However, all these systems are vulnerable to a number
of attacks and some of them may collapse under a low strength adversary.
In this paper we explore anonymity from a different perspective. Instead
of building a new anonymizing system, we try to overload an existing file
sharing system, Gnutella, and use it for a different purpose. We develop
a technique that transforms Gnutella as an Anonymizing System (GAS)
for a single download from the World Wide Web.

Keywords: Security, Anonymity, P2P, Gnutella.

1 Introduction

Anonymity is considered as a valuable property in both physical and digital life.
Acting in an anonymous fashion may be considered suspicious, and in many cases
the actor may not follow legal procedures. Apart from these ill cases, anonymity
is considered the basic building block for someone who demands to keep her
privacy. We are interested in cases, in which technology is used to preserve a
user’s private information from third parties.

David Chaum[7] in 1981 was the first to vision an electronic mail service
that will operate in an anonymous fashion, using some intermediate MIX nodes.
These intermediate MIX nodes decouple the correlation between the sender and
the recipient; this correlation is the outcome of having the recipient contacting
directly the electronic mail service. Since then, many systems that are espe-
cially developed in order to serve as anonymizing systems have been published.
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These constructs may be used as means for having interactions with third parties
without revealing the user’s identity. More precisely, anonymity is usually re-
quired when two parties are having a transaction. For example a Web client is
visiting a Web server. We distinguish between sender and receiver anonymity.
In this paper we are dealing with sender anonymity; we develop techniques that
allow a user to send an HTTP request to a Web server and receive the Web
content, without revealing her identity.

Many anonymizng systems like Crowds[14], Tarzan[10], Cashmere[20] and
MorphMix[15] have been designed theoretically and released as academic pub-
lications; some others, like Tor[11] and Freenet[8], have been deployed and are
actively used. All these systems have been created from the ground up, with
the explicit purpose of providing guarantees for a user’s anonymity. Using, for
example, Tor[11] a user may surf the World Wide Web without revealing her
identity (her IP address) to the Web sites she visits.

In this paper, we do not build another anonymizing system. Instead, we use an
existing system, Gnutella[1], whose prime goal is the exchange of files between
users, as a mean of delivering a file from a Web site to a user in an anony-
mous fashion. We also present guidelines on how to use Gnutella as a covert
communication channel.

The main contributions of this paper are the followings:

– We overload a file-sharing system for anonymous Web downloads.
– We use an existing system in a way, which was not included in the original

implementors’ intentions.
– We evaluate the strength of anonymity provided by our technique using

metrics already proposed by academia.
– We present some ideas and guidelines on how to use the Gnutella system as

a covert communication channel.

The rest of this paper is organized as follows. Section 2 highlights the basic
technical details of the Gnutella architecture. This Section aims on making the
reader, who has not further experience with Gnutella in the past, be able to
follow the rest of the paper. In Section 3 we present the fundamental concepts
of our techniques, which transform Gnutella into a means for anonymous Web
downloads and in Section 4 we evaluate the strength of anonymity provided by
Gnutella using well established metrics. In Section 5 we present some ideas on
how to transform Gnutella into a covert communication channel. We present
related efforts in Section 6 and we conclude in Section 7.

2 Gnutella Architecture

Gnutella[1] is an open system targeting file sharing. It promotes the peer-to-peer
paradigm and it is purely a decentralized distributed system having millions
of concurrent participants. This section describes fundamental concepts of the
Gnutella architecture.
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2.1 Generic View

Gnutella is built on a two layer random graph topology. The core layer composed
by some thousands of peers that are involved in routing of messages. These
peers are also called Ultrapeers. Each Ultrapeer maintains approximately 30
connections with other Ultrapeers and approximately 30 connections with peers
of the second layer, which are called Leaves. Leaves are not involved in routing;
they send and receive messages via their Ultrapeers. Each Leaf is connected into
approximately 3 Ultrapeers.

More information about the Gnutella topology and peer distribution’s char-
acteristics can be found in [18].

Each basic operation in the Gnutella system is carried out by constructing
messages and routing them through the overlay. The basic lookup operation uses
the flooding algorithm to query the overlay. A peer constructs a message that
embeds search criteria relative to the file it is looking for, and it forwards the
query message to its neighbors. Its neighbors further forward the message to
their neighbors and so on. Along the path the original message is routed, every
peer is free to answer to the query, by constructing a message with possible
results relative to the search criteria and its identity; namely its IP address and
a Port number. This message is routed back to the original peer that issued the
lookup operation following the reverse of the path taken by the query.

Finally, if a peer is satisfied with the search results, it connects to the peer
using the identity embedded in the search results message and it downloads the
file using the HTTP protocol.

2.2 Gnutella as a Web Download Platform

It is shown in [5] that with the current Gnutella architecture it is possible for a
Web server to become advertised in Gnutella search results messages. Further-
more in [5] the authors have developed techniques that trick Gnutella peers into
downloading a specific file from a Web server.

Shortly, in [5] the authors managed to misuse the lookup procedure of the
Gnutella protocol, in order to force peers to download files from third parties,
and especially, as it is illustrated in detail in [5], from Web servers. The main idea,
is to insert a malicious peer in the Gnutella system that answers query messages
with responses, which instead of containing the identity of the malicious peer,
they contain the identity of a third party; a Web server. This is feasible, because
Gnutella is completely decentralized and there is no way to distinguish between
a message contains authentic information or a message that is specially crafted
to contain fake information.

Acting as described above has the effect of tricking Gnutella peers to try to
download files from a Web server. Furthermore, the authors in [5] have managed
not only to trick Gnutella peers to request a file from Web server, but they illus-
trate that it is possible to trick Gnutella peers to actually download a specific file
from a Web server. This can be achieved by embedding special crafted filenames
in query responses that take advantage of some HTTP characteristics, so as to
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force a Web server to serve a specific file upon accepting a download request
from a Gnutella peer.

The authors’ intentions in [5] was to cause a distributed denial of service
attack to a Web server by tricking Gnutella peers to massively request a file
from a Web server. In this paper, we build upon this idea to trick a few peers
to fetch a file from a Web server inside Gnutella and then make a user able to
download the file from Gnutella instead of requesting it from the Web server. In
this way, a user can download a file from a Web server in an anonymous fashion;
without coming in direct contact with the Web server.

2.3 HOPs Spoofing

A vital characteristic of the Gnutella system is that you can never tell if a
message originates from a peer or the latter simple routes the message on behalf
of another one. More precisely, each message of the Gnutella protocol has a
TTL (Time To Live) and HOPs field. Each peer is responsible for increasing the
HOPs field and decreasing the TTL field upon a route operation. When the TTL
field reaches the zero value, the peer that received the message is responsible for
dropping the message from the system. The interesting part is that each peer
is free to create messages with spoofed TTL and HOPs field. In this fashion, a
peer can inject a new message into the system, but, by spoofing the HOPs and
TTL field, the peer can pretend that the message is routed and not created by
itself.

3 GAS Architecture

In this section we analyze in detail the GAS architecture. In Table 1 we list the
meaning of symbols used frequently in the current and following sections.

3.1 Overview

GAS’ goal is to transfer a file from a Web Server to a computer machine in an
anonymous fashion. Strictly, what we are trying to achieve is:

GAS’ Goal: Transfer a file, F, from a Web Server, W, to a computer
machine, C, that never comes in a direct contact with W, nor with another
computer, which is able to prove with a great probability that C was in
contact with W in order to retrieve the particular file.

In order to achieve GAS’ goal we use the real-world file-sharing system Gnutella.
The whole GAS algorithm is divided into two separate phases: the FETCH and
the MIX phase. The FETCH phase transfers F from W to some peers in the
Gnutella system and the MIX phase populates F in the Gnutella system. We
explore the two different phases of GAS in the following paragraphs.
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Table 1. Symbols which are used frequently in the description of the GAS architecture
and evaluation

Symbol Explanation

C Computer, GAS user, the user who desires the anonymity

F The desired file located in a Web sever

W The Web server that hosts the desired file

FETCH Initial phase of GAS (a file is transfered from the Web
server to Gnutella)

MIX Second phase of GAS (a file hosted by Gnutella peers is
further propagated to the Gnutella system)

d Degree of Anonymity (anonymity metric)

HM Maximum entropy of the system

H(X) Entropy of the system after the adversary’s attack

N Peers that compose the set of the FETCH phase

Mi Peers that compose the set of the ith MIX phase

Ac Peers which are controlled by the adversary

3.2 FETCH Phase

The FETCH phase is the initial part of GAS. The main goal of the FETCH
phase is to transfer F from W to Gnutella. This must be done, without having
a direct contact of C with W. Thus we use the techniques illustrated in [5].
In [5] the authors present a technique to use Gnutella as a Denial of Service
attack platform against Web Servers. More precisely the authors have developed
a technique that tricks Gnutella peers to download a file from a third party Web
server. If a large population of Gnutella peers is tricked to download from the
Web server, the Web server is faced with a flash crowd event and eventually
becomes a victim of a distributed Denial of Service attack. In GAS we employee
the same idea, but we use it in a controlled way, so as not to cause any harm in
Web servers.

GAS uses a special modified peer, C, as it is done in [5], in order to advertise
F, which is served by W, in Gnutella, so that some Gnutella peers proceed and
download the file.

During the FETCH phase we assume that N Gnutella peers will have down-
loaded F from W. Note, that there is no way - up to this point - for any external
observer to associate with any information C with W. Since C is connected to the
Gnutella system and feeds it with fake results, that embed the identity of W.

According to the experiments illustrated in [5] a modified peer which issued
10,000 fake results managed to trick 133 Gnutella peers in 10 minutes of working
time. More experiments can be found in [5].

Up to this point, we have managed anonymously to force Gnutella to download
F from W. We could use C to query for F the Gnutella system, using some
keywords that are relevant to F’s name and then download F from one peer that
belongs to the set of peers N that have fetched F from W. In this fashion, C has
managed to retrieve F without coming in direct contact with W but only with
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some tricked Gnutella peers. However, as we further investigate in Section 4, we
assume that an adversary against GAS has managed to control a peer, A, which
belongs to the N set of Gnutella peers. This peer may associate C with W since
A and W may cooperate in order to attack GAS. In order to deal with this case
we employ the MIX phase.

3.3 MIX Phase

The MIX phase aims on populating F in the Gnutella system in a chaotic way.
That is, C tries to further trick other Gnutella peers to download F from the N
peers that were tricked during the FETCH phase.

In order to achieve this C needs to have a list of IP addresses that potentially
map to tricked peers belonging to the N set. As it is explained in detail in [5],
in order for a malicious peer to trick a peer to download a file served by a Web
Server or another Gnutella peer, the malicious one must know in advance the IP
address of the victim, in order to embed it in fake QueryHits (reply messages to
Query messages). It is hard for C to know exactly which peers were tricked to
download F from W, since the download process via Gnutella involves in great
extent the human factor. However, C can try to use as victims all the peers
which it sent fake responses during the FETCH phase. This process requires C
to know for which peer it generates a fake response when it receives a Query
message. In the original Gnutella specification a Query message does not embed
the identity (IP address and Port number) of the initial querier. During the last
few years, an extension has been introduced in order to promote direct delivery
of responses to requesting peers via UDP[4]. Peers that support this extension
include their identity in their Query messages. We performed measurements,
using a modern Gnutella client[2], in order to find out the ratio of popularity of
this extension in current Gnutella. In other words, we measured how many Query
messages embed Gnutella identities. In Table 2 we list the results. The majority
of Query messages in current Gnutella embed identities of Gnutella peers. Thus,
C can generate fake responses only for Query messages, which embed a Gnutella
identity and keep the identity in a list. These collected identities may potentially
take part in the N set.

Table 2. OOB Queries percentage, measured using a modern Gnutella client [2]. OOB
Query messages embed the identity (IP Address and Port number) of the peer that
issued the Query.

Queries Received OOB Queries Percentage

1,000 751 75%

2,000 1,536 77%

3,000 2,183 73%

4,000 2,840 71%

5,000 3,498 77%

10,000 6,617 66%
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Fig. 1. The different phases of the GAS architecture. During the FETCH phase N
Gnutella peers are tricked to download a file from the Web Server. During the MIX
phases, the file is further populated in the Gnutella system (in Mi sets). Finally, the
user of GAS participates in the final Mi set and downloads the requested file from
peers in the Mi−1 set.

Having collected an identity list of potentially tricked peers, the N set, C
may proceed and further trick other Gnutella peers to download F from peers
belonging to N set. These new tricked peers compose the M1 set.

The MIX phase may be applied i times in order to gain stronger anonymity.
Finally, C may query the peers composing the Mi−1 set and download F from
them. That is C will be - artificially - part of the final Mi set.

4 GAS Evaluation

There are several attempts to quantify the anonymity provided by an anonymiz-
ing system. Most recent papers [9], [16] and [19] use the notion of information
entropy to measure the information which leaks from the system and can be
used by an adversary in order to degrade the anonymity provided by the sys-
tem. We will use [9] in order to measure the degree of anonymity provided by
GAS. This theoretic metric depicts the effort required from an adversary to be
able to identify with great probability a sender from a set of possible senders.

In [9] the authors have illustrated the degree of anonymity of known systems
such as Crowds[14] and Onion Routing[11] and, thus, using the same methodol-
ogy GAS can be compared with the above systems.

Before we proceed, in the rest of this evaluation the term anonymity follows
the precise definition given by [13]: the state of being not identifiable within a
set of subjects, the anonymity set.
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The degree of anonymity as expressed in [9] is related to sender anonymity.
Of course, as the authors mention in the paper, recipient anonymity can also
be modeled using the same concept. It is vital to understand that, in contrast
to other anonymizing systems, GAS introduces the notion of separate phases,
the FETCH and a series of possible MIX phases. In order for complete Web
transaction to take place using GAS, C becomes a sender and a recipient. It is
a pure sender during the FETCH phase and the possible MIX phases, but in
the final stage, when the actual download is performed from the Mi set, C is
a recipient. Thus, we have to evaluate the degree of anonymity of GAS in two
separated phases: one, in which the user acts like a sender and one, in which the
user acts like a recipient.

4.1 Degree of Anonymity

As the authors state in [9] the degree of anonymity is expressed as:

d =
H(X)
HM

, (1)

where

H(X) = −
N∑

i=1

pi log2(pi)

is denoted as the entropy of the system after the attack has taken place, while

HM = log2(N),

is denoted as the maximum entropy of the system, when N is the size of the
anonymity set that includes the number of legitimate senders (or recipients).

In the above, we denote with pi the probability mass function pi = Pr(X = i),
where i represents each possible value the discrete random value X may take.
Specifically, each i corresponds to an element of the anonymity set (a sender or
a recipient). If we have a system with i possible senders, an adversary assigns a
probability pi to each one of the set.

4.2 Degree of Anonymity of GAS

In order to estimate the degree of anonymity in GAS we have to define the
adversary model. We believe that a realistic adversary model is an active attack.
That is, the attacker has under its full control Ac nodes that take part in the
GAS MIX phase.

The maximum entropy of GAS can be measured if we define the anonymity
set that includes the nodes of Gnutella that take part in the process of the
file downloading. Let Gp to be the complete population of Gnutella nodes. The
nodes that take part in GAS are

N +
m∑

i=1

Mi,
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assuming we have m MIX phases. It is always

N +
m∑

i=1

Mi ≤ Gp.

The maximum entropy of GAS is:

HM = log2(N +
m∑

i=1

Mi). (2)

Now, each node in the Ac may come in contact with:

– the Web server, W, and possibly with a Gnutella peer that belongs to the
M1 set, if it is part of the N set,

– another Gnutella peer that belongs to Mi+1 if it is part in the Mi set.

The adversary must assign probabilities to each node it comes in contact with.
Assuming, that the GAS user is hidden in a Gnutella subset, i.e. it may not be
distinguished in a trivial way from other Gnutella nodes that take part in an
Mi set, the probability is uniform and depends on the requests recorded from
the adversary. Thus, the adversary assigns pi = 1

Rin,i
, where Rin,i denotes the

number of incoming requests of a node controlled by the adversary which is in
an Mi set. It is always Rin,i ≤ Mi+1.

There is only one case, where the adversary may spot the GAS user with
great probability. Assuming we have m MIX phases, if the adversary manages
to control all nodes in Mm−1 set and the final set Mm includes only the GAS
user, then the identity of the GAS user is fully revealed. We argue that, although
this is possible, it may be adjusted by the GAS user, so that each Mi set is quite
dense. This is manageable, since the GAS user constructs the sets, by tricking
other Gnutella peers. In addition, it is difficult for the adversary to know in
which MIX set she belongs to - it requires the effort of having at least one node
controlled by the adversary in each MIX set.

Thus, in the general case and assuming that Rin,i = Mi+1 − Ac (this, simply,
means that a node in the Mi+1 set is forced to generate requests to each node
of the Mi set, excluding nodes controlled by the adversary), the probability
assigned by the attacker to each GAS participant is pi = 1

Mi+1−Ac
. The entropy

for a given set k will be:

H(X) = −
Mk+1−Ac∑

i=1

1
Mk+1 − Ac

log2(
1

Mk+1 − Ac
). (3)

In order to calculate the entropy of the whole system, we need to sum up all
the probabilities for all MIX phases.

4.3 Degree of Anonymity in a MIX Phase

Assuming we have only one MIX phase the degree of anonymity is:

d = −
∑M−Ac

i=1
1

M−Ac
log2( 1

M−Ac
)

log2(M)
=

log2(M − Ac)
log2M

. (4)
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Fig. 2. Degree of Anonymity for a MIX phase for various set’s populations. The degree
of anonymity is expressed in equation (4). Initially the degree of anonymity provided by
the system is equal to 1 (complete anonymity). As the adversary injects more nodes in
the system, the degree of anonymity is reduced. If the adversary manages to substitute
all nodes with nodes controlled by her, then the anonymity degrades to zero.

Since, we are interested in the degree of anonymity of a MIX phase, we ex-
cluded from HM the N nodes that take part in the initial FETCH phase.

In Figure 2 we depict the degree of anonymity for a given MIX phase for
various set’s populations.

4.4 Degree of Anonymity of a Series of MIX Phases

In order to calculate the degree of anonymity of the whole system, we have to
sum up all the MIX sets and extend equation (4) to include the nodes that
compose all the MIX phases. It is trivial to observe that equation (4) will not
differ with the equivalent of a series of MIX phases, since in order to calculate
the entropy of a series of MIX phases we just sum up all senders (all the Mi

sets) and subtract the nodes which are controlled by the adversary. Thus:

d = −
∑Mk−Ac

i=1
1

Mk−Ac
log2( 1

Mk−Ac
)

log2(Mk)
=

log2(Mk − Ac)
log2Mk

, (5)

where now with Mk we denote the sum of the nodes of all the MIX phases. We
omit the

∑
symbol for readability reasons.
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4.5 The Benefit of Having Multiple MIX Phases

Comparing equations (4) and (5) reveals that there is no benefit of having mul-
tiple MIX phases in terms of the degree of anonymity metric. In other words,
the degree of anonymity, according to the above model, depends only in the
percentage of nodes controlled by the adversary over the nodes that are tricked
by the GAS user and serve as possible senders. To give it with numbers, two
MIX phases, M1 and M2, with Ac1 and Ac2 nodes controlled by the adversary
have the same degree of anonymity with one MIX phase, M ′, having A′

c nodes
controlled by the adversary, if M ′ = M1 + M2 and A′

c = Ac1 + Ac2.
This seems a little bit contradictory. Why, then do we need multiple MIX

phases? The answer is that having multiple MIX phases forces the attacker to
spread the controlled nodes to all MIX sets if she wants to calculate correctly
the degree of anonymity of the last MIX set. Recall that the GAS user performs
a download - and this action is the only action which qualifies as evidence that
someone is utilizing GAS - only as part of the last MIX set.

By having only one MIX phase, the adversary may assign pi probabilities to
all the nodes taking part in the MIX phase. By having multiple MIX phases,
the adversary must distinguish nodes that take part in different MIX phases
and focus on the nodes of the last MIX set. This requires the effort of having
at least one attacker in each of the MIX sets.

The intuition of having multiple MIX phases is the same as having multiple
chaumian MIXes in a MIXnet [7].

4.6 Comparison of GAS and Other ASs

In [9] there is a similar evaluation with the above one regarding the degree of
anonymity in existing anonymizing systems. It is interesting to observe that the
degree of anonymity of GAS is equal to the degree of anonymity provided by
Onion Routing [11]. However, there are some properties of GAS that differen-
tiate 1 it from Onion Routing. In terms of advantages, GAS has the following
properties:

– The sender sets of GAS can have much more entries than a typical sender
set of Onion Routing,

– The adversary must inject many nodes to control a substantial number of
nodes in the system, so as to be able to perform a realistic attack.

In terms of disadvantages:

– GAS does not have as fine-grained controls control as Onion Routing,
– GAS can not be used for real-time Web Browsing, but for a simple download

from WWW,
– GAS uses unencrypted communications.

1 The degree of anonymity is a well defined and accepted metric in order to measure
the anonymity provided by a system. However, some practical characteristics of
a system make it ideal for performing some tasks in an anonymous fashion than
another one, even if both systems have exactly the same degree of anonymity.
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5 Using GAS as a Covert Communication Channel

Besides using Gnutella as a platform for anonymous downloads via the WWW,
Gnutella may also transformed into a covert communication channel. For ex-
ample, two parties that want to communicate anonymously via Gnutella can
exchange Query and QueryHit messages. These messages can be also encrypted.
Below we list a numerous ways of using some of the Gnutella internals to trans-
form the system into a covert communication channel.

5.1 Using the Gnutella Lookup Procedure

A peer may flood a query with encrypted payload2 in Gnutella. A colluding
peer, which is located in the initial peer’s horizon may answer the Query with a
response with encrypted payload3. The two colluding peers have managed to:

– Exchange information using the lookup mechanism of Gnutella.
– Exchange information using encrypted messages.
– Exchange information without coming in direct contact with each other, but

using Gnutella as a means to route the information from one party to the
other.

The Query message, since it is flooded in the system, will be received from
many peers, as well as the response in the Query message will be routed back
to the initial peer through a series of Gnutella peers. Since both payloads of the
Query and the Query response are encrypted, it is unlikely that an adversary
that has injected its nodes in the system can perform a Man in the Middle
attack and reveal the contents of the messages. The two colluding peers may
also exchange secret keys occasionally again using the lookup operation of the
Gnutella system.

5.2 Using the Gnutella Message Tagging

Apart from taking advantage of Gnutella’s lookup procedure to exchange private
information there are more elaborate methods for using the Gnutella system as
a covert channel. A lot of Gnutella messages contain unused bits; bits that will
never used by a normal Gnutella client. Two colluding peers may inject the
information they want to exchange in these unused bits. In order to illustrate
a more concrete example, consider that each Gnutella message is tagged with a
16-byte GUID[3]. Assuming that a GUID tag is totally random, two colluding
parties may arrange to use some part of the 128-bit GUID tag as an information
carrier. All normal Gnutella clients will treat this portion of the GUID tag as a
random subportion of the complete identifier, but the colluding peers will treat
specially this portion of information according to their prior arrangement.
2 We consider the search criteria of a Query message as the payload of a Gnutella

query.
3 We consider the search results of a Query response message as the payload of a

Gnutella Query hit.
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5.3 Using the Gnutella PING-PONG Exchange

A less efficient, in terms of flexibility, technique is to use the PING-PONG ex-
change mechanism to transmit and receive secret information. Although, this
mechanism is not widely used in the current Gnutella system, since it produces
network traffic overhead, it is still possible for peers to use this mechanism to
discover new hosts. When a peer does not have many entries in its host cache
and it is in need of discovering new Gnutella peers, it broadcasts (using again
the flooding process) a Gnutella PING packet. In response, it receives Gnutella
PONGs from active Gnutella peers. These PONG messages embed the peers’
identities (IP address and Port number) as well as some statistics in regards
to the data files they share. Again, two colluding peers may encode secret in-
formation in these PING-PONG messages. For example a peer may encode the
message it wants to transmit in a PONG packet. Peers that passively monitor
the PONG traffic will try to connect to a non existing IP address and Port
number, since it is unlikely that the special encoded message will map to a valid
Gnutella IP address and Port.

The profound property of Gnutella that makes all the above easily achievable
is the lack of a central mechanism to verify if a message is authentic or fake.
Since every Gnutella participant may inject messages in the system that seem to
originate from another node and not by itself, then it is feasible to also embed in
these messages secret information, which can only be interpreted in a meaningful
way by another colluding node (see HOPs spoofing in Section 2.3).

6 Related Work

Since David Chaum introduced the term of an anonymous and untraceable elec-
tronic mail in 1981 [7] a lot of research has been taken place in the academic
and industrial field. Nowadays, there are plenty of anonymzing systems, such as
Crowds [14], Tarzan [10], MorphMix [15], Freenet [8], Cashmere [20] and Tor
[11]. Each system tries to provide anonymous communication by routing mes-
sages between a sender and a receiver through nodes that try to decouple any
relation between the two communicating parties. It is worth mentioning that all
these systems have certain advantages and disadvantages, and thus this is an
active field for further research.

As far as GAS is concerned the two key properties that differentiate it from
current anonymizng systems are that (a) GAS is built over an existing infrastruc-
ture that was not designed to provide any mean of anonymous communication
and (b) GAS is built over a large set of nodes that can be used as relayers in
order to provide anonymous communication.

As far as the first property is concerned, there has been an attempt for utilizing
the World Wide Web as a covert channel [6] in order to provide anonymous com-
munication. Beyond that, there is no similar work in exploiting existing systems,
designed for other purposes than anonymous communications, for anonymity
purposes, as far as we know.
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As far as the second property is concerned, most of current anonymizing sys-
tems rely on a small set of nodes that in most cases [10,11,15,20] full knowledge
of the system is required, and thus there are scalability issues. Anonymizing
systems such as P 5 [17] and Salsa [12] have been designed in order to provide
scalable anonymous communications. But, again it is hard to implement a dedi-
cated system for anonymous communication that hosts a few millions of nodes.

7 Concluding Remarks

In this paper we presented GAS (Gnutella as Anonymizing System), which trans-
forms the open file sharing system, Gnutella, to a platform for performing file
downloads from the World Wide Web in an anonymous fashion.

We furthermore evaluated GAS with already accepted scientific metrics, such
as the degree of anonymity [9]. We compared GAS using the metric of degree
of anonymity with other anonymizing systems and showed that GAS has the
same degree of anonymity with Onion Routing. We presented crucial properties
of GAS which differentiate it from Onion Routing in various aspects.

To conclude, we believe that this paper is the first attempt to use an already
existing system, which has not been initially designed as an anonymizing sys-
tem, for anonymous communication. The fact that GAS is based in Gnutella,
which has not been designed for anonymity purposes, makes it less controllable
and unsuitable for real-time communications compared to other practical imple-
mentation of anonymizing systems, like Tor [11] for example. But, on the other
hand, the increasingly popularity of Gnutella, gives GAS, potentially, a very
large anonymity set composed by millions of nodes, which, as far as we know,
has never been accomplished by any other anonymizing system.

In terms of the degree of anonymity metric and according to equation (5)
having a large anonymity set requires from the attacker to inject more attacking
nodes in the set in order to reduce the metric, and thus degrade the anonymity
provided.

We believe that GAS is not suitable for real-time Web Surfing, but for a single
Web download, it is up to the GAS user to trick a huge base of Gnutella peers
and form a huge anonymity set that will hide her activities inside.

Last but not least, we listed some possible usages of Gnutella as a covert
communication channel.
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Abstract. The current privacy-preserving researches are based on the relational 
data model. However, the existing privacy data models based on the relational 
model exist some shortcomings. First, they are not enough for protection of 
composite privacy object. The current researches focus on the privacy data of 
individual and do not consider how to protect the relationship among several 
privacy objects. The relationship is also a type of privacy data of each 
individual. Second, the rapid increasing view make it is difficult for the privacy 
database administrator to manage the privacy database effectively. In this paper, 
a privacy data model based on deputy mechanism is proposed for solving those 
problems. The model can depict the generalization relationship among different 
privacy objects and provide a stronger hiding capability that IS-A relationship. 
Moreover, compared with object-oriented data model, the model pays more 
attention to the storage and usage of privacy data objects in the context of 
database. Finally, this paper illustrates how to implement the privacy model in 
the object deputy database management system. 

Keywords: Privacy Data Model, Privacy Database, Privacy Protection, Deputy 
Mechanism. 

1   Introduction 

Privacy is the right of individuals to determine for themselves when, how and to what 
extent information about them is communicated to others [1, 14]. The current privacy-
preserving researches are based on the relational privacy data model [1, 2, 3, 4, 5, 6, 
7, 10, 12]. In the privacy data models, for each (purpose, recipient) pair, a view of 
each table is defined. The prohibited cells in each view are replaced with null values. 
The privacy database administrator can limit disclosure of privacy data by limiting the 
views that can be accessed by a special user/role. 

The relational privacy data model is mature and simple, but it exist some 
shortcomings. First, it is difficult to protect the composite privacy object. A composite 
object comprises several individual objects and relationship among these objects. So 
the relationship is also a type of privacy data and must be protected by a privacy 
database. However, the relationship is not considered in the current relational privacy 
data model. Second, the number of view in current privacy data model is the product 
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of the number of purpose and the number of recipient. With the addition of role and 
purpose, the rapid increasing view make it is difficult for the privacy database 
administrator to manage the privacy database effectively. 

The main contribution of this paper is to propose a new privacy data model based 
on object deputy mechanism (ODM) [8,9] to support the protection of the composite 
privacy data. Furthermore, the model can reduce the number of view in the privacy 
database. In our model, the number of deputy class (see section 3.1) is linear growth 
along the number of the purpose. We can address this issue by the extended ODM 
model, which substitutes a switch operation set for a switch operation when a deputy 
class is defined. Such extended ODM model and its implementation is also a 
contribution of this paper. 

The rest of this paper is organized as follows.  Section 2 discusses previous related 
works. Section 3 introduces the deputy mechanism. Section 4 presents the privacy 
data model based on deputy mechanism. We illustrate how to implement the privacy 
model in the object deputy database management system in section 5. Section 6 
compares our model with the view-based privacy data model. Finally, we propose the 
future research intention in section 7. 

2   Related Works 

To the best of our knowledge, the first approach to incorporate privacy protection 
within relational database system was proposed by Agrawal et. al [1]. The paper has 
introduced the concept of Hippocratic databases by incorporating privacy protection 
in relational database systems. The fundamental principles underlying Hippocratic 
databases and a reference architecture was proposed in this paper. The paper laid the 
foundation for the subsequent researches of privacy database. 

Ji-Won Byun et al. discussed an aspect of privacy protection in [2]. They believed 
that a delicate balance between an individual’s privacy and convenience and data 
usability by enterprises and organizations is necessary. In [2], the notion of micro-
view was proposed and a “NAVIE” model based on micro-view was proposed to 
show some of capabilities that a suitable privacy management model should provide. 

The use of data generation can significantly protect the uncertainty aspect of 
privacy data. The various data generation techniques were proposed in [13]. The other 
aspect of privacy data, indistinguishability, was discussed in [3, 4]. And in [5], 
Xiaokui Xiao et al. discussed a new generalization framework based on the concept of 
personalized anonymity. The solutions were limited only to the static dataset release. 
An approach to securely anonymizing a continuously growing dataset was discussed 
in [7].  

In addition, an access control method was proposed by Ji-Won Byun et al. in [6]. It 
is based on the notion of purpose. The model can support a more sophisticated 
purpose model, which has hierarchical structures and is characterized by several 
semantic relationships. In the paper, the conventional RBAC model was extended 
with the notion of conditional role. Another data model for enforcing the limited 
disclosure rules was proposed in [12], where the limited disclosure rules were stored 
as a specified privacy policy inside the database and privacy enforcement was based 
on views, which were constructed based on the rules. 
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3   Preliminary 

Basic concepts and properties of ODM are summarized in this section (for detail, see 
[8, 9]). 

3.1   Deputy Mechanism 

Deputy is an inheritance mechanism. It is based on links from deputy objects to their 
source objects and restricted by switching operation (see section 3.2). If the switching 
operations are not defined for some attributes and methods of source classes, the 
deputy classes cannot inherit them. As shown in Figure 1, in order to inherit b of C1, 
c of C2 and d of C3, the switching operations for b of C1, c of C2 and d of C3 need to 
be respectively defined by the deputy class C. However, the switching operations for 
b, c and d cannot be applied to all of the deputy objects defined the deputy class. For 
example, the switching operations for b of C1 cannot be applied to deputy objects of 
instances of C2 and C3.  In order to solve this problem, a deputy class can be defined 
with a uniform switching operation that realizes inheritance in such a way.  When a 
deputy object receives a message, if the methods of the deputy class to which it 
belongs cannot execute the message, the message id forwards to the source class.  The 
method for executing the message will be looked up in the source class. This is 
similar to the realization of IS-A inheritance but it is based on the links from deputy 
objects to source objects and their source objects is not the IS-A relationship from the 
subclass to the superclass. Deputy inheritance mechanism can realize delegation at 
class level. 

 

Fig. 1. Atomic privacy object model 

3.2   Switching Operation 

The switching operation is a key concept in ODM.  It is used to define the relationship 
between an inherited attribute of a deputy object and the corresponding attribute(s) of 
the corresponding source object(s).  Switching operation has two functions. 

(1) Controlling inheritance between deputy object (class) and source object (class). 
If a switching operation is not defined for some attribute or method of source 
classes, the deputy classes cannot inherit it. 
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(2) Maintaining consistencies between deputy objects and their source objects. Once 
a switching operation is defined, the relationship between source object (class) 
and deputy object (class) will be automatically maintained by ODM.  Addition 
or deletion of an object and modification of attribute value of an object may 
result in object propagation. The purpose of propagation is to keep relationship 
between a class and its deputy class. (For more detail about object propagation, 
see [8,9]) 

3.3   Deputy Class and Deputy Algebra 

In ODM, the real world entities are abstracted as objects and objects with common 
attributes and methods are grouped into one class. If class p is deputy class of class q, 
then q is called source class of p. An object can have more deputy objects that 
represent its multi-faced nature. The deputy object and its source object(s) are 
connected with bi-directional pointers. Deputy objects can define their own deputy 
objects as well. A deputy class defines the schema of deputy objects that are derived 
from source objects. 

A deputy class is created by deputy algebra. The deputy algebra contains five types 
of deputy operations, Select, Union, Join, Project, and Extend. The first three 
operations work in class level, the last two operations work in attribute level. The 
operations are used to derive deputy classes for specialization, generalization, 
extension, aggregation, etc. For example, specialization can be implemented by 
combining Select, Project, and Extend operations; generalization can be implemented 
by using operations Union, Project and Extend; and aggregation can be implemented 
by using operations Join, Project and Extend.  Three types of deputy classes, Select, 
Union, and Join, can be created by these operations. The instances in Select deputy 
class consist of the instances that are selected from corresponding source class 
according to selection predication.  The instances in Union deputy class consist of the 
instances of more than one source classes.  The instances in Join deputy class consist 
of the instances that are derived from aggregating instances of corresponding source 
classes according to combination predication.  The formal definitions of these deputy 
classes can be found in [8].  These deputy classes can be further manipulated by the 
deputy algebra. This means that ODM possesses a property known as closure.  It is 
well known that relational data model has great flexibility because of the closure of 
relational algebra.  

4   The Privacy Data Model Based on Deputy Mechanism 

The privacy data model based on deputy mechanism consists of two components: (1) 
the atomic privacy object model; (2) the composite privacy object model. The former 
is used to protect privacy of individual, and the latter is used to protect privacy among 
individuals. The privacy data can be categorized as follows. 

(1) Atomic privacy object. It is a single reference signifying a single individual (for 
example, Tom is ill). 

(2) Composite privacy object. It is several references signifying individuals (for 
example, John is the doctor of Tom). Composite privacy object can be created 
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by combining more atomic privacy data according to some special combination 
semantic.  Its complexity depends on the complexity of combination semantic. 
Once a composite privacy object is created, we can treat it as an atomic privacy 
object. 

4.1   Privacy Policy  

A privacy policy and a privacy preference are the base of privacy protection. In our 
model, privacy policies represent the data administrator’s policies for data collection 
and usage; privacy preferences represent the data provider’s intention. A privacy 
policy or a privacy preference is represented as a policy object, which is stored in a 
basic class, called privacy-policy.   

Definition 1. Both the privacy policy and the privacy preference are defined as a 
basic class that includes at least six attributes. Its schema is defined as follows. 
BasicClass privacy-policy :  
:Attribute 
(purpose : string)       // a usage purpose 
(purposetype : string)  // purpose type, “positive” or “negative” 
(classname : string)      // class name 
(attributename : string)   //attribute name of classname 
(externalrecipient : set-of string) //a set of external recipients 
(retention : DataTime)       //a retention period indicating how long 

externalrecipient can use attributename 

The privacy-policy class is created when the privacy database is initialized.  An 
instance of privacy-policy class indicates a rule that the attribute of a class must 
comply. A positive purpose indicates some requisite attributes for the purpose, 
whereas a negative purpose indicates some attributes that cannot be accessed for the 
purpose.  An example of privacy policy for payment purpose on class patient in a 
hospital system is defined in Table 1. The policies in table1 allow the Accountant role 
to access the Name, CreditCard and Cost attributes and prohibit anyone to access the 
Address attribute for payment purpose. 

Table 1. An example of privacy policy 

Purpose Purpose 
Type 

Class 
Name 

Attribute 
Name 

Externalrecipient retention 

payment positive patient Name {Accountant} 2007-1-7 
payment positive patient CreditCard {Accountant } 2007-1-7 
payment positive patient Cost {Accountant } 2007-1-7 
payment negative patient Address   

Once privacy policies for a purpose are defined, a class hierarchy of privacy data 
will be created by system automatically. We will discuss how to create the class 
hierarchy of privacy data in section 4.2. 
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4.2   Atomic Privacy Object Model  

In the real world, individual privacy information is abstracted as privacy objects, 
which are stored in privacy classes. The individual privacy information is categorized 
into three groups according to the intention of data owner.  The first one is the privacy 
information that the owner doesn’t expect to disclose for the purpose. The second one 
is the privacy information that must be known by others for completing the purpose.  
The third one is the privacy information that may be known by others with the explicit 
consent of the owner. The atomic privacy object model is used to represent the 
intention of data owner. 

The atomic privacy object model is composed of a class hierarchy for privacy data 
shown in Figure 2. In the class hierarchy, for each purpose, a class sub-hierarchy is 
defined and consists of four Select deputy classes. The atomic privacy information is 
grouped as follows. In Figure 2, each swij represents a special switching operation and 
each SWi represents a switching operation set. 

purpose1

S S

Atomic privacy object

Know~Know

purposen

S S
Know~Know

S S S S
Consented ConsentedPublic Public

{ }kswswSW 1111 ,,= { }nmnn swswSW ,,1=

 

Fig. 2. Atomic privacy object model 

(1) ~Know : It is a set of atomic privacy data of an individual.  The objects of the 
deputy class consist of the privacy data that individuals reject to disclose for the 
special purpose. It can be used to support negative privacy policy. For example, 
the “Address” attribute in the table 1. 

(2) Know : It is a set of atomic privacy data of an individual.  The objects of the 
deputy class consist of the privacy data objects that can be known by other 
individuals or organization for some special purpose (e.g., purposei).  It is 
grouped into two following categorizes: 
(2-1) Public : It is a subset of Know. Other individuals or organizations must 

know the privacy data for achieving the special purpose.  It is used to 
support positive privacy policy. For example, the “Name”, “CreditCard” 
and “Cost” attributes in the table 1. 

(2-2) Consented : It is a subset of Know. Other individuals or organizations can 
access these privacy data for some special purpose if the data provider 
gives his/her consent. For example, the attributes that are contained in 
patient class and are not listed in the table 1. 

The formal definition of above 4 types of deputy class is shown in Definition 2.  

Definition 2. ~Know, Know, Consented, and Public deputy class is defined as 
follows, respectively.  
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Let PC=<Os, As, Ms> denotes source privacy class that stores the privacy data 
objects, then 
(1) ~Know = <Od, Ad, Md> 

Od = { od | od →os, os∈Os ∧ Ad ∈As ∧  Ad is restricted by negative privacy 
policy defined in privacy-policy class ∧ SC(os) == TRUE }, where  od → os 
denotes that os is source object of od , SC(os) == TRUE denote the constraint that 
os must satisfy; 

(2) Know = <Od, Ad, Md>  
Od = { od | od → os, os∈ Os ∧ Ad ∈ As ∧  Ad is not restricted by negative 

privacy policy defined in privacy-policy class ∧ SC(os) == TRUE } 
(3) Consented = <Od, Ad, Md> 

Od = { od | od →os, os∈Os ∧ Ad∈As ∧  Ad is not restricted by both negative 
privacy policy and positive privacy policy defined in privacy-policy 
class ∧ SC(os) == TRUE } 

(4) Public = <Od, Ad, Md> 
Od = { od | od →os, os∈Os ∧ Ad∈As ∧  Ad is restricted by positive privacy 

policy defined in privacy-policy class ∧ SC(os) == TRUE } 

Here, Os is the set of all the instances of source privacy class, As is the set of attributes 
of source privacy class and Ms is the set of methods of source privacy class. And Od is 
the set of all the instances of deputy privacy class, Ad is the set of attributes of deputy 
privacy class and Md is the set of methods of deputy privacy class. The constraint 
SC(os), which is represented by a deputy rule, must be specified when the 
corresponding deputy class is created. So the tuple-level privacy-preserving is 
implemented by selecting the objects, which satisfying the constraint SC(os), from the 
source privacy class; the attribute-level privacy-preserving is supported by the Select 
and the Project deputy algebra. 

A data user, who can access privacy data for a special purpose, can access the 
Public deputy class of the purpose. If the user wants to access the data in Consented 
class, he/she must get the data owner’s consent. For example, if a user u is allowed to 
access privacy data for purpose1, he is granted automatically the permission that can 
access the Public class of purpose1. But if he wants to access Consented class, the 
consent of data owner is required. In order to obtain the consent, several interactions 
between the data user and database system may be required. 

In order to enforce the usability of privacy data, we expand the object deputy 
model with the notion of switching operation set (SOS). As shown in Figure 2, a 
switching operation set, rather than a switching operation, is defined when Know 
deputy class is created. The data provider will assign a special switching operation to 
a special user/role when the switching operation is defined. The assignment will be 
stored in a system schema. The issue will be further discussed in Section 5.  

Next, we illustrate our model using the following example. In a hospital system, 
we consider mainly three data types, Name, CreditCard and Cost, and two user roles, 
Info_Admin and Accountant.  

According to privacy-policy class shown in Table 1, it can be known that the 
attributes, Name, Cost, and CreditCard, of patient class are requisites for completing 
payment purpose, and the Address attribute of patient class does not need to be known 
for payment purpose. A data schema for purpose payment shown in Figure 3 is 
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created automatically by system according to the privacy policies. The bilateral link is 
used to maintain the relationship between the source privacy object and its deputy 
privacy object. The data stored in the attributes, except attribute OID, of deputy 
classes (~Know, Know, Consented, and Public) is a pointer, which points to the 
corresponding attribute in the initial class (patient). The values of these attributes are 
computed by some switching operations when a data user tries to access the attributes. 

{ }1 2,SW Sw Sw=

 

Fig. 3. The class hierarchy schema for purpose payment 

We suppose that for the purpose payment, a data provider does not have any 
privacy concern about privacy of the cost information when it is used by an 
accountant. Thus, the cost information can be used by an Accountant without any 
modification. And the data provider has great concerns about privacy of the cost 
information when it is used by a privacy database administrator; thus, the cost 
information should be used only in a sufficiently generalized form. Similarly, he has 
concerns about name information and does not have any privacy concern about credit-
card information for Accountant, and has great concerns about name information and 
credit-card information for Info_Admin. The corresponding SW set is shown in Table 
2. We suppose that for the purpose payment, the data provider assign the switch 
operation sw1 for the role Accountant, and assign the switch operation sw2 for thr role 
Info_Admin, respectively.  

Note that, the sw2 change the type of Cost attribute. The operation of changing 
data type can be supported in our model. So the data provider can select a proper data 
type to generalize his privacy data. 

The switching operation Sw1 is executed when a user with role Accountant 
accesses the privacy data class potient for purpose payment; the switching operation 
Sw2 is executed when a user with role Info_Admin accesses the privacy data class 
potient for purpose payment. The results that can be obtained by role Accountant and 
role Info_Admin are shown in Figure 4 and Figure 5, respectively. 

Supposed that the following query is executed for payment purpose: “SELECT * 
FROM patient WHERE OID = 104224”. The system will return an object <‘A.Parker’, 
‘75852646112’, 2000> if the query is executed by a user with role Accountant and 
return an object <‘A. P.’, ‘7585264****’, 1K-3K> if the query is executed by a user 
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with role Info_Admin. So, different sets of data will be returned for the same query 
and the same purpose, depending on the role of user. 

Table 2. The SWs defined for purpose payment 

SwitchOperation sw1 
{
Patient.Name=GetFirstLetter(Patient.Name.FirstName)+

"." + Patient.Name.LastName; 
  Patient.Cost = Patient.Cost 
Patient. CreditCard= Patient. CreditCard 

}
SwitchOperation sw2 
{
Patient.Name= GetFirstLetter(Patient.Name.FirstName) 

+"."+GetFirstLetter (Patient.Name.LastName) 
 If (0<=Patient.Cost<=3000)  
 Patient.Cost = "1K-3K" 
 elseif (3000<Patient.Cost<=5000) 
 Patient.Cost = "3K-5K" 
 elseif (5000<Patient.Cost<=7000) 
 Patient.Cost = "5K-7K" 
Patient.CreditCard=GetSevenLetter(Patient.CreditCard) + 

“****”
}

 

1Sw

 

Fig. 4. The data obtained by role Accountant for purpose payment 

4.3   Composite Privacy Object Model  

A composite privacy object can be created by combining two or more atomic privacy 
objects according to the relationship among these privacy objects.  The composite 
privacy object with common attributes and methods is grouped into a composite class.  
In our model, a composite privacy object can be expressed by a Join or a Union 
deputy object.  If the combination operation is an aggregation of several privacy 
objects belonging to different classes respectively, a Join deputy object is selected.  If 
the combination operation is a generalization of several privacy objects belonging to 
different classes respectively, a Union deputy object is selected.  For example, in the  
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2Sw

 

Fig. 5. The data obtained by role Info_Admin for purpose payment 

hospital system, if we want to express, John is the doctor of Tom, a Join deputy object 
is selected. And if we want to express, Tom and Smith are living in breathing 
medicine, a Union deputy object is to be selected.  Once a composite object is created, 
it will be treated as an atomic privacy object, which can be further manipulated by the 
mechanism shown in section 4.2.  The formal definition of composite privacy class is 
shown in Definition 3 and the creating process and data model is shown in Figure 6. 

Definition 3. A composite privacy class can be defined as follows: 

(1) A aggregation type of composite privacy class is defined as follows: 
Let PC1= <O1

s, A1
s, M1

s>, PC 2= <O2
s, A2

s, M2
s>, .... , PC k= <Ok

s, Ak
s, Mk

s>  

denote source privacy classes,  ACPC = <Od, Ad, Md> denotes an aggregation type of 
composite privacy class, then: 

Od = {od | od →  (o1
s × o2

s × … × ok
s) ∈  (O1

s × O2
s × … × Ok

s) 
∧ SC(o1

s ×o2
s×…×ok

s) == TRUE }, 
where SC(o1

s×o2
s×…×ok

s) is the constraint that combination operations must be 
satisfied. 

(2) A generalization type of composite privacy class is defined as follows: 
Let PC1= <O1

s, A1
s, M1

s>, PC 2= <O2
s, A2

s, M2
s>, .... , PC k= <Ok

s, Ak
s, Mk

s>  

denote source privacy classes,  GCPC = <Od, Ad, Md> denotes a generalization type 
of composite privacy class, then: 

Od = {od | od →os, (os∈O1
s ∧ SC1(o

s) == TRUE) ∨ ∨L  (os∈Ok
s ∧ SCk(o

s) == 
TRUE)}, 

where SCi(o
s) is the constraint that generalization operations must be satisfied. 

The following example illuminates how to generate a composite privacy object. In the 
hospital system, we add a diagnosis purpose, which needs to aggregate the privacy 
objects stored in the patient class and the doctor class, respectively. For diagnosis 
purpose, five privacy policies are added in the privacy-policy class, as shown in  
Table 3.  The added policies in table 3 allow the doctor role to access the Name and 
Age attributes of patient class and prohibit anyone to access the CreditCard and Cost 
attribute of patient class for diagnosis purpose. The added policies in table 3 also 
prohibit anyone to access the CreditCard of doctor class and allow anyone to access  
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Fig. 6. Composite privacy object model 

the other attributes of doctor class for diagnosis purpose. Though the positive policies 
for these attributes are not defined, we assume that if no positive privacy policy is 
defined for a privacy class, then all attributes, except those restricted by negative 
privacy policy, will be restricted by a default positive policy in our model.  

Table 3. An extended privacy policy class 

Purpose Purpose 
Type 

Class 
Name 

Attribute 
Name 

Externalrecipient retention 

payment positive patient Name {Accountant } 2007-1-7 
payment positive patient CreditCard {Accountant } 2007-1-7 
payment positive patient Cost {Accountant } 2007-1-7 
payment negative patient Address   
diagnosis negative doctor CreditCard   
diagnosis negative patient CreditCard   
diagnosis negative patient Cost   
diagnosis positive patient Name {Doctor} 2007-3-7 
diagnosis positive patient Age {Doctor} 2007-3-7 

According to the assumption, all attributes of doctor class, except CreditCard 
attribute, are restricted by a default positive policy.  So these attributes will be 
contained in Public deputy class, and Know deputy class is same as Public deputy 
class. In order to avoid data redundancy, only Know deputy class exists. As shown in 
Figure 7, for diagnosis purpose, only two deputy classes of doctor class, ~Know and 
Know, are created. The operation result of creating composite privacy object for 
diagnosis purpose is shown in Figure 7. Here the corresponding definitions of SW and 
role for diagnosis purpose, which are similar to that for payment purpose, are omitted.  

As shown in Figure 7, the result of completing diagnosis purpose will generate a 
new composite privacy class, case-history class. Each instance of the class is privacy 
information both doctor and patient. In case-history class, most attributes inherit from 
the corresponding source classes by deputy algebra. Some new privacy attributes, 
such as condition attribute, can be added to the privacy system. The example 
illustrates that it is easy for our model to support the extension of privacy data 
schema. 
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Fig. 7. An example of composite privacy object model  

Once a composite privacy object is created, we can treat it as an atomic privacy 
object in succeeding application.  By executing the process recursively, we can 
constitute a larger, more complex privacy information system, such as a hospital or a 
large company privacy information database. 

5   Implementation 

Based on the privacy model discussed in above, we implemented a prototype of 
privacy database, called PD_TOTEM, based on the object deputy database, TOTEM. 
The TOTEM is developed by modifying the kernel of the PostgreSQL. In the 
PD_TOTEM, we extend the traditional SQL syntax with the definition syntax of the 
purpose and the assignment syntax of the privacy policies, and we add a release 
control module for preventing the released data disclosure. 

In this section, we mainly discuss how to implement the atomic privacy model and 
how to execute the query process in PD_TOTEM. As discussed in above, the atomic 
privacy model is the basic of PD_TOTEM. The query operations are performed more 
frequently than the update operation and the insert operations, and the proposed 
privacy data model has a strong impact on the query operations.  

When a data provider submits his privacy data, he will define a privacy policy set 
for the submitted data for each purpose. According to the privacy policy set, a data 
schema of the atomic privacy model for a special purpose will be derived and a 
default switching operation is defined. The default switching operation is executed 
only when the data provider access the privacy data. It is stored in a system schema, 
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called pg_switching, which has been implemented in the TOTEM. 
Subsequently, the data provider can assign which user/role can access his privacy 

and define a switching operation for a user/role. These switching operations constitute 
a switching operation set (SOS). In order to store the switching operations, a system 
schema, called pg_userswitching, is defined in PD_TOTEM. The system schema is 
defined as follows: 

BasicClass pg_userswitching :  
:Attribute 
(switchname: NameData) //The Name of the switching operation 
(purpose: NameData)   //The purpose for which the switching operation is called 
(classid : Oid)         // Oid of the Class that the switching operation belongs to 
(attrnum : int2)       // The No. of the attribute on which set this switching operation 
(exprnum : int2)     // The No. of this switching operation defined in the attribute 

with attrnum (Maybe there are several source attrs�so 
need several switching operations for this the attribute) 

(switching : text)      //The content of the switching operation 
(rolid[1] : Oid)       //The roles that can use the switching operation 

The rolid[1] is an array, each element of which is a user ID or a role ID that can 
call the switching operation. So, when a query is executed, the system knows which 
switching operation will be called for the role. The reason for creating the 
pg_userswitching class is to make sure there is one switching operation for each 
deputy class. In ODM, if no switching operation is defined on an attribute, the 
attribute can not be inherited by deputy class. The implementation framework of the 
atomic privacy model is illustrated in Figure 8.  

Source 
Object

Deputy 
Object

Switch
Operation 1

Switch
Operation n

Default
Switch

Operation

Switch Operation 
Set (SOS)

Data Provider Role 1 Role n

D n
1

1
n
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Fig. 8. The implementation framework of the atomic privacy model 

When a data user ui wants to access the privacy data with the purpose, the database 
system firstly authenticates the identity of the user. If the user is the data provider, he 
can access his privacy data along the path with “D” label. Otherwise, the system will 
select a proper switching operation swi in SOS for ui according to the role of ui and 
corresponding privacy policies. The data user ui can only access the privacy data by 
the switching operation swi. As shown in Figure 8, the data user ui can access his 
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privacy data along the path with “i” label. So the different user/role can retrieve the 
different set of privacy data because the assigned switching operation is different. 

6   Comparisons 

In this section, we compare our privacy data model with the “NAIVE” model by the 
following criteria according to the example described in section 4.3. We assume that 
there are 1000 patient records and 50 doctor records in the example.  

(1) Metadata storage 
In the “NAIVE” model, the collected data is generalized and stored into multiple 
privacy levels. Supposed that there are n privacy levels in a privacy database system, 
the required storage space would be n times the size of the collected data in theory 
[2]. For example, in the example, the storage space required in “NAIVE” model can 
be computed by following equation: 

6 5

1 1

1000 ( ( _ ) 50 ( _ )( ))
i i

i i

m sizeof p a n sizeof d asizeof condition
= =

× × + × ×+∑ ∑  

Where m and n are privacy levels of “patient” class and “doctor” class, respectively. 

The sizeof(p_ai) represents the allocated storage space for the attribute p_ai contained 

in the “patient” class; sizeof(d_ai) represent the allocated storage space for the 

attribute d_ai contained in the “doctor” class, and sizeof(condition) represent the 

allocated storage space for the attribute condition.  
In our model, each deputy attribute in deputy object only stores a pointer, which 

points to the corresponding attribute in source object. So, in the example, the storage 
space required in our model can be computed by following equation: 

6 6 5 5

1 1 1 1

1000 ( ( _ ) ( int ) 50 ( ( _ ) 4 ( int ))4 ( ))
i i

i i i i

sizeof p a sizeof po er sizeof d a sizeof po ersizeof condition
= = = =

× + × + ×+ × +∑ ∑ ∑ ∑  

Where sizeof(pointer) represents the allocated storage space for a pointer. In 
PD_TOTEM, a pointer is allocated 4 bytes. Apparently, the required storage space in 
our model is far less than that in the “NAIVE” model. The greater the required 
storage space of each attribute, the more obvious the advantage of our model.  

(2) Query performance  
The difference of query performance for atomic privacy data between our model and 
“NAIVE” model is not obvious. But for composite privacy data, the difference of 
query performance between the two models is very obvious. 

In “NAIVE” model, composite privacy data is represented by a view, which is 
created by a join operation. If a view is created by a join table A, which has m 
records, and table B, which has n records, then the time complexity of querying a 
record in the view is O(mn). 

In our model, the join operation will create a Join deputy class. The time 
complexity of querying an object in the Join deputy class can be computed as follows. 
First, the query needs to traverse all objects in the Join deputy class. Then for each 
object, its source object will be directly found by the bilateral link (see [8, 9]). If there 
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are l hops from the deputy object to its source object, the time complexity of querying 
a object in the Join deputy class is O(ml) or O(nl). Because l is far smaller than m or 
n, the time complexity of our model is far smaller than that of the “NAIVE” model. 

The reason that our model is more quickly than the “NAIVE” model for composite 
privacy data is that the cost of join operation is avoided in our model. When the Join 
deputy class is created, the structure of the object in the deputy class will be created. 
It is similar to the materialized view in the relational database. However, each cell of 
the Join deputy class stores a pointer rather than the corresponding data. It is similar 
to the virtual view in the relational database. It is the property that makes our model 
has the advantage of storage and query. 

(3) Flexibility and scalability of data generation 
In the “NAIVE” model, data generation is incorporated into the micro-views. If a data 
provider wants to update a method of data generation, he has two options: (1) delete 
the current view and regenerate a new view with same name; (2) update the definition 
of the current view. Moreover, the capability of generating the privacy data is only 
some simple operations, such as aggregation. 

In our model, the switching operation is used to generalize privacy data. If a data 
provider wants to update a method of data generation, he can insert or change a 
switching operation object in the pg_userswitching class. Moreover, the switching 
operation can support complex generalization method, so the capability of hiding 
privacy data in our model is stronger than that in the previous model. 

7   Conclusion and Future Work 

In this paper, we proposed a privacy data model based on deputy mechanism. 
Furthermore, we discuss the implementation of the privacy data model. Compared 
with privacy data models based on view mechanism, our model has advantages on 
storage space and scalability of data generation. Comparing with conventional object 
view mechanism, our model pays more attention to the storage and usage of privacy 
data objects in the context of database.  

Future works will include developing policy detection mechanism, such as how to 
detect privacy violations and how to detect the conflict between privacy policies in 
PD_TOTEM. In the current version of PD_TOTEM, we provide an interface that is 
used to define the switching operation by data provider. In future version of 
PD_TOTEM, the system will provide a GUI tool, by which a data provider can select 
the privacy level intuitively and the system will create the context of a switching 
operation automatically. And an access control mechanism based on deputy 
mechanism will be further explored. 
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Abstract. Since the introduction of nominative signature (NS) in 1996,
there have been a handful of schemes proposed and almost all of them
have been found flawed. The only one which is secure requires multi-
round of communications between the nominator and the nominee for sig-
nature generation. In this paper, we propose a novel construction which
is efficient and requires only one-move communication for signature gen-
eration. We also show that the construction is secure under the strongest
security model currently available and the reductionist proofs only rely
on standard number-theoretic assumptions. As of independent interest,
our construction illustrates an interesting use of ring signature.

1 Introduction

A nominative signature (NS) involves three parties: nominator A, nominee B
and verifier C. The nominator A arbitrarily chooses a message m and works
jointly with the nominee B to produce a signature σ called nominative signature.
The validity of σ can only be verified by B and if σ is valid, B can convince
the verifier C the validity of σ using a confirmation protocol ; otherwise, B can
convince C the invalidity of σ using a disavowal protocol. Below are the properties
of a nominative signature summarized from [11,9,18,8,13].

1. (Joint Work of Nominator and Nominee) A or B alone is not able to produce
a valid σ;

2. (Only Nominee Can Determine the Validity of Signature) Only B can verify
σ;

3. (Can Only be Verified with Nominee’s Consent) The validity of σ is only
verifiable with the aid of B, by running a confirmation/disavowal protocol
with B;
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4. (Nominee Cannot Repudiate) If σ is valid, B cannot mislead C to believe
that σ is invalid using the disavowal protocol. If σ is invalid, B cannot mislead
C to believe that σ is valid using the confirmation protocol;

5. (Nominator Chooses Message) Message m is chosen by A;
6. (Only Nominator Can Nominate) B is chosen/nominated by A.

Since the introduction of nominative signature (NS) [11], it has been con-
sidered as a dual scheme of undeniable signature (US) [4,5]. Both nominative
signature and undeniable signature are non-self-authenticating, namely, the pub-
lic is not able to determine if a signature-message pair is valid or not merely from
the signature itself and the signer’s public key. For US, it can only be verified
with the aid of the signer, while for NS, it can only be verified with the aid of the
nominee, rather than the nominator (albeit it is the nominator who chooses the
message). Nominative signature is also related to designated verifier signature
(DVS) [10], designated confirmer signature (DCS) [3] and universal designated-
verifier signature (UDVS) [17]. Due to the page limitation, we refer readers to
[13] for a detailed comparison among these signature types. We emphasize that
among all these signature types, only NS has the privilege of proving the signa-
ture validity been dethroned from the signer who chooses the message. None of
the other signature types has this property.

Due to the special property of NS that the nominator cannot convince anyone
about the validity of a nominative signature while only the nominee can, NS has
been found [13] to be very useful for implementing user certification systems.
A user certification system allows a user B to show the validity of a certificate
issued by an authority A. The certificate can be B’s birth certificate, his driving
licence or one of his academic transcripts. Without using nominative signature,
say using UDVS instead1, B has to trust A not to validate B’s certificates to
anyone else without B’s consent. This is mainly due to the privacy concern of B.
If nominative signature is used, B does not need to trust A as A cannot validate
B’s certificate to anyone. Only B can do the proof. In addition, nominative
signature ensures that B cannot forge such a certificate without A’s consent.
For more details and other applications, we refer readers to [13].

Related Work. The notion and construction of nominative signature were first
proposed by Kim, Park and Won [11]. However, their construction was later
found flawed by Huang and Wang [9]. In the construction of [11], the nominator
can always determine the validity of a nominative signature, that is, violating
Property 2 of nominative signature. In [9], the notion of convertible nomina-
tive signature was proposed, aiming at allowing only the nominee to convert a
signature to a publicly-verifiable one. They also proposed a new scheme. How-
ever, it was later found [18,8] that the nominator in their scheme can generate
valid signatures on his own and show the validity of the signature to anyone
without the help of the nominee. That is, their scheme does not satisfy Proper-
ties 1 to 3. In [9], a definition and some requirements for nominative signature

1 Using UDVS to implement a user certification system was first proposed by Steinfeld
et al. in [17].
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were proposed. However, their definition of nominative signature does not match
with the scheme they proposed and the set of security requirements specified are
incomplete and informal.

In [13], Liu et al. proposed the first formal security model for NS and also
a proven secure construction. Their construction requires multi-round commu-
nications between the nominator and the nominee for signature generation. It
is currently unknown if a one-move NS scheme can be built. In this paper, we
answer this question positively by proposing a proven secure NS scheme which
requires only one-move communication.

Our Results. We propose a novel construction of nominative signature. Com-
paring with the existing one [13], which is proven secure under the strongest
security model currently available, our scheme requires only one-move commu-
nication between the nominator and the nominee for signature generation, while
the existing one requires multi-round of communications. We also show that the
reductionist proofs for the security of our scheme only rely on some standard
number-theoretic assumptions.

Paper Organization. The definition of nominative signature and corresponding
adversarial models are specified and discussed in Sec. 2. Our nominative signa-
ture scheme is described in Sec. 3. Its security is then analyzed in Sec. 4. Finally,
the paper is concluded in Sec. 5.

2 Definition and Security Model

A nominative signature (NS) consists of three algorithms (SystemSetup, KeyGen,
Vernominee) and three protocols (SigGen, Confirmation, Disavowal).

1. SystemSetup (System Setup): On input 1k where k ∈ N is a security param-
eter, it generates a list of system parameters denoted by param.

2. KeyGen (User Key Generation): On input param, it generates a public/private
key pair (pk, sk).

3. Vernominee (Nominee-only Verification): On input a message m, a nominative
signature σ, a public key pkA and a private key skB, it returns valid or invalid.

An NS proceeds as follows. Given a security parameter k ∈ N, SystemSetup
is invoked and param is generated. KeyGen is then executed to initialize each
party that is to be involved in the subsequent part of the scheme. One party
called nominator is denoted by A. Let (pkA, skA) be the public/private key
pair of A. Let B be the nominee that A nominates, and (pkB, skB) be B’s
public/private key pair. In the rest of the paper, we assume that entities can be
uniquely identified from their public keys. To generate a nominative signature
σ, A chooses a message m ∈ {0, 1}∗, and carries out SigGen protocol with B.
The protocol is defined as follows.

SigGen Protocol: Common inputs of A and B are param and m. A’s additional
input is pkB, indicating that A nominates B as the nominee; and B’s addi-
tional input is pkA indicating that A is the nominator. At the end, either A
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or B outputs σ. The party who outputs σ should be explicitly indicated in
the actual scheme specification.

Signature Space: A value σ is a nominative signature with respect to pkA and
pkB if it is in the signature space of the NS with respect to pkA and pkB. We
emphasize that the signature space has to be specified explicitly in each actual
NS scheme.

The validity of a nominative signature σ on message m (with respect to pkA

and pkB) can be determined by B as Vernominee(m, σ, pkA, skB). To convince a
third party C on the validity or invalidity of (m, σ, pkA, pkB), B as a prover and
C as a verifier carry out the Confirmation or Disavowal protocol as follows.

Confirmation/Disavowal Protocol: On input (m, σ, pkA, pkB), B sets μ to 1
if valid ← Vernominee(m, σ, pkA, skB); otherwise, μ is set to 0. B first sends
μ to C. If μ = 1, Confirmation protocol is carried out; otherwise, Disavowal
protocol is carried out. At the end of the protocol, C outputs either accept
or reject while B has no output.

Correctness. Suppose that all the algorithms and protocols of a nominative
signature scheme are carried out accordingly by honest entities A, B and C, the
scheme satisfies the correctness requirement if

1. valid← Vernominee(m, σ, pkA, skB); and
2. C outputs accept at the end of the Confirmation protocol.

Validity of a Nominative Signature. A nominative signature σ on message
m with respect to nominator A and nominee B is valid if Vernominee(m, σ, pkA,
skB) = valid. In this case, we say that quadruple (m, σ, pkA, pkB) is valid. Note
that only B can determine the validity of σ (Property 2).

In the following, we review the four formal security models defined in [13].
They capture the security notions of (1) unforgeability, (2) invisibility, (3) secu-
rity against impersonation, and (4) non-repudiation.

2.1 Unforgeability

The following definition captures Property 1, 5 and 6 (Sec. 1).

Game Unforgeability: Let S be the simulator and F a forger. Let k ∈ N be a
security parameter.

1. (Initialization) First, param ← SystemSetup(1k) is executed and key pairs
(pkA, skA) and (pkB, skB) for nominator A and nominee B, respectively, are
generated using KeyGen. Then F is invoked on input (param, pkA, pkB).

2. (Attacking Phase) F can make queries to the following oracles:
– CreateUser: On input an identity I, execute (pkI , skI)←KeyGen(param),

and output pkI .
– Corrupt: On input a public key pk, if pk is generated by CreateUser or

in {pkA, pkB}, the corresponding private key is returned; otherwise, ⊥
is returned. pk is said to be corrupted.
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– SignTranscript: On input a message m, two distinct public keys, pk1
(the nominator) and pk2 (the nominee) such that at least one of them is
uncorrupted, and one parameter called role ∈ {nil, nominator, nominee}:
(1) if role = nil, S simulates a run of SigGen and returns a valid quadruple
(m, σ, pk1, pk2) and transσ which is the transcript of the execution of
SigGen; (2) if role = nominator, S (as nominee with public key pk2)
simulates a run of SigGen with F (as nominator with pk1); (3) if role =
nominee, S (as nominator with pk1) simulates a run of SigGen with F
(as nominee with public key pk2).

– Confirmation/disavowal: On input a message m, σ and two public keys
pk1 (the nominator), pk2 (the nominee), such that σ is in the signa-
ture space with respect to pk1 and pk2, let sk2 be the corresponding
private key of pk2, the oracle responds based on whether a passive at-
tack or an active/concurrent attack is mounted: (1) In a passive attack,
if valid ← Vernominee(m, σ, pk1, sk2), the oracle returns a bit μ = 1 and
a transcript of the Confirmation protocol. Otherwise, μ = 0 and a tran-
script of the Disavowal protocol are returned. (2) In an active/concurrent
attack, if valid← Vernominee(m, σ, pk1, sk2), it returns μ = 1 and executes
the Confirmation protocol with F (acting as a verifier). Otherwise, it
returns μ = 0 and executes the Disavowal protocol with F . F inter-
acts serially with the oracle in the active attack while F interacts with
different instances of the oracle concurrently in the concurrent attack.

3. (Output Phase) F outputs a pair (m∗, σ∗) as a forgery of A’s nominative
signature on message m∗ with B as the nominee.

F wins the game if valid ← Vernominee(m∗, σ∗, pkA, skB) and (1) F does not
corrupt both skA and skB; (2) (m∗, pkA, pkB, role) has never been queried to
SignTranscript for any role; (3) (m∗, σ′, pkA, pkB) has never been queried to
Confirmation/disavowal for any σ′ in the signature space with respect to pkA and
pkB (check Signature Space on page 399). F ’s advantage is defined to be the
probability that F wins.

Definition 1 ([13]). An NS scheme is unforgeable if no PPT forger F has a
non-negligible advantage in Game Unforgeability.

2.2 Invisibility

Game Invisibility: The initialization phase is the same as that of Game Unforge-
ability. Let D be a distinguisher (i.e. the adversary) that can query any of the
oracles described in Game Unforgeability. At some point in the attacking phase, D
outputs a message m∗ and requests for a challenge NS σ∗ on m∗. The challenge
σ∗ is generated based on the outcome of a hidden coin toss b. If b = 1, σ∗ is gener-
ated by running SigGen. If b = 0, σ∗ is chosen randomly from the signature space
with respect to pkA and pkB. At the end of the game, D outputs a guess b′.

D wins if b′ = b and (1) D does not corrupt skB; (2) (m∗, pkA, pkB , role)
has never been queried to SignTranscript; (3) (m∗, σ∗, pkA, pkB) has never been
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queried to Confirmation/disavowal. D’s advantage in this game is defined as
|Pr[b′ = b]− 1

2 |.
Definition 2 ([13]). An NS scheme has the property of invisibility if no PPT
distinguisher D has a non-negligible advantage in Game Invisibility.

2.3 Security Against Impersonation

Game Impersonation: The initialization phase is the same as that of Game
Unforgeability. The game has two additional phases. Let I be an impersonator
(i.e. adversary).

– (Preparation Phase) In this phase, I may query any of the oracles defined
in Game Unforgeability. I prepares (m∗, σ∗, μ) where m∗ is some message, σ∗

is in the signature space with respect to pkA and pkB and μ is a bit.
– (Impersonation Phase) If μ = 1, I (as nominee) executes Confirmation

protocol with the simulator (as a verifier). If μ = 0, I executes Disavowal
protocol instead.

I wins if the simulator outputs accept at the Impersonation Phase while I has
never corrupted skB in the game. I’s advantage is defined to be the probability
that I wins.

Definition 3 ([13]). An NS scheme is secure against impersonation if no PPT
impersonator I has a non-negligible advantage in Game Impersonation.

2.4 Non-repudiation

Game Non-repudiation: The initialization phase is the same as that of Game
Unforgeability. Let B be a cheating nominee which can query any of the oracles
defined in Game Unforgeability. The game also has two additional phases. (1)
(Preparation Phase) B prepares (m∗, σ∗, μ) where m∗ is a message and σ∗ is in
the signature space with respect to pkA and pkB. μ = 1 if Vernominee(m∗, σ∗, pkA,
skB) = valid; otherwise, μ = 0. (2) (Repudiation Phase) If μ = 1, B executes
Disavowal protocol with the simulator (acting as a verifier) on (m∗, σ∗, pkA, pkB)
but the first bit sent to the simulator is 0. If μ = 0, B executes Confirmation
protocol but the first bit sent to the simulator is 1.

B wins the game if the simulator outputs accept in the repudiation phase. B’s
advantage is defined to be the probability that B wins.

Definition 4 ([13]). An NS scheme is secure against repudiation by nominee
if no PPT cheating nominee B has a non-negligible advantage in Game Non-
repudiation.

Remark: By the soundness property of a proof system, if the system is for a
language L over {0, 1}∗, then if λ �∈ L, the verifier will accept with probability
at most δ which is over [0, 1

2 ).
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3 Our Construction

In this section, we construct a nominative scheme using ring signature. A ring
signature, introduced by Rivest, Shamir and Tauman [15], associates with a
group of members in such a way that it allows any member within the group,
called “a ring”, to sign a message on behalf of the ring, without collaborating
with any other ring members. Also, the signature does not reveal about who the
actual signer is. For our NS construction, it is a special use of ring signature as we
restrict ourselves to the case of having two signers in the ring only. Our technique
is related to the property of claimability of ring signature. This property allows
the actual signer of a ring signature to later prove its authorship of the signature
[15]. This property has been used implicitly in [6] to construct a concurrent
signature scheme.

Two-member Ring Signature. In Appendix A of Abe et al.’s Asiacrypt 2002
paper [1], there is an efficient ring signature scheme proposed. Below is a review
for a two-member case.

Let G be a cyclic group of prime order q. Let g be a generator of G. Let (xi, yi)
be the private/public key pair of user i, for i = 1, 2, xi ∈R Zq and yi = gxi . Let
L = (y1, y2). Let H : {0, 1}∗ → Zq be a hash function. Without loss of generality,
below is the signature generation carried out by user 1.

1. Randomly pick c2, r ∈R Zq and compute z = gryc2
2 .

2. Compute

c = H(L‖m‖z)
c1 = c− c2 mod q

s = r − c1x1 mod q

The ring signature is σ = (s, c1, c2). (L, m, σ) is valid if

c1 + c2 ≡ H(L‖m‖gsyc1
1 yc2

2 ) (mod q). (1)

An NS Construction. (Idea) In the two-member ring signature above, we can
see that for a given pair (c2, r), the value of c1 and other variables in the signature
generation are determined. In addition, due to the random oracle assumption
of H , c1 behaves like a random instance in Zq. In our NS construction, we let
the nominee B generate a specially formed c2 first and then have the nominator
A generate values for other variables of σ (i.e. s and c1). The specially formed
c2 allows B to carry out confirmation/disavowal protocol while the rest of our
construction ensures that A cannot carry out similar proofs due to the fact that
it is unlikely for c1 to possess the special form as that of c2. Below are the details.

SystemSetup: Let k ∈ N be a security parameter. Randomly pick a prime q′ ≥ 2k

such that both q = 2q′+1 and p = 4q′+3 are prime. Randomly pick an integer
g ∈R Z

∗
p such that the order of g mod p is q. Randomly pick another integer
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h ∈R Z∗
q such that the order of h mod q is q−1. Let H : {0, 1}∗ → Z∗

q be a
hash function. The list of system parameters is param = (k, p, q, g, h, H)2.

KeyGen: On input param, it generates (x′, x′′, y′, y′′) where x′, x′′ ∈R Z∗
q , y′ =

gx′
mod p and y′′ = hx′′

mod q. Let ((x′
i, x

′′
i ), (y′

i, y
′′
i )) be the private/public

key pair of entity i, for i = A or B, corresponding to nominator and nominee,
respectively. Let L = ((y′

A, y′′
A), (y′

B, y′′
B)).

SigGen Protocol: On common input param and some message m ∈ {0, 1}∗, and
specific input y′

B for A and y′
A for B, the protocol proceeds as follows.

1. B computes c2 = H(m‖L)x′′
B mod q and sends c2 to A.

2. A carries out the remaining steps of the ring signature generation, that
is, finding s, c1 ∈ Zq such that

c1 · c2 ≡ H(L‖m‖gsy′
A

c1y′
B

c2 mod p) (mod q) (2)

A outputs a nominative signature σ = (s, c1, c2), which is actually a ring
signature3.

Signature Space (page 399). We say that σ is a nominative signature if (L, m, σ)
is a valid ring signature (i.e. satisfying Eq. (2)).

Vernominee : On input (L, m, σ) where σ = (s, c1, c2) is a nominative signature
(i.e. in the signature space defined above), if c2 = H(m‖L)x′′

B mod q, output
valid; otherwise, invalid.

Confirmation/Disavowal Protocol: On input (L, m, σ) where σ = (s, c1, c2)
is a nominative signature (as defined above), B first checks if valid ←
Vernominee(m, σ, y′

A, (x′
B , x′′

B)). If so, B sends μ = 1 to verifier C and proves
to C that (h, y′′

B, H(m‖L), c2) is a DH-tuple using a WI protocol. Otherwise,
B sends μ = 0 to C and shows that (h, y′′

B, H(m‖L), c2) is a non-DH-tuple
using a WI protocol.

We say that (h, ha, hb, hc) is a DH-tuple in Z∗
q if c ≡ ab (mod q− 1); otherwise,

it is a non-DH-tuple. According to [12], Witness Indistinguishable (WI) [7] pro-
tocols can be used to prove/disprove a DH-tuple, that is, it is sufficient for the
prover to execute the protocols successfully using its knowledge of either one
of the witnesses, i.e. a or b. In the Confirmation/Disavowal protocol above, B’s
knowledge is x′′

B . For concrete implementation, we use the protocols described
by Kurosawa and Heng [12].

2 Note that p = 2q + 1. g generates a subgroup G ⊂ Z
∗
p of order q and h generates Z

∗
q .

Half of the elements in Z
∗
p are generators of G and half of the elements in Z

∗
q are

generators of Z
∗
q .

3 To ensure that both c1 and c2 are in the multiplicative group Z
∗
q , rather than in the

additive group Zq , we change the modular addition of c1 and c2 as in Eq. (1) to a
modular multiplication in Eq. (2). This is for invisibility since the nominee always
generates a value of c2 in Z

∗
q rather than in Zq .
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Discussions. The specially formed c2 = H(m‖L)x′′
B mod q is actually an unde-

niable signature (due to Chaum [4,12]). Obviously, we should require that the
discrete logarithm (DLOG) problem in Z∗

q is intractable, namely, given a pair
of random instances (h, c2) ∈ Z∗

q , it is infeasible to find x such that c2 ≡ hx

(mod q). This is ensured in our scheme by requiring that q = 2q′ + 1, that is,
q−1 contains at least one large prime q′ ≥ 2k.

In the definition of signature space above (i.e. a nominative signature), note
that even σ is a valid ring signature on (L, m), that is, σ is a nominative sig-
nature, the validity of the nominative signature σ is undetermined. We can see
that given L, it is easy to evaluate if σ falls in the signature space defined above
(i.e. σ is a nominative signature but its validity can only be determined by B).
Therefore, when evaluating Vernominee, we can assume that σ has already been
checked to be a nominative signature.

The SigGen Protocol requires only one-move message transfer from B to A.
No multi-round interaction is required. Furthermore, the nominative signature
does not contain any standard signature. Hence from the nominative signature
itself, a third party is not able to identify any particular entity who must have
involved during the signature generation stage. Note that a nominative signature
σ, as defined, is only a valid ring signature on some message m with respect to
L, it can be generated by nominator A or nominee B alone, and any third party
is not able to find out exactly who the actual signer is.

In SystemSetup, we need to randomly choose a large prime q′ such that both
2q′ + 1 and 4q′ + 3 are prime. The following proposition claims that there are
adequately large number of such primes.

Conjecture 1. For any sufficiently large positive integer n, there are at least
n

(log n)3 primes in [1, n] such that for each of these primes, denoted by p, 2p + 1
and 4p + 3 are also prime.

Proof. We apply Shoup’s Hypothesis H conjecture [16]. Below is a review of the
conjecture.

Hypothesis H Conjecture. Let (a1, b1), ..., (ak, bk) be distinct pairs of integers
such that ai > 0. Let π(n) be the number of integers u up to n such that uai +bi

are simultaneously prime for i = 1, · · · , k. Then

π(n) ∼ D
n

(log n)k

where

D
.
=

∏
p

(1 − 1

p
)−k(1 − ω(p)

p
),

with the product taken over all primes p, and ω(p) being the number of distinct
solutions of u mod p to the congruence

k∏
i=1

(uai + bi) ≡ 0 (mod p). (3)
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By applying the Hypothesis H Conjecture above, we can estimate the density
of the primes stated in the theorem. To do this, we set k = 3 and (a1, b1),
(a2, b2), (a3, b3) to (1, 0), (2, 1), (4, 3), respectively. According to (3), the number
of integers u up to n such that u, 2u + 1, 4u + 3 are primes should be

π(n) ∼ D
n

(log n)3
.

To estimate the value of D, we consider three case. For the case p = 2, ω(p) = 1
as there is only one solution to the congruence of (3). Let

D1
.
=

∏
p=2

(1 − 1

p
)−k(1 − ω(p)

p
) = (1 − 1

2
)−3(1 − 1

2
) = 4.

For the case p = 3, ω(p) = 2 as there are two distinct solutions to the congruence
of (4). Let

D2
.
=

∏
p=3

(1 − 1

p
)−k(1 − ω(p)

p
) = (1 − 1

3
)−3(1 − 2

3
) =

9

8
.

For the case p > 3, there are two subcases. If p is in the form 4m + 3 for some
integer m, ω(p) = 3. These three solutions of u mod p to the congruence of (3)
are when u mod p is congruent to 0, m and 2m + 1. Note that for all p > 3,
since they are all odd primes, p must be in the form of 2m + 1. Hence the other
subcase is when p > 3 but it is not in the form 4m+3. In this subcase, p can only
be represented in the form of 2m + 1. We have ω(p) = 2. These two solutions
are when u mod p is congruent to 0 and m. Let

D3
.
=

∏
p>3

p2

(p − 1)3

∏
p′∈P ′

(p′ − 3)
∏

p′′∈P ′′

(p′′ − 2).

where P ′ is the set of all primes in the form of 4m + 3, where m is an integer,
and P ′′ is the set of all primes greater than 3 but not in the form of 4m + 3.
Note that P ′ ∪ P ′′ is the set of all primes greater than 3, and P ′ and P ′′ are
disjoint.

By combining these three cases, we get

D
.
= D1D2D3 = 4.5

∏
p>3

p2

(p − 1)3

∏
p′∈P ′

(p′ − 3)
∏

p′′∈P ′′

(p′′ − 2) ≈ 10.2153

for n = 220. Since D = 4.5
∏

p′∈P ′
p′2(p′−3)
(p′−1)3

∏
p′′∈P ′′

p′′2(p′′−2)
(p′′−1)3 > 4.5 · 1

2 · 1
2 > 1,

we have the density of the primes stated in the theorem estimated as follows.

π(n)

n
=

D

(log n)3
>

1

(log n)3

��

For comparison, we can use the similar method to find out that there are at least
n

(log n)2 Sophie Germain primes in [1, n].
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4 Security Analysis

It is obvious that the construction above satisfies the correctness requirement.
In the following, we show that the construction also satisfies the four security
requirement defined in Sec. 2.

Let (t, ε, Q)-A be a PPT algorithm A which solves a pre-specified problem
with probability at least ε after running for at most time t and making at most
Q queries in the underlying game. Similarly, (t′, ε′)-B denotes a PPT algorithm
which runs for at most time t′ and with success probability of at least ε′.

Lemma 1 (Cheating Nominee). For the NS scheme proposed above, given
nominee B’s private key, if a (t, ε, Q)-forger wins Game Unforgeability, there
exists a (2t + 2Qto + c, (ε/4)2)-adversary which can solve the DLOG problem in
the subgroup of Z∗

p of order q generated by g, where to is the maximum time for
simulating one oracle query and c is some constant.

Proof. If a forger F , after obtaining B’s private key (x′
B , x′′

B) via Corrupt, wins
Game Unforgeability, we construct an algorithm S which solves a random DLOG
problem instance y∗ = gx∗

mod p.

Game Simulation: At the beginning of the simulation of Game Unforgeability,
S generates param according to SystemSetup, and sets nominator A’s public key
(y′

A, y′′
A) to (y∗, hx′′

A mod q), where x′′
A ∈R Z

∗
q . For nominee B, the public/private

key pair is generated using KeyGen accordingly. A List is maintained for keeping
track of the queries and answers of random oracle H .

When F is invoked, 1k, pkA = (y′
A, y′′

A) and pkB = (y′
B , y′′

B) are given to F and
oracles are simulated as follows. For a query to random oracle H , List is checked
to see if the same query has made before, if so, the same answer will be returned;
otherwise, S randomly picks r ∈R Zq−1 and sets the answer to hr mod q. List is
updated accordingly. For a query to CreateUser, a new public/private key pair is
generated according to KeyGen and the public key is returned. If a Corrupt query
is received, for example, when B is queried, (x′

B , x′′
B) is returned. As restricted,

F cannot query Corrupt for A’s private key. For a SignTranscript query, there are
three cases.

– Case (1): If role = nil, a nominative signature is simulated by following
SigGen. There is one exception: when A is indicated as a nominator or a nom-
inee in query, S is not able to generate a valid nominative signature using
SigGen. Thanks to random oracle, S can still generate a valid nominative sig-
nature with distribution indistinguishable from the one generated using Sign-
Gen by following the steps below. (1) Set H(m‖pk1‖pk2) = hr mod q for a
random r ∈R Zq−1 and update List with (m‖pk1‖pk2, hr mod q, r); (2) Com-
pute c2 = y′′

2
r mod q where pk2 = (y′

2, y
′′
2 ); (3) randomly choose c1 ∈R Z∗

q

and s ∈R Zq; set H(pk1‖pk2‖m‖gsy′
1
c1y′

2
c2 mod p) to c1 · c2 mod q and up-

date List accordingly, where pk1 = (y′
1, y

′′
1 ); (4) return (m, (s, c1, c2), pk1, pk2)

and transσ = c2. This simulation is computationally indistinguishable from
a real simulation due to the idealness of random oracles and uniform distri-
butions of s, c1 and c2 in their corresponding domains.
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– Case (2): If role = nominator, S, acts as the nominee, carries out the SigGen
protocol with F . Similar to Case (1) above, if A is the nominee, S simply
follows steps (1) and (2) above to perform the role of the nominee.

– Case (3): If role = nominee, S, acts as nominator, carries out the SigGen
protocol with F . Similar to Case (1) above, if A is the nominator, S simply
follows steps (3) and (4) above to perform the role of the nominator.

For a Confirmation/disavowal query (m, σ = (s, c1, c2), pk1, pk2), since S always
knows the discrete logarithm of H(m‖pk1‖pk2) to the base h modulo q, S
can always carry out the confirmation/disavowal protocols with respect to DH-
tuples/non-DH-tuples.

Reduction: For one successful simulation, suppose the forgery of F is σ1 =
(s1, c1

1, c
1
2) on some message m∗ such that

c1
1 · c1

2 ≡ H(L‖m∗‖gs1
y′

A
c1
1y′

B
c1
2 mod p) (mod q)

and c1
2 = H(m∗‖pkA‖pkB)x′′

B mod q, by the assumption of random oracle model,
F has a query H(L‖m∗‖gs1

y′
A

c1
1y′

B
c1
2 mod p). After a successful rewind simula-

tion [14,1], F outputs another forgery σ2 = (s2, c2
1, c

2
2) on the same message m∗.

We have

c1
1 · c1

2 �≡ c2
1 · c2

2 (mod q) (4)
(c1

1 − c2
1)x∗ + (c1

2 − c2
2)x′

B ≡ s2 − s1 (mod q) (5)

From Eq. (4), we know that there is at least one i ∈ {1, 2} such that c1
i �≡

c2
i (mod q). Since c1

2 = c2
2 = H(m‖L)x′′

B mod q, which is the same for both
simulations, it must be the case that c1

1 �≡ c2
1 (mod q). Therefore, S can obtain

x∗ from Eq. (5).
Hence if the advantage of F in Game Unforgeability is ε, the probability that

S solves a random DLOG problem instance is at least (ε/4)2 due to the forking
lemma [14]. If each query takes at most time to to finish, the simulation time of
the game is at most 2t+2Qto +c where c denotes some constant time for system
setup and key generation. ��
Lemma 2 (Cheating Nominator). For the NS scheme proposed above, given
nominator A’s private key, if a (t, ε, Q)-forger wins Game Unforgeability, there
exists a (t + Qto + c, ε/Q)-adversary which can solve the CDH (Computational
Diffie-Hellman) problem in Z∗

q, where to is the maximum time for simulating
one oracle query and c is some constant.

Proof. If a forger F , after obtaining A’s private key (x′
A, x′′

A) via Corrupt, wins
Game Unforgeability, we construct an algorithm S to solve a random CDH prob-
lem instance, that is, given h, ha, hb ∈ Z∗

q , find hab ∈ Z∗
q .

Game Simulation: At the beginning of the simulation of Game Unforgeability,
S generates param according to SystemSetup, and sets nominee B’s public key
(y′

B, y′′
B) to (gx′

B mod p, ha mod q). For nominator A, the public/private key pair
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is generated using KeyGen accordingly. As in the proof of Lemma 1, a List is also
maintained for random oracle H .

When F is invoked, 1k, pkA = (y′
A, y′′

A) and pkB = (y′
B, y′′

B) are given to F
and oracles are simulated as in the proof of Lemma 1. In particular, for a query
to random oracle H , List is checked to see if the same query has made before,
if so, the same answer will be returned; otherwise, S randomly picks r ∈R Zq−1
and sets the answer to hr mod q. List is updated accordingly. As restricted, F
cannot query Corrupt for B’s private key.

Among the Q queries, S randomly chooses an H-query in the form
m̃‖pkA‖pkB and sets the answer to hb mod q. In case that Confirmation/disavowal
is queried on (m̃, σ, pkA, pkB) for any nominative signature σ, the simulation
aborts. The reason is that S does not know any of the discrete logarithms of y′′

B

and H(m̃‖pkA‖pkB) which are a and b, respectively. In the following, we will see
that at least 1/Q of the chance that this case will not happen.

Reduction: For one successful simulation, suppose the forgery of F is σ∗ =
(s∗, c∗1, c

∗
2) on some message m∗, there must be an entry in List referring to

H(m∗‖yA‖yB) = hr∗
mod q, by the assumption of random oracle model.

If m∗ = m̃, we have H(m∗‖pkA‖pkB) = hb mod q. Therefore, we have c2 =
hab mod q which is the solution to the CDH problem instance. Since m̃ is ran-
domly chosen, there is at least 1/Q chance that m∗ = m̃. Therefore, S can obtain
hab mod q with probability at least ε/Q. Also note that F cannot query Con-
firmation/disavowal on (m∗, σ, pkA, pkB) for any nominative signature σ. Hence
the simulation will not have early abortion for the case that m∗ = m̃.

If each query takes at most time to to simulate, the simulation time of the
game is at most t+Qto +c where c denotes some constant time for system setup
and key generation. ��
Theorem 1 (Unforgeability). The NS scheme proposed above is unforgeable
(Def. 1) if the DLOG problem in the subgroup of Z∗

p of order q generated by g
and the CDH problem in Z∗

q are intractable.

The theorem follows directly from Lemma 1 and 2.

Theorem 2 (Invisibility). The NS scheme proposed above has the property of
invisibility (Def. 2) under the Decisional Diffie-Hellman (DDH) assumption in
the random oracle model. Precisely, if there exists a (t, 1

2 + ε, Q)-distinguisher D
in Game Invisibility, then there exists a (t + Qto + c, 1

2 + ε
Q )-distinguisher DDDH

which solves a DDH problem instance in Z∗
q , where to is the maximum time for

simulating one oracle query and c is some constant.

Proof. If there exists a (t, ε, Q)-distinguisher D in Game Invisibility, we construct
a DDH distinguisher DDDH such that given h, ha, hb, hc ∈ Z∗

q , DDDH is to decide
if c ≡ ab (mod q−1).

To simulate Game Invisibility, DDDH follows the specification of the game and
carries out a similar simulation to that in the proof of Lemma 2. In particular,
DDDH sets the second component of nominee B’s public key y′′

B to ha mod q. As
restricted, D cannot query Corrupt for B’s private key. Another remark is that,
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before D outputs a challenge message m∗, DDDH randomly chooses one of the
H-queries that are in the form of m̃‖pkA‖pkB and sets its answer to hb mod q.

When D outputs a challenge message m∗, if m∗ �= m̃, DDDH aborts and
outputs a random bit b′; otherwise, DDDH returns the challenge nominative
signature σ∗ = (s∗, c∗1, c

∗
2) to D. Since DDDH knows x′

A, σ∗ can be generated by
DDDH using SigGen, while setting c∗2 to hc mod q. Note that D may have never
queried H in the form of m̃‖pkA‖pkB before outputting the challenge message
m∗. In this case, DDDH sets H(m∗‖L) to hb mod q and sends to D the challenge
nominative signature σ∗ in the same way as the case when m∗ = m̃. At the end
of the game, DDDH outputs whatever D outputs. Let E be the event that DDDH

does not abort when D outputs the challenge message m∗. Obviously, Pr[E] is
at least 1/Q.

Note that σ∗ = (s∗, c∗1, c
∗
2) is always a valid ring signature on m∗ with respect to

L = (pkA, pkB). As (h, ha, hb, hc) is a DDH problem instance, half of the chance
that (h, y′′

B, H(m∗‖L), c2) is a DH-tuple and the other half that the instance is
a non-DH-tuple. If (h, ha, hb, hc) is a DH-tuple, so is (h, y′′

B, H(m∗‖L), c2). Also
note that (m∗, pkA, pkB, role) cannot be queried to SignTranscript, for any valid
value of role, and (m∗, σ, pkA, pkB) cannot be queried to Confirmation/disoavowal
either, for any nominative signature σ. The simulation by DDDH will not have
early abortion.

Therefore, for event E, if the probability that D wins Game Invisibility is 1
2 +

ε, DDDH solves the DDH problem instance also with probability 1
2 + ε. For

event E, the probability that DDDH solves the DDH problem instance is 1
2 only.

Therefore, the probability that DDDH solves the DDH problem instance is equal
to Pr[E](1

2 + ε) + Pr[E]12 . Since Pr[E] is at least 1/Q, the winning probability of
DDDH is at least 1

2 + ε
Q . Similar to Lemma 2, the running time of DDDH is at

most t + Qto + c. ��
Both confirmation and disavowal protocols in this scheme apply directly the
technique due to Kurosawa and Heng [12]. Their technique has been proven to
satisfy the requirement of non-transferability, which is defined in a similar way as
the security against impersonation (Def. 2.3). In addition, by using the technique
of Theorem 2, it can be shown that compromising the security against imper-
sonation of this scheme reduces to compromising the underlying hard problem
assumption of the confirmation/disavowal protocols of the undeniable signature
scheme [2]. We skip the details but readers can readily derive the reduction from
the proving technique of Theorem 2.

The scheme also satisfies the requirement that nominee cannot repudiate spec-
ified in Sec. 2.4. We refer readers to the remark at the end of Sec. 2.4 for the
reason.

5 Conclusion

We proposed an efficient NS scheme. Unlike the only proven secure NS scheme
available in the literature [13], which requires multi-round communications be-
tween the nominator and the nominee for signature generation, our construction
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requires only one-move communication. We also showed that the construction
is proven secure under the strongest security model currently available and the
reductionist proofs only relies on some standard number-theoretic assumptions.
Our construction is also an interesting application of two-member ring signature.
We believe that this new application of ring signature can inspire the construc-
tion of some other related cryptographic algorithms.
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1 Introduction

Recently, mobile communication is becoming more and more popular such that
many applications and services are provided in the mobile network environments.
Moreover, some countries are planning to construct new wireless network archi-
tectures of 4G (4th Generation) mobile networks. There are also smart mobile
equipments produced for people to enjoy the mobile services anywhere and any-
time. It is obvious that mobile computing will penetrate the people’s life in the
near future. The convenient mobile network services and the powerful mobile
equipments will make the people all around the world be willing to join the
society of mobile communications.

Mobile users may process important documents or secret personal informa-
tion in their mobile equipments when they roam around the mobile networks.
They would worry about whether it is secure for them to carry their impor-
tant data to the mobile networks. When mobile users exchange messages in the
mobile networks, they will face lots of security threats. The eavesdroppers may
try to obtain their communicating messages, their real identities, and even their
locations where they are roaming around. The more information the eavesdrop-
pers know, the less security and privacy the mobile users obtain. Sometimes
the vicious insiders of the system operator would disclose the classified informa-
tion of mobile users. Any system without maintaining user privacy will not be
acceptable in the future.

There exist some weaknesses on user privacy in the existent 2G mobile network
system. Each mobile user’s alias, TMSI, can be linked to her/his real identity,
IMSI, by attackers when the VLR requests her/him to retransmit her/his IMSI.
The 2G mobile network also has no design for satisfying mutual authentication
and protecting the users’ privacy against the system operator. A mobile user
may be cheated by some fake base stations in a mobile network system due
to lack of mutual authentication. Although the 3G system has provided mutual
authentication, the privacy or anonymity of mobile users has not been sufficiently
considered yet.

Most of the proposed authentication schemes [5] [6] [7] [8] [9] [10] [12] which
emphasize the privacy of mobile users usually assign an anonymous identity to
each user. A mobile user will obtain an anonymous identity after she/he is au-
thenticated by the system operator successfully, and she/he will take this valid
alias to roam over the mobile networks. The eavesdroppers do not know the re-
lation between her/his real identity and alias. To protect the user’s privacy per-
fectly, we hope that anyone else, even the system operator, cannot derive such
relations either. Owning to the unlinkability property, the technique of blind sig-
natures [14] can help us with realizing complete anonymity for mobile users.

Another problem is that once a mobile user gets anonymity, how can the sys-
tem operator charge her/him when she/he requests the mobile network services
via an anonymous identity? Especially, if there is some mobile user who misused
the anonymity property to commit crimes, how can the judge handle it? Almost
all of the current solutions cannot cope with all of the above problems at the
same time.
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In our solution, every mobile user is anonymous from any other one’s point
of view when she/he is obtaining the mobile network services. Furthermore, the
system operator can charge the mobile user according to the communication
time the user consumed. Moreover, we also consider the issue of fair privacy.
The privacy of the mobile users who misused the anonymity property can be
revoked by the judge, and the police can trace the criminals who get anonymity.
This is the property of fair privacy. We simultaneously realize the anonymity,
chargeability, and fair privacy (revokeability and traceability) in our proposed
authentication protocols for mobile communications.

2 Our Protocols

In order to simplify our protocols, we adopt the RSA cryptosystem [15] to re-
alize them. However, our protocols can be implemented by any other suitable
cryptosystem. First, we define and explain some notations as follows:

1. MS, H , V : These are three participants in our protocols. MS is a mobile
user, H is the server of the home network, and V is the server of a visiting
network.

2. IDMS : The real identity of MS.
3. Ex: An encryption function where x can be a symmetric key or a public key.
4. kms h, kms v, kv h: The shared session keys between MS and H , MS and V ,

and V and H , respectively.
5. pkj , pkv: The public keys of the judge and V , respectively.
6. F1 and F2: Two public one-way hash functions.
7. A judge’s device: The judge issues a tamper-resistant device which con-

tains {a random-number generator, a symmetric-key cryptosystem, a public-
key cryptosystem, a public-private key pair of the judge, F1, F2}. This device
will be integrated into the system of H . It is impossible to steal or modify
any information embedded in the device. In our scheme, the judge is an off-
line party, i.e., the judge does not need to keep connection with H in our
protocols, but the judge’s device does.

8. γ: It is a due date. As shown in Fig. 1, if a mobile user requests a ticket for
communication in time slot Pi, H will assign her/him a due date γ where γ
is the last day of next time slot Pi+1. H assigns the same γ to each mobile
user who requests a ticket in the same time slot. The length of each time
slot is equivalent.

Our scheme consists of four protocols which are described in Section 2.1,
Section 2.2, Section 2.3, and Section 2.4, respectively. In our scheme, a mobile
user requests an anonymous ticket by performing the protocol in Section 2.1.
Then she/he can use the anonymous ticket for network services by executing
the protocol in Section 2.2. After she/he performs the protocol in Section 2.2
for network services, H can charge her/him on the due date via the protocol in
Section 2.3. Especially, if she/he does something illegal, the judge and the police
can revoke her/his privacy or trace her/him through the protocol in Section 2.4.
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Fig. 1. The time slots

2.1 The Protocol for Requesting an Initial Anonymous Ticket

First, H chooses two distinct large primes p and q and computes n = pq. H also
chooses its public key e and a secret key d such that ed = 1 mod φ(n) where
φ(n) = (p − 1)(q − 1). Finally, H publishes {n, e} and keeps {p, q, d} secret.
Besides, H also publishes all time slots Pis, i ∈ {1, 2, 3, ...}, i.e., all of the due
dates γ are published.

In our scheme, the mobile user, MS, can request an anonymous ticket by
running the protocol in this section after she/he performs any existing secure
mutual authentication protocol with the system, V and H , where the secure mu-
tual authentication protocol will establish the three session keys, kms h, kms v,
and kv h, among MS, V , and H [2]. MS shares kms h with H and kms v with
V , and V shares kv h with H . This protocol contains the following steps. The
protocol is also shown in Fig. 2.

1. MS → H : {Ekms h
(M, F1(M))}. First, MS randomly generates strings

{m, k, v} and an integer r ∈ Z∗
n. Then MS computes α = reF 2

1 (m) mod
n. Finally, MS forms M = {α, Epkj (k, v, IDMS)} and submits Ekms h

(M ,
F1(M)) to H .

2. H → The judge’s device : {μ, γ, Epkj (k, v, IDMS)}. In this step, H knows
that MS whose real identity is IDMS wants to request a ticket. First, it sets
μ = IDMS , and lets γ be the last day of next time slot. Then H inputs {μ,
γ, Epkj (k, v, IDMS)} into the judge’s device. Finally, H records that MS
has ever bought a ticket in the current time slot and she/he will have to
return an unused ticket before the due date γ for billing.

3. The judge’s device → H : {β, Ek(δ, b, v, σ), Epkj (rz)}. First, the judge’s
device decrypts Epkj (k, v, IDMS) and checks if μ = IDMS . If true, it
randomly generates two strings (rj , rz) and an integer b ∈ Z

∗
n. Then it

sets w = 0 and computes σ = Epkj (w, rj), δ = Epkj (IDMS , F1(rz)), and
β = beF2(δ, σ, γ) mod n. Finally, it returns {β, Ek(δ, b, v, σ), Epkj (rz)} to
H .

4. H → MS : {t, Ek(δ, b, v, σ), γ}. First, H must record (IDMS , Epkj (rz)) into
its database. Then H computes t=(αβ)d mod n and sends {t, Ek(δ, b, v, σ), γ}
to MS.

5. Unblinding: After receiving {t, Ek(δ, b, v, σ), γ}, MS checks if γ is the
last day of next time slot. Then she/he decrypts Ek(δ, b, v, σ) via k and
computes s = (br)−1t mod n after checking that v is the same as the one
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which she/he sent to H previously. She/He obtains a ticket (m, δ, σ, γ, s)
and can verify it by examining if the following formula is true.

F 2
1 (m)F2(δ, σ, γ) ≡ se (mod n) (1)

Finally, MS sets i = 1 and (mi, δi, σi, γ, si) = (m, δ, σ, γ, s) and then goes to
the protocol of Section 2.2 when she/he decides to use the ticket.

2.2 The Protocol for Using an Anonymous Ticket at i-th Round
Before the Due Date

This protocol makes it possible for the anonymous mobile user MS to perform
mutual authentication with V and use her/his ticket for mobile network services.
It contains the following steps and also be shown in Fig. 3.

1. MS → V : {θ, T , M}. First, MS sets (m∗, δ∗, σ∗, s∗) = (mi, δi, σi,
si) and then prepares T = {F1(m∗), δ∗, σ∗, γ, s∗} and randomly generates

Fig. 2. The Protocol for Requesting an Initial Anonymous Ticket
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strings {m∗∗, k, v, r1, r2, r3} and an integer r ∈ Z∗
n. Furthermore, MS

computes α = reF 2
1 (m∗∗) mod n and prepares M = (α, Epkj (k, v)). Finally,

MS computes θ = Epkv (r1, r2, r3, F1(M)) and submits {θ, T, M} to V .
2. V → MS : {r1, r4}. After receiving {θ, T, M}, V verifies T by examining if

F1(F1(m∗))F2(δ∗, σ∗, γ) ≡ (s∗)e (mod n) (2)

and γ is not expired. If true, V decrypts θ and checks that the hashed value
of M equals to F1(M). Then V generates a string r4 randomly and sends
{r1, r4} to MS.

3. V → H : {Ekv h
(T, F1(T ))}. After V sends {r1, r4} to MS, it immediately

submits Ekv h
(T, F1(T )) to H in order to perform the double-usage checking

on T . If T is doubly used, the connection will be terminated.
4. MS → V : {λ}. After receiving {r1, r4}, MS checks if r1 is the same as

the one which was chosen by herself/himself. Then MS computes λ = r2 ⊕
(m∗||r4) and sends λ to V .

5. Allowing Communication: After receiving λ, V decrypts it by computing
(λ ⊕ r2) and parse the decryption result to get (m∗, r4). Then, V verifies if
r4 equals to the one that was chosen by itself and checks whether the hashed
value of m∗ is the same as F1(m∗) in ticket T . If true, V ensures that MS
is the real owner of T . Therefore, V allows MS to communicate. During the
communication with V , MS can encrypt her/his messages via key r3.

6. V → H : {Ekv h
(m∗, M, w′), F1(m∗, M, w′)}. After MS terminated the com-

munication, V computes the spent value w′ of MS according to MS’s com-
municating time or utilized services. Then V sends Ekv h

(m∗, M, w′) and
F1(m∗, M, w′) to H .

7. H → The judge’s device: {δ∗, σ∗, w′, γ, Epkj (k, v)}. Once H receives the
spent value w′ of MS, H stores {T, m∗, w′} into its database. Then H ex-
tracts δ∗, σ∗, and γ from T and extracts Epkj (k, v) from M . Finally, H
inputs {δ∗, σ∗, w′, γ, Epkj (k, v)} into the judge’s device.

8. The judge’s device → H : {β, Ek(δ∗∗, b, v, σ∗∗)}. First, the judge’s device
decrypts Epkj (k, v) to get (k, v) and parses the result of decrypting δ∗ as
(IDMS , z′). It also decrypts σ∗ to get the first element, named w∗, in the
decrypting result. Furthermore, it randomly selects a string rj and an integer
b ∈ Z∗

n. Then it prepares δ∗∗ = Epkj (IDMS , F2(z′)) and σ∗∗ = Epkj ((w∗ +
w′), rj). Finally, it computes β = beF2(δ∗∗, σ∗∗, γ) mod n and outputs {β,
Ek(δ∗∗, b, v, σ∗∗)} to H .

9. H → MS : {t, Ek(δ∗∗, b, v, σ∗∗)}. H computes t = (αβ)d mod n and returns
{t, Ek(δ∗∗, b, v, σ∗∗)} to MS.

10. Unblinding: After receiving {t, Ek(δ∗∗, b, v, σ∗∗)}, MS decrypts the cipher-
text Ek(δ∗∗, b, v, σ∗∗) and checks v, and then MS computes s∗∗=(br)−1t mod
n. Finally, MS obtains a new ticket (m∗∗, δ∗∗, σ∗∗, γ, s∗∗) which can be ver-
ified by checking whether F 2

1 (m∗∗)F2(δ∗∗, σ∗∗, γ) ≡ (s∗∗)e (mod n) is true
or not. If true, MS sets i = i+1 and (mi, δi, σi, γ, si) = (m∗∗, δ∗∗, σ∗∗, γ, s∗∗),
which is an unused ticket of the user. Thus, she/he can use the new unused
ticket for the next round of communication before the due date, γ.
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Fig. 3. The Protocol for Using an Anonymous Ticket at i-th Round Before the Due
Date
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2.3 The Protocol for Charging Mobile Users

For each mobile user, say MS, the system operator, H , audits her/his bill
through the following steps on the due date, γ:

1. MS returns her/his real identity and unused ticket, (m∗, δ∗, σ∗, γ, s∗), to H
on the due date.

2. H checks that the ticket does not exist in its database, and then extracts σ∗

from the ticket. H sends σ∗ to the judge’s device.
3. The judge’s device decrypts σ∗ and returns the first element in the decryption

result i.e., the spent value, to H .
4. H adds the spent value to the bill of MS and deletes the record which

indicates that MS has ever bought a ticket.
5. Send the bill to MS.

Besides, if the mobile user wants to request a ticket after the due date, γ,
she/he must perform the protocol of Section 2.1 again.

Our scheme adopts credit-based charging1, just as the practical situation in
the real world. It is different from the others which provided approaches of debit-
based charging2[5][12]. What are the differences between charging mobile users
in advance and charging them later? The followings are the reasons why we
design our scheme to charge mobile users later.

1. Adaptability. In current GSM services, almost all of the systems adopt
credit-based ways to charge users.

2. Reducing the relations between any two rounds of communication
with one token only. There are two possible ways to charge a mobile user
in advance, which are described as follows:
(a) The mobile user purchases a set of payment tokens from the system

previously where each of the tokens is with a unit value. In each round
of communication, the mobile user sends a proper number of tokens to
the system for payment. In this case, it is difficult for the system to derive
the relation between any two rounds of communication since each token
is independent. However, this will consume much storage and space for
recording and transmitting these tokens.

(b) The mobile user purchases only one payment token from the system
previously where the token is with a specific value w. In the following
round of communication, the mobile user sends the token to the system
for payment and then the system returns a token with value (w − w1)
if the user consumes w1 value of that token. The mobile user just needs
to store one token. However, this will cause defective privacy. When the
system returns one token with value (w − w1) to the user, the system
knows that the user will use the token with value (w − w1) in the next
round. There exists a relation between these two rounds.

1 The system charges each mobile user after she/he used the mobile network services.
2 The system charges each mobile user before she/he starts to use the mobile network

services.



420 C.-I. Fan and V.S.-M. Huang

In our scheme, we greatly reduce the relations between any two rounds of
communication from the system’s point of view with one-token storage only.

3. Free from the problem of overspending. In debit-based charging meth-
ods, both of the above two ways (a) and (b), when a mobile user shows
her/his token(s) to the system for communicating, her/his communication
will be terminated if the tokens or the token’s value are used up. It will cause
inconvenience for the mobile user. If the system does not terminate the com-
munication, the mobile user will overspend the token(s) and the system must
perform extra procedures to deal with the situation. In our scheme, based
on a credit-based method, the above problem can be avoided.

2.4 The Protocol for Privacy Revoking

In some special situations, H or the judge needs to disclose the identity of an
anonymous mobile user. For example, an anonymous mobile user commits a
crime; the police wants to trace some criminals; or some mobile users who do
something harmful for H . Our scheme supports two ways to trace illegal anony-
mous mobile users.

1. Tracing the mobile user by a designated ticket: Once a mobile user
impose on anonymity to commit a crime, her/his ticket will be reported to
the judge. Assume that the ticket is (m′, δ′, σ′, γ′, s′). The judge will extract
δ′ from the ticket and parse the decryption result of δ′ to get IDMS .

2. Tracing the tickets by a designated mobile user: When the police
wants to trace a criminal whose real identity is IDMS , the police will ask H
and the judge to disclose the privacy of the criminal. In this case, H will send
the recorded pair (IDMS , Epkj (rz)) to the judge. After decrypting Epkj (rz),
the judge will compute

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ1 = Epkj (IDMS , F 1
1 (rz))

δ2 = Epkj (IDMS , F 2
1 (rz))

δ3 = Epkj (IDMS , F 3
1 (rz))

...
δi = Epkj (IDMS , F i

1(rz)).

(3)

Then, it sends {δ1, δ2, δ3, . . . , δi} to H , and H will help the police to trace
the mobile user via the set. In our scheme, the mobile user uses T1 with
δ1 for her/his first round of communication, T2 with δ2 for her/his second
round, and so forth. According to this order, H can trace the communi-
cation activities of the criminal from the first round to the i-th round via
{δ1, δ2, δ3, . . . , δi}.

2.5 Exceptions

In addition to the above issues, there are still two exceptions that may happen
in our scheme. One is that the mobile user denies returning her/his ticket for
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billing before the due date, and the other one is that the mobile user lost her/his
ticket (or lost her/his mobile equipment).

1. The mobile user denies returning her/his ticket for billing before
the due date: After the due date γ, if there is any mobile user who has
not returned her/his unused ticket yet, H will send a list L to the judge
where L contains the identities of the mobile users who did not return their
unused tickets. According to L , the judge sends payment notices to all of
the mobile users on L and announces another due date γ

′
. If there is a

mobile user, IDMS , who does not return her/his unused ticket before the
new due date γ

′
, the judge will compute the set {δ1, δ2, δ3, . . .} according to

IDMS by (3) and then sends it to H . Assume that the mobile user denied
returning Ti+1. H can find {Ti, w

′
i} from its database via δi. When H finds

{Ti, w
′
i}, the judge can help H with extracting the spent value w∗ from Ti,

and then H computes w′′ = w∗ + w′
i and adds w′′ to the bill of IDMS .

2. The mobile user lost her/his ticket: When a mobile user lost her/his
unused ticket Ti, she/he must ask H to freeze her/his unused ticket or it may
be used by an attacker. After an authorization process3 where the mobile
user authorizes H to reveal her/his privacy, H can send (IDMS , Epkj (rz))
to the judge to compute {δ1, δ2, . . .} by (3). Assume that the mobile user
lost Ti, H must deny the services for Ti, Ti+1, Ti+2, . . . by δi, δi+1, δi+2, . . .,
respectively, where i ∈ N. Besides, H finds {Ti−1, w

′
i−1} from its database

via δi−1 and sends Ti−1 to the judge to extract the spent value w∗ from
Ti−1. After the judge returns w∗ to H , H adds (w′

i−1 +w∗) to the bill of the
mobile user.
In order to handle this exception, the privacy of T1, T2, T3, . . . , Ti−1 of the
mobile user will be revealed. However, if the mobile user remembered how
many tickets she/he has used, she/he can still preserve her/his privacy. For
example, a mobile user lost her/his unused ticket, and she/he remembers
that she/he has consumed 4 tickets. Then the judge just needs to compute
{δ5, δ6, . . .} for H , and {δ1, δ2, δ3, δ4} are still kept secret for the mobile user.
After the mobile user freezes her/his lost ticket, she/he can perform the
protocol in Section 2.1 again to request a new ticket.

3. The communications are terminated abnormally: Consider the case
that the communication of Step 9 in Section 2.2 are abnormally terminated,
i.e., the mobile user does not receive a renewed ticket after communicating.
We assume that each time when the mobile user receives {t, Ek(δ∗∗, b, v, σ∗∗)}
successfully, she/he will return an ACK to H . Once H does not receive ACK,
it will store {t, Ek(δ∗∗, b, v, σ∗∗)} and {m∗, δ∗, σ∗, γ, s∗} into an unsuccessful
communication record. Thus, the user can retransmit {m∗, δ∗, σ∗, γ, s∗} to H
via V , and H can retrieve {t, Ek(δ∗∗, b, v, σ∗∗)} from the unsuccessful com-
munication record and send it to the mobile user.

3 For example, the mobile user must sign a document to show that she/he agrees H
to ask the judge to compute {δ1, δ2, . . .}.



422 C.-I. Fan and V.S.-M. Huang

3 Security Analysis

In the protocols of Section 2.1 and Section 2.2, we adopt the technique of blind
signatures to design the mechanisms for ticket requesting and ticket renewal,
respectively. The protocol of Section 2.2 shows that an anonymous mobile user
has to mutually authenticate with the system before accessing network services.
In this section, we analyze several attacks on the above protocols.

3.1 The Replay Attack

If the system and a mobile user cannot detect replayed messages between their
transmissions, the replay attack will be successful. In this subsection, we analyze
the replay attack on the anonymous authentication steps of the protocol in
Section 2.2. We will demonstrate that it will be detected by V or MS if any of
their transmissions is replayed.
<1> MS → V : {θ, T, M}. If the message is replayed, the attacker cannot pass

the authentication successfully because that the attacker cannot show m∗ at
the following transmission. Only the real owner of T knows the corresponding
m∗.

<2> V → MS : {r1, r4}. If there is a fake V which wants to cheat m∗ out of
MS, it will be detected by MS because of the random string r1. The fake
V cannot answer correct r1 to MS since it cannot decrypt θ to get r1 which
was randomly chosen by MS.

<3> MS → V : {λ}. If an attacker replays λ directly, it will be detected by
V according to the random strings r4 and r2. The strings r4 and r2 are
chosen randomly in each round. Even if the attacker replays {θ, T, M} and
{λ} simultaneously, it will be detected by V because of the random string
r4.

3.2 The Impersonation Attack

It is easy to duplicate a T of MS from the transmissions. However, it is compu-
tationally infeasible to use the duplicated T to impersonate MS in our protocol.
<1> Impersonating MS: V authenticates MS by verifying her/his ticket Ti

and checking the secret mi of Ti. Only the real owner has the corresponding
mi. If the hash function F1 is secure enough and MS keeps its mi secret,
anyone else cannot impersonate MS.

<2> Impersonating V : Similarly, the attacker cannot impersonate V . A fake
V will be detected by MS since it cannot send the correct r1 to MS. As long
as the public-key cryptosystem is secure and V keeps the secret key safely,
the attacker cannot decrypt θ and then return correct r1 to MS.

<3> Impersonating H : In the protocol of Section 2.1 or Section 2.2, if an
attacker wants to impersonate H , it must return correct {t, Ek(δ, b, v, σ)} or
{t, Ek(δ∗∗, b, v, σ∗∗)} to MS. However, in our protocols when requesting or
using a ticket, MS always sends H a challenge string v which is encrypted
by Epkj . None can return correct v because that only the legal H has the
judge’s device which can help H to decrypt Epkj (k, v, IDMS) or Epkj (k, v).
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3.3 Message Replacement

If an attacker replaces a message which is prepared for the system to sign and
the replacement causes that the legal user cannot get a valid ticket or the legal
user cannot check it out, then the attack will work. We examine the following
transmissions to check whether the replacement attack can work or not.

<1> MS → H : {Ekms h
(M, F1(M))}. In the protocol of Section 2.1, if the

transmission is replaced, it will be detected by H after H decrypts the mes-
sage and checks the hashed value of M . Even if the attacker replaces this
transmission by another valid Ekms h

(M ′, F1(M ′)), the mobile user will de-
tect the replacement when she/he is verifying the received signature.

<2> H → MS : {t, Ek(δ, b, v, σ), γ}. In the protocol of Section 2.1, if any pa-
rameter of this transmission is replaced, it will be detected by MS via the
verification formula (1). Even if t and Ek(δ, b, v, σ) are replaced simultane-
ously by another valid t′, δ′ and σ′, MS can still detect it via v which is
chosen by herself/himself.

<3> MS → V : {θ, T, M}. In the protocol of Section 2.2, θ contains F1(M).
Hence, attackers must replace θ and M at the same time or H will detect
the replacement. However, once an attacker replaces θ and M , it will be
detected by MS because of the incorrect r1.

<4> V → H : {Ev h(m∗, M , w′), F1(m∗, M, w′)}. In the protocol of Sec-
tion 2.2, if the transmission is replaced by another {Ev h(m∗′

, M ′, w′′),
F1(m∗′

, M ′, w′′)}, H will detect it through the value of F1(m∗).
<5> H → MS : {t, Ek(δ∗∗, b, v, σ∗∗)}. In the protocol of Section 2.2, if any

parameter of this transmission is replaced, it will be detected by MS via an
incorrect v.

3.4 The Security Requirements for Each Entity

In this section, we discuss the security requirements for mobile users, the judge,
and the system, respectively. We show that why our protocol satisfies these
requirements.

The Viewpoints of Mobile Users: From the viewpoints of a mobile user,
what she/he would like to ensure are:

1. Mutual authentication: MS and V can be mutually authenticated by
each other via Step 1, Step 2, and Step 4 of the protocol in Section 2.2. MS
authenticates V by verifying if it sends a correct string r1 where V must
decrypt Epkv (r1) to obtain r1. And MS shows the secret m∗ after she/he
ensures that the V is legal. Once MS shows her/his m∗ to V , MS convince
V that she/he is a legal user.

2. None can impersonate MS: According to <1> and <3> in Section 3.1
and <1> in Section 3.2, none can impersonate MS via the replay or imper-
sonation attacks.
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3. None can impersonate the system: According to <2> in Section 3.1
and <2> in Section 3.2, none can impersonate V .

4. Ticket correctness: When MS received a ticket in Step 5 of Section 2.1,
she/he can verify whether the received ticket is correct or not by formula
(1). Besides, <1>, <2>, <3>, <4>, and <5> in Section 3.3 show that the
destruction of the ticket can be detected.

5. Tickets would not be stolen when being transmitted: In our scheme,
MS does not have to worry that her/his T will be stolen as long as she/he
keeps m∗ secretly since <1> in Section 3.2 shows that none can impersonate
MS by duplicating her/his T , and <2> in Section 3.2 demonstrates that
none can impersonate V to cheat m∗ out of MS.

6. Obtaining privacy: In Step 1, Step 2, and Step 4 of Section 2.2, MS does
not need to reveal her/his identity to V for authenticating. Furthermore,
each T of MS is independent, so that the system operator cannot trace MS
via the information of T in each round. Furthermore, it is difficult for the
system to link any two rounds of communication of the same user. Since
each ticket is independent, just as the case of (a) in Section 2.3

7. Secure communication: In Step 5 of Section 2.2, MS can communicate
with V via the session key r3.

The Viewpoints of the System Operator: From the viewpoints of the
system, including H and V , what it would like to ensure are:

1. Malicious mobile users cannot pass the authentication: In Section
2.2, V verifies T of MS in Step 1 and checks the corresponding m∗ of T
in Step 5. Besides, <1> and <3> of Section 3.1 also show that the system
operator can also withstand the replay attack.

2. None can impersonate the system operator: According to <2> in
Section 3.1, and <2> and <3> in Section 3.2, none can impersonate the
system operator to cheat a mobile user. And by <2> and <5> in Section
3.3, none can impersonate the system to issue tickets.

3. Charge anonymous mobile users correctly: From Section 2.3, the sys-
tem operator can charge mobile users correctly in normal cases. Even in the
exception cases described in Section 2.5, the system operator can still charge
the mobile users correctly.

The Viewpoints of the Judge: In the mobile network environments, the
judge needs a mechanism to revoke the privacy of the mobile users who misused
the anonymity property. It also needs the capability of tracing a criminal who
roams over the mobile networks. In our scheme, the judge can supervise the
illegal mobile users and criminals by the two ways shown in Section 2.4.

4 Comparisons

First, we describe some features as follows where these features are required for
mobile users when they roam around the mobile networks.
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1. Hiding identity: Mobile users hide their real identities from the system
operator, H and V , and the eavesdroppers, E.

2. No relation: It is difficult for the system to derive the relation between any
two rounds of the communication of the same mobile user.

3. Secure channels: After performing mutual authentication between an
anonymous mobile user and the system operator, they must establish a
shared session key for the following communication activities.

4. Fair privacy: Fair privacy contains traceability and revokability. If a
crime happens, the police can trace the identities of related anonymous mo-
bile users or the judge can revoke the privacy of a criminal mobile user.

5. Chargeability: Chargeability contains two methods, debit-based and
credit-based methods. By the debit-based method, the system operator
charges mobile users before they access mobile network services. By the
credit-based method, the system operator charges mobile users later. Both
of the two methods must be able to charge anonymous mobile users according
to the time of communication or the types of services they utilized.

The comparisons of our proposed scheme and the others are summarized in
Table 1. In Table 1, the authors of [5] also mentioned untraceability and re-
vokability, but they did not realize it in their scheme. We believe that realizing
untraceability and revokability is not trivial. Finally, as the mentioned in Section
2.3, the credit-based charging method is better than the debit-based one since

Table 1. Comparisons

Privacy Property
Hide Identity NoR S Fair Chargeability
H V E T R

ours © © © © © © © Credit-based
[5] © © © × © � � Debit-based
[6] © © © × × × × –
[7] × © © © © × × –
[8] × × © © © × × –
[9] × © © × © × × Credit-based
[10] © © © © × × × –
[12] © © © × × × × Debit-based
[16] × © © × – × × Debit-based
[17] × © © × © × × Debit-based

H: Home domain. V: Visiting domain. E: Eavesdroppers.
NoR: Hard to derive relation between any two rounds.
S: Secure Channel.
T: Traceability. Trace the criminal user.
R: Revokability. Revoke the user’s privacy.
©: Achieving the feature.
×: Not achieving the feature.
�: No realization on the feature.
–: No consideration
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the former 1) is the same as the practical situation in current GSM
services; 2) can greatly reduce the relations between any two rounds
of communication and 3) is free from the problem of overspending.

5 Conclusions

We have proposed a mobile authentication scheme which can authenticate mobile
users anonymously. When a mobile user enters the anonymity mode, she/he can
perform a mutual authentication process with the system operator. The system
operator can charge the anonymous user correctly according to the time she/he
consumed by a credit-based method. Furthermore, if some mobile user misuses
the anonymity property, the judge can revoke her/his privacy and trace her/him.

In this paper, the privacy of an honest mobile user might be broken by the
system operator if the mobile user lost her/his ticket since the system operator
needs to trace her/his used tickets in order to find the spending value of her/him.
It is an interesting research topic to find an efficient solution to cope with the
problem.
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Abstract. The hash function HAVAL is a well known Merkle-Damg̊ard
hash function such as MD4 and MD5. It has three variants, 3-, 4- and
5-pass HAVAL. On 3-pass HAVAL, the best known attack finds a colli-
sion pair with 27 computations of the compression function. To find k
collision pairs, it requires 27k computations. In this paper, we present
a better collision attack on 3-pass HAVAL, which can find k collision
pairs with only 2k + 33 computations. Further, our message differential
is different from the previous ones. It is important to find collisions for
different message differentials.

Keywords: hash function, HAVAL, collision, differential attack.

1 Introduction

The hash function HAVAL was proposed by Zheng, Pieprzyk, and Seberry at
Auscrypt ’92 [8]. It is a well known Merkle-Damg̊ard hash function such as MD4
and MD5.1 HAVAL has three variants, 3-, 4- and 5-pass HAVAL, which means
that the compression function has 96, 128, and 160 rounds, respectively. The
compression function H of HAVAL takes a 256-bit initial value and a 1024-bit
message M = (m0, . . . , m31) as input, and produces 256-bit hash value as output,
where each mi is a 32-bit word.

On 3-pass HAVAL, Rompay, et al. [2] presented a collision attack that requires
229 computations of the compression function. Their attack can find a one-block
(1024-bit) collision pair M = (m0, . . . , m31) and M ′ = (m′

0, . . . , m
′
31) with the

differential
Δm28 = 20 = 1 and Δmi = 0 for the other i.

X.Y.Wang et al. [4] showed a much better collision attack with 27 computations
of the compression function. Their attack can find a one-block collision pair
M = (m0, . . . , m31) and M ′ = (m′

0, . . . , m
′
31) with the differential

Δm0 = 210, Δm11 = 231, Δm18 = 23, and Δmi = 0 for the other i.

1 The newest version is HAVAL 1.1. One can download the program source code at
the website [1]. The difference between the first version and HAVAL 1.1 is only the
order of initial values and the other constant values.

A. Miyaji, H. Kikuchi, and K. Rannenberg (Eds.): IWSEC 2007, LNCS 4752, pp. 428–443, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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To find k collision pairs of 3-pass HAVAL, the best known attack [4] requires
27k computations.

In this paper, we present a better collision attack on 3-pass HAVAL which
can find k collision pairs with only 2k + 33 computations. In other words, we
are interested in finding many collision pairs while the previous works focused
on finding a single collision pair. This is important because if we have a large
set of collision pairs, it will be easier to find a meaningful message.

Further, our message differential is different from the previous ones.2 It is
important to find collisions for different message differentials.

The previous attacks [2,4] are one-block collision attacks (i.e. a collision pair
is a pair of 1024-bit message block). On the other hand, our attack is a two-block
collision attack which can find a two-block (2048-bit) collision pair M0||M1 =
(m0,0, . . ., m0,31, m1,0, . . ., m1,31) and M ′

0||M ′
1 = (m′

0,0, . . ., m′
0,31, m′

1,0, . . .,
m′

1,31) with the differential

Δmj,i = m′
j,i −mj,i mod 232 =

{
231 if i = 5,
0 otherwise.

In our attack, we first find a near-collision pair (M0, M
′
0) such that H(M0)

and H(M ′
0) are almost the same. We then find many full collision pairs (M0||M1,

M ′
0||M ′

1) by using the freedom of (M1, M
′
1). Theoretically, our near-collision pair

can be found by about 33 computations of the compression function. Once a near
collision pair is found, a full collision pair can be found with probability 1/2.
Hence we can find k collision pairs with 2k + 33 computations. (See Table 1.)

Table 1. Collision attacks on 3-pass HAVAL

Rompay, et al. [2] X.Y.Wang et al. [7] Proposed

Δmi Δm28 = 20 = 1

Δm0 = 210

Δm11 = 231

Δm18 = 23

Δm0,5 = 231

Δm1,5 = 231

complexity for first collision 229 27 2 + 33

complexity for k collision pairs 229k 27k 2k + 33

message length 1024 bits 1024 bits 2048 bits

In our personal computer simulation (CPU:AthlonXP 3200+):

1. We found 15147 near-collision pairs by 500000 trials, which agrees with our
theoretical estimate because 500000/15147 = 33.0098 · · ·.

2. From a single near-collision pair, we found 249630 full collision pairs by
500000 trials, which also agrees with our theoretical complexity because
500000/249630≈ 2.

2 Our differential is used in an attack on 4-pass HAVAL by H.Yu et al. [7], but it is
new for 3-pass HAVAL.
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It took about one minute for the first 500000 trials. It also took about one minute
for the next 500000 trials.

Related wroks:

– Modular differential attack was presented in 1997 by X.Y.Wang [3] and for-
malized in Eurocrypt ’05 [5,6]. They showed that it is very powerful to break
MD4, MD5, SHA-0, SHA-1 and HAVAL. Our attack is also based on the
modular differential approach.

– On 4-pass HAVAL, H.Yu et al. [7] showed two two-block collision attacks
that require 243 and 236 computations of 4-pass HAVAL, respectively. On
5-pass HAVAL, the H.Yu et al. [7] showed a one-block collision attack with
2123 computations of the compression function.

This paper is organized as follows. In Section 2, we provide a simple description
of 3-pass HAVAL. In Section 3, we give an outline of our attack. In Section 4, we
present the algorithm of our attack, and calculate the complexity. In Section 5, we
report on our computational experiment and a collision example. In Section 6,
we conclude this paper. In this paper, almost Tables and Figures are in the
Appendix.

2 3-Pass HAVAL

HAVAL consists of three phases: (1) message padding phase, (2) main hashing
phase and (3) optional compression phase.

2.1 Message Padding Phase

HAVAL pads an input message by appending some bit string so that its bit-
length becomes a multiple of 1024.

2.2 Main Hashing Phase

HAVAL is a Merkle-Damg̊ard hash function based on a compression function
H as follows. Let M0||M1||· · ·||Mt be the padded message, where |Mi| = 1024.
Then for i = 0, · · · , t, compute

IVi+1 = H(IVi, Mi)

where |IVi| = 256 and IV0 = (a, b, c, d, e, f, g, h) is the initial value such that

a = 0x243f6a88, b = 0x85a308d3, c = 0x13198a2e, d = 0x03707344,
e = 0xa4093822, f = 0x299f31d0, g = 0x082efa98, h = 0xec4e6c89.

The hashed value is given by IVt+1.
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H is described as follows. First define three functions as follows.

F1(x0, x1, x2, x3, x4, x5, x6) = (x2 • x3) ⊕(x2 • x4)⊕ x4 ⊕ (x0 • x6)⊕ (x1 • x5),
F2(x0, x1, x2, x3, x4, x5, x6) = (x0 • x2) ⊕(x1 • x2)⊕ (x1 • x3)⊕ (x0 • x3 • x5)

⊕(x1 • x2 • x5)⊕ (x3 • x5)⊕ (x4 • x5)
⊕x6 ⊕ (x5 • x6),

F3(x0, x1, x2, x3, x4, x5, x6) = x0 ⊕(x0 • x3)⊕ (x1 • x4)⊕ (x2 • x5)
⊕(x3 • x4 • x5)⊕ (x3 • x6),

where xi is a 32-bit word, xi • xj is the bit-wise multiplication of xi and xj , and
xi ⊕ xj is the bit-wise modulo 2 addition.

H next runs the following algorithm H̃ on input

IV = (a0, b0, c0, d0, e0, f0, g0, h0),
M = (m0, m1, . . . , m31),

where each of a0, . . . , h0 and mi is a 32-bit word.

For(i = 0 to 95){

j : = �i/32�+ 1;
pi : = Fj(ai, bi, ci, di, ei, fi, gi);

ai+1 : = (pi � 7) + (hi � 11) + mord(i) + ki mod 232; (1)
bi+1 : = ai, ci+1 := bi, di+1 := ci, ei+1 := di,

fi+1 : = ei, gi+1 := fi, hi+1 := gi;

}
where x � s denotes the s-bit right rotation of x, + denotes the modulo 232

addition, and the word processing orders ord(i) and the constant values ki are
given in Table 3. Note that H̃ consists of 96 rounds, the 0-th round through the
95-th round.

Finally, H outputs the following 256-bit value

IV + H̃(IV, M)
= (a0 + a96, b0 + b96, c0 + c96, d0 + d96, e0 + e96, f0 + f96, g0 + g96, h0 + h96).

Figure 1 is an outline sketch of H . In the Appendix, we provide more detailed
sketches for each round. (See Figures 2, 3, and 4.)

2.3 Optional Compression Phase

HAVAL supports hash-sizes of 128, 160, 192, 224 and 256 bits. The main algo-
rithm computes 256-bit hash-values, and the other sizes are obtained by post-
processing the 256-bit hash-value.
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Fig. 1. The compression function H of 3-pass HAVAL

3 Outline of Our Attack

3.1 Notation

For H(IV, M), ai, bi, · · · denote the local values which appear in the i-th round.
Similarly, for H(IV, M ′), a′

i, b
′
i, · · · denote the local values which appear in the

i-th round. We denote by aa0, bb0, cc0, dd0, ee0, ff0, gg0, hh0 the 8 words of IV1.
Define Δai = a′

i − ai mod 232, and so on.
We denote by xi,j the j-th bit of 32-bit word xi.

– x′
i = xi[j] means that x′

i is obtained by changing the jth bit of xi from 0 to
1. That is, x′

i = xi except for that xi,j = 0 and x′
i,j = 1.

– x′
i = xi[−j] means that x′

i is obtained by changing the jth bit of xi from 1
to 0. That is, x′

i = xi except for that xi,j = 1 and x′
i,j = 0.

– x′
i = xi[±j] means that xi,j �= x′

i,j .
– For example, a14[−21, 22] is the value obtained by modifying the 21-st and

22-nd bit of a14 from 1 to 0 and 0 to 1, respectively.

3.2 Attack

We show an efficient method to find a two-block (2048-bit) collision pair

M0||M1 = (m0,0, . . . , m0,31, m1,0, . . . , m1,31)
M ′

0||M ′
1 = (m′

0,0, . . . , m
′
0,31, m

′
1,0, . . . , m

′
1,31).

The proposed method first finds a near collision pair (M0, M
′
0) such that

ΔIV1 = IV ′
1 − IV1 = (0, 231, 0, 0, 0, 0, 0, 0)

We next find a pair (M1, M
′
1) such that

ΔA = H̃(IV ′
1 , M ′

1)− H̃(IV1, M1)
= (0, 231, 0, 0, 0, 0, 0, 0) or (0,−231, 0, 0, 0, 0, 0, 0) (2)
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Then it holds that

H(IV ′
1 , M ′

1) = IV ′
1 + H̃(IV ′

1 , M ′
1) = IV1 + H̃(IV1, M1) = H(IV1, M1) (3)

That is,

ΔIV0 = 0
(M0,M ′

0)−→ ΔIV1
(M1,M ′

1)−→ ΔA→ ΔH = 0

Therefore, (M0||M1, M
′
0||M ′

1) is a collision pair.3

We use a message differential such that

Δmj,i = m′
j,i −mj,i mod 232 =

{
231 if i = 5,
0 otherwise

for j = 0 and 1.4 That is,

ΔM0 = (0, 0, 0, 0, 0, 231, 0, · · · , 0)

ΔM1 = (0, 0, 0, 0, 0, 231, 0, · · · , 0)

Note that m5 is the input to the 5-th, 32-nd, and 94-th round in each block
because

5 = ord(5) = ord(32) = ord(94)

from Table 3. Now we will find the first block pair (M0, M
′
0) that causes a local

collision at the 32-nd round. Then (M0, M
′
0) is automatically a near collision

pair just after the 94-th round with difference (0,±231, 0, 0, 0, 0, 0, 0). This can
be seen from the following table.

round 0 · · · 5 · · · 32 · · · 94 95
Δmi Δm0 = 0 · · · Δm5 = 231 · · · Δm5 · · · Δm5 · · ·

H̃(IV, M) collision near collision near collision

Similarly we will find the second block pair (M1, M
′
1) which satisfies eq.(2),

where IV1 = H(IV0, M0) and IV ′
1 = H(IV0, M

′
0). Then M0||M ′

0 and M1||M ′
1 are

a full collision pair from eq.(3).

We present the (so called) differential path in Table 4 and Table 5.5 In these
Tables, for example,

round i m′
i Δai+1 Outputs a′

i, b
′
i, c

′
i, d

′
i, e

′
i, f

′
i , g

′
i, h

′
i

6 m6 0 a7, a6[32], a5, a4, a3, a2, a1, a0

means that we want the outputs (a′
7, b

′
7, c

′
7, d′7, e

′
7, f ′

7, g
′
7, h

′
7) in the 6-th round

of H(IV ′, M ′) to be (a7, b7[32], c7, d7, e7, f7, g7, h7). Note that (a7, b7, c7, d7, e7,
f7, g7, h7) = (a7, a6, a5, a4, a3, a2, a1, a0). We can find a full collision if all the
conditions of these tables are satisfied.
3 The operation + is the word-wise modular 232 addition.
4 This differential was used for 4-pass HAVAL [7]. Its complexity is 243.
5 Table 4 was given in [7]. We constructed Table 5.
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3.3 Sufficient Conditions

In Tables 6, 7, and 8, we present sufficient conditions for the differential path
to hold. If Tables 6, 7, and 8 are satisfied, then Tables 4 and 5 are satisfied.
As an example, we prove that the conditions for the 5-th and 6-th round given
in Table 6 guarantee that the conditions for the 0-th to 6-th round shown in
Table 4. The other conditions are derived similarly.

Since Δm0 = · · · = Δm4 = 0, the differential path of the 0-th to the 4-th
round holds. In the 5-th round of H(IV ′

0 , M ′
0), if the sufficient condition of the

5-th round in Table 6, that is, a6,32 = 0, then a′
6,32 = 1 and a′

6,i = a6,i for i �= 32
(i.e. a′

6 = a6[32]), because

a6 = (p5 � 7) + (h5 � 11) + mord(5) + k5
a′
6 = (p′5 � 7) + (h′

5 � 11) + m′
ord(5) + k5

= (p5 � 7) + (h5 � 11) + (mord(5) + 231) + k5
= (p5 � 7) + (h5 � 11) + mord(5) + k5 + 231

= a6 + 231.

In the 6-th round of H(IV ′
0 , M ′

0), if the sufficient condition of the 5-th round in
Table 6, that is, a0,32 = 0 then, since

p6 = F1(a6, b6, c6, d6, e6, f6, g6)
= F1(a6, a5, a4, a3, a2, a1, a0)
= (a4 • a3)⊕ (a4 • a2)⊕ a2 ⊕ (a6 • a0)⊕ (a5 • a1),

we have

p6,32 = (a4,32 • a3,32)⊕ (a4,32 • a2,32)⊕ a2,32 ⊕ (a6,32 • a0,32)⊕ (a5,32 • a1,32),
= (a4,32 • a3,32)⊕ (a4,32 • a2,32)⊕ a2,32 ⊕ (0 • 0)⊕ (a5,32 • a1,32),
= (a4,32 • a3,32)⊕ (a4,32 • a2,32)⊕ a2,32 ⊕ 0⊕ (a5,32 • a1,32),

p′6,32 = (a′
4,32 • a′

3,32)⊕ (a′
4,32 • a′

2,32)⊕ a′
2,32 ⊕ (a′

6,32 • a′
0,32)⊕ (a′

5,32 • a′
1,32),

= (a′
4,32 • a′

3,32)⊕ (a′
4,32 • a′

2,32)⊕ a′
2,32 ⊕ (1 • 0)⊕ (a′

5,32 • a′
1,32),

= (a′
4,32 • a′

3,32)⊕ (a′
4,32 • a′

2,32)⊕ a′
2,32 ⊕ 0⊕ (a′

5,32 • a′
1,32),

Hence, p′6 = p6. Therefore a′
7 = a7. The above equations for p6,32 and p′6,32 are

clear by Figure 2.

4 Details

In this section, we present the details of our algorithm, and calculate the com-
plexity to find a collision pair.

4.1 Our Algorithm

We observe that from a1, · · · , a32, M0 = (m0, . . . , m31) is uniquley determined
from eq.(1), and a33, · · · , a96 are also uniquely determined. Now in Table 6, all
the rows except the last three rows specify the conditions on a1, · · · , a32. Hence:
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1. We choose a1, · · · , a32 which satisfy these conditions randomly.
2. We compute M0 = (m0, . . . , m31) from eq.(1).6

3. If the last three rows are also satisfied, then we have done.

Next for given M0, we apply the same strategy to find M1.

1. We choose a1, · · · , a32 which satisfy the conditions of Table 7 and Table 8
randomly.

2. We compute M1 from eq.(1).
3. If the last row of Table 8 is also satisfied, then we have done.

Finding M0
1. Randomly select a1, . . . , a32

that satisfy the sufficient conditions for the 0,1,2,. . .,31-th rounds.
2. For i = 0 to 31,

bi+1 := ai, ci+1 := bi, di+1 := ci, ei+1 := di,
fi+1 := ei, gi+1 := fi, hi+1 := gi.

3. Calculate p0, . . . , p31 of the algorithm of H in Section 2
and m0, . . . , m31 as follows,
pi := F1(ai, bi, ci, di, ei, fi, gi),
mi := ai+1 − (pi � 7)− (hi � 11)− ki mod 232.

4. Execute the 32-nd to the 95-th round of the compression function.
5. If a95,32 = 1, a92,32 = 1, bb0,32 = 0, ff0,32 = 0,

cc0,32 = dd0,32, and aa0,32 = 0,
then fix M0 = (m0, . . . , m31).

Finding M1
6. Randomly select a1, . . . , a32

that satisfy the sufficient conditions for the 0,1,2,. . .,31-th rounds.
7. For i = 0 to 31,

bi+1 := ai, ci+1 := bi, di+1 := ci, ei+1 := di,
fi+1 := ei, gi+1 := fi, hi+1 := gi.

8. Calculate p0, . . . , p31 of the algorithm of H in Section 2
and m0, . . . , m31 as follows,
pi := F1(ai, bi, ci, di, ei, fi, gi),
mi := ai+1 − (pi � 7)− (hi � 11)− ki mod 232.

9. Execute the 32-nd to the 95-th round of the compression function.
10. If a92,32 = 1, then output (M0||M1) and (M ′

0||M ′
1) as a collision pair.

4.2 Success Probability

Assume that

Pr[xi,j = 0] = Pr[xi,j = 1] = 1/2 (4)

6 Note that our algorithm doesn’t require message modification.
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for any word xi. We can find M0 if the last three condition are satisfied in
Table 6. Thereore, the success probability P of finding M0 is given by

P = Pr[a95,32 = 1, a92,32 = 1, aa0,32 = 0, bb0,32 = 0, cc0,32 = dd0,32, ff0,32 = 0,

= 1/25 × Pr[bb0,32 = 0]

For bb0, note that

bb0 = b0 + b96 = b + a95 = (10000101 · · ·) + (1??????? · · ·).
Thus, if a95,31, a95,30, a95,29, or a95,28 is 0, or a95,31 = a95,30 = a95,29 = a95,28 = 1
and a95,27 = a95,26 = 0, then bb0,32 = 0. Hence

Pr[bb0,32 = 0]
≥ Pr[a95,31 = 0, a95,30 = 0, a95,29 = 0, or a95,28 = 0]

+Pr[a95,31 = a95,30 = a95,29 = a95,28 = 1 and a95,27 = a95,26 = 0]
= (1− Pr[a95,31 = 1, a95,30 = 1, a95,29 = 1, and a95,28 = 1]) + 1/26

= (1− 1/24) + 1/64 = 15/16 + 1/64 = 61/64.

Therefore
P ≥ 1/25 × 61/64 = 61/211 ≈ 1/33.

Next suppose that the above M0 is given. Then we can find M1 if the last row
of Table 8 is satisfied. Thereore, the success probability of finding M1 is given
by

Pr[a92,32 = 1] = 1/2.

4.3 How to Find Many Collisions

We can find many collision pairs from fixed (M0, M
′
0) by running the algorithm

”Finding M1” many times. In this method, the complexity of finding k collision
pairs is 2k + 33.

5 Computational Experiment

We implemented our attack by a personal computer. First we found 15,147
desired M0s by running the algorithm ”Finding M0” 500, 000 times. In this
experiment, the success probability is 15, 147/500, 000≈ 1/33. It coincides with
our theoretical probability shown in Section 3.

Next for fixed M0, we found 249, 630 desired M1s by running the algorithm
”Finding M1” 500, 000 times.7 In this experiment, the success probability is
249, 630/500, 000 ≈ 1/2. It coincides with our theoretical probability shown in
Section 3.

In total, we found 249, 630 full collision pairs by running the algorithms ”Find-
ing M0” 39 times and ”Finding M1” 500, 000 times.

Consequently, our experiment supports our claim that we can find k collision
pairs with 2k + 33 computations of the compression functions. We illustrate one
of the 249630 collision pairs in Table 2.
7 It takes about one minute on our computer with CPU:AthlonXP 3200+.



How to Find Many Collisions of 3-Pass HAVAL 437

Table 2. Collision example

M0

c7f10962 08cf4e0c ddfd60a8 597cbd0d b050440c 205560d0 84569b2f 43b834dc

1270d097 2b027ff7 32247646 8056892d 906feca6 a0a6b4ec fbc11aca d12586db

f7e7bae1 ca89b85f 2d5a3e0f 8b4557da 8596d1bb 2bf5e1fd b5b7f669 9445ea09

343860ec 5c746759 bbce300c d0985871 5229b382 8dab9e3e f89f39d6 9179329b

M1

cc4e7f72 c195d858 e5e2baf1 af7db590 84ddea8e 5990fd91 f6865ea5 9db928ce

d3555dbd 6bf9b53a 694e5fff e96766dc 2d541b98 d394d721 6a84b2c2 0d2bd1a1

3afdac64 f0f67f58 60dd3e5d aec84176 575012f1 24878a2f 304720ed 25eed9ae

447f0e6e b03eaa86 9fa12c2a e98b9370 2e5cb01c a2e23d56 cdaf12f2 2efb842d

M ′
0

c7f10962 08cf4e0c ddfd60a8 597cbd0d b050440c a05560d0 84569b2f 43b834dc

1270d097 2b027ff7 32247646 8056892d 906feca6 a0a6b4ec fbc11aca d12586db

f7e7bae1 ca89b85f 2d5a3e0f 8b4557da 8596d1bb 2bf5e1fd b5b7f669 9445ea09

343860ec 5c746759 bbce300c d0985871 5229b382 8dab9e3e f89f39d6 9179329b

M ′
1

cc4e7f72 c195d858 e5e2baf1 af7db590 84ddea8e d990fd91 f6865ea5 9db928ce

d3555dbd 6bf9b53a 694e5fff e96766dc 2d541b98 d394d721 6a84b2c2 0d2bd1a1

3afdac64 f0f67f58 60dd3e5d aec84176 575012f1 24878a2f 304720ed 25eed9ae

447f0e6e b03eaa86 9fa12c2a e98b9370 2e5cb01c a2e23d56 cdaf12f2 2efb842d

H c9f26b47 513d34a2 0ad20a17 3d207470 04848b80 fc90cc0a ef1cf172 d48c0d25

6 Conclusion

On 3-pass HAVAL, the best known attack finds a collision pair with 27 com-
putations of the compression function. To find k collision pairs, it requires 27k
computations.

In this paper, we presented a better collision attack on 3-pass HAVAL using
modular differential method. It can find k collision pairs with only 2k + 33
computations. Further, our message differential is different from the previous
ones. (It is important to find collision pairs for different message differentials.)
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Appendix: Tables and Figures

Table 3. Word processing orders ord(i) and constant values ki (hexadecimal numbers)

i ord(i)

0 to 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 to 63 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8
30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

64 to 95 19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26
31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2

i ki

0 to 31 00000000

32 to 63

452821e6 38d01377 be5466cf 34e90c6c c0ac29b7 c97c50dd 3f84d5b5 b5470917
9216d5d9 8979fb1b d1310ba6 98dfb5ac 2ffd72db d01adfb7 b8e1afed 6a267e96
ba7c9045 f12c7f99 24a19947 b3916cf7 0801f2e2 858efc16 636920d8 71574e69
a458fea3 f4933d7e 0d95748f 728eb658 718bcd58 82154aee 7b54a41d c25a59b5

64 to 95

9c30d539 2af26013 c5d1b023 286085f0 ca417918 b8db38ef 8e79dcb0 603a180e
6c9e0e8b b01e8a3e d71577c1 bd314b27 78af2fda 55605c60 e65525f3 aa55ab94
57489862 63e81440 55ca396a 2aab10b6 b4cc5c34 1141e8ce a15486af 7c72e993
b3ee1411 636fbc2a 2ba9c55d 741831f6 ce5c3e16 9b87931e afd6ba33 6c24cf5c

Fig. 2. The i-th round (0 ≤ i ≤ 31) in the compression function
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Fig. 3. The i-th round (32 ≤ i ≤ 63) in the compression function

Fig. 4. The i-th round (64 ≤ i ≤ 95) in the compression function
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Table 4. A differential path for H(IV0, M0) and H(IV0, M
′
0)

round i m′
i Δai+1 Outputs a′

i, b
′
i, c

′
i, d

′
i, e

′
i, f

′
i , g

′
i, h

′
i

IV ′
0 a0, b0, c0, d0, e0, f0, g0, h0

0 m0 0 a1, a0, b0, c0, d0, e0, f0, g0

1 m1 0 a2, a1, a0, b0, c0, d0, e0, f0

2 m2 0 a3, a2, a1, a0, b0, c0, d0, e0

3 m3 0 a4, a3, a2, a1, a0, b0, c0, d0

4 m4 0 a5, a4, a3, a2, a1, a0, b0, c0

5 m′
5 231 a6[32], a5, a4, a3, a2, a1, a0, b0

6 m6 0 a7, a6[32], a5, a4, a3, a2, a1, a0

7 m7 0 a8, a7, a6[32], a5, a4, a3, a2, a1

8 m8 0 a9, a8, a7, a6[32], a5, a4, a3, a2

9 m9 0 a10, a9, a8, a7, a6[32], a5, a4, a3

10 m10 0 a11, a10, a9, a8, a7, a6[32], a5, a4

11 m11 0 a12, a11, a10, a9, a8, a7, a6[32], a5

12 m12 0 a13, a12, a11, a10, a9, a8, a7, a6[32]

13 m13 220 a14[−21, 22], a13, a12, a11, a10, a9, a8, a7

14 m14 0 a15, a14[−21, 22], a13, a12, a11, a10, a9, a8

15 m15 0 a16, a15, a14[−21, 22], a13, a12, a11, a10, a9

16 m16 0 a17, a16, a15, a14[−21, 22], a13, a12, a11, a10

17 m17 −214 a18[15, 16, 17, −18], a17, a16, a15, a14[−21, 22], a13, a12, a11

18 m18 0 a19, a18[15, 16, 17, −18], a17, a16, a15, a14[−21, 22], a13, a12

19 m19 0 a20, a19, a18[15, 16, 17, −18], a17, a16, a15, a14[−21, 22], a13

20 m20 0 a21, a20, a19, a18[15, 16, 17, −18], a17, a16, a15, a14[−21, 22]

21 m21 0 a22, a21, a20, a19, a18[15, 16, 17, −18], a17, a16, a15

22 m22 0 a23, a22, a21, a20, a19, a18[15, 16, 17, −18], a17, a16

23 m23 0 a24, a23, a22, a21, a20, a19, a18[15, 16, 17, −18], a17

24 m24 210 a25[11], a24, a23, a22, a21, a20, a19, a18[15, 16, 17, −18]

25 m25 0 a26, a25[11], a24, a23, a22, a21, a20, a19

26 m26 0 a27, a26, a25[11], a24, a23, a22, a21, a20

27 m27 0 a28, a27, a26, a25[11], a24, a23, a22, a21

28 m28 0 a29, a28, a27, a26, a25[11], a24, a23, a22

29 m29 0 a30, a29, a28, a27, a26, a25[11], a24, a23

30 m30 0 a31, a30, a29, a28, a27, a26, a25[11], a24

31 m31 0 a32, a31, a30, a29, a28, a27, a26, a25[11]

32 m′
5 0 a33, a32, a31, a30, a29, a28, a27, a26

· · · · · · · · · · · ·
94 m′

5 −231 a95[−32], a94, a93, a92, a91, a90, a89, a88

95 m2 0 a96, a95[−32], a94, a93, a92, a91, a90, a89

IV ′
1 aa0, bb0[32], cc0, dd0, ee0, ff0, gg0, hh0
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Table 5. A differential path for H(IV1, M1) and H(IV ′
1 , M ′

1)

round i m′
i Δai+1 Outputs a′

i, b′
i, c′

i, d′
i, e′

i, f ′
i , g′

i, h′
i

IV ′
1 a0, b0[32], c0, d0, e0, f0, g0, h0

0 m0 0 a1, a0, b0[32], c0, d0, e0, f0, g0

1 m1 0 a2, a1, a0, b0[32], c0, d0, e0, f0

2 m2 0 a3, a2, a1, a0, b0[32], c0, d0, e0

3 m3 0 a4, a3, a2, a1, a0, b0[32], c0, d0

4 m4 0 a5, a4, a3, a2, a1, a0, b0[32], c0

5 m′
5 231 a6[32], a5, a4, a3, a2, a1, a0, b0[32]

6 m6 220 a7[21], a6[32], a5, a4, a3, a2, a1, a0

7 m7 0 a8, a7[21], a6[32], a5, a4, a3, a2, a1

8 m8 −224 a9[25, 26, 27, −28], a8, a7[21], a6[32], a5, a4, a3, a2

9 m9 0 a10, a9[25, 26, 27,−28], a8, a7[21], a6[32], a5, a4, a3

10 m10 −218 a11[19, 20, −21], a10, a9[25, 26, 27,−28], a8, a7[21], a6[32], a5, a4

11 m11 0 a12, a11[19, 20,−21], a10, a9[25, 26, 27,−28], a8, a7[21], a6[32], a5

12 m12 −211 a13[12, 13, 14, 15, 16,−17], a12, a11[19, 20,−21], a10,
a9[25, 26, 27, −28], a8, a7[21], a6[32]

13 m13 −27 a14[−8], a13[12, 13, 14, 15, 16, −17], a12, a11[19, 20,−21], a10,
a9[25, 26, 27, −28], a8, a7[21]

14 m14 0 a15, a14[−8], a13[12, 13, 14, 15, 16,−17], a12, a11[19, 20,−21],
a10, a9[25, 26, 27,−28], a8

15 m15 0 a16, a15, a14[−8], a13[12, 13, 14, 15, 16,−17], a12,
a11[19, 20, −21], a10, a9[25, 26, 27,−28]

16 m16 0 a17, a16, a15, a14[−8], a13[12, 13, 14, 15, 16,−17], a12,
a11[19, 20, −21], a10

17 m17 0 a18, a17, a16, a15, a14[−8], a13[12, 13, 14, 15, 16,−17], a12,
a11[19, 20, −21]

18 m18 0 a19, a18, a17, a16, a15, a14[−8], a13[12, 13, 14, 15, 16,−17], a12

19 m19 0 a20, a19, a18, a17, a16, a15, a14[−8], a13[12, 13, 14, 15, 16,−17]
20 m20 0 a21, a20, a19, a18, a17, a16, a15, a14[−8]
21 m21 −228 a22[−29], a21, a20, a19, a18, a17, a16, a15

22 m22 −221 a23[22, 23, 24,−25], a22[−29], a21, a20, a19, a18, a17, a16

23 m23 −214 a24[15, 16, 17,−18], a23[22, 23, 24,−25], a22[−29], a21, a20, a19,
a18, a17

24 m24 −210 a25[−11], a24[15, 16, 17,−18], a23[22, 23, 24,−25], a22[−29], a21,
a20, a19, a18

25 m25 0 a26, a25[−11], a24[15, 16, 17,−18], a23[22, 23, 24,−25], a22[−29],
a21, a20, a19

26 m26 0 a27, a26, a25[−11], a24[15, 16, 17, −18], a23[22, 23, 24,−25],
a22[−29], a21, a20

27 m27 0 a28, a27, a26, a25[−11], a24[15, 16, 17,−18], a23[22, 23, 24, −25],
a22[−29], a21

28 m28 0 a29, a28, a27, a26, a25[−11], a24[15, 16, 17,−18],
a23[22, 23, 24,−25], a22[−29]

29 m29 0 a30, a29, a28, a27, a26, a25[−11], a24[15, 16, 17,−18],
a23[22, 23, 24,−25]

30 m30 0 a31, a30, a29, a28, a27, a26, a25[−11], a24[15, 16, 17, −18]
31 m31 0 a32, a31, a30, a29, a28, a27, a26, a25[−11]
32 m′

5 0 a33, a32, a31, a30, a29, a28, a27, a26

· · · · · · · · · · · ·
94 m′

5 ±231 a95[±32], a94, a93, a92, a91, a90, a89, a88

95 m2 0 a96, a95[±32], a94, a93, a92, a91, a90, a89

IV ′
2 a0+a96, b0[32]+a95[±32], c0+a94, d0+a93, e0+a92, f0+a91, g0+

a90, h0 + a89 Full Collision !!
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Table 6. Sufficient conditions on ai for the differential path in Table 4

round i Sufficient conditions for each round

5 − 12 a6,32 = 0, a0,32 = 0, a2,32 = 0, a5,32 = a4,32, a7,32 = 0, a8,32 = 1,
a10,32 = 0, a12,32 = 0

13 a14,21 = 1, a14,22 = 0

14 a8,21 = 0, a8,22 = 0

15 a10,21 = 0, a10,22 = 0

16 a13,21 = a12,21, a13,22 = a12,22

17 a18,15 = 0, a18,16 = 0, a18,17 = 0, a18,18 = 1, a15,21 = 0, a15,22 =
1, a11,22 = 0, a12,22 = 1, a13,22 = 1, a16,22 = 1

18 a12,15 = 0, a12,16 = 0, a12,17 = 0, a12,18 = 0, a16,21 = 1, a16,22 = 1

19 a14,15 = 0, a14,16 = 0, a14,17 = 0, a14,18 = 0, a18,21 = 0, a18,22 = 0

20 a16,15 = a17,15, a16,16 = a17,16, a16,17 = a17,17, a16,18 = a17,18,
a20,21 = 0, a20,22 = 0

21 a19,15 = 0, a19,16 = 0, a19,17 = 1, a19,18 = 0, a15,17 = 1, a16,17 =
0, a17,17 = 0, a21,17 = 1

22 a20,15 = 1, a20,16 = 1, a20,17 = 1, a20,18 = 1

23 a22,15 = 0, a22,16 = 0, a22,17 = 0, a22,18 = 0

24 a24,15 = 0, a24,16 = 0, a24,17 = 0, a24,18 = 1, a25,11 = 0

25 a19,11 = 1, a20,11 = 0, a22,11 = 0, a21,11 = 0

26 − 31 a21,11 = 0, a24,11 = a23,11, a26,11 = 0, a27,11 = 1, a29,11 = 0,
a31,11 = 0

94 − 95 a95,32 = 1, a92,32 = 1

IV1 aa0,32 = 0, bb0,32 = 0, cc0,32 = dd0,32, ff0,32 = 0

Table 7. Sufficient conditions on ai for the 0,. . .,11-th rounds of the differential path
in Table 5

round i Sufficient conditions for each round

0 f0,32 = 0

1 c0,32 = d0,32

2 a0,32 = 0

3 a1,32 = 1

4 a3,32 = 0

5 a5,32 = 0, a6,32 = 0

6 a7,21 = 0, a0,32 = 0

7 a1,21 = 0, a2,32 = 0

8 a9,25 = 0, a9,26 = 0, a9,27 = 0, a9,28 = 1, a3,21 = 0, a2,32 = 0, a3,32 =
0, a4,32 = 1, a5,32 = 0

9 a7,32 = 0, a5,21 = a6,21, a3,25 = 0, a3,26 = 0, a3,27 = 0, a3,28 = 0

10 a11,19 = 0, a11,20 = 0, a11,21 = 1, a8,32 = 1, a8,21 = 0, a5,25 = 0, a5,26 =
1, a5,27 = 0, a5,28 = 0, a8,26 = 0, a6,26 = 1, a4,26 = 0

11 a5,19 = 0, a5,20 = 0, a9,21 = a5,21 + 1, a7,25 = a8,25, a7,26 = a8,26, a8,27 =
a7,27, a7,28 = a8,28, a10,32 = 0
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Table 8. Sufficient conditions on ai for the 12,. . .,95-th rounds of the differential path
in Table 5

round i Sufficient conditions for each round

12 a13,12 = 0, a13,13 = 0, a13,14 = 0, a13,15 = 0, a13,16 = 0, a13,17 = 1, a12,32 =
0, a7,19 = 1, a7,20 = 0, a10,25 = 0, a10,26 = 0, a10,27 = 0, a10,28 = 0, a8,19 =
1, a10,19 = 0, a6,19 = 0

13 a14,8 = 1, a7,12 = 0, a7,13 = 0, a7,14 = 0, a7,15 = 1, a7,16 = 0, a7,17 =
0, a10,19 = a9,19, a10,20 = a9,20, a10,21 = a9,21 + 1, a11,25 = 1, a11,26 =
1, a11,27 = 1, a11,28 = 0, a7,28 = 0, a8,28 = 0, a8,15 = 0, a9,15 = 0, a10,15 =
1, a11,15 = 1, a13,21 = 1

14 a8,8 = 0, a9,12 = 0, a9,13 = 0, a9,14 = 0, a9,15 = 0, a9,16 = 0, a9,17 =
1, a12,19 = 0, a12,20 = 0, a12,21 = 0, a13,25 = 0, a13,26 = 0, a13,27 = 0, a13,28 =
0, a8,17 = 0, a10,17 = 0, a11,17 = 0

15 a10,8 = 0, a12,12 = a11,12, a12,13 = a11,13, a12,14 = a11,14, a12,15 =
a11,15, a12,16 = a11,16, a12,17 = a11,17, a13,19 = 1, a13,20 = 1, a13,21 =
1, a15,25 = 0, a15,26 = 0, a15,27 = 0, a15,28 = 0

16 a13,8 = a12,8, a14,12 = 0, a14,13 = 0, a14,14 = 0, a14,15 = 0, a14,16 = 0, a14,17 =
0, a15,19 = 0, a15,20 = 0, a15,21 = 1, a10,21 = 0, a12,21 = 0, a13,21 = 1, a14,21 =
1

17 a15,8 = 0, a15,12 = 1, a15,13 = 1, a15,14 = 1, a15,15 = 1, a15,16 = 1, a15,17 =
1, a17,19 = 0, a17,20 = 0, a17,21 = 0

18 a16,8 = 1, a17,12 = 0, a17,13 = 0, a17,14 = 0, a17,15 = 1, a17,16 = 0, a17,17 =
0, a14,15 = 0, a16,15 = 0, a18,15 = 0

19 a18,8 = 0, a19,12 = 0, a19,13 = 0, a19,14 = 0, a19,15 = 0, a19,16 = 0, a19,17 = 0
20 a15,8 = 0, a16,8 = 1, a18,8 = 0, a20,8 = 1
21 a22,29 = 1
22 a23,22 = 0, a23,23 = 0, a23,24 = 0, a23,25 = 1, a16,19 = 1, a17,29 = 0,

a18,29 = 0, a19,29 = 0
23 a24,15 = 0, a24,16 = 0, a24,17 = 0, a24,18 = 1, a18,29 = 0, a17,22 = 1, a17,23 =

0, a17,24 = 0, a17,25 = 0, a18,22 = 0, a19,22 = 0, a20,22 = 1, a21,22 = 1
24 a25,11 = 1, a21,29 = a20,29, a19,22 = 0, a19,23 = 0, a19,24 = 0, a19,25 =

0, a18,15 = 0, a18,16 = 0, a18,17 = 0, a18,18 = 1, a19,18 = 0, a20,18 = 0, a22,18 =
0

25 a19,11 = 0, a20,15 = 0, a20,16 = 0, a20,17 = 0, a20,18 = 0, a22,22 =
a21,22, a22,23 = a21,23, a22,24 = a21,24, a22,25 = a21,25, a23,29 = 0

26 a21,11 = 0, a23,15 = a22,15, a23,16 = a22,16, a23,17 = a22,17, a23,18 =
a22,18, a24,22 = 0, a24,23 = 0, a24,24 = 0, a24,25 = 0, a24,29 = 1,

27 a24,11 = a23,11, a25,15 = 0, a25,16 = 0, a25,17 = 0, a25,18 = 0, a25,22 =
1, a25,23 = 1, a25,24 = 1, a25,25 = 1, a26,29 = 0

28 a26,11 = 0, a26,15 = 1, a26,16 = 1, a26,17 = 1, a26,18 = 1, a27,22 = 0, a27,23 =
0, a27,24 = 0, a27,25 = 0, a28,29 = 0

29 a27,11 = 1, a28,15 = 0, a28,16 = 0, a28,17 = 0, a28,18 = 0, a29,22 = 0, a29,23 =
0, a29,24 = 0, a24,25 = 0, a25,25 = 1, a27,25 = 0, a29,25 = 1

30 a29,11 = 0, a30,15 = 0, a30,16 = 0, a30,17 = 0, a30,18 = 1, a25,18 = 0, a26,18 =
1, a28,18 = 0

31 a31,11 = 1, a26,11 = 0, a27,11 = 1, a29,11 = 0
95 a92,32 = 1
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Abstract. At Indocrypt 2005, Viet et al., [20] have proposed an anony-
mous password-authenticated key exchange (PAKE) protocol and its
threshold construction both of which are designed for client’s password-
based authentication and anonymity against a passive server, who does
not deviate the protocol. In this paper, we first point out that their
threshold construction is completely insecure against off-line dictionary
attacks. For the threshold t > 1, we propose a secure threshold anony-
mous PAKE (for short, TAP) protocol with the number of clients n
upper-bounded, such that n ≤ 2

√
N − 1 − 1, where N is a dictionary

size of passwords. We also show that the TAP protocol provides seman-
tic security of session keys in the random oracle model, with the reduc-
tion to the computational Diffie-Hellman problem, as well as anonymity
against a passive server. For the threshold t = 1, we propose an effi-
cient anonymous PAKE protocol that significantly improves efficiency in
terms of computation costs and communication bandwidth compared to
the original (not threshold) anonymous PAKE protocol [20].

1 Introduction

In 1976, Diffie and Hellman published their seminal paper that introduced how to
share a secret over public networks [9]. Since then, many researchers have tried
to design secure cryptographic protocols for realizing secure channels. These
protocols are necessary because application-oriented protocols are frequently
developed assuming the existence of such secure channels. In the 2-party set-
ting (e.g., a client and a server), this can be achieved by an authenticated
key exchange (AKE) protocol at the end of which the two parties authenti-
cate each other and share a common and temporal session key to be used for
subsequent cryptographic algorithms (e.g., AES-CBC or MAC). For authen-
tication, the parties typically share some information in advance. The shared
information may be the form of high-entropy cryptographic keys: either a secret
key that can be used for symmetric-key encryption or message authentication

A. Miyaji, H. Kikuchi, and K. Rannenberg (Eds.): IWSEC 2007, LNCS 4752, pp. 444–458, 2007.
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code (e.g., [7,16]), or public keys (while the corresponding private keys are kept
secret) which can be used for public-key encryption or digital signatures (e.g.,
[10,22,2,16,12]).

In practice, low-entropy human-memorable passwords such as 4-digit pin-code
or alphanumerical passwords are commonly used rather than high-entropy keys
because of its convenience in use. Many password-based AKE protocols have
been extensively investigated for a long time where a client remembers a short
password and the corresponding server holds the password or its verification
data that is used to verify the client’s knowledge of the password. However, one
should be careful about two major attacks on passwords: on-line and off-line dic-
tionary attacks. The on-line dictionary attack is a series of exhaustive searches
for a secret performed on-line, so that an adversary can sieve out possible secret
candidates one by one communicating with the target party. In contrast, the
off-line dictionary attack is performed off-line in parallel where an adversary ex-
haustively enumerates all possible secret candidates, in an attempt to determine
the correct one, by simply guessing a secret and verifying the guessed secret with
recorded transcripts of a protocol. While on-line attacks are applicable to all of
the password-based protocols equally, they can be prevented by letting a server
take appropriate intervals between invalid trials. But, we cannot avoid off-line
attacks by such policies, mainly because the attacks can be performed off-line
and independently of the party.

1.1 Password-Authenticated Key Exchange and Anonymity

In 1992, Bellovin and Merritt [4] discussed an interesting problem about how to
design a secure password-only protocol where a client remembers his/her pass-
word only (without any device and any additional assumption) and the coun-
terpart server has password verification data. Their proposed protocols are good
examples (though some are turned out insecure) that a combination of sym-
metric and asymmetric cryptographic techniques can prevent an adversary from
verifying a guessed password (i.e., doing off-line dictionary attacks). Later, their
AKE protocols have formed the basis for what we call Password-Authenticated
Key Exchange (PAKE) protocols. Such protocols have been in standardization
of IEEE P1363.2 [11].

In PAKE protocols, a client should send his/her identity clearly in order to au-
thenticate each other and share a master-secret that may be the Diffie-Hellman
key or a shared secret to be used for generating authenticators and session keys.
Let us suppose an adversary who fully controls the networks. Though the ad-
versary cannot impersonate any party in PAKE protocols with non-negligible
probability, it is easy to collect a client’s personal information about the com-
munication history itself (e.g., history of access to ftp servers, web-mail servers,
Internet banking servers or shopping mall servers). These information may re-
flect the client’s life pattern and sometimes can be used for spam mails. For this
problem, Viet et al., [20] have proposed an anonymous PAKE protocol and its
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threshold construction1 that simply combine a PAKE protocol [1] for generat-
ing secure channels with an Oblivious Transfer (OT) protocol [19,8] for client’s
anonymity. The anonymity is guaranteed against an outside adversary as well
as a passive server, who follows the protocol honestly but it is curious about
identity of client involved with the protocol. They also gave an application for a
company’s public bulletin board to which any employee can upload opinions in
a password-authenticated and anonymous way. As discussed in [20], their (not
threshold) anonymous PAKE protocol can not provide anonymity against an
active server, who deviates the protocol by changing messages at its own (see
Section 5 of [20]). Though they did not mention anything about their threshold
construction, it may prevent an active server from obtaining information on the
client’s identity since any client can blend him/herself to the subgroup.

1.2 Our Contributions

Partly motivated from Nguyen’s insights [14] on the relationship between PAKE
protocols and other cryptographic primitives, we carefully revisit Viet et al’s
anonymous PAKE protocols [20]. In this paper, we first point out that Viet et
al’s threshold anonymous PAKE protocol is insecure against off-line dictionary
attacks. For the threshold t > 1, we propose a secure threshold anonymous
PAKE (for short, TAP) protocol that provides not only semantic security of
session keys in the random oracle model with the reduction to the computational
Diffie-Hellman problem but also anonymity against a passive server, who does
not deviate the protocol but is curious about the clients’ identities. We also
give the condition on the number of clients n, such that n ≤ 2

√
N − 1 − 1,

for the optimal security result against on-line dictionary attacks where N is a
dictionary size of passwords. For the threshold t = 1, we propose an efficient
anonymous PAKE protocol that can be easily obtained from the TAP protocol.
The resultant protocol significantly improves efficiency in terms of computation
costs and communication bandwidth compared to the original (not threshold)
anonymous PAKE protocol [20].

1.3 Organization

This paper is organized as follows. In the next section, we show that the previous
threshold anonymous PAKE protocol is insecure against off-line attacks. Section
3 is assigned to security model. In Section 4, we propose a secure threshold
anonymous PAKE (TAP) protocol. Section 5 is devoted to its security proofs,
followed by discussion about the condition on n in Section 6. For the threshold
t = 1, we also propose an efficient anonymous PAKE protocol in Section 7.
Finally, we conclude in Section 8.
1 Here, the ”threshold” number of clients are involved with the protocol. In a differ-

ent context, MacKenzie et al., [13] proposed a threshold PAKE protocol where the
”threshold” number of servers collaborates one another to resist against compromise
of the password verification data. However, the collaborations in the former/latter
protocols assume secure channels among clients/servers, respectively.



A Secure Threshold Anonymous PAKE Protocol 447

2 The Previous Threshold Anonymous PAKE Protocol

In this section, we first give some notation to be used throughout this paper.
Then we explain how the previous threshold anonymous PAKE protocol [20,21]
works and show its insecurity against off-line dictionary attacks.

2.1 Notation

Let Gp be a finite, cyclic group of prime order p and g be a generator of Gp,
whose elements are quadratic residues modulo p. Let h be another generator
of Gp so that its discrete logarithm problem with g (i.e., computing b = logg h)
should be hard. The parameter (Gp, p, g, h) is given as public information. In the
aftermath, all the subsequent arithmetic operations are performed in modulo p
unless otherwise stated.

Let l denote the security parameter for hash functions. Let N be a dictionary
size of passwords. Let {0, 1}∗ denote the set of finite binary strings and {0, 1}l the
set of binary strings of length l. If D is a set, then d

R← D indicates the process of
selecting d at random and uniformly over D. Let ”||” denote the concatenation
of bit strings in {0, 1}�. Let ”

⊕
” denote the exclusive-OR (XOR) operation of

bit strings. The hash functions F and F ′ are full-domain hash (FDH) functions,
mapping {0, 1}� to Z�

p. While G : {0, 1}� → Gp is another FDH function, the
others are denoted Hk : {0, 1}� → {0, 1}l, for k = 1, 2 and 3, where G and Hk

are distinct secure one-way hash functions. Let C and S be the identities of a
set of all clients and server, respectively, with each ID ∈ {0, 1}�.

2.2 Protocol Description

Here we describe the threshold anonymous PAKE (TA-PAKE) protocol [20,21]
where any subgroup SG, consisting of at least t (t ≤ n) clients among n clients,
generates a session key with server S in a password-authenticated and anony-
mous way.2 We assume that each client in the subgroup are connected via secure
channels. See Fig. 1 for graphical description of the TA-PAKE protocol.

Step 1
1.1 By collaborating with one another, the subgroup SG chooses a random

number x from Z�
p and computes X ≡ gx.

1.2 Each client Ci (1 ≤ i ≤ t) chooses two random numbers (ri, si)
R← (

Z�
p

)2,
and then computes wi ≡ hri·F(i,pwCi

) and Ai ≡ wi × gsi where i and
pwCi are the index and the password, respectively, for client Ci. The ri

and si are kept secret by Ci.

2 The only difference of [21] from [20] is that the subgroup SG chooses wl
R← Gp, for

t+1 ≤ l ≤ n, and sends {wj}1≤j≤n along with other values in the first flow. In fact,
the TA-PAKE protocol of [20] doesn’t work correctly since server S has no idea on
wj .
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Public information: (Gp, p, g, h), F , F ′, G, H1, H2, C = {C1, · · · , Cn}

Subgroup SG = {C1, · · · , Ct} Server S
(
pwCj , 1 ≤ j ≤ n

)
x

R← Z
�
p, X ≡ gx

For each Ci (1 ≤ i ≤ t),

(ri, si)
R←

(
Z

�
p

)2
,

wi ≡ hri·F(i,pwCi
),

and Ai ≡ wi × gsi .

For l = t + 1 to n, wl
R← Gp.

C, X, {Ai}1≤i≤t, {wj}1≤j≤n�

(y, z)
R←

(
Z

�
p

)2
, Y ≡ gy, Z ≡ gz

f(x) ≡
∑t−1

k=0 uk · xk where

u0 = y and uk
R← Z

�
p

For j = 1 to n,

yj ← f(j),

Yj ≡ gyj ,

and αj ← G
(
wz

j

) ⊕ (
Yj × g

F′(pwCj
)
)
.

For i = 1 to t, Di ≡ Az
i .

KS ≡ Xy

VS ← H1(T ||Y ||KS)
S, Z, {Di}1≤i≤t, {αj}1≤j≤n, VS�

For each Ci (1 ≤ i ≤ t),

Yi ≡ (αi

⊕
G(Di/Z

si)) ×
(
gF′(pwCi

)
)−1

.

Y ≡
∏t

i=1 Y λi
i where λi ≡

∏
1≤k≤t,k �=i

k
k−i

,

and KC ≡ Y x

If VS �= H1(T ||Y ||KC), reject.

Otherwise, SK ← H2(T ||Y ||KC)

and accept.

SK ← H2(T ||Y ||KS)

Fig. 1. The threshold anonymous PAKE (TA-PAKE) protocol [20,21] where T =
C||S||X||Z||{Di}1≤i≤t||{αj}1≤j≤n

1.3 The subgroup SG chooses n− t random numbers wl from Gp, and then
sends C, X, {Ai}1≤i≤t and {wj}1≤j≤n to server S.

Step 2
2.1 The server chooses two random numbers (y, z) R← (

Z�
p

)2 and computes
(Y ≡ gy, Z ≡ gz) where the exponent y is distributed as shares by using
Shamir’s secret sharing scheme [15]. Specifically, server S generates the
respective share f(j), for n clients, from a random polynomial f(x) of
degree t− 1 with coefficients uk (1 ≤ k ≤ t− 1) in Z�

p

f(x) ≡
t−1∑
k=0

uk · xk (1)

and sets u0 = y.
2.2 For j (1 ≤ j ≤ n), server S computes Yj ≡ gf(j) and αj ← G

(
wz

j

) ⊕
(
Yj × gF

′(pwCj
)
)

.
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2.3 For i (1 ≤ i ≤ t), server S computes Di ≡ Az
i .

2.4 The server computes KS ≡ Xy, from which its authenticator VS and
session key SK are derived as follows: VS ← H1(C||S||X ||Z||{Di}1≤i≤t||
{αj}1≤j≤n||Y ||KS) and SK ← H2(C||S||X ||Z||{Di} 1≤i≤t||{αj}1≤j≤n||
Y ||KS). Then, server S sends S, Z, {Di}1≤i≤t, {αj}1≤j≤n and VS to sub-
group SG.

Step 3

3.1 Each client Ci (1≤ i≤ t) extracts Yi≡(αi

⊕G(Di/Z
si))×

(
gF

′(pwCi
)
)−1

.
3.2 By collaborating with one another, subgroup SG recovers Y from Yi

and computes KC ≡ Y x. Note that the Y can be reconstructed from the
shares of any qualified subgroup of clients by Lagrange interpolation.

3.3 If VS is valid, subgroup SG computes a session key SK as follows:
SK ← H2(C||S||X ||Z||{Di} 1≤i≤t||{αj}1≤j≤n||Y ||KC). Otherwise, it
terminates.

2.3 Insecurity of TA-PAKE Protocol

We show that the TA-PAKE protocol [20,21] is insecure against off-line dictionary
attacks. First we suppose that an adversary A impersonates the subgroup SG
without knowing any password.

Step 1’
1.1 An adversary A chooses a random number x from Z�

p and computes

X ≡ gx, and also chooses n random numbers wj
R← Gp, for 1 ≤ j ≤ n.

1.2 For each client Ci (1 ≤ i ≤ t), adversary A chooses a random num-
ber si

R← Z�
q and then computes Ai ≡ wi × gsi . The adversary sends

C, X, {Ai}1≤i≤t and {wj}1≤j≤n to server S.
Step 3’

3.1 After receiving the message from server S, adversary A performs the
following: compute Y ′

i , as the honest client Ci of subgroup SG would do,
with all of the possible password candidates pw′

Ci
and store N different

Y ′
i , for each client Ci (1 ≤ i ≤ t).

Y ′
i ≡

(
αi

⊕
G(Di/Z

si)
)
×

(
gF

′(pw′
Ci

)
)−1

(2)

.
3.2 With tN different Y ′

i , the adversary recovers Y ′ ≡∏t
i=1 Y ′λi

i and the lat-
ter is used to compute K ′

C ≡ Y ′x. Finally, adversaryA can find out the cor-
rect {pw′

C1
, · · · , pw′

Ct
} by checking whether a subgroup of password can-

didates satisfies VS = H1(C||S||X ||Z||{Di}1≤i≤t||{αj}1≤j≤n||Y ′||K ′
C) or

not. Note that each subgroup guarantees a unique polynomial f ′(x) of
degree t− 1.
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In the worst case, adversary A can find out {pw′
C1

, · · · , pw′
Ct
} after N t trials.

Though the number of trials goes exponentially with the threshold t, one can
see that if t is small it is easy for an adversary to get the correct passwords.

More importantly, the above attack implies that a legitimate client in C can
also obtain all passwords of the other clients with the linear trials. Suppose that
there are two legitimate clients C1 and C3 who make up a subgroup SG =
{C1, C2, C3}. After running the TA-PAKE protocol, as an adversary would do in
the above, with server S, C1 and C3 can know the password of C2 by checking
possible N password candidates in the same way as above. By repeating this
off-line dictionary attack n − 2 times, C1 and C3 find out all passwords of the
remaining clients in C.

3 The Model and Security Notions

In this section, we introduce the model based on [5,3], security notions and the
underlying mathematical assumption.

The Model. We consider SG (i.e., a subgroup of C) and S as two parties that
participate in the key exchange protocol P . Each of SG and S may have several
instances called oracles involved in distinct, possibly concurrent, executions of
P . We denote SG (resp., S) instances by SGμ (resp., Sν) where μ, ν ∈ N, or by
U in case of any instance. In the TAP protocol, each client Ci (1 ≤ i ≤ n) of C
and server S share a low-entropy secret pwCi drawn from a small dictionary of
password DPassword, whose cardinality is N . Here we assume that an adversary
A is not any client and server (i.e., A /∈ {C, S}). However, the adversary has
the entire control of the network during the protocol execution which can be
represented by allowing A to ask several queries to oracles. Let us show the
capability of adversary A each query captures:

– Execute(SGμ, Sν): This query models passive attacks, where the adversary
gets access to honest executions of P between the instances SGμ and Sν by
eavesdropping.

– Send(U, m): This query models active attacks by having A send a message to
instance U . The adversary A gets back the response U generates in process-
ing the message m according to the protocol P . A query Send(SGμ, Start)
initializes the key exchange protocol, and thus the adversary receives the
first flow.

– Reveal(U): This query handles the misuse of the session key (e.g., use in
a weak symmetric-key encryption) by any instance U . The query is only
available to A, if the instance actually holds a session key, and at that case
the key is released to A.

– Test(U): This oracle is used to see whether or not the adversary can obtain
some information on the session key by giving a hint on the key. The Test-
query can be asked at most once by the adversary A and is only available to
A if the instance U is ”fresh” in that the session key is not obviously known
to the adversary. This query is answered as follows: one flips a private coin
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b ∈ {0, 1} and forwards the corresponding session key SK (Reveal(U) would
output) if b = 1, or a random value with the same size except the session
key if b = 0.

Security Notions. The adversaryA is provided with random coin tosses, some
oracles and then is allowed to invoke any number of queries as described above,
in any order. The aim of the adversary is to break the privacy of the session key
(a.k.a., semantic security) or the authentication of the parties in the context of
executing P .

The AKE security is defined by the game Gameake(A, P ), in which the ul-
timate goal of the adversary is to guess the bit b involved in the Test-query
by outputting this guess b′. We denote the AKE advantage, by Advake

P (A) =
2 Pr[b = b′]− 1, as the probability that A can correctly guess the value of b. The
protocol P is said to be (t, ε)-AKE-secure if A’s advantage is smaller than ε for
any adversary A running time t.

Another goal is to consider unilateral authentication of either SG (SG-auth) or
S (S-auth) wherein the adversary impersonates a party. We denote by
SuccSG−auth

P (A) (resp., SuccS−auth
P (A)) the probability that A successfully im-

personates an SG instance (resp., an S instance) in an execution of P , which
means that S (resp., SG) agrees on a key while the latter is shared with no
instance of SG (resp., S). A protocol P is said to be (t, ε)-Auth-secure if A’s
success probability for breaking either SG-auth or S-auth is smaller than ε for
any adversary A running time t.

By following the definition of anonymity from [20], we can say that a protocol
P is anonymous if a passive server cannot get any information about clients’
identities (in SG) involved with the protocol, whereas the subgroup SG estab-
lishes a session key with the server. In other words, any subgroup can prove that
it consists of legitimate members of the set C by sending its authenticator at
the end of the protocol. Nevertheless, the server does not know who they are.

3.1 Computational Diffie-Hellman Assumption

A (t1, ε1)-CDHg,Gp attacker, in a finite cyclic group Gp of prime order p with
g as a generator, is a probabilistic machine B running in time t1 such that its
success probability Succcdh

g,Gp
(B), given random elements gx and gy to output gxy,

is greater than ε1. We denote by Succcdh
g,Gp

(t1) the maximal success probability
over every adversaries running within time t1. The CDH-Assumption states that
Succcdh

g,Gp
(t1) ≤ ε1 for any t1/ε1 not too large.

4 A Secure Threshold Anonymous PAKE (TAP) Protocol

In this section, we propose a secure threshold anonymous PAKE (for short, TAP)
protocol that has the following properties: 1) semantic security of session keys
against an outside adversary; and 2) anonymity against a passive server, who
follows the protocol honestly but is curious about clients’ identities involved with



452 S. Shin, K. Kobara, and H. Imai

the protocol. Here we assume that all clients Ci (1 ≤ i ≤ n) of the set C has
registered their passwords pwCi to a server S and the server holds the password
verification data in an asymmetric form (i.e., hF(i,pwCi

)). For simplicity, we as-
sign the clients consecutive integer i (1 ≤ i ≤ n) where Ci can be regarded as
the i-th client of C. In the TAP protocol, any subgroup SG consisting of at least
t (t > 1) clients wants to share a session key securely and anonymously with
server S (see Fig. 2).

Rationale. A naive approach for secure threshold anonymous PAKE proto-
col is performing the existing (not threshold) anonymous PAKE protocol up
to t times. This apparently entails a lot of messages to be exchanged between
subgroup SG and server S. In order to construct efficiently, the TAP protocol
has the following rationale. The first is that, instead of client’s password itself,
the output of F(i, pwCi) is used as an exponent in order to compute the verifi-
cation data Wi as in [20]. In fact, this plays a very important role when t = 1
(see Section 7) in that an adversary is enforced to make an on-line dictionary
attack on a specific client, not the others. The second is that server generates
only one Diffie-Hellman public value and its exponent is used to compute all
of the possible Diffie-Hellman key Kj. As we will show in the proof, this is the
reason why an adversary can get a factor n in the second term of the security
result of Theorem 1. The third is that server sends {Zj}1≤j≤n by encrypting a
share of the secret S with the hash of each Diffie-Hellman key. This is enough to
guarantee clients’ anonymity against an honest-but-curious server (see Theorem
2 in Section 5).

Step 1
1.1 Each client Ci, who belongs to the subgroup SG, chooses a random

number xi from Z�
p and computes the Diffie-Hellman public value Xi ≡

gxi . The client Ci also computes the password verification data Wi ≡
hF(i,pwCi

) where i and pwCi are the index and the password, respectively,
for Ci. The Wi is used to mask Xi, so that its resultant value X∗

i can be
obtained in a way of X∗

i ≡ Xi ×Wi. The chosen xi is kept secret by Ci.
1.2 By collaborating with one another, subgroup SG (or any client Ci)

chooses X∗
j

R← Gp for each Cj (1 ≤ j �= i ≤ n), who belongs to C
but not to SG. Then the subgroup sends the threshold t, the masked
public values {X∗

i }1≤i≤n, to the server, together with the set C of clients’
identities.

Step 2
2.1 The server S chooses a random number y from Z�

p and a random secret
S from Gp, and computes its Diffie-Hellman public value Y ≡ gy. The
secret S is distributed as shares by using Shamir’s (t, n) secret sharing
scheme [15]. Specifically, server S generates the respective share f(j),
for all clients, from a polynomial f(x) ≡∑t−1

k=0 uk · xk with u0 = S and
coefficients uk (1 ≤ k ≤ t− 1) randomly chosen from Gp.

2.2 For the received X∗
j (1 ≤ j ≤ n), server S computes Xj ≡ X∗

j /Wj and
the Diffie-Hellman key Kj ≡ Xy

j . The Zj is derived from XORing Sj
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Public information: (Gp, p, g, h), F , G, H1, H2, C = {C1, · · · , Cn}

Subgroup SG = {C1, C4, · · · , Cn−3︸ ︷︷ ︸
t

} Server S
(
Wj ≡ h

F(j,pwCj
)
, 1 ≤ j ≤ n

)
For each Ci ∈ SG,

xi
R← Z

�
p, Xi ≡ gxi ,

Wi ≡ hF(i,pwCi
),

and X∗
i ≡ Xi × Wi.

For each Cj ∈ C\SG (1 ≤ j �= i ≤ n),

X∗
j

R← Gp. C, t, {X∗
i }1≤i≤n�

y
R← Z

�
p, Y ≡ gy, S

R← Gp

f(x) ≡
∑t−1

k=0 uk · xk where

u0 = S and uk
R← Gp

For j = 1 to n,

Sj ← f(j),

Xj ≡ X∗
j /Wj ,

Kj ≡ Xy
j ,

and Zj ← G(j, Kj)
⊕

Sj .

VS ← H1(C||S||Trans||S)S, Y, {Zj}1≤j≤n, VS�
For each Ci ∈ SG,

look for Zj=i,

Ki ≡ Y xi and Si = Zi

⊕
G(i, Ki).

S′ =
∑t

k=1 λk · Sk where λk ≡
∏

1≤m≤t,m�=k
m

m−k

If VS �= H1(C||S||Trans||S′), reject.

Otherwise, SK ← H2(C||S||Trans||S′)

and accept.

SK ← H2(C||S||Trans||S)

Fig. 2. A secure threshold anonymous PAKE (TAP) protocol where the threshold t > 1
and Trans = t||{X∗

i }1≤i≤n||Y ||{Zj}1≤j≤n

and the hashed output of index j and Kj: Zj ← G(j, Kj)
⊕

Sj where
Sj ← f(j).

2.3 Also server S generates an authenticator VS ← H1(C||S||t||{X∗
i }1≤i≤n||

Y ||{Zj}1≤j≤n||S) and a session key SK ← H2(C||S||t||{X∗
i }1≤i≤n||Y ||

{Zj}1≤j≤n||S). Then the server sends its identity S, the Diffie-Hellman
public value Y , {Zj}1≤j≤n and the authenticator VS to subgroup SG.

Step 3

3.1 Each client Ci, who belongs to SG, first looks for Zj=i and computes
the Diffie-Hellman key Ki with xi: Ki ≡ Y xi . Now, client Ci extracts Si

from Zi in an obvious way: Si = Zi

⊕G(i, Ki).
3.2 By collaborating with one another, subgroup SG reconstructs S′ from the

t shares Si by Lagrange interpolation: S′ =
∑t

k=1 λk · Sk where λk ≡∏
1≤m≤t,m �=k

m
m−k . If the received VS is not valid (i.e., VS �= H1(C||S||t||

{X∗
i }1≤i≤n||Y ||{Zj}1≤j≤n||S′)), the subgroup terminates the protocol.

Otherwise, subgroup SG generates its session key SK ← H2(C|| S||t||
{X∗

i }1≤i≤n||Y ||{Zj}1≤j≤n||S′). Obviously, any subgroup of less than t
clients cannot generate a common session key SK.
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Instead of collaborating with one another at Step 1.2 and 3.2, one client in the
subgroup SG can choose X∗

j and reconstruct S′ by collecting t shares from the
other t− 1 clients.

Remark 1. In order to provide mutual authentication in the above protocol, we
can simply add the subgroup’s authenticator VSG ← H3(C||S||t||{X∗

i }1≤i≤n||Y ||
{Zj}1≤j≤n||S), as the third flow from subgroup SG to server S, before completing
the TAP protocol. This is due to the well-known fact that the basic approach in
the literature for adding authentication to an AKE protocol is to use the shared
Diffie-Hellman key to construct a simple ”authenticator” for the other party
[5,3].

5 Security

At first, we show that the TAP protocol of Fig. 2 distributes session keys that
are semantically-secure and provides unilateral authentication of server S in the
random oracle model [6].

Theorem 1. (AKE/UA Security) Let P be the TAP protocol of Fig. 2 where
passwords are independently chosen from a dictionary of size N and n is the
number of clients such that n ≤ 2

√
N − 1 − 1.3 For any adversary A within a

polynomial time t1, with less than qs active interactions with the parties (Send-
queries), qe passive eavesdroppings (Execute-queries) and asking qf (resp., qg)
hash queries to F (resp., G), Advake

P (A) ≤ 4ε and AdvS−auth
P (A) ≤ ε, with ε

upper-bounded by

3qs

N
+

3nq2
g

2
× Succcdh

g,Gp
(t1 + 3τe) +

qs

2l1
+

(qe + qs)2

|Gp|2 +
q2
f

2p
+

q2
g + 2(qs + qe)

2|Gp| ,

where l1 is the output length of H1 and τe denotes the computational time for
an exponentiation in Gp.

This theorem shows that the TAP protocol is secure against off-line dictionary
attacks since the advantage of the adversary essentially grows with the ratio of
interactions (number of Send-queries) to the number of passwords when n ≤
2
√

N − 1− 1. We can easily see that the adversary gets a factor n in the second
term since the server generates only one Diffie-Hellman public value and its
exponent is used to compute all of the Diffie-Hellman keys Kj.4 Due to the lack
of space, we leave the proof in the full version of this paper.

Next we prove that the TAP protocol provides client’s anonymity against a
passive server.

Theorem 2. The TAP protocol provides client’s anonymity against a passive
server in an information-theoretic sense.
3 In practice, N = 237 for MS-Windows passwords. It is sufficiently large for n.
4 If we allow an adversary to corrupt up to t − 1 clients, the factor n in the security

result becomes 1.
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Proof. Consider server S who follows the protocol honestly, but it is curious
about clients’ identities (in SG) involved with the TAP protocol. It is obvious
that server S cannot get any information about SG’s identities since, for each
i (1 ≤ i ≤ n), the X∗

i has a unique discrete logarithm of g and, with the randomly
chosen xi, it is the uniform distribution over Gp. This also implies that the server
cannot distinguish X∗

i (of Ci ∈ SG) from X∗
j (of Cj ∈ C\SG) since they are com-

pletely independent one another. In addition, even if server S receives the sub-
group’s authenticator VSG ← H3(C||S||t||{X∗

i }1≤i≤n||Y ||{Zj}1≤j≤n||S) at the
end of the TAP protocol (in the case of mutual authentication), the {X∗

i }1≤i≤n

does not reveal any information about SG’s identities from the fact that the
probability for any subgroup, consisting of t or more than t clients, to compute
S is equal. �

6 The Condition on n

Here we deduce the condition on n, appeared in Theorem 1, which is crucial in
order to make the security result more meaningful. First, we give an informal
definition of security against on-line dictionary attacks: a protocol is said to
be secure against on-line dictionary attacks if an adversary can do no better
than guess a password during each Send-query (i.e., an impersonation attack).
However, the success probability of on-line attacks in the TAP protocol is greater
than that in the 2-party PAKE protocols (see below).

Theorem 3. Consider an adversary who impersonates one party (i.e., subgroup
SG or server S) for on-line dictionary attacks in the TAP protocol. Then the
probability of the adversary is upper-bounded by⌈n

2

⌉2 1
N(N − 1)

.

Proof. When an adversary invokes Send-queries at Game G5 in the proof, we
explain why the probability of on-line dictionary attacks is upper-bounded by
the above. In order to maximize Pr[AskH1-WithSG5], the strategy the adversary
can take is to first determine the threshold t and guess t passwords, each of which
should be a password of one of n/t clients. Then the adversary sends the t and
{X∗

i }1≤i≤n, as an honest party SG would do, to server S. After receiving the
message from the server, the adversary can check whether the guessed passwords
are correct or not by seeing the authenticator VS . The maximal probability can
be obtained when t = 2. That one password is correct with respect to n/2 clients
happens with probability of n/2N . On the other hand, the probability for the
other password is n/2(N − 1). For any n, one can get the upper-bound as above
since the probability becomes smaller as t grows. As for Pr[AskH1-WithS5], the
same discussion can be applied. �
Now the condition on n can be easily obtained by restricting the probability of
Theorem 3 to 1/N :

⌈n

2

⌉2 1
N(N − 1)

≤ (n + 1)2

4N(N − 1)
≤ 1

N
.
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Public information: (Gp, p, g, h), F , G, H1, H2, C = {C1, · · · , Cn}

Client Ci (pwCi) Server S
(
Wj ≡ h

F(j,pwCj
)
, 1 ≤ j ≤ n

)

x
R← Z

�
p, X ≡ gx

Wi ≡ hF(i,pwCi
), X∗ ≡ X × Wi

C, X∗
�

y
R← Z

�
p, Y ≡ gy, S

R← {0, 1}l

For j = 1 to n,

Xj ≡ X∗/Wj ,

Kj ≡ Xy
j ,

and Zj ← G(j, Kj)
⊕

S.

VS ← H1(C||S||Trans||S)S, Y, {Zj}1≤j≤n, VS�
For i = j, S′ = Zi

⊕
G(i, Y x).

If VS �= H1(C||S||Trans||S′), reject.

Otherwise, SK ← H2(C||S||Trans||S′)

and accept.

SK ← H2(C||S||Trans||S)

Fig. 3. An efficient anonymous PAKE protocol when t = 1 and where Trans =
X∗||Y ||{Zj}1≤j≤n

7 When the Threshold t = 1

If we only consider a passive server in an anonymous PAKE protocol, an efficient
construction for the threshold t = 1 can be easily derived from the TAP protocol
(see Fig. 3). The main modification from the TAP protocol is that client Ci only
computes his masked Diffie-Hellman public value X∗ and the hash function G
has the range of {0, 1}l. In fact, the resultant protocol can be seen as another OT
protocol for the case that all the messages of sender is the same. By following
the security proof, we can remove the condition on n because the on-line attacks
at Game G5 is limited to one client.

Here, we show how much our protocol of Fig. 3 is efficient compared to the
original (not threshold) anonymous PAKE protocol (in Section 3.2 of [20]) in
terms of computation costs and communication bandwidth to be required (see
Table 1 and 2). In general, the number of modular exponentiations is a major
factor to evaluate efficiency of a cryptographic protocol because that is the most
power-consuming operation. So we count the number of modular exponentiations
as computation costs of client Ci and server S. The figures in the parentheses
are the remaining number of modular exponentiations after excluding those that
are pre-computable. In terms of communication bandwidth, | · | indicates its bit-
length and hash denotes hash functions.

With respect to computation costs in our protocol, client Ci (resp., server
S) is required to compute 3 (resp., n + 1) modular exponentiations. When pre-
computation is allowed, the remaining costs of client Ci (resp., server S) are
2 (resp., n) modular exponentiations. One can easily see that our protocol has
more than 50% reduction from the APAKE protocol in the number of modu-
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Table 1. Comparison of anonymous PAKE protocols as for computation costs where
n is the number of clients

The number of modular exponentiations
Protocols Client Ci Server S

APAKE [20] 6 (4) 4n + 2 (3n + 1)

Our protocol of Fig. 3 3 (2) n + 1 (n)

Table 2. Comparison of anonymous PAKE protocols as for communication bandwidth
where n is the number of clients

Protocols Communication bandwidth

APAKE [20] |C| + |S| + (n + 1)|hash| + (n + 2)|p|
Our protocol of Fig. 3 |C| + |S| + (n + 1)|hash| + 2|p|

lar exponentiations for both client and server. With respect to communication
bandwidth, our protocol requires a bandwidth of ((n + 1)|hash|+ 2|p|)-bits ex-
cept the length of identities C and S where the bandwidth for the modulus
size |p| is independent from the number of clients while the APAKE protocol is
not. Let us consider the minimum security parameters recommended in practice
(|p| = 1024 and |hash| = 160). The gap of communication bandwidths between
our and APAKE protocols becomes larger as the number of clients increases.

8 Conclusions

After showing insecurity of the previous threshold anonymous PAKE proto-
col, we have proposed a secure construction (the TAP protocol) which provides
not only semantic security of session keys but also anonymity against a passive
server. We also proved its security of the TAP protocol in the random oracle
model with the reduction to the computational Diffie-Hellman problem. More-
over, we showed the condition on n in order to get the optimal security result
against on-line dictionary attacks. For the threshold t = 1, we have proposed
an efficient anonymous PAKE protocol that can be obtained by slightly modi-
fying the TAP protocol. The resultant protocol significantly improves efficiency
in terms of computation costs and communication bandwidth compared to the
original (not threshold) anonymous PAKE protocol [20].
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Mägi, Triinu 320
Manulis, Mark 292
Markatos, Evangelos P. 365
Mishina, Takuya 336
Miwa, Shinsuke 13
Miyachi, Toshiyuki 13
Morii, Masakatu 28
Mouri, Koichi 230
Mu, Yi 396

Nakajima, Toshiya 44

Okubo, Eiji 230

Park, Chanil 121
Polat, Huseyin 169

Ramakrishna, R.S. 214
Ren, Yi 380
Roussopoulos, Mema 365

Sakamoto, Hisashi 246
Sakurai, Kouichi 1, 214
Sato, Naoshi 91
Schwenk, Jörg 292
Sebé, Francesc 185
Shimazu, Hideo 246
Shimoyama, Takeshi 58
Shin, SeongHan 444
Shin, Wook 214
Shinoda, Yoichi 13
Shionoiri, Osamu 352
Smith, Sean W. 74
Suzuki, Kazuhiro 428
Suzuki, Kazuhisa 230

Takagi, Tsuyoshi 44
Tang, Zukai 380
Tarumi, Hiroyuki 246
Tsang, Patrick P. 74



460 Author Index

Ueda, Hiroki 58

Venkatesan, Ramarathnam 153
Viejo, Alexandre 185

Willemson, Jan 308
Wong, Duncan S. 278, 396

Yakut, Ibrahim 169
Ye, Lingqing 380
Yoon, Hyunsoo 121
Yoshihama, Sachiko 336
Yoshizumi, Masashi 13
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