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Abstract. This paper presents a bounded model checking algorithm
for the verification of analog and mixed-signal (AMS) circuits using a
satisfiability modulo theories (SMT) solver. The systems are modeled in
VHDL-AMS, a hardware description language for AMS circuits. In this
model, system safety properties are specified as assertion statements.
The VHDL-AMS description is compiled into labeled hybrid Petri nets
(LHPNs) in which analog values are modeled as continuous variables
that can change at rates in a bounded range and digital values are mod-
eled using Boolean signals. The verification method begins by trans-
forming the LHPN model into an SMT formula composed of the initial
state, the transition relation unrolled for a specified number of iterations,
and the complement of the assertion in each set of state variables. When
this formula evaluates to true, this indicates a violation of the assertion
and an error trace is reported. This method has been implemented and
preliminary results are promising.

1 Introduction

To date, there has been relatively little research in the formal verification of ana-
log and mixed-signal (AMS) circuits. Perhaps the first work in this area is from
Kurshan and McMillan in which analog circuits are represented as finite state
models [1]. Hartong et al. verify analog circuits by dividing the continuous state
space into regions that are represented in a Boolean manner [2]. This allows them
to use Boolean-based verification but with significant loss in accuracy. Hybrid
system tools have also been adapted to verify AMS circuits. Gupta et al. utilize
CheckMate to verify a tunnel diode oscillator and a delta-sigma modulator [3]. In
[4], Dang et al. use d/dt to verify a biquad low-pass filter. In [5], Frehse et al. use
PHAVer to verify analog oscillator circuits. These tools are very accurate but also
very computationally complex. These approaches also require a user to describe
an AMS circuit using a hybrid automaton which is unfamiliar to most AMS
designers. In [6], Little et al. use difference bound matrices (DBMs) to verify
AMS circuits. This method, however, only supports constant rates of change for
continuous variables and conservatively abstracts the continuous state space. In
[7], Walter et al. present a BDD model checking algorithm for verifying AMS
circuits. This method, however, can have substantial memory requirements.
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The goal of this paper is to develop a method for verifying AMS circuits
using a satisfiability modulo theories (SMT) solver. The SMT problem is a gen-
eralization of the Boolean Satisfiability (SAT) problem where Boolean variables
are replaced by predicates from various background theories [8]. These theories
may include linear arithmetic over reals and integers, uninterpreted functions,
and the theories of various data structures such as lists, arrays, and bit vectors
[9,10,11,12,13,14,15]. Initial SMT solver implementations functioned by translat-
ing SMT instances into SAT instances and passing those SAT instances to a SAT
solver. For example, to support integer arithmetic, multiple Boolean variables
are used as a bit representation for integers and the necessary integer theories
are specified as Boolean operations on those individual bit variables. This can
result in extremely large SAT instances; however, existing SAT solvers can be
used directly without modification. Therefore, as SAT solvers improve, so do
the SMT solvers. This approach, however, can be severely restricting. The loss
of higher level knowledge of the underlying theories requires the SAT solver to
work harder to discover simple concepts [16]. This problem is made even more
difficult by the large SAT instances that result.

More recent SMT solvers [17,15,18] closely integrate theory-specific solvers
with a DPLL (Davis-Putnam-Logemann-Loveland) approach to Boolean satis-
fiability [8]. These types of SMT solvers are often referred to as DPLL(T) [15].
In this type of architecture, the DPLL-based SAT solver passes conjunctions of
predicates belonging to theory T to a specialized solver. The specialized solver
is then responsible for deciding feasibility of those predicates. Additionally, the
particular theory solver must be able to explain the reasons for infeasibility. Re-
cent work applies SMT solvers to the bounded model checking of software [16].
There are a number of SMT solvers including Barcelogic [15,18], MathSAT [17],
and Yices [19]. The Barcelogic solver supports difference logic over integers
and equality with uninterpreted functions. The MathSAT solver currently sup-
ports theories of equality, uninterpreted functions, separation logic, and linear
arithmetic over reals and integers. Yices includes an incremental Simplex al-
gorithm for the theory of linear arithmetic that is tightly integrated within the
DPLL framework. Yices strong ability to work with the theory of linear arith-
metic makes it particularly well suited for hybrid system model checking. For
this reason, Yices is selected as the SMT solver for the bounded model checker
described in this paper.

This paper describes a bounded model checking algorithm for the verification
of AMS circuits. The model checker begins with a VHDL-AMS description of an
AMS circuit that is compiled into a labeled hybrid Petri net (LHPN). Next, the
LHPN model is converted into an SMT formula which includes a set of Boolean
and continuous state variables for each of the specified number of iterations.
The formula is composed of the initial state, the transition relation, and the
negation of the assertion statement. The SMT solver Yices is used to evaluate
this formula. When a satisfying assignment is found, this indicates a failure, and
an error trace is reported. This method has been implemented and preliminary
results are promising.
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2 Motivating Example

The switched capacitor integrator shown in Figure 1 is used as a running ex-
ample throughout this paper. This circuit takes as input a 5 kHz square wave
that varies from −1000 mV to 1000 mV and generates a triangle wave as output
representing the integral of the input voltage. Discrete-time integrators typically
utilize switched capacitor circuits to accumulate charge which can cause gain er-
rors in the integrator due to capacitor mismatch. Therefore, the output voltage
in our model is allowed to have a slew rate anywhere between 18 to 22 mV/μs
to represent a ±10 percent variance in circuit parameters. The verification goal
is to ensure that Vout never saturates (i.e., it is always between −2000 mV
and 2000 mV). An experienced analog circuit designer may realize the potential
of this circuit to fail. However, a very specific SPICE simulation is required to
demonstrate this failure where the output voltage always increases at a faster
rate than it decreases. Furthermore, it is highly unlikely that a simulation allow-
ing for random uncertainty in the system variables would reveal the error [20].
Therefore, a formal verification approach is beneficial.

freq(Vin) = 5 kHz
Vin = ±1000 mV

Φ2Φ1

C1

Q1
Vin

Vout

C2

C2 = 25 pF
C1 = 1 pF

freq(Φ1) = freq(Φ2) = 500 kHz

Q2

dVout/dt = ±(18 to 22) mV/μs

+

−

Fig. 1. Circuit diagram of a switched capacitor integrator

VHDL-AMS is a hardware description language that includes extensions
specifically for describing analog and mixed-signal circuits. VHDL-AMS was de-
signed to allow a textual description of AMS circuits which can be simulated. By
providing a VHDL-AMS front-end to our tool, many of the hurdles associated
with verification can potentially be avoided because designers who are already
familiar with VHDL-AMS are not required to learn abstract modeling methods.
Our VHDL-AMS compiler is built using methods described in [21] and currently
works with a subset of the VHDL-AMS language. Methods for generating LH-
PNs from many VHDL statements for representing digital systems are described
in [21]. Specifically, variables of types std logic for representing Boolean signals
are allowed and sequential behavior can be specified using process statements
without sensitivity lists. Within a process, supported statements are wait, sig-
nal assignment, if-use, case, and while-loop.



Bounded Model Checking of AMS Circuits Using an SMT Solver 69

Simulators that support the AMS extensions to VHDL seem to vary in the
semantics that are implemented. Therefore, a subset of the AMS extensions have
been selected such that the semantics seem to be fairly consistent across simu-
lators. The supported subset of VHDL-AMS allows the creation of a continuous
value using a quantity of type real, the initialization of continuous variables
using break statements, and the assignments of rates to real quantities using the
’dot notation within simultaneous if-use and case-use statements. Addition-
ally, the use of ’above to test the value of real quantities, and the specification
of properties using assert statements is allowed. For convenience, VHDL-AMS
descriptions also use procedures defined in the handshake and nondeterminism
packages [22]. The assign procedure performs an assignment to a signal at some
random time within a bounded range specified by its parameters and waits until
the assignment has been performed before returning. The span procedure takes
two real values and returns a random value within that range. The span proce-
dure is used to assign a range of rates to a continuous variable. Figure 2 shows
a VHDL-AMS description for the circuit in Figure 1. The break statement sets
the initial value for Vout . The if-use statement determines the rate of Vout .
When Vin is false, Vout increases at a rate between 18 and 22 mV/μs. When
Vin is true, it decreases at a rate between −22 and −18 mV/μs. The process
statement controls Vin . Finally, an assert statement checks if Vout saturates.

library IEEE;
use IEEE.std logic 1164.all;
use work.handshake.all;
use work.nondeterminism.all;
entity integrator is
end integrator;
architecture switchCap of integrator is

quantity Vout:real;
signal Vin:std logic := ’0’;

begin
break Vout => -1000.0; --Initial value
if Vin=’0’ use

Vout’dot == span(18.0, 22.0);
elsif Vin = ’1’ use

Vout’dot == span(-22.0, -18.0);
end use;
process begin

assign(Vin,’1’,100,100);
assign(Vin,’0’,100,100);

end process;
assert (Vout’above(-2000.0) and not Vout’above(2000.0))

report ‘‘error’’ severity failure;
end switchCap;

Fig. 2. VHDL-AMS for a switched capacitor integrator
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3 Labeled Hybrid Petri Nets

Our VHDL-AMS descriptions are compiled automatically into LHPN models.
LHPNs were developed specifically to model AMS circuits. The model is inspired
by features in both hybrid Petri nets [23] and hybrid automata [24]. While LH-
PNs are only described briefly here, a complete definition with formal semantics
can be found in [25]. An LHPN is defined as a directed graph with labels on places
and transitions. An LHPN is a tuple N = 〈P, T, B, V, F, L, M0, S0, Q0, R0〉:

• P : is a finite set of places;
• T : is a finite set of transitions;
• B : is a finite set of Boolean signals;
• V : is a finite set of continuous variables;
• F ⊆ (P × T ) ∪ (T × P ) is the flow relation;
• L : is a tuple of labels defined below;
• M0 ⊆ P is the set of initially marked places;
• S0 : is the set of initial Boolean signal values;
• Q0 : is the set of initial ranges of values for each continuous variable and;
• R0 : is the set of initial ranges of rates for each continuous variable.

The preset of a transition t (denoted •t) represents the set of places feeding t
(i.e., •t = {p | (p, t) ∈ F}). The postset of a transition t (denoted t•) represents
the set of places that t feeds (i.e., t• = {p | (t, p) ∈ F}).

A key component of LHPNs are the labels. Some labels contain hybrid sepa-
ration logic (HSL) formulas which are a Boolean combination of Boolean vari-
ables and separation predicates. HSL is an extension of separation logic [26]
(sometimes referred to as difference logic) that allows for non-unit slopes on the
separation predicates. These formulas satisfy the following grammar:

φ ::= true | false | bi | ¬φ | φ ∧ φ | c1x1 ≥ c2x2 + c3

where bi are Boolean variables, x1 and x2 are continuous variables, and c1, c2,
and c3 are rational constants in Q. Note that any inequality between two real
variables can be formed with ≥ and negations of ≥ inequalities. Each transition
t ∈ T is labeled using the functions defined in L = 〈En ,D ,BA,VA,RA〉:

• En : T → φ labels each transition t ∈ T with an enabling condition;
• D : T → |Q| × (|Q| ∪ {∞}) labels each transition t ∈ T with a lower and

upper bound [dl, du] on the delay for t to fire;
• BA : T → 2(B×{0,1}) labels each transition t ∈ T with Boolean assignments

made when t fires;
• VA : T → 2(V ×Q×Q) labels each transition t ∈ T with a continuous variable

assignment range, consisting of a lower and upper bound [al, au], that is
made when t fires;

• RA : T → 2(V ×Q×Q) labels each transition t ∈ T with a range of rates,
consisting of a lower and upper bound [rl, ru], that are assigned when t fires.
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The LHPN shown in Figure 3 is automatically generated from the VHDL-AMS
model in Figure 2. This model tracks the real quantity Vout that represents the
output voltage. The if-use statement is compiled into the LHPN in Figure 3a.
The process statement is compiled into the LHPN in Figure 3b. Initially Vout
is −1000 mV and increasing between 18 and 22 mV/μs. After 100 μs, Vin is
assigned to true by the assign function which causes Vout to begin decreasing
at a rate of −22 to −18 mV/μs. The assert statement is used to check if Vout
falls below −2000 mV or goes above 2000 mV and is compiled into the LHPN
shown in Figure 3c which fires a transition to set the Boolean signal fail to true
when the assertion is violated.

〈V̇ out := [18, 22], V̇ out [18,22] := T,

V̇ out [−22,−18] := F 〉 t1
p0

t0

{¬fail ∧ ¬Vin ∧ ¬V̇ out [18,22]}

〈V̇ out := [−22, −18], V̇ out [18,22] := F,

{¬fail ∧ Vin ∧ ¬V̇ out [−22,−18]}

V̇ out [−22,−18] := T 〉
(a)

p2

p1

t3

t2

{¬fail} [100, 100] 〈Vin := T 〉

{¬fail} [100, 100] 〈Vin := F 〉

(b)

{Vout ≤ −2000 ∨ Vout ≥ 2000}
[0, 0]〈fail := T 〉

t4

p3

(c)

R0 = {V̇ out = [18, 22]}
S0 = {¬Vin, ¬fail}

Q0 = {Vout = −1000}

Fig. 3. LHPN of the switched capacitor integrator generated from VHDL-AMS

4 Symbolic Model of LHPNs

In order for analysis to proceed, a symbolic model is generated from the LHPN
that contains the essential information for analysis. The symbolic model consists
of three components: an invariant, a set of possible rates, and a set of guarded
commands. Before constructing the symbolic model, a set of real variables and
two additional sets of Boolean variables are created in addition to the sets de-
fined for an LHPN. The set of real variables, C, are used to track the values of
the clocks on each transition. The transition clock for transition t is denoted by
ct. The first set of Boolean variables are known as clock active variables, A, and
are used to keep track of whether or not the clocks on transitions are active. The
clock active variable for transition t is denoted by at. The second set of Boolean
variables are known as Boolean rate variables, BR, used for determining the
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current rate of change for each continuous variable. Boolean rate variables are
denoted by v̇[rl,ru] for the variable corresponding to the continuous variable v
currently advancing at a range of rates [rl, ru].

The invariant (φI) is an HSL statement that must be satisfied in every state
of the system and is calculated as shown in Equation 1.

φI = Φ ∧
∧

t∈T

(at ⇒ •t ∧ En(t) ∧ 0 ≤ ct ≤ du(t)) ∧ (at ⇒ •t ∨ Ẽn(t)) (1)

The invariant first states that only the reachable discrete states (represented by
Φ) are allowed. The formula Φ is found by performing a state space exploration
of the LHPN while neglecting the continuous variables. The discrete state space
exploration is based on the Petri net algorithm described in [27] with extensions
to include values of Boolean signals and Boolean rate variables in the state space
[25]. In other words, Φ is a formula over the Boolean variables for the Petri net
marking, Boolean signals, and Boolean rate variables.

After calculating the discrete state space, Φ, the next step in constructing
the system invariant, φI , is to insert known information about the continuous
state space. This is performed using the clock active variables. Specifically, for a
transition’s clock to be active, the preset must be marked, the enabling condition
must be satisfied, and the clock must be greater than zero but not greater than
its upper bound. This portion of φI prevents an active clock from exceeding its
upper bound. The last part of φI states that if a transition’s clock is not active it
must either have an unmarked place in its preset (denoted •t) or the non-strict

inverse (Ẽn(t)) of the enabling condition must be satisfied. In the non-strict
inverse, all ≥ separation predicates become ≤ separation predicates and vice-
versa. For example, the non-strict inverse of the HSL formula a ∧ x ≤ 2000 is
a ∨ x ≥ 2000. The non-strict inverse is used to allow for the existence of a time
of overlap when a clock is both allowed to be active and inactive at which time
the clock’s state can change. The last two portions of φI when taken together
enforce the activation or deactivation of a clock if a changing continuous variable
should cause an enabling condition to change evaluation.

The set of possible rates (R) consist of an HSL statement indicating a possible
Boolean rate assignment and the set of rate assignments to continuous variables
corresponding to the statement (〈φR, R〉). This set is constructed from Φ, the
Boolean state set, by existentially abstracting all non-rate Boolean variables.
Each product term in Φ corresponds to a φR of a pair in R.

The set of guarded commands (C) is used to determine in each state which
transitions are enabled and the effect on the state due to the firing of a tran-
sition. It is constructed using a set of primary guarded commands (CP ) and a
set of secondary guarded commands (CS). Each guarded command consists of a
guard, φG , represented using an HSL formula and a set of commands, A, to be
performed when the guard is satisfied.

A primary guarded command is created for each transition t ∈ T . The guard
for transition t ensures that the preset for t is marked, the enabling condition on t
is satisfied, and the clock associated with t is active and exceeds its lower bound.
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The commands for transition t cause the postset of t to become marked and
apply the assignments associated with t. Formally, the set of primary guarded
commands is defined as follows:

CP = {〈φGP (t), AP (t)〉 | t ∈ T } (2)

where φGP (t) = (•t∧ t • − • t∧En(t)∧at ∧ct ≥ dl(t)) and AP (t) = {(•t− t•) :=
F, (t•) := T, at := F, ct := [−∞, ∞],BA(t),VA(t),RA(t)}. The primary guarded
command for transition t2 in Figure 3 is:

φGP (t2) = p1 ∧ p2 ∧ fail ∧ at2 ∧ ct2 ≥ 100
AP (t2) = {p1 := F, p2 := T,Vin := T,

at2 := F, ct2 := [−∞, ∞]}

Two secondary guarded commands are created for each transition t ∈ T . The
first one activates the clock for t and sets it to zero when its preset is marked
and its enabling condition is true. The second one deactivates the clock when t
is no longer enabled and sets its values to [−∞, ∞]. This removes the clock from
the state space. The set of secondary guarded commands is defined as follows:

CS = {〈φGSA(t), ASA(t)〉, 〈φGSD (t), ASD(t)〉 | t ∈ T } (3)

where φGSA(t) = •t ∧ En(t) ∧ at, ASA(t) = {at := T, ct := [0, 0]}, φGSD (t) =

(•t ∨ Ẽn(t)) ∧ at, and ASD(t) = {at := F, ct := [−∞, ∞]}. The activating and
deactivating guarded commands for transition t1 in Figure 3 are:

φGSA(t1) = p0 ∧ fail ∧ Vin ∧ V̇ out[−22,−18] ∧ at1

ASA(t1) = {at1 := T, ct1 := [0, 0]}
φGSD (t1) = (p0 ∨ fail ∨ Vin ∨ V̇ out[−22,−18]) ∧ at1

ASD(t1) = {at1 := F, ct1 := [−∞, ∞]}

The sets CP and CS are merged to form the set C. It is necessary to merge
these commands because the firing of a transition may result in the activation or
deactivation of clocks associated with other transitions by changing the marking
or the values of the Boolean or continuous variables. Due to space limitations,
only a brief description of the merging process is given. A complete algorithm
is described in [25]. The basic idea is that for each transition, t, the effect of
its assignments associated with its primary guarded command AP (t) must be
checked against the guards φGSA(t′) and φGSD (t′) for each other transition t′ to
determine if the assignment may have enabled the guard [25]. If the assignments
have no effect on the guard or disable it, then the secondary for t′ is not merged
with the primary for t. If the assignment would make the guard true, then the
commands associated with the secondary must be combined with those for the
primary. Finally, if the assignment may have changed the guard’s evaluation,
then two guarded commands must be constructed. One is for the case in which
the guard for the secondary is true in which the commands are merged, and
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the other is for when the guard is false in which the secondary commands are
not merged. Note that after performing the merge operation, secondary guarded
commands whose guards contain inequalities are inserted into the final guarded
command set. This is necessary because as time moves forward, the secondary
guarded commands could become enabled and cause clocks to be activated or
deactivated. However, before the secondary guarded commands are added, their
guards must be modified to enforce the threshold on the continuous variables.
For example, consider a situation where a transition has the enabling condition
x ≥ 5. The clock on this transition can be activated either when its preset
becomes marked when x is already greater than or equal to five, or by x becoming
equal to five while the preset is already marked. The first case is handled by
the merged guarded command while the second case should be handled by a
secondary guarded command that ensures that x is equal to five and continues
to increase above five, i.e., when x ≥ 5 ∧ x ≤ 5 ∧ incr(x) where incr(x) returns
the disjunction of the Boolean rate variables where the rates are increasing.
Similarly, decr(x) returns the disjunction of the Boolean rate variables where
the rates for x are decreasing. In the integrator example, since t2 assigns Vin
to true and marks p2, it activates the clocks for t1 and t3. This results in the
following merged guarded command:

φG = p0 ∧ p1 ∧ p2 ∧ fail ∧ V̇ out[−22,−18] ∧ at1 ∧ at2 ∧ at3 ∧ ct2 ≥ 100
A = {p1 := F, p2 := T,Vin := T,

at1 := T, ct1 := [0, 0], at3 := T, ct3 := [0, 0],
at2 := F, ct2 := [−∞, ∞]}

5 SMT Based Bounded Model Checking

The basic algorithm for performing SMT based bounded model checking of LH-
PNs is shown in Figure 4. The algorithm proceeds by creating an SMT instance
in which statements are asserted. The first step is to create a set of state variables
for each iteration of the exploration. The state variables for each iteration, i, are
defined using the tuple 〈M i, Si, Qi, Ci, Ai,BRi〉. The next step is to assert the
initial state (φinit ) in terms of the initial iteration’s variables (i.e., i = 0). At this
point, the SMT formula is constructed one iteration at a time. For each itera-
tion, it is necessary to assert the invariant in terms of that iteration’s set of state
variables. Then, each iteration’s next states are calculated by firing transitions
or elapsing time. This is performed by asserting a disjunction of the guarded
commands and a time elapse formula. Finally, a failure condition is asserted in
terms of state variables from each iteration. After asserting each of these compo-
nents, the SMT satisfiability check is performed. Satisfiability indicates that the
property is violated because there is an assignment indicating that the failure
condition is reachable. Unsatisfiability indicates that the property could not be
violated in that number of iterations. This does not necessarily indicate that
the property cannot be violated, however, so this is a bounded model checker.
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smtCheck(φinit , φI , C, R,maxIterations)
SMTInstance ins(maxIterations);
i = 0
ins.assert(φ0

init )
while (i < maxIterations)

ins.assert(φi
I)

trans = true
for each 〈φG , A〉 ∈ C

trans = trans ∨ mkExprForGC(φG , A, i , i + 1)
trans = trans ∨ mkExprForTimeElapse(R, i , i + 1)
ins.assert(trans)
i + +

ins.assert(mkExprForFailProp(maxIterations))
if (ins.check == true) then return ‘‘Property Violated’’
else return ‘‘Property Not Violated’’

Fig. 4. Algorithm for SMT based bounded model checking

The remainder of this section describes the SMT based bounded model checking
algorithm in greater detail.

An assertion for the next state calculation is made based on the disjunction
of each guarded command and the time elapse assertion. The transition relation
portion of the next state assertion makes use of the merged guarded command set
(C) to calculate the values of the next state variables based on the values of the
current iteration, i, variables. The algorithm for constructing the assertion state-
ment for a given guarded command is shown in Figure 5. Essentially, the guard
portion (φG) of the guarded command is asserted in terms of the current state
while the assignment portion of the guarded command makes use of both the cur-
rent and the next iteration variables. Assignments that are specified in the assign-
ment set (A) are performed on the next iteration variables while variables that
have no assignment performed on them are simply assigned the same value as
in the current iteration. There is one exception, however. If a clock is assigned the
range [−∞, ∞], no assignment is made to that clock variable. This allows
the clock to remain undefined in the next iteration. In the integrator exam-
ple, the SMT assertion statement for the merged guarded command that fires t2
and activates the clocks for t1 and t3, given the current iteration i and the next
iteration j, is:

pi
0 ∧ pi

1 ∧ pi
2 ∧ fail i ∧ V̇ out[−22,−18] ∧ ai

t1 ∧ ai
t2 ∧ ai

t3 ∧ ci
t2 ≥ 100 ∧

pj
0 = pi

0 ∧ pj
1 = false ∧ pj

2 = true ∧ pj
3 = pi

3 ∧ Vinj = true ∧ fail j = fail i ∧
aj

t0 = ai
t0 ∧ aj

t1 = true ∧ aj
t2 = false ∧ aj

t3 = true ∧ aj
t4 = ai

t4 ∧

V̇ out
j

[18,22] = V̇ out
i

[18,22] ∧ V̇ out
j

[−22,−18] = V̇ out
i

[−22,−18] ∧
cj
t0 = ci

t0 ∧ cj
t1 = 0 ∧ cj

t3 = 0 ∧ cj
t4 = ci

t4 ∧ Voutj = Vout i ∧ δi,j = 0
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mkExprForGC(φG , A, i , j)
result = φi

G // Guard in terms of current iteration variables.
foreach b ∈ {M ∪ S ∪ A ∪ BR} // Perform Boolean assignments.

if ((b := true) ∈ A) then result = result ∧ (bj = true)
else if ((b := false) ∈ A) then result = result ∧ (bj = false)
else result = result ∧ (bj = bi)

foreach v ∈ {C ∪ Q} // Perform real assignments.
if ((v := [−∞, ∞]) ∈ A) then // Do Nothing.
else if ((v := [al, au]) ∈ A) then

result = result ∧ (vj ≥ al) ∧ (vj ≤ au)
else

result = result ∧ (vj = vi)
result = result ∧ (δi,j = 0) // No time advancement
return result

Fig. 5. Algorithm to generate an SMT statement for a guarded command

Note that cj
t2 is not assigned any value, since it is to be assigned the value

[−∞, ∞]. By not performing any assignment on cj
t2 , it can take any value.

The time elapse portion of the next state assertion makes use of the possible
rate set (R) to calculate the values of real variables as a result of time moving
forward. This algorithm is shown in Figure 6. In calculating the next state via
time elapse, a new real variable is created representing the amount of time that
has elapsed. This variable is referred to as δi,j , and it represents the amount of
time that has elapsed between iterations i and j. Since time is moving forward,
δi,j is always greater than or equal to zero. All clock variables increase by exactly
δi,j . Next, based on the current values of the Boolean rate variables, the real
variables change by some multiple of δi,j . Lastly, all Boolean variables in the
next iteration have the same value as in the current iteration. The complete
time elapse assertion for the integrator, given the current iteration i and next
iteration j, is:

δi,j ≥ 0 ∧ cj
t0 = ci

t0 + δi,j ∧ cj
t1 = ci

t1 + δi,j ∧ cj
t2 = ci

t2 + δi,j ∧
cj
t3 = ci

t3 + δi,j ∧ cj
t4 = ci

t4 + δi,j ∧

((V̇ out
i

[18,22] ∧ V̇ out
i

[−22,−18] ∧ 18δi,j + Vout i ≤ Voutj ≤ 22δi,j + Vout i) ∨

(V̇ out
i

[18,22] ∧ V̇ out
i

[−22,−18] ∧ −22δi,j + Vouti ≤ Voutj ≤ −18δi,j + Vouti)) ∧
pj
0 = pi

0 ∧ pj
1 = pi

1 ∧ pj
2 = pi

2 ∧ pj
3 = pi

3 ∧ Vinj = Vini ∧ fail j = fail i ∧
aj

t0 = ai
t0 ∧ aj

t1 = ai
t1 ∧ aj

t2 = ai
t2 ∧ aj

t3 = ai
t3 ∧ aj

t4 = ai
t4 ∧

V̇ out
j

[18,22] = V̇ out
i

[18,22] ∧ V̇ out
j

[−22,−18] = V̇ out
i

[−22,−18]

The last step in the construction of the SMT formula is to assert that the
property is violated (i.e., fail becomes true during some iteration). This is
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mkExprForTimeElapse(R, i , j)
result = δi,j ≥ 0
foreach c ∈ C // Increment all clocks by δ

result = result ∧ (cj = ci + δi,j)
rates = false
foreach 〈φR, R〉 ∈ R // Increment real variables based on R

rate = φR

foreach (v̇ := [rl, ru]) ∈ R
rate = rate ∧ (vj ≥ vi + rlδ

i,j) ∧ (vj ≤ vi + ruδi,j)
rates = rates ∨ rate

foreach b ∈ {M ∪ S ∪ A ∪ BR} // Boolean variables stay same value
result = result ∧ (bj = bi)

result = result ∧ rates
return result

Fig. 6. Algorithm to generate an SMT statement for the time elapse calculation

accomplished by constructing a disjunction of the fail variables over all itera-
tions. For five iterations of the integrator example, the result is:

fail0 ∨ fail1 ∨ fail 2 ∨ fail3 ∨ fail4

The final step of the model checker is to apply the SMT checking procedure.
If a satisfiable solution is found, this indicates that it is possible to reach the
violating condition. In this event, the SMT solver generates a satisfying solution
to the current context. This solution corresponds to a trace over all iteration’s
state variables beginning from the initial state to the error condition. Since this
is a bounded model checker, if the property is not violated within the specified
number of iterations, the property may still be violated after more iterations.

6 Results

The VHDL-AMS to LHPN compiler, the symbolic model generator, and the
SMT bounded model checker have been implemented within the LEMA tool. This
section compares the SMT model checker with BDD and DBM model checkers
within LEMA. All results use a 2Ghz Intel CoreDuo with 2GB of memory.

The results for the integrator are shown in the top part of Table 1 in which the
ranges of rate for the change of Vout are varied. In particular, when the lower
and upper bound for these rates are equal, all three model checkers determine in
a few seconds that the property is satisfied (i.e., the circuit does not saturate).
Results for the SMT model checker are presented for both 10 and 20 iterations.
When the lower and upper bounds are not equal, both SMT and BDD model
checkers find a violation of the property. For example, if the rising slew rate of
Vout is consistently larger than the falling slew rate, there can be a build up of
charge leading to saturation of Vout . Note that the DBM model checker cannot
directly support ranges of rates. Therefore, a piecewise approximate model must
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Table 1. Switched capacitor integrator verification results

Exp. SMT BDD DBM
Example Result Time (s) Iter. Time (s) Iter. Time (s) Zones

Original ([20, 20]) Pass < 1 10 < 1 7 < 1 4
Original ([20, 20]) Pass 7 20 – – – –
Original ([18, 22]) Fail < 2 15 < 2 11 n/a n/a
Piecewise ([18, 22]) Fail 60 20 < 1 6 < 1 9

Corrected Pass 28 10 6* 6* n/a n/a
Corrected Pass 388 20 – – – –

Corrected piecewise Pass 249 10 OOM 3 < 1 54
Corrected piecewise Pass 980 20 – – – –
* Verification result does not match expected result.

Φ1

Q1
Vin

freq(Vin) = 5 kHz
Vin = ±1000mV

Φ2

C1

Q2 Vout

C2

C2 = 25 pF
C1 = 1 pF

Φ1

Q3

Φ2

C3

C3 = 0.5 pF

dVout/dt = (±(18 to 22) − Vout/100) mV/μs
freq(Φ1) = freq(Φ2) = 500 kHz

Q4

+

−

Fig. 7. Circuit diagram of a corrected switched capacitor integrator

first be generated in which the rate of Vout initially increases at 18 mV/μs. After
some random amount of time, the rate may switch to 22 mV/μs. Decreasing rates
for Vout are modeled in a similar way.

Saturation of the integrator can be prevented using the circuit shown in Fig-
ure 7. This circuit uses a switched capacitor resistor inserted in parallel with the
feedback capacitor to cause Vout to drift back to 0 V. In other words, if Vout is
increasing, it increases faster below 0 V than above. In this circuit’s model, the
range for Vout is 28 to 37 mV/μs when below −1000 mV, 18 to 32 mV/μs when
below 0 mV, 8 to 22 mV/μs when below 1000 mV, and 3 to 12 mV/μs when
above 1000 mV. Similar rates are used when Vout is decreasing. The verification
results for the corrected integrator are shown in the bottom part of Table 1. The
SMT model checker correctly determines that this circuit does not violate the
property for 10 and 20 iterations. For this model, the BDD model checker finds
a failure erroneously. This false negative is due to inexactness that results from
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not adding transitivity constraints at all necessary phases of the the analysis.
If transitivity constraints are added at each step, BDD analysis quickly runs
out of memory. Since the DBM model checker does not support ranges of rates
directly, it cannot be applied to this model. Again, an approximate piecewise
model can be verified by the DBM model checker. Ironically, the SMT model
checker performs better on the more accurate model, since the added transitions
in the piecewise model significantly increase the complexity of the SMT formula.

7 Conclusions

This paper describes an SMT bounded model checking algorithm for AMS cir-
cuits. These circuits can be described using VHDL-AMS and automatically com-
piled into an LHPN representation for analysis. This LHPN model is translated
into a symbolic model composed of an invariant, possible rates set, and guarded
commands. This symbolic model is then automatically converted into an SMT
formula for a given number of iterations. If this SMT formula is satisfiable, the
satisfying assignment represents an error trace for the circuit being verified.

One promising abstraction and refinement approach is to combine the BDD
and SMT model checkers. The BDD model checker is capable of performing an
unbounded full state space exploration, but it often runs out of memory due to
the large number of BDD variables created. The SMT model checker efficiently
determines if the full model violates the property, but it can never guarantee
that the property is not violated. Therefore, the BDD model checker could be
applied to an abstract model. If the BDD model checker determines that the
property is violated in the abstract model, the SMT model checker can be used
with the full model to ensure that the failure is not a false negative. In this case,
the BDD model checker would specify the number of iterations that are required
for the abstract model to fail. If the SMT model checker verifies that the full
model does fail, verification is complete. If the full model does not violate the
property, the violation is a false negative and the unsatisfying core can be used
to refine the abstract model. This process repeats until a true failure is found
or the BDD model checker determines that the abstract model does not violate
the property. Another interesting approach to consider would be to apply the
proof-based iterative abstraction and refinement method from [28].
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