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Abstract. Dynamic fault trees (DFTs) are a versatile and common for-
malism to model and analyze the reliability of computer-based systems.
This paper presents a formal semantics of DFTs in terms of input/output
interactive Markov chains (I/O-IMCs), which extend continuous-time
Markov chains with discrete input, output and internal actions. This
semantics provides a rigorous basis for the analysis of DFTs. Our se-
mantics is fully compositional, that is, the semantics of a DFT is ex-
pressed in terms of the semantics of its elements (i.e. basic events and
gates). This enables an efficient analysis of DFTs through compositional
aggregation, which helps to alleviate the state-space explosion problem
by incrementally building the DFT state space. We have implemented
our methodology by developing a tool, and showed, through four case
studies, the feasibility of our approach and its effectiveness in reducing
the state space to be analyzed.

Fault trees (FTs) [20], also called static FTs, provide a high-level, graphical for-
malism to model and analyze system failures. An FT is made up of basic events,
usually modeling the failure of physical components, and of logical gates, such
as AND and OR gates, modeling how the component failures induce the system
failure. Dynamic fault trees (DFTs) [11] extend (static) fault trees by allowing
the modeling of more complex behaviors and interactions between components:
Whereas FTs only take into consideration the combination of failures, DFTs also
take into account the order in which they occur. A DFT is typically analyzed
by first converting it to a continuous time Markov chain (CTMC) and by then
analyzing this CTMC.

This paper formally describes the DFT syntax and semantics, thus providing
a rigorous basis for DFT analysis and tool development. The DFT syntax is
given in terms of a directed acyclic graph (DAG) and its semantics in terms
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of an input/output interactive Markov chain (I/O-IMC). Our semantics is fully
compositional. That is, we present the semantics of each DFT element (i.e. gate
or basic event) as an I/O-IMC; the semantics of a DFT is then obtained by
parallel composing the I/O-IMC semantics of all its elements. Compositional-
ity is a fundamental and highly desirable property of a semantics: it enables
compositional reasoning, i.e. analyzing complex systems by breaking them down
into their constituting parts. In our case, it enables compositional aggregation to
combat the state-space explosion problem existing in DFTs. Moreover, a com-
positional semantics is comprehensible, since one can focus on one construct at
a time, and readily extensible. As elaborated in [4], we can easily add new DFT
gates or concepts such as repair policies.

Earlier work on formalizing DFTs can be found in [10], where a semantics is
described using the Z specification language. This work revealed a number of
ambiguities in the DFT framework. Most notably, in some instances of DFTs
non-determinism has arisen. But, since non-determinism was not intended in the
original formulation of DFTs and every DFT had to be mapped into a CTMC,
this non-determinism was resolved by transformation into a deterministic or
probabilistic choice (see [4] for further details on non-determinism in DFTs).
The semantics in [10] is, however, not compositional and hence is, in our opin-
ion, not easy to understand. Formalizing the DFT syntax and semantics in a
compositional way turned out to be a non-trivial task.

Interactive Markov chains (IMCs) [14] are an extension of CTMCs with dis-
crete actions and have proven to be a powerful formalism for a variety of applica-
tions. IMCs come with efficient algorithms for aggregating equivalent (i.e. weakly
bisimilar) states and operators for parallel composing IMCs and for hiding
(i.e. making internal) certain discrete actions. For our purposes, we needed IMCs
that distinguish between input and output actions. Hence, we introduce I/O-
IMCs, combining IMCs with features from the I/O automaton model in [17].
We also present a notion of weak bisimilarity for I/O-IMCs. To aggregate as
many states as possible, our weak bisimulation disregards Markovian transitions
from a state s into its own equivalence class. Thus, we do not only generalize the
usual IMC weak bisimulation to I/O-IMCs, but also extend it along the lines of
[8]. Furthermore, we show that weak bisimulation is a congruence w.r.t. parallel
composition and hiding.

The conversion into a CTMC and resolution of a DFT has been first intro-
duced by Dugan et al. in the so called DIFTree methodology [12]. This method
suffers from the well-known state-space explosion problem. In fact, the size of
the CTMC grows exponentially with the number of basic events in the DFT.
Recently, there have been attempts in dealing with the state-space explosion
problem by avoiding the CTMC generation [6,1]. In [6], the authors propose a
Bayesian network approach and provide an approximate DFT solution. In [1],
the authors present a method to identify submodules in a DFT where the CTMC
generation is not needed.

We use a compositional aggregation approach to build the I/O-IMC of the
whole DFT: We start with the interpretation of a single DFT element as an
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I/O-IMC. Then we repeatedly take the parallel composition with the interpreta-
tion of another element, while aggregating equivalent states. We keep repeating
these two steps until we are left with a single aggregated I/O-IMC. This compo-
sitional aggregation approach is crucial in alleviating the state-space explosion
problem. To summarize, this paper makes the following contributions:

1. We derive, based on IMCs and I/O automata, the I/O-IMC formalism and
introduce a notion of weak bisimilarity for I/O-IMCs, which we show to be
a congruence w.r.t. parallel composition and hiding.

2. We formally define the DFT syntax and semantics in terms of respectively
a DAG description and I/O-IMCs.

3. We report on a tool and show the feasibility of our approach on four case
studies.

The remainder of the paper is organized as follows: Section 1 introduces DFTs
and Section 2 treats the formalism of I/O-IMCs. In Section 3, we present the
syntax and the semantics of DFTs, and in Section 4 we illustrate the composi-
tional aggregation technique. Finally, Section 5 provides some case studies and
presents the prototype tool, and we conclude the paper in Section 6.

1 Dynamic Fault Trees

An FT is a tree (or rather, a DAG) in which the leaves are called basic events
(BEs) and the other elements are gates. BEs model the failure of physical com-
ponents and are depicted by circles. The failure of a BE is governed by an
exponential distribution. That is, the probability that the BE fails within t time
units equals 1 − e−λt, where λ is the failure rate of the BE. The non-leaf ele-
ments are gates, modeling how the component failures induce a system failure.
Static fault trees have three type of (static) gates: the AND gate, the OR gate
and the K/M (or called VOTING) gate, depicted in Figure 1.a, 1.b, and 1.c,
respectively. These gates fail if respectively all, at least one, or at least K (called
the threshold) out of M of their inputs fail.

Dynamic fault trees [11] extend (static) FTs with three novel types of gates1:
The priority AND gate (PAND); the spare gate (SPARE), modeling the manage-
ment and allocation of spare components; and the functional dependency gate
(FDEP). These gates (depicted in Figure 1.d, 1.e, and 1.f) are described below.

PAND Gate. The priority AND (PAND) gate models a failure sequence de-
pendency. It fails if all of its inputs fail from left to right order in the gate’s
depiction. If the inputs fail in a different order, the gate does not fail.

SPARE Gate. The SPARE gate has one primary input and zero (which is a
degenerated case) or more alternate inputs called spares. All inputs are BEs.

1 A fourth gate called ‘Sequence Enforcing’ (SEQ) gate has also been defined in [11],
but it turns out that this gate is expressible in terms of the cold spare gate.
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Fig. 1. DFT gates, DFT example, and I/O-IMC example

The primary input of a SPARE gate is initially powered on and the alternate
inputs are in standby mode. When the primary fails, it is replaced by the first
available alternate input (which then switches from the standby mode to the
active mode). In turn, when this alternate input fails, it is replaced by the next
available alternate input, etc.

In standby (or dormant) mode, the BE failure rate λ is reduced by a dormancy
factor α ∈ [0, 1]. Thus, the BE failure rate in standby mode is μ = αλ. In active
mode, the failure rate switches back to λ. Two special cases arise if α = 0 or
α = 1. If α = 0, the spare is called a cold spare and can by definition not fail
before the primary. When α = 1, the spare is called a hot spare and its failure
rate is the same whether in standby or in active mode. If 0 < α < 1, the spare is
called a warm spare. The SPARE gate fails when the primary and all its spares
have failed.

Multiple spare gates can share a pool of spares. When the primary unit of
any of the spare gates fails, it is replaced by the first available (i.e. not failed
or not already taken by another spare gate) spare unit; which becomes, in turn,
the active unit for that spare gate.

FDEP Gate. The functional dependency gate consists of a trigger event (i.e.
a failure) and a set of dependent events (or components). When the trigger
event occurs, it causes all the dependent components to become inaccessible or
unusable (the dependent components can of course also still fail by themselves).
Dependent events need to be BE’s. All dependent events and the trigger event
are considered to be inputs to the FDEP gate. The FDEP gate’s output is a
‘dummy’ output (i.e. it is not taken into account during the calculation of the
system failure probability).

Example 1. Figure 1.g shows a DFT modeling a road trip. Looking at the top
PAND gate, we see that the road trip fails (i.e. we are stuck on the road) if
the car fails after the mobile phone has failed; if the car fails first, then we can
call the road services to tow the car and continue our journey. The car fails if
either the engine fails or the tire subsystem fails, as modeled by the OR gate
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labeled ‘car fails’. The car is equipped with a spare tire, which can be used to
replace any of the primary tires. When a second tire fails, the tire subsystem
fails, causing in turn a car failure. Thus, we model the tire subsystem by four
spare gates, each having a primary tire (BEs ‘Tire 1’, ‘Tire 2’,‘Tire 3’, and ‘Tire
4’) and all sharing a spare tire (BE ‘Spare tire’). The spare tire is a cold spare,
i.e. it is initially in standby mode with failure rate 0.

2 Input/Output Interactive Markov Chains

The formalism. This section introduces the formalism of input/output interac-
tive Markov chains (I/O-IMCs), which are based on IMCs [14]. IMCs combine
continuous-time Markov chains with discrete actions (also called signals). State
changes in IMCs can occur either because a discrete action is taken, or after a
delay, which is governed by an exponential distribution. Thus, IMCs have two
types of transitions: discrete transitions (denoted a−→ and �−→ in figures) labeled
with a discrete action a and Markovian transitions (denoted λ−→M and −→� in
figures) labeled with the rate λ of an exponential distribution.

I/O-IMCs are a variant of IMCs that partition the set of discrete actions into
input actions, output actions and internal actions (inspired by the I/O variant
of automata introduced in [17]). Input actions, being under the control of the
environment of the I/O-IMC, are delayable, while output actions must be taken
immediately and cannot be delayed. This partition is natural in the DFT context
where elements have input and output signals and where – rather than being
a handshake – communication is always initiated by the failing (or activating)
component. Moreover, in contrast with IMCs where all observable actions are
delayable, in I/O-IMCs only input actions are delayable. Internal actions are not
visible to the environment and are also immediate.

Definition 1. An input/output interactive Markov chain P is a tuple 〈S, s0, A,
−→, −→M〉, where

– S is a set of states,
– s0 ∈ S is the initial state.
– A is a set of discrete actions (or signals), where A = (AI , AO, Aint) is parti-

tioned into a set of input actions AI , output actions AO and internal actions
Aint. We write AV = AI ∪AO for the set of visible actions of P. We suffix
input actions with a question mark (e.g. a?), output actions with an excla-
mation mark (e.g. a!) and internal actions with a semi-colon (e.g. a;).

– −→ ⊆ S×A×S is a set of interactive transitions. We write s
a−→s′ for (s, a, s′)∈

−→. We require that I/O-IMCs are input-enabled: ∀s ∈ S, a? ∈ AI , ∃s′ ∈
S · s

a?−→s′.
– −→M ⊆ S × R>0 × S is a set of Markovian transitions. We write s

λ−→Ms′ for
(s, λ, s′) ∈ −→M .

We denote the components of P by SP , s0
P , AP , −→P , −→M

P and omit the subscript
P whenever clear from the context. The action signature of an I/O-IMC is the
partitioning (AI , AO, Aint) of A. We denote the class of all I/O-IMCs by IOIMC.
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Example 2. Figure 1.h shows an example I/O-IMC modeling a video game. If a
user presses the play button (input action play?), the game starts and continues
until the user makes a mistake (miss?), which brings the game back to the initial
state s0. If after some delay d, no play? signal has been received, then the system
runs a game demonstration (output demo!) until a play? signal is received. The
delay d (in hours) is exponentially distributed with rate 12. This means that, on
average, a demo is played after 1

12 hours (= 5 minutes).
Note that the system is input enabled, i.e. each state enables the input actions

play? and miss?.

I/O-IMCs can be built from smaller I/O-IMCs through parallel composition. If
two I/O-IMCs P and Q are composable, then their composition P‖Q is the I/O-
IMC representing their joint behavior. As in the I/O automaton framework, the
components P and Q synchronize on shared actions and evolve independently
on actions that are internal or not shared. The hiding operator hide B in P
makes all actions in a set B of visible actions internal.

Definition 2. Let P and Q be I/O-IMCs.

1. P and Q are composable if AO
P ∩AO

Q = Aint
P ∩ AQ = AP ∩Aint

Q = ∅.
2. If P and Q are composable I/O-IMCs, their composition P‖Q is the I/O-

IMC (SP ×SQ, (s0
P , s0

Q), ((AI
P ∪AI

Q) \ (AO
P ∪AO

Q), (AO
P ∪AO

Q), (Aint
P ∪Aint

Q )),
−→P‖Q, −→M

P‖Q), where

−→P‖Q = {(s, t) a−→P‖Q(s′, t) | s
a−→Ps′ ∧ a ∈ AP \ AQ}

∪{(s, t) a−→P‖Q(s, t′) | t
a−→Qt′ ∧ a ∈ AQ \ AP}

∪{(s, t) a−→P‖Q(s′, t′) | s
a−→Ps′ ∧ t

a−→Qt′ ∧ a ∈ AP ∩AQ}
−→M

P‖Q = {(s, t) λ−→M(s′, t) | s
λ−→M

P s′} ∪{(s, t) λ−→M(s, t′) | t
λ−→M

Qt′}

Given a set {P1, P2 . . . Pn} of I/O-IMCs, we write ‖Pi for P1‖P2‖ · · · Pn.
3. Let B ⊆ AV be a set of visible actions. We define the I/O-IMC hide B in P

by (SP , s0
P , (AI

P \B, AO
P \B, Aint

P ∪ B), −→P , −→M

P ).

Bisimilarity. Bisimilation relations are equivalences on the state-space that iden-
tify states with the same step-wise behavior. Our notion of weak bisimilarity is
based on bisimulation for IMCs [14]. The key differences are we distinguish be-
tween input and output transitions, and ignore Markovian self-loops (as in [8]);
i.e. Markovian transition from a state in an equivalence class to a state in the
same equivalence class.

Let P be an I/O-IMC and let s, s′ ∈ S be states in P . We write s
ε=⇒s′ if there

exists a sequence (possibly of length zero, i.e. s = s′) s
a1−→s1

a2−→s2 . . .
an−−→sn = s′

of transitions with ai ∈ Aint. For a ∈ AV we write s
a=⇒s′ if there exists states

s1, s2 such that s
ε=⇒s1

a−→s2
ε=⇒s′. Also, γM(s, C) =

∑
{|λ | s

λ−→Ms′ ∧ s′ ∈ C|},
with {| . . . |} denoting a multiset of transition rates, is the sum of the rates of all
Markovian transitions from s into C. We write Cint = {s | ∃s′ ∈ C · s ε=⇒s′} for
the set of all states which can reach some element in C via internal transitions.
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Finally, we say that s is stable if s has no outgoing immediate (i.e. internal or
output) transition.

Definition 3 (Weak bisimulation). Let P be an I/O-IMC. A weak bisim-
ulation for P is an equivalence relation R on S such that for all (s, t) ∈ R,
a ∈ A∪{ε}

1. s
a=⇒s′ implies that there is a weak transition t

a=⇒t′ with (s′, t′) ∈ R.
2. s

ε=⇒s′ and s′ stable imply that there is a t′ such that t
ε=⇒t′ and t′ stable

and γM(s′, Cint) = γM(t′, Cint), for all equivalence classes C of R, except
for C = [s′]R, the equivalence class of s′.

States s and t in P are weakly bisimilar, notation s ≈ t, if there exists a weak
bisimulation R with (s, t) ∈ R.

Our notion of weak bisimilarity satisfies the usual properties: ≈ is the largest
weak bisimulation and it is a congruence with respect to parallel composition
and hiding. To compute ≈, one can use an algorithm similar to the one in [14],
which runs in time O(n3), where n is the number of states in the I/O-IMC. We
refer the reader to [5] for more details.

As most bisimulation relations, ≈ can be used to aggregate (also referred to as
lump, minimize or reduce) an I/O-IMC P : By grouping together equivalent (i.e.
weakly bisimilar) states in P , we obtain an equivalent I/O-IMC that is (usually)
smaller. The mentioned properties enable an efficient aggregation algorithm that
works in a compositional way, cf. Section 4.

3 Formalizing DFTs

3.1 DFT Syntax

To formalize the syntax of a DFT, we first define the set E , characterizing each
DFT element by its type, number of inputs and possibly some other parameters.
We use the following notation. Given a set X , we denote by P(X) the power
set over X and by X∗ the set of all sequences over X . For a sequence x ∈ X∗,
we denote by |x| the length of the sequence (also called list), and by (x)i the ith

element in x.

Definition 4. The set E of DFT elements consists of the following tuples. Here,
k, n ∈ N are natural numbers with 1 ≤ k ≤ n and λ, μ ∈ R

≥0 are rates.

– (OR, n), (AND , n), (PAND , n) represent respectively OR, AND and PAND
gates with n inputs.

– (VOT , n, k) represent a voting gate with n inputs and threshold k.
– (SPARE , n) represent a SPARE gate with one primary and n−1 spares. By

convention, the first input to the SPARE gate is the primary component.
– (FDEP , n) represents an FDEP gate with 1 trigger input event and n − 1

dependent input events. By convention, the first input to the FDEP gate is
the trigger event.
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– (BE , 0, λ, μ), represents BE, which has no inputs (i.e. n = 0), an active
failure rate λ and a dormant failure rate μ.

Given a tuple e ∈ E, we write type(e) for the first item in e, and arity(e) for the
second.

A DFT is a directed acyclic graph, where each vertex v is labeled with a DFT
element l(v) ∈ E . An edge from v to w means that the output of l(v) is an input
to l(w). Since the order of inputs to a gate matters (e.g. for a PAND gate), the
inputs to v are given as a list preds(v), rather than as a set.

Definition 5. A dynamic fault tree is a quadruple D = (V, preds , l), where

– V is a set of vertices,
– l : V → E is a labeling function, that assigns to each vertex a DFT element.
– preds : V → V ∗ is a function that assigns to each vertex a list of inputs.

The set of edges E is the set {(v, w) ∈ V 2|∃i . v = (preds(w))i} of all pairs (v, w)
such that v appears as a predecessor of w. We write type(v) for type(l(v)) and
arity(v) for arity(l(v)). For D to be a well-formed DFT, the following restrictions
have to be met.

– The set (V, E) is a directed acyclic graph.
– All inputs to a DFT element must be connected to some node in D, i.e. for

all v ∈ V , we have arity(v) = |preds(v)|.
– Since we do not include the dummy output of an FDEP gate in D, FDEP

gates have no outgoing edges: if (v, w) ∈ E, then type(v) �= FDEP .
– There is a unique top element in D, i.e. a non-FDEP element whose output

is not connected. That is, there exists a unique v ∈ V , type(v) �= FDEP such
that for all w ∈ V . (v, w) /∈ V . This unique v is denoted by TD; or by T if
D is clear from the context.

– The first input of a SPARE gate can not be an input to another SPARE
gate (i.e. primary components can not be shared): If v = (preds(w))1 =
(preds(w′))1 with type(w) = type(w′) = SPARE , then w = w′.

– Inputs (primary and spare components) of a SPARE gate must be BEs: if
type(w) = SPARE , then type((preds(w))i) = BE , for all 1 ≤ i ≤ |preds(w)|.

– The dependent inputs (i.e. inputs number 2 and higher) of an FDEP gate
must be BEs: if type(w) = FDEP , then type((preds(w))i) = BE , for all
2 ≤ i ≤ |preds(w))|.

– An output can not be twice or more the input of the same gate: for all
1 ≤ i, j ≤ |preds(w)| with (preds(w))i = (preds(w))j , we have i = j.

3.2 DFT Element Semantics

This section provides the I/O-IMC semantics �e�ELT for each DFT element e ∈ E .
The I/O-IMC is parametric in its input and output signals. (These parameters
are instantiated in Section 3.3, so that output signals in the semantics of a
child element correspond to input signals in the semantics of its parents.) Thus,



A Compositional Semantics for Dynamic Fault Trees 449

formally, �e�ELT is a function that, depending on the type of e, takes as arguments
a number of actions and returns an I/O-IMC. Each of these I/O-IMCs has an
initial operational state, some intermediate operational states, a firing (or failed)
state, and an absorbing fired state. The firing and fired states are drawn as
gray circles and double circles respectively. For the sake of clarity, all self-loops
(s, a?, s) labeled by input actions are omitted from the figures.

Basic Events I/O-IMC Model. As pointed out in Section 1, a BE has a
different failing behavior depending on its dormancy factor. Figure 2 shows the
(parameterized) I/O-IMCs associated to a cold, warm, and hot BE2, i.e. it shows
the functions �(BE , 0, λ, μ)�ELT : A2 → IOIMC taking as arguments an activation
signal a? and a firing signal f !.

Fig. 2. The I/O-IMCs �(BE , 0, λ, 0)�ELT(a, f), �(BE , 0, λ, μ)�ELT(a, f), and
�(BE , 0, λ, λ)�ELT(a, f), modeling the semantics of a cold, warm and hot BE

AND Gate I/O-IMC Model. Figure 3.a shows the semantics of the (AND , 2)
gate, i.e. the function �(AND , 2)�ELT : A3 → IOIMC, taking as arguments the
output and two inputs signals of the AND gate.3 This I/O-IMC models that the
AND gate fires (action f1) after it receives firing signals from both its inputs
(actions f2 and f3). Note that the AND gate does not have an activation signal
as this element does not exhibit a dormant or active behavior as such. The
semantics of the OR and VOTING gates are similar.

PANDGate I/O-IMCModel. Figure 3.b shows the semantics �(PAND , 2�ELT:
A3 → IOIMC of a PAND gate with two inputs. The PAND gate fires after all its
inputs fire from left to right order. If the inputs fire in the wrong order, the PAND
gate moves to an operational absorbing state (denoted with an X in Figure 3.b).

FDEP Gate I/O-IMC Model. An FDEP gate does not have semantics itself,
but instead is used in combination with the semantics of its dependent BEs.
To model a functional dependency, we define the firing auxiliary function FA :
A2 × P(A) → IOIMC. This (parametric) I/O-IMC ensures that a dependent BE
fires either when the BE fails by itself, or when its failure is triggered by the
FDEP gate trigger: Figure 3.c shows the FA to be applied in combination with
a BE that is functionally dependent on n triggers. Signal f2 corresponds to the
failure of the dependent event by itself; signals f3, f4, . . . , fn+2 correspond to the
2 The hot BE I/O-IMC can be reduced to:

⊙ λ−→ © f !−→ © .
3 The semantics �(AND , n)�ELT : An+1 → IOIMC of the AND gate with n inputs can

be constructed in a similar fashion, cf [5].
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Fig. 3. The semantics (a) �(AND , 2)�ELT(f1, f2, f3), (b) �(PAND , 2)�ELT(f1, f2, f3), and
(c) FA(f1, f2, {f3, f4 . . . , fn+2})

failures of any of the triggers; and f1 corresponds to the failure of the dependent
event when also considering its functional dependency upon the triggers. Hence,
f1 is emitted as soon as any signal from {f2, f3, . . . , fn+2} occurs. Thus, the FA
takes as arguments two firing signals and a set of firing signals (corresponding
to all triggers of the dependent BE).

SPARE Gate I/O-IMC Model. Figure 4 shows the I/O-IMC of a spare
gate sharing a spare with another spare gate. The SPARE gate behaves, to a
certain extent, similarly to the AND gate. That is, for the spare gate to fail, both
its primary has to fail and its spare has to be unavailable (fail or be taken by
the other spare gate). The state reached after the primary fails is of particular
interest (i.e. the state reached from the initial state after transition f2? is taken).
In this state, a non-deterministic situation arises where the spare can be activated
by either of the spare gates (signals a1,1! and a1,2?). We could of course also get
signal f3? (i.e. failure of the spare) immediately after signal f2?. The signals a1,1
and a1,2 are signals between the two spare gates notifying each other about the
activation (and thus the acquisition) of the shared spare. These signals are also
sent to the spare to activate it. The semantics of a spare gate having n spares is
a function A2 × (A2 ×P(A))n → IOIMC that takes as arguments the firing signal
of the spare gate, the firing signal of its primary and n spare-tuples containing,
for each spare, its firing signal, its activation signal (by the spare gate) and a
set of activation signals of the other spare gates sharing that spare. Figure 4.b
shows the semantics �(SPARE , 2)�ELT(f1, f2, (f3, a1,1, {a1,2})) of the spare gate
in Figure 4.a. Generalizing the SPARE gate I/O-IMC model to handle the case

Fig. 4. (a) A DFT, (b) semantics �(SPARE , 2)�ELT(f1, f2, (f3, a1,1, {a1,2})) of (left)
SPARE gate, (c) AA(a1, {a1,1, a1,2}), (d) AA(a1, ∅)
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where multiple spare gates share multiple spares turned out to be a non-trivial
task [4,5].

3.3 DFT Semantics

This section shows how to get the semantics of a DFT from the semantics of
its elements. First, we define the node semantics �v� of a DFT node v ∈ V by
instantiating the parameters of �l(v)�ELT appropriately, using the following main
actions: The firing signal fX of element X ∈ E denotes the failure of X and the
activation signal aX denotes the activation of a BE X , i.e. the switching from
dormant to active mode. When used as a spare, a BE is activated by its SPARE
gates; and aS,G denotes the activation of spare S by SPARE gate G. Otherwise,
the BE is activated from the start.

Given a node v in a DFT D, we define the node semantics �v� as follows.

OR, AND, VOT, and PAND. If v is labeled as an OR, AND, VOT, or
PAND gate, then �v� is obtained from �l(v)�ELT by instantiating its parameters
in such a way that the input signals of v connect to output signals of v’s children
(i.e. nodes w ∈ preds(v)). Thus, for type(v) = OR, AND , VOT , PAND , with
preds(v) = w1w2 . . . wn, we have

�v� = �l(v)�ELT(fv, fw1 , fw2 , . . . fwn)

BE. If v is labeled as a basic event, two steps need to be carried out. First, we
have to check if the BE is a dependent event of some FDEP gate. If so, we use
the firing auxiliary so that a failure fv! is emitted whenever either the BE fails
(via f∗

v ) or any of the triggers fails (via ft ∈ Tv). As an intermediate step, let

�v�1 = �l(v)�ELT(av, f∗
v ) ‖ FA(fv, f∗

v , Tv)

Here, Tv = {ft | ∃w ∈ V . (v, w) ∈ E ∧ l(w) = FDEP ∧ t = (preds(w))1} is the
set of trigger signals of FDEP gates on which l(v) is dependent.4

Second, we need to activate the BE if it is used as a spare. This is done
by composing �v�1 in parallel with an activation auxiliary (see Figure 4.c and
Figure 4.d), where the latter outputs the activation signal av of l(v). Thus we
have

�v� = �v�1 ‖ AA(av,Atvv)

Here, Atvv = {av,w | v ∈ preds(w) ∧ type(w) = SPARE} is the set of activation
signals emitted by all SPARE gates sharing l(v).

SPARE. If v is labeled as a SPARE gate, with preds(v) = w1w2 . . . wn, then
w1 is its primary BE and w2, . . . , wn are its n − 1 spare BEs. As with the other
gates, �v� is obtained from �l(v)�ELT by instantiating its parameters in such a
way that the input signals of v connect to output signals of v’s primary and
4 If v is not a dependent event, the firing auxiliary can be omitted and we have

�v�1 = �l(v)�ELT(av, fv).
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spare BEs. In addition, we need to find all the other SPARE gates that share
any of v’s spare BEs. Following the SPARE gate semantics in Section 3.2, we
have

�v� = �l(v)�ELT(fv, fw1 , (fw2 , aw2,v, Pw2), . . . , (fwn , awn,v, Pwn))

where Pwi = {awi,g | (wi, g) ∈ E ∧ g �= v ∧ type(g) = SPARE} is the set of
activation signals emitted by all other SPARE gates sharing spare l(wi).

We do not define node semantics for nodes labeled by an FDEP gate, since
these are already incorporated in the semantics of their dependent BEs. Now,
the semantics of a DFT is obtained by parallel composing the semantics of all
(non-FDEP) nodes.

Definition 6. The semantics of a DFT D = (V, preds , l) is the I/O-IMC �D� =
‖v∈V |type(v) �=FDEP�v�.

To compute the reliability of D, we are only interested in the failure of the
top node T . Hence, we hide all signals except fT , i.e. we compute MD =
hide AD \ fT in �D�; recall that AD denotes the set of all actions in D. The
compositional aggregation technique described in the following section is an ef-
ficient way to derive MD.

Example 3. Figure 5 shows the I/O-IMC semantics of a DFT consisting of a
SPARE gate A having a primary B and a spare C. The I/O-IMC of the DFT
is obtained by parallel composing the seven I/O-IMCs shown on the figure:

�A� = �(SPARE , 2)�ELT(fA, fB, (fC , aC,A, ∅))
�B�1 = �(BE , 0, λ, 0)�ELT(aB, fB∗)‖FA(fB, fB∗, ∅) �B� = �B�1‖AA(aB, ∅)
�C�1 = �(BE , 0, λ, μ)�ELT(aC , fC∗)‖FA(fC , fC∗, ∅) �C� = �C�1‖AA(aC , {aC,A})

Fig. 5. A DFT and the seven I/O-IMCs that model its behavior

4 Compositional Aggregation Approach

Our compositional semantics allows one to build the I/O-IMC associated to a
DFT in a component-wise fashion, leading to a significant state-space reduction.
This kind of compositional aggregation approach has been previously successfully
used, most notably in [16]. The compositional aggregation approach is to be
contrasted with a more classical approach of model generation, such as the one
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used by DIFTree, where the CTMC model of a dynamic system is generated at
once and as a whole and then possibly aggregated at the end. We propose the
following conversion algorithm to transform a DFT into an I/O-IMC.

1. Translate each DFT element to its corresponding (aggregated) I/O-IMC.
2. Pick two I/O-IMCs and parallel compose them (Definition 2).
3. Hide (Definition 2) output signals that will not be subsequently used (i.e.

synchronized on).
4. Aggregate, using weak bisimulation (Definition 3), the I/O-IMC obtained in

step 3.
5. Go to step 2 if more than one I/O-IMC is left, otherwise stop.

The choice of I/O-IMCs we make in step 2 is important as this has an impact
on the size of the generated state space during the intermediate steps. In the
case studies (see Section 5) we have used intuitive heuristics based on the level
of interaction between models to decide the composition order. In the absence
of simultaneous failures [4] in the DFT model, the algorithm results in an aggre-
gated CTMC. However, in cases with simultaneous failures the result can be a
continuous-time Markov decision process, which can be analyzed by computing
bounds on the performance measure of interest [2,15].

Note that originally non-determinism was not intended to be present in DFT
models. Our algorithm also yields a well-specified check for DFTs: By seeing
whether the I/O-IMC translation yields a CTMC or a CTMDP, one can decide
if any unintended non-determinism is present in a DFT.

5 Tool Support and Case Studies

We have developed a tool named CORAL [3] (COmpositional Reliability and
Availability anaLysis) that takes as input a DFT specified in the Galileo DFT
format and computes, if there is no non-determinism in the resulting I/O-IMC,
the unreliability of the DFT for given mission times. CORAL is integrated with
the CADP tool set [9], which provides tool support for IMCs [13].

The tool consists of three parts:

1. The dft2bcg tool which uses as input the DFT file in Galileo format. This
tool translates the elements of the DFT into their I/O-IMC counterparts.

2. The composer tool which uses as input the I/O-IMC models created by the
dft2bcg tool and a composition order. The composer tool applies composi-
tional aggregation to the I/O-IMCs according to the composition order to
generate a single I/O-IMC representing the DFT’s behaviour. The composi-
tion order must be supplied by the user (see Section 4).

3. The dft eval tool with as its input the I/O-IMC generated by the composer
tool and a number of mission-times. The dft eval tool calculates the unrelia-
bility of the system modeled by the original DFT for the given mission-times.
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Fig. 6. The DFT representations of the case studies

The composer tool uses the CADP tool set to compose, abstract (i.e. hide
signals) and aggregate I/O-IMCs. In particular we have used a version of the
bcg min tool, which was adapted to aggregate I/O-IMCs using weak bisimulation
(see Definition 3).

To compare the compositional aggregation (Comp-Aggr) approach with the
traditional DIFtree method, we have conducted four case studies (none hav-
ing non-determinism). Figure 6 shows the cascaded PAND system [6,7] (CPS),
the cardiac assist system [7] (CAS), the multi-processor distributed computing
system [18] (MDCS) and the fault-tolerant parallel processor [11] (FTPP).

The results of the case studies are given in Figure 7. The size of the largest
model (with regard to the number of states) appearing during analysis is given
for each experiment.

Case study Analysis Maximum number Maximum number Unreliability
method of states of transitions (Mission-time = 1)

CPS DIFTree 4113 24608 0.00135668
CPS Comp-Aggr 132 426 0.00135668
CAS DIFtree 8 10 0.657900
CAS Comp-Aggr 36 119 0.657900

MDCS DIFtree 253 1383 2.00025 · 10−9

MDCS Comp-Aggr 157 756 2.00025 · 10−9

FTPP DIFtree 32757 426826 2.56114 · 10−11

FTPP Comp-Aggr 1325 14153 2.56114 · 10−11

Fig. 7. The results of the case studies
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From these experiments one can conclude that the compositional aggrega-
tion approach to analyzing DFTs is very promising and we expect it to combat
the state-space explosion effectively in many cases. The relative performance of
the DIFtree and compositional aggregation approaches vary greatly for different
DFTs. The DIFtree method seems to perform better for DFTs with few basic
events and (possibly) many interconnections (e.g. each of the three modules in
the CAS). The compositional aggregation approach seems to perform better in
DFTs with symmetries (such as in the CPS and FTPP examples) and DFTs
with a large number of elements and few connections (and highly modular).
More research is needed to further investigate which method is best to apply
under which circumstances.

6 Conclusions and Future Work

In this paper, we have formalized the semantics of DFTs using I/O-IMCs (a
variant of IMCs that we have defined) and showed how a compositional aggre-
gation approach is used to analyze DFTs. Being a first step, we have restricted
our attention to basic events with exponential failure distributions, but the same
approach could be taken for other probability distributions using phase-type dis-
tributions or a different underlying formalism, e.g. the one in [8]. Future work
includes experimenting with other case studies and improving on the heuristic
used in the order of the I/O-IMCs composition (for instance by adapting and
implementing the heuristics proposed in [19]).

Acknowledgment. We thank Hong Xu from the University of Virginia for running
various experiments with the Galileo tool.

References

1. Amari, S., Dill, G., Howald, E.: A new approach to solve dynamic fault trees. In:
Annual Reliability and Maintainability Symposium, pp. 374–379 (January 2003)

2. Baier, C., Hermanns, H., Katoen, J.P., Haverkort, B.R.: Efficient computation of
time-bounded reachability probabilities in uniform continuous-time markov deci-
sion processes. Theor. Comput. Sci. 345(1), 2–26 (2005)

3. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: CORAL - a tool for compositional
reliability and availability analysis. In: ARTIST workshop. Presented at the 19th
international conference on Computer Aided Verification

4. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: Dynamic fault tree analysis using in-
put/output interactive markov chains. In: Proc. of Dependable Systems and Net-
works conference, UK, pp. 708–717. IEEE Computer Society, Los Alamitos (2007)

5. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: Compositional analysis of dynamic
fault trees. Technical report, University of Twente (to appear)

6. Boudali, H., Dugan, J.B.: A discrete-time Bayesian network reliability modeling
and analysis framework. Reliability Engineering and System Safety 87(3), 337–349
(2005)



456 H. Boudali, P. Crouzen, and M. Stoelinga

7. Boudali, H., Dugan, J.B.: A new Bayesian network approach to solve dynamic fault
trees. In: Proc. of Reliability and Maintainability Symposium, pp. 451–456. IEEE,
Los Alamitos (2005)

8. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-markov pro-
cesses. Theoretical Computer Science 282(1), 5–32 (2002)

9. Construction and Analysis of Distributed Processes (CADP) software tool.
http://www.inrialpes.fr/vasy/cadp/

10. Coppit, D., Sullivan, K.J., Dugan, J.B.: Formal semantics of models for compu-
tational engineering: A case study on dynamic fault trees. In: Proc. of the In-
ter. Symp. on Software Reliability Engineering, pp. 270–282. IEEE, Los Alamitos
(2000)

11. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Trans. on Reliability 41(3), 363–377 (1992)

12. Dugan, J.B., Venkataraman, B., Gulati, R.: DIFTree: a software package for the
analysis of dynamic fault tree models. In: Reliability and Maintainability Sympo-
sium, pp. 64–70 (January 1997)

13. Garavel, H., Hermanns, H.: On combining functional verification and performance
evaluation using cadp. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 410–429. Springer, Heidelberg (2002)

14. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg
(2002)

15. Hermanns, H., Johr, S.: Uniformity by construction in the analysis of nondetermin-
istic stochastic systems. In: Proc. of Dependable Systems and Networks conference,
UK, pp. 718–728. IEEE Computer Society, Los Alamitos (2007)

16. Hermanns, H., Katoen, J.P.: Automated compositional Markov chain generation
for a plain-old telephone system. Sci. of Comp. Programming 36(1), 97–127 (2000)

17. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quar-
terly 2(3), 219–246 (1989)

18. Malhotra, M., Trivedi, K.S.: Dependability modeling using petri-nets. IEEE Trans-
actions on Reliability 44(3), 428–440 (1995)

19. Tai, K.-C., Koppol, P.V.: An incremental approach to reachability analysis of dis-
tributed programs. In: Software Specifications & Design workshop, IEEE Computer
Society Press, Los Alamitos (1993)

20. Veseley, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook,
NUREG-0492. Technical report, NASA (1981)

http://www.inrialpes.fr/vasy/cadp/

	A Compositional Semantics for Dynamic Fault Trees in Terms of Interactive Markov Chains
	Dynamic Fault Trees
	Input/Output Interactive Markov Chains
	Formalizing DFTs
	DFT Syntax
	DFT Element Semantics
	DFT Semantics

	Compositional Aggregation Approach
	Tool Support and Case Studies
	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /MTEX
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




