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Abstract. The emerging technology of interacting systems calls for new for-
malisms to ensure their reliability. Concurrent games are paradigmatic abstract
models for which several logics have been studied. However, the existing for-
malisms show certain limitations in face of the range of strategy properties re-
quired to address intuitive situations. We propose a generic solution to specify
expressive constraints on strategies in concurrent games. Our formalism natu-
rally extends alternating-time logics while being highly flexible to combine con-
straints. Our approach is constructive and can synthesize many types of complex
strategies, via automata-theoretic techniques.

1 Introduction

Computer-system design currently relies on complex assemblages of interacting com-
ponents which communicate and share resources in order to achieve services. The com-
binatorics of such systems is so enormous that the development of adequate formal
methods to ensure their reliability has become a major challenge. In this context, games
are paradigmatic for providing expressive mathematical models of interactive systems,
reflecting their operational semantics and offering adequate reasoning tools. In order
to reason formally about interactive models, it is necessary to devise appropriate spec-
ification languages in which the desirable behaviors of the system can be stated; once
the properties are formulated, methods for automated verification and synthesis can be
employed to support the design process.

In the past decade, extensions of state-transition based models, such as Concur-
rent Game Structures [AHK02] which extend Kripke structures, have raised consid-
erable interest in virtue of offering mathematical settings to address formal analysis
of complex systems. At the same time, alternating-time logics such as ATL, ATL∗,
AMC and GL [AHK02] have been proposed as a natural extension of standard tem-
poral logics to the multiplayer setting. Noticeable theoretical and practical results exist
for these logics, such as effective decision procedures with reasonable cost for ATL
[vD03, KP04, GvD06, SF06, LMO07], and implementations [HKQ98, AdAdS+06].
However, it should be made clear that alternating time logics show certain limitations
in face of the range of strategy properties required to address intuitive situations. For ex-
ample, communication protocols often require to consider fairness assumptions, which
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enable to exclude some undesirable computations of the system. When such assump-
tions are not expressible in the logic, non trivial efforts are needed to impose the con-
straints directly in the models [AHK02]. By this type of approach, only very dedicated
kind of analysis can be performed, and often, a minor addition of new constraints com-
pels the user to re-design its problem from scratch. Hence, there is a need for a for-
malism where constraints on strategies can be combined. Other examples of limitations
can be borrowed in solution concepts for non-zero sum games. As far as we are con-
cerned, uniqueness of a Nash equilibrium [Cha05], or dominance of strategies [Ber07]
cannot be expressed in any respect, because the formalisms do not have strategies as
main objects.

In this paper, we propose a generic constructive solution to analyze the strategies of
concurrent games. Our formalism is tuned to specify at the same time the strategies,
their properties (e.g. fairness), and their objectives in a unified framework. Expres-
sive constraints can henceforth be formulated; for example all the limitations discussed
above are overcome. Moreover, all the concepts for nonzero sum games considered by
[CHP07] can be captured, since we can express Strategy Logic (SL) in our formalism;
notice that SL is limited to turned-based arenas, whereas we also consider general con-
current game structures, and SL is not powerful enough to express, e.g. it cannot express
the Alternating Mu-Calulus [AHK02]. We start from the logic Dμ, a traditional propo-
sitional mu-calculus [Koz83], augmented with decision modalities. By the semantics of
the logic, the game is unfold into an infinite tree. The purpose of decision modalities is
to specify particular monadic predicates over the nodes of the computation tree of the
game, to establish a one-to-one correspondence between these particular predicates and
the strategies of sets of players; the outcome of a strategy is the sub-tree whose nodes
form the predicate, and still is a concurrent game, but with less players.

Objectives of strategies can be any ω-regular property. In essence, strategies together
with their objectives have an assume-guarantee flavor: by assuming that a certain strat-
egy is adopted, we guarantee some temporal property of its outcome. From this point
of view, we operate on the model (by applying the strategy) and leave the property
intact, as done in [CHP07]. In order to decrease the intricacy of the problem, we pro-
pose a powerful although simple mechanism to operate on the logic side while leaving
the models intact; it is called relativization. The benefit is to transform the complex
assume-guarantee statement into a mere temporal statement about the model.

Following the original idea of [RP03] for controller synthesis problems, we define
the logic QDμ a monadic second order extension of Dμ, but where fix-points and quan-
tifiers can arbitrarily interleave. Our calculus is then equipped to quantify over strate-
gies, as we show, in a highly expressive manner. In particular, it subsumes alternating
time logics, while being amenable to automata constructions, hence to an effective pro-
cedure to synthesize the strategies.

The paper is organized as follows: we present the models in Section 2, and the logic
in Section 3. Strategies and outcomes are defined in Section 4, followed by the rela-
tivization principle. Section 5 is dedicated to significant examples of logical specifica-
tions. Section 6 describes automata constructions for QDμ. We complete the work by
the embedding of alternating-time logics into our system (Section 7), and a note on a
customized automata construction for these logics.
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2 The Models

In the following, we assume an infinite countable ordered set IP = {p, p′, . . .} of players,
and an infinite set of atomic propositions Prop = {Q, Q1, Q2, . . .}. Finite sets C of
players are coalitions. For any integer i ≥ 1, let [i] denote the set {1, . . . , i}.

A Concurrent Game Structure (CGS) over Λ and M is a tuple S =〈Π, S, Λ, λ, M, δ〉,
where:

– Π ⊆ IP is a non-empty finite set of players, whose cardinal is denoted by n; we
may represent the ordered set Π by the natural numbers 1, . . . , n.

– S is a set of states, with typical elements of S written s, s′, . . ..
– M is a set of moves. Each j ∈ M is a possible move available in each state to each

player p ∈ Π . A decision vector is a tuple x = 〈j1, . . . , jn〉 ∈ Mn, where jp is a
move of p ∈ Π . The value Card(M)n is the branching degree of S.

– δ : S × Mn → S is the transition function: given a state s ∈ S and decision vector
〈j1, . . . , jn〉, the game moves to the state δ(s, x). Each δ(s, x) where x ∈ Mn is a
successor of s, and successors of s form the set Succ(s).

– Λ ⊆ Prop, and λ : Λ → 2S labels states by propositions. A state s is labelled
by Q ∈ Λ whenever s ∈ λ(Q). We let λ(Q) :=

⋂
Q∈Q λ(Q), for any set of

propositions Q ⊆ Λ.

Comparing this with the original definition of [AHK02], we may notice the following:

1. We use the same set of moves for all players, independently of the current state.
2. Each player moves independently of the others.
3. Players make concurrent choices in each state.

However, the proposed models are expressive enough to capture the essential features
of concurrent games, as we can actually simulate any concurrent game: In general,
each player in a current state s has a set Mp

s of moves. We can simulate this situation
with a unique set of moves M by renaming the moves in Mp

s and by qualifying some
states dummy; the logical statements need being interpreted on the relevant part of the
models, namely on computations which do not encounter dummy states. Hence Points
1 and 2 are not restrictive. Since we can restrict players’ set of moves from a given
state, enforcing all but one player to have a single choice simulates turned-based games;
this sorts out Point 3. Notice that asynchronous games are also captured: following
[AHK02], we designate a particular player scheduler which in every state selects one
of the players; the latter then determines the next state. Now, the crucial assumption
that the scheduler fairly selects the players can be expressed in the logic, as opposed to
[AHK02] where fairness is defined in the models.

Given s ∈ S, p ∈ Π , and j ∈ M , we let Succj(s, p) ⊆ Succ(s) be the set of
successors of s which can be enforced by the move j of player p; formally, it is the
set of states of the form δ(s, 〈j1, . . . , jn〉) with jp = j. Consider the classic two-player
game Paper, Rock, and Scissors (PRS) as depicted in Figure 1: the possible moves of
each player range over M = {P, R, S} for “paper”, “rock” and “scissors” respec-
tively. The propositions 1-Win and 2-Win indicate who is the winner in the current
configuration; let us ignore proposition Q for the moment. In this game, SuccS(s0, 2)
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Q Q Q

Fig. 1. The Paper, Rock, and Scissors game

= {s3, s6, s9} is the set of successors of s0 player 2 can enforce by playing “S”. We
let SuccSets(s, p) ⊆ 2Succ(s) be the set of all Succj(s, p) where j ∈ M , composed
of sets of successors of s which can be enforced by some move of player p. In PRS,
SuccSets(s0, 2) = {{s1, s4, s7}, {s2, s5, s8}, {s3, s6, s9}}. Since a player p �∈ Π can-
not influence the game, we take the convention that SuccSets(s, p) = {Succ(s)}.
Given a coalition C and s ∈ S, a C-move from s is an element of ∩p∈CSuccSets(s, p);
it is a subset of Succ(s) which elements result from fixing a particular move for each
player in C. In PRS, a {1, 2}-move from s0 is {si}, for some 1 ≤ i ≤ 9.

3 The Logical Framework

We propose a generalization of [RP03] which is twofold: we enrich the propositional
mu-calculus [Koz83] by allowing decision modalities, and we consider its monadic sec-
ond order extension by allowing quantifications over atomic propositions, even under
the scope of fix-points operators. We first present the propositional mu-calculus with
decision modalities; the second order extension follows in this section.

The logic Dμ is the mu-calculus with decision modalities (formulas �pQ). Given
a set Prop of atomic propositions, an infinite set IP, and a set of variables Var =
{Z, Y, . . .}, the syntax of Dμ is:

Q | �p Q | � | ¬β | β1 ∨ β2 |EXβ | Z | μZ.β(Z)

where Q ∈ Prop, p ∈ IP, Q ⊆ Prop, and β, β1, β2 are Dμ formulas. Fix-point formulas
(μZ.β(Z)) are such that any occurrence of Z ∈ Var in β(Z) occurs under an even
number of negation symbols ¬. A sentence is a formula where any occurrence of a
variable Z occurs under the scope of a μZ operator. The set of formulas which do not
contain any decision modality correspond to the traditional propositional mu-calculus,
whence the standard notations ⊥, AXβ, β1 ∧ β2, β1⇒β2, and νZ.β(Z) for respectively
¬�, ¬EX¬α, ¬(¬β1 ∨ ¬β2), ¬β1 ∨ β2, and ¬μZ.¬β(¬Z). Moreover, given β ∈
Dμ, we freely use the concise CTL-like notation AG (β) for νZ.(β ∧ AX Z), which
expresses that β is globally true in the future, and EF (β) for ¬AG (¬β).
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As for the traditional mu-calculus, a formula β ∈ Dμ is interpreted in a CGS S =
〈Π, S, Λ, λ, M, δ〉 supplied with a valuation val : Var → 2S. Its semantics [[ β ]]valS is a
subset of S, defined by induction over the structure of β. The following is very standard
as the mu-calculus operators semantics:

[[ Q ]]valS = {s ∈ S | s ∈ λ(Q)}
[[ � ]]valS =S

[[ ¬β ]]valS =S \ [[ β ]]valS
[[ β1 ∨ β2 ]]valS = [[ β1 ]]valS ∪ [[ β2 ]]valS

[[ Z ]]valS =val(Z)
[[ EXβ ]]valS = {s ∈ S | ∃s′ ∈ Succ(s) ∧ s′ ∈ [[ β ]]valS }

[[ μZ.β(Z) ]]valS =∩{S′ ⊆ S |[[ β(Z) ]]val(S
′/Z)

S ⊆ S′}
Classically, as a valuation val does not influence the semantics of a sentence β ∈ Dμ,
we then simply write [[ β ]]S .

We now focus on decision modalities which are essential to our logic:

[[ �pQ ]]valS = {s ∈ S | Succ(s) ∩ λ(Q) ∈ SuccSets(s, p)}
By definition, s ∈ [[ �pQ ]]S whenever the set Succ(s) ∩ {λ(Q) | Q ∈ Q} can alter-
natively be characterized as a move of player p, namely as Succj(s, p) for some move
j ∈ M . Notice that the semantics of �pQ is well defined even if p �∈ Π , since in this
case SuccSets(s, p) equals {Succ(s)} by convention. In most of our examples, the set
Q has a single element Q, so we simply write �pQ for �p{Q}.

In the example of the PRS game, Figure 1, s0 �∈ [[�1(1-Win)]]S because the predicate
1-Win does not match a set of successors enforced by a move of player 1; as a matter
of fact, player 1 does not have a winning strategy, neither does player 2 for symmet-
rical reasons. On the contrary s0 ∈ [[ �1Q ]]S , since Q matches SuccS(s0, 2). When
the game is infinite, eg by repeating the game PRS, it can be unfolded as an infinite
tree, the nodes of which are histories of an ongoing play. Assume given a predicate Q
on the tree nodes such that �pQ is invariant in the computation tree, that is such that
AG (�pQ) holds in the root. Then any computation inside Q corresponds to a play for
a fixed strategy of player p, namely the one designated by Q, and the sub-tree formed
by these computations is the outcome of this very strategy. Combining decision modal-
ities for several players characterizes coalition moves: for instance, when a formula like
�p1Q1∧�p2Q2∧�p3Q3 holds, then the set of successors which satisfy Q1∧Q2∧Q3 cor-
responds to some move of the coalition {p1, p2, p3}. By extension, if each predicate Qi

designates a strategy of pi, the sub-tree whose computations remain inside Q1∧Q2∧Q3
is the outcome of the coalition strategy.

The logic is extended to the monadic second order to capture strategies as main ob-
jects of the logic: stating that there exists a predicate Q such AG (�pQ) holds expresses
the existence of a strategy. This extension of the logic is written QDμ, for “quantified
Dμ”; its syntax is as for Dμ but with quantifications over sets of atomic propositions.
The syntax of QDμ is:

Q | �p Q | � | ¬α |α1 ∨ α2 |EXα | Z | μZ.α(Z) | ∃Q.α

We write ∀Q.α for ¬∃Q.¬α.
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r Q

Q

1, 2, 4, 5, 7, 8
3, 6, 9

1, . . . , 91, . . . , 9

Fig. 2. A Q-labeling (E , r) of degree 9

The semantics of QDμ generalizes the one of Dμ: the cases of Q, �pQ, �, ¬α,
α1 ∨ α2, EXα, Z , and μZ.α(Z) are dealt inductively. The semantics of quantification
follows the proposal of [RP03]: the mechanism to define new predicates Q ∈ Q on a
game structure relies on a composition of the structure with a Kripke structure over Q,
called a labeling.

Definition 1 (Q-labelings). Given Q ⊆ Prop and m ≥ 1, a Q-labeling (or a labeling
over Q) is a pair (E , r) where E = 〈E, Q, γ, [m], δ′〉 is a (one player) CGS structure
over Q and [m], and r ∈ E is its root. It is a Krikpe structure.

We compose labelings and CGS’s with the same branching degree. We suppose fixed
once for all a principle to bijectively relate any set of the form Mn to the set [Card(M)n]
(recall it is {1, . . . , Card(M)n}); for example one can use the coding proposed by
[GvD06]. In the following, let us qualify canonical a bijection from Mn to [Card(M)n]
whenever it is based on this principle.

Now assume given a rooted CGS (S, s) with n players over Λ and M , and a labeling
(E , r) over Q and [Card(M)n], where E = 〈E, Q, γ, [Card(M)n], δ′〉; denote by τ
the canonical bijection from Mn to [Card(M)n]. The labeling of (S, s) by (E , r) is the
synchronous product of the two structures, where x-transitions in S are synchronized
with the τ(x)-transitions in E . Formally,

(S, s) × (E , r) = 〈Π, S × E, Λ ∪ Q, (λ × γ), δ”〉

is the CGS over Λ ∪ Q and M rooted at (s, r), where:

– (λ×γ)(Q) = λ(Q)∪γ(Q), for each Q ∈ Λ∪Q with the convention that if Q �∈ Λ
(or �∈ Q) then λ(Q) (respectively γ(Q)) is the empty set, and

– δ”((s1, e1), x) = (s2, e2) whenever δ(s1, x) = s2 and δ′(e1, τ(x)) = e2.

In the following, composition of a structure with a labeling implicitly assumes that
their branching degrees match. Figure 1 shows a (regular) labeling (E , r) over Q and
[32], and the labeling of the game structure PRS by (E , r), with the convention that
τ(〈P, P 〉) = 1, τ(〈P, R〉) = 2, ..., τ(〈S, R〉) = 8, and τ(〈S, S〉) = 9. The result is
depicted in Figure 1.

Notice that since propositions of compound states accumulate, and because E and S
have the same branching degree, (S, s)× (E , r) is bisimilar to (S, s) in the usual sense,
if we restrict to propositions that are not in Q. In particular if Q is empty, (S, s)×(E , r)
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is bisimilar to (S, s). The composition of S and labelings is tedious but it only aims at
formalizing the means to decoration nodes of the computation tree by propositions; in
particular, when E is a finite state Q-labeling, the predicates Q are regularly placed on
the computation tree of the game structure.

We have now the material to define the meaning of quantifiers: s ∈ [[ ∃Q.α ]]valS if
and only if there exists a Q-labeling (E , r) such that (s, r) ∈ [[ α ]]val

′

(S,s)×(E,r), where

val′(Z) = val(Z) × E.
Remark that formulas of QDμ have the same truth value if we unravel the structure S.

Besides, the semantics of quantified formulas is a lot more intuitive on the computation
tree: ∃Q.α holds if there is a way to assign the propositions of Q to the nodes of the
computation tree so that α holds.

4 Strategies and Outcomes

In this section, we assume a fixed CGS S = 〈Π, S, Λ, λ, M, δ〉.
We revisit the central concepts of strategies and outcomes which underlies the se-

mantics of all logics for CGS’s: as already explained in Section 3, giving a strategy of
player p is equivalent to labeling the structure by some proposition Q where the prop-
erty �pQ is invariant. Since invariance is definable in the logic, we obtain the following
definition for strategies:

Definition 2 (Strategies). Given a coalition C ⊆ Π , and a set {Qp | p ∈ C} ⊆ Prop,
a C-strategy from s designated by {Qp | p ∈ C} is a labeling (E , r) of (S, s) over
{Qp | p ∈ C}, such that

(s, r) ∈ [[ AG (
∧

p∈C

�pQp) ]](S,s)×(E,r) (1)

For each C-strategy (E , r) from s designated by a set QC = {Qp | p ∈ C}, where
E = 〈E, Q, γ, [m], δ′〉, we define its outcome as the structure obtained by forgetting
all states (s′, e) which are not chosen by the coalition C, hence not in the predicate∧

p∈C Qp, and by forgetting the players of C as their moves are fixed by the strategy.
Formally, assuming C �= ∅, we define OUT(QC , S, s) = 〈Π \ C, (S × E) ∩ (λ ×
γ)(Q), Λ ∪ Q, M, δ”〉, with δ”((s1, e1), y) = δ((s1, e1), y′) where y′ is the decision
vector of players in Π obtained by completing the decision vector y of players in Π \C
by the moves of the players in C recommended by the C-strategy. If C = ∅ then as
expected OUT(Q∅, S, s) = (S, s).

Lemma 1. OUT(QC , S, s) is a CGS (rooted at s) over the set of players Π \ C.

Our definition of outcome is sensible as the set of maximal paths in OUT(QC , S, s)
coincides with the original definition of ’outcome’ in the sense of [AHK02]. However,
because our notion retains the structure of a game, contrary to the original definition,
we can state any logical statements anew.

In the following, and when it is clear from the context, we simply say “QC -strategy”
for “C-strategy designated by QC”, and we write Qp for Q{p}. Also, we concisely
write Q for

∧
Q∈Q Q and define

∧
Q∈∅ Q as �.
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We present now a simple mechanism called the relativization which transforms a
formula by propagating downward in the formula a set of atomic propositions.

Definition 3 (Q-Relativization of a formula). For Q ⊆ Prop, the Q-relativization is
a mapping (·|Q) : QDμ → QDμ defined by induction:

(Q|Q) = Q (�|Q) =� (Z|Q) =Z
(¬α|Q) = ¬(α|Q) (α1 ∨ α2|Q) = (α1|Q) ∨ (α2|Q)

(μZ.α(Z)|Q) = μZ.(α(Z)|Q) (∃Q′.α|Q) =∃Q′.(α|Q)
(�pQ|Q)= �p(Q ∧ Q) (EXα|Q) =EX [

∧
Q∈Q Q ∧ (α|Q)]

From the above definition, we immediately obtain the equivalences:

(α|∅) ≡ α and (α|Q ∪ {Q}) ≡ ((α|Q)|Q). (2)

Regarding properties brought about by strategies, Theorem 1 below shows that we
can either operate on the model, by considering the outcome and examine its property,
or else operate on the formula, by considering the relativization and interpret it on the
structure:

Theorem 1. Given a rooted CGS (S, s), a coalition C, and a QC-strategy (E , r) from
s, we have: for any α ∈ QDμ, and any valuation val : Var → 2S:

[[ (α|QC) ]]val
′

(S,s)×(E,r)=[[ α ]]val
′

OUT(QC ,S,s)

where val′(Z) = val(Z) × E.

Proof. The proof of Theorem 1 is conducted by a double induction on the set C and on
the structure of α. The case C = ∅ is trivial and independent of α, since (α|QC) is α by
(2), on the one hand, and (S, s) × (E , r) and OUT(QC , S, s) are isomorphic to (S, s),
on the other hand. Assume now C = C′ ∪{p}, with c �∈ C. The QC -strategy (E , r) can
be decomposed into (E ′, r′) × (Ep, rp), where (E ′, r′) is a QC′-strategy and (Ep, rp) is
a Qp-strategy; let us write (S′, r′) for (S, s) × (E ′, r′). By (2):

[[ (α|QC) ]]val
′

(S,s)×(E,r) = [[ ((α|QC′)|Qp) ]]val
′

(S′,s′)×(Ep,rp) (3)

Lemma 2. For any rooted CGS (S′, s′), any {p}-strategy (E , r) designated by Q, any
α ∈ QDμ, and any valuation val : Var → 2S , [[ (α|Q) ]]val

′

(S′,s′)×(E,r) = [[ α ]]val
′

OUT(Q,S,s)

where val′(Z) = val(Z) × E.

The proof of this lemma is based on a simple induction over the formulas, in the spirit
of [RP03]. Informally, remark first that the relativization is inductively defined for all
formulas but those of the form EXα. The inductive cases of the lemma follow this line.
Regarding statements like EXα, the lemma simply expresses that a successor exists
in the prune structure OUT(Q, S, s) if and only if it already existed in the complete
structure and it was labeled by Q.

By Lemma 2, the right hand side of (3) is equal to [[ (α|QC′) ]]val
′

OUT(Q,S′,s′). Since
OUT(Q, S′, s′) and OUT(Q, S, s) × (E ′, r′) are isomorphic, it is also equal to
[[ (α | QC′) ]]val

′

OUT(Q,S,s)×(E′,r′) which by induction hypothesis coincides with

[[ α ]]val
′

OUT(QC′ ,OUT(Q,S,s),(s,rp)). By definition of the outcomes, we have:
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Lemma 3. Given two distinct coalitions C1, C2, and any two QCi-strategies (Ei, ri)
(i ∈ {1, 2}), OUT(QC1∪C2 , S, s) and OUT(QC1 , OUT(QC2 , S, s), (s, r2)) are
isomorphic.

Applying Lemma 3 to the term [[ α ]]val
′

OUT(QC′ ,OUT(Q,S,s),(s,rp)) yields [[ α ]]val
′

OUT(QC ,S,s),
which concludes the proof of Theorem 1.

Corollary 1. Given a CGS S, a coalition C, and a sentence α ∈ QDμ. Consider a set
of fresh atomic propositions QC = {Qp | p ∈ C} indexed over C. The formula

∃QC .[AG (
∧

p∈C

�pQp) ∧ (α|QC)]

characterizes the states from which there exists a C-outcome of (S, s) satisfying α.

Proof. By definition, there exists a QC -labeling from s, (E , r) such that (s, r) is a
model of [AG (

∧
p∈C �pQp) ∧ (α|QC)]. Therefore,

(s, r) ∈ [[ AG (
∧

p∈C

�pQp) ]](S,s)×(E,r), and (4)

(s, r) ∈ [[ (α|QC) ]](S,s)×(E,r). (5)

By (4), (E , r) is a QC-strategy. By Theorem 1, (5) is equivalent to s ∈ [[α ]]OUT(QC ,S,s),
which concludes. For the reciprocal, simply unroll the reasoning backward.

We make strategies become the main objects of our logic: given a coalition C, and a set
QC = {Qp | p ∈ C} of propositions, we define the following dual expressions:

∃̂QC .α
def= ∃QC .[AG (

∧

p∈C

�pQp) ∧ α] ∀̂QC .α
def= ∀QC .[AG (

∧

p∈C

�pQp) ⇒ α]

By Corollary 1, ∃̂QC .(α|QC) expresses the existence of a C-strategy which enforces
α. As widely demonstrated in the next section, statements of the form (α|QC) can be
combined, and associated with other types of statements (see (6) and (7)). Moreover the
property α itself can incorporate specifications about other strategies, hence expressing
commitment (see (8)).

5 Expressiveness Issues

This section reveals the high expressiveness of the formalism. We present three signif-
icant properties we can express in our formalism, but, we believe, in none of the other
logics developed for concurrent games so far. Let us simply write (α |Q1 ∧ Q2) for
(α | {Q1, Q2}), (Q = Q′) for AG (Q ⇔ Q′) to denote equality of predicates, and
(Q �= Q′) for ¬(Q = Q′).
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1. Unique Nash equilibrium in ω-regular games. Given a two-player game, and an
ω-regular objective β [Cha05], the existence of a Nash equilibrium can be stated
by ∃̂Q1.∃̂Q2.Equil(β, Q1, Q2), where

Equil(β, Q1, Q2)
def=

⎧
⎨

⎩

(β|Q1 ∧ Q2)
∧∀̂Q′

2.(Q2 �= Q′
2)⇒(¬β|Q1 ∧ Q′

2)
∧∀̂Q′

1.(Q1 �= Q′
1)⇒(¬β|Q′

1 ∧ Q2)

Uniqueness of the Nash equilibrium is specified by:

∃̂Q1.∃̂Q2.Equil(β, Q1, Q2) ∧ Unique(Equil(β, Q1, Q2), Q1, Q2) (6)

where Unique(α, Q1, Q2) = ∀̂Q′
1.∀̂Q′

2.[α ⇒ (Q1 = Q′
1) ∧ (Q2 = Q′

2)].
2. Dominance of strategies. For instance, a strategy Q weakly dominates another strat-

egy Q′ with respect to a goal β [Ber07] whenever (7) holds.

∀̂R.[(β|Q′ ∧ R)⇒(β|Q′ ∧ R)] ∧ ∃̂R.[(β|Q ∧ R) ∧ (¬β|Q′ ∧ R)] (7)

3. Communication protocols. By another reading of Corollary 1, a formula ∃̂QC .(α|
QC) states the existence of a C-outcome fixed once for all in which α is interpreted.
If α contains a quantified sub-formula ΔQC′ .(α′|QC′) (Δ ∈ {∃̂, ∀̂}), the statement
α′ is interpreted in C′-outcomes which lie “inside” the fixed C-outcome. Consider
a system with two processors a and b which share a critical resource; we want to
specify a protocol mutex in charge of achieving the mutual exclusion. Consider
the formula (8):

∃̂Qmutex.(AG (Exclusion ∧ ∃̂Qa.CritSeca ∧ ∃̂Qb.CritSecb)|Qmutex) (8)

where Exclusion = ¬(CritSeca ∧CritSecb), CritSecz = (AF CritSecz|Qz).
Protocol mutex has a strategy to guarantee the safety property AG (Exclusion),
on the one hand, and for each z ∈ {a, b}, to enable the recurrent liveness property
AG (∃̂Qz.(AFCritSecz |Qz), on the other hand. Property (AFCritSecz |Qz)
means that provided processor z adopts policy Qmutex, which consists e.g. in re-
quiring the access to the critical resource and in maintaining this request, it will
eventually access to critical section. The commitment of mutex to the single strat-
egy Qmutex entails fairness with respect to both processors, although not explicitly
specified. Nevertheless, as explained in Section 7, solutions without commitment
can also be specified.

Many other examples of concepts in nonzero-sum games can be expressed in our
setting, among which are all the proposals in [CHP07].

6 Automata Constructions

We assume that the reader is familiar with alternating parity tree automata (simply
called automata when it is clear from the context), and with their relationship with
the mu-calculus and parity games (we refer to [AN01], [KVW00], and [Wil01]).
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Each formula of our calculus can be represented by alternating parity tree automata,
thanks to a powerful construction which generalizes [RP03]. Remark that fix-points and
quantifiers do not commute in general: consider the formulas α⊥ = ∃Q.νZ.(AX Z ∧
Q∧EX¬Q) and α� = νZ.(AX Z ∧∃Q.Q∧EX¬Q), interpreted on a single infinite
path. Whereas the interpretation of α⊥ is the empty set, the one of α� is the entire set
of states.

We start with an informal presentation of the construction’s principles: Existential
quantification corresponds to the projection, hence the need to handle non-deterministic
automata [Rab69]; by the Simulation Theorem [MS95], every alternating automaton is
equivalent to a non-deterministic automaton, and the procedure is effective with one
exponential blow-up in the size of the automaton. Fix-point operators also have their
counterpart on automata: by [AN01, Chapter 7, 7.2], automata can contain variables,
we call them extended automata; their inputs are like ((S, s), val), where (S, s) is as
usual a model, and val : Var → 2S is a valuation to interpret the variables, in the same
line we interpret non-closed formulas. Extended automata have their own mu-calculus,
and fix-point apply on them. Given an extented automaton A, the extended automaton
μZ.A can be defined in such a way that e.g. for an automaton A of a non-closed formula
∃Q.α(Z), where Z ∈ Var is free in α(Z), the automaton μZ.A accepts the models of
μZ.(∃Q.α(Z)). Basically, the construction of Theorem 2 relies on three steps. (1) we
build the automaton for α(Z); (2) by using the projection operation, we compute the
automaton for ∃Q.α(Z); (3) we build the automaton for μZ.(∃Q.α(Z)). Notice that the
automaton obtained for α(Z) may not be non-deterministic in general, either because
e.g. α(Z) is of the form ¬α′(Z), or of the form α1(Z) ∧ α2(Z). Preliminary to Step
(2) we may therefore apply the Simulation Theorem (which by [AN01, Chapter 9] still
applies to extended automata)entailing one exponential blow-up .

Theorem 2. Let m, n ≥ 1. For any α ∈ QDμ, write κ ∈ IN for the maximal number of
nested quantifiers in α. Then, there exists an alternating parity tree automaton Ak

α with
max(κ, 0)-EXPTIME(|α|) states and max(κ − 1, 0)-EXPTIME(|α|) priorities, which
accepts exactly the models of α of branching degree k, where k = mn, m is the number
of moves for each player, and n is the number of players.

Automata constructions established in Theorem 2 has many interesting corollaries: If
we fix the maximal number κ of ∃̂ or ∀̂ symbols in the formulas, the model-checking
problem for QDμ is κ-EXPTIME-complete (for a fixed branching degree of the struc-
tures); more precisely, it is κ-EXPTIME in the size of the formula, but polynomial in
the size of the game structure S. Indeed, for the upper bound, the proposed procedure
amounts to solving “S ∈ L(Ak

α)?”, which in the light of [Jur98] for solving two-player
parity games can be done with the announced complexity. For the lower bound, simply
observe that QDμ subsumes the proposal in [RP03]. As a consequence, the model-
checking problem for QDμ is non-elementary.

More interestingly, if coalition strategies solutions exist for a given existential QDμ

statements and some game structure, there always exists regular ones, that is describ-
able by finite state machines. Indeed, while model-checking QDμ formulas (using a
classic parity game [Jur98]), any winning strategy for Player 0 in the parity game deliv-
ers adequate valuations of the quantified propositions; since parity games always have
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memoryless solutions, there always exist regular valuations of the propositions, yielding
bounded memory solutions for coalition strategies.

7 Alternating Time Logics

We show that the alternating mu-calculus AMC and the “game logic” from [AHK02]
GL are natural fragments of QDμ, as stated by Theorems 3 and 4 – we refer to [Pin07]
for details; results for weaker logics such as ATL, Fair ATL, and ATL∗ follow from their
natural embedding either into AMC or GL. As a corollary, automata constructions for al-
ternating time logics can be derived from the procedure presented in Section 6; however,
we briefly explain why these automata constructions can be significantly optimized.

For Q ⊆ Prop, the bounded Q-relativization ( ·�Q) is like the relativization (Defini-
tion 3), except that the downward propagation of propositions in the formulas terminates
when a quantified sub-formula is encountered:

(∃Q′.α′�Q) = ∃Q′.α′ (9)

Relying on the bounded relativization, we define the modality ∃̂QC( ·�QC) which
has the following semantics: ∃̂QC(α�QC) states the existence a C-outcome where α

holds, but where any further statement ∃̂QC′ .α′ is interpreted in the complete game
structure, likewise the modalities of alternating time logics.

7.1 The Alternating-Time μ-Calculus

The syntax of AMC formulas is Q | � | ¬ϕ | ϕ1 ∨ ϕ2 | Z | μZ.ϕ(Z) | 〈〈C〉〉 © ϕ with
Q ∈ Prop, C ⊆ IP, and where each Z ∈ Var occurs under an even number of negation
symbols ¬ in ϕ(Z). These formulas are interpreted over CGS’s supplied with a valua-
tion val : Var → 2S . Given ϕ ∈ AMC, its interpretation ϕS(val) ⊆ S is inductively
defined by:

QS(val)=λ(Q) (¬ϕ)S (val)=S \ ϕS(val)
�S(val)=S ZS(val)=val(Z)

(ϕ1 ∨ ϕ2)S(val)=ϕS
1 (val) ∪ ϕS

2 (val)
(μZ.ϕ(Z))S (val)=

⋂
{S′ ⊆ S | ϕ(Z)S(val[S′/Z]) ⊆ S′}

(〈〈C〉〉©ϕ)S (val) is the set of states s ∈ S such that there exists a C-move from s
contained in ϕS(val).

We define the mapping ·̂ : AMC → QDμ inductively by: formulas like Q, � and Z
are left unchanged, formulas like ¬ϕ, ϕ1 ∨ ϕ2, and μZ.ϕ(Z) are dealt inductively, and
we set

̂(〈〈C〉〉©ϕ) = ∃̂QC .(AX ϕ̂�QC)

where QC = {Qp | p ∈ C} is a set of fresh atomic propositions. Notice that the size of
ϕ̂ is linear in the size of ϕ.

Theorem 3. Given a CGS S, ϕ ∈ AMC, and a valuation val : Var → 2S, we have
ϕS(val) = [[ ϕ̂ ]]valS .
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7.2 The Logic GL

Formulas of GL are of three types (the two last types are inherited from CTL∗):

State formulas are of the form Q, �, ¬ϕ, or ϕ1 ∨ ϕ2 – where ϕ, ϕ1, and ϕ2 are state
formulas –, and ∃∃C.θ – where θ is a tree formula –.
Tree formulas are of the form ϕ – where ϕ is a state formula –, ¬θ, or θ1 ∨ θ2 – where
θ, θ1, and θ2 are path formulas –, and Eψ – where ψ is a path formula –.
Path Formulas are of the form θ – where θ is a tree formula –, ¬ψ, ψ1 ∨ ψ2, ©ψ, or
ψ1 Uψ2 – where ψ, ψ1, and ψ2 are path formulas –.

We simply sketch the semantics of GL, and we assume that the reader is familiar with
CTL∗ (see [AHK02] for details). Let ϕ be a state formula, and let (S, s) be a rooted
CGS. S, s |= ϕ, indicating that s satisfies ϕ in S, is defined by induction over ϕ. We
focus on formulas like ∃∃C.θ (the others are dealt inductively or follow the semantics
of CTL∗): S, s |= ∃∃C.θ whenever there exists a C-outcome OUT(QC , S, s) which
satisfies θ. Now, θ is a tree formula which in CTL∗, up to (non propositional) state
sub-formulas ∃∃C′.ϕ′ which must be interpreted back inside S. Let ϕS denote the set
{s ∈ S | S, s |= ϕ}.

To lighten the translation of GL into QDμ, we first establish a translation of GL
into a second order extension of CTL∗ (with decision modalities), written QDCTL∗; it
generalizes the proposal of [ES84] since quantifications may occur in sub-formulas. In
QDCTL∗, we denote a tree formula by θ (it may contain quantifications) and a path
formula by π, and we write Aπ for ¬E¬π, and Gθ for ¬(�U¬θ).

We adapt the definition of the bounded relativization (Section 7) to the syntax of
QDCTL∗. The relativization of a path formula is conditioned by the path quantifier
which binds the formula, as exemplified by the two expressions:

(EX · |Q) = EX [Q ∧ (· |Q)] (AX · |Q) = EX [Q ⇒ (· |Q)]

In order to distinguish the two cases, we define two relativizations of path formulas
( ·�∀Q) and ( ·�∃Q), and set (θ�Q) = (θ�∀Q) for all tree formula θ. Let Δ ∈ {∃, ∀},
and θ, θ1, and θ2 be tree formulas:

– (Q�ΔQ) = Q, (��ΔQ) = �, and (∃Q′.θ�ΔQ) = ∃Q′.θ.
– (¬θ�ΔQ) = ¬(θ�ΔQ) and (θ1 ∨ θ2�ΔQ) = (θ1�ΔQ) ∨ (θ2�ΔQ).
– (E π�∀Q) = (E π�∃Q) = E (π�∃Q), and (Aπ�∀Q) = (Aπ�∃Q) = A (π�∀Q).
– (π1 Uπ2�∀Q) = [Q⇒(π1�∀Q)]U [Q⇒(π2�∀Q)].
– (π1 Uπ2�∃Q) = [Q ∧ (π1�∃Q)]U [Q ∧ (π2�∃Q)].

(we set similar definitions for path formulas). It can be shown that this definition is
consistent with the definition of Section 7. For example, consider the CTL∗ formula
EFQ1 ∧ EFQ2 which is equivalent to mu-calculus formula (μZ.EXZ ∨ Q1) ∧
(μZ.EXZ ∨Q2). Their respective bounded Q-relativization EF (Q ∧ Q1)∧EF (Q ∧
Q2) (computed according to above) and (μZ.EX (Q∧Z)∨Q1)∧(μZ.EX (Q∧Z)∨Q2)
(computed according to Section 7) remain equivalent.

We define ·̂ : GL → QDCTL∗ by induction: atomic propositions and � are left
unchanged; formulas like ¬ϕ, ϕ1 ∨ ϕ2 are dealt inductively, and we define

∃̂∃C.θ = ∃̂QC .(θ̂�QC)
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Clearly, the size of ϕ̂ is linear in the size of ϕ, for any ϕ ∈ GL. Also, since ∃̂QC .α ∈
QDμ is definable in QDCTL∗ provided α is, the co-domain of ·̂ is indeed QDCTL∗.

Theorem 4. For any state formula ϕ ∈ GL, ϕS = [[ ϕ̂ ]]S .

By an easy adaptation of e.g. the procedure of [Dam94], statements in QDCTL∗ can be
effectively expressed in QDμ.

7.3 A Note on Automata Constructions for Alternating Time Logics

Although our translation ·̂ of AMC or GL into QDμ may generate an arbitrary large
number of nested symbols ∃̂, the corresponding automata nevertheless remain small,
if their construction is carefully conducted; applying Theorem 2 is actually avoidable.
Because formulas ϕ̂ are obtained by bounded relativizations of QDμ formulas, a quanti-
fied proposition never occurs in strict quantified sub-formulas. This observation enables
us to construct automata in a top-down manner, as opposed to the bottom-up procedure
of Theorem 2; due to lack of space, we refer the reader to [Pin07] for the proof details
of these constructions, which incidentally match the tight bounds from [AHK02].
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