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Abstract. Automated software verification has made great progress recently,
and a key enabler of this progress has been the advances in efficient, automated
decision procedures suitable for verification (Boolean satisfiability solvers and
satisfiability-modulo-theories (SMT) solvers). Verifying general software, how-
ever, requires reasoning about unbounded, linked, heap-allocated data structures,
which in turn motivates the need for a logical theory for such structures that in-
cludes unbounded reachability. So far, none of the available SMT solvers supports
such a theory. In this paper, we present our integration of a decision procedure that
supports unbounded heap reachability into an available SMT solver. Using the
extended SMT solver, we can efficiently verify examples of heap-manipulating
programs that we could not verify before.

1 Introduction

Automated software verification has made great progress recently, with several success-
ful tools developed in both industry and academia. A key enabling technology for this
success has been the advances in automated decision procedures — the software verifi-
cation tools almost all rely on some form of automatic logical reasoning engine. Some
rely on SAT (Boolean satisfiability) or BDDs (binary decision diagrams) to maintain
bit-accurate precision (e.g., [16,22,2]), whereas others use SMT solvers (satisfiability
modulo theories — decision procedures for combinations of decidable theories) in order
to capitalize on the natural abstractions present in software verification, such as integer
and real linear arithmetic, arrays, and uninterpreted functions (e.g., [4,20,18,5]).

To be broadly applicable, however, software verification tools must be able to verify
programs with dynamic memory allocation, i.e., that manipulate potentially unbounded,
heap-allocated, linked data structures via pointers. Although verification of such heap-
manipulating programs (HMPs) is obviously undecidable in general, careful crafting
can produce a logic that is expressive enough to verify important properties of programs,
yet is still decidable. In particular, a crucial feature for such logics is the ability to
specify unbounded reachability (e.g., from node x, is it possible to reach node y by
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following pointers) and related concepts such as betweenness. Slightly more expressive
logics, however, are undecidable [21].

Logics for HMP verification have long been a topic of research. Even Nelson’s sem-
inal work on software verification with SMT solvers supported a theory of unbounded
S-expressions, although without reachability [35,37], and soon thereafter, Nelson pro-
posed a first-order axiomatization that approximated unbounded reachability [36]. The
past few years, however, have seen a blossoming of research in this area, with numerous
proposed logics and decision procedures for HMPs, with varying degrees of expressive-
ness and efficiency, e.g., [3,6,9,15,21,24,27,28,29,33,34,39,40,41]. Research progress
has been great, with verification examples that were beyond the reach of methods just a
few years ago now being verified in seconds. However, the research on HMP verifica-
tion has focused almost exclusively on the heap-verification aspects, while mainstream
software verification research has largely ignored HMP verification — an understand-
able division, given the difficulty of both problems.

With the logics and decision procedures for HMPs maturing, the time is right to in-
tegrate them back into a general SMT solver, to enable verification of more general
software. We want to verify software, including software that manipulates heaps, not
just software that only manipulates heaps! A few researchers have started in this di-
rection. For example, Lahiri and Qadeer have expressed an incomplete axiomatization
of unbounded reachability as universally quantified axioms in the Simplify first-order
prover [17], allowing verification of heap and non-heap properties and their interactions,
but with a substantial performance penalty [27]. Beyer et al. [7] take a different ap-
proach, making calls to a specialized HMP verification system (the TVLA system [30])
to handle the heap aspects of the verification from within their non-heap-aware soft-
ware verification tool. They report excellent performance, but such a loose combination
doesn’t allow verification of general interactions between heap properties and other pro-
gram properties. In very recent follow-on work [8], they add a “strengthening” operator
to propagate additional information between the heap and non-heap theories, but still
not all interactions are captured. Similarly, Charlton and Huth [14] propose a software
model checker in which separate analysis plugins (such as for heaps and for other theo-
ries) can cooperate, but the communication is ad hoc, so there are no guarantees that all
interactions between theories are propagated. Closest to our work is extremely recent
work by Lahiri and Qadeer [28]: Instead of their previous first-order axiomatization,
they present a decision procedure based on a complete set of rewrite rules, inspired by
our previous work [9]. However, they prototype an implementation of the rewrite rules
by using the same trick of modeling rewrite rules as universally-quantified first-order
axioms inside the theorem prover, as before. Practical implementation of their decision
procedure into an SMT solver has not yet been done. The obviously promising next
step is a tight integration of an efficient decision procedure for an HMP logic directly
into a modern SMT solver, making all of the theories, and their interactions, efficiently
available for the verification task. So far, however, nobody has actually done such an
integration.

In this paper, we present the theory, methodology, and results of such an integra-
tion. In particular, we integrate our recent, efficient decision procedure for an HMP
logic that supports unbounded reachability [39] into the established SMT solver
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1: procedure INIT-ADD-FLAG(head,val)
2: assume reach(next,head,t) ∧ reach(next,head,nil) ∧ ¬t = nil ∧ oldSum =

data int(sum,t)∧oldFlag=data bool( f lag,t)
3: curr := head;
4: while ¬curr=nil do
5: if ¬(curr→f lag) then
6: curr→sum := curr→sum+val;
7: curr→f lag := true;
8: end if
9: curr := curr→next;

10: end while
11: assert reach(next,head,t) ∧ reach(next,head,nil) ∧ ¬t = nil ∧ data bool( f lag,t) ∧

(oldFlag∨data int(sum,t)=oldSum+val)
12: end procedure

Fig. 1. HMP (Heap-Manipulating Program) Example. The procedure INIT-ADD-FLAG adds the
integer variable val to integer field sum of every node whose boolean field f lag is false in an
acyclic singly-linked list. Also, boolean field f lag of those nodes is set to true. We denote an
integer data field named sum of a node x by data int(sum,x), a boolean data field named f lag of
a node x by data bool( f lag,x), and the node pointed to by a pointer field named next of node x
by next(next,x). Subformulas of the form reach(next,x,y) express that node y is reachable from
node x by following a sequence of any number of next pointer fields. We will formally define these
predicates in Sect. 3. The fact that nil is reachable from head enforces the acyclicity assumption.
Variables oldSum and oldFlag are used to store values of fields sum and f lag of node t before
the procedure starts, respectively. In the assume and assert statements, variable t represents an
arbitrary node (Skolem constant). Since our framework doesn’t support quantification, we use the
trick of introducing Skolem constants to represent universally quantified variables.

MATHSAT [12].1 Our results indicate that the integration was fairly straightforward
(as was hypothesized in [39] and thanks to the design of MATHSAT [10,11]), the per-
formance overhead of the integration was reasonable, and the integration enabled veri-
fication of many example HMPs that we could not verify before.

2 Motivating HMP Example

In our framework, the heap consists of an unbounded number of heap nodes. HMPs
can have program variables that are pointer variables (pointers) and data variables of
different types. Similarly, heap nodes can have any number of pointer fields (i.e. links
to other nodes) and data fields of different types.

We’ll motivate the work presented in this paper with an illustrative HMP example
given in Fig. 1. The procedure INIT-ADD-FLAG adds the value of the integer variable
val to integer field sum of every node whose boolean field f lag is false in the non-
empty acyclic singly-linked input list head. Furthermore, boolean field f lag of those
nodes is set to true. Necessary assumptions are formalized by the assume statement on
line 2 of the program. The body of the procedure is simple; it traverses the list, finds

1 The extended MATHSAT is available at http://mathsat.itc.it/.
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Fig. 2. Heap Structure Example. In this example, each list node has a pointer field next, an integer
data field sum, and a boolean data field flag. We model nil as just a node where next( f ,nil) = nil
for all pointer fields f .

nodes whose field f lag is false, and on line 6 adds val to the data field sum at each
iteration. Also, it assigns field f lag to true on line 7. The specification is expressed
by the assert statement on line 11, and indicates that whenever line 11 is reached,
head points to an acyclic singly-linked list with field sum of all nodes whose f lag
field was false incremented by val. The verification problem we are solving can be
stated as follows: given an HMP, determine whether it is the case that all executions
that satisfy all assume statements also satisfy all assert statements. Note that even this
simple example is beyond the capability of typical software model-checking tools: it
is infinite-state due to both the unbounded integers as well as the unbounded heap. To
verify such programs, we employ abstraction, using an SMT framework extended with
a suitable logical theory described in the next section.

3 Logic for Verifying Heap-Manipulating Programs

Before we define our logic, we’ll intuitively illustrate basic concepts on the example
of a heap structure shown in Fig. 2. In this heap structure, head, prev, curr, and nil are
pointer variables, next is a pointer field used to link nodes in the acyclic list, sum is an
integer data field, and flag is a boolean data field. The node to which we get by following
the next pointer field from the node pointed to by head is denoted in our syntax with
next(next,head). The data field flag of the node pointed to by prev is accessed with
data bool( f lag, prev). The node pointed to by curr is reachable from the node pointed
to by head by following next pointer fields, and that concept of unbounded reachability
in our syntax is written as reach(next,head,curr).

The syntax of our logic is presented in Fig. 3. It is a quantifier-free fragment of
first-order logic that contains two equational theories:

1. Theory of data fields with the signature {=,data,update dfield}. The theory of
data fields can be easily translated into the theory of uninterpreted functions as
described in Sect. 4.3. For the simplicity of presentation, in this section we give
a single untyped theory of data fields. However, without the loss of generality,
we can extend this to a family of theories of data fields whose signatures are pa-
rameterized using the respective data types. Currently, we support only boolean
and integer data fields with the signatures {=,data bool,update dfield bool} and
{=,data int,update dfield int}, but that can easily be extended to other data types
supported by the SMT solver (e.g. reals).
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c ∈ Constants
x ∈ DataVariables v ∈ PointerVariables

d,d′ ∈ DataFields f , f ′ ∈ PointerFields
NodeTerm ::= v | next( f ,NodeTerm)
DataTerm ::= c | x | data(d,NodeTerm)

Atom ::= NodeTerm=NodeTerm | DataTerm=DataTerm |
reach( f ,NodeTerm,NodeTerm) |
between( f ,NodeTerm,NodeTerm,NodeTerm)

Literal ::= Atom | ¬Atom |
update pfield( f ,NodeTerm,NodeTerm, f ′) |
update dfield(d,NodeTerm,DataTerm,d′)

Formula ::= Literal | Formula∧Formula | Formula∨Formula

Fig. 3. Syntax of the Logic. For brevity, we show the logic with untyped data fields.

2. Theory of unbounded reachability, which is defined below, with the signature {=,
next, reach, between, update pfield}.

Clearly, the signatures (other than equality) of these two theories are disjoint, and are
also disjoint from the signatures of the various theories MATHSAT currently supports,
such as difference logic, linear arithmetic over reals, and linear arithmetic over integers.

3.1 Theory of Unbounded Reachability

The theory of unbounded reachability over heap nodes presented here is essentially the
same as in [39], except that reasoning about data fields is now moved into the theory
of data fields and handled by the SMT solver (see Sect. 4.3). The theory assumes a
finite set of pointer variables PointerVariables, which model program variables that
point to nodes in the heap, and a finite set of pointer function symbols PointerFields,
which model pointer fields from a heap node to another heap node. Literals of the form
x=y, ¬x=y, reach( f ,x,y), and ¬reach( f ,x,y) (where x and y are NodeTerm) are called
equality, disequality, reachability, and unreachability literals, respectively. Literals of
the form between( f ,x,y,z) or its negation are called between literals.

The structures over which the semantics of the theory are defined are called heap
structures. Formally, a heap structure H = (N,Θ) consists of a set of nodes N and an
interpretation function Θ . The interpretation function Θ interprets each symbol σ in
PointerVariables∪PointerFields, so that:

– Each pointer variable symbol σ ∈ PointerVariables is interpreted as a node Θ(σ) ∈
N.

– Each pointer function symbol σ ∈ PointerFields is interpreted as a mapping from
nodes to nodes Θ(σ) ∈ N → N.

The interpretation function Θ extends to interpret any term, atom, or literal of the the-
ory in a straightforward, inductive way. The interpretation of a node term τ ∈
PointerVariables is defined above, otherwise, τ has the form next( f ,τ ′) for some node
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term τ ′, and the interpretation is Θ(τ) = Θ( f )(Θ(τ ′)). Atoms are interpreted by Θ as
boolean values:

– An equality atom τ1 =τ2 is interpreted as true iff Θ(τ1) = Θ(τ2).
– A reachability atom reach( f ,τ1,τ2) is interpreted as true iff there exists some n ≥ 0

such that Θ( f )n(Θ(τ1)) = Θ(τ2).2

– A between atom between( f ,τ1,τ2,τ3) is interpreted as true iff there exist n0,m0 ≥ 0
such that Θ(τ2) = Θ( f )n0(Θ(τ1)), Θ(τ3) = Θ( f )m0 (Θ(τ1)), n0 ≤ m0, and for all
n,m such that Θ(τ2) = Θ( f )n(Θ(τ1)), Θ(τ3) = Θ( f )m(Θ(τ1)), we have n0 ≤ n
and m0 ≤ m.

The interpretation of a pointer field update literal update pfield( f ,τ1,τ2, f ′) is defined
using the well-known update operator3 as true iff

Θ( f ′) = update(Θ( f ),Θ(τ1),Θ(τ2)).

Finally, the interpretation of a literal that is of the form ¬φ where φ is an atom is simply
defined as Θ(¬φ) = ¬Θ(φ).

In previous work [9,39], we described a saturation-based decision procedure for the
theory of unbounded reachability. The decision procedure is based on the exhaustive
application of a set of inference rules and, as we showed on a number of experiments, is
very efficient. Furthermore, we presented some theoretical results behind our logic and
decision procedure [38]: our decision procedure is sound and always terminates, and
the decision procedure is complete for the fragment of the logic without updates. The
experiments showed that in practice completeness was not an issue, as we could verify
all examples that we could specify.

3.2 Example

Returning to our example from Fig. 2, we’ll illustrate the semantics of our logic ex-
tended with the boolean and integer data field types on this heap structure with the
interpretation of a few representative literals:

– reach(next,head,curr) is interpreted as true because the node pointed to by curr is
reachable from the node pointed to by head following next pointer fields.

– reach(next,head,nil) is interpreted as true because the node nil is reachable from
the node pointed to by head following next pointer fields. The fact that nil is reach-
able from head enforces the acyclicity assumption.

– next(next,curr)= nil is true because the node to which we get by following one
next pointer field from curr is nil.

– data bool( f lag,prev) ↔ true is interpreted as true because the boolean field flag
of the node pointed to by prev is set to true.

– data int(sum,prev)=10 is interpreted as true because the integer field sum of the
node pointed to by prev is set to 10.

2 Here, function exponentiation represents iterative application: for a function g and an element
x in its domain, g0(x) = x, and gn(x) = g(gn−1(x)) for all n ≥ 1.

3 If g is a function, a is an element in g’s domain, and b is an element in g’s codomain, then
update(g,a,b) is defined to be the function λx.(if x = a then b else g(x)).
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– between(next,head,prev,curr) is true because node prev is between head and curr.
– between(next,head,nil,curr) is interpreted as false because node nil is not between

nodes head and curr.

4 Theory Integration into MATHSAT

In this section, we briefly recall some recent results concerning theory combination in
SMT, and we disclose some details about the integration of the theory of unbounded
reachability into MATHSAT.

4.1 Efficient and Flexible Nelson-Oppen in SMT

Many verification tasks require the specification of properties at a level of expressive-
ness that is better captured by a logic that is the result of the combination (or union)
of simpler theories T1 and T2, defined over signatures Σ1 and Σ2, respectively. In many
situations, decision proceduresDec(Ti) for Ti, i = 1,2, are already available to be used.

Nelson and Oppen [37] showed that given two equational theories T1 and T2, it is
possible to derive a procedure Dec(T1 ∪T2) for deciding quantifier-free formulae over
T1 ∪T2, provided that:

– T1 and T2 are signature-disjoint (i.e. Σ1 ∩Σ2 = /0);
– T1 and T2 are stably infinite4.

A theory is stably infinite if for every satisfiable quantifier-free formula φ , there exists
an interpretation satisfying φ whose domain is infinite. Many theories of interest are
stably infinite, including the theory of integers and the theory of unbounded reachability
from Sect. 3.1:

Theorem 1. The theory of unbounded reachability (Sect. 3.1) is stably infinite.

Proof. Let Ψ be a satisfiable quantifier-free formula, and let H = (N,Θ) be a heap
structure satisfying Ψ . We’ll show that one can always construct an infinite heap struc-
ture H ′ = (N′,Θ ′) satisfying Ψ . Fig. 4 gives an example of how this is done. Basically,
adding to the heap structure H an infinite number of nodes that point to themselves (and
not changing the existing nodes) creates an infinite heap structure H ′ satisfying Ψ .

The heap structure H ′ is formally defined as follows. First, we fix an infinite set of
nodes NIn f disjoint from N. Then, we define N′ = N ∪ NIn f , and interpretation Θ ′ as
follows:

Interpretation function Θ ′ interprets each symbol σ ∈ PointerVariables so that

Θ ′(σ) = Θ(σ)

Every pointer function symbol f ∈ PointerFields is interpreted so that

fΘ ′
(τ) =

{
fΘ (τ) if τ ∈ N
τ otherwise

4 This restriction has been relaxed in the recent work by Krstić et al. [25].
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Fig. 4. An example of a heap structure H (top), and a constructed infinite heap structure H ′

(bottom) which satisfies every quantifier-free formula Ψ that is satisfied by H

Since H is a heap structure satisfying Ψ , the formula Ψ cannot syntactically include
any of the nodes in NIn f . Furthermore, for each type of atom, the additional nodes in
NIn f cannot change the truth values of those atoms in Ψ , since the new nodes are dis-
connected from the existing structure, which is unchanged. Therefore, H ′ also satisfies
Ψ , and its domain is infinite.

The Nelson-Oppen combination schema can be summarized as follows (for a more
accurate survey the reader is referred to [32]). The input quantifier-free formula φ
on T1 ∪ T2 is initially purified into an equisatisfiable formula φ1 ∧ φ2 such that φi be-
longs to Ti, for i = 1,2. This can be easily achieved with the introduction of a set of
fresh variables. The procedure is then based on an exhaustive communication between
Dec(T1) and Dec(T2) by means of interface equalities, i.e. equalities between vari-
ables in vars(φ1)∩ vars(φ2). Roughly speaking, the exchanging of interface equalities
is sufficient for Dec(T1) and Dec(T2) to achieve an agreement on a common model,
if such a model exists. This communication has to be implemented around Dec(T1)
and Dec(T2) in order to obtain a correct Dec(T1 ∪T2).

The Nelson-Oppen method is not limited to only two theories. In fact, if T1 and T2 are
stably infinite, their union T1 ∪T2 is stably infinite as well. If we are given a decidable
stably infinite T3 over Σ3 and (Σ1 ∪Σ2)∩Σ3 = /0, than we can apply Nelson-Oppen and
obtain a Dec(T1 ∪T2 ∪T3).

The introduction of a combination framework into an SMT schema can be naively
done by considering Dec(T1 ∪ T2) as a single theory-solver, by straightforwardly
adapting a DPLL-like Bool+Dec(T) schema into a Bool+Dec(T1 ∪T2) setting.

Delayed Theory Combination (DTC) [10,11] is an alternative approach specifically
studied for SMT solvers, based on the observation that it is possible to lift to the boolean
level the communication of interface equalities between the theory-solvers, by exploiting
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the boolean engine on top of them. The new framework, Bool+Dec(T1)+Dec(T2),
can be easily achieved as follows.

Given a purified formula φ1 ∧ φ2, the atom set E = {x1 = x2 | x1,x2 ∈ vars(φ1)∩
vars(φ2)} is first generated. E is nothing but the set of interface equalities that the two
theory-solvers, Dec(T1) and Dec(T2), might need to exchange at any point in time.
Any set of theory-atoms Γ assigned to a truth value by the SAT-solver during the search
is divided into Γ ′

1 = Γ1 ∪ΓE and Γ ′
2 = Γ2 ∪ΓE , where Γi are atoms belonging to Ti, for

i = 1,2, while ΓE is a set of atoms in E . The set Γ ′
i is fed to the corresponding solver

Dec(Ti) to be checked for consistency.
Intuitively, the communication in Dec(T1 ∪T2), required for the correctness of the

Nelson-Oppen procedure, is now emulated by the introduction of interface equalities
that are shared by the two theories. In spite of the (potentially) quadratic number of
new atoms generated in E , it is easily possible to control the model enumeration in the
SAT-solver, as shown in [13], in order to avoid an enlargement of the search space.

The implementation of a Bool+Dec(T1)+Dec(T2) schema presents several ad-
vantages with respect to a standard Bool+Dec(T1 ∪T2):

– There is no need to build a Nelson-Oppen “box” Dec(T1 ∪ T2) around Dec(T1)
and Dec(T2), because the integration is implicitly handled at the boolean level and
not at the solver level.

– Mixed-conflict generation is automatic.
– Disjunction in case of non-convex theories is automatically handled at the boolean

level, while in Nelson-Oppen it must be handled inside Dec(T1 ∪ T2). This re-
sults in a better efficiency, because of the mechanisms of backjumping and learning
implemented in state-of-the-art SAT-solvers.

– The theory-solvers do not need deduction capabilities. In contrast, this is a require-
ment in Nelson-Oppen. This feature greatly simplified the integration, since our
pre-existing decision procedure for the heap logic did not implement deduction.

4.2 Handling Uninterpreted Functions Via Ackermann’s Expansion

Ackermann’s expansion [1] is a technique by means of which it is possible to translate
a quantifier-free formula over T ∪EUF into an equisatisfiable formula φ ′ over T only,
where EUF is the well-known theory of Uninterpreted Functions with Equality.

Since function symbols are uninterpreted, the only requirement for satisfiability is
functional consistency, i.e. the implication (

∧n
i=1 ti = si) → f (t1, . . . ,tn) = f (s1, . . . ,sn)

must hold for every function symbol f of arity n, where ti and si are terms.
In Ackermann’s expansion, in order to fulfill the above condition, every distinct func-

tion application f (t1, . . . ,tn) in φ is replaced with a fresh variable v f (t1,...,tn). For each
function symbol f of arity n, the obtained formula is then augmented with a set of ax-
ioms of the kind (

∧n
i=1 ti = si) → v f (t1,...,tn) = v f (s1,...,sn), for every pair of distinct fresh

variables. It is easy to prove that the resulting formula φ ′ no longer contains any UF
symbol and it is equisatisfiable to the original φ .

The same transformation can be used to remove uninterpreted predicate symbols,
using fresh boolean variables and the logical connective ↔ to equate them in the axiom
instantiations.
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4.3 Theory Integration

We have integrated the unbounded reachability decision procedure from Sect. 3.1 as a
theory-solver Dec(HMP) into MATHSAT, resulting in a framework for the verifica-
tion of HMPs supporting boolean and integer data fields, but potentially also any other
data type already handled by MATHSAT.

The rationale behind our combination is to separate the “heap reachability” part of the
formula from the reasoning about “data”, in order to achieve a modular SMT(HMP∪
T ) decision procedure, where T is the theory for a generic data type. In particular,
in the current implementation, we provide in the input language a binary predicate
data bool(d,h), and a binary function data int(d,h) that can be used to select a boolean
or an integer stored in d ∈ DataField of h ∈ NodeTerm. Notice that both constructs are
uninterpreted, and they merely represent a modular solution to bridge the data and the
heap part.

For boolean data, we can exploit the SAT-solver in MATHSAT to decide subfor-
mulae expressed on boolean data, by the Ackermann’s expansion of the data bool(., .)
predicate. The interaction between the integer solver Dec(LIA) (or in general, the non-
boolean) reasoning and Dec(HMP) can be dealt with in two different ways, either us-
ing aBool+Dec(HMP)+Dec(LIA)+Dec(EUF) schema, or aBool+Dec(HMP)
+Dec(LIA) schema, after the Ackermannization of data int(., .) symbols.

Update operations on data update dfield(d, t,v,d′) may be eagerly replaced with a
set of axioms {d′(t) ≈ v}∪{s = t → d′(s) ≈ d(s) | s ∈ NT}, where ≈ is the equality =
for integer data and ↔ for boolean data, and NT is the set of NodeTerms that appear in
the formula. This solution is far from being optimal, but it worked well in practice for
our experiments, where only a few updates were required.
Dec(HMP), as any other theory-solver, also benefits of the EUF-layer of MATH-

SAT. Our experiments show that in many cases this layer is sufficient to determine the
unsatisfiability of a query.

Example 1. We are given the following quantifier-free unsatisfiable SMT(HMP∪LIA)
formula φ :

(data int(d,h1)+data int(d,h2) = 1)∧ (h1 = h2)

Using Delayed Theory Combination: We first purify φ into φ ′ with the introduction of
two new fresh variables v1 and v2, obtaining φ ′:

(v1 = data int(d,h1))∧ (v2 = data int(d,h2))∧ (v1 + v2 = 1)∧ (h1 = h2).

The interface equality v1 = v2 is also generated. The atoms are assigned to the theories
as follows:

HMP {h1 = h2}
LIA {v1 + v2 = 1,v1 = v2}
EUF {v1 = data int(d,h1),v2 = data int(d,h2),h1 = h2,v1 = v2}.

The SAT-solver assigns every atom in φ ′ to true. The contradiction is derived because
Dec(LIA) immediately implies v1 = v2, which falsifies the functional consistency in
Dec(EUF).
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Using Ackermann’s Expansion: The original formula is expanded into φ ′:

(h1 = h2)∧ (v1 + v2 = 1)∧ (h1 = h2 → v1 = v2).

Again, Dec(LIA) implies v1 = v2 that contradicts h1 = h2 ∧ (h1 = h2 → v1 = v2).

5 Experimental Results

We ran MATHSAT extended with the unbounded reachability theory on a number of
HMP verification queries. The queries are from a simple predicate abstraction [19]-
based model checker that we are using to verify HMPs. This tool is a straightfor-
ward implementation of the software model checking algorithm with predicate abstrac-
tion [4], and is described in previous work [9,39]. The experiments were executed on a
2.6 GHz Pentium 4 machine.

The first question is how much overhead the greater complexity of an integrated
SMT solver imposes. Table 1 gives a performance comparison with the previous re-
sults from [39], using the standalone decision procedure for the unbounded reachability
logic. The examples have either no data fields or only boolean data fields, so the pre-
vious work could handle them. The safety properties we checked (when applicable) of
the HMPs are:

– no leaks (NL) – all nodes reachable from the head of the list at the beginning of the
program are also reachable at the end of the program.

– insertion (IN) – a distinguished node that is to be inserted into a list is actually
reachable from the head of the list, i.e. the insertion “worked”.

– acyclic (AC) – the final list is acyclic, i.e. nil is reachable from the head of the list.
– cyclic (CY) – list is a cyclic singly-linked list, i.e. the head of the list is reachable

from its successor.
– doubly-linked (DL) – the final list is a doubly-linked list.
– cyclic doubly-linked (CD) – the final list is a cyclic doubly-linked list.
– sorted (SO) – list is a sorted linked list, i.e. each node’s data field is less than or

equal to its successor’s.
– data (DT) – data fields of selected (possibly all) nodes in a list are set to a value.
– remove elements (RE) – for examples that remove node(s), this states that the

node(s) was (were) actually removed.

The comparison shows that the integration isn’t a serious overhead. Although MATH-
SAT, with the integrated unbounded reachability theory, is a more heavyweight tool
than the pure unbounded reachability decision procedure we were using previously, the
performance penalty is reasonable.

The next question is whether the integration allows effectively verifying example
HMPs that could not be handled previously, such as the example in Fig. 1 from Sect. 2.

Without the integration into an SMT solver, we handled integer data fields by bit-
blasting them into a fixed number of boolean data fields that represented integers of a
certain bit width. We used 1-bit integers in most examples (except for SEARCH-AND-
SET where we used 2-bit integers) because the number of states (and therefore the
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Table 1. Performance Comparison Against Previous Work [39]. The column “property” specifies
the verified property; “preds” is the number of predicates required for verification; “DP calls” is
the number of decision procedure queries; “old time” is the total execution time from [39]; “new
time” is the total execution time using MATHSAT. Our technical report [38] provides pseudocode
and lists the required predicates for these examples. Some of the examples have been taken from
related work, while the last three are from Linux kernel list container.

program property preds DP calls old time (s) new time (s)

LIST-REVERSE NL 8 184 0.2 0.2
LIST-ADD NL∧AC∧IN 8 66 0.1 0.1

ND-INSERT NL∧AC∧IN 13 259 0.5 0.6
ND-REMOVE NL∧AC∧RE 12 386 0.9 1.2

ZIP [23] NL∧AC 22 9153 17.3 27.3
SORTED-ZIP NL∧AC∧SO∧IN 22 14251 22.8 46.2

SORTED-INSERT [27] NL∧AC∧SO∧IN 20 5990 13.8 25.3
BUBBLE-SORT [3] NL∧AC 18 3444 11.1 16.5
BUBBLE-SORT [3] NL∧AC∧SO 24 31446 114.9 209.0

REMOVE-ELEMENTS NL∧CY∧RE 17 3124 8.8 14.9
REMOVE-SEGMENT [31] CY 15 944 2.2 10.0

SEARCH-AND-SET NL∧CY∧DT 16 4892 5.3 10.8
SET-UNION [36] NL∧CY∧DT∧IN 21 374 1.4 2.2
CREATE-INSERT NL∧AC∧IN 24 3020 14.8 15.6

CREATE-INSERT-DATA NL∧AC∧IN 27 8710 39.7 47.3
CREATE-FREE NL∧AC∧IN∧RE 31 52079 457.4 489.2

INIT-LIST NL∧AC∧DT 9 81 0.1 0.1
INIT-LIST-VAR NL∧AC∧DT 11 244 0.2 0.4
INIT-CYCLIC NL∧CY∧DT 11 200 0.2 0.4

SORTED-INSERT-DNODES NL∧AC∧SO∧IN 25 7918 77.9 108.1
REMOVE-DOUBLY NL∧DL∧RE 34 3238 24.3 33.0

REMOVE-CYCLIC-DOUBLY [27] NL∧CD∧RE 27 1695 15.6 15.7
LINUX-LIST-ADD NL∧CD∧IN 25 1240 6.4 8.9

LINUX-LIST-ADD-TAIL NL∧CD∧IN 27 1638 7.3 10.0
LINUX-LIST-DEL NL∧CD∧RE 29 2057 24.7 25.2

number of decision procedure queries) grows exponentially with integer bit width. Fur-
thermore, for HMP examples that use addition and multiplication, we would also have
had to implement n-bit integer addition and multiplication, which would add even more
complexity to the verification problem. We didn’t even attempt to verify such examples
in our previous work.

With the integration into MATHSAT, a rich set of other theories is available to the
verifier. Table 2 shows performance using MATHSAT on the HMP examples that con-
tain (unbounded) integer data fields. In the verification of these examples, we are using a
combination of multiple theories, including unbounded reachability, uninterpreted func-
tions, and linear arithmetic. Some examples are the same as before, but with integers
expanded from 1 or 2 bits to true integers. There is some slow-down for verification
with unbounded integers, but the runtimes are quite comparable to the corresponding
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Table 2. Performance on Examples with Integer Data Fields. These examples could not be
verified without the SMT integration. Some examples are the same as in Table 1, except with
integer data fields; other examples, marked with *, are completely new. Pseudocode and the re-
quired predicates for these examples can be downloaded from http://www.cs.ubc.ca/∼
zrakamar/software/hmp-examples.tar.gz.

program property preds DP calls time (s)

SORTED-ZIP NL∧AC∧SO∧IN 22 5758 53.9
SORTED-INSERT NL∧AC∧SO∧IN 20 2972 40.4
BUBBLE-SORT NL∧AC 17 2348 16.9
BUBBLE-SORT NL∧AC∧SO 23 17427 371.3

REMOVE-ELEMENTS NL∧CY∧RE 17 3124 16.4
REMOVE-SEGMENT CY 15 944 10.3
SEARCH-AND-SET NL∧CY∧DT 16 5120 13.7

SET-UNION NL∧CY∧DT∧IN 22 766 5.8
CREATE-INSERT-DATA NL∧AC∧IN 27 8710 53.6

INIT-LIST NL∧AC∧DT 9 81 0.1
INIT-LIST-VAR NL∧AC∧DT 11 244 0.4
INIT-CYCLIC NL∧CY∧DT 11 200 0.4

SORTED-INSERT-DNODES NL∧AC∧SO∧IN 25 3636 175.7
LAZY-SIMPLE [7]* AC∧DT 21 9290 33.4

LAZY-SIMPLE-BACKW [7]* AC∧DT 15 1127 2.2
INIT-INCREMENT* AC∧DT 11 354 1.6

INIT-ADD* AC∧DT 11 354 1.8
INIT-ADD-FLAG* AC∧DT 12 499 1.4

INIT-MULT* AC∧DT 11 354 1.8

versions in Table 1. Several additional examples use arithmetic operators on the un-
bounded integers and have no analogue in Table 1. Overall, we see that we can effi-
ciently verify many examples using the combined theories.

6 Conclusions and Future Work

The paper describes integration of the unbounded reachability theory described in our
previous work into MATHSAT, a general purpose SMT solver. Integrating the theory
into MATHSAT — easily accomplished through its theory combination framework —
provides access to the rich set of theories it supports. Using a combination of different
theories of the extended MATHSAT, we verified HMP examples we couldn’t handle
before. Comparing running times to our previous work shows that the much greater ex-
pressiveness comes with only a minor performance penalty. We believe this integration
of an HMP-verification logic into a general SMT solver will be broadly applicable to
many software verification tools, allowing them to be easily extended to handle both
heap-related and other software verification properties.

The primary direction for future work is to improve our predicate abstraction frame-
work to make better use of the capabilities of the combined SMT prover. Our simple
predicate abstraction engine eagerly enumerates a huge number of small queries to the
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SMT solver and is therefore not benefiting from the solver’s powerful search algorithm.
Using techniques similar to the AllSAT approach to predicate abstraction [26] should
substantially improve performance.
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