

Lecture Notes in Computer Science 4762
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Kedar S. Namjoshi Tomohiro Yoneda
Teruo Higashino Yoshio Okamura (Eds.)

AutomatedTechnology
for Verification
and Analysis

5th International Symposium, ATVA 2007
Tokyo, Japan, October 22-25, 2007
Proceedings

13

Volume Editors

Kedar S. Namjoshi
Alcatel-Lucent
Bell Labs
600 Mountain Avenue, Murray Hill, NJ 07974, USA
E-mail: kedar@research.bell-labs.com

Tomohiro Yoneda
National Institute of Informatics
Information Systems Architecture Research Division
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: yoneda@nii.ac.jp

Teruo Higashino
Osaka University
Department of Information Networking
Graduate School of Information Science and Technology
Suita, Osaka 565-0871, Japan
E-mail: higashino@ist.osaka-u.ac.jp

Yoshio Okamura
Semiconductor Technology Academic Research Center (STARC)
17-2, Shin Yokohama 3-chome, Kohoku-ku, Yokohama 222-0033, Japan
E-mail: okamura.yoshio@starc.or.jp

Library of Congress Control Number: 2007937234

CR Subject Classification (1998): B.1.2, B.5.2, B.6, B.7.2, C.2, C.3, D.2, D.3, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-75595-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75595-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12173525 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at ATVA 2007, the 5th International
Symposium on Automated Technology for Verification and Analysis, which was
held on October 22–25, 2007 at the National Center of Sciences in Tokyo, Japan.

The purpose of ATVA is to promote research on theoretical and practical
aspects of automated analysis, verification and synthesis in East Asia by provid-
ing a forum for interaction between the regional and the international research
communities and industry in the field. The first three ATVA symposia were held
in 2003, 2004 and 2005 in Taipei, and ATVA 2006 was held in Beijing.

The program was selected from 88 submitted papers, with 25 countries repre-
sented among the authors. Of these submissions, 29 regular papers and 7 short
papers were selected for inclusion in the program. In addition, the program
included keynote talks and tutorials by Martin Abadi (University of California,
Santa Cruz and Microsoft Research), Ken McMillan (Cadence Berkeley Labs),
and Moshe Vardi (Rice University), and an invited talk by Atsushi Hasegawa
(Renesas Technology). A workshop on Omega-Automata (OMEGA 2007) was
organized in connection with the conference.

ATVA 2007 was sponsored by the National Institute of Informatics, the
Kayamori Foundation of Information Science Advancement, the Inoue Foun-
dation for Science, and the Telecommunications Advancement Foundation. We
are grateful for their support.

We would like to thank the program committee and the reviewers for their
hard work and dedication in putting together this program. We would like to
thank the Steering Committee for their considerable help with the organization
of the conference. We also thank Michihiro Koibuchi for his help with the local
arrangements.

October 2007 Kedar Namjoshi
Tomohiro Yoneda
Teruo Higashino
Yoshio Okamura

Conference Organization

General Chairs

Teruo Higashino Osaka University, Japan
Yoshio Okamura STARC, Japan

Program Chairs

Kedar S. Namjoshi Bell Labs, USA
Tomohiro Yoneda National Institute of Informatics, Japan

Program Committee

Rajeev Alur University of Pennsylvania
Christel Baier University of Dresden
Jonathan Billington University of South Australia
Sung-Deok Cha Korea Advanced Inst. of Sci. and Techn.
Ching-Tsun Chou Intel
Jin Song Dong National University of Singapore
E. Allen Emerson University of Texas at Austin
Masahiro Fujita University of Tokyo
Susanne Graf VERIMAG
Wolfgang Grieskamp Microsoft Research
Aarti Gupta NEC Labs America
Teruo Higashino Osaka University
Kiyoharu Hamaguchi Osaka University
Moonzoo Kim KAIST
Orna Kupferman Hebrew University
Robert P. Kurshan Cadence
Insup Lee University of Pennsylvania
Xuandong Li Nanjing University
Shaoying Liu Hosei University
Zhiming Liu IIST/United Nations University
Mila E. Majster-Cederbaum University of Mannheim
Shin Nakajima National Institute of Informatics
Akio Nakata Hiroshima City University
Kedar S. Namjoshi Bell Labs
Mizuhito Ogawa JAIST
Olaf Owe University of Oslo
Doron A. Peled University of Warwick and Bar Ilan University
Mike Reed UNU-IIST, Macao

VIII Organization

Hiroyuki Seki NAIST
Xiaoyu Song Portland State University
Yih-Kuen Tsay National Taiwan University
Irek Ulidowski University of Leicester
Bow-Yaw Wang Academia Sinica
Farn Wang National Taiwan University
Yi Wang Uppsala University
Baowen Xu Southeast University of China
Hsu-Chun Yen National Taiwan University
Tomohiro Yoneda National Institiute of Informatics
Shoji Yuen Nagoya University
Wenhui Zhang Chinese Academy of Sciences
Lenore Zuck University of Illinois at Chicago

Steering Committee

E. Allen Emerson University of Texas at Austin, USA
Oscar H. Ibarra University of California, Santa Barbara, USA
Insup Lee University of Pennsylvania, USA
Doron A. Peled University of Warwick, UK and

Bar Ilan University, Israel
Farn Wang National Taiwan University, Taiwan
Hsu-Chun Yen National Taiwan University, Taiwan

Referees

Benjamin Aminof
Madhukar Anand
David Arney
Colin Atkinson
Louise Avila
Syed Mahfuzul Aziz
Noomene Ben Henda
Domagoj Babic
Hanene Ben-Abdallah
Armin Biere
Lei Bu
Lin-Zan Cai
Wen-Chin Chan
Yu-Fang Chen
Chunqing Chen
Zhenbang Chen
Chang-beom Choi
Jyotirmoy Deshmukh
Nikhil Dinesh

Johan Dovland
Arvind Easwaran
Sebastian Fischmeister
Felix Freiling
Carsten Fritz
Guy Gallasch
Malay Ganai
Jim Grundy
Yi Hong
Reiko Heckel
Monika Heiner
Nao Hirokawa
Geng-Dian Huang
John H̊akansson
Keigo Imai
Franjo Ivancic
Einar Broch Johnsen
Vineet Kahlon
Yuichi Kaji

Yunho Kim
Dmitry Korchemny
Piotr Kosiuczenko
Pavel Krcal
Keiichirou Kusakari
Marcel Kyas
Yuan Fang Li
Guoqiang Li
Nimrod Lilith
Xinxin Liu
Lin Liu
Chi-Jian Luo
Yoad Lustig
Michael J. May
Christoph Minnameier
Van Tang Nguyen
Peter Csaba Olveczky
Geguang Pu
Zvonimir Rakamaric

Organization IX

Roopsha Samanta
Gerardo Schneider
Nishant Sinha
Martin Steffen
Volker Stolz
Ryo Suetsugu
Jun Sun

Yoshiaki Takata
Murali Talupur
Kai-Fu Tang
Ming-Hsien Tsai
Emilio Tuosto
Kazunori Ueda
Thomas Wahl

Chao Wang
Verena Wolf
Rong-Shiun Wu
Cong Yuan
Naijun Zhan
Miaomiao Zhang
Jianhua Zhao

Table of Contents

Invited Talks

Policies and Proofs for Code Auditing . 1
Nathan Whitehead, Jordan Johnson, and Mart́ın Abadi

Recent Trend in Industry and Expectation to DA Research 15
Atsushi Hasegawa

Toward Property-Driven Abstraction for Heap Manipulating
Programs . 17

K.L. McMillan

Branching vs. Linear Time: Semantical Perspective 19
Sumit Nain and Moshe Y. Vardi

Regular Papers

Mind the Shapes: Abstraction Refinement Via Topology Invariants 35
Jörg Bauer, Tobe Toben, and Bernd Westphal

Complete SAT-Based Model Checking for Context-Free Processes 51
Geng-Dian Huang and Bow-Yaw Wang

Bounded Model Checking of Analog and Mixed-Signal Circuits Using
an SMT Solver . 66

David Walter, Scott Little, and Chris Myers

Model Checking Contracts – A Case Study . 82
Gordon Pace, Cristian Prisacariu, and Gerardo Schneider

On the Efficient Computation of the Minimal Coverability Set for Petri
Nets . 98

Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin

Analog/Mixed-Signal Circuit Verification Using Models Generated
from Simulation Traces . 114

Scott Little, David Walter, Kevin Jones, and Chris Myers

Automatic Merge-Point Detection for Sequential Equivalence Checking
of System-Level and RTL Descriptions . 129

Bijan Alizadeh and Masahiro Fujita

Proving Termination of Tree Manipulating Programs 145
Peter Habermehl, Radu Iosif, Adam Rogalewicz, and Tomáš Vojnar

XII Table of Contents

Symbolic Fault Tree Analysis for Reactive Systems 162
Marco Bozzano, Alessandro Cimatti, and Francesco Tapparo

Computing Game Values for Crash Games . 177
Thomas Gawlitza and Helmut Seidl

Timed Control with Observation Based and Stuttering Invariant
Strategies . 192

Franck Cassez, Alexandre David, Kim G. Larsen, Didier Lime, and
Jean-François Raskin

Deciding Simulations on Probabilistic Automata . 207
Lijun Zhang and Holger Hermanns

Mechanizing the Powerset Construction for Restricted Classes of
ω-Automata . 223

Christian Dax, Jochen Eisinger, and Felix Klaedtke

Verifying Heap-Manipulating Programs in an SMT Framework 237
Zvonimir Rakamarić, Roberto Bruttomesso, Alan J. Hu, and
Alessandro Cimatti

A Generic Constructive Solution for Concurrent Games with Expressive
Constraints on Strategies . 253

Sophie Pinchinat

Distributed Synthesis for Alternating-Time Logics . 268
Sven Schewe and Bernd Finkbeiner

Timeout and Calendar Based Finite State Modeling and Verification of
Real-Time Systems . 284

Indranil Saha, Janardan Misra, and Suman Roy

Efficient Approximate Verification of Promela Models Via Symmetry
Markers . 300

Dragan Bošnački, Alastair F. Donaldson, Michael Leuschel, and
Thierry Massart

Latticed Simulation Relations and Games . 316
Orna Kupferman and Yoad Lustig

Providing Evidence of Likely Being on Time: Counterexample
Generation for CTMC Model Checking . 331

Tingting Han and Joost-Pieter Katoen

Assertion-Based Proof Checking of Chang-Roberts Leader Election in
PVS . 347

Judi Romijn, Wieger Wesselink, and Arjan Mooij

Table of Contents XIII

Continuous Petri Nets: Expressive Power and Decidability Issues 362
Laura Recalde, Serge Haddad, and Manuel Silva

Quantifying the Discord: Order Discrepancies in Message Sequence
Charts . 378

Edith Elkind, Blaise Genest, Doron Peled, and Paola Spoletini

A Formal Methodology to Test Complex Heterogeneous Systems 394
Ismael Rodŕıguez and Manuel Núñez

A New Approach to Bounded Model Checking for Branching Time
Logics . 410

Rotem Oshman and Orna Grumberg

Exact State Set Representations in the Verification of Linear Hybrid
Systems with Large Discrete State Space . 425

Werner Damm, Stefan Disch, Hardi Hungar, Swen Jacobs,
Jun Pang, Florian Pigorsch, Christoph Scholl, Uwe Waldmann, and
Boris Wirtz

A Compositional Semantics for Dynamic Fault Trees in Terms of
Interactive Markov Chains . 441

Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga

3-Valued Circuit SAT for STE with Automatic Refinement 457
Orna Grumberg, Assaf Schuster, and Avi Yadgar

Bounded Synthesis . 474
Sven Schewe and Bernd Finkbeiner

Short Papers

Formal Modeling and Verification of High-Availability Protocol for
Network Security Appliances . 489

Moonzoo Kim

A Brief Introduction to THOTL . 501
Mercedes G. Merayo, Manuel Núñez, and Ismael Rodŕıguez

On-the-Fly Model Checking of Fair Non-repudiation Protocols 511
Guoqiang Li and Mizuhito Ogawa

Model Checking Bounded Prioritized Time Petri Nets 523
Bernard Berthomieu, Florent Peres, and François Vernadat

Using Patterns and Composite Propositions to Automate the
Generation of LTL Specifications . 533

Salamah Salamah, Ann Q. Gates, Vladik Kreinovich, and
Steve Roach

XIV Table of Contents

Pruning State Spaces with Extended Beam Search 543
Mohammad Torabi Dashti and Anton J. Wijs

Using Counterexample Analysis to Minimize the Number of Predicates
for Predicate Abstraction . 553

Thanyapat Sakunkonchak, Satoshi Komatsu, and Masahiro Fujita

Author Index . 565

Policies and Proofs for Code Auditing

Nathan Whitehead1, Jordan Johnson1, and Mart́ın Abadi1,2

1 University of California, Santa Cruz
2 Microsoft Research

Abstract. Both proofs and trust relations play a role in security deci-
sions, in particular in determining whether to execute a piece of code.
We have developed a language, called BCIC, for policies that combine
proofs and trusted assertions about code. In this paper, using BCIC, we
suggest an approach to code auditing that bases auditing decisions on
logical policies and tools.

1 Introduction

Deciding to execute a piece of software can have substantial security implica-
tions. Accordingly, a variety of criteria and techniques have been proposed and
deployed for making such decisions. These include the use of digital signatures (as
in ActiveX [12]) and of code analysis (as in typed low-level languages [5, 9, 10]).
The digital signatures can be the basis of practical policies that reflect trust
relations—for instance, the trust in certain software authors or distributors.
The code analysis can lead to proofs, and thereby to proof-carrying code [11].
Unfortunately, neither trust relations nor proofs are typically sufficient on their
own. Trust can be wrong, and code analysis is seldom comprehensive.

We are developing a system for defining and evaluating policies that combine
proofs and trusted assertions about code [18, 19, 20]. The core of the system
is a logical query language, called BCIC. BCIC is a combination of Binder [4],
a logic-programming language for security policies in distributed systems, with
Coq’s Calculus of Inductive Constructions (CIC) [3], a general-purpose proof
framework.

Whereas the focus of most previous work (including our own) is on the de-
cision to execute pieces of code, similar considerations arise in other situations.
For instance, from a security perspective, installing a piece of code can be much
like executing it. Further upstream, auditing code is also critical to security. Au-
diting can complement other techniques for assurance, in the course of software
production or at various times before execution. Although humans perform the
auditing, they are often guided by policies (e.g., what aspects of the code should
be audited) and sometime supported by tools (e.g., for focusing attention on
questionable parts of the code).

In this paper, using BCIC, we suggest an approach to code auditing that
bases auditing decisions on logical policies and tools. Specifically, we suggest
that policies for auditing may be expressed in BCIC and evaluated by logical
means. Thus, this approach leverages trust relations and proofs, but it also allows

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 1–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 N. Whitehead, J. Johnson, and M. Abadi

auditing to complement them. We recognize that this approach is still theoretical
and probably incomplete. Nevertheless, it emphasizes the possibility of looking
at techniques for verification and analysis in the context of policy-driven systems,
and the attractiveness of doing so in a logical setting.

We present two small examples. The first example concerns operating system
calls from an application extension language. With a BCIC policy, every oper-
ating system call must be authorized by an audit. A policy rule can allow entire
classes of calls without separate digital signatures from an authority. In the sec-
ond example, we consider an information-flow type system [14], specifically a
type system that tracks trust (much like Perl’s taint mode [6], but statically)
due to Ørbæk and Palsberg [13]. The type system includes a form of declassi-
fication, in which expressions can be coerced to be trusted (that is, untainted).
If any program could use declassification indiscriminately, then the type sys-
tem would provide no benefit. With a BCIC policy, a trusted authority must
authorize each declassification. In both examples, security decisions can rely on
nuanced, fine-grained combinations of reason and authority.

We treat these examples in Sections 2 and 3, respectively. We consider imple-
mentation details in Section 4. We conclude in Section 5.

2 Example: Auditing Function Calls

In this example we consider the calling behavior of programs in a managed
environment of libraries. A base application may allow extensions that provide
additional functionality not only to the user but also to other extensions. The
extensions may come from many different sources, and accordingly they may
be trusted to varying extents. By constraining calls, the security policy can
selectively allow different functionality to different extensions.

2.1 Language

For simplicity, we study an interpreted extension language. Specifically, we use
an untyped λ-calculus with a special call construct that represents operating
system calls and calls to other libraries. All calls take exactly one argument,
which they may ignore. In order to allow primitive data types, we also include a
representation for data constructors (constr0, constr1, and constr2, for con-
structors that take zero, one, and two arguments respectively). These construc-
tors are enough to handle all the data types that appear in our implementation,
including natural numbers, pairs, and lists. Destructors have no special syntax,
but are included among the calls.

In Coq notation [2, 3, 16], the syntax of the language is:

Inductive exp : Set :=
| var : nat -> exp
| abs : exp -> exp
| app : exp -> exp -> exp

Policies and Proofs for Code Auditing 3

| call : funcname -> exp -> exp
| constr0 : constrname -> exp
| constr1 : constrname -> exp -> exp
| constr2 : constrname -> exp -> exp -> exp.

A detailed knowledge of Coq is not required for understanding this and other
definitions in this paper. This definition introduces a class of expressions, induc-
tively by cases with a type for each case; expressions rely on De Bruijn notation,
so variables are numbered and binding occurrences of variables are unnecessary.
Similarly, other definitions introduce other classes of expressions and proposi-
tions, and some parameters for them.

A policy can decide which calls any piece of code may execute. The policy
can be expressed in terms of a parameter audit maycall.

Parameter audit_maycall : exp -> funcname -> Prop.

According to this type, every audit requirement mentions the entire program
exp that is the context of the audit. Mentioning a subexpression in isolation
would not always be satisfactory, and it may be dangerous, as the effects of
a subexpression depend on context. The audit requirement also mentions the
name of the function being called. We omit any restrictions on the arguments to
the function, in order to make static reasoning easier; we assume that the callee
does its own checking of arguments. (Section 3 says more on going further with
static analysis.)

The predicate audited calls indicates that a piece of code has permission to
make all the calls that it could make. This predicate is defined inductively by:

Inductive audited_calls : exp -> exp -> Prop :=
| audited_calls_var :
forall e n,
audited_calls e (var n)

| audited_calls_app :
forall e e1 e2,
audited_calls e e1 ->
audited_calls e e2 ->
audited_calls e (app e1 e2)

| audited_calls_abs :
forall e e1,
audited_calls e e1 ->
audited_calls e (abs e1)

| audited_calls_call :
forall f e e1,
audited_calls e e1 ->
audit_maycall e f ->
audited_calls e (call f e1)

4 N. Whitehead, J. Johnson, and M. Abadi

| audited_calls_constr0 :
forall e cn,
audited_calls e (constr0 cn)

| audited_calls_constr1 :
forall e cn e1,
audited_calls e e1 ->
audited_calls e (constr1 cn e1)

| audited_calls_constr2 :
forall e cn e1 e2,
audited_calls e e1 ->
audited_calls e e2 ->
audited_calls e (constr2 cn e1 e2).

Crucially, the case of audited calls call includes an audit maycall require-
ment. Every call statement requires an audit. A code producer may construct a
proof that, given the right audits, the code satisfies the predicate audited calls.

2.2 Policy

Audit statements do not have proofs. They are provided by authorities and
trusted to be true through BCIC’s policies. The policies employ the special
predicate sat in order to connect Coq statements and assumptions with Binder
rules. Basically, sat(F) will be derivable in BCIC when Coq formula F has a
proof that has been imported into the local context.

The policy writer can express trust in statements that have no proof using a
new believe predicate, and rules such as:

believe(F) :- A says believe(F), trusted(A).

This rule expresses that, when a trusted authority says to believe something, the
entity that evaluates the policy (in other words, the reference monitor) believes
it. In this rule, as in Binder, we use logic-programming constructs plus the special
construct says [1, 8] for representing the statements of principals.

In order to allow reasoning on beliefs, some additional rules are useful:

believe(F) :- sat(F).
believe(Q) :- believe(P), believe(<~P -> ~Q>).

Here, the notation <term> includes a CIC term within the policy. The notation ~P
within an included CIC term indicates a free variable that is bound in the pol-
icy rule. With these rules, all formulas that have proofs are believed, and belief
is closed under modus ponens. (A generalization of the second rule to dependent
types, of which implication is a special case, might be attractive but is not needed
for our examples.)

Using these constructs and rules, a complete policy of a code consumer may
say that a program is allowed to run if it has been properly audited. The policy

Policies and Proofs for Code Auditing 5

can specify which principals are trusted for the auditing. In addition, the policy
may collect calls into groups, thus authorizing sets of calls with a single statement
from a trusted authority. The complete policy may therefore look as follows:

trusted(alice).
trusted(B) :- A says trusted(B), trusted(A).

believe(F) :- sat(F).
believe(Q) :- believe(P), believe(<~P -> ~Q>).
believe(F) :- A says believe(F), trusted(A).

believe(<audit_maycall ~P ~F>) :-
A says believe(<audit_maycall ~P ~F>), trusted(A).

classify(setuid, dangerous).
classify(setgid, dangerous).
classify(sbrk, userlowlevel).
classify(printf, io).
classify(sprintf, dangerous).

believe(<audit_maycall ~P ~F>) :-
classify(F, C), A says allowgroup(P, C), trusted(A).

mayrun(P) :- believe(<audited_calls ~P ~P>).

Many variants are of course possible. In particular, a policy may let the audit-
ing requirements depend on CIC proofs about intrinsic properties of the code,
with clauses of the form believe(<audit maycall ...>) :- sat(...). Fur-
thermore, a policy may concern not only the decision to run a program but also
any requirements for checks during execution.

2.3 Correctness

This example is simple enough that not too much theory is needed, but there
are some subtleties (in part because functions can be higher-order, and recursion
is possible). The main theorem about our analysis says that, if a piece of code
passes the analysis and is executed, every actual call will have been audited (but
it does not say anything about the appropriateness of particular BCIC policies
such as that of Section 2.2). Proving this theorem requires defining the opera-
tional semantics of the language in such a way that a history of calls is kept.
We define a state as a pair that consists of a list of calls and an expression,
then define the single-step reduction relation S → S′ in the usual way. The only
nonstandard rule is for calls: (l, call f v) → (f :: l, O(f, v)), where we let the

6 N. Whitehead, J. Johnson, and M. Abadi

expression O(f, v) represent the return value of calling function f with value v.
We assume that the returned values do not contain calls themselves. We obtain:

Theorem 1. For all programs e, if audited calls e e is true and ([], e) →∗

(l, e′), then audit maycall e f is true for all function names f in l.

The proof relies on a lemma that says if a function name f appears in l then f
appears in the program e. The proof of the lemma is by induction on reductions,
then by case analysis of all the possible reductions. The substitutions that arise
from β reductions constitute the only difficulty. The proof is in Coq.

3 Example: Trust in the λ-Calculus

Ørbæk and Palsberg define a simple type system for a λ-calculus with trust
annotations [13]. In this system, one may for instance describe applets for a
web server; the type system can help protect the applets from malicious inputs
and the web server from malicious applets. The language includes a construct
trust for untainting, thus supporting a form of declassification. (A dual form of
declassification is turning secret data into public data.) In this example we study
how to impose auditing requirements on declassifications. We started to consider
this example in our work on BLF, a preliminary version of BCIC [20,Appendix
B]; here we develop it further in BCIC.

3.1 Language

The type system allows a small set of built-in types and function types; in
addition, types include the annotations tr or dis, which indicate trust and
distrust, respectively. Data from unknown outside parties, annotated with dis,
can be treated with the proper suspicion. For instance, intdis is the type of
distrusted integers, while (intdis → inttr)tr is the type of trusted functions
that take distrusted integer inputs and return trusted integer results.

Figure 1 defines the types, annotations, and relations between types. Types
are defined as bare type, which become annotated type when annotated by
tr or dis. Subtyping is defined straightforwardly for both bare and annotated
types. Auxiliary functions trust lte and join represent the partial order of
the trust annotations and give the greatest lower bound of two trust levels,
respectively.

Expressions in the language are similar to those of λ<:, the simply typed
lambda calculus with subtyping, with the addition of trust, distrust, and
check expressions. Each trust is tagged with an identifier so it can be referenced
by an auditor. We made typecasts explicit in both origin and destination types
for simplicity in the typechecker. We also included int and bool as built-in
types. Figure 2 shows the definition of expressions and typechecking. As usual,
typechecking is done with respect to typing assumptions in a context.

Policies and Proofs for Code Auditing 7

Inductive trust_type : Set :=
| tr : trust_type
| dis : trust_type.

Inductive bare_type : Set :=
| usertype : nat -> bare_type
| arrow : annotated_type -> annotated_type -> bare_type

with annotated_type : Set :=
| annote : bare_type -> trust_type -> annotated_type.

Inductive trust_lte : trust_type -> trust_type -> Prop :=
| trust_lte_refl : forall (T : trust_type), trust_lte T T
| trust_lte_trdis : trust_lte tr dis.

Inductive bare_lte : bare_type -> bare_type -> Prop :=
| bare_lte_refl :
forall (T : bare_type), bare_lte T T

| bare_lte_arrow :
forall (X Y A B : annotated_type),

ann_lte Y B -> ann_lte A X ->
bare_lte (arrow X Y) (arrow A B)

with ann_lte : annotated_type -> annotated_type -> Prop :=
| ann_lte_refl :
forall (T : annotated_type), ann_lte T T

| ann_lte_annote :
forall (A B : bare_type)(U V : trust_type),

bare_lte A B -> trust_lte U V ->
ann_lte (annote A U) (annote B V).

Definition join (U V : trust_type) : trust_type :=
match U with

| tr => V
| dis => dis

end.

Fig. 1. Types and relations between types

3.2 Policy

By formalizing the type system in Coq, we can write BCIC security policies
that rely on type safety according to this type system. A simple example is the
following policy:

mayrun(C, P) :- sat(<has_type ~C ~P (annote (usertype 0) tr)>)

8 N. Whitehead, J. Johnson, and M. Abadi

Definition trustid : Set := nat.

Inductive expr : Set :=
| const_int : nat -> expr
| const_bool : bool -> expr
| var : nat -> expr
| abs : annotated_type -> expr -> expr
| app : expr -> expr -> expr
| trust : trustid -> expr -> expr
| distrust : expr -> expr
| check : expr -> expr
| cast : expr -> annotated_type -> annotated_type -> expr.

Inductive context : Set :=
| nilctx : context
| cons : annotated_type -> context -> context.

Inductive has_type : context -> expr -> annotated_type -> Prop :=
| type_int : forall n C,

has_type C (const_int n) (annote (usertype 0) tr)
| type_bool : forall p C,

has_type C (const_bool p) (annote (usertype 1) tr)
| type_varz : forall T C,

has_type (cons T C) (var 0) T
| type_varn : forall n T T2 C,

has_type C (var n) T ->
has_type (cons T2 C) (var (S n)) T

| type_abs : forall C E T T2,
has_type (cons T C) E T2 ->
has_type C (abs T E) (annote (arrow T T2) tr)

| type_app : forall C E1 E2 T1 T2 U V,
has_type C E1 (annote (arrow T1 (annote T2 U)) V) ->
has_type C E2 T1 ->
has_type C (app E1 E2) (annote T2 (join U V))

| type_trust : forall C E T U id,
has_type C E (annote T U) ->
has_type C (trust id E) (annote T tr)

| type_distrust : forall C E T U,
has_type C E (annote T U) ->
has_type C (distrust E) (annote T dis)

| type_check : forall C E T,
has_type C E (annote T tr) ->
has_type C (check E) (annote T tr)

| type_cast : forall C E T T2,
has_type C E T ->
ann_lte T T2 ->
has_type C (cast E T T2) T2.

Fig. 2. Expressions in the language and typechecking rules

Policies and Proofs for Code Auditing 9

This policy says that program P may run in context C if it typechecks and has
the trusted type inttr. This policy does not exclude the possibility that this
type is trivially obtained by an application of trust, however.

The next step is to require that all applications of the trust operator be
audited. Since the trust operator is basically a way to escape the type system,
the value of the type system for security would be questionable at best if any
program could use trust indiscriminately, hence the desire for auditing.

Figure 3 defines a predicate trusts audited. This predicate recursively tra-
verses an expression while remembering the entire expression. In this definition,
occurrences of trust impose extra requirements. In particular, every occurrence
of trust must have a corresponding audit statement. The audit predicate is
defined to be satisfied externally, in our case by assertions in the policy rather
than by proofs.

Parameter audit : expr -> trustid -> Prop.

An expression E has all its trusts audited when trusts audited E E holds.
As a small example, consider the context C that has two elements, a dis-

trusted function f of type (inttr → inttr)dis and a trusted integer x. The
expression (trust0 f) x (which is actually app (trust 0 (var 0)) (var 1)

in our syntax but which we write as (trust0 f) x for simplicity) will pass
trusts audited when there is an audit statement audit ((trust0 f) x) 0.
Suppose that the code producer bob provides the code (trust0 f) x and a
proof of:

audit ((trust0 f) x) 0
->

trusts audited ((trust0 f) x) ((trust0 f) x)

A trusted authority alice signs the statement:

believe(<audit ((trust0 f) x) 0>)

The policy of a code consumer may be:

trusted(alice).

believe(F) :- sat(F).
believe(Q) :- believe(P), believe(<~P -> ~Q>).
believe(F) :- A says believe(F), trusted(A).

mayrun(C, P) :-
believe(<has_type ~C ~P (annote (usertype 0) tr)>),
believe(<trusts_audited ~P ~P>).

10 N. Whitehead, J. Johnson, and M. Abadi

Inductive trusts_audited : expr -> expr -> Prop :=
| audited_int :

forall P n,
trusts_audited P (const_int n)

| audited_bool :
forall P b,
trusts_audited P (const_bool b)

| audited_var :
forall P n,
trusts_audited P (var n)

| audited_abs :
forall P T E,
trusts_audited P E ->
trusts_audited P (abs T E)

| audited_app :
forall P E1 E2,
trusts_audited P E1 ->
trusts_audited P E2 ->
trusts_audited P (app E1 E2)

| audited_trust :
forall P E id,
audit P id ->
trusts_audited P E ->
trusts_audited P (trust id E)

| audited_distrust :
forall P E,
trusts_audited P E ->
trusts_audited P (distrust E)

| audited_check :
forall P E,
trusts_audited P E ->
trusts_audited P (check E)

| audited_cast :
forall P E T1 T2,
trusts_audited P E ->
trusts_audited P (cast E T1 T2).

Fig. 3. Auditing trusts predicate

After importing alice’s statement, the code consumer will have:

alice says believe(<audit ((trust0 f) x) 0>)

After checking bob’s proof, it will have:

sat

⎛
⎝
<audit ((trust0 f) x) 0
->

trusts audited ((trust0 f) x) ((trust0 f) x)>

⎞
⎠

Policies and Proofs for Code Auditing 11

With a little reasoning, the code consumer obtains:

mayrun
(
<(inttr → inttr)dis :: inttr :: nil>, <(trust0 f) x>

)

Going further, as in Section 2, we have much flexibility in defining policies.
In particular, each audit requirement need not be discharged with an explicit
assertion specific to the requirement. We can allow broader assertions. In the
extreme case, once a trusted authority vouches for a program, no auditing is
required. We can express this policy with a BCIC rule:

mayrun(C, P) :- A says vouchfor(C, P), trusted(A).

We can also express policies that distinguish users. First, we modify mayrun to
include an explicit user argument: mayrun(U, C, P) is satisfied when user U is al-
lowed to run program P in context C. Since not all users might trust the same audi-
tors and other authorities, we also introduce predicates believes and trusts as
generalizations of believe and trusted, respectively, with user arguments. Be-
cause provability is absolute, not relative to particular users, no user annotation
is needed for sat. With these variants, we may for example write the policy:

trusts(bob, alice).
trusts(charlie, bob).

believes(U, F) :- sat(F).
believes(U, Q) :- believes(U, P), believes(U, <~P -> ~Q>).
believes(U, F) :- A says believe(F), trusts(U, A).

mayrun(U, C, P) :-
believes(U, <has_type ~C ~P (annote (usertype 0) tr)>),
believes(U, <trusts_audited ~P ~P>).

However, some classes of policies require more advanced techniques. For in-
stance, we may want to focus the auditing on expressions of certain types, or
to exclude expressions that satisfy a given static condition established by a par-
ticular static-analysis algorithm. While static conditions can certainly be pro-
grammed as Coq predicates, once those predicates are present there need to be
corresponding proofs.

Fortunately we have a way of encoding decision procedures in Coq signatures
in order to allow BCIC to incorporate those decisions procedures. Our approach
is based on proof by reflection (also known as proof by computation) [2, 7],
a technique applicable to any theorem prover based on typing that includes
convertibility to normal forms. The idea of this technique is that details related
to computations are elided from proof terms themselves, and are instead handled
automatically by the conversion rules. Using this technique, BCIC can integrate
various static analyses. (Some details of our use of proofs by reflection appear
in another document [17].)

12 N. Whitehead, J. Johnson, and M. Abadi

3.3 Correctness

Much as in Section 2, the proof of correctness relies on an instrumented opera-
tional semantics for the language. In this semantics, annotations record trust
operations. We define a state as a pair that consists of a list of trust identifiers, l,
and an expression, e. We define the single-step reduction (l, e) → (l′, e′) mostly
as usual, ignoring types and type annotations, and eliminating casts, trusts,
distrusts, and checks. The rule for trust records the identifier of the trust:
(l, trustid e) → (id :: l, e). We obtain a correctness result that says that, when
programs execute, they perform trust operations only as authorized:

Theorem 2. For all programs e, if trusts audited e e is true and ([], e) →∗

(l, e′), then audit e id is true for all identifiers id in l.

While helpful, this theorem does not aim to address the proper criteria for de-
classification. The study of those criteria, and the guarantees that they may
offer, is an active research area (e.g., [15]).

4 Implementation

Our implementation of BCIC includes network communication, cryptographic
primitives, a simple user interface, and the machinery for logical queries on
policies [19]. We have used Coq’s automatic program extraction from proofs
to produce a certified correct implementation of the BCIC logic engine [18].
The examples we have presented in this paper are written and work in our
implementation of BCIC.

In order to flesh out the examples, we have created corresponding proof gen-
erators. Given a target program, the proof generators analyze the program and
construct Coq proof terms for it. For the example of Section 2, proof terms es-
tablish that strings of audit requirements imply calls audited properties. For
the example of Section 3, proof terms yield not only trusts audited properties
but also well-typing.

Further, in order to execute the programs that have been analyzed, we have
created a simple run-time environment, basically a λ-calculus interpreter. During
network communication, statements and proofs must be transmitted between
principals. Given that audit statements include copies of programs, performance
could be problematic. Therefore, we replace CIC terms with their hashes. Thus,
a set of statements about a single program will need to transmit the program
only once, not once per statement. Additional performance improvements might
be obtained by caching.

Despite poor, exponential bounds, queries in the certified implementation are
reasonably fast in practice. Most policies we have studied require only one or
two steps of reasoning before all possible conclusions have been drawn and a
query can be answered. In practice the biggest bottleneck is typechecking terms
in Coq, not logical deduction. Our implementation caches calls to Coq in order
to avoid redundant typechecking.

Policies and Proofs for Code Auditing 13

The code samples in our implementation come from Scheme programs that
do not use many Scheme language constructs. Going further, one may attempt
to incorporate more of the Scheme language. For the example of Section 3,
which requires static typing, a language such as ML may be a better match
than Scheme. In this context, auditing may also be applied to special language
features that allow a program to break the type system in a potentially unsafe
way (e.g., Obj.magic in OCaml).

5 Conclusion

This paper develops the view that an audit assertion may encapsulate a non-
formal judgment about code in the context of a formal reasoning system. While
this judgment will typically be made by a human, perhaps incorrectly, the formal
reasoning system provides the means to specify how it fits with security policies
and with static code analysis. The formal reasoning system can thus guide the
auditing work and ensure its completeness.

More broadly, our work with BCIC indicates the possibility of looking at
techniques for verification and analysis in the context of logical security policies.
Combinations of reason and authority arise in practice, for instance in systems
with signed and verified code (e.g., [5]), though often with ad hoc policies and
mechanisms. General theories and tools should support such systems.

Acknowledgments. We are grateful to Andrei Sabelfeld and Steve Zdancewic for
comments on this work. This work was partly supported by the National Science
Foundation under Grants CCR-0208800 and CCF-0524078.

References

1. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access con-
trol in distributed systems. ACM Transactions on Programming Languages and
Systems 15(4), 706–734 (1993)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004)

3. Coquand, T., Huet, G.: The calculus of constructions. Information and Computa-
tion 76(2/3), 95–120 (1988)

4. De Treville, J.: Binder, a logic-based security language. In: Proceedings of the 2002
IEEE Symposium on Security and Privacy, pp. 105–113 (2002)

5. ECMA. C# and common language infrastructure standards,(2007), Online at
http://msdn2.microsoft.com/en-us/netframework/aa569283.aspx

6. Perl Foundation. Perl 5.8.8 documentation: perlsec - Perl security. Online at
http://perldoc.perl.org/perlsec.html

7. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of
the ACM 40(1), 143–184 (1993)

8. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed
systems: Theory and practice. ACM Transactions on Computer Systems 10(4),
265–310 (1992)

http://msdn2.microsoft.com/en-us/netframework/aa569283.aspx
http://perldoc.perl.org/perlsec.html

14 N. Whitehead, J. Johnson, and M. Abadi

9. Lindholm, T., Yellin, F.: The JavaTM Virtual Machine Specification. Addison-
Wesley, Reading (1997)

10. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems 21(3), 528–
569 (1999)

11. Necula, G.C.: Proof-carrying code. In: POPL 1997. Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on the Principles of Programming Languages, pp.
106–119. ACM Press, New York (1997)

12. Microsoft Developer Network. About ActiveX controls,(2007), Online at
http://msdn2.microsoft.com/en-us/library/Aa751971.aspx

13. Ørbæk, P., Palsberg, J.: Trust in the λ-calculus. Journal of Functional Program-
ming 7(6), 557–591 (1997)

14. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

15. Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. In: CSFW
2005. Proceedings of the 18th IEEE Workshop on Computer Security Foundations,
pp. 255–269 (2005)

16. The Coq Development Team. The Coq proof assistant. http://coq.inria.fr/
17. Whitehead, N.: Towards static analysis in a logic for code authorization.

(Manuscript)
18. Whitehead, N.: A certified distributed security logic for authorizing code. In: Al-

tenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 253–268.
Springer, Heidelberg (2007)

19. Whitehead, N., Abadi, M.: BCiC: A system for code authentication and verifica-
tion. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452,
pp. 110–124. Springer, Heidelberg (2005)

20. Whitehead, N., Abadi, M., Necula, G.: By reason and authority: A system for
authorization of proof-carrying code. In: CSFW 2004. Proceedings of the 17th
IEEE Computer Security Foundations Workshop, pp. 236–250 (2004)

http://msdn2.microsoft.com/en-us/library/Aa751971.aspx
http://coq.inria.fr/

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 15–16, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Recent Trend in Industry and Expectation to DA
Research

Atsushi Hasegawa

Renesas Technology Corp., System Solution Business Group, System Core Technology Div.
5-20-1 Jousui Hon-cho, Kodaira Tokyo 187-8588, Japan

hasegawa.atsushi@renesas.com

1 History of Semiconductor Design

In 1970s and early 1980s, functional verification in semiconductor design mean gate
level logic simulation. Equivalence check between logic circuits and layout design
had been done with human eyes and colored pencils. Layout rule checkers helped to
point out layout errors, ex. spacing rule errors.

Progress of design tools and methodology have been helped to increase numbers of
transistors on silicon chips, following Moore’s law steadily. Improvement of
productivity allowed us to tackle larger design problem. Verification and test tools
and methodology played important role in such improvement of productivity.

In the industry, the progress of design methodology was slower than academic
research of DA technology. But the daily works of engineers are totally different from
1970s and 1980s.

In late 1980s, schematic editors and workstations released engineers from pencils
and erasers to draw schematics, removed operator jobs to type netlists based on hand
written schematics. Eliminating human transformation from hand written schematics
to text base netlists reducing bugs dramatically. In both cases, design teams applied
functional verification on the netlists. Schematic editors reducing numbers of finding
typo in verification.

Late 80s and early 90s, there were many tools and notion forms to describe
functionality of design blocks. Those were aiming to reduce writing efforts for same
functionality, such as numbers of lines to define the behavior of blocks. The notion
forms were also aiming easy understanding of design, boolean formulas, functional
tables, state machine notation in several different format.

Finally two major description languages Verilog and VHDL became popular in
semiconductor industry. Great progress of synthesis technology makes design result
using those languages became faster, smaller, and reliable compare to design result
using ordinal handcrafted gate level schematics. The early version of synthesis tools
had poor performance. The generated gate netlists were slower and had more gates.
Several years later, the synthesis tools became more mature. Our company shifted
from proprietary synthesis tools using restricted C language to commercial Verilog
language synthesis tools in mid 90s.

For functional validation, we did RTL level simulation and gate level simulation.
Gate level simulation also checked timing with extracted gate netlists and parasitical
parameters from layout data just before tape out.

16 A. Hasegawa

2 Recent Design Flow

Today’s design flow starts design activity to create C model of IPs based on the target
specification. Then start to write test suites and apply it to C model to validate C
model. Later this C model is used as reference model compare against developing
Verilog RTL description. In equivalent test bench environment, test suites are applied
to compare simulation result of C model and Verilog RTL. Test coverage tools
improve test suites to reduce validation holes Random test generators complement
directed test suites and eliminates further validation holes.

Synthesis tools are applied on Verilog RTL with timing constraints to generate gate
netlist. Verilog RTL and generated gate netlist are compared with formal verification
tools to validate functional equivalence. Static timing analysis tool checks generated
netlist with timing constraints to assure the netlist meats timing requirements.

After this validation backend design flow are applied on the validated netlist to
place and route cells and wires to create chip level layout data. Applying layout check
tools, electric characteristic check tools and rule decks on the layout data to validate
against layout rules and electric design rules. Also from layout data, an extraction tool
generates gate netlist with parasitical data. The formal equivalence check tools
validate extracted gate level netlist against synthesized gate level netlist. Static timing
tools assure the layout data meat target timing requirement. Power evaluation tools
check power consumption of layout data.

On the each phase of design, tools are used to transform input date to output data
for next design phase. After transformation, one tool check functional equivalence of
input and output data. Other tools check output data meats timing, power
consumption and other design criteria.

Without DA tools we may not develop large scale SoC chip within meaningful
time period.

2.1 Expectation to Future DA Research

In these years, many attractive DA methodologies are proposed. Theoretically most of
those DA methodologies are workable. But applying those methodologies to actual
design flow, we need to wait invention of technologies shorten execution time of
tools, relaxing memory size requirements and other difficult factor to run tools on
affordable computer resources.

There are several strong expectation to improve design productivity of hardware.
Other expectations are improving software development productivity, shorten
software and system development schedule, and increase reliability of software and
system. Here are some examples:

Ten to hundred times productive (highly abstracted) hardware description language
or method.

New language or tool to describe system, hardware, and software specification.
Executable specification will effect productivity and reliability.

Provide reasonably high performance software execution (simulation) environment
to start software debugging before silicon tape out.

Toward Property-Driven Abstraction for Heap

Manipulating Programs

K.L. McMillan

Cadence Berkeley Labs

Automated abstraction refinement methods have shown significant promise in
analyzing low-level software, such as operating system device drivers, and other
control-oriented codes. For example, the SLAM toolkit from Microsoft research
[1] has proved effective in finding control errors (such as illegal use of kernel
API functions) in real-world device driver codes. SLAM is based on predicate
abstraction, using a counterexample-based abstraction refinement heuristic. This
gives it the ability to focus the abstraction on state predicates that are relevant
to the proof (or falsification) of a given property. This ability allows SLAM and
similar tools to scale to real codes of moderate size, albeit only in the case when
the property is fairly shallow, in the sense that it requires only a small amount
of information about the program’s state to prove it.

Predicate abstraction, however, has some important limitations, related to the
restrictions it places on the language of inductive invariants that can be derived.
Since it is limited to quantifier-free formulas, it cannot synthesize invariants
relating to heap data structures and arrays. For example, it cannot synthesize
facts such as “x points to an acyclic, linked list”, or “every cell in array a
satisfies property p”. This is a significant limitation: studies have shown that
a majority of operating systems code bugs and reported failures are related
to memory management [2,8]. Without the ability to reason about heap data
structures and arrays, we cannot expect to find and correct such errors, except
in the simplest cases. Thus, a substantial contributor to unreliability of operating
systems cannot be fully addressed.

This is not to say that the problem of automatic verification of heap data
structures has not been extensively studied. A variety of static analysis methods,
based for example on abstract shape graphs [7] and separation logic [3,6], are
able to verify fairly strong properties of such programs. For example, the tool
TVLA can verify correctness of sorting algorithms on linked lists. However, these
methods have not scaled well to large programs. A significant reason for this is
that there is no available method to focus the abstractions on facts relevant to
proving a given property. Thus, for large programs, the abstractions will carry
much information about the heap that is not relevant, leading to an explosion
of abstract shape graphs (or correspondingly of separation logic formulas). In
particular, an explosion of cases can be caused by carrying irrelevant correlations
between different parts of the heap. On the other hand, if relevant correlations
are lost by using a weak merge operator, we may fail to prove the property.

The solution to this problem is not immediately evident. Counterexample-
driven abstraction refinement methods, used in predicate abstraction tools such

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 17–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 K.L. McMillan

as SLAM, are typically based on propagating the weakest precondition oper-
ator. For heap-manipulating programs, these are likely to diverge, producing
an infinite sequence of refinements. Ad-hoc widenings may solve this problem,
but may also fail to prove the property. Moreover, it is less clear in the case of
shape abstractions how to form an appropriate Cartesian decomposition of the
abstract domain to avoid carrying unnecessary correlations, and how to refine
this decomposition.

In this talk, I will consider how Craig interpolation methods [5] might be
applied to theses problems. These methods are applied, for example, in the
BLAST model checker for predicate abstraction refinement [4]. They allow us
to exploit the relevance heuristics in a theorem prover or decision procedure to
focus refinements on relevant facts at given program locations. Moreover, by
using a suitably restricted prover, we can prevent the divergence of refinements
that occurs in methods based on weakest preconditions.

The primary challenge in the approach is to handle the richer logical frame-
work needed to express properties of heaps. In particular, we must be able to
handle quantifiers (to reason about heaps of unbounded size) and reachability of
linked structures (to express properties such as acyclicity). Moreover, we must
be able to restrict the quantifier structure of interpolants to prevent divergence.
The talk will consider potential solutions to these problems, and show how in-
terpolation in first-order logic with transitive closure might be used for shape
abstraction refinement in verifying heap-manipulating programs. The ability to
focus such abstraction on facts relevant to a given property may in turn allow
the methods to scale up to programs of practical size.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL, pp. 1–3 (2002)

2. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.R.: An empirical study of
operating system errors. In: Symposium on Operating Systems Principles, pp. 73–
88 (2001)

3. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS,
vol. 3920, pp. 287–302. Springer, Heidelberg (2006)

4. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Neil, D., Jones, N.D., Leroy, X. (eds.) POPL, pp. 232–244. ACM Press,
New York (2004)

5. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–
121 (2005)

6. Nanevski, A., Magill, S., Clarke, E., Lee, P.: Inferring invariants in separation logic
for imperative list-processing programs. In: Workshop on Semantics, Program Anal-
ysis, and Computing Environments for Memory Management (SPACE) (2006)

7. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
In: POPL, pp. 105–118 (1999)

8. Sullivan, M., Chillarege, R.: Software defects and their impact on system availability
- a study of field failures in operating systems. In: 21st Int. Symp. on Fault-Tolerant
Computing (FTCS-21), pp. 2–9 (1991)

Branching vs. Linear Time: Semantical Perspective�

Sumit Nain and Moshe Y. Vardi

Rice University, Department of Computer Science, Houston, TX 77005-1892, USA

Abstract. The discussion in the computer-science literature of the relative mer-
its of linear- versus branching-time frameworks goes back to early 1980s. One of
the beliefs dominating this discussion has been that the linear-time framework is
not expressive enough semantically, making linear-time logics lacking in expres-
siveness. In this work we examine the branching-linear issue from the perspective
of process equivalence, which is one of the most fundamental notions in concur-
rency theory, as defining a notion of process equivalence essentially amounts to
defining semantics for processes. Over the last three decades numerous notions
of process equivalence have been proposed. Researchers in this area do not any-
more try to identify the “right” notion of equivalence. Rather, focus has shifted
to providing taxonomic frameworks, such as “the linear-branching spectrum”,
for the many proposed notions and trying to determine suitability for different
applications.

We revisit here this issue from a fresh perspective. We postulate three prin-
ciples that we view as fundamental to any discussion of process equivalence.
First, we borrow from research in denotational semantics and take observational
equivalence as the primary notion of equivalence. This eliminates many testing
scenarios as either too strong or too weea. Second, we require the description of a
process to fully specify all relevant behavioral aspects of the process. Finally, we
require observable process behavior to be reflected in its input/output behavior.
Under these postulates the distinctions between the linear and branching seman-
tics tend to evaporate. As an example, we apply these principles to the framework
of transducers, a classical notion of state-based processes that dates back to the
1950s and is well suited to hardware modeling. We show that our postulates result
in a unique notion of process equivalence, which is trace based, rather than tree
based.

1 Introduction

One of the most significant recent developments in the area of formal design verifica-
tion is the discovery of algorithmic methods for verifying temporal-logic properties of
finite-state systems [17,39,51,59]. In temporal-logic model checking, we verify the cor-
rectness of a finite-state system with respect to a desired property by checking whether
a labeled state-transition graph that models the system satisfies a temporal logic formula
that specifies this property (see [19]). Model-checking tools have enjoyed a substantial
and growing use over the last few years, showing ability to discover subtle flaws that
result from extremely improbable events. While early on these tools were viewed as of
academic interest only, they are now routinely used in industrial applications [29].
� Work supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, CCF-

0613889, and ANI-0216467, by BSF grant 9800096, and by gift from Intel.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 19–34, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

20 S. Nain and M.Y. Vardi

A key issue in the design of a model-checking tool is the choice of the temporal
language used to specify properties, as this language, which we refer to as the temporal
property-specification language, is one of the primary interfaces to the tool. (The other
primary interface is the modeling language, which is typically the hardware description
language used by the designers). One of the major aspects of all temporal languages
is their underlying model of time. Two possible views regarding the nature of time
induce two types of temporal logics [38]. In linear temporal logics, time is treated as if
each moment in time has a unique possible future. Thus, linear temporal logic formulas
are interpreted over linear sequences and we regard them as describing the behavior
of a single computation of a program. In branching temporal logics, each moment in
time may split into various possible futures. Accordingly, the structures over which
branching temporal logic formulas are interpreted can be viewed as infinite computation
trees, each describing the behavior of the possible computations of a nondeterministic
program.

In the linear temporal logic LTL, formulas are composed from the set of atomic
propositions using the usual Boolean connectives as well as the temporal connectives
G (“always”), F (“eventually”), X (“next”), and U (“until”). The branching temporal
logic CTL� augments LTL by the path quantifiers E (“there exists a computation”) and
A (“for all computations”). The branching temporal logic CTL is a fragment of CTL�

in which every temporal connective is preceded by a path quantifier. Note that LTL has
implicit universal path quantifiers in front of its formulas. Thus, LTL is essentially the
linear fragment of CTL�.

The discussion of the relative merits of linear versus branching temporal logics in the
context of system specification and verification goes back to 1980 [49,38,23,6,50,25,
24,53,16,14,56,57]. As analyzed in [50], linear and branching time logics correspond
to two distinct views of time. It is not surprising therefore that LTL and CTL are expres-
sively incomparable [16,24,38]. The LTL formula FGp is not expressible in CTL, while
the CTL formula AFAGp is not expressible in LTL. On the other hand, CTL seems to
be superior to LTL when it comes to algorithmic verification, as we now explain.

Given a transition system M and a linear temporal logic formula ϕ, the model-
checking problem for M and ϕ is to decide whether ϕ holds in all the computations
of M . When ϕ is a branching temporal logic formula, the problem is to decide whether
ϕ holds in the computation tree of M . The complexity of model checking for both linear
and branching temporal logics is well understood: suppose we are given a transition sys-
tem of size n and a temporal logic formula of size m. For the branching temporal logic
CTL, model-checking algorithms run in time O(nm) [17], while, for the linear tempo-
ral logic LTL, model-checking algorithms run in time n2O(m) [39]. Since LTL model
checking is PSPACE-complete [52], the latter bound probably cannot be improved.

The difference in the complexity of linear and branching model checking has been
viewed as an argument in favor of the branching paradigm. In particular, the computa-
tional advantage of CTL model checking over LTL model checking made CTL a pop-
ular choice, leading to efficient model-checking tools for this logic [18]. Through the
1990s, the dominant temporal specification language in industrial use was CTL. This
dominance stemmed from the phenomenal success of SMV, the first symbolic model

Branching vs. Linear Time: Semantical Perspective 21

checker, which was CTL-based, and its follower VIS, also originally CTL-based, which
served as the basis for many industrial model checkers.

In [58] we argued that in spite of the phenomenal success of CTL-based model
checking, CTL suffers from several fundamental limitations as a temporal property-
specification language, all stemming from the fact that CTL is a branching-time
formalism: the language is unintuitive and hard to use, it does not lend itself to composi-
tional reasoning, and it is fundamentally incompatible with semi-formal verification. In
contrast, the linear-time framework is expressive and intuitive, supports compositional
reasoning and semi-formal verification, and is amenable to combining enumerative and
symbolic search methods. Indeed, the trend in the industry during this decade has been
towards linear-time languages, such as ForSpec [4], PSL [22], and SVA [60].

In spite of the pragmatic arguments in favor of the linear-time approach, one still
hears the arguments that this approach is not expressive enough, pointing out that in se-
mantical analyses of concurrent processes, e.g., [28], the linear-time approach is consid-
ered to be the weakest semantically. In this paper we address the semantical arguments
against linear time and argue that even from a semantical perspective the linear-time
approach is quite adequate for specifying systems.

The gist of our argument is that branching-time-based notions of process equiva-
lence are not reasonable notions of process equivalence, as they distinguish between
processes that are not observationally distinguishable. In contrast, the linear-time view
does yield an appropriate notion of observational equivalence.

2 The Basic Argument Against Linear Time

The most fundamental approach to the semantics of programs focuses on the notion of
equivalence. Once we have defined a notion of equivalence, the semantics of a program
can be taken to be its equivalence class. In the context of concurrency, we talk about
process equivalence. The study of process equivalence provides the basic foundation for
any theory of concurrency [46], and it occupies a central place in concurrency-theory
research, cf. [28].

The linear-time approach to process equivalence focuses on the traces of a process.
Two processes are defined to be trace equivalent if they have the same set of traces. It
is widely accepted in concurrency theory, however, that trace equivalence is too weak a
notion of equivalence, as processes that are trace equivalent may behave differently in
the same context [45]. An an example, using CSP notation, the two processes

if(true → a?x; h!x)�(true → b?x; h!x)fi

if(a?x → h!x)�(b?x → h!x)fi

have the same set of communication traces, but only the first one may deadlock when
run in parallel with a process such as b!0.

In contrast, it is known that CTL characterizes bisimulation, in the sense that two
states in a transition system are bisimilar iff they satisfy exactly the same CTL formulas
[13] (see also [34]), and bisimulation is a highly popular notion of equivalence between
processes [46,48,54].

22 S. Nain and M.Y. Vardi

This contrast, between the pragmatic arguments in favor of the adequate expres-
siveness of the linear-time approach [58] and its accepted weakness from a process-
equivalence perspective, calls for a re-examination of process-equivalence theory.

3 Process Equivalence Revisited

While the study of process equivalence occupies a central place in concurrency-theory
research, the answers yielded by that study leave one with an uneasy feeling. Rather
than providing a definitive answer, this study yields a plethora of choices [3]. This situ-
ation led to statement of the form “It is not the task of process theory to find the ‘true’
semantics of processes, but rather to determine which process semantics is suitable
for which applications” [28]. This situation should be contrasted with the correspond-
ing one in the study of sequential-program equivalence. It is widely accepted that two
programs are equivalent if they behave the same in all contexts, this is referred to as
contextual or observational equivalence, where behavior refers to input/output behav-
ior [61]. In principle, the same idea applies to processes: two processes are equivalent
if they pass the same tests, but there is no agreement on what a test is and on what it
means to pass a test.

We propose to adopt for process-semantics theory precisely the same principles ac-
cepted in program-semantics theory.

Principle of Contextual Equivalence: Two processes are equivalent if they behave the
same in all contexts, which are processes with “holes”.

As in program semantics, a context should be taken to mean a process with a “hole”,
into which the processes under consideration can be “plugged”. This agrees with the
point of view taken in testing equivalence, which asserts that tests applied to processes
need to themselves be defined as processes [20]. Furthermore, all tests defined as pro-
cesses should be considered. This excludes many of the “button-pushing experiments”
of [45]. Some of these experiments are too strong–they cannot be defined as processes,
and some are too weak–they consider only a small family of tests [20].

In particular, the tests required to define bisimulation equivalence [2,45] are widely
known to be too strong [8,9,10,30]. In spite of its mathematical elegance [54], bisim-
ulation is not a reasonable notion of process equivalence, as it makes distinctions that
cannot be observed. Bisimulation is a structural similarity relation between states of
the processes under comparison, rather than a behavioral relation. Expecting an im-
plementation to be bisimilar to a specification is highly unrealistic, as it requires the
implementation to be too similar structurally to the specification. From this point of
view, the term “observational equivalence” for weak bisimulation equivalence in [45]
is perhaps unfortunate.

Remark 1. One could argue that bisimulation equivalence is not only a mathematically
elegant concept; it also serves as the basis for useful sound proof techniques for es-
tablishing process equivalence, cf. [34]. The argument here, however, is not against
bisimulation as a useful mathematical concept; such usefulness ought to be evaluated
on its own merits, cf. [27]. Rather, the argument is against viewing bisimulation-based
notions of equivalence as reasonable notions of process equivalence.

Branching vs. Linear Time: Semantical Perspective 23

The Principle of Contextual Equivalence does not fully resolve the question of process
equivalence. In additional to defining the tests to which we subject processes, we need
to define the observed behavior of the tested processes. It is widely accepted, however,
that linear-time semantics results in important behavioral aspects, such as deadlocks
and livelocks, being non-observable [45]. It is this point that contrasts sharply with the
experience that led to the adoption of linear time in the context of hardware model
checking [58]; in today’s synchronous hardware all relevant behavior, including dead-
lock and livelock is observable (observing livelock requires the consideration of infinite
traces). Compare this with our earlier example, where the process

if(true → a?x; h!x)�(true → b?x; h!x)fi

may deadlock when run in parallel with a process such as b!0. The problem here is
that the description of the process does not tell us what happens when the first guard is
selected in the context of the parallel process b!0. The deadlock here is not described
explicitly; rather it is implicitly inferred from a lack of specified behavior. This leads us
to our second principle.

Principle of Comprehensive Modeling: A process description should model all rele-
vant aspects of process behavior.

The rationale for this principle is that relevant behavior, where relevance depends
on the application at hand, should be captured by the description of the process, rather
than inferred from lack of behavior by a semantical theory proposed by a concurrency
theorist. It is the usage of inference to attribute behavior that opens the door to numerous
interpretations, and, consequently, to numerous notions of process equivalence.

Remark 2. It is useful to draw an analogy here to another theory, that of nonmono-
tonic logic, whose main focus is on inferences from absence of premises. The field
started with some highly influential papers, advocating, for example “negation as fail-
ure” [15] and ”circumscription” [43]. Today, however, there is a plethora of approaches
to nonmonotonic logic, including numerous extensions to negation as failure and to
circumscription [42]. One is forced to conclude that there is no universally accepted
way to draw conclusions from absence of premises. (Compare also to the discussion of
negative premises in transition-system specifications [10,30].)

Going back to our problematic process

if(true → a?x; h!x)�(true → b?x; h!x)fi

The problem here is that the process is not receptive to communication on channel
b, when it is in the left branch. The position that processes need to be receptive to all al-
lowed inputs from their environment has been argued by many authors [1,21,40]. It can
be viewed as an instance of our Principle of Comprehensive Modeling, which says that
the behavior that results from a write action on channel b when the process is in the left
branch needs to be specified explicitly. From this point of view, process-algebraic for-
malisms such as CCS [45] and CSP [35] are underspecified, since they leave important

24 S. Nain and M.Y. Vardi

behavioral aspects unspecified. For example, if the distinction between normal termi-
nation and deadlocked termination is relevant to the application, then this distinction
ought to be explicitly modeled.

It is interesting to note that transducers, which were studied in an earlier work of
Milner [44], which led to [45], are receptive. Transducers are widely accepted models
of hardware. We come back to transducers in the next section.

The Principle of Comprehensive Modeling requires a process description to model
all relevant aspects of process behavior. It does not spell out how such aspects are to
be modeled. In particular, it does not address the question of what is observed when
a process is being tested. Here again we propose to follow the approach of program
semantics theory and argue that only the input/output behavior of processes is observ-
able. Thus, observable relevant aspects of process behavior ought to be reflected in its
input/output behavior.

Principle of Observable I/O: The observable behavior of a tested process is precisely
its input/output behavior.

Of course, in the case of concurrent processes, the input/output behavior has a tem-
poral dimension. That is, the input/output behavior of a process is a trace of input/output
actions. The precise “shape” of this trace depends of course on the underlying seman-
tics, which would determine, for example, whether we consider finite or infinite traces,
the temporal granularity of traces, and the like. It remains to decide how nondeter-
minism is observed, as, after all, a nondeterministic process does not have a unique
behavior. This leads to notions such as may testing and must testing [20]. We propose
here to finesse this issue by imagining that a test is being run several times, eventually
exhibiting all possible behaviors. Thus, the input/output behavior of a nondeterministic
test is its full set of input/output traces.

In the next section we apply our approach to transducers; we show that once our
three principles are applied we obtain that trace-based equivalence is adequate and fully
abstract; that is, it is precisely the unique observational equivalence for transducers.

4 Case Study: Transducers

Transducers constitute a fundamental model of discrete-state machines with input and
output channels [32]. They are still used as a basic model for sequential computer cir-
cuits [31]. We use nondeterministic transducers as our model for processes. We define
a synchronous composition operator for such transducers, which provides us a notion
of context. We then define linear observation semantics and give adequacy and full-
abstraction results for trace equivalence in terms of it.

4.1 Nondeterministic Transducers

A nondeterministic transducer is a state machine with input and output channels. The
state-transition function depends on the current state and the input, while the output
depends solely on the current state (thus, our machines are Moore machines [32]).

Branching vs. Linear Time: Semantical Perspective 25

Definition 1. A transducer is a tuple, M = (Q, q0, I, O, Σ, σ, λ, δ), where

– Q is a countable set of states.
– q0 is the start state.
– I is a finite set of input channels.
– O is a finite set of output channels.
– Σ is a finite alphabet of actions (or values).
– σ : I ∪ O → 2Σ − {∅} is a function that allocates an alphabet to each channel.
– λ : Q×O → Σ is the output function of the transducer. λ(q, o) ∈ σ(o) is the value

that is output on channel o when the transducer is in state q.
– δ : Q × σ(i1) × . . . × σ(in) → 2Q, where I = {i1, . . . , in}, is the transition

function, mapping the current state and input to the set of possible next states.

Both I and O can be empty. In this case δ is a function of state alone. This is important
because the composition operation that we define usually leads to a reduction in the
number of channels. Occasionally, we refer to the set of allowed values for a channel as
the channel alphabet. This is distinct from the total alphabet of the transducer (denoted
by Σ).

We represent a particular input to a transducer as an assignment that maps each
input channel to a particular value. Formally, an input assignment for a transducer
(Q, q0, I, O, Σ, σ, λ, δ) is a function f : I → Σ, such that for all i ∈ I , f(i) ∈ σ(i).
The entire input can then, by a slight abuse of notation, be succinctly represented as
f(I).

We point to three important features of our definition. First, note that transducers
are receptive. That is, the transition function δ(q, f) is defined for all states q ∈ Q and
input assignments f . There is no implicit notion of deadlock here. Deadlocks need to
be modeled explicitly, e.g., by a special sink state d whose output is, say, “deadlock”.
Second, note that inputs at time k take effect at time k + 1. This enables us to define
composition without worrying about causalilty loops, unlike, for example, in Esterel
[7]. Thirdly, note that the internal state of a transducer is observable only through its
output function. How much of the state is observable depends on the output function.

4.2 Synchronous Parallel Composition

In general there is no canonical way to compose machines with multiple channels. In
concrete devices, connecting components requires as little as knowing which wires to
join. Taking inspiration from this, we say that a composition is defined by a particular
set of desired connections between the machines to be composed. This leads to an
intuitive and flexible definition of composition.

A connection is a pair consisting of an input channel of one transducer along with
an output channel of another transducer. We require, however, sets of connections to be
well formed. This requires two things:

– no two output channels are connected to the same input channel, and
– an output channel is connected to an input channel only if the output channel al-

phabet is a subset of the input channel alphabet. These conditions guarantee that
connected input channels only receive well defined values that they can read. We
now formally define this notion.

26 S. Nain and M.Y. Vardi

Definition 2 (Connections). Let M be a set of transducers. Then

Conn(M) = {X ⊆ C(M)|(a, b) ∈ X, (a, c) ∈ X⇒b = c}

where C(M) = {(iA, oB) |{A, B} ⊆ M, iA ∈ IA, oB ∈ OB , σB(oB) ⊆ σA(iA)}
is the set of all possible input/output connections for M. Elements of Conn(M) are
valid connection sets.

Definition 3 (Composition)
Let M = {M1, . . . , Mn}, where Mk = (Qk, qk

0 , Ik, Ok, Σk, σk, λk, δk), be a set of
transducers, and C ∈ Conn(M). Then the composition of M with respect to C, de-
noted by ||C(M), is a transducer (Q, q0, I, O, Σ, σ, λ, δ) defined as follows:

– Q = Q1 × . . . × Qn

– q0 = q1
0 × . . . × qn

0
– I =

⋃n
k=1 Ik − {i | (i, o) ∈ C}

– O =
⋃n

k=1 Ok − {o | (i, o) ∈ C}
– Σ =

⋃n
k=1 Σk

– σ(u) = σk(u), where u ∈ Ik ∪ Ok

– λ(q1, . . ., qn, o) = λk(qk, o) where o ∈ Ok

– δ(q1, . . ., qn, f(I)) = Πn
k=1(δk(qk, g(Ik)))

where g(i) = λj(qj , o) if (i, o) ∈ C, o ∈ Oj , and g(i) = f(i) otherwise.

Definition 4 (Binary Composition). Let M1 and M2 be transducers, and C ∈ Conn
({M1, M2}). The binary composition of M1 and M2 with respect to C is M1||CM2 =
||C({M1, M2}).

The following theorem shows that a general composition can be built up by a sequence
of binary compositions. Thus binary composition is as powerful as general composition
and henceforth we switch to binary composition as our default composition operation.

Theorem 1 (Composition Theorem)
Let M = {M1, . . ., Mn}, where Mk = (Qk, qk

0 , Ik, Ok, Σk, σk, λk, δk), be a set of
transducers, and C ∈ Conn(M). Let M′ = M − {Mn}, C′ = {(i, o) ∈ C|i ∈
Ij , o ∈ Ok, j < n, k < n} and C′′ = C − C′. Then

||C(M) = ||C′′({||C′(M′), Mn}).

The upshot of Theorem 1 is that in the framework of transducers a general context,
which is a network of transducers with a hole, is equivalent to a single transducer. Thus,
for the purpose of contextual equivalence it is sufficient to consider testing transducers.

4.3 Executions and Traces

Definition 5 (Execution). An execution for transducer M = (Q, q0, I, O, Σ, σ, λ, δ)
is a countable sequence of pairs 〈si, fi〉l

i=0 such that s0 = q0, and for all i ≥ 0,

– si ∈ Q.
– fi : I → Σ such that for all u ∈ I , f(u) ∈ σ(u).
– si ∈ δ(si−1, fi−1(I)).

Branching vs. Linear Time: Semantical Perspective 27

If l ∈ N , the execution is finite and its length is l. If l = ∞, the execution is infinite
and its length is defined to be ∞. The set of all executions of transducer M is denoted
exec(M).

Definition 6 (Trace). Let α = 〈si, fi〉l
i=0 ∈ exec(M). The trace of α, denoted by [α],

is the sequence of pairs 〈ωi, fi〉l
i=0, where for all i ≥ 0, ωi : O → Σ and for all o ∈ O,

ωi(o) = λ(si, o). The set of all traces of a transducer M , denoted by Tr(M), is the set
{[α]|α ∈ exec(M)}. An element of Tr(M) is called a trace of M .

Thus a trace is a sequence of pairs of output and input actions. While an execution
captures the real underlying behavior of the system, a trace is the observable part of
that behavior. The length of a trace α is defined to be the length of the underlying
execution and is denoted by |α|.

Definition 7 (Trace Equivalence). Two transducers M1 and M2 are trace equivalent,
denoted by M1 ∼T M2, if Tr(M1) = Tr(M2). Note that this requires that they have
the same set of input and output channels.

We now study the properties of trace equivalence. We first define the composition of
executions and traces.

Definition 8. Given α = 〈si, fi〉n
i=0 ∈ exec(M1) and β = 〈ri, gi〉n

i=0 ∈ exec(M2),
we define the composition of α and β w.r.t C ∈ Conn({M1, M2}) as follows

α||Cβ = 〈(si, ri), hi〉n
i=0

where hi(u) = fi(u) if u ∈ I1−{i|(i, o) ∈ C} and hi(u) = gi(u) if u ∈ I2−{i|(i, o) ∈
C}.

Definition 9. Given t = 〈ωi, fi〉n
i=0 ∈ Tr(M1) and u = 〈νi, gi〉n

i=0 ∈ Tr(M2), we
define the composition of t and u w.r.t C ∈ Conn({M1, M2}) as follows

t||Cu = 〈μi, hi〉n
i=0

where μi(o) = ωi(o) if o ∈ O1 − {o|(i, o) ∈ C} and μi(o) = νi(o) if o ∈ O2 −
{o|(i, o) ∈ C}, and hi is as defined in Definition 8 above.

Note that the composition operation defined on traces is purely syntactic. There is no
guarantee that the composition of two traces is a trace of the composition of the trans-
ducers generating the individual traces. The following simple property is necessary and
sufficient to achieve this.

Definition 10 (Compatible Traces). Given C ∈ Conn({M1, M2}), t1 = 〈ω1
i , f1

i 〉n
i=0

∈ Tr(M1) and t2 = 〈ω2
i , f2

i 〉n
i=0 ∈ Tr(M2), we say that t1 and t2 are compatible with

respect to C if for all (u, o) ∈ C and for all i ≥ 0, we have

– If u ∈ Ij and o ∈ Ok then f j
i (u) = ωk

i (o), for all i ≥ 0 and for j, k ∈ {1, 2}.

28 S. Nain and M.Y. Vardi

Lemma 1. Let C ∈ Conn({M1, M2}), t ∈ Tr(M1) and u ∈ Tr(M2). Then t||Cu ∈
Tr(M1||CM2) if and only if t and u are compatible with respect to C.

We now extend the notion of trace composition to sets of traces.

Definition 11. Let T1 ⊆ Tr(M1), T2 ⊆ Tr(M2) and C ∈ Conn({M1, M2}). We
define

T1||CT2 = {t1||Ct2 | t1 ∈ Tr(M1), t2 ∈ Tr(M2), |t1| = |t2|}

Theorem 2 (Syntactic theorem of traces). Let T1 ⊆ Tr(M1) ∩ Tr(M3) and T2 ⊆
Tr(M2) ∩ Tr(M4), and C ∈ Conn({M1, M2}) ∩ Conn({M3, M4}). Then

(T1||CT2) ∩ Tr(M1||CM2) = (T1||CT2) ∩ Tr(M3||CM4)

Using Theorem 2, we show now that any equivalence defined in terms of sets of traces
is automatically a congruence with respect to composition, if it satisfies a certain natural
property.

Definition 12 (Trace-based equivalence). Let M be the set of all transducers. Let R :
M → {A ⊆ Tr(M)|M ∈ M} such that for all M ∈ M, R(M) ⊆ Tr(M). Then R
defines an equivalence relation on M, denoted by ∼R, such that for all M1, M2 ∈ M,
M1 ∼R M2 if and only if R(M1) = R(M2). Such a relation is called a trace-based
equivalence.

Trace-based equivalences enable us to relativize trace equivalence to “interesting”
traces. For example, one may want to consider finite traces only, infinite traces only,
fair traces only, and the like. Of course, not all such relativizations are appropriate. The
next definition addresses this issue.

Definition 13 (Compositionality). Let ∼R be a trace-based equivalence. We say that
∼R is compositional if given transducers M1, M2 and C ∈ Conn({M1, M2}), the
following hold:

1. R(M1||CM2) ⊆ R(M1)||CR(M2).
2. If t1 ∈ R(M1), t2 ∈ R(M2), and t1, t2 are compatible w.r.t. C, then t1||Ct2 ∈

R(M1||CM2).

The two conditions in Definition 13 are, in a sense, soundness and completeness con-
ditions, as the first ensures that no inappropriate traces are present, while the second
ensures that all appropriate traces are present. That is, the first condition ensures that
the trace set captured by R is not too large, while the second ensures that it is not too
small.

Note, in particular, that trace equivalence itself is a compositional trace-based equiv-
alence. The next theorem asserts that ∼R is a congruence with respect to composition.

Theorem 3 (Congruence Theorem). Let ∼R be a compositional trace-based equiva-
lence. Let M1 ∼R M3, M2 ∼R M4, and C ∈ Conn({M1, M2})=Conn({M3, M4}).
Then M1||CM2 ∼R M3||CM4.

An immediate corollary of Theorem 3 is the fact that no context can distinguish between
two trace-based equivalent transducers.

Branching vs. Linear Time: Semantical Perspective 29

Corollary 1. Let M1 and M2 be transducers, R be a compositional trace-based equiv-
alence and M1 ∼R M2. Then for all transducers M and all C ∈ Conn({M, M1}) =
Conn({M, M2}), we have that M ||CM1 ∼R M ||CM2.

Finally, it is also the case that some context can always distinguish between two in-
equivalent transducers. If we choose a composition with an empty set of connections,
all original traces of the composed transducers are present in the traces of the composi-
tion. If M1 �∼R M2, then M1||∅M �∼R M2||∅M . We claim the stronger result that given
two inequivalent transducers, we can always find a third transducer that distinguishes
between the first two, irrespective of how it is composed with them.

Theorem 4. Let M1 and M2 be transducers, R be a compositional trace-based equiv-
alence and M1 �∼R M2. Then there exists a transducer M such that for all C ∈
Conn({M, M1}) ∩ Conn({M, M2}), we have M ||CM1 �∼R M ||CM2.

5 What Is Linear Time Logic?

The discussion so far has focused on the branching- or linear-time view of process
equivalence, where we argued strongly in favor of linear time. This should be distin-
guished from the argument in, say, [58] in favor of linear-temporal logics (such as LTL,
ForSpec, and the like). In the standard approach to linear-temporal logics, one inter-
prets formulas in such logics over traces. Thus, given a linear-temporal formula ψ, its
semantics is the set traces(ψ) of traces satisfying it. A system S then satisfies ψ if
traces(S) ⊆ traces(ψ).

It has recently been shown that this view of linear time is not rich enough [37]. The
context for this realization is an analysis of liveness properties, which assert that some-
thing good will happen eventually. In satisfying liveness properties, there is no bound
on the “wait time”, namely the time that may elapse until an eventuality is fulfilled. For
example, the LTL formula Fθ is satisfied at time i if θ holds at some time j ≥ i, but
j − i is not a priori bounded.

In many applications, such as real-time systems, it is important to bound the wait
time. This has given rise to formalisms in which the eventually operator F is replaced
by a bounded-eventually operator F≤k. The operator is parameterized by some k ≥ 0,
and it bounds the wait time to k [5,26]. In the context of discrete-time systems, the
operator F≤k is simply syntactic sugar for an expression in which the next operator X
is nested. Indeed, F≤kθ is just θ ∨ X(θ ∨ X(θ∨ k−4. . . ∨Xθ)).

A drawback of the above formalism is that the bound k needs to be known in advance,
which is not the case in many applications. For example, it may depend on the system,
which may not yet be known, or it may change, if the system changes. In addition, the
bound may be very large, causing the state-based description of the specification (e.g.,
an automaton for it) to be very large too. Thus, the common practice is to use liveness
properties as an abstraction of such safety properties: one writes Fθ instead of F≤kθ
for an unknown or a too large k.

This abstraction of safety properties by liveness properties is not sound for a logic
such as LTL. Consider the system S described in Figure 1 below. While S satisfies the
LTL formula FGq, there is no k ≥ 0 such that S satisfies F≤kGq. To see this, note that

30 S. Nain and M.Y. Vardi

S : q ¬q q

Fig. 1. S satisfies FGq but does not satisfy F ≤kGq, for all k ≥ 0

for each k ≥ 0, the computation that first loops in the first state for k times and only
then continues to the second state, satisfies the eventuality Gq with wait time k + 1.

In [37], there is a study of an extension of LTL that addresses the above problem.
In addition to the usual temporal operators of LTL, the logic PROMPT-LTL has a new
temporal operator that is used for specifying eventualities with a bounded wait time.
The new operator is called prompt eventually and is denoted by Fp. It has the following
formal semantics: For a PROMPT-LTL formula ψ and a bound k ≥ 0, let ψk be the LTL
formula obtained from ψ by replacing all occurrences of Fp by F≤k. Then, a system S
satisfies ψ iff there is k ≥ 0 such that S satisfies ψk.

Note that while the syntax of PROMPT-LTL is very similar to that of LTL, its seman-
tics is defined with respect to an entire system, and not with respect to computations.
For example, while each computation π in the system S from Figure 1 has a bound
kπ ≥ 0 such that Gq is satisfied in π with wait time kπ, there is no k ≥ 0 that bounds
the wait time of all computations. It follows that, unlike LTL, we cannot characterize a
PROMPT-LTL formula ψ by a set of traces L(ψ) such that a system S satisfies ψ iff the
set of traces of S is contained in L(ψ). Rather, one needs to associate with a formula ψ
of PROMPT-LTL an infinite family L(ψ) of sets of traces, so that a system S satisfies ψ
if traces(S) ⊆ L for some L ∈ L(ψ). This suggests a richer view of linear-time logic
than the standard one, which associates a single set of traces with each formula in the
logic. Even in this richer setting, we have the desired feature that two trace-equivalent
processes satisfy the same linear-time formulas.

6 Discussion

It could be fairly argued that the arguments raised in this paper have been raised before.

– Testing equivalence, introduced in [20], is clearly a notion of contextual equiva-
lence. Their answer to the question, “What is a test?”, is that a test is any process
that can be expressed in the formalism. So a test is really the counterpart of a context
in program equivalence. (Though our notion of context in Section 4, as a network
of transducers, is, a priori, richer.) At the same time, bisimulation equivalence has
been recognized as being too fine a relation to be considered as contextual equiva-
lence [8,9,10,30].

– Furthermore, it has also been shown that many notions of process equivalence stud-
ied in the literature can be obtained as contextual equivalence with respect to ap-
propriately defined notions of directly observable behavior [11,36,41,47]. These
notions fall under the title of decorated trace equivalence, as they all start with
trace semantics and then endow it with additional observables. These notions have
the advantage that, like bisimulation equivalence, they are not blind to issues such
as deadlock behavior.

Branching vs. Linear Time: Semantical Perspective 31

With respect to the first point, it should be noted that despite the criticisms leveled at
it, bisimulation equivalence still enjoys a special place of respect in concurrency theory
as a reasonable notion of process equivalence [28]. In fact, the close correspondence be-
tween bisimulation equivalence and the branching-time logic CTL has been mentioned
as an advantage of CTL. Thus, it is not redundant, in our opinion, to reiterate the point
that bisimulation and its variants are not contextual equivalences.

With respect to the second point we note that our approach is related, but quite dif-
ferent, than that taken in decorated trace equivalence. In the latter approach, the “dec-
orated” of traces is attributed by concurrency theorists. As there is no unique way to
decorate traces, one is left with numerous notions of equivalence and with the attitude
quoted above that “It is not the task of process theory to find the ‘true’ semantics of
processes, but rather to determine which process semantics is suitable for which ap-
plications” [28]. In our approach, only the modelers know what the relevant aspects of
behavior are in their applications and only they can decorate traces appropriately, which
led to our Principles of Comprehensive Modeling and Observable I/O. In our approach,
there is only one notion of contextual equivalence, which is trace equivalence.

Admittedly, the comprehensive-modeling approach is not wholly original, and has
been foretold by Brookes [12], who said: “We do not augment traces with extrane-
ous book-keeping information, or impose complex closure conditions. Instead we in-
corporate the crucial information about blocking directly in the internal structure of
traces.” Still, we believe that it is valuable to carry Brookes’s approach further, sub-
stantiate it with our three guiding principles, and demonstrate it in the framework of
transducers.

An argument that can be leveled at our comprehensive-modeling approach is that
it requires a low-level view of systems, one that requires modeling all relevant behav-
ioral aspects. This issue was raised by Vaandrager in the context of I/O Automata [55].
Our response to this criticism is twofold. First, if these low level details (e.g., deadlock
behavior) are relevant to the application, then they better be spelled out by the mod-
eler rather than by the concurrency theorist. Second, one needs to separate the user-
level language from its underlying semantics. One could imagine a language such as
CSP with handshake communication, where the language does not explicitly address
deadlocks. Nevertheless, the underlying semantics, say, in terms of structured opera-
tional semantics [33], needs to expose deadlock behavior explicitly and make it observ-
able. This would be analogous to the description of exceptional termination in many
programming languages. Note that the alternative is to accept formalisms for concur-
rency that are not fully specified and admit a plethora of different notions of process
equivalence.

In conclusion, this paper puts forward an, admittedly provocative, thesis, which is
that process-equivalence theory allowed itself to wander in the “wilderness” for lack of
accepted guiding principles. The obvious definition of contextual equivalence was not
scrupulously adhered to, and the underspecificity of the formalisms proposed led to too
many interpretations of equivalence. While one may not realistic expect a single paper
to overwrite about 30 years of research, a more modest hope would be for a renewed
discussion on the basic principles of process-equivalence theory.

32 S. Nain and M.Y. Vardi

Acknowledgment. The second author is grateful to P. Cousot and G. Plotkin for chal-
lenging him to consider the semantical aspects of the branching vs. linear-time issue,
and to S. Abramsky, L. Aceto, S. Brookes, W. Fokkink, P. Panagaden, A. Pitts, and
G. Plotkin for discussions and comments on this topic.

References

1. Abadi, M., Lamport, L.: Composing specifications. ACM Transactions on Programming
Languagues and Systems 15(1), 73–132 (1993)

2. Abramsky, S.: Observation equivalence as a testing equivalence. Theor. Comput. Sci. 53,
225–241 (1987)

3. Abramsky, S.: What are the fundamental structures of concurrency?: We still don’t know!
Electr. Notes Theor. Comput. Sci. 162, 37–41 (2006)

4. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-
Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec temporal logic:
A new temporal property-specification logic. In: Katoen, J-P., Stevens, P. (eds.) ETAPS 2002
and TACAS 2002. LNCS, vol. 2280, pp. 211–296. Springer, Heidelberg (2002)

5. Beer, I., Ben-David, S., Geist, D., Gewirtzman, R., Yoeli, M.: Methodology and system for
practical formal verification of reactive hardware. In: Dill, D.L. (ed.) CAV 1994. LNCS,
vol. 818, pp. 182–193. Springer, Heidelberg (1994)

6. Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. Acta Informat-
ica 20, 207–226 (1983)

7. Berry, G., Gonthier, G.: The ESTEREL synchronous programming language: design, seman-
tics, implementation. Science of Computer Programming 19(2), 87–152 (1992)

8. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1), 232–268
(1995)

9. Bloom, B., Meyer, A.R.: Experimenting with process equivalence. Theor. Comput.
Sci. 101(2), 223–237 (1992)

10. Bol, R.N., Groote, J.F.: The meaning of negative premises in transition system specifications.
J. ACM 43(5), 863–914 (1996)

11. Boreale, M., Pugliese, R.: Basic observables for processes. Information and Computa-
tion 149(1), 77–98 (1999)

12. Brookes, S.D.: Traces, pomsets, fairness and full abstraction for communicating processes.
In: Brim, L., Jančar, P., Křetı́nský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421,
pp. 466–482. Springer, Heidelberg (2002)

13. Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke structures in propo-
sitional temporal logic. Theoretical Computer Science 59, 115–131 (1988)

14. Carmo, J., Sernadas, A.: Branching vs linear logics yet again. Formal Aspects of Comput-
ing 2, 24–59 (1990)

15. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Databases, pp.
293–322. Plenum Press (1978)

16. Clarke, E.M., Draghicescu, I.A.: Expressibility results for linear-time and branching-time
logics. In: de Bakker, J.W., de Roever, W.P., Rozenberg, G. (eds.) Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 428–437.
Springer, Heidelberg (1989)

17. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Transactions on Programming Lan-
guagues and Systems 8(2), 244–263 (1986)

Branching vs. Linear Time: Semantical Perspective 33

18. Clarke, E.M., Grumberg, O., Long, D.: Verification tools for finite-state concurrent systems.
In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Decade of Concurrency – Reflec-
tions and Perspectives (Proceedings of REX School). LNCS, vol. 803, pp. 124–175. Springer,
Heidelberg (1994)

19. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
20. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput. Sci. 34,

83–133 (1984)
21. Dill, D.L.: Trace theory for automatic hierarchical verification of speed independent circuits.

MIT Press, Cambridge (1989)
22. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg (2006)
23. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel programs us-

ing fixpoints. In: Proc. 7th Int. Colloq. on Automata, Languages, and Programming, pp.
169–181 (1980)

24. Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: On branching versus linear
time. Journal of the ACM 33(1), 151–178 (1986)

25. Emerson, E.A., Lei, C.-L.: Modalities for model checking: Branching time logic strikes back.
In: Proc. 12th ACM Symp. on Principles of Programming Languages, pp. 84–96 (1985)

26. Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative temporal reasoning. In:
Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 136–145. Springer, Heidel-
berg (1991)

27. Fisler, K., Vardi, M.Y.: Bisimulation minimization and symbolic model checking. Formal
Methods in System Design 21(1), 39–78 (2002)

28. van Glabbeek, R.J.: The linear time – branching time spectrum I; the semantics of concrete,
sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process
Algebra. Ch-1, pp. 3–99. Elsevier, Amsterdam (2001)

29. Goering, R.: Model checking expands verification’s scope. Electronic Engineering Today
(February 1997)

30. Groote, J.F.: Transition system specifications with negative premises. Theor. Comput.
Sci. 118(2), 263–299 (1993)

31. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. Kluwer Academic
Publishers, Dordrecht (1996)

32. Hartmanis, J., Stearns, R.E.: Algebraic Structure Theory of Sequential Machines. Prentice-
Hall, Englewood Cliffs (1966)

33. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
34. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of

the ACM 32, 137–161 (1985)
35. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs

(1985)
36. Jonsson, B.: A fully abstract trace model for dataflow networks. In: Proc. 16th ACM Symp.

on Principles of Programming Languages, pp. 155–165 (1989)
37. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. In: Damm, W.,

Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 406–419. Springer, Heidelberg (2007)
38. Lamport, L.: Sometimes is sometimes not never - on the temporal logic of programs. In:

Proc. 7th ACM Symp. on Principles of Programming Languages, pp. 174–185 (1980)
39. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their linear

specification. In: Proc. 12th ACM Symp. on Principles of Programming Languages, pp. 97–
107 (1985)

40. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quarterly 2(3),
219–246 (1989)

41. Main, M.G.: Trace, failure and testing equivalences for communicating processes. Int’l J. of
Parallel Programming 16(5), 383–400 (1987)

34 S. Nain and M.Y. Vardi

42. Marek, W.W., Trusczynski, M.: Nonmonotonic Logic: Context-Dependent Reasoning.
Springer, Heidelberg (1997)

43. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artif. Intell. 13(1-2),
27–39 (1980)

44. Milner, R.: Processes: a mathematical model of computing agents. In: Logic Colloquium,
North Holland, pp. 157–173 (1975)

45. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg
(1980)

46. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
47. Olderog, E.R., Hoare, C.A.R.: Specification-oriented semantics for communicating pro-

cesses. Acta Inf. 23(1), 9–66 (1986)
48. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) Theoretical

Computer Science, GI 1981. LNCS, vol. 104, Springer, Heidelberg (1981)
49. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. on Foundations of

Computer Science, pp. 46–57 (1977)
50. Pnueli, A.: Linear and branching structures in the semantics and logics of reactive systems.

In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 15–32. Springer, Heidelberg (1985)
51. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in Cesar. In:

Dezani-Ciancaglini, M., Montanari, U. (eds.) Proc. 8th ACM Symp. on Principles of Pro-
gramming Languages. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)

52. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logic. Journal of
the ACM 32, 733–749 (1985)

53. Stirling, C.: Comparing linear and branching time temporal logics. In: Banieqbal, B., Pnueli,
A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 1–20. Springer,
Heidelberg (1989)

54. Stirling, C.: The joys of bisimulation. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998.
LNCS, vol. 1450, pp. 142–151. Springer, Heidelberg (1998)

55. Vaandrager, F.W.: On the relationship between process algebra and input/output automata.
In: Proc. 6th IEEE Symp. on Logic in Computer Science, pp. 387–398 (1991)

56. Vardi, M.Y.: Linear vs. branching time: A complexity-theoretic perspective. In: Proc. 13th
IEEE Sym. on Logic in Computer Science, pp. 394–405 (1998)

57. Vardi, M.Y.: Sometimes and not never re-revisited: on branching vs. linear time. In: San-
giorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 1–17. Springer, Hei-
delberg (1998)

58. Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Margaria, T., Yi, W. (eds.)
ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001)

59. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Proc. 1st IEEE Symp. on Logic in Computer Science, pp. 332–344 (1986)

60. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Assertions.
Springer, Heidelberg (2005)

61. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press, Cambridge
(1993)

Mind the Shapes: Abstraction Refinement

Via Topology Invariants�

Jörg Bauer1, Tobe Toben2, and Bernd Westphal2

1 Technical University of Denmark, Kongens Lyngby, Denmark
joba@imm.dtu.dk��

2 Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
{toben,westphal}@informatik.uni-oldenburg.de

Abstract. Dynamic Communication Systems (DCS) are infinite state
systems where an unbounded number of processes operate in an evolv-
ing communication topology. For automated verification of properties
of DCS, finitary abstractions based on exploiting symmetry can be em-
ployed. However, these abstractions give rise to spurious behaviour that
often inhibits to successfully prove relevant properties.

In this paper, we propose to combine a particular finitary abstraction
with global system invariants obtained by abstract interpretation. These
system invariants establish an over-approximation of possible commu-
nication topologies occurring at runtime, which can be used to identify
and exclude spurious behaviour introduced by the finitary abstraction,
which is thereby refined. Based on a running example of car platoon-
ing, we demonstrate that our approach allows to verify temporal DCS
properties that no technique in isolation is able to prove.

1 Introduction

Formal verification of systems with dynamic process creation is an active re-
search area. In [2], we characterised a certain class of such systems, the so-called
Dynamic Communication Systems (DCS), by providing the formal description
language DCS protocols. DCS protocols are complemented by Mett, a variant
of temporal logic for requirements specification. Here, we elaborate on an auto-
mated procedure for checking whether a DCS protocol satisfies a Mett property.
A manual procedure was sketched in [2]. By bridging the technical gap between
analysis techniques with different strengths and weaknesses, we obtain a fully
automated, integrated implementation, which benefits from synergetical effects.

Running Example. DCS are ubiquitous, most prominent among them mobile
ad-hoc networks, service-oriented computing scenarios, or traffic control systems
based on wireless communication. In order to demonstrate the appropriateness
of our automated DCS verification technique we pick the characteristic real-
world example car platooning, a traffic control system studied by the California
� Partly supported by the German Research Council (DFG), SFB/TR 14 AVACS.

�� The author was partly sponsored by the project SENSORIA, IST-2005-016004.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 35–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

36 J. Bauer, T. Toben, and B. Westphal

c1,1 c1,2

c2,1 c2,2 c2,3 c2,4

c3,1 c3,2 c3,3

(a) Snapshot of car platooning.

c1,1 c1,2

c2,1 c2,2 c2,3 c2,4

c3,1 c3,2 c3,3

(b) Putting a spotlight on some cars.

⊥
�

c2,1 c2,2 c2,3

⊥�
⊥�

⊥�

⊥�

(c) Abstract from those in darkness.

c2,1 c2,2 c2,3

⊥

(d) Summarised process.

Fig. 1. Car Platooning: Two platoons and one free agent, from concrete to abstract

PATH project [9]. In order to optimise traffic throughput on highways and reduce
energy consumption, they propose that cars shall dynamically form platoons (cf.
Fig. 1(a)). Conceptionally, each car has a notion of state, that is, whether it is
currently a follower in a platoon (like c1,1), a leader of a platoon (like c1,2), or
whether it is driving on its own as a free agent (like c3,3). In addition, there are
links between cars, indicated by the arrows in Fig. 1(a). Each follower knows
its leader, e.g. to negotiate leaving the platoon, each leader knows its followers,
e.g. to announce a braking manoeuvre, and each car may know a lane-neighbour.
Interlinked cars communicate by message passing. There is no finite upper bound
on the number of cars, as cars freely enter and leave the system “highway”.

Example Requirement. There are three elementary actions for car platooning:
merge and split, to build up and separate platoons, and change lane. In the
following we’ll focus on the merge action. If a platoon led by car cb merges with
a platoon in front led by car cf , then during the merge cb hands over its followers
to cf . For example, car c3,2 merging with c3,3 in Fig. 1(a) were an instance of this
situation with cb := c3,2 and cf := c3,3. Given a formal DCS protocol model of
merge (cf. Sect. 2), a natural requirement to check would concern this handover.
Namely, for each follower c of cb, whenever cb sends a message ‘newld ’ (new
leader) to c carrying the identity of the new leader cf as a parameter, then c
will finally change its leader link to cf . Until that point in time, cb remains c’s
leader. In the logic Mett (cf. Table 1 on page 41), this property is written as

∀ cb, c, cf . G (snd[newld](cb, c, cf) → (conn[ldr](c, cb) U conn[ldr](c, cf)))︸ ︷︷ ︸
=:μ0

. (1)

Mind the Shapes: Abstraction Refinement Via Topology Invariants 37

⊥ : 〈∗〉 c : 〈fl〉

newld(⊥)

newld(cf)

cb : 〈fl〉 cf : 〈fa〉

req(cf)

flws ldr

flws

ldr

Fig. 2. (Spurious) counter-example: Back leader cb detected free agent cf ahead
and merged. Summary process ⊥ sent a spurious ‘newld(⊥)’ before cb correctly sent
‘newld(cf)’ to follower c. Consumption of the former by c leads to a violation of (1).

Analysis Problem. Faithfully modelling car platooning requires unbounded cre-
ation and destruction of processes as we cannot assume finite bounds on the
number of cars. DCS are consequently infinite-state systems. In order to employ
automated verification techniques for temporal properties, we use a particular
abstraction to finite-state transition systems following the spotlight principle [18].
The principle is to keep a finite number of processes completely precise and ab-
stract from all others, the rest. In the particular case of Data Type Reduction
(DTR, cf. Section 3), the number heuristically depends on the considered prop-
erty and information about the state of the rest is completely dismissed, in
particular links from the rest into the spotlight. Links from the spotlight are
preserved but may point to the rest. Figures 1(c) and 1(d) illustrate the ab-
stract state that represents Fig. 1(b), if the spotlight is on cars c2,1, c2,2, c2,3.
Having only the local information of the precise processes has the positive effect
that the transition relation on abstract states is easily computable from a DCS
description [19]. A negative effect is that the aggressive abstraction gives rise
to a large amount of spurious behaviour, possibly comprising spurious counter-
examples for a given property. As discussed in more detail in Section 3, many
critical spurious runs, i.e. runs leading to a bad state in the abstract system,
which is unreachable in the concrete one, follow a pattern we call spurious inter-
ference. In instances of this pattern, one observes messages from the abstracted
rest to the concrete part, which are not possible in the concrete system.

For example, consider property (1) with three precise processes and the rest
as in Fig. 1(d). If the rest sends a spurious ‘newld ’ message with an identity
different from cb and cf to c, the property is violated (cf. Fig. 2). This situation
can manually be identified as spurious by considering the DCS protocol as there
is at most one car which may send ‘newld ’, namely the back leader. Since this is
cb, there cannot be a car in the rest sending the message. With this insight, it is
desirable to refine the DTR abstraction by explicitly excluding such communica-
tion topologies, i.e. a global state of a DCS comprising connected processes, like
the one shown in Fig. 2. Automating this kind of refinement poses two problems:
(i) to automatically obtain information on the set of possible topologies; and (ii)
to soundly exclude topologies shown impossible by (i).

Approach. We tackle problem (i) by employing a new static analysis of graph
grammars [4], called Topology Analysis (TA) below. Using our new encoding of
DCS in graph grammars as presented in Section 4, we can thus compute abstract

38 J. Bauer, T. Toben, and B. Westphal

graphs, topology invariants, describing an over-approximation of all topologies
possibly occurring in runs of a DCS. Regarding problem (ii), Section 5 provides a
logical characterisation of whether an abstract DTR topology like the one shown
in Fig. 1(d) is definitely impossible according to the topology invariants com-
puted by TA. These logical formulae can then be used as negative assumptions
when model-checking the abstract transition system obtained by DTR. Here
the challenge is that both the topologies in the abstract, finite-state transition
system obtained by DTR and the topology invariants computed by TA are el-
ements of different abstract domains. It is neither obvious how these domains
relate formally nor whether an element of one domain represents more concrete
topologies than an element of the other domain, since both typically represent
infinitely many concrete topologies.

On top of first experimental results in Section 5 proving our approach to be
effective, we briefly discuss in Section 6 whether the refinement proposed here
could be further refined by, e.g., counter-example guidance.

Related Work. We specify DCS using DCS protocols (cf. Section 2). They were
originally inspired by Communicating Finite State Machines (CFSM) of [5] but
extend those by dynamic process creation and destruction and flexible commu-
nication topologies. Other than DCS protocols, DCS may be modelled using ex-
isting techniques such as the π-calculus [14] or variants of I/O automata (see [12]
for an overview). The π-calculus is less adequate for our purpose, because cru-
cial high-level features of DCS, like process states, message queues, or explicit
graph-like communication topologies require cumbersome and low-level encod-
ings into elementary π-actions. In that case, higher-level properties of a DCS
are no longer accessible for specially tailored analyses or optimisations. Simi-
lar arguments hold for versions of I/O automata dealing with dynamic process
creation, although they are admittedly much closer to DCS protocols. However,
the better part of research on I/O automata is devoted to features like time or
probability, while DCS protocols emphasise the dynamics of DCS.

DTR (cf. Section 3) is an instance of the spotlight principle [18] and as such re-
lated to different abstractions mapping infinite-state transition systems to finite-
state ones comprising, e.g., [11] and [6]. Technically, Topology Analysis (TA, cf.
Section 4) is an abstract interpretation of graph grammars, which are well suited
to explicitly describe evolving DCS communication topologies. There is only one
other abstract interpretation based approach to graph grammar verification [16].
Other approaches to graph grammar analysis use Petri-net based techniques [1].
However, these approaches are mostly concerned with the verification of pointer
programs, where updates to graphs occur in a more restricted manner. A static
analysis to determine communication topologies for π is given in [17].

The principal idea of Section 5, to refine an abstraction with separately ob-
tained invariants, is not new, e.g. [10], but the combination of TA and DTR is.
Moreover, we integrate, in a technically sound way, two verification techniques
often regarded as orthogonal: model checking and static program analysis. The
synergy effect results in a novel automated verification technique for DCS.

Mind the Shapes: Abstraction Refinement Via Topology Invariants 39

It is noteworthy that hardly any of the specification and verification issues
addressed in this work are addressed in the original PATH design [9], which deals
with a static number of cars only. In particular, there are neither process cre-
ation, destruction, nor evolving communication topologies. In fact, in preliminary
work [2], we manually discovered (and remedied) severe flaws in the original
specification. With our proposed technique we are able to do so automatically.

2 Dynamic Communication Systems

Dynamic Communication Systems (DCS) can be viewed as a strict generalisa-
tion of classical parameterised systems because every process executes the same,
finite control part, the DCS protocol. But in contrast to classical parameterised
systems, where a fixed number of K processes run in parallel and communicate
via global shared memory, processes are dynamically created and destroyed in
DCS without an upper bound on the number of processes. Furthermore, DCS
processes only have local memory, communicate asynchronously by passing mes-
sages, which may carry process identities, and in general aren’t fully connected,
but every process knows only some other processes via links.

In [2], we have introduced DCS protocols as an adequate modelling language
for DCS, such as the car platooning example.

Syntax. A DCS protocol is a seven-tuple P = (Q, A, Ω, χ, Σ, Emsg, succ) with

– a finite set Q of states a process may assume,
– initial states A ⊆ Q assumed by newly appeared processes and fragile states

Ω ⊆ Q, in which processes may disappear,
– a finite set χ of channels, each providing potential links to other processes,
– a finite set Σ of messages and environment messages Emsg ⊆ Σ, that is,

messages that may non-deterministically be sent by the environment, and
– a successor relation ‘succ’, determining each processes’ behaviour.

The successor relation succ comprises four different kinds of labelled transitions
between two states from Q, namely send, receive, modify, and conditional transi-
tions. The corresponding (possibly empty) four sets partitioning succ are denoted
by Snd, Rec, Mod, and Cnd. The notation for transitions is as follows.

– (q, c, m, c′, q′) ∈ Snd ⊆ Q × χ × Σ × χ ∪̇ {id} × Q: send over channel c the
message m carrying one of the identities stored in channel c′ or the own
identity if c′ = id, and change to state q′;

– (q, m, c, op, q′) ∈ Rec ⊆ Q × Σ × χ × {set, join} × Q: consume a message m,
store the attached identity by operation op to channel c, change to state q′;

– (q, c1, op, c2, q
′) ∈ Mod ⊆ Q × χ × {add, del, pick} × χ × Q: combine channels

c1 and c2 by operation op, store the result in channel c1, change to state q′;
– (q, em, c, q′) ∈ Cnd ⊆ Q × B × χ × Q: change to state q′ if the emptiness

constraint em on channel c is satisfied (see below).

Figure 3 shows a high-level model of the merge procedure which is supposed
to be executed by each car. At any time, each car is either driving on its own as

40 J. Bauer, T. Toben, and B. Westphal

Q = {fa, ld, fl}
A = {fa}, Ω = ∅
χ = {flws, ldr}
Σ = {car ahead, req,

newld,newfl}
Emsg = {car ahead}

fa ld

fl

?req(p), set(flws, p);

?car ahead(p),
set(ldr, p); ldr!req(id);

?car ahead(p),
set(ldr, p); ldr!req(id);

flws!newld(p); del(flws, flws);

?req(p), join(flws, p);
?newfl(p),
join(flws, p);

?newld(p), set(ldr, p); ldr!newfl(id);

Fig. 3. High-level implementation of “platoon merge”

a free agent (fa) or participates in a platoon as leader (ld) or follower (fl). Each
follower knows its leader by the channel ldr and each leader knows its followers by
the channel flws. For conciseness, the figure makes use of complex transitions [15]
where one receive and a couple of send actions are being executed atomically.

The environment message ‘car ahead’ models that some sensors of a free agent
discover cars in front and notify the free agent of the identity of such approached
cars. The free agent then requests the merge by sending a message ‘req’ which
carries its identity and becomes a follower by taking the transition to fl. If a free
agent receives a merge request, it stores the requester in channel flws and changes
state to ld. A leader may accept more followers and add them to flws, or merge
with another free agent or platoon in front. In the latter case, it announces the
new leader by a ‘newld’ message to its followers and dismisses them, the followers
then register with the new leader by a ‘newfl’ message.

Semantics. Given a DCS protocol P and a countably infinite set Id of identities,
a (local) configuration of a process is a triple (q, C, M) where q ∈ Q is the local
state, C : χ → 2Id is a function mapping channels to a set of process identities,
and M = (Σ × Id)∗ is the message queue. We use S(P) to denote the set of all
local configurations of protocol P . A local configuration (q, C, M) is called initial
if q ∈ A, C yields the empty set for all channels, and M is the empty word.

A topology (or global configuration) of P is a partial function N : Id ⇀ S(P)
mapping identities to local configurations. In the following we write ι ∈ N to
denote that N is defined for ι. A topology N evolves into N ′, written as N � N ′,
if one of the following conditions is satisfied, where all processes not affected by
the evolution are required to remain the same. Note that the first and the last
two actions are environment actions which are always enabled.
Appearance: A new process is created, starting in an initial state, not con-

nected to anyone else, and with an empty queue, i.e. N ′ = N [ι �→ (q, C, M)]
where dom(N ′) = dom(N) \ {ι} and configuration (q, C, M) is initial.

SendMessage: A process ι ∈ N takes a send transition (q, c, m, c′, q′) and thus
appends message m carrying an identity as parameter to the message queues
of the processes denoted by its channel c, i.e. if N (ι) = (q, C, M) we have
that N ′(ι) = (q′, C, M) and N ′(ι0) = (q0, C0, M0.(m, ι′)) for all ι0 ∈ C(c)
with N (ι0) = (q0, C0, M0). If c′ = id, the process sends its own identity, i.e.
ι′ = ι, otherwise it sends an element from channel c′, i.e. ι′ ∈ C(c′).

Mind the Shapes: Abstraction Refinement Via Topology Invariants 41

Table 1. Mett predicates (p, p1, p2 are quantified variables)

p1 = p2 equality
instate[q](p) in state q

conn[c](p1, p2) linked via channel c
� p just created

snd[m](p1, p2, p) message m just sent
pend[m](p1, p2, p) message m pending
rcv[m](p1, p2, p) message m received

⊗ p about to die

ReceiveMessage: A process ι ∈ N takes a receive transition (q, m, c, op, q′)
and thus stores the identity carried by the message to channel c, i.e. if N (ι) =
(q, C, (m, ι0).M) we have N ′(ι) = (q′, C′, M) where C′(c) = {ι0} if op = set,
and C′(c) = C(c) ∪ {ι0} if op = join, and C′(c′) = C(c′) for all c′ �= c.

ModifyChannel: A process ι ∈ N takes a modify transition (q, c1, op, c2, q
′),

i.e. if N (ι) = (q, C, M) we have N ′(ι) = (q′, C′, M) where C′(c1) = C(c1) ∪
C(c2) if op = add, and C′(c1) = C(c1) \ C(c2) if op = del, and C′(c1) = {ι0}
for some ι0 ∈ C(c2) if op = pick, and C′(c) = C(c) for all c �= c1.

Conditional: A process ι ∈ N takes a conditional transition (q, em, c, q′), i.e.
if N (ι) = (q, C, M) such that em ↔ (C(c) = ∅), then N ′(ι) = (q′, C, M).

SendEnvMessage: A process ι ∈ N obtains a message from Emsg with an
arbitrary identity from N attached similarly to the sending case above.

Disappearance: A process ι ∈ N in a fragile state is destroyed, i.e. if N (ι) =
(q, C, M) and q ∈ Ω then N ′ = N |dom(N)\{ι}. Process ι then disappears
from all channels, i.e. for all processes ι′ ∈ N ′ with N (ι′) = (q, C, M) we
have N ′(ι′) = (q, C′, M) with C′(c) = C(c) \ {ι} for all channels c.

The semantics of P is the transition system with the (in general) infinite set
of (unbounded) topologies of P as states, the empty topology as initial state,
and transitions given by the evolution relation � as defined above. That is,
Fig. 3 models that cars freely enter the highway, without an upper bound on the
number of cars. Triggered by the environment message ‘car ahead’, free agents
or platoons then merge into platoons forming topologies of interlinked cars.

Requirements Specification Language. In [2], DCS is complemented by the re-
quirements specification language Mett. A first example of a Mett requirement
has already been given in Section 1 in formula (1). Mett is basically a first-
order extension of LTL providing quantification over anonymous objects and the
predicates given by Table 1, which refer to processes’ local state, topology, and
communication. Given a Mett formula μ and a DCS protocol P , the satisfaction
relation P |= μ is inductively defined on the transition system of P (cf. [2]).

3 Data Type Reduction

By the definitions in Section 2, we have to deal with three dimensions of complex-
ity when verifying Mett properties for DCS: finite control within each process,
unbounded, evolving topologies of processes, and queue based communication.
Here, we focus on the first two layers and restrict message queues to length 1.

42 J. Bauer, T. Toben, and B. Westphal

Data Type Reduction (DTR) is an abstraction technique, which has originally
been introduced for the verification of properties of parameterised systems [13].
In [7], it has been demonstrated that this abstraction applies as well to systems
with unbounded dynamic creation and destruction of processes, thus in particu-
lar to DCS. Beyond [7,13], for space reasons, we only recall as much of DTR as
is necessary to understand the intrinsic problem of spurious counter-examples
to be cured with topology invariants (cf. Section 4).

DTR actually applies to quantifier-free properties with free variables, like μ0
of (1) on page 36. The universally quantified case, i.e. the whole formula (1),
follows by symmetry from finitely many cases [13]. DTR employs the spotlight
principle [18], that is, it maps each concrete topology N to an abstract topology
where a fixed number of processes is kept completely precise and information
about the rest is lost (cf. Fig. 1). An abstract topology N �

N maps the limited
set of identities Id�

N = {u1, . . . , uN , ⊥}, where N is the number of individuals
kept precise, to local configurations from S(P). Thereby, the set of identities is
reduced to a finite set and consequently there are only finitely many abstract
topologies. The abstraction of a concrete topology like Fig. 1(d) is obtained from
Fig. 1(b) by replacing all identities, in links and messages, belonging to the rest
by the special identity ⊥. The local configuration of ⊥ is the upper bound of
all possible local configurations, not only of all the ones present in the original
topology; this is graphically illustrated for links by dashed arrows in Fig. 1(d).
Existential abstraction of the original system’s transition relation yields a finite-
state transition system with abstract topologies as states (cf. [18]). Identity ⊥
is special as it compares inconclusive to itself and unequal to others, i.e. when
the leaders of two cars are compared and are ⊥, then both possible outcomes
are explored. With P�

N , θ |= μ0 denoting that the Mett formula μ0 is valid
under assignment θ in the abstract transition system induced by DTR for P and
N ∈ N, which can heuristically be chosen depending on the formula, we have

Lemma 1 (Soundness of DTR [7]). Given a DCS protocol P and a quantifier-
free Mett formula μ0 over variables p1, . . . , pn, DTR is sound for any N ∈ N and
assignment θ : {p1, . . . , pn} → Id�

N \ {⊥}, i.e. P�
N , θ |= μ0 ⇒ P , θ |= μ0. ♦

The abstract transition relation is easily obtained by a syntactical transformation
of the DCS protocol because only information local to the finitely many processes
in the spotlight has to be represented [19]. This property is easily lost when trying
to explicitly add precision to the abstract topologies. However, the abstraction is
rather coarse allowing for many spurious interference initiated from the shadows
as described in Section 1.

4 Topology Analysis

As outlined in Section 1, the idea presented in this paper is to add precision to
the rather coarse abstract transition system obtained by DTR (cf. Section 3) by
forcing it to adhere to certain, independently established, invariants.

Mind the Shapes: Abstraction Refinement Via Topology Invariants 43

u0 u1

u2 u3
ldr

flws

car ahead

N = {ι0 �→ (fa, [], (car ahead, u1)),

ι1 �→ (fa, [], ε),

ι2 �→ (fl, [ldr �→ {u3}], ε),
ι3 �→ (ld, [flws �→ {u2}], ε)}

car ahead

fa fa

fl ld
ldr

flws

m m

Fig. 4. DCS topology N and its graph representation

A particular approach to obtain information about legal topologies is Topol-
ogy Analysis (TA) [4]. Its subject are directed node- and edge-labelled graphs
and graph grammars, that is, sets of graph transformation rules. The static
analysis of a graph grammar yields a rather precise finite over-approximation,
called topology invariant, of all graphs possibly generated by the graph gram-
mar. Formally, topology invariants are sets of abstract clusters. An instance of an
abstract cluster is any graph that can be abstracted to it by partner abstraction.
Partner abstraction in turn is quotient graph building with respect to partner
equivalence, which is motivated by preserving information about who is talking
when to whom. Intuitively, two processes are partner equivalent if they are in
the same state and if they have links to the same kind of processes — regard-
less of the number of such communication partners. In the context of dynamic
communication systems, such information is valuable, because it is really this
information that determines possible successor topologies of a given topology.

In the following, we rephrase the technique of [4] and contribute an encoding
of DCS into graph grammars, thereby making TA amenable to DCS verification.

Topology Analysis. A graph is a five-tuple G = (V, E, s, t,) featuring a set of
nodes, a set of edges, a source-, a target-, and a labelling function. Source and
target functions map edges to their respective source and target nodes, while
	 maps both, nodes and edges, to labels. A graph grammar G is a finite set of
graph transformation rules. A graph transformation rule consists of two graphs,
a left graph L and a right graph R, and a relation between them indicating which
nodes and edges in L and R correspond to each other. In the rule shown in Fig. 5,
this correspondence is given implicitly by position. A rule can be applied to a
graph G, if L is a subgraph of G. The result of the application is the replacement
of L’s occurrence in G with R. For more details we refer to [4].

Two nodes u1, u2 ∈ V are partner equivalent if 	(u1) = 	(u2) and if for all
edge labels a, oG(a, u1) = oG(a, u2) and iG(a, u1) = iG(a, u2). These sets denote
the labels of the nodes adjacent to u1 and u2, that is oG(a, u1) := {	(v) | ∃e ∈
E : s(e) = u1, t(e) = v, 	(e) = a} and analogously for incoming edges.

Given a graph G, the abstract cluster αTA(G) is an abstraction of G. It is
computed in two steps: First, for each connected component C of G compute the
quotient graph with respect to partner equivalence. Doing so, mark equivalence
classes consisting of more than one node as a summary node. As a second step,
summarise isomorphic quotient graphs, that is, keep only one of them.

44 J. Bauer, T. Toben, and B. Westphal

ld

req

faldr

→
fl

req

faldr

mm

Fig. 5. Graph transformation rule: a platoon approaches a free agent, the platoon
leader is in state ld and sends a req message to the free agent in front with its identity
as parameter. Afterwards the former leader is in state fl.

The set of abstract clusters obtained by the abstract interpretation based on
partner abstraction for a graph grammar G and the empty graph as initial graph
is called topology invariant of G and denoted by GG.

Lemma 2 (Soundness of TA [4]). Let G be a graph grammar and graph G
obtained from the empty graph by applying G. Then αTA(G) ⊆ GG. ♦

DCS Topologies as Graphs. Let P = (Q, A, Ω, χ, Σ, Emsg, succ) be a DCS pro-
tocol. A topology N : Id ⇀ S(P) of P is encoded as a directed, node- and
edge-labelled graph T (N) as follows. For each process in dom(N) and each mes-
sage in one of the processes’ message queues, there is a node. Nodes representing
processes are labelled with their local state q ∈ Q, nodes representing messages
are labelled with the message name e ∈ Σ. For each process u and each channel
c ∈ χ, there are edges labelled with c to each element of C(c).

For each message, there is an edge labelled m from the destination to the
message node and from the message to its parameter (cf. Fig. 4). Note that
this representation of queues is only feasible for our restriction to finite queue
lengths. Unbounded message queues would have to be properly encoded as lists.

Actions as Graph Transformation Rules. Each element of succ is translated into
a set of graph transformation rules. An example of a graph transformation rule
resulting from the “send identity” action (ld, req, ldr, id, fl) ∈ Snd is shown in
Fig. 5. The left graph shows a process u1 in state ld that is connected to process
u2 via channel ldr. The result of u1 sending its own identity attached to message
req to process u2 is exactly the right graph. Process u1 has changed its state
to fl, u2 has an m-labelled edge to message node um, and message node um is
connected to process u1. Environment interaction like process creation or envi-
ronment messages are translated similarily. Note that this translation of a DCS
protocol into graph transformation rules can be conducted fully automatically.

Topology Invariants. Applying Topology Analysis to the encoding of the platoon
merge DCS yields a topology invariant which comprises in particular the four
abstract clusters shown in Fig. 6. Intuitively, an abstract cluster denotes that
in each topology there may be arbitrary many, that is zero or more, instances
of it. For example, C�

1 denotes the possibility of arbitrary many free agents in
each topology of the platoon merge DCS. In Fig. 6, summary nodes are drawn
with a double-outline. So abstract cluster C�

2 represents an arbitrary number of
platoons of size two, whereas C�

3 represents an arbitrary number of platoons of

Mind the Shapes: Abstraction Refinement Via Topology Invariants 45

C�
1

fa

C�
2

ld

fl

flwsldr

C�
3

ld

fl

flwsldr

C�
4

fald

fl

flwsldr
ldr

Fig. 6. Abstract clusters. Doubly outlined nodes are summary nodes.

size greater than two. Altogether, a topology invariant denotes any combination
of possible instances of the abstract clusters belonging to it.

In terms of a DCS protocol P = (Q, A, Ω, χ, Σ, Emsg, succ), a topology invari-
ant is a set GP = {C�

1, . . . , C
�
n} of abstract clusters. The labelling 	i of C�

i labels
nodes with pairs (st, sm) where st is either a DCS protocol state from Q or a
message from Σ. The boolean flag sm indicates whether the node is a summary
node or not. Each edge in Ei is labelled by 	i with a channel from χ. Given this
encoding we can apply Lemma 2 and obtain:

Corollary 1. Given DCS protocol P and topology N of P, α(T (N)) ⊆ GP . ♦

It proves to be a difficult task to relate the knowledge about valid clusters with
the abstract topologies obtained by DTR. We explain our approach to this prob-
lem being one of the major contributions of this work in the next section.

5 Putting It Together: Respecting Topology Invariants

Recall from Section 3 that DTR yields a finite-state transition system operating
on abstract topologies N �. They have the form shown in Fig. 1(d), that is, finitely
many concrete processes and a summary node representing the rest.

Materialisation. We have briefly discussed in Sections 1 and 3 that this coarse
abstraction gives rise to spurious behaviour which can in many cases (manually)
be identified as spurious by examining messages that are sent from the sum-
marised rest to concrete processes. For example, consider the abstract topology
shown in Fig. 7(a), which is the same as the one in Fig. 2. If in this abstract
topology N �, the summary process ⊥ sends a message ‘newld(⊥)’ to c, we can
conclude that the concretisation of N � comprises a topology where there is a pro-
cess capable of sending such a message. Inspecting the DCS protocol (cf. Fig. 3),
we see that there must be at least one process ιmat in the rest, which is in state
ld, which necessarily has a follower link to c to know the destination, and which
has a leader link either to ⊥ or to itself to know the sent identity. Concerning
the link from cf to ⊥, we cannot definitely conclude whether it has a link to
only one or both of the grayish nodes, that is, there are three cases. Adding all
this information to Fig. 7(a) yields Fig. 7(b), which shows one of the six pos-
sible materialisations. Figuratively speaking, the view on an abstract topology
changes from one with only a single “dark gray” summary process to one with
an additional “light gray” process that has been materialised from the summary

46 J. Bauer, T. Toben, and B. Westphal

c cb cf

⊥

ldr

flws ldr

flws

(a) Abstract topology.

c cb cf

⊥

ιmat

ldr

flws ldr

flws
flws

ldr

flws

(b) Light gray individual materialised.

Fig. 7. Materialisation. When a message is sent from the summary process (the dark
gray individual), we can conclude on a part of the topology. In the example, we can
conclude that there has to be a process having c as follower and cf as leader.

process. Note that the materialised process is still “gray” in the sense that we
typically don’t know everything about its configuration but only about the parts
involved in the observed action. For example, we cannot conclude whether ιmat

has more followers than c.
More formally, if we’re in abstract state N �, representing topology N , and

action ac = (q, c, m, c′, q′) ∈ Snd is to be executed by the process summary ⊥ we
can conclude that (i) there is a process ιmat summarised by ⊥, which has local
state q, (ii) this process ιmat has ι in channel c, and (iii) it has ι′ in channel c′.

Here, the topology invariants automatically established by Topology Analysis
(cf. Section 4) come into play as follows. For each abstract topology N � in a run
of the abstract transition system and each send action ac ∈ Snd we can derive
a (finite) set mat(N �, ac) of materialisations following the reasoning above. The
run is spurious, if it employs at least one abstract topology and action such that
all materialisations are definitely illegal. We call a materialisation as the one in
Fig. 7(b) definitely illegal if it is contradictory to topology invariant GP . For this,
note that a materialisation N �

mat again represents a set of concrete topologies
which we denote by γDTR(N �

mat). Then materialisation N �
mat is contradictory

to GP iff αTA(T (γDTR(N �
mat))) �⊆ GP . Note that this definition doesn’t directly

yield a decision procedure because γDTR(N �
mat) is in general an infinite set.

Logical Characterisation of Topology Invariants. In the following, we present a
solution which isn’t based on computing the infinite concretisations but employs
a kind of unification between materialised abstract topologies and abstract clus-
ters. This unification is expressed in terms of existentially quantifying predicate
logic formulae to be evaluated over materialisations in the 3-valued Kleene inter-
pretation of logic. Using 3-valued logic we treat the fact that materialised nodes
are still “light gray”, that is, we may not know all of their attributes. References
to other predicates of the car, e.g. whether it is currently accelerating, would
yield 1/2 as the definite value cannot be concluded from the observed commu-
nication behaviour. Indefiniteness propagates naturally over logical connective,
that is, (1∧1/2) yields 1/2, while (0∧1/2) yields 0. A formula evaluating to 1 then
indicates that a materialisation is definitely feasible, in case of 1/2, it is possibly
feasible, and in case of 0 it is definitely impossible.

Mind the Shapes: Abstraction Refinement Via Topology Invariants 47

After materialisation, we have finite sets of abstract topologies and abstract
clusters GP obtained by Topology Analysis, that is, two kinds of graphs with
summary nodes that may match in numerous ways. We only consider the white
and light gray processes in the materialisations and individually check whether
their situation is possible according to GP . In other words, if the situation of
a white or light gray process in a materialisation N �

mat doesn’t occur in GP ,
then none of the concretisations of N �

mat are feasible in the concrete system (by
Corollary 1). Then if none of the materialisations from mat(N �, ac) are feasible,
all system runs on which ac applied to N � is observed are spurious. We call an
abstract topology materialisation N �

mat possibly legal wrt. GP iff for each white
and light gray process ι ∈ N � there is an abstract cluster C� = (V, E, s, t,) ∈ GP
and a matching node v ∈ V such that 	(v) is the state of ι, for each c-edge from
v to v′ there exists a process ι′ in state 	(v′) and the channel c of ι comprises ι′,
and each c′-edge from v′ to v implies that the channel c′ of ι′ comprises ι.

In order to respect the topology invariant GP during model-checking we ex-
press the relation induced by (a)–(c) by a logical formula. A process ι �= ⊥ in a
materialised abstract topology N �

mat has v ∈ V as matching node iff there is a
bijection β : {v′ ∈ V | (v, v′) ∈ E} → dom(N �

mat) such that

φv(N �
mat, ι) := q(ι) = 	(v) ∧

∧
dom(β)

(
q(β(v′)) = 	(v′) ∧

∧
{e∈E|s(e)=v∧t(e)=v′}

	(e)(ι, β(v′)) ∧
∧

{e∈E|s(e)=v′∧t(e)=v}
	(e)(β(v′), ι)

)
(2)

is not 0, i.e. either 1 or 1/2 (see above), where q(ι) denotes the state of process
ι and c(ι, ι′) yields true iff there is a link c from ι to ι′ in N �

mat. Lifting this
characterisation to the level of the whole abstract cluster, the process ι is possibly
legal according to C� if one node of C� matches, i.e. if

φC�(N �
mat, ι) := ∃ v ∈ V : φv(N �

mat, ι) (3)

is not 0. A process ι in N �
mat is possibly legal according to GP if it is possible

legal according to one of the abstract clusters, i.e. if

φGP (N �
mat, ι) := ∃ C� ∈ GP : φC�(N �

mat, ι) (4)

is not 0. Finally, the whole materialised abstract topology N �
mat is possibly legal

according to GP if all processes are possibly legal, i.e. if

φGP (N �
mat) := ∀ ι ∈ dom(N �

mat) \ {⊥} : φGP (N �
mat, ι). (5)

is not 0. Note that the quantifications in (3) - (5) are over finite sets, thus expand
to unquantified predicate logic expressions.

For example, let N �
mat denote the materialised abstract topology from Fig. 7(b).

Than φC�
1
(N �

mat, ιmat) evaluates to 0 for C�
1 from Fig. 6 because ιmat is in state ld

and no node in C�
1 has this label. Also φC�

4
(N �

mat, ιmat) evaluates to 0 although

48 J. Bauer, T. Toben, and B. Westphal

there is a node labelled with ld in C�
4, but C�

4 requires that there is a leader link
back to the ld-node from each follower, which is not the case for ιmat. Actually,
none of the abstract clusters in GP matches, thus Fig. 7(b) is definitely illegal.

Assuming Adherence. The indication of spuriousness, namely executing an ac-
tion ac in abstract topology N � whose effect would require the existence of an
illegal topology in the concrete, is a non-temporal property depending only on
N � and ac. As such it can easily be added as a boolean observer to an abstract
transition system P�

N . Then by P�
N , θ, GP |= μ0, we denote that the abstract

transition system obtained by DTR satisfies μ0 on those system runs, where the
observer doesn’t indicate spuriousness and we have the following.

Theorem 1 (Soundness of DTR+TA). Let P be a DCS protocol and μ0 a
Mett formula over variables p1, . . . , pM . Then given N ∈ N and an assignment
θ = {pi �→ ui}, DTR+TA is sound, i.e. P�

N , θ, GP |= μ0 =⇒ P , θ |= μ0. ♦

The proof is based on Corollary 1 by which the restriction to GP only removes
transitions from P�

N which lead to topologies that aren’t possible in the original
transition system. Consequently, no original system behaviour is disregarded.

Note that the example discussed below indicates that we indeed obtain a
proper refinement, i.e. there are properties that cannot be established in result
of DTR but can in combination with topology invariants.

Experimental Results. For a proof-of-concept implementation, we had to streng-
then the platoon-merge protocol in comparison to the one shown in Fig. 3. The
handover of followers to the new leader on a merge, for instance, needs guarding
acknowledge messages. This protocol provides for a topology invariant with 77
abstract clusters automatically computed by an implementation of the Topology
Analysis [4]; a looser merge protocol easily yields 2000 clusters.1

We used the tool-set of [15] to translate the strengthened merge protocol
into the input language of the VIS [8] model-checker. Most recently, we have
implemented the translation of DCS protocols into graph transformation rules
fully automating our tool chain. Without respecting the topology invariants,
the model-checker unveils the counter-example discussed in the introduction in
about 90 minutes. After encoding the topology invariant following the procedure
from the previous section, we were able to prove the property in about 126
minutes. Note that Topology Analysis alone is not able to establish (1) because
it comprises a liveness requirement and TA only addresses safety properties.

6 Conclusion

We promote a combination of an easily obtainable but rather coarse abstract
transition system with external information obtained by static analysis. Our
technique has a number of benefits. It can automatically prove properties that
1 For the strengthened DCS protocol and the actually employed clusters see the full

version [3] of this paper.

Mind the Shapes: Abstraction Refinement Via Topology Invariants 49

neither technique can prove in isolation demonstrating synergy. It formally in-
tegrates techniques, namely model checking and static program analysis, that
are often considered orthogonal. Moreover, it is able to automatically discover
flaws in sophisticated traffic control applications [9] that could only be found
manually [2] before. Finally, the technique has been brought to full automation
by integrating existing tools.

The technique introduced in Section 5 uses only a small fraction of the infor-
mation carried by abstract clusters. Namely, for conciseness and to bound the
size of the resulting formulae, we only considered positive links to distance-1
nodes, that is, the direct neighbourhood of nodes, as being relevant to exclude
spurious behaviour. Further work comprises the evaluation of two aspects: look-
ing further into the abstract cluster, i.e. to check whether processes up to some
distance larger than 1 are legal according to the topology invariant, and consid-
ering information about the absence of links in abstract clusters.

Additionally, a kind of counter-example guided abstraction refinement could
be established where each action of the summary process in the counter-example
is checked for validity with respect to the topology invariant, and if one action
turns out to be spurious, then in the next run only those abstract clusters are
(soundly) considered that relate to the particular spurious interferences.

Regarding applications, we are currently implementing a number of examples
from application domains such as mobile ad-hoc networks and service-oriented
computing as DCS protocols. This is necessary to gather more experience on us-
ability and scalability of our integrated, automated toolset. In order to facilitate
the implementation of examples of realistic size, we plan to write a front-end au-
tomatically compiling more high level specifications, e.g. written in UML, into
DCS protocols.

References

1. Baldan, P., Corradini, A., König, B.: Verifying finite-state graph grammars: An
unfolding-based approach. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004.
LNCS, vol. 3170, Springer, Heidelberg (2004)

2. Bauer, J., Schaefer, I., Toben, T., Westphal, B.: Specification and Verification
of Dynamic Communication Systems. In: Proc. ACSD 2006, IEEE, Los Alamitos
(2006)

3. Bauer, J., Toben, T., Westphal, B.: Mind the shapes: Abstraction refinement via
topology invariants. Reports of SFB/TR 14 AVACS 22, SFB/TR 14 AVACS, (June
2007) available at http://www.avacs.org ISSN: 1860-9821

4. Bauer, J., Wilhelm, R.: Static Analysis of Dynamic Communication Systems by
Partner Abstraction. In: Nielson, H.R, filé, G. (eds.) SAS 2007. LNCS, vol. 4634,
pp. 249–264. Springer, Heidelberg (2007)

5. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
Association for Computing Machinery 30(2), 323–342 (1983)

6. Clarke, E.M., Talupur, M., Veith, H.: Environment abstraction for parameteri-
zed verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,
vol. 3855, pp. 126–141. Springer, Heidelberg (2005)

http://www.avacs.org

50 J. Bauer, T. Toben, and B. Westphal

7. Damm, W., Westphal, B.: Live and let die: LSC-based verification of UML-models.
Science of Computer Programming 55(1–3), 117–159 (2005)

8. Brayton, R.K., et al.: VIS: a system for verification and synthesis. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg
(1996)

9. Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: The design of platoon maneuver protocols
for IVHS. PATH Report UCB-ITS-PRR-91-6, U. California (April 1991)

10. Jain, H., et al.: Using statically computed invariants in the predicate abstraction and
refinement loop. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
137–151. Springer, Heidelberg (2006)

11. Lubachevsky, B.D.: An approach to automating the verification of compact parallel
coordination programs. Acta Inf. 21, 125–169 (1984)

12. Lynch, N.A.: Input/output automata: Basic, timed, hybrid, probabilistic, dynamic.
In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 187–188.
Springer, Heidelberg (2003)

13. McMillan, K.L.: A methodology for hardware verification using compositional
model checking. Science of Computer Programming 37, 279–309 (2000)

14. Milner, R.: The π Calculus. Cambridge University Press, Cambridge (1999)
15. Rakow, J.: Verification of Dynamic Communication Systems. Master’s thesis, Carl

von Ossietzky Universität Oldenburg (April 2006)
16. Rensink, A., Distefano, D.: Abstract graph transformation. Electr. Notes Theor.

Comput. Sci. 157(1), 39–59 (2006)
17. Venet, A.: Automatic determination of communication topologies in mobile sys-

tems. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 152–167. Springer, Heidel-
berg (1998)

18. Wachter, B., Westphal, B.: The spotlight principle. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 182–198. Springer, Heidelberg (2007)

19. Westphal, B.: LSC verification for UML models with unbounded creation and
destruction. In: Proc. SoftMC 2005. ENTCS, 144(3),133–145 (2005)

Complete SAT-Based Model Checking for

Context-Free Processes�

Geng-Dian Huang1,2 and Bow-Yaw Wang1

1 Institute of Information Science
Academia Sinica, Taiwan

2 Department of Electrical Engineering
National Taiwan University, Taiwan

{gdhuang|bywang}@iis.sinica.edu.tw

Abstract. A complete SAT-based model checking algorithm for
context-free processes is presented. We reduce proof search in local model
checking to Boolean satisfiability. Bounded proof search can therefore be
performed by SAT solvers. Moreover, the completion of proof search is
reduced to Boolean unsatisfiability and hence can be checked by SAT
solvers. By encoding the local model checking algorithm in [13], SAT
solvers are able to verify properties in the universal fragment of
alternation-free μ-calculus formula on context-free processes.

1 Introduction

Since pushdown systems give natural representations of program control flows,
problems in program analysis can be reduced to verification problems on the
infinite-state model. In the past years, efficient verification algorithms for push-
down systems have been proposed [11,12]. Experimental results suggest that the
BDD-based algorithm for the succinct model could be much more space-efficient
than those for finite-state systems in program analysis [12].

Meanwhile, hardware verification has been influenced by the development
of practical satisfiability (SAT) solvers [4,3]. Thanks to various heuristics, SAT
solvers are very efficient in both time and space. By reducing bounded verification
problems to Boolean satisfiability, the technique can detect flaws in finite-state
models unattainable by explicit-state or BDD-based algorithms.

SAT-based verification algorithms for finite-state systems make the experi-
ment in [12] regretfully obsolete. Since bebop uses a BDD-based algorithm [2],
it is unclear how the explicit-state [5,11] or BDD-based [12] algorithms for
pushdown systems compare with SAT-based algorithms for finite-state systems.
Moreover, the explicit-state and BDD-based algorithms for pushdown systems
might suffer from the same capacity problem as in finite-state systems. An SAT-
based algorithm for pushdown systems could be more scalable.

� The work is partly supported by NSC grands 95-3114-P-001-002-Y02, 95-2221-E-
001-024-MY3, and the SISARL thematic project of Academia Sinica.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 51–65, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

52 G.-D. Huang and B.-Y. Wang

In this paper, we give a complete SAT-based model checking algorithm for the
universal fragment of alternation-free μ-calculus formulae on context-free pro-
cesses. Given a context-free grammar, one may view derivations as system evolu-
tions. A context-free grammar thus defines the transition system of a context-free
process [6,13]. Although the languages recognized by context-free grammars and
pushdown automata coincide, pushdown systems are in fact more expressive than
context-free processes [8]. Nevertheless, pushdown systems with only one control
state are context-free processes. Problems in program analysis can thus be mod-
eled by context-free processes. Moreover, our preliminary experimental results
show that the new algorithm performs better than a BDD-based algorithm for
large random models. We feel that our SAT-based verification algorithm could
still be useful in program analysis.

Based on the explicit-state algorithm in [6], a local model checking algo-
rithm for alternation-free μ-calculus formulae on context-free processes is de-
veloped [13]. We construct a Boolean formula whose satisfiability is equivalent
to a bounded proof. If no proof within certain bounds can be found, the comple-
tion of proof search is then established by the unsatisfiability of another formula.
Our SAT-based model checking algorithm therefore reduces proof search of the
local model checking algorithm in [13] to Boolean (un)satisfiability. The univer-
sal fragment of alternation-free μ-calculus formulae on context-free processes can
hence be verified by the absence of proofs of their negations using SAT solvers.

An explicit-state model checking algorithm for context-free processes is given
in [6]. Second-order assertions specify properties on sets of states under contex-
tual assumptions. Since the given property is of main concern, formulae in its
closure are sufficient for contextual assumptions. The model checking problem is
solved by computing contextual assumptions on finite representations. Employ-
ing second-order assertions, a local model checking algorithm for alternation-free
μ-calculus formulae on context-free processes is developed in [13].

Complete SAT-based model checking algorithms for finite-state models can be
found in literature [15,1,18]. Interpolation is exploited to verify invariants [15].
In [1], SAT solvers are used to detect cycles and check properties in linear tem-
poral logic. A similar technique based on local model checking is able to verify
the universal fragment of μ-calculus properties by SAT solvers [18].

Verification algorithms for pushdown systems have also been proposed
[16,5,11,12,17]. Model checking monadic second-order logic properties is known
to be decidable but with a non-elementary upper bound [16]. Verifying μ-calculus
properties is DEXPTIME-complete for pushdown systems [5]. For linear prop-
erties, the problem can be solved in polynomial time but requires polynomial
space [11]. A BDD-based algorithm is compared with the software verification
tool bebop in [12]. Finally, a game-theoretic algorithm is given in [17].

The paper is organized as follows. Section 2 gives backgrounds. Our reduction
of proof search to Boolean satisfiability is presented in Section 3. The SAT-
based model checking algorithm for the universal fragment of alternation-free
μ-calculus formulae is shown in Section 4. Preliminary experimental results are
reported in Section 5. Finally, Section 6 concludes the paper.

Complete SAT-Based Model Checking for Context-Free Processes 53

2 Preliminaries

A context-free process is a finite-state automaton with procedure calls and two
designated locations.1 Procedure invocation is denoted by names. The unique
entry and exit points of procedures are represented by the start and end locations
respectively.

Definition 1. A context-free process P = 〈Σ, N, Act, →P , δ, ε〉 is a tuple where

– Σ is a finite set of locations;
– N and Act are finite sets of names and actions respectively;
– →P ⊆ Σ × (N ∪ Act) × Σ is its transition relation; and
– δ and ε are are the start and end locations respectively.

For clarity, we write σ
α→ σ′ for (σ, α, σ′) ∈→. A context-free process is guarded if

for all δ
α→ σ, we have α ∈ Act. We only consider guarded context-free processes

in the following presentation.
A context-free process system is a set of recursively defined context-free pro-

cesses. Let n be the name set {0, 1, . . . , n} and the name i denote the invocation
of process Pi. Since all context-free processes share the same name set, mutual
recursion can be modeled easily. In our setting, context-free processes and basic
process algebra are in fact equivalent [9,7].

Definition 2. A context-free process system P = 〈P0, . . . , Pn〉 consists of
context-free processes P0, . . . , Pn where

– P0, . . . , Pn share the sets of names n and actions Act;
– P0 is the main process.

A context-free process system serves as a finite representation of a process graph.
A process graph is a transition system with designated start and end states, and
may have an infinite number of states.

Definition 3. A process graph G = 〈S, Act,→, s0, se〉 is a tuple where

– S is the set of states;
– Act is the finite set of actions;
– →⊆ S × Act × S is its transition relation; and
– s0 and se are the start and end states respectively.

The process graph represented by a context-free system is obtained by expand-
ing recursive calls. Observe that copies of context-free processes can be made
infinitely many times. A location in a context-free process may correspond to an
infinite number of states in the process graph.

Definition 4. Let P = 〈P0, . . . , Pn〉 be a context-free process system with Pi =
〈Σi, n, Act, →i, δi, εi〉 for 0 ≤ i ≤ n. The process graph PG(P) of P is obtained
by expanding s0

0→ se recursively as follows.
1 The term “location” is called “state class” in [6,13].

54 G.-D. Huang and B.-Y. Wang

1. For each transition s
i→ s′, make a copy of the context-free process Pi; and

2. Identify δi and εi with s and s′ respectively.

When a copy of Pi is made, a state s is added for each location σ in Σi except
δi and εi. We hence say s is an instance of σ. The notation s ∈ σ denotes that
s is an instance of σ or s is identified with σ when σ = εi. Further, s′′ is the
return state of s (denoted by end(s)) if s is added while expanding s′

pi→ s′′.
Both end(s0) and end(se) are defined to be se.

Given the set V ar of relational variables, X ∈ V ar, and A ⊆ Act. The syntax
of μ-calculus formulae is defined as follows

φ ::= tt X ¬φ φ0 ∧ φ1 〈A〉φ μX.φ

Relational variables must be bound positively by least fixed point operators
in μX.φ. We adopt the following abbreviation: ff for ¬tt, φ0 ∨ φ1 for ¬(¬φ0 ∧
¬φ1), [A]φ for ¬〈A〉¬φ, and νX.φ for ¬μX.¬φ[¬X/X]. A μ-calculus formula
is alternation-free if all its fixed point subformulae do not have free relational
variables bound by fixed point operators of the other type. The negative nor-
mal form of a μ-calculus formula is obtained by applying De Morgan’s laws
repeatedly so that negations appear only before tt. The universal fragment of
μ-calculus formulae consists of μ-calculus formulae whose negative normal forms
do not have existential modal operators (〈a〉•). Let ψ be a universal μ-calculus
formula. It is easy to verify that the negative normal form of ¬ψ does not have
universal modal operators ([a]•). In the following, we assume all formulae are in
their negative normal forms.

Given a process graph G = 〈S, Act,→, s0, se〉, an environment e is a mapping
from V ar to 2S. The notation e[X �→ U] denotes the environment that maps X
to U and Y to e(Y) for Y �= X . The semantic function [[φ]]Ge for the μ-calculus
formula φ is defined as follows.

[[tt]]Ge = S

[[X]]Ge = e(X)
[[φ0 ∧ φ1]]Ge = [[φ0]]Ge ∩ [[φ1]]Ge
[[φ0 ∨ φ1]]Ge = [[φ0]]Ge ∪ [[φ1]]Ge

[[[A]φ]]Ge = {s ∈ S | ∀a, s′.a ∈ A ∧ s
a→ s′ =⇒ s′ ∈ [[φ]]Ge }

[[〈A〉φ]]Ge = {s ∈ S | ∃a, s′.a ∈ A ∧ s
a→ s′ ∧ s′ ∈ [[φ]]Ge }

[[νX.φ]]Ge =
⋃

{U ⊆ S | U ⊆ [[φ]]Ge[X �→U]}

[[μX.φ]]Ge =
⋂

{U ⊆ S | U ⊇ [[φ]]Ge[X �→U]}

We say s satisfies φ in process graph G (denoted by G, s |= φ) if s ∈ [[φ]]G∅ . Let
Φ be a set of μ-calculus formulae. Define G, s |= Φ if G, s |= φ for all φ ∈ Φ. If
P is a context-free system, we say P satisfies φ, P |= φ, if PG(P), s0 |= φ. When
there is no ambiguity, we write s |= φ and s |= Φ for G, s |= φ and G, s |= Φ.

Complete SAT-Based Model Checking for Context-Free Processes 55

Since different instances of a location may be instantiated in different invo-
cations, one cannot naively expect all instances to satisfy the same property.
Contextual assumptions are hence used in the specification of locations. They
are chosen from closures of μ-calculus formulae and postulated during process
invocation [6,13].

Definition 5. The closure CL(φ) of a μ-calculus formula φ is inductively de-
fined as follows.

CL(tt) = ∅
CL(φ0 ∧ φ1) = {φ0 ∧ φ1} ∪ CL(φ0) ∪ CL(φ1)
CL(φ0 ∨ φ1) = {φ0 ∨ φ1} ∪ CL(φ0) ∪ CL(φ1)

CL([A]φ) = {[A]φ} ∪ CL(φ)
CL(〈A〉φ) = {〈A〉φ} ∪ CL(φ)
CL(νX.φ) = {νX.φ} ∪ CL(φ[νX.φ/X])
CL(μX.φ) = {μX.φ} ∪ CL(φ[μX.φ/X])

Given a μ-calculus formula φ and a set of μ-calculus formulae Θ ⊆ CL(φ),
the pair 〈φ, Θ〉 is called a second-order assertion. Define σ |= 〈φ, Θ〉 if s |= φ
for s ∈ σ provided end(s) |= Θ. Intuitively, a location satisfies a second-order
assertion 〈φ, Θ〉 if its instances under the given contextual assumptions Θ satisfy
the μ-calculus formula φ.

We now describe the local model checking algorithm in [13]. Let P = 〈P0, . . . ,
Pn〉 be a context-free process system with Pi = 〈Σi, n, Act, →i, δi, εi〉 for 0 ≤
i ≤ n, PG(P) = 〈S, Act,→, s0, se〉 its process graph, and φ a μ-calculus formula.
A sequent is of the form s � φ or σ � 〈φ, Θ〉. We call the former first-order and
the latter second-order sequents respectively. Let Ω be a set of sequents and ω

a sequent. An inference rule is represented as Ω
ω . The sequents in Ω and ω

are the premises and conclusion of the inference rule respectively. For clarity, we

write
ω
ω′ and

ω0 ω1

ω′ for
{ω}
ω′ and

{ω0, ω1}
ω′ respectively. A proof

is a tree rooted at a given sequent and constructed according to the inference
rules in Figure 1. The start rule first guesses initial contextual assumptions Θ
for the given property φ in the second-order assertion 〈φ, Θ〉. The assumptions Θ
must be satisfied after the invocation of the main process. Similarly, contextual
assumptions are chosen in modality rules. There are only finitely many possible
contextual assumptions for any μ-calculus formula φ because CL(φ) is finite.

To show a location satisfies a conjunction in a second-order assertion, one
proves that both conjuncts are satisfied under the same contextual assumptions.
Symmetrically, a disjunct under the same assumptions in a second-order as-
sertion must be satisfied in a disjunction. For fixed points, the inference rules
simply unroll the formula. The unrolling need be justified on the leaves of the
proof (Definition 6 (vi)). A (d, r)-proof is a proof which applies the fixed point
and modality rules at most d and r times along any path from the root to a leaf
respectively.

56 G.-D. Huang and B.-Y. Wang

Definition 6. A leaf of a proof is successful if it has one of the following forms.

(i) se � tt;
(ii) se � [A]φ;
(iii) σ � 〈tt, Θ〉;
(iv) σ � 〈[A]φ, Θ〉 where σ ∈ Σi is not an end location and there is no σ′ with

σ
a→i σ′ for any a ∈ A, or σ

j→i σ′;
(v) ε � 〈φ, Θ〉 and φ ∈ Θ; or
(vi) σ � 〈φ(νX.ψ), Θ〉 where φ(νX.ψ) ∈ CL(νX.ψ) and the same sequent re-

occurs on the path from the root to itself.

A finite proof is successful if all its leaves are successful. A sequent is derivable
if there is a successful proof rooted in the sequent. A formula φ is derivable if
the sequent s0 � φ is derivable. The following theorem shows the inference rules
in Figure 1 are sound and complete.

Theorem 1. ([13]) An alternation-free μ-calculus formula φ is derivable for a
context-free process system P iff it is satisfied in P.

An exemplary run of the local model checking algorithm is shown in Figure 2.
In the figure, a simple context-free process P with an infinite number of states
is considered. After performing the action a, the process P can either call it-
self recursively or terminates by executing b. We verify that the start state s0
satisfies νX.[a, b]X by the successful proof in the figure. Observe there are two
nondeterministic choices of contextual assumptions in the applications of start
and modality rules. They happen to be the same in the proof.

3 Proof Search by SAT

Suppose P = 〈P0, . . . , Pn〉 is a context-free process system with Pi = 〈Σi, n, Act,
→i, δi, εi〉 for 0 ≤ i ≤ n, and PG(P) = 〈S, Act,→, s0, se〉 its process graph. Since
the number of locations in Σ0 ∪ · · · ∪ Σn is finite, we can use a Boolean vector
of size lg(

∑n
i=0 |Σi|) to encode locations. The Boolean vector representing the

location σ is denoted by σ. Moreover, we assume a fixed linear order on CL(φ)
for the μ-calculus formula φ and denote the i-th formula in CL(φ) by φi. Any
subset Θ of CL(φ) can hence be encoded by a Boolean vector z̄ of size |CL(φ)|
such that z̄[i] = tt if and only if φi ∈ Θ. The Boolean vector representing the
subset Θ ⊆ CL(φ) is denoted by Θ.

Let φ be an alternation-free μ-calculus formula without universal modal op-
erators. Figure 3 gives our encoding of proof search in the local model checking
algorithm. In the figure, the Boolean variable vectors ū, v̄, w̄ encode locations
and are of size lg(Σn

i=0|Σi|). The Boolean variable vectors z̄ and z̄′ encode a
subset of CL(φ) and hence of size |CL(φ)|. The list Γ consists of triples of the
form (ū, φ, z̄). It records all second-order sequents σ � 〈φ, Θ〉 from the root to
the current sequent. The notation (ū, φ, z̄) :: Γ represents the list whose elements
are (ū, φ, z̄) followed by those in Γ . |Γ | denotes the size of the list Γ . Intuitively,

Complete SAT-Based Model Checking for Context-Free Processes 57

Start rule

{δ0 � 〈φ, Θ〉} ∪ {se � θ | θ ∈ Θ}

s0 � φ

End rules

se � φ0 se � φ1

se � φ0 ∧ φ1

se � φ0

se � φ0 ∨ φ1

se � φ1

se � φ0 ∨ φ1

se � φ[tt/X]
se � νX.φ

se � φ[ff/X]
se � μX.φ

Conjunction and disjunction rules

σ � 〈φ0, Θ〉 σ � 〈φ1, Θ〉

σ � 〈φ0 ∧ φ1, Θ〉

σ � 〈φ0, Θ〉

σ � 〈φ0 ∨ φ1, Θ〉

σ � 〈φ1, Θ〉

σ � 〈φ0 ∨ φ1, Θ〉

Fixed point rule

σ � 〈φ[νX.φ/X], Θ〉

σ � 〈νX.φ,Θ〉

σ � 〈φ[μX.φ/X], Θ〉

σ � 〈μX.φ, Θ〉

Modality rules

{σ′ � 〈φ, Θ〉 | a ∈ A, σ
a
→i σ′} ∪

S
j:σ

j→iσ′({δj � 〈[A]φ, Ψj〉} ∪ {σ′ � 〈ψ, Θ〉 | ψ ∈ Ψj})

σ � 〈[A]φ, Θ〉

σ′ � 〈φ, Θ〉
a ∈ A, σ

a
→i σ′

σ � 〈〈A〉φ,Θ〉

{δj � 〈〈A〉φ,Ψ〉} ∪ {σ′ � 〈ψ,Θ〉 | ψ ∈ Ψ}
σ

j
→i σ′

σ � 〈〈A〉φ,Θ〉

Weakening rule

σ � 〈φ,Θ′〉
(Θ′ ⊆ Θ)

σ � 〈φ,Θ〉

Fig. 1. Local Model Checking Algorithm

the idea is to construct a Boolean formula whose satisfiability is equivalent to
a bounded proof. Another Boolean formula whose unsatisfiability is equivalent
to completion will be built later. The model checking problem for context-free
processes is therefore reduced to Boolean (un)satisfiability.

58 G.-D. Huang and B.-Y. Wang

a

ba

P

a

a

b

b

b

PG(P)

.

.

δ σ ε s
0

s
e

P

ε � 〈M, {M}〉
σ � 〈M, {M}〉

(Modality)
δ � 〈N, {M}〉

(Modality)
σ � 〈N, {M}〉

(Fixed point)
σ � 〈M, {M}〉

(Modality)
δ � 〈N, {M}〉

(Fixed point)
δ � 〈M, {M}〉

se � [a, b]tt
(End)

se � M
(Start)

s0 � M

where M = νX.[a, b]X and N = [a, b]νX.[a, b]X

Fig. 2. An Example of Local Model Checking

The following lemma states that our encoding of the end rules is correct.

Lemma 1. se � φ′ is derivable iff λ(se, φ
′) = tt.

To encode the derivation of the second-order sequent σ � 〈〈A〉φ′, Θ〉, we let
SAT solvers choose the contextual assumption Ψ in modality rules. The new
assumption Ψ is represented by z̄′ in the Boolean formula Π (ū, A, φ′, z̄, Γ, d,
r). Given an assignment ρ, the valuation [[ū]]ρ maps a Boolean variable vector ū
to a Boolean vector. The function χ(ū, A, v̄) in π(ū, A, φ′, z̄, Γ, d, r) is tt with
respect to an assignment ρ if and only if [[ū]]ρ = σ, [[v̄]]ρ = σ′, and σ

a→i σ′ for
some i and a ∈ A. Similarly, ζ(ū, v̄, w̄) = tt with respect to an assignment ρ if and
only if [[ū]]ρ = σ, [[v̄]]ρ = δj , [[w̄]]ρ = σ′, and σ

j→i σ′ for some i. For the derivation
of the sequent σ � 〈ηX.φ′, Θ〉 where η is either the least or greatest fixed point
operator, we simply unroll the formula and let Successful leaf(ū, φ′, z̄, Γ) check
whether the sequent is successful or not. The variable ci’s in fixed point and
modality rules are called expansion variables. Intuitively, ci’s indicate a proof
needs to apply more fixed point and modality rules. The following lemma shows
that a satisfying assignment ρ for Λ(ū, φ′, z̄, [], d, r) ∧

∧l
i=0 ¬ci corresponds to a

successful proof for the sequent σ � 〈φ′, Θ〉 with σ = [[ū]]ρ and Θ = [[z̄]]ρ.

Complete SAT-Based Model Checking for Context-Free Processes 59

Auxiliaries

Υ0(ū) �=
Wn

i=0(εi = ū) Υ1(φk, z̄) �= z̄[k]

Ω0(ū, φ′, z̄, Γ)
�
=

W|Γ |−1
k=0 (ū, φ′, z̄) = Γ [k]

Not leaf(ū, φ′, z̄, Γ)
�
= ¬Υ0(ū) ∧ ¬Ω0(ū, φ′, z̄, Γ)

Successful leaf(ū, φ′, z̄, Γ)
�
=

j
(Υ0(ū) ∧ Υ1(φ′, z̄)) ∨ Ω0(ū, φ′, z̄, Γ) if φ′ ∈ CL(νX.ψ)
Υ0(ū) ∧ Υ1(φ′, z̄) if φ′ �∈ CL(νX.ψ)

Start rule

α(φ, d, r)
�
= ū = δ̄0 ∧ Λ(ū, φ, z̄, [], d, r) ∧

V|z̄|−1
k=0 (z̄[k] ⇒ λ(se, φk))

where z̄ : a vector of fresh Boolean variables of size |CL(φ)|
End rules

λ(se, φ
′
0 ∧ φ′

1)
�= λ(se, φ

′
0) ∧ λ(se, φ

′
1) λ(se, φ

′
0 ∨ φ′

1)
�= λ(se, φ

′
0) ∨ λ(se, φ

′
1)

λ(se, νX.φ′)
�
= λ(se, φ

′[tt/X]) λ(se, μX.φ′)
�
= λ(se, φ

′[ff/X])

λ(se, 〈a〉φ
′)

�
= ff λ(se, tt)

�
= tt λ(se, ff)

�
= ff

Conjunction and disjunction rules

Λ(ū, φ′
0 ∧ φ′

1, z̄, Γ, d, r)
�
=

Successful leaf(ū, φ′
0 ∧ φ′

1, z̄, Γ) ∨ (Λ(ū, φ′
0, z̄, Γ ′, d, r) ∧ Λ(ū, φ′

1, z̄, Γ ′, d, r))
where Γ ′ = (ū, φ′

0 ∧ φ′
1, z̄) :: Γ

Λ(ū, φ′
0 ∨ φ′

1, z̄, Γ, d, r)
�
=

Successful leaf(ū, φ′
0 ∨ φ′

1, z̄, Γ) ∨ (Λ(ū, φ′
0, z̄, Γ ′, d, r) ∨ Λ(ū, φ′

1, z̄, Γ ′, d, r))
where Γ ′ = (ū, φ′

0 ∨ φ′
1, z̄) :: Γ

Fixed point rule

Λ(ū, ηX.φ′, z̄, Γ, d, r)
�
=j

Successful leaf(ū, ηX.φ′, z̄, Γ) ∨ (Not leaf(ū, ηX.φ′, z̄, Γ) ∧ ci) if d = 0
Successful leaf(ū, ηX.φ′, z̄, Γ) ∨ Λ(ū, φ′[ηX.φ′/X], z̄, Γ ′, d − 1, r)) if d > 0

where ci : a fresh Boolean variable and Γ ′ = (ū, ηX.φ′, z̄) :: Γ
Modality rules

Λ(ū, 〈A〉φ′, z̄, Γ, d, r)
�
=j

Successful leaf(ū, 〈A〉φ′, z̄, Γ) ∨ (Not leaf(ū, 〈A〉φ′, z̄, Γ) ∧ ci) if r = 0
Successful leaf(ū, 〈A〉φ′, z̄, Γ) ∨ π(ū, A, φ′, z̄, Γ, d, r) ∨ Π(ū, A, φ′, z̄, Γ, d, r) if r > 0

where ci : a fresh Boolean variable

π(ū, A, φ′, z̄, Γ, d, r) �= χ(ū, A, v̄) ∧ Λ(v̄, φ′, z̄, Γ ′, d, r)

Π(ū, A, φ′, z̄, Γ, d, r) �=
ζ(ū, v̄, w̄) ∧ Λ(v̄, 〈A〉φ′, z̄′, Γ ′, d, r − 1) ∧

V|z̄′|−1
k=0 (z̄′[k] ⇒ Λ(w̄, φk, z̄, Γ ′, d, r − 1))

where
v̄, w̄ : vectors of fresh Boolean variables of size lg(

Pn
i=0 |Σi|)

z̄′ : a vector of fresh Boolean variables of size |CL(φ)|
Γ ′ = (ū, 〈A〉φ′, z̄) :: Γ

Atomic rules

Λ(ū, tt, z̄, Γ, d, r) �= tt Λ(ū, ff, z̄, Γ, d, r) �= ff

Fig. 3. Proof Search in Boolean Satisfiability

Lemma 2. Let P = 〈P0, . . . , Pn〉 be a context-free process system, PG(P) =
〈S, Act,→, s0, se〉 its process graph, and c0, . . . , cl the expansion variables in
Λ(δ̄0, φ

′, z̄, [], d, r) with d, r ∈ N. If ū = δ̄0∧Λ(ū, φ′, z̄, [], d, r)∧
∧l

i=0 ¬ci is satisfied
by the assignment ρ, there is a successful proof for δ0 � 〈φ′, Θ〉 with [[z̄]]ρ = Θ.

60 G.-D. Huang and B.-Y. Wang

On the other hand, the formula Λ(ū, φ′, z̄, [], d, r) ∧
∧l

i=0 ¬ci can be satisfied
by the assignment ρ if a successful (d, r)-proof for the second-order sequent
σ � 〈φ′, Θ〉 with σ = [[ū]]ρ and Θ = [[z̄]]ρ exists.

Lemma 3. Let P = 〈P0, . . . , Pn〉 be a context-free process system, PG(P) =
〈S, Act,→, s0, se〉 its process graph, and c0, . . . , cl the expansion variables in ū =
σ ∧ Λ(ū, φ′, z̄, [], d, r) where d, r ∈ N. If there is a successful (d, r)-proof for σ �
〈φ′, Θ〉, then there is a satisfying assignment ρ for ū = σ ∧ Λ(ū, φ′, z̄, [], d, r) ∧∧l

i=0 ¬ci such that [[ū]]ρ = σ and [[z̄]]ρ = Θ.

By Lemma 2 and 3, a satisfying assignment ρ for Λ(ū, φ′, z̄, [], d, r) and a success-
ful (d, r)-proof for the second-order sequent σ � 〈φ′, Θ〉 are related by [[ū]]ρ = σ

and [[z̄]]ρ = Θ. If the start rule is furthermore taken into consideration, we have
the following theorem.

Theorem 2. Let P = 〈P0, . . . , Pn〉 be a context-free process system, PG(P) =
〈S, Act,→, s0, se〉 its process graph, and c0, . . . , cl the expansion variables in ū =

α(φ, d, r) with d, r ∈ N. Define Ξ−(φ, d, r)
�
= α(φ, d, r) ∧

∧l
i=0 ¬ci.

(i) If Ξ−(φ, d, r) is satisfiable, then there is a successful proof for s0 � φ.
(ii) If there is a successful (d, r)-proof for s0 � φ, then Ξ−(φ, d, r) is satisfiable.

Given two integers d and r, Theorem 2 shows that a successful (d, r)-proof for
a second-order sequent exists exactly when the Boolean formula Ξ−(φ, d, r) is
satisfiable. But we have no information when the Boolean formula is unsatis-
fiable. Particularly, we do not know if any (d, r)-proof exists for larger d or r.
The following lemma states that we need not continue the proof search when a
similar formula is unsatisfiable.

Lemma 4. If there is a successful (d′, r′)-proof for σ � 〈φ′, Θ〉 with d′ > d or
r′ > r, and c0, . . . , cl are the expansion variables in Λ(ū, φ′, z̄, [], d, r), then there
is a satisfying assignment ρ for ū = σ∧Λ(ū, φ′, z̄, [], d, r)∧

∧l
i=0 ci with [[z̄]]ρ = Θ.

By considering the start location and adding the start rule, we have the following
criteria for the completion of proof search.

Theorem 3. Let P = 〈P0, . . . , Pn〉 be a context-free process system, PG(P) =
〈S, Act,→, s0, se〉 its process graph, and c0, . . . , cl the expansion variables in

α(φ, d, r) with d, r ∈ N. Define Ξ+(φ, d, r)
�
= α(φ, d, r). If there is a success-

ful (d′, r′)-proof for s0 � φ with d′ > d or r′ > r, then there is an assignment ρ
satisfying Ξ+(φ, d, r).

The unsatisfiability of the formula Ξ+(φ, d, r) corresponds to the absence of proof
in local model checking. Again, one must show that Ξ+(φ, d, r) is eventually
unsatisfiable if the property fails at the initial state. Our technical results are
now summarized in the following two theorems.

Complete SAT-Based Model Checking for Context-Free Processes 61

Theorem 4. (Soundness and completeness)

1. If Ξ−(φ, d, r) is satisfiable, then there is a successful (d, r)-proof for s0 � φ.
2. If there is a successful (d, r)-proof for s0 � φ, then Ξ−(φ, d, r) is satisfiable.

Theorem 5. (Completion and termination)

1. If Ξ+(φ, d, r) is unsatisfiable, then there is no successful (d′, r′)-proof for
s0 � φ with d′ > d or r′ > r.

2. If there is no successful proof for s0 � φ, then there are some d and r such
that Ξ+(φ, d, r) is unsatisfiable.2

4 Algorithm

Our SAT-based model checking algorithm for context-free processes is shown in
Figure 4. The algorithm first computes the negative normal form of the negation
of the given property. Proofs of refutation and completion are checked incremen-
tally. If a proof of the negated property is found, the algorithm reports an error.
If, on the other hand, the completion criteria is satisfied, it reports success.

Given a context-free process system P and PG(P) = 〈S,Act, →, s0, se〉
Let ψ be a universal alternation-free μ-calculus formula
Let φ be the negative normal form of ¬ψ
d ← 0
loop

if Ξ−(φ, d, d) is satisfiable then
return “s0 � ψ”

if Ξ+(φ, d, d) is unsatisfiable then
return “s0 � ψ”

d ← d + 1
end

Fig. 4. Model Checking Algorithm

By Theorem 4, a proof of the negated property can always be found should
it exist. Otherwise, the algorithm checks whether the search should continue
by Theorem 5 (1). If a proof is possible, the algorithm increments the bounds
and repeats. It will terminate if there is no proof (Theorem 5 (2)). Applying
Theorem 1, we have the following theorem.

Theorem 6. The algorithm in Figure 4 is correct. Namely, it has the following
properties.

– It always terminates.
– It reports “s0 � φ” if and only if s0 |= φ.

2 Intuitively, Successful leaf(ū, φ′, z̄, Γ) is unsatisfiable when there is no successful
proof. But Not leaf(ū, φ′, z̄, Γ) will become unsatisfiable eventually.

62 G.-D. Huang and B.-Y. Wang

5 Experiments

5.1 Implementation

We have implemented our SAT-based model checking algorithm for context-free
processes in Objective Caml [14]. Given a context-free process and a formula in
the universal fragment of alternation-free μ-calculus, our implementation creates
instances of the Boolean satisfiability and solves them using MiniSat [10].

Most of our implementation is straightforward, but care must be taken for
modality rules in Figure 3. The formula Π(ū, A, φ′, z̄, Γ, d, r) presumes process
invocation for any location represented by ū. Hence it may construct Λ(w̄, φk,
z̄, Γ ′, d, r − 1) for 1 ≤ k ≤ |CL(φ)| unnecessarily. Precisely, the formulae
Λ(w̄, φk, z̄, Γ ′, d, r − 1) are not needed when ζ(ū, v̄, w̄) is unsatisfiable.

To avoid creating unneeded formulae in Π(ū, A, φ′, z̄, Γ, d, r), we compute the
set of locations reachable by r transitions from the start location of the main
process P0. If there is no location in the set that may invoke other processes,
ζ(ū, v̄, w̄) is unsatisfiable and Λ(w̄, φk, z̄, Γ ′, d, r − 1) can be omitted. More for-

mally, let δ be the start state of P0. Define Δ0
�
= {δ} and Δi+1

�
= {σ′ : σ

α→
σ′ for some σ ∈ Δi}. Modify Π(ū, A, φ′, z̄, Γ, d, r) as follows.

Π(ū, A, φ′, z̄, Γ, d, r)
�
=⎧⎪⎨

⎪⎩
ff if ∀σ ∈ Δr, i ∈ n.σ 	 i→
ζ(ū, v̄, w̄) ∧ Λ(v̄, 〈A〉φ′, z̄′, Γ ′, d, r − 1)∧∧|z̄′|−1

k=0 (z̄′[k] ⇒ Λ(w̄, φk, z̄, Γ ′, d, r − 1))
otherwise

Intuitively, Δi contains locations reachable from the start location δ0 with i
transitions. If none of the locations in Δi performs process invocation, it is un-
necessary to expand Π(ū, A, φ′, z̄, Γ, d, r) further. The simple modification avoids
creating unneeded formulae and can improve the performance significantly.

5.2 Experimental Results

We compare our SAT-based algorithm with a BDD-based algorithm on randomly
generated context-free process systems in [12]. A location may be sequential,
branching, and looping with probabilities 0.6, 0.2, and 0.2 respectively. More-
over, context-free processes may be called with probability 0.2 on the sequential
location.

Two properties are checked against the randomly generated system. The live-
ness property checks if a random location σ of the main process is reachable on
all paths:

μX.([A]tt ∨ [Act]X), where A is the specific set of actions for σ.

The safety property checks if a random process Pi is never called on all paths:

νX.([A]ff ∧ [Act]X), where A is the specific set of actions for δi.

Complete SAT-Based Model Checking for Context-Free Processes 63

Table 1. Performance Comparison

#process/ avg.
#location

liveness safety
ans. BDD (sec.) SAT (sec.) ans. BDD (sec.) SAT (sec.)

3/1k No 0.02 0.03 Yes 0.02 0.12
4/2k No 0.10 0.14 No 0.12 0.24
5/4k No 0.09 0.16 Yes 0.18 1.70
6/8k No 0.38 0.54 Yes 0.54 7.78
7/16k No 1.51 1.44 No 2.57 3.54
8/32k No 19.07 7.07 No 35.22 7.61
9/64k No 23.44 9.21 No 46.89 8.31

10/128k No O/M 49.17 No O/M 55.11
(measured in a 1.6 GHz Intel machine with 512Mb memory)

Table 2. Profiling data

#process/ avg.
#location

liveness safety
read create solve read create solve

3/1k 0.02 0.01 <0.01 0.05 0.07 <0.01
4/2k 0.14 0.00 <0.01 0.16 0.08 0.01
5/4k 0.15 0.01 <0.01 0.18 1.27 0.24
6/8k 0.52 0.01 <0.01 0.58 4.56 2.63
7/16k 1.42 0.01 <0.01 1.53 1.68 0.32
8/32k 7.03 0.03 <0.01 6.94 0.59 0.06
9/64k 9.17 0.03 <0.01 8.21 0.08 0.01

10/128k 48.69 0.39 0.08 50.78 4.04 0.35
(execution time in seconds)

In table 1, the performance data of our SAT-based algorithm and the BDD-
based algorithm are shown. Our SAT-based algorithm outperforms the BDD-
based algorithm for larger context-free process systems (8/32k, 9/64k, 10/128k)
on both properties. For the largest case (10/128k), our SAT-based algorithm is
capable of finding errors while the BDD-based algorithm running out of memory.

Our experiments show that the execution time of the BDD-based algorithm
increases consistently with the sizes of the context-free process systems. On
the other hand, SAT-based algorithms are known to be very efficient in bug
detection [4,3]. Indeed, our SAT-based algorithm takes more time in proving the
safety property for the 6/8k system than falsifying it for the 7/16k system.

Table 2 gives time distribution of our implementation. We measure the time

– for reading the input file and model building;
– for creating instances of Boolean satisfiability; and
– for solving the instances.

When the property does not hold, our implementation spends most of the time
reading the input and building models. For the verification of the safety property

64 G.-D. Huang and B.-Y. Wang

on 5/4k, 6/8k, and 7/16k, the majority of time is used for creating instances.
This suggests further improvement could still be possible for our implementation.

6 Conclusion

Because of its capacity and scalability, SAT solvers have found many applications
in hardware verification. On the other hand, alternative computational models
have shown their promises in software verification. In this paper, a complete
SAT-based model checking algorithm is developed to take advantages of SAT
solvers and context-free processes. By combining the scalability of SAT solvers
and the succinctness of context-free processes, the proposed algorithm could
potentially analyze more programs. To the best of our knowledge, this is the
first SAT-based model checking algorithm for context-free processes.

In comparison with other SAT-based techniques, our proof-theoretic approach
is very general. Instead of exploiting characteristics in specification logics or
computational models, we reduce the proof search in local model checking algo-
rithms to the satisfiability problem. The same idea is used to develop an SAT-
based model checking algorithm for finite-state models in [18]. The present work
demonstrates the applicability of our approach even for context-free processes.

In the experiments, we show that our SAT-based algorithm outperforms in
some cases. We would like to conduct more experiments to support our prelim-
inary findings in the future.

Although we believe context-free processes should be sufficient for program
analysis, a scientific study will be very welcome. Finally, it would be interesting
to see if our technique can be applied to other infinite-state models.

Acknowledgment. The authors would like to thank anonymous reviewers for
their comments and suggestions in revising the paper.

References

1. Awedh, M., Somenzi, F.: Proving more properties with bounded model checking.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 96–108. Springer,
Heidelberg (2004)

2. Ball, T., Rajamani, S.: Bebop: A symbolic model checker for boolean programs. In:
Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000 Workshop on Model Checking
of Software. LNCS, vol. 1885, Springer, Heidelberg (2000)

3. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: DAC, pp. 317–320. ACM Press, New
York (1999)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.)TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

5. Boujjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Applications to model checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

Complete SAT-Based Model Checking for Context-Free Processes 65

6. Burkart, O., Steffen, B.: Model checking for context-free processes. In: Cleaveland,
W.R (ed.) CONCUR 1992. LNCS, vol. 630, pp. 123–137. Springer, Heidelberg
(1992)

7. Burkart, O., Esparza, J.: More infinite results. In: Paun, G., Rozenberg, G., Salo-
maa, A. (eds.) Current Trends in Theoretical Computer Science, Entering the 21th
Century, pp. 480–503. World Scientific (2001)

8. Caucal, D., Monfort, R.: On the transition graphs of automata and grammars. In:
Möhring, R.H. (ed.) WG 1990. LNCS, vol. 484, pp. 311–337. Springer, Heidelberg
(1991)

9. Christensen, S., Hüttel, H.: Decidability issues for infinite-state processes - a survey.
Bulletin of the European Association for Theoretical Computer Science 51, 156–166
(1993)

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

11. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

12. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336.
Springer, Heidelberg (2001)

13. Hungar, H., Steffen, B.: Local model checking for context-free processes. Nordic
Journal of Computing 1(3), 364–385 (1994)

14. Leroy, X.: The Objective Caml system: Documentation and user’s manual (With
Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon) (2000)

15. McMillan, K.L.: Interpolation and sat-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

16. Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and sceond-
order logic. Theoretical Computer Science 37, 51–75 (1985)

17. Walukiewicz, I.: Pushdown processes: Games and model-checking. Information and
Computation 164(2), 234–263 (2001)

18. Wang, B.Y.: Proving ∀μ-calculus properties with SAT-based model checking. In:
Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 113–127. Springer, Heidelberg
(2005)

Bounded Model Checking of Analog and

Mixed-Signal Circuits Using an SMT Solver�

David Walter, Scott Little, and Chris Myers

University of Utah, Salt Lake City, UT 84112, USA
{dwalter,little,myers}@vlsigroup.ece.utah.edu

Abstract. This paper presents a bounded model checking algorithm
for the verification of analog and mixed-signal (AMS) circuits using a
satisfiability modulo theories (SMT) solver. The systems are modeled in
VHDL-AMS, a hardware description language for AMS circuits. In this
model, system safety properties are specified as assertion statements.
The VHDL-AMS description is compiled into labeled hybrid Petri nets
(LHPNs) in which analog values are modeled as continuous variables
that can change at rates in a bounded range and digital values are mod-
eled using Boolean signals. The verification method begins by trans-
forming the LHPN model into an SMT formula composed of the initial
state, the transition relation unrolled for a specified number of iterations,
and the complement of the assertion in each set of state variables. When
this formula evaluates to true, this indicates a violation of the assertion
and an error trace is reported. This method has been implemented and
preliminary results are promising.

1 Introduction

To date, there has been relatively little research in the formal verification of ana-
log and mixed-signal (AMS) circuits. Perhaps the first work in this area is from
Kurshan and McMillan in which analog circuits are represented as finite state
models [1]. Hartong et al. verify analog circuits by dividing the continuous state
space into regions that are represented in a Boolean manner [2]. This allows them
to use Boolean-based verification but with significant loss in accuracy. Hybrid
system tools have also been adapted to verify AMS circuits. Gupta et al. utilize
CheckMate to verify a tunnel diode oscillator and a delta-sigma modulator [3]. In
[4], Dang et al. use d/dt to verify a biquad low-pass filter. In [5], Frehse et al. use
PHAVer to verify analog oscillator circuits. These tools are very accurate but also
very computationally complex. These approaches also require a user to describe
an AMS circuit using a hybrid automaton which is unfamiliar to most AMS
designers. In [6], Little et al. use difference bound matrices (DBMs) to verify
AMS circuits. This method, however, only supports constant rates of change for
continuous variables and conservatively abstracts the continuous state space. In
[7], Walter et al. present a BDD model checking algorithm for verifying AMS
circuits. This method, however, can have substantial memory requirements.
� Support from SRC contract 2005-TJ-1357 and an SRC Graduate Fellowship.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 66–81, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bounded Model Checking of AMS Circuits Using an SMT Solver 67

The goal of this paper is to develop a method for verifying AMS circuits
using a satisfiability modulo theories (SMT) solver. The SMT problem is a gen-
eralization of the Boolean Satisfiability (SAT) problem where Boolean variables
are replaced by predicates from various background theories [8]. These theories
may include linear arithmetic over reals and integers, uninterpreted functions,
and the theories of various data structures such as lists, arrays, and bit vectors
[9,10,11,12,13,14,15]. Initial SMT solver implementations functioned by translat-
ing SMT instances into SAT instances and passing those SAT instances to a SAT
solver. For example, to support integer arithmetic, multiple Boolean variables
are used as a bit representation for integers and the necessary integer theories
are specified as Boolean operations on those individual bit variables. This can
result in extremely large SAT instances; however, existing SAT solvers can be
used directly without modification. Therefore, as SAT solvers improve, so do
the SMT solvers. This approach, however, can be severely restricting. The loss
of higher level knowledge of the underlying theories requires the SAT solver to
work harder to discover simple concepts [16]. This problem is made even more
difficult by the large SAT instances that result.

More recent SMT solvers [17,15,18] closely integrate theory-specific solvers
with a DPLL (Davis-Putnam-Logemann-Loveland) approach to Boolean satis-
fiability [8]. These types of SMT solvers are often referred to as DPLL(T) [15].
In this type of architecture, the DPLL-based SAT solver passes conjunctions of
predicates belonging to theory T to a specialized solver. The specialized solver
is then responsible for deciding feasibility of those predicates. Additionally, the
particular theory solver must be able to explain the reasons for infeasibility. Re-
cent work applies SMT solvers to the bounded model checking of software [16].
There are a number of SMT solvers including Barcelogic [15,18], MathSAT [17],
and Yices [19]. The Barcelogic solver supports difference logic over integers
and equality with uninterpreted functions. The MathSAT solver currently sup-
ports theories of equality, uninterpreted functions, separation logic, and linear
arithmetic over reals and integers. Yices includes an incremental Simplex al-
gorithm for the theory of linear arithmetic that is tightly integrated within the
DPLL framework. Yices strong ability to work with the theory of linear arith-
metic makes it particularly well suited for hybrid system model checking. For
this reason, Yices is selected as the SMT solver for the bounded model checker
described in this paper.

This paper describes a bounded model checking algorithm for the verification
of AMS circuits. The model checker begins with a VHDL-AMS description of an
AMS circuit that is compiled into a labeled hybrid Petri net (LHPN). Next, the
LHPN model is converted into an SMT formula which includes a set of Boolean
and continuous state variables for each of the specified number of iterations.
The formula is composed of the initial state, the transition relation, and the
negation of the assertion statement. The SMT solver Yices is used to evaluate
this formula. When a satisfying assignment is found, this indicates a failure, and
an error trace is reported. This method has been implemented and preliminary
results are promising.

68 D. Walter, S. Little, and C. Myers

2 Motivating Example

The switched capacitor integrator shown in Figure 1 is used as a running ex-
ample throughout this paper. This circuit takes as input a 5 kHz square wave
that varies from −1000 mV to 1000 mV and generates a triangle wave as output
representing the integral of the input voltage. Discrete-time integrators typically
utilize switched capacitor circuits to accumulate charge which can cause gain er-
rors in the integrator due to capacitor mismatch. Therefore, the output voltage
in our model is allowed to have a slew rate anywhere between 18 to 22 mV/μs
to represent a ±10 percent variance in circuit parameters. The verification goal
is to ensure that Vout never saturates (i.e., it is always between −2000 mV
and 2000 mV). An experienced analog circuit designer may realize the potential
of this circuit to fail. However, a very specific SPICE simulation is required to
demonstrate this failure where the output voltage always increases at a faster
rate than it decreases. Furthermore, it is highly unlikely that a simulation allow-
ing for random uncertainty in the system variables would reveal the error [20].
Therefore, a formal verification approach is beneficial.

freq(Vin) = 5 kHz
Vin = ±1000 mV

Φ2Φ1

C1

Q1
Vin

Vout

C2

C2 = 25 pF
C1 = 1 pF

freq(Φ1) = freq(Φ2) = 500 kHz

Q2

dVout/dt = ±(18 to 22) mV/μs

+

−

Fig. 1. Circuit diagram of a switched capacitor integrator

VHDL-AMS is a hardware description language that includes extensions
specifically for describing analog and mixed-signal circuits. VHDL-AMS was de-
signed to allow a textual description of AMS circuits which can be simulated. By
providing a VHDL-AMS front-end to our tool, many of the hurdles associated
with verification can potentially be avoided because designers who are already
familiar with VHDL-AMS are not required to learn abstract modeling methods.
Our VHDL-AMS compiler is built using methods described in [21] and currently
works with a subset of the VHDL-AMS language. Methods for generating LH-
PNs from many VHDL statements for representing digital systems are described
in [21]. Specifically, variables of types std logic for representing Boolean signals
are allowed and sequential behavior can be specified using process statements
without sensitivity lists. Within a process, supported statements are wait, sig-
nal assignment, if-use, case, and while-loop.

Bounded Model Checking of AMS Circuits Using an SMT Solver 69

Simulators that support the AMS extensions to VHDL seem to vary in the
semantics that are implemented. Therefore, a subset of the AMS extensions have
been selected such that the semantics seem to be fairly consistent across simu-
lators. The supported subset of VHDL-AMS allows the creation of a continuous
value using a quantity of type real, the initialization of continuous variables
using break statements, and the assignments of rates to real quantities using the
’dot notation within simultaneous if-use and case-use statements. Addition-
ally, the use of ’above to test the value of real quantities, and the specification
of properties using assert statements is allowed. For convenience, VHDL-AMS
descriptions also use procedures defined in the handshake and nondeterminism
packages [22]. The assign procedure performs an assignment to a signal at some
random time within a bounded range specified by its parameters and waits until
the assignment has been performed before returning. The span procedure takes
two real values and returns a random value within that range. The span proce-
dure is used to assign a range of rates to a continuous variable. Figure 2 shows
a VHDL-AMS description for the circuit in Figure 1. The break statement sets
the initial value for Vout . The if-use statement determines the rate of Vout .
When Vin is false, Vout increases at a rate between 18 and 22 mV/μs. When
Vin is true, it decreases at a rate between −22 and −18 mV/μs. The process
statement controls Vin . Finally, an assert statement checks if Vout saturates.

library IEEE;
use IEEE.std logic 1164.all;
use work.handshake.all;
use work.nondeterminism.all;
entity integrator is
end integrator;
architecture switchCap of integrator is

quantity Vout:real;
signal Vin:std logic := ’0’;

begin
break Vout => -1000.0; --Initial value
if Vin=’0’ use

Vout’dot == span(18.0, 22.0);
elsif Vin = ’1’ use

Vout’dot == span(-22.0, -18.0);
end use;
process begin

assign(Vin,’1’,100,100);
assign(Vin,’0’,100,100);

end process;
assert (Vout’above(-2000.0) and not Vout’above(2000.0))

report ‘‘error’’ severity failure;
end switchCap;

Fig. 2. VHDL-AMS for a switched capacitor integrator

70 D. Walter, S. Little, and C. Myers

3 Labeled Hybrid Petri Nets

Our VHDL-AMS descriptions are compiled automatically into LHPN models.
LHPNs were developed specifically to model AMS circuits. The model is inspired
by features in both hybrid Petri nets [23] and hybrid automata [24]. While LH-
PNs are only described briefly here, a complete definition with formal semantics
can be found in [25]. An LHPN is defined as a directed graph with labels on places
and transitions. An LHPN is a tuple N = 〈P, T, B, V, F, L, M0, S0, Q0, R0〉:

• P : is a finite set of places;
• T : is a finite set of transitions;
• B : is a finite set of Boolean signals;
• V : is a finite set of continuous variables;
• F ⊆ (P × T) ∪ (T × P) is the flow relation;
• L : is a tuple of labels defined below;
• M0 ⊆ P is the set of initially marked places;
• S0 : is the set of initial Boolean signal values;
• Q0 : is the set of initial ranges of values for each continuous variable and;
• R0 : is the set of initial ranges of rates for each continuous variable.

The preset of a transition t (denoted •t) represents the set of places feeding t
(i.e., •t = {p | (p, t) ∈ F}). The postset of a transition t (denoted t•) represents
the set of places that t feeds (i.e., t• = {p | (t, p) ∈ F}).

A key component of LHPNs are the labels. Some labels contain hybrid sepa-
ration logic (HSL) formulas which are a Boolean combination of Boolean vari-
ables and separation predicates. HSL is an extension of separation logic [26]
(sometimes referred to as difference logic) that allows for non-unit slopes on the
separation predicates. These formulas satisfy the following grammar:

φ ::= true | false | bi | ¬φ | φ ∧ φ | c1x1 ≥ c2x2 + c3

where bi are Boolean variables, x1 and x2 are continuous variables, and c1, c2,
and c3 are rational constants in Q. Note that any inequality between two real
variables can be formed with ≥ and negations of ≥ inequalities. Each transition
t ∈ T is labeled using the functions defined in L = 〈En ,D ,BA,VA,RA〉:

• En : T → φ labels each transition t ∈ T with an enabling condition;
• D : T → |Q| × (|Q| ∪ {∞}) labels each transition t ∈ T with a lower and

upper bound [dl, du] on the delay for t to fire;
• BA : T → 2(B×{0,1}) labels each transition t ∈ T with Boolean assignments

made when t fires;
• VA : T → 2(V ×Q×Q) labels each transition t ∈ T with a continuous variable

assignment range, consisting of a lower and upper bound [al, au], that is
made when t fires;

• RA : T → 2(V ×Q×Q) labels each transition t ∈ T with a range of rates,
consisting of a lower and upper bound [rl, ru], that are assigned when t fires.

Bounded Model Checking of AMS Circuits Using an SMT Solver 71

The LHPN shown in Figure 3 is automatically generated from the VHDL-AMS
model in Figure 2. This model tracks the real quantity Vout that represents the
output voltage. The if-use statement is compiled into the LHPN in Figure 3a.
The process statement is compiled into the LHPN in Figure 3b. Initially Vout
is −1000 mV and increasing between 18 and 22 mV/μs. After 100 μs, Vin is
assigned to true by the assign function which causes Vout to begin decreasing
at a rate of −22 to −18 mV/μs. The assert statement is used to check if Vout
falls below −2000 mV or goes above 2000 mV and is compiled into the LHPN
shown in Figure 3c which fires a transition to set the Boolean signal fail to true
when the assertion is violated.

〈V̇ out := [18, 22], V̇ out [18,22] := T,

V̇ out [−22,−18] := F 〉 t1
p0

t0

{¬fail ∧ ¬Vin ∧ ¬V̇ out [18,22]}

〈V̇ out := [−22, −18], V̇ out [18,22] := F,

{¬fail ∧ Vin ∧ ¬V̇ out [−22,−18]}

V̇ out [−22,−18] := T 〉
(a)

p2

p1

t3

t2

{¬fail} [100, 100] 〈Vin := T 〉

{¬fail} [100, 100] 〈Vin := F 〉

(b)

{Vout ≤ −2000 ∨ Vout ≥ 2000}
[0, 0]〈fail := T 〉

t4

p3

(c)

R0 = {V̇ out = [18, 22]}
S0 = {¬Vin, ¬fail}

Q0 = {Vout = −1000}

Fig. 3. LHPN of the switched capacitor integrator generated from VHDL-AMS

4 Symbolic Model of LHPNs

In order for analysis to proceed, a symbolic model is generated from the LHPN
that contains the essential information for analysis. The symbolic model consists
of three components: an invariant, a set of possible rates, and a set of guarded
commands. Before constructing the symbolic model, a set of real variables and
two additional sets of Boolean variables are created in addition to the sets de-
fined for an LHPN. The set of real variables, C, are used to track the values of
the clocks on each transition. The transition clock for transition t is denoted by
ct. The first set of Boolean variables are known as clock active variables, A, and
are used to keep track of whether or not the clocks on transitions are active. The
clock active variable for transition t is denoted by at. The second set of Boolean
variables are known as Boolean rate variables, BR, used for determining the

72 D. Walter, S. Little, and C. Myers

current rate of change for each continuous variable. Boolean rate variables are
denoted by v̇[rl,ru] for the variable corresponding to the continuous variable v
currently advancing at a range of rates [rl, ru].

The invariant (φI) is an HSL statement that must be satisfied in every state
of the system and is calculated as shown in Equation 1.

φI = Φ ∧
∧
t∈T

(at ⇒ •t ∧ En(t) ∧ 0 ≤ ct ≤ du(t)) ∧ (at ⇒ •t ∨ Ẽn(t)) (1)

The invariant first states that only the reachable discrete states (represented by
Φ) are allowed. The formula Φ is found by performing a state space exploration
of the LHPN while neglecting the continuous variables. The discrete state space
exploration is based on the Petri net algorithm described in [27] with extensions
to include values of Boolean signals and Boolean rate variables in the state space
[25]. In other words, Φ is a formula over the Boolean variables for the Petri net
marking, Boolean signals, and Boolean rate variables.

After calculating the discrete state space, Φ, the next step in constructing
the system invariant, φI , is to insert known information about the continuous
state space. This is performed using the clock active variables. Specifically, for a
transition’s clock to be active, the preset must be marked, the enabling condition
must be satisfied, and the clock must be greater than zero but not greater than
its upper bound. This portion of φI prevents an active clock from exceeding its
upper bound. The last part of φI states that if a transition’s clock is not active it
must either have an unmarked place in its preset (denoted •t) or the non-strict

inverse (Ẽn(t)) of the enabling condition must be satisfied. In the non-strict
inverse, all ≥ separation predicates become ≤ separation predicates and vice-
versa. For example, the non-strict inverse of the HSL formula a ∧ x ≤ 2000 is
a ∨ x ≥ 2000. The non-strict inverse is used to allow for the existence of a time
of overlap when a clock is both allowed to be active and inactive at which time
the clock’s state can change. The last two portions of φI when taken together
enforce the activation or deactivation of a clock if a changing continuous variable
should cause an enabling condition to change evaluation.

The set of possible rates (R) consist of an HSL statement indicating a possible
Boolean rate assignment and the set of rate assignments to continuous variables
corresponding to the statement (〈φR, R〉). This set is constructed from Φ, the
Boolean state set, by existentially abstracting all non-rate Boolean variables.
Each product term in Φ corresponds to a φR of a pair in R.

The set of guarded commands (C) is used to determine in each state which
transitions are enabled and the effect on the state due to the firing of a tran-
sition. It is constructed using a set of primary guarded commands (CP) and a
set of secondary guarded commands (CS). Each guarded command consists of a
guard, φG , represented using an HSL formula and a set of commands, A, to be
performed when the guard is satisfied.

A primary guarded command is created for each transition t ∈ T . The guard
for transition t ensures that the preset for t is marked, the enabling condition on t
is satisfied, and the clock associated with t is active and exceeds its lower bound.

Bounded Model Checking of AMS Circuits Using an SMT Solver 73

The commands for transition t cause the postset of t to become marked and
apply the assignments associated with t. Formally, the set of primary guarded
commands is defined as follows:

CP = {〈φGP (t), AP (t)〉 | t ∈ T } (2)

where φGP (t) = (•t∧ t • − • t∧En(t)∧at ∧ct ≥ dl(t)) and AP (t) = {(•t− t•) :=
F, (t•) := T, at := F, ct := [−∞, ∞],BA(t),VA(t),RA(t)}. The primary guarded
command for transition t2 in Figure 3 is:

φGP (t2) = p1 ∧ p2 ∧ fail ∧ at2 ∧ ct2 ≥ 100
AP (t2) = {p1 := F, p2 := T,Vin := T,

at2 := F, ct2 := [−∞, ∞]}

Two secondary guarded commands are created for each transition t ∈ T . The
first one activates the clock for t and sets it to zero when its preset is marked
and its enabling condition is true. The second one deactivates the clock when t
is no longer enabled and sets its values to [−∞, ∞]. This removes the clock from
the state space. The set of secondary guarded commands is defined as follows:

CS = {〈φGSA(t), ASA(t)〉, 〈φGSD (t), ASD(t)〉 | t ∈ T } (3)

where φGSA(t) = •t ∧ En(t) ∧ at, ASA(t) = {at := T, ct := [0, 0]}, φGSD (t) =

(•t ∨ Ẽn(t)) ∧ at, and ASD(t) = {at := F, ct := [−∞, ∞]}. The activating and
deactivating guarded commands for transition t1 in Figure 3 are:

φGSA(t1) = p0 ∧ fail ∧ Vin ∧ V̇ out[−22,−18] ∧ at1

ASA(t1) = {at1 := T, ct1 := [0, 0]}
φGSD (t1) = (p0 ∨ fail ∨ Vin ∨ V̇ out[−22,−18]) ∧ at1

ASD(t1) = {at1 := F, ct1 := [−∞, ∞]}

The sets CP and CS are merged to form the set C. It is necessary to merge
these commands because the firing of a transition may result in the activation or
deactivation of clocks associated with other transitions by changing the marking
or the values of the Boolean or continuous variables. Due to space limitations,
only a brief description of the merging process is given. A complete algorithm
is described in [25]. The basic idea is that for each transition, t, the effect of
its assignments associated with its primary guarded command AP (t) must be
checked against the guards φGSA(t′) and φGSD (t′) for each other transition t′ to
determine if the assignment may have enabled the guard [25]. If the assignments
have no effect on the guard or disable it, then the secondary for t′ is not merged
with the primary for t. If the assignment would make the guard true, then the
commands associated with the secondary must be combined with those for the
primary. Finally, if the assignment may have changed the guard’s evaluation,
then two guarded commands must be constructed. One is for the case in which
the guard for the secondary is true in which the commands are merged, and

74 D. Walter, S. Little, and C. Myers

the other is for when the guard is false in which the secondary commands are
not merged. Note that after performing the merge operation, secondary guarded
commands whose guards contain inequalities are inserted into the final guarded
command set. This is necessary because as time moves forward, the secondary
guarded commands could become enabled and cause clocks to be activated or
deactivated. However, before the secondary guarded commands are added, their
guards must be modified to enforce the threshold on the continuous variables.
For example, consider a situation where a transition has the enabling condition
x ≥ 5. The clock on this transition can be activated either when its preset
becomes marked when x is already greater than or equal to five, or by x becoming
equal to five while the preset is already marked. The first case is handled by
the merged guarded command while the second case should be handled by a
secondary guarded command that ensures that x is equal to five and continues
to increase above five, i.e., when x ≥ 5 ∧ x ≤ 5 ∧ incr(x) where incr(x) returns
the disjunction of the Boolean rate variables where the rates are increasing.
Similarly, decr(x) returns the disjunction of the Boolean rate variables where
the rates for x are decreasing. In the integrator example, since t2 assigns Vin
to true and marks p2, it activates the clocks for t1 and t3. This results in the
following merged guarded command:

φG = p0 ∧ p1 ∧ p2 ∧ fail ∧ V̇ out[−22,−18] ∧ at1 ∧ at2 ∧ at3 ∧ ct2 ≥ 100
A = {p1 := F, p2 := T,Vin := T,

at1 := T, ct1 := [0, 0], at3 := T, ct3 := [0, 0],
at2 := F, ct2 := [−∞, ∞]}

5 SMT Based Bounded Model Checking

The basic algorithm for performing SMT based bounded model checking of LH-
PNs is shown in Figure 4. The algorithm proceeds by creating an SMT instance
in which statements are asserted. The first step is to create a set of state variables
for each iteration of the exploration. The state variables for each iteration, i, are
defined using the tuple 〈M i, Si, Qi, Ci, Ai,BRi〉. The next step is to assert the
initial state (φinit) in terms of the initial iteration’s variables (i.e., i = 0). At this
point, the SMT formula is constructed one iteration at a time. For each itera-
tion, it is necessary to assert the invariant in terms of that iteration’s set of state
variables. Then, each iteration’s next states are calculated by firing transitions
or elapsing time. This is performed by asserting a disjunction of the guarded
commands and a time elapse formula. Finally, a failure condition is asserted in
terms of state variables from each iteration. After asserting each of these compo-
nents, the SMT satisfiability check is performed. Satisfiability indicates that the
property is violated because there is an assignment indicating that the failure
condition is reachable. Unsatisfiability indicates that the property could not be
violated in that number of iterations. This does not necessarily indicate that
the property cannot be violated, however, so this is a bounded model checker.

Bounded Model Checking of AMS Circuits Using an SMT Solver 75

smtCheck(φinit , φI , C, R,maxIterations)
SMTInstance ins(maxIterations);
i = 0
ins.assert(φ0

init)
while (i < maxIterations)

ins.assert(φi
I)

trans = true
for each 〈φG , A〉 ∈ C

trans = trans ∨ mkExprForGC(φG , A, i , i + 1)
trans = trans ∨ mkExprForTimeElapse(R, i , i + 1)
ins.assert(trans)
i + +

ins.assert(mkExprForFailProp(maxIterations))
if (ins.check == true) then return ‘‘Property Violated’’
else return ‘‘Property Not Violated’’

Fig. 4. Algorithm for SMT based bounded model checking

The remainder of this section describes the SMT based bounded model checking
algorithm in greater detail.

An assertion for the next state calculation is made based on the disjunction
of each guarded command and the time elapse assertion. The transition relation
portion of the next state assertion makes use of the merged guarded command set
(C) to calculate the values of the next state variables based on the values of the
current iteration, i, variables. The algorithm for constructing the assertion state-
ment for a given guarded command is shown in Figure 5. Essentially, the guard
portion (φG) of the guarded command is asserted in terms of the current state
while the assignment portion of the guarded command makes use of both the cur-
rent and the next iteration variables. Assignments that are specified in the assign-
ment set (A) are performed on the next iteration variables while variables that
have no assignment performed on them are simply assigned the same value as
in the current iteration. There is one exception, however. If a clock is assigned the
range [−∞, ∞], no assignment is made to that clock variable. This allows
the clock to remain undefined in the next iteration. In the integrator exam-
ple, the SMT assertion statement for the merged guarded command that fires t2
and activates the clocks for t1 and t3, given the current iteration i and the next
iteration j, is:

pi
0 ∧ pi

1 ∧ pi
2 ∧ fail i ∧ V̇ out[−22,−18] ∧ ai

t1 ∧ ai
t2 ∧ ai

t3 ∧ ci
t2 ≥ 100 ∧

pj
0 = pi

0 ∧ pj
1 = false ∧ pj

2 = true ∧ pj
3 = pi

3 ∧ Vinj = true ∧ fail j = fail i ∧
aj

t0 = ai
t0 ∧ aj

t1 = true ∧ aj
t2 = false ∧ aj

t3 = true ∧ aj
t4 = ai

t4 ∧

V̇ out
j

[18,22] = V̇ out
i

[18,22] ∧ V̇ out
j

[−22,−18] = V̇ out
i

[−22,−18] ∧
cj
t0 = ci

t0 ∧ cj
t1 = 0 ∧ cj

t3 = 0 ∧ cj
t4 = ci

t4 ∧ Voutj = Vout i ∧ δi,j = 0

76 D. Walter, S. Little, and C. Myers

mkExprForGC(φG , A, i , j)
result = φi

G // Guard in terms of current iteration variables.
foreach b ∈ {M ∪ S ∪ A ∪ BR} // Perform Boolean assignments.

if ((b := true) ∈ A) then result = result ∧ (bj = true)
else if ((b := false) ∈ A) then result = result ∧ (bj = false)
else result = result ∧ (bj = bi)

foreach v ∈ {C ∪ Q} // Perform real assignments.
if ((v := [−∞, ∞]) ∈ A) then // Do Nothing.
else if ((v := [al, au]) ∈ A) then

result = result ∧ (vj ≥ al) ∧ (vj ≤ au)
else

result = result ∧ (vj = vi)
result = result ∧ (δi,j = 0) // No time advancement
return result

Fig. 5. Algorithm to generate an SMT statement for a guarded command

Note that cj
t2 is not assigned any value, since it is to be assigned the value

[−∞, ∞]. By not performing any assignment on cj
t2 , it can take any value.

The time elapse portion of the next state assertion makes use of the possible
rate set (R) to calculate the values of real variables as a result of time moving
forward. This algorithm is shown in Figure 6. In calculating the next state via
time elapse, a new real variable is created representing the amount of time that
has elapsed. This variable is referred to as δi,j , and it represents the amount of
time that has elapsed between iterations i and j. Since time is moving forward,
δi,j is always greater than or equal to zero. All clock variables increase by exactly
δi,j . Next, based on the current values of the Boolean rate variables, the real
variables change by some multiple of δi,j . Lastly, all Boolean variables in the
next iteration have the same value as in the current iteration. The complete
time elapse assertion for the integrator, given the current iteration i and next
iteration j, is:

δi,j ≥ 0 ∧ cj
t0 = ci

t0 + δi,j ∧ cj
t1 = ci

t1 + δi,j ∧ cj
t2 = ci

t2 + δi,j ∧
cj
t3 = ci

t3 + δi,j ∧ cj
t4 = ci

t4 + δi,j ∧

((V̇ out
i

[18,22] ∧ V̇ out
i

[−22,−18] ∧ 18δi,j + Vout i ≤ Voutj ≤ 22δi,j + Vout i) ∨

(V̇ out
i

[18,22] ∧ V̇ out
i

[−22,−18] ∧ −22δi,j + Vouti ≤ Voutj ≤ −18δi,j + Vouti)) ∧
pj
0 = pi

0 ∧ pj
1 = pi

1 ∧ pj
2 = pi

2 ∧ pj
3 = pi

3 ∧ Vinj = Vini ∧ fail j = fail i ∧
aj

t0 = ai
t0 ∧ aj

t1 = ai
t1 ∧ aj

t2 = ai
t2 ∧ aj

t3 = ai
t3 ∧ aj

t4 = ai
t4 ∧

V̇ out
j

[18,22] = V̇ out
i

[18,22] ∧ V̇ out
j

[−22,−18] = V̇ out
i

[−22,−18]

The last step in the construction of the SMT formula is to assert that the
property is violated (i.e., fail becomes true during some iteration). This is

Bounded Model Checking of AMS Circuits Using an SMT Solver 77

mkExprForTimeElapse(R, i , j)
result = δi,j ≥ 0
foreach c ∈ C // Increment all clocks by δ

result = result ∧ (cj = ci + δi,j)
rates = false
foreach 〈φR, R〉 ∈ R // Increment real variables based on R

rate = φR

foreach (v̇ := [rl, ru]) ∈ R
rate = rate ∧ (vj ≥ vi + rlδ

i,j) ∧ (vj ≤ vi + ruδi,j)
rates = rates ∨ rate

foreach b ∈ {M ∪ S ∪ A ∪ BR} // Boolean variables stay same value
result = result ∧ (bj = bi)

result = result ∧ rates
return result

Fig. 6. Algorithm to generate an SMT statement for the time elapse calculation

accomplished by constructing a disjunction of the fail variables over all itera-
tions. For five iterations of the integrator example, the result is:

fail0 ∨ fail1 ∨ fail 2 ∨ fail3 ∨ fail4

The final step of the model checker is to apply the SMT checking procedure.
If a satisfiable solution is found, this indicates that it is possible to reach the
violating condition. In this event, the SMT solver generates a satisfying solution
to the current context. This solution corresponds to a trace over all iteration’s
state variables beginning from the initial state to the error condition. Since this
is a bounded model checker, if the property is not violated within the specified
number of iterations, the property may still be violated after more iterations.

6 Results

The VHDL-AMS to LHPN compiler, the symbolic model generator, and the
SMT bounded model checker have been implemented within the LEMA tool. This
section compares the SMT model checker with BDD and DBM model checkers
within LEMA. All results use a 2Ghz Intel CoreDuo with 2GB of memory.

The results for the integrator are shown in the top part of Table 1 in which the
ranges of rate for the change of Vout are varied. In particular, when the lower
and upper bound for these rates are equal, all three model checkers determine in
a few seconds that the property is satisfied (i.e., the circuit does not saturate).
Results for the SMT model checker are presented for both 10 and 20 iterations.
When the lower and upper bounds are not equal, both SMT and BDD model
checkers find a violation of the property. For example, if the rising slew rate of
Vout is consistently larger than the falling slew rate, there can be a build up of
charge leading to saturation of Vout . Note that the DBM model checker cannot
directly support ranges of rates. Therefore, a piecewise approximate model must

78 D. Walter, S. Little, and C. Myers

Table 1. Switched capacitor integrator verification results

Exp. SMT BDD DBM
Example Result Time (s) Iter. Time (s) Iter. Time (s) Zones

Original ([20, 20]) Pass < 1 10 < 1 7 < 1 4
Original ([20, 20]) Pass 7 20 – – – –
Original ([18, 22]) Fail < 2 15 < 2 11 n/a n/a
Piecewise ([18, 22]) Fail 60 20 < 1 6 < 1 9

Corrected Pass 28 10 6* 6* n/a n/a
Corrected Pass 388 20 – – – –

Corrected piecewise Pass 249 10 OOM 3 < 1 54
Corrected piecewise Pass 980 20 – – – –

* Verification result does not match expected result.

Φ1

Q1
Vin

freq(Vin) = 5 kHz
Vin = ±1000mV

Φ2

C1

Q2 Vout

C2

C2 = 25 pF
C1 = 1 pF

Φ1

Q3

Φ2

C3

C3 = 0.5 pF

dVout/dt = (±(18 to 22) − Vout/100) mV/μs
freq(Φ1) = freq(Φ2) = 500 kHz

Q4

+

−

Fig. 7. Circuit diagram of a corrected switched capacitor integrator

first be generated in which the rate of Vout initially increases at 18 mV/μs. After
some random amount of time, the rate may switch to 22 mV/μs. Decreasing rates
for Vout are modeled in a similar way.

Saturation of the integrator can be prevented using the circuit shown in Fig-
ure 7. This circuit uses a switched capacitor resistor inserted in parallel with the
feedback capacitor to cause Vout to drift back to 0 V. In other words, if Vout is
increasing, it increases faster below 0 V than above. In this circuit’s model, the
range for Vout is 28 to 37 mV/μs when below −1000 mV, 18 to 32 mV/μs when
below 0 mV, 8 to 22 mV/μs when below 1000 mV, and 3 to 12 mV/μs when
above 1000 mV. Similar rates are used when Vout is decreasing. The verification
results for the corrected integrator are shown in the bottom part of Table 1. The
SMT model checker correctly determines that this circuit does not violate the
property for 10 and 20 iterations. For this model, the BDD model checker finds
a failure erroneously. This false negative is due to inexactness that results from

Bounded Model Checking of AMS Circuits Using an SMT Solver 79

not adding transitivity constraints at all necessary phases of the the analysis.
If transitivity constraints are added at each step, BDD analysis quickly runs
out of memory. Since the DBM model checker does not support ranges of rates
directly, it cannot be applied to this model. Again, an approximate piecewise
model can be verified by the DBM model checker. Ironically, the SMT model
checker performs better on the more accurate model, since the added transitions
in the piecewise model significantly increase the complexity of the SMT formula.

7 Conclusions

This paper describes an SMT bounded model checking algorithm for AMS cir-
cuits. These circuits can be described using VHDL-AMS and automatically com-
piled into an LHPN representation for analysis. This LHPN model is translated
into a symbolic model composed of an invariant, possible rates set, and guarded
commands. This symbolic model is then automatically converted into an SMT
formula for a given number of iterations. If this SMT formula is satisfiable, the
satisfying assignment represents an error trace for the circuit being verified.

One promising abstraction and refinement approach is to combine the BDD
and SMT model checkers. The BDD model checker is capable of performing an
unbounded full state space exploration, but it often runs out of memory due to
the large number of BDD variables created. The SMT model checker efficiently
determines if the full model violates the property, but it can never guarantee
that the property is not violated. Therefore, the BDD model checker could be
applied to an abstract model. If the BDD model checker determines that the
property is violated in the abstract model, the SMT model checker can be used
with the full model to ensure that the failure is not a false negative. In this case,
the BDD model checker would specify the number of iterations that are required
for the abstract model to fail. If the SMT model checker verifies that the full
model does fail, verification is complete. If the full model does not violate the
property, the violation is a false negative and the unsatisfying core can be used
to refine the abstract model. This process repeats until a true failure is found
or the BDD model checker determines that the abstract model does not violate
the property. Another interesting approach to consider would be to apply the
proof-based iterative abstraction and refinement method from [28].

References

1. Kurshan, R.P., McMillan, K.L.: Analysis of digital circuits through symbolic re-
duction. IEEE Transactions on CAD 10(11), 1356–1371 (1991)

2. Hartong, W., Hedrich, L., Barke, E.: Model checking algorithms for analog verifi-
cation. In: Proc. of DAC, pp. 542–547 (2002)

3. Gupta, S., Krogh, B.H., Rutenbar, R.A.: Towards formal verification of analog
designs. In: Proc. of ICCAD, pp. 210–217 (2004)

4. Dang, T., Donze, A., Maler, O.: Verification of analog and mixed-signal circuits
using hybrid systems techniques. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 21–36. Springer, Heidelberg (2004)

80 D. Walter, S. Little, and C. Myers

5. Frehse, G., Krogh, B.H., Rutenbar, R.A.: Verifying analog oscillator circuits using
forward/backward refinement. In: Proc. of DATE, pp. 257–262 (2006)

6. Little, S., Seegmiller, N., Walter, D., Myers, C.J.: Verification of analog/mixed-
signal circuits using labeled hybrid petri nets. In: Proc. of ICCAD, pp. 275–282
(2006)

7. Walter, D., Little, S., Seegmiller, N., Myers, C., Yoneda, T.: Symbolic model check-
ing of analog/mixed-signal circuits. In: Proc. of ASPDAC, pp. 316–323 (2007)

8. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theo-
ries: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (2006)

9. Armando, A., Castellini, C., Giunchiglia, E.: SAT-based procedures for temporal
reasoning. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 97–108.
Springer, Heidelberg (2000)

10. Armando, A., Castellini, C., Giunchiglia, E., Maratea, M.: A sat-based decision
procedure for the boolean combination of difference constraints. In: Hoos, H.H.,
Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, Springer, Heidelberg (2005)

11. Barrett, C., Dill, D., Stump, A.: Checking satisfiability of first-order formulas by
incremental translation to sat. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002.
LNCS, vol. 2404, Springer, Heidelberg (2002)

12. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Schulz,
S., Sebastiani, R.: An incremental and layered procedure for the satisfiability of
linear arithmetic logic. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 317–333. Springer, Heidelberg (2005)

13. de Moura, L., Rue, H.: Lemmas on demand for satisfiability solvers. In: Proc. of
SAT (2002)

14. Filliâtre, J.C., Owre, S., Rue, H.: ICS: Integrated Canonization and Solving (Tool
presentation). In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 246–249. Springer, Heidelberg (2001)

15. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast
Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 175–188. Springer, Heidelberg (2004)

16. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software
using smt solvers instead of sat solvers. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 146–162. Springer, Heidelberg (2006)

17. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., Ranise, S., van Rossum,
P., Sebastiani, R.: Efficient satisfiability modulo theories via delayed theory com-
bination. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
335–349. Springer, Heidelberg (2005)

18. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and Abstract DPLL
Modulo Theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI),
vol. 3452, pp. 36–50. Springer, Heidelberg (2005)

19. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

20. Myers, C.J., Harrison, R.R., Walter, D., Seegmiller, N., Little, S.: The case for
analog circuit verification. Electronic Notes Theoretical Computer Science 153(3),
53–63 (2006)

21. Zheng, H.: Specification and compilation of timed systems. Master’s thesis, Uni-
versity of Utah (1998)

22. Myers, C.: Asynchronous Circuit Design. Wiley, Chichester (2001)

Bounded Model Checking of AMS Circuits Using an SMT Solver 81

23. David, R., Alla, H.: On hybrid petri nets. Discrete Event Dynamic Systems: Theory
and Applications 11, 9–40 (2001)

24. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In: Hybrid
Systems, pp. 209–229 (1992)

25. Walter, D.: Verification of Analog and Mixed-Signal Circuits Using Symbolic Meth-
ods. PhD thesis, University of Utah (2007)

26. Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. In: 7th Symposium of Logics in Computer Science, pp. 394–406.
IEEE Computer Scienty Press, Los Alamitos (1992)

27. Pastor, E., Roig, O., Cortadella, J., Badia, R.M.: Petri net analysis using boolean
manipulation. In: Valette, R. (ed.) PNPM 1994. LNCS, vol. 815, pp. 416–435.
Springer, Heidelberg (1994), citeseer.ist.psu.edu/pastor94petri.html

28. McMillan, K., Amla, N.: Automatic abstraction without counterexamples. In: Gar-
avel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer,
Heidelberg (2003)

citeseer.ist.psu.edu/pastor94petri.html

Model Checking Contracts
– A Case Study�

Gordon Pace1, Cristian Prisacariu2, and Gerardo Schneider2

1 Dept. of Computer Science and AI, University of Malta, Msida, Malta
2 Department of Informatics – University of Oslo,

P.O. Box 1080 Blindern, N-0316 Oslo, Norway
gordon.pace@um.edu.mt, {cristi,gerardo}@ifi.uio.no

Abstract. Contracts are agreements between distinct parties that de-
termine rights and obligations on their signatories, and have been intro-
duced in order to reduce risks and to regulate inter-business relationships.
In this paper we show how a conventional contract can be written in the
contract language CL, model the contract and verify properties of the
model using the NuSMV model checking tool.

1 Introduction

Internet-based applications involving one or more entities participating in
inter-business collaborations, virtual organisations, and web services, usually
communicate through service exchanges. Such exchanges are subject to certain
understanding on the different roles the participants play, including assumptions
on their correct and incorrect behaviours, and their rights and obligations in or-
der to avoid misunderstanding and ambiguities in such business relationships.
This motivates the need of establishing an agreement before any transaction is
performed, through a contract, guaranteeing the rights and duties of each signa-
tory. Such documents may also contain clauses determining penalties in case of
contract violations, and be as unambiguous as possible to avoid conflicting inter-
pretations. Conventional contracts are documents written in natural language, as
one may find in usual judicial or commercial traditional activities. On the other
hand, electronic contracts (or e-contracts for short) are machine-oriented and
as such they must be “understood” by the software responsible for controlling
and monitoring the service exchanges. E-contracts might be seen in two different
ways: (1) As the executable version of a conventional contract, obtained from
the translation of the “paper” version into the electronic one; (2) As contracts
by themselves obtained directly from certain software applications, like web ser-
vices and virtual organisations. For our current purposes, the difference above is
irrelevant, though our case study is based on a conventional contract.

Ideally, e-contracts should be shown to be contradiction-free both internally,
and with respect to the governing policies under which the contract is enacted.
� Partially supported by the Nordunet3 project “Contract-Oriented Software Devel-

opment for Internet Services”.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 82–97, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Model Checking Contracts – A Case Study 83

Moreover, there must be a run-time system ensuring that the contract is re-
spected. In other words, contracts should be amenable to formal analysis allow-
ing both static and dynamic verification, and thus written in a formal language.
In this paper we are interested only in the analysis of the contract itself (stat-
ically), and we are not concerned with its relation with policies nor with its
enforcement at run-time.

A formal language for writing contracts should be designed as to avoid most of
the philosophical problems of deontic logic [11]. Moreover, it should be possible
to represent conditional obligations, permissions and prohibitions, as well as
contrary-to-duty obligations (CTD) and contrary-to-prohibitions (CTP). CTDs
are statements representing obligations that might not be respected, whereas
CTPs are similar statements dealing with prohibitions that might be violated.
Both constructions specify the obligation/prohibition to be fulfilled and which
is the reparation/penalty to be applied in case of violation.

A formal language for writing (untimed) contracts is CL [13]. The language
is tailored to e-contracts, following an action-based approach, and having the
following properties: (1) The language avoids most of the classical paradoxes of
deontic logic; (2) It is possible to express in the language (conditional) obliga-
tions, permissions and prohibitions over concurrent actions keeping their intu-
itive meaning; (3) It is possible to express CTDs and CTPs; (4) The language
has a formal semantics given in a variant of the modal μ-calculus.

The main contribution of this paper is to show how model checking techniques
can be applied in the context of contract-oriented software development, in order
to determine whether a given contract stipulates what it is supposed to. CL
is used as an intermediary between the contract clauses in plain English and
the system specification required by the model checking tool. This use of CL
increases the confidence in the initial formulation of the contract clauses. The
model checking method that we present requires to pursue the following steps:

1. Model the conventional contract written in English into the formal language
CL;

2. Translate syntactically the CL specification into the extended μ-calculus Cμ;
3. Obtain a Kripke-like model (a labelled transition system with state propo-

sitions — LTS) of the Cμ formulae;
4. Translate the LTS into the input language of NuSMV;
5. Perform model checking using NuSMV;
6. In case of a counter-example given by NuSMV, interpret it as a CL clause

and repeat the model checking process until the property is satisfied;
7. Finally, repair the original contract by adding a corresponding clause, if

applicable.

The paper is organised as follows. In Section 2 we start by presenting the
language CL, including an example of the kind of contracts we are dealing with,
from which we will extract our case study. Section 3 is the main part of the paper
where we first formalise the case study in CL, and afterwards we show how to
use model checking and the NuSMV tool to determine whether the contract is

84 G. Pace, C. Prisacariu, and G. Schneider

correct with respect to certain desired properties, and how to get feedback as to
write the “correct” contract. In Section 4 we analyse related works and conclude
by discussing our choice of the model checking tool as well as future work.

2 A Formal Language for Contracts

We present in Fig. 1 a part of a conventional contract between a service provider
and a client, where the provider gives access to Internet to the client. We analyse
part of this contract in the following section. First we recall the contract language
CL; for a more detailed presentation see [13].

Definition 1 (Contract Language Syntax). A contract is defined by:

Contract := D ; C
C := φ | CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C

CO := O(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := F (δ) | CF ∨ [δ]CF

The syntax of CL closely resembles the syntax of a modal (deontic) logic. Though
this similarity is clearly intentional since we are driven by a logic-based approach,
CL is not a logic. The semantics of CL are given in an extension of μ-calculus
[8] which we call Cμ. In what follows we provide an intuitive explanation of the
CL syntax.

A contract consists of two parts: definitions (D) and clauses (C). We deliber-
ately let the definitions part underspecified in the syntax above. D specifies the
assertions (or conditions) and the atomic actions present in the clauses. φ de-
notes assertions and ranges over boolean expressions including the usual boolean
connectives, and arithmetic comparisons like “the budget is more than 200$”. We
let the atomic actions underspecified, which for our purposes can be understood
as consisting of three parts: the proper action, the subject performing the action,
and the target of (or, the object receiving) such an action. Note that, in this way,
the parties involved in a contract are encoded in the actions.

C is the general contract clause. CO, CP , and CF denote respectively obliga-
tion, permission, and prohibition clauses. O(·), P (·), and F (·), represents the
obligation, permission or prohibition of performing a given action. ∧ and ⊕ may
be thought as the classical conjunction and exclusive disjunction, which may be
used to combine obligations and permissions. For prohibition CF we have ∨, again
with the classical meaning of the corresponding operator. α is a compound ac-
tion (i.e., an expression containing one or more of the following operators: choice
“+”; sequence “ ·”; concurrency “&”, and test “?” —see [13]), while δ denotes a
compound action not containing any occurrence of +. Note that syntactically
⊕ cannot appear between prohibitions and + cannot occur under the scope
of F .

Model Checking Contracts – A Case Study 85

This deed of Agreement is made between:
1. [name], from now on referred to as Provider and
2. [name], from now on referred to as the Client.
INTRODUCTION
3. The Provider is obliged to provide the Internet Services as stipulated in this Agreement.
5. DEFINITIONS

5.1. j) Internet traffic may be measured by both Client and Provider by means of Equip-
ment and may take the two values high and normal.

OPERATIVE PART
7. CLIENT’S RESPONSIBILITIES AND DUTIES

7.1. The Client shall not:
a) supply false information to the Client Relations Department of the Provider.

7.2. Whenever the Internet Traffic is high then the Client must pay [price] immediately, or
the Client must notify the Provider by sending an e-mail specifying that he will pay later.

7.3. If the Client delays the payment as stipulated in 7.2, after notification he must immedi-
ately lower the Internet traffic to the normal level, and pay later twice (2 ∗ [price]).

7.4. If the Client does not lower the Internet traffic immediately, then the Client will have
to pay 3 ∗ [price].

7.5. The Client shall, as soon as the Internet Service becomes operative, submit within seven
(7) days the Personal Data Form from his account on the Provider’s web page to the Client
Relations Department of the Provider.

8. CLIENT’S RIGHTS
8.1. The Client may choose to pay either:

a) each month; b) each three (3) months; c) each six (6) months;
9. PROVIDER’S SERVICE

9.2. As part of the Service offered by the Provider the Client has the right to an e-mail and
an user account.

9.3. Provider is obliged to offer with no limitation and within a period of seven (7) days
a password and any other Equipment Specific to Client, necessary for the correct usage of
the user account, upon receiving of all the necessary data about the client from the Client
Relations Department of the Provider.

9.4. Each month the Client pays the bill the Provider is obliged to send a Report of Internet
Usage to the Client.

10. PROVIDER’S DUTIES
10.1. The Provider takes the obligation to return the personal data of the client to the original

status upon termination of the present Agreement, and afterwards to delete and not use
for any purpose any whole or part of it.

10.2. The Provider guarantees that the Client Relations Department, as part of his adminis-
trative organisation, will be responsive to requests from the Client or any other Department
of the Provider, or the Provider itself within a period less than two (2) hours during
working hours or the day after.

11. PROVIDER’S RIGHTS
11.1. The Provider takes the right to alter, delete, or use the personal data of the Client

only for statistics, monitoring and internal usage in the confidence of the Provider.
11.2. Provider may, at its sole discretion, without notice or giving any reason or incurring

any liability for doing so:
b) Suspend Internet Services immediately if Client is in breach of Clause 7.1;

13. TERMINATION
13.1. Without limiting the generality of any other Clause in this Agreement the Client may

terminate this Agreement immediately without any notice and being vindicated of any of the
Clause of the present Agreement if:
a) the Provider does not provide the Internet Service for seven (7) days consecutively.

13.2. The Provider is forbidden to terminate the present Agreement without previous written
notification by normal post and by e-mail.

13.3. The Provider may terminate the present Agreement if:
a) any payment due from Client to Provider pursuant to this Agreement remains unpaid

for a period of fourteen (14) days;
16. GOVERNING LAW

16.1. The Provider and the present Agreement are governed by and construed according to
the Law Regulating Internet Services and to the Law of the State.
a) The Law of the State stipulates that any ISP Provider is obliged, upon request to seize

any activity until further notice from the State representatives.

Fig. 1. Part of a contract between an Internet provider and a client

86 G. Pace, C. Prisacariu, and G. Schneider

We borrow from propositional dynamic logic [6] the syntax [α]φ to represent
that after performing α (if it is possible to do so), φ must hold. The [·] notation
allows having a test, where [φ?]C must be understood as φ ⇒ C. 〈α〉φ captures
the idea that it exists the possibility of executing α, in which case φ must hold
afterwards. Following temporal logic (TL) notation we have U (until), © (next),
and � (always), with intuitive semantics as in TL [12]. Thus C1 U C2 states that
C1 holds until C2 holds. ©C intuitively states that C holds in the next moment,
usually after something happens, and �C expressing that C holds in every mo-
ment. We can define ♦C (eventually) for expressing that C holds sometimes in a
future moment.

To express CTDs we provide the following notation, Oϕ(α), which is syntactic
sugar for O(α)∧ [α]ϕ stating the obligation to execute α, and the reparation ϕ in
case the obligation is violated, i.e. whenever α is not performed. The reparation
may be any contract clause. Similarly, CTP statements Fϕ(α) can be defined as
Fϕ(α) = F (α) ∧ [α]ϕ, where ϕ is the penalty in case the prohibition is violated.
Notice that it is possible to express nested CTDs and CTPs.

In CL we can write conditional obligations, permissions and prohibitions in
two different ways. Just as an example let us consider conditional obligations.
The first kind is represented as [α]O(β), which may be read as “after performing
α, one is obliged to do β”. The second kind is modelled using the test operator ?:
[ϕ?]O(α), representing “If ϕ holds then one is obliged to perform α”. Similarly for
permission and prohibition. For convenience, in what follows we use the notation
φ ⇒ C instead of the CL syntax [φ?]C.

3 A Contract Case Study

In what follows we consider part 7 of the contract given in Fig. 1 between a
service provider and a client, where the provider gives access to the Internet to
the client. We consider two parameters of the service: high and normal, which
denote the client’s Internet traffic. We will consider only the following clauses of
the contract.

7.1. The Client shall not:
a) supply false information to the Client Relations Department of the Provider.

7.2. Whenever the Internet Traffic is high then the Client must pay [price] immediately, or the
Client must notify the Provider by sending an e-mail specifying that he will pay later.

7.3. If the Client delays the payment as stipulated in 7.2, after notification he must immediately
lower the Internet traffic to the normal level, and pay later twice (2 ∗ [price]).

7.4. If the Client does not lower the Internet traffic immediately, then the Client will have to
pay 3 ∗ [price].

7.5. The Client shall, as soon as the Internet Service becomes operative, submit within seven
(7) days the Personal Data Form from his account on the Provider’s web page to the Client
Relations Department of the Provider.

We also add clause 11.2 as it is strongly related to clause 7.1 and the two
should be taken together:

11.2. Provider may, at its sole discretion, without notice or giving any reason or incurring any
liability for doing so:
b) Suspend Internet Services immediately if Client is in breach of Clause 7.1;

Model Checking Contracts – A Case Study 87

In what follows we formalise the above contract clauses. As part of the formali-
sation of a contract in CL we first have to define the assertions and actions:

φ = the Internet traffic is high
fi = client supplies false information to Client Relations Department
h = client increases Internet traffic to high level
p = client pays [price]
d = client delays payment
n = client notifies by e-mail
l = client lowers the Internet traffic

sfD = client sends the Personal Data Form to Client Relations Department
o = provider activates the Internet Service (it becomes operative)
s = provider suspends service

Note that we have the action h which does not appear explicitly in the example
clauses. Action h is implicit as it makes the proposition φ valid (the Internet
becomes high only if the client increases it). Action h can be considered as the
complement of action l which makes φ false (lowers the Internet traffic). The six
clauses above are written in CL as follows:

1. �FP (s)(fi)
2. �[h](φ ⇒ O(p + (d&n)))
3. �([d&n](O(l) ∧ [l]♦O(p&p)))
4. �([d&n · l]♦O(p&p&p))
5. �([o]O(sfD))

Clause 1 has a concise syntax and represents a contrary-to-prohibition. More
precisely, the CTP represents the prohibition F (fi) (clause 7.1) and the repa-
ration which should be enforced in case the prohibition is violated (in this case
P (s); the right of the provider to suspend the Internet service, clause 11.2).

Note that all the clauses are supposed to hold throughout the whole contract
because of the �. Clause 2 models clause 7.2 of the contract example and it
represents the fact that whenever the assertion φ holds (the Internet traffic of
the client is at the high level) then it must be the case that the client is obliged
to choose (+) between either paying immediately (p) or delaying the payment
by sending the notification (d&n).

Clauses 3 and 4 refer to the clauses 7.3 and 7.4 of the contract example. They
both refer to the moment after the client has delayed the payment ([d&n]).
Clause 3 states that the client has the obligation to lower the Internet traffic
(O(l)) and that after lowering the client should pay twice the price. On the
other hand, clause 4 specifies the obligation of the client to pay three times the
price in case he does not lower the Internet traffic (l). The two formulae may be
combined in a single formula using CTDs: �([d&n](Oϕ(l) ∧ [l]♦(O(p&p)) where
ϕ = O(p&p&p). Clause 5 formally represents clause 7.5 of the contract example.
It represents the obligation of the client to submit the form (O(sfD)) after the
Internet service becomes operative ([o]).

88 G. Pace, C. Prisacariu, and G. Schneider

Table 1. The translation function fT from CL to Cμ

(1) fT (O(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1Oai)
(2) fT (CO ⊕ CO) = fT (CO) ∧ fT (CO)
(3) fT (P (&n

i=1ai)) = 〈{a1, . . . , an}〉(∧n
i=1¬Fai)

(4) fT (CP ⊕ CP) = fT (CP) ∧ fT (CP)
(5) fT (F (&n

i=1ai)) = [{a1, . . . , an}](∧n
i=1Fai)

(6) fT (F (δ) ∨ [β]F (δ)) = fT (F (δ)) ∨ fT ([β]F (δ))
(7) fT (C1 ∧ C2) = fT (C1) ∧ fT (C2)
(8) fT (©C) = [any]fT (C)

(9) fT (C1 U C2) = μZ.fT (C2) ∨ (fT (C1) ∧ [any]Z ∧ 〈any〉�)
(10) fT (�C) = νZ.C ∧ [any]Z
(11) fT ([&n

i=1ai]C) = [{a1, . . . , an}]fT (C)
(12) fT ([(&n

i=1ai)α]C) = [{a1, . . . , an}]fT ([α]C)
(13) fT ([α + β]C) = fT ([α]C) ∧ fT ([β]C)
(14) fT ([ϕ?]C) = fT (ϕ) ⇒ fT (C)

3.1 Translating the CL Specification into Cμ

We extract a model from the CL clauses by first translating the language specifi-
cation into the extended μ-calculus Cμ where the semantics is given as a special
labelled transition system. The translation function fT which takes a CL for-
mula and returns a formula in the Cμ is shown in Table 1. The special syntax
[any] (or the dual 〈any〉) represents the fact that any action can be executed.
To represent obligations and prohibitions of a given action a we need the special
propositional constants Oa and Fa.

We briefly mention here the semantics of Cμ, see [13] for more details. The
formulae are interpreted over a labelled transition system (LTS). The labels
of the transitions are represented by multi-sets of actions (e.g. {p, p, p} is a
label corresponding to the CL concurrent action term p&p&p). The formulae
are interpreted over states as usual in modal logics with semantics on LTSs.
For example the expression φ ⇒ 〈p〉Op is interpreted in a state and should be
understood as: if the assertion φ holds in the state then 〈p〉Op should hold in
the same state. [p]C and 〈p〉C are interpreted as holding in the current state if
and only if in the next state reachable by action p the formula corresponding
to the translation of C holds. In Cμ the difference between the two operators is
that 〈p〉ϕ requires the existence of at least one next state reachable by p where
ϕ holds, where [p]ϕ is quantified universally, and thus the formula also holds in
case the set of states reachable by p is empty.

We will now translate the five CL clauses corresponding to the contract given
above, into Cμ. Note that we use the � and ♦ with their classical interpretation
from temporal logics; the last not being included in the Table 1. It is known [2]
that fT (♦C) = fT (UC) = μZ.C ∨ ([any]Z ∧〈any〉). In order to translate the
first clause of the CL representation above we can proceed as follows:

fT (�FP (s)(fi)) = νZ.fT (FP (s)(fi)) ∧ [any]Z,
where: fT (FP (s)(fi)) = fT (F (fi) ∧ [fi]P (s)) = [fi]Ffi ∧ [fi]〈s〉¬Fs.

Model Checking Contracts – A Case Study 89

In this manner, we use � operator in the clauses below simply as syntactic
sugar which is reduced to the ν operator in μ-calculus.

1. �[fi]Ffi ∧ [fi]〈s〉¬Fs

2. �[h](φ ⇒ (〈p〉Op ∧ 〈{d, n}〉(Od ∧ On)))
3. �[{d, n}](〈l〉Ol ∧ [l](μZ.〈{p, p}〉Op ∨ ([any]Z ∧ 〈any〉)))
4. �[{d, n}][l](μZ.〈{p, p, p}〉Op ∨ ([any]Z ∧ 〈any〉))
5. �[o]〈sfD〉OsfD

3.2 From Cμ to the LTS

In Fig. 2 we have pictured one model of the above clauses where we denote by
else all other actions different than the ones from the current node (e.g. for the
state s7 in the picture else = any \ {fi}).

Note that because of the semantics of the prohibition F (fi) (i.e., [fi]Ffi), we
would not need to explicitly add a transition from each state labelled with fi
to a state with the propositional constant Ffi. However, in the presence of a
CTP, as it is the case with clause 1, we need to do so in order to represent the
reparation P (s).

We attempt to build a model in the form of an LTS — in a certain sense an
implementation of the contract as specified. The process is done manually and
prone to error — to ensure correctness of the automata we build, we model check
them against the contract specification. Furthermore, multiple models satisfying
the contract specification exist, ranging from the weakest being equivalent to
the specification itself, to stronger and more concrete implementations. In this
paper we are not concerned with achieving the weakest model.

Although the weakest model is desirable to have, we can still reason about our
contract based on a (correct) model we build. Given a model M and contract
specification C, we start off by proving that the model really implements the
contract: M |= C. We note that when the model does not satisfy a property
π: M
|= π, it immediately follows that neither does the contract: C
|= π, thus
enabling us to discover bugs in our specification as translated from the natural
language, or in the original natural language contract itself. On the other hand,
using this approach we cannot prove the correctness of the original contract.
Were we able to obtain the weakest model, we would have been able to reason
directly about the contract specification itself.

In what follows, we will specify this model using the input language of NuSMV,
and prove that it is indeed a model of the CL formulae.

3.3 From the LTS to the NuSMV Input Syntax

In NuSMV [4], a model can be specified in two ways: either using assignments
or by direct specification. We choose to use the direct specification technique as
it enables us to translate our system more directly into NuSMV.

90 G. Pace, C. Prisacariu, and G. Schneider

Fs
¬

Ffi

Ol
OpOsfD,

Od On, Opφ ,

l
−

sfD

o

l

s

fi

{d,n}

fi h
p

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7s6

s8

s1

s2

Fig. 2. Example of a model for the five clauses written in CL

NuSMV uses state variables to identify states; the number of states is deter-
mined by the product of the number of different values each state variable can
take. There is also a second kind of variables, input variables which are meant
to specify labels of a labelled transition system. Since we have actions as labels,
we make substantial use of the input variables in our application.

We have defined an input variable for each atomic action of the CL spec-
ification. The type of the input variables is boolean so that if the value of
d = false then d is not an active label of the transition. Whenever a vari-
able is left unspecified then NuSMV interprets it as having any value so it cre-
ates a transition (or a state in case of state variables) for each value of the
variable.

In NuSMV it is easy to simulate the concurrent labels {d, n} of Cμ which mean
that the transition is taken if both actions d and n are executed concurrently:
we activate both input variables d = true ; n = true. We can also represent
the resource-awareness of the labels (i.e. the p&p of CL, or the {p, p} of Cμ) by
defining the input variable with the type range of integers. If p = 0 then the
transition is not labelled with the action p; if p = 1 then the transition is labelled
with one normal action p (like in the case of boolean type); but if p = 2 then
we take the transition if two copies of the action p are executed concurrently.
We have then the following declaration of variables:

IVAR
d : boolean ;
n : boolean ;
p : 0 .. 3 ;

Note that we may have empty transitions (with no label) by giving to all
the input variables the value false (or p = 0). Moreover, we may represent the
special action any of Cμ by leaving all input variables unspecified.

Model Checking Contracts – A Case Study 91

We have defined a state variable named state of enumeration type so it can
take only eight values, corresponding to the eight states depicted in Fig. 2.

VAR
state : {s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8} ;

Other variables are declared accordingly (e.g., high : boolean). Moreover,
we define a state variable of type boolean for each input variable. This is required
by the Cμ where we have a propositional constant Oa or Fa associated to each
atomic action a which enters under the scope of an obligation or of a prohibition
respectively:

F_s : boolean ; F_fi : boolean ;
O_p : boolean ; O_d : boolean ; O_n : boolean ;
O_l : boolean ; O_sfD : boolean ;

As an example, we show below the encoding of the initial state, and one of
its outgoing transitions, of the automaton in Fig. 2. We call the initial state s1.

INIT
(state = s1) & !high &
!F_fi & !O_p & !O_d & !O_n & !O_l & !O_sfD & !F_s ;

The transitions are specified using the TRANS keyword followed by a propo-
sitional formula which determines the pairs of states that form the transition
relation. The propositional formula contains names of state variable (which are
tested in the current state) and next expressions which refer to the value of the
state variables in the next state. It also contains the input variables to model
the labels of the transitions. Remember that any variable that is missing from
the formula is interpreted as having any value and will give rise to a number of
different transitions equal to the number of values it can take.

TRANS
--state variables of the current state

((state = s1) & !high &
!F_fi & !O_p & !O_d & !O_n & !O_l & !O_sfD & !F_s &

--input variables as the labels
(!fi & p = 0 & !d & !n & !l & !negl & !sfD & o & !s) &

--the values of the state variables in the next states
(next (state) = s6) & !next (high) &
next (! F_fi & !O_p & !O_d & !O_n & !O_l & !O_sfD & !F_s))

3.4 Model Checking the Contract

We propose to combine the contract specification and the model we build in
different ways with model checking techniques to help us improve the contract
and increase our confidence in our model.

Proving that the model satisfies the original clauses: Clearly, to have confidence
that we are reasoning using a correct model, we need to prove that the automaton

92 G. Pace, C. Prisacariu, and G. Schneider

of Fig. 2, specified in NuSMV1 respects the five CL clauses representing the
statements from the contract example. For this we have specified each clause as
a special LTL specification in NuSMV:

G ((fi -> X F_fi) & (fi -> X (s & X !F_s)))
G (h -> X (high -> ((p = 1 -> X O_p) &

((d & n) -> X (O_d & O_n)))))
G ((d & n) -> X ((l -> X O_l) & l -> X F (p = 2 -> X O_p)))
G ((d & n) -> X (l -> X F (p = 3 -> X O_p)))
G (o -> X (sfD -> X O_sfD))

The first, second and fourth properties go through immediately. The third
fails, but upon investigation, it turns out that the actual contract wording gave
a dependency between the second and third properties — the d&n action in
the third property only refers to ones produced in the context of the second
property (just after the Internet traffic going high and the user paying once).
This indicates that the two ought to be combined together either by adding extra
logic to indicate the dependency, or by merging then into a single property. We
choose the latter, obtaining:

G (h -> X (high -> ((p = 1 -> X O_p) & ((d & n) ->
X (O_d & O_n & (l -> X O_l) &

l -> X F (p = 2 -> X O_p))))))

This new property can be verified of our model.
Finally, the fifth property fails, suggesting that our model is incorrect. How-

ever, upon inspection it was realised that nothing in the contract specifies that
the activation of the service happens once, or that the user’s obligation is only
valid the first time the activation occurs. We choose to revise the original con-
tract to state that: “The first time the service becomes operative, the client is
obliged to send the Personal Data Form to Client Relations Department”. This
is formulated as the following property, which model checks:

(!o) U (o -> X(can_sfD & (sfD -> X O_sfD)))

An alternative solution is to ensure that the contract is only in force once the
Internet Service becomes operative, and simplify the property accordingly.

Verifying a property about client obligations: The first desirable property we
want to check on the contract model can be expressed in English as: “It is always
the case that whenever the Internet traffic is high, if the clients pays immediately,
then the client is not obliged to pay again immediately afterwards”. The property
is expressed in CL-like syntax2 as:�¬(φ ⇒ [p]¬O(p)). The property proves to be
false, as can be seen in the transcript below, which includes a counter-example:

1 The NuSMV code we have used is available on Nordunet3 project homepage:
http://www.ifi.uio.no/~gerardo/nordunet3/software.shtml

2 Notice that formally in CL there is no negation at the clause level.

http://www.ifi.uio.no/~gerardo/nordunet3/software.shtml

Model Checking Contracts – A Case Study 93

Fs
¬

Ffi

Ol
OpOsfD,

l
−

Fs
¬

Ffi

Ol
OpOsfD,

l
−

Od On, Od On,

sfD

o

l

s

fi

{d,n}

fi h

fi

fi
fi

fi

fi

s3

s4s5

s7s6

s8

s1

s2

sfD

o

l

s

fi

{d,n}

fi h

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7s6

s8

s1

s2

a. b.

pp

φ φ

{p,p,p}

{p,p}

Fig. 3. The model of Fig. 2 corrected.

NuSMV > check_ltlspec
-- specification

G (! high | (p = 1 -> X (p = 1 -> X !O_p))) is false
-- as demonstrated by the following execution sequence
-> State: 2.1 <-

state = s1; o = 1
-> State: 2.2 <-

state = s2; sfD = 1
-> State: 2.3 <-

state = s3; O_p = 1; O_sfD = 1; h = 1
-- Loop starts here
-> State: 2.4 <-

state = s4; high = 1; O_sfD = 0; p = 1
-- Loop starts here
-> State: 2.5 <-

p = 1

The above counter-example shows that in state s4 of Fig. 2 the client must
fulfil one of the following obligations: or to pay (p), or to delay payment and
notify (d,n). However, after paying once, the automaton is still in a state with
high traffic (state s4), and thus the client is still obliged to pay again.

We give in Fig. 3-a the new model, which is proved correct with respect to
the above property. The difference is the transition s4

p−→ s3 which replaces
the one labelled with p from s4 to itself. From this it is easy now to modify the
original contract by introducing the following clause: “The provider guarantees
that if the Internet traffic of the Client reaches a high level and the Client pays
the [price] then it will not be obliged to pay the [price] again”.

Notice that though we have obtained a new model that satisfies the property
(and a clause in the original contract solving the above problem), the solution
is still not satisfactory, as the contract does not specify what happens after the

94 G. Pace, C. Prisacariu, and G. Schneider

client pays but does not decrease the Internet traffic. In the new model shown in
Fig. 3-a this is reflected by the fact that after taking the new added transition
(from s4 to s3), there is an implicit assumption that the Internet traffic is low.
For brevity we do not further analyse the contract in order to obtain the right
contract concerning this problem, though it can be done following a similar
approach as above.

Verifying a property about payment in case of increasing Internet traffic: The
checking of the previous property was done for the benefit of the client. We now
perform model checking in order to increase the confidence of the provider of
the service.

We are interested in proving that: “It is always the case that whenever Internet
traffic is high, if the client delays payment and notifies, and afterwards lowers
the Internet traffic, then the client is forbidden to increase Internet traffic unless
she/he pays twice”. This complicated English clause is specified in CL-like syntax
as: �(φ ⇒ [d&n · l](F (h) U donep&p)).

Here donep&p is an assertion added to specify that the client has paid twice.
Notice that in order to prove the property we need to extend the NuSMV model
of the contract with a propositional constant corresponding to donep&p which is
true only after a transition labelled {p, p} is taken.

In Fig. 3-a we show the control structure of the LTS. The additional state
variable donep&p is added to the NuSMV model, thus effectively introducing
two states for every one in Fig. 3-a, with different values for the state variable.

The original property proves to be false, since from state s4 (where φ holds),
after d&n · l, it is possible to increase Internet traffic in state s7 (due to the else
label), so neither F (h) nor donep&p hold.

Though it was not apparent at first sight, and confirmed by the result given
by the tool, the above clause allow the client to go from normal to high Internet
traffic many times and pay the penalty (2 ∗ [price]) only once. The problem is
that after the client lowers the Internet traffic, he might get a high traffic again
and postpone the payment till a future moment. This problem comes from the
ambiguity of the language. Note that the CL formalisation in the clauses 3 and
4 use the ♦ to model the fact that a statement will hold eventually in the future
but not necessarily immediately (expressions “pay later” in clause 7.3 and “will
have to pay” in clause 7.4 are the ambiguities). The eventually was translated
with the help of the special syntax else that we see in Fig. 3-a. We use the
counter-example given by NuSMV to construct the model in Fig. 3-b where the
property holds. The difference is at the transition from s7 to s3 where we have
changed the label to the multi-set label {p, p}. In CL the solution is to add a new
clause corresponding to the property above, and the original contract should be
extended with the English version of the property as expressed above. Note that
a similar property can be stated for the clause 4 for which we have given the
solution in Fig. 3-b also by replacing the label of the transition from s6 to s3 by
the multi-set label {p, p, p}.

Model Checking Contracts – A Case Study 95

4 Final Discussion

In this paper we have shown how model checking techniques and tools can be
applied to analyse contracts. In particular, we have used NuSMV [4] to model
check conventional contracts specified using the language CL. In this paper,
we presented multiple uses of model checking for reasoning about contracts.
Firstly, we use model checking to increase our confidence in the correctness of
the model with respect to the original natural language contract. Secondly, by
finding errors in the model, we can identify problems with the original natural
language contract or its interpretation into CL. Finally, we enable the signatories
to safeguard their interests by ensuring certain desirable properties (and lack of
undesirable ones).

About NuSMV: NuSMV [4] is the successor of the milestone symbolic model
checker SMV [10]. Symbolic model checking [3] is based on the clever encoding
of the states using binary decision diagrams or related techniques, but still re-
lies on the classical model checking algorithm. NuSMV allows the checking of
properties specified in CTL, LTL, or PSL. More recently NuSMV has included
input variables with which it is possible to specify directly a labelled transition
system. This feature of NuSMV has been very useful in our context.

Related Work: To our knowledge, model checking contracts is quite an unex-
plored area where only few works can be found [15,5]. The main difference with
our approach is that in [15] there is no language for writing contracts, instead
automata are used to model the different participants of a contract, i.e. there is
no model of the contract itself but only of the behaviour of the contract signa-
tories. Many safety and liveness properties identified as common to e-contracts
are then verified in a purchaser/supplier case study using SPIN [7]. Similarly, in
[5] Petri nets are used to model the behaviour of the participants of a contrac-
tual protocol. Though in [15] it is claimed that modelling the signatories gives
modularity, adding clauses to a given contract implies modifying the automata.
In our case, adding clauses to a contract is done as in any declarative language,
without changing the rest. Though in our current implementation we would also
need to rewrite the verification model, this should not be seen as a disadvantage;
given that CL has formal semantics in Cμ the model could be obtained automat-
ically after the modifications. An advantage of our approach is the possibility of
explicitly writing conditional obligations, permissions and prohibitions, as well
as CTDs and CTPs. We are not aware of any other work on model checking
e-contracts along the same line as ours. See [13] and [15] (and references therein)
for further discussions, and other approaches, on formalisations of contracts.

Future Work: The approach we have followed has few drawbacks. First notice
that the way we have obtained the model for the least fix-point in the Cμ formula
3 in Section 3.1 was modelled as the cycle (s7, s3, s4, s5)∗, which may indeed be
an infinite loop as we do not have accepting conditions in our labelled Kripke
structure nor fairness constraints. This of course would need to be refined in

96 G. Pace, C. Prisacariu, and G. Schneider

order to guarantee that the cycle will eventually finish. Moreover, in order to
be able to prove properties about actions which must have been performed, we
should extend our language with a constructor done(·) to be applied to actions,
meaning that the action argument was performed (as with the donep&p in the
example). This will definitely facilitate specifying properties like the last one
of the previous section concerning the prohibition on actions by the client. We
are currently working on improving the above aspects in order to make a more
precise analysis.

We have presented a manual translation from the Cμ semantics of the contract
written in CL into the input language of NuSMV. We plan to implement a tool
to automatically model check contracts written in CL. We can benefit from the
counter-example generation to fix the original contract, as we have briefly shown
in Section 3.4. The underlying model checker of such tool could be NuSMV or
another existing μ-calculus model checker (e.g., [1,9]).

With such a tool the whole model checking process will be accelerated facilitat-
ing its use and thus making it easy to prove other interesting general properties
about e-contracts, as suggested in [15]. Besides such classical liveness or safety
properties we are also interested in properties more specific to e-contracts, such
as: finding the obligations or prohibitions of one of the parties in the contract;
listing of all the rights that follow after the fulfilling of an obligation; what are
the penalties for whenever violating an obligation or prohibition; determining
whether a given participant is obliged to perform contradictory actions.

The generation of the (automata-like) model that we did by hand in Section
3 can be done automatically along the lines of existing LTL-to-Büchi automata
translators (like ltl2smv or ltl2ba). [14] presents a comprehensive overview of
the state-of-the-art of such tools.

In the current state of development, the language CL cannot explicitly express
timing constraints. We intend to extend the language with such features in order
to be able to specify and verify real-time properties.

Acknowledgements. We would like to thank Martin Steffen for suggestions on
an early draft of this paper.

References

1. Biere, A.: mu-cke - efficient mu-calculus model checking. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 468–471. Springer, Heidelberg (1997)

2. Bradfield, J., Stirling, C.: Modal Logics and Mu-Calculi: an Introduction, pp. 293–
330. Elsevier, Amsterdam (2001)

3. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: LICS 1990, pp. 428–439 (1990)

4. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

5. Daskalopulu, A.: Model checking contractual protocols. In: JURIX 2000, Frontiers
in Artificial Intelligence and Applications Series, pp. 35–47 (2000)

Model Checking Contracts – A Case Study 97

6. Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. In: STOC 1977,
pp. 286–294 (1977)

7. Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading (2003)

8. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

9. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Sci. Comput. Program. 46, 255–281 (2003)

10. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dor-
drecht (1993)

11. McNamara, P.: Deontic logic. In: Handbook of the History of Logic, vol. 7, pp.
197–289. North-Holland Publishing, Amsterdam (2006)

12. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57 (1977)
13. Prisacariu, C., Schneider, G.: A formal language for electronic contracts. In: Bon-

sangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189.
IFIP (2007)

14. Rozier, K.Y., Vardi, M.Y.: Ltl satisfiability checking. In: Bosnacki, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 182–200 (2007)

15. Solaiman, E., Molina-Jiménez, C., Shrivastava, S.K.: Model checking correctness
properties of electronic contracts. In: Orlowska, M.E., Weerawarana, S., Papa-
zoglou, M.M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 303–318.
Springer, Heidelberg (2003)

On the Efficient Computation of the Minimal
Coverability Set for Petri Nets�

Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin��

Université Libre de Bruxelles (U.L.B.), Computer Science Department
CPI 212, Campus Plaine, Boulevard du Triomphe, B-1050 Bruxelles, Belgium

Abstract. The minimal coverability set (MCS) of a Petri net is a finite rep-
resentation of the downward-closure of its reachable markings. The minimal
coverability set allows to decide several important problems like coverability,
semi-liveness, place boundedness, etc. The classical algorithm to compute the
MCS constructs the Karp&Miller tree [8]. Unfortunately the K&M tree is of-
ten huge, even for small nets. An improvement of this K&M algorithm is the
Minimal Coverability Tree (MCT) algorithm [1], which has been introduced 15
years ago, and implemented since then in several tools such as Pep [7]. Unfor-
tunately, we show in this paper that the MCT is flawed: it might compute an
under-approximation of the reachable markings. We propose a new solution for
the efficient computation of the MCS of Petri nets. Our experimental results show
that this new algorithm behaves much better in practice than the K&M algorithm.

1 Introduction

Petri nets [10] are a very popular formalism for the modeling and verification of para-
metric and concurrent systems [6]. The underlying transition graph of a Petri net is po-
tentially infinite. Nevertheless, a large number of interesting verification problems are
decidable on Petri nets. Among these decidable problems are the coverability problem
(to which many safety verification problem can be reduced); the boundedness problem
(is the number of reachable markings finite ?); the place boundedness problem (is the
maximal reachable number of tokens bounded for some place p ?); the semi-liveness
problem (is there a reachable marking in which some transition t is enabled).

In order to decide the aforementioned problems, one can use the minimal coverability
set (MCS), which is a finite representation of some over-approximation of the reachable
markings. The MCS is thus a very useful tool for the analysis of Petri nets, and an
efficient algorithm to compute it is highly desirable.

Karp and Miller have shown, in their seminal paper [8], that the minimal coverability
set is computable. The main idea of the Karp and Miller (K&M) algorithm is to build
a finite tree that summarizes the potentially infinite unfolding of the reachability graph
of the Petri net. In particular, this algorithm relies on an acceleration technique, which
computes the limit of repeating any number of times some sequences of transitions that

� This research was supported by the Belgian FNRS grant 2.4530.02 of the FRFC project “Cen-
tre Fédéré en Vérification” and by the project “MoVES”, an Interuniversity Attraction Poles
Programme of the Belgian Federal Government.

�� Laurent Van Begin is “Chargé de recherche” at FNRS, Belgium.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 98–113, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Efficient Computation of the Minimal Coverability Set for Petri Nets 99

strictly increase the number of tokens in certain places. The acceleration technique is
sound because Petri nets are strictly monotonic, i.e. a sequence of transitions which
can be fired from a marking m can be fired from all markings m′ such that m � m′

(where � is a partial order for the markings). Furthermore sequences of transitions have
constant effect, i.e. they add and subtract in each place the same number of tokens no
matter from which marking they are fired. At the end of the execution of the K&M
algorithm, one obtains a coverability tree, from which the MCS can be extracted.

Unfortunately, the K&M algorithm is often useless in practice because the finite
tree that it builds is often much larger than the minimal coverability set, and cannot be
constructed in reasonable time. As a consequence, a more efficient algorithm is needed.
In [1], such an algorithm is proposed. The minimal coverability tree (MCT) builds on
the idea of K&M but tries to take advantage more aggressively of the strict monotonicity
of Petri nets. The main idea is to construct a tree where all markings that label nodes
are incomparable wrt �. To achieve this goal, reduction rules are applied at each step
of the algorithm: each time a new marking is computed, it is compared to the other
markings. If the new marking is smaller than an existing marking, the construction is not
pursued from this new marking. If the new marking is larger than an existing marking,
the subtree starting from that smaller marking is removed. The informal justification
for this is as follows: the markings that are reachable from removed markings will be
covered by markings reachable from the marking that was used for the removal, by
the monotonicity property of Petri nets. While this idea is appealing and leads to small
trees in practice, we show in this paper that, unfortunately, it is not correct: the MCT
algorithm is not complete and can compute a strict under-approximation of the minimal
coverability set. The flaw is intricate and we do not see an easy way to get rid of it.

So, instead of trying to fix the MCT algorithm, we consider the problem from scratch
and propose a new efficient method to compute the MCS. It is based on novel ideas:
first, we do not build a tree but handle sets of pairs of markings. Second, in order to
exploit monotonicity property, we define an adequate order on pairs of markings that
allows us to maintain sets of maximal pairs only. We give in this paper a detailed proof
of correctness for this new method, and explain how to turn it into an efficient algorithm
for the computation of the MCS of practically relevant Petri nets. We have implemented
our algorithm in a prototype and compared its performance with the K&M algorithm.
Our algorithm is orders of magnitude faster than the K&M algorithm.

The rest of the paper is organized as follows. In Section 2, we recall necessary pre-
liminaries. In Section 3, we recall the KM as well as the MCT algorithms. In Section 4,
we expose the bug in the MCT algorithm using an example and explain the essence
of the flaw. In Section 5, we define the covering sequence, a sequence of sets of pairs
of ω-markings that allows to compute the MCS. In Section 6, we discuss a prototype
implementation of this new method. Due to the lack of space, we refer the reader to
[5] (available on the web at: http://www.ulb.ac.be/di/ssd/cfv/) for the
missing proofs.

2 Preliminaries

Petri nets. Let us first recall the model of Petri nets, and fix several notations.

100 G. Geeraerts, J.-F. Raskin, and L. Van Begin

Definition 1. A Petri net [10] (PN for short) is a tuple N = 〈P, T 〉, where P =
{p1, p2, . . . , p|P |} is a finite set of places and T = {t1, t2, . . . , t|T |} is a finite set of
transitions. Each transition is a tuple 〈I, O〉, where I : P �→ N and O : P �→ N are
respectively the input and output functions of the transition.

To define the semantics of PN, we first introduce the notion of ω-marking. An ω-
marking m is a function m : P �→ (N ∪ {ω}) that associates a number of tokens
to each place (N is the set of natural numbers including 0 and ω means ‘any natural
number’). An ω-marking m is denoted either as

〈
m(p1),m(p2), . . . ,m(p|P |)

〉
(vec-

tor) , or as {m(pi1)pi1 ,m(pi2)pi2 , . . . ,m(pik
)pik

} (multiset), where pi1 , pi2 , . . . , pik

are exactly the places that contain at least one token (we omit m(p) when it is equal
to 1). For example, 〈0, 1, 0, ω, 2〉 and {p2, ωp4, 2p5} denote the same ω-marking. An
ω-marking m is a marking iff ∀p ∈ P : m(p) 	= ω.

Let N = 〈P, T 〉 be a PN, m be an ω-marking of N and t = 〈I, O〉 ∈ T be a
transition. Then, t is enabled in m iff m(p) ≥ I(p) for any p ∈ P (we assume that
ω ≥ ω and ω > c for any c ∈ N). In that case, t can fire and transforms m into a
new ω-marking m′ s.t. for any p ∈ P : m′(p) = m(p) − I(p) + O(p) (assuming that

ω−c = ω = ω+c for any c ∈ N). We denote this by m t−→ m′, and extend the notation
to sequences of transitions σ = t1t2 · · · tk ∈ T ∗, i.e., m σ−→ m′ iff either σ = ε (the

empty sequence) and m = m′, or there are m1, . . . ,mk−1 s.t. m t1−→ m1
t2−→ · · · tk−→

m′. Given an ω-marking m of some PN N = 〈P, T 〉, we let Post (m) = {m′ | ∃t ∈
T : m t−→ m′} and Post∗ (m) = {m′ | ∃σ ∈ T ∗ : m σ−→ m′}. Given a sequence of
transitions σ = t1t2 · · · tk with ti = 〈Ii, Oi〉 for any 1 ≤ i ≤ k, we let, for any place p,
σ(p) =

∑k
i=1(Ii(p) − Oi(p)), i.e., the effect of σ on p.

In the following, we use the partial order � for ω-markings.

Definition 2. Let P be a set of places of some PN. Then, �⊆ (N ∪ {ω})|P | × (N ∪
{ω})|P | is s.t. for any m1,m2: m1 � m2 iff for any p ∈ P : m1(p) ≤ m2(p).

We write m ≺ m′ when m � m′ but m 	= m′. Finally, it is well-known that PN are
strictly monotonic. That is, if m1, m2 and m3 are three markings and t is a transition

of some PN N s.t. m1
t−→ m2 and m1 ≺ m3, then, t is enabled in m3 and the marking

m4 with m3
t−→ m4 is s.t. m2 ≺ m4.

Covering and coverability sets. Given a set M of ω-markings, we define the set of
maximal elements of M as Max� (M) = {m ∈ M | �m′ ∈ M : m ≺ m′}. Given
an ω-marking m (ranging over set of places P), its downward-closure is the set of
markings ↓�(m) = {m′ ∈ N

|P | | m′ � m}. Given a set M of ω-markings, we
let ↓�(M) = ∪m∈M↓�(m). A set D ⊆ N

|P | is downward-closed iff ↓�(D) = D.
Then:

Definition 3. Let N = 〈P, T 〉 be a PN and let m0 be the initial ω-marking of N . The
covering set of N , denoted as Cover (N ,m0) is the set ↓�(Post∗ (m0)).

On the Efficient Computation of the Minimal Coverability Set for Petri Nets 101

Given a PN N with initial marking m0, a coverability set for N and m0 is a finite
sub-set S ⊆ (N ∪ {ω})|P | such that ↓�(S) = Cover (N ,m0). Such a set always exists
because any down.-cl. set of markings can be represented by a finite set of ω-markings1:

Lemma 1 ([12]). For any subset D ⊆ N
k such that ↓�(D) = D there exists a finite

subset S ⊂ (N ∪ {ω})k such that ↓�(S) = D.

It is also well-known [1] that there exists one minimal (in terms of ⊆) coverability set
(called the minimal coverability set).

Labeled trees. Finally, let us introduce the notion of labeled tree:

Definition 4. Given a set of places P , a labeled tree is a tuple T = 〈N, B, root , Λ〉,
s.t. 〈N, B, root〉 forms a tree (N is the set of nodes, B ⊆ N ×N is the set of edges and
root ∈ N is the root node) and Λ : N �→ (N ∪ {ω})|P | is a labeling function of the
nodes by ω-markings.

Given two nodes n and n′ in N , we write respectively B(n, n′), B∗(n, n′) B+(n, n′)
instead of (n, n′) ∈ B, (n, n′) ∈ B∗, (n, n′) ∈ B+.

3 The Karp Miller and the MCT Algorithms

The Karp and Miller algorithm. The Karp&Miller algorithm [8] is a well-known solu-
tion to compute a coverability set of a PN. It consists in building a labeled tree whose
root is labeled by m0. The tree is obtained by unfolding the transition relation of the
PN, and by applying accelerations, which exploit the strict monotonicity property of
PN. That is, let us assume that m1 and m2 are two ω-markings s.t. m1 ≺ m2 and
there exists a sequence of transitions σ with m1

σ−→ m2. By (strict) monotonicity, σ is
firable from m2 and produces a ω-marking m3 s.t. m2 ≺ m3. As a consequence, all
the places p s.t. m1(p) < m2(p) are unbounded. Hence, the ω-marking mω defined as
mω(p) = ω if m1(p) < m2(p), and mω(p) = m1(p) otherwise, has the property that
↓�(mω) ⊆ ↓�(Post∗ (m1)). This can be generalized to the case where we consider an
ω-marking m and a set S of ω-markings s.t. for any m′ ∈ S: m ∈ Post∗ (m′). Hence,
the following acceleration function:

∀p ∈ P : Accel (S,m) (p) =
{

ω if ∃m′ ∈ S : m′ ≺ m and m′(p) < m(p)
m(p) Otherwise

The Karp&Miller procedure (see Algorithm 1) relies on this function: when developing
the successors of a node n, it calls the acceleration function on every m ∈ Post (Λ (n)),
by letting S be the set of all the markings that are met along the branch ending in n.
This procedure terminates and computes a coverability set:

Theorem 1 ([8]). For any PN N = 〈P, T 〉 with initial ω-marking m0, the KM pro-
cedure produces a finite labeled tree T = 〈N, B, root , Λ〉, s.t. ↓�({Λ (n) |n ∈ N}) =
Cover (N ,m0).

1 Since a given set of ω-markings represents one and only one downward-closed set, we some-
times confuse such a set of ω-marking with the downward-closed set of markings it represents.

102 G. Geeraerts, J.-F. Raskin, and L. Van Begin

Algorithm 1. The KM algorithm

Data: A PN N = 〈P, T 〉 and an initial ω-marking m0.
Result: The minimal coverability set of N for m0.
KM (N ,m0) begin

T ← 〈N, B, n0, Λ〉 where N = {n0}, B = ∅ and Λ (n0) = m0 ;
to treat ← {n0} ;
while to treat �= ∅ do

Choose and remove a node n from to treat ;
if �n : B+(n, n) ∧ Λ (n) = Λ (n) then

foreach m ∈ Post (Λ (n)) do
S ← {Λ (n′) | B∗(n′, n)} ;
Let n′ be a new node s.t. Λ (n′) = Accel (S,m) ;
N ← N ∪ {n′} ; B ← B ∪ {(n, n′)} ;
to treat ← to treat ∪ {n′} ;

return({Λ (n) | n ∈ N ∧ �n′ ∈ N : Λ (n′)
 Λ (n)}) ;
end

Properties of the Karp&Miller tree. Let n 	= root be a node of some Karp&Miller tree.
Hence, Λ (n) has been obtained by calling Accelerate with parameters S and m. In this
case, we say that n has been obtained by the acceleration of m (with S). For any node
n 	= root of any Karp&Miller tree, we assume that M(n) is the marking m s.t. Λ (n) has
been obtained by the acceleration of m. Remark that ∀n 	= root , M(n) ∈ Post (Λ (n′))
where n′ is the father of n and it might be the case that Λ (n) = M(n).

Let N = 〈P, T 〉 be a PN with initial marking m0 and let T = 〈N, B, root , Λ〉 be
its Karp&Miller tree. Then, ς : N �→ T ∗ is a function that associates a sequence of
transitions to every node n, as follows. (i) If n = root , then ς (n) returns the empty
sequence. (ii) If there is no n′ ∈ N s.t. B+(n′, n), Λ (n′) 	= Λ (n) and Λ (n′) � Λ (n)
(hence, n is such that Λ (n) = M(n)), then ς (n) returns the empty sequence. (iii)
Otherwise, n has been obtained by the acceleration of M(n). Let Pa = {p ∈ P |
Λ (n) (p) = ω and M(n) (p) 	= ω} and let Pω = {p ∈ P | Λ (n) (p) = M(n) (p) = ω}.
In that case, ς (n) returns one of the finite non-empty sequences s.t. for any p ∈ Pa:
ς (n) (p) > 0; for any p ∈ P \ (Pa ∪Pω): ς (n) (p) = 0; and ς (n) is firable from M(n).

The existence of ς (n) in the third case is guaranteed by the following lemma, that
can be extracted from the main proof of the Algorithm 1, in [8]:

Lemma 2 ([8]). Let N = 〈P, T 〉 be a PN with initial ω-marking m0 and let T =
〈N, B, root , Λ〉 be its Karp&Miller tree. Let n 	= root be a node of T . Let Pa = {p ∈
P | Λ (n) (p) = ω and M(n) (p) 	= ω} and Pω = {p ∈ P | Λ (n) (p) = M(n) (p) =
ω}. Then, there exists a sequence of transitions σ ∈ T ∗ s.t.: (i) for any p ∈ Pa:
σ(p) > 0. (ii) for any p ∈ P \ (Pa ∪ Pω): σ(p) = 0. (iii) σ is firable from M(n).

The MCT algorithm. The minimal coverability tree algorithm (MCT for short) has
been introduced by Finkel in [1], as an optimization of the Karp&Miller algorithm. It
is recalled in Algorithm 2, and relies on two auxiliary functions: given a labeled tree
T and a node n of T , removeSubtree(n, T) removes the subtree rooted by n from
T . The function removeSubtreeExceptRoot(n, T) is similar to removeSubtree(n, T)

On the Efficient Computation of the Minimal Coverability Set for Petri Nets 103

Algorithm 2. The MCT algorithm [1]

Data: A PN N = 〈P, T 〉 and an initial marking m0

Result: The minimal coverability set of N .
MCT (N ,m0) begin

T ← 〈N, B, n0, Λ〉 where N = {n0}, B = ∅ and Λ(n0) = m0 ;
to treat ← {n0} ;
while to treat �= ∅ do

Choose and remove a node n from to treat ;
(a) if �n ∈ N s.t. Λ (n) = Λ (n) then

foreach m ∈ Post (Λ (n)) do
(b) if ∃n : B∗(n, n) and Λ (n) ≺ m then

Let n be the highest node s.t. B∗(n, n) ∧ Λ (n) ≺ m ;
Λ (n) ← Accel ({n′ ∈ N | B∗(n′, n)}, m) ;
to treat ←

(
to treat \ {n′ | B∗(n, n′)}

)
∪ {n} ;

removeSubtreeExceptRoot(n, T) ;
break ;

(c) else if �n ∈ N s.t. m ≺ Λ (n) then
Let n′ be a new node s.t. Λ (n′) = m ;
N ← N ∪ {n′} ; B ← B ∪ (n, n′) ; to treat ← to treat ∪ {n′};

(d) while ∃n1, n2 ∈ N : Λ (n1) ≺ Λ (n2) do
to treat ← to treat \ {n | B∗(n1, n)} ;
removeSubtree(n1, T) ;

return({Λ (n) | n ∈ N}) ;
end

except that the root node n is not removed. The main idea consists in exploiting the
monotonicity property of PN in order to avoid developing part of the nodes of the
Karp&Miller tree, as well as removing some subtrees during the construction. With
respect to the Karp&Miller algorithm, three main differences can be noted. Let n be a
node picked from to treat . First, when there already exists another node n with Λ (n) =
Λ (n) in the tree, n, is not developed (line (a)). Second, when n is accelerated (line (b)),
the result of the acceleration is assigned to the label of its highest ancestor n s.t. Λ (n) ≺
Λ (n), and the whole subtree of n is removed from the tree. Third, the algorithm avoids
adding a node n′ to the tree if there is another node n s.t. Λ (n) � Λ (n′) (line (c)).
Moreover, the adjunction of n′ to the tree (when it happens) triggers the deletion of all
the subtrees rooted in some node n′′ s.t. Λ (n′′) ≺ Λ (n′) (line (d)).

Remark that this algorithm is non-deterministic, in the sense that no ordering is im-
posed on the nodes in to treat . Hence, any strategy that fixes the exploration order
(which can possibly improve the efficiency of the algorithm) can be chosen.

4 Counter-Example to the MCT Algorithm

In this section, we introduce a PN on which the MCT algorithm might compute a strict
under-approximation of the covering set (see Fig. 1). Fig 1(a) is the PN on which we
run the MCT algorithm, and Fig. 1(b) through 1(f) are the key points of the execution.

104 G. Geeraerts, J.-F. Raskin, and L. Van Begin

Let us briefly comment on this execution. First remark that place p5 of the PN in
Fig. 1(a) is unbounded, because marking {p3} is reachable from the initial marking
m0 = {p1} by firing t1t2, and the sequence t3t4 can be fired an arbitrary number of
times from {p3}, and strictly increases the markings of p5. Then, one possible execution
of MCT is as follows (markings in the frontier are underlined): Fig. 1(b): The three
successors of m0 are computed. Then, the branch rooted in {p2} is unfolded, by firing
t2, t3 and t4. At that point, two comparable markings {p3} and {p3, p5} are met with
and an acceleration occurs (line (b) of Algorithm 2) . The result is {p3, ωp5}, which is
put into to treat . Fig. 1(c): The subtree rooted in {p6} is unfolded. After the firing of
t6t4, one obtains {p3, 3p5}, which is smaller than {p3, ωp5}. Hence, {p3, 3p5} is not put
into to treat and the branch is stopped (line (c)). Fig. 1(d): The subtree rooted in {p7}
is developed. The unique successor {p2, p5} of {p7} is larger than {p2}. Hence, the
subtree rooted in {p2} (including {p3, ωp5}, still in the frontier) is removed (line (d)).
Fig. 1(e) and 1(f): The tree (actually a single branch) rooted in {p2, p5} (only node
in the frontier) is further developed through the firing of t2 and t3. The resulting node
{p4, p5} is strictly smaller than {p4, 2p5}. Hence, that branch is stopped too (line (c)),
and the frontier becomes empty. The final result of the algorithm is shown in Fig. 1(f).
It is not difficult to see that the set of labels of this tree does not form a coverability set,
because it contains no marking m s.t. m(p5) = ω.

Comment on the counter-example. This counter-example allows us to identify a flaw
in the logic of the MCT algorithm. The algorithm stops the development of a node n
or removes the subtree rooted in n because its has found another node n′ s.t. Λ (n′)
is larger than Λ (n). In that case, we say that n’ is a proof for n. The intuition behind
this notion is that, by monotonicity, all the successors of n should be covered by some
successor of n′. Thus, when n′ is a proof for n, the algorithm makes implicitly the
hypothesis that either all the successors of n′ will be fully developed, or that they will
be covered by some other nodes of the tree.

In our counter-example, that reasoning fails because cycles appear in ‘proofs’. In
Fig. 1, we have drawn a thick gray arrow from n to n′ when n′ is a proof for n. On
Fig. 1(d), the node labeled by {p3, ωp5}, which is a proof for {p3, 3p5} is deleted,
because of {p2, p5}. Hence, {p2, p5}, becomes the proof of {p3, 3p5} (see Fig. 1(e)).
The cycle clearly appears in Fig. 1(f): all the successors of {p4, 2p5} will be eventually
covered under the assumption that all the successors of {p2, p5} are covered. However,
this happens only if all the successors of {p4, 2p5} are eventually covered.

Implementation of the MCT in the Pep tool. Actually, the flaw in the MCT algorithm
has already been independently discovered by the team of Prof. Peter Starke. They
have implemented in INA (a component of the toolkit Pep [7]) a variation of the MCT
which is supposed to correct the aforementioned bug. To the best of our knowledge,
this implementation (and the discovery of the bug) has been documented only in a
master’s thesis in German [9]. Unfortunately, their version of the MCT contains a flaw
too, because it offers no guarantee of termination [11,3], although [9] contains a proof
of termination. See [2] for a counter-example to termination. Thus, from our point of
view, fixing the bug of the MCT algorithm seems to be a difficult task.

On the Efficient Computation of the Minimal Coverability Set for Petri Nets 105

•p1

p2

p4

p5

p3

p6

p7

t1 t3

t4

t5 t6

t7 t8

t2
2

(a) The PN.

{p1}

{p2}

{p3}

{p3, p5}

{p6} {p7}

t1

t2

t3 · t4

t5 t7

≺

(b) Step 1.

{p1}

{p2}

{p3, ωp5}

{p6} {p7}

{p4, 2p5}

{p3, 3p5}

t6

t4 ≺

(c) Step 2.

{p1}

{p2}

{p3, ωp5}

{p6} {p7}

{p4, 2p5}

{p3, 3p5}

{p2, p5}

t8≺

(d) Step 3.

{p1}

{p2}
m3

{p6} {p7}

{p4, 2p5}

{p3, 3p5}

{p2, p5}

{p4, p5}

{p3, p5}

t2

t3

(e) Step 4.

{p1}

{p2}
m3

{p6} {p7}

{p4, 2p5}

{p3, 3p5}

{p2, p5}

{p4, p5}

{p3, p5}

(f) The result.

Fig. 1. A counter-example to the MCT algorithm. Underlined markings are in the frontier. A gray
arrow from n to n′ means that n′ is a ‘proof’ for n.

106 G. Geeraerts, J.-F. Raskin, and L. Van Begin

5 The Covering Sequence

Instead of trying to fix the bug in the MCT algorithm, we propose a different solution
based on novel ideas. To introduce our new solution, let us look back at the basics.
Remember that we want to compute an effective representation of ↓�(Post∗ (m0)).
It is easy to show that this set is the limit of the following infinite sequence of sets:
X0 = ↓�({m0}), and for i ≥ 1, Xi = ↓�(Xi−1 ∪ Post (Xi−1)). Note that by strict
monotonicity of Petri nets, we can instead consider the following sequence that handles
maximal elements only: Y0 = Max� ({m0}), and Yi = Max� (Yi−1 ∪ Post (Yi−1))
for any i ≥ 1. Unfortunately, this is not an effective way to compute the minimal cov-
erability set as we do not know how to compute the limit of this sequence. To compute
that limit, we need accelerations. Accelerations are computed from pairs of markings.
Our solution constructs a sequence of sets of pairs of markings on which we systemati-
cally apply a variant of the Post operator and a variant of the acceleration function. By
defining an adequate order � on pairs of markings, we show that we can concentrate on
maximal elements for �.

Preliminaries. Let m1 and m2 be two ω-markings. Then, m1 � m2 is a function
P �→ Z ∪ {−ω, ω} s.t. for any place p: (m1 � m2)(p) is equal to ω if m1(p) = ω; −ω
if m2(p) = ω and m1(p) 	= ω; m1(p) − m2(p) otherwise. Then, given two pairs of
ω-markings (m1,m2) and (m′

1,m
′
2), we have (m1,m2) � (m′

1,m
′
2) iff m1 � m′

1,
m2 � m′

2 and for any place p: (m2 � m1)(p) ≤ (m′
2 � m′

1)(p).
For any (m1,m2), we let ↓�((m1,m2)) = {(m′

1,m
′
2) | (m′

1,m
′
2) � (m1,m2)}.

We extend this to sets of pairs R as follows: ↓�(R) = ∪(m1,m2)∈R↓�((m1,m2)).
Given a set R of pairs of markings, we let Max� (R)={(m1,m2)∈ R | �(m′

1,m
′
2) ∈

R : (m1,m2) 	= (m′
1,m

′
2) ∧ (m1,m2) � (m′

1,m
′
2)}

Our new solution relies on a weaker acceleration function than that of Karp&Miller
(because its first argument is restricted to a single marking instead of a set of markings).
Given two ω-markings m1 and m2 s.t. m1 � m2, we let AccelPair (m1,m2) = mω

s.t. for any place p, mω(p) = m1(p) if m1(p) = m2(p); mω(p) = ω otherwise.
According to the following lemma, this acceleration function is sound:

Lemma 3. Let N be a PN and let m1 and m2 be two ω-markings of N that re-
spect m1 � m2 and ↓�(m2) ⊆ ↓�(Post∗ (m1)). Then, ↓�(AccelPair (m1,m2)) ⊆
↓�(Post∗ (m2)).

Moreover, given a labeled tree T =〈N, B, root , Λ〉, we let, for any n ∈ N , Anc (T , n)=
{n′ | B∗(n′, n)} (that is, Anc (T , n) is the set of ‘ancestors’ of n in T , n included).
Then, the following lemma draws a link between AccelPair and the Karp&Miller ac-
celeration. It shows that, although AccelPair is weaker, it can produce the same results
than the Karp&Miller acceleration, when properly applied.

Lemma 4. Let N = 〈P, T 〉 be a Petri net with initial marking m0 and let T =
〈N, B, root , Λ〉 be its Karp&Miller tree. Let n 	= root be a node of T . Let m′ be

s.t. M(n)
ς(n)−−−→ m′. Then, Λ (n) � AccelPair (M(n) ,m′).

Proof. Let Pa = {p ∈ P | Λ (n) (p) = ω ∧ M(n) (p) 	= ω}. By construction, for any
place p, Λ (n) (p) = ω if p ∈ Pa; Λ (n) (p) = M(n) otherwise. Moreover, by definition

On the Efficient Computation of the Minimal Coverability Set for Petri Nets 107

of AccelPair, for any place p, AccelPair (M(n) ,m′) (p) = ω if ς (n) (p) > 0; and
AccelPair (M(n) ,m′) (p) = M(n) (p) otherwise. By def. of ς (n), p ∈ Pa implies
ς (n) (p) > 0, and p 	∈ Pa implies Λ (n) (p) = M(n) (p). ��

Finally, we introduce several operators that work directly on pairs of ω-markings. Given
a set R of pairs of ω-markings, we let Flatten (R) = {m | ∃m′ : (m′,m) ∈ R}. Given
a pair of ω-markings (m1,m2), we let Post ((m1,m2)) = {(m1,m′), (m2,m′) |
m′ ∈ Post (m2)} and Accel ((m1,m2)) = {(m2, AccelPair (m1,m2))} if m1 ≺
m2; and Accel ((m1,m2)) is undefined otherwise. We extend these two functions to
sets R of pairs in the following way: Post (R) = ∪(m1,m2)∈RPost ((m1,m2)) and
Accel (R) = ∪(m1,m2)∈R,m1≺m2{Accel (m1,m2)}.

Definition of the sequence. We are now ready to introduce the covering sequence. We
will define the sequence in a way that allows for optimizations. To incorporate those
optimizations elegantly, we allow our construction to be helped by an oracle which is a
procedure that produces pairs of markings. This oracle potentially allows for the early
convergence of the covering sequence. However, we will prove that our sequence con-
verges even if the oracle is trivial (returns always an empty set of pairs of markings). In
the next section, we will show that the oracle can be implemented by a recursive call to
the covering sequence, by considering ω-markings where the number of ω is increasing
as initial ω-markings in the recursive call. This will lead to an efficient procedure as we
will see in the next section.

In the following, given a Petri net N and an initial ω-marking m0, we call an oracle
any function Oracle : N �→ (N ∪ {ω})|P | × (N ∪ {ω})|P | that returns, for any i ≥ 0, a
set of pairs of ω-markings s.t.

↓�(Post (Flatten (Oracle (i)))) ⊆ ↓�(Flatten (Oracle (i))) (1)

and
↓�(Flatten (Oracle (i))) ⊆ Cover (N) . (2)

Let N = 〈P, T 〉 be a PN, m0 be an initial marking, and Oracle be an oracle. Then,
the covering sequence of N , noted CovSeq (N ,m0, Oracle) is the infinite sequence
(Vi, Fi, Oi)i≥0, defined as follows:

– V0 = ∅, O0 = ∅ and F0 = {(m0,m0)};
– For any i ≥ 1: Oi = Max� (Oi−1 ∪ Oracle (i));
– For any i ≥ 1: Vi = Max� (Vi−1 ∪ Fi−1) \ ↓�(Oi);
– For any i ≥ 1: Fi = Max�

(
Post (Fi−1) ∪ Accel (Fi−1)

)
\ ↓�(Vi ∪ Oi).

It is not difficult to see that this sequence enjoys the following three properties:

Lemma 5. Let N be a PN, m0 be its initial marking, Oracle be an oracle, and let
CovSeq (N ,m0, Oracle) = (Vi, Fi, Oi)i≥0. Then, for all i ≥ 0:

1. Post (Vi) ∪ Accel (Vi) ⊆ ↓�(Vi ∪ Fi ∪ Oi);
2. ↓�(Flatten (Vi ∪ Oi)) ⊆ ↓�(Flatten (Vi+1 ∪ Oi+1));
3. for all (m1,m2) ∈ Fi ∪ Vi: ↓�(m2) ⊆ ↓�(Post∗ (m1)).

108 G. Geeraerts, J.-F. Raskin, and L. Van Begin

Completeness of the sequence. For all marking m computed by the Karp&Miller algo-
rithm, we show that there exists a finite value k s.t. ↓�(m) ⊆ ↓�(Flatten (Vk)), where
k depends on the depth of the node labeled by m in the Karp&Miller tree:

Lemma 6. Let N be a PN, m0 be its initial marking, Oracle be an oracle, T =
〈N, B, root , Λ〉 be the K&M tree of N and CovSeq (N ,m0, Oracle) = (Vi, Fi, Oi)i≥0.
Then ∀n ∈ N : ∀k ≥

∑
n′∈Anc(T ,n)(|ς (n′) |+3): ↓�(Λ (n)) ⊆ ↓�(Flatten (Vk ∪ Ok)).

Proof. Sketch. We show by induction on the depth � of nodes in the Karp&Miller tree
that the lemma holds for all n ∈ N . For a node n at depth �, we prove that there exists
i and a pair (m1,m2) ∈ Vi ∪ Oi s.t. ↓�(Λ (n)) ⊆ ↓�(m2), as follows. By induction
hypothesis, there is j s.t. ↓�(Λ (n′)) ⊆ ↓�(Flatten (Oj ∪ Vj)), where n′ is the father of
n. The value i s.t. Λ (n) ⊆ ↓�(Flatten (Oi ∪ Vi)) depends on j and the length of ς (n).
Hence, a second induction on the size of ς (n) is used. That induction is applied in the
case where | ς (n) |> 0 and allows to prove that there is a pair (m3,m4) ∈ Vi−1 ∪
Oi−1 such that (M(n) ,m) � (m3,m4) where m is such that M(n)

ς(n)−−−→ m. Once
that result is obtained, we have by Lemma 4 that Λ (n) � Accel ((M(n) ,m)), since
M(n) ≺ m, and that Accel ((M(n) ,m)) � Accel ((m3,m4)) = m′ by definition of
Accel and �. Hence (m4,m′) ∈ ↓�(Oi−1 ∪ Fi−1 ∪ Vi−1) by Lemma 5.1. Finally, by
construction of Oi and Vi, we conclude that (m4,m′) ∈ ↓�(Oi ∪ Vi), with Λ (n) �
m′, hence Λ (n) ∈ ↓�(Flatten (Oi ∪ Vi)). �

As a consequence, the covering sequence is complete:

Corollary 1. Let N be a PN, m0 be its initial marking, Oracle be an oracle, and
CovSeq (N ,m0, Oracle) = (Vi, Fi, Oi)i≥0. There exists k ≥ 0 such that for all k′ ≥ k
we have Cover (N ,m0) ⊆ ↓�(Flatten (Vk′ ∪ Ok′)).

Soundness of the sequence. In order to show that the covering sequence is correct,
it remains to show that any marking m produced by the sequence is s.t. ↓�(m) ⊆
Cover (N ,m0). For that purpose, we need the two following lemmata:

Lemma 7. Let N be a PN let A and B be two sets of ω-markings of N . Then, ↓�(A) ⊆
↓�(Post∗ (B)) implies that ↓�(Post∗ (A)) ⊆ ↓�(Post∗ (B)).

Lemma 8. Let N be a PN, m0 be its initial marking, Oracle be an oracle, and let
CovSeq (N ,m0, Oracle)=(Vi, Fi, Oi)i≥0. Then, ∀i≥1: ∀m∈Flatten (Ti ∪ Fi ∪ Oi),
↓�(m) ⊆ ↓�(Post∗ (m0)).

As a consequence, we directly obtain our soundness result:

Corollary 2. Let N be a PN, m0 be its initial marking, Oracle be an oracle, and
CovSeq (N ,m0, Oracle) = (Vi, Fi, Oi)i≥0. Then, ∀i ≥ 1, ↓�(Flatten (Vi ∪ Oi)) ⊆
↓�(Post∗ (m0)).

Corollary 1 and 2 allow us to obtain the next Theorem.

On the Efficient Computation of the Minimal Coverability Set for Petri Nets 109

Theorem 2. Let N be a PN, m0 be its initial marking, Oracle be an oracle, and
CovSeq (N ,m0, Oracle) = (Vi, Fi, Oi)i≥0. Then, there exists k ≥ 0 such that

1. for all 1 ≤ i < k : ↓�(Flatten (Vi ∪ Oi)) ⊂ ↓�(Flatten (Vi−1 ∪ Oi−1));
2. for all i ≥ k : ↓�(Flatten (Vi ∪ Oi)) = Cover (N ,m0).

Proof. By Corollary 1 and 2, we conclude that there exists at least one k ∈ N such
that ↓�(Flatten (Vk ∪ Ok)) = ↓�(Flatten (Vk+1 ∪ Ok+1)). Let us consider the small-
est k ∈ N that satisfies that condition and let us prove that ↓�(Flatten (Vk ∪ Ok)) =
Cover (N). Note that by Lemma 5.2 we have for all 0≤ i < k : ↓�(Flatten (Vi∪Oi)) ⊂
↓�(Flatten (Vi+1∪Oi+1)).

First, we prove that ↓�(Flatten (Fk)) ⊆ ↓�(Flatten (Vk ∪ Ok)). By construction,
↓�(Fk) ⊆↓�(Vk+1 ∪ Ok+1). Hence, ↓�(Flatten (Fk)) ⊆ ↓�(Flatten (Vk+1∪ Ok+1)),
by definition of �. However, ↓�(Flatten (Vk+1 ∪ Ok+1)) = ↓�(Flatten (Vk ∪ Ok)),
by definition of k.

By Lemma 5.1, Post (Vk) ∪ Accel (Vk) ⊆ ↓�(Vk ∪ Fk ∪ Ok), which implies that
↓�(

Flatten
(
Post (Vk) ∪ Accel (Vk)

))
⊆ ↓�(Flatten (Vk ∪ Fk ∪ Ok)). In particular,

↓�(
Flatten

(
Post (Vk)

))
⊆ ↓�(Flatten (Vk ∪ Fk ∪ Ok)). Since ↓�(Flatten (Fk)) ⊆

↓�(Flatten (Vk ∪ Ok)), we have ↓�(
Flatten

(
Post (Vk)

))
⊆ ↓�(Flatten (Vk ∪ Ok)).

This means that ↓�(Post (Flatten (Vk))) ⊆ ↓�(Flatten (Vk ∪ Ok)). Furthermore, by
(1) and definition of Ok, ↓�(Post (Flatten (Ok))) ⊆ ↓�(Flatten (Ok)). We conclude
that ↓�(Post (Flatten (Vk ∪ Ok))) ⊆ ↓�(Flatten (Vk ∪ Ok)). Then, by Lemma 5.2,
and since m0 ∈ ↓�(Flatten (V1 ∪ O1)), we have m0 ∈ ↓�(Flatten (Vk ∪ Ok)). Hence,
↓�(Flatten (Vk∪ Ok)) is a Post fixpoint that coversm0. Thus ↓�(Flatten (Vk∪ Ok))⊇
↓�(Post∗ (m0)). Since, by Corollary 2, ↓�(Flatten (Ok ∪ Vk)) ⊆ Cover (N ,m0), we
have: ↓�(Flatten (Vk ∪ Ok)) = Cover (N ,m0). Finally, by Lemma 5.2 and Corollary
2, ∀i > k : ↓�(Flatten (Vi ∪ Oi)) = ↓�(Flatten (Vk ∪ Ok)) = Cover (N). �

6 Practical Implementation

To implement the method in practice, we have to instantiate the oracle. First, note
that the empty oracle, i.e. Oracle (i) = ∅ for all i ≥ 1, is a correct oracle. Indeed,
↓�(Post (∅)) = ∅ ⊆ ↓�(∅) and ↓�(∅) ⊆ ↓�(Post∗ (m0)) for all m0. Thus, the oracle
can be regarded as an optional optimization of our algorithm. Yet, this optimization can
be very powerful, as we show now. When using the empty oracle our method performs
a breadth first search. In particular, if several accelerations can be applied from an ω-
marking m, each of them putting ω’s in different places (for instance a first acceleration
puts one ω in place p1 and a second one puts an ω is p2), then all the possible orders for
their application will be investigated (i.e. first put the ω in place p1 in m and then an
ω in p2; and vice-versa). However, all the possible orders lead to the same ω-marking
(with an ω in p1 and p2) that covers the intermediate ones (where there is one ω either
in p1 or p2). Thus, in order to improve our method, only one possible order should be
explored. To achieve that goal, we present in the next paragraph the CovProc procedure
where the oracle is implemented as a recursive call on ω-markings resulting from an
acceleration. As a consequence, the initial breadth first search is mixed with a depth
first search that allows to develop first the ω-markings resulting from an acceleration.

110 G. Geeraerts, J.-F. Raskin, and L. Van Begin

Algorithm 3. The CovProc algorithm

Data: A PN N = 〈P, T 〉, an ω-marking m0

Result: A set of pairs of markings.
CovProc (N ,m0) begin

i := 0 ; O0 := ∅ ; V 0 := ∅ ; F 0 := {(m0,m0)} ;
repeat

i := i + 1 ;
Ri := ∪m∈SCovProc (N ,m) where S ⊆ Flatten

(
Accel (Fi−1)

)
;

Oi := Max� (
Oi−1 ∪ Ri

)
;

V i := Max� (
V i−1 ∪ F i−1

)
\ ↓�(

Oi

)
;

F i := Max� (
Post

(
F i−1

)
∪ Accel

(
F i−1

))
\ ↓�(

Oi ∪ V i

)
;

until ↓�(
Flatten

(
Oi ∪ V i

))
⊆ ↓�(

Flatten
(
Oi−1 ∪ V i−1

))
;

return(Oi ∪ V i) ;
end

The CovProc procedure. The CovProc procedure is shown in Algorithm 3. It closely
follows the definition of the covering sequence. At each step i, the oracle is imple-
mented as a finite number of recursive calls to CovProc, where the initial ω-markings
are the results of the accelerations occurring at this step. Note that a recursive call is
not applied on all the accelerated ω-markings but a non-deterministically chosen sub-
set S. Indeed, in practice, if we have two accelerated ω-markings m1 and m2 with
↓�(m2) ⊆ ↓�(Post∗ (m1)) then it is not necessary to apply CovProc on m2 to explore
the ω-markings that are reachable from m2.

This strategy allows to mix the breadth-first exploration of the covering sequence
and the depth-first exploration due to the recursive calls which favor ω-markings with
more ω. It turns out to be very efficient in practice (see hereunder). Since, for any pair
(m1,m2), AccelPair (m1,m2) contains strictly more ω’s than m1 and m2, and since
the number of places of the PN is bounded, the depth of recursion is bounded too, which
ensures termination.

Let us show that this solution is correct and terminates. For any ω-marking m, we
let Nbω (m) = |{p | m(p) = ω}|. Then:

Lemma 9. Let N be a PN, m0 be a ω-marking, and let F i be the sets computed by
CovProc (N ,m0). Then, ∀i ≥ 0: for any m ∈ Flatten

(
F i

)
: Nbω (m) ≥ Nbω (m0).

Theorem 3. For any PN N and any ω-marking m0: CovProc (N ,m0) terminates and
↓�(Flatten (CovProc (N ,m0))) = Cover (N ,m0).

Proof. The proof works by induction on Nbω (m0).

Base case (Nbω (m0) = |P |) In that case, CovProc (N ,m0) finishes after two it-
erations and returns O2 ∪ V 2 = {(m0,m0)}. Remark that no recursive call is per-
formed because R1 = Accel

(
F 0

)
= ∅ and R2 = Accel ({(m0,m0)}) = ∅. Moreover,

↓�(Flatten (CovProc (N ,m0))) = ↓�(m0) = Cover (N ,m0).

Inductive case (Nbω (m0) = k < |P |) We consider two cases. First, assume that
the algorithm terminates after � iterations, i.e., assume that ↓�(

Flatten
(
O� ∪ V �

))
=

On the Efficient Computation of the Minimal Coverability Set for Petri Nets 111

↓�(
Flatten

(
O�−1 ∪ V �−1

))
, but for any 1 ≤ j ≤ � − 1: ↓�(

Flatten
(
Oj ∪ V j

))
	=

↓�(
Flatten

(
Oj−1 ∪ V j−1

))
. By Lemma 9, for any 1 ≤ j ≤ �, for any (m1,m2) ∈

F j : Nbω (m2) ≥ k. Hence, for any 1 ≤ j ≤ �, for any m ∈ Flatten
(
Accel

(
F j

))
:

Nbω (m) ≥ k + 1. Thus, by induction hypothesis, for any 1 ≤ j ≤ �, for any
m ∈ Flatten

(
Accel

(
F j

))
, CovProc (N ,m) terminates and returns a set of pairs such

that ↓�(Flatten (CovProc (N ,m))) = Cover (N ,m). As a consequence, and since
Flatten

(
Accel

(
F j

))
is a finite set for any 1 ≤ j ≤ �, we conclude that Rj is computed

in a finite amount of time and that ↓�(Post (Flatten (Rj))) ⊆ ↓�(Flatten (Rj)) ⊆
Cover (N ,m0), for any 1 ≤ j ≤ �.

Let Ω denote the function s.t., for any 1 ≤ j ≤ �: Ω(j) = Rj , and, for any
j > �, Ω(j) = ∅. Thus, Ω is an oracle. Let us assume that CovSeq (N ,m0, Ω) =
(Vi, Fi, Oi)i≥1. Clearly, for any 0 ≤ j ≤ �, V j = Vj and Oj = Oj . Thus, by The-
orem 2, there exists k s.t. ↓�(

Flatten
(
V k−1 ∪ Ok−1

))
= ↓�(

Flatten
(
V k ∪ Ok

))
=

Cover (N ,m0), and s.t. for every 1 ≤ j ≤ k − 1: ↓�(
Flatten

(
V j−1 ∪ Oj−1

))
⊂

↓�(
Flatten

(
V j ∪ Oj

))
. Hence, k = �, and we conclude that CovProc (N ,m0) termi-

nates and returns ↓�(
Flatten

(
V � ∪ O�

))
= Cover (N ,m0).

In the latter case, we assume that the algorithm does not terminate and derive a
contradiction. This can happen either because the test of the repeat loop is never ful-
filled, or because some step j of the loop takes an infinite time to complete. The latter
is not possible: Indeed, Rj is computed in a finite amount of time and the functions
Max�, Flatten, Post, Accel, as well as the guard of the loop are computable. Thus, if the
algorithm does not terminate, it computes an infinite sequence of sets (V i, F i, Oi)i≥0.
Symmetrically to the first part of this proof, we build an oracle Ω s.t. Ω(j) = Rj for
any j ≥ 1. Let us assume that CovSeq (N ,m0, Ω) = (Vi, Fi, Oi)i≥0. Clearly, for any
j ≥ 0, we have Vj = V j and Oj = Oj . Hence, by Theorem 2, we conclude that there
exists k ≥ 1 s.t. ↓�(

Flatten
(
V k ∪ Ok

))
= ↓�(

Flatten
(
V k−1 ∪ Ok−1

))
, which com-

pels the algorithm to terminate at step k. Contradiction. ��

Empirical evaluation. We have implemented a prototype that computes the coverability
set of a PN, thanks to the covering sequence method and the Karp&Miller algorithm.
We have selected bounded and unbounded PN that describe (mutual exclusion) proto-
cols (bounded PN), parameterized systems and communication protocols (unbounded
PN). The prototype has been written in the PYTHON programming language in a very
straightforward way. As a consequence, running times are given for the sake of compar-
ison only. Nevertheless, the prototype performs very well on our examples2 (Table 1).

We have compared two implementations of the covering sequence to the KM algo-
rithm. The former (Cov. Seq. w/o oracle) is the covering sequence where Oracle (i) =
∅ for any i ≥ 0 . In that case the sets of pairs built by our algorithm are small (col-
umn Max P.) wrt the size of the K&M tree (column Nodes), although the total number
of pairs (column Tot. P.) is not dramatically small wrt the K&M tree. This shows the
efficiency of our approach based on pairs and on the � order, wrt the classical approach.

The latter implementation is the CovProc procedure (Algorithm 3) with the follow-
ing oracle: we consider the accelerated ω-markings one by one. If an accelerated ω-
marking is already covered by the Flatten of the pairs computed by previous recursive

2 See http://www.ulb.ac.be/di/ssd/ggeeraer/eec for a complete description.

112 G. Geeraerts, J.-F. Raskin, and L. Van Begin

Table 1. Empirical evaluation of the covering sequence. Experiments on an INTEL XEON 3GHZ.
Times in seconds (× = no result within 20 minutes). P = number of places; T = number of
transitions; MCS = size of the minimal coverability set ; Tp = Bounded or Unbounded PN; Max
P. = max{|Vi ∪Oi ∪Fi|, i ≥ 1} ; Tot. P. = tot. number of pairs created along the whole execution.

Example KM Cov. Seq. w/o Oracle CovProc
Name P T MCS Tp Nodes Time Max P. Tot. P. Time Max P. Tot. P. Time

RTP 9 12 9 B 16 0.18 47 47 0.10 47 47 0.13
lamport 11 9 14 B 83 0.18 115 115 0.17 115 115 0.17
peterson 14 12 20 B 609 2.19 170 170 0.21 170 170 0.25
dekker 16 14 40 B 7,936 258.95 765 765 1.13 765 765 1.03
readwrite 13 9 41 B 11,139 529.91 1,103 1,103 1.43 1,103 1,103 1.75
manuf. 13 6 1 U 32 0.19 9 101 0.18 2 47 0.14
kanban 16 16 1 U 9,839 1221.96 593 9,855 95.05 4 110 0.19
basicME 5 4 3 U 5 0.10 5 5 0.12 5 5 0.12
CSM 14 13 16 U >2.40·106 × 371 3,324 14.38 178 248 0.34
FMS 22 20 24 U >6.26·105 × >4,460 × × 477 866 2.10
PNCSA 31 36 80 U >1.02·106 × >5,896 × × 2,617 13,408 113.79
multipoll 18 21 220 U >1.16·106 × >7,396 × × 14,034 14,113 365.90
mesh2x2 32 32 256 U >8.03·105 × >6,369 × × 10,483 12,735 330.95

calls, it is forgotten; otherwise a recursive call is applied on it. In the case of bounded
PN, CovProc performs as the covering sequence with trivial oracle, which is not sur-
prising since no acceleration occur. In the case of unbounded PN, the oracle-based
optimization is successful: the sets of pairs built by CovProc are much smaller than
the respective K&M trees, and negligible with respect to the sets built with the trivial
oracle. The CovProc procedure always terminates within 20 minutes and outperforms
the covering sequence with trivial oracle. Finally, the execution times of CovProc are
several order of magnitudes smaller than those of the KM procedure.

Acknowledgments. The authors are grateful to Prof. Peter Starke and Prof. Alain Finkel
for their friendly cooperation.

References

1. Finkel, A.: The minimal coverability graph for Petri nets. In: Rozenberg, G. (ed.) Advances
in Petri Nets 1993. LNCS, vol. 674, pp. 210–243. Springer, Heidelberg (1993)

2. Finkel, A., Geeraerts, G., Raskin, J.F., Van Begin, L.: A counter-example to the minimal
coverability tree algorithm. Technical Report 535, Université Libre de Bruxelles (2005)

3. Geeraerts, G.: Coverability and Expressiveness Properties of Well-structured Transition Sys-
tems. PhD thesis, Université Libre de Bruxelles, Belgium (2007)

4. Geeraerts, G., Raskin, J.F., Van Begin, L.: Well-structured languages. Act. Inf. 44(3-4)
5. Geeraerts, G., Raskin, J.F., Van Begin, L.: On the efficient computation of the minimal cov-

erability set for Petri nets. Technical Report CFV 2007.81
6. German, S., Sistla, A.: Reasoning about Systems with Many Processes. J. ACM 39(3) (1992)

On the Efficient Computation of the Minimal Coverability Set for Petri Nets 113

7. Grahlmann, B.: The PEP tool. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 440–
443. Springer, Heidelberg (1997)

8. Karp, R.M., Miller, R.E.: Parallel Program Schemata. JCSS 3, 147–195 (1969)
9. Luttge, K.: Zustandsgraphen von Petri-Netzen. Master’s thesis, Humboldt-Universität (1995)

10. Reisig, W.: Petri Nets. An introduction. Springer, Heidelberg (1986)
11. Starke, P.: Personal communication
12. Van Begin, L.: Efficient Verification of Counting Abstractions for Parametric systems. PhD

thesis, Université Libre de Bruxelles, Belgium (2003)

Analog/Mixed-Signal Circuit Verification Using

Models Generated from Simulation Traces�

Scott Little, David Walter, Kevin Jones, and Chris Myers

University of Utah, Salt Lake City, UT 84112, USA
{little,dwalter,kjones,myers}@vlsigroup.ece.utah.edu

Abstract. Formal and semi-formal verification of analog/mixed-signal
circuits is complicated by the difficulty of obtaining circuit models suit-
able for analysis. We propose a method to generate a formal model from
simulation traces. The resulting model is conservative in that it includes
all of the original simulation traces used to generate it plus additional
behavior. Information obtained during the model generation process can
also be used to refine the simulation and verification process.

1 Introduction

Increased interest in system on a chip design has resulted in a need to improve
validation methods for analog/mixed-signal (AMS) circuits. Validation of digital
circuits has changed dramatically in the past ten years while AMS circuit vali-
dation remains largely the same. AMS circuit validation is still largely driven by
designers using many simulation traces to validate specific properties of a circuit.
While this methodology has been used with success for many years, recent trends
are stretching it beyond its capacity. Increase in process variations and use of
mixed-signal circuits present challenges that this simulation only methodology
is not well prepared to address.

Currently, most AMS designers use an informal approach to circuit verifi-
cation. With the aid of a simulator, the designer creates a circuit that under
ideal conditions meets a set of specifications. A major concern for circuit de-
signers using today’s process technologies is the circuit’s resilience to process
variation. To help understand how the circuit operates under global variation,
corner simulations are run. These simulations evaluate the circuit performance
under combinations of change for common global variations such process, volt-
age, and temperature. There may also be local transistor to transistor process
variation. To understand how this variation affects the circuit, Monte Carlo sim-
ulation is employed. These methods for exploring global and local variation are
very expensive. This expense increases dramatically as more sources of variation
are explored. As a result, only the most common sources of variation of the most
critical specifications of the most critical circuits are thoroughly validated. The
design team also has no real measure of the quality of the verification performed

� Support from SRC contract 2005-TJ-1357 and an SRC Graduate Fellowship.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 114–128, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

AMS Circuit Verification Using Models Generated from Simulation Traces 115

on the design. The correctness of the design is almost solely the responsibility
of each designer. The lack of feedback to the designer and large cost to verify
the circuit under variation are major concerns when using this simulation only
methodology.

Based on the success of formal methods for digital circuits there has been an
increasing body of work in formal methods for AMS circuits. Several tools and
methods have been developed to explore the continuous state space of these sys-
tems [1,2,3,4,5,6]. These methods work well on small examples and have shown
some promise to work on larger circuits. One challenge for these methods is the
significant effort required to create an appropriate formal model for each dif-
ferent system. These methods also suffer from high computation costs for the
analysis of the model. The more accurately the method explores the state space
of the system the more computationally intensive it is.

In response to these challenges, there has been recent work in verifying formal
properties within the framework of simulation. There are currently two main
approaches for using simulation as a verification aid. The first approach attempts
to find a finite number of simulation traces that are sufficient to represent all
trajectories of the system and therefore prove correctness of the circuit [7,8,9,10].
The second approach uses simulation traces to generate a formal model which is
then analyzed using a state space exploration engine [11]. This paper describes
a new method using the second approach.

Dastidar, et al. [11] generate a finite state machine (FSM) from a systematic
set of simulation traces. This FSM includes currents, voltages, and time as state
variables to generate an acyclic FSM. The state space of the system is divided
into symmetric state divisions. After each delta time step, the current state
of the simulator is determined and rounded to the center of the appropriate
state division. The simulator is then started from this point and run for the
next delta time step. This process continues until the global time reaches a user
specified maximum. Conversely, our approach uses Labeled Hybrid Petri Nets
(LHPNs) [4,5] as the model. The state space is divided as specified by user
provided thresholds. A global timer is not a part of the state space which results
in graphs that may include cycles. Simulation traces are run from start to finish
without stopping allowing our model to preserve the original simulation trace.

The novelty of our approach is that the model allows for dynamic variation
of parameters. Standard simulation based methods allow for changes in initial
conditions and parameters, but these values are then fixed for the duration
of the simulation run. Our model explores the system under ranges of initial
conditions as well as ranges of dynamically changing parameter values. This
additional behavior improves our ability to uncover variation induced errors.

The verification flow supported by our tool, LEMA, is shown in Fig. 1. Our
previous work [4,5,12,6] describes how a subset of VHDL-AMS can be compiled
into an LHPN and analyzed using one of our model checkers. Each model checker
uses a different data structure to represent that state space including: difference
bound matrices (DBMs) [4], binary decision diagrams (BDDs) [5], and satisfi-
ability modulo theories (SMT) formulas [6]. This paper describes the flow on

116 S. Little et al.

VHDL-AMS
Subset

��

Safety
Property

���������������

���������������
VHDL-AMS/
SPICE Data

��
Compiler

��������������� Converter

����������������

LHPN

��������������

�� ��������������

BDD-Based
Model Checker

SMT Bounded
Model Checker

DBM-Based
Model Checker

Fig. 1. LEMA: LHPN Embedded/Mixed-signal Analyzer

the right side of Fig. 1 which takes simulation data, generates an LHPN, and
uses one of these model checkers to verify the given property of the system. The
remainder of this paper gives a brief introduction to LHPNs, describes the al-
gorithms used to generate an LHPN model from a set of simulation traces, and
concludes with a discussion of interesting metrics that can be extracted from the
simulation data during model generation.

2 Motivating Example

The switched capacitor integrator circuit shown in Fig. 2 is a circuit used as a
component in many AMS circuits such as ADCs and DACs. Although only a
small piece of these complex circuits, the switched capacitor integrator proves
to be a useful example illustrating the type of problems that can be present in
AMS circuit designs. Discrete-time integrators typically utilize switched capac-
itor circuits to accumulate charge. Capacitor mismatch can cause gain errors
in integrators. Also, the CMOS switch elements in switched capacitor circuits
inject charge when they transition from closed to open. This charge injection is
difficult to control with any precision, and its voltage-dependent nature leads to
circuits that have a weak signal-dependent behavior. This can cause integrators
to have slightly different gains depending on their current state and input value.
Circuits using integrators run the risk of the integrator saturating near one of the
power supply rails. Therefore, the verification property to check for this circuit is
whether or not the voltage Vout can rise above 2000mV or fall below −2000mV.
It is essential to ensure that this never happens during operation under any
possible permutation of component variations. For simplicity, we assume for this
example that the major source of uncertainty is that the capacitor C2 can vary
dynamically by ±10 percent from its nominal value. This circuit, therefore, must
be verified for all values in this range [13].

AMS Circuit Verification Using Models Generated from Simulation Traces 117

freq(Vin) = 5 kHz
Vin = ±1000mV

Φ2Φ1

C1

Q1
Vin

Vout

C2

C2 ≈ 25 pF
C1 = 1 pF

freq(Φ1) = freq(Φ2) = 500 kHz

Q2

dVout/dt ≈ ±20 mV/μs

+

−

Fig. 2. A schematic of a switched capacitor integrator

3 Labeled Hybrid Petri Nets

An LHPN is a Petri net model developed to represent AMS circuits [4,12]. The
model is inspired by features in both hybrid Petri nets [14] and hybrid automata
[15]. An LHPN is a tuple N = 〈P, T, B, V, F, L, M0, S0, Q0, R0〉 where:

P : is a finite set of places;

T : is a finite set of transitions;

B : is a finite set of Boolean signals;

V : is a finite set of continuous variables;

F ⊆ (P × T) ∪ (T × P) is the flow relation;

L : is a tuple of labels defined below;

M0 ⊆ P is the set of initially marked places;

S0 : is the set of initial Boolean signal values;

Q0 : is the set of initial ranges of values for each continuous variable and;

R0 : is the set of initial ranges of rates for each continuous variable.

A key component of LHPNs are the labels. Some labels contain hybrid separa-
tion logic (HSL) formulas which are a Boolean combination of Boolean variables
and separationpredicates (inequalities relating continuous variables to constants).
These formulas satisfy the following grammar:

φ ::= true | false | bi | ¬φ | φ ∧ φ | cixi ≥ cjxj + c

where bi are Boolean variables, xi and xj are continuous variables, and ci, cj , and
c are rational constants in Q. Note that any inequality between two real variables

118 S. Little et al.

can be formed with ≥ and negations of ≥ inequalities. The labels permitted in
LHPNs are represented using a tuple L = 〈En ,D ,BA,VA,RA〉:

En : T → φ labels each transition t ∈ T with an enabling condition;

D : T → |Q| × (|Q| ∪ {∞}) labels each transition t ∈ T with a lower and upper
bound [dl, du] on the delay for t to fire;

BA : T → 2(B×{0,1}) labels each transition t ∈ T with Boolean assignments
made when t fires;

VA : T → 2(V ×Q×Q) labels each transition t ∈ T with a continuous variable
assignment range, consisting of a lower and upper bound [al, au], that is
made when t fires;

RA : T → 2(V ×Q×Q) labels each transition t ∈ T with a range of rates, consist-
ing of a lower and upper bound [rl, ru], that are assigned when t fires.

The semantics of the LHPN model are briefly illustrated using an LHPN
model of the switched capacitor integrator shown in Fig. 3. A formal description
of the semantics for LHPNs can be found in [12]. The output voltage, Vout,
is modeled by the LHPN shown in Fig. 3a. The rate of the output voltage
changes based on the value of Vout and the input voltage. The square wave
input voltage, Vin, is modeled using the LHPN shown in Fig. 3b. Vin is modeled
as a stable, multi-valued continuous quantity. Stable, multi-valued continuous
quantities are modeled using continuous variables with a rate of zero and are
updated using a variable assignment after a time delay. The LHPN shown in
Fig. 3c is used to detect a failure. The enabling condition on the transition is
the negation of an HSL formula for the safety property being verified. When
this transition is enabled and fires, a failure is detected. In the initial state, p0,
p1, and p6 are marked; fail is false; Vout is −1000mV; Vin is −1000mV; the
rate of Vin is 0; and the rate of Vout is 18 to 22 mV/μs. Initially, t1 is the only
enabled transition. However, as time passes, Vout crosses 0V enabling t6 which
fires immediately moving the token from p6 to p3. After 100 to 101μs from
the initial state, t1 fires and sets Vin to 1000mV. This change on Vin enables
transition t3 which fires immediately and sets the rate of Vout to be between
−22 and −17 mV/μs. Transition t4 fires next in zero time when Vout < 0V .
After this firing, transition t2 fires after being enabled 99 to 100μs. This firing
sets Vin to −1000mV and enables transition t5 which fires immediately and sets
the rate of Vout to be between 17 and 22 mV/μs. This behavior continues until
the range of Vout enables transition t0 which fires and sets fail to true.

4 LHPN Model Generation

During the course of traditional analog circuit verification, designers run many
different simulations to check that the circuit meets its specification. The goal of
this work is to automatically generate an LHPN such as the one shown in Fig. 3
from simulation data. The generated LHPN model of the circuit is conservative
and models all the provided simulation traces plus additional behavior. By using

AMS Circuit Verification Using Models Generated from Simulation Traces 119

p2

p1

[99, 100]
〈Vin := −1000〉

t2
t1

〈Vin := 1000〉
[100, 101]

p0
t0

[0, 0]〈fail := T 〉
{(¬Vout ≥ −2000) ∨ Vout ≥ 2000}

p3

p6

p4

p5

t4

t6

t5

t3

[0, 0] [0, 0]

{¬Vin ≥ 0} [0, 0]

〈V̇out := [17, 22]〉

〈V̇out := [−22, −17]〉
{Vin ≥ 0} [0, 0]

(b)

Q0 = {Vout = −1000, Vin = −1000}; R0 = {V̇in = 0, V̇out = [18, 22]}; S0 = {fail = F}

(a) (c)

{Vout ≥ 0} {¬Vout ≥ 0}

Fig. 3. A simple LHPN example for the switched capacitor integrator

Algorithm 1. GenerateLHPNfromData(data, thresholds , property)
binData = binData(data , thresholds);1

rates = calculateRates(data , binData);2

delays = calculateTimes(data , binData , rates);3

N = generateLHPN(binData , rates , delays , property);4

simulations already produced by the designer, no additional simulation time is
required. However, the quality of the model is directly related to the simulations
used to create it. If the designer has inadequately simulated the design, the
model may not exhibit the full behavior of the system. In this case, there is a
potential that the actual circuit may have a failing behavior that is not included
in the generated model. To help address this issue, Section 6 proposes the use
of coverage metrics.

Algorithm 1 describes the process of taking simulation data and generating
an LHPN. The input to our algorithm is time series simulation data, thresholds
on the state space of the system, and the safety property to be checked specified
using an HSL formula. The data is first sorted into bins based on the thresholds.
Next, ranges of rates are calculated for each continuous variable within each bin.
The algorithm assumes nothing about the dependence or independence of the
rates. Each rate is calculated individually for each bin. It is expected that the
rates change during different phases of operation. For this reason, it is impor-
tant that thresholds are selected to separate the different phases of operation
into distinct bins. At this point, continuous variables which are mostly stable
but occasionally change are identified as variables that can be approximated by
discrete transitions. Finally, after these calculations, the LHPN is generated.

Algorithm 1 is illustrated using two simulations of the switched capacitor
integrator. In particular, the switched capacitor integrator is simulated with
capacitance values of 23pF and 27pF for capacitor C2. The simulation data is
recorded for the nodes representing the input voltage, Vin, and output voltage,

120 S. Little et al.

Table 1. Partial simulation result with C2 = 23pF for the integrator

Time (μs) Vin (mV) Vout (mV) Bin ΔVin/Δt (mV/μs) ΔVout/Δt (mV/μs) Vin time

0.00 -1000 -1000 00 -227.85 21.29 0.0

0.50 -1000 -999 00 0.0 21.74 0.5
...

...
...

...
...

...
...

46.48 -1000 -0.4 00 - - 46.48

46.98 -1000 10 01 0.0 21.74 46.98

47.48 -1000 21 01 0.0 21.74 47.48
...

...
...

...
...

...
...

100.50 -1000 1174 01 - - 100.50

100.54 -840 1174 01 - - 100.54

100.62 -520 1176 01 - - 100.70

100.78 120 1176 11 275.00 -21.08 0.08

101.00 1000 1174 11 0.0 -21.74 0.30

101.03 1.0 1173 11 0.0 -21.74 0.33
...

...
...

...
...

...
...

154.98 1000 0.3 11 - - 54.28

155.48 1000 -11 10 0.0 -21.74 54.78

155.98 1000 -21 10 0.0 -21.74 55.28
...

...
...

...
...

...
...

200.00 1000 -978 10 - - 99.30

200.04 840 -979 10 - - 99.34

200.12 520 -980 10 - - 99.50

200.28 -120 -981 00 -275.00 21.08 0.08

200.50 -1000 -978 00 0.0 21.74 0.30

200.53 -1000 -976 00 0.0 21.74 0.33
...

...
...

...
...

...
...

400.00 1000 -957 10 - - 99.34

Vout, during 400μs of transient simulation for each capacitance value. Part of the
data from these simulations is shown in Tables 1 and 2.

The first step of Algorithm 1 is to bin the data based upon the thresholds
provided. For this example, the thresholds chosen for both Vin and Vout are 0V.
Each data file is analyzed and each time point is assigned to a bin based upon
the values of Vin and Vout. In the data shown in Tables 1 and 2, each digit in
the fourth column represents a bin. The first digit represents the Vin bin and the
second digit represents the Vout bin. For instance, at time 100.50μs in Table 1,
the bin assigned is 01 indicating that Vin is below 0V and Vout is above 0V.
When Vin moves above 0V at time 100.78μs, the bin assignment changes to 11.

The second step of Algorithm 1 calculates rate of change for each continuous
variable. The rate of change is calculated for each bin using two time points
within the same bin separated by a given interval. In the data shown in Tables 1

AMS Circuit Verification Using Models Generated from Simulation Traces 121

Table 2. Partial simulation result with C2 = 27pF for the integrator

Time (μs) Vin (mV) Vout (mV) Bin ΔVin/Δt (mV/μs) ΔVout/Δt (mV/μs) Vin time

0.00 -1000 -1000 00 -227.85 18.14 0.0

0.50 -1000 -999 00 0.0 18.52 0.5
...

...
...

...
...

...
...

54.48 -1000 -0.3 00 - - 54.48

54.98 -1000 9 01 0.0 18.52 54.98

55.48 -1000 18 01 0.0 18.52 55.48
...

...
...

...
...

...
...

100.50 -1000 852 01 - - 100.50

100.54 -840 852 01 - - 100.54

100.62 -520 853 01 - - 100.70

100.78 120 854 11 275.00 -17.96 0.08

101.00 1000 852 11 0.0 -18.52 0.30

101.03 1000 850 11 0.0 -18.52 0.33
...

...
...

...
...

...
...

146.98 1000 0.3 11 - - 46.28

147.48 1000 -9 10 0.0 -18.52 46.78

147.98 1000 -18 10 0.0 -18.52 47.28
...

...
...

...
...

...
...

200.00 1000 -981 10 - - 99.30

200.04 840 -982 10 - - 99.34

200.12 520 -983 10 - - 99.50

200.28 -120 -984 00 -275.00 17.96 0.08

200.50 -1000 -981 00 0.0 18.52 0.30

200.53 -1000 -980 00 0.0 18.52 0.33
...

...
...

...
...

...
...

400.00 1000 -963 10 - - 99.34

and 2 the interval is set to a length of ten. For example, the rate of change for
Vout at time 46.98μs in Table 1 is calculated by looking at its value at this time
point and the value ten points later. This value is determined to be 21.74mV/μs.
After all the rates have been calculated, the minimum and maximum rates for
each bin are determined. These values are the specified rate of change whenever
the model is in that specific bin. The range of rates for each bin found from these
two simulation runs for Vout from the switched capacitor integrator are shown
in Table 3.

The third step of Algorithm 1 examines the rates for each continuous variable
to determine if it can be reasonably approximated with a multi-valued continuous
variable that makes discrete changes. This is true if a variable remains stable for
large portions of time (i.e., has a rate of change that is nearly 0). In the switched
capacitor integrator example, the square wave input voltage, Vin, is an example

122 S. Little et al.

Table 3. Rates for Vout from the switched capacitor integrator

Bin Place Range of rates Comment

00 p6 [17,22] Vin < 0V ; Vout < 0V

01 p3 [17,22] Vin < 0V ; Vout ≥ 0V

11 p4 [-22,-17] Vin ≥ 0V ; Vout ≥ 0V

10 p5 [-22,-17] Vin ≥ 0V ; Vout < 0V

of this type of signal. In Tables 1 and 2, Vin has a rate of change of 0 mV/μs at
most times. For these discrete signals, the algorithm determines the amount of
time that they spend at each discrete value. This is shown in the last column of
Tables 1 and 2. The value of this continuous variable is then assigned to change
at that specified time. For example, Vin is set to -1000mV and remains there for
100μs to 101μs after which is changes to 1000mV and remains there for 99μs to
100μs. This cycle then repeats.

Using the information derived in the first three steps, Algorithm 1 can now
generate an LHPN that models the provided simulation traces. A place is created
for each bin discovered in the simulation traces. While in this example a place is
produced for every bin assignment, in larger examples, many bins may never be
encountered during simulation, so places are not generated for these unreachable
bins. The places created for each bin from the integrator example are shown in
the second column of Table 3. Next, transitions between bins are created when a
transition between two bins is found in the simulation traces. It is theoretically
possible that this could result in a fully connected graph, but in practice this is
highly unlikely. Each transition is given an enabling condition representing the
threshold that is being crossed to move from the first bin to the second. The
delay for the transition is set to [0,0] to make it fire immediately as the state
of the system moves from one bin to the next. Finally, each transition is given
a rate assignment to set the rate to the value for that bin as shown in Table 3.
For the integrator example, the result is the LHPN shown in Fig. 3a. Note that
the rate assignment is omitted for transition t6, since the range of rates for p6
and p3 are the same. Similarly, the rate assignment for t4 can be omitted.

Next, a separate net is created for each discrete multi-valued continuous signal.
A place is added for each discrete value of this variable. For the integrator, place
p1 is added for Vin equal to −1000mV, and p2 is added to represent that Vin
is equal to 1000mV. A transition is added for each discrete change found in
the simulation data. The delay of this transition is determined by the time
calculated in the previous step. Finally, this transition includes a continuous
variable assignment to execute the discrete change. For the integrator example,
the LHPN generated to control Vin is shown in Fig. 3b.

Finally, the last step is to create an LHPN to check the safety property pro-
vided as an HSL formula. This net has a single initially marked place and a
single transition. The transition’s enabling condition is the complement of the
safety property. This transition has a delay of [0,0], and it sets a special Boolean
signal fail to true when it fires. Therefore, to verify this safety property, a model

AMS Circuit Verification Using Models Generated from Simulation Traces 123

checker only needs to determine if there exists any state in which fail is true. For
the integrator example, the LHPN generated to check if the circuit can saturate
is shown in Fig. 3c. Note that to cause analysis to terminate sooner, a Boolean
condition, ¬fail , can be added to each transition in the LHPNs. This results in
a deadlock once a failure is detected.

The LHPNs generated from simulation traces include ranges of rates. While
these LHPNs can be directly analyzed using the BDD and SMT model checkers,
they cannot be directly analyzed using the DBM method. To enable analysis
of these LHPN models by the DBM model checker, a piecewise approximation
of the range of rates is created by performing a transformation on the LHPN.
In particular, this transformation allows the rate to change nondeterministically
between the lower and upper bound on the range of rates. By exploring all of
the possible nondeterministic rate changes the state space of the system for the
entire range of rates is explored.

To simplify the description, the expansion process is illustrated using the
LHPN in Fig. 4a which only has a threshold for Vin at 0V and no threshold for
Vout resulting in just two bins represented with two places. The rate expansion
proceeds by adding an additional transition and Boolean signal for each range
of rates present in the unexpanded LHPN. The original transition is modified
by changing the rate assignment to assign the lower bound of the range. Also,
additional Boolean signal assignments are added to enable the firing of the upper
bound of the rate and disable all other upper bound rate assignments. For exam-
ple, in Fig. 4b the rate assignment on t0 is changed from [−22, −17] to −22. The
Boolean signal v1 is set to true enabling the firing of t2. The delay bound on t2
is [0, ∞] allowing t2 to fire at any time in the future while the enabling condition
remains satisfied. When t2 fires it sets the rate to the upper bound, −17 and sets
the Boolean signal v1 to false. This translation method has been implemented
in the LEMA tool enabling LHPNs with ranges of rates to be analyzed by any of
the model checkers in the tool.

t0

t1
[0, 0]

[0, 0]

p1

p0

{Vin ≥ 0}

{¬Vin ≥ 0}

〈V̇out := 22; v0 := F 〉
{v0}[0,∞]

〈V̇out := −17; v1 := F 〉
{v1}[0,∞]

〈V̇out := −22; v0 := F ; v1 := T 〉

(a) (b)

〈V̇out := 17; v0 := T ; v1 := F 〉

t3

t2

t0

t1
[0, 0]

[0, 0]
{Vin ≥ 0}

{¬Vin ≥ 0}

〈V̇out := [−22, −17]〉

〈V̇out := [17, 22]〉

p1

p0

Fig. 4. LHPN demonstrating piecewise approximation of a range of rates

124 S. Little et al.

5 Case Study

Using Algorithm 1, two simulation traces of the switched capacitor integrator
result in the LHPN shown in Fig. 3. Although neither of the simulation traces
indicate a problem with saturation of the integrator, a state space analysis using
the DBM model checker finds in less than a second that there is a potential
for the circuit to fail. This failure can occur when the integrator charges the
capacitor, C2, at a rate that is on average faster than the rate of discharge. This
situation causes charge to build up on the capacitor and eventually results in
Vout reaching a voltage above 2000mV. The reason that this method can find
this failure is that the LHPN model represents not only each simulation trace,
but also the union of the traces. It is this behavior explored by unioning the
traces that allows the analyzer to find the flaw in the circuit.

Saturation of the integrator can be prevented using the circuit shown in Fig. 5.
In this circuit, a resistor in the form of a switched capacitor is inserted in parallel
with the feedback capacitor. This causes Vout to drift back to 0V. In other words,
if Vout is increasing, it increases faster when it is far below 0V than when it is
near or above 0V. Using the same simulation parameters and thresholds for this
circuit, Algorithm 1 obtains an LHPN with the same structure as the one shown
in Fig. 3, but the ranges of rates for each bin are as shown in Table 4. This
LHPN also fails the property as the thresholds are too simple to capture the
effect of the additional switched capacitor. Due to the addition of this switched

Φ1

Q1
Vin

freq(Vin) = 5 kHz
Vin = ±1000mV

Φ2

C1

Q2 Vout

C2

C2 = 25 pF
C1 = 1 pF

Φ1

Q3

Φ2

C3

C3 = 0.5 pF

dVout/dt ≈ (±20 − Vout/100) mV/μs
freq(Φ1) = freq(Φ2) = 500 kHz

Q4

+

−

Fig. 5. Circuit diagram of a corrected switched capacitor integrator

AMS Circuit Verification Using Models Generated from Simulation Traces 125

Table 4. Rates for Vout in the corrected integrator using two bins

Bin Place Range of rates Comment

00 p6 [18,32] Vin < 0V ; Vout < 0V

01 p3 [9,22] Vin < 0V ; Vout ≥ 0V

11 p4 [-22,-9] Vin ≥ 0V ; Vout ≥ 0V

10 p5 [-32,-18] Vin ≥ 0V ; Vout < 0V

Table 5. Rates for Vout in the corrected integrator using four bins

Bin Place Range of rates Comment

00 p9 [23,32] Vin < 0V ; Vout < −500mV

01 p7 [18,27] Vin < 0V ; −500mV ≤ Vout < 0V

02 p5 [14,22] Vin < 0V ; 0 ≤ Vout < 500mV

03 p3 [9,16] Vin < 0V ; Vout ≥ 500mV

10 p10 [-16,-9] Vin ≥ 0V ; Vout < −500mV

11 p8 [-22,-14] Vin ≥ 0V ; −500mV ≤ Vout < 0V

12 p6 [-27,-18] Vin ≥ 0V ; 0 ≤ Vout < 500mV

13 p4 [-32,-23] Vin ≥ 0V ; Vout ≥ 500mV

[99, 100]

[100, 101]
〈Vin := 1000〉

〈Vin := −1000〉
(b)

Q0 = {Vout = −1000, Vin = −1000}

S0 = {fail = F}
R0 = {V̇out = [26, 32]}

[0, 0]〈fail := T 〉
{Vout ≤ −2000 ∨ Vout ≥ 2000}

(a)

(c)

p2

p8

p9

t9

t8p1

p0

p2

p3
t3

p4

p6

p7

t0

t1

t2

p5

t4

t5

t6

t7

〈V̇out := [23, 32]〉

〈V̇out := [18, 27]〉

〈V̇out := [14, 22]〉

〈V̇out := [9, 16]〉

{¬Vin ≥ 0} [0, 0]

{Vin ≥ 0} [0, 0]

〈V̇out := [−32, −23]〉

〈V̇out := [−27, −18]〉
{¬Vout ≥ 500} [0, 0]

{Vout ≥ 500} [0, 0]

{Vout ≥ 0} [0, 0]

{Vout ≥ −500} [0, 0]

〈V̇out := [−16, −9]〉
{¬Vout ≥ −500} [0, 0]

{¬Vout ≥ 0} [0, 0]

〈V̇out := [−22, −14]〉

Fig. 6. LHPN for the corrected switched Integrator Example

126 S. Little et al.

capacitor resistor, the rate of change is now very dependent on the value of Vout.
In particular, this variation slows the rate of the voltage change as it approaches
the power supply rail. This prevents saturation of the integrator. Based on this
knowledge, the thresholds on Vout are changed to -500mV, 0V, and 500mV.
These new thresholds result in the rates shown in Table 5. The LHPN for this
table is shown in Fig. 6, and this LHPN is found to satisfy the property in less
than a second using the DBM model checker. Finally, to explore the scalability
of our algorithms, Table 6 shows how the size of the LHPN and model checking
time scales as the number of thresholds increases.

Table 6. Scalability of model checking as number of thresholds increase

No. thresholds Places Transitions Model Checking Time

1 7 7 0.03s

3 11 11 0.06s

5 14 14 0.19s

7 18 19 0.31s

9 22 27 0.62s

6 Coverage Metrics

Our proposed method takes simulation traces from the designer and generates an
LHPN. While the generated LHPN represents the behaviors that the designer
deems to be important, it may miss problems not foreseen by the designer.
Therefore, coverage metrics would be very useful to warn the designer about
these unexplored portions of the state space where pitfalls may lie. Coverage
information gives a quantitative metric about the quality of a set of simulation
traces. This promises to aid the simulation only verification methodology as well
as our model generation. We propose a coverage metric where each simulation
trace is given a score. A higher score is achieved by a simulation trace that
exhibits behavior not previously seen. From the perspective of the LHPN model
some obvious examples of new behavior are entering a previously unvisited bin,
taking a previously untaken bin to bin transition, or altering the overall rate
of a bin. More complex measures of new behavior could be used such as the
distance of the new trace from previously seen traces. A metric of this type
gives a qualitative measure of the utility of an additional simulation trace. This
type of metric could be used as an aid to determine the benefit of doing further
simulations. A global metric for the entire set of simulation traces is also useful
and could be created in a similar fashion.

For the integrator example, using just the simulation trace shown in Table 1
with C2 equal to 23pF would result in the LHPN shown in Fig. 3. Adding the
simulation trace shown in Table 2 with C2 equal to 27pF results in the exact same
LHPN structure, but the ranges of rate for Vout would be changed. Therefore,
the value of the second trace run is less than that of the first, but it still has some
value. Finally, if a third trace with C2 equal to 25pF is added at this point, the

AMS Circuit Verification Using Models Generated from Simulation Traces 127

resulting LHPN would not change at all as the rates generated from this trace
would be contained in those generated from the first two. Therefore, this trace
adds no new knowledge, so the coverage metric would say that it has no value. As
a final example, if a trace is added that changes Vin at twice the frequency (i.e.,
every 50μs), it now becomes possible for Vin to change before Vout goes above 0V.
This means that the LHPN generated would now have a new transition from p6
to p5. This LHPN would also have a wider range of delays for when Vin changes.
Therefore, this additional trace provides new information.

7 Conclusion

Interest in formal and semi-formal methods for validating AMS circuits is in-
creasing. Many of these methods are seriously handicapped by the difficulty of
generating formal models. This paper develops a method to generate a conser-
vative, trace preserving formal LHPN model from a set of simulation traces and
thresholds on the state space. This LHPN model can be used by several different
model checking engines to prove safety properties about the entire state space of
the model. Using two variations of the switched capacitor integrator circuit, this
paper shows how an adequate LHPN model can be created using two simulation
traces and a basic set of thresholds. The model is analyzed using a DBM based
model checker to obtain the expected verification results.

While the current version of the tool requires the user to provide thresholds,
it would be interesting to explore automated methods to determine important
thresholds. Our initial investigations into the autogeneration of thresholds at-
tempt to increase the number of thresholds in regions where the rates change
rapidly. Automatic generation of thresholds may also provide the designer with
useful information about the circuit.

Another potential benefit of the method described in this paper is that an
LHPN model can be translated into a VHDL-AMS or Verilog-AMS model. One
problem for AMS designers is creation of abstract models of their circuit for use
in a digital or mixed-mode simulation flow. Models can be created by hand but
must be updated to remain consistent as circuits change. Using this method, the
models could maintain their consistency by running the needed set of simulations
after changes and regenerating the HDL model from the LHPN.

References

1. Hartong, W., Hedrich, L., Barke, E.: On discrete modeling and model checking for
nonlinear analog systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 401–413. Springer, Heidelberg (2002)

2. Dang, T., Donzé, A., Maler, O.: Verification of analog and mixed-signal circuits
using hybrid systems techniques. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 21–36. Springer, Heidelberg (2004)

3. Frehse, G., Krogh, B.H., Rutenbar, R.A.: Verifying analog oscillator circuits using
forward/backward refinement. In: Proc. Design, Automation and Test in Europe
(DATE), pp. 257–262. IEEE Computer Society Press, Los Alamitos (2006)

128 S. Little et al.

4. Little, S., Seegmiller, N., Walter, D., Myers, C., Yoneda, T.: Verification of
analog/mixed-signal circuits using labeled hybrid petri nets. In: Proc. International
Conference on Computer Aided Design (ICCAD), pp. 275–282. IEEE Computer
Society Press, Los Alamitos (2006)

5. Walter, D., Little, S., Seegmiller, N., Myers, C.J., Yoneda, T.: Symbolic model
checking of analog/mixed-signal circuits. In: Asia and South Pacific Design Au-
tomation Conference (ASPDAC), pp. 316–323 (2007)

6. Walter, D., Little, S., Myers, C.: Bounded model checking of analog and mixed-
signal circuits using an SMT solver. In: Namjoshi, K.S., Yoneda, T., Higashino, T.,
Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 66–81. Springer, Heidelberg
(2007)

7. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Be-
mporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC. LNCS, vol. 4416, Springer,
Heidelberg (2007)

8. Dang, T., Nahhal, T.: Randomized simulation of hybrid systems for circuit valida-
tion. Technical report, VERIMAG (May 2006)

9. Girard, A., Pappas, G.J.: Verification using simulation. In: Hespanha, J.P., Tiwari,
A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 272–286. Springer, Heidelberg (2006)

10. Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal logic verification using sim-
ulation. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp.
171–186. Springer, Heidelberg (2006)

11. Dastidar, T.R., Chakrabarti, P.P.: A verification system for transient response of
analog circuits using model checking. In: VLSI Design, pp. 195–200. IEEE Com-
puter Society Press, Los Alamitos (2005)

12. Walter, D.C.: Verification of analog and mixed-signal circuits using symbolic meth-
ods. PhD thesis, University of Utah (May 2007)

13. Myers, C.J., Harrison, R.R., Walter, D., Seegmiller, N., Little, S.: The case for
analog circuit verification. Electronic Notes Theoretical Computer Science 153(3),
53–63 (2006)

14. David, R., Alla, H.: On hybrid petri nets. Discrete Event Dynamic Systems: Theory
and Applications 11(1–2), 9–40 (2001)

15. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In: Gross-
man, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) Hybrid Systems. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993)

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 129–144, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Automatic Merge-Point Detection for Sequential
Equivalence Checking of System-Level and RTL

Descriptions

Bijan Alizadeh and Masahiro Fujita

VLSI Design and Education Center (VDEC), University of Tokyo, Japan
alizadeh@cad.t.u-tokyo.ac.jp, fujita@ee.t.u-tokyo.ac.jp

Abstract. In this paper, we propose a novel approach to verify equivalence of
C-based system level description versus Register Transfer Level (RTL) model
by looking for merge points as early as possible to reduce the size of
equivalence checking problems. We tackle exponential path enumeration
problem by identifying merge points as well as equivalent nodes automatically.
It will describe a hybrid bit- and word-level representation called Linear Taylor
Expansion Diagram (LTED) [1] which can be used to check the equivalence of
two descriptions in different levels of abstractions. This representation not only
has a compact and canonical form, but also is close to high-level descriptions so
that it can be utilized as a formal model for many EDA applications such as
synthesis. It will then show how this leads to more effective use of LTED to
verify equivalence of two descriptions in different levels of abstractions. We
use LTED package to successfully verify some industrial circuits. In order to
show that our approach is applicable to industrial designs, we apply it to 64-
point Fast Fourier Transform and Viterbi algorithms that are the most
computationally intensive parts of a communication system.

Keywords: Formal Verification, Sequential Equivalence Checking, System on
a Chip (SoC), Communication System, Canonical Representation.

1 Introduction

As system on a chip (SoC) designs continue to increase in size and complexity, many
companies have paid more attention to design hardware at higher levels of abstraction
due to faster design changes and higher simulation speed. In this phase, a C-based
high level specification is described and then refined to a Register Transfer Level
(RTL) description by adding more and more implementation details at different steps.
Therefore there is a significant increase in the amount of verification required to
achieve functionally correct description at each step, if traditional dynamic techniques
such as simulation are used. This has led to a trend away from dynamic approaches
and therefore Sequential Equivalence Checking (SEC) methods have become very
important to reduce time-to-market as much as possible. SEC is a process of formally
proving functional equivalence of designs that may in general have sequentially
different implementations. Examples of sequential differences span the space from

130 B. Alizadeh and M. Fujita

retimed pipelines, differing latencies and throughputs, and even scheduling and
resource allocation differences.

A few approaches have been proposed to perform equivalence checking between
C-based specification and RTL description. In symbolic simulation based approaches,
loop and conditional statements need to be unrolled and then all paths through the
code must be explored [2-7]. If dependencies exist between different iterations of a
loop statement, it will increase the run time for symbolic simulation and degrades
quality due to the exponential number of paths. For example consider C code of Fig.
1(a). After unrolling for-loop, corresponding to each then and else branch it is
necessary to have two execution paths. In general for N number of iterations we have
to enumerate 2N paths and therefore exponential path enumeration problem occurs.
On the other hand, the different results computed on the different paths must be
tracked that will cause a blow-up in logic if lower level techniques such as BDDs and
SAT solvers are utilized.

for (i=0; i<2; i++)

if (a < b + c[i])

 a = b + c[i];

else

 a = b - c[i];

if (a < b + c[0])
 a

1
 = b + c[0];

else
a

2
 = b - c[0];

Potential Merge Point

if (a < b + c[1])
 a

3
 = b + c[1];

else
a

4
 = b - c[1];

Potential Merge Point
(a)

(b)

Fig. 1. Path enumeration of conditional statements (a) original source code (b) potential merge
points to be detected

To cope with this complexity, the basic idea is to look for merge points as shown
in Fig. 1(b), because it is obvious that two branches for if-then-else statements can be
merged again. In this paper we not only attempt to figure out merge points
automatically but also represent word-level arithmetic functions without requiring bit-
level encoding due to use of a canonical hybrid bit- and word-level representation,
i.e., LTED [1]. Furthermore, we point out how to check the equivalence of a C-based
description against a RTL model while there is no information about corresponding
equivalent points into two descriptions. Therefore, the main contributions of our paper
are as follows:

• Automatic merge point detection as early as possible to overcome exponential
path enumeration problem.

• Defining cut-planes (each cut-plane is a set of cut-points) as outputs of different
iterations of loops in the C-based description and therefore finding equivalent
nodes in the RTL model automatically, rather than specifying them in the two
descriptions as done in [2].

• Efficient representation of the C-based description as well as the RTL model to
reduce run time for checking their equivalence.

 Automatic Merge-Point Detection for Sequential Equivalence Checking 131

The rest of this paper is structured as follows. Related works are addressed in Section
2. LTED as a hybrid canonical representation is briefly described in Section 3.
Automatic merge-point detection approach to check the equivalence between C-based
and RTL descriptions is presented in Section 4 and 64-point Fast Fourier Transform
and Viterbi decoder algorithms as two case studies are discussed in Section 5. Finally
a brief conclusion and future work are shown in Section 6.

2 Related Works

Recently, some techniques have been proposed to apply equivalence checking to the
system level and RTL descriptions [2-7]. In [2] an equivalence checking technique to
verify system level design descriptions against their implementations in RTL was
proposed. It presented an automatic technique to compute high level sequential
compare points to compare variables of interest in the candidate design descriptions.
They start the two design state machines at the same initial state and step the
machines through every cycle, until a sequential compare point is reached. At this
point the equivalence of the two state machines is proved using a lower (Boolean)
level engine which is zChaff Satisfiability (SAT) solver. One of the limitations of this
technique is not to be scalable in the number of cycles. As the number of cycles gets
larger, the size of the expression grows quadratically, causing capacity problems for
the lower level Satisfiability (SAT) engine. Furthermore it may not be applicable to
large designs due to arithmetic encoding. In addition, in this technique corresponding
equivalent points between two descriptions should be determined while these points
may not be at all obvious due to complex control flow.

The authors in [3] have proposed early cut-point insertion for checking the
equivalence of high level software against RTL of combinational components. They
introduce cut-points early during the analysis of the software model, rather than after
generating a low level hardware equivalent. In this way, they overcome the
exponential enumeration of software paths as well as the logic blow-up of tracking
merged paths. However, it is necessary to synthesize word level information into bit
level because of using BDD to represent the symbolic expressions and so the capacity
is limited by memory and run time requirements. In addition, it has only focused on
combinational equivalence checking and has not addressed how to extend the
proposed method for sequential equivalence checking problem. Another approach to
equivalence checking between C descriptions is presented in [4]. This approach
detects the textual differences in the two target programs, and then performs
a dependence analysis using program slicing, to check for the actual differences in
the two programs. It then symbolically simulates this difference and reports the
equivalence checking results. Since this process uses syntactic information, the
similarity of the target descriptions is very essential to its application.

A solution with a C-based bounded model checking (CBMC) engine was proposed
in [6] that takes a C program and a Verilog implementation. They described an
innovative method to convert the C program, including pointers and nested loops, into
Boolean formulas. The Verilog code is also converted to Boolean formulas by a
synthesis-like process. Then the two programs are converted into a Boolean
satisfiability problem. Since this tool works entirely in the Boolean domain the

132 B. Alizadeh and M. Fujita

capacity of CBMC is limited by space and time considerations. In [7] a method of
equivalence checking between the Finite State Machine with Data-path (FSMD)
model of the high-level behavioral specification and the FSMD model of the behavior
transformed by the scheduler has been proposed. In this method cut-points in one
FSMD are introduced and then computations are visualized as concatenation of paths
from cut-points to cut-points. Finally equivalent finite path segments in the other
FSMD are identified. This technique, however, is not scalable due to its limited
application.

In all above approaches BDD or SAT based methods are utilized to represent
symbolic expressions while algorithmic specifications such as those for digital signal
processing contain a lot of arithmetic operations that should be encoded into bit level
operations. Thus lower-level techniques like BDD or SAT are not able to handle these
designs due to the large number of Boolean variables or clauses to be generated. In
order to improve Boolean SAT-based methods, a Hybrid Satisfiability approach
(HSAT) has been introduced [8] to generate functional test vectors for RTL designs.
This approach creates linear arithmetic constraints for arithmetic operators and
conjunctive normal form (CNF) clauses for Boolean logical operators. It then uses 3-
SAT checking to solve the logic equations and integer linear programming (ILP)
solver to check the feasibility of the arithmetic equations separately, in different
domains. Hence for variables correspond to the interaction between the Boolean and
arithmetic domains of the design, an assignment is selected from the CNF-clauses,
and the resulting constraints are propagated to the arithmetic domain for the linear
program to check for consistency. If variable assignments that satisfy the CNF clauses
cause the linear programming constraints in the arithmetic domain to be infeasible,
backtracking is needed to select another set of Boolean assignments. Since these two
engines operate in separate domains, the performance of HSAT is limited by the
heuristics that choose the set of assignments to Boolean variables. In addition,
although HSAT is able to model bit- and word-level expressions, it only deals with
scalar multiplication due to using integer linear programming. On the contrary, in our
previous works [1] and [9], we have proposed a canonical hybrid bit and word levels
representation that integrates two domains in one engine and also represents two
descriptions to be checked for equivalence, in a way that equivalent nodes could be
found automatically without having to specify state or output mappings into two
descriptions.

3 Hybrid Bit and Word Levels Representation

The goal of this section is to introduce a new graph-based representation called Linear
Taylor Expansion Diagram (LTED) for functions with a mixed Boolean and integer
domain and an integer range to represent arithmetic operations at a high level of
abstraction, while other proposed Word Level Decision Diagrams (WLDDs) are
graph-based representations that provide a concise representation of integer-valued
functions defined over binary variables as a bit vector. A thorough review of WLDDs
can be found in [10]. On the other hand, BDDs or SAT based methods suffer from
size explosion problems when the designs grow in size and complexity. BDD-based

 Automatic Merge-Point Detection for Sequential Equivalence Checking 133

verification tools have not been very successful for designs containing large
arithmetic data-path units due to prohibitive memory requirements.

In LTED, functions to be represented are maintained as a single graph in strongly
canonical form. We assume that the set of variables is totally ordered and that all of
the vertices constructed obey this ordering. Maintaining a canonical form requires
obeying a set of conventions for vertex creation as well as weight manipulation.
These conventions are similar to other word level canonical representations and are
not discussed here for brevity. In contrast to TED, LTED is a binary graph-based
representation where the algebraic expression F(X,Y,…) is expressed by a first-order
linearization of the Taylor series expansion [1]. Suppose variable X is the top variable
of F(X,Y,…). Equation (1) shows F(X,Y,…), where const is independent of variable
X, while linear is coefficient of variable X.

F(X, Y, …) = const + X*linear. (1)

LTED data structure consists of a Variable node v that has as attributes an integer
variable var(v) and two children const(v) and linear(v). In order to normalize the
weights, any common factor is extracted by taking the greatest common divisor (gcd)
of the argument weights. In addition, we adopt the convention that the sign of the
extracted weight matches that of the const part. This assumes that gcd always returns
a nonnegative value. Once the weights have been normalized the hash table is looked
for an existing vertex or creates a new one. Similar to that of BDDs, each entry in the
hash table is indexed by a key formed from the variable and the two children, i.e.
const and linear parts. As long as all vertices are created, the graph will remain in
strongly canonical form (see [1] for more details). Fig. 2 illustrates how the following
multivariate polynomial expression is represented by LTED.

f(X, Y, Z) = 24-8*Z+12*Y*Z-6*X2-6*X2*Z

Fig. 2. LTED representation of 24-8*Z+12*Y*Z-6*X2-6*X2*Z (a) decomposition with respect
to variable X (b) decomposition with respect to variables X and Y (c) decomposition with
respect to variables X, Y and Z

Let the ordering of variables be X, Y and Z. First the decomposition with respect to
variable X is taken into account. As shown in Fig. 2(a), const and linear parts will be
24-8*Z+12*Y*Z and -6*X2-6*X2*Z respectively. After that, the decomposition is
performed with respect to variable Y of Fig. 2(b). Finally the expressions are
decomposed with respect to variable Z and a reduced diagram is depicted. In order to
reduce the size of an LTED, redundant nodes are removed and isomorphic sub-graphs
are merged as shown in Fig. 2(c). Analogous to TED and *BMDs, LTED is a

X

24-8Z+12YZ

X

Y

X

24-8Z 12Z -6-6Z

(a) (b)

X

Y
X

Z Z
-1

3

2 3

Z

2

-3

2

(c) 1

X

-6-6Z

134 B. Alizadeh and M. Fujita

canonical representation. In this representation, dashed and solid lines indicate const
and linear parts respectively.

It should be noted that LTED was introduced in [11] as a graph-based representation
with application to formal property verification. In order to have a canonical from, all
nodes introduced in [11] except Constant (C) and Variable (V) nodes have been
removed. In this representation basic arithmetic operators such as addition, unary
addition, subtraction, unary subtraction and multiplication are available that work for
symbolic integer variables. In order to represent Boolean functions, logical bitwise
operations including NOT, AND, and OR have been provided.

4 Sequential Equivalence Checking

In this section, we describe a sequential equivalence checking algorithm which is
based on LTED canonical representation. Moreover, we will discuss merge point and
cut-plane identification techniques.

4.1 Merge-Point and Cut-Plane Detection Approaches

Fig. 3 depicts our proposed equivalence checking algorithm. An algorithmic
specification in C (ASC) and an RTL description in Verilog (RTL) are treated as
inputs to the algorithm. Although set of cut-planes (C), set of variables that are
interesting for observation, can be defined by user as done in [2], in this paper it is
obtained automatically as outputs of different iterations of loop executions in the ASC
as shown by three first lines of Fig. 3. As a matter of fact this automatic
decomposition converts the original description to some simpler expressions that can
be handled easier even though there are among data dependencies between different
loop iterations.

As illustrated in Fig. 3, first of all a cut-plane is chosen. The nearest cut-plane to
primary inputs is selected for better performance. A straight-forward way to do this is
to sort cut-planes from primary inputs to primary outputs in the ASC. The selected
cut-plane (CP) is removed from the set of cut-planes (C) and then all variables in CP
are created in LTED. In order to detect merge-points of conditional statements such as
if-then-else statement and case statement appeared in ASC description, variables from
different branches of conditional statements, are rewritten by different indices (e.g.,
variable n is defined as n1, n2, … , nm variables for m cases as shown in Fig. 3) and
then added to CP.

On the other hand, RTL description is synthesized using a high-level synthesis tool
and modeled by a Finite State Machine with Datapath (FSMD). The FSMD adds a
datapath including variables and operators on communication to the classic FSM. The
FSMD is represented as a transition table, where we assume each transition is
executed in a single clock cycle. Operations associated with each transition of this
model are executed in a sequential form. Each controller transition is defined by the
current state, the condition to be satisfied and a set of operations or actions. The
condition evaluated true will determine the transition to be done and thus the actions
to be executed. In an inner while loop, the FSMD is traversed at the current cycle and
all variables on the left hand side of the assignments are created in LTED. During
representing by LTED, equivalent nodes will be found automatically due to canonical

 Automatic Merge-Point Detection for Sequential Equivalence Checking 135

form of LTED representation. At anytime during this process, if it is found that n1, n2,
… , nm are equivalent to some nodes in the RTL model, they will be merged as the
original variable, i.e. n, and a primary input is introduced in its place. According to
this explanation, we will be able to prevent exponential path enumeration problem
since it is not necessary to consider different branches of the conditional statements. If
equivalent nodes do not belong to {n1, n2, … , nm}, we cut out the equivalent part and
introduce new primary inputs in their places. These primary inputs are used while
next iteration of an outer while loop is executed. In the inner while loop, the algorithm
proceeds to the next state of RTL model until all variables in the selected cut-plane
are checked their equivalence with some nodes in the ASC. In the outer while loop,
however, the process repeats until no cut-plane is available. If we can carry on this
process to outputs of the two descriptions, then we have formally verified
equivalence.

Fig. 3. Sequential equivalence checking algorithm with cut-plane and merge-point detection

4.2 Example

Fig. 4 illustrates an example containing the heart of Viterbi decoder algorithm called
Add-Compare-Select (ACS) block that will be discussed in detail in Section 5.2. The

Sequential_EC (ASC: Algorithmic Level Model; RTL: RTL Model)

 Cut-planei = Variables on the left hand side of the assignments in ith iteration of a loop;

 C (set of Cut-planes) = ∪number of iterations (Cut-planei)

 WHILE (C is not empty)

 Select a cut-plane (CP) and remove it from C (C = C – CP);

 ASC = Generate LTED representation of all variables in CP;

 IF (a conditional statement is encountered)

 FOR (each variable n on the left hand side of the assignments)

 Define n1, n2, … , nm for m different cases instead of n;

 CP = CP ∪ {n1, n2, … , nm};

 WHILE (CP is not empty)

 RTL (t) = Generate LTED representation of all variables are assigned to
 at the current cycle (t) of RTL;

 IF (a set of variables (v) are assigned to at the current cycle)

 RTL_v = Get LTED representation of v;

 IF ((RTL_v is equivalent to some nodes in ASC) ⊆ CP)

 CP = CP – v;

 IF (v == {n1, n2, … , nm})

 Merge n1, n2, … , nm points and introduce primary input;

 ELSE
 Introduce primary inputs at v and related nodes in ASC;

 Proceed to the next cycle;

136 B. Alizadeh and M. Fujita

C code of Fig. 4(a) indicates a high-level model of the ACS block, while another code
of Fig. 4(b) describes different cycles of its RTL model. As soon as our proposed
verification algorithm encounters if-then-else statement in the high-level model, it
first represents a01 = c0 (variable a0 in then branch) and a02 = c1 (variable a0 in else
branch) in LTED with respect to in0, in1, PI0 and PI1 inputs, as shown in Fig. 5(a).
After that it is looking for equivalent nodes in the RTL model. At cycle t+2 of RTL
model, it found out e01 = f1 and e02 = f0 that are equivalent to a02 and a01 respectively as
depicted in Fig. 5(b). Therefore, a0 and e0 in the high-level and RTL models
respectively, are detected as merge point and then can be taken into account as
primary inputs in the rest of the two descriptions. In this work, we assume that the
condition parts of different conditional statements can be checked using model
checking methods and therefore are just skipped.

ASC model:

b
0
 = in

0
 + in

1
;

b
1
 = 2 - in

0
 - in

1
;

c
0
 = b

0
 + PI

0
;

c
1
 = b

1
 + PI

1
;

if (c
0
 < c

1
)

 a
0
 = c

0
;

else

 a
0
 = c

1
;

RTL model:

d
0
 = in

0
+in

1
;

d
1
 = 2-in

0
-in

1
;

f
0
 = d

0
 + PI

0
;

f
1
 = d

1
 + PI

1
;

if (f
1
 < f

0
)

 e
0
 = f

1
;

else

 e
0
 = f

0
;

Cycle t

Cycle t+1

Cycle t+2

(b)(a)

Fig. 4. ACS block in Viterbi benchmark (a) C-based model and (b) RTL model

Fig. 5. LTED representations of variables in Fig. 4 (a) a01 and a02 (b) e01 and e02

5 Case Studies

In recent years high speed wireless data communications has found many application
areas. Fourth generation wireless and mobile systems are currently focusing on
packet-based high-data-rate communication suitable for video transmission and
mobile internet applications. Apart from the high speed of operation, the system
demands lower power consumption. A general purpose DSP with associated software
is not beneficial for this application since its power consumption is an order of
magnitude higher compared to a dedicated hardware solution. Fig. 6 shows IEEE
802.11a transmitter and receiver where are many signal processing functions such as

in0

in1

1
(a) (b)

a01 in0

in1

1

a02

-1
-1

2

PI0 PI1

in0

in1

1

e01

-1
-1

2

PI1

in0

in1

1

e02

PI0

 Automatic Merge-Point Detection for Sequential Equivalence Checking 137

Convolutional coder and inverse fast Fourier transform (IFFT) in the transmitter and,
fast Fourier transform (FFT) and Viterbi decoder in the receiver. In addition, it has
been shown [12] through extensive simulation that the most computationally intensive
parts of such a high-data-rate system are the 64-point IFFT in the transmit direction
and the Viterbi decoder in the receive direction. Therefore it is necessary to pay close
attention to 64-point FFT and Viterbi decoder blocks.

In order to demonstrate that our approach is applicable to such a complete system
solution with application to communication systems, we present experimental results
of two case studies (1) 64-point Fast Fourier Transform (FFT64) and (2) Viterbi
Decoder with K=3 (Viterbi3), K=7 (Viterbi7) and K=9 (Viterbi9). The important point
to be noted here is that Boolean SAT based verification is not able to handle all
benchmarks discussed here due to a huge number of Boolean variables or clauses to
be generated after encoding arithmetic functions into bit-level operations.

General information about the benchmark circuits are given in Table 1. Column
benchmark gives the benchmark’s name, whereas column #spec provides the number
of lines in C code after unrolling all loops. In column #impl, the number of lines in
RTL code after synthesizing is reported. The fourth, fifth and sixth columns (#add,
#sub and #mul) provide the number of additions, subtractions and multiplications
required in each benchmark respectively. For Viterbi3 benchmark, this information
has been provided before (Viterbi3bmp) and after (Viterbi3amp) identifying merge-
points. While before applying merge-point detection technique, the number of
additions to be computed is 16474, after detecting merge points they have reduced to
391. For Viterbi7 and Viterbi9 benchmarks, it is not possible to prepare information
before applying merge-point detection technique due to generating too many branches
of ACS blocks. In section 5.2, we will see that 242-2 and 254-2 states should be
processed for Viterbi7 and Viterbi9 respectively if merge-point detection technique is
not used.

Fig. 6. Block diagram of 802.11a Transmitter and Receiver

Table 1. Industrial benchmark characteristics

Benchmark #spec #impl #add #sub #mul

FFT64 1412 1640 1026 1026 1512
Viterbi3bmp 8357 16565 16474 192 0

Viterbi3amp 296 394 391 192 0

Viterbi7amp 4885 9397 9450 324 0

Viterbi9amp 23911 37810 47410 420 0

Scrambler FEC Interleaver Mapper Puncture IFFT GI Addition

Descrambler Viterbi DecoderDemapper/Deinterleaver

Equalizer

Depuncture

FFT CFO Correction Timing Detection
Receiver Block
Transmitter Block

138 B. Alizadeh and M. Fujita

In the rest of this paper, experimental results are reported while the LTED package
was implemented in C++ and has been carried out on an Intel 2.1GHz Core Duo and
1GByte of main memory running Windows XP.

5.1 64-Point FFT Benchmark

The first case study is 64-point Fast Fourier Transform (FFT64) which is one of the
most computationally intensive building blocks in communication systems. Although
the FFT64 is realized by decomposing it into a two-dimensional structure of 8-point
FTTs to reduce the number of required multiplications compared to the conventional
radix-2 FFT64, we consider the conventional radix-2 FFT64 in order to have the
maximum number of multiplications. Fig. 7 illustrates N-point FFT algorithm which
performs the butterfly computations with three main loops. An outside loop counts
through the log2(N) stages of the FFT computation and it causes huge data-dependent
computations. Two inner loops perform the individual butterfly computations of each
stage. The heart of this algorithm is the block of code that performs each butterfly
computation in the third loop. In this figure, wr and wi parameters are commonly
known as twiddle factors and can be computed before the algorithm is performed. But
here we have considered them as symbolic variables rather than constant values to
increase the number of arithmetic operations. Although there is no conditional
statement in Fig. 7 for defining merge points, a lot of data-dependent computations
exist that make this test-case a suitable benchmark for proving the claim that our
approach is able to deal with real industrial designs even though it only has to
determine some cut-planes rather than looking for merge points. As illustrated in Fig.
8, cut-planes have been defined as outputs of different iterations of the outer loop in
Fig. 7. In Fig. 8, butterfly diagrams have been shown according to different iterations
of the inner loops in Fig. 7.

Table 2 summarizes the results for two configurations, i.e., 64-point FFT without
cut-planes (FFT64nocp) and 64-point FFT with cut-planes (FFT64cp). In this table,
columns #Nodes and #InputVar give the number of LTED nodes and the number of
input variables respectively. The memory and CPU time required for equivalence

for (s = 0 ; s < log
2
N ; s++)

for (i = 0 ; i < N/(2s+1) ; i++)

 C = wr[idx]; S = wi[idx];

for (j = i ; j < N ; j + = N/2s)

 tmpr = aar[idx] - aar[idx+N/2s+1];

 tmpi = aai[idx] - aai[idx+N/2s+1];

 aar[idx] = aar[idx] + aar[idx+N/2s+1];

 aai[idx] = aai[idx] + aai[idx+N/2s+1];

 aar[idx+N/2s+1] = tmpr*C – tmpi*S;

 aai[idx+N/2s+1] = tmpr*S + tmpi*C;

 idx = idx + 2s;

Fig. 7. C code of N-point FFT benchmark

 Automatic Merge-Point Detection for Sequential Equivalence Checking 139

Fig. 8. Cut-planes defined in FFT64 benchmark

checking of the two descriptions are provided in columns Memory Usage in MByte
and Run Time in seconds respectively. After identifying cut-planes as shown in Fig. 8,
the number of LTED nodes will decrease to 1668 from 11220, while the number of
inputs will increase from 190 to 830. In other words, 830-190 = 640 points were
specified as equivalent parts and then new primary inputs were introduced in their
places. As expected, after applying cut-plane detection technique, the run time
required checking the equivalence between two descriptions has reduced from 3.5
seconds to 0.66 second. Moreover, the memory needed to generate LTED without
looking for cut-planes are 10.8 MB, while after applying cut-plane detection method
it was reduced to 1.3 MB.

Table 2. FFT64 benchmark experimental results

Type #Nodes #InputVar Memory Usage Run Time

FFT64nocp 11220 190 10.8 3.5
FFT64cp 1668 830 1.3 0.66

5.2 Viterbi Benchmark

Viterbi decoding is a technique for performing maximum likelihood sequence
detection on data that has been convolutionally coded. The decoding problem is to
determine the path with the minimum path metric through the trellis, with path metric
being defined as the sum of the branch metrics along the path. This is done in a
stepwise manner by processing a set of state metrics forward in time, stage by stage
over the trellis as shown in Fig. 9. The complexity of the Viterbi algorithm lies in the
computation of 2K-1 path metrics for a constraint length K decoder at each time stage.
For the rate ½ codes (n=2) we are considering, there are just two predecessor states or
branches for each state. Thus, state metric computation involves calculation of two
branch metrics per state and then a selection of that branch which gives a smaller
value of the new state metric. The former operation is done in the Branch Metric Unit
(BMU) which takes in the received n-bit blocks of data and generates branch metrics
by computing the distance between the received data and the actual codeword. The
latter selection operation is performed by Add-Compare-Select (ACS) unit. The ACS
unit takes in two state metrics and two branch metrics as input to yield an updated
path metric. As the above process is performed, the selected or surviving branches for
each state are recorded by storing one survivor bit per state at each trellis stage. The

Butterfly

Butterfly

0
32

Stage 0

…

Butterfly

Butterfly

0
16

Stage 1

…

Butterfly

Butterfly

Stage 4

…

Butterfly

Butterfly

0
1 …

Cut-planeCut-planeCut-plane

…

…
31

63
47
63

0

63

2

61
63
62

Cut-plane Stage 5

140 B. Alizadeh and M. Fujita

Fig. 9. Block diagram of Viterbi decoder

Survivor Management Unit (SMU) is responsible for tracing back through the trellis
using the survivor bits to produce the input data bits.

In order to have a better understanding of Viterbi decoder algorithm consider
pseudo code of Fig. 10 where an outside loop is repeated ChannelLength= K*6-1
times. Inner loops run 2K-1 (the number of states) and n=2 (due to rate ½ codes) times
respectively. In each iteration of inner loops, the branch metric (BrMetric[i][j]) is
added to the current path metric using Add part of the ACS block, then two updated
path metrics at each node (i.e., A1 and B1 in Fig. 10) are compared (Compare part of
the ACS block) and finally the smaller is saved and the other is discarded (Select part
of the ACS block). Thus, the essence of the Viterbi algorithm lies in the relatively
simple operations of add, compare, select and trace-back which need to be applied to
a large number of states.

To give a glimpse about the complexity and size of Viterbi decoder benchmark, we
compute how many states need to be processed after unrolling conditional statements
related to all ACS blocks if we do not try to look for merge points. In Fig. 10, it is
necessary to check 2 states on the first iteration of the second loop nest, 22 states on
the second iteration and finally 2K*6-1 states on the last iteration. Therefore the total
number of states to be checked is 2+22+23+…+2K*6-1 = 2K*6-2. For K=7 and K=9, they
are 242-2 and 254-2 respectively which are large enough that methods mentioned in the

Fig. 10. Pseudo code of Viterbi algorithm

for (t = 0 ; t < ChannelLength ; t++)

 for (i = 0 ; i < 2K-1 ; i+=step)

 for (j=0 ; j < n ; j++)

 A1 = AcumErr[nextstate[i][j]][1];

 B1 = AcumErr[i][0]+BrMetric[i][j];

 if (A1 > B1)

 AcumErr[nextstate[i][j]][1] = B1;

 StateHistory[nextstate[i][j]][t] = i;

 for (i = 0 ; i < 2K-1 ; i++)

 AcumErr[i][0] = AcumErr[i][1];

 AcumErr[i][1] = MAXINTEGER;

C
hannelInput

BMU2

BMUn

…

ACS2

ACSn

…

SMU
(TraceBack

 Memory)

… …
Controller

Potential merge-points

BMU1
ACS1

 Automatic Merge-Point Detection for Sequential Equivalence Checking 141

literature are not able to handle them easily. After looking for merge points, however,
the number of states to be processed are reduced to 2+22 +…+2K-2+(2K-1+…+2K-

1)=2*(2K-2-1)+5*K*2K-1 = (5*K+1)*2K-1-2.

Cut-planes and Merge-points in Viterbi Benchmark. In this section we will discuss
how to determine cut-planes and merge-points in the C-based description to reduce
the size of equivalence checking problem. In Viterbi decoder the first K stages are
different from other stages as shown in Fig. 11(a), where K is 7. This is because
during the first K stages, there is only one path to achieve each next state from current
state. For instance at t=1, there is only one way to reach next states 0, 16, 32 and 48.
These stages are outputs of the corresponding iterations of the outer loop of Fig. 10
that are viable candidates to be cut-planes as illustrated in Fig. 11(a).

On the other hand, another decision flow exists for stages K+1 to 6*K-1, where
each state can be reachable from two paths. One decision butterfly out of 32 pairs
needed for Viterbi decoder K = 7, has been depicted in Fig. 11(b), where S varies
from 0 to 31. In this figure each circle indicates a state and also corresponds to an
ACS operation in Fig. 10. For instance consider state S that can be received through
2S and 2S+1 by different branch metrics. According to Viterbi algorithm described in
Fig. 10, to compute accumulated error metric for this state, first of all
AcumErr[2S][0]+BrMetric0 is computed (B1) and then compared to AcumErr[S][1]
(A1 of Fig. 10). Finally the smaller one is saved as a new value into AcumErr[S][1].
This process is repeated when B1 = AcumErr[2S+1][0]+BrMetric2 is computed and
compared to AcumErr[S][1]. As illustrated in Fig. 10, after completing the second
loop nest, AcumErr[S][1] is saved into AcumErr[S][0] and gets a very large integer
number, i.e., MAXINTEGER, because of beginning another iteration of an outer loop
properly (see the fourth loop in Fig. 10). Obviously, each output of ACS units has the
potential to be a merge point due to conditional statements.

Fig. 11. (a) Seven first stages of Viterbi K=7 (b) Decision butterfly for ACS pair in Viterbi K=7

2S

2S+1

S

S+32

Stage (t-1) Stage (t)

BrMetric0

BrMetric1

BrMetric3

BrMetric2

(b)

(a)

0

32

0 0 0

32 32

16 16

48 48

8

24

40

56

0

2

62

1

3

63

t=0 t=1 t=2 t=3 t=6…

…

…

…

…

Cut-plane Cut-plane Cut-plane

142 B. Alizadeh and M. Fujita

Experimental Results. Table 3 provides experimental results for six configurations
of Viterbi decoder, i.e., Viterbi (K=3) without merge point detection (Vitbi3nomp),
Viterbi (K=3) with merge point detection (Vitbi3mp), Viterbi (K=7) with merge point
detection (Vitbi7mp), Viterbi (K=7) with merge point and cut-plane detection
(Vitbi7mpcp), Viterbi (K=9) with merge point detection (Vitbi9mp) and Viterbi (K=9)
with merge point and cut-plane detection (Vitbi9mpcp). In this table, rows #Nodes and
#Vars give the number of LTED nodes and the number of input variables
respectively. The memory usage and CPU time needed for equivalence checking of
the two descriptions are presented in rows Mem (in Mega-Byte) and Time (in seconds)
respectively. The second and third columns, i.e., Vitbi3nomp and Vitbi3mp, provide
useful information before and after applying automatic merge point detection method
to Viterbi K=3 test case. Obviously, in this case after finding merge points
automatically, 90-24 = 66 new primary inputs (#Vars row in Table 3) have been
introduced and the number of LTED nodes (#Nodes) has reduced from 52827 to 355.
Moreover, memory and run time required for equivalence checking have been
reduced from 36.3 MB to 0.4 MB and 57.8 seconds to 0.1 second respectively.

Columns Vitbi7mp and Vitbi7mpcp in Table 3 represent experimental results of
Viterbi K=7. Although we are not sure that LTED package is able to handle this case
without merge point detection, the task of preparing the input file for this package is
very difficult because it needs to duplicate the number of states on each iteration
where the number of iterations and the number of states on the first iteration are K*6-
1 = 41 and 2K-1 = 64 respectively. Thus here we only report experimental result of
Viterbi K=7 after applying merge point detection technique where memory usage and
CPU time required to perform equivalence checking are 6.9 MB and 12.6 seconds.
While after defining cut-planes, as shown in column Vitbi7mpcp of Table 3, they have
been reduced to 6 MB and 12 seconds respectively. Fortunately the case study in [2]
was Viterbi K=7 that makes it possible to compare results without spending a lot of
time to apply Viterbi K=7 to SAT based methods. The authors in [2] have used zChaff
as a SAT solver to check the equivalence between expressions computed at every cycle
of RTL model and expressions achieved from C-based description. They gave a
breakdown of number of clauses in the CNF formula for various blocks. Table 4
provides experimental results of our method in comparison with proposed method in
[2]. Although they reported that without their decomposition method, the monolithic
Trellis computation would generate a CNF with nearly 1.9 million clauses, after using
the decomposed technique, they created 32 independent CNF formulas that were input
to zChaff. Each of these formulas had 59136 clauses and 128 variables. In addition the
number of clauses in the CNF formula for Trellis computation per butterfly was 57344,
while in our method it requires 352 LTED nodes, 0.28 MB memory and 0.06 second
run time to check the equivalence between butterflies in the two descriptions. There
was no report of memory usage and CPU time for SAT based method proposed in [2],
so related entries was left blank in Table 4.

The two last columns in Table 3 give experimental results of Viterbi K=9. After
applying merge-point technique, in order to verify the equivalence of two
descriptions, 66075 LTED nodes was generated and LTED package spent 190
seconds run time while the memory manager reported that 27.3MB RAM was
consumed. This case proves scalability of our approach in comparison with method in
[2] that was only applied to Viterbi K=7 and it cannot deal with Viterbi K=9 due to
computational explosion problem of lower level SAT-based methods.

 Automatic Merge-Point Detection for Sequential Equivalence Checking 143

Table 3. Experimental results of Viterbi benchmark

Type Vitbi3nomp Vitbi3mp Vitbi7mp Vitbi7mpcp Vitbi9mp Vitbi9mpcp

#Nodes 52827 355 13279 12665 66075 64761
#Vars 24 90 2258 2384 11627 11881
Mem 36.3 0.4 6.9 6 27.3 26.5
Time 57.8 0.1 12.6 12 190 178

Table 4. Experimental results of Trellis computation per butterfly in Viterbi benchmark

Technique #Nodes #Var Memory (MByte) Time (Sec) #add #sub

Our Method 352 66 0.28 0.06 262 8
Method in [2] 57344 66 --- --- --- ---

6 Conclusion and Future Work

In this paper, we proposed an automatic merge-point detection technique based on an
hybrid bit- and word-level canonical representation called LTED. Then we have used
it to check the equivalence between C-based specification and RTL implementation of
two large industrial circuits, i.e., 64-point FFT algorithm (FFT64) and Viterbi decoder
K=3, 7, 9. This representation is strong enough to handle arithmetic operations at
word level representation and there is no need to encode them to bit-level operations.
As opposed to low level methods such as Boolean SAT based techniques reported in
the literature, the empirical results indicate that our approach not only uses an
efficient canonical form to represent symbolic expressions but also is scalable even on
large industrial circuits.

Obvious direction for future work is to integrate LTED package with a SpecC
environment to address the equivalence checking between different abstractions of
SpecC as a system level language.

Acknowledgement

This work was supported in part by Semiconductor Technology Academic Research
Center (STARC).

References

1. Alizadeh, B., Fujita, M.: LTED: A Canonical and Compact Hybrid Word-Boolean
Representation as a Formal Model for Hardware/Software Co-designs. In: CFV 2007. The
fourth Workshop on Constraints in Formal Verification, pp. 15–29 (2007)

2. Vasudevan, S., Viswanath, V., Abraham, J., Tu, J.: Automatic Decomposition for
Sequential Equivalence Checking of System Level and RTL Descriptions. In: MemoCode
2006. Proceedings of Formal Methods and Models for Co-Design, pp. 71–80 (2006)

144 B. Alizadeh and M. Fujita

3. Feng, X., Hu, A.: Early Cutpoint Insertion for High-Level Software vs. RTL Formal
Combinational Equivalence Verification. In: DAC 2006. Proceedings of 43th Design
Automation Conference, pp. 1063–1068 (2006)

4. Matsumoto, T., Saito, H., Fujita, M.: Equivalence checking of C programs by locally
performing symbolic simulation on dependence graphs. In: ISQED 2006. Proceedings of
7th International Symposium on Quality Electronic Design, pp. 370–375 (2006)

5. Koelbl, A., Lu, Y., Mathur, A.: Embedded tutorial: Formal Equivalence Checking
Between System-level Models and RTL. In: Proceedings of ICCAD 2005, pp. 965–971
(2005)

6. Kroening, D., Clarke, E., Yorav, K.: Behavioral Consistency of C and Verilog Programs
Using Bounded Model Checking. In: DAC 2003. Proceedings of 40th Design Automation
Conference, pp. 368–371 (2003)

7. Karfa, C., Mandal, C., Sarkar, D., Pentakota, S.R., Reade, C.: A Formal Verification
Method of Scheduling in High-level Synthesis. In: ISQED 2006. Proceedings of 7th
International Symposium on Quality Electronic Design, pp. 71–78 (2006)

8. Fallah, F., Devadas, S., Keutzer, K.: Functional Vector Generation for HDL Models Using
Linear Programming and 3-Satisfiability. In: DAC 1998. Proceedings of 35th Design
Automation Conference, pp. 528–533 (1998)

9. Alizadeh, B., Fujita, M.: A Hybrid Approach for Equivalence Checking Between System
Level and RTL Descriptions. In: IWLS 2007. 16th International Workshop on Logic and
Synthesis, pp. 298–304 (2007)

10. Horeth, S., Drechsler, R.: Formal Verification of Word-Level Specifications. In: DATE
1999. Proceedings of Design Automation and Test in Europe, pp. 52–58 (1999)

11. Alizadeh, B., Navabi, Z.: Word Level Symbolic Simulation in Processor Verification. IEE
Proceedings Computers and Digital Techniques Journal 151(5), 356–366 (2004)

12. Grass, E., Tittelbach, K., Jagdhold, U., Troya, A., Lippert, G., Krueger, O., Lehmann, J.,
Maharatna, K., Fiebig, N., Dombrowski, K., Kraemer, R., Aehoenen, P.: On the Single
Chip Implementation of a Hiperlan/2 and IEEE802.11a Capable Modem. IEEE Pers.
Commun. 8, 48–57 (2001)

Proving Termination of Tree Manipulating Programs

Peter Habermehl1, Radu Iosif2, Adam Rogalewicz2,3, and Tomáš Vojnar3

1 LSV, ENS Cachan, CNRS, INRIA; 61 av. du Président Wilson, F-94230 Cachan, France
haberm@liafa.jussieu.fr

2 VERIMAG, CNRS, 2 av. de Vignate, F-38610 Gières
{iosif,rogalewi}@imag.fr

3 FIT BUT, Božetěchova 2, CZ-61266, Brno
vojnar@fit.vutbr.cz

Abstract. We consider the termination problem of programs manipulating tree-
like dynamic data structures. Our approach is based on a counter-example guided
abstraction refinement loop. We use abstract regular tree model-checking to infer
invariants of the program. Then, we translate the program to a counter automaton
(CA) which simulates it. If the CA can be shown to terminate using existing tech-
niques, the program terminates. If not, we analyse the possible counterexample
given by a CA termination checker and either conclude that the program does not
terminate, or else refine the abstraction and repeat. We show that the spuriousness
problem for lasso-shaped counterexamples is decidable in some non-trivial cases.
We applied the method successfully on several interesting case studies.

1 Introduction

Verification of programs with dynamic linked data structures is a difficult task, among
other reasons, due to the use of unbounded memory, and the intricate nature of pointer
manipulations. Most of the approaches existing in this area concentrate on checking
safety properties such as, e.g., absence of null pointer dereferences, preservation of
shape invariants, etc. In this paper, we go further and tackle the universal termination
problem of programs manipulating tree data structures. Namely, we are interested in
proving that such a program terminates for any input tree out of a given set described
as an infinite regular tree language over a finite alphabet.

We handle sequential, non-recursive programs working on trees with parent point-
ers and data values from a finite domain. The basic statements we consider are data
assignments, non-destructive pointer assignments, and tree rotations. This is sufficient
for verifying termination of many practical programs over tree-shaped data structures
(e.g., AVL trees or red-black trees) used, in general, for storage and a fast retrieval of
data. Moreover, many programs working on singly- and doubly-linked lists fit into our
framework as well. We do not consider dynamic allocation in this version of the pa-
per, but insertion/removal of leaf nodes, common in many practical tree manipulating
programs, can be easily added, if not used in a loop.

We build on Abstract Regular Tree Model Checking (ARTMC) [5], a generic frame-
work for symbolic verification of infinite-state systems, based on representing regular
sets of configurations by finite tree automata, and program statements as operations

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 145–161, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

146 P. Habermehl et al.

on tree automata. We represent a given program as a control flow graph whose nodes
are annotated with (overapproximations of) sets of reachable configurations computed
using ARTMC. From the annotated control flow graph, we build a counter automaton
(CA) that simulates the program. The counters of the CA keep track of different mea-
sures within the working tree: the distances from the root to nodes pointed to by certain
variables, the sizes of the subtrees below such nodes, and the numbers of nodes with a
certain data value. Termination of the CA is analysed by existing tools, e.g., [8,12,23].

Our analysis uses a Counter-example Guided Abstraction Refinement (CEGAR) loop
[10]. If the tool we use to prove termination of the CA succeeds, this implies that the
program terminates on any input from the given set. Otherwise, the CA checker tool
outputs a lasso-shaped counterexample. For the class of CA generated by our translation
scheme, we prove that it is decidable whether there exists a non-terminating run of the
CA over the given lasso1.

However, even if we are given a real lasso in the generated CA, due to the abstrac-
tion involved in its construction, we still do not know whether this implies also non-
termination of the program. We then map the lasso over the generated CA back into a
lasso in the control of the program, and distinguish two cases. If (1) the program lasso
does not contain tree rotations, termination of all computations along this path is decid-
able. Otherwise, (2) if the lasso contains tree rotations, we can decide termination under
the additional assumption that there exists a CA (not necessarily known to us) that wit-
nesses termination of the program (i.e., intuitively, in the case when the tree measures
we use are strong enough to show termination). In both cases, if the program lasso is
found to be spurious, we refine the abstraction and generate a new CA from which an
entire family of counterexamples (including this particular one) is excluded.

The analysis loop is not guaranteed to terminate even if the given program termi-
nates due to the fact that our problem is not recursively enumerable. However, experi-
ence with our implementation of a prototype tool shows that the method is successfully
applicable to proving termination of various real-life programs.

All proofs and more details can be found in the full version [18] of the paper.

Contributions of the Paper: (1) We have developed a systematic translation of pro-
grams working on trees into counter automata; the translation is based on an adequate
choice of measures that map parts of the memory structures into positive integers.
(2) We provide a new CEGAR loop for refining the translation of programs into counter
automata on demand. (3) We present new decidability results for the spuriousness prob-
lem of lasso-shaped counterexamples for both counter automata and programs with
trees. (4) We have implemented our techniques on top of the existing framework of Ab-
stract Regular Tree Model Checking; our tool can handle examples of tree manipulating
programs that, to the best of our knowledge, are not handled by any existing tool.

Related Work. The area of research on automated verification of programs manipu-
lating dynamic linked data structures is recently quite live. Various approaches to veri-
fication of such programs differing in their principles, degree of automation, generality,
and scalability have been proposed. They are based on, e.g., monadic second order logic

1 If the analyser used returns a spurious lasso-shaped counterexample for the termination of the
CA, we suggest choosing another tool.

Proving Termination of Tree Manipulating Programs 147

[21], 3-valued predicate logic with transitive closure [24], separation logic [22,17], or
finite automata [16,6].

With few exceptions, all existing verification methods for programs with recursive
data structures tackle verification of safety properties. In [1,25], specialised ranking func-
tions over the number of nodes reachable from pointer variables are used to verify ter-
mination of programs manipulating linked lists. Termination of programs manipulating
lists has further been considered in [17,4] using constraints on the lengths of the list seg-
ments not having internal nodes pointed from outside. To the best of our knowledge,
automated checking of termination of programs manipulating trees has so-far been con-
sidered in [20] only, where the Deutsch-Schorr-Waite tree traversal algorithm was proved
to terminate using a manually created progress monitor, encoded in first-order logic.

In the past several years, a number of industrial-scale software model checkers such
as SLAM [2], BLAST [19], or MAGIC [9] were built using the CEGAR approach [10].
However, these tools consider verification of safety properties only. On what concerns
termination, CEGAR was applied in [12,13], and implemented in the TERMINATOR
[14] and ARMC [23] tools. Both of these tools are designed to prove termination of
integer programs without recursive data structures.

Concerning termination of programs with recursive data structures, the available ter-
mination checkers for integer programs can be used provided that there is a suitable
abstraction of such programs into programs over integers, i.e., counter automata. Such
abstraction can be obtained by recording some numerical characteristics of the heap in
the counters, while keeping the qualitative properties of the heap in the control of the
CA. Indeed, this is the approach taken in [4] for checking termination of programs over
singly-linked lists. The abstraction used in [4] is based on compacting each list segment
into a single abstract node and recording its length in the counters of the generated
CA. The number of abstract heap graphs that one obtains this way is finite (modulo
the absence of garbage)—therefore they can be encoded in the control of the CA. The
translation produces a CA that is bisimilar to the original program, and therefore any
(positive or negative) result obtained by analysing the CA holds for the program.

However, in the case of programs over trees, one cannot use the idea of [4] to obtain
a bisimilar CA since the number of branching nodes in a tree is unbounded. Therefore,
the translation to CA that we propose here loses some information about the behaviour
of the program, i.e., the semantics of the CA overapproximates the semantics of the
original program. Then, if a spurious non-termination counterexample is detected over
the generated CA, the translation is to be refined. This refinement is done by a spe-
cialised CEGAR loop that considers also structural information about the heaps. To the
best of our knowledge, no such CEGAR loop was proposed before in the literature.

As said already above, the approach of [17] is similar to [4] in that it tracks the
length of the list segments. However, it does not generate a CA simulating the original
program. Instead, it first obtains invariants of the program (using separation logic) and
then computes the so-called variance relations that say how the invariants change within
each loop when the loop is fired once more. When the computed variance relations are
well-founded, termination of the program is guaranteed. Unlike the approach of [4]
(bisimulation preserving) and the approach we present here (based on CEGAR), the
analysis of [17] fails if the initial abstraction is not precise enough.

148 P. Habermehl et al.

The approach of [17] was recently generalised in [3] to a general framework that
one can use to extend existing invariance analyses to variance analyses that can in turn
be used for checking termination. Up to now, this framework has not been instantiated
for programs with trees (by providing the appropriate measures and their abstract se-
mantics). Moreover, it is not clear how the variance analysis framework fits with the
CEGAR approach.

2 Preliminaries

Programs with Trees. We consider sequential, non-recursive C-like programs working
over tree-shaped data structures with a finite set of pointer variables PVar. Each node
in a tree contains a data value from a finite set Data and three next pointers, denoted
left, right, and up.2 For x,y ∈ PVar and d ∈ Data, we allow the following statements:
(1) assignments x = null, x = y, x = y.{left|right|up}, x.data= d, (2) conditional
statements and loops based on the tests x == null, x == y, x.data== d, and (3) the
standard left and right tree rotations [15] (cf. Figure 1). This syntax covers a large set of
practical tree-manipulating procedures. For technical reasons, we require w.l.o.g. that
no statements take the control back to the initial line.

Memory configurations of the considered programs can be represented as trees with
nodes labelled by elements of the set C = Data × 2PVar ∪ {�}—a node is either null
and represented by � or it contains a data value and a set of pointer variables pointing
to it. Each pointer variable can point to at most one tree node (if it is null, it does not
appear in the tree). Let T (C) be the set of all such trees and Lab the set of all program
lines. A configuration of a program is a pair 〈l,t〉 ∈ Lab×T (C). For space reasons, the
semantics of the program statements considered is given in [18].

Some program statements may influence the counters of the CA that we build to
simulate programs in several different ways. For instance, after x = x.left, the dis-
tance of x from the root may increase by one, but it may also become undefined (which
we represent by the special value −1) if x.left is null. Similarly, a single rotation
statement may change the distance of a node pointed by some variable from the root in
several different ways according to where the node is located in a particular input tree.
For technical reasons related to our abstraction refinement scheme, we need a one-to-
one mapping between actions of a program and the counter manipulations simulating
them. In order to ensure the existence of such a mapping, we decompose each program
statement into several instructions. The semantics of a statement is the union of the se-
mantics of its composing instructions, and exactly one instruction is always executable
in each program configuration.

In particular, the assignments x = null and x = y are instructions. Conditional state-
ments of the form x == null and x == y are decomposed into two instructions each,
corresponding to their true and false branches. A conditional statement x.data== d is
decomposed into three instructions, corresponding to its true and false branches, and an
error branch for the case x == null. Each statement x = y.left is decomposed into in-
structions goLeftNull(x,y) for the case when y.left== null, goLeftNonNull(x,y)
for the case y.left! = null, and goLeftErr(x,y) for the case of a null pointer

2 A generalisation of our approach to trees with another arity is straightforward.

Proving Termination of Tree Manipulating Programs 149

dereference. The statements x = y.right and x = y.up are treated in a similar way. The
statements x.data = d are decomposed into a set of instructions changeData(x,d′,d)

Y

x,X

x,X

Y
A

B A

B

leftRotate

Fig. 1. leftRotate(x,X ,Y,A,B)

for all d′ ∈ Data. A special instruction
changeDataErr(x) for the null pointer
dereference is also introduced.

Finally, a left rotation on a node
pointed by a variable x ∈ PVar is de-
composed into a set of instructions
leftRotate(x,X ,Y,A,B) where X con-
tains variables aliased to x, Y variables
pointing to the right son of x, A variables
pointing inside the left subtree of x, and
B variables pointing into the right subtree
of the right son of x (Figure 1). The instruction leftRotateErr(x) is introduced for
the case of a null dereference within the rotation. Right rotations are decomposed
analogously.

Given a program P, we denote by Instr the set of instructions that appear in P and

by 〈l,t〉 i−→P 〈l′,t ′〉 the fact that P has a transition from 〈l, t〉 to 〈l′, t ′〉 caused by firing an

instruction i ∈ Instr. By i(t) we denote the effect of i on a tree t ∈ T (C). We denote
by −→P the union

⋃
i∈Instr

i−→P , and by
∗−→P the reflexive and transitive closure of −→P . For i ∈

Instr and I ⊆ T (C), let post(i, I) = {i(t) | t ∈ I}. We also generalise post to sequences
of instructions.

Counter Automata. For an arithmetic formula ϕ, let FV (ϕ) denote the set of free
variables of ϕ. For a set of variables X , let Φ(X) denote the set of arithmetic formulae
with free variables from X ∪X ′ where X ′ = {x′ | x ∈ X}. If ν : X → Z is an assignment
of FV (ϕ) ⊆ X , we denote by ν |= ϕ the fact that ν is a satisfying assignment of ϕ.

A counter automaton (CA) is a tuple A = 〈X ,Q,q0,ϕ0,→〉 where X is the set of
counters, Q is a finite set of control locations, q0 ∈ Q is a designated initial location,
ϕ0 is an arithmetic formula such that FV (ϕ0) ⊆ X , describing the initial assignments of
the counters, and →∈ Q× Φ(X)× Q is the set of transition rules.

A configuration of a CA is a pair 〈q,ν〉 ∈ Q× (X → Z). The set of all configurations
is denoted by C. The transition relation

ϕ−→A ⊆ C×C is defined by (q,ν)
ϕ−→A (q′,ν′) iff there

exists a transition q
ϕ−→ q′ such that if σ is an assignment of FV (ϕ), where σ(x) = ν(x)

and σ(x′) = ν′(x), we have that σ |= ϕ and ν(x) = ν′(x) for all variables x with x′ �∈
FV (ϕ). We denote by −→A the union

⋃
ϕ∈Φ

ϕ−→A , and by
∗−→A the reflexive and transitive clo-

sure of −→A . A run of A is a sequence of configurations (q0,ν0),(q1,ν1),(q2,ν2) . . . such

that (qi,νi) −→A (qi+1,νi+1) for each i ≥ 0 and ν0 |= ϕ0. We denote by RA the set of all

configurations reachable by A, i.e., RA = {(q,ν) | (q0,ν0)
∗−→A (q,ν) for some ν0 |= ϕ0}.

3 The Termination Analysis Loop

Our termination analysis procedure based on abstraction refinement is depicted in Fig. 2.
We start with the control flow graph (CFG) of the given program and use ARTMC to

150 P. Habermehl et al.

generate invariants for its control points. Then, the CFG annotated with the invariants
(an abstract CFG, see Section 4) is converted into a CA3, which is checked for termina-
tion using an existing tool (e.g., [23]). If the CA is proved to terminate, termination of
the program is proved too. Otherwise, the termination analyser outputs a lasso-shaped
counterexample. We check whether this counterexample is real in the CA—if not, we
suggest the use of another CA termination checker (for brevity, we skip this in Fig. 2). If
the counterexample is real on the CA, it is translated back into a sequence of program in-
structions and analysed for spuriousness on the program. If the counterexample is found
to be real even there, the procedure reports non-termination. Otherwise, the program
CFG is refined by splitting some of its nodes (actually, the sets of program configurations
associated with certain control locations), and the loop is reiterated. Moreover, ARTMC
may also be re-run to refine the invariants used (as briefly discussed in Section 6).

ARTMC

Program
with trees

ARTMC

Counter
Automaton

Termination Check Report "termination"yes

no

Abstract
Control Flow Graph Refinement

Lasso−shaped
counterexample

Spuriousness
Check

Report "non−termination"noyes

Translation

Fig. 2. The proposed abstract-check-refine loop

If our termination analysis stops with either a positive or a negative answer, the an-
swer is exact. However, we do not guarantee termination for any of these cases. Indeed,
this is the best we can achieve as the problem we handle is not recursively enumerable
even when destructive updates (i.e., tree rotations) are not allowed. This can be proved
by a reduction from the complement of the halting problem for 2-counter automata.

Theorem 1. The problem whether a program with trees without destructive updates
terminates on any input tree is not recursively enumerable.

Therefore we do not further discuss termination guarantees for our analysis procedure in
this paper, and postpone the research on potential partial guarantees, in some restricted
cases, for the future. However, despite the theoretical limits, the experimental results
reported in Section 7 indicate a practical usefulness of our approach.

ARTMC. We use abstract regular tree model checking to overapproximate the sets of
configurations reachable at each line of a program (i.e., to compute abstract invariants
for these lines) and also to check that the program is free of basic memory inconsisten-
cies like null pointer dereferences. Due to space limitations, we only give a very brief
overview of ARTMC here—more details can be found in [6,18]. The idea is to represent
each program configuration as a tree over a finite alphabet, regular sets of such configu-
rations by finite tree automata, and program instructions as operations on tree automata.

3 The use of invariants in the abstract CFGs allows us to remove impossible transitions and
therefore improves the accuracy of the translation to CA.

Proving Termination of Tree Manipulating Programs 151

Starting from a regular set of initial configurations, these operations are then iteratively
applied until a fixpoint is reached. In order to make the computation stop, the sets of
reachable configurations (i.e., finite tree automata) are abstracted at each step. Several
abstraction schemes based on collapsing states of the encountered tree automata may
be used. For example, the finite-height abstraction collapses the automata states that
accept exactly the same trees up to some height. All the abstractions are finite-range,
guaranteeing termination of the abstract fixpoint computation, and can be automatically
refined (e.g., in the mentioned case, by increasing the abstraction height).

For the needs of ARTMC, we encode configurations of the considered programs
simply as trees over the alphabet C = Data×2PVar ∪{�}. Most of the instructions can
be encoded as structure-preserving tree transducers. A transducer can check conditions
like x == y or x.data == d by checking node labels. Transducers can also be used
to move symbols representing the variables to nodes marked by some other variable
(x = y), remove a symbol representing a variable from the tree (x = null), move it
one level up or down (x = y.{left|right|up}), or change the data element in the node
marked by some variable (x.data = d). The rotations are a bit more complex. They
cannot be implemented as tree transducers. However, they can still be implemented as
special operations on tree automata. First, a test of the mutual positioning of the vari-
ables in the tree required by their distribution in the sets X ,Y,A,B is implemented as
an intersection with a tree automaton that remembers which variables were seen, and in
which branches. Then, we locate the automata states that accept the tree node represent-
ing the root of the rotation (cf. Figure 1), their children, and their right grandchildren.
Finally, we reconnect these states in the automaton control structure in order to match
the semantics of the tree rotations.

4 Abstraction of Programs with Trees into Counter Automata

In this section, we provide a translation from tree manipulating programs to counter
automata such that existing techniques for proving termination of counter automata can
be used to prove termination of the programs. Before describing the translation, we
define the simulation notion that we will use to formalise correctness of the translation.

Let P be a program with a set of instructions Instr, an initial label l0 ∈ Lab, a set of
input trees I0 ⊆ T (C), and a set of reachable configurations RP ⊆ Lab × T (C). Let us
also have a counter automaton A = 〈X ,Q,q0,ϕ0,→〉 with →∈ Q×Φ(X)×Q, and a set
of reachable configurations RA. A function M : X × T (C) → Z is said to be a measure
assigning counters integer values for a particular tree4. Let M(t) = {M(x, t) | x ∈ X}.

Definition 1. The program P is simulated by the counter automaton A w.r.t. M : X ×
T (C) → Z and θ : Instr → Φ iff there exists a relation ∼ ⊆ RP × RA such that
(1) ∀t0 ∈ I0 : M(t0) |= ϕ0 ∧ 〈l0,t0〉 ∼ 〈q0,M(t0)〉 and (2) ∀(l1,t1),(l2,t2) ∈ RP ∀i ∈
Instr ∀(q1,ν1) ∈ RA : (l1,t1)

i−→ (l2, t2) ∧ (l1,t1) ∼ (q1,ν1) ⇒ ∃(q2,ν2) ∈ RA :

(q1,ν1)
θ(i)−−→ (q2,ν2) ∧ (l2,t2) ∼ (q2,ν2).

4 Intuitively, certain counters will measure, e.g., the distance of a certain node from the root, the
size of the subtree below it, etc.

152 P. Habermehl et al.

The measure M ensures that the counters are initially correctly interpreted over the
input trees, whereas θ ensures that the counters are updated in accordance with the
manipulations done on the trees. Simulation in the sense of Definition 1 guarantees that
if we prove termination of the CA, the program will terminate on any t ∈ I0.

4.1 Abstract Control Flow Graphs

According to Figure 2, we construct the CA simulating a program in two steps: we
first construct the so-called abstract control flow graph (ACFG) of a program, and then
translate it into a CA. Initially, the ACFG of a program is computed from its CFG by
decorating its nodes with ARTMC-overapproximated sets of configurations reachable
at each line (we keep the initial set of trees exact exploiting the fact that w.l.o.g. there are
no statements leading back to the initial line). These sets allow us to exclude impossible
(not fireable) transitions from the ACFG and thus derive a more exact CA. Further, in
subsequent refinement iterations, infeasible termination counterexamples are excluded
by splitting these sets (if this appears to be insufficient, we re-run ARTMC to compute a
better overapproximation of the reachable sets of configurations). Below, we first define
the notion of ACFG, then we provide its translation to counter automata.

In what follows, let P be a program with instructions Instr, working on trees from
T (C), and let l0 ∈ Lab be the initial line of P. The control flow graph (CFG) of P is a la-

belled graph F = 〈Instr,Lab, l0,⇒〉 where l
i⇒ l′ denotes the presence of an instruction

i between control locations l, l′ ∈ Lab. We further suppose that the input tree configura-
tions for P are described by the user as a (regular) set of trees I0 ⊆ T (C). An abstract
control flow graph (ACFG) for P is then a graph G = 〈Instr,LI,〈l0, I0〉, �−→〉 where LI

is a finite subset of Lab × 2T (C), 〈l0, I0〉 ∈ LI, and there is an edge 〈l, I〉 i�−→ 〈l′, I′〉 iff

l
i⇒ l′ in the CFG of P and post(i, I)∩ I′ �= /0.
Note that since we work with ACFGs annotated with regular sets of configurations

and since we can implement the effect of each instruction on a regular set as an opera-
tion on tree automata, we can effectively check that post(i, I)∩ I′ �= /0, which is needed
for computing the edges of ACFGs. Note also that a location in P may correspond to
more than one locations in G.

We say that G covers the invariants of P whose set of reachable states is RP iff each
tree t ∈ T (C) that is reachable at a program line l ∈ Lab (i.e., 〈l, t〉 ∈ RP), appears in
some of the sets of program configurations associated with l in the locations of G. For-
mally, ∀l ∈ Lab : RP ∩ ({l}×T (C)) ⊆ {l}×⋃

〈l,I〉∈LI I. The following lemma captures
the relation between the semantics of a program and that of an ACFG.

Lemma 1. Let P be a program with trees and G an ACFG that covers the invariants of
P. Then, the semantics of G simulates that of P in the classical sense.

4.2 Translation to Counter Automata

We now describe the construction of a CA Arsc(G) = 〈X ,Q,q0,ϕ0,→〉 from an ACFG
G = 〈Instr,LI,〈l0, I0〉, �−→〉 of a program P such that Arsc(G) simulates P in the sense of
Def. 1. We consider two sorts of counters, i.e., X = XPVar ∪ XData, where XPVar =

Proving Termination of Tree Manipulating Programs 153

{rx | x ∈ PVar} ∪ {sx | x ∈ PVar} and XData = {cd | d ∈ Data}. The role of these
counters is formalised via a measure Mrsc : X ×T (C)→ Z in [18]. Intuitively, Mrsc(rx,t)
and Mrsc(sx,t) record the distance from the root of the node n pointed to by x and the
size of the subtree below n, respectively, and Mrsc(cd ,t) gives the number of nodes with
data d in a tree t ∈ T (C).

We build Arsc(G) from G by simply replacing the instructions on edges of G by oper-
ations on counters. Formally, this is done by the translation function θrsc defined in Ta-
ble 1. The mapping for the instructions x = y.right and rightRotate(x,X ,Y,A,B) is
skipped in Table 1 as it is analogous to that of x=y.left and leftRotate(x,X ,Y,A,B),
respectively. Also, for brevity, we skip the instructions leading to the error state Err.
As a convention, if the future value of a counter is not explicitly defined, we con-
sider that the future value stays the same as the current value. Moreover, in all for-
mulae, we assume an implicit guard −1 ≤ rx < TreeHeight ∧ −1 ≤ sx < TreeSize for
each x ∈ PVar5 and 0 ≤ cd ≤ TreeSize ∧ ∑d∈Data cd = TreeSize for each d ∈ Data.
TreeHeight and TreeSize are parameters restricting the range in which the other coun-
ters can change according to a given input tree. They are needed as a basis on which
termination of the resulting automaton can be shown.

Next, we define Q = LI, q0 = 〈l0, I0〉, and q
θrsc(i)−−−→ q′ iff q

i�−→ q′ for all i ∈ Instr.
The initial constraint ϕ0 on the chosen counters can be automatically computed6 from
the regular set of input trees I0 such that it satisfies requirement (1) of Definition 1. The
following theorem shows the needed simulation relation between the counter automata
we construct and the programs.

Theorem 2. Given a program P and an ACFG G of P covering its invariants, the CA
Arsc(G) simulates P in the sense of Definition 1 wrt. θrsc and Mrsc.

The generated CA Arsc(G) has the property that each transition q
ϕ−→ q′ can be mapped

back into the program instruction from which it originates. This is because the instruc-
tions onto which we decompose each program statement are assigned different for-
mulae, by the translation function θrsc, and there is at most one statement between
each two control locations of the program. Formally, we capture this by a function

ξ : Q × Φ × Q → Instr such that ∀q1,q2 ∈ Q,ϕ ∈ Φ : q
ϕ−→ q′ ⇒ q

ξ(q1,ϕ,q2)�−→ q′. We gen-
eralise θrsc and ξ to sequences of transitions, i.e., for a path π in Arsc, ξ(π) denotes the
sequence of program instructions leading to π, and θrsc(ξ(π)) denotes the sequence of
counter operations on π obtained by projecting out the control locations from π.

5 Checking Spuriousness of Counterexamples

Since the CA Arsc generated from a program P with trees is a simulation of P (cf. Theo-
rem 2), proving termination of Arsc suffices to prove termination of P. However, if Arsc

5 −1 corresponds to x being null.
6 This can be done by computing the Parikh image of a context-free language L(I0) correspond-

ing to the regular tree language I0. For each tree t ∈ I0 there is a word in L(I0) consisting of
all nodes of t. We use special symbols to denote the position of a node in the tree relative to a
given variable (under the variable, between it and the root) and the data values of nodes.

154 P. Habermehl et al.

Table 1. The mapping θrsc from program instructions to counter manipulations

instruction i counter manipulation θrsc(i)
if(x == null) rx = −1
if(x! = null) rx ≥ 0
if(x == y) rx = ry ∧ sx = sy

if(x! = y) true
if(x.data == d) rx ≥ 0∧ cd ≥ 1
if(x.data! = d) rx ≥ 0∧ cd < TreeSize

x = null r′
x = s′

x = −1
x = y r′

x = ry ∧ s′
x = sy

goLeftNull(x,y) ry ≥ 0∧ sy ≥ 1∧ r′
x = s′

x = −1
goLeftNonNull(x,y) ry ≥ 0∧ sy ≥ 2∧ r′

x = ry +1∧ s′
x < sy

goUpNull(x,y) ry = 0∧ sy ≥ 1∧ r′
x = s′

x = −1
goUpNonNull(x,y) ry ≥ 1∧ sy ≥ 1∧ r′

x = ry −1∧ s′
x > sy

changeData(x,d,d) rx ≥ 0∧ sx ≥ 1∧ cd > 0
changeData(x,d1,d2),d1 �= d2 rx ≥ 0∧ sx ≥ 1∧ cd1 > 0∧ c′

d2
= cd2 +1∧ c′

d1
= cd1 −1

leftRotate(x,X ,Y,A,B) gLe f tRotate(x,X ,Y,A,B)∧aLe f tRotate(x,X ,Y,A,B)

gLe f tRotate(x,X ,Y,A,B) = aLe f tRotate(x,X ,Y,A,B) =
rx ≥ 0 ∧ sx ≥ 2 ∧
(∀v ∈ X : rv = rx ∧ sv = sx) ∧ (∀v ∈ X : r′

v = rv +1 ∧ s′
v < sv) ∧

(∀v,v′ ∈ Y : rv = rx +1 ∧ sv < sx ∧ (∀v ∈ Y : r′
v = rv −1 ∧ s′

v > sv) ∧
rv = rv′ ∧ sv = sv′) ∧

(∀v ∈ A : rv ≥ rx +1 ∧ sv < sx) ∧ (∀v ∈ A : r′
v = rv +1 ∧ s′

v = sv) ∧
(∀v ∈ B : rv ≥ rx +2 ∧ sv < sx −1) (∀v ∈ B : r′

v = rv −1 ∧ s′
v = sv)

is not proved to terminate by the termination checker of choice, there are three possibil-
ities: (1) Arsc terminates, but the chosen termination checker did not find a termination
argument, (2) both Arsc as well as P do not terminate, and (3) P terminates, but Arsc

does not, as a consequence of the abstraction used in its construction. In all cases, the
CA termination checker outputs a counterexample consisting of a finite path (stem) that
leads to a cycle, both paths forming a lasso. Formally, a lasso S.L over the control struc-
ture of a CA Arsc is said to be spurious iff there exists a non-terminating run of Arsc

along S.L, and for no t ∈ I0 does P have an infinite run along the path ξ(S).ξ(L).
The three cases are dealt with in the upcoming paragraphs.

Deciding termination of CA lassos. We first show that termination of a given con-
trol loop is decidable in a CA whose transition relations are conjunctions of difference
constraints, i.e. formulae of the forms x − y ≤ c, x′ − y ≤ c, x − y′ ≤ c, or x′ − y′ ≤ c
where x′ denotes the future value of the counter x and c ∈ Z is an arbitrary integer con-
stant. For this type of CA, the composed transition relation of the given control loop
is also expressible as a conjunction of difference constraints. Then, this relation can be
encoded as a constraint graph G such that the control loop terminates iff G contains a
negative cycle (for details see [18]). Using the results of [11,7], this fact can be encoded
as a Presburger formula and hence decided. At the same time, it is clear that the CA

Proving Termination of Tree Manipulating Programs 155

generated via the translation function θrsc fall into the described class of CA. In partic-
ular, the constraint that each counter is bounded from below by −1 and from above by
the TreeHeight or TreeSize parameters is expressible using difference constraints.7

Theorem 3. Let A = 〈X ,Q,q0,ϕ0,−→〉 be a counter automaton with transition relations
given as difference constraints. Then, given a control loop in A, the problem whether
there exists an infinite computation along the loop is decidable.

Checking termination of program lassos. Due to the above result, we may hence-
forth assume that the lasso S.L returned by the termination analyser has a real non-
terminating run in the CA. The lasso is mapped back into a sequence of program in-
structions ξ(S).ξ(L) forming a program lasso. Two cases may arise: either the lasso is
real on the program or it is spurious.

Non-spurious program lassos. Since we do not consider dynamic allocation, the number
of configurations that a program can reach from any input tree is finite. Consequently,
if there is a tree tω from which the program will have an infinite run along a given
lasso, then we can discover it by an exhaustive enumeration of trees. We handle the
discovery of tω by evaluating the lasso for all trees of up to a certain (increasingly
growing) height at the same time (by encoding them as regular tree language and using
the implementation of program instructions over tree automata that we have). As we
work with finite sets of trees, we are bound to visit the same set twice after a finite
number of iterations, if there exists a non-terminating run along the lasso.

Spurious program lassos. We handle this case also by a symbolic iteration of a given
program lasso σ.λ starting with the initial set of trees. We compute iteratively the sets
post(σ.λk, I0),k = 1,2, In the case of lassos without destructive updates, this com-
putation is shown to reach the empty set after a number of iterations that is bounded by a
double exponential in the length of the lasso (cf. Section 5.1). In the case of lassos with
destructive updates, we can guarantee termination of the iteration with the empty set
provided there exists some CA Au (albeit unknown) keeping track of the particular tree
measures we consider here (formalised via the functions Mrsc and θrsc in Section 4.2)
that simulates the given program and that terminates8 (cf. Section 5.2). In the latter case,
even though we cannot guarantee the discovery of Au, we can at least ensure that the
sequence post(σ.λk, I0), k = 1,2, . . . terminates with the empty set. This gives us a basis
for refining the current ACFG such that we get rid of the spurious lasso encountered,
and we can go on in the search for a CA showing the termination of the given program.

5.1 Deciding Spuriousness of Lassos Without Destructive Updates

In this section, we show that the spuriousness problem for a given lasso in a program
with trees is decidable, if the lasso does not contain destructive updating instructions,
i.e., tree rotations. The argument for decidability is that, if there exists a non-terminating

7 To encode conditions of the form x ≤ c we add a new variable z, initially set to zero, with the
condition z′ = z appended to each transition, and rewrite the original condition as x− z ≤ c.

8 We can relax this condition by saying that Au does not have any infinite run, not corresponding
to a run of the program. For the sake of clarity, we have chosen the first stronger condition.

156 P. Habermehl et al.

run along the loop, then there exists also a non-terminating run starting from a tree of
size bounded by a constant depending on the program. Thus, there exists a tree within
this bound that will be visited infinitely many often.9

Given a loop without destructive updates, we first build an abstraction of it by replac-
ing the go{Left|Right|Up}Null(x,y) instructions by x = null, and by eliminating all
changeData(x,d1,d2) instructions and the tests. Clearly, if the original loop has a non-
terminating computation, then its abstraction will also have a non-terminating run start-
ing with the same tree. The loop is then encoded as an iterative linear transformation
which, for each pointer variable x ∈ PVar, has a counter px encoding the binary position
of the pointer in the current tree using 0/1 as the left/right directions. Additionally, the
most significant bit of the encoding is required to be always one, which allows for dif-
ferentiating between, e.g., the position 001 encoded by 9 = (1001)2, and 0001 encoded
by 17 = (10001)2. Null pointers are encoded by the value 0. The program instructions
are translated into counter operations as follows:

x = null : px = 0 x = y : px = py goLeftNonNull(x,y) : px = 2 � py

goRightNonNull(x,y) : px = 2 � py + 1 goUpNonNull(x,y) : px = 1
2 py

where 2� and 1
2 denote the integer functions of multiplication (x �→ 2x) and division

(x �→ x/2). Assuming that we have n pointer variables, each program instruction is
modelled by a linear transformation of the form p′ = Ap+B where A is an n×n matrix
with at most one non-null element, which is either 1,2 or 1

2 , and B is an n-column vector
with at most one 1 and the rest 010. The composition of the instructions on the loop is
also a linear transformation, except that A has at most one non-null element on each
line, which is either I , or a composition of 2�’s and 1

2 ’s.
Since A has at most one non-null element on each line, one can extract an m ×

m matrix A0 for some m ≤ n that has exactly one non-null element on each line and
column. Our proof is based on the fact that there exists some constant k bounded by
O(3m) such that A0

k is a diagonal matrix. Intuitively, this means that the position of
each pointer at step i + k is given by a linear function of the position of the pointer at
i. Then Ai is an exponential function of i. As there is no dynamic allocation of nodes
in the tree, the non-termination hypothesis implies that the positions of pointers have to
stay in-between bounds. But this is only possible if the elements of the main diagonal of
A0

k are either I or compositions of the same number of 2� and 1
2 . Intuitively, this means

that all pointers are confined to move inside bounded regions of the working tree.

Theorem 4. Let P be a program over trees, PVar and Data be its sets of pointer vari-
ables and data elements, C = Data × 2PVar ∪{�}, I0 ⊆ T (C) be an initial set of trees,
and σ.λ be a lasso of P. Then, if P has an infinite run along the path σ.λω for some
t0 ∈ I0, then there exists a tree tb0 ∈ T (C) of height bounded by (||PVar||+ 1) ·

(
|σ|+

|λ| ·3||PVar||) such that P, started with tb0, has an infinite run along the same path.

9 Since there is no dynamic allocation, all trees visited starting with a tree of size k will also
have size k. Hence each run of the program will either stop, or re-visit the same program
configuration after a bounded number of steps.

10 We interpret the matrix operations over the semiring of integer functions 〈N → N,+,◦,0,I 〉,
where ◦ is functional composition and I is the identity function.

Proving Termination of Tree Manipulating Programs 157

Decidability of spuriousness is an immediate consequence of this theorem. Also, there
is a bound on the number of symbolic unfoldings of a spurious lasso starting with the
initial set of trees.

Corollary 1. Let P be a program over trees, PVar and Data its sets of pointer variables
and data elements, C = Data × 2PVar ∪ {�}, and I0 ⊆ T (C) an initial set of trees.
Given a lasso S.L in the CA Arsc(G) built from an ACFG G of P, let σ = ξ(S) and λ =
ξ(L). Then, if σ.λ does not contain destructive updates, its spuriousness is decidable.

Moreover, if the lasso is spurious, for all k ≥ |λ| ·max(2, ||Data||)2(||PVar||+1)·(|σ|+|λ|·3||PVar||)
,

we have post(σ.λk, I0) = /0.

Despite the double exponential bound, experimental evidence (see Section 7) shows
that the number of unfoldings necessary to eliminate a spurious lasso is fairly small.

5.2 Analysing Lassos with Destructive Updates

Theorem 5 stated below shows that spuriousness of a lasso that contains destructive
updates, i.e., tree rotations, is decidable if there exists a terminating CA Au, not neces-
sarily known to us, simulating the program wrt. θrsc and Mrsc. That is, if there exists a
termination argument for the program based on the tree measures we use, then we can
prove spuriousness of the lasso by a symbolic iteration of the initial set.

Theorem 5. Let P be a program with an ACFG G and let S.L be a spurious lasso in
Arsc(G). If there exists a CA Au that simulates P wrt. θrsc and Mrsc and that terminates
on all inputs, then there exists k ∈ N such that post(ξ(S).ξ(L)k, I0) = /0.

Indeed, imagine that for any l ∈ N there is an input tree tl ∈ I0 for which ξ(S).ξ(L)l

is fireable. Then, the CA Au, having a finite-control, and simulating P has to contain
a lasso with a stem S.Ln1 and a loop Ln2 for some n1,n2 ∈ N (i.e., a possibly partially
unfold S.L). However, as the set of initial counter valuations of Au must include the
one of Arsc(G) (as that is the smallest possible wrt. Mrsc), this means that Au has a
non-terminating run also, which is a contradiction.

6 Abstraction Refinement

Let P be a program, G = 〈Instr,LI,〈l0, I0〉, �−→〉 be an ACFG of P, and Arsc(G) be the CA
obtained by the translation described in Section 4. Let S.L be a spurious lasso, i.e., a path
over which Arsc(G)has an infinite run, while Pdoes not have an infinite run over the corre-
sponding program path σ.λ where σ= ξ(S) and λ= ξ(L). Then, we produce a new ACFG
GS.L of P such that Arsc(GS.L) will not exhibit any lasso-shaped path with a stem labelled
with the sequence of counter operations θrsc(σ).θrsc(λ)p and a loop labelled with θrsc(λ)q

for any p,q ≥ 0. Provided that the spuriousness of the lasso S.L is detected using either
Corollary 1 or Theorem 5, we know that there exists k > 0 such that post(σ.λl, I0) = /0

158 P. Habermehl et al.

for all l ≥ k. To build the refined ACFG GS.L, we use the sets post(σ.λi, I0), 0 ≤ i < k,
computed in the spuriousness analysis of S.L (cf. Section 5).

We refine G into GS.L by splitting some of its locations 〈li, Ii〉 ∈ LI into several lo-
cations of the form 〈li, Ii j〉, and by recomputing the edges according to the definition
of ACFG (cf. Section 4.1). Intuitively, the sets Ii j form a partition of Ii such that Ii j

will contain all trees from Ii that are visited in at most j iterations of the loop. As
we prove in [18], since we keep apart the sets of trees for which the lasso may be
iterated a different number of times, Arsc(GS.L) will not contain lassos of the form
θrsc(σ).θrsc(λ)p.

(
θrsc(λ)q

)ω for any p,q > 0.
Due to the fact that our verification problem is not r.e. (cf. Theorem 1), the Abstract-

Check-Refine loop might diverge. One situation in which this can happen is when, at
each refinement step, a certain line invariant Ii is split such that one of the parts, say Ii j,
is finite (e.g., it contains only trees up to some height). However, to exclude a spurious
counterexample, it might be the case that Ii has to be split into infinite sets according
to some more general property (e.g., the same number of red and black nodes).11 In
such situations, we use a heuristic acceleration method consisting in applying the finite
height abstraction α of ARTMC (cf. Section 3) to split the line invariants. That is, apart
from splitting Ii wrt. the sets post(σ.λi, I0), we split wrt. the sets α(post(σ.λi, I0)) too.
In Section 7, we report on an example in which the accelerated refinement based on the
finite height abstraction was successfully used to make the analysis converge.

Another problem that may occur is that the invariants computed by ARTMC may
not be precise enough for proving termination of the given program. That is why after
a predefined number of steps of refining ACFGs by splitting, we repeat ARTMC with a
more precise abstraction (e.g., we increase the abstraction height). We re-run ARTMC
on the underlying CFG of the last computed ACFG G and restrict the computed reach-
ability sets to the sets appearing in the locations of G in order to preserve the effect of
the refinement steps done so far. Due to the space restrictions, we provide a detailed
description of these issues in [18].

7 Implementation and Experimental Results

To demonstrate the applicability of our approach, we tested it on several real procedures
manipulating trees. We restricted the ARTMC tool from [6] to binary trees with parent
pointers and added support for tree rotations, instead of using general purpose destruc-
tive updates. The absence of null pointer dereferences was verified fully automatically.
Termination of the generated CA was checked using the ARMC tool [23].

We first considered the following set of case studies (for more details see [18]):
(1) a non-recursive depth-first tree traversal, (2) a procedure for searching a data value
in a red-black tree [15] (with the actual data abstracted away and all the comparisons
done in a random way), and (3) the procedure that rebalances red-black trees after
inserting a new element using tree rotations [15]. In the latter two cases, the set of input
trees was a regular overapproximation of all red-black trees (we abstracted away the
balancedness condition).

11 A similar case is encountered in classical abstraction refinement for checking safety properties.

Proving Termination of Tree Manipulating Programs 159

Table 2. Experimental Results

Example TARTMC |Q|Inv TCA Ncnt Nloc Ntr

Depth-first tree traversal 43s 67 10s 5 15 20
RB-search 2s 22 1s 3 8 11

RB-rebalance after insert 1m 9s 87 36s 7 44 66

The results of the
experiments that we
performed on a PC
with a 1.4 GHz In-
tel Xeon processor are
summarised in Table 2.
The table contains the
ARTMC running times
(TARTMC), the number of states of the largest invariant generated by ARTMC (|Q|Inv),
the time spent by the ARMC tool to show termination (TCA), and the number of counters
(Ncnt), locations (Nloc), and transitions (Ntr) of the CA.

For the three above programs, it turned out to be possible to prove the termination
without a need of refinement. In the third experiment, we could even remove check-
ing of the condition of the red-black trees (a red node has only black sons), leading
to smaller verification times, with less precise invariants, which were, however, still
precise enough for the termination proof.

bool odd = false;
if (list ! = null) then
while (true) do

x = list;
while (x ! = null) do

x.data= odd;
odd = not(odd);
x = x.next;

od
if (not(odd)) then break;

od

Fig. 3. A procedure marking elements
of a list as odd or even from the end of
the list

To test our refinement procedure, we applied
it on another case study where the initial invari-
ants were not sufficient to prove termination. In
particular, we considered the procedure in Fig-
ure 3 that marks the elements of a singly-linked
list as even or odd, depending on whether their
distance to the end of the list is even or odd. As
the procedure does not know the length of the list
and cannot use back-pointers, it tries to mark the
first element as even, and at the end of the list, it
checks whether the last element was marked as
odd. If this is true, the marking is correct, other-
wise the marking has to be reversed.

For this procedure, even if one builds the CA
starting with the exact line invariants, termination
cannot be established. To establish termination,
one has to separate configurations where the procedure is marking the list in a correct
way from those where the marking is incorrect. Then, the outer loop of the procedure
will not appear in the CA at all since, in fact, it can be fired at most twice: once when
the initial guess is correct and twice otherwise. The challenge is to recognise this fact
automatically.

We managed to verify termination of the procedure on an arbitrary input list after
excluding 9 spurious lassos (in 2 cases, the refinement was accelerated by the use of the
finite-height abstraction on the Ii j sets that resulted from splitting line invariants when
excluding certain spurious lassos).

8 Conclusion

We addressed the problem of proving termination of a significant class of tree manip-
ulating programs. We provide a counter-example guided abstraction refinement loop

160 P. Habermehl et al.

based on the ARTMC framework and on exploiting the existing work on checking ter-
mination of counter automata. A number of results related to the decidability of the
spuriousness problem of lasso-shaped termination counterexamples were given. Our
method is not guaranteed to stop (as the problem is not r.e.), but when it stops, it pro-
vides a precise answer (both in the positive and negative case). The method was exper-
imentally tested to be successful on several interesting practical programs.

Future work includes a more efficient implementation of our framework as well as
its extension to more complex programs (like, e.g., programs with unbounded dynamic
allocation and general destructive pointer updates). We would also like to further in-
vestigate cases in which the universal termination problem is r.e. (and hence allowing
complete verification techniques).

Acknowledgement. The work was supported by the French Ministry of Research (ACI
Securité Informatique), the Czech Grant Agency (projects 102/07/0322, 102/05/H050),
the Czech-French Barrande project 2-06-27, and the Czech Ministry of Education by
project MSM 0021630528 Security-Oriented Research in Information Technology.

References

1. Balaban, I., Pnueli, A., Zuck, L.D.: Shape Analysis by Predicate Abstraction. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, Springer, Heidelberg (2005)

2. Ball, T., Rajamani, S.K.: The SLAM Toolkit. In: Berry, G., Comon, H., Finkel, A. (eds.)
CAV 2001. LNCS, vol. 2102, Springer, Heidelberg (2001)

3. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.: Analyses from Invariance
Analyses. In: Proc. of POPL 2007, ACM Press, New York (2007)

4. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with Lists
are Counter Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, Springer,
Heidelberg (2006)

5. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model
Checking. ENTCS 149, 37–48 (2006)

6. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
Springer, Heidelberg (2006)

7. Bozga, M., Iosif, R., Lakhnech, Y.: Flat Parametric Counter Automata. In: Bugliesi, M., Pre-
neel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, Springer, Heidelberg
(2006)

8. Bradley, A.R., Manna, Z., Sipma, H.B.: The Polyranking Principle. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, Springer,
Heidelberg (2005)

9. Chaki, S., Clarke, E., Groce, A., Ouaknine, J., Strichman, O., Yorav, K.: Efficient Verification
of Sequential and Concurrent C Programs. Formal Methods in System Design 25(2–3) (2004)

10. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction
Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer,
Heidelberg (2000)

11. Comon, H., Jurski, Y.: Multiple Counters Automata, Safety Analysis and Presburger Arith-
metic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, Springer, Heidelberg (1998)

12. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction Refinement for Termination. In: Han-
kin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, Springer, Heidelberg (2005)

Proving Termination of Tree Manipulating Programs 161

13. Cook, B., Podelski, A., Rybalchenko, A.: Termination Proofs for Systems Code. In: Proc. of
PLDI 2006, ACM Press, New York (2006)

14. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond Safety. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, Springer, Heidelberg (2006)

15. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cam-
bridge (1990)

16. Deshmukh, J.V., Emerson, E.A., Gupta, P.: Automatic Verification of Parameterized Data
Structures. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS,
vol. 3920, Springer, Heidelberg (2006)

17. Distefano, D., Berdine, J., Cook, B., O’Hearn, P.W.: Automatic Termination Proofs for
Programs with Shape-shifting Heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, Springer, Heidelberg (2006)

18. Habermehl, P., Iosif, R., Rogalewicz, A., Vojnar, T.: Proving Termination of Tree Manipulat-
ing Programs. Verimag, TR-2007 -1,
http://www-verimag.imag.fr/index.php?page=techrep-list

19. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with Blast. In:
Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, Springer, Heidelberg (2003)

20. Loginov, A., Reps, T.W., Sagiv, M.: Automated Verification of the Deutsch-Schorr-Waite
Tree-Traversal Algorithm. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, Springer, Heidelberg
(2006)

21. Møller, A., Schwartzbach, M.I.: The Pointer Assertion Logic Engine. In: Proc. of PLDI 2001,
ACM Press, New York (2001)

22. Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In: Proc. of
LICS 2002, IEEE Computer Society Press, Los Alamitos (2002)

23. Rybalchenko, A.:The ARMC tool. www.mpi-inf.mpg.de/∼rybal/armc/
24. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric Shape Analysis via 3-valued Logic.

TOPLAS 24(3) (2002)
25. Yahav, E., Reps, T., Sagiv, M., Wilhelm, R.: Verifying Temporal Heap Properties Specified

via Evolution Logic. In: Degano, P. (ed.) ESOP 2003 and ETAPS 2003. LNCS, vol. 2618,
Springer, Heidelberg (2003)

http://www-verimag.imag.fr/index.php?page=techrep-list
 www.mpi-inf.mpg.de/~rybal/armc/

Symbolic Fault Tree Analysis for Reactive Systems�

Marco Bozzano��, Alessandro Cimatti, and Francesco Tapparo

FBK-IRST, Via Sommarive 18, 38050 Trento, Italy
Tel.: +39 0461 314367; Fax: +39 0461 302040

bozzano@itc.it

Abstract. Fault tree analysis is a traditional and well-established technique for
analyzing system design and robustness. Its purpose is to identify sets of basic
events, called cut sets, which can cause a given top level event, e.g. a system
malfunction, to occur. Generating fault trees is particularly critical in the case of
reactive systems, as hazards can be the result of complex interactions involving
the dynamics of the system and of the faults. Recently, there has been a growing
interest in model-based fault tree analysis using formal methods, and in particular
symbolic model checking techniques. In this paper we present a broad range of
algorithmic strategies for efficient fault tree analysis, based on binary decision
diagrams (BDDs). We describe different algorithms encompassing different di-
rections (forward or backward) for reachability analysis, using dynamic cone of
influence techniques to optimize the use of the finite state machine of the system,
and dynamically pruning of the frontier states. We evaluate the relative perfor-
mance of the different algorithms on a set of industrial-size test cases.

1 Introduction

The goal of safety analysis is to investigate the behavior of a system in degraded condi-
tions, that is, when some parts of the system are not working properly, due to malfunc-
tions. Safety analysis includes a set of activities, that have the goal of identifying and
characterizing all possible hazards, and are performed in order to ensure that the system
meets the safety requirements that are required for its deployment and use. Safety anal-
ysis activities are particularly critical in the case of reactive systems, because hazards
can be the result of complex interactions involving the dynamics of the system [29].

Recently, there has been a growing interest in model-based safety analysis [1, 4, 6, 7,
8, 9, 15, 17, 18, 25] using formal methods, and in particular symbolic model checking
techniques. Traditionally, safety analysis activities are performed manually, and rely
on the skill of the safety engineers, hence they are an error-prone and time-consuming
activity, and they may rapidly become impractical in case of large and complex systems.
Safety analysis based on formal methods, on the other hand, aims at reducing the effort
involved and increase the quality of the results, by focusing the effort on building formal
models of the system [7, 8], rather than carrying out the analyses.

Fault Tree Analysis (FTA) [35] is one of the most popular safety analysis activities.
It is a deductive, top-down method to analyze system design and robustness. It involves

� This work has been partly supported by the E.U.-sponsored project ISAAC, contract no. AST3-
CT-2003-501848.

�� Corresponding author.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 162–176, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Symbolic Fault Tree Analysis for Reactive Systems 163

specifying a top level event (TLE hereafter) and a set of possible basic events (e.g.,
component faults); the goal is the identification of all possible cut sets, i.e. sets of ba-
sic events which cause the TLE to occur. Fault trees provide a convenient symbolic
representation of the combination of events causing the top level event, and they are
usually represented as a parallel or sequential combination of logical gates. To allow a
quantitative evaluation, the probability of the events is also included in the fault tree.

In this paper, we focus on the problem of FTA for reactive systems, i.e. systems with
infinite behavior over time. The problem is substantially harder than the traditional case,
where the system is abstracted and modeled to be state-less and combinational. In fact,
the presence of dynamics can influence the presence and the effect of failures.

The main contribution of the paper is the definition, implementation and evaluation
of a broad range of algorithms and strategies for efficient fault tree analysis of reactive
systems. The algorithms are based on (extended) reachability analysis of a model of the
system, and apply to a general framework, where different dynamics for failure mode
variables (e.g. persistent and sporadic faults) are possible, thus extending the work in
[7]. We point out several distinguishing features. First, fault trees can be constructed
both by forward and backward search; it is indeed well known that depending on the
structure of the state space of the reactive system, dramatic differences in performance
can result, depending on the search direction. Second, backward search is optimized
with the use of dynamic cone of influence (DCOI), which consists in a lazy generation
of restricted models to be used for computing the backward search steps. Third, we
propose an optimization called dynamic pruning, applicable both to the forward and the
backward reachability algorithms, that detects minimal cut sets during the search, and
thus can limit the exploration and reduce the number of required iterations.

The algorithms leverage techniques borrowed from symbolic model checking, in par-
ticular Binary Decision Diagrams (BDDs for short), that enable the exploration of very
large state spaces. The algorithms have been implemented and integrated within FSAP
[7, 16], a platform aiming at supporting design and safety engineers in the development
and in the safety assessment of complex, reactive systems. The platform automates the
generation of artifacts that are typical of reliability analysis, for example failure mode
and effect analysis tables, and fault trees. FSAP consists of a graphical interface and
an engine based on the NuSMV model checker [11, 23]. NuSMV provides support for
user-guided or random simulation, as well as standard model checking capabilities like
property verification and counterexample trace generation.

We experimentally evaluate the different algorithms on a set of scalable benchmarks
derived from industrial designs. The results show that the forward and backward search
directions are indeed complementary, and the proposed optimizations result in a sub-
stantial performance improvement.

The paper is structured as follows. In Sect. 2 we give some background about model
checking reactive systems; in Sect. 3 we discuss fault tree analysis; in Sect. 4 we de-
scribe the algorithms for fault tree generation; in Sect. 5 we outline the implementation
in the FSAP platform; in Sect. 6 we present the experimental evaluation; finally, in Sect.
7 we discuss some related work, and in Sect. 8 we draw some conclusions and outline
future work.

164 M. Bozzano, A. Cimatti, and F. Tapparo

2 Background

2.1 Modeling Reactive Systems

We are interested in the analysis of reactive systems, whose behavior is potentially
infinite over time, such as operating systems, physical plants, and controllers. Reactive
systems are modeled as Kripke structures.

Definition 1 (Kripke Structure). Let P be a set of propositions. A Kripke structure is
a tuple M = 〈S, I, R, L〉 where: S is a finite set of states, I ⊆ S is the set of initial
states; R ⊆ S × S is the transition relation; L : S −→ 2P is the labeling function.

We require the transition relation to be total, i.e. for each state s there exists a successor
state s′ such that R(s, s′). We notice that Kripke structures can model non-deterministic
behavior, by allowing states to have multiple successors. The labeling function asso-
ciates each state with information on which propositions hold in it.

An execution of the system is modeled as a trace (also called a behavior) in such a
Kripke structure, obtained starting from a state s ∈ I, and then repeatedly appending
states reachable through R.

Definition 2 (Trace). Let M = 〈S, I, R, L〉 be a Kripke structure. A trace for M is a
sequence π = s0, s1, . . . , sk such that s0 ∈ I and R(si−1, si) for 1 ≤ i ≤ k.

A state is reachable if and only if there exists a trace containing it. Given the totality
of R, a trace can always be extended to have infinite length. We notice that systems
are often presented using module composition; the resulting structure can be obtained
by composing the sub-structures, but its state space may be exponential in the number
of composed modules. In the following we confuse a system and the Kripke structure
modeling it; we also assume that a Kripke structure M = 〈S, I, R, L〉 is given.

2.2 Symbolic Model Checking

Model checking is a widely used formal verification technique. While testing and simu-
lation may only verify a limited portion of the possible system behaviors, model check-
ing provides a formal guarantee that some given specification is obeyed, i.e. all the
traces of the system are within the acceptable traces of the specification. Given a sys-
tem M, represented as a Kripke structure, and a requirement φ, typically specified as a
formula in some temporal logic, model checking analyzes whether M satisfies φ, writ-
ten M |= φ. Model checking consists in exhaustively exploring every possible system
behavior, to check automatically that the specifications are satisfied.

In its simpler form, referred to as explicit state, model checking is based on the ex-
pansion and storage of individual states. These techniques suffer from the so-called
state explosion problem, i.e. they need to explore and store the states of the state tran-
sition graph. A major breakthrough was enabled by the introduction of symbolic model
checking [21]. The idea is to manipulate sets of states and transitions, using a logical
formalism to represent the characteristic functions of such sets. Since a small logical
formula may admit a large number of models, this results in many practical cases in a
very compact representation which can be effectively manipulated. Another key issue is

Symbolic Fault Tree Analysis for Reactive Systems 165

2 b2

b1

a2

a1

a2

0

b

1

Fig. 1. A BDD for the formula (a1 ↔ a2) ∧ (b1 ↔ b2)

the use of an efficient machinery to carry out the manipulation. For this, we use Ordered
Binary Decision Diagrams [10] (BDDs for short).

BDDs are a representation for boolean formulae, which is canonical once an order
on the variables has been established. Fig. 1 depicts the BDD for the boolean formula
(a1 ↔ a2) ∧ (b1 ↔ b2), using the variable ordering a1, a2, b1, b2. Solid lines rep-
resent “then” arcs (the corresponding variable has to be considered positive), dashed
lines represent “else” arcs (the corresponding variable has to be considered negative).
Paths from the root to the node labeled with “1” represent the satisfying assignments
of the represented boolean formula (e.g., a1 ← 1, a2 ← 1, b1 ← 0, b2 ← 0). Efficient
BDD packages are available. Despite the worst-case complexity (e.g. certain classes of
boolean functions are proved not to have a polynomial-size BDD representation for any
order), in practice it is possible to represent Kripke structures effectively.

We now show how a Kripke structure can be symbolically represented. Without loss
of generality, we assume that there exists a bijection between S and 2P (if the cardi-
nality of S is not a power of two, standard constructions can be applied to extend the
Kripke structure). Each state of the system assigns a valuation to each variable in P . We
say that a proposition p holds in s, written s |= p, if and only if p ∈ L(s). Similarly, it is
possible to evaluate a boolean formula φ(P), written s |= φ(P). The representation of a
Kripke structure with BDDs is as follows. For each proposition in P we introduce a BDD

variable; we use x to denote the vector of such variables, that we call state variables,
and we assume a fixed correspondence between the propositions in P and the variables
in x. We use x to denote the vector of variables representing the states of a given sys-
tem. We write I(x) for the BDD (corresponding to the formula) representing the initial
states. To represent the transitions, we introduce a set of “next” variables x′, used for
the state resulting after the transition. A transition from s to s′ is then represented as
a truth assignment to the current and next variables. We use R(x, x′) for the formula
representing the transition relation expressed in terms of those variables.

Operations over sets of states can be represented by means of boolean operators.
For instance, intersection amounts to conjunction between the formulae representing
the sets, union is represented by disjunction, complement is represented by negation,

166 M. Bozzano, A. Cimatti, and F. Tapparo

and projection is realized with quantification. BDDs provide primitives to compute effi-
ciently all these operations.

3 Fault Tree Analysis for Reactive Systems

Safety analysis is a fundamental step in the design of complex, critical systems. The idea
is to analyze the behavior of the system in presence of faults, under the hypothesis that
components may break down. Model-based safety analysis is carried out on formally
specified models which take into account system behavior in the presence of faults. The
first step is to identify a set of state variables, called failure mode variables, to denote
the possible failures, and to identify a set of properties of interest. Intuitively, a failure
mode variable is true in a state when the corresponding fault occurs (different failure
mode variables are associated to different faults). Once this is done, different forms
of analysis investigate the relationship between failures and the occurrence of specific
events (called top level events), typically the violation of some of the properties. In the
rest of this section, we assume that a set of failure mode variables F ⊆ P is given.

Two traditional safety analysis activities are Failure Mode and Effects Analysis
(FMEA), and Fault Tree Analysis (FTA). FMEA analyzes which properties are lost,
under a specific failure mode configuration, i.e. a truth assignment to the variables in
F ; the results of the analysis are summarized in a FMEA table. FTA progresses in the
opposite direction: given a property, the set of causes has to be identified that can cause
the property to be lost. In the rest of this paper we focus on FTA (although many of the
techniques described here may be applied also to FMEA).

Traditionally, safety analysis is carried out on a combinational view of the system.
Here we specifically focus on reactive systems. In this context, different models of
failure may have different impact on the results. Moreover, the duration and temporal
relationships between failures may be important, e.g. fault f1 may be required to persist
for a give number of steps, or to occur before another fault f2. We refer the reader to
[9] for a proposal to enrich the notion of minimal cut set along these lines.

Our framework is completely general: it encompasses both the case of permanent
failure modes (once failed, always failed), and the case of sporadic or transient ones,
that is, when faults are allowed to occur sporadically (e.g., a sensor showing an invalid
reading for a limited period of time), or when repairing is possible.

Fault tree analysis [35] is an example of deductive analysis, which, given the spec-
ification of an undesired condition, usually referred to as a top level event (TLE), sys-
tematically builds all possible chains of one of more basic faults that contribute to the
occurrence of the event. The result of the analysis is a fault tree, representing the logical
interrelationships of the basic events that lead to the undesired state. In its simpler form
[7] a fault tree can be represented with a two-layer logical structure, namely a top level
disjunction of the combinations of basic faults causing the top level event. Each com-
bination, which is called cut set, is in turn the conjunction of the corresponding basic
faults. In general, logical structures with multiple layers can be used, for instance based
on the hierarchy of the system model [3]. A cut set is formally defined as follows.

Definition 3 (Cut set). Let M = 〈S, I, R, L〉 be a system with a set of failure mode
variables F ⊆ P , let FC ⊆ F be a fault configuration, and TLE ∈ P . We say that FC

Symbolic Fault Tree Analysis for Reactive Systems 167

is a cut set of TLE, written cs(FC, TLE) if there exists a trace s0, s1, . . . , sk for M
such that: i) sk |= TLE; ii) ∀f ∈ F f ∈ FC ⇐⇒ ∃i ∈ {0, . . . , k} (si |= f).

Intuitively, a cut set corresponds to the set of failure mode variables that are active at
some point along a trace witnessing the occurrence of the top level event. Typically,
one is interested in isolating the fault configurations that are minimal in terms of failure
mode variables, that is, those that represent simpler explanations, in terms of faults,
for the occurrence of the top level event. Under the hypothesis of independent faults,
a minimal configuration is a more probable explanation with respect to a configuration
being a proper superset, hence it has a higher importance in reliability analysis. Minimal
configurations are called minimal cut sets and are formally defined as follows.

Definition 4 (Minimal Cut Sets). Let M = 〈S, I, R, L〉 be a system with a set of
failure mode variables F ⊆ P , let F = 2F be the set of all fault configurations, and
TLE ∈ P . We define the set of cut sets and minimal cut sets of TLE as follows:

CS(TLE) = {FC ∈ F | cs(FC, TLE)}
MCS(TLE) = {cs ∈ CS(TLE) | ∀cs′ ∈ CS(TLE) (cs′ ⊆ cs ⇒ cs′ = cs)}

The notion of minimal cut set can be extended to the more general notion of prime im-
plicant (see [14]), which is based on a different definition of minimality, involving both
the activation and the absence of faults. We omit the details for lack of space. We also
remark that, although not illustrated in this paper, the fault tree can be complemented
with probabilistic information, as done, e.g., in the FSAP platform [16].

Based on the previous definitions, fault tree analysis can be described as the activ-
ity that, given a TLE, involves the computation of all the minimal cut sets (or prime
implicants) and their arrangement in the form of a tree. Typically, each cut set is also
associated with a trace witnessing the occurrence of the top level event.

4 Symbolic Fault Tree Analysis

We now review the different algorithms for fault tree generation, available in FSAP.
We focus on the computation of the cut sets (standard model checking techniques can
be used to generate the corresponding traces). We start in Sect. 4.1 with the standard,
forward algorithm that we described in [7]. In this context, we extend the algorithm
in order to support sporadic failure modes, which were not allowed in [7]. Then, we
describe a novel backward algorithm in Sect. 4.2, and its optimization based on dynamic
cone of influence in Sect. 4.3; finally, in Sect. 4.4 we introduce an optimization called
dynamic pruning, which is applicable both to the forward and the backward algorithms.

In the following, we assume that a Kripke structure M = 〈S, I, R, L〉 is given, and
we use the following notations. First, f denotes the vector of failure variables. Given

two vectors v = v1 . . . vk and w = w1 . . . wk, the notation v = w stands for
∧k

i=1(vi =
wi). We use ITE(p, q, r) (if-then-else) to denote ((p → q) ∧ (¬p → r)). Finally,
given a set of states Q, the image of Q is defined as {s′ | ∃s ∈ Q. R(s, s′)}. It can
be encoded symbolically as follows: fwd img(M, Q(x)) = ∃x. (Q(x) ∧ R(x, x′)).
Similarly, the preimage of Q is defined as {s | ∃s′ ∈ Q. R(s, s′)} and can be encoded
as bwd img(M, Q(x′)) = ∃x′. (Q(x′) ∧ R(x, x′)).

168 M. Bozzano, A. Cimatti, and F. Tapparo

function FTA-Forward (M, T le)
1 M := Extend(M,Ro);
2 Reach := I ∩ (o = f);
3 Front := I ∩ (o = f);
4 while (Front �= ∅) do
5 temp := Reach;
6 Reach := Reach ∪

fwd img(M, F ront);
7 Front := Reach\temp;
8 end while;
9 CS := Proj(o, Reach ∩ T le);
10 MCS := Minimize(CS);
11 return Map o→f (MCS);

function FTA-Backward (M, T le)
1 M := Extend(M,Rg);
2 Reach := T le ∩ (g = f);
3 Front := T le ∩ (g = f);
4 while (Front �= ∅) do
5 temp := Reach;
6 Reach := Reach ∪

bwd img(M, F ront);
7 Front := Reach\temp;
8 end while;
9 CS := Proj(g, Reach ∩ I);
10 MCS := Minimize(CS);
11 return Map g→f (MCS);

Fig. 2. Forward and backward algorithms

4.1 Forward Fault Tree Analysis

The forward algorithm starts from the initial states of the system and accumulates, at
each iteration, the forward image. In order to take into account sporadic failure modes
(compare Def. 3, condition ii), at each iteration we need to “remember” if a failure
mode has been activated. To this aim, for each failure mode variable fi ∈ F , we intro-
duce an additional variable oi (once fi), which is true if and only if fi has been true at
some point in the past. This construction is traditionally referred to as history variable,
and is formalized by the transition relation Ro given by the following condition:

∧
fi∈F

ITE(oi, o
′
i, o

′
i ↔ f ′

i)

Let Extend(M, Ro) be the Kripke structure obtained from M by replacing the
transition relation R with the synchronous product between R and Ro, in symbols
R(x, x′) ∧ Ro(x, x′) and modifying the labeling function L accordingly.

The pseudo-code of the algorithm is described in Fig. 2 (left). The inputs are M
and T le (the set of states satisfying the top level event). A variable Reach is used to
accumulate the reachable states, and a variable Front to keep the frontier, i.e. the newly
generated states (at each step, the image operator needs to be applied only to the latter
set). Both variables are initialized with the initial states, and the history variables with
the same value as the corresponding failure mode variables. The core of the algorithm
(lines 4-8) computes the set of reachable states by applying the image operator to the
frontier until a fixpoint is reached (i.e, the frontier is the empty set). The resulting set
is intersected (line 9) with T le, and projected over the history variables. Finally, the
minimal cut sets are computed (line 10) and the result is mapped back from the history
variables to the corresponding failure mode variables (line 11).

Note that all the primitives used in algorithm can be realized using BDD data struc-
tures, as explained in Sect. 2.2. For instance, set difference (line 7) can be defined as
Reach(x)∧¬temp(x), and projection (line 9) as ∃y.(Reach(x)∧T le(x)), where y is
the set of variables in x and not in o; the minimization routine (line 10) can be realized

Symbolic Fault Tree Analysis for Reactive Systems 169

function FTA-Backward-DCOI (M, T le)
1 i := 0;
2 M := Extend(M,Rg);
3 Reach := T le ∩ (g = f);
4 Front := T le ∩ (g = f);
5 while (Front �= ∅) do
6 temp := Reach;
7 Mi = dcoi get(M, T le, i);
8 Reach := Reach ∪

bwd img(Mi, F ront);
9 Front := Reach\temp;
10 i := i + 1;
11 end while;
12 CS := Proj(g, Reach ∩ I);
13 MCS := Minimize(CS);
14 return Map g→f (MCS);

function FTA-Forward-Pruning (M, T le)
1 CS := ∅;
2 M := Extend(M,Ro);
3 Reach := I ∩ (o = f);
4 Front := I ∩ (o = f);
5 while (Front �= ∅) do
6 CS := CS ∪ Proj(o, Reach ∩ T le);
7 temp := Reach;
8 Reach := Reach ∪

fwd img(M, F ront);
9 Front := Reach\temp;
10 Front := Front\Widen(CS);
11 end while;
12 MCS := Minimize(CS);
13 return Map o→f (MCS);

Fig. 3. Backward algorithm, using DCOI; forward algorithm, with pruning

with standard BDD operations (we refer the reader to [14, 26] for details); finally, the
mapping function (line 11) can be defined as Map o→f (φ(o)) = ∃o.(φ(o) ∧ (o = f)).

4.2 Backward Fault Tree Analysis

The backward algorithm performs reachability via the preimage operator bwd img.
This time, we need to “remember” if a failure mode has been activated at some step in
the future. To this aim, for each fi ∈ F we introduce an additional variable gi (these
variables are referred to as guess or prophecy variables, and they can be seen as the
dual of history variables). Let Rg be the transition relation defined by the condition∧

fi∈F ITE(g′i, gi, gi ↔ fi) and Extend(M, Rg) be defined as in Sect. 4.1.
The backward algorithm is presented in Fig. 2 (right). The core (lines 4-8) is similar

to forward one. It starts from the set of states satisfying the top level event, with the ad-
ditional constraints that the prophecy variables have been initialized with the same value
as the corresponding failure mode variables, and it performs backward reachability un-
til a fixpoint is reached. The resulting set is intersected (line 9) with the initial states,
and projected over the prophecy variables. Finally, the minimal cut sets are computed
(line 10) and the result is mapped back to the failure mode variables (line 11).

4.3 Backward Fault Tree Analysis with Dynamic Cone of Influence

The algorithm for backward fault tree analysis can be optimized by means of the fol-
lowing technique, referred to as Dynamic Cone of Influence reduction (DCOI). The
idea is based on the fact that often models enjoy some local structure, so that the next
value of a certain variable only depends on a subset of the whole state variables. Sup-
pose that the top level event T le only depends on a limited set of variables, say x0 ⊂ x.
Thus, when computing the preimage of T le (line 6 in Fig. 2, right), it is possible to

170 M. Bozzano, A. Cimatti, and F. Tapparo

consider only those parts of the Kripke structure that influence the next value of T le.
Such a restricted Kripke structure, referred to as M0, is typically much simpler than
the whole M, and preimages can be computed much more effectively. The resulting
preimage may also depend on a restricted set of variables x1 ⊂ x, and at the second
step the corresponding M1 is used to compute the preimage. The process is iterated
until a fix point is reached; in the worst case, the whole machine is taken into account,
but it is possible that convergence is reached before the whole M is constructed.

The structure of the algorithm (see Fig. 3, left) is the same as the standard backward
algorithm. However, at each step i, a different Kripke structure is used, instead of the
global M (lines 7 and 8); the dcoi get primitive encapsulates the process of lazily
constructing the Kripke structure necessary for the i-th preimage computation.

4.4 Dynamic Pruning

All the algorithms previously discussed can be optimized by using dynamic pruning. We
describe below the extension of the forward algorithm (the other ones can be extended
similarly). The idea is that, at each iteration (lines 4-8 in Fig. 2), it is safe to discard
a state, provided we know that it will not contribute to the set of minimal cut sets. In
particular, this is true whenever we know that the failure modes being active in that state
are a superset of a fault configuration that has already been proved to be a cut set. The
implementation (see Fig. 3, right) is as follows. At each iteration (line 6) a partial set of
cut sets CS is computed. Based on this set, all the states on the frontier, whose active
failure modes are a superset of any fault configuration in CS, are pruned (line 10). The
primitive Widen is defined as Widen(CS) = {s | ∃cs ∈ CS (cs ⊆ s)}. Intuitively, it
collects all the states that include any element in CS as a proper subset (the definition
can be extended to the more general case of prime implicants). Typically, the use of
dynamic pruning may result in a significant reduction of the search space.

5 Implementation in the FSAP Platform

In this section we discuss the implementation of the algorithms described in Sect. 4
in the FSAP platform [7, 16]. As advocated in [8], it is important to have a complete
decoupling between the system model and the fault model. For this reason, the FSAP
platform relies on the notions of nominal system model and extended system model. The
nominal model formalizes the behavior of the system when it is working as expected,
whereas the extended model defines the behavior of the system in presence of faults.

The decoupling between the two models is achieved in the FSAP platform by gen-
erating the extended model automatically via a so-called model extension step. Model
extension takes as input a system and a specification of the faults to be added, and auto-
matically generates the corresponding extended system. It can be formalized as follows.
Let M = 〈S, I, R, L〉 be the nominal system model. A fault is defined by the propo-
sition p ∈ P to which it must be attached to, and by its type, specifying the “faulty
behavior” of p in the extended system (e.g., p can non-deterministically assume a ran-
dom value, or be stuck at a particular value). FSAP introduces a new proposition pFM ,
the failure mode variable, modeling the possible occurrence of the fault, and two further

Symbolic Fault Tree Analysis for Reactive Systems 171

propositions pFailed and pExt, with the following intuitive meaning. The proposition
pFailed models the behavior of p when a fault has occurred. For instance, the following
condition (where S′ is the set of states of the extended system) defines a so-called
inverted failure mode (that is, pFailed holds if and only if p does not hold):

∀s ∈ S′ (s |= pFailed ⇐⇒ s �|= p) (1)

The proposition pExt models the extended behavior of p, that is, it behaves as the orig-
inal p when no fault is active, whereas it behaves as pFailed in presence of a fault:

∀s ∈ S′ s �|= pFM ⇒ (s |= pExt ⇐⇒ s |= p) (2)

∀s ∈ S′ s |= pFM ⇒ (s |= pExt ⇐⇒ s |= pFailed) (3)

The extended system MExt = 〈S′, I ′, R′, L′〉 can be easily defined in terms of the
nominal system by adding the new propositions, modifying the definition of the (ini-
tial) states and of the transition relation, and imposing the conditions (1) (for an inverted
failure mode), (2) and (3). We omit the details for the sake of simplicity. Finally, sys-
tem extension with respect to a set of propositions can be defined in a straightforward
manner, by iterating system extension over single propositions.

The system model resulting from the extension step is used in FSAP to carry out
the analyses. The algorithms described in Sect. 4 are implemented in FSAP on top of
the NuSMV tool [11, 23], using BDDs as explained in Sect. 2.2 (we refer to Sect. 8
for a discussion on alternative algorithms). The FSAP platform can be used to compute
both the minimal cut sets and the prime implicants of a given top level event, and the
associated traces. FSAP can also compute the probability of the top level event, on the
basis of the probabilities of the basic faults, under the hypothesis of independent faults.

6 Experimental Evaluation

In this section we describe the experimental evaluation we carried out. Five algorithms
have been evaluated: forward algorithm (FWD in the following), forward algorithm
with dynamic pruning (FWD-PRUN), backward algorithm (BWD), backward algo-
rithm with DCOI (DCOI), and backward algorithm with DCOI and dynamic pruning
(DCOI-PRUN). Two different test-cases have been used. Both models are of industrial
size and have been developed inside the ISAAC project1. We remark that the models
are covered by a non-disclosure agreement, hence they are only briefly described.

The first model (referred to as “TDS model”) is a model of a subsystem of an aircraft.
It consists of a mechanical and a pneumatic line, driving a set of utilities, and being
controlled by a central unit. Faults are attached to different components of the two lines.
We ran different experiments by limiting, at model level, the faults that can be active
at any time: in the simplest experiment only 2 faults out of 34 are active. The second
test-case (referred to as “Cassini model”) is a model of the propulsion system of the
Cassini-Huygens spacecraft. The propulsion system is composed of two engines fed by
redundant propellant/gas circuit lines. Each line contains several valves and pyrovalves

1 http://www.isaac-fp6.org

172 M. Bozzano, A. Cimatti, and F. Tapparo

(a pyrovalve being a pyrotechnically actuated valve, whose status – open or close–
can be changed at most once). Faults are attached to the engines, the propellant/gas
tanks, and the (pyro)valves. We built several variants of the Cassini model by modifying
(increasing the redundancy of) the (pyro)valve layer located between the propellant
tanks and the engines. The property used to generate the fault tree is related to a correct
input pressure in (at least one of the) engines in presence of a correct output pressure
from the gas and the propellant tanks.

We ran each experiment with a different invocation of the model checker. For each
model, we list the number of minimal cut sets (column MCS). For each run, we report
the total usage of time (column T, in seconds – in parentheses the fraction of time spent
for compiling the model) and memory (column M, in Mb), and the number of iterations
needed to reach the fixpoint (column K). Compilation includes parsing, encoding of
the variables, and – for all the algorithms except DCOI and DCOI-PRUN – building of
the Kripke structure into BDD (the low compilation time for DCOI and DCOI-PRUN is
due to the fact that building of the Kripke structure is delayed). The experiments have
been run on a 2-processor machine equipped with Intel Xeon 3.00GHz, with 4Gb of
memory, running Linux RedHat Enterprise 4 (only one processor was allowed to run
for each experiment). The time limit was set to 1 hour and the memory limit to 1 Gb. A
‘↑’ in the time or memory columns stands for a time-out or memory-out, respectively.

The algorithms have been implemented in NuSMV 2.4.1, and run with the follow-
ing options. In both cases, we used static variable ordering. The motivation is to allow
for a fair comparison between the relative performances of the different algorithms,
as dynamic re-ordering could affect the performances in an unpredictable manner, de-
pending on how the re-ordering is performed inside the BDD package. We notice that,
in general, a good variable ordering is crucial to achieve the best performances, and
typically dynamic re-ordering over-performs static ordering. For the TDS model, given
the high complexity of the model, we used an off-line pre-computed variable ordering,
which has been passed to NuSMV at command line (option -i). For the Cassini model,
we used a pre-defined static ordering available in NuSMV (option -vars order
lexicographic). Furthermore, for the Cassini model we disabled conjunctive par-
titioning (option -mono), in order to purify the results of the DCOI and DCOI-PRUN
algorithms from the effect of a better of worse partitioning choice (for the TDS model,
this option was not necessary, as it will be evident from the experimental data).

The experimental results are reported in Figs. 4 and 5. The first comment is that
there is great variance of performance in the different algorithms. Proceeding forwards
appears to be extremely effective in the TDS model, while for the Cassini model, back-
ward search is very effective. This can be partly justified by the different structure of
the two models: complex but mostly flat for the TDS model; deeply layered (including
different layers of valves connected in series), with the level of layering increasing with
the complexity of the model instance, for the Cassini model. In general, as in model
checking, the nature of the state spaces may dramatically vary depending on the search
direction, and it is not predictable in advance. We claim that, for this reason, it is very
important to have available different styles of search.

Second, we notice that the proposed optimizations are always effective, or unnotice-
able. DCOI results in dramatic savings for the Cassini model (in fact, the experiments

Symbolic Fault Tree Analysis for Reactive Systems 173

NR FAIL MCS FWD FWD-PRUN BWD DCOI DCOI-PRUN
T M K T M K T M K T M K T M K

2 2 58.7 (8.2) 30 62 9.3 (8.2) 26 11 ↑ - - ↑ - - ↑ - -
3 3 102.9 (8.5) 47 67 10.0 (8.5) 26 14 ↑ - - ↑ - - ↑ - -
4 4 259.0 (8.6) 67 69 12.1 (8.6) 27 14 ↑ - - ↑ - - ↑ - -
5 5 616.3 (8.9) 138 69 15.7 (8.9) 26 14 ↑ - - ↑ - - ↑ - -
6 6 521.6 (9.4) 96 69 13.8 (9.4) 27 14 ↑ - - ↑ - - ↑ - -
7 7 609.0 (9.5) 131 69 16.2 (9.5) 27 14 ↑ - - ↑ - - ↑ - -
8 8 656.3 (9.6) 124 69 16.5 (9.6) 27 14 ↑ - - ↑ - - ↑ - -
9 8 1141.9 (10.0) 187 69 16.7 (10.0) 27 14 ↑ - - ↑ - - ↑ - -

10 8 2371.5 (10.1) 318 69 19.7 (10.1) 27 14 ↑ - - ↑ - - ↑ - -
11 8 ↑ - - 16.2 (10.2) 27 14 ↑ - - ↑ - - ↑ - -
12 8 ↑ - - 17.4 (10.4) 27 14 ↑ - - ↑ - - ↑ - -
13 8 ↑ - - 20.9 (10.7) 28 14 ↑ - - ↑ - - ↑ - -
14 8 ↑ - - 32.4 (11.0) 28 14 ↑ - - ↑ - - ↑ - -
15 8 ↑ - - 25.2 (11.0) 28 14 ↑ - - ↑ - - ↑ - -
16 8 ↑ - - 26.3 (11.0) 28 14 ↑ - - ↑ - - ↑ - -
17 8 ↑ - - 25.0 (11.7) 28 14 ↑ - - ↑ - - ↑ - -
18 8 ↑ - - 26.2 (12.0) 29 14 ↑ - - ↑ - - ↑ - -
19 8 ↑ - - 27.1 (12.3) 29 14 ↑ - - ↑ - - ↑ - -
20 8 ↑ - - 30.5 (12.5) 29 14 ↑ - - ↑ - - ↑ - -
34 12 ↑ - - 1219.0 (17.8) 129 14 ↑ - - ↑ - - ↑ - -

Fig. 4. Experimental results for the TDS model

MODEL MCS FWD FWD-PRUN BWD DCOI DCOI-PRUN
T M K T M K T M K T M K T M K

v-2222 329 6.7 (3.2) 15 5 9.0 (3.2) 16 5 37.6 (3.2) 14 5 1.5 (0.1) 13 4 1.5 (0.1) 13 4
v-3222 401 29.0 (3.6) 19 6 14.0 (3.6) 19 6 ↑ - - 1.8 (0.1) 14 5 1.8 (0.1) 15 5
v-3322 489 ↑ - - 29.8 (4.4) 26 6 ↑ - - 2.6 (0.1) 17 5 2.7 (0.1) 17 5
v-3332 599 ↑ - - 578.3 (4.7) 30 6 ↑ - - 3.4 (0.1) 17 5 3.5 (0.1) 17 5
v-3333 734 ↑ - - ↑ - - ↑ - - 4.2 (0.1) 17 5 4.3 (0.1) 17 5
v-4333 869 ↑ - - ↑ - - ↑ - - 5.5 (0.1) 18 6 6.1 (0.1) 18 6
v-4433 1029 ↑ - - ↑ - - ↑ - - 7.3 (0.1) 18 6 7.4 (0.1) 18 6
v-4443 1221 ↑ - - ↑ - - ↑ - - 9.4 (0.2) 19 6 10.1 (0.2) 19 6
v-4444 1449 ↑ - - ↑ - - ↑ - - 11.9 (0.2) 19 6 12.6 (0.2) 19 6
v-5444 1667 ↑ - - ↑ - - ↑ - - 17.8 (0.2) 20 7 17.7 (0.2) 20 7
v-5544 1941 ↑ - - ↑ - - ↑ - - 25.0 (0.2) 21 7 28.3 (0.2) 24 7
v-5554 - ↑ - - ↑ - - ↑ - - ↑ - - ↑ - -

Fig. 5. Experimental results for the Cassini model

show that DCOI is the crucial factor that makes backward search a winning strategy
over forward search). Dynamic pruning has a minor impact in the case of backward
search on the Cassini model, but is an enabling factor for TDS, where it substantially

174 M. Bozzano, A. Cimatti, and F. Tapparo

reduces the number of iterations needed to reach convergence. In general, dynamic prun-
ing is more effective when lower-order cut sets are found earlier in the search (that is,
they are witnessed by shorter traces), hence its effectiveness is highly model-dependent.

7 Related Work

A large amount of work has been done in the area of probabilistic safety assessment
(PSA) and in particular on dynamic reliability [29]. Dynamic reliability is concerned
with extending the classical event or fault tree approaches to PSA by taking into con-
sideration the mutual interactions between the hardware components of a plant and the
physical evolution of its process variables [20]. For different approaches to dynamic
reliability see, e.g., [2, 12, 20, 24, 30]. These approaches are mostly concerned with the
evaluation (as opposed to generation) of a given fault tree. Concerning fault tree evalu-
ation, we also mention DIFTree [19], a methodology for the analysis of dynamic fault
trees, implemented in the Galileo tool [31]. The methodology is able to identify inde-
pendent sub-trees, translate them into suitable models, analyze them and integrate the
results of the evaluation. Different techniques can be used for the evaluation, e.g., BDD-
based techniques, Markov techniques or Monte Carlo simulation. Concerning fault tree
validation, we mention [28, 32], both concerned with automatically proving the consis-
tency of fault trees using model checking techniques; [32] presents a fault tree seman-
tics based on Clocked CTL (CCTL) and uses timed automata for system specification,
whereas [28] presents a fault tree semantics based on the Duration Calculus with Live-
ness (DCL) and uses Phase Automata as an operational model.

The FSAP platform has been developed within ESACS2 (Enhanced Safety Assess-
ment for Complex Systems) and ISAAC1 (Improvement of Safety Activities on Aero-
nautical Complex systems), two European-Union-sponsored projects involving various
research centers and industries from the avionics sector. For a more detailed description
of the project goals we refer to [6, 8, 9]. Within the project, the same methodology has
been also implemented in other platforms, see e.g. [1, 4, 15, 25]. Regarding model-
based safety analysis, we mention [17, 18], sharing some similarities with the ISAAC
approach. In particular, the integration of the traditional development activities with the
safety analysis activities, based on a formal model of the system, and the clear separa-
tion between the nominal model and the fault model, are ideas that have been pioneered
by ESACS [8]. The authors propose to integrate this approach into the traditional “V”
safety assessment process. Finally, we mention [22, 33, 34], sharing with ISAAC the
application field (i.e., avionics), and the use of NuSMV as a target verification language.

Finally, the routines used to extract the set of minimal cut sets are based on classical
procedures for minimization of boolean functions, specifically on the implicit-search
procedures described in [13, 14, 26, 27], based on Binary Decision Diagrams [10].

8 Conclusions

In this paper we have presented a broad range of algorithmic strategies for efficient
fault tree analysis of reactive systems. In particular, we have described algorithms

2 http://www.esacs.org

Symbolic Fault Tree Analysis for Reactive Systems 175

encompassing different directions for reachability analysis, and some useful optimiza-
tions. The experimental evaluation showed the complementarity of the search directions
and confirmed the impact of the optimizations on the overall performance.

In the future, we intend to investigate the following research directions. First, we in-
tend to explore the automatic combination of forward and backward search. Second, we
will explore an alternative symbolic implementation, using SAT-based bounded model
checking techniques [5]. As opposed to BDDs, that work by saturating sets of states,
these techniques are typically used to find single traces of bounded length. The chal-
lenge is to make these techniques complete; a possible solution could be the general-
ization of induction techniques. Furthermore, we also want to investigate a “hybrid”
approach combining BDD-based and SAT-based techniques into the same routine.

Acknowledgments. We wish to thank Antonella Cavallo from Alenia Aeronautica and
Massimo Cifaldi from AleniaSIA for allowing us to use the TDS model.

References

1. Abdulla, P.A., Deneux, J., Stålmarck, G., Ågren, H., Åkerlund, O.: Designing Safe, Reliable
Systems using Scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313,
Springer, Heidelberg (2006)

2. Aldemir, T.: Computer-assisted Markov Failure Modeling of Process Control Systems. IEEE
Transactions on Reliability R-36, 133–144 (1987)

3. Banach, R., Bozzano, M.: Retrenchment, and the Generation of Fault Trees for Static,
Dynamic and Cyclic Systems. In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166,
Springer, Heidelberg (2006)

4. Bieber, P., Castel, C., Seguin, C.: Combination of Fault Tree Analysis and Model Check-
ing for Safety Assessment of Complex System. In: Proceedings of Dependable Computing
EDCC-4: 4th European Dependable Computing Conference, Toulouse, France, October 23-
25, 2002. LNCS, vol. 2485, pp. 19–31. Springer, Heidelberg (2002)

5. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, Springer, Heidelberg (1999)

6. Bozzano, M., Cavallo, A., Cifaldi, M., Valacca, L., Villafiorita, A.: Improving Safety As-
sessment of Complex Systems: An industrial case study. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805, Springer, Heidelberg (2003)

7. Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA Safety Analysis Platform. Software
Tools for Technology Transfer 9(1), 5–24 (2007)

8. Bozzano, M., et al.: ESACS: An Integrated Methodology for Design and Safety Analysis of
Complex Systems. In: Proc. ESREL 2003, Balkema Publisher (2003)

9. Bozzano, M., et al.: ISAAC, a framework for integrated safety analysis of functional, geo-
metrical and human aspects. In: Proc. ERTS 2006 (2006)

10. Bryant, R.E.: Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams.
ACM Computing Surveys 24(3), 293–318 (1992)

11. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
checker. Software Tools for Technology Transfer 2(4), 410–425 (2000)

12. Cojazzi, G., Izquierdo, J.M., Meléndez, E., Perea, M.S.: The Reliability and Safety Assess-
ment of Protection Systems by the Use of Dynamic Event Trees. The DYLAM-TRETA
Package. In: Proc. XVIII Annual Meeting Spanish Nucl. Soc. (1992)

176 M. Bozzano, A. Cimatti, and F. Tapparo

13. Coudert, O., Madre, J.C.: Implicit and Incremental Computation of Primes and Essential
Primes of Boolean Functions. In: Proc. DAC 1992, IEEE Computer Society Press, Los
Alamitos (1992)

14. Coudert, O., Madre, J.C.: Fault Tree Analysis: 1020 Prime Implicants and Beyond. In: Proc.
RAMS 1993 (1993)

15. Deneux, J., Åkerlund, O.: A Common Framework for Design and Safety Analyses using
Formal Methods. In: Proc. PSAM7/ESREL 2004 (2004)

16. The FSAP platform. http://sra.itc.it/tools/FSAP
17. Joshi, A., Heimdahl, M.P.E.: Model-Based Safety Analysis of Simulink Models Using

SCADE Design Verifier. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP 2005.
LNCS, vol. 3688, Springer, Heidelberg (2005)

18. Joshi, A., Miller, S.P., Whalen, M., Heimdahl, M.P.E.: A Proposal for Model-Based Safety
Analysis. In: Proc. DASC 2005 (2005)

19. Manian, R., Dugan, J.B., Coppit, D., Sullivan, K.J.: Combining Various Solution Techniques
for Dynamic Fault Tree Analysis of Computer Systems. In: Proc. HASE 1998, IEEE Com-
puter Society Press, Los Alamitos (1998)

20. Marseguerra, M., Zio, E., Devooght, J., Labeau, P.E.: A concept paper on dynamic reliability
via Monte Carlo simulation. Math. and Comp. in Simulation 47, 371–382 (1998)

21. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publ., Dordrecht (1993)
22. Miller, S.P., Tribble, A.C., Heimdahl, M.P.E.: Proving the Shalls. In: Araki, K., Gnesi, S.,

Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, Springer, Heidelberg (2003)
23. The NuSMV model checker. http://nusmv.itc.it
24. Papazoglou, I.A.: Markovian Reliability Analysis of Dynamic Systems. In: Reliability and

Safety Assessment of Dynamic Process Systems, pp. 24–43. Springer, Heidelberg (1994)
25. Peikenkamp, T., Böede, E., Brückner, I., Spenke, H., Bretschneider, M., Holberg, H.-J.:

Model-based Safety Analysis of a Flap Control System. In: Proc. INCOSE 2004 (2004)
26. Rauzy, A.: New Algorithms for Fault Trees Analysis. Reliability Engineering and System

Safety 40(3), 203–211 (1993)
27. Rauzy, A., Dutuit, Y.: Exact and Truncated Computations of Prime Implicants of Co-

herent and Non-Coherent Fault Trees within Aralia. Reliability Engineering and System
Safety 58(2), 127–144 (1997)

28. Schäfer, A.: Combining Real-Time Model-Checking and Fault Tree Analysis. In: Araki, K.,
Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, Springer, Heidelberg (2003)

29. Siu, N.O.: Risk Assessment for Dynamic Systems: An Overview. Reliability Engineering
and System Safety 43, 43–74 (1994)

30. Smidts, C., Devooght, J.: Probabilistic Reactor Dynamics II. A Monte-Carlo Study of a Fast
Reactor Transient. Nuclear Science and Engineering 111(3), 241–256 (1992)

31. Sullivan, K.J., Dugan, J.B., Coppit, D.: The Galileo Fault Tree Analysis Tool. In: Proc. FTCS
1999, IEEE Computer Society Press, Los Alamitos (1999)

32. Thums, A., Schellhorn, G.: Model Checking FTA. In: Araki, K., Gnesi, S., Mandrioli, D.
(eds.) FME 2003. LNCS, vol. 2805, Springer, Heidelberg (2003)

33. Tribble, A.C., Lempia, D.L., Miller, S.P.: Software Safety Analysis of a Flight Guidance
System. In: Proc. DASC 2002 (2002)

34. Tribble, A.C., Miller, S.P.: Software Safety Analysis of a Flight Management System Verti-
cal Navigation Function - A Status Report. In: Proc. DASC 2003 (2003)

35. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. Technical
Report NUREG-0492, Systems and Reliability Research Office of Nuclear Regulatory Re-
search U.S. Nuclear Regulatory Commission (1981)

http://sra.itc.it/tools/FSAP
http://nusmv.itc.it

Computing Game Values for Crash Games

Thomas Gawlitza and Helmut Seidl

TU München, Institut für Informatik, I2
85748 München, Germany

{gawlitza,seidl}@in.tum.de

Abstract. We consider crash games which are a generalization of parity games
in which the play value of a play is an integer, −∞ or ∞. In particular, the
play value of a finite play is given as the sum of the payoffs of the moves of
the play. Accordingly, one player aims at maximizing the play value whereas
the other player aims at minimizing this value. We show that the game value of
such a crash game at position v, i.e., the least upper bounds to the minimal play
value that can be enforced by the maximum player in a play starting at v, can
be characterized by a hierarchical system of simple integer equations. Moreover,
we present a practical algorithm for solving such systems. The run-time of our
algorithm (w.r.t. the uniform cost measure) is independent of the sizes of occur-
ring numbers. Our method is based on a strategy improvement algorithm. The
efficiency of our algorithm is comparable to the efficiency of the discrete strat-
egy improvement algorithm developed by Vöge and Jurdzinski for the simpler
Boolean case of parity games [19].

1 Introduction

Crash games are a generalization of parity games where game positions have non-
negative ranks and additionally, each possible move of a player comes with a payoff
in Z. A play is played by two opponents, the ∨-player and the ∧-player. The ∨-player
wants to maximize the play value while the ∧-player wants to minimize it. The play
value of a finite play is determined as the sum of payoffs of moves chosen in the play.
The play value of an infinite play, on the other hand, is determined similarly as for parity
games: If the least rank of an infinitely often visited position is odd, then the ∨-player
wins, i.e., the play value is ∞. Accordingly, if the least rank of an infinitely often visited
position is even, then the ∧-player wins, i.e., the play value is −∞.

Thus, crash games are payoff games. The notable difference to mean-payoff games,
for instance, is the fact that the goal for crash games is not to maximize (resp. mini-
mize) the mean payoff during a play but the total payoff. Similar to mean-payoff parity
games [3], play values are not only determined by the payoff function but also by a rank
function. Also similar to mean-payoff parity games, winning strategies are no longer
necessarily positional (also called memoryless) [9,10]. Instead already for quite simple
crash games, unbounded memory is required. Another class of games related to crash
games are the longest shortest paths games from [13]. In contrast to our games, the
max player in longest shortest path games is bound to use a positional strategy which is
not the case in our setting. Also, longest shortest path games do not consider ranks for
positions in the game graph.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 177–191, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

178 T. Gawlitza and H. Seidl

In this paper we present basic techniques for dealing with crash games. In particular,
we show that computing the game values of a crash game can be reduced to solving
hierarchical systems of equations over the complete lattice Z = Z ∪ {−∞, ∞}. The
occurring equations are simple, i.e., they only use the operations maximum, minimum
as well as addition restricted to at most one non-constant argument. Since the lattice has
infinite strictly ascending and descending chains, extra insights are necessary to solve
hierarchical systems of such equations. Our main technical contribution therefore is to
provide a fast practical algorithm for solving these systems.

In hierarchical systems least and greatest fixpoint variables alternate. Such systems
naturally occur when model-checking finite-state systems w.r.t. temporal logics formu-
las (see, e.g., [1]). While classically, only two-valued logics are considered, more gen-
eral complete lattices have attracted attention recently [4,18]. The approaches in [4,18]
are restricted to finite lattices. In [17] the complete lattice of the non-negative integers
extended with ∞ is considered. This lattice is of infinite height and hierarchical systems
over this lattice allow to analyze quantitative aspects of the behavior of finite-state sys-
tems [17]. Opposed to that paper, we here allow also negative integers. Our algorithm
for solving hierarchical systems is based on strategy improvement. Strategy improve-
ment has been introduced by Howard for solving stochastic control problems [12,16].
For the two-valued logic case, strategy improvement algorithms has been suggested
for model-checking for the modal μ-calculus as well as for computing game values of
parity games [11,15,19].

Our strategy improvement algorithm works directly on the hierarchical system.
Thereby a strategy is a function which selects for every expression e1 ∨e2 (“∨” denotes
the maximum-operator) one of the subexpressions e1, e2. Thus, a strategy describes
which side of a maximum-expression should be used and characterizes a hierarchical
system in which maximum-operators do not occur any more. In general, strategy im-
provement algorithms try to find optimal strategies. Therefore they compute a valuation
for a given strategy which, if the strategy is not yet optimal, gives hints on how to im-
prove the strategy locally. In our case the valuation is given as the canonical solution of
the system which is described by the strategy.

We have not found a technique to apply this idea to general integer systems directly.
Instead, we first consider the case of integer systems where all solutions are guaranteed
to be finite. In this case, we can instrument the underlying lattice in such a way that the
resulting system has exactly one solution — from which the canonical solution of the
original system can be read off. The lattice obtained by our instrumentation is closely
related to the progress measures proposed by Jurdzinski for computing the winning po-
sitions in parity games [14]. Our technique is more general as it also allows to deal with
integers instead of booleans. The interesting idea of Jurdzinski (cast in our terminol-
ogy) is to instrument the Boolean lattice just to replace all greatest fixpoints by unique
fixpoints. By this, computing canonical solutions over the Boolean lattice is reduced
to computing least solutions over the instrumented lattice. A similar idea can also be
applied in the integer case — given that the canonical solution is finite. The resulting
algorithm, however, will not be uniform, i.e., its run-time (w.r.t. the uniform cost mea-
sure where, e.g., arithmetic operations are counted for O(1)) may depend on the sizes
of occurring numbers. Instead, our instrumentation allows us to construct a uniform

Computing Game Values for Crash Games 179

algorithm for computing canonical solutions (given that they are finite) through a gen-
eralization of the strategy iteration techniques in [5,8].

Using any method for computing finite canonical solutions as a subroutine, we solve
the unrestricted case in two stages. First, we design an algorithm which can deal with
positive infinities in the equation system. Repeatedly applying this algorithm then al-
lows us to deal with systems whose canonical solutions may both contain −∞ and ∞.

The rest of the paper is organized as follows. In section 2 we introduce crash games
and give simple examples. In section 3, we introduce hierarchical systems of simple
equations over Z , which we use as a tool for solving crash games. The corresponding
reduction will be discussed in section 4. In section 5, we present our key technical idea
for computing canonical solutions. There, we are first restricted to hierarchical systems
with a finite canonical solution. In section 6, we apply the developed technique to derive
a method for computing canonical solutions without this restriction. We conclude with
section 7.

2 Crash Games

In this section we introduce crash games. Such games are played by a ∨-player and
a ∧-player. They model the situation where two opponents want to maximize (resp.
minimize) their total sums of investments and rewards. With each play we therefore
associate a play value form the complete lattice Z = Z ∪ {−∞, ∞}, where −∞ and
∞ denote the least and the greatest element, respectively.

The crash game G itself is given by a finite labeled graph whose nodes are equipped
with non-negative ranks and whose edges carry payoffs in Z. We assume that every
node has at least one out-going edge — besides a distinguished sink node 0 indicating
the end of finite plays. Each non-sink node either is a ∨- or a ∧-node. At a ∨-node, the
∨-player may choose one of the out-going edges; likewise at a ∧-node, the ∧-player
has a choice. The value of a play reaching 0 is the sum of the payoffs of edges chosen
during the play. For infinite plays, the play values −∞ or ∞ are determined similarly
to the play values of plays in a parity game. Formally, we define a crash game as a tuple
G = (V∨, V∧, E, c, r) where

1. V∨ and V∧ are disjoint finite sets of positions that belong to the ∨-player and the
∧-player, respectively. The set of all positions is the set V = V∨ ∪ V∧ ∪ {0} where
0 /∈ V∨ ∪ V∧.

2. E ⊆ V 2 is the set of moves where {v}E �= ∅ for all v ∈ V∨ ∪ V∧ and {0}E = ∅.1

This means that every position besides the position 0 must have a successor. The
position 0 must not have a successor.

3. c : E → Z is the payoff function which associates a payoff to each move.
4. r : V∨ ∪ V∧ → N is the rank function which associates a natural number to each

position from V∨ ∪ V∧.

A finite play over G is a finite word π = v1 · · · vk with vk = 0 and (vi, vi+1) ∈ E
for all i = 1, . . . , k − 1. The play value valG(π) of the finite play π is the sum

1 For E ⊆ V 2 and V ′ ⊆ V , V ′E denotes the set {v2 ∈ V | ∃v1 ∈ V ′ such that (v1, v2) ∈ E}.

180 T. Gawlitza and H. Seidl

∑k−1
i=1 c((vi, vi+1)). Accordingly, an infinite play over G is an infinite word π =

v1v2 · · · with (vi, vi+1) ∈ E for all i ∈ N. Assume that m denotes the natural num-
ber min{r(v) ∈ V∨ ∪ V∧ | v occurs infinitely often in π}. The play value valG(π)
then is ∞ if m is odd and −∞ otherwise. By PlayG we denote the set of all plays
over G and by PlayG(v) the set of all plays starting at v ∈ V , i.e., PlayG(v) =
PlayG ∩ {v} · (V ω ∪ V ∗).

For a finite play π = v1 · · · vk (resp. infinite play π = v1v2 · · ·) the set of prefixes
of π is the set {v1 · · · vi | i = 0, . . . , k} (resp. {v1 · · · vi | i ∈ N0}) which we denote
by Prefix (π). The set of all prefixes of plays over G ending in a ∨-position (resp. ∧-
position) is denoted by Prefix∨(G) (resp. Prefix∧(G)). For a play prefix π = v1 · · · vk

we write c(π) for the sum
∑k−1

i=1 c((vi, vi+1)). A ∨-strategy (resp. ∧-strategy) is a func-
tion f : Prefix∨(G) → V (resp. f : Prefix∧(G) → V) where, for every play prefix
π, π · f(π) is again a play prefix. A ∨-strategy (resp. ∧-strategy) f is positional iff
f(πv) = f(π′v) for all play prefixes πv, π′v ending in the same ∨-position v (resp.
∧-position v). We write F∨(G) for the set of all ∨-strategies and F∧(G) for the set
of all ∧-strategies. The play π is consistent with the ∨-strategy f (resp. ∧-strategy
f) iff for every finite prefix π′v of π, f(π′) = v whenever π′ ∈ Prefix∨(G) (resp.
π′ ∈ Prefix∧(G)). For a set P of plays, we write P |f for the set of plays from P that
are consistent with f . For a position v, we define the game value 〈〈v〉〉G by

〈〈v〉〉G =
∨

f∨∈F∨(G)
∧

{valG(PlayG(v)|f∨)}

where, for X ⊆ Z ,
∨

X (resp.
∧

X) denotes the least upper bound (resp. greatest
lower bound) of X . Thus, 〈〈v〉〉G is the least upper bound to all play values the ∨-player
can enforce. These definitions are analogous to the definitions in [18] for multi-valued
model checking games. For infinite plays, we inherit the winning condition from parity
games as considered, e.g., in [6,19]. For the two-valued case (as well as for the finite-
valued case in [18]), however, there exist optimal strategies for each player which are
positional. As shown in the following example, this does not hold for crash games.

Example 1

2 0
1 0

∨

Consider the game G = (V∨, V∧, E, c, r) with V∨ = {v},
V∧ = ∅, E = {(v, v), (v,0)}, c((v, v)) = 1, c((v,0)) = 0
and r(v) = 2 (cf. the fig.). The game value for v is ∞. This
value, though, cannot be realized by any individual play. In-
stead there is, for every z ∈ Z, a ∨-strategy fz such that valG(π) = z for the single
play π ∈ PlayG(v)|fz . For z > 0, this strategy, though, is not positional. ��

Note that for the two-valued case, the algorithms and constructions heavily rely on the
fact that there are optimal positional strategies for both players. For a crash game G =
(V∨, V∧, E, c, r) we only have the remarkable property that the choice only depends on
the current payoff and position. I.e., for a given z ∈ Z with z ≤ 〈〈v〉〉G , there exists a ∨-
strategy fz with

∧
{valG(PlayG(v)|fz)} ≥ z and the property that fz(πv) = fz(π′v)

whenever c(πv) = c(π′v).

Computing Game Values for Crash Games 181

3 Hierarchical Systems of Simple Integer Equations

In the next section, we will reduce the problem of computing game values of crash
games to the problem of solving hierarchical systems of simple integer equations. An
integer equation x = e is called simple iff the right-hand side e is of the form

e ::= c | x | e + a | e1 ∧ e2 | e1 ∨ e2

where x is a variable, e, e1, e2 are expressions, and a, c ∈ Z. Note that we restrict ad-
dition such that the second argument is always a constant. These second arguments are
called addition constants whereas other constants c are called basic constants. The op-
erator +a has highest precedence, followed by ∧ and finally ∨ which has lowest prece-
dence. A system E of simple integer equations is a finite sequence x1 = e1, . . . ,xn =
en of simple integer equations where x1, . . . ,xn are pairwise distinct variables. Let us
denote the set of variables {x1, . . . ,xn} occurring in E by X. The system E is called
conjunctive (disjunctive) iff no right-hand side contains the maximum-operator “∨”
(minimum-operator “∧”). For a variable assignment μ : X → Z an expression e is
mapped to a value [[e]]μ ∈ Z as follows:

[[c]]μ = c [[x]]μ = μ(x) [[a + e]]μ = a + [[e]]μ
[[e1 ∧ e2]]μ = [[e1]]μ ∧ [[e2]]μ [[e1 ∨ e2]]μ = [[e1]]μ ∨ [[e2]]μ

where x is a variable, e, e1, e2 are expressions, and a, c ∈ Z. Here, we extend the
operation “+” to ±∞ by: x + (−∞) = (−∞) + x = −∞ for all x and x + ∞ =
∞+x = ∞ for all x > −∞. Thus, “+” distributes over ∨ and ∧. Assume that E denotes
the system x1 = e1, . . . ,xn = en. As usual, a solution of E is a variable assignment
μ which satisfies all equations of E , i.e. μ(xi) = [[ei]]μ for i = 1, . . . , n. We also use
the term fixpoint instead of solution. We call a variable assignment μ a pre-solution of
E iff μ(xi) ≤ [[ei]]μ for i = 1, . . . , n and a post-solution of E iff μ(xi) ≥ [[ei]]μ for
i = 1, . . . , n. Note that the function [[e]] : (X → Z) → Z is monotonic for every
expression e.

A hierarchical system H = (E , r) of simple integer equations consists of a system
E of simple integer equations and a rank function r mapping the variables xi of E to
natural numbers r(xi) ∈ {1, . . . , d}, d ∈ N. For variables with odd (resp. even) rank,
we are interested in greatest (resp. least) solutions. Further, the variables of greater
ranks are assumed to live within the scopes of the variables with smaller ranks. We call
the resulting solution canonical. In order to define the canonical solution formally, let
X = {x1, . . . ,xn} and X��j denote the set of variables xi with r(xi) �� j where ��∈
{=, <, >, ≤, ≥}. Then the equations xi = ei of E with xi ∈ X≥j define a monotonic
mapping [[E , r]]j from the set X<j → Z of variable assignments with domain X<j into
the set X≥j → Z of variable assignments with domain X≥j . Assume that j is even,
i.e., corresponds to a least solution. Given the mapping [[E , r]]j+1, the mapping [[E , r]]j
is given by:

[[E , r]]j ρ = μ + [[E , r]]j+1(ρ + μ)

where ρ : X<j → Z is a variable assignment and μ : X=j → Z is the least variable
assignment such that

μ(xi) = [[ei]](ρ + μ + [[E , r]]j+1(ρ + μ))

182 T. Gawlitza and H. Seidl

for all xi ∈ X=j . Here, the operator “+” denotes combination of two variable assign-
ments with disjoint domains. The case where j is odd, i.e., corresponds to a greatest
solution is analogous. Finally, the canonical solution μ∗ is given by [[E , r]]1 applied to
the empty variable assignment {}. The next example illustrates how one can compute
the canonical solution by a transfinite fixpoint iteration.

Example 2. Consider the system of equations

x1 = 5 + x2 ∧ 7 x2 = x3 x3 = −5 + x1 ∨ 1

where r(x1) = r(x2) = 1 and r(x3) = 2. Thus x3 lives within the scope of x1,x2.

0 1 2 3
x1 ∞ 7 7 7
x2 ∞ ∞ ∞ 2

x3
0 1

−∞ ∞
0 1

−∞ ∞
0 1

−∞ 2
0 1

−∞ 2

The fixpoint iteration is illustrated in the
table at the right-hand side. The column
labeled with i corresponds to the i-th
outer iteration step. The inner iterations
are illustrated by the tables in the row for
the variables x3. As for the outer iteration,
the column labeled with i contains the value after the i-th inner iteration step. Since we
are interested in greatest solutions for the variables x1 and x2, the outer iteration starts
with the value ∞ for these variables. Then, the inner iteration for x3 starts with −∞
and reaches a fixpoint after one iteration step. Then, the outer iteration goes on with the
new values for x1, x2 and x3. Finally, we get the canonical solution after three outer
iteration steps. ��

Note that in general transfinite fixpoint iterations are necessary for computing canon-
ical solutions. Related systems over non-negative integers have been considered in
[17]. Zero-one-valued systems using minimum and maximum only are also known as
Boolean fixpoint equations and can be used for checking validity of propositional μ-
calculus formulas interpreted over finite labeled transition systems or for computing
the winning positions of parity games [1].

4 Computing Game Values

Instead of determining game values of crash games directly, we reduce this problem
to solving hierarchical systems of simple integer equations. Although there is a one-
to-one correspondence, we are here interested in the reduction from crash games to
hierarchical systems only. Let G = (V∨, V∧, E, c, r) denote a crash game. We construct
a corresponding system EG of simple integer equations which uses variables from the
set X = {xv | v ∈ V∨ ∪V∧} as follows. For each position v ∈ V∨, we add the equation

xv =
∨

v′∈{v}E([v′] + c(v, v′))
and, likewise, for each position v ∈ V∧, we add the equation

xv =
∧

v′∈{v}E([v′] + c(v, v′))

where [v] denotes the variable xv if v ∈ V∨ ∪ V∧ and [0] = 0. Then the hierarchical
system HG of simple integer equations which corresponds to the crash game G is the
pair (EG, rG) where rG(xv) = r(v) for v ∈ V∨ ∪ V∧.

Computing Game Values for Crash Games 183

Example 3

1

2

01

10

−2
∨

∧

The Fig. on the right shows a crash game with two positions,
say, 1 and 2 of the respective ranks. Then the corresponding
system of integer equations is given by

x1 = x2 + 1 ∨ −2 x2 = x1 ∧ 10

where the rank of xi equals i. ��

Theorem 1. For a crash game G = (V∨, V∧, E, c, r), let μ∗ denote the canonical so-
lution of HG. Then 〈〈v〉〉G = μ∗(xv) for all v ∈ V∨ ∪ V∧. Furthermore HG can be
constructed in time O(|V∨ ∪ V∧| + |E|). Vice-versa, given a hierarchical system of
equations H we can compute a crash game G = (V∨, V∧, E, c, r) in time O(|E|) whose
game values corresponds to the values of the canonical solution of H. ��

Note that theorem 1 also holds if we define 〈〈v〉〉G as
∧

f∧∈F∧(G)
∨

{valG(π) | π ∈
PlayG,v|f∧}. Thus, we get the following duality theorem as a corollary:

Theorem 2. Let G = (V∨, V∧, E, c, r) be a crash game and v ∈ V∨ ∪ V∧ ∪ {0}. Then
〈〈v〉〉G =

∧
f∧∈F∧(G)

∨
{valG(PlayG(v)|f∧)}. ��

5 Solving Hierarchical Systems

In this section, we present our strategy improvement algorithm for computing canonical
solutions. Assume that H = (E , r) is a hierarchical system of simple equations where
the range of r is contained in the set {1, . . . , d}. Instead of solving the original system
over Z , we consider a corresponding system over an instrumented lattice. In case that
all solutions of this system are finite, the instrumentation will assure that the canonical
solution is the only solution. The instrumentation technique here is a generalization
of the instrumentation used in [8] to determine least solutions of systems of integer
equations. We instrument Z by introducing one extra component from N for every
j = 1, . . . , d. Thus, we consider the instrumented lattice Dd = Dd ∪ {−∞, ∞} with
Dd = Z × N

d where −∞ is the least and ∞ is the greatest element and the ordering on
Dd (the finite elements of Dd) is given by:

(a, j1, . . . , jd) < (a′, j′1, . . . , j
′
d)

iff a < a′ or a = a′ and there exists some 1 ≤ k ≤ d with the following properties:

1. ji = j′i for all i < k;
2. jk > j′k whenever k is even;
3. jk < j′k whenever k is odd.

Note that values get larger w.r.t. this ordering when components corresponding to great-
est fixpoints are increased or components corresponding to least fixpoints are decreased.
Addition on the finite elements of Dd operates on all components simultaneously, i.e.:

(a, j1, . . . , jd) + (a′, j′1, . . . , j
′
d) = (a + a′, j1 + j′1, . . . , jd + j′d)

184 T. Gawlitza and H. Seidl

Note that + distributes over ∨ and ∧. The evaluation of an expression e over Dd will be
denoted by [[e]]�. As for expressions over Z , [[e]]� is monotonic.

A slightly different choice is made in [8] where an extra operator inc is introduced for
incrementing the extra component. Accordingly, our lifting transformation differs from
the one chosen in [8]. In order to lift an equation xi = ei to Dd, we replace every finite
constant c ∈ Z occurring in ei with (c, 0, . . . , 0). Moreover, we replace every equation
xi = ei with xi = ei + 1r(xi) where 1k is the (d + 1)-tuple consisting of 0 everywhere
besides the (k+1)-th component where it equals 1. We denote the lifted system of simple
integer equations by E�. To simplify notations we define β : Dd → Z by

β(−∞) = −∞ β(∞) = ∞ β(z, j1, . . . , jd) = z.

The following theorem states that we can recover the canonical solution of the original
system from the canonical solution of the corresponding lifted system.

Theorem 3. Assume that (E , r) is a hierarchical system. Let E� be the lifted system
corresponding to E and let μ� be the canonical solution of the hierarchical system
(E�, r). Then β ◦ μ� is the canonical solution of (E , r). ��

Our key observation is that finite solutions of lifted systems are unique. Here, a variable
assignment μ is called finite iff −∞ < μ(xi) < ∞ for all variables xi. For an equation
system E , let aE denote the sum of the smallest basic constant together with all neg-
ative addition constants. Moreover, let bE denote the sum of the largest basic constant
together with all positive addition constants. We have:

Theorem 4. Assume that E� is the system of lifted equations corresponding to the hi-
erarchical system (E , r) with n variables where nk variables are of rank k. Then:

1. E� has at most one finite solution.
2. If −∞ < μ(xi) < ∞ for a solution μ of E� and a variable xi, then μ(xi) =

(a, j1, . . . , jd) for some a ∈ [aE , bE] and j1, . . . , jd ∈ N with 0 ≤ jk ≤ nk.
3. If E� is conjunctive, the greatest solution of E� can be computed in time O(d·n·|E|).

Proof. To simplify the proof, here we additionally allow the constants −∞ and ∞ to
occur as basic constants. In order to prove assertion 1, we first consider the case of a
lifted system which consists in exactly one equation. W.l.o.g. consider the equation

x = x + a ∧ b ∨ c

where (0, . . . , 0) �= a ∈ Dd and b, c ∈ Dd. Assume that μ is a finite solution of the
above system. We show that μ is given by

μ(x) =
{

c if a < (0, . . . , 0)
b ∨ c if a > (0, . . . , 0).

Note that necessarily c ≤ μ(x) ≤ b ∨ c. If b ≤ c, the statement follows immediately.
Assume therefore that b > c. First assume that a > (0, . . . , 0) and c ≤ μ(x) < b∨c = b.
Then μ(x) = [[x + a]]�μ — which is impossible for finite values. Now assume that
a < (0, . . . , 0) and c < μ(x) ≤ b ∨ c = b. Then μ(x) = [[x + a]]�μ — which is again
impossible for finite values.

Computing Game Values for Crash Games 185

Now we consider the general case. We show assertion 1 and 2 simultaneously. There-
fore, we first introduce the following notations. Let E� denote a system of equations over
Dd. We call a sequence π of expressions e1, . . . , ek a path iff for i = 1, . . . , k−1 either
ei is a variable xj and xj = ei+1 is an equation of E� or ei+1 is an immediate subex-
pression of ei. The path π is short iff all expressions ei that are variables are distinct. In
order to define the weight of a system of simple integer equations, we set w(e) = a, if
e denotes an expression e′ + a, w(e) = c, if e denotes an expression c, and, w(e) = 0
otherwise. Thereby e, e′ denote expressions, a denotes an addition constant and c a
basic constant. Then, the sum

∑
i=1,...,k w(ei) is called the weight of the path. Let P

denote the set of all short paths ending with a finite basic constant. We define wmax (E�)
(resp. wmin(E�)) as the maximal (resp. minimal) weight of paths in P . Furthermore,
for j = 1, . . . , d, we define wj(E�) to be the maximum of the j + 1-th component of
the weights of paths in P . We call [wmin , wmax] and wj for j = 1, . . . , d the weights
of E�.

Let E� be the lifted system x1 = e1, . . . ,xn = en. Assume that μ is a finite solution
of E�. We show by induction on the number of variables occurring in right-hand sides
that the following holds:

1. μ is the only finite solution of E�;
2. μ(x) ∈ [wmin (E�), wmax (E�)] for every variable x and
3. the (j + 1)-th component of μ(x) is less than or equal to wj(E�).

The statement is obviously fulfilled if there are no variables in right-hand sides. For the
induction step let xi be a variable that occurs in a right-hand side of E�, and consider
the equation xi = ei of E�.

If ei does not contain xi, we can substitute ei everywhere in the remaining equations
for xi to obtain a system E�′ with the same set of solutions and the same weights. Since
xi does not occur in right-hand sides any more, the result follows by the induction
hypothesis.

Otherwise, we first have to replace the equation xi = ei by an equation xi = e s.t.
(1) e does not contain the variable xi and (2) the systems xi = eiσ and xi = eσ have
the same set of finite solutions for every substitution σ mapping variables other than
xi to finite values. Then replacing xi = ei by xi = e will preserve the set of finite
solutions. A suitable expression e is constructed as follows. By using distributivity, we
rewrite the equation xi = ei into

xi = xi + a ∧ e′1 ∨ e′2

where xi+a∧e′1∨e′2 is in disjunctive normal form. Given e′ as e′1∨e′2 if a > (0, . . . , 0)
and as e′2 if a < (0, . . . , 0), we get, from our considerations for a single equation, that
the systems xi = eiσ and xi = e′σ (which consist of a single equation) have the same
set of finite solutions for every substitution σ mapping variables other than xi to finite
values. Since e′1 ∨ e′2 and e′2 are in disjunctive normal form and have one occurrence of
the variable xi less than e, this process can be repeated to eliminate all occurrences of
the variable xi. Doing so, an expression e with the desired properties can be obtained.
Thus, we can replace the equation xi = ei with xi = e and substitute every occurrence
of xi in right-hand sides with e to obtain a system E�′ of equations which has the same

186 T. Gawlitza and H. Seidl

set of finite solutions as E�. Furthermore the weights of E�′ are less than or equal to the
weights of E�. Since xi does not occur in a right-hand side of E�′, we can apply the
induction hypothesis to finish the proof.

The above implies assertion 1. Since

[wmin(E�), wmax (E�)] ⊆ [(aE , 0, n2, . . .), (bE , n1, 0, . . .)]

and wj(E�) ≤ nj for j = 1, . . . , d assertion 2 follows for finite solutions. Non-finite
solutions can be reduced to the finite case by removing all infinite variables. The third
assertion holds, since, by similar arguments as in [7], n rounds of Round-Robin iteration
suffice to compute μ. Since elements in Dd are (d+1)-tuples, addition and comparison
has uniform complexity O(d). ��

In particular, theorem 4 implies that finite values in solutions are bounded:

Corollary 1. Assume that μ∗ denotes the canonical solution of a hierarchical system
(E , r) over Z . Then (1) μ∗(xi) = −∞ whenever μ∗(xi) < aE and (2) μ∗(x) = ∞
whenever μ∗(xi) > bE . ��

Note that this corollary has important consequences for crash games. It implies that
every finite game value lies in the interval [aE , bE].

Now assume that the canonical solution μ∗ of the hierarchical system (E , r) over
Z and hence also the canonical solution μ� of the corresponding lifted hierarchical
system (E�, r) is finite and thus by theorem 4 the only finite solution. By theorem 3 our
problem of computing μ∗ reduces to the computation of μ�. Assume that E� consists of
the equations xi = ei, i = 1, . . . , n, and let a�

E and b�
E denote the corresponding lifted

constants:

a�
E = (aE , 0, n2, 0, n4 . . .) b�

E = (bE , n1, 0, n3, 0, . . .)

where nk is the number of variables of rank k. In order to compute μ�, we replace each
equation xi = ei of E� with xi = ei ∧ b�

E ∨ a�
E . For simplicity, we denote the resulting

system again by E�. Since E� does not have non-finite solutions any more, by theorem 4,
μ� is now the only solution of E�. In order to compute μ� we propose strategy iteration.

Let M∨(E�) denote the set of all ∨-expressions in E�. A strategy π is a function
mapping every expression e1 ∨e2 in M∨(E�) to one of the subexpressions e1, e2. Given
a strategy π together with an expression e, we write eπ for the expression obtained by
recursively replacing every ∨-expression in E� by the respective subexpression selected
by π. Formally, eπ is given as:

cπ = c (e1 ∧ e2)π = e1π ∧ e2π xiπ = xi

(e + a)π = eπ + aπ (e1 ∨ e2)π = (π(e1 ∨ e2))π

Accordingly, the system E�(π) of equations extracted from E� via the strategy π is the
system xi = eiπ, i = 1, . . . , n, assuming that E� is the system xi = ei, i = 1, . . . , n.
E�(π) is a conjunctive system.

Assume that μ�
π denotes the greatest solution of E�(π) for a strategy π. By mono-

tonicity, μ�
π ≤ μ� for all strategies π. Given a strategy π and the greatest solution μ�

π of

Computing Game Values for Crash Games 187

Algorithm 1. Strategy Improvement Algorithm

/* The system E� has only finite solutions. */
μ ← variable assignment which maps every variable to −∞;

while (μ is not a solution of E�) {
π ← P (μ);

μ ← greatest solution of E�(π);
}
return μ;

E�(π) our goal is to determine an improved strategy π′ such that the greatest solution
μ�

π′ of E�(π′) is nearer to μ� than μ�
π, i.e. μ�

π < μ�
π′ ≤ μ�. Thereby we pursue the policy

to modify π at all expressions e = e1 ∨ e2 where [[π(e)]]�μ�
π �= [[e]]�μ�

π simultaneously.
Therefore, we define the strategy P (μ) induced by a variable assignment μ by:

P (μ)(e1 ∨ e2) =

{
e1 if [[e1]]

�μ ≥ [[e2]]
�μ

e2 if [[e1]]
�μ < [[e2]]

�μ

The following lemma implies that we can consider P (μ�
π) as an improvement of π.

Lemma 1. Let μ� denote the only solution of the system E�. Let μ < μ� be a pre-
solution of E�. Let μ′ denote the greatest solution of E�(P (μ)). Then μ < μ′.

Proof. Since μ� is the only solution of E�, μ is no solution of E�. By the definition
of P , μ is also a pre-solution of E�(P (μ)) and no solution of E�(P (μ)). Since μ is a
pre-solution, Knaster-Tarski’s fixpoint theorem implies that μ ≤ μ′. Moreover, μ �= μ′,
since μ is no solution. ��

According to lemma 1, we can compute μ� using alg. 1. For the correctness of alg. 1
consider the following argumentation. Obviously, alg. 1 returns the unique solution μ�

of E� whenever it terminates. Let π1, π2, . . . denote the sequence of occurring strategies.
Since the program variable μ is always the greatest solution of E�(π) for some strategy
π, μ is always a pre-solution of E� and μ ≤ μ�. Therefore, by lemma 1, the greatest
solutions μ�

πi
of E�(πi) form a strictly increasing sequence. In particular no strategy

occurs twice in the sequence π1, π2, Since the total number of strategies is bounded,
the algorithm eventually terminates. For a precise characterization of the run-time, let
Π(m) denote the maximal number of updates of strategies necessary for systems with
m ∨-expressions. We have:

Theorem 5. Assume that (E , r) is hierarchical system with n variables and m ∨-
expressions where the canonical solution μ∗ of (E , r) is finite. Then μ∗ can be computed
by strategy iteration in time O(d · n · |E| · Π(m + n)). ��

The following example illustrates a run of alg. 1.

Example 4. Consider the system (E , r) given by:

x1 = x2 + −1 ∧ 10 x2 = x1 ∧ x2 + 1 ∨ 0

188 T. Gawlitza and H. Seidl

where r(x1) = 1 and r(x2) = 2. The canonical solution maps x1 to −1 and x2 to 0.
The corresponding lifted system E� is given by

x1 = ((x2+(−1, 0, 0) ∧ (10, 0, 0))+(0, 1, 0)) ∧ (11, 1, 0) ∨ (−1, 0, 1)
x2 = ((x1 ∧ x2+(1, 0, 0) ∨ (0, 0, 0))+(0, 0, 1)) ∧ (11, 1, 0) ∨ (−1, 0, 1)

where we already have added the safe lower and upper bounds. After the first iteration,
the value of the program variable μ is the variable assignment μ0 mapping every vari-
able to the lower bound (−1, 0, 1). The resulting strategy P (μ0) gives as the system:

x1 = (−1, 0, 1) x2 = (0, 0, 0)+(0, 0, 1) ∧ (11, 1, 0)

with the obvious greatest solution. Accordingly, the next improvement results in:

x1 = ((x2+(−1, 0, 0) ∧ (10, 0, 0))+(0, 1, 0) ∧ (11, 0, 0)
x2 = (0, 0, 0)+(0, 0, 1) ∧ (11, 1, 0)

giving us the unique finite solution of E� that corresponds to the canonical solution. ��

The efficiency of strategy iteration crucially depends on the size of the factor Π(m).
In practical implementations this factor seems to be surprisingly small. Interestingly,
though, it is still open whether (or: under which circumstances) the trivial upper bound
of 2m for Π(m) can be significantly improved [19,2].

6 General Canonical Solutions

In this section we show how the restriction to finite canonical solutions can be lifted.
The idea is to successively identify variables which are −∞ or ∞ in the canonical
solution and to remove these from the system until the remaining system has a finite
canonical solution. Let B = {0 < 1} denote the Boolean lattice, and consider the
mappings α−∞ : Z → B and α∞ : Z → B defined by:

α−∞(−∞) = 0 α−∞(z) = 1 if z > −∞
α∞(∞) = 1 α∞(z) = 0 if z < ∞

The mapping α−∞ commutes with arbitrary least upper bounds whereas the mapping
α∞ commutes with arbitrary greatest lower bounds. Additionally, we have:

α−∞(x + a) = α−∞(x) α∞(x + a) = α∞(x)
α−∞(x ∨ y) = α−∞(x) ∨ α−∞(y) α∞(x ∨ y) = α∞(x) ∨ α∞(y)
α−∞(x ∧ y) = α−∞(x) ∧ α−∞(y) α∞(x ∧ y) = α∞(x) ∧ α∞(y)

where x, y ∈ Z and a ∈ Z. Thus, the mappings α−∞ and α∞ are homomorphisms
mapping the operations “+ a”, “∧”, and “∨” on Z to logical connectivities. Using these
abstractions we define, for a system E of equations over Z , the system E−∞ of equations
over B as the system obtained from E by applying α−∞ to all constants and substituting
the operators accordingly. Analogously, we define the system E∞ of equations over B
using the abstraction α∞. The following lemma enables us to identify some variables
that are −∞ or ∞ in the canonical solution.

Computing Game Values for Crash Games 189

Lemma 2. Assume (E , r) is a hierarchical equation system over Z with canonical so-
lution μ∗. Let μ∗

−∞ and μ∗
∞ denote the canonical solutions of (E−∞, r) and (E∞, r),

respectively. Then (1) μ∗(xi) = −∞ whenever μ∗−∞(xi) = 0 and (2) μ∗(xi) = ∞
whenever μ∗

∞(xi) = 1. ��

In order to deal with the second source of infinities we introduce the following notions.
For z ∈ Z , we write (E∨z, r) for the system obtained from (E , r) by replacing xi = ei

with xi = ei ∨ z for every variable xi with odd rank. Accordingly, we write (E∧z , r)
for the system obtained from (E , r) by replacing xi = ei with xi = ei ∧ z for every
variable xi with even rank. We have:

Lemma 3. Consider a hierarchical system (E , r) of integer equations. Assume that μ∗

denotes the canonical solution of (E , r), and that μaE and μbE denote the canonical
solutions of (E∨aE−1, r) and (E∧bE+1, r), respectively. Then:
1. μ∗ ≤ μaE and μbE ≤ μ∗;
2. μaE = μ∗ whenever μaE (xi) ≥ a for all variables xi of odd rank;
3. μbE = μ∗ whenever μbE (xi) ≤ b for all variables xi xi of even rank. ��

In order to compute the solution of a hierarchical system of simple integer equations,
we proceed in two steps. First, we only consider systems with canonical solutions μ∗

which never return −∞, i.e. μ∗(xi) > −∞ for every variable xi.

Theorem 6. Assume that (E , r) is a hierarchical system of simple integer equations
with n variables and m occurrences of “∨” where the canonical solution μ∗ never
returns −∞. Then μ∗ can be computed in time O(d · n2 · |E| · Π(m + n)).

Proof. Assume that E consists of the equations xi = ei for i = 1, . . . , n. Let μ∞
denote the canonical solution of (E∞, r). In the first stage, we remove all variables xi

with μ∞(xi) = 1. That means that we obtain a system E ′ from E by removing all
equations xi = ei s.t. μ∞(xi) = 1 and replacing all occurrences of these variables
in right-hand sides by the constant ∞. The hierarchical system (E ′, r) is equivalent to
(E , r) and moreover (E ′∞, r) is equivalent to (E∞, r) for the remaining variables.

For the second stage, assume w.l.o.g. that for all variables xi of (E , r), μ∞(xi) = 0.
Now let b := bE denote the upper bound of E for finite values. Then by corollary 1
μ∗(xi) ≤ b, if μ∗(xi) ∈ Z. Since the canonical solution μb of (E∧b+1, r) is finite, it
can be computed by strategy iteration according to theorem 5.

If μb(xi) ≤ b for all variables xi we are done, since lemma 3 implies that μ∗ = μb.
Otherwise, μb(xi) > b for some variable xi which (using corollary 1) implies that
μ∗(xi) = ∞. Then we can again remove the equation for xi and replace all occurrences
of the variable xi in right-hand sides of the remaining equations by ∞ to obtain an
equivalent system.

Repeating this two-stage procedure for the resulting system with fewer variables may
identify more variables of value ∞ until either all variables are found to obtain values ∞
or have values at most b. Then we have found the canonical solution μ∗. Summarizing,
we apply the sub-routine for finite canonical systems at most n times for computing
the abstractions and another n times for the bounded versions of the integer system —
giving us the complexity statement. ��

190 T. Gawlitza and H. Seidl

In the second step, we also lift the restriction that canonical solutions should never
return −∞. The key idea is now to repeatedly use the abstraction α−∞ together with
the algorithm from theorem 6.

Theorem 7. Assume that (E , r) is a hierarchical system of simple integer equations
with n variables and m occurrences of the maximum operator. Then the canonical
solution can be computed in time O(d · n3 · |E| · Π(m + n)). ��
Proof. Assume that E consists of the equations xi = ei for i = 1, . . . , n, and that μ∗

is the canonical solution of (E , r). Let μ−∞ denote the canonical solution of (E−∞, r).
In the first stage, we remove all variables xi with μ−∞(xi) = 0. In the second stage
therefore, μ−∞(xi) = 1 for all variables xi. Let further a = aE denote the lower bound
of finite values in the canonical solution of (E , r). Let μaE denote the canonical solution
of (E∨aE−1, r). By construction, μaE never returns −∞. Thus we can apply theorem 6
to compute μaE . Analogous as in the proof for theorem 6, we compute μaE . This will
provide us either with some new variables xi with μ∗(xi) = −∞ or verify that μaE

already equals μ∗. This two-stage procedure will be repeated until we have found the
canonical solution.

Thus, similar to the proof of theorem 6 we repeatedly remove variables for which
μ−∞ returns 0 followed by the computation of the canonical solution of a hierarchical
system whose canonical solution never returns −∞. Since by theorem 6, the complexity
of the corresponding sub-routine is O(d ·n2 · |E| ·Π(m′)) for m′ = m+n, the assertion
follows. ��
Thus, using theorem 1 we have deduced our main theorem for crash games:

Theorem 8. Assume that G = (V∨, V∧, E, c, r) is a crash game. Let V = V∨ ∪ V∧.
The values 〈〈v〉〉G , v ∈ V can be computed by a strategy improvement algorithm in time
O(d · |V |3 · |G| · Π(|G|)), where |G| = |V | + |E| and d denotes the maximal rank of a
position occurring in G. ��

7 Conclusion

In this paper, we have introduced the concept of crash games where each player aims
at optimizing the total payoff of a play. Although crash games do not admit optimal
positional strategies, we succeeded in characterizing their game values by canonical
solutions of hierarchical systems of simple integer equations.

We then have shown how the canonical solution of a hierarchical system of simple
integer equations can be computed. For that, we used an instrumentation of the under-
lying lattice to obtain a lifted system of equations where finite solutions are unique. We
exploited this insight to design a strategy iteration algorithm for hierarchical systems
with finite canonical solutions. This algorithm is quite natural and comparable in its ef-
ficiency with the discrete strategy iteration algorithm for the Boolean case [19]. We then
showed how general hierarchical systems of simple integer equations can be solved by
iteratedly solving systems with finite canonical solutions only.

Using our algorithm for hierarchical systems, we are thus able to determine the game
values of crash games. Further investigations are needed for automatically designing
strategies with guaranteed payoffs.

Computing Game Values for Crash Games 191

References

1. Arnold, A., Niwinski, D.: Rudiments of μ-Calculus. In: Studies in Logic and The Founda-
tions of Computer Science, vol. 146, North-Holland, Amsterdam (2001)

2. Bjorklund, H., Sandberg, S., Vorobyov, S.: Complexity of Model Checking by Iterative Im-
provement: the Pseudo-Boolean Framework. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003.
LNCS, vol. 2890, pp. 381–394. Springer, Heidelberg (2004)

3. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In: LICS, pp.
178–187. IEEE Computer Society, Los Alamitos (2005)

4. Chechik, M., Devereux, B., Easterbrook, S.M., Gurfinkel, A.: Multi-valued symbolic model-
checking. ACM Trans. Softw. Eng. Methodol. 12(4), 371–408 (2003)

5. Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A Policy Iteration Algorithm for
Computing Fixed Points in Static Analysis of Programs. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer, Heidelberg (2005)

6. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract).
In: FOCS, pp. 368–377. IEEE Computer Society Press, Los Alamitos (1991)

7. Gawlitza, T., Reineke, J., Seidl, H., Wilhelm, R.: Polynomial Exact Interval Analysis Revis-
ited. Technical report, TU München (2006)

8. Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In: De Nicola,
R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg (2007)

9. Gimbert, H., Zielonka, W.: When can you play positionally? In: Fiala, J., Koubek, V., Kra-
tochvı́l, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 686–697. Springer, Heidelberg (2004)

10. Gimbert, H., Zielonka, W.: Games where you can play optimally without any memory. In:
Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 428–442. Springer,
Heidelberg (2005)

11. Hoffman, A.J., Karp, R.M.: On Nonterminating Stochastic Games. Management Sci. 12,
359–370 (1966)

12. Howard, R.: Dynamic Programming and Markov Processes. Wiley, New York (1960)
13. Jrklund, H., Nilsson, O., Svensson, O., Vorobyov, S.: The Controlled Linear Programming

Problem. Technical report, DIMACS (2004)
14. Jurdziński, M.: Small Progress Measures for Solving Parity Games. In: Reichel, H., Tison,

S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)
15. Puri, A.: Theory of Hybrid and Discrete Systems. PhD thesis, University of California,

Berkeley (1995)
16. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, New York (1994)
17. Seidl, H.: A Modal μ Calculus for Durational Transition Systems. In: IEEE Conf. on Logic

in Computer Science (LICS), pp. 128–137 (1996)
18. Shoham, S., Grumberg, O.: Multi-valued model checking games. In: Peled, D.A., Tsay, Y.K.

(eds.) ATVA 2005. LNCS, vol. 3707, pp. 354–369. Springer, Heidelberg (2005)
19. Vöge, J., Jurdzinski, M.: A Discrete Strategy Improvement Algorithm for Solving Parity

Games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215.
Springer, Heidelberg (2000)

Timed Control with Observation Based and

Stuttering Invariant Strategies

Franck Cassez1,�,��, Alexandre David2, Kim G. Larsen2, Didier Lime1,�,
and Jean-François Raskin3,���

1 IRCCyN, CNRS, Nantes, France
{franck.cassez,didier.lime}@irccyn.ec-nantes.fr

2 CISS, CS, Aalborg University, Denmark
{adavid,kgl}@cs.aau.dk

3 Computer Science Department, Université Libre de Bruxelles (U.L.B.), Belgium
jraskin@ulb.ac.be

Abstract. In this paper we consider the problem of controller synthesis
for timed games under imperfect information. Novel to our approach is
the requirements to strategies: they should be based on a finite collec-
tion of observations and must be stuttering invariant in the sense that
repeated identical observations will not change the strategy. We provide a
constructive transformation to equivalent finite games with perfect infor-
mation, giving decidability as well as allowing for an efficient on-the-fly
forward algorithm. We report on application of an initial experimental
implementation.

1 Introduction

Timed automata introduced by Alur and Dill [2] is by now a well-established for-
malism for representing the behaviour of real-time systems. Since their definition
several contributions have been made towards the theoretical and algorithmic
characterization of this formalism. In particular, industrial mature tools sup-
porting model-checking for timed automata now exist [7,6].

More recently the problem of controller synthesis for timed automata based
models have been considered: i.e. given a timed game automaton modelling the
possible moves of an environment as well as the possible moves of a control
program, the problem consists in synthesizing a strategy for the control program
in order that a given control objective is met no matter how the environment
behaves [15].

Controller synthesis and time-optimal controller synthesis for timed games was
shown decidable in [4] and [3]. First steps towards efficient synthesis algorithms
were taken in [1,16]. In [9] a truly on-the-fly algorithm based on a mixture of

� Work supported by the French National Research Agency ANR-06-SETI-DOTS.
�� Author supported by the Fonds National de la Recherche Scientifique, Belgium.

��� Author supported by the Belgian FNRS grant 2.4530.02 of the FRFC project
“Centre Fédéré en Vérification” and by the project “MoVES”, an Interuniversity
Attraction Poles Programme of the Belgian Federal Government.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 192–206, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Timed Control with Observation Based and Stuttering Invariant Strategies 193

forward search and backwards propagation was proposed and later used as the
basis for an efficient implemention in the tool Uppaal Tiga [5].

In all of the papers cited above it has been assumed that the controller has
perfect information about the plant: at any time, the controller knows precisely
in what state the environment is. In general however — e.g. due to limited
sensors — a controller will only have imperfect (or partial) information about
the state of the environment. In the discrete case it is well known how to handle
partial observability, however for the timed case it has been shown in [8] that the
controller synthesis problem under partial observability is in general undecidable.
Fixing the resources of the controller (i.e. a maximum number of clocks and
maximum allowed constants in guards) regains decidability [8], a result which
also follows from the quotient and model construction results of [12,13].

In this paper we also deal with the problem of controller synthesis for timed
games under imperfect information following the approach of [10,17]. That is,
the imperfect information is given in terms of (a finite number of possible) ob-
servations to be made on the system configurations, providing the sole basis for
the strategy of the controller. However, in contrast to [10,17], which is essen-
tially turn-based in the untimed setting, we will here consider a more general
framework, where in each step the controller and environment are competing. In
particular, the strategy of the controller is supposed to be stuttering invariant,
i.e. the strategy will not be affected by a sequence of environment or time steps
unless changes in the observations occur.

On

x ≤ 10

Sensor

x ≤ 0

Sensed

x ≤ 10

Paint

x ≤ 10

Piston

x ≤ 10

End

Off

x ≥ 8

x := 0

x ≥ 0 x ≥ 8

x := 0

x ≥ 8

x := 0

x ≥ 8

kick?

Fig. 1. Timed Game with Imperfect Information

To illustrate the concepts of imperfect information and stuttering invariance
consider the timed game automaton in Figure 1 modelling a production system
for painting a box moving on a conveyor belt. The various locations indicate
the position of the box in the system: in Sensor a sensor is assumed to reveal
the presence of the box, in Sensed the box is moving along the belt towards the
painting area, in Paint the actual painting of the box takes place, in Piston the
box may be kick?’ed off the belt leading to Off; if the box is not kicked off it
ends in End. All phases are assumed to last between 8 and 10 seconds, except
for the phase Sensor, which is instantaneous. The uncontrollability of this timing
uncertainty is indicated by the dashed transitions between phases. The controller
should now issue a single kick?’command at the appropriate moment in order to
guarantee that the box will — regardless of the above timing uncertainy — be

194 F. Cassez et al.

kicked off the belt. However the controller has imperfect information of the
position of the box in the system. In particular, the controller cannot directly
observe whether the box is in the Sensed, Paint or in the Piston phase nor can
the value of the clock x be observed. Still equipping the controller with its own
clock y –which it may reset and test (against a finite number of predicates) –
it might be possible to synthesize a control strategy despite having only partial
information: in fact it may be deduced that the box will definitely be in the
Piston area within 20-24 seconds after being sensed. In contrast, an increased
timing uncertainty where a phase may last between 6 and 10 seconds will make
a single-kick? strategy impossible.

The main contributions of this paper are: (i) we show how a variant of the
subset construction of [10,17] allows us to transform a timed game H with im-
perfect information into an equivalent game G(H) of perfect information; (ii) we
show that G(H) can be effectively and symbolically computed and this implies
that the control problem under imperfect information is decidable; this allows
us to apply the efficient on-the-fly forward algorithm from [9] and (iii) we report
on application of an initial experimental implementation of this algorithm and a
number of heuristics for minimizing the explored state-space as well as the size
of the finally synthesized strategy.

The detailed proofs can be found in the extended version available from the
authors web pages.

2 Timed Games and Observation Based Strategies

In this section, we define the timed game structures, the notion of strategies
that we are interested in, and useful vocabulary for the rest of the paper. We
denote R≥0 the set of non-negative reals and R>0 = R≥0 \ {0} and AB the set
of mappings from B to A.

Timed game structures (TGS) will be defined using a timed automaton like
notation. The semantics of the notation will be defined by a two-player labeled
timed transition system (2-LTTS), and the games will be played on this 2-LTTS.

Definition 1 (2-LTSS). A 2-player labeled timed transition system (2-LTTS)
is a tuple (S, s0, Σ1, Σ2, →) where S is a (infinite) set of states, s0 is the initial
state, Σ1 and Σ2 are the two disjoint alphabets of actions for Player 1 and
Player 2 respectively, and →⊆ S × Σ1 ∪ Σ2 ∪ R>0 × S is the transition relation.

Given a state s ∈ S, we define enable(s) as the set of σ ∈ Σ1 ∪ Σ2 ∪ R>0 such
that there exists s′ and (s, σ, s′) ∈→.

Let X be a finite set of real-valued variables called clocks. Let M be a natural
number. We note C(X, M) the set of constraints ϕ generated by the grammar:
ϕ ::= x ∼ k | x − y ∼ k | ϕ ∧ ϕ where k ∈ Z ∩ [0, M], x, y ∈ X and ∼∈
{<, ≤, =, >, ≥}. B(X, M) is the subset of C(X, M) generated by the following
grammar: ϕ ::= � | k1 ≤ x < k2 | ϕ ∧ ϕ where k, k1, k2 ∈ Z ∩ [0, M], k1 < k2,
x ∈ X , and � is the boolean constant true. In the sequel, we will restrict our
attention to bounded timed automata where clock values are all bounded by a

Timed Control with Observation Based and Stuttering Invariant Strategies 195

natural number M ; this does not reduce the expressive power of timed automata.
Given a natural number M , an M -valuation of the variables in X is a mapping
X �→ R≥0 ∩ [0, M]. We also use the notation [X → [0, M]] for valuations and 0
for the valuation that assigns 0 to each clock. For Y ⊆ X , we denote by v[Y] the
valuation assigning 0 (resp. v(x)) for any x ∈ Y (resp. x ∈ X \ Y). Let t ∈ R≥0,
v be an M -valuation for the set of clocks X , if for all x ∈ X , v(x) + t ≤ M
then v + t is the M -valuation defined by (v + t)(x) = v(x) + t for all x ∈ X . For
g ∈ C(X, M) and v ∈ (R≥0 ∩ [0, M])X , we write v |= g if v satisfies g and [[g]]
denotes the set of valuations {v ∈ (R≥0 ∩ [0, M])X | v |= g}. An M -zone Z is a
subset of (R≥0 ∩ [0, M])X s.t. Z = [[g]] for some g ∈ C(X, M).

Definition 2 (Timed Game Structure). Let M be a natural number, an M -
timed game structure (M -TGS) is a tuple H = (L, ι, X, δ, Σ1, Σ2, inv, P) where:

– L is a finite set of locations,
– ι ∈ L is the initial location,
– X is a finite set of real-valued clocks,
– Σ1, Σ2 are two disjoint alphabets of actions, Σ1 is the set of actions of

Player 1 and Σ2 the set of actions of Player 2,
– δ ⊆ (L×B(X, M)×Σ1×2X ×L)∪(L×C(X, M)×Σ2×2X ×L) is partitioned

into transitions1 of Player 1 and transitions of Player 2.
– inv : L → B(X, M) associates to each location its invariant.
– P is a finite set of pairs (K, ϕ) where K ⊆ L and ϕ ∈ B(X, M), called

observable predicates.

In the definition above, each observable predicate (K, ϕ) ∈ P is a predicate over
the state space of the TGS, i.e. the set L× [X → [0, M]]. For l ∈ L and v an M -
valuation of the clocks in X , we write (l, v) |= (K, ϕ) iff l ∈ K and v |= ϕ. Two
pairs (l1, v1), (l2, v2) that satisfy the same observable predicates from P have
the same observation (they can not be distinguished by our controllers). So, an
observation is a function o : P → {0, 1}, or equivalently, a class of equivalent
states w.r.t P . We note O the set of functions [P → {0, 1}], it is called the set of
observations of the system. With each TGS H with set of observable predicates
P , we associate the function γ that maps observations to classes of equivalent
states, i.e. γ : O → 2L×[X→[0,M]], and it is defined as follows:

γ(o) =

⎧⎨
⎩(l, v) |

∧
(K,ϕ) | o(K,ϕ)=1

(l, v) |= (K, ϕ) ∧
∧

(K,ϕ) | o(K,ϕ)=0

(l, v) |= (K, ϕ)

⎫⎬
⎭

Note that the set of observations O defines a partition of the state space of the
M -TGS, i.e.

⋃
o∈O γ(o) = L × [X → [0, M]], and for all o1, o2 ∈ O, if o1 = o2,

then γ(o1) ∩ γ(o2) = ∅. Given (l, v) we write γ−1(l, v) for the observation o of

1 Note that we impose that guards of Player 1’s transitions are left closed. This ensures
that, when a guard becomes true for an action owned by Player 1, there is always a
first instant where it becomes true.

196 F. Cassez et al.

state (l, v), i.e. γ−1(l, v) is the function o : P → {0, 1} s.t. ∀p ∈ P , o(p) = 1 ⇐⇒
(l, v) |= p.

We associate with any M -TGS H a semantics in the form of a (infinite state)
2-LTTS. The state space of the 2-LTTS will be composed of elements of the form
(l, v) where l is a location of the TGS and v is a valuation of the clocks. In order
to avoid deadlocks in the 2-LTTS, we require that our TGS are deadlock-free2 ,
that is, for every state (l, v) such that v |= inv(l), there exists σ ∈ Σ2 ∪ R>0,
such that either there is a transition (l, g, σ, Y, l′) ∈ δ such that v |= g and
v[Y] |= inv(l′), or for all t′, 0 ≤ t′ ≤ σ, v + t′ |= inv(l).

Definition 3 (Semantics of a TGS). The semantics of an M -TGS H =
(L, ι, X, δ, Σ1, Σ2, inv, P) is a 2-LTTS SH = (S, s0, Σ1, Σ2, →) where:

– S = {(l, v) | l ∈ L ∧ v ∈ (R≥0 ∩ [0, M])X ∧ v |= inv(l)};
– s0 = (ι,0);
– the transition relation is composed of

(i) discrete transitions. For all (l1, v1), (l2, v2) ∈ S, for all σ ∈ Σ1 ∪ Σ2,
((l1, v1), σ, (l2, v2)) ∈→ iff there exists a transition (�, g, a, Y, �′) ∈ δ such
that � = l1, �′ = l2, v1 |= g, and v2 = v1[Y];

(ii) time transitions. For all (l1, v1), (l2, v2) ∈ S, for all t ∈ R>0, there is a
transition ((l1, v1), t, (l2, v2)) ∈→ iff l1 = l2, v2 = v1 + t, and for all t′,
0 ≤ t′ < t, (l1, v1 + t′) ∈ S and γ−1(l1, v1 + t′) = γ−1(l1, v1).

Remark 1. This semantics has the following important property: changes of ob-
servations can occur only during a discrete transition, or at the last point of
a time delay. This is consistent with our definition of observations using con-
straints in B(X, M): the form of the constraints implies that either for all t ≥ 0,
(l, v) t−→ (l, v + t), and γ−1(l, v + t) = γ−1(l, v), or there is a first instant t0 > 0
s.t. (l, v) t0−→ (l, v + t0) and γ−1(l, v + t0) = γ−1(l, v), and for all 0 ≤ t′ < t0,
γ−1(l, v + t′) = γ−1(l, v).

The 2-LTTS of a TGS has no deadlock because a TGS is deadlock-free. This
also implies that any state of the 2-LTTS is the source of an infinite path. As a
TGS is bounded, these infinite paths contain infinitely many discrete steps and
in the sequel we will consider only these type of infinite paths.

Playing with Observation Based Stuttering Invariant Strategies. In the
remainder of this section, we will define the rules of the timed games that we
want to consider. We start by an informal presentation and then turn to the
formalization.

Player 1 and Player 2 play on the underlying 2-LTTS of a TGS as follows.
Player 1 has to play according to observation based stuttering invariant strategies
(OBSI strategies for short). Initially and whenever the current observation of the
system state changes, Player 1 either proposes an action σ1 ∈ Σ1, or the special
2 And more precisely, either time can elapse or Player 2 can do a discrete action from

any state: thus Player 1 cannot block the game by refusing to take its actions.

Timed Control with Observation Based and Stuttering Invariant Strategies 197

action delay. When Player 1 proposes σ1, this intuitively means that he wants to
play the action σ1 whenever this action is enabled in the system. When Player 1
proposes delay, this means that he does not want to play discrete actions until
the next change of observation, he is simply waiting for the next observation.
Thus, in the two cases, Player 1 sticks to his choice until the observation of the
system changes: in this sense he is playing with an observation based stuttering
invariant strategy. Once Player 1 has committed to a choice, Player 2 decides of
the evolution of the system until the next observation but respects the following
rules:

1. if the choice of Player 1 is a discrete action σ1 ∈ Σ1 then Player 2 can choose
to play, as long as the observation does not change, either (i) a discrete
actions in Σ2 ∪{σ1} or (ii) let time elapse as long as σ1 is not enabled. This
entails that σ1 is urgent,

2. if the choice of Player 1 is the special action delay then Player 2 can choose
to play, as long as the observation does not change, any of its discrete actions
in Σ2 or let time pass,

3. the turn is back to Player 1 as soon as the next observation is reached.

Plays. In the following, we define plays of a game where choices of Player 1
are explicitly mentioned. A play in H is an infinite sequence of transitions in
SH , ρH = (l0, v0)c0σ0(l1, v1)c1σ1 . . . (ln, vn)cnσn . . . , such that for all i ≥ 0,
(li, vi)

σi−→ (li+1, vi+1) and

– either σi ∈ {ci} ∪ Σ2, or
– σi ∈ R

X
>0 and ∀0 ≤ t < σi, ci ∈ enable(li, vi + t) (time elapses only when the

choice of Player 1 is not enabled).3

– if σi and σi+1 are in R
X
>0 then γ−1(li, vi) = γ−1(li+1, vi+1).

We write Play((l, v), H) for the set of plays in H that start at state (l, v). We
write Play(H) for the initial plays that start at the initial state of H , that is the
set Play((ι,0), H).

Prefixes, Strategies, and Outcomes. A prefix of H is a prefix of a play in
H that ends in a state of H . We note Pref((l, v), H) for the set of prefixes of
plays in H that starts in (l, v), i.e. plays in Play((l, v), H). We note Pref(H),
for prefixes of initial plays in H , i.e. prefixes of plays in Play(H). Let ρH =
(l0, v0)c0σ0 · · · (ln, vn)cnσn · · · be a play or a prefix of a play, ρH(n) denotes
the prefix up to (ln, vn). In the sequel, we measure the length of a prefix by
counting the number of states that appear in the prefix. For example, ρH(n)
has a length equal to n + 1. A strategy for Player 1 in H is a function λH :
Pref(H) → Σ1 ∪ {delay}. The outcome of a strategy λH in H is the set of plays
ρH = (l0, v0)c0σ0(l1, v1)c1σ1 . . . (ln, vn)cnσn . . . such that l0 = ι, v0 = 0 and for
all i ≥ 0, ci = λH(ρH(i)). We note OutcomeH(λH) this set of plays.

3 Remember that delay is never enabled and if Player 1 wants to let time elapse he
plays delay.

198 F. Cassez et al.

Consistent Plays, Choice Points and OBSI Strategies in H. We are
interested in strategies for Player 1 where the choice of action can only change if
the observation of the state of the system changes. Such a strategy is called an ob-
servation based stuttering invariant strategy as presented before. When Player 1
plays such a strategy, the resulting plays have the property of being consistent.
This notion is defined as follows. A play ρH = (l0, v0)c0σ0 · · · (ln, vn)cnσn · · · is
consistent iff for all i ≥ 0: γ−1(�i+1, vi+1) = γ−1(�i, vi) =⇒ ci+1 = ci. We note
Playco(H) the set of consistent plays of H , and Prefco(H) the set of prefixes of
consistent plays of H . Let ρH = (l0, v0)c0σ0 · · · (ln−1, vn−1)cn−1σn−1(ln, vn) ∈
Prefco(H). ρH is a choice point if either n = 0, or n > 0 and γ−1(ln−1, vn−1) =
γ−1(ln, vn). Note that we have that ChoicePoint(H) ⊆ Prefco(H) ⊆ Pref(H) and
Playco(H) ⊆ Play(H).

Let ρH = (l0, v0)c0σ0 · · · (ln, vn)cnσn · · · be a consistent play in H . Let I =
{m | ρH(m) ∈ ChoicePoint(H)}. The stuttering free observation Obs(ρH) of ρH

is the sequence in (O.Σ1)ω defined by:

– if I = {n0, n1, · · · , nk} is finite,

Obs(ρH) = γ−1(ln0 , vn0)cn0 · · · γ−1(lnk
, vnk

)cnk
(γ−1(lnk

, vnk
)cnk

)ω

– if I = {n0, n1, · · · , nk, · · · } is infinite,

Obs(ρH) = γ−1(ln0 , vn0)cn0γ
−1(ln1 , vn1)cn1 · · · γ−1(lnk

, vnk
)cnk

· · ·

We call it “stuttering free” as, for all i ∈ I, γ−1(lni , vni) = γ−1(lni+1 , vni+1)
except when I is finite, but in this case, only the last observation is repeated
infinitely. Let ρH ∈ ChoicePoint(H), let I = {n0, n1, · · · , nk} be the set of indices
ni such that ρH(ni) ∈ ChoicePoint(H). The (finite) observation of ρH , noted
Obs∗(ρH), is γ−1(ln0 , vn0)cn0 · · · γ−1(lnk

, vnk
)cnk

γ−1(lnk
, vnk

)cnk
. We say that

a strategy λH is an observation based stuttering invariant (OBSI) strategy if
the following property holds: for all ρH

1 , ρH
2 ∈ Prefco(H), let n1 be the maximal

value such that ρH
1 (n1) ∈ ChoicePoint(H), let n2 be the maximal value such that

ρH
2 (n2) ∈ ChoicePoint(H), if Obs∗(ρH

1 (n1)) = Obs∗(ρH
2 (n2)) then λH(ρH

1) =
λH(ρH

2).

Winning Conditions and Winning Strategies. Let ρH ∈ Play(H) s.t.
Obs(ρH) = o0c0o1c1 . . . oncn The projection Obs(ρH) ↓ O over O of Obs(ρH)
is the sequence o0o1 . . . on A winning condition W is a stuttering closed4

subset of Oω. A strategy λH for Player 1 is winning in H for W , if and only if,
∀ρ ∈ OutcomeH(λH) · Obs(ρ) ↓ O ∈ W .

To conclude this section, we define the control problem OBSI-CP we are
interested in: let H be a TGS with observations O, W be a stuttering closed
subset of Oω,

is there an OBSI winning strategy in H for W? (OBSI-CP)
4 A language is stutter closed, if for any word w in the language, the word w′ obtained

from w by either adding a stuttering step (repeating a letter), or erasing a stuttering
step, is also in the language.

Timed Control with Observation Based and Stuttering Invariant Strategies 199

In case there is such a strategy, we would like to synthesize one. The problem of
constructing a winning strategy is called the synthesis problem.

3 Subset Construction for Timed Games

In this section, we show how to transform a timed game of imperfect informa-
tion into an equivalent game of perfect information. Let H = (L, ι, X, δ, Σ1, Σ2,
inv, P) be an M -TGS and let SH = (S, s0, Σ1, Σ2, →) be its semantics. In this
section we assume delay ∈ Σ1 but H has no transition labeled delay.

Useful functions. Let σ ∈ Σ1. We define the relation σ−→nobs by: (l, v) σ−→nobs

(l′, v′) if there is a prefix ρ = (�0, v0)c0σ0(�1, v1)c1σ1 · · · (lk, vk)ckσk(�k+1, vk+1)
in Pref((l, v), H) with (�0, v0) = (l, v), (�k+1, vk+1) = (l′, v′), ∀0 ≤ i ≤ k, ci = σ,
γ−1(�i, vi) = γ−1(�0, v0), and γ−1(�k+1, vk+1) = γ−1(�0, v0). Notice that because
of the definition of time transitions in Definition 3, if σi ∈ R>0 and 0 ≤ i < k
then γ−1(�i, vi) = γ−1(�i+1, vi+1) and if σi ∈ R>0 and i = k, γ−1(�i, vi) =
γ−1(�i, vi + t) for all 0 ≤ t < σi, γ−1(�i, vi) = γ−1(�i, vi + t) and (�i+1, vi+1) =
(�i, vi + σi) (i.e. σi is the first instant at which the observation changes). By the
constraints imposed by B(X, M) this first instant always exists. We define the
function Nextσ(l, v) by:

Nextσ(l, v) = {(l′, v′) | (l, v) σ−→nobs (l′, v′)} (1)

This function computes the first next states after (l, v) which have an observation
different from γ−1(l, v) when Player 1 continuously plays σ. Next is extended to
sets of states as usual.

We also define the function Sinkσ(·) : L×R
X
≥0 → L×R

X
≥0 for σ ∈ Σ1: (l′, v′) ∈

Sinkσ(l, v) iff there is an (infinite) play5 ρ = (�0, v0)c0σ0(�1, v1)c1σ1 · · · (lk, vk)
ckσk(�k+1, vk+1) · · · in SH such that: (�0, v0) = (l, v), (�k+1, vk+1) = (l,′ v′),
∀0 ≤ i, ci = σ, and ∀0 ≤ i, γ−1(li, vi) = γ−1(l0, v0).

Non-Deterministic Game (of Perfect Information). The games of per-
fect information that we consider here are (untimed) non-deterministic games,
and they are defined as follows: in each state s Player 1 chooses an action σ and
Player 2 chooses the next state among the σ-successors of s.

Definition 4 (Non-Deterministic Game). We define a non-deterministic
game (NDG) to be a tuple G = (S, μ, Σ1, Δ, O, Γ) where:

– S = S0 ∪ S1 is a set of states;
– μ ∈ S0 is the initial state of the game;
– Σ1 is a finite alphabet modeling choices for Player 1;
– Δ ⊆ S0 × Σ1 × S is the transition relation;
5 With an infinite number of discrete transitions because of the boundedness assump-

tion. If needed we can add the requirement that this path is non-zeno if we want to
rule out zeno-runs.

200 F. Cassez et al.

– O is a finite set of observations;
– Γ : O → 2S \ ∅ maps an observation to the set of states it represents, we

assume Γ partitions S (Γ−1(s) = o ⇐⇒ s ∈ Γ (o)).

Definition 5 (Plays in NDG). A play in G from s0 is either an infinite
sequence s0a0s1a1 . . . snan . . . such that for all i ≥ 0, si ∈ S0, ai ∈ Σ1,
and (si, ai, sn+1) ∈ Δ or a finite sequence s0a0s1a1 . . . sn such that all i, 0 ≤
i < n, si ∈ S0, (si, ai, si+1) ∈ Δ, and sn ∈ S1. We note Play(s0, G) the
set of plays starting in s0 in G and let Play(G) = Play(μ, G). The observa-
tion of an infinite play ρG = s0a0s1a1 . . . snan . . . is defined by Obs(ρG) =
Γ−1(s0)a0Γ

−1(s1)a1 . . . Γ−1(sn)an If ρG = s0a0s1a1sn−1an−1 . . . snansn+1
is finite then Obs(ρG) = Γ−1(s0)a0Γ

−1(s1)a1 . . . Γ−1(sn)an(Γ−1(sn+1)an)ω.

A prefix in G is a finite sequence s0a0s1a1 . . . sn ending in sn ∈ S0, such that
for all i, 0 ≤ i < n, (si, ai, si+1) ∈ Δ. We let Pref(G) be the set of prefixes of
G. The observation of a prefix is Obs(ρG) = Γ−1(s0)a0Γ

−1(s1)a1 . . . anΓ−1(sn).
For any ρG ∈ Play(G), ρG(n) = s0a0 · · · sn is the prefix up to state sn and we
let |ρG| = n to be the length of ρG.

Remark 2. S0 is the set of states where Player 1 has to make a choice of action.
In S1-states, Player 1 does not have any choice. A prefix ends in an S0-state.
Finite sequences ending in S1-states are not prefixes but finite plays.

Strategies and Winning Conditions for NDG. A strategy in G is a func-
tion6 λG : Pref(G) → Σ1. The outcome, OutcomeG(λG), of a strategy λG is the
set of (finite or infinite) plays ρG = s0a0 · · · snan · · · s.t. s0 = μ, ∀i ≥ 0, ai =
λG(ρG(i)). Let ρG be a play of G. We let Obs(ρG) ↓ O be the projection of
Obs(ρG) on O. A winning condition W for G is a subset of Oω. A strategy λG

is winning for W in G iff ∀ρG ∈ OutcomeG(λG), Obs(ρG) ∈ W .

Remark 3. Strategies in NDG are based on the history of the game since the
beginning: in this sense, this is a perfect information game.

Knowledge Based Subset Construction

Definition 6. Given a game H = (L, ι, X, δ, Σ1, Σ2, inv, O, γ), we construct a
NDG G(H) = (S, μ, Σ1, Δ, O, Γ) as follows:

– let V = {W ∈ 2L×RX
≥0 \ ∅ | γ−1(l, v) = γ−1(l′, v′) for all (l, v), (l′, v′) ∈ W},

– S = V × {0, 1}, and we note S0 the set V × {0} and S1 the set V × {1},
– μ = ({(ι,0)}, 0),
– Δ ⊆ S ×Σ1 ×S is the smallest relation that satisfies: ((V1, i), σ, (V2, j)) ∈ Δ

if
• i = 0. A consequence is that if i = 1 (a state in S1) there are no outgoing

transitions.
6 Notice that S1-states have no outgoing transitions and we do not need to define a

strategy for these states.

Timed Control with Observation Based and Stuttering Invariant Strategies 201

• j = 0 and V2 = Nextσ(V1)∩o for some o ∈ O such that Nextσ(V1)∩o = ∅,
or

• j = 1 if Sinkσ(s) = ∅ for some s ∈ V1 and V2 = ∪s∈V1Sinkσ(s),
– Γ−1 : S → O, and Γ−1((W, i)) = γ−1(v) for v ∈ W . Note that this is

well-defined as W is a set of states of H that all share the same observation.

Notice that the game G(H) is non-deterministic as there may be many transi-
tions labeled by σ and leaving a state s to many different states with different
observations. G(H) is total for S0 states: ∀(V, 0) ∈ S0, ∀σ ∈ Σ1, σ ∈ Enabled(V),
because either there is an infinite path from some s ∈ V with the same obser-
vation or there is an infinite path with a new observation (remember that time
can elapse or Player 2 can do a discrete action from any state in H). Although
non-deterministic G(H) enjoys a weaker notion of determinism formalized by
the following proposition:

Proposition 1. Let (V, i) be a state of G(H), σ ∈ Σ1 and o ∈ O. There is at
most one (V ′, j) with V ′ ⊆ γ(o) s.t. ((V, i), σ, (V ′, j)) ∈ Δ.

Note also that if ((V, 0), σ, (V ′, 0)) ∈ Δ then Γ−1((V, 0)) = Γ−1((V ′, 0)). We can
relate the consistent plays in H and plays in G. For that, we define the function
Abs : Playco(H) → Play(G) as follows.

Definition 7 (Abs for Plays of H). Let ρH = (l0, v0)c0σ0(l1, v1) . . . (lm, vm)
cmσm . . . be in Playco(H). Let I = {j ∈ N | ρH(j) ∈ ChoicePoint(H)}. Then
Abs(ρH) is defined by:

– if I is a finite set, let I = {j0, j1, · · · , jn}. Define Abs(ρH) = s0a0s1a1 . . . sn

ansn+1 by induction as follows:
1. s0 = ({(l0, v0)}, 0), a0 = cj0 (and j0 = 0),
2. and for all i, 0 < i ≤ n, if si−1 = (V, 0) then let V ′ = Nextai−1(V) ∩

γ−1(vji), si = (V ′, 0) and ai = cji .
3. As ρH has a finite number of choice points, it must be the case that

∀k ≥ jn, γ−1(lk, vk) = γ−1(ljn , vjn); moreover, because ρH is consistent,
∀k ≥ jn, ck = cjn . If sn = (V, 0) we let V ′ = ∪v∈V Sinkcjn

(v). V ′ must
be non empty and we define sn+1 = (V ′, 1).

– if I is an infinite set, let I = {j0, j1, · · · , jn, · · · }. We define Abs(ρH) =
s0a0s1a1 . . . snansn+1 · · · by induction as follows:
1. s0 = ({(l0, v0)}, 0), a0 = cj0 (and j0 = 0),
2. and for all i ≥ 1, if si−1 = (V, 0) then let V ′ = Nextai−1(V) ∩ γ−1(vji),

si = (V ′, 0) and ai = cji .

Definition 8 (Abs for consistent prefixes). Let ρH = (l0, v0) . . . (ln−1, vn−1)
cn−1σn−1(ln, vn) ∈ Prefco(H) and, I = {j0, j1, · · · , jm} be the set of choice
points of ρH . Then Abs(ρH) = s0a0 . . . sm−1am−1sm with:

– s0 = ({(l0, v0)}, 0),
– and for all i, 0 < i ≤ m, if si−1 = (Vi−1, 0) then si = (Vi, 0) where Vi =

Nextai−1(Vi−1) ∩ oi,
– ∀0 ≤ i < m, ai = cji .

202 F. Cassez et al.

It can be checked that Abs(ρH) is well-defined for consistent plays as well for
prefixes. The following theorem states the correctness of our construction:

Theorem 1. Let Φ be a stuttering closed subset of Oω. Player 1 has a winning
strategy in G(H) for Φ iff Player 1 has an observation based stuttering invariant
winning strategy in H for Φ.

4 Symbolic Algorithms

In this section, we show that the game G(H) is a finite game and design an
efficient symbolic algorithm for reachability and safety objectives.

Given a set of states S represented as a finite union of zones, and an action c ∈
Σ1 we can compute the sets

⋃
s∈S Nextc(s) and

⋃
s∈S Sinkc(s) as finite unions of

zones. Since the clocks are bounded in our M -TGS, only a finite number of zones
are computed during the computation of those operators. As a consequence, the
game G(H) is finite.

To implement efficiently the computations, we use Difference Bound Matri-
ces (DBMs), which allow efficient realisation of most set operations (inclusion,
interesection, future, reset. . .) [11,14].

Since G(H) is finite, we can apply standard control algorithms to compute the
set of winning states. In particular, for reachability or safety objectives, we can
use the efficient on-the-fly forward algorithm of [9] that has been implemented
in Uppaal-Tiga [5].

The algorithm for finite games given in [9] can easily be tailored to solve NDGs
of type G = (S, s0, Σ1, Δ, O, Γ) with reachability objective Goal s.t. Goal ∈ O.
Then, to obtain an algorithm for games of imperfect information, we replace the
transition relation of G(H) in this algorithm with the definition (see Definition 6)
of the transition relation of G(H) using the Next and Sink operators. This way
we obtain the algorithm OTFPOR for TGS which is given Figure 2.

An important feature added to the algorithm is the propagation of losing
state-sets, that is state-sets for which the reachability objective can be directly
concluded not to be achievable. For reachability games, a state-set W may de-
clared to be losing provided it is not among the Goal sets and is a deadlock.
Safety games are dual to reachability games in the sense that if the algorithm
concludes that the initial state is not losing it is possible to extract a strategy
to avoid losing states.

5 Example and Experiments

In this section we report on an application of a prototype implementation of the
OTFPOR algorithm. Similar to the Box Painting Production System (BPPS)
from the Introduction, we want to control a system consisting of a moving belt
and an ejection piston at the end of the belt. However, a complicating feature
compared with BPPS is that the system can receive both light and heavy boxes.
When receiving a light box, its speed is high and the box takes between 4 to

Timed Control with Observation Based and Stuttering Invariant Strategies 203

Initialization:
Passed ← {{s0}};
Waiting ← {({s0}, α, W ′) | α ∈ Σ1, o ∈ O, W ′ = Nextα({s0}) ∩ o ∧ W ′ �= ∅};
Win[{s0}] ← ({s0} ⊆ γ(Goal) ? 1 : 0);
Losing[{s0}] ← ({s0} �⊆ γ(Goal) ∧ (Waiting = ∅ ∨ ∀α ∈ Σ1, Sinkα(s0) �= ∅) ? 1 : 0);
Depend[{s0}] ← ∅;

Main:
while ((Waiting �= ∅) ∧ Win[{s0}] �= 1 ∧ Losing[{s0}] �= 1)) do

e = (W, α, W ′) ← pop(Waiting);
if s′ �∈ Passed then

Passed ← Passed ∪ {W ′};
Depend[W ′] ← {(W, α, W ′)};
Win[W ′] ← (W ′ ⊆ γ(Goal) ? 1 : 0);
Losing[W ′] ← (W ′ �⊆ γ(Goal) ∧ Sinkα(W ′) �= ∅ ? 1 : 0);
if (Losing[W ′] �= 1) then (* if losing it is a deadlock state *)

NewTrans ← {(W ′, α, W ′′) | α ∈ Σ, o ∈ O, W ′ = Nextα(W) ∩ o ∧ W ′ �= ∅};
if NewTrans = ∅ ∧ Win[W ′] = 0 then Losing[W ′] ← 1;

if (Win[W ′] ∨ Losing[W ′]) then Waiting ← Waiting ∪ {e};
Waiting ← Waiting ∪ NewTrans;

else (* reevaluate *)
Win∗ ←

∨
c∈Enabled(W)

∧
W

c−→W ′′ Win[W ′′] ;

if Win∗ then
Waiting ← Waiting ∪ Depend[W]; Win[W] ← 1;

Losing∗ ←
∧

c∈Enabled(W)

∨
W

c−→W ′′ Losing[W ′′] ;

if Losing∗ then
Waiting ← Waiting ∪ Depend[W]; Losing[W] ← 1;

if (Win[W ′] = 0 ∧ Losing[W ′] = 0) then Depend[W ′] ← Depend[W ′] ∪ {e};
endif

endwhile

Fig. 2. OTFPOR: On-The-Fly Algorithm for Partially Observable Reachability

6 seconds to reach the zone where it can be Eject?’ed with a piston. When
receiving a heavy box, the speed of the belt is slower and the box takes between
9 and 11 seconds to reach the zone where it can be Eject?’ed by the piston. The
controller should command the piston so that the order to Eject? a box is given
only when the box is in the right region. The system is modeled by the timed
game automaton of Figure 3. The initial location of the automaton is l0. The
system receives boxes when it is in location l0, if it receives a heavy box then it
branches to l1, if it receives a light box then it branches to l4. The only event
that is shared with the controller is the Eject? event. This event should be issued
when the control of the automaton is in l3 or l6 (which has the effect of ejecting
the box at the end of the belt), in all other locations, if this event is received
then the control of the automaton evolves to location l7 (the bad location that
we want to avoid); those transitions are not depicted in the figure. The control
objective is to avoid entering location l7.

204 F. Cassez et al.

l0 E

l1

x ≤ 0

H

l2

x ≤ 10

E

l3

E

l4

x ≤ 0

L

l5

x ≤ 5

E

l6

E

l7 B

x := 0

x := 0

x ≥ 9

x ≥ 4

x ≥ 11

x ≥ 6

Eject?

Eject?

Fig. 3. Timed Game for Sorting Bricks. Edges to l7 with action Eject? are omitted.

To control the system, the controller can use a clock y that it can reset at any
moment. The controller can also issue the order Eject! or propose to play delay,
which allows for the time to elapse. The controller has an imperfect informa-
tion about the state of the system and the value of the clock y. The controller
gets information throughout the following observations: E: the control of the
automaton is in location l0, l2, l3, l5, or l6; H: the control of the automaton is
in location l1; L: the control of the automaton is in location l4; B: the control of
the automaton is in location l7; 0 ≤ y < M : the value of clock y is in the interval
[0, M [, M being a parameter. The observations E, H, L, and B are mutually ex-
clusive and cover all the states of the automaton but they can be combined with
the observation 0 ≤ y < M on the clock but also with its complement y ≥ M .
So formally, the set of observations that the controller can receive at any time
is O = {(E, 0 ≤ y < M), (E, y ≥ M), (H, 0 ≤ y < M), (H, y ≥ M), (L, 0 ≤
y < M), (L, y ≥ M), (B, 0 ≤ y < M), (B, y ≥ M)}. The set of actions that the
controller can choose from is Σc = {Resety, Eject!, delay}.

We modelled this example in our prototype and checked for controllability of
the safety property A�¬B. Controllability as well as the synthesized strategy
heavily depend on the choice of the parameter M , i.e. the granularity at which
the clock y may be set and tested. Table 1 gives the experimental results for
M ∈ {1, 0.5, 0.25, 0.2}7. It turns out that the system is not controllabe for M = 1:
a granularity of 1 is simply too coarse to determine (up to that granularity)
with certainty when, say, a light box will be in l6 and should be Eject?’ed. The
differences between the guards and invariants in l5, l6 and l7 are simply too small.
As can be seen from Table 1 the finer granularities yield controllability.

We report on the number of explored state-sets (state-set) and the number of
state-sets that are part of the strategy (strat). To get an impression of the com-
plexity of the problem of controller synthesis under partial observability we note
that the the model in Figure 3 has 115 reachable symbolic states when viewed
as a regular timed automaton. Table 1 reports on experiments exploiting an
additional inclusion checking option in various ways: (notfi) without on-the-fly

7 Fractional values of M are dealt with by multiplying all constants in the timed game
automaton with 1

M
.

Timed Control with Observation Based and Stuttering Invariant Strategies 205

Table 1. Number of state-sets and size of strategy obtained for different heuristics for
observations 0 ≤ y < M of the clock y with M ∈ {1, 0.5, 0.25, 0.2}. The case M = 1 is
not controllable.

notfi otfi
state-set strat +post +filter state-set strat +post +filter

[0, 0.2[110953 36169 1244 70 52615 16372 841 176
[0, 0.25[72829 23750 1014 60 35050 11016 697 146
[0, 0.5[20527 6706 561 41 10586 3460 407 88
[0, 1[2284 - - - 1651 - - -

inclusion checking, and (otfi) with on-the-fly inclusion checking. In addition, we
apply the post-processing step of inclusion checking (+post) on the strategy and
a filtering of the strategy (+filter) on top to output only the reachable state-sets
under the identified strategy. The results show that on-the-fly inclusion checking
gives a substantial reduction in the number of explored state-sets – and is hence
substantially faster. Both (notfi) and (otfi) shows that post processing and fil-
tering reduces the size of the control strategy with a factor of approximately 100.
It can also be seen that the size of the final strategy grows when granularity is
refined; this is to be expected as the strategies synthesized can be seen to involve
counting modulo the given granularity. More suprising is the observation that
the final strategies in (notfi+post+filter) are uniformly smaller than the final
strategies in (otfi): not performing on-the-fly inclusion checking explores more
state-sets, thus having the potential for a better reduction overall.

6 Conclusions and Future Works

During the last five years a number of very promissing algorithmic techniques
has been introduced for controller synthesis in general and controller synthesis
for timed systems in particular. The contribution of this paper to the decid-
ability and algorithmic support for timed controller synthesis under imperfect
information is an important new step within this line of research. Future re-
search includes more experimental investigation as well as search for additional
techniques for minimizing the size of the produced strategies (e.g. using mini-
mization wrt. (bi)simulation or alternating simulation). For safety objectives, we
need methods to insure that the synthesized strategies do not obtain their ob-
jective simply by introducing zeno behaviour. Finally, a rewrite of the prototype
as extension of Uppaal-Tiga is planned.

References

1. Altisen, K., Tripakis, S.: Tools for controller synthesis of timed systems. In: Proc.
2nd Work. on Real-Time Tools (RT-TOOLS’02), Proc. published as Technical Re-
port 2002-025, Uppsala University, Sweden (2002)

2. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

206 F. Cassez et al.

3. Asarin, E., Maler, O.: As Soon as Possible: Time Optimal Control for Timed
Automata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS,
vol. 1569, pp. 19–30. Springer, Heidelberg (1999)

4. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller Synthesis for Timed Au-
tomata. In: Proc. IFAC Symp. on System Structure & Control, pp. 469–474. Else-
vier Science, Amsterdam (1998)

5. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., Lime, D.: Uppaal-
tiga: Time for playing games! In: Damm, W., Herrmanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

6. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg
(2004)

7. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: QEST, pp. 125–126. IEEE Computer Society Press,
Los Alamitos (2006)

8. Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed control with partial
observability. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 180–192. Springer, Heidelberg (2003)

9. Cassez, F., David, A., Fleury, E., Larsen, K., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

10. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-
regular games with imperfect information. In: Ésik, Z. (ed.) CSL 2006. LNCS,
vol. 4207, pp. 287–302. Springer, Heidelberg (2006)

11. Dill, D.: Timing Assumptions and Verification of Finite-State Concurrent Systems.
In: Sifakis, J. (ed.) Workshop on Automatic Verification Methods for Finite-State
Systems. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

12. Laroussinie, F., Larsen, K.G.: CMC: A tool for compositional model-checking
of real-time systems. In: Budkowski, S., Cavalli, A.R., Najm, E. (eds.) Proc. of
IFIP TC6 WG6.1 Joint Int. Conf. FORTE’XI and PSTV’XVIII. IFIP Conf. Proc,
vol. 135, pp. 439–456. Kluwer Academic Publishers, Dordrecht (1998)

13. Laroussinie, F., Larsen, K.G., Weise, C.: From timed automata to logic - and back.
In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 529–539.
Springer, Heidelberg (1995)

14. Larsen, K., Pettersson, P., Yi, W.: Model-checking for real-time systems. Funda-
mentals of Computation Theory, 62–88 (1995)

15. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–
242. Springer, Heidelberg (1995)

16. Tripakis, S., Altisen, K.: On-the-Fly Controller Synthesis for Discrete and Timed
Systems. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS,
vol. 1708, pp. 233–252. Springer, Heidelberg (1999)

17. Wulf, M.D., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imperfect
information. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927,
pp. 153–168. Springer, Heidelberg (2006)

Deciding Simulations on Probabilistic

Automata�

Lijun Zhang and Holger Hermanns

Department of Computer Science, Saarland University, Saarbrücken, Germany

Abstract. Probabilistic automata are a central model for concurrent
systems exhibiting random phenomena. This paper presents, in a uniform
setting, efficient decision algorithms for strong simulation on probabilis-
tic automata, but with subtly different results. The algorithm for strong
probabilistic simulation is shown to be of polynomial complexity via a
reduction to LP problem, while the algorithm for strong simulation has
complexity O(m2n). The former relation allows for convex combinations
of transitions in the definition and is thus less discriminative than the
latter. As a byproduct, we obtain minimisation algorithms with respect
to strong simulation equivalences and – for Markov decision processes –
also to strong bisimulation equivalences. When extending these algo-
rithms to the continuous-time setting, we retain same complexities for
both strong simulation and strong probabilistic simulations.

1 Introduction

Randomization has been employed widely for performance and dependability
models, and consequently the study of verification techniques of probabilistic
systems has drawn a lot of attention in recent years. In this paper, we consider
probabilistic automata (PAs) in the style of Segala & Lynch [13], which extend
transition systems with probabilistic selection. They constitute a natural model
of concurrent computation involving random phenomena. In a nutshell, a la-
belled transition in some PA leads to a probability distribution over the set of
states, rather than a single state. The resulting model thus exhibits both non-
deterministic choice (as in labelled transition systems) and probabilistic choice
(as in Markov chains). A special case of PAs is formed by Markov decision
processes (MDPs) which in their standard form do not have nondeterminism
between the equally-labelled transitions [11].

Similar to the transition system setting, strong bisimulation and strong simu-
lation relations [9, 10, 13] have been proposed as means to compare the stepwise
behaviour of states in PAs. Intuitively, state s is simulated by another state s′,
formally s � s′ (“s′ simulates s”), if state s′ can mimic all stepwise behaviours
of s; the converse, i. e., s′ � s is not necessarily guaranteed, so state s′ may per-
form steps that cannot be matched by s. In the non-probabilistic setting, s � s′

� This work is supported by the NWO-DFG bilateral project VOSS and by the DFG
as part of the Transregional Collaborative Research Center SFB/TR 14 AVACS.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 207–222, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

208 L. Zhang and H. Hermanns

requires every successor of s via some action α to be related to a corresponding
successor of s′ reachable via the same action α. For PAs, the above condition
is lifted to distributions: It is required that every successor distribution of s via
action α, called α-successor distribution, has a corresponding α-successor distri-
bution at s′. The correspondence of distributions is naturally defined with the
concept of weight functions [9].

In the context of model checking, strong simulation relations can be used to
combat the infamous state space explosion problem, owed to the preservation of
PCTL-safety formulas [13]. The kernel of strong simulation, i. e., strong simu-
lation equivalence, preserves both safe and live fragments of PCTL. Therefore,
one can perform model checking on the quotient induced by these equivalences,
if interested in safety or liveness properties. Since strong simulation equivalence
is strictly coarser than strong bisimulation, the induced quotient automaton is
also smaller.

All statements in the above paragraph stay perfectly valid if considering
“strong probabilistic simulation” instead of “strong simulation”. The former [13]
is a relaxation of the latter in the sense that it enables convex combinations of
multiple distributions belonging to equally labelled transitions. More concretely,
assume that a state s has no α-successor distribution which can be related to an
α-successor distribution of s′, yet there exists such a so-called α-combined tran-
sition, a convex combination of several α-successor distributions. Strong proba-
bilistic simulation accounts for this and is thus coarser than strong simulation,
but still preserves the same class of PCTL-properties as strong simulation does.
Since it is coarser, the induced simulation quotient is potentially again smaller.

Cattani and Segala [6] have presented decision algorithms for strong (prob-
abilistic) bisimulation for PAs. They reduced the decision problems to linear
programming (LP) problems. In this paper, we will focus on decision algorithms
for strong (probabilistic) simulation and strong (probabilistic) simulation equiv-
alence for PAs. We will also extend the notion of strong (probabilistic) simulation
to the continuous-time setting and study corresponding decision algorithms.

To compute the coarsest strong simulation for PAs, Baier et. al. [2] pre-
sented an algorithm which reduces the query whether a state strongly sim-
ulates another to a maximum flow problem. Their algorithm has complexity
O((mn6 + m2n3)/ log n) for PAs1, where n denotes the number of states and m
denotes the number of transitions. For Markov chains, we have presented an al-
gorithm [15] with complexity O(m2n). This algorithm is also based on maximum
flows, however it exploits the similarity of successive network flows across itera-
tions. In the present paper, we extend that algorithm to the PA case and retain
its complexity of O(m2n). Especially in the very common case, where the state
fanout of a model is bounded by a constant k (and hence m ≤ kn), our strong
simulation algorithm has complexity O(n2). The computational complexity of
strong probabilistic simulation has not been tackled yet. We show that it can be
determined by solving LP problems. As a byproduct of the decision algorithms

1 Note that the m used here is slight different from the m as we use it. A detailed
comparison is provided later, in Remark 1 of Section 4.

Deciding Simulations on Probabilistic Automata 209

for strong simulation preorders, we obtain one for strong simulation equivalences
� ∩ �−1. For the special case of MDPs [11], which arise from PAs by disallowing
nondeterministic choices of equally labelled transitions and sub-stochastic distri-
butions, strong simulation equivalence and strong bisimulation coincide [1]. We
thus obtain a decision algorithm for computing strong bisimulations for MDPs.

Further, we consider continuous-time probabilistic automata (CPAs), the
continuous-time counterpart of PAs. We give decision algorithms for strong sim-
ulation and strong probabilistic simulation on CPAs. For both of them, we show
that the decision algorithm have the same complexity as the corresponding one
for PAs.

In summary, our paper makes the following contributions: It presents novel
decision algorithms for strong (probabilistic) simulation on discrete-time and
continuous-time probabilistic automata (PAs, CPAs), and does so in a uniform
way. As special cases, discrete-time and continuous-time Markov decision pro-
cesses are considered, where in particular, our results yield an efficient algorithm
to compute strong bisimulations.

Organisation of this paper. In Section 2 we recall necessary definitions of models
and relations we consider. Section 3 recalls how to effectively compute strong sim-
ulation relations on fully probabilistic systems. Then, we extend the algorithm
in Section 4 to deal with PAs, and show that strong probabilistic simulation can
be computed by solving LP problems. We will also discuss strong (probabilis-
tic) simulation equivalences. The algorithms are extended to CPAs in Section 5.
Section 6 concludes the paper.

2 Preliminaries

This section introduces the basic models and simulation relations we consider.

Models. Let AP be a fixed, finite set of atomic propositions. Let X, Y be finite
sets. For f : X → R, let f(A) denote

∑
x∈A f(x) for all A ⊆ X . If f : X ×Y → R

is a two-dimensional function, let f(x, A) denote
∑

y∈A f(x, y) for all x ∈ X and
A ⊆ Y , and f(A, y) denote

∑
x∈A f(x, y) for all y ∈ Y and A ⊆ X . For a finite

set S, a distribution μ on S is a function μ : S → [0, 1] satisfying the condition
μ(S) ≤ 1. The support of μ is defined by Supp(μ) = {s | μ(s) > 0}, and the size of
μ is defined by |μ| = |Supp(μ)|. The distribution μ is called stochastic if μ(S) = 1,
absorbing if μ(S) = 0, and sub-stochastic otherwise. We use an auxiliary state
(not a real state) ⊥ �∈ S and set μ(⊥) = 1 − μ(S). Note that μ(⊥) > 0 if μ
is not stochastic. Further, let S⊥ denote the set S ∪ {⊥}, and let Supp⊥(μ) =
Supp(μ) ∪ {⊥} if μ(⊥) > 0. We let Dist(S) denote the set of distributions over
the set S. We recall the definition of probabilistic automata [13]:

Definition 1. A probabilistic automaton (PA) is a tuple M = (S, Act,P, L)
where S is a finite set of states, Act is a finite set of actions, P ⊆ S × Act ×
Dist(S) is a finite set, called the probabilistic transition matrix, and L : S → 2AP

is a labeling function.

210 L. Zhang and H. Hermanns

For (s, α, μ) ∈ P, we use s
α→ μ as a shorthand notation, and call μ an α-successor

distribution of s. Let Act(s) = {α | ∃μ : s
α→ μ} denote the set of actions enabled

at s. For s ∈ S and α ∈ Act(s), let Stepsα(s) = {μ ∈ Dist(S) | s
α→ μ} and

Steps(s) =
⋃

α∈Act(s) Stepsα(s). We introduce the notion of fanout for M. The
fanout of a state s is defined by fan(s) =

∑
α∈Act(s)

∑
μ∈Stepsα(s) |μ|. Intuitively,

fan(s) denote the total sum of size of outgoing distributions of state s. The
fanout of M is defined by maxs∈S fan(s).

A Markov decision process (MDP) [11] arises from the PA M such that for
s ∈ S and α ∈ Act, there is at most one α-successor distribution μ of s which
must be stochastic. M is a fully probabilistic system (FPS) if for s ∈ S, there is
at most one transition s

α→ μ. A discrete-time Markov chain (DTMC) is a FPS
where all distributions are either stochastic or absorbing. For ease of notation,
we give a simpler definition for FPSs by dropping the set of actions:

Definition 2. An FPS is a tuple D = (S,P, L) where S, L as defined for PAs,
and P : S × S → [0, 1] is the probabilistic transition matrix such that P(s, ·) ∈
Dist(S) for all s ∈ S.

Strong simulation relations. Strong simulation requires that every α-successor
distribution of one state have a corresponding α-successor distribution of the
other state. The correspondence of distributions is naturally defined with the
concept of weight functions [9].

Definition 3. Let μ, μ′ ∈ Dist(S) and R ⊆ S ×S. A weight function for (μ, μ′)
with respect to R, denoted by μ �R μ′, is a function Δ : S⊥ × S⊥ → [0, 1] such
that Δ(s, s′) > 0 implies s R s′ or s = ⊥, μ(s) = Δ(s, S⊥) for s ∈ S⊥ and
μ′(s′) = Δ(S⊥, s′) for s′ ∈ S⊥.

Now we recall the definition of strong simulation for PAs [9, 13]:

Definition 4. Let M = (S, Act,P, L) be a PA. R ⊆ S×S is a strong simulation
on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and if s1

α→ μ1 then there
exists a transition s2

α→ μ2 with μ1 �R μ2. We write s1 �M s2 iff there exists a
strong simulation R on M such that s1 R s2.

We say also that s2 strongly simulates s1 in M iff s1 �M s2. Obviously �M is
the coarsest strong simulation relation for M.

Simulation up to R. For an arbitrary relation R on the state space S of M
with s1 R s2, we say that s2 simulates s1 strongly up to R, denoted s1 �R s2,
if L(s1) = L(s2) and if s1

α→ μ1 then there exists a transition s2
α→ μ2 with

μ1 �R μ2. Otherwise we write s1 ��R s2. Note that s1 �R s2 does not imply
s1 �M s2 unless R is a strong simulation, since only the first step is considered
for �R.

Strong Probabilistic Simulation Relations. We recall first the notion of combined
transition [13], a convex combination of several equally labelled transitions:

Deciding Simulations on Probabilistic Automata 211

Definition 5. Let M = (S, Act,P, L) be a PA. Assume that Stepsα(s) =
{μ1, . . . , μk} where k = |Stepsα(s)|. The tuple (s, α, μ) is a combined transition,
denoted by s

α→C μ, iff there exist constants c1, . . . , ck ∈ [0, 1] with
∑k

i=1 ci = 1
such that μ(s) =

∑k
i=1 ciμi(s) for all s ∈ S.

Strong probabilistic simulation is insensitive to combined transitions [13], thus,
it is a relaxation of strong simulation. It is coarser than strong simulation, but
still preserves the same class of PCTL-properties as strong simulation does. The
key difference to Definition 4 is the use of α→C instead of α→:

Definition 6. Let M = (S, Act,P, L) be a PA. R ⊆ S × S is a strong prob-
abilistic simulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and if
s1

α→ μ1 then there exists a combined transition s2
α→C μ2 with μ1 �R μ2. We

write s1 �p
M s2 iff there exists a strong probabilistic simulation R on M such

that s1 R s2.

Similar to strong simulation, �p
M is the coarsest strong probabilistic simulation

relation for M. The definition of simulation up to R for strong simulation (�R)
carries over directly to strong probabilistic simulation, denoted by (�p

R). Since
MDPs can be considered as special PAs, we obtain the notion of strong simula-
tion and strong probabilistic simulation for MDPs. Moreover, strong simulation
and strong probabilistic simulation trivially coincide for MDPs as, by definition,
for each state there is at most one successor distribution per action. Note that
the above statements are also true for FPSs.

3 Algorithms for Fully Probabilistic Systems

In this section, we briefly review the algorithm to decide strong simulation pre-
order for FPSs. For more detail, we refer to [15], where the maximum flow
problem and the preflow algorithm for computing maximum flow are also re-
peated, which are key components of the decision algorithms to be presented.
As DTMCs are special FPSs, the algorithm applies directly.

Firstly, we discuss the decisive part of the algorithm: The check whether s2
strongly simulates s1 up to a relation R, i. e., s1 �R s2. As the condition L(s1) =
L(s2) is easy to check, we need to check whether P(s1, ·) �R P(s2, ·) holds.
This is reduced to a maximum flow computation on the network N (P(s1, ·),
P(s2, ·), R) constructed out of P(s1, ·), P(s2, ·) and R. This network is con-
structed via a graph containing a copy t ∈ S⊥ of each state t ∈ S⊥ where
S⊥ = {t | t ∈ S⊥} defined as follows: Let � (the source) and � (the sink) be
two additional vertices not contained in S⊥ ∪ S⊥. For functions μ, μ′ : S → R≥0
and a relation R ⊆ S × S we define the network N (μ, μ′, R) = (V, E, u) with
the set of vertices V = {�, �} ∪ Supp⊥(μ) ∪ Supp⊥(μ′) and the set of edges E
defined by E = {(s, t) | (s, t) ∈ R ∨ s = ⊥} ∪ {(�, s), (t, �)} where s ∈ Supp⊥(μ)
and t ∈ Supp⊥(μ′). The capacity function u is defined as follows: u(�, s) = μ(s)
for all s ∈ S⊥, u(t, �) = μ′(t) for all t ∈ S⊥, u(s, t) = ∞ for all (s, t) ∈ E and
u(v, w) = 0 otherwise. This network is a bipartite network, where the vertices can

212 L. Zhang and H. Hermanns

be partitioned into two subsets V1 := Supp⊥(μ)∪{�} and V2 := Supp⊥(μ′)∪{�}
such that all edges have one endpoint in V1 and another in V2. For two states
s1, s2 of an FPS, we let N (s1, s2, R) denote the network N (P(s1, ·),P(s2, ·), R).
The following lemma [2] expresses the crucial relationship between maximum
flows and weight functions:

Lemma 1. Let S be a finite set of states and R be a relation on S. Let μ, μ′ ∈
Dist(S). Then, μ �R μ′ iff the maximum flow in N (μ, μ′, R) is 1.

Thus we can decide s1 �R s2 by computing the maximum flow in N (s1, s2, R).
A key observation we made in [15] is that the networks N (s1, s2, ·) constructed
later in successive iterations are very similar: They differ from iteration to it-
eration only by deletion of some edges induced by the successive clean up of
R. The algorithm, which we shall repeat later, exploits this fact by leveraging
preflow rather than re-starting maximum flow computation from scratch each
time. Formally, we look at the network N (s1, s2, Rinit) where Rinit = {(s1, s2) ∈
S × S | L(s1) = L(s2)}. Let D1, . . . , Dk be pairwise disjoint subsets of Rinit ,
which correspond to the pairs deleted from Rinit in iteration i. Let N (s1, s2, Ri)
denote N (s1, s2, Rinit) if i = 1, and N (s1, s2, Ri−1 \ Di−1) if 1 < i ≤ k + 1. Let
fi denote the maximum flow of the network N (s1, s2, Ri) for i = 1, . . . , k+1. We
address the problem of checking |fi| = 1 for all i = 1, . . . , k + 1. Very similar to
the parametric maximum algorithm [7, p. 34], the algorithm Smf(s1,s2) (sequence
of maximum flows) for the pair (s1, s2) consists of initialising the preflow f(s1,s2)
and the distance function d(s1,s2) as for the preflow algorithm, setting i = 0, and
repeating the following steps at most k times:

Smf(s1,s2)
1. Increase i by 1. If i = 1 go to step 2. Otherwise, for all pairs (u1, u2) ∈ Di−1,

set f(s1,s2)(u1, u2) = 0 and replace the flow f(s1,s2)(u2, �) by f(s1,s2)(u2, �)
−f(s1,s2)(u1, u2). Set N (s1, s2, Ri) = N (s1, s2, Ri−1 \ Di−1). Let f(s1,s2) and
d(s1,s2) be the resulting flow and final valid distance function.

2. Apply the preflow algorithm to calculate the maximum flow for N (s1, s2, Ri)
with preflow f(s1,s2) and distance function d(s1,s2).

3. If |f(s1,s2)| < 1 return false for all j ≥ i. Otherwise, return true and continue
with step 1.

To understand this algorithm, assume i > 1. At step (1.), before we remove the
edges Di−1 from the network N (s1, s2, Ri−1), we modify the flow f(s1,s2), which
is the maximum flow of the network N (s1, s2, Ri−1), by

– setting f(s1,s2)(u1, u2) = 0 for all deleted edges (u1, u2) ∈ Di−1, and
– modifying f(s1,s2)(u2, �) such that the flow f(s1,s2) becomes consistent with

the flow conservation rule.

The excess e(v) is increased if there exists (v, w) ∈ Di−1 such that f(s1,s2)(v, w) >
0, and unchanged otherwise. Hence, the modified flow is a preflow. The distance
function d(s1,s2) keeps valid, since by removing the set of edges Di−1, no new

Deciding Simulations on Probabilistic Automata 213

SimRel(D)

1 R,Rnew ← {(s1, s2) ∈ S × S | L(s1) = L(s2)}
2 l ← 0 // auxiliary variable to count the number of iterations.
3 for ((s1, s2) ∈ R)
4 Construct the initial network N (s1, s2, Rinit) := N (s1, s2, R)
5 Initialise the flow function f(s1,s2) and the distance function d(s1,s2)

6 Listener(s1,s2) ← {(u1, u2) | u1 ∈ pre(s1) ∧ u2 ∈ pre(s2) ∧ L(u1) = L(u2)}
7 do
8 l + +
9 D ← R\Rnew and R ← Rnew and Rnew ← ∅

10 for ((s1, s2) ∈ D)
11 for ((u1, u2) ∈ Listener(s1,s2))

12 D
(u1,u2)
l ← D

(u1,u2)
l ∪ {(s1, s2)}

13 for ((s1, s2) ∈ R)

14 if (Smf(s1,s2) returns true on the set D
(s1,s2)
l)

15 Rnew ← Rnew ∪ {(s1, s2)}.
16 until(Rnew = R)
17 return R

Fig. 1. Efficient algorithm for deciding strong simulation for FPSs

residual edges are induced. This guarantees that, at step (2.), the preflow algo-
rithm finds a maximum flow over the network N (s1, s2, Ri). If |f(s1,s2)| < 1 at
some iteration i, then |f(s1,s2)| < 1 for all iterations j ≥ i because more edges
will be deleted in subsequent iterations. Therefore, at step (3.), the algorithm
returns true and continues with step (1.) if |f(s1,s2)| = 1, otherwise, returns false
for all subsequent iterations. Let post(s) denote Supp(P(s, ·)), i. e., the set of
successor states of s. The complexity of the algorithm [15] is given by:

Lemma 2. Let D1, . . . , Dk be pairwise disjoint subsets of Rinit ∩ post(s1) ×
post(s2). Let fi denote the flow constructed at the end of step (2.) in iteration i.
Assume that |post(s1)| ≤ |post(s2)|. The algorithm Smf(s1,s2) correctly computes
maximum flow fi for N (s1, s2, Ri) where i = 1, . . . , k + 1, and runs in time
O(|post(s1)||post(s2)|2).

The algorithm SimRel for deciding strong simulation for FPSs is depicted in
Fig. 1. It takes the model D as a parameter. To calculate the strong simulation
relation for D, the algorithm starts with the trivial relation Rinit = {(s1, s2) ∈
S × S | L(s1) = L(s2)} (line 1). The variable l (line 2) denotes the number
of iterations of the until-loop, and the set D (line 9) contains edges removed
from R. For every pair (s1, s2) ∈ Rinit , the network N (s1, s2, Rinit) (line 4), the
flow function f(s1,s2) and the distance function d(s1,s2) are initialised as for the
preflow algorithm (line 5). At line 6 a set

Listener(s1,s2) = {(u1, u2) | u1 ∈ pre(s1) ∧ u2 ∈ pre(s2) ∧ L(u1) = L(u2)}

214 L. Zhang and H. Hermanns

is saved, where pre(s) = {t ∈ S | P(t, s) > 0} is the set of predecessors of s. The
set Listener(s1,s2) contains all pairs (u1, u2) such that the network N (u1, u2, R)
contains the edge (s1, s2). In lines 10–12, the pair (s1, s2) is inserted into the
set D

(u1,u2)
l if (s1, s2) ∈ D and (u1, u2) ∈ Listener(s1,s2). D

(u1,u2)
l contains

edges which should be removed to update the network for (u1, u2) in iteration
l. At line 14, the algorithm Smf(s1,s2) constructs the maximum flow for the
set D

(s1,s2)
l . Note that l corresponds to i in Smf. The initialisation of Smf

corresponds to lines 4–5. In the first iteration (in which D
(s1,s2)
1 = ∅), Smf(s1,s2)

skips the computations in step (1.) and proceeds directly to step (2.), in which the
maximum flow f1 for N (s1, s2, Rinit) is constructed. In iteration l > 1, Smf(s1,s2)

takes the set D
(s1,s2)
l , updates the flow fl−1 and the network, and constructs the

maximum flow fl for the network N (s1, s2, Rl). If Smf(s1,s2) returns true, (s1, s2)
is inserted into Rnew and survives this iteration. Otherwise, s2 cannot strongly
simulate s1 up to the current relation R, hence the pair (s1, s2) is removed. This
proceeds until there is no such pair left (line 16), i. e., Rnew = R. Invariantly
throughout the loop it holds that R is coarser than �D. Hence, we obtain the
strong simulation preorder �D = R, once the algorithm terminates (line 17). For
a given FPS, let m, n denote the number of transitions and states. Note that the
fanout for FPSs is given by maxs∈S |P(s, ·)|. We recall the decisive complexity
result from [15]:

Lemma 3. SimRel(D) runs in time O(m2n) and in space O(m2). If the fanout
is bounded by a constant, it has complexity O(n2), both in time and space.

4 Algorithms for Probabilistic Automata

In this section we present algorithms for deciding strong (probabilistic) simula-
tions for PAs. First, we extend the algorithm SimRel to deal with strong simu-
lation for PAs. For strong probabilistic simulation, we show that the algorithm
can be reduced to LP problems. Finally, we discuss the strong (probabilistic)
simulation equivalence for PAs.

Strong Simulations. We aim to extend SimRel in Fig. 1 to determine the strong
simulation on PAs instead of FPSs. Assume that L(s1) = L(s2). We consider line
14, which checks the condition P(s1, ·) �R P(s2, ·) using Smf. By Definition 4
of strong simulation for PAs, we should check the condition

∀s1
α→ μ1. ∃s2

α→ μ2 with μ1 �R μ2 (1)

instead. Recall the condition μ1 �R μ2 is true iff the maximum flow of the
network N (μ1, μ2, R) has value one. For notational convenience, this network is
denoted by N (s1, α, μ1, s2, μ2, R). We say that the check μ1 �R μ2 is successful
if the corresponding maximum flow has value one, and unsuccessful otherwise.

Our goal is to carry out a sequence of checks on similar networks (obtained
by successive clean up of R) using only a single call to a slightly adaption of
the algorithm Smf. For any states s1, s2, action α, consider the two transitions

Deciding Simulations on Probabilistic Automata 215

s1
α→ μ1 and s2

α→ μ2. Let k(μ1, μ2) denote the number of successful checks of
μ1 �R μ2. We modify the algorithm Smf slightly such that the k(μ1, μ2) suc-
cessful checks for (s1, s2), plus at most one unsuccessful check, can be performed
by only a single call to Smf. To enable that, we take α, μ1, μ2 as additional
parameters for Smf. Now, for (s1, s2) ∈ R with s1

α→ μ1 and s2
α→ μ2, the net-

work N (s1, α, μ1, s2, μ2, R) is constructed instead of N (s1, s2, R). Other parts of
Smf remain unchanged. Denote the modified version by Smf’(s1,α,μ1,s2,μ2). Let
Rinit = {(s1, s2) ∈ S × S | L(s1) = L(s2)}. As complexity of Smf’ we get:

Lemma 4. Let (s1, s2) ∈ Rinit . Consider the two transitions s1
α→ μ1 and s2

α→
μ2. Let D1, . . . , Dk be pairwise disjoint subsets of Rinit ∩ Supp(μ1) × Supp(μ2).
Let fi denote the flow constructed at the end of step (2.) in iteration i of Smf’.
Assume that |μ1| ≤ |μ2|. The algorithm Smf’(s1,α,μ1,s2,μ2) correctly computes
maximum flow fi for N (s1, α, μ1, s2, μ2, Ri) where i = 1, . . . , k + 1, and runs in
time O(|μ1||μ2|2).

The algorithm SimRel for deciding strong simulation for PAs is presented in
Fig. 2. We use similar notations as Baier et. al. in [2]. During the initialisation
(lines 2–8), for (s1, s2) ∈ R and s1

α→ μ1, the set Sim(s1,α,μ1)(s2) is initialised to
Stepsα(s2) (line 4). Intuitively, Sim(s1,α,μ1)(s2) contains all potential candidates
of α-successor distributions of s2 which could be used to establish the condition
μ1 �R μ2 for the relation R considered. The set Sim(s1,α,μ1)(s2) is represented as
a list. We use the operation head(·) to get the first element of the list, and use the
operation tail(·) to remove the first element of the list. The operation empty(·)
checks whether the list is empty. At line 5, the first element of Sim(s1,α,μ1)(s2)
is assigned to μ2. The network N (s1, α, μ1, s2, μ2, Rinit), preflow and distance
function for it are initialised (lines 6–7) as for SimRel(D). Similarly, the set
Listener(s1,s2) for (s1, s2) is introduced which contains tuples (u1, α, μ1, u2, μ2)
such that the network N (u1, α, μ1, u2, μ2, Rinit) contains the edge (s1, s2).

In the main iteration, the sets D, R, Rnew and D
(u1,α,μ1,u2,μ2)
l are updated

(lines 10–13) in a similar way as SimRel(D) for FPSs. Lines 14–30 check con-
dition 1 by exploiting the modified algorithm Smf’. For the moment we fix the
pair (s1, s2) ∈ R. For s1

α→ μ1, a boolean variable matchα is introduced, which
is initialised to false (line 16), and has value true iff Smf’(s1,α,μ1,s2,μ2) returns
true on the set D

(s1,α,μ1,s2,μ2)
l (lines 19–20). In this case, we break the while

loop (line 21), and continue to check the next successor distribution of s1. If
Smf’(s1,μ1,s2,μ2,α) returns false, we remove the first element of Sim(s1,α,μ1)(s2)
(line 22), and take the next candidate of μ2 (line 26) if the set Sim(s1,α,μ1)(s2)
is not empty (line 23). If it is empty, we can not find an α-successor distribu-
tion related to μ1, so the variable matchα remains false. In this case the pair
(s1, s2) does not survive this iteration, and will be dropped out later at line
30. Assume now that the set Sim(s1,α,μ1)(s2) is not empty. In this case the set
D

(s1,α,μ1,s2,μ2)
l is then reset to ∅ (line 27), and the network, preflow, distance

function are initialised (lines 28–29) for the new candidate μ2. Then, we start
from the beginning of the while loop, and check if the new candidate μ2 satisfies
the condition μ1 �R μ2. Note that at line 30, the condition is true if and only

216 L. Zhang and H. Hermanns

SimRel(M)

1 R, Rnew ← {(s1, s2) ∈ S × S | L(s1) = L(s2)}
2 for ((s1, s2) ∈ R)
3 for (α ∈ Act(s1), μ1 ∈ Stepsα(s1))
4 Sim(s1,α,μ1)(s2) ← Stepsα(s2)
5 μ2 ← head(Sim(s1,α,μ1)(s2))
6 Construct the initial network N (s1, α, μ1, s2, μ2, R)
7 Initialise the flow and distance functions for N (s1, α, μ1, s2, μ2, R)
8 Listener(s1,s2) ← {(u1, α, μ1, u2, μ2) |

u1
α
→ μ1 ∧ u2

α
→ μ2 ∧ μ1(s1) > 0 ∧ μ2(s2) > 0 ∧ L(u1) = L(u2)}

9 do
10 D ← R\Rnew and R ← Rnew and Rnew ← ∅
11 for ((s1, s2) ∈ D)
12 for ((u1, α, μ1, u2, μ2) ∈ Listener(s1,s2))

13 D
(u1,α,μ1,u2,μ2)
l ← D

(u1,α,μ1,u2,μ2)
l ∪ {(s1, s2)}

14 for ((s1, s2) ∈ R)
15 for (α ∈ Act(s1), μ1 ∈ Stepsα(s1))
16 matchα ← false
17 while (!empty(Sim(s1,α,μ1)(s2)))
18 μ2 ← head(Sim(s1,α,μ1)(s2))

19 if (Smf’(s1,α,μ1,s2,μ2) returns true on the set D
(s1,α,μ1,s2,μ2)
l)

20 matchα ← true
21 break
22 tail(Sim(s1,α,μ1)(s2))
23 if (empty(Sim(s1,α,μ1)(s2)))
24 matchα ← false
25 break
26 μ2 ← head(Sim(s1,α,μ1)(s2))

27 D
(s1,α,μ1,s2,μ2)
l ← ∅

28 Construct the initial network N (s1, α, μ1, s2, μ2, R)
29 Initialise the flow and distance functions for N (s1, α, μ1, s2, μ2, R)
30 if (α∈Act(s1) matchα) Rnew ← Rnew ∪ {(s1, s2)}

31 until Rnew = R

32 return R

Fig. 2. Efficient algorithm for deciding strong simulation for PAs

if matchα is true for all α ∈ Act(s1). In this case condition 1 is satisfied and we
insert the pair (s1, s2) to Rnew (line 30). Similar to the algorithm for FPSs, the
invariant throughout the loop is that R is coarser than �M. Hence, we obtain
the preorder �M = R, once the algorithm terminates (line 32).

Let n denote the number of states, and m =
∑

s∈S

∑
α∈Act(s)

∑
μ∈Stepsα(s) |μ|

denote the number of transitions. We give the complexity of the algorithm:

Lemma 5. SimRel(M) runs in time O(m2n) and in space O(m2). If the
fanout of M is bounded by a constant, it has complexity O(n2), both in time
and space.

Remark 1. For a PA M = (S, Act,P, L), let mb =
∑

s∈S

∑
α∈Act(s) |Stepsα(s)|.

The algorithm for deciding strong simulation introduced by Baier et. al. has

Deciding Simulations on Probabilistic Automata 217

time complexity O((mbn
6 + m2

bn
3)/ log n), and space complexity O(m2

b). Note
that mb and m are related by mb ≤ m ≤ nmb. The left equality is established
if |μ| = 1 for all distributions, and the right equality is established if |μ| = n for
all distributions. Note that for sparse models, we have m = kmb for some k ∈ N.

Strong Probabilistic Simulations. We now consider finding an algorithm for de-
ciding strong probabilistic simulation. We show that it can be computed by
solving LP problems which are decidable in polynomial time [12]. Recall that
strong probabilistic simulation is a relaxation of strong simulation in the sense
that it enables combined transitions, which are convex combinations of multiple
distributions belonging to equally labelled transitions. Again, the most impor-
tant part is to check the condition s1 �p

R s2. By Definition 6, it suffices to check
L(s1) = L(s2) and the condition:

∀s1
α→ μ1. ∃s2

α→C μ2 with μ1 �R μ2 (2)

Since the combined transition involves the quantification of the constants ci

ranging over reals, the maximum flow approach for checking μ1 �R μ2 cannot be
applied directly to check s1 �p

R s2. The following lemma shows that condition 2
can be checked by solving LP problems.

Lemma 6. For a given PA, s1 �p
R s2 iff L(s1) = L(s2) and for each transition

s1
α→ μ, the following LP has a solution:

k∑
i=1

ci = 1 (3)

0 ≤ ci ≤ 1 ∀ i = 1, . . . , k (4)
0 ≤ f(s,t) ≤ 1 ∀(s, t) ∈ R (5)

μ(s) =
∑

t with (s,t)∈R

f(s,t) ∀s ∈ S (6)

∑

s with (s,t)∈R

f(s,t) =
k∑

i=1

ciμi(t) ∀t ∈ S (7)

where k = |Stepsα(s2)| and Stepsα(s2) = {μ1, . . . , μk}.

We introduce a predicate LP (s1, α, μ, s2) which is true iff the above LP problem
has a solution. Intuitively, the variables ci correspond to the constants for the
combined transition. Constraints 3 and 4 correspond to the requirements of
these constants in Definition 5. For every pair (s, t) ∈ R, a variable f(s,t) ranging
over [0, 1] (Equation 5) is introduced, whose value corresponds to the value of
the weight function for (s, t). Equations 6 and 7 establish the weight function
conditions of the strong probabilistic simulation. Any solution of the LP problem
induces c1, . . . , ck from which we can construct the desired combined transitions
μc =

∑k
i=1 ciμi satisfying μ �R μc. Assuming that L(s1) = L(s2), then, s1 �p

R s2
iff the conjunction

∧
α∈Act(s1) LP (s1, α, μ, s2) is true.

218 L. Zhang and H. Hermanns

SimRel
p(M)

1 R, Rnew ← {(s1, s2) ∈ S × S | L(s1) = L(s2)}
2 do
3 R ← Rnew and Rnew ← ∅
4 for ((s1, s2) ∈ R)
5 for (α ∈ Act(s1), μ1 ∈ Stepsα(s1))
6 matchα ← LP (s1, α, μ1, s2)
7 if (

∧
α∈Act(s1) matchα) Rnew ← Rnew ∪ {(s1, s2)}

8 until Rnew = R
9 return R

Fig. 3. Algorithm for deciding strong probabilistic simulation for PAs

The algorithm, denoted by SimRel
p(M), is depicted in Fig. 3. It takes

the skeleton of algorithm SimRel(M). The key difference is that we incorpo-
rate the predicate LP (s1, α, μ, s2) in line 6. The correctness of the algorithm
SimRel

p(M) is thus similar to the one of SimRel(M). We discuss the com-
plexity. The number of variables in the LP problem in Lemma 6 is k + |R|, and
the number of constraints is 1 + k + |R| + 2|S| ∈ O(|R|). In every iteration
of SimRel

p(M), for (s1, s2) ∈ R and s1
α→ μ1, this core is queried one time.

The number of iterations is bounded by |Rinit | ∈ O(n2). Therefore, in the worst
case, one has to solve n2 ∑

s∈S

∑
α∈Act(s)

∑
μ∈Stepsα(s) 1 ≤ n2m many such LP

problems and each of them has maximal O(n2) constraints.

Strong Simulation Equivalence. For DTMCs, strong simulation equivalence and
strong bisimulation coincide [4, Proposition 3.5]. This is not true for PAs, where
strong (probabilistic) simulation equivalence is strictly coarser than strong (prob-
abilistic) bisimulation. Since it is coarser, the induced strong (probabilistic)
simulation quotient is potentially again smaller. This is not surprising, as PAs
subsume labelled transition systems, in which strong simulation equivalence is
strictly coarser than strong bisimulation. The presented decision algorithm can
be used to obtain strong simulation equivalence �M ∩ �−1

M with complex-
ity O(m2n), and to obtain strong probabilistic simulation equivalence �p

M ∩
(�p

M)−1 via solving LP problems.
This is directly useful for model checking. We discuss briefly which classes of

properties are preserved by strong (probabilistic) simulation equivalence. We as-
sume acquaintance with the logic PCTL, particularly the safe and live fragments
of PCTL. For more detail, we refer to [4]. Strong (probabilistic) simulation is
known to preserve all safe fragments of PCTL [13], which can be lifted to the
quotient automaton:

Lemma 7. For PAs, the strong (probabilistic) simulation quotient automaton
preserves both safe and live fragments of PCTL formulas.

Recall that for MDPs, strong simulation and strong probabilistic simulation
trivially coincide. More surprisingly, strong simulation equivalence and strong

Deciding Simulations on Probabilistic Automata 219

bisimulation also coincide on MDPs [1, Theorem 3.4.15]. Therefore, as a byprod-
uct of algorithm SimRel(M), we obtain a decision algorithm for strong bisim-
ulation of MDPs: strong bisimulation for an MDP M can be obtained by �M
∩ �−1

M , with complexity O(m2n).

5 Algorithms for Continuous-Time Probabilistic
Automata

In this section we introduce a generalisation of PAs where the transitions are
described by rates instead of probabilities. Then, we extend the decision algo-
rithms to continuous-time models. For that purpose we let r : S → R≥0 denote
the rate function, and let Rate(S) denote the set of all rate functions.

Definition 7. A continuous-time PA (CPA) is a tuple (S, Act,R, L) where S,
Act, L as defined for PAs, and R ⊆ S × Act × Rate(S) a finite set, called the
rate matrix.

We write s
α→ r if (s, α, r) ∈ R. The model continuous-time Markov decision

processes (CTMDPs) [3, 11] can be considered as special CPAs where for s ∈ S

and α ∈ Act, there exists at most one rate function r ∈ Rate(S) such that s
α→ r.

The model CTMDPs considered in paper [14] essentially agrees with our CPAs.
Note that CPAs generalise PAs in a similar way as CTMDPs generalise MDPs.

Strong Simulations. For a rate function r with r(S) > 0, we let μ(r) ∈ Dist(S)
denote the induced distribution defined by: μ(r)(s) equals r(s)/r(S) if r(S) > 0
and 0 otherwise. Now we introduce the notion of strong simulation for CPAs,
which can considered as an extension of the definition for CTMCs [4]:

Definition 8. Let M = (S, Act,R, L) be a CPA. R ⊆ S × S is a strong simu-
lation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and if s1

α→ r1 then
there exists a transition s2

α→ r2 with μ(r1) �R μ(r2) and r1(S) ≤ r2(S). We
write s1 �M s2 iff there exists a strong simulation R on M such that s1 R s2.

The additional rate condition r1(S) ≤ r2(S) indicates that r2 is faster than r1.
The decision algorithm for strong simulation can be adapted from algorithm
SimRel in Fig. 2 easily: We replace every occurrence of μ1 and μ2 by r1 and r2,
respectively. Other notations are extended with respect to rate functions in an
obvious way. To guarantee the additional rate condition, we rule out transitions
that violate it by replacing line 4 by: Sim(s1,α,r1)(s2) ← {r2 ∈ Stepsα(s2) |
r1(S) ≤ r2(S)}. Obviously, the so obtained algorithm for CPAs has the same
complexity O(m2n) as for PAs.

Strong Probabilistic Simulations. We extend the notion of strong probabilistic
simulation to CPAs. Firstly, we introduce combined transitions for CPAs:

Definition 9. Let M = (S, Act,R, L) be a CPA. Assume that {r1, . . . , rk} ⊆
Stepsα(s) where ri(S) = rj(S) for i, j ∈ {1, . . . , k}. The tuple (s, α, r) is a

220 L. Zhang and H. Hermanns

combined transition, denoted by s
α→C r, iff there exist constants c1, . . . , ck ∈

[0, 1] with
∑k

i=1 ci = 1 such that r(s) =
∑k

i=1 ciri(s) for all s ∈ S.

In the above definition, unlike for the PA case, only α-successor rate func-
tions with same exit rate can be combined together. This restriction makes the
combined transition also exponential distributed. Without this restriction, the
combined transition is not exponential distributed any more, precisely, it is
hyper-exponential distributed. To see this we consider S = {s1, s2, s3}, and
s1

α→ r1 and s1
α→ r2. The rate function r1 is defined by r1(s2) = 2, r1(s3) = 8,

and r2 is defined by r2(s2) = 12, r2(s3) = 6. Taking r1 and r2 with equal prob-
ability 0.5, we would get the combined transition r = 0.5r1 + 0.5r2 satisfying:
r(s2) = 7 and r(s3) = 7. If r is exponential distributed, we would expect that the
probability of reaching state s2 within time t should be 7

14 ∗ (1 − exp−14t). How-
ever, the combined transition is hyper-exponential distributed: the probability
of reaching state s2 within time t under r is given by:

0.5 ∗ 2
10

∗ (1 − exp−10t) + 0.5 ∗ 12
18

∗ (1 − exp−18t)

Similarly, the probability of reaching state s3 within time t is given by: 0.5 ∗ 8
10 ∗

(1 − exp−10t) + 0.5 ∗ 6
18 ∗ (1 − exp−18t).

Similar to PAs, strong probabilistic simulation is insensitive to combined tran-
sitions, is thus a relaxation of strong simulation:

Definition 10. Let M = (S, Act,R, L) be a CPA. R ⊆ S × S is a strong
probabilistic simulation on M iff for all s1, s2 with s1 R s2: L(s1) = L(s2) and
if s1

α→ r1 then there exists a combined transition s2
α→C r2 with μ(r1) �R μ(r2)

and r1(S) ≤ r2(S). We write s1 �p
M s2 iff there exists a strong simulation R on

M such that s1 R s2.

The notation of simulation up to R for strong probabilistic simulation can be
defined in a similar way as for PAs. To check the condition s1 �p

R s2 for the
CPA M we resort to a reduction to LP problems:

Lemma 8. For a given CPA, s1 �p
R s2 iff L(s1) = L(s2) and for each transition

s1
α→ r there exists {r1, . . . , rk} ⊆ Stepsα(s2) with ri(S) = rj(S) and ri(S) ≥

r(S) for i, j ∈ {1, . . . , k} such that the following LP has a solution, which consists
of constraints 3, 4, 5 of Lemma 6, and additionally:

r(s) = r(S)
∑

t with (s,t)∈R

f(s,t) ∀s ∈ S (8)

r1(S)
∑

s with (s,t)∈R

f(s,t) =
k∑

i=1

ciri(t) ∀t ∈ S (9)

r(S) ≤ r1(S) (10)

Similar to Lemma 6, for every E ∈ {r∗(S) | s2
α→ r∗} with E > r1(S) we

introduce the predicate LP ′(s1, α, r, s2, E) which is true iff the above LP prob-
lem has a solution. In comparison to the LP problem in Lemma 6, Equation 10

Deciding Simulations on Probabilistic Automata 221

establishes the rate condition. Recall that μ(r)(s) = r(s)/r(S). Equation 8 cor-
responds to Equation 6 where r(S) is multiplied on both sides. Now we consider
Equation 9. Let rc(t) =

∑k
i=1 ciri(t) be the combined transition that simulates

r. Note μ(rc)(t) =
∑k

i=1 ciri(t)/
∑k

i=1 ciri(S). Since we have ri(S) = rj(S) for
all i, j ∈ {1, . . . , k}, the denominator is simplified to r1(S). Hence, Equation 9
corresponds to Equation 7 where r1(S) is multiplied on both side. Note that
the denominator could not be simplified without the restriction in the combined
transition, i. e., only rate function with the same exit rate can be combined.
Equation 9 would not be a linear constraint any more for this case. Obviously,
the LP problem has a solution iff there is such a combined transition rc satisfying
the conditions μ(r) �R μ(rc) and r(S) ≤ rc(S). Assuming that L(s1) = L(s2),
then, s1 �p

R s2 iff the conjunction
∧

α∈Act(s1) LP ′(s1, α, r, s2, E) is true for an

E ∈ {r∗(S) | s2
α→ r∗ ∧ r∗(S) ≥ r1(S)}. The decision algorithm can be obtained

by replacing the predicate LP (s1, α, μ, s2) by LP ′(s1, α, r, s2, E) of algorithm
SimRel

p(M) in Fig. 3 where E ranges over {r∗(S) | s2
α→ r∗ ∧ r∗(S) ≥ r1(S)}.

As complexity we have to solve n2m LP problems and each of them has maximal
O(n2) constraints.

Strong Simulation Equivalence. Similar to PAs, as a byproduct we obtain a
decision algorithm for strong (probabilistic) simulation equivalence for CPAs.
We discuss also which classes of properties are preserved by strong (probabilistic)
simulation equivalence. We assume acquaintance with the logic CSL, particularly
the safe and live fragments of CSL. For more detail, we refer to [4]. Now we give
the continuous-time counterpart of Lemma 7 for CPAs:

Lemma 9. For CPAs, the strong (probabilistic) simulation preserves all safe
fragments of CSL formulas. Moreover, the strong (probabilistic) simulation quo-
tient automaton preserves both safe and live fragments of CSL formulas.

For CTMDPs, strong simulation and strong probabilistic simulation also triv-
ially coincide, as for MDPs. Another similar result is that the strong simulation
quotient and the strong bisimulation for CTMDPs also coincide.

6 Conclusion

We presented algorithms for computing simulation preorders for PAs. We achieved
an algorithm with complexity O(m2n) for strong simulation. For strong proba-
bilistic simulation, we have shown that the preorder can be determined by solving
LP problems. We extended the algorithms to CPAs with same complexities for
both strong simulation and strong probabilistic simulation. As further work, we
would like to extend our results to weak (probabilistic) simulations for PAs and
CPAs.

Acknowledgement. We thank Martin Neuhäußer for pointing out an error in the
definition of combined transitions for CPAs in an earlier version of this paper.

222 L. Zhang and H. Hermanns

References

1. Baier, C.: On Algorithmic Verification Methods for Probabilistic Systems,
Habilitations-schrift zur Erlangung der venia legendi der Fakultät für Mathematik
and Informatik, Universität Mannheim (1998)

2. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and sim-
ilarity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)

3. Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.R.: Efficient computation of
time-bounded reachability probabilities in uniform continuous-time markov deci-
sion processes. Theor. Comput. Sci. 345(1), 2–26 (2005)

4. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for markov chains. Inf. Comput 200(2), 149–214 (2005)

5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

6. Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim,
L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421,
pp. 371–385. Springer, Heidelberg (2002)

7. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algo-
rithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

8. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
ACM 35(4), 921–940 (1988)

9. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
LICS, pp. 266–277 (1991)

10. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Com-
put. 94(1), 1–28 (1991)

11. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Chichester (1994)

12. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
13. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord.

J. Comput. 2(2), 250–273 (1995)
14. Wolovick, N., Johr, S.: A characterization of meaningful schedulers for continuous-

time markov decision processes. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006.
LNCS, vol. 4202, pp. 352–367. Springer, Heidelberg (2006)

15. Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: Efficient de-
cision algorithms for probabilistic simulations. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 155–169. Springer, Heidelberg (2007)

Mechanizing the Powerset Construction for

Restricted Classes of ω-Automata�

Christian Dax1, Jochen Eisinger2, and Felix Klaedtke1

1 ETH Zurich, Switzerland
2 Albert-Ludwigs-Universität Freiburg, Germany

Abstract. Automata over infinite words provide a powerful framework
to solve various decision problems. However, the mechanized reasoning
with restricted classes of automata over infinite words is often simpler
and more efficient. For instance, weak deterministic Büchi automata
(wdbas) can be handled algorithmically almost as efficient as determin-
istic automata over finite words. In this paper, we show how and when
the standard powerset construction for automata over finite words can be
used to determinize automata over infinite words. An instance is the class
of automata that accept wdba-recognizable languages. Furthermore, we
present applications of this new determinization construction. Namely,
we apply it to improve the automata-based approach for the mixed first-
order linear arithmetic over the reals and the integers, and we utilize
it to accelerate finite state model checking. We report on experimental
results for these two applications.

1 Introduction

Automata over infinite objects have emerged as a powerful tool for specification
and verification of nonterminating programs [23, 32], and for implementation of
decision procedures for logical theories [2, 4, 9, 18]. For instance, the automata-
theoretic approach to model checking is easy to understand, automatic, and
thus attractive to practitioners. However, its effectiveness is often sensitive to
the automaton model and the sizes of the automata.

In [5], it is remarked that many specifications in model checking describe
languages that can be recognized by restricted classes of automata. Reasoning
about or with restricted classes of automata over infinite words is often simpler
and more efficient. A prominent example are weak deterministic Büchi automata
(wdbas), which can be handled algorithmically almost as efficient as determin-
istic automata over finite words. For instance, in contrast to Büchi automata,
wdbas have a canonical minimal form, which can be obtained efficiently [25].
wdbas can be used to represent and manipulate sets definable in the mixed first-
order logic over the reals and the integers with addition and the ordering, i.e.,
FO(R, Z, +, <) [4]. Such an automata-based representation of FO(R, Z, +, <)-
definable sets has applications in infinite-state model checking (see, e.g., [3, 9]).
� This work was supported by the German Research Council (DFG) and the Swiss

National Science Foundation (SNF).

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 223–236, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

224 C. Dax, J. Eisinger, and F. Klaedtke

Further, languages that describe temporal properties like safety and guarantee
properties and boolean combinations thereof, so-called obligation properties, can
be recognized by wdbas (see [6]).

However, it is not obvious how we can benefit from the algorithms for wdbas
if a given automaton is, e.g., a nondeterministic Muller automaton that ac-
cepts a wdba-recognizable language. In [19], Kupferman et al. observed that
the standard powerset construction for automata over finite words can be used
to obtain an equivalent wdba from a given automaton when it accepts a wdba-
recognizable language. However, no concrete algorithm is given. In particular,
the crucial point how to efficiently determine the accepting states of the wdba

is not addressed.
In this paper, we provide an efficient algorithm to determine the accepting

states of the wdba obtained by the standard powerset construction for automata
over finite words. Furthermore, we give a sufficient condition for automata for
which we can use the powerset construction to obtain equivalent deterministic
Büchi automata. For such automata, we provide a general determinization con-
struction. We also present a method to check whether this new determinization
construction can be applied. Finally, we propose how to use the new construc-
tions in relevant applications. We evaluate our approaches experimentally.

One of the applications is the construction of automata-based representations
for sets definable in FO(R, Z, +, <). Our new construction handles quantifiers
more efficiently than previously proposed constructions as, e.g., in [4]. Another
application for our determinization constructions discussed in this paper is finite
state model checking. Whenever the specification is an obligation property, we
suggest to construct the minimal wdba. The advantage of using the minimal
wdba is that it contains no redundant states and no nondeterminism that might
lead to a more expensive verification process. In [29], Sebastiani and Tonetta sug-
gest an approach with a similar flavor to optimize the verification process. Instead
of constructing the minimal wdba, they apply heuristics to reduce nondetermin-
ism in the transition function of the Büchi automaton for the specification. For
both applications, our evaluations show an improvement in the state of the art
in the respective area.

We proceed as follows. In §2, we recall background. In §3, we show how and
when we can use the powerset construction for automata over infinite words.
In §4, we give applications and experimental results of the new determinization
constructions. Finally, in §5, we draw conclusions.

2 Background

We assume that the reader is familiar with the basics of automata theory. The
purpose of this section is to recall background in this area, and fix some of the
notation and terminology that we use in the remainder of the text.

Let Σ be an alphabet. We denote the set of all finite words over Σ by Σ∗.
We define Σ+ := Σ∗ \ {ε}, where ε is the empty word. Σω is the set of all in-
finite words over Σ. We often write a word w ∈ Σ∗ of length � ≥ 0 as w0 . . . w�−1

Mechanizing the Powerset Construction for Restricted Classes 225

and α ∈ Σω as α0α1 . . . , where wi and αi denote the ith letter of w and α,
respectively. We denote the infinite repetition of a finite word u ∈ Σ+ by uω.

A transition system (ts) T is a tuple (Q, Σ, δ, qI), where Q is a finite set of
states, δ : Q×Σ → P(Q) is the transition function, and qI ∈ Q is the initial state.
We extend δ to the function δ̂ : Q × Σ∗ → P(Q) defined as δ̂(q, ε) := {q} and
δ̂(q, bu) :=

⋃
p∈δ(q,b) δ̂(p, u), where q ∈ Q, b ∈ Σ, and u ∈ Σ∗. T is deterministic

if |δ(p, b)| = 1, for all p ∈ Q and b ∈ Σ. In this case, we write δ(p, b) = q and
δ̂(p, w) = q instead of δ(p, b) = {q} and δ̂(p, w) = {q}, respectively.

For L ⊆ Σω, we define the congruence relation ≈L⊆ Σ∗ × Σ∗ as u ≈L v
iff uα ∈ L ⇔ vα ∈ L, for all α ∈ Σω. If ≈L has finite index, we define the
deterministic ts CL as CL := ({[v] : v ∈ Σ∗}, Σ, δ, [ε]) with δ([v], b) := [vb],
where [u] denotes the equivalence class of u ∈ Σ∗, i.e., [u] := {v ∈ Σ∗ : v ≈L u}.
Note that δ is well-defined.

In the following, let T = (Q, Σ, δ, qI) be a ts. A state q ∈ Q is reachable from
p ∈ Q if there is a word w ∈ Σ∗ such that q ∈ δ̂(p, w). In the remainder of
the text, we assume that every state in a ts is reachable from its initial state.
A strongly connected component (scc) of T is a set S ⊆ Q such that every
p ∈ S is reachable from every q ∈ S and S is maximal. A loop in T is a word
q0 . . . qn ∈ Q∗ with n ≥ 1, q0 = qn, and for all i ∈ {0, . . . , n− 1}, there is a letter
b ∈ Σ such that qi+1 ∈ δ(qi, b). A run of T on α ∈ Σω is a word � ∈ Qω such
that �0 = qI and �i+1 ∈ δ(�i, αi), for all i ≥ 0. Inf(�) is the set of states that
occur infinitely often in �.

An automaton A is a tuple (T, C), where T is a ts and C is an acceptance
condition. In the following, we mainly use the Büchi and co-Büchi conditions,
which are defined as follows.

– S ⊆ Q satisfies the Büchi condition C ⊆ Q if S ∩ C 	= ∅.
– S ⊆ Q satisfies the co-Büchi condition C ⊆ Q if S ∩ C = ∅.

Due to space limitations, we do not give the definition of the other common
acceptance conditions like Muller, Rabin, and Streett condition. Instead, we
refer the reader to [31]. A run � is accepting if Inf(�) satisfies the accep-
tance condition C; it is rejecting, otherwise. We define L(A) := {α ∈ Σω :
there is an accepting run of A’s ts on α}.

We type an automaton A = (T, C) according to its acceptance condition C.
For instance, if C is the Büchi condition, A is a Büchi automaton (ba) and if
C is the co-Büchi condition, we call A a co-Büchi automaton (co-ba). If T is
deterministic, A is a deterministic ba (dba) or deterministic co-ba (co-dbas),
respectively. A ba (T, C) is weak if S ∩ C = ∅ or S ⊆ C, for every scc S ⊆ Q.
We use the initialisms wba for “weak Büchi automaton” and wdba for “weak
deterministic Büchi automaton.”

WDBA denotes the class of languages L for which there is a wdba A with
L(A) = L. The classes of languages DBA and coDBA are defined as expected.
There are different characterizations of these classes of languages and the relation
between the classes has been investigated intensively. For example, it holds that
DBA ∩ coDBA = WDBA. For details, we refer the reader to [6].

226 C. Dax, J. Eisinger, and F. Klaedtke

3 Determinization with the Powerset Construction

In this section, we investigate when and how we can use the powerset con-
struction to determinize automata over infinite words. The powerset transition
system of a ts T = (Q, Σ, δ, qI) is P(T) := (P(Q), Σ, η, {qI}) with η(R, b) :=⋃

q∈R δ(q, b), for R ⊆ Q and b ∈ Σ. Let CONG be the class of languages L for
which the dba (CL, E) accepts L, for some set E.

Lemma 1. Let A = (T, C) be an automaton. If L(A) ∈ CONG then there is a
set F such that the dba (P(T), F) accepts L(A).

Proof. Assume that T = (Q, Σ, δ, qI) and that the dba (CL(A), E) accepts L(A).
Define F := {P ⊆ Q : δ̂(qI, u)=P and [u]∈E, for some u ∈ Σ∗}. For α ∈ Σω,
let � be the run of CL(A) and �′ be the run of P(T). We show that �i ∈ E iff
�′i ∈ F , for all i ≥ 0. Let v := α0 . . . αi−1. Note that �i = [v]. The direction
from left to right holds by the definition of F . For the other direction, assume
that �′i ∈ F , i.e., there is a word u ∈ Σ∗ with δ̂(qI, u) = �′i and [u] ∈ E. Since
�′i = δ̂(qI, u) = δ̂(qI, v), we have that u ≈L(A) v and hence, [u] = [v] = �i. ��

Note that Lemma 1 establishes the existence of the Büchi acceptance condition
F for the ts P(T). It is left open how to algorithmically determine the set F . A
naive algorithm checks whether it holds that the dba (P(T), F) accepts L(A),
for each F ⊆ P(Q). In §3.1 and §3.2, we present more sophisticated algorithms
to determine such a set F . For certain language classes, our algorithms have an
exponentially better worst-case complexity than the sketched naive algorithm.
With such algorithms at hand, we obtain new automata constructions for de-
terminizing automata whenever they accept languages in CONG or subclasses
thereof. We give concrete applications of these constructions in §4. Before we
present the algorithms and their applications, we look in more detail at the
languages in CONG and at the automata that accept languages in CONG.

First, we remark that the converse direction of Lemma 1 does not
hold in general. To see this, let L be the language {α ∈ {0, 1}ω :
1 occurs infinitely often in α}. Since ≈L has only one equivalence class, it is
straightforward to see that L 	∈ CONG. However, there is a dba A = (T, C) that
accepts L and since T is deterministic, there is obviously a set F such that the
dba (P(T), F) accepts L. Second, we observe that CONG � DBA. By definition,
every language in CONG can be accepted by some dba. As we have seen above,
the dba A accepts a language not in CONG.

Further, note that for a language L ∈ WDBA, there is some dba (CL(A), E)
that accepts L [26]. Hence, CONG subsumes important classes of ω-regular
languages. For instance, the ω-regular languages that describe boolean combi-
nations of safety and guarantee properties are in CONG (see, e.g., [6]). More-
over, CONG contains the languages that are definable in the mixed first-order
logic over the integers and the reals with addition and the ordering [4]. Un-
fortunately, checking whether an automaton accepts a language in CONG is
PSPACE-hard. This can be shown by a similar argumentation as in the proof of
Theorem 4.2 in [20].

Mechanizing the Powerset Construction for Restricted Classes 227

Finally, note that for a language L ⊆ Σω, the minimal number of states of a
deterministic automaton A with L(A) = L is at least the index of the congruence
relation ≈L. In the case where L ∈ CONG, the minimal number of states of a
deterministic automaton A that accepts L is the index of ≈L. From Lemma 1, it
follows that for A’s ts T there exists a set F of states such that the dba (T, F)
accepts L. Note that the powerset transition system of T is isomorphic to T when
we remove the states that are not reachable from its initial state. Similarly, as
remarked in the paragraph after Lemma 1, it is left open how to determine the
set F of accepting states algorithmically from the automaton A. The algorithms
presented in the following subsections can be used to solve this problem for
converting the acceptance condition to a Büchi acceptance condition.

3.1 Determinization of Automata with Languages in WDBA

We first consider the special case, where we assume that the automaton A

accepts a language in WDBA. Assume that A is the automaton (T, C) with
T = (Q, Σ, δ, qI) and that P(T) = (P(Q), Σ, η, {qI}). Before we present the
automata construction to determinize A, we make the following observations.
From [26], we know that some dba (CL(A), E) accepts L(A). It follows from
Lemma 1 that for some F ⊆ P(Q), the dba (P(T), F) accepts L(A). According
to Theorem 5.2 in [4], (P(T), F) is inherently weak, i.e., there is no scc S of P(T)
with an accepting and a rejecting loop. Here, we call a loop Q0 . . .Qn ∈ P(Q)+

accepting if Qi ∈ F , for some i ∈ {0, . . . , n − 1}, and rejecting, otherwise.

Lemma 2. Let R ∈ P(Q), u ∈ Σ∗ such that η̂({qI}, u) = R, and w ∈ Σ+ such
that η̂(R, w) = R. It holds that uwω ∈ L(A) iff all loops of the scc that contains
R are accepting.

Proof. (⇒) If uwω ∈ L(A) then uwω ∈ L(P(T), F). Since (P(T), F) is inherently
weak and R occurs infinitely often in the run of P(T) on uwω , all loops of the
scc that contains R are accepting.

(⇐) If all loops of the scc that contains R are accepting then uwω ∈ L(P(T), F).
Since L(P(T), F) = L(A), we have that uwω ∈ L(A). ��

The determinization of A comprises two steps.1 First, we construct P(T). Second,
we use the algorithm in Figure 1 to compute a set F ′ ⊆ P(Q), where F ′ is the
union of the sccs for which the algorithm returns “accepting.” In the algorithm
the words u and w can be found, e.g., by a breadth-first search. Note that
uwω ∈ L(A) is equivalent to {uwω}∩L(A) = ∅. We can construct an automaton
that accepts {uwω} ∩L(A) and check its emptiness according to A’s acceptance
condition. See [7,14,17], for several efficient emptiness checks with respect to the
automaton’s acceptance condition.
1 In [19], it is stated that for a ba B = (U, G) that accepts a language in WDBA, the

Büchi condition for P(U) can be chosen as {P : P ∩ G �= ∅}. A counterexample for
this claim is the ts ({r, s, t}, {0}, δ, r) with δ(r, 0) = {r, s} and δ(s, 0) = δ(t, 0) = {t}
and the Büchi condition {s}.

228 C. Dax, J. Eisinger, and F. Klaedtke

1: if S has no loop then return rejecting
2: Let R be some state in S.
3: Let u ∈ Σ∗ a word such that η̂({qI}, u) = R.
4: Let w ∈ Σ+ a word such that η̂(R, w) = R.
5: if uwω ∈ L(A) then return accepting else return rejecting

Fig. 1. Algorithm to determine whether an scc S of P(T) is accepting or rejecting

The correctness of this construction can be seen as follows. Note that for
an scc S without a loop it is irrelevant whether its states belong to F ′ or
not. The language of the automaton is not altered, since these states can only
occur at most once in a run. We make them rejecting. Otherwise, let S be an
scc with at least one loop. From Lemma 2, it follows that the algorithm in
Figure 1 returns “accepting” for S iff all loops of S are accepting. It follows that
L(P(T), F) = L(P(T), F ′).

We remark that the constructed automaton is weak. Further, the construction
is parametric in the type of the acceptance condition of the automaton A. We
obtain translations to wdbas for automata with acceptance conditions such as
parity, Rabin, Streett, and Muller.

In summary, the construction described in this subsection establishes the fol-
lowing theorem.

Theorem 3. Let A be an automaton with n states. If L(A) ∈ WDBA then we
can construct a wdba with at most 2n states that accepts L(A).

3.2 The General Case

In this subsection, we consider the general case, where we are given an automaton
A with L(A) ∈ CONG. We do not require that A accepts a language in WDBA
as in the previous subsection. From Lemma 1, we know that there is a set F
such that the dba (P(T), F) accepts the language of A, where T is the ts of
A. So, as in §3.1, we are left with the problem to determine algorithmically a
set F ′ such that the dba (P(T), F ′) accepts L(P(T), F). In fact, the algorithm
that we present in the following solves a more general problem. The input of the
algorithm consists of an automaton B and a deterministic ts U . The algorithm
requires that there is at least one set F such that the dba (U, F) accepts L(B).
It outputs a set F ′ such that the dba (U, F ′) accepts L(B). Assume that U =
(P, Σ, η, pI).

Observe that we can consider each scc of U separately, i.e., for each scc S,
we can compute a set FS ⊆ P without taking into account the states of U in
the other sccs of U . Note that such a set FS is not uniquely determined and
there might be dependencies on the states in S that we have to take care of. The
algorithm in Figure 2 returns such a set FS , for an scc S of U . F ′ is then the
union of the sets FS , for all sccs S of U .

Due to space limitations we only sketch the algorithm. We iteratively inves-
tigate loops π in the scc S from which we gain additional information about

Mechanizing the Powerset Construction for Restricted Classes 229

1: R ← ∅
2: A ← ∅
3: Let G be the graph (V, E) with V :=S and E :={(p, q) : η(p, b)=q, for some b ∈ Σ}.
4: while there is a loop π = v0 . . . v� in G with � ≤ |S| and v0 ∈ V \ R and

there is no X ∈ A such that X ⊆ {v0, . . . , v�−1} do
5: Let u ∈ Σ∗ be a word with η̂(qI, u) = v0.
6: Let w ∈ Σ+ be a word of length � with η(vi, wi) = vi+1, for all 0 ≤ i < �.
7: if uwω �∈ L(B) then
8: R ← R ∪ {v0, . . . , v�}
9: Update A, i.e., remove the vis in every X ∈ A.

10: else
11: A ← A ∪

{
{vi : 0 ≤ i ≤ � and vi /∈ R}

}
12: end if
13: while there is a vertex v ∈ V with {v} ∈ A do
14: Delete vertex v from G.
15: Update A, i.e., remove X ∈ A whenever v ∈ X.
16: end while
17: end while
18: return S \ R

Fig. 2. Algorithm to determine the set of accepting states for an scc S of T ′

which of the states in S have to be accepting and which have to be rejecting.
For a loop π = p0 . . . p�, there is a word w ∈ Σ+ that visits the states in π in
the same order. Moreover, there is a word u ∈ Σ∗ with η̂(qI, u) = p0. We check
if uwω ∈ L(B). If this is not the case, we know that the states p0, . . . , p�−1 must
not be in FS . If uwω ∈ L(B), we know that at least one of the states p0, . . . , p�−1
has to be in FS . The algorithm maintains a set R, where R contains the states
that must not be in FS , and it maintains a set A of sets of states, where X ∈ A
means that at least one of the states in X has to be in FS . Initially, R and A are
empty. If we derive the fact that a state p ∈ S has to be rejecting, we put p in
R and delete p in every X ∈ A. If A contains a singleton {q}, we know that the
state q ∈ S has to be accepting and we remove the sets X from A that contain q.

The algorithm also maintains a graph G. Intuitively speaking, G together with
the set A describe the loops of the scc S that we still need to investigate. Initially,
G is the transition graph of the scc S. Note that we need not to investigate loops
in G that visit a state for which we already know that it has to be in FS . Thus,
as soon as we conclude that a state p is accepting, we delete p in G (and all its
in-going and out-going edges). That means, that no loop in the updated graph
will visit p. Further, a loop π has to visit at least one state for which we do not
know whether it is accepting or rejecting. Without loss of generality, we assume
that π0 is such a state. Moreover, we can restrict ourselves to loops π for which
the set of visited states is not a superset of any X ∈ A. The reason for this is
that at least one state in X has to be accepting and thus, xyω ∈ L(B), where
x ∈ Σ∗ is a word from pI to the state π0 and y ∈ Σ+ is a word corresponding
to the loop π. Therefore, we do not obtain any new information by investigating
π. Finally, note that it suffices to check loops of length at most |S| + 1.

230 C. Dax, J. Eisinger, and F. Klaedtke

The algorithm in Figure 2 terminates since it only checks finitely many loops.
In the worst case, it checks exponentially many loops: Assume that the given
deterministic ts U has the graph

•
�����

� • . . . •
������ •

�����
�

1•

������

�����
� 2•

������

�����
� n−1•

������

������
n•

������

��

•
������ • . . . •

������ •
������

and state 1 is the initial state. This graph has 2n−1 loops of length 2n that start
in state 1. If the infinite repetition of the words corresponding to these loops are
in L(B), the algorithm checks exponentially many loops. We remark that from
smaller loops we can obtain more information. In particular, from a self-loop we
immediately see if the state in the self-loop has to be accepting or rejecting. So,
a heuristic is to check loops ordered increasingly by their lengths.

Finally, note that the algorithm in Figure 2 can be easily adapted such that
we can use it to obtain a set F ′ ⊆ P for the co-Büchi condition, i.e., that the
co-dba (U, F ′) accepts L(B).

3.3 Remarks on the Precondition of the Algorithm

In this subsection, we want to comment on the requirement of the algorithm
in §3.2, i.e., the existence of a set F such that the dba (U, F) accepts L(B).
If we do not know whether such a set F exists, we can proceed as follows. We
use the algorithm presented in §3.2 to obtain a set F ′ of states of the ts U
and check whether the dba (U, F ′) accepts L(B). Note that this check can
be done by checking L(U, F ′) ⊆ L(B) and L(B) ⊆ L(U, F ′), or equivalently,
(Σω \ L(U, F ′)) ∩ L(B) = ∅ and (Σω \ L(B)) ∩ L(U, F ′) = ∅, respectively. The
first check can be done in polynomial time. Note that dbas can be complemented
in polynomial time [22]. However, the second check is expensive, since we have
to complement B (e.g., by using the construction in [21] when B is a ba), which
can lead to an exponential blowup.

Note that the decision problem of determining the existence of a set of states F
such that the dba (U, F) accepts L(B), for an automaton B and a deterministic
ts U is PSPACE-complete. The hardness follows by reducing the universality
problem for bas to it. The decision problem is in PSPACE, since we can guess
a set F and check in PSPACE that it is indeed the case that the dba (U, F)
accepts L(B).

4 Applications

In this section, we give applications of the determinization construction presented
in §3.1 for languages in WDBA.

4.1 Projection of Definable Sets in Linear Arithmetic

In [4], Boigelot, Jodogne, and Wolper show that wdbas can be used to decide
the mixed first-order logic over the reals and the integers with addition and the

Mechanizing the Powerset Construction for Restricted Classes 231

ordering, i.e., FO(R, Z, +, <). The elements of the domain are represented by
infinite words. For a given formula, one constructs recursively over the formula
structure an automaton. This automaton accepts precisely the infinite words
that represent the real numbers that satisfy the formula. Automata constructions
handle the logical connectives and quantifiers. With the automata construction
presented in §3.1, we can handle the quantifiers more efficiently.

Handling Quantifiers. Since wdbas are closed under complement, it suffices
to consider existential quantifiers. Assume that the wdba Aϕ accepts the words
that represent the satisfying assignments for the formula ϕ. We want to construct
a wdba for the formula ∃xϕ. From Aϕ, we first construct a wba B that—
intuitively speaking—guesses the digits for x.

In [4], Boigelot, Jodogne, and Wolper utilize the breakpoint construction [27,
21] to obtain a wdba A∃xϕ from the wba B. They turn B into an equivalent
co-ba and apply the breakpoint construction to it. From the resulting co-dba,
they obtain the desired wdba A∃xϕ. The last construction step is possible, since
B accepts a language in WDBA.

Instead of using the breakpoint construction, we can apply the powerset con-
struction to turn the wba B into an equivalent wdba A′

∃xϕ (see §3). Since
wdbas have a canonical form, minimization of A∃xϕ and A′

∃xϕ result in wdbas
that are isomorphic [25].

Using the powerset construction has the following advantages over the break-
point construction. Theoretically, we do not have to take a detour by switching
the acceptance condition. We stay in the framework of weak Büchi automata.
Practically, the advantages are: (1) The powerset construction builds automata
that usually have fewer states than the automata obtained by the breakpoint
construction. The worst case of the powerset construction is slightly better than
the worst case of the breakpoint construction. (2) The powerset construction
is easier to implement. For instance, the breakpoint construction builds an au-
tomaton, where the states are pairs of sets of states of a given co-ba; in the
powerset construction, we only have to deal with sets of states.

Experimental Evaluation. We implemented both constructions in our tool
lira [2] and evaluated them. The savings in terms of number of states range
from 15% to 20%. Since the number of generated states is directly linked to the
runtime required to construct the automata and it takes less time to minimize
smaller automata, the savings in terms of runtime are slightly better, i.e., the
improvement ranges from 20% to 25%.

4.2 Model Checking Finite State Systems

In model checking we want to establish automatically whether a system M
satisfies a property ϕ. A practical relevant subclass of this problem is where M is
a finite state system and the property ϕ is given as a formula in (propositional)
linear time temporal logic (ltl). This model checking problem can be solved

232 C. Dax, J. Eisinger, and F. Klaedtke

Table 1. Characterization of ltl formulas found in the literature

of formulas safety guarantee obligation

eh 12 3 (25%) 1 (8%) 4 (33%)
sb 27 8 (30%) 9 (33%) 15 (56%)
patterns 55 36 (65%) 1 (2%) 40 (73%)

algorithmically by using automata-theoretic methods [32]: M and ¬ϕ are trans-
lated to bas AM and A¬ϕ, where AM accepts the traces of the system M and
A¬ϕ accepts the traces that violate the property ϕ. It holds that M satisfies ϕ iff
L(AM) ∩ L(A¬ϕ) = ∅. The emptiness of the intersection of the languages can be
checked by building the product automaton of AM and A¬ϕ on the fly [13]. For in-
stance, the model checker spin [15] is based on this automata-theoretic approach.

Instead of using thebaA¬ϕ for checkingL(AM)∩L(A¬ϕ) = ∅, we suggest to use
the minimal wdba B for ¬ϕ whenever ϕ describes a language in WDBA. The inten-
tion of using the minimal wdba is to accelerate the emptiness check of the product
automaton. First, note that in practice A¬ϕ is much smaller than AM . Hence, an
(even theoretically expensive) additional computation on A¬ϕ that accelerates the
emptiness check can result in an overall speed-up. Intuitively, the algorithm of the
emptiness check has to resolve the nondeterminism of A¬ϕ during the on-the-fly
traversal of the product automaton of AM and A¬ϕ. Using the minimized deter-
ministic version of A¬ϕ means solving this task in an optimal way. Note that the
ba A¬ϕ might contain states that are redundant, i.e., states from which we accept
the same language. Minimizing a wdba merges states that are redundant.

Before we evaluate the suggested method, we survey on specifications that
describe languages in WDBA and give details of how to construct the minimal
wdba B.

Obligation Formulas. In [6], the properties that describe languages in WDBA
are called obligation properties. These properties are boolean combinations of
safety and guarantee properties. Intuitively, a safety property states that some
bad thing never happens. A guarantee property is the negation of a safety prop-
erty. Our survey of commonly used ltl formulas show that about half of them
describe obligation properties. We checked 12 “hand selected formulas, includ-
ing many that are in common use” [10], 27 “common formulae and formulae
found in the literature” [30], and 55 formula patterns [8], which regularly oc-
cur in verification tasks. In the following, we refer to these formula suites as
eh, sb, and patterns, respectively. Table 1 shows how many of these formu-
las describe safety, guarantee, and obligation properties. Note that safety and
guarantee properties are also obligation properties.

WDBA Construction. For deciding whether an ltl formula describes an
obligation, safety, or guarantee property, we implemented a prototype tool that
takes an ltl formula as input and characterizes the described property. More-
over, if the ltl formula describes an obligation property, our tool outputs the
minimal wdba for the language described by the ltl formula.

Mechanizing the Powerset Construction for Restricted Classes 233

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

A
ut

om
at

a
S

iz
e

LTL Formula

SPIN
TMP

Modella
LTL2BA

WDBA

Fig. 3. Automata sizes for ltl formulas

Our tool works as follows. It first constructs bas A and B for the given ltl

formula ϕ and its negation, respectively. Based on the powerset construction and
the algorithm in §3.1, we build from A a wdba A′. We use the algorithm de-
scribed in §3.3 to check whether ϕ describes an obligation formula, i.e., whether
it holds (Σω \ L(A)) ∩ L(A′) = ∅ and (Σω \ L(A′)) ∩ L(A) = ∅. Since comple-
menting the ba A is expensive, we use B instead. Note that complementation
of wdbas is simple: we just need to swap accepting and rejecting states.

– If the check is negative, i.e., A′ does not accept the same language as A, ϕ
is not an obligation formula, and our tool stops.

– Otherwise, ϕ is an obligation formula. In this case, we minimize A′ by ap-
plying the algorithm in [25] and output the resulting minimal wdba A′′.
Moreover, we check whether ϕ describes a safety or guarantee property. Our
check is based on the following fact: The minimal wdba A′′ describes a safety
property iff A′′ has at most one rejecting state q and q is a sink state [24]. The
dual statement holds for guarantee properties, since guarantee properties are
negated safety properties.

Experimental Evaluation. We conducted two different kinds of experiments.2

For both experiments we used a computer with an Intel Pentium 4 processor with
3GHz and with 4GBytes of main memory.

In the first experiment, we used different translators from ltl to bas to com-
pare the constructed automata with the minimal wdbas. Namely, we used the
tools tmp [10,11], ltl2ba [12], modella [29], and the translator that is included
in the model checker spin. Moreover, we used our prototype implementation that
outputs the minimal wdba whenever the input ltl formula describes a language
in WDBA.

As test cases we used the 40 negated ltl formulas in patterns that describe
obligation properties. Figure 3 summarizes the sizes of the bas that are produced
by the different tools. Although in theory, the minimal wdba can be exponen-
tially larger than an equivalent ba, we never observed such a blow-up on our test
cases. Surprisingly, in all cases the size of the minimal wdba is equal or even

2 The experimental data is publicly available on the web page http://www.inf.ethz.
ch/personal/daxc/atva07/.

http://www.inf.ethz.
ch/personal/daxc/atva07/

234 C. Dax, J. Eisinger, and F. Klaedtke

Table 2. Running times (in minutes) and memory usage (in MBytes) of the model
checker spin

bobdb (56,56) elevetor2 (14) giop (3) signarch (2)
time memory time memory time memory time memory

spin 14m04 2865 – > 3GBytes – > 3GBytes 17m57 2003
tmp 13m53 2865 7m19 2235 0m04 378 14m25 2003
ltl2ba 14m04 2865 7m16 2107 0m15 488 14m23 2003
modella 14m04 2865 6m41 2162 – > 3GBytes 14m09 2003
wdba 8m05 2112 6m31 2034 0m06 350 5m17 778

smaller than the smallest ba constructed by one of the other tools. We want to
remark that the constructed bas are nondeterministic in almost all cases, even
in the cases where they have the same number of states as the corresponding
minimal wdbas. For each of the given ltl formulas, the construction of the
minimal wdba only took a few seconds.

In our second experiment, we measured the impact of the constructed bas
in finite state model checking. We used models from the database BEEM [28],
which contains numerous finite state systems. For example, it contains the sys-
tems bobdb and elevator2: bobdb models an audio/video power controller and
elevator2models an elevator controller. Additionally, we used the system model
described in [16], which we name giop and the system model described in [1],
which we name signarch.

Table 2 lists the running times and the memory usage of some of our test
cases. Most of the models have parameters, which can be instantiated to concrete
values, e.g., the model elevator2 is parameterized by the number of floors. In
the table, the numbers in the parentheses after the model names are the used
values for the parameters of the models. Due to space limitations, we do not list
all the concrete values for the parameters that we used in our tests. For all test
cases, using the minimal wdba accelerated the emptiness checks and reduced the
memory usage. For the test case signarch, we obtained a speed-up of a factor of
almost 3. The memory usage was smaller by more than a factor of 2. For the test
case bobdb, spin, tmp, ltl2ba, and modella produced almost identical bas
for the given ltl formula. So, it is not surprising that the consumed memory
and the running times are similar for this test case. Further, we remark that the
model giop does not satisfy the given property. With the bas generated by spin

and modella, we were not able to find a counterexample.

5 Conclusion

We have presented novel automata constructions for determinizing restricted
classes of automata over infinite words. We have applied and evaluated the
constructions in the automata-based approach for FO(R, Z, +, <). Moreover,
based on the new determinization constructions, we have presented and evalu-
ated a new method for model checking obligation properties. In both application

Mechanizing the Powerset Construction for Restricted Classes 235

areas, our experimental evaluations demonstrate that the new constructions lead
to faster running times and reduced memory usage. Further improvements are
possible by tailoring the emptiness check in spin for wdbas. Our experiments
also revealed that many specifications that occur in practice describe obligation
properties that can be represented by small wdbas.

As future work, we want to use co-dbas and minimal wdbas for optimizing
the SAT encoding of the specifications in bounded model checking. We believe
that, similar as for explicit model checkers like spin, the use of deterministic
automata accelerates the SAT solving. Moreover, we want to investigate and
evaluate the presented determinization constructions for runtime verification.

Acknowledgements. We thank the reviewers for their detailed comments to im-
prove this paper.

References

1. Basin, D., Kuruma, H., Miyazaki, K., Takaragi, K., Wolff, B.: Verifying a signature
architecture: a comparative case study. Formal Aspects of Computing 19, 63–91
(2007)

2. Becker, B., Dax, C., Eisinger, J., Klaedtke, F.: LIRA: Handling constraints of linear
arithmetics over the integers and the reals. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 307–310. Springer, Heidelberg (2007)

3. Boigelot, B., Bronne, L., Rassart, S.: An improved reachability analysis method for
strongly linear hybrid systems (extended abstract). In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 167–178. Springer, Heidelberg (1997)

4. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear
arithmetic over the integers and reals. ACM Trans. Comput. Log. 6, 614–633 (2005)

5. Cerná, I., Pelánek, R.: Relating hierarchy of temporal properties to model check-
ing. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 318–327.
Springer, Heidelberg (2003)

6. Chang, E., Manna, Z., Pnueli, A.: The safety-progress classification, in Logic
and Algebra of Specifications. In: Bauer, F., Brauer, W., Schwichtenberg, H.
(eds.) NATO Advanced Science Institutes Series, pp. 143–202. Springer, Heidel-
berg (1991)

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8, 244–263 (1986)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifica-
tions for finite-state verification. In: ICSE 1999, pp. 411–420 (1999), See also
http://patterns.projects.cis.ksu.edu/

9. Eisinger, J., Klaedtke, F.: Don’t care words with an application to the automata-
based approach for real addition. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 67–80. Springer, Heidelberg (2006)

10. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–168. Springer, Heidelberg (2000)

11. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games,
and state space reduction for Büchi automata. SIAM J. Comput. 34, 1159–1175
(2005)

http://patterns.projects.cis.ksu.edu/

236 C. Dax, J. Eisinger, and F. Klaedtke

12. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

13. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-
ification of linear temporal logic. In: 15th IFIP WG6.1 Int. Symp. on Protocol
Specification, Testing and Verification. IFIP Conf. Proc. vol. 38, pp. 3–18 (1995)

14. Henzinger, M.R., Telle, J.A.: Faster algorithms for the nonemptiness of Streett
automata and for communication protocol pruning. In: Scandinavian Workshop
on Algorithm Theory, pp. 16–27 (1996)

15. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2004)

16. Kamel, M., Leue, S.: Formalization and validation of the General Inter-ORB Pro-
tocol (GIOP) using PROMELA and SPIN. Int. J. Softw. Tools Technol. Transf. 2,
394–409 (2000)

17. King, V., Kupferman, O., Vardi, M.Y.: On the complexity of parity word automata.
In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 276–286.
Springer, Heidelberg (2001)

18. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Int.
J. Found. Comput. Sci. 13, 571–586 (2002)

19. Kupferman, O., Morgenstern, G., Murano, A.: Typeness for ω-regular automata.
Int. J. Found. Comput. Sci. 17, 869–884 (2006)

20. Kupferman, O., Vardi, M.: Freedom, weakness, and determinism: From linear-time
to branching-time. In: LICS 1998, pp. 81–92 (1998)

21. Kupferman, O., Vardi, M.: Weak alternating automata are not that weak, ACM
Trans. Comput. Log. 2, pp. 408–429 (2001)

22. Kurshan, R.P.: Complementing deterministic Büchi automata in polynomial time.
J. Comput. Syst. Sci. 35, 59–71 (1987)

23. Kurshan, R.P: Computer Aided Verification of Coordinating Processes. Princeton
University Press (1994)

24. Landweber, L.H.: Decision problems for ω-automata. Math. Syst. Theory 3, 376–
384 (1969)

25. Löding, C.: Efficient minimization of deterministic weak ω-automata. Inform. Pro-
cess. Lett. 79, 105–109 (2001)

26. Maler, O., Staiger, L.: On syntactic congruences for omega-languages. Theoret.
Comput. Sci. 181, 93–112 (1997)

27. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoret. Comput.
Sci. 32, 321–330 (1984)

28. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bosnacki, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007), http://anna.fi.muni.cz/models/

29. Sebastiani, R., Tonetta, S.: More deterministic” vs. “smaller” Büchi automata for
efficient LTL model checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003.
LNCS, vol. 2860, pp. 126–140. Springer, Heidelberg (2003)

30. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000)

31. Thomas, W.: Automata over infinite objects. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science. ch. 4, vol. B, pp. 133–192. Elsevier, Amsterdam
(1990)

32. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS 1986, pp. 322–331 (1986)

http://anna.fi.muni.cz/models/

Verifying Heap-Manipulating Programs
in an SMT Framework�

Zvonimir Rakamarić2, Roberto Bruttomesso1, Alan J. Hu2, and Alessandro Cimatti1

1 ITC-IRST, Povo, Trento, Italy
{bruttomesso,cimatti}@itc.it

2 Department of Computer Science, University of British Columbia, Canada
{zrakamar,ajh}@cs.ubc.ca

Abstract. Automated software verification has made great progress recently,
and a key enabler of this progress has been the advances in efficient, automated
decision procedures suitable for verification (Boolean satisfiability solvers and
satisfiability-modulo-theories (SMT) solvers). Verifying general software, how-
ever, requires reasoning about unbounded, linked, heap-allocated data structures,
which in turn motivates the need for a logical theory for such structures that in-
cludes unbounded reachability. So far, none of the available SMT solvers supports
such a theory. In this paper, we present our integration of a decision procedure that
supports unbounded heap reachability into an available SMT solver. Using the
extended SMT solver, we can efficiently verify examples of heap-manipulating
programs that we could not verify before.

1 Introduction

Automated software verification has made great progress recently, with several success-
ful tools developed in both industry and academia. A key enabling technology for this
success has been the advances in automated decision procedures — the software verifi-
cation tools almost all rely on some form of automatic logical reasoning engine. Some
rely on SAT (Boolean satisfiability) or BDDs (binary decision diagrams) to maintain
bit-accurate precision (e.g., [16,22,2]), whereas others use SMT solvers (satisfiability
modulo theories — decision procedures for combinations of decidable theories) in order
to capitalize on the natural abstractions present in software verification, such as integer
and real linear arithmetic, arrays, and uninterpreted functions (e.g., [4,20,18,5]).

To be broadly applicable, however, software verification tools must be able to verify
programs with dynamic memory allocation, i.e., that manipulate potentially unbounded,
heap-allocated, linked data structures via pointers. Although verification of such heap-
manipulating programs (HMPs) is obviously undecidable in general, careful crafting
can produce a logic that is expressive enough to verify important properties of programs,
yet is still decidable. In particular, a crucial feature for such logics is the ability to
specify unbounded reachability (e.g., from node x, is it possible to reach node y by

� Supported by (1) a research grant from the Natural Sciences and Engineering Research Coun-
cil of Canada, (2) a University of British Columbia Graduate Fellowship, (3) ORCHID, a
project sponsored by Provincia Autonoma di Trento, and (4) a research grant from Intel.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 237–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

238 Z. Rakamarić et al.

following pointers) and related concepts such as betweenness. Slightly more expressive
logics, however, are undecidable [21].

Logics for HMP verification have long been a topic of research. Even Nelson’s sem-
inal work on software verification with SMT solvers supported a theory of unbounded
S-expressions, although without reachability [35,37], and soon thereafter, Nelson pro-
posed a first-order axiomatization that approximated unbounded reachability [36]. The
past few years, however, have seen a blossoming of research in this area, with numerous
proposed logics and decision procedures for HMPs, with varying degrees of expressive-
ness and efficiency, e.g., [3,6,9,15,21,24,27,28,29,33,34,39,40,41]. Research progress
has been great, with verification examples that were beyond the reach of methods just a
few years ago now being verified in seconds. However, the research on HMP verifica-
tion has focused almost exclusively on the heap-verification aspects, while mainstream
software verification research has largely ignored HMP verification — an understand-
able division, given the difficulty of both problems.

With the logics and decision procedures for HMPs maturing, the time is right to in-
tegrate them back into a general SMT solver, to enable verification of more general
software. We want to verify software, including software that manipulates heaps, not
just software that only manipulates heaps! A few researchers have started in this di-
rection. For example, Lahiri and Qadeer have expressed an incomplete axiomatization
of unbounded reachability as universally quantified axioms in the Simplify first-order
prover [17], allowing verification of heap and non-heap properties and their interactions,
but with a substantial performance penalty [27]. Beyer et al. [7] take a different ap-
proach, making calls to a specialized HMP verification system (the TVLA system [30])
to handle the heap aspects of the verification from within their non-heap-aware soft-
ware verification tool. They report excellent performance, but such a loose combination
doesn’t allow verification of general interactions between heap properties and other pro-
gram properties. In very recent follow-on work [8], they add a “strengthening” operator
to propagate additional information between the heap and non-heap theories, but still
not all interactions are captured. Similarly, Charlton and Huth [14] propose a software
model checker in which separate analysis plugins (such as for heaps and for other theo-
ries) can cooperate, but the communication is ad hoc, so there are no guarantees that all
interactions between theories are propagated. Closest to our work is extremely recent
work by Lahiri and Qadeer [28]: Instead of their previous first-order axiomatization,
they present a decision procedure based on a complete set of rewrite rules, inspired by
our previous work [9]. However, they prototype an implementation of the rewrite rules
by using the same trick of modeling rewrite rules as universally-quantified first-order
axioms inside the theorem prover, as before. Practical implementation of their decision
procedure into an SMT solver has not yet been done. The obviously promising next
step is a tight integration of an efficient decision procedure for an HMP logic directly
into a modern SMT solver, making all of the theories, and their interactions, efficiently
available for the verification task. So far, however, nobody has actually done such an
integration.

In this paper, we present the theory, methodology, and results of such an integra-
tion. In particular, we integrate our recent, efficient decision procedure for an HMP
logic that supports unbounded reachability [39] into the established SMT solver

Verifying Heap-Manipulating Programs in an SMT Framework 239

1: procedure INIT-ADD-FLAG(head,val)
2: assume reach(next,head,t) ∧ reach(next,head,nil) ∧ ¬t = nil ∧ oldSum =

data int(sum,t)∧oldFlag=data bool(f lag,t)
3: curr := head;
4: while ¬curr=nil do
5: if ¬(curr→f lag) then
6: curr→sum := curr→sum+val;
7: curr→f lag := true;
8: end if
9: curr := curr→next;

10: end while
11: assert reach(next,head,t) ∧ reach(next,head,nil) ∧ ¬t = nil ∧ data bool(f lag,t) ∧

(oldFlag∨data int(sum,t)=oldSum+val)
12: end procedure

Fig. 1. HMP (Heap-Manipulating Program) Example. The procedure INIT-ADD-FLAG adds the
integer variable val to integer field sum of every node whose boolean field f lag is false in an
acyclic singly-linked list. Also, boolean field f lag of those nodes is set to true. We denote an
integer data field named sum of a node x by data int(sum,x), a boolean data field named f lag of
a node x by data bool(f lag,x), and the node pointed to by a pointer field named next of node x
by next(next,x). Subformulas of the form reach(next,x,y) express that node y is reachable from
node x by following a sequence of any number of next pointer fields. We will formally define these
predicates in Sect. 3. The fact that nil is reachable from head enforces the acyclicity assumption.
Variables oldSum and oldFlag are used to store values of fields sum and f lag of node t before
the procedure starts, respectively. In the assume and assert statements, variable t represents an
arbitrary node (Skolem constant). Since our framework doesn’t support quantification, we use the
trick of introducing Skolem constants to represent universally quantified variables.

MATHSAT [12].1 Our results indicate that the integration was fairly straightforward
(as was hypothesized in [39] and thanks to the design of MATHSAT [10,11]), the per-
formance overhead of the integration was reasonable, and the integration enabled veri-
fication of many example HMPs that we could not verify before.

2 Motivating HMP Example

In our framework, the heap consists of an unbounded number of heap nodes. HMPs
can have program variables that are pointer variables (pointers) and data variables of
different types. Similarly, heap nodes can have any number of pointer fields (i.e. links
to other nodes) and data fields of different types.

We’ll motivate the work presented in this paper with an illustrative HMP example
given in Fig. 1. The procedure INIT-ADD-FLAG adds the value of the integer variable
val to integer field sum of every node whose boolean field f lag is false in the non-
empty acyclic singly-linked input list head. Furthermore, boolean field f lag of those
nodes is set to true. Necessary assumptions are formalized by the assume statement on
line 2 of the program. The body of the procedure is simple; it traverses the list, finds

1 The extended MATHSAT is available at http://mathsat.itc.it/.

240 Z. Rakamarić et al.

head prev curr

next

10sum

TRUEflag

next

10sum

TRUEflag

next

10sum

TRUEflag

next

33sum

flag

next

FALSE

nil

Fig. 2. Heap Structure Example. In this example, each list node has a pointer field next, an integer
data field sum, and a boolean data field flag. We model nil as just a node where next(f ,nil) = nil
for all pointer fields f .

nodes whose field f lag is false, and on line 6 adds val to the data field sum at each
iteration. Also, it assigns field f lag to true on line 7. The specification is expressed
by the assert statement on line 11, and indicates that whenever line 11 is reached,
head points to an acyclic singly-linked list with field sum of all nodes whose f lag
field was false incremented by val. The verification problem we are solving can be
stated as follows: given an HMP, determine whether it is the case that all executions
that satisfy all assume statements also satisfy all assert statements. Note that even this
simple example is beyond the capability of typical software model-checking tools: it
is infinite-state due to both the unbounded integers as well as the unbounded heap. To
verify such programs, we employ abstraction, using an SMT framework extended with
a suitable logical theory described in the next section.

3 Logic for Verifying Heap-Manipulating Programs

Before we define our logic, we’ll intuitively illustrate basic concepts on the example
of a heap structure shown in Fig. 2. In this heap structure, head, prev, curr, and nil are
pointer variables, next is a pointer field used to link nodes in the acyclic list, sum is an
integer data field, and flag is a boolean data field. The node to which we get by following
the next pointer field from the node pointed to by head is denoted in our syntax with
next(next,head). The data field flag of the node pointed to by prev is accessed with
data bool(f lag, prev). The node pointed to by curr is reachable from the node pointed
to by head by following next pointer fields, and that concept of unbounded reachability
in our syntax is written as reach(next,head,curr).

The syntax of our logic is presented in Fig. 3. It is a quantifier-free fragment of
first-order logic that contains two equational theories:

1. Theory of data fields with the signature {=,data,update dfield}. The theory of
data fields can be easily translated into the theory of uninterpreted functions as
described in Sect. 4.3. For the simplicity of presentation, in this section we give
a single untyped theory of data fields. However, without the loss of generality,
we can extend this to a family of theories of data fields whose signatures are pa-
rameterized using the respective data types. Currently, we support only boolean
and integer data fields with the signatures {=,data bool,update dfield bool} and
{=,data int,update dfield int}, but that can easily be extended to other data types
supported by the SMT solver (e.g. reals).

Verifying Heap-Manipulating Programs in an SMT Framework 241

c ∈ Constants
x ∈ DataVariables v ∈ PointerVariables

d,d′ ∈ DataFields f , f ′ ∈ PointerFields
NodeTerm ::= v | next(f ,NodeTerm)
DataTerm ::= c | x | data(d,NodeTerm)

Atom ::= NodeTerm=NodeTerm | DataTerm=DataTerm |
reach(f ,NodeTerm,NodeTerm) |
between(f ,NodeTerm,NodeTerm,NodeTerm)

Literal ::= Atom | ¬Atom |
update pfield(f ,NodeTerm,NodeTerm, f ′) |
update dfield(d,NodeTerm,DataTerm,d′)

Formula ::= Literal | Formula∧Formula | Formula∨Formula

Fig. 3. Syntax of the Logic. For brevity, we show the logic with untyped data fields.

2. Theory of unbounded reachability, which is defined below, with the signature {=,
next, reach, between, update pfield}.

Clearly, the signatures (other than equality) of these two theories are disjoint, and are
also disjoint from the signatures of the various theories MATHSAT currently supports,
such as difference logic, linear arithmetic over reals, and linear arithmetic over integers.

3.1 Theory of Unbounded Reachability

The theory of unbounded reachability over heap nodes presented here is essentially the
same as in [39], except that reasoning about data fields is now moved into the theory
of data fields and handled by the SMT solver (see Sect. 4.3). The theory assumes a
finite set of pointer variables PointerVariables, which model program variables that
point to nodes in the heap, and a finite set of pointer function symbols PointerFields,
which model pointer fields from a heap node to another heap node. Literals of the form
x=y, ¬x=y, reach(f ,x,y), and ¬reach(f ,x,y) (where x and y are NodeTerm) are called
equality, disequality, reachability, and unreachability literals, respectively. Literals of
the form between(f ,x,y,z) or its negation are called between literals.

The structures over which the semantics of the theory are defined are called heap
structures. Formally, a heap structure H = (N,Θ) consists of a set of nodes N and an
interpretation function Θ . The interpretation function Θ interprets each symbol σ in
PointerVariables∪PointerFields, so that:

– Each pointer variable symbol σ ∈ PointerVariables is interpreted as a node Θ(σ) ∈
N.

– Each pointer function symbol σ ∈ PointerFields is interpreted as a mapping from
nodes to nodes Θ(σ) ∈ N → N.

The interpretation function Θ extends to interpret any term, atom, or literal of the the-
ory in a straightforward, inductive way. The interpretation of a node term τ ∈
PointerVariables is defined above, otherwise, τ has the form next(f ,τ ′) for some node

242 Z. Rakamarić et al.

term τ ′, and the interpretation is Θ(τ) = Θ(f)(Θ(τ ′)). Atoms are interpreted by Θ as
boolean values:

– An equality atom τ1 =τ2 is interpreted as true iff Θ(τ1) = Θ(τ2).
– A reachability atom reach(f ,τ1,τ2) is interpreted as true iff there exists some n ≥ 0

such that Θ(f)n(Θ(τ1)) = Θ(τ2).2

– A between atom between(f ,τ1,τ2,τ3) is interpreted as true iff there exist n0,m0 ≥ 0
such that Θ(τ2) = Θ(f)n0(Θ(τ1)), Θ(τ3) = Θ(f)m0 (Θ(τ1)), n0 ≤ m0, and for all
n,m such that Θ(τ2) = Θ(f)n(Θ(τ1)), Θ(τ3) = Θ(f)m(Θ(τ1)), we have n0 ≤ n
and m0 ≤ m.

The interpretation of a pointer field update literal update pfield(f ,τ1,τ2, f ′) is defined
using the well-known update operator3 as true iff

Θ(f ′) = update(Θ(f),Θ(τ1),Θ(τ2)).

Finally, the interpretation of a literal that is of the form ¬φ where φ is an atom is simply
defined as Θ(¬φ) = ¬Θ(φ).

In previous work [9,39], we described a saturation-based decision procedure for the
theory of unbounded reachability. The decision procedure is based on the exhaustive
application of a set of inference rules and, as we showed on a number of experiments, is
very efficient. Furthermore, we presented some theoretical results behind our logic and
decision procedure [38]: our decision procedure is sound and always terminates, and
the decision procedure is complete for the fragment of the logic without updates. The
experiments showed that in practice completeness was not an issue, as we could verify
all examples that we could specify.

3.2 Example

Returning to our example from Fig. 2, we’ll illustrate the semantics of our logic ex-
tended with the boolean and integer data field types on this heap structure with the
interpretation of a few representative literals:

– reach(next,head,curr) is interpreted as true because the node pointed to by curr is
reachable from the node pointed to by head following next pointer fields.

– reach(next,head,nil) is interpreted as true because the node nil is reachable from
the node pointed to by head following next pointer fields. The fact that nil is reach-
able from head enforces the acyclicity assumption.

– next(next,curr)= nil is true because the node to which we get by following one
next pointer field from curr is nil.

– data bool(f lag,prev) ↔ true is interpreted as true because the boolean field flag
of the node pointed to by prev is set to true.

– data int(sum,prev)=10 is interpreted as true because the integer field sum of the
node pointed to by prev is set to 10.

2 Here, function exponentiation represents iterative application: for a function g and an element
x in its domain, g0(x) = x, and gn(x) = g(gn−1(x)) for all n ≥ 1.

3 If g is a function, a is an element in g’s domain, and b is an element in g’s codomain, then
update(g,a,b) is defined to be the function λx.(if x = a then b else g(x)).

Verifying Heap-Manipulating Programs in an SMT Framework 243

– between(next,head,prev,curr) is true because node prev is between head and curr.
– between(next,head,nil,curr) is interpreted as false because node nil is not between

nodes head and curr.

4 Theory Integration into MATHSAT

In this section, we briefly recall some recent results concerning theory combination in
SMT, and we disclose some details about the integration of the theory of unbounded
reachability into MATHSAT.

4.1 Efficient and Flexible Nelson-Oppen in SMT

Many verification tasks require the specification of properties at a level of expressive-
ness that is better captured by a logic that is the result of the combination (or union)
of simpler theories T1 and T2, defined over signatures Σ1 and Σ2, respectively. In many
situations, decision proceduresDec(Ti) for Ti, i = 1,2, are already available to be used.

Nelson and Oppen [37] showed that given two equational theories T1 and T2, it is
possible to derive a procedure Dec(T1 ∪T2) for deciding quantifier-free formulae over
T1 ∪T2, provided that:

– T1 and T2 are signature-disjoint (i.e. Σ1 ∩Σ2 = /0);
– T1 and T2 are stably infinite4.

A theory is stably infinite if for every satisfiable quantifier-free formula φ , there exists
an interpretation satisfying φ whose domain is infinite. Many theories of interest are
stably infinite, including the theory of integers and the theory of unbounded reachability
from Sect. 3.1:

Theorem 1. The theory of unbounded reachability (Sect. 3.1) is stably infinite.

Proof. Let Ψ be a satisfiable quantifier-free formula, and let H = (N,Θ) be a heap
structure satisfying Ψ . We’ll show that one can always construct an infinite heap struc-
ture H ′ = (N′,Θ ′) satisfying Ψ . Fig. 4 gives an example of how this is done. Basically,
adding to the heap structure H an infinite number of nodes that point to themselves (and
not changing the existing nodes) creates an infinite heap structure H ′ satisfying Ψ .

The heap structure H ′ is formally defined as follows. First, we fix an infinite set of
nodes NIn f disjoint from N. Then, we define N′ = N ∪ NIn f , and interpretation Θ ′ as
follows:

Interpretation function Θ ′ interprets each symbol σ ∈ PointerVariables so that

Θ ′(σ) = Θ(σ)

Every pointer function symbol f ∈ PointerFields is interpreted so that

fΘ ′
(τ) =

{
fΘ (τ) if τ ∈ N
τ otherwise

4 This restriction has been relaxed in the recent work by Krstić et al. [25].

244 Z. Rakamarić et al.

prevhead next

nil

tmp

prevhead next

nil

tmp

Fig. 4. An example of a heap structure H (top), and a constructed infinite heap structure H ′

(bottom) which satisfies every quantifier-free formula Ψ that is satisfied by H

Since H is a heap structure satisfying Ψ , the formula Ψ cannot syntactically include
any of the nodes in NIn f . Furthermore, for each type of atom, the additional nodes in
NIn f cannot change the truth values of those atoms in Ψ , since the new nodes are dis-
connected from the existing structure, which is unchanged. Therefore, H ′ also satisfies
Ψ , and its domain is infinite.

The Nelson-Oppen combination schema can be summarized as follows (for a more
accurate survey the reader is referred to [32]). The input quantifier-free formula φ
on T1 ∪ T2 is initially purified into an equisatisfiable formula φ1 ∧ φ2 such that φi be-
longs to Ti, for i = 1,2. This can be easily achieved with the introduction of a set of
fresh variables. The procedure is then based on an exhaustive communication between
Dec(T1) and Dec(T2) by means of interface equalities, i.e. equalities between vari-
ables in vars(φ1)∩ vars(φ2). Roughly speaking, the exchanging of interface equalities
is sufficient for Dec(T1) and Dec(T2) to achieve an agreement on a common model,
if such a model exists. This communication has to be implemented around Dec(T1)
and Dec(T2) in order to obtain a correct Dec(T1 ∪T2).

The Nelson-Oppen method is not limited to only two theories. In fact, if T1 and T2 are
stably infinite, their union T1 ∪T2 is stably infinite as well. If we are given a decidable
stably infinite T3 over Σ3 and (Σ1 ∪Σ2)∩Σ3 = /0, than we can apply Nelson-Oppen and
obtain a Dec(T1 ∪T2 ∪T3).

The introduction of a combination framework into an SMT schema can be naively
done by considering Dec(T1 ∪ T2) as a single theory-solver, by straightforwardly
adapting a DPLL-like Bool+Dec(T) schema into a Bool+Dec(T1 ∪T2) setting.

Delayed Theory Combination (DTC) [10,11] is an alternative approach specifically
studied for SMT solvers, based on the observation that it is possible to lift to the boolean
level the communication of interface equalities between the theory-solvers, by exploiting

Verifying Heap-Manipulating Programs in an SMT Framework 245

the boolean engine on top of them. The new framework, Bool+Dec(T1)+Dec(T2),
can be easily achieved as follows.

Given a purified formula φ1 ∧ φ2, the atom set E = {x1 = x2 | x1,x2 ∈ vars(φ1)∩
vars(φ2)} is first generated. E is nothing but the set of interface equalities that the two
theory-solvers, Dec(T1) and Dec(T2), might need to exchange at any point in time.
Any set of theory-atoms Γ assigned to a truth value by the SAT-solver during the search
is divided into Γ ′

1 = Γ1 ∪ΓE and Γ ′
2 = Γ2 ∪ΓE , where Γi are atoms belonging to Ti, for

i = 1,2, while ΓE is a set of atoms in E . The set Γ ′
i is fed to the corresponding solver

Dec(Ti) to be checked for consistency.
Intuitively, the communication in Dec(T1 ∪T2), required for the correctness of the

Nelson-Oppen procedure, is now emulated by the introduction of interface equalities
that are shared by the two theories. In spite of the (potentially) quadratic number of
new atoms generated in E , it is easily possible to control the model enumeration in the
SAT-solver, as shown in [13], in order to avoid an enlargement of the search space.

The implementation of a Bool+Dec(T1)+Dec(T2) schema presents several ad-
vantages with respect to a standard Bool+Dec(T1 ∪T2):

– There is no need to build a Nelson-Oppen “box” Dec(T1 ∪ T2) around Dec(T1)
and Dec(T2), because the integration is implicitly handled at the boolean level and
not at the solver level.

– Mixed-conflict generation is automatic.
– Disjunction in case of non-convex theories is automatically handled at the boolean

level, while in Nelson-Oppen it must be handled inside Dec(T1 ∪ T2). This re-
sults in a better efficiency, because of the mechanisms of backjumping and learning
implemented in state-of-the-art SAT-solvers.

– The theory-solvers do not need deduction capabilities. In contrast, this is a require-
ment in Nelson-Oppen. This feature greatly simplified the integration, since our
pre-existing decision procedure for the heap logic did not implement deduction.

4.2 Handling Uninterpreted Functions Via Ackermann’s Expansion

Ackermann’s expansion [1] is a technique by means of which it is possible to translate
a quantifier-free formula over T ∪EUF into an equisatisfiable formula φ ′ over T only,
where EUF is the well-known theory of Uninterpreted Functions with Equality.

Since function symbols are uninterpreted, the only requirement for satisfiability is
functional consistency, i.e. the implication (

∧n
i=1 ti = si) → f (t1, . . . ,tn) = f (s1, . . . ,sn)

must hold for every function symbol f of arity n, where ti and si are terms.
In Ackermann’s expansion, in order to fulfill the above condition, every distinct func-

tion application f (t1, . . . ,tn) in φ is replaced with a fresh variable v f (t1,...,tn). For each
function symbol f of arity n, the obtained formula is then augmented with a set of ax-
ioms of the kind (

∧n
i=1 ti = si) → v f (t1,...,tn) = v f (s1,...,sn), for every pair of distinct fresh

variables. It is easy to prove that the resulting formula φ ′ no longer contains any UF
symbol and it is equisatisfiable to the original φ .

The same transformation can be used to remove uninterpreted predicate symbols,
using fresh boolean variables and the logical connective ↔ to equate them in the axiom
instantiations.

246 Z. Rakamarić et al.

4.3 Theory Integration

We have integrated the unbounded reachability decision procedure from Sect. 3.1 as a
theory-solver Dec(HMP) into MATHSAT, resulting in a framework for the verifica-
tion of HMPs supporting boolean and integer data fields, but potentially also any other
data type already handled by MATHSAT.

The rationale behind our combination is to separate the “heap reachability” part of the
formula from the reasoning about “data”, in order to achieve a modular SMT(HMP∪
T) decision procedure, where T is the theory for a generic data type. In particular,
in the current implementation, we provide in the input language a binary predicate
data bool(d,h), and a binary function data int(d,h) that can be used to select a boolean
or an integer stored in d ∈ DataField of h ∈ NodeTerm. Notice that both constructs are
uninterpreted, and they merely represent a modular solution to bridge the data and the
heap part.

For boolean data, we can exploit the SAT-solver in MATHSAT to decide subfor-
mulae expressed on boolean data, by the Ackermann’s expansion of the data bool(., .)
predicate. The interaction between the integer solver Dec(LIA) (or in general, the non-
boolean) reasoning and Dec(HMP) can be dealt with in two different ways, either us-
ing aBool+Dec(HMP)+Dec(LIA)+Dec(EUF) schema, or aBool+Dec(HMP)
+Dec(LIA) schema, after the Ackermannization of data int(., .) symbols.

Update operations on data update dfield(d, t,v,d′) may be eagerly replaced with a
set of axioms {d′(t) ≈ v}∪{s = t → d′(s) ≈ d(s) | s ∈ NT}, where ≈ is the equality =
for integer data and ↔ for boolean data, and NT is the set of NodeTerms that appear in
the formula. This solution is far from being optimal, but it worked well in practice for
our experiments, where only a few updates were required.
Dec(HMP), as any other theory-solver, also benefits of the EUF-layer of MATH-

SAT. Our experiments show that in many cases this layer is sufficient to determine the
unsatisfiability of a query.

Example 1. We are given the following quantifier-free unsatisfiable SMT(HMP∪LIA)
formula φ :

(data int(d,h1)+data int(d,h2) = 1)∧ (h1 = h2)

Using Delayed Theory Combination: We first purify φ into φ ′ with the introduction of
two new fresh variables v1 and v2, obtaining φ ′:

(v1 = data int(d,h1))∧ (v2 = data int(d,h2))∧ (v1 + v2 = 1)∧ (h1 = h2).

The interface equality v1 = v2 is also generated. The atoms are assigned to the theories
as follows:

HMP {h1 = h2}
LIA {v1 + v2 = 1,v1 = v2}
EUF {v1 = data int(d,h1),v2 = data int(d,h2),h1 = h2,v1 = v2}.

The SAT-solver assigns every atom in φ ′ to true. The contradiction is derived because
Dec(LIA) immediately implies v1 = v2, which falsifies the functional consistency in
Dec(EUF).

Verifying Heap-Manipulating Programs in an SMT Framework 247

Using Ackermann’s Expansion: The original formula is expanded into φ ′:

(h1 = h2)∧ (v1 + v2 = 1)∧ (h1 = h2 → v1 = v2).

Again, Dec(LIA) implies v1 = v2 that contradicts h1 = h2 ∧ (h1 = h2 → v1 = v2).

5 Experimental Results

We ran MATHSAT extended with the unbounded reachability theory on a number of
HMP verification queries. The queries are from a simple predicate abstraction [19]-
based model checker that we are using to verify HMPs. This tool is a straightfor-
ward implementation of the software model checking algorithm with predicate abstrac-
tion [4], and is described in previous work [9,39]. The experiments were executed on a
2.6 GHz Pentium 4 machine.

The first question is how much overhead the greater complexity of an integrated
SMT solver imposes. Table 1 gives a performance comparison with the previous re-
sults from [39], using the standalone decision procedure for the unbounded reachability
logic. The examples have either no data fields or only boolean data fields, so the pre-
vious work could handle them. The safety properties we checked (when applicable) of
the HMPs are:

– no leaks (NL) – all nodes reachable from the head of the list at the beginning of the
program are also reachable at the end of the program.

– insertion (IN) – a distinguished node that is to be inserted into a list is actually
reachable from the head of the list, i.e. the insertion “worked”.

– acyclic (AC) – the final list is acyclic, i.e. nil is reachable from the head of the list.
– cyclic (CY) – list is a cyclic singly-linked list, i.e. the head of the list is reachable

from its successor.
– doubly-linked (DL) – the final list is a doubly-linked list.
– cyclic doubly-linked (CD) – the final list is a cyclic doubly-linked list.
– sorted (SO) – list is a sorted linked list, i.e. each node’s data field is less than or

equal to its successor’s.
– data (DT) – data fields of selected (possibly all) nodes in a list are set to a value.
– remove elements (RE) – for examples that remove node(s), this states that the

node(s) was (were) actually removed.

The comparison shows that the integration isn’t a serious overhead. Although MATH-
SAT, with the integrated unbounded reachability theory, is a more heavyweight tool
than the pure unbounded reachability decision procedure we were using previously, the
performance penalty is reasonable.

The next question is whether the integration allows effectively verifying example
HMPs that could not be handled previously, such as the example in Fig. 1 from Sect. 2.

Without the integration into an SMT solver, we handled integer data fields by bit-
blasting them into a fixed number of boolean data fields that represented integers of a
certain bit width. We used 1-bit integers in most examples (except for SEARCH-AND-
SET where we used 2-bit integers) because the number of states (and therefore the

248 Z. Rakamarić et al.

Table 1. Performance Comparison Against Previous Work [39]. The column “property” specifies
the verified property; “preds” is the number of predicates required for verification; “DP calls” is
the number of decision procedure queries; “old time” is the total execution time from [39]; “new
time” is the total execution time using MATHSAT. Our technical report [38] provides pseudocode
and lists the required predicates for these examples. Some of the examples have been taken from
related work, while the last three are from Linux kernel list container.

program property preds DP calls old time (s) new time (s)

LIST-REVERSE NL 8 184 0.2 0.2
LIST-ADD NL∧AC∧IN 8 66 0.1 0.1

ND-INSERT NL∧AC∧IN 13 259 0.5 0.6
ND-REMOVE NL∧AC∧RE 12 386 0.9 1.2

ZIP [23] NL∧AC 22 9153 17.3 27.3
SORTED-ZIP NL∧AC∧SO∧IN 22 14251 22.8 46.2

SORTED-INSERT [27] NL∧AC∧SO∧IN 20 5990 13.8 25.3
BUBBLE-SORT [3] NL∧AC 18 3444 11.1 16.5
BUBBLE-SORT [3] NL∧AC∧SO 24 31446 114.9 209.0

REMOVE-ELEMENTS NL∧CY∧RE 17 3124 8.8 14.9
REMOVE-SEGMENT [31] CY 15 944 2.2 10.0

SEARCH-AND-SET NL∧CY∧DT 16 4892 5.3 10.8
SET-UNION [36] NL∧CY∧DT∧IN 21 374 1.4 2.2
CREATE-INSERT NL∧AC∧IN 24 3020 14.8 15.6

CREATE-INSERT-DATA NL∧AC∧IN 27 8710 39.7 47.3
CREATE-FREE NL∧AC∧IN∧RE 31 52079 457.4 489.2

INIT-LIST NL∧AC∧DT 9 81 0.1 0.1
INIT-LIST-VAR NL∧AC∧DT 11 244 0.2 0.4
INIT-CYCLIC NL∧CY∧DT 11 200 0.2 0.4

SORTED-INSERT-DNODES NL∧AC∧SO∧IN 25 7918 77.9 108.1
REMOVE-DOUBLY NL∧DL∧RE 34 3238 24.3 33.0

REMOVE-CYCLIC-DOUBLY [27] NL∧CD∧RE 27 1695 15.6 15.7
LINUX-LIST-ADD NL∧CD∧IN 25 1240 6.4 8.9

LINUX-LIST-ADD-TAIL NL∧CD∧IN 27 1638 7.3 10.0
LINUX-LIST-DEL NL∧CD∧RE 29 2057 24.7 25.2

number of decision procedure queries) grows exponentially with integer bit width. Fur-
thermore, for HMP examples that use addition and multiplication, we would also have
had to implement n-bit integer addition and multiplication, which would add even more
complexity to the verification problem. We didn’t even attempt to verify such examples
in our previous work.

With the integration into MATHSAT, a rich set of other theories is available to the
verifier. Table 2 shows performance using MATHSAT on the HMP examples that con-
tain (unbounded) integer data fields. In the verification of these examples, we are using a
combination of multiple theories, including unbounded reachability, uninterpreted func-
tions, and linear arithmetic. Some examples are the same as before, but with integers
expanded from 1 or 2 bits to true integers. There is some slow-down for verification
with unbounded integers, but the runtimes are quite comparable to the corresponding

Verifying Heap-Manipulating Programs in an SMT Framework 249

Table 2. Performance on Examples with Integer Data Fields. These examples could not be
verified without the SMT integration. Some examples are the same as in Table 1, except with
integer data fields; other examples, marked with *, are completely new. Pseudocode and the re-
quired predicates for these examples can be downloaded from http://www.cs.ubc.ca/∼
zrakamar/software/hmp-examples.tar.gz.

program property preds DP calls time (s)

SORTED-ZIP NL∧AC∧SO∧IN 22 5758 53.9
SORTED-INSERT NL∧AC∧SO∧IN 20 2972 40.4
BUBBLE-SORT NL∧AC 17 2348 16.9
BUBBLE-SORT NL∧AC∧SO 23 17427 371.3

REMOVE-ELEMENTS NL∧CY∧RE 17 3124 16.4
REMOVE-SEGMENT CY 15 944 10.3
SEARCH-AND-SET NL∧CY∧DT 16 5120 13.7

SET-UNION NL∧CY∧DT∧IN 22 766 5.8
CREATE-INSERT-DATA NL∧AC∧IN 27 8710 53.6

INIT-LIST NL∧AC∧DT 9 81 0.1
INIT-LIST-VAR NL∧AC∧DT 11 244 0.4
INIT-CYCLIC NL∧CY∧DT 11 200 0.4

SORTED-INSERT-DNODES NL∧AC∧SO∧IN 25 3636 175.7
LAZY-SIMPLE [7]* AC∧DT 21 9290 33.4

LAZY-SIMPLE-BACKW [7]* AC∧DT 15 1127 2.2
INIT-INCREMENT* AC∧DT 11 354 1.6

INIT-ADD* AC∧DT 11 354 1.8
INIT-ADD-FLAG* AC∧DT 12 499 1.4

INIT-MULT* AC∧DT 11 354 1.8

versions in Table 1. Several additional examples use arithmetic operators on the un-
bounded integers and have no analogue in Table 1. Overall, we see that we can effi-
ciently verify many examples using the combined theories.

6 Conclusions and Future Work

The paper describes integration of the unbounded reachability theory described in our
previous work into MATHSAT, a general purpose SMT solver. Integrating the theory
into MATHSAT — easily accomplished through its theory combination framework —
provides access to the rich set of theories it supports. Using a combination of different
theories of the extended MATHSAT, we verified HMP examples we couldn’t handle
before. Comparing running times to our previous work shows that the much greater ex-
pressiveness comes with only a minor performance penalty. We believe this integration
of an HMP-verification logic into a general SMT solver will be broadly applicable to
many software verification tools, allowing them to be easily extended to handle both
heap-related and other software verification properties.

The primary direction for future work is to improve our predicate abstraction frame-
work to make better use of the capabilities of the combined SMT prover. Our simple
predicate abstraction engine eagerly enumerates a huge number of small queries to the

250 Z. Rakamarić et al.

SMT solver and is therefore not benefiting from the solver’s powerful search algorithm.
Using techniques similar to the AllSAT approach to predicate abstraction [26] should
substantially improve performance.

References

1. Ackermann, W.: Solvable Cases of the Decision Problem. In: Studies in Logic and the Foun-
dations of Mathematics, North-Holland, Amsterdam (1954)

2. Babić, D., Hu, A.J.: Structural abstraction of software verification conditions. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 366–378. Springer, Heidelberg (2007)

3. Balaban, I., Pnueli, A., Zuck, L.: Shape analysis by predicate abstraction. In: Cousot, R. (ed.)
VMCAI 2005. LNCS, vol. 3385, Springer, Heidelberg (2005)

4. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate abstraction of
C programs. In: PLDI. Conf. on Programming Language Design and Implementation, pp.
203–213 (2001)

5. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, Springer, Heidelberg (2005)

6. Benedikt, M., Reps, T., Sagiv, M.: A decidable logic for describing linked data structures. In:
Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, Springer, Heidelberg (1999)

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy shape analysis. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 532–546. Springer, Heidelberg (2006)

8. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Concretizing
the convergence of model checking and program analysis. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg (2007)

9. Bingham, J., Rakamarić, Z.: A logic and decision procedure for predicate abstraction of heap-
manipulating programs. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,
vol. 3855, pp. 207–221. Springer, Heidelberg (2005)

10. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., Rossum, P.V., Ranise, S., Sebastiani,
R.: Efficient satisfiability modulo theories via delayed theory combination. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 335–349. Springer, Heidelberg
(2005)

11. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., Rossum, P.V., Ranise, S., Sebas-
tiani, R.: Efficient theory combination via boolean search. Information and Computation 204,
1493–1525 (2006)

12. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., Rossum, P.V., Schulz, S., Sebastiani,
R.: The MathSAT 3 system. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632,
pp. 315–321. Springer, Heidelberg (2005)

13. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: Delayed theory combi-
nation vs. Nelson-Oppen for satisfiability modulo theories: A comparative analysis. In: Her-
mann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 527–541. Springer,
Heidelberg (2006)

14. Charlton, N., Huth, M.: Hector: Software model checking with cooperating analysis plugins.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 168–172. Springer,
Heidelberg (2007)

15. Chatterjee, S., Lahiri, S.K., Qadeer, S., Rakamarić, Z.: A reachability predicate for analyzing
low-level software. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
19–33. Springer, Heidelberg (2007)

Verifying Heap-Manipulating Programs in an SMT Framework 251

16. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI–C pro-
grams using SAT. Formal Methods in System Design 25(2-3), 105–127 (2004)

17. Detlefs, D., Nelson, G., Saxe, J.: Simplify: A theorem prover for program checking, Techni-
cal Report HPL-2003-148, HP Labs, Palo Alto, CA (2003)

18. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: PLDI. Conf. on Programming Language Design and Implemen-
tation, pp. 234–245 (2002)

19. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, Springer, Heidelberg (1997)

20. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL. Symp. on
Principles of Programming Languages, pp. 58–70 (2002)

21. Immerman, N., Rabinovich, A., Reps, T., Sagiv, M., Yorsh, G.: The boundary between de-
cidability and undecidability for transitive closure logics. In: Marcinkowski, J., Tarlecki, A.
(eds.) CSL 2004. LNCS, vol. 3210, pp. 160–174. Springer, Heidelberg (2004)

22. Ivančić, F., Shlyakhter, I., Gupta, A., Ganai, M.K., Kahlon, V., Wang, C., Yang, Z.: Model
checking C programs using F-Soft. In: ICCD. Intl. Conf. on Computer Design, pp. 297–308
(2005)

23. Jensen, J.L., Jørgensen, M.E., Klarlund, N., Schwartzbach, M.I.: Automatic verification of
pointer programs using monadic second-order logic. In: PLDI. Conf. on Programming Lan-
guage Design and Implementation, pp. 226–236 (1997)

24. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. In: Yu, S.,
Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, Springer, Heidelberg (2001)

25. Krstić, S., Goel, A., Grundy, J., Tinelli, C.: Combined satisfiability modulo parametric the-
ories. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 602–617.
Springer, Heidelberg (2007)

26. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT techniques for fast predicate abstraction.
In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 413–426. Springer, Heidel-
berg (2006)

27. Lahiri, S.K., Qadeer, S.: Verifying properties of well-founded linked lists. In: POPL. Symp.
on Principles of Programming Languages, pp. 115–126 (2006)

28. Lahiri, S.K., Qadeer, S.: A decision procedure for well-founded reachability, Microsoft Re-
search Tech Report MSR-TR-2007-43 (2007)

29. Lev-Ami, T., Immerman, N., Reps, T.W., Sagiv, M., Srivastava, S., Yorsh, G.: Simulating
reachability using first-order logic with applications to verification of linked data struc-
tures. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, Springer, Heidelberg
(2005)

30. Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In: Palsberg, J.
(ed.) SAS 2000. LNCS, vol. 1824, pp. 280–301. Springer, Heidelberg (2000)

31. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate abstraction and canonical
abstraction for singly-linked lists. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp.
181–198. Springer, Heidelberg (2005)

32. Manna, Z., Zarba, C.G.: Combining decision procedures. In: Aichernig, B.K., Maibaum,
T.S.E. (eds.) Formal Methods at the Crossroads. From Panacea to Foundational Support.
LNCS, vol. 2757, pp. 381–422. Springer, Heidelberg (2003)

33. McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490. Springer, Heidel-
berg (2005)

34. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: PLDI. Conf. on Pro-
gramming Language Design and Implementation, pp. 221–231 (2001)

35. Nelson, G.: Techniques for program verification. PhD thesis, Stanford University (1979)

252 Z. Rakamarić et al.

36. Nelson, G.: Verifying reachability invariants of linked structures. In: POPL. Symp. on Prin-
ciples of Programming Languages, pp. 38–47 (1983)

37. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans.
Program. Lang. Syst. 1(2), 245–257 (1979)

38. Rakamarić, Z., Bingham, J., Hu, A.: A better logic and decision procedure for predicate
abstraction of heap-manipulating programs, UBC Dept. Comp. Sci. Tech Report TR-2006-
02 (2006), http://www.cs.ubc.ca/cgi-bin/tr/2006/TR-2006-02

39. Rakamarić, Z., Bingham, J., Hu, A.J.: An inference-rule-based decision procedure for verifi-
cation of heap-manipulating programs with mutable data and cyclic data structures. In: Cook,
B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 106–121. Springer, Heidelberg
(2007)

40. Ranise, S., Zarba, C.G.: A theory of singly-linked lists and its extensible decision procedure.
In: SEFM. IEEE Intl. Conf. on Software Engineering and Formal Methods (2006)

41. Yorsh, G., Rabinovich, A., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reachable pat-
terns in linked data-structures. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS,
vol. 3921, Springer, Heidelberg (2006)

http://www.cs.ubc.ca/cgi-bin/tr/2006/TR-2006-02

A Generic Constructive Solution for Concurrent Games
with Expressive Constraints on Strategies

Sophie Pinchinat�

Computer Sciences Laboratory of RSISE
The Australian National University, Canberra

Abstract. The emerging technology of interacting systems calls for new for-
malisms to ensure their reliability. Concurrent games are paradigmatic abstract
models for which several logics have been studied. However, the existing for-
malisms show certain limitations in face of the range of strategy properties re-
quired to address intuitive situations. We propose a generic solution to specify
expressive constraints on strategies in concurrent games. Our formalism natu-
rally extends alternating-time logics while being highly flexible to combine con-
straints. Our approach is constructive and can synthesize many types of complex
strategies, via automata-theoretic techniques.

1 Introduction

Computer-system design currently relies on complex assemblages of interacting com-
ponents which communicate and share resources in order to achieve services. The com-
binatorics of such systems is so enormous that the development of adequate formal
methods to ensure their reliability has become a major challenge. In this context, games
are paradigmatic for providing expressive mathematical models of interactive systems,
reflecting their operational semantics and offering adequate reasoning tools. In order
to reason formally about interactive models, it is necessary to devise appropriate spec-
ification languages in which the desirable behaviors of the system can be stated; once
the properties are formulated, methods for automated verification and synthesis can be
employed to support the design process.

In the past decade, extensions of state-transition based models, such as Concur-
rent Game Structures [AHK02] which extend Kripke structures, have raised consid-
erable interest in virtue of offering mathematical settings to address formal analysis
of complex systems. At the same time, alternating-time logics such as ATL, ATL∗,
AMC and GL [AHK02] have been proposed as a natural extension of standard tem-
poral logics to the multiplayer setting. Noticeable theoretical and practical results exist
for these logics, such as effective decision procedures with reasonable cost for ATL
[vD03, KP04, GvD06, SF06, LMO07], and implementations [HKQ98, AdAdS+06].
However, it should be made clear that alternating time logics show certain limitations
in face of the range of strategy properties required to address intuitive situations. For ex-
ample, communication protocols often require to consider fairness assumptions, which

� This research was supported by the Marie Curie Scientific Project MASLOG 021669 (FP6-
2004-Mobility-6) and Université de Rennes 1.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 253–267, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

254 S. Pinchinat

enable to exclude some undesirable computations of the system. When such assump-
tions are not expressible in the logic, non trivial efforts are needed to impose the con-
straints directly in the models [AHK02]. By this type of approach, only very dedicated
kind of analysis can be performed, and often, a minor addition of new constraints com-
pels the user to re-design its problem from scratch. Hence, there is a need for a for-
malism where constraints on strategies can be combined. Other examples of limitations
can be borrowed in solution concepts for non-zero sum games. As far as we are con-
cerned, uniqueness of a Nash equilibrium [Cha05], or dominance of strategies [Ber07]
cannot be expressed in any respect, because the formalisms do not have strategies as
main objects.

In this paper, we propose a generic constructive solution to analyze the strategies of
concurrent games. Our formalism is tuned to specify at the same time the strategies,
their properties (e.g. fairness), and their objectives in a unified framework. Expres-
sive constraints can henceforth be formulated; for example all the limitations discussed
above are overcome. Moreover, all the concepts for nonzero sum games considered by
[CHP07] can be captured, since we can express Strategy Logic (SL) in our formalism;
notice that SL is limited to turned-based arenas, whereas we also consider general con-
current game structures, and SL is not powerful enough to express, e.g. it cannot express
the Alternating Mu-Calulus [AHK02]. We start from the logic Dμ, a traditional propo-
sitional mu-calculus [Koz83], augmented with decision modalities. By the semantics of
the logic, the game is unfold into an infinite tree. The purpose of decision modalities is
to specify particular monadic predicates over the nodes of the computation tree of the
game, to establish a one-to-one correspondence between these particular predicates and
the strategies of sets of players; the outcome of a strategy is the sub-tree whose nodes
form the predicate, and still is a concurrent game, but with less players.

Objectives of strategies can be any ω-regular property. In essence, strategies together
with their objectives have an assume-guarantee flavor: by assuming that a certain strat-
egy is adopted, we guarantee some temporal property of its outcome. From this point
of view, we operate on the model (by applying the strategy) and leave the property
intact, as done in [CHP07]. In order to decrease the intricacy of the problem, we pro-
pose a powerful although simple mechanism to operate on the logic side while leaving
the models intact; it is called relativization. The benefit is to transform the complex
assume-guarantee statement into a mere temporal statement about the model.

Following the original idea of [RP03] for controller synthesis problems, we define
the logic QDμ a monadic second order extension of Dμ, but where fix-points and quan-
tifiers can arbitrarily interleave. Our calculus is then equipped to quantify over strate-
gies, as we show, in a highly expressive manner. In particular, it subsumes alternating
time logics, while being amenable to automata constructions, hence to an effective pro-
cedure to synthesize the strategies.

The paper is organized as follows: we present the models in Section 2, and the logic
in Section 3. Strategies and outcomes are defined in Section 4, followed by the rela-
tivization principle. Section 5 is dedicated to significant examples of logical specifica-
tions. Section 6 describes automata constructions for QDμ. We complete the work by
the embedding of alternating-time logics into our system (Section 7), and a note on a
customized automata construction for these logics.

A Generic Constructive Solution for Concurrent Games 255

2 The Models

In the following, we assume an infinite countable ordered set IP = {p, p′, . . .} of players,
and an infinite set of atomic propositions Prop = {Q, Q1, Q2, . . .}. Finite sets C of
players are coalitions. For any integer i ≥ 1, let [i] denote the set {1, . . . , i}.

A Concurrent Game Structure (CGS) over Λ and M is a tuple S =〈Π, S, Λ, λ, M, δ〉,
where:

– Π ⊆ IP is a non-empty finite set of players, whose cardinal is denoted by n; we
may represent the ordered set Π by the natural numbers 1, . . . , n.

– S is a set of states, with typical elements of S written s, s′,
– M is a set of moves. Each j ∈ M is a possible move available in each state to each

player p ∈ Π . A decision vector is a tuple x = 〈j1, . . . , jn〉 ∈ Mn, where jp is a
move of p ∈ Π . The value Card(M)n is the branching degree of S.

– δ : S × Mn → S is the transition function: given a state s ∈ S and decision vector
〈j1, . . . , jn〉, the game moves to the state δ(s, x). Each δ(s, x) where x ∈ Mn is a
successor of s, and successors of s form the set Succ(s).

– Λ ⊆ Prop, and λ : Λ → 2S labels states by propositions. A state s is labelled
by Q ∈ Λ whenever s ∈ λ(Q). We let λ(Q) :=

⋂
Q∈Q λ(Q), for any set of

propositions Q ⊆ Λ.

Comparing this with the original definition of [AHK02], we may notice the following:

1. We use the same set of moves for all players, independently of the current state.
2. Each player moves independently of the others.
3. Players make concurrent choices in each state.

However, the proposed models are expressive enough to capture the essential features
of concurrent games, as we can actually simulate any concurrent game: In general,
each player in a current state s has a set Mp

s of moves. We can simulate this situation
with a unique set of moves M by renaming the moves in Mp

s and by qualifying some
states dummy; the logical statements need being interpreted on the relevant part of the
models, namely on computations which do not encounter dummy states. Hence Points
1 and 2 are not restrictive. Since we can restrict players’ set of moves from a given
state, enforcing all but one player to have a single choice simulates turned-based games;
this sorts out Point 3. Notice that asynchronous games are also captured: following
[AHK02], we designate a particular player scheduler which in every state selects one
of the players; the latter then determines the next state. Now, the crucial assumption
that the scheduler fairly selects the players can be expressed in the logic, as opposed to
[AHK02] where fairness is defined in the models.

Given s ∈ S, p ∈ Π , and j ∈ M , we let Succj(s, p) ⊆ Succ(s) be the set of
successors of s which can be enforced by the move j of player p; formally, it is the
set of states of the form δ(s, 〈j1, . . . , jn〉) with jp = j. Consider the classic two-player
game Paper, Rock, and Scissors (PRS) as depicted in Figure 1: the possible moves of
each player range over M = {P, R, S} for “paper”, “rock” and “scissors” respec-
tively. The propositions 1-Win and 2-Win indicate who is the winner in the current
configuration; let us ignore proposition Q for the moment. In this game, SuccS(s0, 2)

256 S. Pinchinat

s0

s9s1 s2 s3 s4 s5 s6 s7 s8

< P, P >

< R, R >

< S, S >

< P, R >

< P, S >
< R, P > < R,S >

< S, P >

< S, R >

1-Win 1-Win 1-Win2-Win 2-Win 2-Win
Q Q Q

Fig. 1. The Paper, Rock, and Scissors game

= {s3, s6, s9} is the set of successors of s0 player 2 can enforce by playing “S”. We
let SuccSets(s, p) ⊆ 2Succ(s) be the set of all Succj(s, p) where j ∈ M , composed
of sets of successors of s which can be enforced by some move of player p. In PRS,
SuccSets(s0, 2) = {{s1, s4, s7}, {s2, s5, s8}, {s3, s6, s9}}. Since a player p �∈ Π can-
not influence the game, we take the convention that SuccSets(s, p) = {Succ(s)}.
Given a coalition C and s ∈ S, a C-move from s is an element of ∩p∈CSuccSets(s, p);
it is a subset of Succ(s) which elements result from fixing a particular move for each
player in C. In PRS, a {1, 2}-move from s0 is {si}, for some 1 ≤ i ≤ 9.

3 The Logical Framework

We propose a generalization of [RP03] which is twofold: we enrich the propositional
mu-calculus [Koz83] by allowing decision modalities, and we consider its monadic sec-
ond order extension by allowing quantifications over atomic propositions, even under
the scope of fix-points operators. We first present the propositional mu-calculus with
decision modalities; the second order extension follows in this section.

The logic Dμ is the mu-calculus with decision modalities (formulas �pQ). Given
a set Prop of atomic propositions, an infinite set IP, and a set of variables Var =
{Z, Y, . . .}, the syntax of Dμ is:

Q | �p Q | � | ¬β | β1 ∨ β2 |EXβ | Z | μZ.β(Z)

where Q ∈ Prop, p ∈ IP, Q ⊆ Prop, and β, β1, β2 are Dμ formulas. Fix-point formulas
(μZ.β(Z)) are such that any occurrence of Z ∈ Var in β(Z) occurs under an even
number of negation symbols ¬. A sentence is a formula where any occurrence of a
variable Z occurs under the scope of a μZ operator. The set of formulas which do not
contain any decision modality correspond to the traditional propositional mu-calculus,
whence the standard notations ⊥, AXβ, β1 ∧ β2, β1⇒β2, and νZ.β(Z) for respectively
¬�, ¬EX¬α, ¬(¬β1 ∨ ¬β2), ¬β1 ∨ β2, and ¬μZ.¬β(¬Z). Moreover, given β ∈
Dμ, we freely use the concise CTL-like notation AG (β) for νZ.(β ∧ AX Z), which
expresses that β is globally true in the future, and EF (β) for ¬AG (¬β).

A Generic Constructive Solution for Concurrent Games 257

As for the traditional mu-calculus, a formula β ∈ Dμ is interpreted in a CGS S =
〈Π, S, Λ, λ, M, δ〉 supplied with a valuation val : Var → 2S. Its semantics [[β]]valS is a
subset of S, defined by induction over the structure of β. The following is very standard
as the mu-calculus operators semantics:

[[Q]]valS = {s ∈ S | s ∈ λ(Q)}
[[�]]valS =S

[[¬β]]valS =S \ [[β]]valS
[[β1 ∨ β2]]valS = [[β1]]valS ∪ [[β2]]valS

[[Z]]valS =val(Z)
[[EXβ]]valS = {s ∈ S | ∃s′ ∈ Succ(s) ∧ s′ ∈ [[β]]valS }

[[μZ.β(Z)]]valS =∩{S′ ⊆ S |[[β(Z)]]val(S
′/Z)

S ⊆ S′}
Classically, as a valuation val does not influence the semantics of a sentence β ∈ Dμ,
we then simply write [[β]]S .

We now focus on decision modalities which are essential to our logic:

[[�pQ]]valS = {s ∈ S | Succ(s) ∩ λ(Q) ∈ SuccSets(s, p)}
By definition, s ∈ [[�pQ]]S whenever the set Succ(s) ∩ {λ(Q) | Q ∈ Q} can alter-
natively be characterized as a move of player p, namely as Succj(s, p) for some move
j ∈ M . Notice that the semantics of �pQ is well defined even if p �∈ Π , since in this
case SuccSets(s, p) equals {Succ(s)} by convention. In most of our examples, the set
Q has a single element Q, so we simply write �pQ for �p{Q}.

In the example of the PRS game, Figure 1, s0 �∈ [[�1(1-Win)]]S because the predicate
1-Win does not match a set of successors enforced by a move of player 1; as a matter
of fact, player 1 does not have a winning strategy, neither does player 2 for symmet-
rical reasons. On the contrary s0 ∈ [[�1Q]]S , since Q matches SuccS(s0, 2). When
the game is infinite, eg by repeating the game PRS, it can be unfolded as an infinite
tree, the nodes of which are histories of an ongoing play. Assume given a predicate Q
on the tree nodes such that �pQ is invariant in the computation tree, that is such that
AG (�pQ) holds in the root. Then any computation inside Q corresponds to a play for
a fixed strategy of player p, namely the one designated by Q, and the sub-tree formed
by these computations is the outcome of this very strategy. Combining decision modal-
ities for several players characterizes coalition moves: for instance, when a formula like
�p1Q1∧�p2Q2∧�p3Q3 holds, then the set of successors which satisfy Q1∧Q2∧Q3 cor-
responds to some move of the coalition {p1, p2, p3}. By extension, if each predicate Qi

designates a strategy of pi, the sub-tree whose computations remain inside Q1∧Q2∧Q3
is the outcome of the coalition strategy.

The logic is extended to the monadic second order to capture strategies as main ob-
jects of the logic: stating that there exists a predicate Q such AG (�pQ) holds expresses
the existence of a strategy. This extension of the logic is written QDμ, for “quantified
Dμ”; its syntax is as for Dμ but with quantifications over sets of atomic propositions.
The syntax of QDμ is:

Q | �p Q | � | ¬α |α1 ∨ α2 |EXα | Z | μZ.α(Z) | ∃Q.α

We write ∀Q.α for ¬∃Q.¬α.

258 S. Pinchinat

r Q

Q

1, 2, 4, 5, 7, 8
3, 6, 9

1, . . . , 91, . . . , 9

Fig. 2. A Q-labeling (E , r) of degree 9

The semantics of QDμ generalizes the one of Dμ: the cases of Q, �pQ, �, ¬α,
α1 ∨ α2, EXα, Z , and μZ.α(Z) are dealt inductively. The semantics of quantification
follows the proposal of [RP03]: the mechanism to define new predicates Q ∈ Q on a
game structure relies on a composition of the structure with a Kripke structure over Q,
called a labeling.

Definition 1 (Q-labelings). Given Q ⊆ Prop and m ≥ 1, a Q-labeling (or a labeling
over Q) is a pair (E , r) where E = 〈E, Q, γ, [m], δ′〉 is a (one player) CGS structure
over Q and [m], and r ∈ E is its root. It is a Krikpe structure.

We compose labelings and CGS’s with the same branching degree. We suppose fixed
once for all a principle to bijectively relate any set of the form Mn to the set [Card(M)n]
(recall it is {1, . . . , Card(M)n}); for example one can use the coding proposed by
[GvD06]. In the following, let us qualify canonical a bijection from Mn to [Card(M)n]
whenever it is based on this principle.

Now assume given a rooted CGS (S, s) with n players over Λ and M , and a labeling
(E , r) over Q and [Card(M)n], where E = 〈E, Q, γ, [Card(M)n], δ′〉; denote by τ
the canonical bijection from Mn to [Card(M)n]. The labeling of (S, s) by (E , r) is the
synchronous product of the two structures, where x-transitions in S are synchronized
with the τ(x)-transitions in E . Formally,

(S, s) × (E , r) = 〈Π, S × E, Λ ∪ Q, (λ × γ), δ”〉

is the CGS over Λ ∪ Q and M rooted at (s, r), where:

– (λ×γ)(Q) = λ(Q)∪γ(Q), for each Q ∈ Λ∪Q with the convention that if Q �∈ Λ
(or �∈ Q) then λ(Q) (respectively γ(Q)) is the empty set, and

– δ”((s1, e1), x) = (s2, e2) whenever δ(s1, x) = s2 and δ′(e1, τ(x)) = e2.

In the following, composition of a structure with a labeling implicitly assumes that
their branching degrees match. Figure 1 shows a (regular) labeling (E , r) over Q and
[32], and the labeling of the game structure PRS by (E , r), with the convention that
τ(〈P, P 〉) = 1, τ(〈P, R〉) = 2, ..., τ(〈S, R〉) = 8, and τ(〈S, S〉) = 9. The result is
depicted in Figure 1.

Notice that since propositions of compound states accumulate, and because E and S
have the same branching degree, (S, s)× (E , r) is bisimilar to (S, s) in the usual sense,
if we restrict to propositions that are not in Q. In particular if Q is empty, (S, s)×(E , r)

A Generic Constructive Solution for Concurrent Games 259

is bisimilar to (S, s). The composition of S and labelings is tedious but it only aims at
formalizing the means to decoration nodes of the computation tree by propositions; in
particular, when E is a finite state Q-labeling, the predicates Q are regularly placed on
the computation tree of the game structure.

We have now the material to define the meaning of quantifiers: s ∈ [[∃Q.α]]valS if
and only if there exists a Q-labeling (E , r) such that (s, r) ∈ [[α]]val

′

(S,s)×(E,r), where

val′(Z) = val(Z) × E.
Remark that formulas of QDμ have the same truth value if we unravel the structure S.

Besides, the semantics of quantified formulas is a lot more intuitive on the computation
tree: ∃Q.α holds if there is a way to assign the propositions of Q to the nodes of the
computation tree so that α holds.

4 Strategies and Outcomes

In this section, we assume a fixed CGS S = 〈Π, S, Λ, λ, M, δ〉.
We revisit the central concepts of strategies and outcomes which underlies the se-

mantics of all logics for CGS’s: as already explained in Section 3, giving a strategy of
player p is equivalent to labeling the structure by some proposition Q where the prop-
erty �pQ is invariant. Since invariance is definable in the logic, we obtain the following
definition for strategies:

Definition 2 (Strategies). Given a coalition C ⊆ Π , and a set {Qp | p ∈ C} ⊆ Prop,
a C-strategy from s designated by {Qp | p ∈ C} is a labeling (E , r) of (S, s) over
{Qp | p ∈ C}, such that

(s, r) ∈ [[AG (
∧
p∈C

�pQp)]](S,s)×(E,r) (1)

For each C-strategy (E , r) from s designated by a set QC = {Qp | p ∈ C}, where
E = 〈E, Q, γ, [m], δ′〉, we define its outcome as the structure obtained by forgetting
all states (s′, e) which are not chosen by the coalition C, hence not in the predicate∧

p∈C Qp, and by forgetting the players of C as their moves are fixed by the strategy.
Formally, assuming C �= ∅, we define OUT(QC , S, s) = 〈Π \ C, (S × E) ∩ (λ ×
γ)(Q), Λ ∪ Q, M, δ”〉, with δ”((s1, e1), y) = δ((s1, e1), y′) where y′ is the decision
vector of players in Π obtained by completing the decision vector y of players in Π \C
by the moves of the players in C recommended by the C-strategy. If C = ∅ then as
expected OUT(Q∅, S, s) = (S, s).

Lemma 1. OUT(QC , S, s) is a CGS (rooted at s) over the set of players Π \ C.

Our definition of outcome is sensible as the set of maximal paths in OUT(QC , S, s)
coincides with the original definition of ’outcome’ in the sense of [AHK02]. However,
because our notion retains the structure of a game, contrary to the original definition,
we can state any logical statements anew.

In the following, and when it is clear from the context, we simply say “QC -strategy”
for “C-strategy designated by QC”, and we write Qp for Q{p}. Also, we concisely
write Q for

∧
Q∈Q Q and define

∧
Q∈∅ Q as �.

260 S. Pinchinat

We present now a simple mechanism called the relativization which transforms a
formula by propagating downward in the formula a set of atomic propositions.

Definition 3 (Q-Relativization of a formula). For Q ⊆ Prop, the Q-relativization is
a mapping (·|Q) : QDμ → QDμ defined by induction:

(Q|Q) = Q (�|Q) =� (Z|Q) =Z
(¬α|Q) = ¬(α|Q) (α1 ∨ α2|Q) = (α1|Q) ∨ (α2|Q)

(μZ.α(Z)|Q) = μZ.(α(Z)|Q) (∃Q′.α|Q) =∃Q′.(α|Q)
(�pQ|Q)= �p(Q ∧ Q) (EXα|Q) =EX [

∧
Q∈Q Q ∧ (α|Q)]

From the above definition, we immediately obtain the equivalences:

(α|∅) ≡ α and (α|Q ∪ {Q}) ≡ ((α|Q)|Q). (2)

Regarding properties brought about by strategies, Theorem 1 below shows that we
can either operate on the model, by considering the outcome and examine its property,
or else operate on the formula, by considering the relativization and interpret it on the
structure:

Theorem 1. Given a rooted CGS (S, s), a coalition C, and a QC-strategy (E , r) from
s, we have: for any α ∈ QDμ, and any valuation val : Var → 2S:

[[(α|QC)]]val
′

(S,s)×(E,r)=[[α]]val
′

OUT(QC ,S,s)

where val′(Z) = val(Z) × E.

Proof. The proof of Theorem 1 is conducted by a double induction on the set C and on
the structure of α. The case C = ∅ is trivial and independent of α, since (α|QC) is α by
(2), on the one hand, and (S, s) × (E , r) and OUT(QC , S, s) are isomorphic to (S, s),
on the other hand. Assume now C = C′ ∪{p}, with c �∈ C. The QC -strategy (E , r) can
be decomposed into (E ′, r′) × (Ep, rp), where (E ′, r′) is a QC′-strategy and (Ep, rp) is
a Qp-strategy; let us write (S′, r′) for (S, s) × (E ′, r′). By (2):

[[(α|QC)]]val
′

(S,s)×(E,r) = [[((α|QC′)|Qp)]]val
′

(S′,s′)×(Ep,rp) (3)

Lemma 2. For any rooted CGS (S′, s′), any {p}-strategy (E , r) designated by Q, any
α ∈ QDμ, and any valuation val : Var → 2S , [[(α|Q)]]val

′

(S′,s′)×(E,r) = [[α]]val
′

OUT(Q,S,s)

where val′(Z) = val(Z) × E.

The proof of this lemma is based on a simple induction over the formulas, in the spirit
of [RP03]. Informally, remark first that the relativization is inductively defined for all
formulas but those of the form EXα. The inductive cases of the lemma follow this line.
Regarding statements like EXα, the lemma simply expresses that a successor exists
in the prune structure OUT(Q, S, s) if and only if it already existed in the complete
structure and it was labeled by Q.

By Lemma 2, the right hand side of (3) is equal to [[(α|QC′)]]val
′

OUT(Q,S′,s′). Since
OUT(Q, S′, s′) and OUT(Q, S, s) × (E ′, r′) are isomorphic, it is also equal to
[[(α | QC′)]]val

′

OUT(Q,S,s)×(E′,r′) which by induction hypothesis coincides with

[[α]]val
′

OUT(QC′ ,OUT(Q,S,s),(s,rp)). By definition of the outcomes, we have:

A Generic Constructive Solution for Concurrent Games 261

Lemma 3. Given two distinct coalitions C1, C2, and any two QCi-strategies (Ei, ri)
(i ∈ {1, 2}), OUT(QC1∪C2 , S, s) and OUT(QC1 , OUT(QC2 , S, s), (s, r2)) are
isomorphic.

Applying Lemma 3 to the term [[α]]val
′

OUT(QC′ ,OUT(Q,S,s),(s,rp)) yields [[α]]val
′

OUT(QC ,S,s),
which concludes the proof of Theorem 1.

Corollary 1. Given a CGS S, a coalition C, and a sentence α ∈ QDμ. Consider a set
of fresh atomic propositions QC = {Qp | p ∈ C} indexed over C. The formula

∃QC .[AG (
∧

p∈C

�pQp) ∧ (α|QC)]

characterizes the states from which there exists a C-outcome of (S, s) satisfying α.

Proof. By definition, there exists a QC -labeling from s, (E , r) such that (s, r) is a
model of [AG (

∧
p∈C �pQp) ∧ (α|QC)]. Therefore,

(s, r) ∈ [[AG (
∧

p∈C

�pQp)]](S,s)×(E,r), and (4)

(s, r) ∈ [[(α|QC)]](S,s)×(E,r). (5)

By (4), (E , r) is a QC-strategy. By Theorem 1, (5) is equivalent to s ∈ [[α]]OUT(QC ,S,s),
which concludes. For the reciprocal, simply unroll the reasoning backward.

We make strategies become the main objects of our logic: given a coalition C, and a set
QC = {Qp | p ∈ C} of propositions, we define the following dual expressions:

∃̂QC .α
def= ∃QC .[AG (

∧
p∈C

�pQp) ∧ α] ∀̂QC .α
def= ∀QC .[AG (

∧
p∈C

�pQp) ⇒ α]

By Corollary 1, ∃̂QC .(α|QC) expresses the existence of a C-strategy which enforces
α. As widely demonstrated in the next section, statements of the form (α|QC) can be
combined, and associated with other types of statements (see (6) and (7)). Moreover the
property α itself can incorporate specifications about other strategies, hence expressing
commitment (see (8)).

5 Expressiveness Issues

This section reveals the high expressiveness of the formalism. We present three signif-
icant properties we can express in our formalism, but, we believe, in none of the other
logics developed for concurrent games so far. Let us simply write (α |Q1 ∧ Q2) for
(α | {Q1, Q2}), (Q = Q′) for AG (Q ⇔ Q′) to denote equality of predicates, and
(Q �= Q′) for ¬(Q = Q′).

262 S. Pinchinat

1. Unique Nash equilibrium in ω-regular games. Given a two-player game, and an
ω-regular objective β [Cha05], the existence of a Nash equilibrium can be stated
by ∃̂Q1.∃̂Q2.Equil(β, Q1, Q2), where

Equil(β, Q1, Q2)
def=

⎧⎨
⎩

(β|Q1 ∧ Q2)
∧∀̂Q′

2.(Q2 �= Q′
2)⇒(¬β|Q1 ∧ Q′

2)
∧∀̂Q′

1.(Q1 �= Q′
1)⇒(¬β|Q′

1 ∧ Q2)

Uniqueness of the Nash equilibrium is specified by:

∃̂Q1.∃̂Q2.Equil(β, Q1, Q2) ∧ Unique(Equil(β, Q1, Q2), Q1, Q2) (6)

where Unique(α, Q1, Q2) = ∀̂Q′
1.∀̂Q′

2.[α ⇒ (Q1 = Q′
1) ∧ (Q2 = Q′

2)].
2. Dominance of strategies. For instance, a strategy Q weakly dominates another strat-

egy Q′ with respect to a goal β [Ber07] whenever (7) holds.

∀̂R.[(β|Q′ ∧ R)⇒(β|Q′ ∧ R)] ∧ ∃̂R.[(β|Q ∧ R) ∧ (¬β|Q′ ∧ R)] (7)

3. Communication protocols. By another reading of Corollary 1, a formula ∃̂QC .(α|
QC) states the existence of a C-outcome fixed once for all in which α is interpreted.
If α contains a quantified sub-formula ΔQC′ .(α′|QC′) (Δ ∈ {∃̂, ∀̂}), the statement
α′ is interpreted in C′-outcomes which lie “inside” the fixed C-outcome. Consider
a system with two processors a and b which share a critical resource; we want to
specify a protocol mutex in charge of achieving the mutual exclusion. Consider
the formula (8):

∃̂Qmutex.(AG (Exclusion ∧ ∃̂Qa.CritSeca ∧ ∃̂Qb.CritSecb)|Qmutex) (8)

where Exclusion = ¬(CritSeca ∧CritSecb), CritSecz = (AF CritSecz|Qz).
Protocol mutex has a strategy to guarantee the safety property AG (Exclusion),
on the one hand, and for each z ∈ {a, b}, to enable the recurrent liveness property
AG (∃̂Qz.(AFCritSecz |Qz), on the other hand. Property (AFCritSecz |Qz)
means that provided processor z adopts policy Qmutex, which consists e.g. in re-
quiring the access to the critical resource and in maintaining this request, it will
eventually access to critical section. The commitment of mutex to the single strat-
egy Qmutex entails fairness with respect to both processors, although not explicitly
specified. Nevertheless, as explained in Section 7, solutions without commitment
can also be specified.

Many other examples of concepts in nonzero-sum games can be expressed in our
setting, among which are all the proposals in [CHP07].

6 Automata Constructions

We assume that the reader is familiar with alternating parity tree automata (simply
called automata when it is clear from the context), and with their relationship with
the mu-calculus and parity games (we refer to [AN01], [KVW00], and [Wil01]).

A Generic Constructive Solution for Concurrent Games 263

Each formula of our calculus can be represented by alternating parity tree automata,
thanks to a powerful construction which generalizes [RP03]. Remark that fix-points and
quantifiers do not commute in general: consider the formulas α⊥ = ∃Q.νZ.(AX Z ∧
Q∧EX¬Q) and α� = νZ.(AX Z ∧∃Q.Q∧EX¬Q), interpreted on a single infinite
path. Whereas the interpretation of α⊥ is the empty set, the one of α� is the entire set
of states.

We start with an informal presentation of the construction’s principles: Existential
quantification corresponds to the projection, hence the need to handle non-deterministic
automata [Rab69]; by the Simulation Theorem [MS95], every alternating automaton is
equivalent to a non-deterministic automaton, and the procedure is effective with one
exponential blow-up in the size of the automaton. Fix-point operators also have their
counterpart on automata: by [AN01, Chapter 7, 7.2], automata can contain variables,
we call them extended automata; their inputs are like ((S, s), val), where (S, s) is as
usual a model, and val : Var → 2S is a valuation to interpret the variables, in the same
line we interpret non-closed formulas. Extended automata have their own mu-calculus,
and fix-point apply on them. Given an extented automaton A, the extended automaton
μZ.A can be defined in such a way that e.g. for an automaton A of a non-closed formula
∃Q.α(Z), where Z ∈ Var is free in α(Z), the automaton μZ.A accepts the models of
μZ.(∃Q.α(Z)). Basically, the construction of Theorem 2 relies on three steps. (1) we
build the automaton for α(Z); (2) by using the projection operation, we compute the
automaton for ∃Q.α(Z); (3) we build the automaton for μZ.(∃Q.α(Z)). Notice that the
automaton obtained for α(Z) may not be non-deterministic in general, either because
e.g. α(Z) is of the form ¬α′(Z), or of the form α1(Z) ∧ α2(Z). Preliminary to Step
(2) we may therefore apply the Simulation Theorem (which by [AN01, Chapter 9] still
applies to extended automata)entailing one exponential blow-up .

Theorem 2. Let m, n ≥ 1. For any α ∈ QDμ, write κ ∈ IN for the maximal number of
nested quantifiers in α. Then, there exists an alternating parity tree automaton Ak

α with
max(κ, 0)-EXPTIME(|α|) states and max(κ − 1, 0)-EXPTIME(|α|) priorities, which
accepts exactly the models of α of branching degree k, where k = mn, m is the number
of moves for each player, and n is the number of players.

Automata constructions established in Theorem 2 has many interesting corollaries: If
we fix the maximal number κ of ∃̂ or ∀̂ symbols in the formulas, the model-checking
problem for QDμ is κ-EXPTIME-complete (for a fixed branching degree of the struc-
tures); more precisely, it is κ-EXPTIME in the size of the formula, but polynomial in
the size of the game structure S. Indeed, for the upper bound, the proposed procedure
amounts to solving “S ∈ L(Ak

α)?”, which in the light of [Jur98] for solving two-player
parity games can be done with the announced complexity. For the lower bound, simply
observe that QDμ subsumes the proposal in [RP03]. As a consequence, the model-
checking problem for QDμ is non-elementary.

More interestingly, if coalition strategies solutions exist for a given existential QDμ

statements and some game structure, there always exists regular ones, that is describ-
able by finite state machines. Indeed, while model-checking QDμ formulas (using a
classic parity game [Jur98]), any winning strategy for Player 0 in the parity game deliv-
ers adequate valuations of the quantified propositions; since parity games always have

264 S. Pinchinat

memoryless solutions, there always exist regular valuations of the propositions, yielding
bounded memory solutions for coalition strategies.

7 Alternating Time Logics

We show that the alternating mu-calculus AMC and the “game logic” from [AHK02]
GL are natural fragments of QDμ, as stated by Theorems 3 and 4 – we refer to [Pin07]
for details; results for weaker logics such as ATL, Fair ATL, and ATL∗ follow from their
natural embedding either into AMC or GL. As a corollary, automata constructions for al-
ternating time logics can be derived from the procedure presented in Section 6; however,
we briefly explain why these automata constructions can be significantly optimized.

For Q ⊆ Prop, the bounded Q-relativization (·�Q) is like the relativization (Defini-
tion 3), except that the downward propagation of propositions in the formulas terminates
when a quantified sub-formula is encountered:

(∃Q′.α′�Q) = ∃Q′.α′ (9)

Relying on the bounded relativization, we define the modality ∃̂QC(·�QC) which
has the following semantics: ∃̂QC(α�QC) states the existence a C-outcome where α

holds, but where any further statement ∃̂QC′ .α′ is interpreted in the complete game
structure, likewise the modalities of alternating time logics.

7.1 The Alternating-Time μ-Calculus

The syntax of AMC formulas is Q | � | ¬ϕ | ϕ1 ∨ ϕ2 | Z | μZ.ϕ(Z) | 〈〈C〉〉 © ϕ with
Q ∈ Prop, C ⊆ IP, and where each Z ∈ Var occurs under an even number of negation
symbols ¬ in ϕ(Z). These formulas are interpreted over CGS’s supplied with a valua-
tion val : Var → 2S . Given ϕ ∈ AMC, its interpretation ϕS(val) ⊆ S is inductively
defined by:

QS(val)=λ(Q) (¬ϕ)S (val)=S \ ϕS(val)
�S(val)=S ZS(val)=val(Z)

(ϕ1 ∨ ϕ2)S(val)=ϕS
1 (val) ∪ ϕS

2 (val)
(μZ.ϕ(Z))S (val)=

⋂
{S′ ⊆ S | ϕ(Z)S(val[S′/Z]) ⊆ S′}

(〈〈C〉〉©ϕ)S (val) is the set of states s ∈ S such that there exists a C-move from s
contained in ϕS(val).

We define the mapping ·̂ : AMC → QDμ inductively by: formulas like Q, � and Z
are left unchanged, formulas like ¬ϕ, ϕ1 ∨ ϕ2, and μZ.ϕ(Z) are dealt inductively, and
we set ̂(〈〈C〉〉©ϕ) = ∃̂QC .(AX ϕ̂�QC)

where QC = {Qp | p ∈ C} is a set of fresh atomic propositions. Notice that the size of
ϕ̂ is linear in the size of ϕ.

Theorem 3. Given a CGS S, ϕ ∈ AMC, and a valuation val : Var → 2S, we have
ϕS(val) = [[ϕ̂]]valS .

A Generic Constructive Solution for Concurrent Games 265

7.2 The Logic GL

Formulas of GL are of three types (the two last types are inherited from CTL∗):

State formulas are of the form Q, �, ¬ϕ, or ϕ1 ∨ ϕ2 – where ϕ, ϕ1, and ϕ2 are state
formulas –, and ∃∃C.θ – where θ is a tree formula –.
Tree formulas are of the form ϕ – where ϕ is a state formula –, ¬θ, or θ1 ∨ θ2 – where
θ, θ1, and θ2 are path formulas –, and Eψ – where ψ is a path formula –.
Path Formulas are of the form θ – where θ is a tree formula –, ¬ψ, ψ1 ∨ ψ2, ©ψ, or
ψ1 Uψ2 – where ψ, ψ1, and ψ2 are path formulas –.

We simply sketch the semantics of GL, and we assume that the reader is familiar with
CTL∗ (see [AHK02] for details). Let ϕ be a state formula, and let (S, s) be a rooted
CGS. S, s |= ϕ, indicating that s satisfies ϕ in S, is defined by induction over ϕ. We
focus on formulas like ∃∃C.θ (the others are dealt inductively or follow the semantics
of CTL∗): S, s |= ∃∃C.θ whenever there exists a C-outcome OUT(QC , S, s) which
satisfies θ. Now, θ is a tree formula which in CTL∗, up to (non propositional) state
sub-formulas ∃∃C′.ϕ′ which must be interpreted back inside S. Let ϕS denote the set
{s ∈ S | S, s |= ϕ}.

To lighten the translation of GL into QDμ, we first establish a translation of GL
into a second order extension of CTL∗ (with decision modalities), written QDCTL∗; it
generalizes the proposal of [ES84] since quantifications may occur in sub-formulas. In
QDCTL∗, we denote a tree formula by θ (it may contain quantifications) and a path
formula by π, and we write Aπ for ¬E¬π, and Gθ for ¬(�U¬θ).

We adapt the definition of the bounded relativization (Section 7) to the syntax of
QDCTL∗. The relativization of a path formula is conditioned by the path quantifier
which binds the formula, as exemplified by the two expressions:

(EX · |Q) = EX [Q ∧ (· |Q)] (AX · |Q) = EX [Q ⇒ (· |Q)]

In order to distinguish the two cases, we define two relativizations of path formulas
(·�∀Q) and (·�∃Q), and set (θ�Q) = (θ�∀Q) for all tree formula θ. Let Δ ∈ {∃, ∀},
and θ, θ1, and θ2 be tree formulas:

– (Q�ΔQ) = Q, (��ΔQ) = �, and (∃Q′.θ�ΔQ) = ∃Q′.θ.
– (¬θ�ΔQ) = ¬(θ�ΔQ) and (θ1 ∨ θ2�ΔQ) = (θ1�ΔQ) ∨ (θ2�ΔQ).
– (E π�∀Q) = (E π�∃Q) = E (π�∃Q), and (Aπ�∀Q) = (Aπ�∃Q) = A (π�∀Q).
– (π1 Uπ2�∀Q) = [Q⇒(π1�∀Q)]U [Q⇒(π2�∀Q)].
– (π1 Uπ2�∃Q) = [Q ∧ (π1�∃Q)]U [Q ∧ (π2�∃Q)].

(we set similar definitions for path formulas). It can be shown that this definition is
consistent with the definition of Section 7. For example, consider the CTL∗ formula
EFQ1 ∧ EFQ2 which is equivalent to mu-calculus formula (μZ.EXZ ∨ Q1) ∧
(μZ.EXZ ∨Q2). Their respective bounded Q-relativization EF (Q ∧ Q1)∧EF (Q ∧
Q2) (computed according to above) and (μZ.EX (Q∧Z)∨Q1)∧(μZ.EX (Q∧Z)∨Q2)
(computed according to Section 7) remain equivalent.

We define ·̂ : GL → QDCTL∗ by induction: atomic propositions and � are left
unchanged; formulas like ¬ϕ, ϕ1 ∨ ϕ2 are dealt inductively, and we define

∃̂∃C.θ = ∃̂QC .(θ̂�QC)

266 S. Pinchinat

Clearly, the size of ϕ̂ is linear in the size of ϕ, for any ϕ ∈ GL. Also, since ∃̂QC .α ∈
QDμ is definable in QDCTL∗ provided α is, the co-domain of ·̂ is indeed QDCTL∗.

Theorem 4. For any state formula ϕ ∈ GL, ϕS = [[ϕ̂]]S .

By an easy adaptation of e.g. the procedure of [Dam94], statements in QDCTL∗ can be
effectively expressed in QDμ.

7.3 A Note on Automata Constructions for Alternating Time Logics

Although our translation ·̂ of AMC or GL into QDμ may generate an arbitrary large
number of nested symbols ∃̂, the corresponding automata nevertheless remain small,
if their construction is carefully conducted; applying Theorem 2 is actually avoidable.
Because formulas ϕ̂ are obtained by bounded relativizations of QDμ formulas, a quanti-
fied proposition never occurs in strict quantified sub-formulas. This observation enables
us to construct automata in a top-down manner, as opposed to the bottom-up procedure
of Theorem 2; due to lack of space, we refer the reader to [Pin07] for the proof details
of these constructions, which incidentally match the tight bounds from [AHK02].

Acknowledment

We are extremely grateful to Dietmar Berwanger and Lukasz Kaiser for helpful discus-
sions to improve the first version of the paper. Finally, we thank the reviewers for their
highly relevant comments.

References

[AdAdS+06] Adler, B.T., de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Raman, V., Roy,
P.: Ticc: A tool for interface compatibility and composition. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 59–62. Springer, Heidelberg (2006)

[AHK02] Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49(5), 672–713 (2002)

[AN01] Arnold, A., Niwinski, D.: Rudiments of mu-calculus. North-Holland, Amster-
dam (2001)

[Ber07] Berwanger, D.: Admissibility in infinite games. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, Springer, Heidelberg (2007)

[Cha05] Chatterjee, K.: Two-player nonzero-sum omega -regular games. In: Abadi, M.,
de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 413–427. Springer,
Heidelberg (2005)

[CHP07] Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. In: Caires, L., Vas-
concelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 59–73. Springer,
Heidelberg (2007)

[Dam94] Dam, M.: CTL� and ECTL� as fragments of the modal μ-calculus. Theoretical
Computer Science 126(1), 77–96 (1994)

[ES84] Emerson, E.A., Sistla, A.P.: Deciding full branching time logic. Information and
Control 61, 175–201 (1984)

A Generic Constructive Solution for Concurrent Games 267

[GvD06] Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of
the alternating-time temporal logic. Theoretical Computer Science 353(1), 93–
117 (2006)

[HKQ98] Henzinger, T.A., Kupferman, O., Qadeer, S.: From re-historic to ost-modern
symbolic model checking. In: Vardi, M.Y., Hu, A.J. (eds.) CAV 1998. LNCS,
vol. 1427, pp. 195–206. Springer, Heidelberg (1998)

[Jur98] Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Informa-
tion Processing Letters 68(3), 119–124 (1998)

[Koz83] Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Sci-
ence 27(3), 333–354 (1983)

[KP04] Kacprzak, M., Penczek, W.: Unbounded model checking for alternating-time
temporal logic. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AAMAS 2004,
pp. 646–653. IEEE Computer Society, Los Alamitos (2004)

[KVW00] Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. Journal of the ACM 47(2), 312–360 (2000)

[LMO07] Laroussinie, F., Markey, N., Oreiby, G.: On the expressiveness and complex-
ity of ATL. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 243–257.
Springer, Heidelberg (2007)

[MS95] Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeter-
ministic automata: New results and new proofs of the theorems of Rabin, Mc-
Naughton and Safra. Theoretical Computer Science 141(1–2), 69–107 (1995)

[Pin07] Pinchinat, S.: A generic constructive solution for concurrent games with expres-
sive constraints on strategies (full version) August 2007 IRISA Internal Publica-
tion 1861, INRIA Research Report (to appear)

[Rab69] Rabin, M.O.: Decidability of second-order theories and automata on infinite
trees. Trans. Amer. Math. Soc. 141, 1–35 (1969)

[RP03] Riedweg, S., Pinchinat, S.: Quantified mu-calculus for control synthesis. In:
Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 642–651. Springer,
Heidelberg (2003)

[SF06] Schewe, S., Finkbeiner, B.: Satisfiability and finite model property for the
alternating-time μ-calculus. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207,
Springer, Heidelberg (2006)

[vD03] van Drimmelen, G.: Satisfiability in alternating-time temporal logic. In: LICS,
pp. 208–217. IEEE Computer Society, Los Alamitos (2003)

[Wil01] Wilke. T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Soc. Math. Belg. 8(2) (May 2001)

Distributed Synthesis

for Alternating-Time Logics�

Sven Schewe and Bernd Finkbeiner

Universität des Saarlandes, 66123 Saarbrücken, Germany

Abstract. We generalize the distributed synthesis problem to the set-
ting of alternating-time temporal logics. Alternating-time logics spec-
ify the game-like interaction between processes in a distributed system,
which may cooperate on some objectives and compete on others. Our
synthesis algorithm works for hierarchical architectures (in any two pro-
cesses there is one that can see all inputs of the other process) and
specifications in the temporal logics ATL, ATL*, and the alternating-
time μ-calculus. Given an architecture and a specification, the algorithm
constructs a distributed system that is guaranteed to satisfy the speci-
fication. We show that the synthesis problem for non-hierarchical archi-
tectures is undecidable, even for CTL specifications. Our algorithm is
therefore a comprehensive solution for the entire range of specification
languages from CTL to the alternating-time μ-calculus.

1 Introduction

Program synthesis, which automatically transforms a specification into a correct
implementation, has been an active field of research since Church’s solvability
problem [1] in the early sixties. For a given sequential specification over two
sets I, O of boolean input and output variables, Church’s problem is to find an
implementation f : (2I)ω → (2O)ω such that (i, f(i)) satisfies the specification
for all possible input sequences i ∈ (2I)ω. Church’s problem has been intensively
studied in the setting of temporal logics [2,3,4,5,6].

More recently, Church’s problem has been extended to distributed sys-
tems [7,8,9], where the implementation consists of several independent processes
which must choose their actions based on generally incomplete information about
the system state. In game-theoretic terms, this type of synthesis solves a multi-
player game, where all players belong to the same team (when synthesizing closed
systems), or where the system processes belong to one team and the external
environment belongs to the other team (when synthesizing open systems).

However, in many distributed systems the processes do not consistently be-
long to one team, but rather form different coalitions for different objectives. In
security protocols [10,11,12], for example, process Alice may have to deal not
only with a hostile environment (which drops her messages from the network),
� This work was partly supported by the German Research Foundation (DFG) as

part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 268–283, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Distributed Synthesis for Alternating-Time Logics 269

...
...

...

(a) inconsistent strategy

o o o o o o o

o o o
iii

i
iii

i
i

i

...
...

...

(b) consistent strategy

o o o o o o o

o o o
iii

i
iii

i
i

i

...
...

(c) choice-set tree

{o} {o} {o} {o, o}

{o, o} {o}
iiii

ii

Fig. 1. Figure 1a shows an inconsistent nondeterministic strategy: on the leftmost
branch (with input i ·i) the process always reacts with output o, while on the rightmost
branch, with identical input i · i, it reacts with output o. Figure 1b shows a consistent
nondeterministic strategy. Figure 1c shows the choice-set representation of this strategy.

but also with the dishonest process Bob, who cooperates with Alice on some
objectives (like transferring money from Alice to Bob), but not on others (like
delivering merchandise from Bob to Alice). Such systems can be specified with
alternating-time logics, like the alternating-time μ-calculus (AMC) [13], which
contain modalities expressing that a process or a coalition of processes has a
strategy to accomplish a goal.

In this paper, we solve the synthesis problem for alternating-time logics. For
this purpose, we generalize Church’s notion of an implementation as a determin-
istic strategy or function f : (2I)ω → (2O)ω to nondeterministic strategies or
relations r ⊆ (2I)ω × (2O)ω , which allow for multiple possible outcomes due to
choices made by the process.

Church’s representation facilitates the development of automata-theoretic
synthesis algorithms, because deterministic strategies can be represented as trees
that branch according to the possible inputs. Each node carries a label that indi-
cates the output of the process after seeing the input defined by the path to the
node. Sets of such trees can be represented as tree automata, and can therefore
be manipulated by standard tree automata operations.

Along the same lines, nondeterministic strategies can be unterstood as trees
that branch not only according to inputs but also to the choices of the process.
However, in this representation, sets of implementations can no longer be repre-
sented by tree automata, because tree automata cannot ensure that the choices
available to the process are consistent with its observations: a strategy tree is
consistent if every pair of nodes that are reached on paths labeled by the same
input allows the same set of choices (for each input). For example, Figure 1a
shows an inconsistent strategy tree, while the strategy tree in Figure 1b is con-
sistent. Unfortunately, the consistent trees do not form a regular language, and
can therefore not in general be recognized by tree automata.

We solve this problem with a new encoding of nondeterministic strategies as
trees where each node is labeled by the set of possible choices. Figure 1c shows
the representation of the consistent strategy of Figure 1b as such a choice-set
tree. Choice-set trees always represent consistent strategies and every consistent
strategy can be represented as a choice-set tree (modulo bisimilarity). Using the

270 S. Schewe and B. Finkbeiner

p1 p2 p3 p4

(a) Pipeline

a b c

p1 p2 p3 p4

(b) Two-way chain

a b c

c d
b c d

p1 p2 p3 p4

(c) Two-way chain
with white-box process

a b c

c d
b c d

p1 p2

p3

p4

(d) 3-process two-way ring

a

b

c

d

c
db

b

c

d

p1 p2

p3 p4

p5p6

(e) 5-process two-way ring

a

b

c

d

e
f

c
d

e

f
b

b

c d

ef

Fig. 2. Distributed architectures

choice-set representation, we define an automata-theoretic synthesis algorithm
which solves the distributed synthesis problem for all hierarchical architectures.
Let the system architecture be given as a directed graph, where the nodes repre-
sent processes, including the environment as a special process. The edges of the
graph are labeled by system variables, which represent the communication of
choices: the source process chooses the value and the target process is informed
about the choice. The same variable may occur on multiple outgoing edges of a
single node, allowing for the broadcast of information. Among the set of system
processes, we distinguish two types: a process is black-box if its implementation
is unknown and needs to be discovered by the synthesis algorithm. A process
is white-box if the implementation is already known and fixed. Figure 2 shows
several example architectures, depicting the environment as a circle, black-box
processes as filled rectangles, and white-box processes as empty rectangles. We
call an architecture hierarchical if in each pair of black-box processes, there is
one process whose set of input variables is a subset of the set of input variables
of the other process.

We show that the distributed synthesis problem for alternating-time logics
is decidable if and only if the architecture is hierarchical. This is in contrast
to our recent result that the distributed synthesis problem for linear and
branching-time logics is decidable if and only if the informedness relation of
the processes is fork-free, i.e., the processes can be completely ordered with
respect to their relative informedness [9]. The class of architectures for which the
distributed synthesis problem is decidable for alternating-time logics thus forms a

Distributed Synthesis for Alternating-Time Logics 271

strict subset of the class of architectures for which the problem is decidable for
linear and branching-time logics.

For example, the pipeline architecture [7] of Figure 2a is fork-free but not
hierarchical: each of the three system processes p2, p3, and p4 has a unique input
variable. The two-way chain [8] of Figure 2b is also fork-free and not hierarchical
(process p2 has input {a, b, c} and process p3 has input {b, c, d}), but becomes
hierarchical if process p2 is made white-box (process p4 has input {c, d}, which
is contained in the input of p3), as shown in Figure 2c. Figure 2d and Figure 2e
show two ring architectures: The 3-process ring of Figure 2d is both fork-free
and hierarchical, while the 5-process ring of Figure 2e satisfies neither criterion.

Related Work. Synthesis algorithms for linear and branching-time logics ex-
ploit the finite-model property of these logics: a formula ϕ is satisfiable iff it
has a finite model [3,2]. Our construction builds on the recent result that the
finite-model property extends to alternating-time logics [14,15].

The first results for the synthesis of distributed systems from temporal for-
mulas are due to Pnueli and Rosner: in their landmark paper [7] they provide a
synthesis algorithm for LTL in pipeline architectures and demonstrate the exis-
tence of undecidable architectures. An automata-based synthesis algorithm for
pipeline and ring architectures and CTL* specifications is due to Kupferman
and Vardi [8]. We recently generalized the automata-based construction to all
architectures without information forks [9].

2 The Synthesis Problem

In this paper, we solve the distributed synthesis problem for the alternating-
time μ-calculus. Given an AMC formula ϕ and a system architecture, we decide
if there exists a distributed implementation that satisfies ϕ.

2.1 Concurrent Game Structures

In a distributed system where all processes cooperate, we can assume that the
behavior of every process is fixed a priori : in each state, the next transition
follows a deterministic strategy. If we allow for non-cooperating behavior, we
can no longer assume a deterministic choice. Instead, we fix the set of possible
decisions and the effect each decision has on the state of the system. At each
point in a computation, the processes choose a decision from the given set and
the system continues in the successor state determined by that choice. For two
sets of sets X and Y , let X⊕Y = {x∪y | x ∈ X, y ∈ Y } denote the set consisting
of the unions of their elements. A concurrent game structure (CGS) is a tuple
G = (A, Π, S, s0, l, {αa}a∈A, Δ, τ), where

– A = Nk is a finite set of k different processes,
– Π is a finite set of atomic propositions,
– S is a set of states, with a designated initial state s0 ∈ S,
– l : S → 2Π is a labeling function that decorates each state with a subset of

the atomic propositions, and

272 S. Schewe and B. Finkbeiner

– αa defines, for each process a ∈ A, a set of possible decisions.
– Δ : S →

⊕
a∈A(2αa � {∅}) maps each state s ∈ S to a vector of possible

decisions for the processes. For Δ : s �→
⊕

a∈A Da, ΔA′(s) denotes the
projection of the set

⊕
a∈A Da of possible common decisions to the possible

decisions
⊕

a∈A′ Da of a subset A′ ⊆ A of the processes.
– Let D =

⋃
s∈S Δ(s) denote the set of all vectors of possible decisions. Then

τ : S × D ⇀ S is a (partial) transition function that maps a state s and
a vector d of possible decisions for the processes to a successor state. The
partial function τ is defined on (s, d) ∈ S × D iff d ∈ Δ(s).

Architectures. In a distributed system, it is not generally the case that ev-
ery process is informed about the decisions of all other processes. The system
architecture fixes a set of output variables for each process such that every de-
cision corresponds to a certain value of the output variables. An output vari-
able can be an input variable to another process, indicating that the value
of the variable is communicated to that process. An architecture is a tuple
A = (A, B, Π, {Ia}a∈A, {Oa}a∈A) with

– a set A of processes, which is partitioned into a set B ⊆ A of black-box
processes, whose implementations we wish to synthesize, and a set W =
A�B of white-box processes, which have known and fixed implementations,

– a set Π of system variables or atomic propositions,
– a family {Ia}a∈A of sets of input variables, such that Ia ⊆ Π denotes the

variables visible to agent a, and
– a family {Oa}a∈A of non-empty sets of output variables that disintegrates

the set Π of system variables.

An architecture is called hierarchical if the informedness relation
	 = {(b, b′) ∈ B × B | Ib ⊆ Ib′} is linear.

Implementations. An implementation defines for each position of a com-
putation a subset of the output values as the set of possible decisions avail-
able to a process. The set of possible decisions must be consistent with the
knowledge of the process: an implementation of a process a ∈ A is a function
pa : (2Ia)∗ → 22Oa

� {∅} ≡ Oa, which assigns a choice-set of possible output
values to each history of input values. Occasionally, we consider implementa-
tions that have access to a superset I of their input variables. We call a function
pa : (2I)∗ → Oa with Ia ⊂ I a relaxed implementation of a with input I.

We identify process implementations with trees. As usual, an Υ -tree is a prefix
closed subset Y ⊆ Υ ∗ of finite words over a predefined set Υ of directions. For
given sets Σ and Υ , a Σ-labeled Υ -tree is a pair 〈Y, l〉, consisting of a tree Y ⊆ Υ ∗

and a labeling function l : Y → Σ that maps every node of Y to a letter of Σ.
If Υ and Σ are not important or clear from the context, 〈Y, l〉 is called a tree. If
Y �= ∅ is non-empty and, for each y ∈ Y , some successor y · υ (υ ∈ Υ) of y is in
Y , then Y and 〈Y, l〉 are called total. If Y = Υ ∗, Y and 〈Y, l〉 are called full.

A distributed implementation is a set P = {pa}a∈A of process implementa-
tions, one for each process a in the architecture. A distributed implementation P
defines the concurrent game structure GP = (A, Π, S, s0, l, {αa}a∈A, Δ, τ) where

Distributed Synthesis for Alternating-Time Logics 273

– S = (2Π)∗ is the full 2Π tree, with its root s0 = ε as initial state,
– each state is labeled with its direction l(s · σ) = σ (with l(s0) = ∅),
– αa = 2Oa ,
– Δ(s) =

⊕
a∈A pa(sa), where sa = I1I2I3 . . . In is the local view of process a

on s = V1V2V3 . . . Vn such that Im = Vm ∩ Ia for all m ≤ n,
– τ(s, d) = s · d.

2.2 Alternating-Time μ-Calculus

The alternating-time μ-calculus (AMC) extends the classical μ-calculus with
modal operators which express that an agent or a coalition of agents has a
strategy to accomplish a goal. AMC formulas are interpreted over concurrent
game structures.

AMC Syntax. The classical μ-calculus contains two modalities, expressing that
a property ϕ holds in some (♦ϕ) or in all (�ϕ) successor states. In AMC1, the
operators are generalized to �A′ϕ, expressing that a set A′ ⊆ A of agents can
enforce that ϕ holds in the successor state, and ♦A′ϕ, expressing that it cannot
be enforced against the agents A′ that ϕ is violated in the successor state.

Let P and B denote disjoint finite sets of atomic propositions and bound
variables, respectively. Then

– true and false are AMC formulas.
– p and ¬p are AMC formulas for all p ∈ P .
– x is an AMC formula for all x ∈ B.
– If ϕ and ψ are AMC formulas then ϕ ∧ ψ and ϕ ∨ ψ are AMC formulas.
– If ϕ is an AMC formula and A′ ⊆ A then �A′ϕ and ♦A′ϕ are AMC formulas.
– If x ∈ B and ϕ is an AMC formula where x occurs only free then μx.ϕ and

νx.ϕ are AMC formulas.

AMC Semantics. An AMC formula ϕ with atomic propositions Π is inter-
preted over a CGS G = (A, Π, S, s0, l, {αa}a∈A, Δ, τ). ‖ϕ‖G ⊆ S denotes the set
of nodes where ϕ holds. A CGS G = (A, Π, S, s0, l, {αa}a∈A, Δ, τ) is a model of
a specification ϕ with atomic propositions Π iff s0 ∈ ‖ϕ‖G , and a distributed
implementation P satisfies an AMC specification ϕ iff GP is a model of ϕ.

– Atomic propositions are interpreted as follows: ‖true‖G = S, ‖false‖G = ∅,
‖p‖G = {s ∈ S | p ∈ l(s)}, and ‖¬p‖G = {s ∈ S | p /∈ l(s)}.

– As usual, conjunction and disjunction are interpreted as intersection and
union, respectively: ‖ϕ ∧ ψ‖G = ‖ϕ‖G ∩ ‖ψ‖G and ‖ϕ ∨ ψ‖G = ‖ϕ‖G ∪ ‖ψ‖G .

1 The original definition of alternating-time logics under incomplete information by
Alur et al. [13] syntactically restricts the specifications such that the objectives of
each process only refer to the atomic propositions that are visible to the process. This
restriction ensures that the processes can state their respective strategies, while we
only require that they can cooperate to accomplish their goals. For the specifications
allowed in [13], the semantics coincide.

274 S. Schewe and B. Finkbeiner

– A node s ∈ S is in ‖�A′ϕ‖G if the agents A′ can make a joint decision
υ ∈ ΔA′(s) such that, for all counter decisions υ′ ∈ ΔA�A′(s), ϕ holds in
the successor state.
‖�A′ϕ‖G = {s ∈ S | ∃υ ∈ ΔA′(s). ∀υ′ ∈ ΔA�A′(s). τ(s, (υ, υ′)) ∈ ‖ϕ‖G}.

– A node s ∈ S is in ‖♦A′ϕ‖G if for all joint decisions υ ∈ ΔA�A′(s) of the
agents not in A′, the agents in A′ have a counter decision υ′ ∈ ΔA′(s) that
ensures that ϕ holds in the successor state.
‖♦A′ϕ‖G = {s ∈ S | ∀υ′ ∈ ΔA�A′(s).∃υ ∈ ΔA′(s).τ(s, (υ, υ′)) ∈ ‖ϕ‖G}.
The modal operators � and ♦ of the classical μ-calculus are equivalent to
the modal operators �∅ and ♦A, respectively.

– Let GSx
x = (A, Π ∪ {x}, S, s0, l

Sx
x , {αa}a∈A, Δ, τ) denote, for G =

(A, Π, S, s0, l, {αa}a∈A, Δ, τ) and x /∈ Π , the adapted CGS with the labeling
function lSx

x : S → 2Π∪{x}, which is defined by
• lSx

x (s) ∩ Π = l(s) and
• x ∈ lSx

x (s) ⇔ s ∈ Sx ⊆ S.
Since, for AMC formulas λx.ϕ, x occurs only positive in ϕ, ‖ϕ‖GSx

x
is mono-

tone in Sx and the following least and greatest fixed points are well-defined:
‖μx.ϕ‖G=

⋂
{Sx⊆S | ‖ϕ‖GSx

x
⊆Sx}, and ‖νx.ϕ‖G=

⋃
{Sx⊆S | ‖ϕ‖GSx

x
⊇Sx}.

2.3 Realizability and Synthesis

We call an AMC formula ϕ realizable in a given architecture A =
(A, B, Π, {Ia}a∈A, {Oa}a∈A) and for a given set PW = {pw}w∈W of imple-
mentations for the white-box processes if there exists a set of implementations
PB = {pb}b∈B for the black-box processes, such that the CGS defined by the
distributed implementation P = PW ∪ PB satisfies ϕ. A is called decidable if
realizability can be decided for all formulas ϕ and implementations PW of the
white-box processes.

In the following section, we present a synthesis algorithm, which determines
if a specification is realizable. If the specification is realizable, the synthesis
algorithm computes an implementation.

3 The Synthesis Algorithm

In this section, we present a synthesis algorithm for hierarchical architectures.
The construction is based on automata over infinite trees and game structures.

3.1 Preliminaries: Automata over Infinite Objects

Automata over Infinite Trees. An alternating parity tree automaton is a tuple
A = (Σ, Q, q0, δ, α), where Σ is a finite set of labels, Q is a finite set of states,
q0 ∈ Q is a designated initial state, δ is a transition function, and α : Q → C ⊂ N

is a coloring function. The transition function δ : Q×Σ → B
+(Q×Υ) maps a state

and an input letter to a positive boolean combination of states and directions.

Distributed Synthesis for Alternating-Time Logics 275

The automaton runs on full Σ-labeled Υ -trees. A run tree 〈R, r〉 on a given
full Σ-labeled Υ -tree 〈Υ ∗, l〉 is a Q × Υ ∗-labeled tree where the root is labeled
with (q0, ε) and where, for each node n with label (q, y) and with the set L =
{r(n · ρ)|n · ρ ∈ R} of labels of its successors, the following condition holds: the
set {(q′, υ) ∈ Q × Υ | (q′, y · υ) ∈ L} satisfies δ(q, l(y)).

An infinite path fulfills the parity condition, if the highest color of the states
appearing infinitely often on the path is even. A run tree is accepting if all infinite
paths fulfill the parity condition. A total Σ-labeled Υ -tree is accepted if it has
an accepting run tree.

The set of trees accepted by an alternating automaton A is called its language
L(A). An automaton is empty if its language is empty.

The acceptance of a tree can also be viewed as the outcome of a game, where
player accept chooses, for a pair (q, σ) ∈ Q × Σ, a set of atoms of δ(q, σ), satisfy-
ing δ(q, σ), and player reject chooses one of these atoms, which is executed. The
input tree is accepted iff player accept has a strategy enforcing a path that fulfills
the parity condition. One of the players has a memoryless winning strategy, i.e., a
strategy where the moves only depend on the state of the automaton, the position
in the tree and, for player reject, on the choice of player accept in the same move.

In a nondeterministic tree automaton, the image of δ consists only of such
formulae that, when rewritten in disjunctive normal form, contain exactly one
element of Q×{υ} for all υ ∈ Υ in every disjunct. For nondeterministic automata,
every node of a run tree corresponds to a node in the input tree. Emptiness can
therefore be checked with an emptiness game, where player accept also chooses
the letter of the input alphabet. A nondeterministic automaton is empty iff the
emptiness game is won by reject.

Automata over Concurrent Game Structures. Generalizing symmetric
automata [16], automata over concurrent game structures [15] contain universal
atoms (�, A′), which refer to all successor states for some decision of the agents
in A′, and existential atoms (♦, A′), which refer to some successor state for each
decision of the agents not in A′.

An automaton over concurrent games structures (ACG) is a tuple A =
(Σ, Q, q0, δ, α), where Σ, Q, q0, and α are defined as for alternating parity
automata in the previous paragraph. The transition function δ : Q × Σ →
B

+(Q × ({�, ♦} × 2A)) now maps a state and an input letter to a positive
boolean combination of two types of atoms: (q, �, A′) is a universal atom, and
(q, ♦, A′) is an existential atom.

A run tree 〈R, r〉 on a given CGS G = (A, Π, S, s0, l, {αa}a∈A, Δ, τ) is a Q×S-
labeled tree where the root is labeled with (q0, s0) and where, for a node n
with label (q, s) and a set L = {r(n · ρ) | n · ρ ∈ R} of labels of its successors,
the following property holds: there is a set A ⊆ Q × ({�, ♦} × 2A) of atoms
satisfying δ(q, l(s)) such that

– for all universal atoms (q′, �, A′) in A, there exists a decision υ ∈ ΔA′(s)
of the agents in A′ such that, for all counter decisions υ′ ∈ ΔA�A′(s),
(q′, τ(s, (υ, υ′))) ∈ L, and

276 S. Schewe and B. Finkbeiner

– for all existential atoms (q′, ♦, A′) in A and all decisions υ′ ∈ ΔA�A′(s) of
the agents not in A′, there exists a counter decision υ ∈ ΔA′(s) such that
(q′, τ(s, (υ, υ′))) ∈ L.

As before, a run tree is accepting iff all paths satisfy the parity condition, and a
CGS is accepted iff there exists an accepting run tree.

3.2 Realizability in 1-Black-Box Architectures

We first consider the realizability problem for architectures with a single black-
box process. Given such an architecture A = (A, {b}, Π, {Ia}a∈A, {Oa}a∈A), an
AMC specification ϕ and a set PW = {pw}w∈W of implementations for the
white-box processes, the following algorithm constructs a nondeterministic au-
tomaton E , which accepts an implementation pb of the black-box process b iff the
distributed implementation P = PW ∪ {pb} defines a concurrent game structure
that is a model of ϕ. Realizability can then be checked by solving the emptiness
game for E . For convenience, we use V =

⊕
a∈A Oa in the following constructions.

The synthesis algorithm uses the following automata operations:

– From specification to automata. First, a specification ϕ is turned into
an ACG A that accepts exactly the models of ϕ (Theorem 1).

– From models to implementations. We then transform A into an alter-
nating tree automaton B that accepts a relaxed implementation with input
Π iff it defines a model of ϕ (Lemmata 1 and 2).

– Adjusting for white-box processes. In a third step, we construct an al-
ternating automaton C that accepts an Ob-labeled 2Π -tree iff the V-labeled
2Π-tree obtained by adding the decisions of the white-box processes is ac-
cepted by B (Lemma 3).

– Incomplete information. We then transform C into an alternating au-
tomaton D that accepts an Ob-labeled 2Ib-tree iff its suitable widening is
accepted by C (Lemma 4). In the last step, we construct a nondeterministic
tree automaton E with L(E) = L(D) (Lemma 5).

From Specifications to Automata. AMC formulas can be transformed to
equivalent automata over concurrent game structures.

Theorem 1. [15] Given an alternating-time μ-calculus specification ϕ with n
subformulas, we can construct an ACG A with O(n2) states and O(n) colors,
which accepts exactly the models of ϕ.

From Models to Implementations. The transformation of A into an al-
ternating tree automaton that accepts a relaxed implementation iff it defines a
model of ϕ consists of two steps: We first restrict for each process a the set of
possible decisions to the fixed set Oa (Lemma 1) and then ensure that the label
of each node reflects the preceeding decisions of the processes (Lemma 2).

Lemma 1. For ACG A = (2Π , Q, q0, δ, α) and an architecture A =
(A, B, Π, {Ia}a∈A, {Oa}a∈A) we can construct an alternating automaton A′

Distributed Synthesis for Alternating-Time Logics 277

= (2Π × V , Q, q0, δ
′, α) that accepts a tree 〈(2Π)∗, l ×

⊕
a∈A pa〉 iff the concur-

rent game structure G = (A, Π, S, s0, l, {αa}a∈A, Δ, τ) with Δ =
⊕

a∈A pa and
τ : (s, d) �→ s · d is accepted by A.

Proof. Since the potential decisions of the processes are determined by the (re-
laxed) implementation, the universal and existential atoms can be resolved by
boolean combinations of concrete directions.

We obtain δ′(q, (V,
⊕

a∈A Oa)) by resolving the ∀∃ and ∃∀ semantics of uni-
versal and existential atoms in δ(q, V) in the following way:

– Each occurrence of (q′, (A′, �)) in δ(q, V) is replaced by∨⊕
a∈A′ O′

a∈
⊕

a∈A′ Oa

∧⊕
a∈A�A′ O′

a∈
⊕

a∈A�A′ Oa
(q′,

⋃
a∈A O′

a).
The outer disjunction refers to the fact that the agents in A′ first choose
a direction in accordance with the enabled directions in the current state.
The inner conjunction refers to the counter choice made by the agents in
A � A′.

– Likewise, each occurrence of (q′, (A′, ♦)) in δ(q, V) is replaced by∧⊕
a∈A�A′ O′

a∈
⊕

a∈A�A′ Oa

∨⊕
a∈A′ O′

a∈
⊕

a∈A′ Oa
(q′,

⋃
a∈A O′

a). ��

Let 〈Υ ∗, dir〉 denote the Υ -labled Υ -tree with dir (y · υ) = υ for all y ∈ Υ ∗ and
υ ∈ Υ , and dir (ε) = υ0 for some predefined υ0 ∈ Υ .

Lemma 2. [17] Given an alternating automaton A′ = (Υ × Σ, Q, q0, δ, α) over
Υ × Σ-labeled Υ -trees, we can construct an alternating automaton B = (Σ, Q ×
Υ, q′0, δ

′, α′) over Σ-labeled Υ -trees such that B accepts a tree 〈Υ ∗, l〉 iff A′ accepts
〈Υ ∗, dir × l〉. ��

Adjusting for White-box Processes. In this step, we eliminate the trees
that are inconsistent with the decisions of the white-box processes. These deci-
sions are represented by the

⊕
w∈W Ow fraction of the label. We assume that

the implementations {pw}w∈W of the white-box processes are represented as a
deterministic Moore machine with output alphabet

⊕
w∈W Ow. We construct

an automaton that simulates the behavior of this Moore machine, replacing the⊕
w∈W Ow fraction of the label with the output of the Moore machine. The state

space of this automaton is linear in the state space of the original automaton
and in the state space of the Moore machine, while the set of colors remains
unchanged.

Lemma 3. [18] Given an alternating automaton B = (Σ × Ξ, Q, q0, δ, α) over
Σ ×Ξ-labeled Υ -trees and a deterministic Moore machine O with set O of states
and initial state o0 ∈ O that produces a Ξ-labeled Υ -tree 〈Υ ∗, l〉, we can construct
an alternating automaton C = (Σ, Q × O, (q0, o0), δ′, α′) over Σ-labeled Υ -trees,
such that C accepts 〈Υ ∗, l′〉 iff B accepts 〈Υ ∗, l′′〉 with l′′ : y �→ (l′(y), l(y)).
If B is a nondeterministic automaton, so is C. ��

Incomplete Information. The output of the black-box process b may only
depend on the input Ib visible to b. For a set Ξ × Υ of directions and a node

278 S. Schewe and B. Finkbeiner

x ∈ (Ξ × Υ)∗, hideΥ (x) denotes the node in Ξ∗ obtained from x by replacing
(ξ, υ) by ξ in each letter of x. For a Σ-labeled Ξ-tree 〈Ξ∗, l〉 we define the Υ -
widening of 〈Ξ∗, l〉, denoted by widenΥ (〈Ξ∗, l〉), as the Σ-labeled Ξ × Υ -tree
〈(Ξ × Υ)∗, l′〉 with l′(x) = l(hideΥ (x)).

Lemma 4. [17] Given an alternating automaton C = (Σ, Q, q0, δ, α) over
Σ-labeled Ξ × Υ -trees, we can construct an alternating automaton D =
(Σ, Q, q0, δ

′, α) over Σ-labeled Ξ-trees, such that D accepts 〈Ξ∗, l〉 iff C accepts
widenΥ (〈Ξ∗, l〉). ��

The resulting alternating automaton can be transformed into an equivalent non-
deterministic automaton.

Lemma 5. [9,19] Given an alternating automaton D with n states and c colors,
we can construct an equivalent nondeterministic automaton E with nO(c·n) states
and O(c · n) colors. ��

3.3 Realizability in Hierarchical Architectures

For a hierarchical architecture A = (A, B, Π, {Ia}a∈A, {Oa}a∈A), the linear in-
formedness relation 	 = {(b, b′) ∈ B × B | Ib ⊆ Ib′} partitions the black-box
processes B into equivalence classes and defines an order on them. If 	 defines
n different equivalence classes, we say that A has n levels of informedness. We
define an ordering function o : Nn → 2B, which maps each natural number
i ∈ Nn to the set of i-th best informed black-box processes. For convenience, we
use Oi =

⊕
b∈o({i,...,n}) Ob and Ii = Ib for b ∈ o(i).

The Algorithm. We start by applying the transformations discussed in the
previous subsection (Theorem 1 and Lemmata 1 through 3) to construct a tree
automaton C0 that accepts a set of relaxed implementations P0 = {pb}b∈B (with
input Π) iff P = PW ∪ P0 satisfies ϕ.

Then, we stepwise eliminate the processes in decreasing order of informedness.
We successively construct:

– The alternating automaton Di that accepts a Oi-labeled 2Ii-tree iff its widen-
ing is accepted by Ci−1 (Lemma 4).

A set Pi = {pi
b | b ∈ Bi} of relaxed implementations with input Ii

for the processes in Bi = o({i, . . . , n}) is accepted by Di iff there is a set
P i = {pi

b | b ∈ Bi} of implementations for the processes in Bi = o(Ni−1),
such that PW ∪ Pi ∪ P i satisfies ϕ.

– The nondeterministic automaton Ei with L(Ei) = L(Di) (Lemma 5); and
– The nondeterministic automaton Ci that accepts an Oi+1-labeled Ii-tree iff

it can be extended to an Oi-labeled Ii-tree accepted by Ci (Lemma 6).

Narrowing and nondeterminization have been discussed in the previous section,
and language projection is a standard operation on nondeterministic automata.

Distributed Synthesis for Alternating-Time Logics 279

Lemma 6. Given a nondeterministic automaton E = (Σ × Ξ, Q, q0, δ, α) that
runs on Σ × Ξ-labeled Υ -trees, we can construct a nondeterministic automaton
C = (Σ, Q, q0, δ

′, α) that accepts a Σ-labeled Υ -tree 〈Υ ∗, lΣ〉 iff there is a Σ ×Ξ-
labeled Υ -tree 〈Υ ∗, lΣ × lΞ〉 accepted by E with 〈Υ ∗, l〉 = proj Σ(〈Υ ∗, lΞ〉).

Proof. C can be constructed by using δ′ to guess the correct tree: we set δ′ :
(q, σ) �→

∨
ξ∈Ξ δ(q, (σ, ξ)). ��

We check realizability by solving the emptiness game for En. This step can be
extended to the synthesis of implementations {pb}b∈B of the black-box processes.

3.4 Synthesis

The specification is realizable iff player accept has a winning strategy in the
emptiness game of En. From this strategy we obtain by projection a family of
implementations Pn = {pa | a ∈ o(n)} for the least-informed processes.

In increasing order of informedness, we obtain implementations for the other
processes: After computing implementations for the processes in o({i+1, . . . , n}),
they are represented as Moore machines. Using Lemma 3, we then construct
from Ei a nondeterministic automaton Fi that accepts those implementations
P̂i for the processes in o(i) for which there exists a set of implementations
P i−1 = {pa | a ∈ o(Ni−1)} such that P i−1 ∪ P̂i ∪ Pi+1 satisfies ϕ. Fi is non-
empty by construction. From the winning strategy for player accept we obtain
by projection a family of implementations P ′ = {pa | a ∈ o(i)} and set Pi to
P ′ ∪ Pi+1.

Theorem 2. The distributed synthesis problem for an architecture A with n
levels of informedness, a specification ϕ given as an AMC formula, and a family
PW = {pw}w∈W of implementations of the white-box processes can be solved in
time n-exponential in the number of subformulas of ϕ.

Proof. The specification ϕ is realizable for an architecture A and a given set
{pw}w∈W of white-box strategies iff En is not empty. The construction of En

involves one transformation of an alternating automaton to a nondeterministic
automaton for each i ∈ Nn, and therefore takes n-exponential time in the number
of subformulas of ϕ. The size of each nondeterministic automaton Fi is linear
in the size of Ei and the size of the Moore machines for the strategy of the less-
informed processes. Each step along the order of informedness therefore again
takes n-exponential time. ��

The upper bounds for ATL, CTL* and ATL* follow from linear translations to
alternation-free AMC [13], exponential translations to the μ-calculus [20], and
doubly exponential translations to AMC [21,13], respectively. μ-calculus and
CTL form a syntactical subset of AMC and ATL, respectively.

Corollary 1. The distributed synthesis problem for an architecture A with
n levels of informedness and a specification ϕ can be performed in time n-
exponential in the length of ϕ for specifications in CTL, ATL, or the classical

280 S. Schewe and B. Finkbeiner

μ-calculus, (n+1)-exponential in the length of ϕ for specifications in CTL*, and
(n + 2)-exponential in the length of ϕ for specifications in ATL*.

A matching nonelementary lower bound (for LTL formulas and pipelines2) is
provided in [7].

4 Completeness

In the previous section we showed that the linearity requirement on the informed-
ness relation is a sufficient condition for the decidability of an architecture. In
this section, we show that the condition is also necessary: we prove that, for
non-linear informedness relations, the synthesis problem is already undecidable
for the sublogic CTL.

The proof is a variant of the reduction of the synthesis problem for determin-
istic implementations to the halting problem in [7,9]. In the following we give a
brief sketch of this argument before discussing the extension to nondeterministic
strategies. In the simplest case, shown in Figure 3a, there are two processes p
and q, such that the input ip and the output op of process p is invisible to process
q, and, vice versa, iq and oq are invisible to p. For a given deterministic Turing
machine M , the conjunction ψM of the following conditions is realizable iff M
halts on the empty input tape:

– The environment can send a start signal through ip and iq.
– Initially, p and q output the terminal state of M .
– Upon receiving the first start signal, p (q) starts to output syntactically legal

configurations of M such that
• the first two configurations are correct, and
• whenever p and q output two configurations Cp and Cq, such that Cp (Cq)

is the successor configuration of Cq (Cp), then the next configurations
emitted by p and q have the same property.

– p and q always eventually output the terminal state of M .

For the more complicated case that the processes have access to each other’s
output (Figure 3b), ψM is extended to describe a two-phase protocol: On the
input variables, a start symbol may be transmitted in the first phase, and an
XOR key is sent in the second phase. The output variables are again used to emit
sequences of configurations of Turing machines. In the first phase, the output is
constantly set to true, and in the second phase it is encrypted by the last received
XOR key. In this way, the processes cannot infer the decrypted meaning of the
output from the other process, even if they have access to each other’s output [9].

2 For linear-time specifications we can restrict our attention w.l.o.g. to deterministic
implementations. In this case, the processes at the beginning of the pipeline have
(implicit) knowledge of the output produced by processes later in the pipeline [9].
Turning this knowledge into explicit input does not change the nonelementary com-
plexity.

Distributed Synthesis for Alternating-Time Logics 281

p q
ip iq

op oq

(a)

p q
ip iqop

oq

(b)

p q

ip iq

(c)

Fig. 3. Three undecidable situations: an architecture is undecidable if it contains two
processes with incomparable sets of inputs

We now extend this argument to prove the undecidability of the synthesis
problem for nondeterministic strategies and architectures with non-linear in-
formedness relation. In addition to the architectures considered above, we take
into account the situation where the two processes do not receive any input
from an external environment (Figure 3c). In this case, we specify that the
start-symbols and XOR keys are chosen completely nondeterministically during
the first and second phase. The configurations of the Turing machine are emitted
in a separate third phase, where the values of the output variables are specified
to be deterministic.

Theorem 3. The synthesis problem for CTL specifications is undecidable for
all architectures with two black-box processes b, p ∈ B with incomparable sets of
input variables (Ip � Iq � Ip).

Proof. The halting problem is reduced to the synthesis problem as follows.
W.l.o.g. we fix one input variable for p and q that is invisible to the other
process (ip ∈ Ip � Iq and iq ∈ Iq � Ip) and two output variables op ∈ Op and
oq ∈ Oq. We extend the CTL specification ψM (from Theorem 5.3 of [9]) to
describe the following three-phase communication pattern:

– A start symbol can be transmitted to p and q through ip and iq in a first
phase.

– A one bit XOR key is transmitted to p and q through ip and iq in a second
phase.

– p and q output an encoded bit of their output sequence in a third phase.

We extend the specification with the following guarantees:

– Exactly in every third round (and in the third round from the beginning)
the values of the variables op and oq are fixed deterministically.
In the remaining rounds they are set nondeterministically to true and false .

– The variables in {ip, iq} � {op, oq} are set deterministically to true in every
third round (and in the third round from the beginning).
In the remaining rounds they are set nondeterministically to true and false .

– To rule out the influence of the remaining variables, we require that they are
always set to true.

If the white-box strategies are chosen consistently with the specification, the
synthesis problem has a solution iff M halts on the empty input tape. ��

282 S. Schewe and B. Finkbeiner

5 Conclusions

This paper provides a comprehensive solution to the distributed synthesis prob-
lem for alternating-time temporal logics. The synthesis problem is decidable if
and only if the architecture is hierarchical. Our synthesis algorithm is uniformly
applicable to all decidable architectures and all specification logics in the range
from CTL to the alternating-time μ-calculus.

The central technical innovation is the treatment of nondeterministic im-
plementations. We encode nondeterministic implementations as (deterministic)
choice-set trees. This allows us to represent sets of strategies with tree automata
and to distribute the global specification over the distributed architecture using
standard automata transformations.

Nondeterministic implementations are also of interest if the specification is
expressed in a standard branching-time logic like CTL*. In this case, nondeter-
minism means abstraction: details regarding the interaction with the external
environment (including the user) can be omitted, since existential requirements
can be demonstrated without immediately establishing the protocol. The reso-
lution of the nondeterminism is moved to later design phases, where, in divide-
and-conquer fashion, only a single nondeterministic component needs to be
considered at a time.

References

1. Church, A.: Logic, arithmetic and automata. In: Proc. 1962 Intl. Congr. Math.,
Upsala, pp. 23–25 (1963)

2. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1981)

3. Wolper, P.: Synthesis of Communicating Processes from Temporal-Logic Specifi-
cations. PhD thesis, Stanford University (1982)

4. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable concurrent pro-
gram specifications. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini,
M. (eds.) Proc. 16th Int. Colloquium on Automata, Languages and Programming.
LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

5. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: ACM (ed.) Proc.
POPL, pp. 179–190. ACM Press, New York (1989)

6. Kupferman, O., Vardi, M.Y.: μ-calculus synthesis. In: Nielsen, M., Rovan, B. (eds.)
MFCS 2000. LNCS, vol. 1893, pp. 497–507. Springer, Heidelberg (2000)

7. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proc. FOCS, pp. 746–757. IEEE Computer Society Press, Los Alamitos (1990)

8. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Proc. LICS, pp.
389–398. IEEE Computer Society Press, Los Alamitos (2001)

9. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. LICS, pp. 321–
330. IEEE Computer Society Press, Los Alamitos (2005)

10. Kremer, S., Raskin, J.F.: A game-based verification of non-repudiation and fair
exchange protocols. Journal of Computer Security 11(3), 399–430 (2003)

11. Mahimkar, A., Shmatikov, V.: Game-based analysis of denial-of-service prevention
protocols. In: IEEE Computer Security Foundations Workshop, pp. 287–301 (2005)

Distributed Synthesis for Alternating-Time Logics 283

12. Kremer, S.: Formal Analysis of Optimistic Fair Exchange Protocols. PhD thesis,
Université Libre de Bruxelles, Brussels, Belgium (2003)

13. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49(5), 672–713 (2002)

14. van Drimmelen, G.: Satisfiability in alternating-time temporal logic. In: Proc.
LICS, pp. 208–217. IEEE Computer Society Press, Los Alamitos (2003)

15. Schewe, S., Finkbeiner, B.: The alternating-time μ-calculus and automata over
concurrent game structures. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp.
591–605. Springer, Heidelberg (2006)

16. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Soc. Math. Belg. 8(2) (2001)

17. Kupferman, O., Vardi, M.Y.: Church’s problem revisited. The bulletin of Symbolic
Logic 5(2), 245–263 (1999)

18. Finkbeiner, B., Schewe, S.: Semi-automatic distributed synthesis. In: Peled, D.A.,
Tsay, Y.K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 263–277. Springer, Heidelberg
(2005)

19. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: new results and new proofs of the theorems of Rabin. McNaughton
and Safra. Theor. Comput. Sci. 141(1-2), 69–107 (1995)

20. Bhat, G., Cleaveland, R.: Efficient model checking via the equational μ-calculus.
In: Proc. LICS, pp. 304–312. IEEE Computer Society Press, Los Alamitos (1996)

21. de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dy-
namic programs for omega-regular objectives. In: Proc. LICS, pp. 279–290. IEEE
Computer Society Press, Los Alamitos (2001)

Timeout and Calendar Based Finite State

Modeling and Verification of Real-Time Systems

Indranil Saha, Janardan Misra, and Suman Roy

HTS (Honeywell Technology Solutions) Research Lab,
151/1 Doraisanipalya, Bannerghatta Road, Bangalore 560 076, India

{indranil.saha,janardan.misra,suman.roy}@honeywell.com

Abstract. To overcome the complexity of verification of real-time sys-
tems with dense time dynamics, Dutertre and Sorea proposed timeout
and calender based transition systems to model real-time systems and
verify safety properties using k-induction. In this work, we propose a
canonical finitary reduction technique, which reduces the infinite state
space of timeout and calender based transition systems to a finite state
space. The technique is formalized in terms of clockless finite state time-
out and calendar based models represented as predicate transition dia-
grams. Using the proposed reduction, we can verify these systems using
finite state model checkers and thus can avoid the complexity of induction
based proof methodology. We present examples of Train-Gate Controller
and the TTA startup algorithm to demonstrate how such an approach
can be efficiently used for verifying safety, liveness, and timeliness prop-
erties using the finite state model checker Spin.

1 Introduction

Modeling and verification of timeout based real-time systems with continuous
dynamics is an important and hard problem that has evoked a lot of prime
research interest with industrial focus for many years in the recent past. The
problem of faithfully modeling and consequently formally verifying such time-
out based real-time systems is rather difficult because the state space of these
systems is essentially infinite owing to the diverging valuation required by the
timing and timeout variables. Because of this infiniteness of the state space none
of the known formal verification techniques can be applied to completely ver-
ify some of the interesting properties, e.g., liveness properties, timing deadlocks
etc. Although infinite state model checkers like SAL (Symbolic Analysis Labo-
ratory) [10] have been used with limited success for verifying safety properties.
The verification process employed by these tools demands significant additional
manual efforts in defining supporting lemmas and abstractions for scaling up the
model.

Spin [9] is a tool for automatically verifying finite state distributed systems.
There are broadly two attempts for extending Spin with time [4,5,16]. Real-
time extension of Spin (RT-Spin [16]) is one such work, which provides timed
automata (TA) [1] with real-valued clocks as a modeling framework, though is

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 284–299, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Timeout and Calendar Based Finite State Modeling and Verification 285

incompatible with the partial order reduction implementation of Spin. Another
is the work on DT-Spin [4,5], which allows one to quantify (discrete) time elapsed
between events, by specifying the time slice in which they occur. DT-Spin is com-
patible with the partial order reduction of Spin and has been used to verify indus-
trial protocols, e.g., AFDX Frame management protocol [13] and TTCAN [14].
Nonetheless, systems with asynchronous communication with bounded delays
between components cannot be modeled directly by using the mechanism of
asynchronous channels that Spin provides since there is no explicit provision to
capture message transmission delays. One possibility is to model each channel as
a separate process with delay as a state variable. In [4], the channels in the ex-
ample of PAR protocol have been implemented in the same way. But for systems
with relatively large number of components and dense connectivity among the
components, modeling channels in this way is difficult and state space explosion
becomes an unavoidable problem. UPPAAL [2], which can model TA, has the
same limitation when modeling asynchronous communications with bounded de-
lays - every channel has to be modeled as a separate TA capturing the message
transmission delays.

Dutertre and Sorea [6] proposed timeout based modeling of time triggered
systems with dense time dynamics, which have been traditionally used as a model
of execution in discrete event system simulations. They presented a modeling
approach, where expected delivery delays for all undelivered messages can be
stored in a global data structure called calendar [6,7]. Formally, a calendar is a
set of bounded size of the form C = {〈e1, t1〉, . . . , 〈er, tr〉}, where each event ei

is associated with the time point ti when it is scheduled to occur. The calendar
based model along with the timeouts for individual processes has been used to
model the TTA startup protocol [7]. Using the infinite bounded model checker of
SAL [10], they proved the safety property by k induction. Unfortunately, not all
of the safety properties are inductive in nature and therefore may require support
of auxiliary lemmas. In [7], proof of the safety property for the TTA startup
having just 2 nodes itself required 3 additional lemmas. A verification diagram
based abstraction method proposed in [12], was used to prove the invariant
property for models having upto 10 nodes. However, liveness properties still
remain beyond the scope of this approach. Pike [11] builds on the work of [6]
and proposes a new formalism called Synchronizing Timeout Automata (STA)
to reduce the induction depth k required for k-induction. STA is defined using
shared timeouts such that the resulting transition system does not involve a
clock.

Since in timeout and calendar based models, global time and timeouts always
increase, such models cannot be directly used for finite state verification. To
that end, we propose a finitary reduction technique which effectively reduces
the infinite state timeout and calendar based transition systems with discrete
dynamics to finite state transition systems. This technique enables us to model a
real-time system without considering a clock explicitly. We formalize the timeout
and calendar based models as predicate transition diagrams and their behavior in
terms of timeout and calendar based transition systems. Such a formal modeling

286 I. Saha, J. Misra, and S. Roy

framework provides background to effectively reason about the correctness of the
various possible hypotheses for efficiently verifying these models beyond limited
experiments. We demonstrate by examples, how such a modeling approach can
be efficiently used for verifying safety, liveness, and timeliness properties using
the finite state model checker Spin.

The remainder of the paper is organized as follows: section, In Section 2, we
describe the finitary reduction technique and formalize it in terms of clockless
modeling in Section 3. In Section 4 we discuss models of time and executablitiy
conditions for dense time model. Section 5 presents the experimental results
followed by concluding discussion in section 6.

2 Finitary Reduction

With reference to the timeout and calendar based modeling presented in [6,7],
notice that although these models can be used to efficiently capture dense time
semantics without using a continuously varying clock, it is difficult to use these
models for finite state model checking. The difficulty arises because of the fact
that the valuations for the global clock t and the timeout variables in T diverge
and thus are not bounded by a finite domain. Unlike TA one cannot reset the
global clock or the individual timeouts in these models because straightforward
attempts for such resetting results only in incorrect behaviors. One possible
solution may be to bound the value of the global clock and the timeouts by ap-
propriate large constants based upon the system specification. But such a upper
bound is quite difficult to estimate in case of practical industrial applications
and also with such an approach liveness properties cannot be verified.

We propose a finitary reduction technique, which is formalized in terms of
clockless modeling and semantics in the next section. This technique effectively
reduces the timeout and calendar based transition systems with discrete dynam-
ics into finite state systems, which, in turn, can be expressed and model checked
by finite state model checkers.

Informally, the technique can be described as follows: To implement time
progress transition, a special process is required to increase the global clock to
the minimum of timeouts, when each of the timeout values is strictly greater
than the current value of the clock. Other processes wait until their timeouts are
equal to the global clock, and when it is so, they take the discrete transitions and
updates their timeouts in future. We propose to model the special process which
is responsible for time progress transition in such a way that it does not explicitly
use the clock variable and prevents the timeout variables to grow infinitely.
We call this process time progress. When no discrete transition is possible in
the system due to the fact that the discrete transitions for all the systems are
scheduled in the future, time progress finds out the minimum of all the timeouts
in T and scales down all these timeouts by the minimum. In this way at least one
of the timeouts becomes zero. A process is allowed to take a discrete transition
when its timeout becomes zero. When it happens the process updates its timeout
and does other necessary jobs.

Timeout and Calendar Based Finite State Modeling and Verification 287

If the timeouts are always incremented by finite values then it is guaranteed
that the value of a timeout will always be in a finite domain. But there are cases
when a timeout increment cannot be bounded by finite value. For example, a
process may have to wait for an external signal before its next discrete transition.
In this case, next discrete transition of the process does not depend on its own
timeout, so the timeout of the process is set to the relatively large value, so that
it does not affect the next discrete transitions of other processes. In another
situation, it may be desired that the next discrete transition of a process may
happen at any time in the future, for example, the process may be in a sleeping
mode and can wake up at any future point of time. In that case all what we need is
to limit the value of the timeout without omitting any of the possible interleaving
of the process steps. To do that we limit the timeout value in [0, M + 1], where
M is the maximum of all the integer constants that are used to define the upper
limit of different timeouts for different processes in the system.

The suggested technique gives rise to a canonical representation of the clock
and timeout valuations in any state in the sense that for the timeout and calendar
based models considered here, there cannot be any further reduction possible
without actually loosing the relative timing delay information. This is because
this technique effectively reduces timeout valuations into a canonical partial
ordering structure and also simultaneously keeps the information on the actual
timeout increments intact. This approach can be seamlessly extended for the
calendar based models as well.

It should be added that the finitary reduction considered in this work is ef-
fective only under discrete dynamics since with dense modeling such a reduction
though reduces an infinite region (e.g., Rn) to a finitely bounded region (e.g.,
[0, 1]n), it would still contain infinitely many points resulting into infinite per-
missible paths.

Above discussion is formalized in terms of “clockless” modeling and associated
semantics in the next section.

3 Timeout and Calendar Based Clockless Models

In this section we provide a formalization of timeout and calendar based clockless
models as predicate transition diagrams and associated semantics in terms of
state transition systems.

3.1 Timeout Based Models: Clockless Modeling

Syntax. The Timeout based Model (ToM) ([6]) can be represented as

P : {θ}[P1||P2|| . . . ||Pn],

Where each process Pi is a sequential non-deterministic process having τi as its
local timeout and Xi as a set of local timing variables used for determining the

288 I. Saha, J. Misra, and S. Roy

relative delay between events. “||” is the parallel composition operator. Formula
θ restricts the initial values of variables in

U = T ∪ X ∪ Var ,

where the set of all timeouts is T = {τ1, τ2, . . . , τn}, and X =
⋃

i Xi. Var =
G ∪ L1 ∪ L2 ∪ . . . ∪ Ln is the set of other state variables assuming values from
finite domains. Variables in G are globally shared among all the processes while
Li contains variables local to process Pi. fVar is the set of computable functions
on Var .

Each process Pi is represented using a predicate transition diagram, which
is a finite directed graph with nodes Loci = {li0, l

i
1, . . . , l

i
mi

}, called locations.
The entry location is li0. There are two kinds of edges in the graph of a process
Pi: Timeout edges and Synchronous Communication edges. Edge definitions in-
volve an enabling condition or guard ρ, which is a boolean-valued function or a
predicate.

Timeout Edges: A timeout edge (lij , ρ ⇒ 〈τi := updatei, η, f〉, lik) in the graph of
the process Pi is represented as

lij
ρ ⇒〈τi:=updatei,η,f〉−→ lik,

where updatei specifies how timeout τi is to be updated on taking a transition
on the edge when guard ρ evaluates to True. η ⊆ Xi specifies the local timing
variables which capture the relative increment in the value of timeout τi while
taking transition on the edge. f ∈ fVar manipulates the state variables in G∪Li.

updatei is defined using the rule: updatei = k1 | k2 | ∞ | max(M), where
l − z ≺ k1 ≺′ m − z′, ≺, ≺′∈ {<, ≤} and k2 � l − z, �∈ {>, ≥}; z, z′ := w|0
and l, m ∈ N0 are non-negative integer constants. M is the set of all the integer
constants that are used to define the upper limit of different timeouts for different
processes in the system. max(M) returns the maximum of all the integers in M.

Constraints on k1, k2 specify how the new value of timeout τi should be deter-
mined based upon the value of some local timing variable w, which would have
captured the increments in the value of timeout τi in some earlier transitions.
Setting a timeout to ∞ is used to capture the requirement of indefinite waiting
for an external signal/event. Setting the timeout value using max(M) is used to
capture the situation where the next discrete transition of a process may happen
at any time in the future, for example, the process may be in a sleeping mode
and can wake up at any future point of time.

Synchronous Communication Edges: As rendezvous communication between a pair
of processes (Ps, Pr) is represented by having an edge pair (es, er) s.t. es ∈ Ps

and er ∈ Pr:

es : lsj
ρ ⇒〈ch!m,τs:=updates,η,g〉−→ lsk

er : lrj
True ⇒〈ch?m̄,τi:=updater ,η′,h〉−→ lrk

Timeout and Calendar Based Finite State Modeling and Verification 289

where ch is the channel name, m ∈ Ls is the message sent, and m̄ ∈ Lr receives
the message; g, h ∈ fVar .

Semantics. With a given ToM

P : {θ}[P1||P2|| . . . ||Pn]

we associate the following transition system SP = (V , Σ, Σ0, Γ), which will be
referred to as a timeout based clockless transition system :

1. V = U ∪{π1, . . . , πn}. Each control variable πi ranges over the set Loci∪{⊥}.
The value of πi indicates the location of the control for the process Pi and
⊥ denotes before the start of the process.

2. Σ is the set of states. Every state σ ∈ Σ is an interpretation of V such that,
for x ∈ V , σ(x) is its value in state σ.

3. Σ0 ⊆ Σ is the set of initial states such that for every σ0 ∈ Σ0, θ is true in
σ0 and σ0(πi) = ⊥ for each process Pi.

4. Γ = Γe ∪Γ+∪Γ0 ∪Γsyn comm is the set of transitions. Every transition ν ∈ Γ
is a binary relation on Σ defined further as follows:

Entry Transitions: Γe is the set of entry transitions and contains an entry tran-
sition νi

e for every process Pi. In particular ∀σ0 ∈ Σ0,

(σ0, σ
′) ∈ νi

e ⇔

⎧⎨
⎩

1. ∀x ∈ U : σ′(x) = σ0(x)
2. ∀τ ∈ T : σ′(τ) ≥ 0
3. σ0(πi) = ⊥ and σ′(πi) = li0

Time Progress Transition: The first kind of edges ν+ ∈ Γ+ are those where all
the timeouts are decremented by the minimum of the current timeout values. In
particular,

(σ, σ′) ∈ ν+ ⇔

⎧⎪⎪⎨
⎪⎪⎩

1. min{σ(T)} > 0
2. ∀τ ∈ T : σ′(τ) = σ(τ) − min{σ(T)}
3. ∀x ∈ X ∪ Var : σ′(x) = σ(x)
4. ∀i : σ′(πi) = σ(πi)

Timeout Increment Transition: If (lij , ρ ⇒ 〈updatei, η, f〉, lik) is an edge in the
predicate transition diagram for process Pi, then there is a corresponding edge
νi
0 ∈ Γ0:

(σ, σ′) ∈ νi
0 ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. ρ holds in σ
2. If σ(τi) = 0 then

σ′(τi) = updatei > 0 else σ′(τi) = σ(τi)
3. ∀x ∈ η : σ′(x) = σ′(τi) + σ(x) and

∀x ∈ X \ η : σ′(x) = σ(x)
4. ∀v ∈ G ∪ Li : σ′(v) = f(σ(v)) and

∀v ∈ Var \ (G ∪ Li) : σ′(v) = σ(v)
5. σ(πi) = lij and σ′(πi) = lik

290 I. Saha, J. Misra, and S. Roy

If updatei = k1 s.t. l − z ≺ k1 ≺ m − z′, updatei nondeterministically selects an
integer δ such that l − σ(z) ≺ δ ≺ m − σ(z′). If updatei = k2 s.t. k2 � l − z,
updatei nondeterministically selects an integer δ such that δ � l − σ(z), else if
updatei = ∞, it selects a relatively very large integer value and returns it to ac-
count for indefinite waiting. If updatei = max(M), updatei nondeterministically
selects any integer δ in [0, M + 1], where M is the maximum of all the integers
in M returned by max(M).

Synchronous Communication: For a pair of processes Ps, Pr having edges (es, er)
as defined before, νsr

syn comm ∈ Γsyn comm exists such that:

(σ, σ′) ∈ νsr
syn comm ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. ρ holds in σ
2. σ′(τs) = updates > σ(τs)

σ′(τr) = updater > σ(τr)
3. ∀x ∈ (η) : σ′(x) = σ′(τs) + σ(x), and

∀x ∈ (η′) : σ′(x) = σ′(τr) + σ(x) and
∀x ∈ X \ (η ∪ η′) : σ′(x) = σ(x)

4. σ′(m̄) = σ(m)
5. ∀v ∈ G ∪ Ls : σ′(v) = g(σ(v)), and

∀v ∈ G ∪ Lr : σ′(v) = h(σ(v)) and
∀v ∈ Var \ (G ∪ Lr ∪ Ls) : σ′(v) = σ(v)

6. σ(πs) = lsj , σ(πr) = lrj and
σ′(πs) = lsk, σ′(πr) = lrk

This semantic model defines the set of possible computations of the timeout
system P as a set of state sequences (possibly infinite) starting with some initial
state in Σ0 and following edges in Γ .

Example: Train-Gate Controller
We will illustrate the timeout based model as formalized above using the example
of the Train-Gate Controller (TGC) (adapted from [1].) The example of TGC
demonstrates synchronous communication between system components, since
the communications between Train and Controller, and between Controller and
Gate are assumed to be synchronous.

TGC is an automatic controller that controls the opening and closing of a
Gate at railroad crossing. The system is composed of three components: Train,
Gate, and Controller. Before entering the railroad crossing the Train sends the
signal approach. The Controller on receiving this signal is supposed to send the
signal lower to the Gate within 10 time units and the Gate has to be down
within another 10 time units. The Train can enter the crossing at any time
after 20 time units since it sent the approach signal. While exiting the crossing
the Train sends the exit signal to the Controller. The requirement is that after
sending the approach signal the Train must send the exit signal within 50 time
units. The Controller sends the raise signal to the Gate within 10 time units
after it receives the exit signal. The Gate is required to be up within another

Timeout and Calendar Based Finite State Modeling and Verification 291

10 time units. All the communications are assumed to be synchronous, that is,
there is no message transmission delay.

Figure 1 demonstrates the clockless timeout based model of TGC. The tim-
ing requirements are captured by suitably defining the update functions on
the edges. For example, consider the edge (t0, t1) for the train labeled with
(τt = 0) ⇒ 〈ch!approach , (τt := k|20 ≤ k ≤ 50), x〉. Here (τt = 0) indicates that
the system starts when train sends the approach signal over the shared channel
ch and nondeterministically sets its timeout τt to some value k between [20, 50]
indicating that after sending the approach signal it can enter the crossing any
time after 20 time units. Upper limit of 50 is used to indicate that the train
cannot enter later than 50 time units because it is required that train has to
indeed exit the crossing on or before 50 time units. Having spent k units of
time in state t1, train takes transition on the next timeout to state t2 and resets
its timeout to some value k′ between [0, 50 − k], which indicates that the train
must exit (and send exit signal to the controller) from state t2 no more than
before it has spent at most total of 50 units of time in states t1 and t2, that is,
0 ≤ k + k′ ≤ 50. Similarly on taking a transition on edge from g1 to g2 for the
gate, τg := ∞ denotes that the Gate would be waiting for the signal raise in
state g2 to be received on channel ch1 from the Controller.

3.2 Calendar Based Models: Clockless Modeling

Syntax. To capture (lossless) asynchronous communication with bounded mes-
sage transfer delay, timeout based model is extended with a calendar data struc-
ture. A calendar is a linear array of bounded size, where each cell contains the fol-
lowing information: {message, sender id, receiver id, expected delivery time}. Let
C to denote the calendar array, a globally shared object. We have

U = T ∪ X ∪ Var ∪ C
Sending a message is represented in the predicate transition diagram of process
Pi using the following edge:

lij
ρ⇒〈send(m,i,R,Λ),τi:=updatei,η,f〉−→ lik,

where send(..) specifies that a message m is to be sent to each of the processes
Pr, where r ∈ R ⊆ {1, 2, . . . n}, and with expected delivery time of λr ∈ Λ for
each Pr. On taking a transition on this edge an entry {m, i, r, λr} is added to C
for each r ∈ R.

Corresponding receiving of the message is represented in the predicate tran-
sition diagram of each of the processes Pr (∀ r ∈ R) using the following edge:

lrj
True⇒〈receive(m,i,r),τr :=updater ,η,g〉−→ lrk,

where receive(..) specifies that a message m sent by process Pi is to be re-
ceived by the process Pr. When ‘time’ elapsed in terms of timeout increments
approaches some expected delivery time λr as specified by the sender process in
the calendar C for entry e = {m, i, r, λr}, a transition is taken on this edge and
the entry e is deleted from C.

292 I. Saha, J. Misra, and S. Roy

 c2 c0 c1

 True

 ch?exit, τc := k | 0 ≤ k ≤ 10

 True

ch?approach, τc := k | 0 ≤ k ≤ 10

 (τc = 0) ch1!raise,τc := ∞ (τc = 0) ch1!lower,τc := ∞

 Controller

t1t0

t2t3

 (τt = 0)

(τt := k | 0 ≤ k ≤ 50-x), x

(τi = 0) τ1 := k | 0 ≤ k ≤ 50-x

 (τt = 0) ch!exit,

 τt := k | k > 0

 Train

 (τt = 0) ch!approach, (τt := k | 20 ≤ k ≤ 50), x

g1g0

g2g3

 True ch1?lower, τg := k | 0≤ k < 10

(τg = 0)

 τg := ∞

 True ch1?raise, τg := k | 10≤ k ≤ 20

(τg = 0)

 τg := ∞

Gate

Fig. 1. Clockless model for Train-Gate Controller

Semantics. Given a calendar C, we assume that the set of delays for all un-
delivered messages at any state σ can be extracted using function Δ : σ(C)
→ 2N .

Let Γ = Γe ∪ Γ+ ∪ Γ0 ∪ Γsyn comm ∪ Γasyn comm denote the set of transitions in
the calendar based clockless transition system. Γe (the set of Entry Transitions),
Γsyn comm (Synchronous Communications) and Γ0 (Timeout Increment Transi-
tions) are defined in same way as in the timeout based model. The definition for
the Time Progress Transition edges in Γ+ are modified using calendar object C
as follows:

Timeout and Calendar Based Finite State Modeling and Verification 293

Time Progress Transition: The edges ν+ are redefined so that all the timeout and
calendar delay entries are decremented by the minimum of all timeouts and the
message delays in calendar. Let α = min{σ(T) ∪ Δ(σ(C))},

(σ, σ′) ∈ ν+ ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. α > 0
2. ∀τ ∈ T : σ′(τ) = σ(τ) − α
3. ∀λ ∈ Δ(σ(C)) : σ′(λ) = σ(λ) − α
4. ∀z ∈ Var : σ′(z) = σ(z)
5. If ∃{m, i, r, λr} ∈ σ(C) such that α = λr

then ∀x ∈ Xr : σ′(x) = σ(x) + α and
∀x ∈ X \ Xr : σ′(x) = σ(x)

else ∀x ∈ X : σ′(x) = σ(x)
6. ∀i : σ′(πi) = σ(πi)

We additionally define new transitions Γasyn comm corresponding to send() and
receive() to capture asynchronous communication:

Send Transition: If (lij , ρ ⇒ 〈send(m, i, R, Λ), updatei, η, f〉, lik) is an edge in pro-
cess Pi, then we have a corresponding edge νi

send which adds |R| cells to the
calendar array C:

(σ, σ′) ∈ νi
send ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. ρ holds in σ
2. If min{σ(T)} = σ(τi) = 0

then σ′(τi) = updatei > 0
else σ′(τi) = σ(τi)

4. ∀x ∈ η : σ′(x) = σ′(τi) + σ(x) and
∀x ∈ X \ η : σ′(x) = σ(x)

5. ∀v ∈ G ∪ Li : σ′(v) = f(σ(v)) and
∀v ∈ Var \ (G ∪ Li) : σ′(v) = σ(v)

6. ∀r ∈ R : σ′(C) := σ(C) + {m, i, r, λr}
7. σ(πi) = lij and σ′(πi) = lik

Receive Transition: If (lrj , T rue ⇒ 〈receive(m, i, r), τr := updater, η, g〉, lrk) is an
edge in the graph of process Pr, then we have a corresponding edge νr

receive ∈
Γasyn comm, which deletes the entry {m, i, r, λr} from the calendar array C when
λr is 0:

(σ, σ′) ∈ νr
receive ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. ∃{m, i, r, λr} ∈ σ(C) s.t. λr = 0
2. σ′(τr) = updater > 0
3. ∀x ∈ η : σ′(x) = σ′(τr) + σ(x) and

∀x ∈ X \ η : σ′(x) = σ(x)
4. ∀v ∈ G ∪ Lr : σ′(v) = f(σ(v)) and

∀v ∈ Var \ (G ∪ Lr) : σ′(v) = σ(v)
5. σ′(C) := σ(C) − {m, i, r, λr}
6. σ(πr) = lrj and σ′(πr) = lrk

294 I. Saha, J. Misra, and S. Roy

Example: TTA Startup Algorithm
Above formalization of the calendar based model can be illustrated using the
TTA startup algorithm. TTA startup executes on a logical bus meant for safety-
critical applications in both automotive and aerospace industries. In a normal
operation, N computers or nodes share a TTA bus using a TDMA schedule.
The goal of the startup algorithm is to bring the system from the power-
up state, in which all processors are unsynchronized, to the normal operation
mode in which all processors are synchronized and follow the same TDMA
schedule. For detailed understanding of startup protocol, we refer the reader
to [15].

Figure 2 depicts the calendar based clockless predicate transition diagram of
the ith node. In the TTA startup algorithm, all the communications are asyn-
chronous and message delivery delays, which are finite and specified by the
designer, have to be taken into account for correct operation of the protocol.
τ listen
i and τcs

i represent how much time a node spends in the Listen state and
the Coldstart state respectively, if no external signal is received. τround denotes
the time a node spends in the Active state before sending its next massage.
R = {1, . . . , N} \ {i} represents that all the nodes except the sender i are re-
quired to receive the message in the network. λi’s denote the message delivery
time for the corresponding send events. In the TTA, message delivery times
for all the receivers are considered to be the same, and that is why we have
considered a single variable λi to represent that delay.

 Init Listen

 Active

 (τi = 0)

send(cs_frame, i, R, λ1),

 τi := τi
cs

 (τi = 0)

send(cs_frame, i, R, λ1),

 τi := τi
cs

 True

 receive(i_frame, j, i),

 τi := τ
round

True receive(cs_frame, j, i), τi := τ
round

True receive(i_frame, j, i),

 τi := τ
round

 (τi = 0)

send(i_frame, i, R,λ2),

 τi := τ
round

(τi = 0) τi := τi
listen

True receive(cs_frame, j, i),

 τi := τi
cs

ColdStart

Fig. 2. Clockless model for the ith processor in TTA Startup algorithm

Timeout and Calendar Based Finite State Modeling and Verification 295

4 Models for Time

It remains unspecified as to what the underlying model of time is (for clock,
timeouts, timing variables etc.) while defining the clockless semantics of the
timeout and calendar based models.

The choice of dense (R+) domain versus discrete (N0) domain critically af-
fects the size of the state space of the model. Indeed, with the dense time model,
we need to add the following nonzenoness condition to ensure effective progress
in the model: There must not be infinitely many time progress (or timeout in-
crement) transitions effectively within a finite interval. Formally,

Nonzenoness: Clockless Semantics:

¬[∃ σ0σ1 . . . s.t. ∃ δ ∈ R+ and Σ∞
i=0 min{σi(T)} ≤ δ]

Another point to note is that clockless semantics reduces infinite state transi-
tion system to a finite state transition system only in case of the choice of discrete
domain for the clock and timeout variables. This is because for the dense do-
main, clockless semantics can only limit unbounded set R+ to a bounded interval.
Nonetheless, verification of a real-time system in a dense domain is equivalent
to verifying the system in the discrete domain if the behavior of the system
captured by the model and the properties considered are digitizable [8]. It can
be shown that if we restrict the update function to weakly constrained intervals
(e.g., updatei = k1 | k2 | ∞ | max(M), where k1 ∈ [l, m] and k2 ≥ l) then sim-
ilar to the timed transition system of [8] (refer theorem 2), transition systems
for timeout and calendar based models also give rise to digitizable behaviors
(computations). Also for qualitative properties like the safety and liveness prop-
erties, their verification in the discrete domain is equivalent to verifying these
properties in dense domain (refer to proposition 1 in [8]).

5 Experimental Results

In this section, we report experimental results of verification of TGC and the
TTA startup algorithm using the model checker Spin. We carry out our exper-
iments on an Intel (R) P4 machine with 2.60 GHz speed and 1 GB RAM, and
running Windows 2000.

Train-Gate Controller
For the TGC example as discussed before, we consider safety and timeliness
properties for verification.

The safety property considered is: “When the Train crosses the line, the Gate
should be down”. The property can be expressed in LTL as follows:

�((t state = t2) → (g state = g2))

296 I. Saha, J. Misra, and S. Roy

where, t state denotes different states of the Train and it is t2 when the Train
comes into the crossing, g state denotes different states of Gate and is g2 when
the Gate is down.

The timeliness property considered states that the time between two states in
execution will by bounded by a particular value. We can find many timeliness
properties in this example. We mention one of them here: “The time between
the transmission of the approach signal by the Train and when the Gate is down
should not be more than 20 time units”. To verify this property we use two
auxiliary flags: flag1 and flag2 in our model. When the first event occurs flag1
is set to true. When the second event happens, flag2 is set to true and flag1 is
reset to false. Also, the proctype time progress is modeled as follows:

proctype time_progress () {
do
:: timeout ->
atomic {

Find out the minimum of all the timeout values
Subtract the minimum value from all the timeouts
if
:: flag1 == true ->

time_diff = time_diff + min_timeout;
:: flag2 == true ->

flag2 = false;
time_diff = 0;

:: else ->
fi;

}
od

}

A global variable time diff (initially set to 0) captures the time difference be-
tween the instants when these two flags are set. During every discrete transition
between the two discrete transitions of interest, minimum timeout value is added
to time diff . The property is specified as:

�(time diff ≤ 20)

Table 1 illustrates computational resources and time required to prove the safety
and the timeliness property for TGC. Both the properties have been proved by
exhaustive verification keeping the option of partial order reduction turned on.

TTA Startup Algorithm
For TTA startup algorithm, we consider the following safety property: “When-
ever two nodes are in their active states, the nodes agree on the slot time”. For
two nodes participating in the startup process, the corresponding LTL property
is given below:

�((p0 ∧ p1) ∧ (q0 ∧ q1) → ♦(r ∧ s))

Timeout and Calendar Based Finite State Modeling and Verification 297

Table 1. Computational resources and time required for verification of the Train-Gate
Controller

Properties States States Transitions Total actual Time
stored matched usage memory (in seconds)

(in MB)

Safety 246236 422596 668832 19.531 6

Timeliness 253500 415484 668984 21.988 6

Table 2. Computational resources and time required to verify safety and liveness
property by bitstate hashing technique in Spin for the TTA Startup

Properties No States States Transitions Total actual Time
of stored matched memory usage

nodes (in MB)

2 487 143 630 8.914 6 sec
3 6142 6490 12632 8.914 7 sec
4 123452 253057 376509 8.914 7 sec
5 3.31158e+06 1.03436e+07 1.36552e+07 8.914 47 sec

Safety 6 1.59195e+07 5.93261e+07 7.52457e+07 9.016 3 min
7 3.44457e+07 1.29191e+08 1.63636e+08 9.016 8 min
8 4.01727e+07 2.43036e+08 2.83209e+08 9.016 16 min
9 4.10158e+07 1.29835e+09 1.33936e+09 9.016 97 min

2 1445 1036 2481 8.914 7 sec
3 16582 21980 38562 8.914 7 sec
4 305893 677235 983128 8.914 8 sec
5 7.39657e+06 2.38099e+07 3.12064e+07 8.914 1 min

Liveness 6 2.73472e+07 1.09554e+08 1.36901e+08 8.914 8 min
7 3.83552e+07 2.0233e+08 2.40685e+08 9.016 14 min
8 4.07954e+07 3.47211e+08 3.88006e+08 9.016 24 min
9 4.10157e+07 2.30705e+09 2.34807e+09 9.016 163 min

where, p0 ≡ (pc[0] = state active), p1 ≡ (pc[1] = state active), q0 ≡ (time out[0]
> 0), q1 ≡ (time out[1] > 0), r ≡ (time out[0] = time out[1]), and s ≡ (slot[0] =
slot[1]). pc[i] denotes the current state of the ith node, time out[i] denotes the
timeout of the ith node, and slot[i] denotes the current time slot viewed by the
ith node. state active characterizes the synchronized state of a node.

The Safety property ensures that when the nodes are in the active state, then
they are indeed synchronized. But it does not answer the question whether all
the nodes will eventually be synchronized or not. To ensure that all the nodes
will eventually be synchronized, it has to be specified in the form of a liveness
property: “Eventually all the nodes will be in the active state and remain so”.
This liveness property for two nodes can be specified in LTL as follows:

♦�((pc[0] = state active) ∧ (pc[1] = state active))

298 I. Saha, J. Misra, and S. Roy

To verify the safety and the liveness property for the TTA startup we used
clockless modeling together with the options of exhaustive verification and bit-
state hashing technique offered by Spin, in both the cases keeping the the option
of partial order reduction turned on. By exhaustive verification technique, the
safety property can be verified for the TTA models with upto 5 nodes and live-
ness property can be verified upto 4 nodes. Bitstate hashing enables us to verify
both the properties for models with upto 9 nodes. For 10 nodes, the verification
does not terminate even in 4 hours.

Table 2 describes the computational resources and time required to prove
the safety and liveness properties for the TTA Startup protocol using bitstate
hashing technique.

Experiments with dense time modeling with clockless reduction using SAL
were also carried out on the TGC model presented in [6]. The safety property
has been verified at depth 14 as done in [6]. Nonetheless, applying the clockless
reduction in SAL models do not scale up the existing results further, primarily
because the clockless reduction even though reduces the unbounded set R+ to
a bounded interval, such an interval still will contain uncountably many points
giving rise to infinite many possible execution paths of finite lengths.

6 Conclusion

In this work we proposed a canonical finitary reduction technique formalized in
terms of clockless modeling and associated semantics, which renders timeout and
calendar based models of real-time systems amenable to finite state verification.
There exists an equivalence between the corresponding discrete and the dense
domain verifications for the qualitative safety and liveness properties considered
in this work on the weakly constrained models assuming discrete dynamics.
Verification of safety properties for the TTA start up protocol consisting of upto
9 nodes demonstrates the effectiveness of the reduction technique as compared
to the dense time modeling and verification results reported in literature [7],
which rely on additional efforts to find out appropriate supporting lemmas and
abstractions to scale up the model.

Dynamic rescheduling of timeouts to deal with interrupts can further extend
the current framework in order to model hardware-software co designs and pre-
emptive scheduling type of scenarios. Work can also be further extended by
considering shared timing variables, deadlines to capture urgencies [3], and by
considering the timeout update rules, which include the possibility of interactive
updation to deal with game theoretic properties.

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2), 183–236 (1994)

2. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on UPPAAL. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

Timeout and Calendar Based Finite State Modeling and Verification 299

3. Bornot, S., Sifakis, J., Tripakis, S.: Modeling Urgency in Timed Systems. In: de
Roever, W-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536,
pp. 103–129. Springer, Heidelberg (1998)

4. Bos̆nac̆ki, D., Dams, D.: Integrating Real Time into Spin: A Prototype Implemen-
tation. In: FORTE/PSTV. Proceedings of the Formal Description Techniques and
Protocol Specification, Testing and Verification, pp. 423–439, Kluwer, Dordrecht
(1998)

5. Bos̆nac̆ki, D., Dams, D.: Discrete-Time PROMELA and Spin. In: Ravn, A.P.,
Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 307–310. Springer, Hei-
delberg (1998)

6. Dutertre, B., Sorea, M.: Timed Systems in SAL. Technical Report, Computer Sci-
ence Laboratory, SRI Internationalhhe (2004)

7. Dutertre, B., Sorea, M.: Modeling and Verification of a Fault-Tolerant Real-Time
Startup Protocol using Calendar Automata. In: Lakhnech, Y., Yovine, S. (eds.)
FTRTFT 2004. LNCS, vol. 3253, pp. 199–214. Springer, Heidelberg (2004)

8. Henzingerz, T.A., Manna, Z., Pnueli, A.: What Good Are Digital Clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

9. Holzmann, G.J.: The SPIN Model Checker, Primer and Reference Manual.
Addison-Wesley, Reading (2003)

10. Moura, L.M., Owre, S., Rue, H., Rushby, J.M., Shankar, N., Sorea, M., Tiwari, A.:
Sal 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004)

11. Pike, L.: Real-Time System Verification by k-Induction. Technical re-
port, NASA Langley Research Center. TM-2005 -213751(2005), Available at
http://www.cs.indiana.edu/∼lepike/pub pages/reint.html

12. Rushby, J.: Verification Diagrams Revisited: Disjunctive Invariants for Easy Ver-
ification. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp.
508–520. Springer, Heidelberg (2000)

13. Saha, I., Roy, S.: A Finite State Modeling of AFDX Frame Management using
Spin. In: Brim, L., Haverkort, B., Leucker, M., van de Pol, J. (eds.) FMICS 2006.
LNCS, vol. 4346, pp. 227–233. Springer, Heidelberg (2007)

14. Saha, I., Roy, S.: A Finite State Analysis of Time-triggered CAN (TTCAN) Pro-
tocol using Spin. In: ICCTA 2007. Proceedings of the International Conference on
Computing: Theory and Application, pp. 77–81. IEEE Computer Society Press,
Los Alamitos (2007)

15. Steiner, W., Paulitsch, M.: The Transition from Asynchronous to Synchronous Sys-
tem Operation: An Approach for Distributed Fault- Tolerant System. In: ICDCS
2002. Proceedings of the 22nd International Conference on Distributed Computing
Systems, pp. 329–336. IEEE Computer Society Press, Los Alamitos (2002)

16. Tripakis, S., Courcoubetis, C.: Extending PROMELA and Spin for Real Time.
In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 329–348.
Springer, Heidelberg (1996)

http://www.cs.indiana.edu/~lepike/pub_pages/reint.html

Efficient Approximate Verification of Promela

Models Via Symmetry Markers

Dragan Bošnački1, Alastair F. Donaldson2, Michael Leuschel3,
and Thierry Massart4

1 Department of Biomedical Engineering, Eindhoven University of Technology
dragan@win.tue.nl

2 Codeplay Software Ltd., Edinburgh
ally@codeplay.com

3 Institut für Informatik, Universität Düsseldorf
leuschel@cs.uni-duesseldorf.de

4 Département d’informatique, Université Libre de Bruxelles
tmassart@ulb.ac.be

Abstract. We present a new verification technique for Promela which
exploits state-space symmetries induced by scalarset values used in a
model. The technique involves efficiently computing a marker for each
state encountered during search. We propose a complete verification
method which only partially exploits symmetry, and an approximate
verification method which fully exploits symmetry. We describe how
symmetry markers can be efficiently computed and integrated into the
SPIN tool, and provide an empirical evaluation of our technique using
the TopSPIN symmetry reduction package, which shows very good perfor-
mance results and a high degree of precision for the approximate method
(i.e. very few non-symmetric states receive the same marker). We also
identify a class of models for which the approximate technique is precise.

1 Introduction

The design of concurrent systems is a non-trivial task where generally a lot of
time is spent on simulation to track design errors. Model checking methods and
tools [Hol03, McM93, CGP99] can be used to help in this effort by automatically
analysing finite-state models of a system. In practice, exhaustive exploration of
a state-space is impractical due to the infamous state explosion problem, which
has motivated the development of more efficient exploration techniques. In par-
ticular, the model to be checked often consists of a large number of states which
are indistinguishable up to rearrangement of process identifiers. As a result, the
model is partitioned into classes of states where each member of a given class be-
haves like every other member of the class (with respect to a logical property that
does not distinguish between individual processes). Symmetry reduction tech-
niques [CGP99, ID96, CEFJ96, ES96] allow the restriction of model checking
algorithms to a quotient state-space consisting of one representative state from
each symmetric equivalence class. One successful symmetry reduction technique

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 300–315, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Approximate Verification of Promela Models 301

[ID96] relies on a special data type, called scalarset, used in the specification
to identify the presence of symmetry. Symmetry reduction using scalarsets has
been initially implemented in the Murφ verifier [ID96], and in previous work we
have adapted the same idea for Promela in the SymmSPIN tool [BDH02]. We
have also proposed in [DM05] a method to automatically detect, before search,
structural symmetries in Promela specifications, and such symmetries can be
exploited by the TopSPIN tool [DM06]. Both SymmSPIN and TopSPIN perform
symmetry reduction on-the-fly: each time a global state s is reached, its rep-
resentative state rep(s) is computed and used instead of s. If rep(t) = rep(s)
for every state t in the same class as s then symmetry reduction is said to be
full (i.e. it is memory-optimal). However, the computation of a unique repre-
sentative for an equivalence class (known as the constructive orbit problem) is
NP-hard [CEJS98]; and for some practical examples full symmetry reduction
strategies can be too time consuming. Therefore, partial symmetry reduction
strategies have been defined, which take less time to compute a representative
element. The price to pay is that multiple representatives may be computed
for a given equivalence class and therefore the reduction factor in the number
of global states explored can be smaller than with a full reduction method.

Number of
replicated processes

Size of
Statespace

Spin
(no symmetry reduction)

Full
Symmetry Reduction

Approximate Verification
All Symmetries detected

Partial Symmetry Reduction
Full Verification

Some Symmetries detected

Fig. 1. Illustrating partial symmetry reduction and ap-
proximate verification

Fig. 1 illustrates the
possible size of the ex-
plored state-space for
the various verification
methods, as a function
of the number of repli-
cated processes in the
system. The solid line
represents exhaustive
state-space exploration
without symmetry re-
duction, the dashed line
a complete verification of
the quotient state-space
modulo full symmetry
reduction. Any complete

verification method using partial symmetry reduction would yield a function in
the area between these lines. Recently, we have proposed the symmetry marker
method [LM07] in the framework of the B specification language [Abr96].
This reduction technique is inspired by the success of SPIN’s bitstate hashing
technique [Hol88], which regards two states as equivalent if they hash to the
same value. Bitstate hashing reduces the per-state storage requirement to a
single bit, at the expense of excluding a small percentage of states due to
hash collisions. In a similar vein, we define a marker function on global states,
invariant under symmetry, which can be computed efficiently. We avoid the
underlying complexity induced by the constructive orbit problem by assuming
that two states with the same marker value are symmetric. As this assumption

302 D. Bošnački et al.

can be wrong in general, we only have an approximate verification technique
(in the sense that collisions may occur where non-symmetric states obtain the
same marker value); but a very fast one. If we refer to Fig. 1, our approximate
verification method would give a function on the dashed line when it provides
complete verification, or below this line in case of collisions when it only
provides approximate verification.

In this paper, inspired by our previous works on symmetry, we propose two
new symmetry reduction methods for Promela: a complete verification method
which may compute more than one representative for each symmetric equivalence
class, and an approximate verification method which guarantees unique represen-
tatives, but results in a small number of collisions between equivalence classes.
We detail a TopSPIN-based implementation of these methods, and provide en-
couraging experimental results. Note that although we present our methods in
the context of Promela/SPIN, they are clearly transferrable to other explicit-state
model checking frameworks.

In the remainder of the paper, we briefly recall in Sect. 2 some relevant fea-
tures of SPIN and Promela, the notion of a scalarset and the main methods
employed by the SymmSPIN and TopSPIN tools. We outline in Sect. 3 the initial
symmetry marker method presented in [LM07], then describe in Sect. 4 a first
näıve method for Promela and SPIN, which is directly inspired by our symmetry
marker method. In Sect. 5 we describe our “complete” new methods based on
markers for Promela and SPIN. In Sect. 5 we also provide theoretical results for
particular classes of systems where our method is precise, and in Sect. 6 some
results which empirically validate both methods compared to methods with-
out symmetry reduction and existing methods implemented in SymmSPIN and
TopSPIN.

2 Scalarsets in Promela

The SPIN model checker [Hol03] allows verification of concurrent systems speci-
fied in Promela — a C like language extended with Dijkstra’s guarded commands
and communication primitives from Hoare’s CSP. In Promela, system compo-
nents are specified as processes that can interact either by message passing, via
buffered or rendez-vous channels, or memory sharing, via global variables. Con-
currency is asynchronous and modelled by interleaving. SPIN can verify various
safety and liveness properties of a Promela model including any LTL formula. To
cope with the problem of state-space explosion, standard SPIN employs several
reduction techniques, such as partial-order reduction, state-vector compression,
and bitstate hashing. In SPIN each state has an explicit representation called the
state vector. The state vector has the form (G, R1, . . . , Rn), where G comprises
the values of global variables, and R1, . . . , Rn are records corresponding to the
processes in the system. Each process record contains the parameters, local vari-
ables and the program counter for the particular process. The marker algorithms
that we present in the sequel are independent of this representation, but in the
presentation we will refer to the process vector structure and in particular its
form for symmetric models.

Efficient Approximate Verification of Promela Models 303

SymmSPIN [BDH02] is an extension of SPIN with symmetry reduction based
on the scalarset data type [ID96], by which the user can point out (full) sym-
metries to the verification tool. The values of scalarsets are finite in number,
unordered, and allow only a restricted number of operations which do not break
symmetry. Intuitively, in the context of SPIN, the scalarsets are process identifiers
(pids) of a family of symmetric processes. Such a family is obtained by instanti-
ating a parameterized process type. One restriction is that applying arithmetic
operations to pids is forbidden. Also, since formally there is no ordering between
the scalarset values, the pids can be tested only for equality. We consider models
in Promela that are collections of parallel processes of the form B‖P1‖ . . . ‖Pn.
Processes Pi are instances of a parameterized process template and differ only
in their pid. Process B is a base process and it represents the “non-symmetric”
part of the model (though B must behave symmetrically with respect to the
Pi). Further, we assume that each state is represented explicitly by a state vec-
tor as described above. To illustrate the main ideas behind the strategies for
finding representatives in SymmSPIN, consider the following example adapted
from [BDH02]. Let us assume that we want to choose as a (unique) represen-
tative of each symmetry class (orbit) the state from that class represented by
the lexicographically minimal state vector. Further, suppose that there is an
array M (we call it the main array) at the very beginning (of the global part
G) of the state vector of our model. Let M be indexed by pids (scalarsets, here
1 to 5), but the elements of M are not of scalarset type. The sorted strategy
computes a representative of a state s by sorting M and applying the pid per-
mutation p corresponding to this sorting operation to the rest of the state vector.
This involves sorting the process records, and rearranging the values of scalarset
variables. Fig. 2 shows the state vector before and after sorting an example
main array M with permutation p = {1 �→ 1, 2 �→ 5, 3 �→ 3, 4 �→ 2, 5 �→ 4}.

2 8 7 2 7

2 2 7 7 8

rest of the state vector

"p(rest of the state vector)"

sorting M
induces a
pid permu-
tation p

M [5]M [4]M [3]M [2]M [1]

Fig. 2. A state vector before and after sorting the main
array M

Note that when M con-
tains several instances
of the same value (here
2 and 7), several or-
bit representatives can be
computed for the same
class of states. Hence,
the sorted strategy only
performs partial symme-
try reduction. Suppose

we applied all pid permutations to the upper state vector in Fig. 2. Then the
lexicographical minimum among the resulting states, smin say, would start with
the same values as the lower state vector, namely 2, 2, 7, 7, 8. However, the rest
of smin need not coincide with the rest of the lower state vector. The reason is
that there are other pid permutations that yield the same ordering of the array
M , for example p′ = {1 �→ 2, 2 �→ 5, 3 �→ 4, 4 �→ 1, 5 �→ 3}, but may give smaller
results than p when applied to the rest of the state vector. The segmented strat-
egy applies all pid permutations which sort M (in this example there are four

304 D. Bošnački et al.

of them) to the whole state vector, and selects the smallest among the result-
ing states, which is then guaranteed to be smin. The price to pay for this full
reduction strategy is factorial complexity in the worst case: if all values of M
are identical in a state then all n! scalarset permutations must be considered in
order to compute a representative for the state. However, for many states very
few permutations need to be considered, so this approach is more efficient than
the basic approach of considering every pid permutation at each state. Note
that a main array is always available and can be selected automatically by the
model checker – if no suitable array is explicitly declared in the model then the
array of process program counters can be used, by default.

The TopSPIN symmetry reduction package [DM06] builds on the ideas intro-
duced with SymmSPIN, supporting more general types of symmetry than just
full symmetry, and providing support for automatic symmetry detection based
on techniques presented in [DM05]. We use TopSPIN for implementation of our
techniques, so it is important to briefly explain the relationship between TopSPIN

and SymmSPIN. TopSPIN includes symmetry reduction strategies based on the
SymmSPIN sorted and segmented strategies. The TopSPIN sorted strategy is a
generalisation of the SymmSPIN sorted strategy: instead of sorting with respect
to one particular main array, sorting is performed in a more general fashion by re-
peatedly applying swap permutations to the entire target state. This generalised
sorted strategy sometimes performs better than the original SymmSPIN sorted
strategy, but both approaches share the problem that symmetry reduction may
result in storage of multiple orbit representatives. The TopSPIN segmented strat-
egy generalises the SymmSPIN segmented approach, and is described in detail
in [DM07]. For the special case of full symmetry, the TopSPIN and SymmSPIN

segmented strategies are analogous.

3 Symmetry Markers

Our symmetry marker technique, initially proposed in [LM07] for the B language,
is partially inspired by Holzmann’s successful bitstate hashing technique [Hol88].
In our case, the hash value is replaced by a marker. This marker has a more
complicated structure, but integrates the notion of symmetry: two symmetric
states will have the same marker and there is a “small chance” that two non-
symmetric states have the same marker. Our adapted model checking algorithm
stores those markers rather than the states and checks a new state only if its
marker has not yet been seen before. The advantages over classical symmetry
reduction are two-fold. First, a precise symmetry marker can be computed very
efficiently (depending on the system, basically linear or quadratic in the size of
the state for which the marker is computed), while classical symmetry reduction
has an inherent factorial complexity (in terms of the number of the symmetric
data values). The second advantage is the size of the state-space explored with
our marker method, which is equal or less than the size of the state space explored
with a full symmetry reduction method (smaller if collisions occur). The price
we pay is that – just as with the bitstate hashing technique – we no longer
have a complete verification method: two non-symmetric states s1, s2 can have

Efficient Approximate Verification of Promela Models 305

the same marker meaning that the second state s2 would not be checked, even
though it could lead to an error while no error is reachable from s1.

In the B language [Abr96], the deferred sets construct gives rise to symmetric
data values similar to scalarsets [LM07]. The value of a global state s can be
given as a vector of values of its global variables and constants, which are clas-
sified by the following types: simple non-symmetric (e.g. booleans, and integer
subranges), simple scalarset (i.e. a deferred set), pair, or finite (multi)sets. In
this setting, a set of pairs defines a relation and an array is defined as a total
function (i.e. a particular type of relation) between its indexes and the value
of its components. We adopt a standard structured view of a state as a rooted
acyclic graph whose nodes are labelled by their type and whose leaves are val-
ues. The root has n ordered children corresponding to n variables or constants.
Simple values are leaves of the graph, pair values have two ordered children and
(multi)sets have unordered children, one for each element in the (multi)set. The
idea of our marking function is to transform a state s into a marker by replac-
ing the scalarset values by so-called vertex invariants. In graph theory, a vertex
invariant inv is a function which labels the vertices of an arbitrary graph with
values so that symmetrical vertices are assigned the same label. Examples of
simple vertex invariants include the in-degree and the out-degree for the spec-
ified vertex. Our technique uses a more involved vertex invariant for scalarset
elements. Informally, a symmetry marker m(s) for a given state s is computed as
follows: (1) For every scalarset element d used in s, compute structural informa-
tion about its occurrence in s, invariant under symmetry. This is computed as
the multiset of paths that lead to an occurrence of d in s. (2) Replace all scalarset
elements by the structural information computed above and compute a marker
with an algorithm similar to the computation of the canonical form in the tree
isomorphism problem [Val02]. The resulting complexity is quadratic in the size
of the state in the worst case. We have proved in [LM07] that our definition is
indeed invariant under symmetry, i.e. that if s1 and s2 are symmetric states in a
system M then m(s1) = m(s2); we have also identified classes of systems where
the marker method is precise, i.e. it provides a full symmetry reduction method.
Note that the method is quite general and abstract and could be instantiated in
other contexts than those of SPIN/Promela and B.

4 A First Näıve Approach

As a stepping stone towards our approximate techniques, we first describe a
näıve strategy that we call flattened. In this approach we “flatten” the state
vector by assigning to each scalarset variable the same value. (The choice of the
concrete value is irrelevant – it can be from the range of the scalarset or some
other “neutral” value.) Basically, this amounts to distinguishing processes by the
values of their non-scalarset local variables only. Then we apply to the flattened
state vector TopSPIN’s sorted strategy, described in Sect. 2. Obviously, because
of the flattening, states that are not symmetric may have the same representa-
tive. As a result a full state-space coverage is not guaranteed. We illustrate this
basic technique using Peterson’s n-process mutual exclusion protocol [Pet81],

306 D. Bošnački et al.

byte flag[6] = 0; // an array from PID to byte (flag[0] is not used)
pid turn[5] = 0; // an array from [0..4] to PID
byte inCR = 0 // number of processes in critical region
proctype user () {

byte k; bool ok;
do :: k = 1;

do :: k < 5 -> flag[_pid] = k; turn[k] = _pid;
again: atomic {

ok = ((_pid==1)||(_pid!=1 && flag[1]<k))&&
((_pid==2)||(_pid!=2 && flag[2]<k))&&
((_pid==3)||(_pid!=3 && flag[3]<k))&&
((_pid==4)||(_pid!=4 && flag[4]<k))&&
((_pid==5)||(_pid!=5 && flag[5]<k));

if :: ok || turn[k] != _pid
:: else -> goto again

fi
};
k++

:: else -> break
od;
atomic { inCR++; assert(inCR == 1) }; inCR--; flag[_pid] = 0;

od;
}
init { // start the processes

atomic{ run user(); run user(); run user(); run user(); run user(); }
}

Fig. 3. Promela code for Peterson’s mutual exclusion protocol, with five processes

which has been used for experiments with SymmSPIN [BDH02]. We consider
various configurations of a Promela specification of this protocol, adapted from
the specification used in [BDH02]. Promela code for the specification with five
processes is given in Fig. 3. We check the mutual exclusion property, which
is embedded into the specification using an assertion, and also verify that the
model associated with each specification is deadlock-free. For various configu-
rations of the protocol, Fig. 4 shows the state-space size and time (in seconds)
for unreduced verification, and verification using the SymmSPIN segmented and
sorted strategies, the TopSPIN sorted strategy, and our flattened strategy. An
entry marked ‘−’ indicates that memory requirements for verification exceeded
available resources, or that verification did not complete within five hours. All
experiments were performed on a PC with a 1.7 GHz Pentium processor, 760 Mb
of main memory, using SPIN version 4.2.6. Recall that the SymmSPIN segmented
strategy is guaranteed to give memory-optimal symmetry reduction. For this

Peterson SPIN SymmSpin SymmSpin TopSPIN TopSPIN

(unreduced) segmented sorted sorted flattened
n states time states time states time states time states time
3 2636 0.4 494 0.3 907 0.4 494 0.4 251 0.1
4 60577 0.6 3106 0.4 9373 0.4 3106 0.4 1177 0.1
5 1.56 × 106 11 17321 1 95303 2 17321 1 5148 0.3
6 4.48 × 107 2666 89850 7 885399 18 89850 7 21752 2
7 - - 442481 85 7.94 × 106 383 442481 56 89969 10
8 - - 2.09 × 106 1166 - - 2.09 × 106 412 366424 63
9 - - 9.62 × 106 16673 - - 9.62 × 106 3034 1.47 × 106 393

Fig. 4. Experimental results for Peterson’s mutual exclusion protocol, using
SymmSPIN, TopSPIN, and a näıve “markers”-based approach

Efficient Approximate Verification of Promela Models 307

example, therefore, we see that TopSPIN sorted also provides memory-optimal
symmetry reduction. In comparison, SymmSPIN sorted performs visibly poorly
on the Peterson 7 configuration, and could not be practically applied to larger
configurations. The flattened strategy yields very fast verification in compari-
son to all other strategies. Correspondingly, the state-space explored using this
strategy is much smaller than the symmetry-reduced state-space explored using
the SymmSPIN segmented strategy. The speed-up gained using this approach is
encouraging, but state-space coverage is clearly too low for this technique to be
acceptable in practice. Motivated by the efficiency of the flattened strategy, we
now develop more sophisticated symmetry marker techniques for Promela.

5 The New Marker Methods for Promela

The marker method developed for B [LM07] inspires the definition of effi-
cient symmetry reduction techniques for other specification languages, such as
Promela. However, adapting the techniques for Promela is not trivial. The re-
quirement to extend SPIN (more precisely SymmSPIN or TopSPIN) to include the
new concepts means that we cannot simply use data structures like multisets of
paths as defined in [LM07], but need to define an efficient encoding in the context
of the data structures used for state-space representation by SPIN. The meth-
ods we propose respect this constraint through transformations of state vectors
which preserve its structure. We also derive a new technique, which can be used
as a complete verification method.

Datatypes and state representation. We first define the following simple Promela
datatypes:

– a single scalarset I (whose elements are called pids) of cardinality N with
values 1..N. Sometimes we also need to use the special value 0, representing
an undefined value (as in [ID96]). We define I0 = I ∪ {0}.

– simple non-scalar datatypes such as byte, bool and mtype (an enumerated
message type included in the Promela language), denoted by NS .

We assume that we do not have nested arrays or queues (i.e., the elements
of arrays or queues cannot be in turn arrays or queues), and that our Promela
model is composed with a base process G in parallel with instances Pi of a
parameterized family of processes.

Definition 1. The state of a Promela specification is described by the following
quadruple 〈−→n , −→s , −→sn, −→ss〉 where

– −→n is a vector of values from NS (i.e., of non-scalar type)
– −→s is a vector of values in I0
– −→sn is a vector of arrays indexed by the scalarset I and with range values
from NS

– −→ss is a vector of arrays indexed by the scalarset I and with range from I0

One can make the following observations. Conceptually there are no local process
variables: they are treated as entries of a global array indexed by the pids. In

308 D. Bošnački et al.

other words, the local variables become part of −→sn and −→ss. The program counter
pci of each process i is conceptually handled as part of −→sn.

Some datastructures are missing from Def. 1. However, without loss of gener-
ality, they can be incorporated into the state as follows:

1. Arrays NS → I0 from non-scalar to scalarset values can be seen as part of
−→s by expanding out the array and treating each array element as a distinct
variable.

2. Similarly, arrays NS → NS from non-scalar to non-scalar values can be
viewed as part of −→n by expanding them out.

3. Queues of (scalar or non-scalar) values are translated into arrays (indexed
by non-scalar values) of the same size, padded with zeroes if the queue is not
full, together with an integer to record the current length of the queue. For
example, queue = [2, 3] of length 4 becomes array = [2, 3, 0, 0], length = 2.
The resulting arrays can then be expanded according to points 1 and 2,
depending on the type of values which they contain. A queue for which
messages consist of multiple fields can be handled using a series of arrays,
one per field.

4. Records can be handled by treating each field as an individual variable.

Example 1. Consider the Promela code for Peterson’s mutual exclusion protocol
[Pet81] with 5 processes, shown in Fig. 3 and introduced in Sect. 4. For this
Promela specification the components of a state s from Def. 1 will look as follows
(where xs denotes the value of the global variable x in the state s and ys

i denotes
the value of the local variable y for process i in s):

– −→n = 〈inCRs〉
– −→s = 〈turns[0], . . . , turns[4]〉
– −→sn = 〈[pcs

1, . . . , pcs
5], [flags

1, . . . , f lags
5], [k

s
1, . . . , k

s
5], [ok

s
1, . . . , ok

s
5]〉

– −→ss = 〈〉
The structure of s is also depicted in Fig. 5 below.

To compute our markers (see algorithm 5.1), we use the notions of permutation
and mapping of a state s as defined below where s = 〈−→n , −→s , −→sn, −→ss〉 with −→sn =
〈−→sn1, . . . −−→snk〉 and −→ss = 〈−→ss1, . . .−→ss�〉.

Definition 2. A permutation π is a bijection from I to I.
We extend the application of a permutation π to a data value v, denoted by vπ,
as follows: vπ =

– v if v is a non-scalar value or v = 0
– π(v) if v ∈ I
– 〈vπ

1 , . . . , vπ
k 〉 if v = 〈v1, . . . , vk〉 is an array or vector indexed by non-scalars

– 〈(vπ−1(1))π, . . . , (vπ−1(k))π〉 if v = 〈v1, . . . , vk〉 is an array indexed by
scalarset values

The application of a permutation π to the state s is defined by sπ =
〈−→n , −→s π, 〈−→sn1

π, . . . −−→snk
π〉, 〈−→ss1

π, . . . −→ss�
π〉〉.

Efficient Approximate Verification of Promela Models 309

Finally, we say that state s′ is symmetric to s iff there exists a permutation
π such that sπ = s′.

We sometimes write permutations (and mappings) in explicit form as follows:
{1 �→ j1, . . . , N �→ jN}.

For example, let π = {1 �→ 2, 2 �→ 1, 3 �→ 3} and let a = [1, 2, 2] be an array
NS → I. Then aπ = [2, 1, 1]. However, if a is of type I → I then aπ = [1, 2, 1].

Definition 3. A mapping ρ is a function (which may not be a bijection) from
I to I. We extend the application of a mapping ρ to a data value v and state s,
denoted resp. by ρ(v) and ρ(s) in a way similar to what we did for permutations,
except for arrays v = 〈v1, . . . , vk〉 indexed by scalarset values which is defined by
〈ρ(v1), . . . , ρ(vk)〉.

Note that, contrary to permutations, a mapping does not necessarily permute
the indexes of vectors indexed by scalarset values.

Marker algorithms for approximate and exact verification. We will now present
a way to efficiently compute for any given state s a marker m(s). The central
idea of our approach is to analyse the current state s of a Promela specification
in order to compute information about every scalarset value p. This information
ms(p) is called the marker of p in s and captures structurally how p is used
within s.

Definition 4. The marker ms(p) of a scalarset value p ∈ I in the state s=
〈−→n , −→s , −→sn, −→ss〉 is the triple 〈−→s′ , −→sn′, −→ss′〉 where

–
−→
s′ is a vector of bits of the same length as −→s , where

−→
s′ i = 1 iff −→s i = p

–
−→
sn′ is a vector of non-scalar values and of the same length as −→sn where−→

sn′
i= −→sni[p]

–
−→
ss′ is a vector of non-scalar values and of the same length as −→ss where

−→
ss′i=

number of occurrences of p in the range of −→ssi

For a particular Promela specification with possible states S we define the set
of scalarset markers M = {ms(p) | s ∈ S ∧ p ∈ I}. By <M we denote a total
order relation < on M.1

Consider the Peterson-5 example (Fig. 3 and Ex. 1). For p ∈ I we have that (see
also Fig. 5):

–
−→
s′ is a vector of 5 bits, one for each entry of turn, with

−→
s′i = 1 ⇔turns[i] = p

–
−→
sn′ = 〈pcs

p, f lags
p, k

s
p, ok

s
p〉

–
−→
ss′ = 〈〉

Our algorithm takes a state s of a Promela specification and computes the
marker m(s) for the state. Ideally we want the property that if two states are
1 Such an order is easy to define, e.g. using lexicographical ordering, as no scalarset

values occur inside the markers.

310 D. Bošnački et al.

1 2 1 2 5

pc flag k ok

n s sn ss

inCR turn[0] turn[1] turn[2] turn[3] turn[4]state
s

0 1 0 1 0marker
ms(2)

s' sn' ss'

→ → →

→ → →

Fig. 5. The structure of Promela states and markers for Peterson-5

symmetric then they have the same marker, and vice versa. However, in order
to make the computation of the marker more efficient, we are willing to accept
a tradeoff. We will present two possible tradeoffs below. The method which uses
the exact markers mexact(s) does not always detect that two symmetrical states
are symmetric; the method which uses the approximate marker m(s) may merge
two states which are not symmetrical.

Below, by | −→v | we denote the length of a vector −→v . We compute the markers
for all i ∈ I and based on the markers (which contain no scalarset values) find a
way to permute the values in I. To handle the case where two values in I have
the same marker, we also compute the information local(i) for every i ∈ I which
captures which other markers i refers to in its entries of −→ss (which is usually
part of its local state).

Algorithm 5.1[Computation of the markers m(s) and mexact(s) for s]

Input: A state s = 〈−→n , −→s , −→sn, −→ss〉 of a Promela specification

Output: The markers m(s) and mexact(s) for s

let a = 〈ms(1), . . . ms(N)〉; sort a according to <M
let mvals(i) = if i=0 then 0 else max({j | a[j] = ms(i)}) fi ;
for i ∈ I do % compute which other markers does i refer to in its part of −→ss

let locals[i] = 〈mvals(−→ss1[i]), . . . , mvals(−→ss|−→ss|[i])〉
od ;
let b = 〈(ms(1), locals[1], 1), . . . , (ms(n), locals[n], n)〉;
sort b where (m1, l1, n1) < (m1, l2, n2) iff m1 <M m2 or m1 = m2 and

l1 <locals l2 (using some total order <locals on arrays of numbers);
let newvals(i) = max({j | ∃k.b[j] = (ms(i), locals[i], k)}) ;
let pos(i) = value j such that b[j] = (ms(i), locals[i], i) ;
let π = {1 �→ pos(1), . . . , N �→ pos(N)};
let mexact(s) := sπ; % Apply permutation π

let ρ = {pos(1) �→ newvals(1), . . . , pos(N) �→ newvals(N)}; % may not be a perm.

let m(s) := ρ(mexact(s)) % Apply mapping ρ

Example 2. Take the state s partially illustrated in Ex. 1. If the markers compu-
tation gives that ms(3) < ms(4), we have π = {1 �→ 5, 2 �→ 4, 3 �→ 1, 4 �→ 2, 5 �→
3} and m(s) = mexact(s) as outlined by Fig. 6 where for −→sn we just showed that
values initially in position 2 are now in position 4. Note that since −→ss is empty,
a big part of the algorithm can be simplified.

Efficient Approximate Verification of Promela Models 311

Fig. 6. m(s) and mexact(s) for s in Fig 5

Fig. 7. m(s) and mexact(s) for s1 and s2

Example 3. In Fig. 7, the states s1 and s2 are symmetrical through the permu-
tation π = {1 �→ 4, 2 �→ 3, 3 �→ 2, 4 �→ 1}. However, both for states s1 and s2,
ms(2) = ms(3) and hence without locals it would be unclear in which order to
put the scalarset values 2 and 3. Our algorithm will guarantee that s1 and s2
have the same marker, as shown in the Fig. 7 and detailed in the following table:

element value for s1 value for s2
a sorted ms1(2) = ms1(3) < ms1(1) < ms1 (4) ms2(2) = ms2(3) < ms2(4) < ms2(1)
locals 〈0, 4, 3, 0〉 〈0, 3, 4, 0〉
b sorted 〈〈ms1(3), 3, 3〉, 〈ms1(3), 4, 2〉, 〈〈ms2(3), 3, 2〉, 〈ms2(3), 4, 3〉,

〈ms1(1), 0, 1〉, 〈ms1(4), 0, 4〉〉 〈ms2(4), 0, 4〉, 〈ms2(1), 0, 1〉〉
π 〈1 �→ 3, 2 �→ 2, 3 �→ 1, 4 �→ 4〉 〈1 �→ 4, 2 �→ 1, 3 �→ 2, 4 �→ 3〉

Proposition 1. Let s, s′ be states. Then the following hold:

1. m(s) = m(sπ) for any permutation π
2. mexact(s) = mexact(s′) ⇒ ∃π.s′ = sπ

3. mexact(s) = mexact(s′) ⇒ m(s) = m(s′)

Proof. Point 1 can be proven as follows. It is easy to see that ms(π(i)) = msπ (i)
and hence the sorted arrays a in Alg. 5.1 are identical for s and sπ. Hence,
mvals(π(i)) = mvalsπ(i). This in turn implies locals[π(i)] = localsπ [i] and that
newvals(π(i)) = newvalsπ (i). The only potential difference between i and π(i)
could be the value of pos. However, in that case there must exist another j ∈ I
with ms(j) = ms(i) ∧ locals[i] = locals[j] ∧newval(j) = newval(i) with the
same value of pos as π(i); and hence the resulting markers must be identical.
Point 2 can be proven by composing π from Alg. 5.1 for s with the inverse
of π from Alg. 5.1 for s′. Point 3 follows directly from the two other points
(m(s′) = m(sπ) = m(s)).

Point 1 means that all symmetries are detected by our approximate markers.
Point 2 means that using exact markers yields a complete verification method.

In general the ordinary markers do not provide a complete verification method,
but in the next proposition we establish a class of models for which ordinary
markers do:

312 D. Bošnački et al.

Peterson SPIN SymmSpin TopSPIN TopSPIN

(unreduced) segmented sorted markers
n states time states time states time states time
3 2636 0.4 494 0.3 494 0.4 494 0.3
4 60577 0.6 3106 0.4 3106 0.4 3106 0.4
5 1.56 × 106 11 17321 1 17321 1 17321 1
6 4.48 × 107 2666 89850 7 89850 7 89850 3
7 - - 442481 85 442481 56 442481 24
8 - - 2.09 × 106 1166 2.09 × 106 412 2.09 × 106 175
9 - - 9.62 × 106 16673 9.62 × 106 3034 9.62 × 106 1333

Fig. 8. Symmetry markers applied to Peterson’s mutual exclusion example

Proposition 2. Let s, s′ be two states. If s = 〈−→n , −→s , −→sn, −→ss〉 with −→ss = 〈〉 and
m(s) = m(s′) then ∃π.s′ = sπ.

Proof. We will prove that −→ss = 〈〉 implies that for any s: mexact(s) = m(s). Hence,

by Point 2 of Proposition 1 we have proven our result. First it is clear to see that if

for all i ∈ I all markers are distinct, then mexact(s) = m(s) as newval(i) = pos(i). Let

j ∈ I be such that newval(j) �= pos(j) (i.e., there must be at least one other k ∈ I

with k �= j with ms(k) = ms(j)). In this case we know that j does not occur as a value

in −→s (otherwise we cannot have another k �= j with the same marker). But then, as
−→ss = 〈〉, applying ρ has no effect for j. This reasoning can be applied to all j ∈ I and

hence our result holds.

6 Empirical Results

We have implemented symmetry reduction using symmetry markers in the
TopSPIN symmetry reduction package. The result is two new TopSPIN strategies:
exact markers and approx markers. Use of the exact markers strategy results in
complete verification since the strategy guarantees that at least one state from
each symmetric equivalence class is explored. On the other hand, the approx
markers strategy does not guarantee sound model checking since several equiv-
alence classes may be represented by the same state. However, our results show
that this strategy can provide a reduction in verification time whilst maintaining
high state-space coverage. We illustrate our implementation using two families
of Promela specifications: the Peterson mutual exclusion protocol (see Sect. 4),
and an email system adapted from [CM03] (and similar to an example used
for experiments in [DM06]). A configuration of the email example consists of
n client processes which exchange messages via a mailer process. The mailer
is modelled using the Promela init process, and can be viewed as part of the
base process discussed earlier. Experiments were carried out on the platform
described in Sect. 4, and once again a ‘−’ result indicates that verification was
intractable, or took longer than 5 hours, for a given configuration. For each con-
figuration we check basic safety properties expressed using assertions, and for
deadlock-freedom. Note that symmetry reduction can be used, in principle, for
model checking symmetric CTL∗ formulas [ES96]; our implementation is limited
to basic safety properties due to restrictions of SPIN and TopSPIN [DM06].

Efficient Approximate Verification of Promela Models 313

Email SPIN TopSPIN TopSPIN TopSPIN TopSPIN

(unreduced) segmented sorted exact markers approx markers
n states time states time states time states time states time
2 938 0.5 471 0.3 471 0.3 471 0.3 470 0.4
3 37793 0.5 6335 0.4 6361 0.5 6337 0.4 6316 0.4
4 1.33 × 106 11 56631 4 60566 2 57398 1 55711 1
5 - - 399534 64 481964 30 430212 12 380040 9
6 - - 2.42 × 106 1415 3.40 × 106 366 3.05 × 106 131 2.21 × 106 82
7 - - - - - - - - 1.17 × 107 766

Fig. 9. Symmetry markers applied to a Promela email specification

Fig. 8 shows state-space sizes and verification times for various configurations
of the Peterson protocol. To ease readability, some of the results from Fig. 4 are
duplicated in Fig. 8. For the Peterson examples, the set −→ss is empty. Therefore, by
Propositions 1 and 2, we anticipate that the exact markers and approx markers
strategies should both provide full symmetry reduction and complete verification.
This is indeed the case – the states column for the TopSPIN exact markers and
SymmSPIN segmented strategies are identical. Results for the approx markers
strategy are not shown in Fig. 8, as they are the same as for the exact markers
strategy. Verification using symmetry markers is significantly faster than using
the TopSPIN sorted or SymmSPIN segmented strategies.

Results for configurations of the email example are given in Fig. 9. It was
not possible to apply SymmSPIN to these examples due to limitations of the
prototype SymmSPIN implementation; therefore we used the TopSPIN segmented
strategy to compute (where practical) the optimal symmetry-reduced state-space
for each configuration (see Sect. 2). Fig. 9 and Fig. 10 back up the predictions of
our theory: that, with systems with arrays both indexed by scalarset and range
from scalarset, the approx markers strategy may sometimes regard inequivalent
states as equivalent, whereas the exact markers strategy may not always recog-
nise equivalent states as such. The left of Fig. 10 in particular (see also Fig. 1)
highlights the precision of our methods – note how close the respective curves
lie to the curve for full symmetry reduction (TopSPIN segmented). For this ex-
ample, TopSPIN sorted also computes multiple representatives from each orbit.
The results of Fig. 9 clearly illustrate the benefits of using symmetry markers:

– The exact markers strategy outperforms TopSPIN sorted both in terms of
memory requirements and verification time

– The difference between the state-space size using full symmetry reduction
compared with exact markers is relatively small

– The approx markers strategy provides very good coverage of the symmetry-
reduced state-space, and runs significantly faster than the other strategies.

The value of the approx markers strategy is further illustrated by the fact that ex-
act verification of the email 7 configuration was not possible: full symmetry re-
duction using the segmented strategy is not feasible (for some states, as many as
7! symmetries would need to be considered), and the state-spaces generated us-
ing exact markers and standard TopSPIN strategies exceed memory requirements.

314 D. Bošnački et al.

 0

 500000

1000000

1500000

2000000

2500000

3000000

3500000

 2 3 4 5 6

#(scalarset)

Spin (no sym)
TopSpin segmented

TopSpin sorted
Exact Markers

Approx Markers

 0

 1

 10

 100

 1000

 2 3 4 5 6

lo
g(

tim
e)

#(scalarset)

Fig. 10. Number of states and log of model checking times for the Email benchmark

Verification of deadlock-freedom using approx markers does not guarantee
deadlock-freedomfor the full model, but the high coverage rate of this strategy pro-
vides us with a reasonable degree of confidence that the model does not deadlock.

7 Related and Future Work

The SMC symmetry reduction tool [SGE00] employs a somewhat similar ap-
proach to our symmetry markers in order to determine state equivalence. Given
two states to be tested for equivalence, SMC computes a checksum for each state.
If the checksums are not equal then the states are not symmetrically equivalent.
This simple pre-test quickly identifies many inequivalent states, but (as with
markers), equality of checksums does not guarantee equivalence. The tool ap-
plies an approximate strategy to conservatively determine whether states with
equal checksums are genuinely equivalent. Symmetry markers are more precise
than the checksums computed by SMC, and can effectively handle the complica-
tions introduced by pid variables and pid-indexed arrays, which are not supported
in the SMC input language.

Symmetry markers are currently limited to apply to fully symmetric systems.
Although full symmetry occurs most frequently in practice, concurrent systems
with ring or tree-like structures can exhibit other forms of structural symmetry
[CEJS98, DM05]. It should be straightforward to extend the markers approach
to handle multiple families of symmetric processes. A more challenging research
topic involves generalising the markers approach to apply in the presence of an
arbitrary symmetry group.

References

[Abr96] Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
[BDH02] Bosnacki, D., Dams, D., Holenderski, L.: Symmetric Spin. STTT 4(1), 92–

106 (2002)
[CEFJ96] Clarke, E., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in tempo-

ral logic model checking. Form. Methods Syst. Des. 9(1-2), 77–104 (1996)

Efficient Approximate Verification of Promela Models 315

[CEJS98] Clarke, E., Emerson, E., Jha, S., Sistla, A.: Symmetry reductions in model
checking. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 147–158.
Springer, Heidelberg (1998)

[CGP99] Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cam-
bridge (1999)

[CM03] Calder, M., Miller, A.: Generalising feature interactions in email. In:
FIW’03, pp. 187–204. IOS Press, Amsterdam (2003)

[DM05] Donaldson, A., Miller, A.: Automatic symmetry detection for model check-
ing using computational group theory. In: Fitzgerald, J.A., Hayes, I.J., Tar-
lecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 481–496. Springer, Heidelberg
(2005)

[DM06] Donaldson, A., Miller, A.: Exact and approximate strategies for symmetry
reduction in model checking. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.)
FM 2006. LNCS, vol. 4085, pp. 541–556. Springer, Heidelberg (2006)

[DM07] Donaldson, A., Miller, A.: Extending symmetry reduction techniques to a
realistic model of computation. ENTCS 185, 63–76 (2007)

[ES96] Emerson, E., Sistla, A.: Symmetry and model checking. Formal Methods in
System Design 9(1/2), 105–131 (1996)

[Hol88] Holzmann, G.: An improved protocol reachability analysis technique. Softw.
Pract. Exper. 18(2), 137–161 (1988)

[Hol03] Holzmann, G.: The SPIN model checker: Primer and reference manual.
Addison-Wesley, Reading (2003)

[ID96] Ip, C., Dill, D.: Better verification through symmetry. Formal Methods in
System Design 9(1/2), 41–75 (1996)

[LM07] Leuschel, M., Massart, T.: Efficient approximate verification of B via sym-
metry markers. In: Proc. of the International Symmetry Conference, Edin-
burgh, UK, pp. 71–85 (January 2007)

[McM93] McMillan, K.: Symbolic Model Checking. PhD thesis, Boston (1993)
[Pet81] Peterson, G.: Myths about the mutual exclusion problem. Inf. Process.

Lett. 12(3), 115–116 (1981)
[SGE00] Sistla, A., Gyuris, V., Emerson, E.: SMC: a symmetry-based model checker

for verification of safety and liveness properties. ACM Trans. Softw. Eng.
Methodol. 9(2), 133–166 (2000)

[Val02] Valiente, G.: Algorithms on Trees and Graphs. Springer, Heidelberg (2002)

Latticed Simulation Relations and Games

Orna Kupferman and Yoad Lustig

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
{orna,yoadl}@cs.huji.ac.il

Abstract. Multi-valued Kripke structures are Kripke structures in which the
atomic propositions and the transitions are not Boolean and can take values from
some set. In particular, latticed Kripke structures, in which the elements in the
set are partially ordered, are useful in abstraction, query checking, and reasoning
about multiple view-points. The challenges that formal methods involve in the
Boolean setting are carried over, and in fact increase, in the presence of multi-
valued systems and logics. We lift to the latticed setting two basic notions that
have been proven useful in the Boolean setting. We first define latticed simulation
between latticed Kripke structures. The relation maps two structures M1 and M2

to a lattice element that essentially denotes the truth value of the statement “ev-
ery behavior of M1 is also a behavior of M2”. We show that latticed-simulation
is logically characterized by the universal fragment of latticed μ-calculus, and
can be calculated in polynomial time. We then proceed to defining latticed two-
player games. Such games are played along graphs in which each transition have
a value in the lattice. The value of the game essentially denotes the truth value of
the statement “the ∨-player can force the game to computations that satisfy the
winning condition”. An earlier definition of such games involved a zig-zagged
traversal of paths generated during the game. Our definition involves a forward
traversal of the paths, and it leads to better understanding of multi-valued games.
In particular, we prove a min-max property for such games, and relate latticed
simulation with latticed games.

1 Introduction

Several recent verification methods involve reasoning about multi-valued Kripke struc-
tures in which an atomic proposition is interpreted at a state as a lattice element, rather
than a Boolean value1. The multi-valued setting arises directly in systems in which the
designer can give to the atomic propositions rich values like “unknown” or “don’t care”
(c.f., the IEEE Standard Multivalue Logic System for VHDL Model Interoperability
[20]), and arise indirectly in applications like abstraction methods, in which it is use-
ful to allow the abstract system to have unknown assignments to atomic propositions
and transitions [15,2], query checking [8], which can be reduced to model checking
over multi-valued Kripke structures, and verification of systems from inconsistent view-
points [19], in which the value of the atomic propositions is the composition of their
values in the different viewpoints.

1 A lattice 〈L, ≤〉 is a partially ordered set in which every two elements a, b ∈ L have a least
upper bound (a join b) and a greatest lower bound (a meet b). We will define lattices in detail
in Section 2.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 316–330, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Latticed Simulation Relations and Games 317

The various applications use various types of lattices (see Figure 1). For example, in
the abstraction application, researchers have used three values ordered as in L3 [2], as
well as its generalization to linear orders [6]. In query checking, the lattice elements are
sets of formulas, ordered by the inclusion order [3]. When reasoning about inconsistent
viewpoints, each viewpoint is Boolean, and their composition gives rise to products of
the Boolean lattice, as in L2,2 [11]. Finally, in systems with rich values of the atomic
propositions, several orders may be used, allowing the modeling of uncertainty, dis-
agreement, and relative importance [7]. In the most general setting, both the atomic
propositions and the transitions in the Kripke structure are elements in a lattice [12].
We refer to such structures as latticed Kripke structures.

Properties of latticed Kripke structures can be specified using multi-valued logics.
In particular, [4] introduced a latticed version of the μ-calculus. The value of a latticed
μ-calculus formula ψ in a latticed Kripke structure M , denoted �M, ψ�, is an element
in L — the lattice with respect to which M and ψ are defined. Several model-checking
algorithms for latticed μ-calculus are studied in the literature [4,27]. Automated tools
for reasoning about multi-valued logics include theorem provers for first-order multi-
valued logics (cf. [16,29]) and symbolic multi-valued model checkers (cf. [5]). Natu-
rally, the challenges that formal methods involve in the Boolean setting are carried over,
and in fact increase, in the presence of multi-valued systems and logics.

In 1971, Milner defined the simulation pre-order between systems [25]. Simulation
enjoys many appealing properties, making it a key notion in reasoning about systems
and their specifications. First, simulation has a fully abstract semantics: a Kripke struc-
ture M2 simulates a Kripke structure M1 iff every computation tree embedded in the
unrolling of M1 can be embedded also in the unrolling of M2. Second, simulation has
a logical characterization: M2 simulates M1 iff every universal branching-time formula
satisfied by M2 is satisfied also by M1 [26,1,14]. It follows that simulation is a suitable
notion of implementation, and it is the coarsest abstraction of a system that preserves
universal branching-time properties. Third, simulation can be defined locally by means
of a game that relates states with their immediate successor states. Based on its local
definition, simulation between finite-state systems can be checked in polynomial time
[9] and symbolically [17]. Finally, simulation implies trace-containment, which cannot
be defined locally and requires polynomial space for verification [28]. Hence simulation
is widely used both in manual and in automatic verification.

An adoption of the advantages of simulation to the multi-valued setting was partially
suggested in the context of abstraction. There, modal transition systems (MTS) are used
in order to model systems at different levels of abstraction [23]. Accordingly, atomic
propositions have three possible values (false, unknown, and true), and transitions have
three possible values (false, may, and must). Researchers have defined mixed simulation
between MTSs [10,13] and use it as a precision order: M1 is simulated by M2 iff M2 is
more precise (less abstract) than M1. The adoption is partial in the sense that it fits only
for the special case of MTS, and it returns a Boolean value: either M2 simulates M1 or
it does not.

In this work we define and study latticed simulation in general. Given two Kripke
structures M1 and M2 over a lattice L, the simulation value of M1 by M2, denoted
sim val (M1, M2), is an element in L that essentially denotes the truth value of the

318 O. Kupferman and Y. Lustig

statement “every behavior of M1 is also a behavior of M2”. Technically, for two states
q1 of M1 and q2 of M2, the simulation value of q1 by q2 refers to both the agreement
between the states on the values of the atomic propositions, and to the value in which
successors of q1 can be matched with successors of q2. The logical characterization of
simulation is extended to the latticed setting: for every sentence ψ in the universal frag-
ment of latticed μ-calculus, we have that sim val(M1, M2) ≤ �M2, ψ� → �M1, ψ�.
Thus, the greater the simulation value is, the more likely it is that the value of ψ in
M1 is not smaller than its value in M2. The characterization is tight, in the sense that
if sim val(M1, M2) �≥ l, for a lattice value l ∈ L, then there is a sentence ψ in
the universal latticed μ-calculus such that �M2, ψ� → �M1, ψ� �≥ l. In [21], we de-
fined the implication value between two latticed Kripke structures M1 and M2, denoted
imp val(M1, M2). Essentially, imp val (M1, M2) denotes the truth value of the state-
ment “every computation of M1 is also a computation of M2”; thus it is the latticed
counterpart of trace containment. The computational advantage of simulation with re-
spect to trace containment is carried over to the latticed setting: sim val(M1, M2) ≤
imp val(M1, M2), and while the calculation of imp val(M1, M2) is PSPACE-
complete [21], sim val(M1, M2) can be calculated in PTIME. We also define latticed
bisimulation and study its properties.

It is easy to see that Boolean simulation and its properties are a special case of latticed
simulation and its properties. This may create an impression as if the extension to the
latticed setting is straightforward. To see that this is not the case, note that there are
quite many extensions of the Boolean setting to a latticed setting that coincide with the
Boolean setting for the Boolean lattice. For example, we could have defined latticed
simulation so that if the simulation value of M1 by M2 is a lattice element l, then for
all universal formulas ψ, if �M2, ψ� ≥ l, then �M1, ψ� ≥ l. To see that this definition is
different, consider the three-valued linearly-ordered lattice {0, 1

2 , 1} and assume there
is a formula ψ such that �M2, ψ� = 1

2 and �M1, ψ� = 0. A simulation value of 1
2 is

possible according to our definition (indeed, 1
2 ≥ (1

2 → 0)) but is not possible according
to the alternative definition (indeed, �M2, ψ� ≥ 1

2 yet �M1, ψ� �≥ 1
2). Our search for a

good definition have eventually converged to the suggested one — the only definition
that enjoys all the helpful properties of Boolean simulation.

Recall that in the Boolean case, simulation can be defined by means of a game be-
tween two players. We define and study latticed games and show that latticed simulation
can be defined by means of such games. An earlier definition of latticed games is pre-
sented in [27]. As in our setting, the game graph is a latticed Kripke structure whose
states are partitioned into ∨-states and ∧-states. Also, the game is defined so that its
value is a lattice element that essentially denotes the truth value of the statement “the
∨-player can force the games into computations that satisfy the winning condition”.
The definition of the value of a game in [27], however, is conceptually different from
the definition of the winner in a Boolean two-players game. Indeed, the value of a play
in the game in [27] is defined as the limit of a sequence {val i}∞i=0, where each val i is
computed by backward traversal of the prefix v0, v1, . . . , vi of the path generated dur-
ing the play. Thus, while in Boolean games the generated path is traversed in a forward
manner, here the need to calculate a lattice value has forced a zig-zagged traversal.

Latticed Simulation Relations and Games 319

Our definition of a value of a game avoids the zig-zagged traversal and is based on
a mutual definition of two values: one for the ∨-player and one for the ∧ player. The
values are updated during the play, and the values after the i-th transition depends on
the values before the i-th transition and the value of the edge traversed during the i-th
transition. The value of a game according to our definition coincides with the value in
[27]. The fact our definition resembles the forward traversal in Boolean games leads
to a better understanding of latticed games. In particular, we prove a min-max theorem
for latticed games: the value of a game for the ∨-player complements the value of
the game for the ∧-player.2 We note that this result is technically very challenging. In
particular, unlike Boolean games, the value of a game need not be achieved with a single
strategy. Beyond the relation between latticed games and latticed simulation, they are
of independent interest. In particular, as discussed in [27], model checking of latticed
μ-calculus can be reduced to latticed-game solving.

Due to space limitations, proofs and examples are omitted and can be found in the
full version at the authors’ web pages.

2 Preliminaries

Let 〈A, ≤〉 be a partially ordered set, and let P be a subset of A. An element a ∈ A is an
upper bound on P if a ≥ b for all b ∈ P . Dually, a is a lower bound on P if a ≤ b for
all b ∈ P . An element a ∈ A is the least element of P if a ∈ P and a is a lower bound
on P . Dually, a ∈ A is the greatest element of P if a ∈ P and a is an upper bound on
P . A partially ordered set 〈A, ≤〉 is a lattice if for every two elements a, b ∈ A both the
least upper bound and the greatest lower bound of {a, b} exist, in which case they are
denoted a ∨ b (a join b) and a ∧ b (a meet b), respectively. A lattice is complete if for
every subset P ⊆ A both the least upper bound and the greatest lower bound of P exist,
in which case they are denoted

∨
P and

∧
P , respectively. In particular,

∨
A and

∧
A

are denoted � (top) and ⊥ (bottom), respectively. A lattice 〈A, ≤〉 is finite if A is finite.
Note that every finite lattice is complete. A lattice is distributive if for every a, b, c ∈ A,
we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

The traditional disjunction and conjunction logic operators correspond to the join
and meet lattice operators. In a general lattice, however, there is no natural counterpart
to negation. A De Morgan lattice is a lattice in which every element a has a unique
complement ¬a such that ¬¬a = a, De Morgan rules hold, and a ≤ b implies ¬b ≤ ¬a.
In the rest of the paper we consider only finite 3 distributive De Morgan lattices.

In Figure 1 we describe some (finite distributive De Morgan) lattices. The elements
of the lattice L2 are the usual truth values 1 (true) and 0 (false) with the order 0 ≤ 1.
The lattice L3 contains in addition the value 1

2 , with the order 0 ≤ 1
2 ≤ 1, and

with negation defined by ¬0 = 1 and ¬1
2 = 1

2 . The lattice L2,2 is the Cartesian
product of two L2 lattices, thus (a, b) ≤ (a′, b′) if both a ≤ a′ and b ≤ b′. Also,

2 In multi-valued games, determinancy is generalized to having a min-max property.
3 Note that focusing on finite lattices is not as restrictive as may first seem. Indeed, even when

the lattice is infinite, the problems we consider involve only finite Kripke structures. Therefore,
only a finite number of lattice elements appear in a problem, and since the lattice is distributive,
the closure of logical operations on these values is still finite.

320 O. Kupferman and Y. Lustig

1
2

{b}

1

0

L2

{a, b}

{a} {c}

{b, c}

∅
2{a,b,c}

{a, b, c}

{a, c}

0

1 (1,1)

(0,0)

L3 L2,2

(0,1) (1,0)

Fig. 1. Some lattices

¬(a, b) = (¬a, ¬b). Finally, the lattice 2{a,b,c} is the power set of {a, b, c} with the
set-inclusion order (that is, the transitive closure of the edges in the figure). Com-
plementation is interpreted as set complementation relative to {a, b, c}. In this lat-
tice, for example, {a} ∨ {b} = {a, b}, {a} ∧ {b} = ⊥, {a, c} ∨ {b} = �, and
{a, c} ∧ {b} = ⊥.

A join irreducible element is a value l ∈ L such that l �= ⊥ and for all l1, l2 ∈
L, if l1 ∨ l2 ≥ l, then l1 ≥ l or l2 ≥ l. For example, in L3 (and in every linear
order), all elements are join irreducible. On the other hand, in the lattice 2{a,b,c}, the
elements {a}, {b}, {c}, and are join irreducible, but {a, b}, {b, c}, and {a, c} are not
join irreducible. To see the latter, note that {a} ∨ {b, c} ≥ {a, c} but {a} �≥ {a, c} and
{b, c} �≥ {a, c}. Birkhoff’s representation theorem for finite distributive lattices implies
that in order to prove that l1 = l2 it is sufficient if to prove that for every join irreducible
element l it holds that l1 ≥ l iff l2 ≥ l. We denote the set of join irreducible elements
of L by JI (L). A meet irreducible element l ∈ L is a value for which if l1 ∧ l2 ≤ l then
either l1 ≤ l or l2 ≤ l. Note that in a De Morgan lattice, an element is meet irreducible
iff its complement is join irreducible.

Consider a lattice L (we abuse notation and refer to L also as a set of elements, rather
than a pair of a set with an order on it). For a set X of elements, an L-set over X is
a function S : X → L assigning to each element of X a value in L. It is convenient
to think about S(x) as the truth value of the statement “x is in S”. We say that an
L-set S is Boolean if S(x) ∈ {�, ⊥} for all x ∈ X . The usual set operators can
be lifted to L-sets as expected. Given two L-sets S1 and S2 over X , we define join,
meet, and complementation so that for every element x ∈ X , we have S1 ∨ S2(x) =
S1(x) ∨ S2(x), S1 ∧ S2(x) = S1(x) ∧ S2(x), and comp(S1)(x) = ¬S1(x).4

A latticed Kripke structure is a 6-tuple M = 〈L, AP, Q, Q0, R, Θ〉, where L is a
lattice, AP is a set of atomic propositions, Q is set of states, Q0 is an L-set of initial
states, R : Q×Q → L is an L-set of transitions, and Θ : AP → LQ maps each atomic
proposition p to an L-set of states, describing the truth value of p in each state.

The μ-calculus [22] is an expressive temporal logic that subsumes logics like LTL
and CTL�. A multi-valued variant of the μ-calculus, was suggested and studied in [4].

4 If S1 and S2 are over different domains X1 and X2, we can view them as having the same
domain X1 ∪ X2 and let S1(x) = ⊥ for x ∈ X2 \ X1 and S2(x) = ⊥ for x ∈ X1 \ X2.

Latticed Simulation Relations and Games 321

We call this logic latticed μ-calculus (LMC, for short)5. For technical convenience, we
consider LMC formulas in a positive form in which negation applies only to atomic
propositions. Given a set AP of atomic propositions and a set Var of variables, LMC
formulas have the following syntax, with p ∈ AP and y ∈ Var .

ϕ = p|¬p|ϕ1 ∨ ϕ2|ϕ1 ∧ ϕ2|AXϕ|EXϕ|μy.ϕ(y)|νy.ϕ(y)

Note that the operators ∨ and ∧ stand for “join” and “meet”, rather than “or” and “and”.
In fixed-point formulas μy.ϕ(y) and νy.ϕ(y), the operators μ and ν bind free occur-
rences of y in ϕ. We use ϕ1 → ϕ2 to abbreviate (the positive normal form of) ¬ϕ1∨ϕ2.

A valuation V : Var → LQ over a lattice L maps the variables in Var into L-sets
of states. We write V⊥ for the valuation that maps every variable to the L-set that maps
every state to ⊥ (that it, for every y ∈ Var and q ∈ Q, it holds that V⊥(y)(q) = ⊥).
For a variable y ∈ Var and an L-set l, we write V [y = l] for the valuation that agrees
with V except that it maps y to l.

The semantics of an LMC formula ϕ is defined with respect to a latticed Kripke
structure M and a valuation V to the free variables in ϕ. Given such a valuation, the
formula induces an L-set of states, denoted �M, ϕ�V , in which each state s of M is
mapped to a value in L describing the truth value of the formula in s. Accordingly, given
V , a formula ϕ with a free variable y can be viewed as a transformer fV,y

ϕ : LQ → LQ,
defined by fV,y

ϕ (g) = �M, ϕ�V[y=g]. We use μfV,y
ϕ and νfV,y

ϕ to denote the the least
and greatest fixed-points of fV,y

ϕ with respect to V . By the Tarksi-Knaster Theorem,
these fixed-points exist.

Formally, the interpretation �M, ϕ�V of an LMC formula ϕ in a latticed Kripke struc-
ture M = 〈L, AP, Q, Q0, R, Θ〉 and valuation V over a complete lattice L is defined as
follows:6

�M, p�V = Θ(p)
�M, ¬p�V = comp(Θ(p))

�M, μy.ϕ�V = μfV,y
ϕ

�M, νy.ϕ�V = νfV,y
ϕ

�M, y�V = V(y)

�M, ϕ1 ∨ ϕ2�V = �M, ϕ1�V ∨ �M, ϕ2�V
�M, ϕ1 ∧ ϕ2�V = �M, ϕ1�V ∧ �M, ϕ2�V

�M, EXϕ�V = λs.
∨

s′∈Q

(R(s, s′) ∧ �M, ϕ�V(s′))

�M, AXϕ�V = λs.
∧

s′∈Q

(R(s, s′) → �M, ϕ�V(s′))

A formula in which every variable is in the scope of a fixed-point operator is a sen-
tence. If ϕ is a sentence, we write �(M, s), ϕ� for the value �M, ϕ�V⊥(s). Since we
almost exclusively deal with sentences, we abuse notation and omit the valuation V⊥.

The value of an LMC sentence ϕ in a latticed Kripke structure M , denoted �M, ϕ�,
is

∧
q∈Q(Q0(q) → �M, ϕ�(q)). Note that we get the standard Boolean semantics of

μ-calculus as a special case.
The universal fragment of LMC, termed ALMC, consists of the formulas that do

not contain the EX operator. Note that since we assume that formulas are in a positive
normal form, the above syntactic restriction implies that indeed formulas of ALMC can
only impose universal requirements. Finally, the fixed-point free fragment consists of

5 The logic is termed μL in [4], and is termed Lμ in [27]. We prefer a terminology that does not
involve mathematical symbols.

6 We use λs.θ(s) to denote the L-set in which each state s is mapped to θ(s).

322 O. Kupferman and Y. Lustig

ab
q0M :

b
q1

bc
q2

bcbc

b c
abc abc

b
q′
1

b
q′
2

acbc

c c

bc
q′
0M ′ :

abc abc

Fig. 2. Latticed Kripke structures over L = 2{a,b,c}

formulas that do not contain a fixed-point operator. Thus, it corresponds to a latticed
version of Modal Logic, we term it LML, and term its universal fragment ALML.

Example 1. Consider the latticed Kripke structure M = 〈2{a,b,c}, {p}, {q0, q1, q2},
Q0, R, Θ〉, where Q0(q0) = � and Q0(q1) = Q0(q2) = ⊥, appearing in Figure 2.
The values of R and Θ are described in the figure (we describe only transitions with
value greater than ∅; in the description of the value of the transitions and the value
of p inside the states, we omit the {} notation). For example, Θ(p)(q0) = {a, b} and
R(q0, q1) = {b, c}. Also, Q0(q0) = {a, b, c} and the initial value of q1 and q2 is ∅.

Below we describe the truth value of some LMC formulas in M . Since q0 is the only
state with Q0(q0) �= ⊥ and Q0(q0) = {a, b, c}, we have �M, ϕ� = �(M, q0)�(ϕ).

– �M, p� = {a, b}
– �M, EXp� = ({b, c} ∧ {b}) ∨ ({b, c} ∧ {b, c}) = {b, c}
– �M, AXp� = ({b, c} → {b}) ∧ ({b, c} → {b, c}) = ({a, b} ∧ {a, b, c}) = {a, b}

Note that in the Boolean case, a state may satisfy AXθ without satisfying EXθ only if
it does not have successors. In the latticed setting, the transitions to the successors have
values. This is why the value of EXθ may not be greater than the value of AXθ, as we
see here.

Let us now calculate �M, νz.p ∧ AXz�; that is, the truth value of “p holds at all
reachable states”. Let θ(z) = p∧AXz. We start with z0 that maps all states to {a, b, c}.
We then iterate θ as described in the table in the right.
A fixed-point is reached when z2 = z3, and �M, νz.p∧
AXz� = {a, b}. Intuitively, p holds at all reachable
states from both viewpoints a and b: From viewpoint
b, the proposition p indeed holds at all states. From
viewpoint a, the proposition p does not hold in states
q1 and q2, but these states are not reachable.

q0 q1 q2

z0 {a,b,c} {a,b,c} {a,b,c}
z1 {a,b} {b} {b,c}
z2 {a,b} {b} {b}
z3 {a,b} {b} {b}

3 Latticed Simulation

In this section we define latticed simulation — an extention of the definition of the
simulation pre-order of [25] to the latticed context. Let M1 = 〈L, AP, Q1, Q

1
0, R1, Θ1〉

and M2 = 〈L, AP, Q2, Q
2
0, R2, Θ2〉 be two latticed Kripke structures. In the Boolean

case, a relation S ⊆ Q1 × Q2 is a simulation relation if two conditions are satisfied:

Latticed Simulation Relations and Games 323

First, simulating states satisfy the same propositions. Second, if q2 ∈ Q2 simulates
q1 ∈ Q1 then for every successor q′1 of q1 there exists a successor q′2 of q2 such that
q′2 simulates q′1. In the latticed setting, the simulation relation is an L-set S ∈ LQ×Q.
Intuitively, S(q1, q2) describes the truth value of the statement “every behavior of M1 is
also a behavior of M2”. As in the Boolean case, the simulation value of a pair of states
q1 and q2 depends both in agreement on the values of the atomic propositions in q1 and
q2 and in the ability to match successors of q1 with successors of q2.

We capture the first condition by the value

SAP (q1, q2) =
∧

p∈AP

�M1, p�(q1) ↔ �M2, p�(q2).

We capture the second condition by the value

SR(q1, q2) =
∧

q′
1∈Q1

⎛
⎝R1(q1, q

′
1) →

∨
q′
2∈Q2

(R2(q2, q
′
2) ∧ S(q′1, q

′
2))

⎞
⎠ .

An L-relation S : Q1 × Q2 → L is an L-simulation from M1 to M2 if for all q1 ∈ Q1
and q2 ∈ Q2, we have S(q1, q2) = SAP (q1, q2) ∧ SR(q1, q2).

In the Boolean setting, S(q1, q2) guarantees that all universalμ-calculus formulas that
are satisfied in q2 are also satisfied in q1. In the latticed setting, we have the following

Theorem 2. Consider an L-simulation S : Q1 × Q2 → L. For all states q1 ∈ Q1
and q2 ∈ Q2 and for all ALMC sentences ψ, we have S(q1, q2) ≤ �M2, ψ�(q2) →
�M1, ψ�(q1).

Note that the relation SR depends on S, thus there may be several latticed-simulation
relations. We define the maximal simulation relation to be the relation S∗ that maps
every pair of states to the join of their image under every simulation relation. Formally,
we define S∗(q1, q2) =

∨
S∈SL(M1,M2) S(q1, q2), where SL(M1, M2) is the set of sim-

ulation relations from M1 to M2.
We now justify the definition by showing that the maximal simulation relation is

indeed a simulation relation, and furthermore, it can be easily computed.

Theorem 3. The relation S∗ is a simulation relation, and it can be computed in poly-
nomial time.

We now show that logical characterization by ALMC is tight for the maximal simula-
tion. While the idea is similar to the logical characterization in the Boolean case, the
technical details are complicated. In particular, we rely on Birkhoff’s representation the-
orem and, as in the proof of Theorem 2, rely heavily on the lattice being a De Morgan
distributive lattice.

Theorem 4. For every pair of states q1 ∈ Q1 and q2 ∈ Q2, and value l ∈ L,
if S∗(q1, q2) �≥ l, then there exists an ALML formula ϕ such that �M2, ϕ�(q2) →
�M1, ϕ�(q1) �≥ l.

324 O. Kupferman and Y. Lustig

For two Lattice Kripke Structures M1 = 〈L, AP, Q1, Q
1
0, R1, Θ1〉 and M2 = 〈L,

AP, Q2, Q
2
0, R2, Θ2〉, we define the simulation value of M1 by M2 to be

S∗(M1, M2) =
∧

q1∈Q1

⎛
⎝Q1

0(q1) → (
∨

q2∈Q2

(Q2
0(q2) ∧ S∗(q1, q2)))

⎞
⎠ ,

where S∗ is the maximal simulation relation of the two structures.
Theorem 5 below gives the full logical characterization of latticed simulation. It

follows from Theorems 2 and 4, and the distributivity of the lattice.

Theorem 5. Let M1 and M2 be two Kripke structures.

1. For all ALMC sentences ψ, we have S∗(M1, M2) ≤ �M2, ψ� → �M1, ψ�.
2. For all l ∈ L, if S∗(M1, M2) �≥ l, then there exists an ALML formula ψ such that

�M2, ψ� → �M1, ψ� �≥ l.

In [21], we defined the implication value between latticed automata. The definition
extends to latticed Kripke structures: for two latticed Kripke structures M1 and M2 over
a lattice L, let imp val(M1, M2) be the implication value of M2 by M1. Essentially
(for details, see [21]), each word w ∈ (2AP)ω has a “membership value” in M1 and in
M2, and imp val (M1, M2) denotes the truth value of the statement “for all words, the
membership value in M1 implies the membership value in M2”. As in the Boolean case,
the branching setting is more general than the linear setting. Ee have the following.

Theorem 6. For all latticed Kripke structures M1 and M2, we have S∗(M1, M2) ≤
imp val(M1, M2).

Thus, latticed simulation, which can be calculated in polynomial time, is a lower bound
to the implication value, whose calculation is PSPACE-complete.

3.1 Latticed Bisimulation

The Boolean simulation pre-order has a symmetric version, namely the bisimulation re-
lation. Two Kripke structures that are bisimilar have exactly the same behaviors. Adding
symmetry to our definition of latticed simulation results in a latticed bisimulation re-
lation. Formally, for two lattice kripke structures M1 = 〈L, AP, Q1, Q

1
0, R1, Θ1〉 and

M2 = 〈L, AP, Q2, Q
2
0, R2, Θ2〉, an L-relation S : Q1 × Q2 → L is an L-bisimulation

between M1 and M2 if

S(q1, q2) = SAP (q1, q2) ∧ SR(q1, q2) ∧ SR(q2, q1),

where SAP and SR are as in L-simulation.
The logical characterization of L-simulation extends L-bisimulation, now with LMC.

Theorem 7. Let S be the maximal L-bisimulation relation between M1 and M2.

1. For all LMC sentences ϕ, it holds that S(q1, q2) ≤ �M1, ϕ�(q1) ↔ �M2, ϕ�(q2).
2. For all l ∈ L, if S(M1, M2) �≥ l, then there exists an LML formula ψ such that

�M2, ψ� ↔ �M1, ψ� �≥ l.

Latticed Simulation Relations and Games 325

Other properties of latticed simulation extend easily to latticed bisimulation: it can be
computed in polynomial time, and the bisimulation value between latticed Kripke struc-
tures is a lower bound to the equivalence value (two-sided implication) between them.

4 Latticed Games

A latticed game graph is a pair G = 〈V, E〉, where V is a set of vertices and E :
V ×V → L is an L-set of transitions. The vertices are partitioned into two sets, V∨ and
V∧ (referred to as the ∨-vertices and the ∧-vertices). A latticed game is a latticed game
graph together with an initial state v0 ∈ V and a acceptance condition α. We postpone
the description of the acceptance condition since for that we need the notion of a play
that we define next.

Intuitively, a play of the game proceeds as follows: a token is put on some initial
vertex. If the token is placed on a ∨-vertex then the ∨-player chooses an edge originating
at the vertex on which the token is on, and the token is advanced along that edge.
Similarly, if the token is placed on a ∧-vertex, then the ∧-player is doing the choosing.
After the token is advanced to the successor vertex, the process repeats. This proceeds
forever and the play of the game is a sequence of vertices p = {vi}∞i=0 (the sequence
of vertices the token has traversed during the play). Each play is assigned a value, in a
fashion we will describe next. Intuitively, the ∨-player’s objective is to maximize the
value of the play, while the ∧-player’s objective is to minimize it. We proceed to define
the value of a play formally. Note that the value of a play is defined from the ∨-player
perspective, and is in fact the value of the game for the ∨-player. We postpone the
definition of the value of the game for the ∧-player.

The acceptance value of the play, denoted acc(p), stands for the value with which the
play satisfies the acceptance condition. For example, an L-Büchi acceptance condition
is an L-set of states F ∈ LV , and the acceptance value of the play p is

∧∞
i=0

∨
j>i F (vi).

The value of a play is set not only by its acceptance value, but also by the values of
the edges traversed during the play. Intuitively, when a player traverses an edge with
low value he gives up more then if would have traversed an edge with a higher value.
Assume, for example, that the underlying lattice is 2{a,b,c} and in the first move the
∨-player traversed an edge with value {a}. This means that the ∨-player gives up all
values that are not smaller or equal to {a}, and “is willing” that at the end of the play the
acceptance value would be met with {a}. By dual reasoning, if the first move is done by
the ∧-player over an edge with value {a}, then the ∧-player (whose objective is to lower
the total play value) “is willing” that at the end of the game the value would be joined
with ¬{a} = {b, c}. Furthermore, the order in which edges are traversed is important:
if one player gave up some value l, the other player is assured the value l, and may
move freely along edges that would have implied giving up l on other circumstances.

We therefore define two “given up” values, r∨ and r∧. These values are defined in-
ductively along the play, where at the beginning neither player has given up anything,
thus r∨0 = � and r∧0 = ⊥. If pi ∈ V∨, then the next transition is taken by the ∨-
player. If the ∨-player chooses to traverse an edge with value different than �, then he
gives up the value of the edge traversed, except the parts of the value already given up
by the ∧-player. Thus, r∨i+1 = r∨i ∧(E(pi, pi+1)∨r∧i). The ∧-player, on the other hand,

326 O. Kupferman and Y. Lustig

gives up nothing, and therefore r∧i+1 = r∧i . Similarly, if pi ∈ V∧, then r∨i+1 = r∨i , and
r∧i+1 = r∧i ∨ (¬E(pi, pi+1)∧ r∨i). Since both {r∨i } and {r∧i } are monotonic, their limit
is defined. Let r∨ =

∧∞
i=0 r∨i and r∧ =

∨∞
i=0 r∧i

To define the value of a play we need one more technical observation. Let val∨∧(p) =
(acc(p) ∧ r∨) ∨ r∧, and val∧∨(p) = (acc(p) ∨ r∧) ∧ r∨. Similarly, let val∨∧

i (p) =
(acc(p) ∧ r∨i) ∨ r∧i , and val∧∨

i (p) = (acc(p) ∨ r∧i) ∧ r∨i . We will shortly prove that
val∧∨(p) = val∨∧(p) and define the value of the play, denoted val(p), to equal both.

Example 8

Consider the game G over the lattice
2{a,b,c} appearing on the right. Assume
that all the computations of G are accept-
ing with value {a, b, c}. We calculate the
value of some plays in G. {b}{b, c}

{b}{a, b}

{c}

{a, c}

v2

v0
∨

∧
v1

∧

– Consider the play p = (v0, v0, v1)ω. By definition, r∨0 = {a, b, c} and r∧0 = ∅.
Since the first transition is by the ∨-player, we have, r∨1 = r∨0 ∧ (E(v0, v0)∨r∧0) =
{a, b, c} ∧ ({a, c} ∨ ∅) = {a, c}. Also, r∧1 = r∧0 = ∅. The second transition is also
by the ∨-player, thus r∨2 = r∨1 ∧ (E(v0, v1) ∨ r∧1) = {a, c} ∧ ({a, b} ∨ ∅) = {a}.
Also, r∧2 = r∧1 = ∅. The third transition is by the ∧-player, thus r∧3 = r∧2 ∨
(¬E(v1, v0) ∧ r∨2) = ∅ ∨ ({a} ∧ {a}) = {a}. Also, r∨3 = r∨2 = {a}. At this
point, the sequences r∨i and r∧i reach a fixed-point, thus r∨ = r∧ = {a}. Hence,
val∨∧(p) = val∧∨(p) = {a}.

– Consider now the play p = vω
0 . Here, r∨ = {a, c} and r∧ = ∅. Accordingly,

val∨∧(p) = ({a, b, c}∧{a, c})∨∅ = {a, c}, which equals val∧∨(p) = ({a, b, c}∨
∅) ∧ {a, c} = {a, c}.

– Consider now the play p = (v0, v2)ω. Here, r∨ = {b} and r∧ = ∅. Accordingly,
val∨∧(p) = val∧∨(p) = {b}.

Another definition of the value of a play was introduced by [27]. In [27], the authors
define the value of a finite prefix of the play p0, . . . , pi in a backward manner. First,
valii(p) = acc(p). Then, for j ≤ i, we have valij−1(p) = valij(p)∧E(pj−1, pj) if pj−1

is a ∨-vertex, or valij−1 = valij ∨ ¬E(pj−1, pj) if pj−1 is a ∧-vertex. The value of
the prefix p0, . . . , pi is then vali = vali0. It can be shown that the sequence {vali}∞i=0
stabilizes, and the value of the play is taken to be the limit. Thus, for the entire play,
the value is calculated in a zig-zagged manner: in each iteration, a vertex is added, and
then the calculation proceeds backwardly. Our definition, on the other hand, involves a
forward traversal, and is similar to the definition in the Boolean case. As the next lemma
shows, the intermediate values we get in our forward traversal coincide with these that
[27] gets in the zig-zagged traversal.

Lemma 1. For every play p = p0p1 . . ., and every i ≥ 0, we have val∨∧
i (p) =

val∧∨
i (p) = vali.

Since both {r∨j }∞j=1 and {r∧j }∞j=1 are monotone, they must stabilize eventually, imply-
ing an equivalence among the three values:

Latticed Simulation Relations and Games 327

Corollary 1. val∧∨(p) = val∨∧(p) = lim vali.

We define the value of a play p to be val∧∨(p) and denote it by val(p). We also define
the value of a play p for the ∧-player, denoted val∧(p), as the negation of the value of
the game for the ∨-player, i.e., ¬val(p).

A strategy for a player is a function from prefixes of plays ending in one of his
vertices, to the set of vertices. Thus, a ∨-player strategy is f : V ∗ · V∨ → V . A prefix
p0, . . . , pn is consistent with a strategy f of the ∨-player, if for all j ≥ 0 it holds that
if pj is a ∨-vertex then pj+1 = f(p0, . . . , pj). Similarly, a strategy for the ∧-player is
a function f : V ∗ · V∧ → V , and a prefix p0, . . . , pn is consistent f , if for all j ≥ 0
it holds that if pj is a ∧-vertex then pj+1 = f(p0, . . . , pj). A play is consistent with
a strategy if all its prefixes are consistent the strategy. It is easy to see that for every
two strategies, one for the ∨-player and one for the ∧-player, there is exactly one play
consistent with both strategies. Thus, two strategies induce a play.

The value of a strategy f , denoted val(f), is the meet of all the plays compatible with
f (this holds for strategies of either player). The value of a game for a player is the join
of the values of that player’s strategies. Thus, the value of a game G for the ∨-player,
denoted val∨(G), is the join of all values of strategies of the ∨-player. Similarly, the
value of a game for the ∧-player, denoted val∧(G), is the join of all values of strategies
of the ∧-player. In Theorem 12 we prove that val∧(G) = ¬val∨(G).

Example 9. Consider again the game G discussed in Example 8. Consider a strategy
f for the ∨-player that whenever the play is in v0, goes to v2. There are infinitely
many plays that are compatible of this strategy (depending on the move of the ∧-player
whenever the play is in v2). All these plays, however, have value {b}. Thus, val(f) =
{b}. Consider now a strategy f ′ the ∨-player that whenever the play is in v0, goes
to v0. Only the play vω

0 is compatible with f . The value of this play is {a, c}, Thus,
val(f ′) = {a, c}. It follows that val∨(G) = {a, b, c}.

Remark 10. Unlike the Boolean case, the ∨-player might not have a single strategy
ensuring him the value of the game. In fact, it might be the case that the value of the
game cannot be obtained as the value of a single play.

4.1 Properties of Lattice Games

In the latticed case, unlike the Boolean case, it is not necessarily true that a game value
can be obtained in a single play. Therefore, it does not make sense to search for a single
strategy as a solution to the game. What is true, is that for each join irreducible element
l ∈ JI (L) it holds that if the game value is greater than or equal to l, then there exists
a single strategy that ensures that a value of at least l, is obtained. Thus, Birkhoff’s
representation theorem enables us to decompose a latticed game to several Boolean
games. Formally, we have the following.

Theorem 11. For a latticed game G = 〈V, E〉, over a lattice L, there exists a family of
Boolean games {Gl = 〈V, El〉}l∈JI (L) all sharing the same state space, such that the
∨-player has a winning strategy in Gl iff there is a strategy in G ensuring the ∨-player
a value greater than or equal to l.

328 O. Kupferman and Y. Lustig

Furthermore, for every l ∈ JI (L), the game Gl can be computed in logarithmic
space from G. In addition, the strategy ensuring a value greater than or equal to l can
be computed, in logarithmic space, from a winning strategy in Gl and vice versa.

As expected, the state space of Gl agrees with the state space of G, and the partition
to ∨-vertices and ∧-vertices is also as in G. The challenging part is to define the set of
edges according to l. The set of edges is a subset of the edges in G, and an edge 〈v, u〉
of G exists in Gl if either v ∈ V∨ and the edge 〈v, u〉 has value greater than or equal to
l in G, or v ∈ V∧ and the edge 〈v, u〉 does not have value less than or equal to ¬l in G.

Theorem 11 suggests a way to solve a latticed game by decomposing it into Boolean
games and solving each of those. A different algorithm is suggested in [27].

Recall that Boolean Büchi games are determined: in every game, one of the players
has a winning strategy. Extending this result to the latticed setting amounts to proving
that for every value l, if the value of the game for the ∨-player is greater than l, then ¬l
is greater than the value of the game for the ∧-player.

Theorem 12. For a lattice game G, we have val∧(G) = ¬val∨(G).

4.2 The Simulation Game

For two latticed Kripke structures M1 = 〈L, AP, Q1, Q
1
0, R1, Θ1〉 and M2 = 〈L, AP,

Q2, Q
2
0, R2, Θ2〉, the simulation game for M1 and M2 is a latticed game defined as

follows. Intuitively, the ∧-player “claims” that M1 is not simulated by M2, while the
∨-player “claims” that M1 is simulated by M2. The game value is then S∗(M1, M2).
Thus, in the beginning of the game, the ∧-player chooses an initial state q1 in M1, and the
∨-player chooses an initial state q2 in M2 that is supposed to resemble q1. We measure
the resemblance value between q1 and q2 by SAP (q1, q2) =

∧
p∈AP (�M1, p�(q1) ↔

�M2, p�(q2)). The game proceeds by the ∧-player choosing a successor to q1, denoted
q′1, followed by the ∨-player choosing a successor to q2, denoted q′2. Again, q′2 is sup-
posed to resemble q′1. This process is iterated ad infinitum.

Naturally, the edges values correspond to the transitions taken, thus the edge cho-
sen by the ∧-player to move from q1 to q′1 has the value of the transition R1(q1, q

′
1).

The values of the ∨-player transitions reflect not only the value of the corresponding
transition in M2, but also the resemblance between the state in M1 to the state in M2.
Therefore, the value of the ∨-player transition is the value of the transition in M2 meet
the value SAP (q′1, q

′
2). We now to define the game formally.

The game graph is G〈M1,M2〉 = 〈V, E〉, where V = (Q1 × Q2 ×{∧, ∨})∪ {in∧}∪
(Q1 × {in∨}). The ∧-vertices are (Q1 × Q2 × {∧}) ∪ {in∧}, and the ∨-vertices are
(Q1 × Q2 × {∨}) ∪ (Q1 × {in∨}). The initial position is in∧, and the edges are de-
fined as follows. For every q1 ∈ Q1, there exists an edge from in∧ to 〈q1, in∨〉 with
value Q1

0(q1). For every q1 ∈ Q1 and q2 ∈ Q2 there is an edge from 〈q1, in∨〉 to
〈q1, q2, ∧〉 with value Q2

0(q2) ∧ SAP (q1, q2). For q1, q
′
1 ∈ Q1 and q2, q

′
2 ∈ Q2, the

edge from 〈q1, q2, ∧〉 to 〈q′1, q2, ∨〉) has value R1(q1, q
′
1), and the edge from 〈q′1, q2, ∨〉

to 〈q′1, q′2, ∧〉) has value R2(q2, q
′
2) ∧ SAP (q′1, q

′
2). All other edges have value ⊥. The

acceptance criteria is Büchi in which all vertices are accepting with value � (making
the acceptance value of every play �).

Latticed Simulation Relations and Games 329

We now claim that the value of the simulation game is the simulation value of M1 by
M2. The proof, detailed in the full paper, shows that for every join irreducible element
l ∈ L, the value of the simulation game is greater than or equal to l iff S∗(M1, M2) is
greater than or equal to l.

Theorem 13. val∨(G〈M1,M2〉) = S∗(M1, M2).

Thus, as in the Boolean setting, latticed simulation can be defined in terms of a game
between two players.

5 Discussion

We lifted the notions of simulation and games to a multi-valued setting. We considered
values taken from a lattice, and we were able to lift the known properties of simulation
and games to the latticed setting. In the Boolean setting, bisimulation is an equivalence
relation, and an abstraction of a system (one that agrees with the original system on
all μ-calculus specifications) can be obtained by merging bisimilar states to one state.
In the latticed setting, bisimulation associates with each two states a lattice element
denoting their bisimulation value. Therefore, even if we settle on a lattice element l and
seek an abstraction whose bisimulation value with the original system is l, it is not clear
how to define the state space and the transitions of the abstraction. Finding a satisfying
definition would enable us to find coarsest abstractions that may not agree with the
original system on all specifications, but for which we can provide a lower bound on
the value of agreement (i.e., most view-points agree).

Another open question is the extension of latticed simulation to Kripke structures
with fairness. In the Boolean setting, the relation between simulation and games has
led to a definition of fair simulation that retains the logical characterization and the
computational advantages of simulation [18]. While the relation between simulation
and games is maintained in the latticed setting, it is an open question whether latticed
games can be used in a definition of latticed fair simulation. Indeed, the definition in
[18] relates a strategy that generates computations in the simulated structure with a
strategy that generates computations in the simulating structure. In the latticed setting,
the value of the game may depend on different strategies, thus a game-based definition
of fair simulation has to take all strategies into an account.

References

1. Bensalem, S., Bouajjani, A., Loiseaux, C., Sifakis, J.: Property preserving simulations. In:
Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 260–273. Springer,
Heidelberg (1993)

2. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics.
In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer,
Heidelberg (1999)

3. Bruns, G., Godefroid, P.: Temporal logic query checking. In: Proc. 16th LICS, pp. 409–420.
IEEE Computer Society Press, Los Alamitos (2001)

4. Bruns, Godefroid: Model checking with multi-valued logics. In: Dı́az, J., Karhumäki, J.,
Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 281–293. Springer, Hei-
delberg (2004)

330 O. Kupferman and Y. Lustig

5. Chechik, M., Devereux, B., Easterbrook, S.: Implementing a multi-valued symbolic model
checker. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 404–419.
Springer, Heidelberg (2001)

6. Chechik, M., Devereux, B., Gurfinkel, A.: Model-checking infinite state-space systems with
fine-grained abstractions using SPIN. In: Dwyer, M.B. (ed.) SPIN. LNCS, vol. 2057, pp.
16–36. Springer, Heidelberg (2001)

7. Chechik, M., Easterbrook, S., Petrovykh, V.: Model checking over multi-valued logics. In:
Formal Methods Europe (2001)

8. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 450–463. Springer, Heidelberg (2000)

9. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: A semantics-based tool
for the verification of concurrent systems. ACM TOPLAS 15, 36–72 (1993)

10. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM
TOPLAS 19(2), 253–291 (1997)

11. Easterbrook, S., Chechik, M.: A framework for multi-valued reasoning over inconsistent
viewpoints. In: Proc. 23rd Int. Conf. on Software Engineering, pp. 411–420. IEEE Computer
Society Press, Los Alamitos (2001)

12. Fitting, M.C.: Many-valued modal logics. Fundamenta Informaticae XV, 235–254 (1991)
13. Godefroid, P., Jagadeesan, R.: Automatic abstraction using generalized model checking. In:

Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 137–150. Springer, Hei-
delberg (2002)

14. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM TOPLAS 16(3),
843–871 (1994)

15. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

16. Hähnle, R.: Automated deduction in multiple-valued logics. International Series of Mono-
graphs on Computer Science 10 (1994)

17. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite
graphs. In: Proc. 36th FOCS, pp. 453–462 (1995)

18. Henzinger, T.A., Kupferman, O., Rajamani, S.: Fair simulation. I& C 173(1), 64–81 (2002)
19. Hussain, A., Pradhan, S.: Consistent partial model checking. ENTCS 73, 45–85 (2004)
20. IEEE. IEEE standard multivalue logic system for VHDL model interoperability

(Std logic 1164) (1993)
21. Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.

LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)
22. Kozen, D.: Results on the propositional μ-calculus. TCS 27, 333–354 (1983)
23. Larsen, K.G., Thomsen, G.B.: A modal process logic. In: Proc. 3rd LICS (1988)
24. Martin, D.A.: Borel determinacy. Annals of Mathematics 65, 363–371 (1975)
25. Milner, R.: An algebraic definition of simulation between programs. In: Proc. 2nd Int. Joint

Conf. on Artificial Intelligence, pp. 481–489. British Computer Society (1971)
26. Pnueli, A.: Linear and branching structures in the semantics and logics of reactive systems.

In: Brauer, W. (ed.) ICALP. LNCS, vol. 194, pp. 15–32. Springer, Heidelberg (1985)
27. Shoham, S., Grumberg, O.: Multi-valued model checking games. In: Peled, D.A., Tsay, Y.K.

(eds.) ATVA 2005. LNCS, vol. 3707, pp. 354–369. Springer, Heidelberg (2005)
28. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proc. 5th

STOC, pp. 1–9 (1973)
29. Sofronie-Stokkermans, V.: Automated theorem proving by resolution for finitely-valued log-

ics based on distributive lattices with operations. Multiple-Valued Logics: An International
Journal 5(2) (2000)

Providing Evidence of Likely Being on Time:
Counterexample Generation for CTMC Model

Checking

Tingting Han1,2 and Joost-Pieter Katoen1,2

1 Software Modelling and Verification, RWTH Aachen University, Germany
2 Formal Methods and Tools, University of Twente, The Netherlands

{tingting.han,katoen}@cs.rwth-aachen.de

Abstract. Probabilistic model checkers typically provide a list of individual state
probabilities on the refutation of a temporal logic formula. For large state spaces,
this information is far too detailed to act as useful diagnostic feedback. For quan-
titative (constrained) reachability problems, sets of paths that carry enough prob-
ability mass are more adequate. We recently have shown that in the context of
discrete-time probabilistic processes, such sets of smallest size can be efficiently
computed by (hop-constrained) k-shortest path algorithms. This paper considers
the problem of generating counterexamples for continuous-time Markov chains.
The key contribution is a set of approximate algorithms for computing small sets
of paths that indicate the violation of time-bounded (constrained) reachability
probabilities.

1 Introduction

A major strength of model checking is the possibility to generate counterexamples in
case of a property violation. In fact, it is this facility that makes model checking an effec-
tive bug hunting technique. Even if only a fragment of the entire model can be searched,
such counterexamples provide useful diagnostic feedback. Efficient algorithms for gen-
erating (succinct) counterexamples therefore have received considerable attention by
the model checking community, cf. [5,9,18]. For probabilistic models, though, coun-
terexample generation is far less developed.

Model checking of probabilistic models is focused on verifying system models in
which transitions are equipped with random information. Popular models are discrete-
and continuous-time Markov chains (DTMCs and CTMCs, respectively), and variants
thereof which exhibit nondeterminism. Most probabilistic model checkers support vari-
ants of CTL [3,4,11]. For quantitative properties such as “the (maximal) probability to
reach a set of goal states by avoiding certain states is at most p”, alternative algorithms
have to be employed. In case such property is refuted, the idea is to provide a set of
paths—such path is called an evidence—that all together carry a probability mass that
exceeds p. As such sets could be huge, the interest is in generating small sets, possibly
the smallest possible. Preferably, the probability mass of such sets deviates significantly
from the bound p.

Recently, we have shown [10] that for DTMCs wrt. the quantitative (hop-
constrained) until formulas, most probable evidences—thus contributing the most to

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 331–346, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

332 T. Han and J.-P. Katoen

the violation—can be determined efficiently using either well-known (hop-constrained)
shortest path (SP or HSP) algorithms, or Viterbi’s algorithm. In addition, smallest
counterexamples—containing the least number of evidences while maximally deviat-
ing from p among all counterexamples containing the same number of evidences—can
be determined using k-SP (k-HSP) algorithms. Here, k is the size of the counterexam-
ple and is determined on-the-fly. Similar results hold for properties where p is a lower
bound, where sets of paths are considered that indicate the violation of the “dual” of the
formula to be checked; see [10] for details.

This paper considers the generation of evidences and counterexamples for model
checking CSL [3,4] on CTMCs. For (hop-constrained) reachability properties expressed
in CSL, the algorithms of [10] can be exploited. Properties that involve time, however,
require other strategies. The continuous-time setting is unfortunately different and more
complicated than the discrete one. First, an evidence cannot be a single timed path (an
alternating sequence of states and time instants) as such paths have zero probability.
Instead, we consider symbolic evidences for ΦU �tΨ , i.e., time-abstract paths—finite
state sequences—that satisfy ΦU Ψ . A symbolic evidence induces a set of concrete ev-
idences, viz. the set of timed paths on the same state sequence whose duration does
not exceed t. Counterexamples are sets of symbolic evidences that exceed probability
p. The main contribution of the paper is a set of algorithms for computing informa-
tive (symbolic) evidences and counterexamples, i.e., evidences with large probability
and small counterexamples. We first indicate how the likelihood of symbolic evidences
can be computed, both numerically and analytically. The latter approach exploits the
fact that symbolic evidences are in fact acyclic CTMCs for which closed-form so-
lutions exist [15]. We then consider the problem of how to find symbolic evidences
such that small counterexamples result. First, we (naively) apply the strategy from
[10], i.e., use k-SP algorithms on a discretized CTMC (obtained by uniformization
[12]). This yields a simple algorithm, though may result in large counterexamples. A
first variant exploits timing information and generates paths in the discretized CTMC
that correspond to symbolic evidences. The advantage of this approach is that one can
guarantee that counterexamples are obtained that contain the smallest number of ev-
idences wrt. to their probability contribution in the CTMC. As probable paths of this
kind usually correspond to probable symbolic evidences, this yields small counterexam-
ples. Finally, we present a heuristic to improve the time and memory efficiency of this
algorithm.

Organization of the paper. Section 2 summarizes the main steps of counterexample
generation for DTMCs, and defines the main concepts of CTMCs needed for the rest
of the paper. Section 3 defines symbolic evidences and counterexamples. Computing
probabilities of symbolic evidences is treated in Section 4. Section 5 and 6 present the
algorithms for determining symbolic evidences. Section 7 concludes the paper.

2 Preliminaries

Counterexample generation in DTMCs. Let AP denote a fixed, finite set of atomic
propositions ranged over by a, b, c,

Providing Evidence of Likely Being on Time 333

Definition 1 (DTMC). A (labelled) discrete-time Markov chain (DTMC) D is a triple
(S, P, L) with S a finite set of states, P : S × S → [0, 1] a stochastic matrix, and
L : S → 2AP a labelling function.

For a DTMC,
∑

s′∈S P(s, s′) = 1, i.e. it is stochastic. If
∑

s′∈S P(s, s′) ∈ [0, 1), then
we call the model a fully probabilistic system (FPS) and it is sub-stochastic. A state
s is absorbing if P(s, s) = 1, i.e., if s only has a self-loop. A path σ in D is a state
sequence s0 s1 s2... such that P(si, si+1) > 0, for all i. The probability Pr{σ} for finite
σ = s0 s1 . . . sn is defined as P(s0, s1)·P(s1, s2)· . . . · P(sn−1, sn). For finite set of
paths C, Pr(C) =

∑
σ∈C Pr{σ}. σ[i] denotes the (i + 1)-st state on σ.

For PCTL [11] formula P�p(φ) where φ is a path formula, we have:

s � P�p(φ) iff Pr{σ | σ[0] = s and σ |= φ} > p.

So, P�p(φ) is refuted by state s whenever the total probability mass of all φ-paths that
start in s exceeds p. This indicates that a counterexample for P�p(φ) is a set of paths
starting in s and satisfying φ. As φ is a path formula whose validity can be witnessed
by finite state sequences, finite paths suffice.

Definition 2 (Evidence). An evidence for P�p(φ) in state s is a finite path σ that
starts in s and minimally satisfies φ. A strongest evidence is an evidence σ∗ such that
Pr{σ∗} � Pr{σ} for any evidence σ.

A finite path σ minimally satisfies φ if it satisfies φ, but no proper prefix of σ does so.

Definition 3 (Counterexample). A counterexample for P�p(φ) in state s is a set C of
evidences such that Pr(C) > p. C∗ is a smallest (most indicative) counterexample if
|C∗| � |C| for all counterexamples C and Pr(C∗) � Pr(C′) for any counterexample
C′ with |C′| = |C∗|.

The intuition is that a smallest counterexample is mostly exceeding the required prob-
ability bound given that it has the smallest number of paths. To compute the strongest
evidence and smallest counterexample, the DTMC D is transformed to a weighted di-
graph GD = (V, E, w), where V and E are finite sets of vertices and edges, respectively.
V = S and (v, v′) ∈ E iff P(v, v′) > 0, and w(v, v′) = log(P(v, v′)−1). Multiplica-
tion of transition probabilities is thus turned into the addition of edge weights along
paths. Now:

Lemma 1. For any path σ from s to t in DTMC D, k ∈ N>0, and h ∈ N ∪ {∞}: σ is
a k-th most probable path of at most h hops in D iff σ is a k-th shortest path of at most
h hops in GD .

Consider φ = ΦU �hΨ for PCTL state-formulas Φ, Ψ and hop bound h ∈ N ∪ {∞}. If
s �|= P�p(φ), then a strongest evidence can be found by a shortest path (SP) algorithm
once all Ψ -states and all (¬Φ ∧ ¬Ψ)-states in DTMC D are made absorbing. Similarly,
a smallest counterexample can be determined by k-SP algorithms that allow k to be
determined on-the-fly. If h �= ∞, hop-constrained SP and k-SP algorithms need to
be employed; they have pseudo-polynomial time complexity in O(hm) and O(hm +
hk log(m

n)), respectively, where n = |S| and m is the number of non-zero entries in P.

334 T. Han and J.-P. Katoen

CTMCs

Definition 4 (CTMC). A (labelled) continuous-time Markov chain (CTMC) C is a
quadruple (S, P, E, L) with (S, P, L) a DTMC and E : S → R�0 a rate vector, assign-
ing exit rates to states.

s0

u

s1

s2

t1

t2

0.5 0.2

0.8
0.3

0.2
0.375

0.6251

1

1

E(s0) = 10 E(s1) = 20 E(t1) = 0

E(u) = 0 E(s2) = 16 E(t2) = 0

{a} {a} {b}

∅ {a} {b}

Fig. 1. CTMC C

(S, P, L) is the embedded DTMC of
C. E(s) denotes the rate of firing a tran-
sition from s, which, in other words,
specifies the average delay of transitions.
More precisely, with probability (1 −
e−E(s)·t), a transition is enabled within
the next t time units provided that the
current state is s. If P(s, s′) >0 for more
than one state s′, a race between the out-
going transitions from s exists. The prob-
ability of transition s → s′ winning this
race in time interval [0, t] is given by:

P(s, s′, t) = P(s, s′)·
(
1 − e−E(s)·t).

The probability density function is p(s, s′, t) = P(s, s′)·E(s)·e−E(s)·t. Note that
P(s, s′, t) =

∫ t

0 p(s, s′, t1)·dt1. We sometimes use R(s, s′) = P(s, s′)·E(s) to denote
the rate of the transition s → s′.

Remark 1. Except for absorbing states, all states in a CTMC are assumed to have no
self-loops. The reason for this assumption will become clear later. Note that this is not
a severe restriction as self-loops can be removed without affecting the transient and the
steady-state probabilities of the CTMC.

Example 1. An example CTMC C is shown in Fig. 1. S = {si, t1, t2, u}; L(si) = {a},
L(t1) = L(t2) = {b} and L(u) = ∅ with 0 � i � 2; E(s0) = 10, E(s1) = 20, and so
on. States u, t1 and t2 are absorbing.

Paths and probability measure

Definition 5 (Timed paths in CTMCs). Let C = (S, P, E, L) be a CTMC. An infinite

timed path σ is a sequence s0
t0→s1

t1→s2
t2→... with si ∈ S and ti ∈ R�0 such that

P(si, si+1) > 0 for i � 0. A finite timed path σ is a finite prefix of an infinite path
ending in an absorbing state.

Let |σ| denote the length of the path σ, i.e., |s0
t0→s1

t1→...sl−1
tl−1→ sl| = l, |s0| = 0 and

|σ| = ∞ for infinite σ. For (finite or infinite) path σ and i < |σ|, let σ[i] = si be the
(i+1)-st state of σ, and δ(σ, i) = ti be the time spent in si. For t ∈ R�0 and k the
smallest index with t <

∑k
j=0 tj , let σ@t = σ[k] denote the state in σ occupied at time

t. For finite path σ and l = |σ|, δ(σ, l) = ∞; and for t �
∑l−1

j=0 tj , σ@t = sl.
A time-abstract path is obtained by omitting all timing information from a timed

path. The function α performs this, i.e., α(s0
t0→ s1

t1→ ...) = s0s1.... Let PathsC denote

Providing Evidence of Likely Being on Time 335

the set of all timed paths in CTMC C and PathsCabs all time-abstract paths in C. The
superscript is omitted if C is clear from the context. Paths(s) and Pathsabs(s) denote
the set of timed and time-abstract paths starting from s, respectively. We use ρ to range
over time-abstract paths.

A σ-algebra and probability measure of the timed paths of a CTMC can be defined
using the standard cylinder set construction, cf. [4]. It follows that time-convergent
paths, i.e., paths on which time does not diverge, have probability 0.

CSL. Continuous Stochastic Logic (CSL) [4] is a variant of the logic originally pro-
posed by Aziz et al. [3] and extends PCTL by path operators that reflect the real-time
nature of CTMCs: in particular, a time-bounded until operator.

Syntax. The syntax of CSL state-formulae is defined as follows:

Φ ::= tt | a | ¬Φ | Φ ∧ Φ | P�p(φ),

where p ∈ [0, 1] is a probability, � ∈ {<,�, >,�}. For t a non-negative real number
or t = ∞, φ is a path-formula defined according to the following grammar:

φ ::= ΦU�t Ψ | Φ W�t Ψ.

The path formula ΦU�tΨ asserts that Ψ is satisfied within t time units and that at all
preceding time instants Φ holds. W�t is the weak counterpart which does not require Ψ
to eventually become true. For the sake of simplicity, the next-operator and the steady-
state operator [4] are not considered here.

Semantics. CSL state-formulae are interpreted over the states of a CTMC. Let C =
(S, P, E, L) with labels in AP , and Sat(Φ) = {s ∈ S | s |= Φ}. The semantics of CSL
state-formulae is defined for path-formula φ as:

s |= tt iff true s |= Φ ∧ Ψ iff s |= Φ and s |= Ψ
s |= a iff a ∈ L(s) s |= P�p(φ) iff Prob(s, φ)� p
s |= ¬Φ iff not (s |= Φ)

Prob(s, φ) denotes the probability measure of all paths σ ∈ Paths starting in state s
and satisfying φ, i.e., Prob(s, φ) = Pr{σ ∈ Paths(s) | σ |= φ}. For a timed path σ in
C, the satisfaction relation for CSL path-formulae is defined as:

σ |= ΦU�tΨ iff σ@x |= Ψ for some x � t and σ@y |= Φ for all y < x,

σ |= ΦW�tΨ iff either σ |= ΦU�tΨ or σ@x |= Φ for all x � t.

The until and weak until operators are closely related. This follows from the follow-
ing equations. For any CSL-formulae Φ and Ψ we have:

P�p(Φ W�tΨ) ≡ P�1−p

(
(Φ ∧ ¬Ψ)U�t(¬Φ ∧ ¬Ψ)

)

P�p(ΦU�tΨ) ≡ P�1−p

(
(Φ ∧ ¬Ψ)W�t(¬Φ ∧ ¬Ψ)

)

Counterexamples for P�p(ΦU�tΨ) can be obtained by considering a formula of the
form P�p′(Φ′ U�t Ψ ′). This can be seen as follows. Extend the labels of C with a new
atomic proposition, atB , say, where atB is a new atomic proposition such that s |= atB
iff (i) either s |= ¬Φ ∧ ¬Ψ (ii) or s ∈ B where B is a bottom strongly connected

336 T. Han and J.-P. Katoen

component (BSCC) such that B ⊆ Sat(Φ ∧ ¬Ψ), or shortly BΦ∧¬Ψ . A BSCC B is a
maximal strong component that has no transitions leaving B. Then:

P�p(ΦU�tΨ) ≡ P�1−p((Φ ∧ ¬Ψ)W�t(¬Φ ∧ ¬Ψ)) ≡ P�1−p((Φ ∧ ¬Ψ)U�tatB)

Intuitively, to show that the set of (ΦU �tΨ)-paths has probability � p, it is sufficient
to show that the paths violating ΦU�tΨ have probability� 1 − p.

Note that for t = ∞, ΦU�tΨ denotes the standard-until operator. As this opera-
tor can be verified on the embedded DTMC, counterexamples can be obtained as for
DTMCs. In the sequel, we therefore consider t �= ∞.

3 Evidences and Counterexamples

Assume s �|= P�p(φ) for CSL path-formula φ. Unlike in DTMCs, a timed path could
not be an evidence since it always has probability 0. Instead, we consider symbolic evi-
dences that represent a set of (concrete) finite timed paths satisfying φ. For time-abstract
path ρ, let ρ↓k denote the prefix of ρ of length k, i.e., (s0s1 . . .)↓k = s0s1 . . . sk.

Definition 6 (Symbolic evidence). A symbolic evidence for P�p(φ) in state s is a
finite time-abstract path that starts in s and minimally satisfies φ. Let Pathsabs(s, φ)
denote the set of symbolic evidences starting from s for φ.

Actually, a symbolic evidence for φ = ΦU�t Ψ is a finite time-abstract path that goes
along Φ-states and halts at the first encountered Ψ -state. A symbolic evidence for φ =
ΦU�t Ψ represents a set of (infinite) timed paths in the CTMC:

Paths�t(ρ) = {σ ∈ Paths | ρ = α(σ)↓l ∧
l−1∑
i=0

δ(σ, i) � t} where l = |ρ|.

The timed paths induced by ρ have a common initial state sequence, viz. ρ, and the total
duration of this prefix is at most t, i.e., the last state of ρ is reached within t. We define
the probability of a symbolic evidence ρ to be Pr�t(ρ), and for the set C of symbolic
evidences, the probability is Pr(C) =

∑
ρ∈C Pr�t(ρ). A strongest symbolic evidence

is a symbolic evidence of maximal probability.

Lemma 2. For CTMC C and φ = ΦU�t Ψ : Prob(s, φ) =
∑

ρ∈Pathsabs(s,φ) Pr�t(ρ).

For state s in CTMC C and formula P�p(φ) we now have:

s �|= P�p(φ) iff Prob(s, φ) > p iff
∑

ρ∈Pathsabs(s,φ)

Pr�t(ρ) > p.

As Pathsabs(s, φ) only contains finite time-abstract paths, counterexamples are sets
of symbolic evidences of sufficient probability mass.

Definition 7 (Symbolic counterexample). A symbolic counterexample for P�p(φ)
where φ = ΦU�t Ψ is a set C of symbolic evidences for φ such that Pr(C) > p.

Providing Evidence of Likely Being on Time 337

Example 2. For the CTMC C in Fig. 1 and CSL formula P�0.45(a U �1b) the sym-
bolic evidences are ρ1 = s0s2t2, ρ2 = s0s1s2t2, ρ3 = s0s1t1, and so on. These

paths all satisfy a U b. For instance, s0
0.5→s1

0.25→ s2
0.05→ t2 ∈ Paths�1(ρ2). Without spec-

ifying the details (see next section), the probabilities of the symbolic evidences are:
Pr�1(ρ1) = 0.24998, Pr�1(ρ2) = 0.24994 and Pr�1(ρ3) = 0.16667. C = {ρ1, ρ2}
is a counterexample since Pr(C) > 0.45, but C′ = {ρ1, ρ3} is not.

The remainder of the paper is concerned with determining (symbolic) counterexamples
and symbolic evidences. As in conventional model checking, the intention is to ob-
tain comprehensible counterexamples. We interpret this as counterexamples of minimal
size, i.e., minimal cardinality. An algorithmic skeleton to generate such counterexam-
ples iteratively is given below:

(1) k := 1; pr := 0;
(2) while pr � p do
(3) determine symbolic evidence ρk;
(4) compute Pr�t(ρ

k);
(5) pr := pr + Pr�t(ρ

k);
(6) k := k + 1;
(7) od;
(8) return (ρ1, . . . , ρk−1)

The termination of this algorithm is
guaranteed as the violation of the prop-
erty has been already established prior to
invoking it. Evidently, the smaller the in-
dex k, the more succinct the counterex-
ample. The next section presents a way
to determine Pr�t(ρ), i.e., the probabil-
ity of a symbolic evidence (cf. line (4)).
In subsequent sections, we present algo-

rithms that aim to finding probable symbolic evidences, cf. line (3) of the algorithm.
Stated differently, we aim to terminating with a small value of k.

4 The Likelihood of a Symbolic Evidence

Assume we have symbolic evidence ρ = s0 s1 s2 . . . sl at our disposal. The probability
Pr�t(ρ) of this evidence—in fact, the probability of all concrete evidences of ρ up to
time t—is given by:

∫ t

0

(
p(s0, s1, t0)·

(
...(

∫ t−∑ l−2
i=0 ti

0
p(sl−1, sl, tl−1)·dtl−1)...

))
dt0 (1)

where p(s0, s1, t0) denotes the probability density function of s0 → s1 winning the
race at time instant t0 in the interval [0, t]. The corresponding probability is thus derived
by the outermost integral. Suppose the transition s0 → s1 takes place at time instant
t0. Then the possible time instant for the second transition s1 → s2 to take place is
in [0, t−t0]. This determines the range of the second outermost integral. The rest is
likewise. The innermost integral determines the residence time in state sl−1, the one-
but-last state in ρ.

To avoid computing this (somewhat involved) integral directly by numerical tech-
niques we resort to a simpler technique. The main idea is to isolate the time-abstract
path ρ from the entire CTMC. This yields a simple acyclic CTMC, i.e., an acyclic
phase-type distribution [16] which can be solved either analytically or numerically.

338 T. Han and J.-P. Katoen

Transformation into an acyclic CTMC. As a first step, we transform the CTMC
as suggested in [4]. (The same strategy was applied in Section 2 for DTMCs prior to
applying SP algorithms.) Consider CTMC C and CSL path-formula φ = ΦU�t Ψ . All
Ψ -states as well as all (¬Φ ∧ ¬Ψ)-states are made absorbing in C, i.e., their outgoing
transitions are replaced by a self-loop. It is not difficult to establish that the validity of
P�p(φ) remains invariant under this modification. In the rest of the paper, CTMCs are
assumed to have been subject to this transformation.

Definition 8 (CTMC induced by symbolic evidence). Let CTMC C = (S, P, E, L)
and ρ = s0 s1 . . . sl a symbolic evidence in CTMC C in which all states are pairwise
distinct 1. The CTMC Cρ induced by ρ on C is defined by: Cρ = (Sρ, Pρ, Eρ, Lρ) with:

– Sρ = {s0, . . . , sl, sabs} with sabs �∈ S ∪ {s0, . . . , sl},
– Pρ(si, si+1) = P(si, si+1), Pρ(si, sabs) = 1 − Pρ(si, si+1) for 0 � i < l and

Pρ(s, s) = 1 for s = sl or s = sabs
– Eρ(si) = E(si) and Eρ(sabs) = 0 and Lρ(si) = L(si) and Lρ(sabs) = {abs}.

Stated in words, Cρ is the CTMC obtained from C by incorporating all states in ρ,
and deleting all outgoing transitions from these states except si → si+1. The total
probability mass of these omitted transitions becomes the probability to move to the
trap state sabs . It follows directly that Cρ is acyclic when ignoring the self-loops of the
absorbing states.

s0 s2 t2

sabs

0.3 0.625

0.7
0.375

1

1Cρ1

Example 3. Consider CTMC C
in Fig. 1 and symbolic evidence
ρ1 = s0 s2 t2. The induced
CTMCs Cρ1 is shown on the left.

The following result states that computing the probability of symbolic evidence ρ boils
down to a (standard) transient analysis of the induced CTMC by ρ.

Lemma 3. For CTMC C and symbolic evidence ρ for φ = ΦU�t Ψ :

PrC�t(ρ) = πCρ(s, sl, t)

where πCρ(s, sl, t) is the transient probability of state sl, the last state of ρ, at time t
under the condition that Cρ started in s.

This result enables us to exploit well-known algorithms for the transient analysis of
CTMCs to determine the likelihood of a symbolic evidence. In fact, as CSL model
checking of time-bounded until-formulas is reduced to transient analysis (see [4]), the
desired likelihood can be determined by verifying the property ♦�t atsl

on the CTMC
Cρ. (Here, atsl

is an atomic proposition that only holds in state sl.) This yields an ap-
proximate solution up to an a priori user-defined accuracy and is part of the standard
machinery in model checkers such as PRISM [14] and MRMC [13]. Alternatively, we
can exploit the fact that Cρ is acyclic (ignoring the self-loops at the absorbing states)
and use the closed-form expression for transient distributions in acyclic CTMCs as pro-
posed by Marie et al. [15]. This yields an exact solution.

1 This is not a restriction since it is always possible to rename a state along ρ while keeping e.g.
its exit rate and its labeling the same.

Providing Evidence of Likely Being on Time 339

5 A First Attempt to Find Probable Symbolic Evidences

It remains to clarify how symbolic evidences can be obtained and how to obtain them
in such a way that small counterexamples result. As symbolic evidences are just state
sequences, the first idea is to adapt the strategy for DTMCs [10], cf. Section 2. That is,
the CTMC under consideration is discretized. This is done using uniformization [12], a
technique to transform a CTMC into a DTMC whose transient behaviour is equal (up
to some accuracy ε) 2. k-SP algorithms are then exploited to obtain symbolic evidences
in ascending order of likelihood (in the obtained DTMC). k is determined on-the-fly as
the minimal natural number such that

∑k
i=1 Pr�t(ρi) > p where p is the lower bound

of the property that is refuted. Let us first briefly present uniformization.

Uniformization (also known as Jensen’s method or randomization) [12] is a well-
known method for computing the transient probabilities of a CTMC at specific time t.
Its formulation involves construction of a DTMC and Poisson process from an original
CTMC. Uniformization is attractive because of its excellent numerical stability and the
fact that the computational error is well-controlled and can be specified in advance.

For CTMC C = (S, P, E, L), the uniformized DTMC is U = unif (C) = (S, U, L),
where U is defined by U = I+ Q

q with q � maxi{E(si)} and Q = R−diag(E). For the
special case q = 0, U(s, s) = 1 for any s ∈ S. In the rest of the paper, we always use U
to denote unif (C). The uniformization rate q can be chosen to be any value exceeding
the shortest mean residence time. All rates in the CTMC are normalized with respect to
q. For each state s with E(s) = q, one epoch in the uniformized DTMC corresponds
to a single exponentially distributed delay with rate q, after which one of its successor
states is selected probabilistically. As a result, such states have no additional self-loop
in the DTMC. If E(s) < q, i.e., state s has, on average, a longer state residence time
than 1

q , one epoch in the DTMC might not be “long enough”; hence, in the next epoch,
these states might be revisited with some positive probability. This is represented by
equipping these states with a self-loop with probability 1 − E(s)

q + R(s,s)
q .

Remark 2 (Self-loops). As a CTMC is assumed to have no self-loops on non-absorbing
states, all self-loops in the uniformized DTMC are caused by uniformization.

After uniformization, the vector of state probabilities πC(t) at time t, namely the tran-
sient probability vector, is computed as:

πC(t) = α0·
∞∑

i=0

PP(i, qt)Ui =
∞∑

i=0

PP(i, qt)πU (i), (2)

where PP (i, qt) = e−qt (qt)i

i! is the ith Poisson probability that i epochs occur in [0, t]
when the average rate is 1

qt and πU(i) is the state probability distribution vector after i

epochs in U with transition matrix U determined recursively by πU (i) = πU (i−1)·U
with the initial distribution πU (0) = α0.

2 An alternative discretization is to use the embedded DTMC, but as this does not involve any
timing aspects, this is senseless.

340 T. Han and J.-P. Katoen

The Poisson probabilities can be computed in a stable way with the Fox-Glynn al-
gorithm [8], thus avoiding numerical instability. The infinite summation problem is
solved by introducing a required accuracy ε, so that ‖πC(t) − π̃C(t)‖ � ε, where
π̃C(t) =

∑Nε(t)
i=0 PP(i, qt)·πU (i) is the approximation of πC(t) and Nε(t) is the num-

ber of terms to be taken in Equation (2) for time t, which is the smallest value satisfying:

Nε(t)∑
i=0

(qt)i

i!
� 1 − ε

e−qt
= (1 − ε)·eqt. (3)

If qt is larger, Nε(t) tends to be of the order O(qt).
Let θ denote a path in U , PathsU denote the set of all paths in U and PathsU (s) the

paths in U starting in s.

Model transformation. Given a CTMC C and a CSL formula φ = ΦU�t Ψ , we take
the uniformized DTMC U of C and remove all its self-loops. The resulting DTMC is
referred to as U⊗, which is an FPS instead of a DTMC. If U⊗ would be normalized,
we obtain the embedded DTMC of C. The probability in the embedded DTMC only
considers the race of transitions after the delay, while the probability in U⊗ takes delays
into consideration. We remove self-loops in U as many paths in U correspond to the
same time-abstract path in C. Every path in U⊗ is a time-abstract path in C and satisfies
φ. Besides, the information of the self-loops (viz., delays) can be recovered easily by
taking the difference between the total probability of a state and one.

Algorithm by pure graph analysis. For s �|= P�p(φ), a counterexample can be com-
puted as follows: The k most probable paths in U⊗ are computed, each corresponding
to a symbolic evidence in C, i.e., symbolic evidences are computed in such an order
ρ1, ρ2, ..., ρk that Pr{ρ1} � Pr{ρ2} � ... � Pr{ρk}. k is determined on the fly, as the
smallest number such that

∑k
i=1 Pr�t(ρi) > p. The k most probable paths problem

can be reduced to k-SP problem by the standard transformation in Section 2 which also
applies to FPS U⊗. The resulting algorithm becomes:

(1) k := 1; pr := 0;
(2) while pr � p do
(3) determine symbolic evidence ρk

as the k-th most probable path in U⊗;
(4) compute Pr�t(ρ

k);
(5) pr := pr + Pr�t(ρ

k);
(6) k := k + 1;
(7) od;
(8) return (ρ1, . . . , ρk−1)

The time complexity for computing
the k most probable paths is as the k-SP
problem, cf. [7], O(m + n log n + k).
The transformation from ρ to Cρ takes
O(|ρ|) time. It takes O(|ρ|qt) to com-
pute the probability of a symbolic ev-
idence ρ, where O(qt) is the number
of terms before truncation (i.e., Nε(t),
cf. [4]) and O(|ρ|) time is needed for
vector-vector multiplication. There are
k symbolic evidences, which gives rise
to the total time complexity O(m +
n log n + k|ρ|qt).

In most of the cases, probable paths in U⊗ correspond to probable symbolic evi-
dences in C. However, this is not always the case, since the time bound in the property

Providing Evidence of Likely Being on Time 341

is not considered. In particular, this approach does not guarantee Pr�t(ρi) � Pr�t(ρj)
for i < j. An example is given as follows:

Example 4. Consider our running example. The uniformized DTMC U is illustrated
on the left. The uniformization rate is chosen as q = E(s1) = 20, since s1 has the
largest exit rate. For symbolic evidences ρ2 = s0s1s2t2 and ρ3 = s0s2t1 of Exam-
ple 3, the probabilities in U⊗ are Pr{ρ2} = 0.100 and Pr{ρ3} = 0.045, respectively.
For CSL path formula φ = a U �1b, Pr�1(ρ2) = 0.24994 and Pr�1(ρ3) = 0.16362.
For φ′ = a U �0.1b, Pr�0.1(ρ2) = 0.04478 and Pr�0.1(ρ3) = 0.06838. Thus, for t = 1,
Paths�1(ρ2) is more probable than Paths�1(ρ3), whereas for t = 0.1, the reverse holds.

s0

u

s1

s2

t1

t2

0.25 0.2

0.8
0.15

0.1
0.3

0.5

0.5

1 0.2 1

1

{a} {a} {b}

{b}{a}∅

Fig. 2. unif (C) = U

This implies that for symbolic evidences ρ
and ρ′ and arbitrary time bound t, Pr{ρ} >
Pr{ρ′} cannot guarantee that Pr�t(ρ)>Pr�t(ρ′).
A direct consequence is that the algorithm
might terminate with a large value of k. The
counterexamples may thus be less comprehen-
sive, because evidences with large probability
might not be included. The algorithm in the
next section attempts to overcome this problem
by taking the time bound into account.

6 Involving Time Bounds

The previous algorithm ignores the time bound t in determining the order of generating
the symbolic evidences ρ1, ρ2, By definition, however, every transition in the uni-
formized DTMC U takes 1

q time units. In fact, using the Poisson probabilities we can
determine the probability of path θ in U to have a duration of at most t:

Definition 9 ([17]). Given a CTMC C, for θ ∈ PathsU with |θ| = l and t ∈ R>0, the
probability of θ occurring in [0, t] with rate q is defined as:

Pr�t(θ, qt) = PP(l, qt) · PrU{θ}.

Intuitively, given that |θ| transitions occur in the interval [0, t], the likelihood of θ oc-
curring in U is PrU{θ}. As U is a DTMC, PrU{θ} is simply

∏|θ|−1
i=0 U(si, si+1) for

θ = s0s1s2....
It remains to establish a connection between Pr�t(ρ) and the probabilities obtained

in the uniformized DTMC U , i.e., Pr�t(θ, qt), where θ relates to ρ. This can be done
as follows. Consider symbolic evidence ρ, say of length l. Paths in U that correspond
to ρ = s0s1...sl visit the same state sequence s0s1...sl but may take the self-loop in si

zero or more times. Recall that the purpose of this self-loop is to mimic the probability
for the CTMC to reside longer in si. The set of paths in U that correspond to (or can
mimic) ρ is defined by:

mimic(ρ) = {sn0
0 sn1

1 ...snl

l ∈ PathsU | ni > 0 for 0 � i � l},

342 T. Han and J.-P. Katoen

where l = |ρ| and sn0
0 is short for the n0-time replication of s0. Then:

PrC�t(ρ) =
∑

θ∈mimic(ρ)

PrU�t(θ, qt) =
∞∑

i=|ρ|
PP(i, qt)·

∑
θ∈mimic(ρ)∧i=|θ|

PrU{θ}

Note the similarity to Equation (2). The intuition is also similar: given a symbolic
evidence ρ of C, there are paths in U that can mimic ρ. These paths can have i(= |ρ|)
hops, i+1 hops, and so forth. The extra hops are self-loops in U which simulate the
longer residence time in a state in C.

To truncate the infinite summation, which lengths i do we need to consider? A natural
criterion for this is fortunately provided by the uniformization process. As the proba-
bility of any path longer than Nε(t) is negligible – given an accuracy ε – this suggests
to only consider paths up to length Nε(t). By taking this approach, it is guaranteed that
the total probability mass of the not considered paths is less than ε.

An algorithm involving time. In the following, we give an algorithm that determines
paths in a decreasing order with respect to Pr�t(θ, qt). Since we are interested in paths
without self-loops, we consider paths in U⊗.

Let �j
h denote the j-th most probable path in U⊗ of h hops, i.e. Pr{�j

h}�Pr{�j+1
h }.

Since the Poisson probability is fixed for a given h, Pr�t(�
j
h, qt) � Pr�t(�

j+1
h , qt).

Let τk denote the path in U⊗ with k-th largest probability Pr�t(τk, qt). Then:

τk = arg max
θ

{
Pr�t(θ, qt) | θ ∈ Qk

}
, (4)

where Qk is the candidate path set defined as:

Qk =

⎧⎨
⎩

{
�1

h | 0 � h � Nε(t)
}

if k = 1(
Qk−1 − {τk−1}

)
∪

{
�j+1

h

}
if k > 1 and τk−1 = �j

h

where j and h are the index and path length of τk−1, the previous path computed.
The algorithm starts with a “candidate” path set Q1 which contains all �1

h paths,
the most probable path of length h, for 0 � h � Nε(t). τ1 is picked out as the one
with the maximal probability in Q1, according to Equation (4). To compute the next
evidence τ2, Q2 is computed on the basis of Q1. As �1

l∗ has been removed from Q1,
where l∗ = |τ1|, another path of exactly l∗ hops replaces it. This new path is �2

l∗ , i.e.,
the second most probable path with the same length l∗ as τ1. Then τ2 can be picked
from Q2. Since each path in U⊗ is an evidence in C, the algorithm will terminate when
the probability of the first k evidences exceeds p.

Candidate paths are stored in a priority queue pq sorted by the keys Pr�t(�
j
h, qt).

The enqueue function inserts a new path to its proper position and the dequeue function
returns the pair (h, j) of the corresponding path with the highest probability in pq.
Function �(h, j, qt) computes the j-th h-hop most probable path �j

h, which can be
reduced to computing j-th shortest h-hop path in GU⊗ and can be solved by adapted
REA, see [10] for more details.

Providing Evidence of Likely Being on Time 343

(1) k := 0; pr := 0; h := 0; PriorityQueue pq;
(2) for h := 0 to Nε(t) do pq. enqueue(�(h, 1, qt)); od; \∗ Q1 ∗\
(3) while pr � p do \∗ Q2 to Qk ∗\

(4) (h′, j′) := pq. dequeue(); k := k + 1; ρk := �
j′

h′ ;
(5) � := �(h′, j′ + 1, qt); pq. enqueue(�); pr := pr + Pr�t(�); od;
(6) return (ρ1, . . . , ρk−1);

Note that the resulting evidence sequence ρ1, ρ2, ... coincides with τ1, τ2,

Time complexity. The time complexity for computing Q1 is O(q2t2m), since there are
Nε(t)+1 most probable paths to compute and the time to compute one probable path is
O(qtm). Note that Nε(t) is linear in O(qt) [4]. To compute ρk, there are at most Nε(t)
paths in Qk, so it takes O(qt log(qt)) time [10]. There are k − 1 such paths (ρ2 through
ρk) to be computed. This yields a total time complexity O(q2t2m + kqt log(qt)).

A refined algorithm. The above algorithm will generate a sequence of evidences
ρ1, ...ρk by the decreasing order of their probability product Pr�t(ρi, qt). However,
Nε(t) is usually large (typically, a few hundred or thousand) yielding a large set Q1.
As a result, the above algorithm is costly. We now suggest a heuristic to improve this
strategy. The basic idea is to use the Poisson probability function to obtain smaller
counterexamples.

Observation 1: We first notice that for fixed qt, the Poisson probability PP(h, qt) is
maximal when h = qt� or h = �qt�, which is the expectation of h. If h < qt�,
PP(h, qt) is monotonically increasing and if h > �qt�, PP(h, qt) is monotonically de-
creasing, cf. the figure below where the horizontal axis is the hop count h. The function
is only non-zero at integer values of h. The connecting lines do not indicate continu-
ity. This observation justifies the heuristics that we start from the crest of the function
(h = qt�) and proceed in two directions, in which way the hop counts for larger
Poisson probabilities are explored first, as a consequence, the probability product will
usually be large. This bidirectional increments will stop when the bounds 0 and Nε(t)
have been reached.

Observation 2: When the value qt is
small, the Poisson probability is almost
monotonically decreasing, cf. case λ = 1
in the figure. Then h = qt� is not suit-
able as the starting point any more.

Let �1
l∗ be the most probable path in

U⊗. It means that paths with h �= l∗ have
less or equal probability than �1

l∗ . There-
fore, h = l∗ is also considered as a start-
ing point. Due to Observation 1 and 2, our
algorithm starts from exploring paths with
H0 = max{qt�, l∗}.

We use the priority queue pq to keep track of the paths which have been explored
but not yet expanded. A path is “explored” when its probability is computed and added

344 T. Han and J.-P. Katoen

to the total counterexample probability. Note that every path that is explored is already
taken as an evidence. This is different from the previous algorithm where we might
explore many more paths (the huge basic set Q1) than actually needed. That also partly
explains why this algorithm is more efficient. A path is called “expanded” when it is
dequeued from pq and its successor is computed. When a path is dequeued, it means
that it has the largest probability product among all the paths in the queue; and this fact
makes the expansion reasonable.

New path(s) or evidence(s) will be added to the counterexample in each iteration.
The increments are in two dimensions. In one dimension, we have to increase the index
of some most probable path. More specifically, we dequeue the path �j

h with the highest
probability Pr�t(�

j
h, qt) from pq, and add its successor �j+1

h , namely the (j + 1)-st
most probable path with the same hop count. This happens in each iteration. In the other
dimension, the minimal and maximal number of hops of paths are incremented. We use
Hmin and Hmax to denote the minimal and maximal hop counts explored so far. Two
more new paths with Hmin − 1 and Hmax + 1 hops are added, namely, �1

Hmin−1 and
�1

Hmax+1 when the bounds 0 and Nε(t) have not yet been reached. The more iterations
the algorithm proceeds, the farther away Hmin and Hmax are from H0 and the less
Poisson probability the path will have.

The sketch of the improved algorithm is shown as follows:

(1) Compute most probable path �1

l∗ in U⊗; \∗ Initialization: ∗\
(2) pr := Pr�t(�

1

l∗); PriorityQueue pq.enqueue(�1

l∗);
(3) Hmin := Hmax := max{�qt�, l∗}; k := 1; ρk = �1

l∗ ;
(4) while pr � p do \∗ Main body: ∗\
(5) (h′, j′) := pq. dequeue(); �1 := �(h′, j′ + 1, qt); \∗ Increments on j ∗\
(6) pq.enqueue(�1); pr := pr + Pr�t(�3); ρk := �1; k := k + 1;
(7) if Hmin > 0 then \∗ Decrease of hop count ∗\
(8) Hmin := Hmin − 1; �2 := �(Hmin, 1, qt); pq.enqueue(�2);
(9) pr := pr + Pr�t(�2); ρk := �2; k := k + 1;

(10) if Hmax < Nε(t) then \∗ Increase of hop count: ∗\
(11) Hmax := Hmax + 1; �3 := �(Hmax, 1, qt); pq.enqueue(�3);
(12) pr := pr + Pr�t(�3); ρk := �3; k := k + 1; od;
(13) return (ρ1, ..., ρk−1);

Note that �1
l∗ in Line (1) can be computed by SP algorithms, say Dijkstra’s [6], in GU⊗ .

7 Conclusion

Comparison of algorithms. This paper presented a set of approximate algorithms for
computing small sets of paths that indicate the violation of time-bounded constrained
reachability probabilities. The algorithm involving time bounds for computing infor-
mative evidences considers Poisson probability besides the probability of paths them-
selves, which characterizes the significance of the paths in U , thus provides a clue of the
significance of the corresponding evidences in C. As we mentioned, the first algorithm
of pure graph analysis cannot guarantee that for the sequence of paths that computed
by our algorithm in order: ρ1, ..., ρk, it holds that Pr�t(ρ1) � ... � Pr�t(ρk). Unfortu-
nately, the one involving time also cannot guarantee this, however, it can guarantee that

Providing Evidence of Likely Being on Time 345

Pr�t(ρ1, qt) � ... � Pr�t(ρk, qt) which is usually very close to the target sequence.
The refined algorithm exploits the monotonicity of the Poisson probability function to
obtain small counterexamples. Experimental research of the proposed algorithms is to
be carried out as the future work.

Related work. Aljazzar et al. [1][2] applied directed explicit-state search algorithms
to determine a set of diagnostic traces which carry large amount of probability. Their
algorithms are guided by heuristics which exploit stochastic information on the traces.
In contrast, we have proposed several algorithms according to different levels of knowl-
edge about the CTMCs, which to some extent shows the significant role of probabil-
ity and time. The uniformization technique discretizes the continuous-time setting and
makes the efficient algorithms for DTMC counterexample-generation [10] adaptable
here. Moreover, the analysis and utilization of Poisson probability distribution gives
rise to an almost decreasing order of the evidence probabilities, which enables the in-
cremental exploration of the candidate evidence set.

Acknowledgment. Holger Hermanns and Boundewijn R. Haverkort are thanked for
useful discussions. This research has been performed as part of the QUPES project
that is financed by the Netherlands Organization for Scientific Research (NWO).

References

1. Aljazzar, H., Hermanns, H., Leue, S.: Counterexamples for timed probabilistic reachability.
In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 177–195. Springer,
Heidelberg (2005)

2. Aljazzar, H., Leue, S.: Extended directed search for probabilistic timed reachability. In:
Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 33–51. Springer, Hei-
delberg (2006)

3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-checking continous-time Markov
chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000)

4. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for
continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

5. Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model checking. In:
LICS, pp. 19–29 (2002)

6. Dijkstra, E.W.: A note on two problems in connection with graphs. Num. Math. 1, 395–412
(1959)

7. Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28(2), 652–673 (1998)
8. Fox, B.L., Glynn, P.W.: Computing Poisson probabilities. Comm. ACM 31(4), 440–445

(1988)
9. Gurfinkel, A., Chechik, M.: Proof-like counter-examples. In: Garavel, H., Hatcliff, J. (eds.)

TACAS 2003. LNCS, vol. 2619, pp. 160–175. Springer, Heidelberg (2003)
10. Han, T., Katoen, J.-P.: Counterexamples in probabilistic model checking. In: Grumberg, O.,

Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 72–86. Springer, Heidelberg (2007)
11. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Com-

put. 6(5), 512–535 (1994)
12. Jensen, A.: Markoff chains as an aid in the study of Markoff processes. Skand. Aktuarietid-

skrift 36, 87–91 (1953)
13. Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: QEST 2005,

pp. 243–244. IEEE Computer Society Press, Los Alamitos (2005)

346 T. Han and J.-P. Katoen

14. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 2.0: A tool for probabilistic model
checking. In: QEST 2004, pp. 322–323. IEEE Computer Society Press, Los Alamitos (2004)

15. Marie, R.A., Reibman, A.L., Trivedi, K.S.: Transient analysis of acyclic Markov chains.
Perform. Eval. 7(3), 175–194 (1987)

16. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach.
The Johns Hopkins Univ. Press (1981)

17. Qureshi, M., Sanders, W.: A new methodology for calculating distributions of reward ac-
cumulated during a finite interval. In: FTCS, pp. 116–125. IEEE Computer Society, Los
Alamitos (1996)

18. Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples and 3-
valued abstraction-refinement. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 275–287. Springer, Heidelberg (2003)

Assertion-Based Proof Checking of

Chang-Roberts Leader Election in PVS�

Judi Romijn1, Wieger Wesselink1, and Arjan Mooij2

1 Dept. of Mathematics and Computer Science, Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{j.m.t.romijn,j.w.wesselink}@tue.nl
2 School of Computer Science, The University of Nottingham

Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, United Kingdom
arjan.mooij@cs.nott.ac.uk

Abstract. We report a case study in automated incremental assertion-
based proof checkingwithPVS.Given an annotated distributed algorithm,
our tool ProPar generates the proof obligations for partial correctness, plus
a proof script per obligation. ProPar then lets PVS attempt to discharge
all obligations by running the proof scripts.

The Chang-Roberts algorithm elects a leader on a unidirectional ring
with unique identities. With ProPar, we check its correctness with a
very high degree of automation: over 90% of the proof obligations is
discharged automatically. This case study underlines the feasibility of
the approach and is, to the best of our knowledge, the first verification
of the Chang-Roberts algorithm for arbitrary ring size in a proof checker.

1 Introduction

Checking proofs with proof assistant tools is a recognized and valuable activ-
ity. Manual proofs tend to have small mistakes, and sometimes more serious
ones. Tools such as PVS provide powerful generic strategies, but the interaction
with these is usually rather involved. For correctness of distributed systems, the
tedious and cumbersome task of proof checking may benefit greatly from au-
tomation if there are general proof structures that apply and if a formalization
of the specification language is available. E.g., the TAME strategies [1] for PVS
relieve the book keeping in interactive proof checking for I/O automata.

In [15], we introduced a front-end tool supporting assertion-based verification
in the style of Owicki and Gries [18]. Given an annotated program, our tool
ProPar (Proof checking of Parallel programs) generates the proof obligations
for partial correctness, plus a proof script per obligation. It feeds the resulting
specification to the proof checker PVS [19], which attempts to discharge each
proof obligation by running the supplied proof script.

There is a growing interest to use general purpose provers like PVS as a
back-end for dedicated proof checking tasks. For example, [10] discusses

� This research was supported by the NWO under project 016.023.015: “Improving
the Quality of Protocol Standards”.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 347–361, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

348 J. Romijn, W. Wesselink, and A. Mooij

customizations of and extensions to PVS that would support this, while [16]
describes a tool that supports batch proving using PVS.

Closer to our work is [17,20], in which the Owicki-Gries theory is formalized
in the Isabelle prover. Their work is mainly theoretical, while we aim at supporting
the proof checking of concrete examples in an effective way, and at dealing with
the incremental nature of constructing a correct annotation.

This paper reports a case study: we apply our tool ProPar to the ring leader
election algorithm by Chang and Roberts [3]. Our interest in the correctness
of this algorithm is twofold. For this simple algorithm, some of the correctness
proofs require rather involved reasoning on the ring structure, making it a non-
trivial case study. In addition, to the best of our knowledge, no existing proof
for this protocol for arbitrary ring size has ever been checked mechanically.

We construct a correct annotation of the algorithm in several steps, while
illustrating the use of ProPar and PVS. Of the final annotation, over 90% of the
proof obligations has been discharged automatically. In four cases we have to
supply a proof in PVS ourselves, only two of these proofs are non-trivial.

Compared to [15,13], the effectiveness and user-friendliness of ProPar has been
improved greatly, according to the findings of this case study.

Overview. This paper is organised as follows. In Section 2, we recall the Owicki-
Gries theory and explain ProPar. In Section 3, the Chang-Roberts algorithm
is introduced, and related work on correctness of this algorithm is discussed.
Sections 4, 5 and 6 present the actual annotation of Chang-Roberts and our
ProPar/PVS efforts. Section 7 has the conclusions and future work.

2 The Owicki-Gries Theory and the Tool ProPar

We check the correctness of annotated programs with the tool ProPar1 (Proof
checking of Parallel programs), which we introduced in [15]. ProPar takes an
annotated program as input, and generates proof obligations for the PVS proof
checker2 [19] for local and global correctness of the annotation. Per proof obli-
gation, ProPar generates a proof script to enable running PVS in batch mode.

2.1 Annotated Programs

ProPar accepts the following language constructs in annotated programs:

– empty statement (skip)
– sequential composition of two or more statements (. . . ;. . .)
– alternative selection of one or more guarded statements (if . . .fi)
– repetition of one or more guarded statements (do . . .od)
– parallel composition over the elements of a type (par x: . . . rap)

1 ProPar is available from the authors upon request.
2 ProPar can also generate Isabelle output, but that feature was not exploited here.

Assertion-Based Proof Checking of Chang-Roberts Leader Election in PVS 349

– parallel composition of two or more statements3 (co . . .oc)
– atomic statements

Multiple guarded statements are separated by []; a guard is separated from the
corresponding statement by →. Atomic statements are statements whose exe-
cution cannot be interfered by executions of statements in other processes. An
example is the multiple assignment x, y := a, b. It is up to the user to determine
the atomic statements, and to model them in the language of the prover.

Programs can be annotated using assertions, that may be placed at the control
points of a program, i.e. at locations right before or after a statement. Asser-
tions are predicates on the state of the program. For repetitions and parallel
compositions there is also a notion of invariants. An invariant must be placed
at the control point i before keyword do (resp par), and is equivalent to an as-
sertion placed at i and at all control points within the repetition (resp. parallel
composition). This gives the user a convenient shorthand and allows ProPar to
combine many duplicate proof obligations.

2.2 Proof Obligations

An annotated program is to be considered correct if all assertions are correct.
An assertion at a control point is correct if the state of the program satisfies
the assertion, whenever execution is at the control point. Note that termination
of programs is not considered. The tool ProPar automatically generates proof
obligations from which the correctness of a program can be derived.

All proof obligations are expressed in terms of Hoare triples. A Hoare triple
{P} S {Q} is a boolean that is true if and only if each terminating execution of
statement S that starts from a state satisfying predicate P is guaranteed to end
up in a state satisfying predicate Q. The weakest liberal precondition wlp.S.Q,
is the weakest precondition P such that {P} S {Q} is a correct Hoare triple.
More formally {P} S {Q} ≡ [P ⇒ wlp.S.Q], where [. . .] is a shorthand for “for
all states”, i.e. a universal quantifier binding all free variables.

According to Owicki-Gries [18] an assertion Q in a process is correct iff:

– local correctness: If Q is an initial assertion, Q is implied by the precondi-
tion of the program. If Q is preceded by atomic statement {P} S (with P
an assertion preceding statement S), then {P} S {Q} is a correct Hoare
triple.

– global correctness : For each atomic statement {P} S in a different process,
{P ∧ Q} S {Q} is a correct Hoare triple.

ProPar obtains the proof obligations for local correctness by rewriting (parts
of) the annotated program according to Table 1, while applying each line as
rewrite rule from left to right. The rewriting ends when no statements remain.
Nested parallel compositions are treated seamlessly in this manner. The Hoare

3 A co statement can be easily expressed in terms of par. However, in many cases the
number of proof obligations is smaller for co.

350 J. Romijn, W. Wesselink, and A. Mooij

Table 1. The local correctness proof obligations per statement type

{P}skip{R} ⇐ [P ⇒ R]
{P}atomic-statement-S{R} ⇐ [P ⇒ wlp.atomic-statement-S.R]

{P}S0; {Q}S1{R} ⇐
{

{P}S0{Q}
{Q}S1{R}

{P}
do B0 → {P0}S0

[] B1 → {P1}S1

od
{R}

⇐

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[P ∧ B0 ⇒ P0]
[P ∧ B1 ⇒ P1]
[P ∧ ¬(B0 ∨ B1) ⇒ R]
{P0}S0{P}
{P1}S1{P}

{P}
if B0 → {Q0}S0

[] B1 → {Q1}S1

fi
{R}

⇐

⎧⎪⎪⎨
⎪⎪⎩

[P ∧ B0 ⇒ Q0]
{Q0}S0{R}
[P ∧ B1 ⇒ Q1]
{Q1}S1{R}

{P}
par x :

{Q0.x}S.x{Q1.x}
rap
{R}

⇐

⎧⎨
⎩

[∀x : P ⇒ Q0.x]
∀x : {Q0.x}S.x{Q1.x}
[(∀x : Q1.x) ⇒ R]

{P}
co

proc {P0}S0{Q0} corp
proc {P1}S1{Q1} corp

oc
{R}

⇐

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[P ⇒ P0]
[P ⇒ P1]
{P0}S0{Q0}
{P1}S1{Q1}
[(Q0 ∧ Q1) ⇒ R]

triples corresponding to global correctness are related to atomic statements, and
can therefore be expressed directly in wlps of atomic statements.

To illustrate the proof obligations generated by ProPar, we consider the pro-
gram fragment of the parallel composition in Table 1, where we assume that
assertions P , Q0, Q1 and R are placed at labels 0, 1, 2 and 3. The three lo-
cal correctness proof obligations on the right hand side are encoded in PVS as
follows, where we assume that S is an atomic statement:

loc Q0 stat 0: lemma
forall (s : state) : forall (x : X) : lab 0(s) ⇒ Q0(x)(s)

loc Q1 stat 1: lemma
forall (s : state) : forall (x : X) : lab 1(x)(s) ⇒ wlp S(x)(Q1(x))(s)

loc R stat 2: lemma
forall (s : state) : (forall (x : X) : lab 2(x)(s)) ⇒ R(s)

Assertion-Based Proof Checking of Chang-Roberts Leader Election in PVS 351

Here, the variable s ranges over all possible program states, and is introduced
to model the brackets [. . .] in Table 1. The logical variable lab i represents the
conjunction of the assertions located at the control point with label i.

2.3 Proof Scripts

ProPar generates PVS proof scripts for each of the generated proof obligations,
and writes them to a .prf file in the PVS proof format. PVS is then run in batch
execution mode to check whether each proof obligation is discharged.

As the first step in a proof script, ProPar automatically selects assertions
and invariants from relevant control points and inserts them with the lemma
command. Here, ProPar also instantiates quantifier variables for the state with
appropriate skolem variables. Contrary to the previous version, ProPar now al-
ways explicitly chooses the skolem variables itself. Experience has taught us that
the automatic choices of PVS are not always suitable.

The second step is a simplification step, in which commands like replace,
assert and simplify are used. We now discuss an example of the difficulties
encountered when trying to automate this step. Consider the proof state

{-1} FORALL (c: component): lab_6(c)(s!1) => inv_0a(s!1)
[-2] FORALL (c: component): lab_6(c)(s!1)
|-------

[1] ass_7a(s!1)

Given the assumption that type component is non-empty, one would expect
there are high-level commands available that simplify this into

{-1} inv_0a(s!1)
[-2] FORALL (c: component): lab_6(c)(s!1)
|-------

[1] ass_7a(s!1)

However, we did not succeed in generating proof scripts that achieve this sim-
plification in all the different contexts that may occur. We solved this problem
by introducing two custom lemmas as follows, with t a generic type:

quantifier lemma 1: lemma
forall (P : bool) : (forall (x : t) : P) = ((∃(x : t) : true) ⇒ P)

quantifier lemma 2: lemma
forall (P : [t → bool], Q : [t → bool]) : (forall (x : t) : P (x)) ⇒

(forall (x : t) : Q(x)) = forall (x : t) : P (x) ⇒ Q(x)))

This is a generalization of the approach we used in previous versions [15,13].
The third and last part of a proof script consists of a generalization of the

grind command to perform the hard work. This is the same as in [15].

352 J. Romijn, W. Wesselink, and A. Mooij

2.4 User Input

The input of ProPar consists of

– An annotated program, written in a prover independent language.
– An import file containing prover-dependent definitions.
– A file containing proof hints (optional, see below).
– A file containing manual proofs (optional, see below).

The annotated program contains only references to assertions, guards and wlp’s
of atomic statements. In the import file, the user has to express these in the
language of the prover. Usually this is a straightforward task.

Proof Hints. When the automatic proof of a lemma fails, the user may provide
proof hints, i.e. high-level directions to help the prover for a certain lemma.
Compared to [15], the use of proof hints is now much more generic. Proof hints
apply to the sequence of lemmas introduced in the beginning of a proof script.
If ProPar introduces too many lemmas, the prover becomes very inefficient. The
order of the lemmas can also influence the performance of the prover. Moreover,
additional lemmas from other theories may be needed. Through proof hints the
prover can focus on the appropriate lemmas, in the optimal order.

Finally, if all else fails, the user can supply a manual proof.

3 The Chang-Roberts Leader Election Algorithm

The leader election algorithm introduced by Chang and Roberts in [3] is designed
for a uni-directional ring consisting of components with unique identities. A strict
total order > on the identities is assumed. The algorithm elects the greatest
identity present according to >.

Each component may send its own unique identity to its neighbour in the
ring. Components only forward messages with identities which are greater than
any identity received thus far. The component that receives its own identity
concludes that its identity is the greatest in the ring and wins the election.

The algorithm was intended as an improvement on the leader election part of
Le Lann’s token passing algorithm [8]. Here, due to faulty connections, multiple
elections can overlap and correctness is not guaranteed. Like [3], we restrict
ourselves to reliable connections and one election round only.

3.1 The Algorithm in Assertion-Based Style

In Figure 1, the Chang-Roberts leader election algorithm is shown, including
assertions for the correctness specification. The program is a parallel composition
of the repetition to be executed by each component. The program terminates
only when all components have finished the repetition. The labels 0a, 0b, etc.
that precede assertions are generated by ProPar, we stick to that labelling in
the remainder of this paper. Likewise, we refer to the guards in the selection
statement at location 2 as guard 2a, 2b and 2c.

Assertion-Based Proof Checking of Chang-Roberts Leader Election in PVS 353

var leader : [comp → nat], ready : [comp → bool]
0: {ass 0a: (∀c:comp : leaderc = id(c))}

{ass 0b: (∀c:comp : ¬readyc)}
par (c : comp):

1: do ¬readyc →
2: if readyprev(c) →
3: readyc := true

[] leaderprev(c) = id(c) →
4: readyc := true

[] leaderprev(c) > leaderc →
5: leaderc := leaderprev(c)

fi
od

6: rap
7: {ass 7a: (∀c1,c2:comp : leaderc1 = leaderc2}

{ass 7b: (∀c1,c2:comp : leaderc1 ≥ id(c2)}
{ass 7c: (∃c:comp : leaderc = id(c)}

Fig. 1. The Chang-Roberts leader election algorithm

Assertions 0a, 0b, 7a, 7b and 7c express the correctness of the algorithm.
These enforce that upon termination of the parallel statement, all components
have elected the same leader, i.e. the greatest identity present in the ring.

To start, each component has its own identity for leader. Inside the repetition
at control point 1, the election takes place. Each component c monitors the leader
identity of its immediate neighbour prev(c) in the unidirectional ring. When the
neighbour’s leader identity is greater than the component’s own leader identity,
guard 2c evaluates to true, and the component may copy it in statement 5.
In this manner, candidate leader identities spread over the ring, until they are
overtaken by a better identity. The greatest identity spreads over the ring until
it reaches the originating component. Then this component signals it has won
because guard 2b evaluates to true. At this point, the election is finished.

A component can only terminate the repetition after its ready flag has been
set to true. In this way the algorithm ensures that all components can find out
that the election has ended, an aspect that is often ignored in the literature.

We model communication by having the receiver poll the sender’s current
leader identity. This is clearly equivalent to synchronous communication with
explicit messages. Moreover, for this particular algorithm, a version with asyn-
chronous communication simulates our polling version: the sending of a message
in the asynchronous case can be related to the polling moment in our version.

Ring structure. We assume the type comp for the components on the ring,
and a constant function id : [comp → nat] mapping each component to its
unique identity which is a natural number. In this way we immediately have
the total order >. For the ring structure, we assume the constant function
prev : [comp → comp] which points at the predecessor of a component in the

354 J. Romijn, W. Wesselink, and A. Mooij

direction of
messages

prev

prev

prev

prevprev

prev

prev

6

5

3

0

2
1

4

Fig. 2. A unidirectional ring

ring. An example ring is shown in Figure 2. Here, the unique identity of a compo-
nent is in the node, and the arrows between components indicate the predecessor
relation.

3.2 Related Work

Lynch et al. have studied Chang-Roberts in the I/O automata language. [12]
has a correctness proof, but proofs are only sketched. In [11,9] a performance
analysis of a timed version is given but the proofs are not checked (in contrast to
other results in both publications). An IOA model is online at the IOA homepage
(http://theory.csail.mit.edu/tds/ioa/). In [7], a finite instance of this IOA
model is checked in Isabelle/IOA.

Garavel et al. [6] have model checked Le Lann’s full token passing algo-
rithm for concrete ring sizes in the formal language LOTOS and proposed an
improvement. They find mistakes in the presence of faulty connections that
lead to overlapping election rounds, which is outside the scope of our case
study. However, the mistakes found and the improvement proposed suggest
that having a proper notification of the election termination should be part
of the protocol. We have this in our version of the leader election, as explained
above.

Sen [21] reports on another model checking experiment in his thesis, compar-
ing the tool POTA to SPIN.

A correctness proof for arbitrary ring size is given by Chen et al in [4] in the
formal language μCRL, but it has not been proof checked in any tool. In fact,
this paper turns out to contain some essential mistakes in both specification and
proof, thus underlining the need for machine-checked verifications.

Many papers study the performance of Chang-Roberts and related algorithms
(like [2]). That is outside the scope of this paper.

Apparently, despite the attention in the literature, the Chang-Roberts algo-
rithm has not been verified mechanically for arbitrary ring size. It seems that
this algorithm, while small and simple, has the appropriate degree of complexity
to make it a nice proof checking challenge for our tool ProPar.

http://theory.csail.mit.edu/tds/ioa/

Assertion-Based Proof Checking of Chang-Roberts Leader Election in PVS 355

4 A Correct Chang-Roberts Annotation (Phase 1)

We must extend the annotation given in Figure 1 with assertions and invariants
until it is provably correct, i.e. each proof obligation generated by ProPar is
discharged either automatically by running PVS on the generated proof script,
or manually by proving it in PVS ourselves. In the coming sections, we extend
the annotation and then run ProPar to see how far PVS gets in batch mode.

In the first annotation step, we work from the annotation in Figure 1 towards
the one in Figure 3 (new parts marked ∗).

We start by adding invariants. We weaken assertion 7b to a local version
in invariant 0a. The two are equivalent when assertion 7a holds. Assertion 7a
becomes true when at least one component signals that the election is finished.
We state this in invariant 0b with no more than two quantified variables, using
transitivity of =. When exiting the parallel statement, by successful termination
of each repetition, the premise in invariant 0b holds for all components hence
establishing assertion 7a. For assertion 7c, we observe that each leader identity
stored by a component is the identity of some component in the ring. We state
this as invariant 0c. Combining assertion 7a and invariant 0c yields assertion 7c.

To establish the correctness of these invariants, we add assertions to the con-
trol points inside the parallel statement. We start by stating each selection guard
as an assertion following the guard’s execution. We can do so if the guard con-
tinues to hold regardless of what the other components do. For each of the
guards 2a, 2b and 2c this is indeed the case. Similarly, we state the negation of
the repetition guard at location 6.

In addition, we state in assertion 4b that the current component’s leader
identity is equal to its neighbour’s leader identity. We also state in assertion 5b
that none of the components have finished the repetition.

4.1 ProPar Results

We run the ProPar tool on the files containing the annotated algorithm from
Figure 3. ProPar generates 36 proof obligations and proof scripts. Of these, 29
are discharged automatically by PVS. The seven remaining obligations are:

– local correctness of assertion 4b (when executing guard 2b),
– local correctness of assertion 7c (when exiting the parallel statement), and
– global correctness of assertions 4a and 4b when executing assignment 5,
– global correctness of assertion 5b when executing assignment 4,
– global correctness of invariant 0b when executing assignment 3 or 4.

For assertion 4b, when guard 2b holds, clearly c still has its own identity for
leader. If this was not the case, then it copied a better identity from its prede-
cessor, and then guard 2b cannot hold. Reasoning about this requires information
on the leader identities that a component has had between the first (its own)
and the last (the winner). We can do so by adding a history variable, which is
discussed in the next section. We choose this as our next move, in the hope that
it will help in discharging the other proof obligations.

356 J. Romijn, W. Wesselink, and A. Mooij

var leader : [comp → nat], ready : [comp → bool]
0: {ass 0a: (∀c:comp : leaderc = id(c))}

{ass 0b: (∀c:comp : ¬readyc)}
{inv 0a: (∀c:comp : leaderc ≥ id(c))} ∗
{inv 0b: (∀c1,c2:comp : readyc1

⇒ leaderc1 = leaderc2)} ∗
{inv 0c: (∀c1:comp : (∃c2:comp : leaderc1 = id(c2)))} ∗
par (c : comp):

1: do ¬readyc →
2: if readyprev(c) →
3: {ass 3a: readyprev(c)} ∗

readyc := true
[] leaderprev(c) = id(c) →

4: {ass 4a: leaderprev(c) = id(c)} ∗
{ass 4b: leaderc = leaderprev(c)} ∗
readyc := true

[] leaderprev(c) > leaderc →
5: {ass 5a: leaderprev(c) > leaderc} ∗

{ass 5b: (∀c1:comp : ¬readyc1
)} ∗

leaderc := leaderprev(c)
fi

od
6: {ass 6a: readyc} ∗

rap
7: {ass 7a: (∀c1,c2:comp : leaderc1 = leaderc2}

{ass 7b: (∀c1,c2:comp : leaderc1 ≥ id(c2)}
{ass 7c: (∃c:comp : leaderc = id(c)}

Fig. 3. Chang-Roberts algorithm (phase 1, marked ∗)

In order to maintain global correctness of invariant 0b under assignment 4,
we calculate the wlp. We find a stronger version of assertion 4b: when guard 2b
holds, it is in fact the case that the winning identity has traversed the entire
ring is the leader for each component. This is added as assertion 4c in the
following section. This assertion will help in discharging the remaining global
correctness obligations for assertions 4a, 4b and 5b. Note that reasoning to show
local correctness of the new assertion 4c requires induction on the ring structure.
Here, the history variable can be useful too.

5 A Correct Chang-Roberts Annotation (Phase 2)

The first step for dealing with the remaining proof obligations from Section 4.1,
for which PVS cannot successfully execute the ProPar proof script, is to intro-
duce a history variable leadersc for each component c in the ring. The history
variable records all the values that the program variable leaderc takes on during
execution. This enables us to compare current and past leader identities of a
component and its neighbour. We can add any history variable if it does not
change the program’s behaviour.

Assertion-Based Proof Checking of Chang-Roberts Leader Election in PVS 357

We now state invariants 0d to 0g, expressing that each new leader identity
accepted by component c is better than c’s own identity, has been copied from
c’s predecessor, and hence must be in the leadersprev(c) collection.

The new annotation is Figure 4 with everything from the previous annotation
(unmarked) and the new parts added in this phase (marked ∗). Note that the part
marked ∗∗ belongs with the final annotation (see Section 6). The two annotations
are merged in Figure 4 to save space.

As announced, we also add assertion 4c which helps to maintain invariant 0b
under assignment 4, and which implies assertion 4b. Assertion 4a is weakened
to make use of variable leaders, by combining guard 2b and invariant 0d.

For history variable leaders, we ensure the proper initial value with the new
assertion 0c. Its value is updated in statement 5: whenever a new leader identity
is copied it is also added to the leaders collection. Invariants 0d to 0g express
the additional information that we require for proving correctness.

5.1 ProPar Results

We run ProPar on the incremented annotated algorithm from Figure 4 (except
the part marked ∗∗). Of the 52 proof obligations generated, PVS discharges 46
automatically through the ProPar proof scripts.

We notice that PVS fails for local correctness of assertions 5b and 7a whereas it
ran successfully for the previous annotation. PVS gets confused by the growing
number of applicable lemmas: this annotation has seven invariants instead of
three. If we give ProPar proof hints for these failing proof, we can easily generate
the successful script again. We supply only the invariants from the previous
annotation plus the assertions of the location prior to the current statement:

loc_ass_5b_stat_2: lab_2_inv_0a lab_2_inv_0b lab_2_inv_0c
loc_ass_7a_stat_6: lab_6_ass_6a lab_6_inv_0a lab_6_inv_0b lab_6_inv_0c

With these proof hints, the proofs generated by ProPar are accepted by PVS.
Of the 52 proof obligations, PVS has now 48 discharged automatically. The

four obligations for which PVS fails are (∗ marks the new obligation):

– local correctness of assertion 4b (when executing guard 2b),
∗ local correctness of assertion 4c (when executing guard 2b),
– local correctness of assertion 7c (when exiting the parallel statement), and
– global correctness of invariant 0b when executing assignment 3.

Apparently, all previous global correctness obligations are now discharged except
the one for invariant 0b under assignment 4, assertions, and only one of the new
proof obligations remains unproved.

We establish local correctness of assertion 7c with local correctness of asser-
tion 7a and invariant 0c as proof hints. Since 7a and 7c are at the same control
point, with 7a preceding 7c, we can use local correctness of 7a as a lemma here.
We adjusted ProPar to allow such proof hints.

For local correctness of assertion 4c, we need one final invariant. This is de-
scribed in the following section.

358 J. Romijn, W. Wesselink, and A. Mooij

var leader : [comp → nat], leaders : [comp → setof(nat)], ready : [comp → bool]
0: {ass 0a: (∀c:comp : leaderc = id(c))}

{ass 0b: (∀c:comp : ¬readyc)}
{ass 0c: (∀c:comp : leadersc = {leaderc})}
{inv 0a: (∀c:comp : leaderc ≥ id(c))}
{inv 0b: (∀c1,c2:comp : readyc1

⇒ leaderc1 = leaderc2)}
{inv 0c: (∀c1:comp : (∃c2:comp : leaderc1 = id(c2)))}
{inv 0d: (∀c:comp : leaderc ∈ leadersc)} ∗
{inv 0e: (∀c:comp,n:nat : n ∈ leadersc ⇒ leaderc ≥ n)} ∗
{inv 0f: (∀c:comp : (leadersc − {id(c)}) ⊆ leadersprev(c))} ∗
{inv 0g: (∀c:comp,n:nat : n ∈ leadersc ⇒ n ≥ id(c))} ∗
{inv 0h: (∀c1,c2:comp : leaderc2 = id(c1)

⇒ (∀c3:comp : mp(c1, c3) ≤ mp(c1, c2) ⇒ c1 ∈ leadersc3))} ∗∗
par (c : comp):

1: do ¬readyc →
2: if readyprev(c) →
3: {ass 3a: readyprev(c)}

readyc := true
[] leaderprev(c) = id(c) →

4: {ass 4a: id(c) ∈ leadersprev(c)} ∗
{ass 4b: leaderc = leaderprev(c)}
{ass 4c: (∀c1:comp : leaderc1 = leaderc)} ∗
readyc := true

[] leaderprev(c) > leaderc →
5: {ass 5a: leaderprev(c) > leaderc}

{ass 5b: (∀c1:comp : ¬readyc1
)}

leaderc, leadersc := leaderprev(c), leadersc ∪ {leaderprev(c)} ∗
fi

od
6: {ass 6a: readyc}

rap
7: {ass 7a: (∀c1,c2:comp : leaderc1 = leaderc2}

{ass 7b: (∀c1,c2:comp : leaderc1 ≥ id(c2)}
{ass 7c: (∃c:comp : leaderc = id(c)}

Fig. 4. Chang-Roberts algorithm (phase 2 marked ∗, and phase 3 marked ∗∗)

6 A Correct Chang-Roberts Annotation (Phase 3)

We add a final invariant to enable the manual proof for local correctness of
assertion 4c. The annotation obtained in this way is Figure 4, now including the
line marked ∗∗. Invariant 0h expresses for component c2 that has the identity
of c1 for leader, that all components on the predecessor path from c2 to c1 have
also seen the identity of c1. Note the use of function mp(c1, c2) which computes
the distance in the ring between c1 and c2 by counting the number of prev steps
back from c2 to c1.

Assertion-Based Proof Checking of Chang-Roberts Leader Election in PVS 359

6.1 ProPar Results

Local correctness of assertion 7b is lost, and mended with proof hints, as in
Section 5.1. Of the 55 current proof obligations, PVS discharges 51 automatically,
4 of these through our use of proof hints. The obligations for which PVS fails
are (∗ marks the new obligation):

– local correctness of assertion 4b (when executing guard 2b),
– local correctness of assertion 4c (when executing guard 2b),
– global correctness of invariant 0b when executing assignment 3.
∗ global correctness of invariant 0h when executing assignment 5.

Only the second obligation seems to require an involved proof, but the others
turn out to be too tricky for PVS with ProPar proof scripts, even with our proof
hints. All of these require a manual proof.

We run ProPar on the annotation of Figure 4 with the proof hints and manual
proofs (discussed in the remainder of this section), to find that all proof obliga-
tions are discharged, hence correctness of Chang-Roberts is now established.

6.2 Manual Proofs

When starting a manual proof, the proof script generated by ProPar is very
helpful. We use the PVS option to step through the generated proof, until we
reach the point where ProPar calls on the semidecision procedures (like grind).
Here we take over and manually instruct PVS step by step until we have Q.E.D.

We have created a theory for the ring structure with domain-specific knowl-
edge. In this theory, we have proved some useful lemmas which are used in the
manual proofs for invariant 0b and assertion 4c.

The proofs for local correctness of assertion 4b and for global correctness
of invariant 0b under statement 3 are easy. Global correctness of invariant 0h
under statement 5 requires a complicated case distinction on the three quantified
variables but this is very manageable.

As announced, for local correctness of assertion 4c we must use some kind of
induction on the ring structure. We apply measure-induct+ and use as measure
function the distance mp(c1, c2). The base case is easy. For the induction step,
based on the assumption that we have the same leader for c1 and prev(c2) we
can then prove the induction step using all invariants except 0b. This requires a
complicated proof of about 90 PVS proof steps.

7 Conclusions and Future Work

We successfully applied our method to check correctness of the Chang-Roberts
algorithm for arbitrary ring size, by creating a proof in an incremental and
automated fashion. In the end, 51 out of 55 proofs were handled automatically.
Five of the 51 proofs required straightforward proof hints from the user. In
addition, four manual proofs were needed, two of which were rather involved.

360 J. Romijn, W. Wesselink, and A. Mooij

The most significant parts of the proof effort were developing a correct anno-
tation, and manually proving the remaining proof obligations. Other activities
(creating an import file, creating proof hints and interacting with the tool) were
negligible compared to these.

During the case study we made pragmatic improvements to ProPar, that
resulted in a higher rate of automatically handled proofs, without changing any-
thing in the theory. E.g., the proof hints mechanism now allows for user-defined
lemmas to be introduced, and for local correctness results of pre-assertions at the
current control point to be exploited. Custom lemmas are applied to smoothen
the quantifications encountered which differ for control points in the body ver-
sus the control point at the end of a parallel composition. In addition, the proof
scripts have been changed to make them behave in a more predictable way, by
explicitly instantiating with skolem variables.

7.1 PVS Discussion

In contrast to manual proofs, when dealing with large numbers of generated
proofs, it is essential that proof strategies are robust and behave in a predictable
way. In our previous case study [15] we discovered a bug in PVS that prevented
certain proofs to be completed automatically. This has been repaired since ver-
sion 4.0 (PVS bug 920). In this case study another bug has been encountered in
PVS 4.0 and submitted (PVS bug 979, reportedly fixed but yet not released).

In some cases unpredictable behavior of PVS caused problems. For example,
certain proofs suddenly failed after hiding an unnecessary antecedent. Still many
seemingly simple proof obligations exist that PVS cannot handle automatically.
To deal with this, we introduced new proof hints, and applied custom lemmas
to support the prover.

A more powerful proof script language for PVS is desirable. For example, it
would be useful to be able to enumerate possible instantiations of quantifier vari-
ables, and to specify in which order PVS should try to use them. PVS commands
like use and the higher level grind often choose the right instantiations, but for
proofs in batch mode “often” is not good enough.

7.2 Future Work

There are several directions for future work. Termination of programs (or more
generally progress conditions [5]) could be supported by generating proof obli-
gations for the decrease of a user supplied norm function. Another topic is to
study to what extent inductive proofs (e.g., for security protocols like in [14])
can be supported, if the user supplies a measure function. Soundness could be
warranted by automatically verifying that the generated proof obligations are
sufficient, similar to the approach in [17].

Finally, PVS has weak support for controlling instantiations of quantifier vari-
ables, which sometimes causes the tail part of the generated proofs to fail. Until
PVS is improved in this respect, we can possibly circumvent this by arranging
for the user to supply suitable instantiation hints.

Assertion-Based Proof Checking of Chang-Roberts Leader Election in PVS 361

References

1. Archer, M., Heitmeyer, C., Riccobene, E.: Proving invariants of I/O automata with
TAME. Automated Software Engineering 9(3), 201–232 (2002)

2. Chan, M.Y., Chin, F.Y.L.: Optimal resilient distributed algorithms for ring elec-
tion. IEEE Trans. on Parallel and Distributed Systems 4(4), 475–480 (1993)

3. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema finding
in circular configurations of processes. Comm. of the ACM 22(5), 281–283 (1979)

4. Chen, T., Han, T., Lu, J.: Analysis of a leader election algorithm in μCRL. In:
Proceedings of CIT 2005, pp. 841–847. IEEE Computer Society, Los Alamitos
(2005)

5. Dongol, B., Mooij, A.J.: Progress in deriving concurrent programs: emphasizing
the role of stable guards. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp.
140–161. Springer, Heidelberg (2006)

6. Garavel, H., Mounier, L.: Specification and verification of various distributed leader
election algorithms for unidirectional ring networks. Science of Computer Program-
ming 29(1–2), 171–197 (1997)

7. Hamberger, T.: Integrating theorem proving and model checking in Isabelle/IOA.
Technical Report TUM-I, T.U. Munich (1999)

8. Le Lann, G.: Distributed systems - towards a formal approach. In: 1977 IFIP
Congress Proceedings, Information Processing, vol. 77, pp. 155–160. North-
Holland, Amsterdam (1977)

9. Luchangco, V.: Using Simulation to Prove Timing Properties. PhD thesis, Mas-
sachusetts Institute of Technology (1995)

10. Lüttgen, G., Muñoz, C., Butler, R., Vito, B.D., Miner, P.: Towards a customizable
PVS. Technical Report ICASE 2000-4, CR-2000-209851. NASA Langley (2000)

11. Lynch, N.A.: Proving performance properties (even probabilistic ones). In: Pro-
ceedings of FORTE 1994, pp. 3–20. Chapman and Hall (1995)

12. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
13. Mooij, A.J.: Constructive formal methods and protocol standardization. PhD the-

sis, Technische Universiteit Eindhoven (2006)
14. Mooij, A.J.: Constructing and reasoning about security protocols using invariants.

In: Proceedings of REFINE 2007, ENTCS. Elsevier, Amsterdam (to appear, 2007)
15. Mooij, A.J., Wesselink, J.W.: Incremental verification of Owicki/Gries proof out-

lines using PVS. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785,
pp. 390–404. Springer, Heidelberg (2005)

16. C. Muñoz. Batch proving and proof scripting in PVS. Technical Report NIA
2007-03, CR-2007-214546, NASA Langley (2007)

17. Nipkow, T., Prensa Nieto, L.: Owicki/Gries in Isabelle/HOL. In: Finance, J.-P.
(ed.) FASE 1999. LNCS, vol. 1577, pp. 188–203. Springer, Heidelberg (1999)

18. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Informatica 6, 319–340 (1976)

19. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Pro-
ceedings of CADE 1992. LNCS (LNAI), vol. 607, pp. 748–752. Springer, Heidelberg
(1992)

20. Prensa Nieto, L.: Verification of Parallel Programs with the Owicki-Gries and Rely-
Guarantee Methods in Isabelle/HOL. PhD thesis, T.U. Munich (2002)

21. Sen, A.: Techniques for Formal Verification of Concurrent and Distributed Program
Traces. PhD thesis, The University of Texas at Austin (2004)

Continuous Petri Nets: Expressive Power and

Decidability Issues

Laura Recalde2, Serge Haddad1, and Manuel Silva2,�

1 LAMSADE-CNRS UMR 7024, University Paris-Dauphine, France
haddad@lamsade.dauphine.fr

2 GISED, University of Zaragoza, Spain
{lrecalde,silva}@unizar.es

Abstract. State explosion is a fundamental problem in the analysis
and synthesis of discrete event systems. Continuous Petri nets can be
seen as a relaxation of discrete models. The expected gains are twofold:
improvements in comlexity and in decidability. This paper concentrates
on the study of decidability issues. In the case of autonomous nets it
is proved that properties like reachability, liveness or deadlock-freeness
remain decidable. When time is introduced in the model (using an infinite
server semantics) decidability of these properties is lost, since continuous
timed Petri nets are able to simulate Turing machines.

1 Introduction

State explosion problems represent a main drawback in the study of heavily
loaded discrete event dynamic systems, modeled for example as Petri nets. Try-
ing to alleviate these problems, different relaxations have been used, in par-
ticular, continuous Petri nets. The expected gains are twofold: improvements
in computability and in decidability. An example of computability gain is the
study of reachability, that under very general conditions (consistent continuous
nets with all the transitions fireable) can be computed in polynomial time [8].
Another property that is improved, now for timed nets, is the computation of an
initial marking that maximizes a linear function of the throughput (production),
the steady-state marking (work in process) and the initial marking (investment).
In continuous equal conflict nets (the weighted version of free choice nets) this
initial marking can be computed using a linear programming problem [11]. This
paper concentrates on the study of decidability issues. The autonomous model
is studied first, and it is proved that properties like reachability, liveness or
deadlock-freeness, that are decidable in discrete Petri net systems [4], are also
decidable in continuous Petri net systems, as it was expected.

In discrete Petri nets, time has been introduced in many different ways. Here
we will concentrate on one of them: a delay is associated to transitions accord-
ing to a distribution function. Discrete PNs with general probability distribu-
tion functions associated to transitions (which includes deterministic timing)

� This work was partially supported by project CICYT and FEDER DPI2003-06376.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 362–377, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Continuous Petri Nets: Expressive Power and Decidability Issues 363

are equivalent to Turing machines [3]. However, this is based on the existence
of transitions that fire in zero time (immediate transitions), that introduce a
notion of priority. In continuous timed Petri nets, these transitions will not be
considered, so the model is more restrictive in this sense.

In [2] decidability problems of hybrid Petri nets were studied, proving that
reachability was decidable. The model was hybrid i.e., it combined a discrete with
a continuous part. Regarding the interpretation, the discrete part was untimed,
while the dynamics of the continuous part was based on finite server semantics.
In some sense, the model used here is simpler (all the transitions are continuous),
but more complex in the dynamics used for the marking evolution (the so called
infinite server semantics). Under infinite servers semantics the evolution of the
marking can be represented as a set of constant parameters linear differential
equations. The switching among them is associated to minimum operators. In [6],
an alternative model was defined (timed differentiable Petri nets), and it was
shown that it could model a Turing machine. Here it is proved that these two
models are equivalent. Moreover, self-loop arcs can be avoided in the model.
That is, the modelling power of pure continuous Petri nets under infinite server
semantics is equivalent to that of Turing machines.

The structure of the paper is as follows: in Section 2 autonomous and timed
continuous Petri nets are introduced, illustrating the kind of behavior they can
model with several examples. Decidability of properties like reachability, liveness
or deadlock-freeness of the autonomous model is studied in Section 3. Section 4
deals with the timed model, proving that timed continuous Petri nets and timed
differentiable Petri nets are in fact equivalent. This is used in Section 5 to deduce
that timed continuous Petri nets have Turing machine modelling power.

2 Continuous Petri Nets

2.1 Autonomous Continuous Petri Nets

We assume that the reader is familiar with Petri nets (PNs) (for notation we use
the standard one, see for instance [10]).

The structure N = 〈P, T,Pre,Post〉 of (autonomous) continuous Petri nets
(ACPN) is the same as the structure of discrete PNs. That is, P is a finite set of
places, T is a finite set of transitions with P ∩T = ∅, Pre and Post are |P |× |T |
sized, natural valued, pre- and post- incidence matrices. The usual PN system,
〈N ,m0〉, will be said to be discrete so as to distinguish it from a continuous PN
system, in which m0 ∈ (R≥0)|P |. The main difference between both formalisms
is in the evolution rule, since in continuous PNs firing is not restricted to be done
in integer amounts. As a consequence the marking is not forced to be integer.
More precisely, a transition t is enabled at m iff for every p ∈ •t, m[p] > 0, and
its enabling degree is enab(t,m) = minp∈•t{m[p]/Pre[p, t]}. The firing of t in a
certain amount α ≤ enab(t,m) leads to a new marking m′ = m + α · C[P, t],
where C = Post − Pre is the token-flow matrix.

As in discrete systems, right and left natural annullers of the token flow matrix
are called T- and P-semiflows, respectively. When y ·C = 0, y > 0 the net is said

364 L. Recalde, S. Haddad, and M. Silva

to be conservative, and when C ·x = 0, x > 0 the net is said to be consistent. A
set of places Θ is a trap iff Θ• ⊆ •Θ. Similarly, a set of places Σ is a siphon iff
•Σ ⊆ Σ•. The support of a vector v ≥ 0 will be denoted as ‖v‖ and represents
the set of positive elements of v.

In continuous PNs the reachability concept is not so immediate as in discrete
nets. For example, in a continuous net it may happen that the marking of a
place can be done smaller and smaller, but never reaches 0. This idea of getting
as close as desired to a marking, even if it is never reached with a finite firing
sequence leads in [9] to the definition of limit reachability, further refined in [8].

Definition 1. Let 〈N ,m0〉 be a continuous system. Two reachability concepts
are defined:

– RS(N ,m0) = { m ∈ (R≥0)|P | | a finite fireable sequence σ = α1ta1 . . . αktak

exists such that m0
α1ta1−→ m1

α2ta2−→ . . .
αktak−→ mk = m with ti ∈ T and αi ∈ R≥0}.

– lim-RS(N ,m0) = {m ∈ (R≥0)|P ||a sequence of reachable markings {mi}i≥1
exists verifying m0

σ1−→m1
σ2−→m2 · · ·mi−1

σi−→mi · · · and lim
i→∞

mi = m}.

The set of reachable (and lim-reachable) markings in continuous PNs satisfies
some properties that do not hold for discrete nets. For example, the reachability
set (and the lim-reachability set) of a continuous system is a convex set [9].

Many basic properties of discrete PNs can be extended to continuous PNs.

Definition 2. Let 〈N ,m0〉 be a continuous system.

– 〈N ,m0〉 is (lim-) deadlock-free iff for every m ∈ (lim-) RS(N ,m0) there
exists t ∈ T such that enab(t,m) > 0.

– 〈N ,m0〉 is (lim-) live iff for every m ∈ (lim-) RS(N ,m0) and for every
t ∈ T there exist m′ ∈ (lim-) RS(N ,m) such that enab(t,m′) > 0.

– 〈N ,m0〉 is (lim-) reversible iff for every m ∈ (lim-) RS(N ,m0) then m0 ∈
(lim-) RS(N ,m).

Since continuous PN are a relaxation of discrete PN, for those properties based
on universal (existential) quantifiers the continuous PN will provide sufficient
(necessary) conditions. For example, if the continuous PN is bounded, so will be
the discrete PN. For a marking to be reachable in the discrete model, reacha-
bility in the continuous one must be guaranteed. However, for those properties
formulated interleaving universal and existential quantifiers the analysis of the
continuous PN may not provide information about the behavior of its discrete
counterpart. For example, liveness of the continuous PN is neither necessary nor
sufficient for liveness of the discrete model [9].

Besides the situation in which the properties of the discrete and the continuous
net are not related, it also happens that some properties of discrete PN cannot be
observed in continuous systems, as mutex relationships. Moreover, the distinction
between two properties may be lost in the continuous model. For example, under
broad conditions, lim-liveness and lim-reversibility are equivalent.

Continuous Petri Nets: Expressive Power and Decidability Issues 365

p1 p2

t1 t2

t3

t4

p3 p5

p4

Fig. 1. This system is not reversible as discrete, or as continuous with finite number
of firings, but it is lim-reversible

Indeed, reformulating Theorem 21 in [8], the following result can be proved:

Theorem 1. 〈N ,m0〉 is consistent and lim-live iff it is lim-reversible and every
transition is fireable at least once.

However, liveness and consistency are not sufficient conditions for reversibility
in discrete systems, and neither are for continuous net systems if finite firing se-
quences are considered. For example, the system in Fig. 1 is consistent and live as
discrete, however once t1 has fired it is impossible to get back to the initial mark-
ing. In the continuous net system, to go back to the initial marking from m =
[0, 0, 1, 0, 1], an infinite sequence 1

2 t4
1
2 t2,

1
2 t3,

1
4 t4,

1
4 t2,

1
4 t3, . . .

1
2k t4,

1
2k t2,

1
2k t3, . . .

has to be fired.

2.2 Timed Continuous Petri Nets

A simple and interesting way to introduce time in discrete PNs is to assume
that all the transitions are timed with exponential probability distribution func-
tions. For the timing interpretation of continuous PNs we will use a first order
(or deterministic) approximation of the discrete case, assuming that the delays
associated to the firing of transitions can be approximated by their mean values.
These mean delays will be assumed to be positive, i.e., immediate transitions
are not allowed.

Definition 3. A Timed Continuous Petri Net (TCPN) is a continuous PN to-
gether with a vector λ ∈ R

|T |
>0.

A TCPN with an initial marking 〈N , λ,m0〉 will be denoted a TCPN system.

Since it is an interpretation of the autonomous net, the evolution of a TCPN
has to fulfill the state equation: m(τ) = m(0) + C · σ(τ), where m and σ now
depend on τ , the actual time. Deriving, ṁ(τ) = C · f(τ), where f(m) = σ̇(τ) is
the flow obtained by firing the transitions. Different semantics have been used to
define this flow, the two most important being infinite server (or variable speed)
and finite server (or constant speed) [1,11]. Here infinite server semantics will be
considered.

366 L. Recalde, S. Haddad, and M. Silva

Like in purely markovian discrete net models, under infinite server semantics,
the flow through a timed transition t is the product of the speed, λ[t], and
enab(t,m), the instantaneous enabling of the transition, i.e.,

f(m)[t] = λ[t] · enab(t,m) = λ[t] · min
p∈•t

{m[p]/Pre[p, t]}.

For the flow to be well defined, every transition must have at least one input
place, hence in the following we will assume ∀t ∈ T, |•t| ≥ 1.

Notice that the flow is a piecewise linear function, i.e., the continuous timed
model is technically hybrid. The change of behavior happens when in a syn-
chronization the place representing the minimum changes. Hence, the switching
among the linear systems is given by an internal event. A system without syn-
chronizations (i.e., for every t |•t| = 1) would be linear.

Let us introduce the concept of configurations : a configuration assigns to a
transition one place that for some markings will control its firing rate. Thus
the number of configurations is Πt∈T |•t|. The reachability space can be divided
into regions according to the configurations. These regions are polyhedrons, and
are disjoint, except on the borders. Inside each polyhedron, the evolution of the
system is defined by a linear differential equation.

Different kind of behaviors can be modeled with TCPN. In the following we
will show some examples to illustrate their modelling power.

Steady-state with finite number of switches. Let us consider the contin-
uous relaxed view of the PN system in Fig. 2 with λ = [1, 2, 1, 1, 0.5]. The flows
through transitions are given by:

ṁ[p1] = f [t3] − f [t1] = m[p3] − m[p1]
ṁ[p2] = f [t1] − f [t2] = m[p1] − 2 · min(m[p2],m[p6])
ṁ[p3] = f [t2] − f [t3] = 2 · min(m[p2],m[p6]) − m[p3]
ṁ[p4] = f [t5] − f [t4] = 0.5 · m[p5] − min(m[p4],m[p6])
ṁ[p5] = f [t4] − f [t5] = min(m[p4],m[p6]) − 0.5 · m[p5]
ṁ[p6] = f [t3] + f [t5] − f [t2] − f [t4] =

= m[p3] + 0.5 · m[p5] − 2 · min(m[p2],m[p6]) − min(m[p4],m[p6])

With the initial marking shown in Fig. 2, there is one switch when m[p4] =
m[p6], and then the system approaches its steady-state and never switches again.

Steady state but infinite switches. Looking at the previous example, one
may wonder whether the asymptotical behavior of a net approaching a steady-
state can be reduced to the behavior of the set of configurations. This would
be the case if switches between configurations occurred only a finite number
of times, as happens in the previous example. However, it can be proved that
the net system of Fig. 3 approaches to a steady state while infinitely switching
between configurations. This net has two regions, namely {m | m[x1] ≥ m[x2]}
and {m | m[x1] ≤ m[x2]}. The steady state belongs to both regions, i.e., it is a
border point, and the system keeps switching between them.

Continuous Petri Nets: Expressive Power and Decidability Issues 367

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
Marking Evolution

 m[p
1
]

 m[p
2
]

 m[p
4
]

 m[p
6
]

switch

Fig. 2. A TCPN and its marking evolution with λ = [1, 2, 1, 1, 0.5]. The system
switches only once, and approaches to a steady-state.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

x
1

x
2

y
1

y
2

First switch Second switch

x
1
<x

2
 x

1
>x

2
 x

1
<x

2

Fig. 3. A TCPN and its marking evolution with λ = [1, 1, 1, 1, 1]. The system switches
an infinite number of times while approaching to a steady-state.

Periodic behavior without switches. A periodic behavior in which the con-
figuration does not change can also be modeled with TCPN. The ordinary dif-
ferential equation corresponding to the net system of Fig. 4 is:

ṁ[x1] = 2aω · min
{

m[x2]
2a

,m[y1]
}

− aω · min
{
m[x1],

m[pk]
a

}

ṁ[x2] = aω · min
{
m[y2],

m[pk]
a

}
− 2aω · min

{
m[x2],

m[x1]
2a

}

ṁ[y1] = aω · min
{
m[x1],

m[pk]
a

}
− 2aω · min

{
m[x2]

2a
,m[y1]

}

ṁ[y2] = 2aω · min
{
m[x2],

m[x1]
2a

}
− aω · min

{
m[y2],

m[pk]
a

}
(1)

This net has sixteen configurations. However, for 1 ≤ a ≤ b ≤ 2a−1, the system
never switches and always remains in the configuration defined by m0.

Infinite repetitive switches (not Approaching a Steady State). The
behavior of the system represented by the model in Fig. 5 shows that infi-
nite switches without approaching to a final marking can also be modeled with

368 L. Recalde, S. Haddad, and M. Silva

��� �� a
2a

2a

2a

2a

a

a a

aa

aa

2a-b

b x
2

x
1

y
1

y
2

pk

���� �� a
���� �� a

��� �	 a

0 pi/2 pi 3*pi/2 2*pi 5*pi/2 3*pi
2a−b

a

b
Marking Evolution

x1
x2
y1
y2

Fig. 4. A TCPN and its marking evolution with λ = [aω, 2aω, 2aω, aω]. The system
has a periodic behavior but always remains inside the same configuration.

14 14

1

146

1

t2

t1

t3

t4

t5

p1

p2

p3

p4

20

20

0 2 4 6 8 10 12 14 16
4

6

8

10

12

14

16

18

20
Marking Evolution

p1
p2
p3
p4

Fig. 5. A TCPN and its marking evolution with λ = [1, 10, 10, 20, 1]. The system
switches indefinitely, and does not approach to a limit marking.

TCPN. In this net there are two configurations that are commuting indefinitely
(observe that sometimes m[p3] < m[p4], and sometimes m[p4] < m[p3]).

3 Decidability of Basic Properties of Autonomous
Continuous Petri Nets

The idea under continuization is that it leads to “easier to analyze” models. For
that, we need to ensure that properties can be analyzed at least. This section
will be devoted to proving that properties like (lim-)reachability, (lim-)liveness
and (lim-)deadlock-freeness are decidable.

In [8], a characterization of reachability and lim-reachability is presented.

Theorem 2. Let 〈N ,m0〉 be an ACPN system. Marking m ∈ RS(N ,m0) iff
1. m = m0 + C · σ ≥ 0, σ ≥ 0
2. ‖σ‖ ∈ FS(N ,m0)
3. no trap in P \ ‖m‖ intersects with ‖m0‖ ∪ ‖σ‖•

Continuous Petri Nets: Expressive Power and Decidability Issues 369

where FS(N ,m0) is the set of the supports of sequences fireable from m0, which
is a finite set that can be effectively constructed.

A marking m ∈ lim-RS(N ,m0) iff it verifies conditions (1) and (2).

For the computation of FS(N ,m0), first add all the combinations of transitions
that are enabled at m0. Then, take one of these sets and fire all the transitions,
but in an amount smaller than the enabling degree. This will possibly enable
other transitions, so new sets are added to FS. Repeat the procedure till all the
sets in FS have been checked.

The only difference between reachability and lim-reachability is on traps,
which can be emptied in the limit, but not with a finite sequence. In [8], decidabil-
ity of reachability is proved. This result can be generalized to lim-reachability.

Corollary 1. Reachability and lim-reachability are decidable for ACPN
systems.

The characterization of (lim-)reachability allows to address also the problem of
(lim-)deadlock freeness.

Theorem 3. For ACPN systems deadlock-freeness and lim-deadlock-freeness
are decidable.

Proof. Let us see that checking deadlock-freeness can be reduced to solving a
set of linear programming problems.

Let DP = {DPi}i∈I be the set of all the sets of places that have at least one
input place per transition. Hence applying Theorem 2, m = m0 + C · σ is a
deadlock iff there exist DPi ∈ DP and FSj ∈ FS such that

m0[DPi] + C[DPi, FSj] · σ[FSj] = 0 (2)
m0[P \ DPi] + C[P \ DPi, FSj] · σ[FSj] > 0 (3)
σ[FSj] > 0 (4)
For every trap Θ ⊆ DPi, (‖m0‖ ∪ FSj

•) ∩ Θ = ∅ (5)

Applying the characterization of traps in [12], (5) is equivalent to checking
whether the solution of the following linear programming problem is zero,

maximize εi,j

subject to: y · CΘ ≥ 0

y ≥ 0
y[P \ DPi] = 0∑
p∈‖m0‖∪FSj

•

y[p] ≥ εi,j

(6)

where CΘ is the token flow matrix of the net NΘ = 〈P, T,Pre,PostΘ〉 with
PostΘ[p, t] = 0 iff Post[p, t] = 0, and PostΘ[p, t] ≥

∑
p′∈•t Pre[p′, t].

370 L. Recalde, S. Haddad, and M. Silva

Equations (2), (3) and (4) are equivalent to:

maximize δi,j

subject to: m0[DPi] + C[DPi, FSj] · σ[FSj] = 0

m0[P \ DPi] + C[P \ DPi, FSj] · σ[FSj] ≥ δi,j · 1
σ[FSj] ≥ δi,j · 1

(7)

Therefore, to prove that the system is deadlock-free, check that for each DPi ∈
DP and each FSj ∈ FS either (6) has a positive solution or (7) does not have
a positive solution.

Regarding lim-deadlock-freeness, the only difference is that there is no restric-
tion with respect to the traps, so clearly it is also decidable. ��
Theorem 4. Liveness and lim-liveness are decidable for ACPN systems.

Proof. Let us study liveness first. For continuous PNs, a transition t is not fire-
able for any successor of m iff there exists an empty siphon in m that contains
a place p ∈ •t (Lemma 11 in [8]). Hence, the system is non live iff there exist
FSj ∈ FS and a siphon Σ such that

m = m0 + C[P, FSj] · σ[FSj] (8)
m ≥ 0 (9)
σ[FSj] > 0 (10)
m[Σ] = 0 (11)
For any trap Θ such that (‖m0‖ ∪ FSj

•) ∩ Θ = ∅, ∃p ∈ Θ with m[p] = 0 (12)

Let {Σi}i∈I be the set of minimal siphons (i.e., siphons that are not contained
in other siphons), and let {Θk}k∈K be the set of traps. Then for each FSj ∈ FS,
each trap Θk verifying (‖m0‖ ∪ FSj

•) ∩ Θk �= ∅, and each siphon Σi, check
whether the following linear programming problem has a positive solution:

maximize εi,j

subject to: m = m0 + C[P, FSj] · σ[FSj]
m ≥ 0
m[Σi] = 0
σ[FSj] ≥ εi,j · 1
m[p] = 0

Regarding lim-liveness, notice that in fact it is equivalent that a transition is not
fireable from any reachable marking or from any lim-reachable marking. Then,
the lim-liveness problem is analogous, changing the reachability condition, which
amounts to forgetting the traps, and removing the last equation (m[p] = 0) in
each one of the linear programming problems. ��
Combining this result with Theorem 1, the following corollary is obtained.

Corollary 2. lim-reversibility is decidable in ACPN systems in which all the
transitions are fireable.

Continuous Petri Nets: Expressive Power and Decidability Issues 371

4 Timed Continuous Petri Nets and Timed Differentiable
Petri Nets

The structure and equations of TCPN were somehow inherited from those of
discrete Petri nets. Petri nets are based on a production/consumption logic, and
it is the flow of material that is mainly represented. However, these material
flow channels can also be used to simulate control flows, and self-loop structures
appear. This kind of structures can be used in continuous PNs to “force” be-
haviors. For example, in the net in Fig. 4, places y1 and y2 never define the flow
of their output transitions (i.e., never belong to the active configuration), and
this has been achieved by a tuning in the self-loop arcs that connect the other
places to the transitions. That means that for example t2 has two input places,
but one of them is used to control the speed of the transition, while the other is
the one that “suffers” the changes.

Moreover, the information that appears in the structure of the net is redun-
dant. Assume a place-transition-place-transition subnet, and let us denote them
as p1 − t1 − p2 − t2. The marking evolution of p2 due to the output flow does
not depend on the weight of the arc (p2, t2), and its input flow really depends
on the quotient of the weights (p1, t1) and (t1, p2).

Hence, the notation of TCPN “looks cumbersome”, and the evolution rules
seem convoluted and counterintuitive in some cases. Trying to clarify the behav-
ior, in [6], a different way of introducing time in a PN structure was presented,
in which two different kinds of arcs are used: one to model the control, and the
other to model the marking evolution. This is similar to what is done in Forrester
diagrams, in which control and material flows are kept separate [5].

Definition 4. A Timed Differentiable Petri Net (TDPN) D = 〈P, T,C,W〉 is
defined by:

– 〈P, T,C〉, a pure PN (thus C is the incidence matrix),
– W, the speed control matrix: a mapping from P × T to R≥0 such that

1. ∀t ∈ T, ∃p ∈ P,W(p, t) > 0
2. ∀t ∈ T, ∀p ∈ P,C(p, t) < 0 ⇒ W(p, t) > 0

A TDPN with an initial marking 〈D,m0〉 will be denoted a TDPN system.

The first requirement about W ensures that the firing rate of any transition is
defined, whereas the second one ensures that the marking remains non negative.
Notice that these weights are defined as real numbers, while in TCPN all the
arc weights are natural numbers.

We are now in position to give semantics to TDPNs.

Definition 5. Let D be a TDPN. A trajectory is a continuously differentiable
mapping m from time (i.e., R≥0) to the set of markings (i.e., (R≥0)P) which
satisfies the following differential equation system:

ṁ = C · f(m)
f(m)[t] = min(W(p, t) · m[p] | W(p, t) > 0)

(13)

372 L. Recalde, S. Haddad, and M. Silva

Fig. 6. Graphical notations: it will be seen that only the two on the top are needed

Fig. 7. A periodic TDPN

Graphical notations. We extend the graphical notations of PN to take into
account W. These arcs are not oriented, since they are always defined as pre-
conditions of transitions the orientation is implicit. Like in Forrester diagrams,
to help distinguishing the W arcs from the Pre and Post arcs, W arcs will
be drawn with dotted lines. To distinguish between the labels, W(p, t) will be
drawn inside a box. There are four possible patterns illustrated in Fig. 6. When
W(p, t) = 0 ∧ C(p, t) > 0, place p receives tokens from t and does not control
its firing rate. When W(p, t) > 0 ∧ C(p, t) < 0, place p provides tokens to t.
So it must control its firing rate. Hence, the non oriented arc between p and t is
redundant, and we will not draw it and represent only an oriented arc from p to
t both labelled by −C(p, t) and W(p, t). When W(p, t) > 0 ∧ C(p, t) > 0, place
p receives tokens from t and controls its firing rate. There is both an oriented
arc from t to p and a non oriented arc between p and t with their corresponding
labels. When W(p, t) > 0 ∧ C(p, t) = 0, place p controls the firing rate of t and
t does not modify the marking of p, so there is a non oriented arc between p and
t. As usual, we omit labels when equal to 1.

As an example, the equations in (1) correspond to the TDPN in Fig. 7.

Continuous Petri Nets: Expressive Power and Decidability Issues 373

The Petri net structure of TCPN is similar to that of TDPN. Moreover, the
minimum operator appears related to the marking evolution. Hence, it would
not be surprising that both models are equivalent, as long as the elements of
the speed control matrix are in the rationals. To prove that, observe first that
fractions in the Pre and Post matrices do not pose a problem, since they can
be easily avoided multiplying the columns of the Pre and Post matrices by the
right number (this does not change the dynamics of the system).

Proposition 1. For any TCPN, a TDPN with the same number of places and
transitions exists which has the timed evolution, and vice versa (as long as the
weights of the TDPN are rational numbers).

Proof. Let D = 〈P, T,C,W〉 be a TDPN, and let us construct a TCPN S =
〈P, T,Pre′,Post′, λ〉 with the same differential equations. For each t ∈ T , define
W∗(t) ≥ max(−C(p, t) ·W(p, t) | C(p, t) < 0) (i.e., W∗(t) can be defined as any
value that fulfills this inequality). By definition it is greater than zero. For each
p ∈ P and t ∈ T , define

– Pre′(p, t) = W∗(t)/W(p, t) if W(p, t) �= 0, and Pre′(p, t) = 0 otherwise.
– Post′(p, t) = C(p, t) + W∗(t)/W(p, t) if W(p, t) �= 0, and Post′(p, t) =

C(p, t) otherwise.
– λ(t) = W∗(t)

Let now S = 〈P, T,Pre,Post, λ〉 be a TCPN, and let us construct a TDPN
D = 〈P, T,C′,W〉 with the same differential equations. For each p ∈ P and
t ∈ T , define

– C′(p, t) = Post(p, t) − Pre(p, t)
– W(p, t) = λ(t)/Pre(p, t) if p ∈ •t, and 0 otherwise. ��

As an example, the TCPN in Fig. 4 and the TDPN in Fig. 7 are obtained one
from the other with the previous procedure.

The patterns appearing at the bottom of Fig. 6 represent situations in which
a place acts as a control place of a transition for which it is not an input place
(in the sense that the transition is not removing tokens from the place). That
is, they represent non-consuming control arcs. However, these patterns can be
simulated with the two ones on top.

Proposition 2. Let D = 〈P, T,C,W〉 be a TDPN. Then another TDPN D′ =
〈P ′, T ′,C′,W′〉 can be defined, using only the two patterns in the top of Fig. 6,
with the same timed evolution as D but for some duplicated places. Moreover,
the transformation is linear in size, since it at most doubles the number of places
and transitions.

Proof. Define the new TDPN as follows:

– P ′ = {p−, p+ | p ∈ P}
– T ′ = {t−, t+ | t ∈ T }

374 L. Recalde, S. Haddad, and M. Silva

p

t
2

p'

p

2

2

t' t''

2

2

t

�
�/k �/k �
���/k)

k-2

k-2

Fig. 8. TCPN can always be transformed into pure nets

– To define C′, distinguish two cases:
• If C(p, t) < 0 ∨ W(p, t) = 0 then

C′(p−, t−) = C′(p+, t+) = C(p, t) and C′(p−, t+) = C′(p+, t−) = 0
• If C(p, t) ≥ 0 ∧ W(p, t) > 0 then

C′(p−, t−) = C′(p+, t+) = −1 and C′(p−, t+) = C′(p+, t−) = C(p, t)+1
– W′(p−, t−) = W′(p+, t+) = W(p, t) and W′(p−, t+) = W′(p+, t−) = 0 ��

The transformation that has been proposed doubles the number of places and
transitions. In practice, sometimes it is not necessary to duplicate all of them.
A similar transformation can also be applied to remove self-loop arcs in TCPN.
Let us see the idea in the case of one self-loop (see Fig. 8). The transformation
replaces the self-loop with two places and three transitions. These two places will
have the same marking the original place had, and the flow of the original transi-
tion is now split into the flow of these three transitions. Any other input/output
place of the transition is input/output of all the transitions. Any input/output
transition of the place is now input/output of all the places. The rates of these
new transitions are defined so that the sum of their flows is equal to the flow of
the original transition.

Again, this is a linear transformation. The procedure can be easily generalized
to the case in which several places are connected with self-loops to the same
transition (just duplicate each self-loop place and split the transition in three),
or when one place is engaged in several self-loops (duplicate the self-loop place
and split each transition in three).

Proposition 3. For any TCPN a pure TCPN can be defined which has the same
timed evolution, but for some duplicated places. Moreover, the transformation is
linear in size, since it at most doubles the number of places and triples the number
of transitions.

The results have been summarized in the schema in Fig. 9.

Theorem 5. The expressive power of TDPN, TDPN constrained to the use of
the two basic constructions (the two on the top in Fig. 6), TCPN and pure TCPN
are identical. Moreover, the transformations range from keeping the places and
transitions to a linear increase in size (see the diagram in Fig. 9).

Continuous Petri Nets: Expressive Power and Decidability Issues 375

TCPN � linear (equal size) � TDPN

pure TCPN

linear
(|P ′| ≤ 2|P |
|T ′| ≤ 3|T |)

�
TDPN without non-consuming control arcs

linear
(|P ′| ≤ 2|P |
|T ′| ≤ 2|T |)

�

Fig. 9. Relationships between TDPN and TCPN and their versions without self-loops
or non-consuming control arcs

5 Decidability Issues on Timed Continuous Petri Nets

In [6], it has been proved that TDPN can simulate two (non negative integer)
counter machines (equivalent to Turing machines [7]). More precisely, different
simulations of two counter machines have been defined, in order to fulfill oppo-
site requirements like robustness (allowing some perturbation of the simulation)
and boundedness of the simulating net system (the simulation of an infinite-state
system cannot be simultaneously robust and bounded). Furthermore these sim-
ulations can be performed by a net with a constant number of places, i.e., the
dimension of the associated ordinary differential equation (ODE) is constant.

Theorem 6. [6] Given a two counter machine M, one can build a TDPN D,
with a constant number of places, whose size is linear w.r.t. the machine, with
one of these two properties:

– its associated ODE has dimension 6 and D robustly simulates M.
– it is a bounded net system, its associated ODE has dimension 14, and D

simulates M.

Applying the equivalences developed in the previous section, the same result
can be stated for TCPN with respect to the robust simulation. Regarding the
bounded one, the proof in [6] requires the use of non rational numbers, and we
have not been able to extend this result to TCPN up to now. As in [6], these
results can be used to obtain undecidability results.

Corollary 3. Let 〈N , λ,m0〉 be a TCPN whose associated ODE has dimension
at least 6, m1 a marking, p a place and k ∈ N. The problem whether there is a
τ such that the trajectory starting at m0 fulfills

– m(τ)(p) = k is undecidable.
– m(τ)(p) ≥ k is undecidable.
– m(τ) ≥ m1 is undecidable.

Corollary 4. Let 〈N , λ,m0〉 be a TCPN whose associated ODE has dimension
at least 8. Then the problem whether the trajectory m starting at m0 is such
that limτ→∞ m(τ) exists, is undecidable.

376 L. Recalde, S. Haddad, and M. Silva

6 Conclusions

Regarding autonomous (i.e., untimed) nets, it has been proved that reacha-
bility, deadlock-freeness and liveness are decidable in continuous nets, both if
firing sequences are limited to be finite or if infinitely long sequences are allowed
(Corollary 1, Theorem 3 and Theorem 4). Therefore, continuous and discrete
autonomous nets are similar in decidability terms.

For timed nets, it has been proved that continuous pure nets are able to
model Turing machines (Theorem 6). This means that many properties are un-
decidable (Corollary 3, Corollary 4). Timed continuous Petri nets can seen as a
fluidified version of discrete Petri nets in which time is associated to transitions
using a probability distribution function with positive mean value. Therefore,
the fluidification has not increased decidability in the timed model.

However, fluidification does simplify some problems, and in particular some
inverse problems. For example, the computation of an initial marking that max-
imizes a linear function of the throughput, the steady-state marking and the
initial marking is easier for some nets in the continuous (timed) model than in
the discrete one. More work is needed to characterize classes of problems that
fluidification makes simpler, and why this happens.

References

1. Alla, H., David, R.: Continuous and hybrid Petri nets. Journal of Circuits, Systems,
and Computers 8(1), 159–188 (1998)

2. Balduzzi, F., Di Febraro, A., Giua, A., Seatzu, C.: Decidability results in first-order
hybrid Petri nets. Discrete Event Dynamic Systems 11(1–2), 41–57 (2001)

3. Ciardo, G.: Toward a definition of modeling power for stochastic Petri net models.
In: Procs. of the Int. Workshop on PNPM, IEEE-Computer Society Press, Los
Alamitos (1987)

4. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Bulletin of
the EATCS 52, 245–262 (1994)

5. Forrester, J.W.: Principles of Systems. Productivity Press (1968)
6. Haddad, S., Recalde, L., Silva, M.: On the computational power of Timed Dif-

ferentiable Petri nets. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS,
vol. 4202, pp. 230–244. Springer, Heidelberg (2006)

7. Hopcroft, J.E., Ullman, J.D.: Formal languages and their relation to automata.
Addison-Wesley, Reading (1969)

8. Júlvez, J., Recalde, L., Silva, M.: On reachability in autonomous continuous Petri
net systems. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS,
vol. 2679, pp. 221–240. Springer, Heidelberg (2003)

9. Recalde, L., Teruel, E., Silva, M.: Autonomous continuous P/T systems. In: Do-
natelli, S., Kleijn, J.H.C.M. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 107–126.
Springer, Heidelberg (1999)

10. Silva, M.: Introducing Petri nets. In: Practice of Petri Nets in Manufacturing, pp.
1–62. Chapman & Hall (1993)

Continuous Petri Nets: Expressive Power and Decidability Issues 377

11. Silva, M., Recalde, L.: Continuization of timed Petri nets: From performance eval-
uation to observation and control. In: Ciardo, G., Darondeau, P. (eds.) ICATPN
2005. LNCS, vol. 3536, pp. 26–46. Springer, Heidelberg (2005)

12. Silva, M., Teruel, E., Colom, J.M.: Linear algebraic and linear programming tech-
niques for the analysis of net systems. In: Reisig, W., Rozenberg, G. (eds.) Lectures
on Petri Nets I: Basic Models. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg
(1998)

Quantifying the Discord: Order Discrepancies in
Message Sequence Charts�

Edith Elkind1, Blaise Genest2, Doron Peled3, and Paola Spoletini4

1 School of Electronics and Computer Science University of Southampton, UK
2 CNRS/IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

3 Department of Computer Science, University of Warwick
Coventry CV4 7AL, United Kingdom

and Department of Computer Science, Bar Ilan University,
Ramat Gan 52900, Israel

4 Dipartimento di Elettronica e Informazione, Politecnico di Milano
via Ponzio 34/5 - 20133, Milano, Italy

Abstract. Message Sequence Charts (MSCs) and High-level Message Sequence
Charts (HMSC) are formalisms used to describe scenarios of message passing
protocols. We propose using Allen’s logic to study the temporal order of the mes-
sages. We introduce the concept of discord to quantify the order discrepancies
between messages in different nodes of an HMSC and study its algorithmic prop-
erties. We show that while discord of a pair of messages is hard to compute in gen-
eral, the problem becomes polynomial-time computable if the number of nodes of
the HMSC or the number of processes is constant. Moreover, for a given HMSC,
it is always computationally easy to identify a pair of messages that exhibits the
worst-case discord, and compute the discord of this pair.

1 Introduction

Message Sequence Charts (MSCs) and High-level Message Sequence Charts (HMSC)
are very useful tools for describing executions of communication protocols. They pro-
vide an intuitive visual notation, which is widely used in practice and has been formally
described in the MSC standard [11]. A related notation was also adopted as part of the
UML standard. Intuitively, an MSC is described by a set of processes and a set of mes-
sages between these processes. The notation allows us to specify the order in which
each process sends and receives messages. An HMSC is a graph whose nodes are la-
beled with MSCs. An execution of an HMSC is a concatenation of MSCs that appear
on a path in this graph. Using HMSC notation, one can describe alternative behaviors
of systems, or even use it as a scenario-based programming formalism [10]. The reader
is referred to Section 2 for formal definitions.

Besides being used in practice, MSCs and HMSCs have been extensively studied
from theoretical perspective over the past few years. This research has pointed out sev-
eral difficulties with these formalisms. One such example is the problem of detecting
race conditions in MSCs [2], i.e., the possibility that messages arrive out of order due
to lack of synchronization. This problem has also been generalized to HMSCs [14] and

� Work partly supported by the ESF project Automatha and the ANR-06-SETI project DOTS.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 378–393, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Quantifying the Discord: Order Discrepancies in MSCs 379

sets of MSCs [7]. Another problem is related to global choice [4,3], where some pro-
cesses behave according to one MSC scenario and other processes behave according to
another MSC scenario, resulting in new behaviors.

Continuing this line of research, in this paper we identify another ambiguity of the
MSC notation. Namely, in the definition of an HMSC, a concatenation of MSCs along
a path intuitively suggests that messages that appear in an earlier MSC precede in time
any message that appears in a later MSC. In fact, in some frameworks such as live se-
quence charts [6] there is a hidden assumption of such synchronous nature. However,
according to the MSC semantics, this is is not the case: independence between events
happening in different sets of processes may allow messages in later MSCs to over-
lap or even sometimes appear earlier than messages in previous MSCs. Moreover, it
is not clear how to achieve this kind of synchronization without an additional mecha-
nism or extra messages. Clearly, this discrepancy may result in users misinterpreting
the notation and, as a result, designing protocols that do not work as intended. This
is reminiscent of the concept of race conditions: the straightforward visual interpreta-
tion of concatenation is different from the intended semantics. However, unlike for race
conditions, this discrepancy has not been studied before.

In this paper, we provide a formal treatment of this issue. We introduce the notion of
discord of a pair of messages in different nodes of an HMSC. Intuitively, the discord of
two messages is the worst possible discrepancy between their order in an execution and
their “ideal” order, in which the message in the MSC that appears earlier on the path
precedes the message in the MSC later on the path. To formalize this intuition, we need
several tools that we introduce below.

We start our study of the message order in MSCs and HMSCs by defining the con-
cept of a chain. Informally, a chain is a sequence of events where any adjacent pair of
events is ordered either by being a send-receive pair, or by belonging to the same pro-
cess line. Hence, a chain represents a possible flow of information. Clearly, the order
between messages is determined not only by the relevant messages themselves, but also
by chains between their endpoints. We characterize the possible message orders by de-
scribing the possible communication patterns between their endpoints. We then project
each such pattern on a global timeline and classify the resulting scenarios. To do so, we
use a subset of Allen’s interval logic [1]. Allen’s logic is a formalism for describing the
relative order of time intervals. For example, Allen’s logic formula AdB expresses the
fact that A happens during B, i.e., A starts after B starts and ends before B ends. It has
been widely studied in the context of artificial intelligence and knowledge representa-
tion, and its expressive power and computational properties are well understood [12].
As messages can easily be seen as time intervals, it provides a convenient language for
describing the message order. We introduce a natural ordering on Allen’s logic prim-
itive predicates and define the discord of a pair of messages in an MSC as the worst
possible Allen’s logic primitive predicate (according to this ordering) that corresponds
to the communication pattern of this pair.

We study the concept of discord from the algorithmic perspective. First, we show that
computing the discord of a pair of messages is coNP-complete. Our reduction assumes
that both the number of nodes in the HMSC and the number of processes are part of
the input. We show that this is inevitable: if either of these numbers is fixed, the discord

380 E. Elkind et al.

can be computed in polynomial time. We then focus on characterizing the discord of
an HMSC by a single parameter. To this end, we define the discord of an HMSC as
the worst possible discord of a pair of messages in this HMSC. Surprisingly, it turns
out that this quantity can be computed in time polynomial both in the size of the MSC
graph and the number of processes. Intuitively, the reason for that is that it is easy to
identify a pair of messages that exhibits the worst-case behavior for a given HMSC and
compute the discord of such a pair. The study of discords provides also a generic study
of the existence of communication chains, which we believe will be interesting in its
own right in studies of layered combination of communication algorithms.

2 Preliminaries

2.1 Message Sequence Charts

Following [11], we formally define message sequence charts (MSCs), MSC concatena-
tion, and high-level message sequence charts (HMSCs).

Definition 1. A Message Sequence Chart (MSC) is a tuple C = (P , E, P, M, <p:p∈P),
where

– P is a finite set of processes;
– E is a finite set of events;
– P : E �→ P is a function that maps every event to the process on which it occurs;
– M is a finite set of messages. Each message m ∈ M consists of a pair of events

(s, r) for send and receive;
– For each process p ∈ P , <p is a total order on the events of that process.

We define a relation < as <=
⋃

p∈P <p ∪{(s, r) | (s, r) ∈ M} and let <∗ be
the transitive closure of <. We require <∗ to be acyclic. We assume that MSCs are
FIFO, that is, if two messages (s1, r1) and (s2, r2) are between the same processes,
i.e., P (s1) = P (s2) and P (r1) = P (r2), then s1 < s2 implies r1 < r2.

We will occasionally abuse notation and write m ∈ C instead of m ∈ M.

Definition 2. Let C1, C2 be two MSCs where C1 = (P1, E1, P 1, M1, <1
p:p∈P1), C2 =

(P2, E2, P 2, M2, <2
p:p∈P2) with P1 = P2 = P and E1 ∩ E2 = ∅. Define their

concatenation as an MSC (C1; C2) = (P , E, P, M, <p:p∈P), where E = E1 ∪ E2,
M = M1∪M2, the function P is given by P (e) = P 1(e) if e ∈ E1 and P (e) = P 2(e)
if e ∈ E2, and for each p ∈ P we define <p=<1

p ∪ <2
p ∪{(e1, e2)|P 1(e1) = P 2(e2)}.

Notice that there are no sends in one MSC that are received in the other. This defini-
tion can be naturally extended to sequences C1, C2, . . . , Cn of three or more MSCs by
setting (C1; C2; . . . ; Cn) = ((. . . (C1; C2); C3) . . .).

Definition 3. A High-level Message Sequence Chart (HMSC) is a tuple H = (G, C,
V0, λ), where G = (V , E) is a directed graph with the vertex set V = {v1, . . . , vn}
and the edge set E ⊆ V × V , C = {C1, . . . , Cn} is a collection of MSCs with a
common set of processes and mutually disjoint sets of events, V0 ⊆ V is a set of initial

Quantifying the Discord: Order Discrepancies in MSCs 381

M1 M2

M3 M4P1 P2 P3

P1 P2 P3 P1 P2 P3

P1 P2 P3

Connect

Fail

Approve

ReqService
Report

Fig. 1. An HMSC

nodes, and λ : V �→ C is a bijective mapping between the nodes of the graph and the
MSCs in C. To simplify notation, we assume λ(vi) = Ci. Each vertex of G is reachable
from one of the initial nodes. An execution of the HMSC is a finite MSC (Ci; . . . ; Cj)
obtained by concatenating the MSCs in the nodes of a path vi, . . . , vj of the HMSC
that starts with some initial node vi ∈ V0. The size |H | of an HMSC H is defined as
|H | = |E1| + · · · + |En| + |V| + |E|, where Ei is the set of events of the MSC Ci.

Given a path L = (vi, . . . , vj) in G of length at least 2, we denote by λ(L) the MSC that
is obtained by concatenating the MSCs along L, i.e., (Ci; . . . ; Cj). The set of executions
of an HMSC is also referred to as the set of MSCs generated by that HMSC.

Figure 1 shows an example of an HMSC. The node in the upper left corner, de-
noted M1, is the starting node, hence it has an incoming edge that is connected to
no other node. Initially, process P1 sends a message to P2, requesting a connection
(e.g., to an internet service), according to the node M1. This can result in either an
approval message from P2, according to the node M2, or a failure message, accord-
ing to the node M3. In the latter case, a report message is also sent from P2 to some
supervisory process P3. There are two progress choices, corresponding to the two ar-
rows out of the node M3. We can decide to try and connect again, by choosing the
arrow from M3 to M1, or to give up and send a service request (from process P1 to
process P3), by choosing to progress according to the arrow from M3 to M4. Note
how the HMSC description abstracts away from internal process computation, and
presents only the communications. Consider the path (M1, M3, M4). According to the
HMSC semantics, process P2 does not necessarily have to send its Report message in
M3 before process P1 has progressed according to M4 to send its Req service mes-
sage. However, process P3 must receive the Report message before the Req service
message.

382 E. Elkind et al.

A
B

A
B

A
B

Fig. 2. Allen’s logic relationships: ApB, AoB, and Ad−1B

2.2 Allen’s Logic

Allen’s logic [1] is a formalism that allows one to express temporal relationships be-
tween time intervals. It has 13 primitive relations that correspond to possible relation-
ships between two intervals, such as “A precedes B” or “A happens during B”. Each
primitive relation describes a total order between the endpoints of these intervals. When
working with MSCs, we normally assume that no two events can happen at the same
time, i.e., no two intervals have a common endpoint. Therefore, to represent relation-
ships between two messages m1 = (s1, r1) and m2 = (s2, r2), we will only use 6 of
these primitives, namely:

p — m1 precedes m2 (i.e., s1 < r1 < s2 < r2);
p−1 — m1 is preceded by m2 (i.e., s2 < r2 < s1 < r1);
o — m1 overlaps m2 (i.e., s1 < s2 < r1 < r2);
o−1 — m1 is overlapped by m2 (i.e., s2 < s1 < r2 < r1);
d — m1 is during m2 (i.e., s2 < s1 < r1 < r2);
d−1 — m1 contains m2 (i.e., s1 < s2 < r2 < r1).

Observe that for t ∈ {p,o,d} the predicate AtB is equivalent to Bt−1A.
An Allen’s logic formula consists of concatenation of one or more of these 6 letters,

and is interpreted as a disjunction of the corresponding predicates. For example, the
formula Apod−1B says that either A precedes B, or A overlaps B, or B happens
during (is included in) A. Given the semantics of the primitive predicates, it is easy to
see that this formula says that A starts before B, but may end before (p), during (o),
or after (d−1) B. There are several operations that can be performed on Allen’s logic
formulas, such as composition and intersection. However, in this paper we only use the
Allen’s logic as a means to describe the relationships between messages. Therefore, we
will not formally define these operations.

3 Relationships Between Messages

In this section, we will show how to use Allen’s logic to reason about the relationship
between a given pair of messages.

Given an MSC C, a chain from x ∈ E to y ∈ E is a sequence of events (x =
ei1 , ei2 , . . . , eik−1 , eik

= y) such that eij ∈ E for j = 1, . . . , k, and every adjacent pair
(eij , eij+1) in the chain is either a send and the corresponding receive, or eij appears
before (above) eij+1 in the same process line. Clearly, x <∗ y if and only if there is a
chain of messages from x to y. Now, consider a pair of messages (s1, r1) and (s2, r2).
By definition, there is always a chain from s1 to r1 and from s2 to r2. Moreover, for
any (a, b) ∈ {s1, r1}×{s2, r2}, we have one of the following three cases: (1) there is a
chain of messages from a to b; (2) there is a chain of messages from b to a; (3) there is no

Quantifying the Discord: Order Discrepancies in MSCs 383

r

s

2

21

1

s

r

Fig. 3. Impossible relation between messages

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 4. The possible orders between messages (up to symmetry)

chain in either direction. As there are four pairs of points, this corresponds to 34 = 81
combinations. However, not all of them are possible, as MSCs do not admit cycles (see
Figure 3). In fact, for two messages there are exactly twenty possible combinations of
orders between their endpoints. We list them in Figure 4. In these figures, the messages
correspond to the vertical arrows, and dashed arrows correspond to relationships derived
by transitive closure.

The patterns in Figure 4 correspond to the following Allen’s logic relationships:
(a) pp−1oo−1dd−1; (b) p; (c) pod−1; (d) po; (e) o; (f) d−1; (g) od−1;
(h) poo−1dd−1; (i) od; (j) opd; (k) oo−1dd−1. Except for cases (a) and (k), which
are symmetric, each other case has a symmetric twin that can be obtained by swapping
the left and the right message.

To decide between these cases, it suffices to calculate the transitive closure relation
<∗. While in general transitive closure algorithms run in cubic time [9,16], it has been
observed [2] that in the MSC case one can be more efficient since each event has at
most two successors. Formally, we have the following proposition.

Proposition 1. Given an MSC M with messages m1, · · · , mt, one can decide in time
O(t2) the relation between every mi, mj , 1 ≤ i, j ≤ t.

4 Definition of Discord

Concatenating two MSCs C1 and C2 does not necessarily mean that all the messages
of C1 precede in time all the messages of C2: for example, if C1 consists of a single

384 E. Elkind et al.

message from p1 to p2, and C2 consists of a single message from p3 to p4, the relation
< does not provide any information about the relative order of these two messages. In
what follows, we propose an Allen logic-based formalism that allows us to quantify the
ordering discrepancies that occur when concatenating MSCs. We start by considering
sequences of MSCs, and then extend our analysis to HMSCs.

Consider a concatenated MSC (C1; C2). For any two messages m1 = (s1, r1) ∈ C1
and m2 = (s2, r2) ∈ C2, we know that s1 < r1 and s2 < r2. Now, intuitively, the
best possible scenario for (C1; C2) is when all messages in C1 precede all messages in
C2. In this case, we also have r1 < s2, and thus we obtain s1 < r1 < s2 < r2. This
corresponds to case (b) in Figure 4. Note that this scenario is only possible when C1
has a unique maximal event e, C2 has a unique minimal event e′, and e and e′ occur on
the same process, i.e., P (e) = P (e′).

Conversely, the worst possible case is when some message m2 in C2 may be com-
pletely unordered with respect to a message m1 in C1. That is, for some m1 and m2
as above, the situation is described by case (a) in Figure 4, or by the Allen’s logic for-
mula m1pp−1oo−1dd−1m2. In this case, at worst, the Allen logic formula allows m2
to actually precede m1, since the disjunction permits in particular that m1p−1m2. All
remaining scenarios lie, as will be formulated below, between these two cases. We will
now introduce a measure of discrepancy, which we call the discord, which will allow
us to order them more precisely,

Given a concatenation of two MSCs (C1; C2), two messages m1 = (s1, r1) ∈ C1
and m2 = (s2, r2) ∈ C2 are said to be out of order if r1 does not precede s2, i.e.,
¬m1pm2. In Figure 4, this happens in cases (a), (c), (d), (h), and (j). Note that in our
setting, the cases (e), (f), (g), (i), and (k) are impossible: in each of these cases, there
are chains of messages starting from events of m2 and ending in events of m1, which
cannot happen under concatenation.

We now classify all primitive Allen logic predicates according to how well they order
the endpoints of the projected intervals, i.e., represent the order between the events of
the two messages m1 and m2. Recall that in the ideal case, i.e., when the order between
the intervals is described by the Allen logic predicate p, we have s1 < r1 < s2 < r2. In
this case, there are zero events in {s2, r2} that precede those in {s1, r1}. Under the worst
case, i.e., if m2 fully precedes m1, we count four inversions: namely, s2 < s1, r2 < r1,
r2 < s1 and s2 < r1. We thus order the predicates according to how many of these four
relationships are inverted. In case of a tie, we give preference to the relationships that
involve s1 to those that involve r1.

Definition 4. The total order ≺ is the transitive closure of the partial order ≺0 given
by ≺0= {(p,o), (o,d−1), (d−1,d), (d,o−1), (o−1,p−1)}.

Remark 1. Observe that the number of inversions in p−1 is 4, as explained above, in
o−1 it is 3, in d and d−1 it is 2, in o it is 1, and in p it is 0. Therefore, our decision
that d−1 ≺ d may appear quite arbitrary. We made this choice for two reasons. First,
we do think that the time when the messages are sent is more important than the time
when they are received, as the designer has more control over the former, and second, it
is convenient to have a total order to work with. However, we believe that many of our
ideas and results will apply for different orders, including some that are not total.

Quantifying the Discord: Order Discrepancies in MSCs 385

Definition 5. Consider a sequence of MSCs (C1, . . . , Ck) and a pair of messages m1 ∈
C1, m2 ∈ Ck such that in the MSC C = (C1; . . . ; Ck) we have m1Rm2, where R is a
(possibly non-primitive) Allen’s logic predicate. The discord of m1 and m2 with respect
to C is the worst possible primitive predicate (largest according to ≺) that appears in
R, i.e., discordC(m1, m2) = t, where t ∈ {p,p−1,o,o−1,d,d−1}, t appears in R,
and for all t′ that appear in R we have t′ � t.

Let us now apply this definition to the six cases that can occur for a pair of messages
in a concatenated MSC, as illustrated in Figure 4. In case (a) the messages are in rela-
tionship pp−1oo−1dd−1. The worst elementary predicate in this formula is p−1, so
we conclude that the discord between the messages is p−1. For case (b), there is only
one relation p. Similarly, for case (c) the discord is d−1, for case (d) it is o, for (h) it
is o−1, and for (j) it is d. We conclude that the value of discordC(m1, m2) can be any
elementary Allen’s logic predicate.

We now extend the definition of a discord to messages in HMSCs.

Definition 6. Given an HMSC H = (G, S, V0, λ) and a pair of messages m1 ∈ λ(v),
m2 ∈ λ(v′), let discordH(m1, m2) = max≺{discordλ(L)(m1, m2) | L=(v, . . . , v′)},
where max≺A is the maximum element of the set A with respect to ≺.

Consider now the HMSC in Figure 1. For the path (M1, M2), the discord is p, since the
maximum event of M1, which is a receive, precedes the minimum event of M2, which
is the send of message Approve. On the other hand, for the path (M1, M3, M1), we
have that the Report message of M3 corresponds to the Connect message of M1 as in
case (h) of Figure 4, which means a discord of o−1. The discord of (M3, M4) is d due
to the relative ordering between Report in M3 and ReqService in M4.

We will now state a simple observation that allows us to compute discordH(m1, m2).

Claim 1. Consider an HMSC H = (G, C, V0, λ). For any v, v′ ∈ V , v �= v′, and any
m1 ∈ λ(v), m2 ∈ λ(v′), we have discordH(m1, m2) = max≺{discordλ(L)(m1, m2) |
L = (v, . . . , v′) is a simple path}. Also, for two messages m1, m2 ∈ λ(v), we have
discordH(m1, m2)=max≺{discordλ(L)(m1, m2) | L=(v, . . . , v) is a simple cycle}.

Intuitively, this is true because removing a loop from a path from v to v′ can only
increase the discord between m1 and m2. Hence, the path that exhibits the worst-case
discord is loop-free.

5 Computing the Discord of a Pair of Messages

For a simple path L = (v = vi1 , . . . , vik
= v′), computing discordλ(L)(m1, m2) for

m1 ∈ λ(v), m2 ∈ λ(v′) is easy. Namely, first we run the transitive closure algorithm
to determine the causal relationships between the endpoints of m1 and m2. We then
identify the corresponding scenario of Figure 4 and apply the case analysis presented
after Definition 5. The running time of this algorithm is quadratic in the total number
of messages in λ(L).

For HMSCs, Definition 6 and Claim 1 suggest a straightforward algorithm for com-
puting the discord: given two messages m1 ∈ λ(v), m2 ∈ λ(v′), we can consider each
simple path from v to v′ (or each simple cycle, if v = v′), compute the discord along this

386 E. Elkind et al.

path, and output the maximum discord obtained in this way. This naive algorithm runs
in exponential time in the input size. In the next subsection, we show that this is per-
haps inevitable: we prove that in general the problem of computing DiscordH(m1, m2)
is coNP-hard. However, we will now provide an alternative way of verifying whether
DiscordH(m1, m2) = t, where t ∈ {p,p−1,o,o−1,d,d−1}. As we will see later, it
can be used to construct an efficient algorithm for computing DiscordH(m1, m2) in the
important special case when the number of processes is constant.

We will first define a related problem that will be useful for stating our results.

PATH WITH NO CHAIN: Given an HMSC H = (G = (V , E), C, V0, λ), a pair of nodes
v, v′ ∈ V , and a pair of events e ∈ λ(v), e′ ∈ λ(v′), is there a path L from v to v′ in
G such that in the MSC λ(L) there is no chain of events from e to e′? We will write
PNCH(e, e′) = 1 if such path exists and PNCH(e, e′) = 0 otherwise.

Proposition 2. Given an HMSC H = (G = (V , E), C, V0, λ), a pair of nodes v, v′ ∈ V ,
and a pair of messages m1 = (s1, r1) ∈ λ(v), m2 = (s2, r2) ∈ λ(v′), we have

– discordH(m1, m2) = p if and only if PNCH(r1, s2) = 0.
– discordH(m1, m2) = o if and only if PNCH(r1, s2) = 1, PNCH(s1, s2) = 0,

and PNCH(r1, r2) = 0.
– discordH(m1, m2) = d−1 if and only if PNCH(r1, r2) = 1 and PNCH(s1, s2) =

0.
– discordH(m1, m2) = d if and only if PNCH(s1, s2) = 1 and for any path L =

(v, . . . , v′) in G, the MSC λ(L) contains a chain from s1 to s2 or a chain from r1
to r2.

– discordH(m1, m2) = o−1 if and only if there exists a path L = (v, . . . , v′) in G
such that the MSC λ(L) contains no chain from s1 to s2 and no chain from r1 to
r2, and PNCH(s1, r2) = 0.

– discordH(m1, m2) = p−1 if and only if PNCH(s1, r2) = 1.

For the proof of Proposition 2, see the full version of the paper [8].

5.1 Computational Hardness

We will now show that for HMSCs the problem of upper-bounding discordH(m1, m2)
is coNP-complete. Formally, we consider the following problem:

DISCORD(H, t, m1, m2): Given an HMSC H , a predicate t ∈ {p,p−1,o,o−1,d,
d−1}, and two messages m1, m2 in H , is it the case that discordH(m1, m2) � t?

Theorem 1. The problem DISCORD(H, t, m1, m2) is coNP-complete.

Proof. To see that DISCORD(H, t, m1, m2) is in coNP, observe that the complementary
problem of checking whether discordH(m1, m2) t is in NP: a certificate can be
provided by a path L such that discordλ(L)(m1, m2) t. In particular, for t = p a
certificate is a path with no chain from r1 to s2, for t = o it is a path with no chain from
r1 to r2, for t = d−1 it is a path with no chain from s1 to s2, for t = d it is a path with

Quantifying the Discord: Order Discrepancies in MSCs 387

v0 v1

X 1 X n Y1 YmX 2

Fig. 5. The high-level structure of the HMSC H used in the proof of Theorem 1

no chain from s1 to s2 and no chain from r1 to r2, and for t = o−1 it is a path with no
chain from s1 to r2.

The coNP-hardness proof is by reduction from 3SAT. Suppose that we are given
a 3CNF formula with a set of variables x1, . . . , xn and a set of clauses c1, . . . , cm.
Let l1j , l

2
j , l

3
j be the literals that appear in the jth clause, i.e., cj = l1j ∨ l2j ∨ l3j , lkj ∈

{x1, . . . , xn, x̄1, . . . , x̄n}. We construct an HMSC H as follows. Set P = {p1, p2, p3,
p4, px1 , px̄1 , . . . , pxn , px̄n , pc1, . . . , pcm}. The HMSC H has the following structure. Its
underlying graph G has a source v0, a sink v1, n variable gadgets X1, . . . , Xn and m
clause gadgets Y1, . . . , Ym. The variable gadget Xi consists of four vertices u0

i , u1
i , u2

i ,
u3

i and four edges (u0
i , u

1
i), (u

0
i , u

2
i), (u

1
i , u

3
i), (u

2
i , u

3
i). The clause gadget Yi consists of

five vertices w0
i , w1

i , w2
i , w3

i , w4
i and six edges (w0

i , w1
i), (w0

i , w2
i), (w0

i , w3
i), (w1

i , w4
i),

(w2
i , w4

i), (w3
i , w4

i). The source, the vertex gadgets, the clause gadgets, and the sink are
all connected in series as depicted in Figure 5. More precisely, there is an edge from v0
to the vertex u0

1, for all i = 1, . . . , n − 1 there is an edge from u3
i to u0

i+1, there is an
edge from u3

n to w0
1 , for all i = 1, . . . , m − 1 there is an edge from w4

i to w0
i+1, and

finally there is an edge from w4
m to v1.

It remains to define the MSCs that are placed in the vertices of G. The MSC in v0
consists of a single message (s1, r1) from p1 to p2. The MSCs in the vertices u0

i , u3
i ,

w0
j , w4

j are empty for all i = 1, . . . , n, j = 1, . . . , m. For i = 1, . . . , n, the MSC in u1
i

consists of a message from p2 to pxi , and the MSC in u2
i consists of a message from

p2 to px̄i . For j = 1, . . . , m, k = 1, 2, 3, the MSC in wk
j contains a message from plkj

to pcj , where lkj is the kth literal of cj . Finally, the MSC in v1 has m + 1 messages: a
message from each pcj , j = 1, . . . , m, to p3, and a message m2 = (s2, r2) from p3 to
p4 that is sent after all messages from all pcj are received.

We claim that the original 3CNF formula is satisfiable if and only if the tuple
(H,p, m1, m2) constitutes a “no”-instance of DISCORD(H,p, m1, m2), i.e., there is
a path L from v0 to v1 such that the MSC λ(L) contains no chain from r1 to s2.

Indeed, suppose that our formula is satisfiable, and let T = (t1, . . . , tn), ti ∈
{T, F} be a satisfying assignment for it. Consider a path L that satisfies the following
conditions:

– L starts at v0 and ends at v1;
– L ∩ Xi = {u0

i , u
1
i , u

3
i } if ti = F and L ∩ Xi = {u0

i , u
2
i , u

3
i } if ti = T ;

– L ∩ Yj = {w0
i , w

k
j , w4

j} for some k ∈ {1, 2, 3} such that lkj is true under T , i.e.,
lkj = xz and tz = T or lkj = x̄z and tz = F . Note that such lkj is guaranteed to
exist since T has to satisfy cj .

First, note that in the corresponding MSC λ(L) there is no chain from r1 to any event
of any of the processes pcj , j = 1, . . . , m. Indeed, the only message received by pcj in
λ(L) is from some plkj

such that lkj is true under T . Since lkj is true under T , in λ(L)

388 E. Elkind et al.

P P2 xi

P P2 xi

iu0

iu1

iu2

iu3

(a)

P P

P P

P P

cj

cj

jc

l1

l2

l3

jw0

jw1

jw2

jw3

jw4

(b)

Fig. 6. (a) The gadget Xi; (b) The gadget Yj

the process plkj
receives no messages whatsoever. As p3 only receives messages from

pcj , j = 1, . . . , m, we conclude that in λ(L) there is no chain from r1 to s2.
Conversely, suppose that there is a path L such that in the corresponding MSC λ(L)

there is no chain from r1 to s2. Consider a satisfying assignment T = (t1, . . . , tn)
such that ti = F if L ∩ Xi = {u0

i , u
1
i , u

3
i } and ti = T if L ∩ Xi = {u0

i , u
2
i , u

3
i }.

Note that for any j = 1, . . . , m, if L ∩ Yj = {w0
i , wk

j , w4
j } for some k = 1, 2, 3, it

must be the case that plkj
receives no message from p2 in λ(L), because otherwise there

would be a chain of messages from r1 to s2. Hence, the literal lkj is true under T , i.e.,
cj is satisfied. As this holds for any j = 1, . . . , m, we have successfully constructed a
satisfying assignment for our instance of 3CNF. �

Remark 2. We can consider a weaker version of DISCORD, in which the Allen’s logic
predicate is not part of the input. Namely, for t ∈ {p,p−1,o,o−1,d,d−1}, we define
DISCORDt(H, m1, m2) as the problem of checking whether discordH(m1, m2) � t.
Obviously, for t = p−1 this problem is trivially in P: the answer is always “yes”.
In the full version of the paper [8] we show that this problem is coNP-hard for all
t �= p−1.

5.2 Polynomial-Time Algorithms for Bounded Number of Processes

In our hardness result, both the size of the graph G and the number of processes P are
unbounded. It turns out that this is necessary: if either of these parameters is constant,
there is an algorithm whose running time is polynomial in the other parameter.

This is easy to see if the size of the graph is constant. In particular, the naive al-
gorithm described in the beginning of this section will run in polynomial time: in a

Quantifying the Discord: Order Discrepancies in MSCs 389

graph with a constant number of vertices, there is a constant number of simple paths
and cycles, and one can compute the discord along a path in polynomial time.

The case when the number of processes is constant is considerably more compli-
cated. Our algorithm for this setting is based on Dijkstra’s shortest path algorithm com-
bined with dynamic programming approach. The underlying idea is that given a pair of
events e ∈ λ(v), e′ ∈ λ(v′) and a subset of processes S, we can check if there is a path
L from v to v′ such that the set of processes reachable from e in λ(L) is exactly S. A
straightforward generalization of this idea allows us to compute the discord of any pair
of messages in an HMSC in polynomial time for any fixed value of |P|. The description
of the algorithm and its analysis appear in the full version of the paper [8]. Here, we
will state the main result.

Theorem 2. It is possible to compute discordH(m1, m2) in time O(n224|P||H |2).

6 From Pairs of Messages to HMSCs

In some situations, it is convenient to characterize the discord of an HMSC with a single
parameter rather than list the discords for all pairs of messages in this HMSC. To this
end, we extend the definition of discord from pairs of messages to entire HMSCs by
defining the discord of an HMSC H to be the worst discord over all pairs of messages
in H . Formally, we set Discord(H) = max≺{discordH(m1, m2) | m1 ∈ λ(v), m2 ∈
λ(v′), (v, v′) ∈ E∗}, where E∗ is the transitive closure of the edge set E , and max≺A
is the maximal element of the set A with respect to ≺.

According to this definition, one can compute Discord(H) by computing the discords
for all pairs of messages in H . However, in general, computing discordH(m1, m2) is
coNP-hard, so this approach is not efficient. Quite surprisingly, it turns out that there
exists a different approach that allows us to compute Discord(H) in polynomial time.
It is based on the fact that while it may be hard to check whether there exists a chain
between two events, it is easy to prove that there is no chain between two extremal
events, for a suitable definition of extremality.

In the rest of the section, we describe polynomial-time algorithms for checking that
Discord(H) = t for t ∈ {p,p−1,o,o−1,d−1}. To check whether Discord(H) = d,
we can simply run all these algorithms and return “yes” if all of them return “no”. We
analyze the efficiency of these algorithms in terms of n = |V|, |P| and |H |; observe
that we can assume n = O(|H |), |P| = O(|H |).

For our analysis, we will use the following calculation. By Proposition 1, we can
compute the relation <∗ for any MSC Ci that appears in H in time O(|Ei|2), where Ei

is the set of events of Ci. Hence, computing <∗ for all MSCs that appear in H can be
done in O(|E1|2 + · · · + |En|2) = O(|H |2) steps.

For the cases t ∈ {p,o,d−1}, we will make use of a set E� ⊂ V × V , con-
structed as follows: (v, v′) ∈ E� if and only if (v, v′) ∈ E or there exists a path
(v = vi1 , vi2 , . . . , vik−1 , vik

= v′) such that for j = 2, . . . , k − 1 the MSC λ(vij)
has an empty message set. Note that E� is a subset of the transitive closure of E , i.e.,
(v, v′) ∈ E� implies that in G there is a path from v to v′. It is not hard to see that E�

can be constructed in time O(n|H |).

390 E. Elkind et al.

Discord(H) = p. We will now show that Discord(H) = p if and only if for any
(v, v′) ∈ E�, and any m1 ∈ λ(v′), m2 ∈ λ(v′) we have discord(λ(v);λ(v′))(m1, m2) =
p. This condition is obviously verifiable in time O(n2|H |2). The analysis can be im-
proved to O(n|H |2), see [8].

Indeed, if for some such m1, m2 we have discord(λ(v);λ(v′))(m1, m2) �= p, then ob-
viously Discord(H) �= p. Conversely, consider any pair of messages m1 = (s1, r1) ∈
λ(v), m2 = (s2, r2) ∈ λ(v′) and any path L = (v = vi1 , . . . , vik

= v′). We
show by induction on k that if our condition holds then discordλ(L)(m1, m2) = p.
The proof is based on the fact that for any three time intervals A, B, C, we have
ApB ∧ BpC =⇒ ApC. For k = 2, the statement is obvious. Now, suppose k > 2.
If for each j = 2, . . . , k − 1, the MSC λ(vij) has an empty message set, then we
have λ(L) = (λ(v); λ(v′)), so discordλ(L)(m1, m2) = p. Now suppose that for some
j ∈ {2, . . . , k − 1} the MSC λ(vij) has non-empty message set and consider some
m = (s, r) ∈ λ(vij). Set L′ = (vi1 , . . . , vij), L′′ = (vij , . . . , vik

). By induction hy-
pothesis, discordλ(L′)(m1, m) = p, discordλ(L′)(m, m2) = p, so in λ(L′) there is a
chain from r1 to s, and in λ(L′′) there is a chain from r to s2. We conclude that in λ(L)
there is a chain from r1 to s2, i.e., discordλ(L)(m1, m2) = p.

Discord(H) = o, d−1. The algorithm and the analysis are similar to the previous
case. Namely, Discord(H) = o (respectively, d−1) if and only if Discord(H) �= p (re-
spectively, Discord(H) �= p,o), which can be verified in polynomial time as described
above, and for any (v, v′) ∈ E� and any m1 = (s1, r1) ∈ λ(v), m2 = (s2, r2) ∈
λ(v′) we have discord(λ(v);λ(v′))(m1, m2) ∈ {p,o} (respectively, discord(λ(v);λ(v′))
(m1, m2) ∈ {p,o,d−1}). The running time of this algorithm is O(n|H |2), as shown
in [8].

The proof is based on the fact that for any three time intervals A, B, C, we have
ApoB ∧ BpoC =⇒ ApoC and Apod−1B ∧ Bpod−1C =⇒ Apod−1C.

Discord(H) = p−1. If Discord(H) = p−1, there exists a pair of nodes v, v′ ∈ V ,
a pair of messages m1 = (s1, r1) ∈ λ(v), m2 = (s2, r2) ∈ λ(v′) and a path L =
(v = vi1 , . . . , vik

= v′) such that discordλ(L)(m1, m2) = p−1, i.e., in λ(L) there is
no chain from s1 to r2. Let C = λ(v), C′ = λ(v′), and C̄ = λ(vi2 , . . . , vik−1).

Let s be a maximal send event in (C; C̄) such there is a chain from s1 to s, and let
r be the corresponding receive. Set p = P (s), q = P (r). It is easy to see that in L
there is no chain from s to r2, or, equivalently, (s, r)p−1m2. Therefore, without loss
of generality we can assume m1 = (s, r), i.e., s1 is a maximal send event in (C; C̄).
This implies that in (C; C̄) there are no send events on p that happen after s1, and there
are no send events on q that happen after r1 (for any such event, there would be a chain
from s1 to this event). Moreover, in C′ there is no chain from any event of p or q to r2.

This suggests the following algorithm. For each pair v, v′ ∈ V , and each pair of
messages m1 = (s1, r1) ∈ λ(v), m2 = (s2, r2) ∈ λ(v′) do the following. Set p =
P (s1), q = P (r1). Let H(v, v′, p, q) be the HMSC obtained by deleting from H all
nodes other than v, v′ that have send events on p or q. Output “yes” if all of the following
four conditions hold:

(1) in λ(v) there are no send events on p after s1;
(2) in λ(v) there are no send events on q after r1;

Quantifying the Discord: Order Discrepancies in MSCs 391

(3) in λ(v′) there is no chain from any event of p or q to r2 (in particular, P (r2) �= p, q);
(4) the HMSC H(v, v′, p, q) contains a path from v to v′.

If (1) — (4) are all true, then the pair (m1, m2) provides a witness that Discord(H) =
p−1. Conversely, by the reasoning above, if Discord(H) = p−1, then there is a pair
(m1, m2) that satisfies (1) — (4).

The running time of this algorithm can be bounded by O(|H |3). To see this, note
that there are O(|H |2) pairs of messages m1 ∈ λ(v), m2 ∈ λ(v′). For each such pair,
conditions (1) — (3) can be verified in time O(|H |) assuming that the relation <∗ for
λ(v′) has been precomputed (as argued above, we can precompute <∗ for all MSCs that
appear in H in time O(|H |2)). Condition (4) corresponds to solving a single instance
of reachability problem, so it can be checked in time O(|H |) as well. We can change
the order of operations so that the algorithm runs in time O(|P|2|H |2) (see [8]). This is
more efficient if |P|2 < |H |, which is likely to be the case in practice.

Discord(H) = o−1. Suppose Discord(H) = o−1. Then there exists a pair of nodes
v, v′ ∈ V , a pair of messages m1 = (s1, r1) ∈ λ(v), m2 = (s2, r2) ∈ λ(v′) and a path
L = (v = vi1 , . . . , vik

= v′) such that discordλ(L)(m1, m2) = o−1, i.e., in λ(L) there
is a chain from s1 to r2, but no chain from s1 to s2 and no chain from r1 to r2. Let
C = λ(v), C′ = λ(v′), and C̄ = λ(vi2 , . . . , vik−1).

Observe that in (C; C̄) there is no chain from r1 to any send event s. Indeed, suppose
such a chain exists, and let r be the receive that corresponds to this send. If in λ(L) there
is no chain from s to r2, we would have (s, r)p−1(s1, r2), a contradiction. On the other
hand, a chain from r1 to s together with a chain from s to r2 gives a chain from r1 to r2
in λ(L), a contradiction again. By a similar argument, in (C̄; C′) there is no chain from
any receive event r to s2.

Set p = P (r1), q = P (s2). It follows that in C there are no send events on p after
r1, in C′ there are no receive events on q before s2, and in C̄ there are no sends on p
and no receives on q. Obviously, in C there is no chain from s1 to any event of q, and
in C′ there is no chain from any event of p to r2. Moreover, it cannot be the case that
p = q, q = P (s1) or p = P (r2).

Consequently, we have the following algorithm for checking whether Discord(H) =
o−1. First check that Discord(H) �= p−1. Then for each pair v, v′ ∈ V , and each pair
of messages m1 = (s1, r1) ∈ λ(v), m2 = (s2, r2) ∈ λ(v′) do the following. Set
p = P (r1), q = P (s2). Let H(v, v′, p, q) be the HMSC obtained by deleting from H
all nodes other than v and v′ that have send events on p or receive events on q. Output
“yes” if the following six conditions hold:

(1) we have p �= q, q �= P (s1), p �= P (r2);
(2) in C there are no send events on p after r1;
(3) in C′ there are no receive events on q before s2;
(4) in C there is no chain from s1 to any event of q;
(5) in C′ there is no chain from any event of p to r2;
(6) the HMSC H(v, v′, p, q) contains a path from v to v′.

Suppose that for some v, v′ ∈ V , m1 ∈ λ(v), m2 ∈ λ(v′) (1) — (6) are all true.
By (6), there exists a path L = (v = vi1 , . . . , vik

= v′) in H(v, v′, p, q). Set λ(v) = C,

392 E. Elkind et al.

λ(v′) = C′, C̄ = λ(vi2 , . . . , vik−1). Suppose that λ(L) contains a chain from s1 to
s2. As q �= P (s1), p, this chain must contain a receive event on q. By (3), there is no
such event in C′, and by construction of H(v, v′, p, q), there can be no such event in
C̄. Finally, by (4) there is no such event in C. Hence, in λ(L) there is no chain from s1
to s2. Similarly, a chain from r1 to r2 must contain a send event on p, and there is no
such event in C (by (2)), C′ (by (5)), or C̄ (by construction of H(v, v′, p, q)). Hence,
the pair (m1, m2) provides a witness that Discord(H) = o−1 Conversely, by the rea-
soning above, if for some pair (m1, m2) we have discordH(m1, m2) = o−1, then our
algorithm will succeed. As in the previous case, this algorithm can be implemented in
time O(|H |3) or, by changing the order of operations, in O(|P|2|H |2).

7 Conclusions

We proposed using Allen’s logic for detecting and measuring message order discrep-
ancy in HMSCs. We believe that Allen’s logic can be a versatile tool for other message
order-related problems in MSCs and HMSCs, such as, e.g., race conditions and message
overtake. Allen’s logic is very well studied from algorithmic perspective [12]; while in
this paper we did not use these results, they may be very useful for other applications
of Allen’s logic for message order analysis.

We introduced the notion of discord, which measures the difference between the
message order in an HMSC and the “ideal” message order for that HMSC. We have
shown a coNP-hardness result for computing the discord of a pair of messages in an
HMSC, as well as polynomial-time algorithms for restricted versions of this problem.
In contrast, we showed how to find the worst-case discord of an HMSC in polynomial
time. We believe that the concept of discord will be useful in avoiding design errors
in HMSCs. In particular, it can be applied when one wants to partition a large HMSC
into smaller components: one should prefer partitions with small discord. Finally, con-
sider an MSC-based programming approach such as the “play-in, play-out” framework
of [10], which practically assumes synchronous MSC concatenation. Calculating dis-
cords allows one to quantify the potential for relaxing the synchronization assumption
and check for possible hazards. This may increase concurrency and efficiency of the
implementation and thus can be useful in protocol design.

References

1. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of
ACM 26(11), 832–843 (1983)

2. Alur, R., Holzmann, G., Peled, D.: An Analyzer for Message Sequence Charts. Software —
Concepts and Tools 17, 70–77 (1996)

3. Alur, R., Etessami, K., Yannakakis, M.: Realizability and Verification of MSC Graphs. The-
oretical Computer Science 331(1), 97–114 (2005)

4. Ben-Abdallah, H., Leue, S.: Syntactic Detection of Process Divergence and Non-local
Choice in Message Sequence Charts. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217,
pp. 259–274. Springer, Heidelberg (1997)

5. Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. Journal of the
ACM 30(2), 323–342 (1983)

Quantifying the Discord: Order Discrepancies in MSCs 393

6. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal Methods
in System Design 19(1), 45–80 (2001)

7. Elkind, E., Genest, B., Peled, D.: Detecting Races in Ensembles of Message Sequence
Charts. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, Springer, Hei-
delberg (2007)

8. Elkind, E., Genest, B., Peled, D., Spoletini, P.: Quantifying the Discord: Order
Discrepancies in Message Sequence Charts,available from http://perso.crans.
org/g̃enest/EGPS07.pdf

9. Floyd, R.W.: Algorithm 97 (Shortest Path). Communications of the ACM, 356 (1962)
10. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs and the

Play-Engine. Springer, Heidelberg (2003)
11. ITU Z120 standard recommendation (1996)
12. Krokhin, A., Jeavons, P., Jonsson, P.: Reasoning about Temporal Relations: The Tractable

Subalgebras of Allen’s Interval Algebra. J. ACM 50(5), 591–640 (2003)
13. Lohrey, M., Muscholl, A.: Bounded MSC communication. Information and Computa-

tion 189, 160–181 (2004)
14. Muscholl, A., Peled, D.: Message Sequence Graphs and Decision Problems on Mazurkiewicz

Traces. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS,
vol. 1672, pp. 81–91. Springer, Heidelberg (1999)

15. Peled, D.: Specification and Verification of Message Sequence Charts. In: FORTE’00, IFIP
CP 183, pp. 139–154 (2000)

16. Warshall, S.: A Theorem on Boolean Matrices. Journal of the ACM 9(1), 11–12 (1962)

http://perso.crans.org/~genest/EGPS07.pdf
http://perso.crans.org/~genest/EGPS07.pdf

A Formal Methodology to Test Complex
Heterogeneous Systems�

Ismael Rodríguez and Manuel Núñez

Dept. Sistemas Informáticos y Computación
Universidad Complutense de Madrid, 28040 Madrid, Spain

{isrodrig,mn}@sip.ucm.es

Abstract. Complex computational systemsmay integrate heterogeneous
components that may be defined in different ways. In order to test the con-
formance of an implementation we can use a different testing methodology
for each of the (different groups of) components. Still, this approach might
overlook details regarding the relation among theparts of the system under
test. We present an integrated testing methodology that takes into account
the hierarchical dependence of all the parts of a system. Its main peculiar-
ity is that parts of the implementation under test (IUT) that have already
been tested may partially define the behavior of the tests used to check the
correctness of other IUT parts.

1 Introduction

The complexity and heterogeneity of systems has reached a level where old so-
lutions to assess reliability turn out to be obsolete. To overcome this problem,
formal testing techniques [3,5,1,6,7] provide systematic procedures to create and
apply tests to implementations. Usually, these techniques require constructing a
formal specification to precisely define the expected capabilities of the system.
Then, these capabilities are contrasted with those of the implementation. The
task of completely specifying the behavior of current computational systems is
very difficult due to their complexity. In particular, most real systems are very
heterogeneous and include a big amount of components with different natures.
Thus, instead of using a unique specification framework to formally define the
behavior of systems, it is more adequate to define distinguished parts of the
system by using different formalisms. In addition to be composed by several
parts, systems often present a hierarchical structure. Thus, its definition can be
decomposed into different levels of abstraction, consisting each of these levels of
several units. In this case, the behavior of each unit will be formally specified
by using a (possibly) different formalism. The formal specification of complex
heterogeneous systems, by using different formalisms, represents an important
challenge for traditional testing methodologies.

The purpose of this paper is to introduce a formal methodology to test this
kind of systems. First, we consider that specifications are not described by using
� Research partially supported by the Spanish MEC project WEST/FAST TIN2006-

15578-C02-01 and the Marie Curie RTN TAROT (MRTN-CT-2003-505121).

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 394–409, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Formal Methodology to Test Complex Heterogeneous Systems 395

a unique language but that several languages can be used to specify different (sets
of) functionalities, that is, different units. Systems have a hierarchical structure
(different levels). Each level consists of several units. The first level contains those
units that do not depend on other units. For any i > 1, the i-th level contains
those units that depend only on units belonging to lower levels. Even though the
specification of multi-level systems is a stand-alone goal, in this paper we will go
one step further. Our objective is to test the conformance of IUTs with respect to
these specifications. Obviously, even if a system is specified in different stages, so
that the process can be somehow viewed as working with several specifications,
we will have a unique integrated implementation, not one implementation for
each of the units/levels. In fact, this implementation will be often given in terms
of a black box, where the internal structure is not observable. Thus, we need
tests that can stimulate the IUT by means of basic low level operations that
can be understood by it. An obvious mechanism to test these kind of systems
can be used if each unit of the IUT can be disconnected from those units it
depends on. If this is possible then we could test different parts of the IUT in an
isolated way. Unfortunately, it is not always feasible to disconnect parts of the
IUT from other parts they depend on directly. In particular, this process could
require some knowledge of the IUT that is not available if the IUT is a black
box. Besides, we lose the capability to check the correctness of the integration
and assembling of the parts of the IUT.

We present an integrated testing methodology to test multi-level systems.
Since specifications are defined by several levels (and possibly with different
formalisms) tests will be so. Different tests to check the correctness of the system
at each level will be provided and all levels will be tested bottom-up. The main
peculiarity of the methodology is that, once a level has been tested and no failure
is found, that IUT level will provide part of the behavior of the tests that will
be used to test upper levels. Let us consider a system defined in terms of three
hierarchical levels. A test devoted to check the intermediate level interacts with
the IUT by performing operations that may be defined in terms of other lower
level operations. So, in order to stimulate the IUT, this test needs to perform
some lower level operations as well. Once all lower level operations have been
validated in the IUT by a suitable test suite (consisting of some lowest level
tests), intermediate level tests will be able to perform each needed lower level
operation by invoking the corresponding implementation of this operation in the
IUT. That is, part of the behavior of tests will be directly given by the IUT
(once the corresponding IUT part has been tested). Besides, the methodology
will be refined to deal also with circular dependencies between units.

Let us note that our approach contains, as particular cases, standard ap-
proaches for the specification and testing of component based systems. Actually,
each testing methodology designed to work with a formalism may provide a suit-
able mechanism to deal with the corresponding level of a multi-level specification.
Each of these methodologies will be properly integrated in our methodology. Be-
sides, protocols for testing multi-level systems such as ISO 9646 [2] are also easily
included in our methodology. In fact, in [2] systems are linear in the sense that

396 I. Rodríguez and M. Núñez

there are n levels where each level contains a unique unit. This is a much simpler
conception of systems than the one we present in this paper. Besides, tests do
not have the capability of using the IUT as part of their own definition and
environments with circular dependencies between units are not considered.

Our testing approach is presented informally and formally in the next section
and in Section 3, respectively. In Section 4 we extended it to deal with circular
dependencies among units. Some conclusions are given in Section 5.

2 Informal Presentation of the Methodology

In this section we informally introduce the main characteristics of our approach.
We will review how traditional formal testing works and we will show how it
can be adapted/modified/discarded in the case of multi-level testing. In formal
testing we usually extract some tests from the considered specification and apply
them to the implementation under test (IUT). By comparing the obtained results
with the ones expected by the specification we can generate a diagnosis about
the (in-)correctness of the IUT. These tests usually represent stimulation plans
of the IUT by providing sequences of events that can be interpreted by the
IUT. If the specification language specializes in defining simple communication
events (e.g. the messages of a communications protocol) then these events can
be straightforwardly reproduced and identified. In this case, it will be easy to
apply the tests to the IUT, since the events clearly define how to stimulate the
IUT. On the contrary, if the specification language deals with a higher level of
abstraction then it will be more complex to decide how the test will apply the
foreseen plan of events to the IUT.

Let us consider the following example. We specify an autonomous e-commerce
agent by using a language that specializes only in the definition of its highest
level of abstraction, that is, the economic objectives of the agent (e.g. [4]). The
resulting model will clearly define, for each situation, the set of desirable transac-
tions. Thus, the specification of an agent will indicate its behavior after receiving
a given offer, as well as the way in which the agent will propose offers to other
agents. Let us suppose that this high-level specification language does not define
how an exchange proposal is split into simpler operations. In such a context,
one may wonder how a test can indicate to the IUT that a transaction has to
be performed. If the specification language deals only with high level behavior
then the test should not interact with the implementation by following a fixed
communications protocol. This is so because the specification language does not
allow to express these details. Thus, if we fix the e-commerce protocol used
by the test then we are forcing the IUT to follow that protocol, even though
this information is not reflected in the specification. However, it is obvious that
the test will be using a specific protocol. Otherwise, it would not be able to
propose transactions to the IUT, being these the basic operations to stimulate
the IUT. In order to solve the previously stated problem we will impose two
conditions.

A Formal Methodology to Test Complex Heterogeneous Systems 397

First, we need a more complete definition of the specification where lower
abstraction levels are somehow included. Let us remark that even though a high
level language can be used to provide key information about the desired behavior
of the agent, the agent must indicate some lower level operations allowing to
perform the desired functionalities. Thus, the specification of the agent must be
done in several steps and by (potentially) using different specification languages
for each level of abstraction. For example, a lower level defining the e-commerce
communication protocol must be included in the agent specification.

Second, the definition of tests will be also given by levels/units. The tester
has to use the same levels of abstraction as the ones in the specification. In order
to test a certain level of abstraction of the IUT the tests will represent activity
plans for that level. Nevertheless, each of the interactions between the test and
the IUT will be carried out by using auxiliary (possibly lower level) operations.
For example, if a test sends a resource exchange offer to the IUT then this
operation requires to open a channel, codifying the exchange according to some
protocol, sending the offer through the channel, etc. Lower level operations have
to be tested beforehand with respect to the lower levels of abstraction where they
are defined. Besides, lower levels of abstraction are tested by using operations of
other lower levels of abstraction, and so on. In general, the definition of a test
to check the behavior of the IUT at a level of abstraction needs the definition of
all the levels of the test from that level down to the lowest level.

Thus, in order to define tests we will use a bootstrapping approach. The
behavior of the units belonging to the lowest level will be tested as usual. That
is, tests interact with the IUT by using atomic operations that are understood
by both parts and no further definition is required. The difference comes when
testing the behavior of a higher unit and, more precisely, when defining tests for
these units. If a test is devoted to check a unit belonging to a certain level of
the IUT then it needs to use lower level operations to interact with the IUT.
However, the test does not have its own definition of how to split operations at
level i into operations at level i−1. Instead, this definition will be taken from the
IUT: The test will invoke IUT operations belonging to lower levels as part of its
own definition. Let us note that the purpose is not to test these (i−1)-level IUT
operations, but to use them to properly interact with the IUT at level i. That is,
part of the test behavior (specifically, that concerning to the use of operations
of level i − 1) will be directly given by the IUT. However, before we use these
IUT operations, we need to be confident that they are correctly implemented;
otherwise tests would not work as planned. Thus, we require that these IUT
operations have already been tested by other (lower level) tests.1 These lower
level tests may need to use IUT operations of other lower levels, and so on. This
procedure yields a recursive testing methodology where units belonging to lower
levels must be tested before the ones corresponding to higher levels.

1 Even if these lower IUT operations successfully pass a suitable test suite, their cor-
rectness is not guaranteed in general. However, our criterion to assure the correctness
of (part of) the tests using them is the same as to assure the correctness of IUTs.
Hence, if the testing procedure for the IUT is suitable then it will be so for tests.

398 I. Rodríguez and M. Núñez

3 Basic Definitions

In this section we introduce some notation to formally define multi-level spec-
ifications and tests. Intuitively, a specification can be seen as a set of services,
that is, functionalities that the system is supposed to provide. Each service
is defined by means of an expression in a certain specification language. This
expression indicates the operations that take place to perform that service. A
given service can depend on other services provided by the specification and/or
by other lower level sub-specifications. In particular, a service can be defined
by using another service, which in turn is defined in terms of a third service,
and so on. In this way, services can define dialogs between the system and the
environment. The organization of services in units allows to precisely define how
a unit depends on other units. For the sake of notation simplicity, we will as-
sume that some operations over sets can be applied to tuples when the order
of elements is not relevant. In this case, the operation will transform any tuple
(a1, . . . , an) into a set {a1, . . . , an}. For example, we will write expressions such
as e ∈ (a, b, c) ∪ (e, f).

Definition 1. A system S = {S1, . . . , Sn} is a set of unit specifications (also
called specifications) such that, for all 1 ≤ i ≤ n, the specification Si is a tuple
(Li, Ai, αi, Di) where Li is the language used to define Si, Ai = (si

1, . . . , s
i
mi

)
denotes the tuple of services of Si, and αi ⊆ {1, . . . , n} denotes the set of indexes
of specifications below Si. Besides, Di = (e1, . . . , em) denotes the tuple of service
definitions of Si, that is, each service sk ∈ Ai is defined by an expression ek ::=
fk(si

1, . . . , s
i
mi

, s′1, . . . , s′mk
) where {s′1, . . . , s′mk

} ⊆
⋃

j∈αi
Aj . This expression is

given in language Li and may depend on any other service of Si or Sj , with j ∈
αi. We assume that j ∈ αi iff there exists ek ::= fk(si

1, . . . , s
i
mi

, s′1, . . . , s
′
mk

) ∈ Di

such that {s′1, . . . , s
′
mk

}∩Aj �= ∅. If the service sk is atomic (i.e. it is not defined
in terms of other services), we denote it by setting ek ::= ��.

The set of sub-services of Si, denoted by Subservices(Si), is defined as⋃
j∈αi

Aj . The specifications of S at level h, denoted by Level(S, h), are re-
cursively defined as follows:

Level(S, h) =

⎧⎨
⎩

{Si | αi = ∅} if h = 1{
Si

∣∣∣∣
� ∃ j < h : Si ∈ Level(S, j) ∧
∀ v ∈ αi ∃ l < h : Sv ∈ Level(S, l)

}
otherwise

If αi = ∅ then we say that Si is simple. For a given specification language L, we
denote by UnitsL the set of all unit specifications in language L. We denote the
set of all simple unit specifications in language L by Units∅L. �

Each specification in a system defines a different unit. The level of a specifica-
tion denotes a measure of its dependence on other specifications. Level 1 denotes
simple specifications and level 2 denotes specifications depending only on simple
specifications. Level 3 denotes specifications depending only on specifications at
level 2 as well as those depending on levels 1 and 2, and so on. Let us note that
the concept of level applies only if there do not exist circular dependencies of

A Formal Methodology to Test Complex Heterogeneous Systems 399

specifications in the system. In this section, we will assume that such dependen-
cies do not appear in our systems. In Section 4 we will remove this restriction.
Let us remark that neither individual specifications nor levels correspond with
the classical notion of component. A unit specification denotes some functionali-
ties of interaction of the system with the environment, where each of them may
be defined in terms of operations belonging to lower levels. In our framework,
we call these functionalities services. On the contrary, functionalities provided
by a component do no need to interact with the environment. This difference
will be relevant for testing purposes. For the sake of simplicity we will assume
that service names in a system are unique: Given two specifications S, S′ ∈ S
with S = (L, A, α, D) and S′ = (L′, A′, α′, D′), we have A ∩ A′ = ∅.

Example 1. We define a (small) part of the behavior of a client application in
a client-server system. Let S = {S1, S2, S3} be a system. The specification S1
defines how the user makes a request to the server. S2 defines how to collect from
the user the information required by the request, while S3 defines how to send
encrypted/normal messages through a communication channel. These units are
defined as follows:

S1 = (L1, (request, click, confirmRequest), {2, 3}, D1)
S2 = (L2, (userGivesBankData, userGivesName, userGivesAccount,

askForName, askForBankData), {3}, D2)
S3 = (L3, (bankReplies, serverReplies,

askBank, askServer, sendName, sendEncryptedAccount), ∅, D3)

where L1, L2, L3 are (different) specification languages where the sequential ex-
ecution of operations a1, . . . , an is expressed as follows: a1; . . . ; an. For the sake
of simplicity, only sequential executions are considered in this example (e.g., we
do not consider if statements, loops, etc). Besides, D1, D2, and D3 define the
services request, userGivesBankData, and askBank, respectively, as follows:

request ::= click; askForName;userGivesName;askForBankData;
userGivesBankData;askServer; serverReplies;
confirmRequest

userGivesBankData ::= userGivesAccount; askBank; bankReplies
askBank ::= sendName; bankAcknowledgesName;

sendEncryptedAccount

The rest of services are atomic, that is, they are defined as �� by the correspond-
ing Di (e.g., click, confirmRequest ::= �� ∈ D1). We will assume that the envi-
ronment can trigger any service by directly invoking it.2 The action of calling a
service will be denoted by an auxiliary service. For all service x, we assume that
the service x invokes its execution, that is, we have the expression x ::= x. For
example, we assume that we have confirmRequest ::= confirmRequest ∈ D1.

The subservices of S1 are all the services of S2 and S3, while Subservices(S2)
consists of all the services belonging to S3. In addition, Level(S, i) = {Si} for
1 ≤ i ≤ 3. The specification S3 is simple but S1 and S2 are not. �
2 Similarly, given the interface of an object in object oriented programming, a user can

invoke any object method even if the implementation of the object is a black-box.

400 I. Rodríguez and M. Núñez

Next we introduce a general notion of test suite. This concept will allow us to
abstract the underlying test derivation methodology. We only assume that there
exists a fix criteria to construct test suites (see [8] for a survey on coverage
criteria). Though the purpose of the following definition is to generalize known
test derivation algorithms, where specifications do not have multiple levels, tests
are defined in such a way that both simple and multi-level tests can be defined.
Simple tests, i.e. tests designed to check a specific unit of the specification as if
there did not exist any other units, can be composed to create multi-level tests to
test multi-level specifications (this will be described in forthcoming Definition 4).
Since tests are designed to interact with the IUT, services activated by a test
must be services or subservices of the specification. Regarding the latter ones, let
us note that tests are not prepared by their own to activate subservices. Hence,
if a test activates a subservice then we will denote it by defining it as an atomic
service of the test (meaning that a the test does not know how to produce it) or
by using a service taken from a lower level of the test (meaning that the test is
multi-level). In the next definition, P(X) denotes the powerset of the set X .

Definition 2. Let L be a specification language and S = (L, A, α, D) ∈ UnitsL

be a specification. A test for S is a tuple T = (L′, A′, α′, D′) ∈ UnitsL′ such
that A′ = A′′ ∪ {fail}, where A′′ ⊆ {x, x|x ∈ A ∪ Subservices(S)}. Besides,
for all x ∈ A ∩ Subservices(S) we have x ::= �� ∈ D′. We denote the set of
all tests for S by TestsS. We say that the test T ∈ TestsS is simple if α′ = ∅
(that is, it stimulates only services belonging to A′). We denote the set of simple
tests for S by Tests∅S. A simple test suite for the specification S is any element
in P(Tests∅S). �

We assume that the special service fail is produced by a test when it detects
a failure in the IUT according to some criterion. Besides, let us note that the
languages used to define specifications and those used to define tests are not
necessarily the same.

Example 2. Let L′
1 be a language such that ; denotes a sequential execution and

+ represents a bifurcation that depends on the next service. We consider the
following service, expressed in L′

1:

askBank ::= askBank; sendName; bankAcknowledgesName;
(sendEncryptedAccount) + (sendName; fail)

This service defines a test case to interact with the IUT, specifically to check
whether the askBank service of the IUT behaves as defined by S1. First, the test
produces askBank. If the IUT is correct, this service will launch the execution
of its service askBank. Moreover, if this service is implemented by the IUT as S1
defines, the IUT will reply with sendName. Next, the test will stimulate the IUT
with bankAcknowledgesName. At this point, the test considers two possibilities.
If the IUT replies with sendEncryptedAccount then the test finishes correctly
because this is the expected behavior. However, if the IUT produces sendName
then the IUT behavior does not conform to S1, thus leading to fail. Let us

A Formal Methodology to Test Complex Heterogeneous Systems 401

note that other definitions of askBank would allow to check other parts of the
behavior of this IUT service (e.g., the reply after askBank).

Let T1 be a test for S1 where the previous definition of service askBank is
used and the rest of services are defined as atomic. T1 is simple. Let us note that
T1 does not need to depend on other tests because the services it uses do not
need to be further defined: If the IUT is correct then its implementation of S1
(i.e. the lowest level) will understand these messages.

Now, let us consider the following service definition:

userGivesBankData ::= userGivesBankData; userGivesAccount;
(askBank; bankReplies + askServer; fail)

Let D′
2 be a tuple of services definitions including the previous one as well as

askBank ::= ��, askServer ::= ��, and bankReplies ::= ��, and let T2 be a test
for S2 where

T2 = (L′
2, (userGivesBankData, userGivesBankData,

userGivesAccount, askBank, askServer, bankReplies, fail), ∅, D′
2)

T2 is also a simple test. However, T2 is useless to stimulate the IUT (at least by
itself) because it does not know how to produce e.g. bankReplies in such a way
that it is understood by the IUT. �

In the following definition we introduce a general testing framework. As usual
in formal testing, we consider that there exists a formal language to construct a
precise model to describe the behavior of the IUT.

Definition 3. Let L be a specification language, S ∈ UnitsL be a specification,
and T ∈ TestsS be a test. If the interaction of S and T may trigger the execution
of a service a then we denote it by Produce(S, T, a). Let S1 ∈ Units∅L be a simple
specification, I1 ∈ Units∅L′ be an IUT, and F1 be a simple test suite for S1. We
say that I1 passes F1 if, for all T1 ∈ F , Produce(I1, T1, fail) does not hold. �

As we pointed out before, our testing methodology considers that the IUT is
a black box. So, we cannot assume any internal structure. In particular, when
we speak about a given unit of the IUT, we mean the implementation in the
IUT of some services that are logically grouped in the specification as a unit.
Similarly, when we talk about level of the IUT we mean the implementation of
the corresponding units in the IUT, that is, a set of sets of services. If the IUT is
correct with respect to the specification then these services must be provided by
the IUT and they must be correctly implemented, but their physical structure
in the IUT is indeed not considered. In order to test the conformance of a given
unit with respect to a specification, we will create tests to stimulate the IUT
according to some operations used in that unit. However, each of these operations
has to be performed according to its specification, which could be defined in a
lower unit. Since the IUT is expected to correctly implement all of the units, the
test could take and use operations provided in lower levels of the IUT as a way
to perform them.

402 I. Rodríguez and M. Núñez

However, the IUT implementation of these units could be faulty. Therefore,
before we use the operations given in units belonging to a lower level, we will
have to check their correctness. More precisely, the correctness of the capabilities
provided by those units has to be assessed. In order to do that, we will test them.
Following the same idea, testing the units belonging to a lower level may require
to consider the functionalities condensed in an even lower level of the IUT. So,
first of all we will have to check the correctness of those units. The same reasoning
is repeated until we infer that we need to check the units corresponding to the
lowest level. The tests needed to check the correctness of level 1 do not use
any lower unit/level. Once we have tested this level of the IUT, we will use its
capabilities as part of the activities of the tests that check the units belonging
to the immediately higher level, and so on.

Let us remark that using the services provided by a unit of the IUT as part of
the activity of a test does not consist in breaking this part and connecting it to the
test. Since IUTs are black boxes, this cannot be done. Instead, using an IUT unit
consists in taking the whole IUT and invoking and using only some of its services:
The services that are logically grouped as the considered unit in the specification.
The next definition formalizes this process. We derive a set of multi-level tests
from a set of simple tests. In tests belonging to the latter set, all services are
atomic. Thus, they do not need any further definition. In order to obtain the set
of multi-level tests, we modify the aforementioned simple tests so that all the
tests contain the definition of all lower levels. The operations from these units
are taken directly from the IUT. To pass a test suite created for checking the
i-th level of the IUT (for some i > 1) requires that lower units are correct with
respect to the units of the specification defining the same services. In order to
be confident in this correctness (although it will not be a proof of it), we will
recursively apply a suitable test suite to the immediately lower units/level of the
IUT. If this test suite is passed then we will use the services appearing in these
units to construct services of the tests that check the capabilities corresponding
to units appearing at level i.

Definition 4. Let S = {S1, . . . , Sn} and IUT = {I1, . . . , In} be two systems.
Let S = (LS , AS , αS , DS) ∈ S and I = (LI , AI , αI , DI) ∈ IUT . Let B =
Subservices(I). Let F = {(L1, A1, ∅, D1), . . . , (Ln, An, ∅, Dn)} be a simple test
suite for S. We say that the set {(L1, A1\B, αI , D

′
1), . . . , (Ln, An\B, αI , D

′
n)} is

a multi-level test suite for S and I, where for all 1 ≤ i ≤ n we have that D′
i is

constructed by removing any subservice definition (i.e., e ::= r for some e ∈ B
and r) from Di. Let G be a multi-level test suite for S and I. We say that I
passes G for S if the following two conditions hold:

(1) For all Sk, with k ∈ αS , there exists l ∈ αI such that Il passes G′ for Sk,
where G′ is a multi-level test suite for Sk and Il.

(2) For all T ∈ G we have that Produce(I, T, fail) does not hold. �

Let us note that the anchor case of the previous recursive definition corresponds
to the case when we test a simple specification. In this case, there is no element

A Formal Methodology to Test Complex Heterogeneous Systems 403

to consider in condition (1), so that this case trivially holds and no recursive call
is needed. When a non-simple specification is tested, we recursively test each of
its sub-specifications. Afterwards, the whole specification is tested. Since tests
belonging to the simple test suite are not provided with definitions of lower level
operations, these operations are represented by atomic operations at the actual
level. However, after these operations are properly provided by the IUT (tests are
linked to αI , which allows them to use any IUT lower operation), these atomic
substitutes are removed. The application of the previous definition directly leads
to the iterative testing algorithm presented in Figure 1.

Example 3. Let us consider the test T2 constructed before. In order to turn
this simple test into a multi-level test, we must remove the services askBank,
askServer, and bankReplies from its list of provided services as well as erasing
their definition from D′

2 (where they were defined as ��), leading to a new tuple
of services definitions D′′

2 . Instead, the new test T ′
2 will execute these services by

invoking their respective implementations at the IUT. In this way, the implemen-
tation of S1 in the IUT will enable the test to interact with the implementation
of S2 in the IUT. In technical terms, a part of the IUT will be a part the new
test. Given a system S = {T ′

2, I1} where I1 denotes the implementation of S1 in
the IUT, the new multi-level test T ′

2 is defined as follows:

T ′
2 = (L′

2, {userGivesBankData, userGivesBankData,
userGivesAccount, fail}, {1}, D′′

2) �

Next we show that tests use lower units of the IUT as part of their own definition
only after these units have already been tested by previous tests.

Lemma 1. Let S, I be two systems such that S ∈ S, I ∈ I, and S ∈ Level(S, i)
for some i ∈ IN. Let G be a multi-level test suite for S and I, and let T ∈ G.
The algorithm given in Figure 1 applies T only after, for all S′ ∈ Level(S, j)
with j < i, a test T ′ for S′ and some I ′ ∈ I has already been applied. �

4 Specifications with Circular Dependencies

The methodology presented in the previous section is based on the idea that each
unit of the specification uses other units that are located below it. Hence, we as-
sume the existence of some minimal units whose definition does not depend on
other units. These units play the role of the anchor case in our recursive method-
ology. This fact makes our methodology to be well-formed. However, one can
imagine specifications with circular dependencies between units. For instance,
let us consider the specification of a distributed system where each part uses
services that are provided by all the other parts. In this case, the methodology
presented in the previous section might not work because the existence of an
anchor case is not guaranteed.

In order to tackle this problem we could consider that all the units containing
mutual circular dependencies are part of a single logical unit. Hence, the logical
division of the specification for testing purposes would be free of circular de-
pendencies. However, this method would partially break the modularity of the

404 I. Rodríguez and M. Núñez

Input: A specification S with units grouped in n levels and an implementation I .
Output: A diagnosis result: true or false.

i := 1;
error := false;
while i ≤ n and not error do

Let Si be the set of all sub-specifications of S at level i;
while Si �= ∅ and not error do

Choose S′ ∈ Si;
Let I ′ be the implementation of S′ in IUT ;
Si := Si\{S′};
Generate a test suite G for S′;
if i ≥ 2 then

forall test T ∈ G do
use all subparts of I ′ for implementing level i − 1 of T

od
fi;
forall test T ∈ G do apply T to I ′ od;
if fail is obtained then error := true fi

od
i := i + 1;

od
return (not error);

Fig. 1. Multi-level testing algorithm

testing procedure. If it were possible, we could also disconnect those units with
circular dependencies from the rest of units. Then, we could test each of them
in an isolated fashion. Let us note that this requires to physically break a part
of the IUT. Thus, this alternative is not feasible in a black-box testing approach
because we cannot separately access the different parts of the system under test.

In the rest of the section we show another alternative whose main idea is to
consider that the order to test units is governed by the services instead of by the
own units. In fact, there exist several situations where we may have a circular
dependence between units but we can still find a sequence of services without a
circular dependence between them. If such a condition holds then the order of
application of our methodology will be governed by these sequences.

Example 4. A given system consists of two concurrent processes (specified by S1
and S2) that can perform dialogs to exchange some information. The service of
sending data from one of the processes to the other implies using the service of
reception of the last one. We have:

S1 = (L1, (sendingTo2, receivingFrom2), {2},
(sendingTo2 ::= receivingFrom1, receivingFrom2 ::= ��))

S2 = (L2, (sendingTo1, receivingFrom1), {1},
(sendingTo1 ::= receivingFrom2, receivingFrom1 ::= ��))

A Formal Methodology to Test Complex Heterogeneous Systems 405

The definition of each of these units depends on the other one, and we have a
circular dependence between units. However, the services of reception of data do
not depend on any other service. In addition, the services to send data depend on
the services of reception, but the dependence of services finishes there. So, there
is an order to test services avoiding any circular dependence between them: We
test both reception services, and next we check both sending services. That is, in
spite of the existence of a circular dependence between units, there is no circular
dependence between services. This makes possible to apply our methodology by
considering a structure based on services instead of one based on levels. �

Let us formalize this alternative methodology. First of all, we need to identify all
the services conforming a multi-level specification, regardless of the level where
the units using them are located.3 Given a unit, the next recursive function
finds all services (as well as their respective definitions) from that unit down
through any number of dependence links. The function uses an auxiliary set Q
to contain all the services cumulated in previous recursive calls. We will use
this set to avoid performing a call over a unit whose services have already been
included in the set. By doing so we avoid that a circular dependence produces an
infinite sequence of recursive calls to this function. Similarly, we also define the
full set of specifications that can be reached from a given specification, through
dependency links. In this case, R denotes the set of indexes of specifications
already cumulated in previous recursive calls.

Definition 5. Let S = {S1, . . . , Sn} be a system and S = (L, A, α, D) ∈ S be
a specification where A = (s1, . . . , sb) and D = (e1, . . . , eb). Besides, let PS =
{(s1, e1), . . . , (sb, eb)}. We define the full set of defined services of S, denoted by
Full(S), as Full’(S, ∅), where

Full’(S, Q) = PS ∪
{

(s, e) ∈ Full’(Si, Q ∪ A)

∣∣∣∣
Si = (Li, Ai, αi, Di) ∈ S

∧ i ∈ α ∧ Ai �⊆ Q

}

Let Full(S) = {(s1, e1), . . . , (sm, em)}. Then, the full set of services of S,
denoted by FullServ(S), is the set {s1, . . . , sm}. Let Sp = (Lp, Ap, αp, Dp) ∈ S.
We define the set of specifications below Sp, denoted by Dependents(S), as
Dep’(Sp, {p}), where

Dep’(Sp, R) = {Sk|k ∈ αp} ∪
{

Sj ∈ Dep’(Si, αp ∪ R)

∣∣∣∣
Si = (Li, Ai, αi, Di) ∈ S

∧ i ∈ αp ∧ αi �⊆ R

}

�
Let us recall that services are defined as an expression that may depend on other
services. In turn, these services may belong either to the same unit in which the
service is defined or to another unit that is directly referred from it.

Example 5. We have FullServ(S1) = FullServ(S2), which in turn are equal
to {sendingTo1, receivingFrom1, sendingTo2, receivingFrom2}. We also have
Dependents(S1) = Dependents(S2) = {1, 2}. �
3 The notion of level is partially lost in systems with circular dependencies because

the maximal distance from some unit to simple units could be infinite.

406 I. Rodríguez and M. Núñez

In the next definition we give a condition to construct a sequence containing all
the services used in a multi-level specification in such a way that no service is
defined in terms of other services that appear before in the sequence.

Definition 6. Let S be a specification, Full(S) = {(s1, e1), . . . , (sn, en)} be the
full set of defined services of S, and [(si1 , ei1), . . . , (sin , ein)] be a permutation
of Full(S). The sequence of services [si1 , . . . , sin] is a non-circular sequence of
services for S if for all 1 ≤ j < k ≤ n we have that either

– there exists a specification S′ = (L′, A′, α′, D′) ∈ Dependents(S) such that
sij , sik

∈ A′, or
– eik

is not defined in terms of sij .

If there exists such a sequence for S then we say that S is service-structured. �

If a specification is service-structured then we can develop a methodology where
all the services of the specification are tested in a given order: The order given
by a list of services fulfilling the condition of the previous definition.

Example 6. C = [sendingTo1, sendingTo2, receivingFrom1, receivingFrom2]
is a non-circular sequence of services for S1 as well as for S2. �

In the previous section we introduced a testing methodology where test suites for
checking the functionalities of each unit were considered. Now we consider tests
suited to check a single service belonging to the corresponding unit. In order to
check the correctness of this service, tests may use only those IUT lower services
that appear further in the non-circular sequence of services. As we will see, this is
valid because these services will be tested before. In fact, any other lower service
will not appear in the tests constructed to check that service.

Definition 7. Let S = (L, A, α, D) ∈ UnitsL where A = (s1, . . . , sb) and D =
(e1, . . . , eb). Let s = sk for some 1 ≤ k ≤ b, and let ek ::= fk(s′1, . . . , s

′
g, s

′′
1 , . . . , s′′h)

where {s′1, . . . , s
′
g} ⊆ A and {s′′1 , . . . , s′′h} ∩ A = ∅. Finally, let us consider that

C = [s1, . . . , si−1, s, si+1, . . . , sn] is a non-circular sequence of services of S where
{s′′1 , . . . , s′′h} ⊆ {si+1, . . . , sn}, and let A = {x|x ∈ A}. A test for the specification
S, the service s, and C is a tuple T = (L′, A′, α′, D′) ∈ UnitsL′ such that

(a) s ∈ A′ (i.e., s is checked by T),
(b) A′ = A′′ ∪ {fail} with A′′ ⊆ {x, x|x ∈ A ∪ Subservices(S)}, and for all

x ∈ A ∩ Subservices(S) we have x ::= �� ∈ D′ (i.e., T checks only services
and subservices of S),

(c) {fail, s, s, s′1, . . . , s
′
g, s

′′
1 , . . . , s′′h} ⊆ FullServ(T) (i.e., T or its sub-levels

tackle the full definition of s) and FullServ(T) ⊆ {fail, s} ∪ A ∪ A ∪
{si+1, . . . , sn} (i.e., T and its sub-levels do not refer to services before s
in the sequence C).

We denote the set of all tests for S, s, and C by TestsS,s,C. A test T =
(L′, A′, α′, D′) ∈ TestsS,s,C is simple if α′ = ∅. The set of simple tests for S

A Formal Methodology to Test Complex Heterogeneous Systems 407

is denoted by Tests∅S,s,C. A simple test suite for the specification S, service s,
and list C is any element in P(Tests∅S,s,C). �

Example 7. Next we show a simple test for S1, sendingTo2, and C:

T1 = (L′
1, (sendingTo2, receivingFrom2, recevingFrom1, fail), ∅,

sendingTo2 ::= sendingTo2; (receivingFrom1) + (receivingFrom2; fail),
receivingFrom2 ::= ��, receivingFrom1 ::= ��) �

We have the needed machinery to define our services-oriented testing methodol-
ogy. Basically, we will traverse a non-circular sequence of services, checking the
correctness of the IUT for each service in the sequence one after each other. For
any sequence of services, testing the first service s of the list requires to test
before all the services remaining in the sequence. This is done by performing a
recursive call where the remaining sequence of services is the parameter.

We will use the services of the IUT already checked in the tests to check other
services. We will do it similarly to the way we did it for checking units. In order
to check a service used in a certain unit, we create tests that may use lower
services, which are provided by lower units of the IUT. However, in the current
setting we check a unique service in each step. Hence, it may happen that some of
the units that we use as part of the tests are not completely tested. Nevertheless,
let us note that those services such that the service we are testing depends on
them are tested in previous steps indeed. This is so because the order in the
sequence of services properly keeps the dependencies between services. Hence,
there is no risk to include in a test some functionality that will actually be used
and has not been checked yet. Next we assume that [c|C] denotes a sequence
where the first element c is followed by the sequence C.

Definition 8. Let S = {S1, . . . , Sn} and IUT = {I1, . . . , In} be two systems.
Let S = (LS , AS , αS , DS) ∈ S and I = (LI , AI , αI , DI) ∈ IUT . Let B =
Subservices(I). Let C be a non-circular sequence of services of S. Let F =
{(L1, A1, ∅, D1), . . . , (Ln, An, ∅, Dn)} be a simple test suite for S, s, and C. We
say that the set {(L1, A1\B, αI , D

′
1), . . . , (Ln, An\B, αI , D

′
n)} is a multi-level test

set for S, I, s, and C, where for all 1 ≤ i ≤ n we have that D′
i is constructed by

removing any subservice definition (i.e., e ::= r for some e ∈ B and r) from Di.
Let C = [s|C′]. Besides, let I ′ = (L′

I , A
′
I , α

′
I , D

′
I) be the unique element in

Dependents(I) such that s ∈ A′
I , and S′ = (L′

S, A′
S , α′

S , D′
S) be the unique

element in Dependents(S) such that s ∈ A′
S . Let G be a multi-level test suite

for S′, I ′, s, C. We say that I passes C for S if the following conditions hold:

(1) I passes C′ for S, and
(2) for all T ′ ∈ G we have that Produce(I ′, T ′, fail) does not hold.

Besides, we consider that I passes [] for S, that is, the empty sequence of services
is always successfully passed. We say that I passes S if I passes C for S, where
C is a non-circular sequence of services for S. �

408 I. Rodríguez and M. Núñez

Example 8. Let us suppose that I1 and I2 represent the implementation of S1
and S2 in the IUT, respectively. Given the system S = {T ′

1, I2}, T ′
1 is the multi-

level test for S1, I1, sendingTo2, and C defined as follows:

T ′
1 = (L′

1, (sendingTo2, receivingFrom2, fail), {2},

sendingTo2 ::= sendingTo2; (receivingFrom1) + (receivingFrom2; fail),
receivingFrom2 ::= ��) �

Next we show that tests do not use IUT services as part of their own definition
until these services have already been tested by other tests.

Lemma 2. Let S, I be two systems such that S = (L, A, α, D) ∈ S, and let
I ∈ I. Let C = [sk|C′] be a non-circular sequence of services of S such that
sk ∈ A is a service defined by the expression ek ::= fk(s′1, . . . , s

′
g, s

′′
1 , . . . , s′′h) ∈ D,

where s′1, . . . , s′g ∈ A and s′′1 , . . . , s′′h �∈ A. Let G be a multi-level test suite for S,
I, sk, and C, and let T ∈ G. The testing method given in Definition 8 applies T
only after, for all 1 ≤ j ≤ h, a test T ′ for some S′ ∈ S, I ′ ∈ I, s′′j , and a suffix
of C has already been applied. �

5 Conclusions and Future Work

In this paper we have presented a testing methodology that is suitable for testing
complex and heterogeneous systems. In these systems, each component can be
specified by using a different specification language. These languages can be, in
general, very different. The proposed methodology is defined in a recursive way
and is based on the idea of testing at first lower levels and by continuing with
higher levels, up to the highest one. Testing the correctness of the functionalities
of each unit of the IUT allows us to use these operations as part of the tests that
will check the behavior of units located in higher levels of the IUT. We propose
a second methodology allowing to test systems presenting circular dependencies.

References

1. Brinksma, E., Tretmans, J.: Testing transition systems: An annotated bibliogra-
phy. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS,
vol. 2067, pp. 187–195. Springer, Heidelberg (2001)

2. ISO/IEC 9646-1: 1994. Information technology – Open Systems Interconnection –
Conformance testing methodology and framework. Part 1: General concepts (1994)

3. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines: A
survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)

4. Núñez, M., Rodríguez, I., Rubio, F.: Specification and testing of autonomous agents
in e-commerce systems. Software Testing, Verification and Reliability 15(4), 211–233
(2005)

5. Petrenko, A.: Fault model-driven test derivation from finite state models: Annotated
bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000.
LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001)

A Formal Methodology to Test Complex Heterogeneous Systems 409

6. Rodríguez, I., Merayo, M.G., Núñez, M.: A logic for assessing sets of heterogeneous
testing hypotheses. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006.
LNCS, vol. 3964, pp. 39–54. Springer, Heidelberg (2006)

7. Rodríguez, I., Merayo, M.G., Núñez, M.: HOTL: Hypotheses and Observations Test-
ing Logic. Journal of Logic and Algebraic Programming (in press, 2007), Available
at http://dx.doi.org/10.1016/j.jlap.2007.01.001

8. Zhu, H., Hall, P.A.V, May, J.H.R.: Software unit test coverage and adequacy. ACM
Computing Surverys 29(4), 366–427 (1997)

http://dx.doi.org/10.1016/j.jlap.2007.01.001

A New Approach to Bounded Model Checking
for Branching Time Logics

Rotem Oshman and Orna Grumberg

Technion – Israel Institute of Technology
Department of Computer Science

Abstract. Bounded model checking (BMC) is a technique for overcom-
ing the state explosion problem which has gained wide industrial accep-
tance. Bounded model checking is typically applied only for linear-time
properties, with a few exceptions, which search for a counter-example in
the form of a tree-like structure with a pre-determined shape. We suggest
a new approach to bounded model checking for universal branching-time
logic, in which we encode an arbitrary graph and allow the SAT solver to
choose both the states and edges of the graph. This significantly reduces
the size of the counter-example produced by BMC.

A dynamic completeness criterion is presented which can be used to
halt the bounded model checking when it becomes clear that no counter-
example can exist. Thus, verification of the checked property can also
be achieved. Experiments show that our approach outperforms another
recent encoding for μ-calculus on complex ACTL properties.

1 Introduction

Bounded model-checking (BMC) is a model-checking method that has gained
popularity due to the inability of BDD-based symbolic model-checkers to handle
large designs. In classical BMC [3], one tries to find a bug of bounded length
k. If a bug is not found, the bound is increased until either a bug is found or a
pre-determined completeness threshold [4] is reached. If the threshold has been
reached but no bug has been found, it is concluded that the formula holds in the
model. In practice, the threshold is rarely reached, but recent works (e.g., [6])
also describe techniques for SAT-based temporal induction which can be used
to prove formulas without reaching the completeness threshold.

BMC has mostly been restricted to linear-time specifications, with a few ex-
ceptions ([14], [16]). Most encodings for linear-time logic have a common form,
a conjunction of two formulas: one encodes a path starting from an initial state
of the model, and the second is property-dependent and constrains the path to
be a counter-example to the property being checked.

Bounded model-checking for branching-time logic is a somewhat thornier
problem, because it is usually not known in advance what exact shape the
counter-example will take. The works that extended the BMC paradigm to uni-
versal branching-time logic dealt with this problem in different ways: [14] encodes
a property-dependent number of bounded paths, either lasso-shaped or finite,
and constrains them to represent a counter-example; [16] encodes a bounded

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 410–424, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A New Approach to Bounded Model Checking for Branching Time Logics 411

proof-tree for the negation of the formula, using the local proof rules of [15] for
μ-calculus. Both approaches assume a worst-case scenario in the construction of
the tree-like structure they encode, with the result that many more states may
be encoded than are necessary for the counter-example. For example, to disprove
a formula of the form ψ1∨ψ2, both approaches will encode two separate tree-like
structures — one for disproving ψ1 and one for disproving ψ2. In practice, there
may exist counter-examples for both ψ1 and ψ2 which share many model states.
The counter-examples returned in [14] and [16] are therefore not minimal in the
number of states they contain.

In this paper we suggest a new approach to bounded model-checking for uni-
versal branching-time logic wherein we encode exactly the states that are nec-
essary for the counter-example. Unlike [14] and [16], we make no assumptions
about the structure of the counter-example; we encode k states, where k is the
bound, and allow the SAT solver to choose both the states and the edges of
the model that will comprise the counter-example. We use the local constraints
of Namjoshi’s proof system for μ-calculus [13] to ensure that the structure rep-
resented by the states is a counter-example to the formula being checked. Our
approach ensures a minimal counter-example, and it avoids representing the
same model-state more than once.

We present an encoding for proving existential μ-calculus properties (or falsi-
fying universal properties), using alternating parity tree automata as the spec-
ification mechanism. We also present a simplified variation of the encoding for
alternation-free existential μ-calculus. The encoding for full existential μ-calculus
uses roughly O(|Q| · k log k) variables, where k is the bound and |Q| is the num-
ber of automaton states. The simpler encoding for alternation-free μ-calculus is
less compact, requiring O(|Q| ·k2) variables, but it is more explicit and performs
better than the more general encoding. The simplified encoding can be extended
to handle fairness constraints while still requiring roughly O(|Q| · k2) variables.

We also describe a dynamic termination criterion which can be used to halt
the bounded model-checking by determining that no counter-example compris-
ing k′ > k states can exist, where k is the current bound. The idea is similar to
the criterion suggested in [16]: we attempt to identify situations where the struc-
ture encoded cannot be extended by adding new states (that is, increasing the
bound). However, our implementation is quite different, due to the difference
between the encodings. Using the termination criterion it is possible to prove
and disprove both existential and universal formulas. As is typical for bounded
model-checking, the algorithm performs better when proving existential formulas
or disproving universal ones than when proving universal formulas or disproving
existential ones.

Finally, we present experimental results for the branching-time logic ACTL.
Our experiments show that our approach is a good complement to the encoding
of [16], especially for complex formulas with a large nesting depth, where our
encodings can often disprove formulas that cannot be disproven by the encoding
of [16]. Deeply-nested formulas are generated during automatic translation to
ACTL from a high-level specification language, e.g., PSL [1], where complex
regular expressions translate into deeply-nested ACTL formulas.

412 R. Oshman and O. Grumberg

2 Preliminaries

2.1 Alternating Parity Tree Automata

A normal-form alternating parity tree automaton [17] is a tuple A = (AP,
Q, q0, δ, Ω), where AP is a set of atomic propositions, Q is the set of automaton
states, and q0 is the initial state; δ is an alternating transition relation, assigning
to each state q ∈ Q a transition of the form q1 ∨ q2, q1 ∧ q2, ♦q1, �q1, p or
¬p, where q1, q2 ∈ Q and p ∈ AP ; and finally, Ω : Q → N is a partial priority
function which represents a parity acceptance condition (in [13], the acceptance
condition is represented as a partition of Q instead of a priority function). For an
automaton state q ∈ Q, Ω(q) will be called the priority of q. The automata we
will deal with contain no cycles of priorityless states. We will say that an infinite
sequence π = q0q1 . . . ∈ Qω satisfies Ω if the lowest priority Ω(q) of a state q that
has a priority and appears infinitely often in π is even. (An alternative definition,
e.g. in [17], requires that the infinite sequence also have an infinite number of
states for which the priority is defined. However, automata constructed using
the standard translation from μ-calculus have at least one state that has a pri-
ority on every cycle in the automaton; all infinite sequences contain an infinite
number of states that have a priority. We assume this property in the automaton
representing the specification we check.)

Universal μ-calculus properties [11] can be expressed by automata that do not
have ♦-transitions. We will refer to such an automaton as a �-automaton. Sim-
ilarly, existential μ-calculus properties can be expressed by ♦-automata, which
have no �-transitions.

Tree automata run over labeled trees. A labeled tree is a pair T = (N, L)
where N ⊆ N

+ is a prefix-closed set of tree nodes and L : N → 2AP is a labeling
function. The node ε (the empty word) is the tree root, and there is an edge from
node n1 to node n2 iff n2 = n1 · i for some i ∈ N. We will use Succ(n) to denote
the targets of edges outgoing from n; that is, Succ(n) = {n · i | i ∈ N} ∩ N .

The acceptance of a tree by an automaton is defined in terms of a two-player
infinite game. The game positions are N × Q, and the initial position is (ε, q0).
The player who owns the position (n, q) and the moves available to that player are
determined according to δ: player I owns positions (n, q) such that δ(q) = q1∨q2 or
δ(q) = ♦q1; player II owns positions (n, q) such that δ(q) = q1 ∧ q2 or δ(q) = �q1.
If δ(q) = q1 ∨ q2 or δ(q) = q1 ∧ q2, the available moves are (n, q1) and (n, q2); if
δ(q) = ♦q1 or δ(q) = �q1, the available moves are (m, q1) for all m ∈ Succ(n).
A position (n, q) is winning for player I if δ(q) = p and p ∈ L(n) or δ(q) = ¬p
and p �∈ L(n), and winning for player II if δ(q) = p and p �∈ L(n) or δ(q) = ¬p
and p ∈ L(n). A play is winning for player I if it is finite and ends in a position
that is winning for player I, or if it is infinite and satisfies Ω; otherwise, the play
is winning for player II. Strategies are defined as usual: a strategy for player x is a
partial function mapping finite sequences of configurations to a choice of the next
configuration at every position owned by player x. A play is said to be according
to a strategy for player x if every choice made by player x in the play conforms to
the strategy. A strategy is winning for player x if player x wins any play she plays
according to the strategy. We will say that an automaton A accepts a tree T iff
player I has a winning strategy for the game thus described.

A New Approach to Bounded Model Checking for Branching Time Logics 413

2.2 Kripke Structures

To represent finite-state programs, we use Kripke structures. A Kripke structure
is a tuple M = (S, s0, R, L), where S is the set of states, s0 is the initial state,
R ⊆ S × S is a total transition relation and L : S → 2AP is a labeling function.

Given a Kripke structure M and an alternating parity tree automaton A, we
will say that M satisfies A iff the computation tree of M is accepted by A. We will
say that a model state s ∈ S satisfies an automaton state q if the computation
tree starting from s is accepted by the automaton A′ which is identical to A
except that q is the initial state of A′.

Theorem 1 ([9], [17]). For every mu-calculus formula ϕ there exists an al-
ternating parity tree automaton Aϕ such that for every Kripke structure M , M
satisfies Aϕ iff M |= ϕ.

Example 1. Consider the automaton A = ({p} , {q0, q1, q2, q3, q4} , q0, δ, Ω) shown
in Fig.1, where the type of the transition is indicated below each state or on the
relevant edge, and Ω is defined only for q2 and q3 (shown dashed), which have
Ω(q2) = 2 and Ω(q3) = 1.

q0

∧
q2

♦

q1

∨
q3

♦

q4

p

(a) An automaton for EGEFp

s0 s1

p

s2

(b) A Kripke structure satis-
fying EGEFp

Fig. 1. An example automaton and Kripke structure

The automaton is equivalent to the property “there exists a path on which
from every state, p is reachable”, expressed as EGEFp in the temporal logic
ECTL. State q0 stands for EGEFp, and state q2 stands for EXEGEFp, “there
exists a successor that satisfies EGEFp”. Similarly, q1 stands for EFp and q3
for EXEFp, and state q4 stands for p. The odd priority for q3 requires that a
winning play only pass through q3 a finite number of times (since there is no
state with a lower even priority), so that eventually the play must transition to
q4, which requires that p be satisfied at the current model state.

414 R. Oshman and O. Grumberg

2.3 Namjoshi-Style Temporal Proofs

Several proof systems have been suggested for the model checking problem of μ-
calculus. Here we focus on the proof system presented by Namjoshi in [13]. The
feature which makes it useful for our purposes is that its conditions are local: to
verify that a proof is valid, one need only check a series of local conditions, which
refer at most to a state’s immediate successors in the Kripke structure. Other
proof systems, such as Stirling’s proof rules [15], keep track of states visited
along the current proof branch; in Namjoshi’s system such “book-keeping” is
not required, and ranks are used instead.

In [13], the proof system is presented for automata where the priority function
is full. We will present the system from [13] and then explain how it can be
extended to the case where the priority function is a partial function.

Let M = (S, s0, R, L) be a Kripke structure, and let A = (AP, Q, q0, δ, Ω) be a
normal-form alternating parity tree automaton with Ω defined for all q ∈ Q. To
show that M satisfies A, one must exhibit: (i) for each automaton state q ∈ Q,
a predicate Iq, which, intuitively, characterises the set of model states which
satisfy q; (ii) non-empty, well-founded sets W1, . . . , Wm, where m is the number
of odd priorities assigned by Ω to states from Q, and pre-orders ≺1, . . . , ≺m; (iii)
for each automaton state q ∈ Q, a partial rank function ρq : S → (W, ≺), where
W = W1 × . . .×Wm and ≺ is the lexicographic order induced by ≺1, . . . , ≺m on
W . In this paper, we will assume without loss of generality that W = N

k, with
≺i the standard order < over N. We will henceforth omit W and simply write
Π = (I, ρ), where I = {Iq | q ∈ Q} is the set of invariants and ρ = {ρq | q ∈ Q}
is the set of rank functions.

We use Invariance and Progress obligations to ensure that player I has a
winning strategy for the game induced by A on the computation tree of M : the
obligation for automaton states q with ∨- or ♦-transitions represents the move
player I must make in positions (s, q) owned by her. Obligations for states q with
∧- or �-transitions ensure that no matter which move player II makes from a
position (n, q), player I will have a winning strategy from the resulting position.
In the case of an infinite play, we use ranks to ensure that the play satisfies Ω.

Intuitively, the rank ρq(s) represents a commitment regarding the number of
times we may pass through states with each odd priority before passing through
a state with lower priority in a play from position (n, q), where n is a tree node
corresponding to model state s. For example, coordinate 0 of the rank counts the
number of times we may pass through states with priority 1 before passing through
a state with priority 0. Each time we pass through a state with priority 2i + 1,
coordinates 0 through i decrease lexicographically, and can only increase again
when passing through a state q with Ω(q) < 2i+1.A play according to the strategy
induced by the invariants can only pass through a state with an odd priority 2i+1 a
finite number of times before coordinates 0, . . . , i of the rank reach zero, and then
we must pass through a state with lower priority. The lowest priority occurring
infinitely often in the play must be even, and player I wins.

This notion is captured by an order �q over N
k, defined for each q ∈ Q

as follows: (x0, . . . , xm−1) �q (y0, . . . , ym−1) iff Ω(q) = 0, or Ω(q) = 2i, i > 0

A New Approach to Bounded Model Checking for Branching Time Logics 415

and (x0, . . . , xi, 0, . . . , 0)
 (y0, . . . , yi, 0, . . . , 0), or Ω(q) = 2i+1 and (x0, . . . , xi,
0, . . . , 0) ≺ (y0, . . . , yi, 0, . . . , 0). Note that coordinates i, . . . , m − 1 are uncon-
strained when passing through a state with priority Ω(q) < 2i + 1, but when
passing through states with Ω(q) ≥ 2i+1, coordinate i may not increase. When
passing through a state with priority 2i + 1, coordinates 0, . . . , i must decrease
in lexicographic order.

A valid proof must satisfy the following requirements.

– Consistency: for each q ∈ Q and s ∈ Iq , ρq(s) is defined.
– Initiality: s0 ∈ Iq0 .
– Invariance and Progress: for each q ∈ Q and s ∈ Iq:

• If δ(q) = p then p ∈ L(s).
• If δ(q) = ¬p then p �∈ L(s).
• If δ(q) = q1 ∨ q2, then either s ∈ Iq1 and ρq1(s) �q ρq(s), or s ∈ Iq2 and

ρq2(s)�q ρq(s).
• If δ(q) = q1 ∧ q2, then s ∈ Iq1 and ρq1(s) �q ρq(s), and also s ∈ Iq2 and

ρq2(s)�q ρq(s).
• If δ(q) = ♦q1, then there exists t ∈ S such that (s, t) ∈ R and t ∈ Iq1

and ρq1(t)�q ρq(s).
• If δ(q) = �q1, then for all t ∈ S such that (s, t) ∈ R, t ∈ Iq1 and

ρq1(t)�q ρq(s).

Theorem 2 ([13]). For every Kripke structure M and automaton A with a full
priority function, M satisfies A iff there exists a Namjoshi-style proof showing
that M satisfies A.

Automata resulting from the standard translation for μ-calculus have a partial
priority function, with infinitely many priorities on every infinite path. For such
automata, we would still like the �q relation to enforce the parity acceptance
condition, which now concerns only states that have a priority. Define an exten-
sion �q as follows: x �q y iff Ω(q) is defined and x �q y, or Ω(q) is undefined
and x = y. The idea is that priorityless states should simply preserve the rank,
keeping it unchanged until the next time we pass through a state with a priority.

Lemma 1. The proof system obtained by replacing �q with �q is sound and
complete for all automata with no cycles of priorityless states.

Example 2. Consider the automaton and structure shown in Fig.1. A proof show-
ing that M satisfies A is given by Π = (I, ρ), where Iq0 = Iq2 = {s0} (states that
satisfy EGEFp and EXEGEFp), Iq1 = Iq3 = {s0, s1} (states that satisfy EFp
and EXEFp), and Iq4 = {s1} (the only state labeled with p). The ranks in Π
have a single coordinate, representing the length of a path to a state satisfying
p. The relation �q is = for all q �= q3, and for q3, �q3 is <. An assignment of
ranks that satisfies the proof obligations is ρq(s0) = 1, ρq(s1) = 0 and ρq(s2)
undefined for all q ∈ Q. Note that since we attached the decrease in rank to an
automaton state with a ♦-transition, all the automaton states agree on the rank
assigned to each model state. This can be done for all ECTL formulas.

416 R. Oshman and O. Grumberg

2.4 Notation and Terminology

We will let Q♦ denote the set of automaton states q with a transition δ(q) = ♦q1.
For automaton states q ∈ Q♦ and model states s ∈ Iq, it will sometimes be useful
to identify the model state (or one of the model states) t ∈ S which serves to
satisfy the Invariance and Progress obligation for s and q in a proof Π . We will
refer to t as a proof successor for s as required by q.

3 The Encodings

We present two encodings to SAT for model checking existential alternating
parity tree automata (with no �-transitions). In both encodings, we search for
a counter-example of bounded size k in the Kripke structure, where k is the
number of states in the counter-example; the counter-example is represented
as an arbitrary graph of unknown structure, and each state in the graph must
satisfy certain local obligations to ensure that the graph constitutes a counter-
example for the formula in question. The structure of the graph is determined
by the local obligations of each state.

3.1 Encoding Namjoshi-Style Proof Obligations

The first encoding we present is a direct translation of the proof obligations of
a Namjoshi-style temporal proof to Boolean constraints.

Let M = (S, s0, R, L) be a Kripke structure. We assume that the initial state
and the transition relations are given in the form of propositional formulas I and
R respectively, and that the state space S is represented by {0, 1}n. Also, for
each atomic proposition p ∈ AP , we assume a propositional formula Lp which is
true exactly for states s ∈ S such that p ∈ L(s). Let A = (AP, Q, q0, δ, Ω) be a
♦-automaton. To encode the requirements on ranks, we use a set of propositional
formulas LTq for all q ∈ Q, such that LTq(σ1, σ2) holds iff σ1 �q σ2.

The encoding uses the following variables.

– u0, . . . , uk−1: vectors representing model states. Each vector comprises n
bits.

– xq
i for each i = 0, . . . , k −1 and q ∈ Q: an indicator variable for the fact that

the state assigned to ui satisfies q.
– ρq

i for each i = 0, . . . , k − 1: a vector representing the rank ρq(s) assigned to
ui by q.

Each rank vector ρq
i has m coordinates, where m is the number of odd priorities

assigned by Ω to automaton states, and each coordinate j comprises log |Q|k
bits. This is sufficient because if there exists an infinite winning play for player
I, then there exists a play that does not pass through an odd-priority state
twice before passing through a state with a lower priority. The total number of
variables used in the encoding is O(nk + k|Q| + |Q|mk log |Q|k).

A New Approach to Bounded Model Checking for Branching Time Logics 417

The obligations for a state ui and an automaton state q are encoded as a
Boolean formula of the form xq

i → 〈〈δ(q)〉〉i, where 〈〈δ(q)〉〉i is defined as follows.

〈〈p〉〉i = Lp(ui)
〈〈¬p〉〉i = ¬Lp(ui)
〈〈q1 ∧ q2〉〉i = xq1

i ∧ LTq(ρ
q1
i , ρq

i) ∧ xq2
i ∧ LTq(ρ

q2
i , ρq

i)
〈〈q1 ∨ q2〉〉i = (xq1

i ∧ LTq(ρ
q1
i , ρq

i) ∨ xq2
i) ∧ (LTq(ρ

q2
i , ρq

i))

〈〈♦q1〉〉i =
k−1∨
j=0

(
R(ui, uj) ∧ xq1

j ∧ LTq(ρ
q1
j , ρq

i)
)

It is possible to eliminate the indicators xq
i when δ(q) = q1∧q2 or δ(q) = q1∨q2

by substituting the constraints generated for these formulas anywhere that the
indicator appears.

To represent the Initiality requirement, we add the constraint I(u0)∧xq0
0 . The

resulting formula is given by

PRF1
M,A,k = I(u0) ∧ xq0

0 ∧
k−1∧
i=0

∧
q∈Q

xq
i → 〈〈δ(q)〉〉i

Optimizating the Encoding. The encoding presented above is naive, and can
be improved in several ways.

First, the encoding suffers from symmetry, which has an adverse effect on the
performance of most SAT solvers; the model states u1, . . . , uk−1 are interchange-
able, and the SAT solver is forced to consider many equivalent permutations of
the same counter-example before eliminating it. We have found that perfor-
mance is greatly improved when we break the symmetry by ordering the states
u1, . . . , uk−1, obtaining the formula

PRF1′

M,A,k = PRF1
M,A,k ∧

k−2∧
i=1

ui < ui+1

where “<” is implemented as the lexicographic order on binary vectors. (u0 is
excluded from the ordering as it is the only state that serves a “special” role: it
must be an initial state, and we cannot require that it be smaller than all the
other states.)

The way ranks are handled in the encoding can also be improved. By analyzing
the structure of the automaton, we can identify sets of automaton states that
can share the same rank vectors. For example, if δ(q) = q1 ∧ q2 and q does not
have a priority, then in a valid proof, ρq(s) = ρq1(s) = ρq2(s) for any model state
s. There is no need to encode the rank separately, and instead of having three
vectors ρq

i , ρq1
i and ρq2

i all three automaton states can “share” a vector ρ
{q,q1,q2}
i .

This also simplifies the constraint 〈〈δ(q)〉〉i , because now we can remove the LTq
constraint; it is implicit in using the same rank vector.

In particular, for ECTL formulas it is possible to construct automata where
all the automaton states share a single rank vector ρQ

i , greatly simplifying the
encoding. For lack of space, we do not elaborate.

418 R. Oshman and O. Grumberg

Encoding Successor States Explicitly. In the constraints generated for
states q ∈ Q♦, the transition relation appears k times each. Since the transi-
tion relation is often complicated, it is desirable to decrease the number of times
it appears. We can do so at the cost of increasing the number of variables, by
encoding proof-successors explicitly. For each q ∈ Q♦ and i = 0, . . . , k−1, we will
assign a vector tqi to represent the successor required by q if the state assigned
to ui is in Iq. Since we are searching for a proof of size k, tqi will be constrained
to be one of the states u0, . . . , uk−1; also, if tqi = uj , then we require uj to be
in the appropriate invariant Iq1 , where δ(q) = ♦q1, and its rank must behave
appropriately. The constraint can now be written as

〈〈♦q1〉〉i = R(ui, t
q
i) ∧

k−1∨
j=0

(
tqi = uj ∧ xq1

j ∧ LTq(ρ
q1
j , ρq

i)
)

In the new encoding, the transition relation appears k · |Q♦| times instead of
k2 ·|Q♦| times as before. We will also have further use for the information we gain
by explicitly encoding proof successors in constructing a dynamic completeness
criterion (Section 4).

3.2 Eliminating the Use of Ranks

Although the previous encoding uses a rather small number of variables, which
increases as O(k log k) with the bound k, the use of ranks can be SAT-unfriendly.
The second encoding we present is similar to the first, but using ideas from
[10] and [8], we eliminate the use of ranks. The idea is that instead of directly
encoding the rank ρq(s) for states s ∈ Iq, we will store a subset Iσ

q for each rank
σ, containing states s ∈ Iq that have ρq(s) ≤ σ. In the encoding, we will unroll
the proof obligations once for each such invariant; when a decrease in rank is
called for, we will use the subset that represents the lower rank. This encoding
becomes inefficient when the ranks have more than one coordinate, and we will
restrict attention to automata that only assign the priorities 1, 2. Such automata
require a single coordinate in the rank, and includes the alternation-free fragment
of μ-calculus.

The encoding will use the following variables.

– u0, . . . , uk−1: vectors representing model states.
– xq,t

i for each i = 0, . . . , k−1, q ∈ Q and t = 0, . . . , mk where m is the number
of odd-priority automaton states: an indicator variable for the fact that the
state assigned to ui satisfies q and has rank no greater than t.

Our obligations will now take the form xq,t
i → 〈〈δ(q)〉〉t

i for t > 0, where 〈〈δ(q)〉〉t
i

is defined by

〈〈p〉〉t
i = Lp(ui)

〈〈¬p〉〉t
i = ¬Lp(ui)

〈〈q1 ∧ q2〉〉t
i = x

q1,rq(t)
i ∧ x

q2,rq(t)
i

A New Approach to Bounded Model Checking for Branching Time Logics 419

〈〈q1 ∨ q2〉〉t
i = x

q1,rq(t)
i ∨ x

q2,rq(t)
i

〈〈♦q1〉〉t
i =

k−1∨
j=0

(
R(ui, uj) ∧ x

q1,rq(t)
j

)

where rq(t) = t if Ω(q) = 2 or Ω(q) is not defined, and rq(t) = t − 1 if Ω(q) = 1.
For t = 0, we will constrain xq,0

i → false (or just substitute false where the
indicator appears).

The optimizations for the previous encoding can be applied here as well. The
encoding can be further optimized for ECTL by exploiting the weak structure of
the automata along the lines of [8]. Also, although ECTL formulas with fairness
cannot always be described by automata that only assign the priorities 1 and 2, it
is not difficult to extend the encoding for ECTL to handle fairness, by imitating
the way a symbolic model-checker for ECTL handles fairness constraints.

Theorem 3. Given a Kripke structure M and a ♦-automaton A, the formulas
generated by the encodings of Sections 3.1 and 3.2 are satisfiable iff there exists
a proof Π = (I, ρ) showing that M satisfies A that contains k states; that is,∣∣∣⋃q∈Q Iq

∣∣∣ = k.

4 A Dynamic Completeness Criterion

Both encodings presented in the previous section provide a way to determine
when a Kripke structure does not satisfy a �-automaton A: construct the com-
plement A¬ for A, choose a bound k, and if a SAT solver returns a satisfying
assignment for PRFM,A¬,k then M does not satisfy A. For some formulas there
is a known completeness threshold, which is a bound on the number of states
(usually the length of a path) necessary to disprove the formula. However, the
completeness threshold usually depends on both the formula and the model, and
in practice it is difficult to compute. Following [16], we are interested in a dy-
namic completeness criterion: a formula CMPM,A,k that is satisfiable while there
is still hope of finding a counter-example, and that becomes unsatisfiable when
there is none. Essentially, CMPM,A,k should encode the fact that it is possible
to arrange k states so that they form a “beginning” of a proof that might be
extended into a valid proof by adding more states.

To see how CMPM,A,k should be constructed, consider the situation where
we have not found a proof when the bound is k, but there exists a proof Π
with k′ > k states. Now let Π ′ be an invalid proof constructed by taking k
states of Π , including s0, and using the invariants and ranks of Π restricted
to these k states. It is easy to see that in Π ′, the Initiality and Consistency
obligations are satisfied. For automaton states q ∈ Q \ Q♦, the Invariance and
Progress requirements are satisfied as well. However, Π ′ must violate some proof
obligations, because there is no valid proof of size k. The obligations that are
violated are Invariance and Progress obligations for states q ∈ Q♦ that have
♦-transitions, and the reason they are violated in Π ′ is that they rely on some
of the states that appear in Π but not in Π ′.

420 R. Oshman and O. Grumberg

We would like to identify situations where no proof fragment Π ′ matching
this description exists, and therefore CMPM,A,k will encode these requirements:

– Initiality.
– For automaton states q ∈ Q \ Q♦, Invariance and Progress.
– For automaton states q ∈ Q♦, a weakened version of Invariance and Progress,

where the successor required by the obligation for q with δ(q) = ♦q1 is not
required to be in the invariant for q1 unless it is one of the states u0, . . . , uk−1.
This allows the successor to be a new unconstrained state, required only to
be distinct from the regular proof states.

The weakened Invariance and Progress requirement identifies cases where adding
more states to the proof may yield a valid proof. Assuming the encoding of
Section 3.1 with proof successors encoded explicitly, the weakened requirement
is given by

〈〈♦q1〉〉W
i = R(ui, t

q
i) ∧

k−1∧
j=0

(
tqi = uj →

(
xq1

j ∧ LTq(ρ
q1
j , ρq

i)
))

where tqi is the successor required by q ∈ Q♦ that has δ(q) = ♦q1 for ui. Violated
Invariance and Progress requirements for states that do not have a ♦-transition
cannot be satisfied directly by adding more states, so they are left unchanged:
〈〈δ(q)〉〉W

i = 〈〈δ(q)〉〉i for all q ∈ Q \ Q♦.
Additionally, we would like to constrain the SAT solver to use the k proof

states “constructively”, otherwise a satisfying assignment might encode, e.g., k
unreachable states, and satisfy all their proof obligations by adding new and
unconstrained states. To this end we will require that all k proof states be
distinct from each other, and also that each state except s0 (represented by
u0) be a proof-successor for some state. This constrains satisfying assignments
to encode only “proof-reachable” states — states that are reachable from s0 by
a path in which each state is a proof-successor for the state preceding it.

The formula that encodes all these requirements is given by

CMP1
M,A,k =I(u0) ∧ xq0

0 ∧
k−1∧
i=0

∧
q∈Q

xq
i → 〈〈δ(q)〉〉W

i ∧
∧
i�=j

ui �= uj∧

∧
k−1∧
i=1

⎛
⎝

k−1∨
j=0

∨
q∈Q♦

ui = tqj ∧ xq
j

⎞
⎠

Theorem 4. If there exists a proof for the fact that M satisfies A with k′ ≥ k
states, then CMP1

M,A,k is satisfiable.

The scheme for using the dynamic completeness criterion is shown in Alg. 1,
which takes as input a ♦-automaton A and a structure M . For a �-automaton
one constructs the complement, calls the algorithm and returns the opposite
answer.

A New Approach to Bounded Model Checking for Branching Time Logics 421

Algorithm 1. BMC using the dynamic completeness criterion
for k = 1 to |S| do

if PRF1′
M,A,k is satisfiable then

return M |= A
else if CMP1

M,A,k is not satisfiable then
return M �|= A

end if
end for
return M �|= A

5 Related Work

Many BMC encodings have been suggested for linear-time logics of increasing
complexity, among them [7], which handles LTL with past, and [10] and [8], which
handle all ω-regular properties. In particular, [10] and [8] apply ideas from the
world of symbolic model-checking for branching-time logic to BMC for linear-
time. Here we apply similar ideas in their original context of model-checking for
branching-time logic.

The first BMC scheme for a branching-time logic, ACTL, was suggested in
[14]. This scheme works by explicitly encoding a computation tree of depth k
which does not satisfy the formula. Instead of encoding a full tree, it bounds the
number of paths needed, based on the structure of the formula. The number of
paths is exponential in the nesting depth of the formula (in the worst case).

A more general approach was suggested by Wang in [16], in which the existence
of a bounded-depth proof for the negation of a universal μ-calculus property is
encoded as a SAT problem. The approach is somewhat similar to ours, but [16]
relies on Stirling’s local proof rules [15], which keep track of all the states visited
along each proof branch, and require directly that the branch be acyclic (for a
least fixpoint) or cyclic (for a greatest fixpoint). Different branches of the proof
share no information, and a single model state can appear many times in the
proof tree.

The encoding of [16] is simple and elegant, but encoding the proof as a tree-
like structure allows no sharing of information between different branches of the
proof. The disadvantage becomes more acute for complicated formulas, where
the proof tree contains many nested subgoals, each of which needs to be justified
separately. For disjunction, the encoding of [16] unrolls two separate subproofs,
even though only one of the goals needs to be satisfied; for example, to show
that EFp ∨ EFq holds (“there exists a path on which we eventually reach p or
a path on which we eventually reach q”), two separate paths will be unrolled.
In contrast, our encoding enables maximal sharing of information: a model state
need never be encoded more than once, and information about the automaton
states it satisfies can be used to justify many different subgoals.

The number of variables used in the encoding of [16] increases exponentially
with the bound in the worst case for universal μ-calculus properties, and poly-
nomially for ACTL formulas, with the exponent being the nesting depth of
temporal operators in the formula; when the bound increases by one, a full layer

422 R. Oshman and O. Grumberg

is added to the proof tree. Our encoding allows finer control. Although in the
worst case it may need to encode the same number of states as the encoding of
[16], it can often terminate with a smaller bound and smaller counter-examples.
It is not possible to obtain a minimal counter-example from a satisfying assign-
ment to the formula generated in [16], and it is also not possible to determine
which parts of the structure returned are relevant to the proof (for example, in
the case of conjunction, it is not possible to tell which conjunct was disproved).
The bounds used in our encoding and in [16] are incomparable: our bound rep-
resents the exact number of states in the counter-example, while the bound in
[16] represents the depth of the proof tree. Either method may terminate with
a smaller bound than the other.

In [12] it is shown how to solve parity games through a reduction to SAT. This
work is closely related to our own, since parity games are equivalent to μ-calculus
and to alternating parity tree automata; [12] also uses ranks in a manner similar
to ours. However, the encoding of [12] assumes that an explicit representation
of the gameboard, which is difficult to compute for the model checking problem,
since it means computing the product of the model and the automaton. Also,
the encoding represents the entire gameboard at once, and therefore it does not
lend itself immediately to bounded model checking.

6 Experimental Results

We implemented an ACTL version of our encodings and Wang’s encoding from
[16] in the NuSMV2 framework [2], and tested their performance on a 3GHz Pen-
tium 4 with 4GB memory, using the ZChaff SAT solver. We used random Kripke
structures with 100 states each, and random formulas that were not satisfied in
the models. The formulas were of nesting depth 2 – 5 of the temporal operators
AF , AG and AU . We used a maximal bound of 20, which was never reached
in our experiments, and a timeout of 5 minutes. The simplified encoding from
Section 3.2 greatly outperformed the general encoding of Section 3.1, probably
owing to our naive implementation of ranks, and we present results only for the
simplified encoding. Our results for 500 formulas for each nesting depth from 2
to 4 are summarized in Fig. 2 and Table 1.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

NEW ENCODING

W
A

N
G

’S
 E

N
C

O
D

IN
G

TOTAL SAT RUNTIME (MILLISECONDS)

(a) Nesting depth 2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

NEW ENCODING

W
A

N
G

’S
 E

N
C

O
D

IN
G

TOTAL SAT RUNTIME (MILLISECOND)

(b) Nesting depth 3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

NEW ENCODING

W
A

N
G

’S
 E

N
C

O
D

IN
G

TOTAL SAT RUNTIME (MILLISECONDS)

(c) Nesting depth 4

Fig. 2. Total SAT runtimes for disproving ACTL formulas of nesting depth 2 – 4

A New Approach to Bounded Model Checking for Branching Time Logics 423

Table 1. Success rate in disproving ACTL formulas of nesting depth 2 – 5

Nesting depth 2 Nesting depth 3 Nesting depth 4 Nesting depth 5
Wang’s encoding 100% 99% 84% 76%
New encoding 98% 97% 95% 94%

For nesting depth 2, the encoding of [16] performs better than our encoding
(Fig. 2(a)). For nesting depth 3 (Fig. 2(b)) the encodings perform roughly the
same, and for nesting depth 4 or greater our encoding performs better than the
encoding of [16] (Fig. 2(c)). The counter-examples found by our encoding were
generally very small (10 states or less), and the depth of the proof tree encoded
in Wang’s encoding was often larger. The counter-examples returned by Wang’s
encoding were larger by an order of magnitude than the examples returned by
our encoding for all nesting depths.

7 Conclusion

We have presented a novel approach to bounded model-checking for branching-
time logics. We showed two encodings, together with a dynamic termination
criterion, which can be used to both prove and disprove specifications in universal
or existential branching-time logic. Our experimental results show that for ACTL
formulas with a large nesting depth, our encodings perform better than the
previous encoding of Wang. We believe that these results will extend to ACTL
with fairness and to general μ-calculus formulas.

The approach presented here is applicable to many logics, from ACTL to μ-
calculus, and can be extended to use different types of automata as specifications,
using ranking functions to represent different acceptance conditions. The use of
ranks can also be applied to BMC in linear-time logics, for example by modify-
ing the encoding of [8] for weak alternating Büchi word automata, resulting in
encodings that use fewer variables; however, it is not clear that performance will
be improved.

The formulas generated in our encodings, and particularly the dynamic com-
pleteness criterion, share most of their constraints with the formulas generated
in previous iterations. This makes them suitable for incremental SAT, where
conflict clauses learned in previous calls to the SAT solver are re-used to help
solve the next instance. Performance may also be improved by using encodings
of ranks optimized for SAT, developed in the context of termination checking
(e.g., [5]).

References

1. Accellera. PSL Reference Manual v1.1 (2004)
2. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,

Sebastiani, R., Tacchella, A.: NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
Springer, Heidelberg (2002)

424 R. Oshman and O. Grumberg

3. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Form. Methods Syst. Des. 19(1), 7–34 (2001)

4. Clarke, E., Kroening, D., Strichman, O., Ouaknine, J.: Completeness and com-
plexity of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004.
LNCS, vol. 2937, pp. 85–96. Springer, Heidelberg (2004)

5. Codish, M., Lagoon, V., Stuckey, P.J.: Solving partial order constraints for LPO
termination. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 4–18. Springer,
Heidelberg (2006)

6. Eén, N., Sörensson, N.: Temporal induction by incremental sat solving. Electr.
Notes Theor. Comput. Sci. 89(4) (2003)

7. Heljanko, K., Junttila, T., Latvala, T.: Incremental and complete bounded model
checking for full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 98–111. Springer, Heidelberg (2005)

8. Heljanko, K., Junttila, T.A., Keinänen, M., Lange, M., Latvala, T.: Bounded model
checking for weak alternating büchi automata. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 95–108. Springer, Heidelberg (2006)

9. Janin, D., Walukiewicz, I.: Automata for the mu-calculus and related results.
In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562.
Springer, Heidelberg (1995)

10. Jehle, M., Johannsen, J., Lange, M., Rachinsky, N.: Bounded model checking for
all regular properties. In: Biere, A., Strichman, O. (eds.) BMC 2005. Proc. 3rd
Int. Workshop on Bounded Model Checking. Electr. Notes in Theor. Comp. Sc,
vol. 144, pp. 3–18. Elsevier, Amsterdam (2005)

11. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

12. Lange, M.: Solving parity games by a reduction to SAT. In: Majumdar, R., Jur-
dziński, M. (eds.) GDV 2005 (2005)

13. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001)

14. Penczek, W., Wozna, B., Zbrzezny, A.: Bounded model checking for the universal
fragment of CTL. Fundam. Inf. 51(1), 135–156 (2002)

15. Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. Theor.
Comput. Sci. 89(1), 161–177 (1991)

16. Wang, B.Y.: Proving ∀μ-calculus properties with SAT-based model checking. In:
Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 113–127. Springer, Heidelberg
(2005)

17. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Soc. Math. Belg. 8(2) (2001)

Exact State Set Representations in the

Verification of Linear Hybrid Systems
with Large Discrete State Space�

Werner Damm2,3, Stefan Disch1, Hardi Hungar3, Swen Jacobs4, Jun Pang2,
Florian Pigorsch1, Christoph Scholl1, Uwe Waldmann4, and Boris Wirtz2

1 Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 51, 79110 Freiburg, Germany

2 Carl von Ossietzky Universität Oldenburg
Ammerländer Heerstraße 114-118, 26111 Oldenburg, Germany

3 OFFIS e.V., Escherweg 2, 26121 Oldenburg, Germany
4 Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Abstract. We propose algorithms significantly extending the limits for
maintaining exact representations in the verification of linear hybrid
systems with large discrete state spaces. We use AND-Inverter Graphs
(AIGs) extended with linear constraints (LinAIGs) as symbolic represen-
tation of the hybrid state space, and show how methods for maintaining
compactness of AIGs can be lifted to support model-checking of linear
hybrid systems with large discrete state spaces. This builds on a novel
approach for eliminating sets of redundant constraints in such rich hy-
brid state representations by a suitable exploitation of the capabilities of
SMT solvers, which is of independent value beyond the application con-
text studied in this paper. We used a benchmark derived from an Airbus
flap control system (containing 220 discrete states) to demonstrate the
relevance of the approach.

1 Introduction

We target the verification of safety properties for embedded control applications
in the transportation domain. Typical for such applications is a ratio of between
1:5 to 1:10 between the core control algorithms and diagnostic and fault-tolerance
measures integrated into the controller, leading to a blow up of the discrete state
space against pure control applications often reaching some 106 discrete states.
As an example, we analyze a model derived from an Airbus flap controller [13],
which on top of its control-loop for flap extraction and retraction is performing
envelope protection to prevent loads on flaps possibly causing physical ruptures,
and offers extensive monitoring of the health of its sub-systems to e. g. react on
� This work was partly supported by the German Research Council (DFG) as part

of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 425–440, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

426 W. Damm et al.

loss of hydraulic pressure, rupture of the transmission shaft, or hardware fail-
ures. To prove safety of such controllers, we must combine methods for analyzing
the pure control part (typically using linear dynamics for design models serving
as reference for subsequent implementation steps) with state-space exploration
methods dealing with large discrete state spaces. Such applications are out of
reach for existing hybrid verification tools such as CheckMate [26], PHAVer [11],
HyTech [15], d/dt [5]: while their strength rests in being able to address complex
dynamics, they do not scale in the discrete dimension, since modes – the only dis-
crete states considered – are represented explicitly when performing reachability
analysis. On the other hand, hardware verification tools such as SMV [20] and
VIS [27] scale to extremely large discrete systems, but clearly fail to be applica-
ble to systems with continuous dynamics. To achieve a compact representation
of such hybrid state-spaces, we enrich AND-Inverter Graphs (AIGs) with linear
constraints. Previous work [23] demonstrated advantages of AIGs over BDDs for
representing large discrete state-spaces compactly, due to their higher robust-
ness in handling broad classes of Boolean functions in exhaustive state-space
exploration. We lift methods such as test vector generation and SAT checking
to detect equivalent (and thus redundant) nodes to the LinAIG level, providing
a suite of heuristics including precise checks for equivalent LinAIG nodes using
the SMT solver HySAT [10]. Moreover, we provide efficient methods for detecting
and eliminating redundant linear constraints from LinAIGs, which are basically
arbitrary boolean combinations of boolean variables and linear constraints. This
extends results for eliminating redundant linear constraints from convex polyhe-
dra used by Wang [28] and Frehse [11]. Our approach can be applied to perform
backward reachability both for discrete time models (such as reference models
for embedded controller implementation) and linear hybrid automata enriched
with large discrete state spaces. In the latter case, we exploit the fact that the
number of modes of a single controller is typically small (in the order of tens of
modes) – this allows us to co-factor the LinAIG representation along modes. For
each mode, we use the Loos-Weispfenning quantifier elimination technique for
backward evaluation of the symbolic state-space representation along continu-
ous flows. We counteract a worst-case quadratic blow up of linear constraints by
tightly integrating redundancy elimination into the quantifier elimination pro-
cess. Jointly, the presented techniques allow to achieve preciseness while main-
taining sufficiently compact representations for the targeted application class.

This paper significantly extends our previous work [7] in adding quantifier
elimination and redundancy elimination. The introduction of quantifier elimina-
tion was originally motivated by the wish to reduce the diameter of discrete time
models. In allowing to fold the effect of large sequences of discretized flows into
a single substitution, we accelerate hybrid system verification. This is different
from the acceleration by folding hybrid control loops as in [6] which is performed
in the world of few discrete states.

The presented methods are orthogonal to and may in the future be combined
with abstraction techniques (such as bounding the degree of precision or loos-
ening constraints as in [11]), incorporating robustness [12,8] or slackness [1,2]

Exact State Set Representations 427

in models allowing precise abstractions by finite grids under robustness respec-
tively slackness assumptions, counter-example guided abstraction refinement as
in [24,17,25] and techniques such as hybridization [4] for approximate lineariza-
tion of richer dynamics.

The paper is organized as follows: Sections 2 and 3 give the formal mathemat-
ical model and present the backward-reachability algorithm. Sections 4 and 5 are
dedicated to flow extrapolation and redundancy elimination. Evaluation results
on the flap controller case study are presented in Section 6.

2 System Model

2.1 An Informal Description

This section elaborates on the characteristics of the systems to be analyzed, and
motivates particular choices incorporated in the formal definition given in the
following section. Our definition of hybrid systems can be seen as an extension
of linear hybrid automata (LHA) [14] with a set of discrete variables. The state
space is spanned by three classes of variables:

– Continuous variables represent sensor values, actuator values, plant states,
and other real-valued variables used for the modeling of control-laws and
plant dynamics.

– Mode variables represent a finite (small) set of modes, corresponding to the
discrete states of an LHA; each mode is uniquely associated with a constant
slope for each of the continuous variables, determining how the continuous
valuation evolves over time as long as the system is in the given mode.

– Discrete variables code states from state-machines, switches, counters, sanity
bits of sensor values, etc., and appear in modeling tools typically as bits,
range types, or integer sub-ranges. In this paper we will assume some Boolean
encoding of these variables. There are additional discrete input variables to
our system.

Our models are closed-loop models without continuous input variables, combin-
ing controller and its controlled plant, hence sensors and actuators are internal
continuous variables. Interactions of the environment are only possible through
discrete input variables, allowing e. g. to select set-points, and to react to pro-
tocol messages. Non-deterministic choices are also modeled using discrete input
variables. We remark that employing the construction from [3] permits us to
extend our procedure to cope with slope sets bounded by constants which allow
for non-determinism in plant dynamics, though we will not provide technical
details of this extension in this paper.

The system evolves in alternating between continuous flows, in which time
passes and only continuous variables are changed according to their slopes asso-
ciated with the currently active mode of the system, and sequences of discrete
transitions, which happen in zero time. Such discrete transitions update both
discrete and continuous variables, and finally select the next active mode. All

428 W. Damm et al.

(discrete) transitions are urgent, eliminating the need to associate state invari-
ants with modes, as in other models of hybrid systems. Discrete inputs enter
only in assignments to other discrete variables, i. e. they are disregarded during
continuous evolutions. To allow e. g. for periodic sampling of discrete inputs,
one can explicitly encode a (continuous) clock within one mode, and test for
expiration of the clock-cycle within a transition guard.

2.2 Formal Model

We assume disjoint sets of variables C, D and I. The elements of C are contin-
uous variables, which are interpreted over the reals R. The elements of D and I
are discrete variables, where I will be used for inputs. For simplicity, we assume
that they are of type boolean and range over the domain B = {0, 1}. In the same
way we assume that modes are encoded by a set M ⊆ {0, 1}l of boolean vectors
of some fixed length l, leading to a set M of l (boolean) mode variables. We
denote a valuation of (a subset of) these variables by (d, i, c,m).

A set of valuations (or states) can be represented symbolically using a suitable
(quantifier-free) logic formula over D∪I ∪C ∪M . We denote by B(D∪I) the set
of boolean expressions over D ∪ I and by B(M) the set of boolean expressions
over M . Here we restrict terms over C to the class of linear terms of the form∑

αici + α0 with rational constants αi and ci ∈ C. Predicates are given by the
set L(C) of linear constraints, they have the form t ∼ 0, where ∼ ∈ {=, <, ≤}
and t is a linear term. Finally, P(D, C) is the set of all boolean combinations of
variables from D and linear constraints over C.

In the following we use ξ for formulas in P(D, C), θ for boolean expressions
from B(M), g for boolean expressions from B(D ∪ I), t for linear terms over C,
and � for linear constraints over C.

Definition 1 (Syntax of CTHSs). A continuous-time hybrid system CTHS
contains six components:

– D = {d1, . . . , dn} is a finite set of discrete variables, I = {dn+1, . . . , dp},
(p ≥ n) is a finite set of discrete inputs.

– C = {c1, . . . , cf} is a finite set of continuous variables.
– M = {m1, . . . , ml} is a finite set of mode variables, M = {m1, . . . ,mk} ⊆

{0, 1}l is a finite set of modes, each value mi is associated with a vector
vi ∈ R

f of slopes for the variables in C.
– GC is a global constraint in the form ggc(D)∧

∧
i �i with linear constraints �i.

– Init is a set of initial states, given in the form of ξ0 ∧θ0, where ξ0 ∈ P(D, C)
and θ0 ∈ B(M).

– DTrs is the set of discrete transitions; each discrete transition is given as a
guarded assignment gai (i = 1, . . . , u and u ≥ 1) in the form

ξi ∧ θi → (d1, . . . , dn) := (gi,1, . . . , gi,n);
(c1, . . . , cf) := (ti,1, . . . , ti,f);
(m1, . . . , ml) := mji .

Exact State Set Representations 429

The typical usage of GC is to specify lower and upper bounds for continuous
variables in runs to be considered. For simplicity, we assume that discrete inputs
appear only on the right-hand side of assignments, but not in conditions.1

We add the following derived notions and restrictions to the CTHSs we
consider:

Definition 2 (Restrictions on CTHSs)

– The guards of the discrete transitions must be mutually exclusive, i. e. (ξi ∧
θi) ⇒ ¬(ξj ∧ θj) for i �= j.

– For each mode mi its boundary condition βi is given by the cofactor of the
disjunction of all discrete transition guards wrt. mi.2 The boundary condi-
tions have to form closed subsets of R

f for each valuation of variables in D.

Definition 3 (Semantics of CTHSs)

– A state of a CTHS is a valuation s = (d, c,m) of D, C and M .
– A discrete transition gai relates two states s →i s′ iff the guard ξi ∧ θi is

true in s and the values in s′ result from executing the assignments for some
valuation i of the input variables.

– A state s = (d, c,mi) evolves in time λ ∈ R>0 into s′ = (d, c + λvi,mi),
written as s �λ s′. s′ is a λ-time successor of s (s →λ s′), if s �λ s′ and
for all s′′ with s = s′′ or s �λ′′

s′′for some λ′′ < λ, we have s′′ |= GC
and s′′ �|= βi (i. e. neither we violate the global constraints nor hit a discrete
transition guard along the way).

– → =df
(⋃u

i=1 →i

)
∪

(⋃
λ>0 →λ

)
is the transition relation of the CTHS. A

trajectory is a finite or infinite sequence of states (sj)j≥0 with s0 ∈ Init , all
sj |= GC, and sj−1 → sj for each j > 0. A state is reachable if there is a
trajectory ending in that state.

Note that the definition of a time successor makes the discrete transitions urgent :
they fire once they become enabled. This explains why we do not need invariants
of modes while on the other hand we have to require closed sets for boundary
conditions.

3 Approach

In this section, we describe the main structure of our algorithm. We recall the
ingredients which it shares with its predecessor from [7] and point to the new
constituents which are detailed in the ensuing sections.

Overview. Our algorithm checks whether all reachable states are within a given
set of (safe) states S0. To establish this, a backwards fixpoint computation is
performed. Starting with the set S0 enriched by all states violating the global

1 The usual solution is to check discrete inputs only when a timer has expired.
2 The cofactor is the partial evaluation of the disjunction wrt. (m1, . . . , ml) = mi. It

does not depend on M anymore.

430 W. Damm et al.

constraints, repeatedly the (safe) pre-image is computed until a fixpoint is
reached or some initial state is removed from the fixpoint approximant. In the
latter case, a state outside of S0 is reachable (while observing the global con-
straints). So we employ repeatedly

Safepre(S) =df { s ∈ S | ∀s′. s → s′ ⇒ s′ ∈ S },

which corresponds to the temporal operator AX . We have chosen the backwards
direction, because for discrete transitions the pre-image is expressed essentially
by a substitution (see Hoare’s program logic [16]).

Step computation. We split the computation of Safepre into a discrete (SafepreD)
and a continuous (SafepreC) part. The computation of SafepreD using boolean
operations, substitutions (both for boolean and real variables), and boolean
quantification has been already described in [7]. We will explain our new method
to cope with continuous-time evolutions (which did not occur in the discrete-time
models of the precursor paper) in detail in Sect. 4.

Termination. Since the equivalence of state sets (we deal with boolean combina-
tions of linear constraints, as detailed in the following) is decidable, termination
of the algorithms enables us to answer the reachability question. However, it
should be noted that termination is not guaranteed – otherwise our algorithm
would constitute a solution to an undecidable problem3. We expect that the
algorithm terminates – in theory – for the great majority of problems coming
from applications. We consider complexity the much more relevant challenge in
practice. Let us also remark that the implemented fixpoint computation is more
elaborated in detail than the somewhat simplified version described here (due
to lack of space).

Representation of state sets. Our algorithm operates on a specific data structure
efficiently implementing formulas from P(D, C) ∪ B(M). These can be seen as
boolean combinations over D, M and linear constraints L(C). We use a set of new
(boolean) constraint variables Q as encodings for the linear constraints, where
each occurring � ∈ L(C) is encoded by some q� ∈ Q. An important characteristic
of our procedure is that the set of constraint variables may grow as the step
computation continues, so that new variables are introduced continuously.

For the boolean structure we employ Functionally Reduced AND-Inverter
Graphs (FRAIGs) [21,23]. These are a semi-canonical variant of AND-Inverter
Graphs (AIGs) [22,18]. Basically, they are boolean circuits consisting only of AND

gates and inverters. Semi-canonical means that no two nodes represent the same
boolean function. In the presence of atoms encoding linear constraints, we call
them linear constraint AIGs, or shortly LinAIGs. Their structure is illustrated in
Fig. 1.
3 Even if the global constraints define a bounded region, one can straightforwardly

encode arithmetic on integers represented as fractions 1/2n of continuous values. This
is a common integer representation used in the literature for showing undecidabilities
in related domains.

Exact State Set Representations 431

...

...

...

...

ql1 qlj

mapping between
linear constraints
and bool. variables

AIG

f1 fi Represented first order predicates

d1 dn
lin. constraints

cfc1
continuous domain variables

boolean domain variables

Fig. 1. The LinAIG structure

Efficiency measures. We have put much effort into the efficiency of our im-
plementation, in particular into the time efficiency of the routines which keep
the representations as small as possible. We briefly summarize some techniques
described in more detail in [7], while Sec. 5 presents important improvements.
Basically, functional reducedness (generalized from FRAIGs to LinAIGs) can be
achieved by checking all pairs of nodes for equivalence, taking the interpretation
of constraint variables q� by the corresponding linear constraints � into account.
This task can be performed by an SMT (SAT modulo theories) solver such as
HySAT [10], which combines DPLL with linear programming as a decision proce-
dure. However, it would be much too costly to call HySAT every time a new node
is introduced. Instead, a hierarchy of approximate techniques is used to factor
out “easy” problem instances. In first steps purely boolean approximations are
employed: If two nodes represent equivalent boolean formulas, we do not need to
refer to the definition of the constraint variables. Here we make use of capabilities
of FRAIGs, which include local boolean normalization rules, simulation, and SAT

checks. Additionally, boolean reasoning is supported by (approximate) knowl-
edge on linear constraints such as implications between constraints. For identi-
fying non-equivalent LinAIG nodes we use test vectors with valuations c ∈ R

f ,
and it proved to be worthwhile to use not only randomly generated test vectors,
but also test vectors extracted from failed exact checks done by HySAT (learning
test vectors). All of these techniques are arranged in a carefully designed and
tested strategy of when to apply which technique.

4 Flow Extrapolation

Continuous transitions. In our system model, the time steps only concern the
evolutions of continuous variables and leave the discrete part unchanged. For
each mode, the continuous safe pre-image SafepreC can be expressed as a formula
with one quantified real variable (time). We will show how to eliminate this
quantifier to arrive at a formula which can again be represented by a LinAIG.

Let φ(D, M, Q) be a representation of a state set. Each valuation mi of the
mode variables in M encodes a concrete mode with an associated evolution vi

of C and boundary condition βi. Let φi be the cofactor of φ w. r. t. mode mi.
Thus we have φ ⇔

∨k
i=1 φi ∧ (m1, . . . , ml) = mi, where each φi is a boolean

432 W. Damm et al.

formula over D and Q. For each mode mi, we must now determine the set of all
valuations for which every (arbitrarily long) evolution along vi remains in the set
of valuations satisfying φi, either forever or until it meets a point that satisfies
the boundary condition βi or violates the global constraints GC . We denote this
set by SafepreC(φi,vi, βi). Logically, it can be described by the formula

∀λ.
(
λ < 0 ∨ φi(c+λvi) ∨ ¬GC (c+λvi)

∨ ∃λ′. (λ′ ≥ 0 ∧ λ′ < λ ∧ (βi(c+λ′vi) ∨ ¬GC (c+λ′vi)))
)
.

Under the assumption that the set described by GC is convex, and using the
fact that we are only interested in states satisfying GC , this formula can be
simplified (modulo GC) to

∀λ.
(
λ < 0 ∨ φi(c+λvi) ∨ ¬GC (c+λvi) ∨ ∃λ′. (λ′ ≥ 0 ∧ λ′ < λ ∧ βi(c+λ′vi))

)
.

Our task is now to convert this formula over λ, λ′, C, and D into an equivalent
formula over the original variables in C and D. If the variables in C occur in φ
and β only within linear constraints, then this amounts to variable elimination
for linear real arithmetic.4

Test points. The Loos-Weispfenning test point method [19,9] eliminates univer-
sal quantifiers by converting them into finite conjunctions (and dually, existen-
tial quantifiers into finite disjunctions). The method is based on the following
observation: Assume that a formula ψ(x,
y) is written as a positive boolean
combination of linear constraints x ∼i ti(
y) and 0 ∼′

j t′j(
y), where ∼i, ∼′
j ∈

{=, �=, <, ≤, >, ≥}. Let us keep the values of
y fixed for a moment. If the set of
all x such that ψ(x,
y) does not hold is non-empty, then it can be written as a
finite union of (possibly unbounded) intervals, whose boundaries are among the
ti(
y). To check whether ∀x. ψ(x,
y) holds, it is therefore sufficient to test ψ(x,
y)
for either all upper or all lower boundaries of these intervals. The test values may
include +∞, −∞, or a positive infinitesimal ε, but these can easily be eliminated
from the substituted formula. For instance, if x is substituted by tj(
y) − ε, then
both the linear constraints x ≤ ti(
y) and x < ti(
y) are turned into tj(
y) ≤ ti(
y),
and both x ≥ ti(
y) and x > ti(
y) are turned into tj(
y) > ti(
y).

There are two possible sets of test points, depending on whether we consider
upper or lower boundaries:

TP1 = {+∞} ∪ { ti(
y) | ∼i ∈ {�=, >} } ∪ { ti(
y) − ε | ∼i ∈ {=, ≥} }
TP2 = {−∞} ∪ { ti(
y) | ∼i ∈ {�=, <} } ∪ { ti(
y) + ε | ∼i ∈ {=, ≤} }.

Let TP be the smaller one of the two sets and let T be the set of all symbolic
substitutions x/t for t ∈ TP . Then the formula ∀x. ψ(x,
y) can be replaced by an
equivalent finite conjunction

∧
σ∈T ψ(x,
y)σ. The size of TP is in general linear in

4 The variables in D are assumed to remain constant during mode mi, so boolean
expressions over D behave like propositional variables. For simplicity, we will ignore
them in the rest of this section.

Exact State Set Representations 433

the size of ψ, so the size of the resulting formula is quadratic in the size of ψ. This
is independent of the boolean structure of ψ – conversion to CNF is not required.
On the other hand, if ψ is a conjunction

∧
ψi, then the test point method can also

be applied to each of the formulas ψi individually, leading to a smaller number
of test points. Moreover, when the test point method transforms each ψi into a
finite conjunction

∧
ψj

i , then each ψj
i contains at most as many linear constraints

as the original ψi, and only the length of the outer conjunction increases.

Applying the test point method to flow extrapolation. We have demonstrated
above that the safe pre-image SafepreC(φi,vi, βi) of the formula φi is

∀λ.
(
λ < 0 ∨ φi(c+λvi) ∨ ¬GC (c+λvi) ∨ ∃λ′. (λ′ ≥ 0 ∧ λ′ < λ ∧ βi(c+λ′vi))

)
.

Assuming that φi equals
∧

k φik and that βi equals
∨

j βij , we obtain

∧
k ∀λ.

(
λ < 0 ∨ φ′

ik(c+λvi) ∨
∨

j ∃λ′. (λ′ ≥ 0 ∧ λ′ < λ ∧ βij(c+λ′vi))
)
.

where φ′
ik abbreviates φik ∨ ¬GC . Applying the test point method, we replace

the universal and the existential quantifier by a finite conjunction or disjunction
using a set of symbolic substitutions T ′

j for λ′ (which depends on βij and vi) and
a set of symbolic substitutions Tk for λ (which depends on φik, the βij , and vi):

SafepreC(φi,vi, βi) =
∧

k

∧
σ∈Tk

(
(λ < 0 ∨ φ′

ik(c + λvi))σ

∨
∨

j

∨
τ∈T ′

j
(λ′ ≥ 0 ∧ λ′ < λ ∧ βij(c + λ′vi))τσ

)
.

Note that the test point method can work directly on the internal formula
representation of LinAIGs – in contrast to the classic Fourier-Motzkin algorithm,
there is no need for a costly CNF or DNF conversion before eliminating quanti-
fiers. Moreover, the resulting formulas preserve most of the boolean structure of
the original ones: the method behaves largely like a generalized substitution.

Convexity. It should be noted that some of the complexity of the general case
disappears automatically if the complement of the boundary conditions is con-
vex, that is, if every βij is a single linear inequation. Consider the formula∨

τ∈T ′
j
(λ′ ≥ 0 ∧ λ′ < λ ∧ βij(c + λ′vi))τ . If βij is a single linear inequation, then

two test points are always sufficient:5 (a) If βij(c + λ′vi) has the form λ′ ≤ t(c)
or λ′ < t(c), then the test points are −∞ and 0, (b) otherwise, if βij(c + λ′vi)
has the form λ′ ≥ t(c) or λ′ > t(c), or if λ′ is cancelled out completely in
βij(c+λ′vi), then the test points are +∞ and λ− ε. Moreover, if +∞ or −∞ is
substituted for λ′, the conjunction becomes trivially false, so the whole formula
is reduced to 0 < λ∧βij(c) in case (a) and to λ > 0∧βij(c+(λ−ε)vi) in case (b).

5 Since we want to eliminate an existential quantifier, we have to use the dual form of
the method described above.

434 W. Damm et al.

5 Redundancy Elimination

Our earlier experiments demonstrated that LinAIGs form an efficient data struc-
ture for boolean combinations of boolean variables and linear constraints over
real variables [7]. However, in connection with flow extrapolation using Loos-
Weispfennig quantifier elimination, one observes that the number of “redun-
dant” linear constraints grows rapidly during the fixpoint iteration of the model
checker. For illustration see Fig. 2 and 3, which show a typical example from a
model checking run representing a small state set based on two real variables:
Lines in Figures 2 and 3 represent linear constraints, and the gray shaded area
represents the space defined by some boolean combination of these constraints.
While the representation depicted in Fig. 2 contains 24 linear constraints, a
closer analysis shows that an optimized representation can be found using only
15 linear constraints as depicted in Fig. 3.

Fig. 2. Before redundancy removal Fig. 3. After redundancy removal

Removing redundant constraints from our representations turned out to be
a crucial task for the success of our methods. It should be noted that, since
we represent arbitrary boolean combinations of linear constraints (and boolean
variables), this task is not as straightforward as for other approaches such as
[14,11] which represent sets of convex polyhedra, i. e., sets of conjunctions �1 ∧
. . .∧�n of linear constraints. If one is restricted to convex polyhedra, the question
whether a linear constraint �1 is redundant in the representation reduces to the
question whether �2 ∧ . . . ∧ �n represents the same polyhedron as �1 ∧ . . . ∧ �n, or
equivalently, whether �1 ∧ �2 ∧ . . . ∧ �n represents the empty set. This question
can simply be answered by a linear constraint solver.

For redundancy elimination in our context consider a predicate F (b1, . . . , bk,
�1, . . . , �n) (represented by a LinAIG) where b1, . . . , bk are boolean variables,
�1, . . . , �n are linear constraints over C, and F is a boolean function.

Definition 4 (Redundancy of linear constraints). The linear constraints
�1, . . . , �r (1 ≤ r ≤ n) are called redundant in the representation of F (b1, . . . , bk,
�1, . . . , �n) iff there is a boolean function G with the property that F (b1, . . . , bk, �1,
. . . , �n) and G(b1, . . . , bk, �r+1, . . . , �n) represent the same predicates.

In order to be able to check for redundancy, we need a disjoint copy C′ =
{c′1, . . . , c

′
f} of the continuous variables C = {c1, . . . , cf}. Moreover, for each

Exact State Set Representations 435

linear constraint �i (1 ≤ i ≤ n) we introduce a corresponding linear constraint
�′i which coincides with �i up to replacement of variables cj ∈ C by variables
c′j ∈ C′. Our check for redundancy is based on the following theorem:

Theorem 5 (Redundancy check). The linear constraints �1, . . . , �r (1 ≤ r ≤
n) are redundant in the representation of F (b1, . . . , bk, �1, . . . , �n) iff the predicate

F (b1, . . . , bk, �1, . . . , �n) ⊕ F (b1, . . . , bk, �′1, . . . , �′n) ∧
∧n

i=r+1(�i ≡ �′i) (1)

(where ⊕ denotes exclusive-or) is not satisfiable by any assignment of boolean
values to b1, . . . , bk and real values to the variables c1, . . . , cf , c′1, . . . , c

′
f .

Note that the check from Thm. 5 can be performed by an SMT solver such as
HySAT [10]. By lack of space we just give a sketch of the intuition behind Thm. 5.

According to Def. 4 linear constraints �1, . . . , �n are redundant iff there is a
boolean function G such that G(b1, . . . , bk, �r+1, . . . , �n) and F (b1, . . . , bk, �1, . . . ,
�n) represent the same predicates. Now let us look at F (b1, . . . , bk, �1, . . . , �n)
as a boolean function F (b1, . . . , bk, q�1 , . . . , q�n) with (new) boolean constraint
variables q�1 , . . . , q�n and a mapping connecting q�i to �i (just as in our definition
of LinAIGs). In comparison to F the required boolean function G must depend
only on variables b1, . . . , bk, q�r+1 , . . . , q�n .

If formula (1) is satisfied by some assignment d ∈ {0, 1}k to the boolean
variables b1, . . . , bk, c ∈ R

f to the real variables c1, . . . , cf (which are inputs of
linear constraints �i), and c′ ∈ R

f to the copied real variables c′1, . . . , c
′
f (which

are inputs of copied linear constraints �′i), then the first part of formula (1),
i. e. F (b1, . . . , bk, �1, . . . , �n)⊕F (b1, . . . , bk, �′1, . . . , �′n) enforces that the predicate
F changes its value if input c is replaced by input c′ in the corresponding linear
constraints. On the other hand, the second part

∧n
i=r+1(�i ≡ �′i) enforces that the

truth assignment to linear constraints �r+1, . . . , �n does not change when replac-
ing c by c′. However, since G only depends on variables b1, . . . , bk, q�r+1 , . . . , q�n

(whose truth assignments are not changed), function G “cannot see” the effect
of changing c to c′. Thus G is not able to change its value like F when replacing
c by c′ and therefore it is not able to represent the same predicate as F .

Conversely, it can be seen that an appropriate function G can be constructed,
when formula (1) is unsatisfiable. When constructing G, we use the notion of the
don’t care set DC induced by linear constraints �1, . . . , �n: This don’t care set
DC := {(vb1 , . . . vbk

, v�1 , . . . , v�n) | �(vc1 , . . . vcf
) ∈ R

f with �i(vc1 , . . . , vcf
) =

v�i∀1 ≤ i ≤ n} contains all boolean combinations that can not occur due to
inconsistent assignments to boolean constraint variables. While for all (d, c) ∈
DC := {0, 1}k+n \ DC we have to postulate G(d, c) = F (d, c), the value of G
may be chosen arbitrarily for all (d, c) ∈ DC, since these values can not occur
due to inconsistencies between linear constraints. A closer analysis shows that
– under assumption of unsatisfiability of formula (1) – it is indeed possible to
define the function values of G(d, c) for (d, c) ∈ DC in such a way that G will
not depend on variables q�1 , . . . , q�r . This proves that linear constraints �1, . . . , �r

are then redundant.
A straightforward realization of this approach would need a (compact) repre-

sentation of the don’t care set DC in order to compute an appropriate boolean

436 W. Damm et al.

function G. However, two interesting observations turn the basic idea into a
feasible approach:

1. In general, we do not need the complete set DC for the definition of the
boolean function G.

2. A representation of a subset of DC which is needed for removing the re-
dundant constraints �1, . . . , �r is already computed by an SMT solver when
checking satisfiability of formula (1).

Again, more details on how the SMT solver internally computes a representation
of a sufficient subset of DC and on the method for actually removing redundant
constraints from our representations are omitted due to lack of space. Our ideas
for redundancy detection and removal have been implemented based on the SMT

solver HySAT. Experiments given in Section 6 show that integrating redundancy
removal is crucial for the success of our methods.

6 Experimental Results

Our sample application is derived from a case study for Airbus, a controller for
the flaps of an aircraft [13]. The flaps are extended during take-off and land-
ing to generate more lift at low velocity. They are not robust enough for high
velocity, so they must be retracted for other periods. It is the controller’s task
to correct the pilot’s commands if he endangers the flaps. Additionally, there
is also an extensive monitoring of the health of its sub-systems, checking for
instance for hardware failures. The health monitoring system interacts with the
flap control by enforcing a more conservative behavior of the control when errors
are supposed to be in the system.

The benchmark used here is a simplified version of the full system including
the flap controller and a health monitoring system, which is triggered by a timer.
The model has three continuous variables: the velocity, the flap angle, and the
timer value. Discrete states of the controller and of the health monitoring system
contribute to the discrete state space. The discrete state space contains 220

discrete states. This size is clearly out of reach for hybrid verification tools known
from the literature, which do not scale in the discrete dimension, since modes –
the only discrete states considered – are represented explicitly when performing
reachability analysis.

The safety property to be established for our model is “For the current flap
setting, the aircraft’s velocity shall not exceed the nominal velocity (w. r. t. the
flap position) plus 7 knots”. Whether this requirement holds for our model de-
pends on a “race” between flap retraction and speed increase. The controller is
correct, if it initiates flap retraction (by correcting the pilot) early enough.

Based on the ideas presented in the previous sections we implemented a proto-
type model checker using LinAIGs for representing sets of states. Our experiments
were run on an AMD Opteron with 2.6 GHz and 16 GB RAM.

Our model checker was able to prove the given safety invariant for the case
study in 888.6 CPU seconds. The LinAIG representation had a maximum number

Exact State Set Representations 437

of 30887 nodes and a maximum number of 80 linear constraints. The number
of flow extrapolation steps using Loos-Weispfennig quantifier elimination was 6,
the number of discrete image computation steps performed until reaching the
fixpoint was 20. This result clearly demonstrates that our approach is able to
successfully verify hybrid systems including discrete parts with state spaces of
considerable sizes.

In the following we analyze how the individual ingredients of our method con-
tribute to its overall success. Redundancy elimination turned out to be absolutely
necessary to make flow extrapolation using Loos-Weispfennig quantifier elimina-
tion feasible. Fig. 4 illustrates the difference between the model checking runs for
our case study with and without redundancy removal by plotting the numbers
of linear constraints used during the model checking run. Without redundancy
removal (dotted line), the number of linear constraints is rapidly increasing up
to a number of 1000 linear constraints and 150000 LinAIG nodes in the fourth
flow extrapolation.6 On the other hand, redundancy elimination detects many
of the linear constraints to be redundant in our LinAIG representations. Having
a closer look at the solid line in Fig. 4 one can identify six groups of three peaks
in the number of linear constraints corresponding to six flow extrapolations for
three modes, respectively. One notices that redundancy elimination is able to
keep the numbers of linear constraints small after Loos-Weispfennig quantifier
elimination, so that the number of linear constraints does not exceed 80 during
the model checking run. Redundancy elimination removes redundant constraints
early and has thus the additional effect that the number of constraints does not
blow up due to a series of further substitutions into the removed constraints in
following flow extrapolation steps.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

lin
ea

r
co

ns
tr

ai
nt

s

intermediate model checking steps

with redundancy removal
without redundancy removal

Fig. 4. Comparision of the LinAIG evo-
lution with and without redundancy
removal

 0

 5

 10

 15

 20

 25

400 300 200 100
(original)

50
 0

 20

 40

 60

 80

 100

 120

 140

m
od

el
 c

he
ck

in
g

tim
e

(in
 1

00
0

s)

pe
ak

 n
um

be
r

of
 n

od
es

 (
in

 1
00

0)

step width (ms)

time
nodes

Fig. 5. Discrete time example with dif-
ferent time steps

Finally, we want to compare the results for our current system model, which
includes continuous evolution of variable length in one operation based on flow

6 Without redundancy removal the remaining two flow extrapolations could not be
performed within our timeout of 24 hours.

438 W. Damm et al.

extrapolation, to results for a corresponding model with discrete time semantics
as presented in [7]. The system model from [7] has no continuous evolution, and
discrete steps take fixed time δ. We emphasize that, although time discretized
models are widely used in practical applications, they have the problem that
unsafe states may be reachable from the initial state, but reachability of these
states is not observed due to the time discrete nature of steps. Reducing the
width of the discrete time steps can alleviate this problem, but it comes at the
cost of a larger number of steps for fixpoint iterations and a larger number of
LinAIG nodes for representing sets of states. Our continuous time approach does
not show this problem. An analysis of this issue (here done for a flap controller
without health monitoring system) is given in Fig. 5. It shows the peak numbers
of LinAIG nodes (dotted line) and the run times (solid line) for the example.
Here the width of the discrete time step varies between 400 ms and 50 ms. Our
analysis clearly shows that run times in the discrete time model largely depend
on the width of the time discretization step. At a time step of 400 ms the fixpoint
iteration took 5.4 CPU seconds for 9 steps, at 100 ms 763.8 CPU seconds for 33
steps, and at 50 ms 22497 CPU seconds for 65 steps.

This demonstrates a dilemma of the time discretized version: We have to keep
the time step small both to be sure not to miss relevant reachable states and
to be able to model the system correctly (of course, with discrete time steps
of 400 ms we are not able to model realistic controllers sampling every 100
ms). However, decreasing the time step too much may turn the model checking
problem intractable. In contrast, in our novel approach we do not work with time
discretizations, but we are able to compute continuous evolutions of variable
lengths in one operation based on flow extrapolation. Sequences of discrete steps
of the previous version [7] where no mode switches are triggered are collapsed
into a single symbolic substitution in this way. Note that in the example without
health monitoring system only five flow extrapolation steps are needed to reach
the fixpoint within a runtime of 27.7 s (whereas for the discrete time model with
a time step of 50 ms, e. g., the number of steps amounts to 65 with a run time
of 22497 s).

7 Conclusion

We consider the tight integration of LinAIGs and HySAT in backward reachabil-
ity analysis a core technology to address scalability of hybrid system verification
methods with large discrete state spaces, and have demonstrated the relevance
of the approach using a benchmark derived from an Airbus flap controller. The
redundancy elimination technique presented in Section 5 is of independent value
and could be integrated in other hybrid verification tools. Next imminent exten-
sions of our approach cover differential inclusions and continuous inputs. We will
experiment with incorporating orthogonal extensions to our approach such as ex-
ploiting robustness, over-approximation, and counterexample guided abstraction
refinement to address richer dynamics and achieve further scalability.

Exact State Set Representations 439

References

1. Agrawal, M., Thiagarajan, P.S.: Lazy rectangular hybrid automata. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 1–15. Springer, Heidelberg
(2004)

2. Agrawal, M., Thiagarajan, P.S.: The discrete time behavior of lazy linear hybrid
automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 55–69.
Springer, Heidelberg (2005)

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)

4. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of non-
linear systems. Acta Informatica 43(7), 451–476 (2007)

5. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of the hybrid systems.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370.
Springer, Heidelberg (2002)

6. Boigelot, B., Herbreteau, F.: The power of hybrid acceleration. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 438–451. Springer, Heidelberg (2006)

7. Damm, W., Disch, S., Hungar, H., Pang, J., Pigorsch, F., Scholl, C., Waldmann,
U., Wirtz, B.: Automatic verification of hybrid systems with large discrete state
space. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 276–291.
Springer, Heidelberg (2006)

8. Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification
of LTL properties of non-linear robust discrete time hybrid systems. Journal of
Foundations of Computer Science 18(1), 63–86 (2007)

9. Dolzmann, A.: Algorithmic Strategies for Applicable Real Qunantifier Elimination.
PhD thesis, Universität Passau (2000)

10. Fränzle, M., Herde, C.: HySAT: An efficient proof engine for bounded model check-
ing of hybrid systems. Formal Methods in System Design 30(3), 179–198 (2007)

11. Frehse, G.: Compositional Verification of Hybrid Systems using Simulation Rela-
tions. PhD thesis, Radboud Universiteit Nijmegen (2005)

12. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Transactions on Automatic Control 52(5), 782–798 (2007)

13. H3 FOMC Team. The flap controller description.
http://www.avacs.org/Benchmarks/flapcontroller.pdf

14. Henzinger, T.A.: The theory of hybrid automata. In: 11th IEEE Symposium on
Logic in Computer Science, pp. 278–292. IEEE Press, Los Alamitos (1996)

15. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer 1(1–2), 110–122 (1997)

16. Hoare, C.A.R.: An axiomatic basis for computer programming. Communication of
the ACM 12, 576–583 (1969)

17. Jha, S., Brady, B., Seshia, S.: Symbolic reachability analysis of lazy linear hybrid
automata. Technical report, EECS Dept. UC Berkeley (2007)

18. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reasoning
for equivalence checking and functional property verification. IEEE Transactions
on Computer-Aided Design 21(12), 1377–1394 (2002)

19. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer
Journal 36(5), 450–462 (1993)

20. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dor-
drecht (1993)

http://www.avacs.org/Benchmarks/flapcontroller.pdf

440 W. Damm et al.

21. Mishchenko, A., Chatterjee, S., Jiang, R., Brayton, R.K.: FRAIGs: A unifying
representation for logic synthesis and verification. Technical report, EECS Dept.
UC Berkeley (2005)

22. Paruthi, V., Kuehlmann, A.: Equivalence checking combining a structural SAT-
solver, BDDs, and simulation. In: 18th IEEE Conference on Computer Design, pp.
459–464. IEEE Press, Los Alamitos (2000)

23. Pigorsch, F., Scholl, C., Disch, S.: Advanced unbounded model checking by using
AIGs, BDD sweeping and quantifier scheduling. In: 6th Conference on Formal
Methods in Computer Aided Design, pp. 89–96. IEEE Press, Los Alamitos (2006)

24. Platzer, A., Clarke, E.: The image computation problem in hybrid systems model
checking. In: 10th Workshop on Hybrid Systems: Computation and Control. LNCS,
vol. 4416, pp. 473–486. Springer, Heidelberg (2007)

25. Segelken, M.: Abstraction and counterexample-guided construction of ω-automata
for model checking of step-discrete linear hybrid models. In: Damm, W., Hermanns,
H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg (2007)

26. Silva, B.I., Richeson, K., Krogh, B.H., Chutinan, A.: Modeling and verification of
hybrid dynamical system using CheckMate. In: 4th Conference on Automation of
Mixed Processes (2000)

27. The VIS Group. VIS: A system for verification and synthesis. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg
(1996)

28. Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with BDD-
like data-structures. IEEE Transactions on Software Engineering 31(1), 38–52
(2005)

A Compositional Semantics for Dynamic Fault

Trees in Terms of Interactive Markov Chains�

Hichem Boudali1, Pepijn Crouzen2,��, and Mariëlle Stoelinga1

1 Department of Computer Science, University of Twente,
P.O. Box 217, 7500AE Enschede, The Netherlands

2 Saarland University, Department of Computer Science,
D-66123 Saarbrücken, Germany

{hboudali@cs,p.crouzen@alumnus,marielle@cs}.utwente.nl

Abstract. Dynamic fault trees (DFTs) are a versatile and common for-
malism to model and analyze the reliability of computer-based systems.
This paper presents a formal semantics of DFTs in terms of input/output
interactive Markov chains (I/O-IMCs), which extend continuous-time
Markov chains with discrete input, output and internal actions. This
semantics provides a rigorous basis for the analysis of DFTs. Our se-
mantics is fully compositional, that is, the semantics of a DFT is ex-
pressed in terms of the semantics of its elements (i.e. basic events and
gates). This enables an efficient analysis of DFTs through compositional
aggregation, which helps to alleviate the state-space explosion problem
by incrementally building the DFT state space. We have implemented
our methodology by developing a tool, and showed, through four case
studies, the feasibility of our approach and its effectiveness in reducing
the state space to be analyzed.

Fault trees (FTs) [20], also called static FTs, provide a high-level, graphical for-
malism to model and analyze system failures. An FT is made up of basic events,
usually modeling the failure of physical components, and of logical gates, such
as AND and OR gates, modeling how the component failures induce the system
failure. Dynamic fault trees (DFTs) [11] extend (static) fault trees by allowing
the modeling of more complex behaviors and interactions between components:
Whereas FTs only take into consideration the combination of failures, DFTs also
take into account the order in which they occur. A DFT is typically analyzed
by first converting it to a continuous time Markov chain (CTMC) and by then
analyzing this CTMC.

This paper formally describes the DFT syntax and semantics, thus providing
a rigorous basis for DFT analysis and tool development. The DFT syntax is
given in terms of a directed acyclic graph (DAG) and its semantics in terms

� This research has been partially funded by the Netherlands Organisation for Scien-
tific Research (NWO) under FOCUS/BRICKS grant number 642.000.505 (MOQS);
the EU under grant number IST-004527 (ARTIST2); and by the DFG/NWO bilat-
eral cooperation programme under project number DN 62-600 (VOSS2).

�� The majority of this work was done while the author was at the University of Twente.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 441–456, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

442 H. Boudali, P. Crouzen, and M. Stoelinga

of an input/output interactive Markov chain (I/O-IMC). Our semantics is fully
compositional. That is, we present the semantics of each DFT element (i.e. gate
or basic event) as an I/O-IMC; the semantics of a DFT is then obtained by
parallel composing the I/O-IMC semantics of all its elements. Compositional-
ity is a fundamental and highly desirable property of a semantics: it enables
compositional reasoning, i.e. analyzing complex systems by breaking them down
into their constituting parts. In our case, it enables compositional aggregation to
combat the state-space explosion problem existing in DFTs. Moreover, a com-
positional semantics is comprehensible, since one can focus on one construct at
a time, and readily extensible. As elaborated in [4], we can easily add new DFT
gates or concepts such as repair policies.

Earlier work on formalizing DFTs can be found in [10], where a semantics is
described using the Z specification language. This work revealed a number of
ambiguities in the DFT framework. Most notably, in some instances of DFTs
non-determinism has arisen. But, since non-determinism was not intended in the
original formulation of DFTs and every DFT had to be mapped into a CTMC,
this non-determinism was resolved by transformation into a deterministic or
probabilistic choice (see [4] for further details on non-determinism in DFTs).
The semantics in [10] is, however, not compositional and hence is, in our opin-
ion, not easy to understand. Formalizing the DFT syntax and semantics in a
compositional way turned out to be a non-trivial task.

Interactive Markov chains (IMCs) [14] are an extension of CTMCs with dis-
crete actions and have proven to be a powerful formalism for a variety of applica-
tions. IMCs come with efficient algorithms for aggregating equivalent (i.e. weakly
bisimilar) states and operators for parallel composing IMCs and for hiding
(i.e. making internal) certain discrete actions. For our purposes, we needed IMCs
that distinguish between input and output actions. Hence, we introduce I/O-
IMCs, combining IMCs with features from the I/O automaton model in [17].
We also present a notion of weak bisimilarity for I/O-IMCs. To aggregate as
many states as possible, our weak bisimulation disregards Markovian transitions
from a state s into its own equivalence class. Thus, we do not only generalize the
usual IMC weak bisimulation to I/O-IMCs, but also extend it along the lines of
[8]. Furthermore, we show that weak bisimulation is a congruence w.r.t. parallel
composition and hiding.

The conversion into a CTMC and resolution of a DFT has been first intro-
duced by Dugan et al. in the so called DIFTree methodology [12]. This method
suffers from the well-known state-space explosion problem. In fact, the size of
the CTMC grows exponentially with the number of basic events in the DFT.
Recently, there have been attempts in dealing with the state-space explosion
problem by avoiding the CTMC generation [6,1]. In [6], the authors propose a
Bayesian network approach and provide an approximate DFT solution. In [1],
the authors present a method to identify submodules in a DFT where the CTMC
generation is not needed.

We use a compositional aggregation approach to build the I/O-IMC of the
whole DFT: We start with the interpretation of a single DFT element as an

A Compositional Semantics for Dynamic Fault Trees 443

I/O-IMC. Then we repeatedly take the parallel composition with the interpreta-
tion of another element, while aggregating equivalent states. We keep repeating
these two steps until we are left with a single aggregated I/O-IMC. This compo-
sitional aggregation approach is crucial in alleviating the state-space explosion
problem. To summarize, this paper makes the following contributions:

1. We derive, based on IMCs and I/O automata, the I/O-IMC formalism and
introduce a notion of weak bisimilarity for I/O-IMCs, which we show to be
a congruence w.r.t. parallel composition and hiding.

2. We formally define the DFT syntax and semantics in terms of respectively
a DAG description and I/O-IMCs.

3. We report on a tool and show the feasibility of our approach on four case
studies.

The remainder of the paper is organized as follows: Section 1 introduces DFTs
and Section 2 treats the formalism of I/O-IMCs. In Section 3, we present the
syntax and the semantics of DFTs, and in Section 4 we illustrate the composi-
tional aggregation technique. Finally, Section 5 provides some case studies and
presents the prototype tool, and we conclude the paper in Section 6.

1 Dynamic Fault Trees

An FT is a tree (or rather, a DAG) in which the leaves are called basic events
(BEs) and the other elements are gates. BEs model the failure of physical com-
ponents and are depicted by circles. The failure of a BE is governed by an
exponential distribution. That is, the probability that the BE fails within t time
units equals 1 − e−λt, where λ is the failure rate of the BE. The non-leaf ele-
ments are gates, modeling how the component failures induce a system failure.
Static fault trees have three type of (static) gates: the AND gate, the OR gate
and the K/M (or called VOTING) gate, depicted in Figure 1.a, 1.b, and 1.c,
respectively. These gates fail if respectively all, at least one, or at least K (called
the threshold) out of M of their inputs fail.

Dynamic fault trees [11] extend (static) FTs with three novel types of gates1:
The priority AND gate (PAND); the spare gate (SPARE), modeling the manage-
ment and allocation of spare components; and the functional dependency gate
(FDEP). These gates (depicted in Figure 1.d, 1.e, and 1.f) are described below.

PAND Gate. The priority AND (PAND) gate models a failure sequence de-
pendency. It fails if all of its inputs fail from left to right order in the gate’s
depiction. If the inputs fail in a different order, the gate does not fail.

SPARE Gate. The SPARE gate has one primary input and zero (which is a
degenerated case) or more alternate inputs called spares. All inputs are BEs.

1 A fourth gate called ‘Sequence Enforcing’ (SEQ) gate has also been defined in [11],
but it turns out that this gate is expressible in terms of the cold spare gate.

444 H. Boudali, P. Crouzen, and M. Stoelinga

Fig. 1. DFT gates, DFT example, and I/O-IMC example

The primary input of a SPARE gate is initially powered on and the alternate
inputs are in standby mode. When the primary fails, it is replaced by the first
available alternate input (which then switches from the standby mode to the
active mode). In turn, when this alternate input fails, it is replaced by the next
available alternate input, etc.

In standby (or dormant) mode, the BE failure rate λ is reduced by a dormancy
factor α ∈ [0, 1]. Thus, the BE failure rate in standby mode is μ = αλ. In active
mode, the failure rate switches back to λ. Two special cases arise if α = 0 or
α = 1. If α = 0, the spare is called a cold spare and can by definition not fail
before the primary. When α = 1, the spare is called a hot spare and its failure
rate is the same whether in standby or in active mode. If 0 < α < 1, the spare is
called a warm spare. The SPARE gate fails when the primary and all its spares
have failed.

Multiple spare gates can share a pool of spares. When the primary unit of
any of the spare gates fails, it is replaced by the first available (i.e. not failed
or not already taken by another spare gate) spare unit; which becomes, in turn,
the active unit for that spare gate.

FDEP Gate. The functional dependency gate consists of a trigger event (i.e.
a failure) and a set of dependent events (or components). When the trigger
event occurs, it causes all the dependent components to become inaccessible or
unusable (the dependent components can of course also still fail by themselves).
Dependent events need to be BE’s. All dependent events and the trigger event
are considered to be inputs to the FDEP gate. The FDEP gate’s output is a
‘dummy’ output (i.e. it is not taken into account during the calculation of the
system failure probability).

Example 1. Figure 1.g shows a DFT modeling a road trip. Looking at the top
PAND gate, we see that the road trip fails (i.e. we are stuck on the road) if
the car fails after the mobile phone has failed; if the car fails first, then we can
call the road services to tow the car and continue our journey. The car fails if
either the engine fails or the tire subsystem fails, as modeled by the OR gate

A Compositional Semantics for Dynamic Fault Trees 445

labeled ‘car fails’. The car is equipped with a spare tire, which can be used to
replace any of the primary tires. When a second tire fails, the tire subsystem
fails, causing in turn a car failure. Thus, we model the tire subsystem by four
spare gates, each having a primary tire (BEs ‘Tire 1’, ‘Tire 2’,‘Tire 3’, and ‘Tire
4’) and all sharing a spare tire (BE ‘Spare tire’). The spare tire is a cold spare,
i.e. it is initially in standby mode with failure rate 0.

2 Input/Output Interactive Markov Chains

The formalism. This section introduces the formalism of input/output interac-
tive Markov chains (I/O-IMCs), which are based on IMCs [14]. IMCs combine
continuous-time Markov chains with discrete actions (also called signals). State
changes in IMCs can occur either because a discrete action is taken, or after a
delay, which is governed by an exponential distribution. Thus, IMCs have two
types of transitions: discrete transitions (denoted a−→ and �−→ in figures) labeled
with a discrete action a and Markovian transitions (denoted λ−→M and −→� in
figures) labeled with the rate λ of an exponential distribution.

I/O-IMCs are a variant of IMCs that partition the set of discrete actions into
input actions, output actions and internal actions (inspired by the I/O variant
of automata introduced in [17]). Input actions, being under the control of the
environment of the I/O-IMC, are delayable, while output actions must be taken
immediately and cannot be delayed. This partition is natural in the DFT context
where elements have input and output signals and where – rather than being
a handshake – communication is always initiated by the failing (or activating)
component. Moreover, in contrast with IMCs where all observable actions are
delayable, in I/O-IMCs only input actions are delayable. Internal actions are not
visible to the environment and are also immediate.

Definition 1. An input/output interactive Markov chain P is a tuple 〈S, s0, A,
−→, −→M〉, where

– S is a set of states,
– s0 ∈ S is the initial state.
– A is a set of discrete actions (or signals), where A = (AI , AO, Aint) is parti-

tioned into a set of input actions AI , output actions AO and internal actions
Aint. We write AV = AI ∪AO for the set of visible actions of P. We suffix
input actions with a question mark (e.g. a?), output actions with an excla-
mation mark (e.g. a!) and internal actions with a semi-colon (e.g. a;).

– −→ ⊆ S×A×S is a set of interactive transitions. We write s
a−→s′ for (s, a, s′)∈

−→. We require that I/O-IMCs are input-enabled: ∀s ∈ S, a? ∈ AI , ∃s′ ∈
S · s

a?−→s′.
– −→M ⊆ S × R>0 × S is a set of Markovian transitions. We write s

λ−→Ms′ for
(s, λ, s′) ∈ −→M .

We denote the components of P by SP , s0
P , AP , −→P , −→M

P and omit the subscript
P whenever clear from the context. The action signature of an I/O-IMC is the
partitioning (AI , AO, Aint) of A. We denote the class of all I/O-IMCs by IOIMC.

446 H. Boudali, P. Crouzen, and M. Stoelinga

Example 2. Figure 1.h shows an example I/O-IMC modeling a video game. If a
user presses the play button (input action play?), the game starts and continues
until the user makes a mistake (miss?), which brings the game back to the initial
state s0. If after some delay d, no play? signal has been received, then the system
runs a game demonstration (output demo!) until a play? signal is received. The
delay d (in hours) is exponentially distributed with rate 12. This means that, on
average, a demo is played after 1

12 hours (= 5 minutes).
Note that the system is input enabled, i.e. each state enables the input actions

play? and miss?.

I/O-IMCs can be built from smaller I/O-IMCs through parallel composition. If
two I/O-IMCs P and Q are composable, then their composition P‖Q is the I/O-
IMC representing their joint behavior. As in the I/O automaton framework, the
components P and Q synchronize on shared actions and evolve independently
on actions that are internal or not shared. The hiding operator hide B in P
makes all actions in a set B of visible actions internal.

Definition 2. Let P and Q be I/O-IMCs.

1. P and Q are composable if AO
P ∩AO

Q = Aint
P ∩ AQ = AP ∩Aint

Q = ∅.
2. If P and Q are composable I/O-IMCs, their composition P‖Q is the I/O-

IMC (SP ×SQ, (s0
P , s0

Q), ((AI
P ∪AI

Q) \ (AO
P ∪AO

Q), (AO
P ∪AO

Q), (Aint
P ∪Aint

Q)),
−→P‖Q, −→M

P‖Q), where

−→P‖Q = {(s, t) a−→P‖Q(s′, t) | s
a−→Ps′ ∧ a ∈ AP \ AQ}

∪{(s, t) a−→P‖Q(s, t′) | t
a−→Qt′ ∧ a ∈ AQ \ AP}

∪{(s, t) a−→P‖Q(s′, t′) | s
a−→Ps′ ∧ t

a−→Qt′ ∧ a ∈ AP ∩AQ}
−→M

P‖Q = {(s, t) λ−→M(s′, t) | s
λ−→M

P s′} ∪{(s, t) λ−→M(s, t′) | t
λ−→M

Qt′}

Given a set {P1, P2 . . . Pn} of I/O-IMCs, we write ‖Pi for P1‖P2‖ · · · Pn.
3. Let B ⊆ AV be a set of visible actions. We define the I/O-IMC hide B in P

by (SP , s0
P , (AI

P \B, AO
P \B, Aint

P ∪ B), −→P , −→M

P).

Bisimilarity. Bisimilation relations are equivalences on the state-space that iden-
tify states with the same step-wise behavior. Our notion of weak bisimilarity is
based on bisimulation for IMCs [14]. The key differences are we distinguish be-
tween input and output transitions, and ignore Markovian self-loops (as in [8]);
i.e. Markovian transition from a state in an equivalence class to a state in the
same equivalence class.

Let P be an I/O-IMC and let s, s′ ∈ S be states in P . We write s
ε=⇒s′ if there

exists a sequence (possibly of length zero, i.e. s = s′) s
a1−→s1

a2−→s2 . . .
an−−→sn = s′

of transitions with ai ∈ Aint. For a ∈ AV we write s
a=⇒s′ if there exists states

s1, s2 such that s
ε=⇒s1

a−→s2
ε=⇒s′. Also, γM(s, C) =

∑
{|λ | s

λ−→Ms′ ∧ s′ ∈ C|},
with {| . . . |} denoting a multiset of transition rates, is the sum of the rates of all
Markovian transitions from s into C. We write Cint = {s | ∃s′ ∈ C · s ε=⇒s′} for
the set of all states which can reach some element in C via internal transitions.

A Compositional Semantics for Dynamic Fault Trees 447

Finally, we say that s is stable if s has no outgoing immediate (i.e. internal or
output) transition.

Definition 3 (Weak bisimulation). Let P be an I/O-IMC. A weak bisim-
ulation for P is an equivalence relation R on S such that for all (s, t) ∈ R,
a ∈ A∪{ε}

1. s
a=⇒s′ implies that there is a weak transition t

a=⇒t′ with (s′, t′) ∈ R.
2. s

ε=⇒s′ and s′ stable imply that there is a t′ such that t
ε=⇒t′ and t′ stable

and γM(s′, Cint) = γM(t′, Cint), for all equivalence classes C of R, except
for C = [s′]R, the equivalence class of s′.

States s and t in P are weakly bisimilar, notation s ≈ t, if there exists a weak
bisimulation R with (s, t) ∈ R.

Our notion of weak bisimilarity satisfies the usual properties: ≈ is the largest
weak bisimulation and it is a congruence with respect to parallel composition
and hiding. To compute ≈, one can use an algorithm similar to the one in [14],
which runs in time O(n3), where n is the number of states in the I/O-IMC. We
refer the reader to [5] for more details.

As most bisimulation relations, ≈ can be used to aggregate (also referred to as
lump, minimize or reduce) an I/O-IMC P : By grouping together equivalent (i.e.
weakly bisimilar) states in P , we obtain an equivalent I/O-IMC that is (usually)
smaller. The mentioned properties enable an efficient aggregation algorithm that
works in a compositional way, cf. Section 4.

3 Formalizing DFTs

3.1 DFT Syntax

To formalize the syntax of a DFT, we first define the set E , characterizing each
DFT element by its type, number of inputs and possibly some other parameters.
We use the following notation. Given a set X , we denote by P(X) the power
set over X and by X∗ the set of all sequences over X . For a sequence x ∈ X∗,
we denote by |x| the length of the sequence (also called list), and by (x)i the ith

element in x.

Definition 4. The set E of DFT elements consists of the following tuples. Here,
k, n ∈ N are natural numbers with 1 ≤ k ≤ n and λ, μ ∈ R

≥0 are rates.

– (OR, n), (AND , n), (PAND , n) represent respectively OR, AND and PAND
gates with n inputs.

– (VOT , n, k) represent a voting gate with n inputs and threshold k.
– (SPARE , n) represent a SPARE gate with one primary and n−1 spares. By

convention, the first input to the SPARE gate is the primary component.
– (FDEP , n) represents an FDEP gate with 1 trigger input event and n − 1

dependent input events. By convention, the first input to the FDEP gate is
the trigger event.

448 H. Boudali, P. Crouzen, and M. Stoelinga

– (BE , 0, λ, μ), represents BE, which has no inputs (i.e. n = 0), an active
failure rate λ and a dormant failure rate μ.

Given a tuple e ∈ E, we write type(e) for the first item in e, and arity(e) for the
second.

A DFT is a directed acyclic graph, where each vertex v is labeled with a DFT
element l(v) ∈ E . An edge from v to w means that the output of l(v) is an input
to l(w). Since the order of inputs to a gate matters (e.g. for a PAND gate), the
inputs to v are given as a list preds(v), rather than as a set.

Definition 5. A dynamic fault tree is a quadruple D = (V, preds , l), where

– V is a set of vertices,
– l : V → E is a labeling function, that assigns to each vertex a DFT element.
– preds : V → V ∗ is a function that assigns to each vertex a list of inputs.

The set of edges E is the set {(v, w) ∈ V 2|∃i . v = (preds(w))i} of all pairs (v, w)
such that v appears as a predecessor of w. We write type(v) for type(l(v)) and
arity(v) for arity(l(v)). For D to be a well-formed DFT, the following restrictions
have to be met.

– The set (V, E) is a directed acyclic graph.
– All inputs to a DFT element must be connected to some node in D, i.e. for

all v ∈ V , we have arity(v) = |preds(v)|.
– Since we do not include the dummy output of an FDEP gate in D, FDEP

gates have no outgoing edges: if (v, w) ∈ E, then type(v) �= FDEP .
– There is a unique top element in D, i.e. a non-FDEP element whose output

is not connected. That is, there exists a unique v ∈ V , type(v) �= FDEP such
that for all w ∈ V . (v, w) /∈ V . This unique v is denoted by TD; or by T if
D is clear from the context.

– The first input of a SPARE gate can not be an input to another SPARE
gate (i.e. primary components can not be shared): If v = (preds(w))1 =
(preds(w′))1 with type(w) = type(w′) = SPARE , then w = w′.

– Inputs (primary and spare components) of a SPARE gate must be BEs: if
type(w) = SPARE , then type((preds(w))i) = BE , for all 1 ≤ i ≤ |preds(w)|.

– The dependent inputs (i.e. inputs number 2 and higher) of an FDEP gate
must be BEs: if type(w) = FDEP , then type((preds(w))i) = BE , for all
2 ≤ i ≤ |preds(w))|.

– An output can not be twice or more the input of the same gate: for all
1 ≤ i, j ≤ |preds(w)| with (preds(w))i = (preds(w))j , we have i = j.

3.2 DFT Element Semantics

This section provides the I/O-IMC semantics �e�ELT for each DFT element e ∈ E .
The I/O-IMC is parametric in its input and output signals. (These parameters
are instantiated in Section 3.3, so that output signals in the semantics of a
child element correspond to input signals in the semantics of its parents.) Thus,

A Compositional Semantics for Dynamic Fault Trees 449

formally, �e�ELT is a function that, depending on the type of e, takes as arguments
a number of actions and returns an I/O-IMC. Each of these I/O-IMCs has an
initial operational state, some intermediate operational states, a firing (or failed)
state, and an absorbing fired state. The firing and fired states are drawn as
gray circles and double circles respectively. For the sake of clarity, all self-loops
(s, a?, s) labeled by input actions are omitted from the figures.

Basic Events I/O-IMC Model. As pointed out in Section 1, a BE has a
different failing behavior depending on its dormancy factor. Figure 2 shows the
(parameterized) I/O-IMCs associated to a cold, warm, and hot BE2, i.e. it shows
the functions �(BE , 0, λ, μ)�ELT : A2 → IOIMC taking as arguments an activation
signal a? and a firing signal f !.

Fig. 2. The I/O-IMCs �(BE , 0, λ, 0)�ELT(a, f), �(BE , 0, λ, μ)�ELT(a, f), and
�(BE , 0, λ, λ)�ELT(a, f), modeling the semantics of a cold, warm and hot BE

AND Gate I/O-IMC Model. Figure 3.a shows the semantics of the (AND , 2)
gate, i.e. the function �(AND , 2)�ELT : A3 → IOIMC, taking as arguments the
output and two inputs signals of the AND gate.3 This I/O-IMC models that the
AND gate fires (action f1) after it receives firing signals from both its inputs
(actions f2 and f3). Note that the AND gate does not have an activation signal
as this element does not exhibit a dormant or active behavior as such. The
semantics of the OR and VOTING gates are similar.

PANDGate I/O-IMCModel. Figure 3.b shows the semantics �(PAND , 2�ELT:
A3 → IOIMC of a PAND gate with two inputs. The PAND gate fires after all its
inputs fire from left to right order. If the inputs fire in the wrong order, the PAND
gate moves to an operational absorbing state (denoted with an X in Figure 3.b).

FDEP Gate I/O-IMC Model. An FDEP gate does not have semantics itself,
but instead is used in combination with the semantics of its dependent BEs.
To model a functional dependency, we define the firing auxiliary function FA :
A2 × P(A) → IOIMC. This (parametric) I/O-IMC ensures that a dependent BE
fires either when the BE fails by itself, or when its failure is triggered by the
FDEP gate trigger: Figure 3.c shows the FA to be applied in combination with
a BE that is functionally dependent on n triggers. Signal f2 corresponds to the
failure of the dependent event by itself; signals f3, f4, . . . , fn+2 correspond to the
2 The hot BE I/O-IMC can be reduced to:

⊙ λ−→ © f !−→ © .
3 The semantics �(AND , n)�ELT : An+1 → IOIMC of the AND gate with n inputs can

be constructed in a similar fashion, cf [5].

450 H. Boudali, P. Crouzen, and M. Stoelinga

Fig. 3. The semantics (a) �(AND , 2)�ELT(f1, f2, f3), (b) �(PAND , 2)�ELT(f1, f2, f3), and
(c) FA(f1, f2, {f3, f4 . . . , fn+2})

failures of any of the triggers; and f1 corresponds to the failure of the dependent
event when also considering its functional dependency upon the triggers. Hence,
f1 is emitted as soon as any signal from {f2, f3, . . . , fn+2} occurs. Thus, the FA
takes as arguments two firing signals and a set of firing signals (corresponding
to all triggers of the dependent BE).

SPARE Gate I/O-IMC Model. Figure 4 shows the I/O-IMC of a spare
gate sharing a spare with another spare gate. The SPARE gate behaves, to a
certain extent, similarly to the AND gate. That is, for the spare gate to fail, both
its primary has to fail and its spare has to be unavailable (fail or be taken by
the other spare gate). The state reached after the primary fails is of particular
interest (i.e. the state reached from the initial state after transition f2? is taken).
In this state, a non-deterministic situation arises where the spare can be activated
by either of the spare gates (signals a1,1! and a1,2?). We could of course also get
signal f3? (i.e. failure of the spare) immediately after signal f2?. The signals a1,1
and a1,2 are signals between the two spare gates notifying each other about the
activation (and thus the acquisition) of the shared spare. These signals are also
sent to the spare to activate it. The semantics of a spare gate having n spares is
a function A2 × (A2 ×P(A))n → IOIMC that takes as arguments the firing signal
of the spare gate, the firing signal of its primary and n spare-tuples containing,
for each spare, its firing signal, its activation signal (by the spare gate) and a
set of activation signals of the other spare gates sharing that spare. Figure 4.b
shows the semantics �(SPARE , 2)�ELT(f1, f2, (f3, a1,1, {a1,2})) of the spare gate
in Figure 4.a. Generalizing the SPARE gate I/O-IMC model to handle the case

Fig. 4. (a) A DFT, (b) semantics �(SPARE , 2)�ELT(f1, f2, (f3, a1,1, {a1,2})) of (left)
SPARE gate, (c) AA(a1, {a1,1, a1,2}), (d) AA(a1, ∅)

A Compositional Semantics for Dynamic Fault Trees 451

where multiple spare gates share multiple spares turned out to be a non-trivial
task [4,5].

3.3 DFT Semantics

This section shows how to get the semantics of a DFT from the semantics of
its elements. First, we define the node semantics �v� of a DFT node v ∈ V by
instantiating the parameters of �l(v)�ELT appropriately, using the following main
actions: The firing signal fX of element X ∈ E denotes the failure of X and the
activation signal aX denotes the activation of a BE X , i.e. the switching from
dormant to active mode. When used as a spare, a BE is activated by its SPARE
gates; and aS,G denotes the activation of spare S by SPARE gate G. Otherwise,
the BE is activated from the start.

Given a node v in a DFT D, we define the node semantics �v� as follows.

OR, AND, VOT, and PAND. If v is labeled as an OR, AND, VOT, or
PAND gate, then �v� is obtained from �l(v)�ELT by instantiating its parameters
in such a way that the input signals of v connect to output signals of v’s children
(i.e. nodes w ∈ preds(v)). Thus, for type(v) = OR, AND , VOT , PAND , with
preds(v) = w1w2 . . . wn, we have

�v� = �l(v)�ELT(fv, fw1 , fw2 , . . . fwn)

BE. If v is labeled as a basic event, two steps need to be carried out. First, we
have to check if the BE is a dependent event of some FDEP gate. If so, we use
the firing auxiliary so that a failure fv! is emitted whenever either the BE fails
(via f∗

v) or any of the triggers fails (via ft ∈ Tv). As an intermediate step, let

�v�1 = �l(v)�ELT(av, f∗
v) ‖ FA(fv, f∗

v , Tv)

Here, Tv = {ft | ∃w ∈ V . (v, w) ∈ E ∧ l(w) = FDEP ∧ t = (preds(w))1} is the
set of trigger signals of FDEP gates on which l(v) is dependent.4

Second, we need to activate the BE if it is used as a spare. This is done
by composing �v�1 in parallel with an activation auxiliary (see Figure 4.c and
Figure 4.d), where the latter outputs the activation signal av of l(v). Thus we
have

�v� = �v�1 ‖ AA(av,Atvv)

Here, Atvv = {av,w | v ∈ preds(w) ∧ type(w) = SPARE} is the set of activation
signals emitted by all SPARE gates sharing l(v).

SPARE. If v is labeled as a SPARE gate, with preds(v) = w1w2 . . . wn, then
w1 is its primary BE and w2, . . . , wn are its n − 1 spare BEs. As with the other
gates, �v� is obtained from �l(v)�ELT by instantiating its parameters in such a
way that the input signals of v connect to output signals of v’s primary and
4 If v is not a dependent event, the firing auxiliary can be omitted and we have

�v�1 = �l(v)�ELT(av, fv).

452 H. Boudali, P. Crouzen, and M. Stoelinga

spare BEs. In addition, we need to find all the other SPARE gates that share
any of v’s spare BEs. Following the SPARE gate semantics in Section 3.2, we
have

�v� = �l(v)�ELT(fv, fw1 , (fw2 , aw2,v, Pw2), . . . , (fwn , awn,v, Pwn))

where Pwi = {awi,g | (wi, g) ∈ E ∧ g �= v ∧ type(g) = SPARE} is the set of
activation signals emitted by all other SPARE gates sharing spare l(wi).

We do not define node semantics for nodes labeled by an FDEP gate, since
these are already incorporated in the semantics of their dependent BEs. Now,
the semantics of a DFT is obtained by parallel composing the semantics of all
(non-FDEP) nodes.

Definition 6. The semantics of a DFT D = (V, preds , l) is the I/O-IMC �D� =
‖v∈V |type(v) �=FDEP�v�.

To compute the reliability of D, we are only interested in the failure of the
top node T . Hence, we hide all signals except fT , i.e. we compute MD =
hide AD \ fT in �D�; recall that AD denotes the set of all actions in D. The
compositional aggregation technique described in the following section is an ef-
ficient way to derive MD.

Example 3. Figure 5 shows the I/O-IMC semantics of a DFT consisting of a
SPARE gate A having a primary B and a spare C. The I/O-IMC of the DFT
is obtained by parallel composing the seven I/O-IMCs shown on the figure:

�A� = �(SPARE , 2)�ELT(fA, fB, (fC , aC,A, ∅))
�B�1 = �(BE , 0, λ, 0)�ELT(aB, fB∗)‖FA(fB, fB∗, ∅) �B� = �B�1‖AA(aB, ∅)
�C�1 = �(BE , 0, λ, μ)�ELT(aC , fC∗)‖FA(fC , fC∗, ∅) �C� = �C�1‖AA(aC , {aC,A})

Fig. 5. A DFT and the seven I/O-IMCs that model its behavior

4 Compositional Aggregation Approach

Our compositional semantics allows one to build the I/O-IMC associated to a
DFT in a component-wise fashion, leading to a significant state-space reduction.
This kind of compositional aggregation approach has been previously successfully
used, most notably in [16]. The compositional aggregation approach is to be
contrasted with a more classical approach of model generation, such as the one

A Compositional Semantics for Dynamic Fault Trees 453

used by DIFTree, where the CTMC model of a dynamic system is generated at
once and as a whole and then possibly aggregated at the end. We propose the
following conversion algorithm to transform a DFT into an I/O-IMC.

1. Translate each DFT element to its corresponding (aggregated) I/O-IMC.
2. Pick two I/O-IMCs and parallel compose them (Definition 2).
3. Hide (Definition 2) output signals that will not be subsequently used (i.e.

synchronized on).
4. Aggregate, using weak bisimulation (Definition 3), the I/O-IMC obtained in

step 3.
5. Go to step 2 if more than one I/O-IMC is left, otherwise stop.

The choice of I/O-IMCs we make in step 2 is important as this has an impact
on the size of the generated state space during the intermediate steps. In the
case studies (see Section 5) we have used intuitive heuristics based on the level
of interaction between models to decide the composition order. In the absence
of simultaneous failures [4] in the DFT model, the algorithm results in an aggre-
gated CTMC. However, in cases with simultaneous failures the result can be a
continuous-time Markov decision process, which can be analyzed by computing
bounds on the performance measure of interest [2,15].

Note that originally non-determinism was not intended to be present in DFT
models. Our algorithm also yields a well-specified check for DFTs: By seeing
whether the I/O-IMC translation yields a CTMC or a CTMDP, one can decide
if any unintended non-determinism is present in a DFT.

5 Tool Support and Case Studies

We have developed a tool named CORAL [3] (COmpositional Reliability and
Availability anaLysis) that takes as input a DFT specified in the Galileo DFT
format and computes, if there is no non-determinism in the resulting I/O-IMC,
the unreliability of the DFT for given mission times. CORAL is integrated with
the CADP tool set [9], which provides tool support for IMCs [13].

The tool consists of three parts:

1. The dft2bcg tool which uses as input the DFT file in Galileo format. This
tool translates the elements of the DFT into their I/O-IMC counterparts.

2. The composer tool which uses as input the I/O-IMC models created by the
dft2bcg tool and a composition order. The composer tool applies composi-
tional aggregation to the I/O-IMCs according to the composition order to
generate a single I/O-IMC representing the DFT’s behaviour. The composi-
tion order must be supplied by the user (see Section 4).

3. The dft eval tool with as its input the I/O-IMC generated by the composer
tool and a number of mission-times. The dft eval tool calculates the unrelia-
bility of the system modeled by the original DFT for the given mission-times.

454 H. Boudali, P. Crouzen, and M. Stoelinga

Fig. 6. The DFT representations of the case studies

The composer tool uses the CADP tool set to compose, abstract (i.e. hide
signals) and aggregate I/O-IMCs. In particular we have used a version of the
bcg min tool, which was adapted to aggregate I/O-IMCs using weak bisimulation
(see Definition 3).

To compare the compositional aggregation (Comp-Aggr) approach with the
traditional DIFtree method, we have conducted four case studies (none hav-
ing non-determinism). Figure 6 shows the cascaded PAND system [6,7] (CPS),
the cardiac assist system [7] (CAS), the multi-processor distributed computing
system [18] (MDCS) and the fault-tolerant parallel processor [11] (FTPP).

The results of the case studies are given in Figure 7. The size of the largest
model (with regard to the number of states) appearing during analysis is given
for each experiment.

Case study Analysis Maximum number Maximum number Unreliability
method of states of transitions (Mission-time = 1)

CPS DIFTree 4113 24608 0.00135668
CPS Comp-Aggr 132 426 0.00135668

CAS DIFtree 8 10 0.657900
CAS Comp-Aggr 36 119 0.657900

MDCS DIFtree 253 1383 2.00025 · 10−9

MDCS Comp-Aggr 157 756 2.00025 · 10−9

FTPP DIFtree 32757 426826 2.56114 · 10−11

FTPP Comp-Aggr 1325 14153 2.56114 · 10−11

Fig. 7. The results of the case studies

A Compositional Semantics for Dynamic Fault Trees 455

From these experiments one can conclude that the compositional aggrega-
tion approach to analyzing DFTs is very promising and we expect it to combat
the state-space explosion effectively in many cases. The relative performance of
the DIFtree and compositional aggregation approaches vary greatly for different
DFTs. The DIFtree method seems to perform better for DFTs with few basic
events and (possibly) many interconnections (e.g. each of the three modules in
the CAS). The compositional aggregation approach seems to perform better in
DFTs with symmetries (such as in the CPS and FTPP examples) and DFTs
with a large number of elements and few connections (and highly modular).
More research is needed to further investigate which method is best to apply
under which circumstances.

6 Conclusions and Future Work

In this paper, we have formalized the semantics of DFTs using I/O-IMCs (a
variant of IMCs that we have defined) and showed how a compositional aggre-
gation approach is used to analyze DFTs. Being a first step, we have restricted
our attention to basic events with exponential failure distributions, but the same
approach could be taken for other probability distributions using phase-type dis-
tributions or a different underlying formalism, e.g. the one in [8]. Future work
includes experimenting with other case studies and improving on the heuristic
used in the order of the I/O-IMCs composition (for instance by adapting and
implementing the heuristics proposed in [19]).

Acknowledgment. We thank Hong Xu from the University of Virginia for running
various experiments with the Galileo tool.

References

1. Amari, S., Dill, G., Howald, E.: A new approach to solve dynamic fault trees. In:
Annual Reliability and Maintainability Symposium, pp. 374–379 (January 2003)

2. Baier, C., Hermanns, H., Katoen, J.P., Haverkort, B.R.: Efficient computation of
time-bounded reachability probabilities in uniform continuous-time markov deci-
sion processes. Theor. Comput. Sci. 345(1), 2–26 (2005)

3. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: CORAL - a tool for compositional
reliability and availability analysis. In: ARTIST workshop. Presented at the 19th
international conference on Computer Aided Verification

4. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: Dynamic fault tree analysis using in-
put/output interactive markov chains. In: Proc. of Dependable Systems and Net-
works conference, UK, pp. 708–717. IEEE Computer Society, Los Alamitos (2007)

5. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: Compositional analysis of dynamic
fault trees. Technical report, University of Twente (to appear)

6. Boudali, H., Dugan, J.B.: A discrete-time Bayesian network reliability modeling
and analysis framework. Reliability Engineering and System Safety 87(3), 337–349
(2005)

456 H. Boudali, P. Crouzen, and M. Stoelinga

7. Boudali, H., Dugan, J.B.: A new Bayesian network approach to solve dynamic fault
trees. In: Proc. of Reliability and Maintainability Symposium, pp. 451–456. IEEE,
Los Alamitos (2005)

8. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-markov pro-
cesses. Theoretical Computer Science 282(1), 5–32 (2002)

9. Construction and Analysis of Distributed Processes (CADP) software tool.
http://www.inrialpes.fr/vasy/cadp/

10. Coppit, D., Sullivan, K.J., Dugan, J.B.: Formal semantics of models for compu-
tational engineering: A case study on dynamic fault trees. In: Proc. of the In-
ter. Symp. on Software Reliability Engineering, pp. 270–282. IEEE, Los Alamitos
(2000)

11. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Trans. on Reliability 41(3), 363–377 (1992)

12. Dugan, J.B., Venkataraman, B., Gulati, R.: DIFTree: a software package for the
analysis of dynamic fault tree models. In: Reliability and Maintainability Sympo-
sium, pp. 64–70 (January 1997)

13. Garavel, H., Hermanns, H.: On combining functional verification and performance
evaluation using cadp. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 410–429. Springer, Heidelberg (2002)

14. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg
(2002)

15. Hermanns, H., Johr, S.: Uniformity by construction in the analysis of nondetermin-
istic stochastic systems. In: Proc. of Dependable Systems and Networks conference,
UK, pp. 718–728. IEEE Computer Society, Los Alamitos (2007)

16. Hermanns, H., Katoen, J.P.: Automated compositional Markov chain generation
for a plain-old telephone system. Sci. of Comp. Programming 36(1), 97–127 (2000)

17. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quar-
terly 2(3), 219–246 (1989)

18. Malhotra, M., Trivedi, K.S.: Dependability modeling using petri-nets. IEEE Trans-
actions on Reliability 44(3), 428–440 (1995)

19. Tai, K.-C., Koppol, P.V.: An incremental approach to reachability analysis of dis-
tributed programs. In: Software Specifications & Design workshop, IEEE Computer
Society Press, Los Alamitos (1993)

20. Veseley, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook,
NUREG-0492. Technical report, NASA (1981)

http://www.inrialpes.fr/vasy/cadp/

3-Valued Circuit SAT for STE with Automatic
Refinement

Orna Grumberg, Assaf Schuster, and Avi Yadgar

Computer Science Department, Technion, Haifa, Israel

Abstract. Symbolic Trajectory Evaluation (STE) is a powerful technique for
hardware model checking. It is based on a 3-valued symbolic simulation, us-
ing 0,1 and X (”unknown”), where the X is used to abstract away values of the
circuit nodes.

Most STE tools are BDD-based and use a dual rail representation for the three
possible values of circuit nodes. SAT-based STE tools typically use two variables
for each circuit node, to comply with the dual rail representation.

In this work we present a novel 3-valued Circuit SAT-based algorithm for
STE. The STE problem is translated into a Circuit SAT instance. A solution for
this instance implies a contradiction between the circuit and the STE assertion.
An unSAT instance implies either that the assertion holds, or that the model is too
abstract to be verified. In case of a too abstract model, we propose a refinement
automatically.

We implemented our 3-Valued Circuit SAT-based STE algorithm and applied
it successfully to several STE examples.

1 Introduction

Symbolic Trajectory Evaluation (STE) [18] is a powerful model checking technique for
hardware verification, which combines symbolic simulation with 3-valued abstraction.
Consider a circuit M , described as a Directed Acyclic Graph (DAG) of nodes that rep-
resent gates and latches. For such a circuit, an STE assertion is of the form A → C,
where the Antecedent A imposes constraints over nodes of M at different times, and the
Consequent C imposes requirements on M ’s nodes at different times.

The antecedent may introduce symbolic Boolean variables, and the assertions it im-
poses on M depends on them. For each node n and time t, STE computes the symbolic
representation of (n, t), according to the constraints imposed by A, and the behavior
of M . The nodes that are not restricted by A are initialized by STE to the value X
(”unknown”), and thus an abstraction of the checked model is obtained.

For an assertion A → C and a circuit M , STE may return “pass”, “fail”, or “un-
known” (X) result. If the computed values of all nodes (n, t) comply with the require-
ments of C for these nodes, then the assertion passes. If, for some requirement of C on
(n, t), STE computes a definite value (0 or 1) which contradicts the requirement, then
“fail” is returned, together with a counterexample. If, on the other hand, STE computes
X for (n, t), though C contains requirements for (n, t), then an “unknown” result is
returned. The latter case means that the abstraction induced by A is too coarse, and
requires some refinement.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 457–473, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

458 O. Grumberg, A. Schuster, and A. Yadgar

STE is successfully used in the hardware industry for verifying very large models
with wide data paths [19,17,22]. The common method for performing STE is by rep-
resenting the values of each node in the circuit by Binary Decision Diagrams (BDDs)
that depend on the symbolic variables [19]. In this method, the dual rail representa-
tion is used, where two BDDs represent the three possible values of a node. The main
drawback of this method is the unpredictability of the BDDs’ sizes, and their tendency
to explode when a large number of symbolic variables is used. Another limitation in
common STE methods is the need for manual refinement, which is time consuming and
requires close familiarity with the checked circuit.

For general model checking problems, it has been recognized for quite some time
that SAT-based algorithms can often handle much larger models than BDD-based ones.
It is therefore very appealing to try and implement SAT-based algorithms for STE as
well. However, only a few works took this direction. In [21], non-canonical Boolean
expressions are used instead of BDDs during the simulation, and a SAT solver is used
to check if the resulting expressions meet the requirements of the STE assertion. The
Boolean expressions used in this method might be too large to handle, and might require
a theorem prover for reducing their size. In [2] and [4], the dual rail encoding is used to
create a CNF formula for STE. This representation uses two Boolean variables for each
node in the circuit, which we avoid in our algorithm. In [15], a 3-valued SAT solver
was suggested, which did not perform well. Additionally in [15], an approximation for
a 3-valued SAT solver is computed. This approximation, however, does not completely
correspond to the semantics of STE. None of the methods discussed above performs
automatic refinement. We further elaborate on these works in Section 7.

Particularly interesting for hardware verification is the Circuit-SAT method [8,11,10],
which gets its input in the form of a circuit rather than a CNF formula. A circuit SAT
solver is based on justification of nodes, as described in [7]. For a node n in a circuit,
and a Boolean value d, it searches for a justification for [n, d]. That is, it looks for a
(partial) assignment to some of the circuit inputs, under which n evaluates to d.

Our contribution is a novel framework for STE, which is based on a 3-valued justi-
fication algorithm. Our algorithm exploits the abstraction induced by using X values,
without using the dual rail encoding. It is far less sensitive to the number of symbolic
variables than BDD methods. Furthermore, it provides automatic refinement.

For a circuit M and an STE assertion A → C, we create a circuit that represents
M ∧ A ∧ ¬C. A justification to the value 1 at the output of the circuit represents a
run of M that agrees with the constraints of A, and does not satisfy the requirements
of C. This implies that the STE assertion does not hold on M . If no such justification
exists, it implies either that A → C holds on M , or that the abstraction implied by A is
too coarse for verifying A → C. If no justification is found, our algorithm produces a
core for the proof of un-justifiability. If this proof does not depend on variables whose
values are X , then we conclude that A → C holds. Otherwise, the core indicates which
variables should be refined.

Our algorithm uses a hybrid representation of the problem: as a set of constraints
in CNF, and as the DAG of the circuit. The CNF representation is used for efficient
Boolean Constraint Propagation and for learning, as in common SAT solvers [13,24].
The DAG representation is a higher level description of the circuit than the CNF

3-Valued Circuit SAT for STE with Automatic Refinement 459

representation. It is used for branching as in [8,10,11], for propagating X values, and
for deciding termination.

We exploit the fact that for each variable, a Boolean solver holds three possible val-
ues, true, false and unspecified. Thus, we can represent each circuit node by a single
variable in the CNF formula. Additional information is used to distinguish between the
case the variable has the value X and the case it is unspecified. An X value at a spe-
cific node is marked so in the DAG. Additionally, it is represented by special constraints
added to the CNF formula. New X values can be learnt both on the DAG and on the
CNF formula. They are used to avoid traversal of abstracted parts of the circuit, thus
reducing the amount of work.

We implemented our 3-valued justification algorithm on top of zChaff [13], which is
a state of the art CNF SAT solver, and of [9]. We employed our tool for solving several
STE problems, and compared it to other methods. Using our algorithm, we managed to
solve problems that could not be solved by BDDs, and in most cases it outperformed
other SAT based methods. A characterization of such problems is given in Section 6.

The rest of this paper is organized as follows: In Section 2 we present preliminaries.
In sections 3 and 4 we describe our justification algorithm, and show how to use it for
STE. In Section 5 we explain how automatic refinement can be performed. In Section
6 we present our experimental results, and in Sections 7 and 8 we discuss related work,
conclusions, and future research.

2 Preliminaries

A hardware model M is a circuit, represented by a directed graph. The graph’s nodes
N are input and internal nodes, where internal nodes are latches and combinational
gates. A combinational gate represents a Boolean operator. The graph of M may contain
circles, but not combinational circles. Given a directed edge (n1, n2), we say that n1 is
an input of n2. We denote by (n, t) the value of node n at time t. The value of a gate
(n, t) is the result of applying its operator on the inputs of n at time t. The value of a
latch (n, t) is determined by the value of its input at time t − 1.

2.1 Symbolic Trajectory Evaluation (STE)

In STE, a node can get a value in a quaternary domain Q = {0, 1, X, ⊥}. X(”unknown”)
is given to a node whose value cannot be determined by its inputs. ⊥ is used to describe
an over constrained node. This might occur when there is a contradiction between an
external assumption on the circuit and its actual behavior.

AND X 0 1 ⊥
X X 0 X ⊥
0 0 0 0 ⊥
1 X 0 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

OR X 0 1 ⊥
X X X 1 ⊥
0 X 0 1 ⊥
1 1 1 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

NOT
X X
0 1
1 0
⊥ ⊥

Fig. 1. Quaternary Operations

A state s in M is an assignment of values
from Q to every node, s : N → Q.

A trajectory π is an infinite series of states,
describing a run of M . We denote by π(i), i ∈
N, the state at time i in π, and by π(i)(n), i ∈
N, n ∈ N , the value of node n in the state π(i).
πi, i ∈ N, denotes the suffix of π starting at
time i.

460 O. Grumberg, A. Schuster, and A. Yadgar

Let V be a set of symbolic Boolean variables over the domain {0, 1}. A symbolic
expression over V is an expression consisting of quaternary operations, applied to V ∪
Q. The truth tables of the quaternary operators is given in Figure 1. A symbolic state
over V is a mapping from each node of M to a symbolic expression. A symbolic state
represents a set of states, one for each assignment to V . A symbolic trajectory over V is
a series of symbolic states, compatible with the circuit. It represents a set of trajectories,
one for each assignment to V . Given a symbolic trajectory π and an assignment φ to
V , φ(π) denotes the trajectory that is received by applying φ to all of the symbolic
expressions in π.

A Trajectory Evaluation Logic (TEL) formula is defined recursively over V as fol-
lows: f ::= n is p | f1 ∧ f2 | p → f | Nf , where n ∈ N , p is a Boolean expression
over V , and N is the next time operator. The maximal depth of a TEL formula f is the
maximal time t for which a constraint exists in f on some node n, plus 1.

Given a TEL formula f over V , a symbolic trajectory π over V , and an assignment
φ to V , we define the satisfaction of f as defined in [20]:

[φ, π |= f] = ⊥ ↔ ∃i ≥ 0, n ∈ N : φ(π)(i)(n) = ⊥. Otherwise:
[φ, π |= n is p] = 1 ↔ φ(π)(0)(n) = φ(p)
[φ, π |= n is p] = 0 ↔ φ(π)(0)(n)
= φ(p) and φ(π)(0)(n) ∈ {0, 1}
[φ, π |= n is p] = X ↔ φ(π)(0)(n) = X φ, π |= p → f ≡ ¬φ(p) ∨ φ, π |= f
φ, π |= f1 ∧ f2 ≡ (φ, π |= f1 ∧ φ, π |= f2) φ, π |= Nf ≡ φ, π1 |= f

Note that given an assignment φ to V , φ(p) is a constant (0 or 1).
We define the truth value of π |= f as follows:

[π |= f] = 0 ↔ ∃φ : [φ, π |= f] = 0
[π |= f] = X ↔ ∀φ : [φ, π |= f]
= 0 and ∃φ : [φ, π |= f] = X
[π |= f] = 1 ↔ ∀φ : [φ, π |= f]
∈ {0, X} and ∃φ : [φ, π |= f] = 1
[π |= f] = ⊥ ↔ ∀φ : [φ, π |= f] = ⊥
This definition creates an order of importance between 0 and X . If there exists an

assignment such that [φ, π |= f] = 0, the truth value of π |= f is 0, even if there are
other assignments such that [φ, π |= f] = X .

t n1 n2 n3 n4 n5 n6

1 X X X 0 X 0

2 X X 0 X 1 X

Fig. 2. Symbolic Simu-
lation

STE assertions are of the form A → C, where A (the an-
tecedent) and C (the consequent) are TEL formulae. A ex-
presses constraints on circuit nodes at specific times, and C
expresses requirements that should hold on circuit nodes at
specific times. M |= (A → C) iff for all trajectories π of
M and assignments φ to V , [φ, π |= A] = 1 implies that
[φ, π |= C] = 1. When applying A to M , if a node n is eval-
uated to X , but is also constrained to a Boolean value 0 or 1 by A, then n is assigned
with the value imposed by A. If n is evaluated to 0(1) and A constraints it to 1(0), then
n is assigned ⊥. As in [20], an antecedent failure is a case where for every trajectory
π and every assignment φ to the symbolic variables, there is a node n and time t such
that (n, t) is over constrained by π, φ and A. Consider the circuit in Figure 3(a), and
the STE assertion A → C, where A = (n4, 1) is 0 and C = (n5, 2) is 1. The table in
Figure 2 corresponds to a symbolic simulation of this assertion. (n5, 1) is evaluated to
1, and thus the assertion holds.

3-Valued Circuit SAT for STE with Automatic Refinement 461

Most STE implementations use the dual rail encoding in order to represent the 4
values. In this encoding, the value of each node (n, t) is determined by the evaluations
of two Boolean functions f1

n,t, f
2
n,t : V → {0, 1} over the set of symbolic variables V .

2.2 The SAT Problem

The Boolean satisfiability problem (SAT) is the problem of finding an assignment φ to
a set of Boolean variables V such that a Boolean formula ϕ(V) will have the value ’1’
under this assignment. φ is called a satisfying assignment for ϕ.

We discuss formulae presented in the conjunctive normal form (CNF). That is, ϕ is
a conjunction of clauses, where each clause is a disjunction of literals over V . A literal
l is an instance of a variable or its negation: l ∈ {v, ¬v | v ∈ V }. We shall consider a
clause as a set of literals, and a formula as a set of clauses.

A clause cl is satisfied under an assignment φ iff ∃l ∈ cl, φ(l) = 1. For a formula ϕ
given in CNF, an assignment satisfies ϕ iff it satisfies all of its clauses. Hence, if, under
an assignment φ (or a partial assignment), all of the literals of some clause in ϕ are 0,
than φ does not satisfy ϕ. We call this situation a conflict.

For an unsatisfiable formula ϕ = C, where C is a set of clauses, an unSAT core C′ is
a set of clauses C′ ⊆ C such that C′ is unSAT.

For two clauses cl1 = (w1, v1 . . . vn) and cl2 = (¬w1, z1 . . . zm) ((v1 . . . vn) and
(z1. . . zm) are not necessarily disjoint), their resolvent is clres =(v1. . .vn)∪(z1 . . . zm).
It is easy to show that cl1 ∧ cl2 ∧ clres ≡ cl1 ∧ cl2. For an unSAT formula, there
exists a series of resolutions that leads to the empty clause. This series is the proof of
the formula’s unsatisfiability. This series is called resolution tree, where the root is the
empty clause, and the rest of the nodes are the clauses in the series that led to it. The
antecedents of a node are the clauses that were involved in the resolution that create it.
The leaves are a subset of the original clauses of the formula. This subset of clauses is
an unSAT core.

Davis-Putnam-Logemann-Loveland Backtrack Search (DPLL). We begin by de-
scribing the Boolean Constraint Propagation (bcp). Given a partial assignment φ and
a clause cl, if there is one literal l ∈ cl with no value, while the rest of the literals are
all 0, then in order to avoid a conflict, φ must be extended such that φ(l) = 1. cl is
called a unit clause, and the assignment to l is called an implication. bcp computes all
possible implications at a given moment. This procedure is efficiently implemented in
[13,23,12].

The DPLL algorithm [6,5] iteratively chooses an assignment to some variable, and
computes its implications. If no conflict occurs, a new assignment is chosen, and so
on. If a conflict occurs, the algorithm invalidates the last chosen assignment, and tries
another one instead. Choosing an assignment to a variable is called branching, and in-
validating a decision is called backtracking. DPLL terminates in the following cases:
If all of the variables are assigned without causing a conflict, ϕ is satisfiable, and the
current assignment to the variables is a satisfying assignment. On the other hand, if
a conflict occurs but there are no decisions to invalidate, it is concluded that ϕ is
unsatisfiable.

462 O. Grumberg, A. Schuster, and A. Yadgar

Optimizing DPLL
Modern SAT solvers apply several optimization on the basic DPLL backtrack search.
Such optimizations are conflict based learning, conflict driven backtracking, restarts and
more. These optimizations result in a significant speedup of the SAT solving tools.

Learning is performed upon the occurrence of a conflict. At this point, two clauses
implicate conflicting values to the same variable. The resolution of the clauses describes
the cause to the conflict. Thus, it is added to the formula, and prevents the conflict
from reoccurring. Different learning strategies yield different conflict clauses. 1UIP is
a common and very efficient strategy[24].

2.3 Bounded Model Checking

We shall briefly describe Bounded Model Checking (BMC)[1] for a model M and a
property P , which is a commonly used model checking technique. In BMC, the tran-
sition relation of M is described as a Boolean formula R(x, x′), where x and x′ are
the current and next state variables, respectively. The property P is also described as
a Boolean formula P (x). Additionally, the set of initial states of M is described by a
boolean formula I0(x).

BMC is an iterative algorithm. At iteration k, the formula ϕk = I0(x0)
∧k−1

i=0
R(xi, xi+1) ∧ ¬P (xk) is constructed, and is given to a SAT solver. A solution for
ϕk represents a path of length k from an initial state in M , along which the property P
does not hold. Thus, a solution represents a bug in the model. If ϕk is unSAT, then no
such path of length k exists, and the algorithm continues to the next iteration.

If P describes only finite paths, BMC terminates when k reaches the length of the
longest path in P . Otherwise, BMC terminates when k reaches the diameter of M . In
practice, the diameter of the model is not reached, and BMC stops due to memory limits
or timeouts.

2.4 Circuit SAT Solvers

Justification of Assignments. For a circuit node n and value d, we say that [n, d] is
justified by the inputs to n if d is implied by them according to the semantics of n.
On that case, we say that n is justified by its inputs. For example, consider a node
n, associated with an “AND” operator, and its inputs in1 . . . inm. [n, 0] is justified iff
∃ i s.t. ini = 0, regardless of the values of the rest of the inputs. [n, 1] is justified iff
∀ i, ini = 1. We generalize this definition for the set of nodes in the graph that may
effect the value of n. When given a (partial) assignment to the inputs of a circuit, we say
that [n, d] is justified if d is implied by those inputs. An input is thus trivially justified.
Throughout the rest of this paper, an assignment is considered a partial assignment.

Circuit SAT. A Circuit SAT Solver [8,11,10] is a solver that uses a graph representation
of the circuit instead of a CNF formula. Given a circuit, a node n and a value d. A circuit
SAT solver returns a justification for [n, d] if one exists, or “unjustifiable” otherwise.
Branching, bcp, learning and other procedures are performed over the graph.

3-Valued Circuit SAT for STE with Automatic Refinement 463

3 3-Valued Justification

In this section we describe our 3-valued algorithm for justifying a value of a node in a
circuit. Our algorithm uses a dual representation of the circuit. The first is a graph G of
the circuit’s gates and latches, and the other is a CNF description of it, denoted ϕ. ϕ is
built as described in [1]. ψ1

and in Figure 6 is an example for a CNF description of an
“AND” gate n, with inputs in1 and in2. There is a 1-1 mapping between the variables
of ϕ and the nodes of G. Thus, we can refer to a node by its corresponding variable
and vice versa. The graph and the CNF representations are maintained throughout the
computation in order to keep the correlation between them. The pseudo code of our
algorithm is given in Figure 4. Throughout this Section we refer to the example of
circuit t1 in Figure 3(b).

3.1 not-0 and not-1 Variables

When working in a 3-valued domain, a variable being not-1 does not imply being 0, and
vice versa. Therefore, we introduce the notions of not-0 and not-1. A variables is not-0
or not-1 if it is not allowed to be assigned 0 or 1, respectively. Consequently, a node
which is both not-0 and not-1 can only be assigned X . Such restrictions can be derived
from external constraints, or learned during the search. We denote not-0 and not-1 by
|!0 and |!1, respectively.

In the graph representation G we have a mechanism for marking |!0 and |!1 nodes. We
need a mechanism for marking and manipulating |!0 and |!1 variables in ϕ. Therefore,
we do not consider the clauses to be sets of literals, as defined in Section 2.2. Instead, we
consider the clauses to be multi-sets of literals. The definition of a conflict and constraint
propagation remain as in Section 2.2. |!0 and |!1 variables are marked by adding the
clauses (n∨n) and (¬n∨¬n), respectively. When applying constraint propagation, each
of these clauses causes a conflict if we try to assign n with a value 0 or 1, respectively.
However, since they never become unit clauses, neither of the clauses forces any value
on n. In the Boolean domain, the propositional formula (n ∨ n) ∧ (¬n ∨ ¬n) is not
satisfiable. In contrast, in our algorithm, these clauses correctly represent X values,
since our algorithm does not necessarily satisfy all the clauses, as we describe in Section
3.2. In particular, our algorithm does not assign a value to a variable that is both |!0 and
|!1. Note that though a variable may have multiple instances in a clause, we only have
to distinguish between single and multiple instances. Thus, if a variable has more than
one instance in a clause, we only keep two instances.

|!0 and |!1 restrictions are propagated on G. Consider n5 in the example. i1 is |!0.
Therefore, n5 cannot be assigned 0, and is also |!0. Similarly, n6 is also |!0. In addition,
since all the inputs to n7 are |!0, n7 is also |!0. We do not propagate the restrictions
directly on ϕ. However, when propagating them on G, we also create the appropriate
clauses for the implied restrictions, and add them to ϕ. For example, i1 is |!0 implies
that n5 is |!0. Thus we add the clause (n5, n5). Additionally, i1 being |!1 changes the
relation between i2 and n5: Since i1 is |!1, n5 = 1 implies i2 = 1. This new relation
is expressed by the clause (i2, ¬n5, ¬n5). Note that i2 is only one of the inputs to an
“OR” gate, and therefore i2 = 0 should not imply n5 = 0. The two instances of ¬n5
prevent that. Similarly, the clause (n9, ¬n6, ¬n6) is created.

464 O. Grumberg, A. Schuster, and A. Yadgar

 1n
 4n

 5n 6n
 3n
 2n

 5n
 7n

 8n

10n

 6n

 !0 !1

 !0 !1

 !0

 !0

 !0

 5n
 7n

 8n

 10n

 6n

2t1t =

=

1

i2

i3
i4

 11n

i4
i3

1

i2

 11n

V1
!C

A g

i i

 9n 9n

(a) A circuit (b) An Unrolled Circuit

Fig. 3. Circuits

In section 2.2 we defined the resolution tree for clauses that are created by resolution.
In our context, clauses can be created by propagating |!0 and |!1 on G. The propagation
on G corresponds to the semantics of the nodes, which is also expressed by the clauses
of the nodes in ϕ. Thus, the generated clauses are considered as the result of applying
resolution on the relevant clauses in ϕ. In the example, the clause (n5, n5) can be cre-
ated by applying resolution on the clauses (i1, i1) and (¬i1, n5), and on their resolvent
and (¬i1, n5) again. The definition of the resolution tree thus remains unchanged.

3.2 3-Valued Justification Algorithm

3VJA (G,ϕ,n,d)
1) while true
2) if (¬branch on G)
3) return justification
4) if (bcp on ϕ ⇒conflict){
5) learn conflict clause
6) if learned X clause {
7) mark X on G
8) propagate X on G
9) add clauses to ϕ
10) }
11) if possible
12) backtrack
13) else
14) return unjustifiable
15) }

Fig. 4. 3VJA. Lines 2, 7 and 8
are executed on G. Lines 4, 5
and 9 are executed on ϕ.

Given a DAG G of a circuit, a CNF description of it ϕ, a
node r ∈ G, and a Boolean value d, our 3-valued justifi-
cation algorithm (3VJA) returns a justifying assignment
for [r, d], or unjustifiable if [r, d] is not justifiable. We
call r the root of G. 3VJA performs an iterative backtrack
search over G. The information in G about the structure of
the model is used for branching during the search, and al-
lows propagation of |!0 and |!1 restrictions. It is also used
for correct termination of the algorithm. The CNF rep-
resentation ϕ is used for efficient constraint propagation,
detection of conflicts and for learning. X values are de-
scribed by using clauses representing the |!0 and |!1 con-
straints, and can be learned during the solving process.
Next we describe and explain it. We refer to the pseudo-
code given in Figure 4.

We begin by describing the branching procedure used
in line 2 of 3VJA. This is a 3-valued variation of the jus-
tification procedure described in [7]. Our branching pro-
cedure traverses G, assigning the nodes with values in a
pre-order manner, starting from the root. For each node it
chooses values only to its inputs that are needed in order to justify it. The rest of the
input nodes are not assigned and are not traversed. The branching procedure does not

3-Valued Circuit SAT for STE with Automatic Refinement 465

assign |!0 and |!1 nodes with the values 0 and 1, respectively. In the example, justifica-
tion of [n8, 0] will not be done by assigning n7 = 0. If it is impossible to justify a node
with any of its inputs, 3VJA invalidates the last branching and tries another path. The
root of G is assigned either 1 or 0. Therefore, we never justify an X value, nor do we
have to assign a node with the value X for justification of a node.

After each branching, the assigned value has to be propagated through the variables
(line 4). We exploit the fact that a value of a variable in a Boolean SAT solver can be
either 1, 0, or unassigned in order to represent 3 values in a Boolean context. Thus, we
use ϕ to propagate the branching assignment through the circuit. The propagation and
the definition of a conflict remain as defined for Boolean SAT. If the propagation does
not cause a conflict, 3VJA continues to the next iteration. If a conflict occurs, 3VJA
learns a new conflict clause, and backtracks accordingly.

When a conflict occurs (line 5), the resolvent of the clauses that were involved
in the conflict is added to the problem. In the 3-valued context, we define the re-
solvent of clauses cl1 = (w1, v1 . . . vn) and cl2 = (¬w1, z1 . . . zm) to be cl3res =
(v1 . . . vn, z1 . . . zm). Note that the clauses are considered to be multi-sets, and clauses
may have multiple instances of a variable. For example, the resolvent of (v1, v2, v3)
and (¬v1, v3, v4) is (v2, v3, v3, v4). Adding a resolvent as defined above to ϕ does not
change the set of justifying assignments to [r, d]. Due to space limitations, we omit the
proof of this claim. This resolution is similar to the resolution described in [15]. We
elaborate on this in Section 7.

It is possible to learn conflict clauses such as (n, n) and (¬n, ¬n). As described in
lines 6-9, when learning such clauses, we mark the corresponding nodes in G as |!0
and |!1, respectively. We propagate this information on G, thus extracting additional
information from the learned conflict clause. We then generate the appropriate clauses,
as described in Section 3.1, and thus maintain the correlation between G and ϕ.

By learning (n, n) and (¬n, ¬n) clauses we can conclude that a node is forced to X
even if such a conclusion can not be explicitly derived from G. This is an important re-
sult, because it prevents the branching procedure from trying to use the constrained node
for justification in the future. It also helps detecting conflicts earlier. We demonstrate
this on our example. Assume that the branching procedure assigned n8 = 1. A possible
series of implications from this assignment is n7 = 1, n5 = 1, n6 = 1, n9 = 1, i2 = 0.
Other series could be computed, depending on the order of computing the implications.
The result of these implication is that all the literals in the clause (i2, ¬n5, ¬n5) are
0. That is, a conflict has occurred. We show the series of resolutions that is performed
upon this occurrence in Figure 5. The learned conflict clause is (¬n7, ¬n7), and it is
added to ϕ. We also mark that n7 is |!1 in G and propagate it, implying n8 is |!1 and n11
is |!1. These implications are also added as the clauses (¬n8, ¬n8) and (¬n11, ¬n11) to
ϕ. The result is that n7 is assigned X , and n8 and n11 are |!1.

Note that unlike implications computed by constraint propagation, nodes that are as-
signed X remain X throughout the solving process, and are not effected by backtrack-
ing. This is because the conclusion about X nodes is derived from the problem itself,
regardless of the current partial assignment. Therefore, a mechanism for invalidating X
assignments is not required.

466 O. Grumberg, A. Schuster, and A. Yadgar

1. (i2,¬n5,¬n5)
2. (¬n9,¬i2)
3. (n9,¬n6,¬n6)
4. (¬n7, n6)

5. (¬n7, n5)
6. (¬n8, n7)
7. 1

⊎
2 = (¬n9,¬n5,¬n5)

8. 7
⊎

3 = (¬n5,¬n5,¬n6,¬n6)

9. (8
⊎

4)
⊎

4 = (¬n7,¬n7,¬n5,¬n5)
10. (9

⊎
5)

⊎
5 = (¬n7,¬n7)

11. (¬n8,¬n8)
12. (¬n11,¬n11)

Fig. 5. Learning X clauses.
⊎

denotes the resolution operation. Refer to the circuit t1 in Figure
3(b). n8 = 1, implies n7 = 1, n5 = 1, n6 = 1, n9 = 1, i2 = 0, by using clauses 1 − 6. Clauses
1, 3 originate from propagating |!1 for i1 and i3, respectively, as described in Section 3.1. Clause
2 is a part of the description of the “NOT” gate. Clauses 4, 5 and 6 are the relevant clauses of the
“AND” and “OR” gates. Clauses 7−10 are created by applying resolution on the original clauses.
Clause 10 is the conflict clause derived by the 1UIP strategy. Having n7 is |!1 on G implies that
n8 and n11 are |!1, and thus clauses 11 and 12 are created.

A justifying assignment for [r, d] is found when we complete the traversal of G (line
3). This traversal does not necessarily include all the nodes in G, but rather only the
nodes that were required for this justification. Alternatively, if the traversal can not be
completed, we conclude that [r, d] can not be justified.

4 STE with 3-Valued Justification

In this section we show how to employ our 3-valued justification algorithm for STE.
We start by describing the construction of circuits to represent an STE problem, and
then show how to use the algorithm from Section 3 for solving it.

4.1 Constructing Circuits for STE Assertions

Consider a model circuit M , and an STE assertion A → C. A and C are given in
TEL, as described in Section 2.1. In order to prove or falsify the assertion, M has to
be simulated k times, where k is the maximal depth of A and C.

We create a new graph by unrolling M k times. Each node n ∈ M has k instances
in the new graph. The ith instance of node n represents node n at time i. In the new
graph, the connectivity of the input and gate nodes remains the same. The latches are
connected such that the input to a latch at time t are the nodes at time t−1, and the latch
is an input to nodes at time t. Due to the new connectivity of the latches, and since M
does not have combinational circles, the unrolled graph is a DAG. The inputs to the new
graph are k instances of each of the inputs to the circuit. In Figure 3(b), an unrolling of
a circuit is presented. t1 and t2 are two instances of the circuit. The inputs to the latch
n11 in t2 are the nodes of t1, thus eliminating the circle in t1. The inputs to the new
circuit are the two instances of i1 − i4. From herein we denote by M the unrolled graph
of the circuit.

As mentioned before, A and C are given in TEL. Therefore, we can construct com-
binational circuits that represent them. The inputs to these circuits are nodes in M , and
new constructed nodes that represent the symbolic variables of the STE assertion. The
output of each circuit, denoted the root of the circuit, equals to the evaluation of the cor-
responding TEL formula. For example, for a TEL formula A = (n, i) is V1, the input

3-Valued Circuit SAT for STE with Automatic Refinement 467

to the circuit of A is the ith instance of the circuit node n in M , and a node associated
with the symbolic variable V1. The root of the circuit is 1 if the input values are equal,
and 0 otherwise. The construction of circuits for n is p, f1 ∧ f2 and p → f are trivial.
The circuit for f = Nf ′ is derived by constructing the circuit for f ′, and replacing each
of its input nodes (n, t) by the node (n, t + 1). Note that each symbolic variable has
only one instance. Also note, that the constructed circuits for A and C are also DAGs.
From herein we denote by A and C the corresponding circuits, respectively. Also, we
refer to a node n at time i by the name of the ith instance of n in M , instead of by (n, i).

We construct a circuit for M ∧A by connecting the relevant nodes in M to the inputs
of A. The inputs to M ∧ A are the k instances of the inputs to the hardware model,
and the symbolic variables defined in A. The assertions that are imposed by A are in
fact assumptions on the circuit. As defined in Section 2.1, a node n is assigned the
Boolean value imposed on it by A, even if its evaluation on the circuit is X . In our
algorithm, this means that the values of n do not have to be justified, and should not
propagate from n to its inputs. We mark asserted nodes in the graph, such that X values
do not propagate through them, and the branching procedure considers them justified,
not trying to assign their inputs. Additionally, we construct the CNF clauses for an
asserted node such that they allow forward propagation only. This is demonstrated in
Figure 6. For a node n = in1 ∧ in2, we create ψ2

and instead of ψ1
and. For example, if n

is assigned the value 1 by A, none of the clauses propagates this value to in1 and in2.
On the other hand, forward propagation is still implied.

ψ1
and = (n, ¬in1, ¬in2) ∧ (¬n, in1) ∧ (¬n, in2)

ψ2
and = (n, ¬in1, ¬in1, ¬in2, ¬in2) ∧ (¬n, in1, in1) ∧ (¬n, in2, in2)

Fig. 6. A CNF representation of an “AND” gate n = in1 ∧ in2. ψ1
and propagates implications in

both directions. ψ2
and propagates implications only forwards.

We construct the circuit Γ = M ∧A∧¬C by connecting the relevant nodes in M ∧A
to the inputs of C. As with M ∧A, the inputs to the new circuit are the inputs to M and
the symbolic variables. We create a new “AND” node such that its inputs are the roots
of A and ¬C. This node is considered the root of Γ . An example for such a construction
is given in Figure 3(b). The node associated with “=” represents a combinational circuit
that evaluate to 1 if the values in the inputs are equal, and 0 otherwise. Consider an
assertion A → C such that A = (n5, 1) is V1, and C = (n6, 2) is ¬V1. t1 and t2 are
the unrolled circuit. The node A is the root of the circuit that corresponds to A. The
inputs to this circuit are (n5, 1) and V1. !C is the root of the circuit that corresponds to
¬C. The inputs to this circuit are (n6, 2) and V1. The node g evaluates to Γ .

4.2 Running STE

We first verify that A does not cause an antecedent failure with M . Therefore, we have
to verify that there is at least one run of the model that does not conflict with the asser-
tions from A. Consider the circuit M ∧ A, described in the previous section. We apply
3VJA for justifying [a, 1], where a is the root of A. A justifying assignment for this

468 O. Grumberg, A. Schuster, and A. Yadgar

problem represents a run of M that satisfies the constraints imposed by A. Therefore,
if such an assignment is found, we conclude that there is no antecedent failure. If the
problem is unjustifiable, then no such run exists, which means an antecedent failure.

Assuming no antecedent failure was found,we apply 3VJA on [γ, 1], where γ is the
root of Γ , defined in the previous section.

If a justifying assignment is found, it represents an assignment to the inputs of Γ
that makes γ evaluate to 1. This assignment represents a run of M that satisfies the
constraints imposed by A, but contradicts the requirements of C. Such an assignment
means that the STE assertion A → C does not hold in M .

If [γ, 1] is unjustifiable, an empty clause was learned. We extract the unSAT core
from the resolution tree of the empty clause, and check if it contains clauses for |!0 or
|!1 nodes, that originate from A. If there are no such clauses in the core, then no X
value has participated in proving the unjustifiability of [γ, 1]. Therefore, we conclude
that there is no run of M that complies with the restrictions of A, but does not satisfy
the requirements of C. That is, the STE assertion A → C holds in M . On the other
hand, if the unSAT core includes clauses for |!0 or |!1 nodes that originate from A, then
the proof for unjustifiability depends on X values. In that case, it might be that we did
not find a counter example for A → C due to a too coarse abstraction. Therefore, we
have to refine the model in order to prove or falsify the STE assertion.

Note that in case of an unjustifiability proof that depends on X values from A, an-
other proof that does not depend on X values might exist. Therefore, it might be pos-
sible to prove the STE assertion without refining the model. We could avoid this by
changing the justification and traversing larger portions of the circuit. We then have a
trade off between light-weight justification with more refinements, and heavy-weight
justification. In our current algorithm, we choose to perform the light-weight justifica-
tion and refine the model if needed. We discuss refinement in Section 5.

5 Refinement

A major strength of STE is the use of abstraction. The abstraction is determined by
assigning nodes in the model M with the value X by A, the antecedent of the STE
assertion. However, if the abstraction is too coarse, there is not enough information
for proving or falsifying the STE assertion. We present a “CEGAR” [3] approach for
refining such assertions.

For an unjustifiable instance given to 3VJA, the resolution tree, derived for it, is the
proof that the instance is unjustifiable. We define a spurious proof to be a resolution
tree such that the unSAT core defined by it includes clauses for X nodes, that originate
from the antecedent A of the STE assertion.

In our STE method, a too coarse abstraction results in an unjustifiable instance with
a spurious proof of unjustifiability. By associating the X nodes in the unSAT core with
symbolic variables, we refine the model and invalidate the current spurious proof.

Refining only X nodes in the unSAT core, only the variables needed to eliminate the
spurious proof are refined. This means that for an X node n, we only add variables for
X nodes that took part in implying X on n, rather than all the X nodes in the cone of
influence of n. Refer to the example in Figure 3(b), and consider A that assigns, at t1, X
to i1, i3 and i4, and 1 to n11. This implies n10 = 1, and n8 is |!0. When trying to justify

3-Valued Circuit SAT for STE with Automatic Refinement 469

n8 = 1, as seen in Section 3.2, we learn that n7 = X , and n8 is |!1. Therefore, n8 = X .
Note that the conclusion that n8 is |!1 is independent of i2, i4 and n10. If n8 = X takes
part in the proof that the whole circuit is unjustifiable, i1 and i3 will be in the unSAT
core, while i2 and i4 will not. Thus, when refining, we will not add a variables for i2
and i4.

Our refinement eliminates the proof of unjustifiability that was found. Running the
justification algorithm again, we either find another spurious proof that has to be refined,
a concrete proof of unjustifiability, or proof of justifiability (a justifying assignment).

6 Experimental Results

For evaluating our justification algorithm 3VJA, presented in Section 3.2, we imple-
mented it on top of zChaff [13], a state of the art SAT solver, and [9], and used it for
STE, as described in Section 4. For comparison, we used the dual rail encoding for
solving SAT based STE [15], and Forte, a BDD based STE tool by Intel [19]. Addi-
tionally, we used BMC for solving the benchmarks, considering the STE assertions as
an LTL formulae. For the SAT based STE and for BMC, we used the same SAT solver
zChaff, on top of which we implemented our algorithm. All experiments use dedicated
computers with 3.2Ghz Intel Pentium CPU, and 3GB RAM, running Linux operating
system. Time out was set to one hour.

For our experiments we used the Memory and CAM circuits from Intel’s GSTE tu-
torial, which are large enough to demonstrate various characteristics of the algorithm.
The Content Addressable Memory (CAM) has 16 entries, 64 bits data width, and 8 bits
tag width. The memory circuit has a 6 bits address width and 128 bits data width.

The results of our experiments are presented in Table 1. We verified the associa-
tive read property of the CAM by using “full”, “plain” and “cam” symbolic indexing
schemes, as defined in [14]. Additionally, we checked the CAM and the memory against
series of multiple write and read operations. Each assertion has a different set of sym-
bolic variables and a different depth. Assertions 1−14 were verified, whereas assertions
15−25 were falsified. Columns 3V, BDD, DR and BMC present the solving time of our
3VJA based STE, BDD based STE, Dual Rail SAT based STE, and BMC, respectively.

3VJA has outperformed the BDD based algorithm on most of the assertions, espe-
cially the harder ones. Compared to the BDD algorithm, 3VJA is far less sensitive to
the number of symbolic variables. Consider assertions 1−3 and 4−6. These assertions
are different encodings for the associative read operation of CAM, defined for depth 2
and 6, respectively. Each encoding of the assertion requires a different number of sym-
bolic variables. On both depths, the BDD algorithm timed out for “full” and “plain”
encodings, while 3VJA solved the problems in seconds. On the other hand, 3VJA is
more sensitive to the number of nodes in the circuit, and thus to the depth of the as-
sertions, than BDDs. This is also a characteristic of the other SAT based algorithms,
and is demonstrated by assertions 4 and 10 − 11, relatively to 1 and 9, respectively.
In each of these cases, a similar assertion is checked to different depths. The number
of symbolic variables is about the same, but the number of nodes in the circuit grows.
This affects the SAT based algorithms more than it affects the BDD based algorithm.

470 O. Grumberg, A. Schuster, and A. Yadgar

Table 1. Experimental Results. D is the depth of the STE assertion, #Vars is the number of
symbolic variables, #N is the number of circuit nodes in thousands, and 3V, BDD, DR and BMC
are the times required by 3VJA, BDD STE, Dual Rail SAT STE, and BMC, respectively.

Verification Time (s) Falsification Time (s)
Assertion D # vars #N x103 3V BDD DR BMC Assertion D # Vars #N x103 3V BDD DR BMC

1 CAM cam 2 124 5 4 0.5 5 1 15 CAM 3 4 320 10 10 437 5 1
2 CAM plain 2 204 5 2 T.O 1 1 16 CAM 4 4 260 10 14 209 19 13
3 CAM full 2 1160 5 1 T.O 1 1 16 CAM 5 5 72 10 32 3 12 3
4 CAM cam 6 128 15 31 1 94 87 17 Mem 3 2 134 110 280 282 832 327
5 CAM plain 6 208 15 15 T.O 27 30 18 Mem 3 5 134 260 536 436 T.O 2753
6 CAM full 6 1164 15 14 T.O 26 34 19 Mem 3 10 134 550 1943 641 T.O T.O
7 CAM 1 10 152 25 349 5 513 493 20 Mem 3 15 134 770 T.O 943 T.O T.O
8 CAM 2 10 242 25 45 T.O 537 473 21 Mem 4 5 168 260 536 T.O 343 2854
9 Mem 1 2 86 110 5 1 9 2 22 Mem 4 10 168 550 1765 T.O 2248 3004
10 Mem 1 5 104 260 773 3 413 320 23 Mem 4 15 168 770 2064 T.O 3440 T.O
11 Mem 1 11 164 550 T.O. 9 T.O T.O 24 Mem 5 10 670 550 3276 T.O 3555 T.O
13 Mem 2 5 304 260 54 455 72 52 25 Mem 5 15 670 770 T.O T.O T.O T.O
14 Mem 2 11 334 550 77 523 142 81

Note, however, that in case of a failed assertion with many symbolic variables, the BDD
method may fail due to the need to compute the values of all nodes up to the depth of
the contradiction, while a SAT based algorithm only has to find one erroneous path.
This is demonstrated by assertions 15, 16 and 21 − 25.

We see that BMC outperforms the dual rail method in most of the cases, especially
for verification. The dual rail representation uses two Boolean variables to represent
each node. The result is a very large SAT instance, which is harder to solve. This result
matches the results in [15].

3VJA outperforms BMC in most cases, especially in falsification. While not very
sensitive to the number of symbolic variables, BMC does not use X values, and thus
does not use an abstraction. This makes BMC more sensitive to the width of data paths,
and the depth of the assertions. For verification, we expected 3VJA to return “unjustifi-
able” faster than BMC, since the justification is constrained by the X nodes. However,
in a few cases, such as 10, we had to refine the model multiple times until a concrete
proof for unjustifiability was found. In these experiments, refinement was performed
manually. In 11, we could not find such a proof within the time limit. For falsification,
we see a clear advantage to 3VJA. This can be explained by the fact that 3VJA does not
try to assign values to X nodes, and thus does not traverse large portions of the circuits.
This advantage increases with the number of nodes that are abstracted out by the STE
assertion, and is demonstrated by assertions 17 − 25.

7 Related Work

SAT based methods for STE were previously suggested in [2], [21] [4], and [15].
In [21], non-canonical Boolean expressions are used to represent the symbolic ex-

pressions of the circuit’s nodes during the simulation. At the end of the simulation, a
SAT solver is used to check if the resulting expressions meet the requirements of the
STE assertion. In this method, the expressions associated with the nodes may grow very

3-Valued Circuit SAT for STE with Automatic Refinement 471

large, and even become too large to handle. In such cases, a theorem prover has to be
used in order to simplify them. This method is inherently different than 3VJA.

In [2], the dual rail encoding is used to create a CNF formula for STE. This construc-
tion is referred to in [4] as simulation based SAT STE. In [4], a different construction is
suggested, and is referred to as constraint based STE. The constraint based construc-
tion is equivalent to the construction presented in [1], that we used in our work. This
construction forces propagation of Boolean values through the gates of the circuit. The
simulation based construction forces propagation of X values as well, and results in
much larger CNF formulae. In [4], it is shown that the constraint based construction
outperforms the simulation based construction. We compared 3VJA to the constraint
based construction in Section 6.

In [15], the constraint based construction is solved by a 3-valued SAT solver. In
this work, Boolean variables of a SAT solver represent 3 values, considering an “unas-
signed” variable as X . The definition of satisfiability is changed respectively. In this
work, clauses are regarded as multi-sets, and the definition of the resolution is also
changed. Note that in our work we do not change the definition of the satisfiability of
a formula. Instead, our algorithm does not satisfy the formula, but rather justifies the
root of the graph. Moreover, in our work we distinguish between unassigned nodes and
nodes assigned with X . This distinction allows us to propagate X values, and to suggest
an automatic refinement for too coarse abstractions. Additionally, while the 3-valued
resolution defined in our paper is similar to the resolution defined in [15], the reasons
for their correctness are different. As described in [15], modifying the SAT solver to fit
the new definition of satisfaction and resolution did not yield good performance.

Additionally in [15], an approximation to 3-valued SAT is computed. This algorithm
corresponds to a different semantics than the STE semantics, and an assertion that holds
by this algorithm might not hold in STE semantics. This algorithm is also not suitable
for refining STE assertions.

An automatic refinement scheme was suggested in [20]. This refinement scheme
chooses a nodes that is assigned with X , and tries to choose a small set of inputs such
that this node will evaluate to 0 or 1. In [16], a method for assisting manual refinement
is presented. Our refinement scheme eliminates a spurious proof of unjustifiability of
the circuit in each iteration, and is inherently different than these methods.

8 Conclusions and Future Work

We have presented a 3-valued justification algorithm, 3VJA, that uses a DAG and a CNF
descriptions of a circuit, and finds a 3-valued justification for the value at the root. We
showed how to use 3VJA for STE.

We implemented 3VJA and compared it to other STE tools. It is our opinion that
3VJA is a valuable complement to BDD based STE, especially for falsification, as is
the case in other model checking problems. 3VJA is far less sensitive to the number of
symbolic variables than BDD methods. Moreover, for falsification, 3VJA may find an
erroneous path quickly, while a BDD engine has to compute the values of all the nodes
in all the iterations prior to the contradiction.

472 O. Grumberg, A. Schuster, and A. Yadgar

We compared 3VJA to other SAT based algorithms and in many cases showed a
significant speedup. This is the result of introducing the notion of X into the Boolean
context, without doubling the number of variables that are used, by propagating X
values over a graph representation of the circuit, and by learning X values trough 3-
valued resolution. While BMC is a powerful model checking method, it is considered
useful mainly for falsification of “shallow” bugs. Exploiting the abstraction used in
STE, 3VJA may extend the capabilities of BMC as well.

Last, we showed that 3VJA can be used for an automatic refinement scheme of STE
assertions. This scheme takes a “CEGAR” approach, where the spurious counter ex-
amples are proofs of unjustifiability of the problem, that depend on X values. The
refinement adds symbolic variables to the nodes that are needed in order to eliminate
the proof. We intend to research heuristics for minimizing the set of variables that have
to be refined for eliminating spurious counter examples.

3VJA also allows us to address the problem of vacuity in STE. Given an STE asser-
tion A → C, it might hold vacuously if A may never occur in the model. We believe
that by applying our justification algorithm, this problem can be solved efficiently.

Acknowledgements. We thank Yakir Vizel and Gala Yadgar for their help with the
benchmarks.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using
SAT procedures instead of BDDs. In: DAC, IEEE Computer Society Press, Los Alamitos
(1999)

2. Bjesse, P., Leonard, T., Mokkedem, A.: Finding bugs in an alpha microprocessor using sat-
isfiability solvers. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102,
pp. 454–464. Springer, Heidelberg (2001)

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. Journal of the ACM 50(5), 752–794 (2003)

4. Classen, K., Roorda, J.-W.: A new SAT-based algorithm for symbolic trajectory evaluation.
In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, Springer, Heidelberg
(2005)

5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
CACM 5(7) (July 1962)

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7(3), 201–
215 (1960)

7. Fujiwara, H., Shimono, T.: On the acceleration of test generation algorithms. IEEE Trans.
Computers 32(12), 1137–1144 (1983)

8. Ganai, M.K., Ashar, P., Gupta, A., Zhang, L., Malik, S.: Combining Strengths of Circuit-
Based and CNF-Based Algorithms for a High-Performance SAT Solver. In: DAC (2002)

9. Grumberg, O., Schuster, A., Yadgar, A.: Hybrid BDD and all-sat method for model checking
and other application. Technical report, Technion, CS-2007-08 (2007)

10. Jin, H., Awedh, M., Somenzi, F.: CirCUs: A Satisfiability Solver Geared towards Bounded
Model Checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, Springer,
Heidelberg (2004)

3-Valued Circuit SAT for STE with Automatic Refinement 473

11. Lu, F., Wang, L.C., Cheng, K.-T., Huang, R.C.Y: A Circuit SAT Solver With Signal Correla-
tion Guided Learning. In: DATE 2003, p. 10892. IEEE Computer Society Press, Washington
(2003)

12. Marques-Silva, J.P., Sakallah, K.A.: Conflict analysis in search algorithms for propositional
satisfiability. In: IEEE ICTAI (1996)

13. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: DAC 2001. 39th Design Aotomation Conference (2001)

14. Pandey, M., Raimi, R., Bryant, R.E., Abadir, M.S.: Formal verification of content addressable
memories using symbolic trajectory evaluation. dac, 00, 167 (1997)

15. Roorda, J.-W.: Symbolic trajectory evaluation using a satisfiability solver. Licentiate Thesis
(2005)

16. Roorda, J.-W., Claessen, K.: Sat-based assistance in abstraction refinement for symbolic tra-
jectory evaluation. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 175–189.
Springer, Heidelberg (2006)

17. Schubert, T.: High level formal verification of next-generation microprocessors. In: DAC
(2003)

18. Seger, C.-J.H., Bryant, R.E.: Formal verification by symbolic evaluation of partially-ordered
trajectories. Formal Methods in System Design 6(2) (1995)

19. Seger, C.-J.H., Jones, R.B., O’Leary, J.W., Melham, T.F., Aagaard, M., Barrett, C., Syme,
D.: An industrially effective environment for formal hardware verification. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems 24(9) (2005)

20. Tzoref, R., Grumberg, O.: Automatic refinement and vacuity detection for symbolic trajec-
tory evaluation. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 190–204.
Springer, Heidelberg (2006)

21. Yang, J., Gil, R., Singerman, E.: satGSTE: Combining the abstraction of GSTE with the
capacity of a SAT solver. In: DCC (2004)

22. Yang, J., Goel, A.: GSTE through a case study. In: ICCAD (2002)
23. Zhang, H.: SATO: An efficient propositional prover. In: McCune, W. (ed.) CADE 1997.

LNCS, vol. 1249, Springer, Heidelberg (1997)
24. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in

boolean satisfiability solver. In: ICCAD (2001)

Bounded Synthesis�

Sven Schewe and Bernd Finkbeiner

Universität des Saarlandes, 66123 Saarbrücken, Germany

Abstract. The bounded synthesis problem is to construct an implemen-
tation that satisfies a given temporal specification and a given bound
on the number of states. We present a solution to the bounded syn-
thesis problem for linear-time temporal logic (LTL), based on a novel
emptiness-preserving translation from LTL to safety tree automata. For
distributed architectures, where standard unbounded synthesis is in gen-
eral undecidable, we show that bounded synthesis can be reduced to
a SAT problem. As a result, we obtain an effective algorithm for the
bounded synthesis from LTL specifications in arbitrary architectures.
By iteratively increasing the bound, our construction can also be used
as a semi-decision procedure for the unbounded synthesis problem.

1 Introduction

Verification and synthesis both provide a formal guarantee that a system is im-
plemented correctly. The difference between the two approaches is that while
verification proves that a given implementation satisfies the specification, syn-
thesis automatically derives one such implementation. Synthesis thus has the
obvious advantage that it completely eliminates the need for manually writing
and debugging code.

Unfortunately, the synthesis problem is undecidable even for simple dis-
tributed architectures. Consider, for example, the typical 2-process arbiter ar-
chitecture shown in Figure 1b: the environment (env) sends requests (r1, r2) for
access to a critical resource to two processes p1 and p2, which react by sending
out grants (g1, g2). As shown by Pnueli and Rosner [1], the synthesis problem is
undecidable for this architecture, because both p1 and p2 have access to infor-
mation (r1 and r2, respectively) that is hidden from the other process. For sys-
tem architectures without such information forks [2], like pipeline architectures
(Figure 1a shows a pipeline of length 3), the synthesis problem is decidable, but
has nonelementary complexity.

The high complexity of synthesis is explained by the fact that, as pointed out
by Rosner [3], a small LTL formula of size n which refers to m different pro-
cesses already suffices to specify a system that cannot be implemented with less
than m-exp(n) states. From a practical point of view, however, it is questionable

� This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 474–488, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bounded Synthesis 475

env p1 p2 p3
a b c d

(a)

env

p1 p2

r1 r2

g1

g2

(b)

env

p1 p2

r1, r2 r1, r2

g1

g2

(c)

env p1
r1, r2 g1, g2

(d)

Fig. 1. Distributed architectures: (a) pipeline architecture, (b) 2-process arbiter archi-
tecture, (c) 2-process arbiter architecture with complete information, (d) single-process
architecture

whether such huge implementations should be considered by the synthesis algo-
rithm, because they are likely to violate other design considerations (such as the
available memory). In this paper, we therefore study a variation of the synthesis
problem, which we call the bounded synthesis problem, where an upper limit on
the size of the implementation is set in advance. The bound may either be an
explicit design constraint or the result of iteratively increasing the limit in the
search for a solution of minimal size.

Our starting point is the representation of the LTL specification as a uni-
versal co-Büchi tree automaton. We show that the acceptance of a finite-state
transition system by a universal co-Büchi automaton can be characterized by
the existence of an annotation that maps each pair of a state of the automa-
ton and a state of the transition system to a natural number. The advantage
of this characterization is that the acceptance condition can be simplified to
a simple safety condition: we show that the universal co-Büchi automaton can
be translated to an (emptiness-equivalent) deterministic safety automaton that
implicitly builds a valid annotation. The emptiness of the safety automaton can
then be determined in a simple two-player game, where player accept represents
the system implementation and wins the game if the specification is satisfied;
the opponent, player reject, wins the game if the specification is violated.

If the system architecture consists of a single process, as in Figure 1d, then a
victory for player accept means that the specification is realizable. Any winning
strategy for player accept immediately defines a correct implementation for the
process. If the architecture consists of more than one process, as in the arbiter
architecture of Figure 1b, then a victory for player accept only means that the
specification can be implemented in the slightly modified architecture (shown
for the arbiter example in Figure 1c), where all processes have the same in-
formation. An implementation for the architecture with incompletely informed
processes must additionally satisfy a consistency requirement: if a process can-
not distinguish between two different computation paths, it must react in the
same way.

Inspired by the success of bounded model checking [4,5], we show that
the bounded synthesis problem for distributed architectures can be effectively

476 S. Schewe and B. Finkbeiner

reduced to a SAT problem. We define a constraint system that describes the
existence of a valid annotation and, additionally, ensures that the resulting
implementation is consistent with the limited information available to the dis-
tributed processes. For this purpose, we introduce a mapping that decomposes
the states of the safety game into the states of the individual processes: because
the reaction of a process only depends on its local state, the process is forced
to give the same reaction whenever it cannot distinguish between two paths
in the safety game. The satisfiability of the constraint system can be checked
using standard SAT solvers [6,7]. As a result, we obtain an effective algorithm
for the bounded synthesis from LTL specifications in arbitrary distributed
architectures. By iteratively increasing the bound, our construction can also
be used as a semi-decision procedure for the standard (unbounded) synthesis
problem.

Related work. The synthesis of distributed reactive systems was pioneered
by Pnueli and Rosner [1], who showed that the synthesis problem is undecid-
able in general and has nonelementary complexity for pipeline architectures. An
automata-based synthesis algorithm for pipeline and ring architectures is due
to Kupferman and Vardi [8]; Walukiewicz and Mohalik provided an alternative
game-based construction [9]. We recently showed that the synthesis problem is
decidable if and only if the architecture does not contain an information fork [2].
Madhusudan and Thiagarajan [10] consider the special case of local specifications
(each property refers only to the variables of a single process). Among the class of
acyclic architectures (without broadcast) this synthesis problem is decidable for
exactly the doubly-flanked pipelines. Castellani, Mukund and Thiagarajan [11]
consider transition systems as the specification language: an implementation is
correct if the product of the processes is bisimilar to the specification. In this
case, the synthesis problem is decidable independently of the architecture.

Our translation of LTL formulas to tree automata is based on Kupferman
and Vardi’s Safraless decision procedures [12]. We use their idea of avoiding
Safra’s determinization using universal co-Büchi automata. Our construction
improves on [12] in that it produces deterministic safety automata instead of
nondeterministic Büchi automata.

2 Preliminaries

We consider the synthesis of distributed reactive systems that are specified in
linear-time temporal logic (LTL). Given an architecture A and an LTL formula ϕ,
we decide whether there is an implementation for each system process in A, such
that the composition of the implementations satisfies ϕ.

Architectures. An architecture A is a tuple (P, env , V, I, O), where P is a set
of processes consisting of a designated environment process env ∈ P and a set
of system processes P− = P � {env}. V is a set of boolean system variables
(which also serve as atomic propositions), I = {Ip ⊆ V | p ∈ P−} assigns a set
Ip of input variables to each system process p ∈ P−, and O = {Op ⊆ V | p ∈ P}

Bounded Synthesis 477

assigns a set Op of output variables to each process p ∈ P such that
⋃

p∈P Op =
V . While the same variable v ∈ V may occur in multiple sets in I to indicate
broadcasting, the sets in O are assumed to be pairwise disjoint. If Oenv ⊆ Ip for
every system process p ∈ P−, we say the architecture is fully informed. Since
every process in a fully informed architecture has enough information to simulate
every other process, we can assume w.l.o.g. that a fully informed architecture
contains only a single system process p, and that the input variables of p are the
output variables of the environment process Ip = Oenv .

Implementations. We represent implementations as labeled transition sys-
tems. For a given finite set Υ of directions and a finite set Σ of labels, a Σ-labeled
Υ -transition system is a tuple T = (T, t0, τ, o), consisting of a set of states T , an
initial state t0 ∈ T , a transition function τ : T × Υ → T , and a labeling function
o : T → Σ. T is a finite-state transition system iff T is finite.

Each system process p ∈ P− is implemented as a 2Op-labeled 2Ip-transition
system Tp = (Tp, tp, τp, op). The specification ϕ refers to the composition of
the system processes, which is the 2V -labeled 2Oenv -transition system TA =
(T, t0, τ, o), defined as follows: the set T =

⊗
p∈P − Tp × 2Oenv of states is formed

by the product of the states of the process transition systems and the possible
values of the output variables of the environment. The initial state t0 is formed
by the initial states tp of the process transition systems and a designated root
direction ⊆ Oenv . The transition function updates, for each system process p,
the Tp part of the state in accordance with the transition function τp, using (the
projection of) o as input, and updates the 2Oenv part of the state with the output
of the environment process. The labeling function o labels each state with the
union of its 2Oenv part with the labels of its Tp parts.

With respect to the system processes, the combined transition system thus
simulates the behavior of all process transition systems; with respect to the en-
vironment process, it is input-preserving, i.e., in every state, the label accurately
reflects the input received from the environment.

Synthesis. A specification ϕ is (finite-state) realizable in an architecture A =
(P, V, I, O) iff there exists a family of (finite-state) implementations {Tp | p ∈
P−} of the system processes, such that their composition TA satisfies ϕ.

Bounded Synthesis. We introduce bounds on the size of the process im-
plementations and on the size of the composition. Given an architecture A =
(P, V, I, O), a specification ϕ is bounded realizable with respect to a family of
bounds {bp ∈ N | p ∈ P−} on the size of the system processes and a bound
bA ∈ N on the size of the composition TA, if there exists a family of implemen-
tations {Tp | p ∈ P−}, where, for each process p ∈ P , Tp has at most bp states,
such that the composition TA satisfies ϕ and has at most bA states.

Alternating Automata. An alternating parity tree automaton is a tuple
A = (Σ, Υ, Q, q0, δ, α), where Σ denotes a finite set of labels, Υ denotes a finite
set of directions, Q denotes a finite set of states, q0 ∈ Q denotes a designated

478 S. Schewe and B. Finkbeiner

initial state, δ denotes a transition function, and α : Q → C ⊂ N is a coloring
function. The transition function δ : Q × Σ → B

+(Q × Υ) maps a state and an
input letter to a positive boolean combination of states and directions. In our
setting, the automaton runs on Σ-labeled Υ -transition systems. The acceptance
mechanism is defined in terms of run graphs.

A run graph of an automaton A = (Σ, Υ, Q, q0, δ, α) on a Σ-labeled Υ -
transition system T = (T, t0, τ, o) is a minimal directed graph G = (G, E) that
satisfies the following constraints:

– The vertices G ⊆ Q × T form a subset of the product of Q and T .
– The pair of initial states (q0, t0) ∈ G is a vertex of G.
– For each vertex (q, t) ∈ G, the set {(q′, υ) ∈ Q×Υ | ((q, t), (q′, τ(t, υ))) ∈ E}

satisfies δ(q, o(t)).

A run graph is accepting if every infinite path g0g1g2 . . . ∈ Gω in the run graph
satisfies the parity condition, which requires that the highest number occurring
infinitely often in the sequence α0α1α2 ∈ N with αi = α(qi) and gi = (qi, ti) is
even. A transition system is accepted if it has an accepting run graph.

The set of transition systems accepted by an automaton A is called its lan-
guage L(A). An automaton is empty iff its language is empty.

The acceptance of a transition system can also be viewed as the outcome
of a game, where player accept chooses, for a pair (q, t) ∈ Q × T , a set of
atoms satisfying δ(q, o(t)), and player reject chooses one of these atoms, which
is executed. The transition system is accepted iff player accept has a strategy
enforcing a path that fulfills the parity condition.

A nondeterministic automaton is a special alternating automaton, where the
image of δ consists only of such formulas that, when rewritten in disjunctive
normal form, contain exactly one element of Q × {υ} for all υ ∈ Υ in every
disjunct. The emptiness of a nondeterministic automaton can be checked with
a variation of the acceptance game called the emptiness game, where, in each
step, player accept additionally chooses the label from Σ. A nondeterministic
automaton is empty iff the emptiness game is won by player reject.

An alternating automaton is called universal if, for all states q and input
letters σ, δ(q, σ) is a conjunction. A universal and nondeterministic automaton
is called deterministic.

A parity automaton is called a Büchi automaton if the image of α is contained
in {1, 2}, a co-Büchi automaton iff the image of α is contained in {0, 1}, and
a safety automaton if the image of α is {0}. Büchi and co-Büchi automata are
denoted by (Σ, Υ, Q, q0, δ, F), where F ⊆ Q denotes the states with the higher
color. Safety automata are denoted by (Σ, Υ, Q, q0, δ). A run graph of a Büchi
automaton is thus accepting if, on every infinite path, there are infinitely many
visits to F ; a run graph of a co-Büchi automaton is accepting if, on every path,
there are only finitely many visits to F . For safety automata, every run graph is
accepting.

Bounded Synthesis 479

3 Annotated Transition Systems

In this section, we introduce an annotation function for transition systems. The
annotation function has the useful property that a finite-state transition system
satisfies the specification if and only if it has a valid annotation.

Our starting point is a representation of the specification as a universal co-
Büchi automaton. Since the automaton is universal, every transition system in
the language of the automaton has a unique run graph. The annotation assigns
to each pair (q, t) of a state q of the automaton and a state t of the transition
system either a natural number or a blank sign. The natural number indicates
the maximal number of rejecting states that occur on some path to (q, t) in the
run graph.

We show that the finite-state transition systems accepted by the automaton
are exactly those transition systems for which there is an annotation that assigns
only natural numbers to the vertices of the run graph. We call such annotations
valid.

3.1 Universal Co-Büchi Automata

We translate a given LTL specification ϕ into an equivalent universal co-Büchi
automaton Uϕ. This can be done with a single exponential blow-up by first
negating ϕ, then translating ¬ϕ into an equivalent nondeterministic Büchi word
automaton, and then constructing a universal co-Büchi automaton that simu-
lates the Büchi automaton along each path: if each path is co-Büchi accepting
(i.e., it violates the Büchi condition), then the specification ϕ must hold along
every path.

Theorem 1. [12] Given an LTL formula ϕ, we can construct a universal co-
Büchi automaton Uϕ with 2O(|ϕ|) states that accepts a transition system T iff T
satisfies ϕ. ��

3.2 Bounded Annotations

An annotation of a transition system T = (T, t0, τ, o) on a universal co-Büchi
automaton U = (Σ, Υ, Q, δ, F) is a function λ : Q × T → { } ∪ N. We call an
annotation c-bounded if its mapping is contained in { }∪{0, . . . , c}, and bounded
if it is c-bounded for some c ∈ N. An annotation is valid if it satisfies the following
conditions:

– the pair (q0, t0) of initial states is annotated with a natural number
(λ(q0, t0) 	=), and

– if a pair (q, t) is annotated with a natural number (λ(q, t) = n 	=) and
(q′, υ) ∈ δ(q, o(t)) is an atom of the conjunction δ(q, o(t)), then (q′, τ(t, υ))
is annotated with a greater number, which needs to be strictly greater if
q′ ∈ F is rejecting. That is, λ(q′, τ(t, υ)) �q′ n where �q′ is > for q′ ∈ F and
≥ otherwise.

480 S. Schewe and B. Finkbeiner

Theorem 2. A finite-state Σ-labeled Υ -transition system T = (T, t0, τ, o) is
accepted by a universal co-Büchi automaton U = (Σ, Υ, Q, δ, F) iff it has a valid
(|T | · |F |)-bounded annotation.

Proof. Since U is universal, U has a unique run graph G = (G, E) on T . Since
T and U are finite, G is finite, too.

If G contains a lasso with a rejecting state in its loop, i.e., a path
(q0, t0)(q1, t1) . . . (qn, tn) = (q′0, t

′
0) and a path (q′0, t

′
0)(q

′
1, t

′
1) . . . (q′m, t′m) =

(q′0, t′0) such that q′i is rejecting for some i ∈ {1, . . . , m}, then, by induction,
any valid annotation λ satisfies λ(qj , tj) ∈ N for all j ∈ {0, . . . , n}, λ(q′j , t

′
j) ∈ N

for all j ∈ {0, . . . , m}, λ(q′j−1, t
′
j−1) ≤ λ(q′j , t

′
j) for all j ∈ {1, . . . , m}, and

λ(q′i−1, t
′
i−1) < λ(q′i, t

′
i). �

If, on the other hand, G does not contain a lasso with a rejecting state in its
loop, we can easily infer a valid (|T | · |F |)-bounded annotation by assigning to
each vertex (q, t) ∈ G of the run graph the highest number of rejecting states
occurring on some path (q0, t0)(q1, t1) . . . (q, t), and by assigning to every pair
of states (q, t) /∈ G not in G. ��

3.3 Estimating the Bound

Since the distributed synthesis problem is undecidable, it is in general not pos-
sible to estimate a sufficient bound c that guarantees that a transition system
with a valid c-bounded annotation exists if the specification is realizable.

For fully informed architectures, however, such an estimate is possible. If a
universal co-Büchi automaton is non-empty, then the size of a smallest accepted
transition system can be estimated by the size of an equivalent deterministic
parity automaton.

Theorem 3. [13] Given a universal co-Büchi automaton U with n states, we
can construct an equivalent deterministic parity automaton P with n2n+2 states
and 2n colors. ��

A solution to the synthesis problem is required to be input-preserving, i.e., in
every state, the label must accurately reflect the input. Input preservation can
be checked with a deterministic safety automaton DI , whose states are formed
by the possible inputs I = 2Oenv . In every state i ∈ I, DI checks if the label
agrees with the input i, and sends the successor state i′ ∈ I into the direction i′.
If U accepts an input-preserving transition system, then we can construct a finite
input-preserving transition system, which is accepted by U , by evaluating the
emptiness game of the product automaton of P and DI . The minimal size of
such an input-preserving transition system can be estimated by the size of P
and I.

Corollary 1. If a universal co-Büchi automaton U with n states and m reject-
ing states accepts an input-preserving transition system, then U accepts a finite
input-preserving transition system T with n2n+2 · |I| states, where I = 2Oenv .
T has a valid m · n2n+2 · |I|-bounded annotation for U . ��

Bounded Synthesis 481

4 Automata-Theoretic Bounded Synthesis

Using the annotation function, we can reduce the synthesis problem for fully
informed architectures to a simple emptiness check on safety automata. The
following theorem shows that there is a deterministic safety automaton that, for
a given parameter value c, accepts a transition system iff it has a valid c-bounded
annotation. This leads to the following automata-theoretic synthesis procedure
for fully informed architectures:

Given a specification, represented as a universal co-Büchi automaton U =
(Σ, Υ, Q, q0, δ, F), we construct a sequence of safety automata that check for
valid bounded annotations up to the bound c = |F | · b, where b is either the
predefined bound bA on the size of the transition system, or the sufficient bound
n2n+2·|I| from Corollary 1. If the intersection of DI with one of these automata is
non-empty, then the specification is realizable; if the intersection with the safety
automaton for the largest parameter value c is empty, then the specification is
unrealizable. The emptiness of the automata can be checked by solving their
emptiness games.

Theorem 4. Given a universal co-Büchi automaton U = (Σ, Υ, Q, q0, δ, F), we
can construct a family of deterministic safety automata {Dc = (Σ, Υ, Sc, s0, δc) |
c ∈ N} such that Dc accepts a transition system iff it has a valid c-bounded
annotation.

Construction: We choose the functions from Q to the union of N and a
blank sign (S = Q → { } ∪ N) as the state space of an abstract deterministic
safety automaton D = (Σ, Υ, S, s0, δ∞). Each state of D indicates how many
times a rejecting state may have been visited in some trace of the run graph
that passes the current position in the transition system. The initial state of D
maps the initial state of U to 0 (s0(q0) = 0) and all other states of U to blank
(∀q ∈ Q � {q0}. s0(q) =).

Let δ+∞(s, σ) = {((q′, s(q′) + f(q′)), υ) | q, q′ ∈ Q, s(q) 	= , and (q′, υ) ∈
δ(q, σ)}, where f(q) = 1 ∀q ∈ F , and f(q) = 0 ∀q /∈ F , be the function that
collects the transitions of U . The transition function δ∞ is defined as follows:
δ∞(s, σ) =

∧
υ∈Υ (sυ, υ) with sυ(q) = max{n ∈ N | ((q, n), υ ∈ δ+∞(s, σ)} (where

max{∅} =). Dc is formed by restricting the states of D to Sc = Q → { } ∪
{0, . . . , c}.

Proof. Let λ be a valid c-bounded annotation of T = (T, t0, τ, o) for U , and let λt

denote the function with λt(q) = λ(q, t). For two functions s, s′ : Q → { } ∪ N,
we write s ≤ s′ if s(q) ≤ s′(q) holds for all q ∈ Q, where is the minimal
element (< n for all n ∈ N). We show by induction that Dc has a run graph
G = (G, E) for T , such that s ≤ λt holds true for all vertices (s, t) ∈ G of
the run graph. For the induction basis, s0 ≤ λt0 holds by definition. For the
induction step, let (s, t) ∈ G be a vertex of G. By induction hypothesis, we
have s ≤ λt. With the definition of δ+

∞ and the validity of λ, we can conclude
that ((q′, n), υ) ∈ δ+∞(s, o(t)) implies n ≤ λτ(t,υ)(q′), which immediately implies
s′ ≤ λt′ for all successors (s′, t′) of (s, t) in G.

482 S. Schewe and B. Finkbeiner

1

2 3⊥

∗

g1 g2

r1 r2g1g2

Fig. 2. Specification of a simple arbiter, represented as a universal co-Büchi automaton.
The states depicted as double circles (2 and 3) are the rejecting states in F .

Let now G = (G, E) be an accepting run graph of Dc for T , and let
λ(q, t) = max{s(q) | (s, t) ∈ G}. Then λ is obviously a c-bounded annota-
tion. For the validity of λ, λ(q0, t0) ∈ N holds true since s0(q0) ∈ N is a natural
number and (s0, t0) ∈ G is a vertex of G. Also, if a pair (q, t) is annotated
with a natural number λ(q, t) = n 	= , then there is a vertex (s, t) ∈ G with
s(q) = n. If now (q′, υ) ∈ δ(q, o(t)) is an atom of the conjunction δ(q, o(t)), then
((q′, n + f(q′)), υ) ∈ δ+

∞(s, o(t)) holds true, and the υ-successor (s′, τ(t, υ)) of
(s, t) satisfies s′(q′)�q′ n. The validity of λ now follows with λ(q′, τ(t, υ) ≥ s′(q′).

��

Remark 1. Since U may accept transition systems where the number of rejecting
states occurring on a path is unbounded, the union of the languages of all Dc

is, in general, a strict subset of the language of U . Every finite-state transition
system in the language of U , however, is accepted by almost all Dc.

Example. Consider the specification of a simple arbiter, depicted as a universal
co-Büchi automaton in Figure 2. The specification requires that globally (1) at
most one process has a grant and (2) each request is eventually followed by a
grant. The emptiness game for D1 intersected with DI is depicted in Figure 3.

5 Constraint-Based Bounded Synthesis

We now develop an alternative synthesis method for fully informed architectures
that uses a SAT solver to determine an input-preserving transition system with
a valid annotation. The constraint system defined in this section will provide
the foundation for the synthesis method for general distributed architectures in
Section 6.

We represent the (unknown) transition system and its annotation by
uninterpreted functions. The existence of a valid annotation is thus reduced
to the satisfiability of a constraint system in first-order logic modulo finite
integer arithmetic. The advantage of this representation is that the size of the
constraint system is small (bilinear in the size of U and the number of directions).

Bounded Synthesis 483

(0, ,)
r1r2

(0, 1,)
r1r2

(0, , 1)
r1r2

(0, 1, 1)
r1r2

(0, ,)
r1r2

(0, 1,)
r1r2

(0, , 1)
r1r2

(0, 1, 1)
r1r2

(0, ,)
r1r2

(0, 1,)
r1r2

(0, , 1)
r1r2

(0, 1, 1)
r1r2

(0, ,)
r1r2

(0, 1,)
r1r2

(0, , 1)
r1r2

(0, 1, 1)
r1r2

(0, ,)

(0, 1,)

(0, , 1)

(0, 1, 1)

g1g2,
g1g2,
g1g2

g1g2,
g1g2

g
1

g
2

g
1g

2

g1g2,
g1g2

g1g2

g1g2

g1g2

g1g2

g1g2

g1
g2

g1g2

g1g2

g1g2

g
1
g
2

g1g2

(0, ,)

(0, ,)
r1r2

(0, , 1)

Fig. 3. Example of a safety game for synthesis in a fully informed architecture. The
figure shows the emptiness game for the intersection of D1 and DI in the arbiter
example (Figure 2). Circles denote game positions for player accept, rectangles denote
game positions for player reject. Game positions that are not completely expanded
(i.e., that have more successors if the parameter is increased) are dashed. The starting
position specifies r1r2 as the (arbitrarily chosen) root direction. Player accept wins the
game by avoiding the move to (0, 1, 1).

484 S. Schewe and B. Finkbeiner

Furthermore, the additional constraints needed for distributed synthesis, which
will be defined in Section 6, have a compact representation as well (logarithmic
in the number of directions of the individual processes).

The constraint system specifies the existence of a finite input-preserving 2V -
labeled 2Oenv -transition system T = (T, t0, τ, o) that is accepted by the universal
co-Büchi automaton Uϕ = (Σ, Υ, Q, q0, δ, F) and has a valid annotation λ.

To encode the transition function τ , we introduce a unary function symbol τυ

for every output υ ⊆ Oenv of the environment. Intuitively, τυ maps a state t of
the transition system T to its υ-successor τυ(t) = τ(t, υ).

To encode the labeling function o, we introduce a unary predicate symbol a
for every variable a ∈ V . Intuitively, a maps a state t of the transition system T
to true iff it is part of the label o(t) � a of T in t.

To encode the annotation, we introduce, for each state q of the universal co-
Büchi automaton U , a unary predicate symbol λB

q and a unary function symbol
λ#

q . Intuitively, λB
q maps a state t of the transition system T to true iff λ(q, t) is

a natural number, and λ#
q maps a state t of the transition system T to λ(q, t) if

λ(q, t) is a natural number and is unconstrained if λ(q, t) = .
We can now formalize that the annotation of the transition system is valid by

the following first order constraints (modulo finite integer arithmetic):
∀t. λB

q (t) ∧ (q′, υ) ∈ δ(q, −→a (t)) → λB
q′(τυ(t)) ∧ λ#

q′ (τυ(t)) �q λ#
q (t), where −→a (t)

represents the label o(t), (q′, υ) ∈ δ(q, −→a (t)) represents the corresponding propo-
sitional formula, and �q stands for �q ≡> if q ∈ F and �q ≡≥ otherwise. Addi-
tionally, we require λB

q0
(0), i.e., we require the pair of initial states to be labeled

by a natural number (w.l.o.g. t0 = 0).
To guarantee that the resulting transition system is input-preserving, we add,

for each a ∈ Oenv and each υ ⊆ Oenv , a constraint ∀t. a(τυ(t)) if a ∈ υ, and a
constraint ∀t. ¬a(τυ(t)) if a /∈ υ. Additionally, we require that the initial state is
labeled with the root direction.

As an obvious implication of Theorem 2, this constraint system is satisfiable
if and only if U accepts a finite input-preserving transition system.

Theorem 5. For fully informed architectures, the constraint system inferred
from the specification, represented as the universal co-Büchi automaton U , is
satisfiable modulo finite integer arithmetic iff the specification is finite-state
realizable. ��

Lemma 1. For a specification represented as a universal co-Büchi automaton
U = (2V , 2Oenv , Q, q0, δ, F), the inferred constraint system has size O(|δ| · |V | +
|Oenv | · |2Oenv |). ��

The main parameter of the constraint system is the bound bA on the size of the
transition system TA. If we use bA to unravel the constraint system completely
(i.e., if we resolve the universal quantification explicitly), the size of the resulting
constraint system is linear in bA.

Bounded Synthesis 485

1. ∀t. r1(τr1r2(t)) ∧ r2(τr1r2(t)) ∧ r1(τr1r2(t)) ∧ ¬r2(τr1r2(t))
∧ ¬r1(τr1r2(t)) ∧ r2(τr1r2(t)) ∧ ¬r1(τr1r2(t)) ∧ ¬r2(τr1r2(t))

2. λB
1(0) ∧ ¬r1(0) ∧ ¬r2(0)

3. ∀t. λB
1(t) → λB

1(τr1r2(t)) ∧ λ#
1 (τr1r2(t)) ≥ λ#

1 (t)
∧ λB

1(τr1r2(t)) ∧ λ#
1 (τr1r2(t)) ≥ λ#

1 (t)
∧ λB

1(τr1r2(t)) ∧ λ#
1 (τr1r2(t)) ≥ λ#

1 (t)
∧ λB

1(τr1r2(t)) ∧ λ#
1 (τr1r2(t)) ≥ λ#

1 (t)
4. ∀t. λB

1(t) → ¬g1(t) ∨ ¬g2(t)
5. ∀t. λB

1(t) ∧ r1(t) → λB
2(τr1r2(t)) ∧ λ#

2 (τr1r2(t)) > λ#
1 (t)

∧ λB
2(τr1r2(t)) ∧ λ#

2 (τr1r2(t)) > λ#
1 (t)

∧ λB
2(τr1r2(t)) ∧ λ#

2 (τr1r2(t)) > λ#
1 (t)

∧ λB
2(τr1r2(t)) ∧ λ#

2 (τr1r2(t)) > λ#
1 (t)

6. ∀t. λB
1(t) ∧ r2(t) → λB

3(τr1r2(t)) ∧ λ#
3 (τr1r2(t)) > λ#

1 (t)
∧ λB

3(τr1r2(t)) ∧ λ#
3 (τr1r2(t)) > λ#

1 (t)
∧ λB

3(τr1r2(t)) ∧ λ#
3 (τr1r2(t)) > λ#

1 (t)
∧ λB

3(τr1r2(t)) ∧ λ#
3 (τr1r2(t)) > λ#

1 (t)
7. ∀t. λB

2(t) ∧ ¬g1(t) → λB
2(τr1r2(t)) ∧ λ#

2 (τr1r2(t)) > λ#
2 (t)

∧ λB
2(τr1r2(t)) ∧ λ#

2 (τr1r2(t)) > λ#
2 (t)

∧ λB
2(τr1r2(t)) ∧ λ#

2 (τr1r2(t)) > λ#
2 (t)

∧ λB
2(τr1r2(t)) ∧ λ#

2 (τr1r2(t)) > λ#
2 (t)

8. ∀t. λB
3(t) ∧ ¬g2(t) → λB

3(τr1r2(t)) ∧ λ#
3 (τr1r2(t)) > λ#

3 (t)
∧ λB

3(τr1r2(t)) ∧ λ#
3 (τr1r2(t)) > λ#

3 (t)
∧ λB

3(τr1r2(t)) ∧ λ#
3 (τr1r2(t)) > λ#

3 (t)
∧ λB

3(τr1r2(t)) ∧ λ#
3 (τr1r2(t)) > λ#

3 (t)

Fig. 4. Example of a constraint system for synthesis in a fully informed architecture.
The figure shows the constraint system for the arbiter example (Figure 2). The arbiter
is to be implemented in the fully informed architecture shown in Figure 1d.

Theorem 6. For a specification, represented as a universal co-Büchi automaton
U = (2V , 2Oenv , Q, q0, δ, F), and a given bound bA on the size of the transition sys-
tem TA, the unraveled constraint system has size O(bA ·(|δ|·|V |+ |Oenv |·|2Oenv |)).
It is satisfiable if and only if the specification is bounded realizable in the fully
informed architecture ({env , p}, V, {Ip = Oenv}, {Oenv , Op = V � Oenv}) with
bound bA. ��

Example. Figure 4 shows the constraint system, resulting from the specifica-
tion of an arbiter by the universal co-Büchi automaton depicted in Figure 2,
implemented on the single process architecture of Figure 1d (or, likewise, on the
distributed but fully informed architecture of Figure 1c).

The first constraint represents the requirement that the resulting transition
system must be input-preserving, the second requirement represents the initial-
ization (where ¬r1(0) ∧ ¬r2(0) represents an arbitrarily chosen root direction),
and the requirements 3 through 8 each encode one transition of the universal
automaton of Figure 2. Following the notation of Figure 2, r1 and r2 represent
the requests and g1 and g2 represent the grants.

486 S. Schewe and B. Finkbeiner

6 Distributed Synthesis

To solve the distributed synthesis problem for a given architecture A =
(P, V, I, O), we need to find a family of (finite-state) transition systems {Tp =
(Tp, t

p
0, τp, op) | p ∈ P−} such that their composition to TA satisfies the specifi-

cation. The constraint system developed in the previous section can be adapted
to distributed synthesis by explicitly decomposing the global state space of the
combined transition system TA: we introduce a unary function symbol dp for
each process p ∈ P−, which, intuitively, maps a state t ∈ TA of the product
state space to its p-component tp ∈ Tp.

The value of an output variable a ∈ Op may only depend on the state of
the process transition system Tp. We therefore replace every occurrence of a(t)
in the constraint system of the previous section by a(dp(t)). Additionally, we
require that every process p acts consistently on any two histories that it cannot
distinguish. The update of the state of Tp may thus only depend on the state of
Tp and the input visible to p. This is formalized by the following constraints:

1. ∀t. dp(τυ(t)) = dp(τυ′(t)) for all decisions υ, υ′ ⊆ Oenv of the environment
that are indistinguishable for p (i.e., υ ∩ Ip = υ′ ∩ Ip).

2. ∀t, u. dp(t) = dp(u) ∧
∧

a∈Ip�Oenv

(
a(dpa (t)) ↔ a(dpa(t))

)
→ dp(τυ(t)) =

dp(τυ(u)) for all decisions υ ⊆ Oenv ∩ Ip (picking one representative for each
class of environment decisions that p can distinguish). pa ∈ P− denotes the
process controlling the output variable a ∈ Opa .

Since the combined transition system TA is finite-state, the satisfiability of this
constraint system modulo finite integer arithmetic is equivalent to the distributed
synthesis problem.

Theorem 7. The constraint system inferred from the specification, represented
as the universal co-Büchi automaton U , and the architecture A is satisfiable
modulo finite integer arithmetic iff the specification is finite-state realizable in
the architecture A. ��

Lemma 2. For a specification, represented as a universal co-Büchi automaton
U = (2V , 2Oenv , Q, q0, δ, F), and an architecture A, the inferred constraint system
for distributed synthesis has size O(|δ| · |V | + |Oenv | · |2Oenv | +

∑
p∈P −

|Ip � Oenv |).

��

The main parameters of the constraint system for distributed synthesis are the
bound bA on the size of the transition system TA and the family {bp | p ∈ P−}
of bounds on the process transition systems {Tp | p ∈ P−}. If we use these
parameters to unravel the constraint system completely (i.e., if we resolve the
universal quantification explicitly), the resulting transition system is linear in
bA, and quadratic in bp.

Theorem 8. For a given specification, represented as a universal co-Büchi au-
tomaton U = (2V , 2Oenv , Q, q0, δ, F), an architecture A = (P, V, I, O), a bound bA

Bounded Synthesis 487

4. ∀t. λB
1(t) → ¬g1(d1(t)) ∨ ¬g2(d2(t))

7. ∀t. λB
2(t) ∧ ¬g1(d1(t)) → λB

2(τr1r2(t)) ∧ λ#
2 (τr1r2(t)) > λ#

2 (t)
∧ λB

2(τr1r2(t)) ∧ λ#
2 (τr1r2(t)) > λ#

2 (t)
∧ λB

2(τr1r2(t)) ∧ λ#
2 (τr1r2(t)) > λ#

2 (t)
∧ λB

2(τr1r2(t)) ∧ λ#
2 (τr1r2(t)) > λ#

2 (t)
8. ∀t. λB

3(t) ∧ ¬g2(d2(t)) → λB
3(τr1r2(t)) ∧ λ#

3 (τr1r2(t)) > λ#
3 (t)

∧ λB
3(τr1r2(t)) ∧ λ#

3 (τr1r2(t)) > λ#
3 (t)

∧ λB
3(τr1r2(t)) ∧ λ#

3 (τr1r2(t)) > λ#
3 (t)

∧ λB
3(τr1r2(t)) ∧ λ#

3 (τr1r2(t)) > λ#
3 (t)

9. ∀t. d1(τr1r2(t)) = d1(τr1r2(t)) ∧ d1(τr1r2(t)) = d1(τr1r2(t))
∧ d2(τr1r2(t)) = d2(τr1r2(t)) ∧ d2(τr1r2(t)) = d2(τr1r2(t))

10. ∀t, u. d1(t) = d1(u) ∧
(
g2(d2(t)) ↔ g2(d2(u))

)
→ d1(τr1r2(t)) = d1(τr1r2(u))
∧ d1(τr1r2(t)) = d1(τr1r2(u))

11. ∀t, u. d2(t) = d2(u) ∧
(
g1(d1(t)) ↔ g1(d1(u))

)
→ d2(τr1r2(t)) = d2(τr1r2(u))
∧ d2(τr1r2(t)) = d2(τr1r2(u))

Fig. 5. Example of a constraint system for distributed synthesis. The figure shows
modifications and extensions to the constraint system from Figure 4 for the arbiter
example (Figure 2) in order to implement the arbiter in the distributed architecture
shown in Figure 1b.

on the size of the input-preserving transition system TA, and a family {bp | p ∈
P−} of bounds on the process transition systems {Tp | p ∈ P−}, the unraveled
constraint system has size O(bA ·(|δ| · |V |+ |Oenv | · |2Oenv |)+

∑
p∈P −

bp
2|Ip �Oenv |)).

It is satisfiable if and only if the specification is bounded realizable in A for the
bounds bA and {bp | p ∈ P−}. ��

Example. As an example for the reduction of the distributed synthesis problem
to SAT, we consider the problem of finding a distributed implementation to the
arbiter specified by the universal automaton of Figure 2 in the architecture of
Figure 1b. The functions d1 and d2 are the mappings to the processes p1 and
p2, which receive requests r1 and r2 and provide grants g1 and g2, respectively.
Figure 5 shows the resulting constraint system. Constraints 1–3, 5, and 6 are
the same as in the fully informed case (Figure 4). The consistency constraints
9–11 guarantee that processes p1 and p2 show the same behavior on all input
histories they cannot distinguish.

7 Conclusions

Despite its obvious advantages, synthesis has been less popular than verification.
While the complexity of verification is determined by the size of the implemen-
tation under analysis, standard synthesis algorithms [1,8,9,2] suffer from the
daunting complexity determined by the theoretical upper bound on the smallest
implementation, which, as shown by Rosner [3], increases by an extra exponent
with each additional process in the architecture.

488 S. Schewe and B. Finkbeiner

By introducing a bound on the size of the implementation, we have levelled
the playing field for synthesis and verification. We have shown that the bounded
synthesis problem can be solved effectively with a reduction to SAT.

Our solution for the bounded synthesis problem can be extended to the stan-
dard (unbounded) synthesis problem by iteratively increasing the bound. The
advantage of this approach is that the complexity is determined by the size of
the smallest actual implementation. Typically, this is far less than the exploding
upper bound.

References

1. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proc. FOCS, pp. 746–757. IEEE Computer Society Press, Los Alamitos (1990)

2. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. LICS, pp. 321–
330. IEEE Computer Society Press, Los Alamitos (2005)

3. Rosner, R.: Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Insti-
tute of Science, Rehovot, Israel (1992)

4. Copty, F., Fix, L., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi, M.: Benefits of
bounded model checking at an industrial setting. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, Springer, Heidelberg (2001)

5. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58, 118–149 (2003)

6. Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability
(SAT) Problem: A survey. In: Du, D.Z., Gu, J., Pardalos, P. (eds.) Satisfiability
Problem: Theory and applications. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pp. 19–152. American Mathematical Society (1997)

7. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: DAC 2001. Proceedings of the 38th Design
Automation Conference (2001)

8. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Proc. LICS, pp.
389–398. IEEE Computer Society Press, Los Alamitos (2001)

9. Walukiewicz, I., Mohalik, S.: Distributed games. In: Pandya, P.K., Radhakrishnan,
J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 338–351. Springer, Heidelberg (2003)

10. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local speci-
fications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 396–407. Springer, Heidelberg (2001)

11. Castellani, I., Mukund, M., Thiagarajan, P.S.: Synthesizing distributed transition
systems from global specification. In: Pandu Rangan, C., Raman, V., Ramanujam,
R. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp. 219–231. Springer, Heidelberg (1999)

12. Kupferman, O., Vardi, M.: Safraless decision procedures. In: Proc. 46th IEEE
Symp. on Foundations of Computer Science, Pittsburgh, pp. 531–540 (2005)

13. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: Proc. LICS, pp. 255–264. IEEE Computer Society Press, Los
Alamitos (2006)

Formal Modeling and Verification of

High-Availability Protocol for Network Security
Appliances

Moonzoo Kim

CS Dept. Korea Advanced Institute of Science and Technology
Daejeon, South Korea

moonzoo@cs.kaist.ac.kr

Abstract. One of the prerequisites for information society is secure and
reliable communication among computing systems. Accordingly, network
security appliances become key components of infrastructure, not only
as security guardians, but also as reliable network components. Thus,
for both fault tolerance and high network throughput, multiple security
appliances are often deployed together in a group and managed via High-
Availability (HA) protocol.

In this paper, we present our experience of formally modeling and ver-
ifying the HA protocol used for commercial network security appliances
through model checking. In addition, we applied a new debugging tech-
nique to detect multiple bugs without modifying/fixing the HA model
by analyzing all counter examples. Throughout these formal analysis, we
could effectively detect several design flaws.

1 Introduction

As more computing systems are deployed in wide functions of our society such
as mobile banking, tele-conferencing, and online stock trading systems, commu-
nication between remote systems becomes essential for ubiquitous computing
society. Internet provides such communication services for a large number of ap-
plications, but at the cost of security and reliability. Therefore, more and more
security appliances such as firewall, VPN, and IDS/IPS are deployed in small to
giant size networks. As security appliances become key components of network,
their reliability, not only as security guardians, but also as network components,
becomes a critical issue. For high-traffic networks, it is convention to deploy
multiple security appliances grouped together for both fault tolerance and high
network throughput. Most high-end security appliances achieve these two goals
via High-Availability (HA) protocol among the appliances.

Despite the importance of HA protocol, HA protocol often causes failures to
network security appliances for the following reasons. First, HA protocol, which
is a fault-tolerant distributed network protocol, is notorious for its high complex-
ity. It is a challenging task to consider all possible communication/coordination
scenarios among the network security appliances in a group. Furthermore, fail-
ure and recovery of each machine in the group should also be considered, which

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 489–500, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

490 M. Kim

adds complexity further. Second, testing high-end network security appliances
requires great efforts due to complex network/machine configurations and a large
number of test scenarios. Also, it is hard to determine whether misbehavior is
due to errors of the HA protocol or due to other factors such as OS/HW failure
and/or misconfiguration of networks, etc. Finally, manufacturers often concen-
trate on developing functions of each security appliance without considering how
these machines should communicate each other through HA protocol. Thus, HA
protocol is often designed and implemented in an ad-hoc way at the last stage of
development, which often creates unexpected behaviors. As a result, it is often
observed that a group of network security appliances exhibits abnormal behav-
iors such as decreased network throughput or dropped normal packets while a
single security appliance works well without a problem. Therefore, it is highly
desirable to formally model and verify HA protocol design as formal method
techniques have been actively applied to enhance reliability of network applica-
tions [7,10,11,9].

This paper presents our experience of formally modeling and verifying the HA
protocol implemented in a commercial network security appliance NXG2000 [1].
We built a HA protocol model of a moderate size and verified the model using
the Spin model checker [2] to check the absence of deadlock in the HA protocol.
In this project, we could overcome the limitation of traditional debugging by
detecting multiple bugs from the all counter examples without modifying/fixing
the HA model as described in Sect. 4.

2 Overview of the HA Protocol of NXG2000

NXG2000 [1] is an integrated network security appliance consisting of firewall,
VPN, and IDS targeted for gigabit networks. NXG2000 provides upto 1 million
concurrent sessions (maximum 2 Gbps throughput) via six gigabit ports. In
addition, NXG2000 has a 100 Mbps HA port dedicated to the HA protocol.

Network equipments located at the gateway must achieve high reliability as
well as fast recovery lest the whole internal network cannot be operational. Thus,
multiple network security appliances are deployed in a group for both fault tol-
erance and increased network throughput. For this purpose, machines of a group
cooperate with each other to perform several tasks such as session synchroniza-
tion and group management through the HA protocol.

In order to manage a group of network security appliances, one security appli-
ance in the group is designated as a master to manage the other slaves. Initially,
a master is statically designated by a network administrator. Although a mas-
ter performs various jobs such as synchronizing sessions, configuring network,
and creating event logs, we focus on the core management tasks of a master as
follows.

1. Addition of slaves (see Fig. 1.a))
When a slave becomes operational, the slave broadcasts join request mes-
sages every second until it receives a join permit message from a master.

Formal Modeling and Verification of HA Protocol 491

Fig. 1. Message sequences regarding the HA activities

Once the master allows the slave to join the group by sending a join permit
message to the slave, the master broadcasts new information to the group.
Following this, the master sends all session information to the slave.

2. Deletion of slaves (see Fig. 1.b))
A master constantly checks the status of slaves by receiving s alive from
every slave each second. If a master does not receive s alive from a slave
for three seconds, the master erases the slave from the group. If the erased
slave is a backup master, the master elects another slave as a backup master
and sends bkup m assign to the slave.

3. Assignment of a backup master (see Fig. 1.b))
To prepare for a case in which a master crashes, the master assigns a slave
as a backup master that will become a master when the master crashes. For
backup master assignment, a master sends an assignment message
bkup m assign to a slave that is elected as a backup master.

A backup master constantly checks whether or not a master is operational by
receiving m alive, which is broadcasted by a master every second (see Fig. 1.c)).
If a backup master does not receive m alive for three seconds, the backup master
sends query m alive three times to the master. If the backup master does not
receive a response from the master, the backup master becomes a master and
broadcasts its new status. The backup master then assigns another slave as a
new backup master by sending bkup m assign and starts broadcasting m alive
messages. A security appliance starts working as a slave when it recovers from
failure. An exception is that machine 0, which is statically designated as a master
by a network administrator, will work as a master if there is no master when it
recovers from a failure.

492 M. Kim

3 The HA protocol Model

We model the HA protocol in Promela [2]. Each machine, regardless of whether
it is a master or a slave, is modeled as a process. The overall execution of each
machine is depicted in Fig. 2.

Fig. 2. Overview of the HA protocol model

Each machine starts from machine init state (located at the left end of
Fig. 2). Initially, machine 0 (whose process id is 0) is statically designated as a
master and the machine moves to mst init state to become a master. Then, the
machine is working at mst acting state that is the core of the master procedure.
A master performs the following tasks at mst acting.

– To add a slave to the group (add slave state)
– To assign a slave as a backup master (bkupmst assign state)
– To delete a slave from the group if the slave is found dead (del slave state)
– To exhibit a crash (mst dead state)

Note that there exists only one crash point for master in this model; a master
can fail/crash only at mst dead state. Thus, this model does not exhibit failure
while a master is adding/deleting a slave or assigning a slave as a backup master.
This simplified failure model abstracts out the need of cleanup procedures in a
case of failure, which reduces complexity of the HA model significantly.

Once a machine is determined as a slave, the machine moves to slv init state
to initialize settings to become a slave. Then, the slave moves to join group state
where the slave requests a permission to join the group from a master. Once the
slave receives the permission from the master, the slave moves to slv acting
state performing the following tasks.

– To become a backup master (become bkupmst state)
– To become a master if it is a backup master and there exists no master (a

transition to mst init state)
– To exhibit a crash (slv dead state)

Formal Modeling and Verification of HA Protocol 493

4 A New Debugging Technique to Detect Multiple Bugs

Model checking techniques are effectively used as a means to improve the reli-
ability of computing systems by detecting bugs of formal system models [8,15].
The traditional way of debugging a formal model is as follows: First, a human
engineer identifies a bug in a counter example. The bug is then fixed by mod-
ifying the model. Once the bug is fixed, the modified model is verified again
in order to detect the next bug, if one exists, in a new counter example. This
debugging process is repeated until there no more bugs are found. This approach
toward debugging has the following limitations:

– There are cases where it is not feasible to fix a bug for several reasons. In
such cases, no further debugging progress can be made.

– Fixing a bug may introduce other bugs so that the traditional debugging
iterations may continue indefinitely, or never terminate in the worst cases.

– When a model is modified to fix one bug, all requirement properties must be
verified once again. Considering that real-world applications often have sev-
eral hundred properties to check, these repeated fix-and-verify trials consume
considerable project time.

Therefore, we propose a new debugging technique to identify multiple bugs
without modification of a model by analyzing all counter examples generated
by model checker. There have been researches on analysis of counter examples
with various goals such as model refinement and localization of bugs [6,16,3,4].
Our focus, which is orthogonal to these related works, is to provide an auto-
mated process to detect as many bugs as possible by analyzing multiple counter
examples without modification of a model.

4.1 An Automated Process to Detect Multiple Bugs

First, we describe an automated process that detects multiple bugs that vio-
late the requirement property φ without modification to the target model. A
key point of the process is to construct a set of formulas ψi’s each of which
captures/describes a bug bi revealed in a subset of counter example traces.1 Fol-
lowing this, the traces that satisfy/conform to ψi’s are automatically detected,
i.e., those that violate φ due to ψi. For this automatic trace analysis, it is nec-
essary to formally specify ψi’s in a formal specification language such as Meta
Event Definition Language (MEDL)(see Sect. 4.3). Notations are defined before
describing this debugging process formally.

– Tφ is the set of all counter example traces of a requirement property φ such
that Tφ = {ti| ti is a counter example of φ}.

– Bφ is a set of formulas of the bugs that violate φ, i.e., Bφ = {ψi| ψi is a
formula of a bug that violates φ}.

1 A bug bi is identified through manual analysis as in the traditional debugging.

494 M. Kim

– t |=φ ψ where t ∈ Tφ and ψ ∈ Bφ signifies that a counter example trace t
satisfies ψ that is a cause of the violation of φ (i.e., t violates φ due to ψ).

– tφ : Bφ → P(Tφ) is a function such that tφ(ψ) = {ti ∈ Tφ| ti |=φ ψ}.

An algorithm that detects multiple bugs without modifying the target model
is described in Fig. 3. This algorithm is guaranteed to terminate if evaluation
of a trace at Step 3 is decidable (which is true in most practical cases) as Tφ is
finite in a finite state model. All steps of the algorithm can be automated except
Step 2, which still requires human ingenuity to identify a bug and specify the
bug as ψ in a formal specification language.

1. Set T with Tφ.
2. Select the smallest trace tinit ∈ T . Then a user analyzes tinit to identify a bug b

that violates φ and specifies the bug b as ψ.
3. Obtain tφ(ψ) by checking all traces of T with ψ.
4. Set a new set of traces T ′ with T−tφ(ψ) and select the new smallest trace t′

init ∈ T ′.
5. Set T with T ′ and tinit with t′

init, then repeat from Step 2 until T becomes ∅.

Fig. 3. An algorithm to detect multiple bugs that violate φ

Fig. 4 illustrates the algorithm. Initially, the smallest trace t0 that violates φ
is manually analyzed and the bug b0 revealed in t0 is described as ψ0. Following
this, tφ(ψ0) is obtained, and the smallest trace t1 ∈ (Tφ − tφ(ψ0)) is found. This
process is repeated until ψ0, ψ1, and ψ2 that cover Tφ completely are found (i.e.,
tφ(ψ0)∪tφ(ψ1)∪tφ(ψ2) = Tφ). Note that the algorithm of Fig. 3 does not strictly
require a collection of tφ(ψi) to be pairwise disjoint. It is possible that tφ(ψi)
overlaps tφ(ψj), which, however, does not affect a result of the algorithm.

Fig. 4. A process of detecting bugs that violate a requirement property φ

4.2 Overview of the MacDebugger Framework

The MacDebugger framework [13] (see Fig. 5), which is an extension of the MaC
framework [12], is a general framework for analyzing a large volume of counter

Formal Modeling and Verification of HA Protocol 495

Fig. 5. Overview of the MacDebugger framework

example traces. MacDebugger is designed to work with any model checker that
can generate multiple counter examples. As a prototype, however, it was imple-
mented to work with the Spin model checker [8]. MacDebugger consists of the
following three components - a model checker, an event recognizer, and a checker.

MacDebugger aims to analyze a large number of counter examples efficiently.
Thus, performance of storing and analyzing counter examples is a critical issue,
as even a simple model can generate hundreds of gigabytes of counter examples.
For that purpose, we modified the Spin model checker to generate counter exam-
ples in a compact format. An event recognizer (an oval in the middle of Fig. 5)
extracts sequences of primitive events and conditions from counter examples
generated from a model checker and generates event traces which contain these
sequences. A checker (an oval in the right of Fig. 5) receives a list of the event
traces to analyze, for example lin, and a bug description written in MEDL, in
this example ψi, as its inputs. The checker analyzes all event traces in lin with
respect to ψi and returns a list of event traces, in this example lout, which do
not satisfy ψi. Following this, a human engineer investigates the shortest event
trace in lout and identifies a new bug ψi+1 from the trace. The checker then
repeats this debugging process using lout and ψi+1 as new inputs until all event
traces/counter examples are covered by ψ0...ψn as described in Sect. 4.1.

4.3 Meta Event Definition Language

MEDL is based on an extension of linear temporal logic with auxiliary variables
to record history of the event trace. MEDL distinguishes between two kinds of
data that make up the trace of an execution - events and conditions. Events
occur instantaneously during the system execution, whereas conditions repre-
sent information that holds for a duration of time [5]. A checker assumes that
truth values of all conditions remain unchanged between updates from the event
recognizer. For events, a checker makes the dual assumption, namely, that no
events (of interest) happen between updates. Based on this distinction between

496 M. Kim

Table 1. The syntax of conditions, events, and guards

E ::= e | start(C) | end(C) | E&&E | E||E | E when C
C ::= c | defined(C) | [E,E) | !C | C&&C | C||C | C⇒C
G ::= E → {statements}

events and conditions, we have a simple two-sorted logic that constitutes MEDL.
The syntax of events (E), conditions (C), and guards (G) is given in Table 1.

Here e refers to primitive events that are reported in the trace by the event
recognizer; c is either a primitive condition reported in the trace or it is a boolean
condition defined on the auxiliary variables. Guards (G) are used to update aux-
iliary variables. The semantics for boolean operations over conditions and events
is defined naturally. There are some natural events associated with conditions,
namely, the instant when the condition becomes true (start(c)), and the instant
when the condition becomes false (end(c)). Also, any pair of events define an
interval of time, so forms a condition [e1, e2) that is true from event e1 until
event e2. The event (e when c) is present if e occurs at a time when condition c is
true. Finally, a guard e → {statements} updates auxiliary variables according
to the assignments given in statements when e happens.

A MEDL script defines a requirement property as a special event, called alarm.
To check whether an alarm occurs or not, a checker evaluates the events and
conditions defined in the script whenever it reads an element from the trace. For
more detail on the formal semantics of MEDL, see [12].

5 Verification of the HA protocol

The full state space of the model is generated without stopping at violations.
Statistics on the model with a different number of machines in a group are
illustrated in Table 2. N/A indicates that the state space failed to be generated
due to a lack of memory. A Pentium IV 3Ghz computer equipped with 2 GB of
memory, and 80GB of hard disk running Spin 4.2.6 on Fedora Linux 4 was used.
A maximum search depth was set as 5×106 and the estimated state space as 108,
of which the hash table and DFS stack took 227 Mb. The HA protocol model
in Promela is approximately 200 lines long. We found that all HA models with
N ≥ 2 had deadlock and all counter examples causing deadlock were generated.
Table 3 shows the statistics on the counter examples.

Immediate Cause of the Deadlock. Firstly, an immediate cause of the dead-
lock at N = 2 was identified. The shortest counter example was analyzed and it
was found that deadlock occurred when all machines in the group were slaves,
in other words when no master existed to admit slaves to join the group. In this
situation, no progress could be made unless machine 0 crashed and revived as a
master, which is clearly beyond the control of the HA protocol. Fig. 6 shows this
fault that immediately causes deadlock formulated in MEDL. deadlock in line 2

Formal Modeling and Verification of HA Protocol 497

Table 2. Statistics on the HA protocol model with a different number of machines

Number of machines in a group (N) 2 3 4 5 6

States 246 17489 551052 1.40 × 107 N/A

Transitions 409 43419 1.75 × 106 5.24 × 107 N/A

Memory usage(in Mb) 228 229 264 1321 N/A

Time to generate state space (in sec) 1.0 1.1 3.2 86.9 N/A

Table 3. Statistics on the counter examples showing deadlock

Number of machines (N) 2 3 4 5

of counter examples 4 156 4440 123360

Size of total counter examples (in bytes) 0.3K 628K 53M 36G

Avg. length of counter example (in steps) 36 1271 2.8 × 104 8 × 105

Time to generate all counter examples 0.1 sec 0.3 sec 65 sec 11 hour

is a primitive event representing deadlock. The event recognizer recognizes this
event by detecting the end of a counter example. m0 slave in line 3 is a primitive
condition indicating whether or not machine 0 is a slave. m1 slave is similarly
defined. Thus, if deadlock occurs when all machines are slaves, the all slaves
alarm in line 4 is triggered.

01:ReqSpec DeadlockDetector
02: import event deadlock;
03: import condition m0_slave, m1_slave;
04: alarm all_slaves = deadlock when (m0_slave && m1_slave);
05:End

Fig. 6. MEDL specification of the fault causing deadlock (N = 2)

All counter examples of the models were checked with N ≥ 2. It was found
that all traces raised the all slave alarm, indicating that the immediate cause
of the deadlock was incorrect master election process.

Identification of Design Flaws. First, the shortest counter example in the
smallest model (N = 2) was analyzed further and we found the following faulty
scenario.

f1: A master (machine 1) died immediately after a backup master (ma-
chine 0) had died and revived as a slave. Machine 1 then revived as a
slave and all machines became slaves.

498 M. Kim

f1 was formulated as f1 in line 6 of Fig. 7. mst died and bkupmst died
indicate crashes of the corresponding machines. becomes mst occurs when a
backup master becomes a master. bkupmst elected indicates that a new backup
master is elected, and m0 alive indicates that machine 0 is alive. m0 working
indicates that machine 0 has joined the group and is cooperating with the other
machines in the group. f1 is triggered when a master dies without a backup
master (line 6) with additional conditions for machine 0 (line 7) satisfied.

It is important to note that a bug triggering f1 is hard to fix because fixing
the HA protocol to work correctly with this scenario requires major redesign of
the HA protocol, which was not feasible due to limited project resources. Thus,
other bugs could not be detected if we used the traditional debugging method.
We could, however, continue debugging process to detect other remaining bugs
as explained below by using the new debugging technique.

01:ReqSpec f1Detector
02: import event mst_died, bkupmst_died, becomes_mst, bkupmst_elected;
03: import condition m0_working, m0_alive;
04:
05: condition restriction = !m0_working && m0_alive;
06: alarm f1 =mst_died when ([bkupmst_died||becomes_mst,bkupmst_elected)
07: && value(mst_died,0) != 0 && restriction);
08:end

Fig. 7. Specification of f1 in MEDL

It was found that 4 out of 4 (N = 2), 90 out of 156 (N = 3), 2703 out of 4440
(N = 4), as well as 70042 out of 123360 counter examples (N = 5) raised the f1
alarm (see Table 4). This indicates that other faults exist, as f1 does not cover
all counter examples. The smallest counter example trace that did not raise the
alarm in N = 3 was analyzed, and the following faulty scenario in the trace was
found.

f2: A master elected a machine that was dead, as a backup master with-
out recognizing that the machine was dead. The master then died and it
happened that there existed no master.

This fault is caused by a bug in which a master assigns a slave as a backup
master by only sending bkup m assign to the slave and not requiring acknowl-
edgment from the slave. It was found that 62 (N = 3), 1560 (N = 4) and 51200
counter examples (N = 5) raised f2 (see Table 4). f1 and f2, however, still do
not cover all counter examples, indicating that there still are other faults.

In a similar manner, f3 was detected and formulated to specify that a backup
master died immediately after a master has died, making all machines slaves.
Finally, f1, f2, and f3 covered all counter examples, indicating that all of the
bugs that cause deadlock had been founded. These analysis results are shown in

Formal Modeling and Verification of HA Protocol 499

Table 4. Analysis results of counter examples due to f1, f2, and f3

Number of machines (N) 2 3 4 5

Total # of counter examples 4 156 4440 123360

of event traces due to f1 4 90 2703 70042

of event traces due to f2 0 62 1560 51200

of event traces due to f3 0 4 177 2118

Table 4. It takes less than one minute to analyze all counter examples for N ≤ 4
and takes around 7 hours to analyze all counter examples to check each of f1, f2,
and f3 for N = 5.

6 Conclusion

In this paper, we present results of formal modeling and verification of the HA
protocol of NXG2000. In this study, we could find several bugs in the HA protocol
through analyzing counter examples generated by model checking. These bugs
had not been noticed by the company before, and the company decided to adopt
a distributed master election process [14] in the next version of NXG2000. We
are convinced that the new debugging technique in this paper is effective to
verify systems of industrial strength, which often have hard-to-fix bugs. We plan
to develop this debugging technique further by adopting other works on counter
example analysis and apply the technique to formally analyze more industrial
systems.

As a future study, we plan to work to add backward analysis capability to
MacDebugger. It was noticed that a root cause of the violation of a safety prop-
erty most often exists at the end of a counter example. Thus, if it is possible to
analyze a counter example backward (from the end to the start of the counter
example), this may decrease the analysis time significantly. In addition, we will
formulate identified bugs using Promela never claim and run model checker on
the original model with the bug descriptions to know if there still exist unre-
vealed bugs or not. This approach eliminates the overhead of analyzing a large
volume of counter examples at the cost of increased model size. The comparison
between these two different approaches on analysis performance and convenience
of formulating bugs can be an interesting research topic.

References

1. High-availability technique in NXG 2000. Technical report,
http://www.secui.com/product/nxg/pdf/NXG technique 03.pdf

2. The Spin Model Checker Home Page, http://www.spinroot.com
3. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Ball,

T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer,
Heidelberg (2003)

http://www.secui.com/product/nxg/pdf/NXG_technique_03.pdf
http://www.spinroot.com

500 M. Kim

4. Basu, S., Saha, D., Smolka, S.A.: Localizing programs errors for cimple debugging.
In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp.
79–96. Springer, Heidelberg (2004)

5. Heitmeyer, C., Bull, A., Gasarch, C., Labaw, B.: Scr*: A toolset for specifying and
analyzing requirements. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) COMPASS
1995. LNCS, vol. 1130, Springer, Heidelberg (1996)

6. Pasareanu, C.S., Dwyer, M.B., Visser, W.: Finding feasible counter-examples when
model checking java programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 284–298. Springer, Heidelberg (2001)

7. Holzmann, G.J., Smith, M.H.: Automating software feature verification. Bell Labs
Technical Journal 5(2), 72–87 (2000)

8. Holzmann, G.J.: The Spin Model Checker. Wiley, New York (2003)
9. Zakiuddin, I., Goldsmith, M., Whittaker, O., Gardiner, P.: A methodology for

model-checking ad-hoc networks. In: Ball, T., Rajamani, S.K. (eds.) SPIN Work-
shop. LNCS, vol. 2648, Springer, Heidelberg (2003)

10. Bhargavan, K., Gunter, C.A., Kim, M., Lee, I., Obradovic, D., Sokolsky, O.,
Viswanathan, M.: Verisim: Formal Analysis of Network Simulations. IEEE Trans-
action on Software Engineering 8(2) (2002)

11. Bhargavan, K., Obradovic, D., Gunter, C.: Formal verification of standards for
distance vector routing protocols. Journal of the ACM 49(4), 538–576 (2002)

12. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-mac: A run-time
assurance approach for java programs. Formal Methods in System Design (2004)

13. Kim, M.: MacDebugger: A Monitoring and Checking (MaC) based Debugger for
Formal Models, Technical Report CS-TR-2007-270, CS Dept. KAIST (2007)

14. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1997)
15. Ruys, T.C., Holzmann, G.J.: Advanced spin tutorial. In: Graf, S., Mounier, L.

(eds.) SPIN 2004. LNCS, vol. 2989, pp. 304–305. Springer, Heidelberg (2004)
16. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: Localizing errors in

counterexample traces. Principles of Programming Languages (2003)

A Brief Introduction to THOTL�

Mercedes G. Merayo, Manuel Núñez, and Ismael Rodŕıguez

Dept. Sistemas Informáticos y Computación
Universidad Complutense de Madrid, 28040 Madrid, Spain

mgmerayo@fdi.ucm.es, mn@sip.ucm.es, isrodrig@sip.ucm.es

Abstract. In this paper we extend HOTL (Hypotheses and Observa-
tions Testing Logic) to provide a formal framework to test timed systems.
The main idea underlying HOTL is to infer whether a set of observations
(i.e., results of test applications) allows to claim that the IUT conforms
to the specification if a specific set of hypotheses is assumed. In this paper
we adapt HOTL to cope with the inclusion of time issues. In addition,
we show the soundness and completeness of the new framework, that we
call THOTL, with respect to a general notion of timed conformance.

1 Introduction

The main goal of this paper is to extend HOTL [2] (Hypotheses and Observations
Testing Logic) to deal with timed systems. The correctness of an implementation
with respect to a given specification can be stated by using a notion of confor-
mance: An implementation conforms to a specification if the former shows a
behavior similar to that of the latter. In this line, we may use formal testing
techniques to extract tests from the specification, each test representing a desir-
able behavior that the implementation under test (in the following IUT) must
fulfill. In order to limit the (possibly infinite) time devoted to testing, testers
add some reasonable assumptions about the structure of the IUT. However, a
framework of hypotheses established in advance is very strict and limits the ap-
plicability of a specific testing methodology. The logical framework HOTL was
introduced to cope with the rigidity of other frameworks. HOTL aims to assess
whether a given set of observations implies the correctness of the IUT under the
assumption of a given set of hypotheses.

The first decision to define the new framework, that we call THOTL, is to
consider a formal language to represent timed systems. Since HOTL is oriented
to deal with a language with a strict alternation between inputs and outputs, we
decided to consider a timed extension of finite state machines in order to reuse,
as much as possible, the definition of the predicates and rules. Regarding the
time domain, we decided to choose a simple approach but richer than singles
values: Time intervals.
� This research was partially supported by the Spanish MEC project WEST/FAST

TIN2006-15578-C02-01 and the Marie Curie project MRTN-CT-2003-505121/
TAROT. A longer version of this paper can be found in [1].

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 501–510, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

502 M.G. Merayo, M. Núñez, and I. Rodŕıguez

Once the language and a notion of timed conformance is fixed, we have to work
on how to adapt HOTL to the new setting. First, we have to adapt the notion of
observation to take into account not only assumptions about the possible time
interval governing transitions but also to record the observed time values. Next,
we have to modify the existing rules.

The rest of the paper is organized as follows. In Section 2 we briefly review
the main concepts underlying the definition of HOTL. This section represents
a (very small) summary of [2]. In Section 3 we introduce our extension of finite
state machines to model timed systems and define two implementation relations.
In Section 4, representing the bulk of the paper, we define the new logical frame-
work. Finally, in Section 5 we present our conclusions and some directions for
further research.

2 A Short Summary of HOTL

The goal of HOTL is to decide whether a given finite set of observations, ex-
tracted by applying a test suite to an IUT, is complete in the case that the
considered hypotheses hold. In other words, we assess whether obtaining these
observations from the IUT implies that the IUT conforms to the specification if
the hypotheses hold. Our logic assumes that specifications and implementations
can be represented by using a classical formalism, finite state machines.

The behavior of the IUT observed during the application of tests is represented
by means of observations, that is, a sequence of inputs and outputs denoting the
test and the response produced by the IUT, respectively. Moreover, observations
include attributes that allow to represent hypothesis concerning specific states
of the IUT. Once the observations have been processed, the deduction rules of
the logic will allow to infer whether we can claim that the IUT conforms to the
specification.

Next, we will review the basic elements that are part of the original HOTL:
Observations, predicates, and rules. During the rest of the paper Obs denotes
the multiset of observations collected during the preliminary interaction with
the IUT while Hyp denotes the set of hypotheses the tester has assumed. In this
latter set, we will not consider the hypotheses that are implicitly introduced by
means of observations.

2.1 Observations

Observations follow the form ob = (a1, i1/o1, a2, . . . , an, in/on, an+1) ∈ Obs,
where ob is a unique identifier. This observation denotes that when the sequence
of inputs i1, . . . , in was proposed to the implementation, the sequence o1, . . . , on

was obtained as response. In addition, for all 1 ≤ j ≤ n + 1, aj represents a
set of special attributes concerning the state of the implementation reached after
performing i1/o1, . . . , ij−1/oj−1 in this observation. Attributes denote our as-
sumptions about this state. For all 1 ≤ j ≤ n + 1 the attributes in the set aj are
of the form imp(q) or det, where imp(q) denotes that the implementation state

A Brief Introduction to THOTL 503

reached after i1/o1, . . . , ij−1/oj−1 is associated to a state identifier name q and
det denotes that the implementation state reached after i1/o1, . . . , ij−1/oj−1 in
this observation is deterministic. State identifier names are used to match equal
states. The set of all state identifier names will be denoted by Q. In addition,
attributes belonging to an+1 can also be of the form spec(s) denoting that the
implementation state reached after i1/o1, . . . , in/on is such that the subgraph
that can be reached from it is isomorphic to the subgraph that can be reached
from the state s of the specification.

2.2 Predicates

A model predicate denotes our knowledge about the implementation. Models
will be constructed according to the observations and hypotheses we consider.
We denote model predicates by model (m), where m = (S, T , I, A, E , D, O) is a
model. The meaning of the different components of the tuple is:

– S (states): The set of states that appear in the model.
– T (transitions): Set of transitions appearing in the graph of the model.
– I (initial states): Set of states that are initial in the model.
– A (accounting): The set of accounting registers of the model. An accounting

register is a tuple (s, i, outs, f, n) denoting that in state s ∈ S the input i
has been offered n times and we have obtained the outputs belonging to the
set outs. Besides, for each transition departing from state s and labeled with
input i, the function f : T −→ IN returns the number of times the transition
has been observed. If, due to the hypotheses that we consider, we infer that
the number of times we observed an input is high enough to believe that the
implementation cannot react to that input either with an output that was
not produced before or leading to a state that was not taken before, then
the value n is set to �.

– E (equality relations): Set of equalities relating states belonging to S. Equal-
ities have the form s is q, where s ∈ S is a state and q ∈ Q is a state
identifier name.

– D (deterministic states): Set of states that are deterministic.
– O (used observations): Set of observations we have used so far for the con-

struction of this model.

Depending on the form of m, a model (m) predicate may denote some addi-
tional information about m. Models can be labeled by some tags to denote special
characteristics. A different predicate, allModelsCorrect, represents a set of cor-
rect models. This predicate is the goal of the logic: If it holds then all the IUTs
that could produce the observations in Obs and meet all the requirements in Hyp
conform to the specification.

In general, several models can be constructed from a set of observations and
hypotheses. Hence, our logic will deal with sets of models. If M is a set of models
then the models (M) predicate denotes that, according to the observations and
hypotheses considered, M contains all the models that are valid candidates to
properly describe the implementation.

504 M.G. Merayo, M. Núñez, and I. Rodŕıguez

2.3 The HOTL Rules

Once all the observations have been considered a second phase, to add the
hypotheses, starts. All rules of the second phase will include the requirement
O = Obs.

We present a rule to construct a model from a simple observation. Given
a predicate denoting that an observation was collected, the rule deduces some
details about the behavior of the implementation.

(obser)
ob = (a1, i1/o1, a2, . . . , an, in/on, an+1) ∈ Obs ∧ s1, . . . , sn+1 are fresh states

model

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

{s1, . . . , sn+1} ∪ S ′,

{s1
i1/o1−→ s2, . . . , sn

in/on−→ sn+1} ∪ T ′, {s1, β},

{(sj , ij , {oj}, fsj , 1) | 1 ≤ j ≤ n} ∪ A′,

{sj is qj |1 ≤ j ≤ n + 1 ∧ imp(qj) ∈ aj},

{sj | 1 ≤ j ≤ n + 1 ∧ det ∈ aj} ∪ D′, {ob}

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where fsj (tr) = 1 if tr = sj
ij/oj−→ sj+1 and fsj (tr) = 0 otherwise. Intuitively,

the sets S′, T ′, A′, and D′, denote the additions due to the possible occurrence
of an attribute of the form spec(s). The formal definition of these sets can be
found in [2].

We will be able to join different models, created from different observations,
into a single model by means of the (fusion) rule. The components of the new
model will be the union of the components of each model.

(fusion)

model (S1, T1, I1, A1, E1, D1, O1) ∧
model (S2, T2, I2, A2, E2, D2, O2) ∧ O1 ∩ O2 = ∅

model
(
S1 ∪ S2, T1 ∪ T2, I1 ∪ I2, A1 ∪ A2, E1 ∪ E2, D1 ∪ D2, O1 ∪ O2

)

By iteratively applying these two rules, we will eventually obtain a model
where O includes all the observations belonging to the set Obs. At this point, the
inclusion of those hypotheses that are not covered by observations will begin.
Our logic considers several possible hypotheses about the IUT. The complete
repertory of hypotheses appearing in HOTL appears in [2].

Since a model is a (probably incomplete) representation of the IUT, in order to
check whether a model conforms to the specification, two aspects must be taken
into account. First, only the conformance of consistent models will be considered.
Second, we will check the conformance of a consistent model by considering the
worst instance of the model, that is, if this instance conforms to the specification
then any other instance extracted from the model does so. This worst instance
will conform to the specification only if the unspecified parts of the model are
not relevant for the correctness of the IUT it represents. HOTL provides us with
an additional rule that allows to deduce the correctness of a model if the model
is consistent and the worst instance of the model conforms to the specification.

A Brief Introduction to THOTL 505

3 Timed FSMs and Timed Implementations Relations

In this section we present our timed extension of the classical finite state ma-
chine model. We also introduce an implementation relation to formally define
what is a correct implementation. Time intervals will be used to express time
constraints associated with the performance of actions. We need to introduce
notation, related to time intervals and multisets, that we will use during the rest
of the paper.

Definition 1. We say that â = [a1, a2] is a time interval if a1 ∈ IR+, a2 ∈
IR+ ∪ {∞}, and a1 ≤ a2. We assume that for all r ∈ IR+ we have r < ∞
and r + ∞ = ∞. We consider that IIR+ denotes the set of time intervals. Let
â = [a1, a2] and b̂ = [b1, b2] be time intervals. We write â ⊆ b̂ if we have both
b1 ≤ a1 and a2 ≤ b2. In addition, â + b̂ denotes the interval [a1 + b1, a2 + b2] and
πi(â), for i ∈ {1, 2}, denotes the value ai.

We will use the delimiters {| and |} to denote multisets. We denote by ℘(IR+)
the multisets of elements belonging to IR+. 	

Let us note that in the case of [t1, ∞] we are abusing the notation since this
interval is in fact a half-closed interval, that is, it represents the interval [t1, ∞).

Definition 2. A Timed Finite State Machine, in the following TFSM, is a tuple
M = (S, inputs, outputs, I, T) where S is a finite set of states, inputs is the set
of input actions, outputs is the set of output actions, T is the set of transitions,
and I is the set of initial states.

A transition belonging to T is a tuple (s, s′, i, o, d̂) where s, s′ ∈ S are the
initial and final states of the transition, respectively, i ∈ inputs and o ∈ outputs
are the input and output actions, respectively, and d̂ ∈ IIR+ denotes the possible
time values the transition needs to be completed. We usually denote transitions

by s
i/o−−−−→ d̂ s′.

We say that (s, s′, (i1/o1, . . . , ir/or), d̂) is a timed trace, or simply trace, of M

if there exist (s, s1, i1, o1, d̂1),. . ., (sr−1, s
′, ir, or, d̂r) ∈ T , such that d̂ =

∑
d̂i. We

say that ((i1/o1, . . . , ir/or), d̂) is a timed evolution of M if there exists sin ∈ I
such that (sin, s′, (i1/o1, . . . , ir/or), d̂) is a trace of M . We denote by TEvol(M)
the set of timed evolutions of M . In addition, we say that (i1/o1, . . . , ir/or) is
a non-timed evolution, or simply evolution, of M and we denote by NTEvol(M)
the set of non-timed evolutions of M .

Finally, we say that s ∈ S is deterministic if there do not exist (s, s′, i, o′, d̂),
(s, s′′, i, o′′, d̂′) ∈ T such that o′ �= o′′ or s′ �= s′′. 	

As usual, we assume that both implementations and specifications can be rep-
resented by appropriate TFSMs.

During the rest of the paper we will assume that a generic specification is
given by spec = (Sspec, inputsspec, outputsspec, Ispec, Tspec).

Next we present the basic conformance relation that we consider in our frame-
work. Intuitively, an IUT is conforming if it does not invent behaviors for those
traces that can be executed by the specification.

506 M.G. Merayo, M. Núñez, and I. Rodŕıguez

Definition 3. Let S and I be TFSMs. We say that I conforms to S, denoted by
I conf S, if for all ρ1 = (i1/o1, . . . , in−1/on−1, in/on) ∈ NTEvol(S), with n ≥ 1,
we have ρ2 = (i1/o1, . . . , in−1/on−1, in/o′n) ∈ NTEvol(I) implies ρ2 ∈ NTEvol(S).

	

In addition to the non-timed conformance of the implementation, we require
some time conditions to hold. Specifically, we will check that the observed time
values (from the implementation) belong to the time interval indicated in the
specification.

Definition 4. Let I be a TFSM. We say that ((i1/o1, . . . , in/on), t) is an observed
timed execution of I, or simply timed execution, if the observation of I shows
that the sequence (i1/o1, . . . , in/on) is performed in time t.

Let Φ = {e1, . . . , em} be a set of input/output sequences and let us con-
sider a multiset of timed executions H = {|(e′1, t1), . . . , (e′n, tn)|}. We say that
Sampling(H,Φ) : Φ −→ ℘(IR+) is a sampling application of H for Φ if for all
e ∈ Φ we have Sampling(H,Φ)(e) = {|t | (e, t) ∈ H |}. 	

Timed executions are input/output sequences together with the time that it took
to perform the sequence. Regarding sampling applications, we just associate with
each evolution the multiset of observed execution time values.

Definition 5. Let I and S be TFSMs, H be a multiset of timed executions of I,
and Φ = {e | ∃ t : (e, t) ∈ H} ∩ NTEvol(S). For all e ∈ Φ we define the sample
interval of e in H as

Ŝ(H,e) = [min(Sampling(H,Φ)(e)), max(Sampling(H,Φ)(e))]

We say that I H−timely conforms to S, denoted by I confH
int S, if I conf S

and for all e ∈ Φ we have that for all time interval d̂ ∈ IIR+ we have that if
(e, d̂) ∈ TEvol(S) then Ŝ(H,e) ⊆ d̂ holds. 	

4 Timed Extension of HOTL: THOTL

In this section we show how HOTL has to be adapted and extended to cope
with time issues. While some of the rules dealing with the internal functional
structure of the implementation remain the same, the inclusion of time strongly
complicates the framework, constituting THOTL almost a complete new formal-
ism. First, we need to redefine most components of the logic to consider temporal
aspects. Observations will include the time values that the IUT takes to emit
an output since an input is received. Additionally, the model will be extended
to take into account the different time values appearing in the observations for
each input/output outgoing from a state. Finally, we will modify the deduction
rules.

A Brief Introduction to THOTL 507

4.1 Temporal Observations

Temporal observation are an extension of the observations introduced in HOTL.
They follow the format ob = (a1, i1/o1/t1, a2, . . . , an, in/on/tn, an+1) ∈ Obs. It
denotes that when the sequence of inputs i1, . . . , in was proposed from an initial
state of the implementation, the sequence o1, . . . , on was obtained as response
in t1, . . . , tn time units, respectively.

In addition to the attributes presented in Section 2, temporal observations
may include a new type of attribute. For all 1 < j ≤ n, the attributes in the
set aj can be also of the form int(d̂), with d̂ ∈ IIR+ . Such an attribute denotes
that once the implementation has performed i1/o1, . . . , ij−1/oj−1, the time that
it takes to emit the output oj , after the input ij is received, belongs to the
interval d̂. We assume that this attribute cannot appear in the set a1 since the
implementation is in an initial state. Thus, at this stage, no actions have taken
place yet.

4.2 New Model Predicates

Temporal observationswill allow to create model predicates that denote our knowl-
edge about the implementation. Amodel predicate is denoted by model (m), where
m = (S, T , I, A, E , D, O). The only change we need to introduce affects the ac-
counting component A. Now, each register will be a tuple (s, i, outs, f, δ, n) where
the new function δ : T −→ IIR+ × ℘(IR+) computes for each transition departing
from state s with input i and output o ∈ outs the time interval, according with
our knowledge up to now, in which the transition could be performed. In addi-
tion, it also returns the set of time values the implementation took to perform the
transition. If no assumptions about the interval are made by means of temporal
observations, the interval will be set to [0, ∞]. In the case of transitions not fulfill-
ing the required conditions about s, i, and outs, an arbitrary value is returned.

4.3 Changing the Existing Rules

First, we will include a new rule to construct a model from a temporal obser-
vation. This rule plays a similar role to the original (obser) rule of HOTL that
allows to build a model from a simple non-temporal observation.

(tobser)
ob = (a1, i1/o1/t1, a2, . . . , an, in/on/tn, an+1) ∈ Obs ∧ s1, . . . , sn+1 fresh states

model

{s1, . . . , sn+1} ∪ S ′,

{s1
i1/o1−→ s2, . . . , sn

in/on
−→ sn+1} ∪ T ′, {s1, β},

{(sj , ij , {oj}, fsj
δsj

, 1) | 1 ≤ j ≤ n} ∪ A′,

{sj is qj |1 ≤ j ≤ n + 1 ∧ imp(qj) ∈ aj},

{sj | 1 ≤ j ≤ n + 1 ∧ det ∈ aj} ∪ D′, {ob}

508 M.G. Merayo, M. Núñez, and I. Rodŕıguez

where fsj (tr) is equal to 1 if tr = sj
ij/oj−→ sj+1 and equal to 0 otherwise; and

δsj (tr) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(d̂, {|tj |}) if tr = sj

ij/oj−→ sj+1 ∧ int(d̂) ∈ aj+1

([0, ∞], {|tj |}) if tr = sj
ij/oj−→ sj+1 ∧ int(d̂) /∈ aj+1

([0, ∞], ∅) otherwise

The sets of states, transitions, accounting registers, and deterministic states
will be extended with some extra elements, taken from the specification, if the
tester assumes that the last state of the observation is isomorphic to a state of
the specification. The sets S′, T ′, A′, and D′ are formally defined in [1]

The iterative application of the previously introduced (fusion) rule (see
Section 2.3) will allow us to join different models created from different tem-
poral observations into a single model.

At this point, the inclusion of those hypotheses that are not covered by obser-
vations will begin. During this new phase, we will usually need several models
to represent all the TFSMs that are compatible with a set of observations and
hypotheses. Some of the rules use the modelElim function. If we find out that a
state of the model coincides with another one, we will eliminate one of the states
and will allocate all of its constraints to the other one. The modelElim function
modifies the components that define the model, in particular the accounting set.
A similar function appeared in the original formulation of HOTL. However, due
to the inclusion of time issues, this function must be adapted to deal with the
new considerations. A formal definition of this function can be found in [1]. It
is only necessary to consider that those rules using modelElim have to consider
the temporal version of this function. The rest of the rules belonging to HOTL
do not vary in their formulation.

In HOTL we have some rules that may lead to inconsistent models. In some of
these cases, an empty set of models is produced, that is, the inconsistent model
is eliminated. Before granting conformance, we need to be sure that at least one
model belonging to the set is consistent. HOTL already provides us with a rule
that labels a model as consistent. Let us note that the inconsistences created by
a rule can be detected by the subsequent applications of rules. Thus, a model is
free of inconsistencies if for any other rule either it is not applicable to the model
or the application does not modify the model. Due to space limitations we do
not include the details of this rule (the formal definition can be found in [2]).

Similar to HOTL, as explained at the end of Section 2, in order to check
whether a model conforms to the specification we have to take into account that
only the conformance of consistent models will be considered. In addition, given a
consistent model, we will check its conformance with respect to the specification
by considering the worst instance of the model, that is, if this instance conforms
to the specification then any other instance extracted from the model does so.
This worst instance is constructed as follows: For each state s and input i such
that the behavior of s for i is not closed and either s is not deterministic or
no transition with input i exists in the model, a new malicious transition is
created. The new transition is labelled with a special output error that does

A Brief Introduction to THOTL 509

not belong to outputsspec. This transition leads to a new state ⊥ having no
outgoing transitions. Since the specification cannot produce the output error,
this worst instance will conform to the specification only if the unspecified parts
of the model are not relevant for the correctness of the IUT it represents.

Definition 6. Let m = (S, T , I, A, E , D, Obs) be a model. We define the worst
temporal instance of the model m with respect to the considered specification
spec, denoted by worstTempCase(m), as the TFSM

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S ∪ {⊥}, inputsspec, outputsspec ∪ {error},
⎧⎪⎨
⎪⎩

s
i/o−−−−→ d̂ s′

∣∣∣∣∣∣∣

s
i/o−→ s′ ∈ T ∧

∃ outs, f, δ, n : (s, i, outs, f, δ, n) ∈ A ∧
o ∈ outs ∧ π1(δ(s

i/o−→ s′)) = d̂

⎫⎪⎬
⎪⎭

⋃
⎧
⎪⎨
⎪⎩

s
i/error−−−−−−−→ [o,∞] ⊥

∣∣∣∣∣∣∣

s ∈ S ∧ i ∈ inputsspec ∧
� ∃ outs : (s, i, outs, f, δ,) ∈ A ∧
(s �∈ D ∨ � ∃ s′, o : s

i/o−→ s′)

⎫
⎪⎬
⎪⎭

, I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

	

Thus, the rule for indicating the correctness of a model is

(correct)

m = (S ,T , I, A, E ,D, Obs) ∧ consistent(m) ∧
H = reduce(Obs) ∧ worstTempCase(m) confH

int spec

models ({correct(m)})
where

reduce(Obs) = {(i1/o1/t1, . . . , in/on/tn)|(a1, i1/o1/t1, . . . , an, in/on/tn, an+1) ∈ Obs}

Now we can consider the conformance of a set of models. A set conforms to the
specification if all the elements do so and the set contains at least one element.
Note that an empty set of models denotes that all the models were inconsistent.

(allCorrect)
models (M) ∧ M �= ∅ ∧ M = {correct(m1), . . . , correct(mn)}

allModelsCorrect

Now that we introduce a correctness criterion. In the next definition, in order
to uniquely denote observations, fresh names are assigned to them. Besides, let us
note that all hypothesis predicates follow the form h ∈ Hyp for some h belonging
to Hyp.

Definition 7. Let spec be a TFSM, Obs be a set of observations, and Hyp be
a set of hypotheses. Let A = {ob = o | ob is a fresh name ∧ o ∈ Obs} and
B = {h1 ∈ Hyp, . . . , hn ∈ Hyp}, where Hyp = {h1, . . . , hn}.

If the deduction rules allow to infer allModelsCorrect from the set of pred-
icates C = A ∪ B, then we say that C logically conforms to spec and we denote
it by C logicConf spec. 	

510 M.G. Merayo, M. Núñez, and I. Rodŕıguez

In order to prove the validity of our method, we have to relate the deductions
obtained by using our logic with the notion of conformance introduced in Defi-
nition 5. The semantics of a predicate is described in terms of the set of TFSMs
that fulfill the requirements given by the predicate; given a predicate p, we de-
note this set by ν(p). Despite the differences, the construction is similar to that
in [2] for classical finite state machines. Let us consider that P is the conjunction
of all the considered observation and hypothesis predicates. Intuitively, the set
ν(P) denotes all the TFSMs that can produce these observations and fulfill these
hypotheses, that is, all the TFSMs that, according to our knowledge, can define
the IUT. So, if our logic deduces that these TFSMs conform to the specification
then the IUT actually conforms to the specification.

Theorem 1. Let spec be a TFSM, Obs be a set of observations, and Hyp be a
set of hypotheses. Let A = {ob = o | ob is a fresh name ∧ o ∈ Obs} �= ∅ and
B = {h1 ∈ Hyp, . . . , hn ∈ Hyp}, where Hyp = {h1, . . . , hn}. Let C = A ∪ B be a
set of predicates and H = reduce(Obs). Then, C logicConf spec iff for all TFSM
M ∈ ν(

∧
p∈C) we have M confH

int spec and ν(
∧

p∈C) �= ∅.

5 Conclusions and Future Work

In this paper we have provided an extension of HOTL to deal with systems
presenting temporal information. What started as a simple exercise, where only
a couple of rules were going to be modified, became a much more difficult task.
As we have already commented, the inclusion of time complicates not only the
original framework, with a more involved definition of the accounting and the
functions that modify it, but adds some new complexity with the addition of
new rules. These new rules have not been included in this paper due to lack of
space, but they can be found in [1]. Regarding future work, the first task is to
show the validity of the method, that is, to formally prove the soundness and
completeness of THOTL. The second task is to construct a stochastic version of
HOTL. Taking the current paper as basis this task should be easy.

References

1. Merayo, M.G., Núñez, M., Rodŕıguez, I.: THOTL: A timed extension of HOTL
(2007), Available at http://kimba.mat.ucm.es/testing/papers/thotl.pdf

2. Rodŕıguez, I., Merayo, M.G., Núñez, M.: HOTL: Hypotheses and observations
testing logic. Journal of Logic and Algebraic Programming (in press, 2007)
http://dx.doi.org/10.1016/j.jlap.2007.03.002

http://kimba.mat.ucm.es/testing/papers/thotl.pdf
http://dx.doi.org/10.1016/j.jlap.2007.03.002

On-the-Fly Model Checking of Fair

Non-repudiation Protocols

Guoqiang Li and Mizuhito Ogawa

Japan Advanced Institute of Science and Technology
Asahidai, Nomi, Ishikawa, 923-1292 Japan

{guoqiang,mizuhito}@jaist.ac.jp

Abstract. A fair non-repudiation protocol should guarantee, (1) when
a sender sends a message to a receiver, neither the sender nor the receiver
can deny having participated in this communication; (2) no principals
can obtain evidence while the other principals cannot do so. This pa-
per extends the model in our previous work [12], and gives a sound and
complete on-the-fly model checking method for fair non-repudiation pro-
tocols under the assumption of a bounded number of sessions. We also
implement the method using Maude. Our experiments automatically de-
tect flaws of several fair non-repudiation protocols.

1 Introduction

Fair non-repudiation protocols intend a reliable exchange of messages in the
situation that each principal can be dishonest, who tries to take advantage of
other principals by aborting the communication or sending fake messages. A
fair non-repudiation protocol needs to ensure two properties, non-repudiation
and fairness. Non-repudiation means that when a sender sends a message to
a receiver, neither the sender nor the receiver can deny participation in this
communication. Fairness means no principals can obtain evidence while the other
principals cannot do so. Difficulties in verifying these security properties come
from various factors of infinity,

– each principal can initiate or respond to an unbounded number of sessions;
– each principal may communicate with an unbounded number of principals;
– each intruder can produce, store, duplicate, hide, or replace an unbounded

number of messages based on the messages sent in the network, following
the Dolev-Yao model [7].

– each dishonest principal may disobey the prescription of the protocol, send-
ing an unbounded number of messages it can generate.

This paper proposes a sound and complete on-the-fly model checking method
for fair non-repudiation protocols under the restriction of a bounded number of
sessions. This method is based on trace analysis. To the best of our knowledge,
this is the first model checking method applied to the non-repudiation property.

To describe non-repudiation protocols, we choose a process calculus based on a
variant of Spi calculus [1]. The calculus uses environment-based communication,
instead of channel-based communication, with the following features.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 511–522, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

512 G. Li and M. Ogawa

– The calculus excludes recursive operations, so that only finitely many ses-
sions are represented.

– To represent an unbounded number of principals, a binder is used to repre-
sent intended destination of messages [12].

– Following the Dolev-Yao model, a deductive system, which can generate
infinitely many messages, is exploited to describe abilities of intruders [3].

– Another deductive system is introduced to generate infinitely many messages
that dishonest principals may produce and send [17].

A finite parametric model is proposed by abstracting/restricting the infini-
ties. It is sound and complete under the restriction of a bounded number of ses-
sions. The on-the-fly model checking on the parametric model is implemented by
Maude, which successfully detects flaws of several fair non-repudiation protocols.

Due to the lack of space, we omit proofs of lemmas and theorems; these can
be found in the extended version [13].

2 Concrete Model for Protocol Description

Assume four countable disjoint sets: L for labels, N for names, B for binder
names and V for variables. Let a, b, c, . . . indicate labels, m, n, A, B, . . . indicate
names, m, n, k, . . . indicate binder names, and let x, y, z, . . . indicate variables.

Definition 1 (Messages). Messages M, N, L . . . in a set M are defined itera-
tively as follows:

pr ::= n | x
M, N, L ::= pr | m[pr, . . . , pr] | (M, N) | {M}L | H(M)

A message is ground, if it does not contain any variables.

A binder, m[pr1, . . . , prn] is a message that can be regarded as a special name
indexed by its parameters. One usage of binders is to denote encryption keys. For
instance, +k[A] and −k[A] represent A’s public key and private key, respectively.

Definition 2 (Processes). Processes in a set P are defined as follows:

P, Q, R ::= 0 | aM.P | a(x).P | [M = N] P | (new x)P | (νn)P |
let (x, y) = M in P | case M of {x}L in P | P + Q | P‖Q

Variables x and y are bound in a(x).P , (new x)P , let (x, y) = M in P , and
case M of {x}L in P . Sets of free variables and bound variables in P are
denoted by fv(P) and bv(P), respectively. A process P is closed if fv(P) = ∅. A
name is free in a process if it is not restricted by a restriction operator ν. Sets of
free names and local names of P are denoted by fn(P) and ln(P), respectively.

A new process, summation P + Q that behaves like P or Q, intends a dishonest
principal that has several choices, such as aborting communication, or running
a recovery stage.

On-the-Fly Model Checking of Fair Non-repudiation Protocols 513

Messages that the environment can generate are started from the current finite
knowledge, denoted by S (⊆ M), and deduced by an environmental deductive
system. Here, we presuppose a countable set E (⊆ M), for those public names
and ground binders, such as each principal’s name, public keys, and intruders’
names. The environmental deductive system is shown in Fig. 1.

S � M
M ∈ E Env

S � M
M ∈ S Ax

S � M S � N

S � (M, N)
Pair intro

S � (M, N)

S � M
Pair elim1

S � (M, N)

S � N
Pair elim2

S � {M}k[A,B] S � k[A, B]

S � M
Senc elim

S � M S � k[A, B]

S � {M}k[A,B]
Senc intro

S � {M}±k[A] S � ∓k[A]

S � M
Penc elim

S � M S � ±k[A]

S � {M}±k[A]
Penc intro

Fig. 1. Environmental deductive system

A process P that describes a dishonest principal A can send out all messages
generated through �, and can also encrypt messages with A’s private key and
shared key. A P -deductive system is defined in Fig. 2.

S � M

S �P M

S �P M

S �P {M}k[A,B]

S �P M

S �P {M}−k[A]

Fig. 2. A P -deductive system

An action is a term of form aM or a(M). It is ground if its attached message
is ground. The messages in a concrete trace s, represented by msg(s), are those
messages in output actions of the concrete trace s. We use s � M to abbreviate
msg(s) � M , and s �P M to abbreviate msg(s) �P M .

Definition 3 (Concrete trace and configuration). A concrete trace s is a
ground action string that satisfies each decomposition s = s′.a(M).s′′ implies
s′ � M , and each s = s′.aM.s′′ implies s′ �P M , where P is a closed process
that contains the label a. ε represents an empty trace. A concrete configuration
is a pair 〈s, P 〉, in which s is a concrete trace and P is a closed process.

The transition relation of concrete configurations is defined by the rules listed in
Fig. 3. Two symmetric forms, (RSUM) of (LSUM), and (RCOM) of (LCOM)
are omitted from the figure. Furthermore, a function Opp is defined for comple-
mental key in decryption and encryption. Thus we have Opp(+k[A]) = −k[A],
Opp(−k[A]) = +k[A] and Opp(k[A, B]) = k[A, B].

For convenience, we say a concrete configuration 〈s, P 〉 reaches 〈s′, P ′〉 , if
〈s, P 〉 −→∗ 〈s′, P ′〉. A concrete configuration is a terminated configuration if no

514 G. Li and M. Ogawa

(INPUT) 〈s, a(x).P 〉 −→ 〈s.a(M), P{M/x}〉 s � M
(OUTPUT) 〈s, aM.P 〉 −→ 〈s.aM, P 〉

(DEC) 〈s, case {M}L of {x}L′ in P 〉 −→ 〈s, P{M/x}〉 L′ = Opp(L)
(PAIR) 〈s, let (x, y) = (M, N) in P 〉 −→ 〈s, P{M/x, N/y}〉
(NEW) 〈s, (new x)P 〉 −→ 〈s, P{M/x}〉 s �P M

(RESTRICTION) 〈s, (νn)P 〉 −→ 〈s, P{m/n}〉 m /∈ fn(P)
(MATCH) 〈s, [M = M]P 〉 −→ 〈s, P 〉

(LSUM) 〈s, P + Q〉 −→ 〈s, P 〉

(LCOM)

〈s, P 〉 −→ 〈s′, P ′〉
〈s, P‖Q〉 −→ 〈s′, P ′‖Q〉

Fig. 3. Concrete transition rules

transition rules can be applied to it. A sequence of consecutive concrete config-
urations is named a path. A concrete configuration 〈s, P 〉 generates a concrete
s′, if 〈s, P 〉 reaches 〈s′, P ′〉 for some P ′.

3 Representing Protocols and Security Properties

3.1 Representing Protocols

For simplicity of representation, we use several convenient abbreviations. Pair
splitting is applied to input and decryption.

a(x1, x2).P � a(x).let (x1, x2) = x in P

case M of {x1, x2}L in P � case M of {x}L in let (x1, x2) = x in P

Similarly, we write let (x1, x2, . . . , xn) = M in P , a(x1, x2, . . . , xn).P , and
case M of {x1, x2, . . . , xn}L in P for tuples of messages.

We will use a simplified variation of Zhou-Gollmann non-repudiation protocol
to illustrate how our system works. The full ZG protocol is proposed in [19].
Note that besides a standard flow description, a fair non-repudiation protocol
also contains a description on what are evidences for participated principals.

A −→ B : {B, NA, {M}K}−KA (1)
B −→ A : {A, NA, {M}K}−KB (2)
A −→ S : {B, NA, K}−KA (3)
S −→ A : {A, B, NA, K}−KS (4)
S −→ B : {A, B, NA, K}−KS (5)

The evidence that A sends the message M to B (referred as M1) is the pair
of messages that B accepted in (1) and (5). In (1), A sends a signed message to
B, and B can confirm that the intended receiver of (1) is B by decrypting it by
the public key +KA. In (5), B checks whether NA in (5) coincides with that in
(1). If they match, B can confirm that the TTP S has received K from A in (3).

On-the-Fly Model Checking of Fair Non-repudiation Protocols 515

Alternatively, the evidence that B receives the message M from A (referred as
M2) is the pair of the messages that A accepted in (2) and (4).

Fresh variables are used to denote the sub-messages that the principal can use
to deceive another principal. These variables are bound by the new primitive.
After receiving messages, each principal may abort the communication. Thus
a summation “ + ” is used to represent nondeterministic choices of a principal.

A � (νNA)(newx1, x2) a1{x1, NA, x2}−k[A]).a2(x3).
case x3 of {x4, x5, x6}+k[x1] in [x4 = A] [x5 = NA] [x6 = x2] (0+

(newx7, x8) a3{x7, x8}−k[A].a4(x9). case x9 of {x10, x11, x12, x13}+k[S]

in [x10 = A] [x11 = x1] [x12 = NA] [x13 = x8].0)

B � b1(y1).case y1 of {y2, y3, y4}+k[A] in[y2 = B] (0+

(new y5) b2{A, y5}−k[B].b3(y6).case y6 of {y7, y8, y9, y10}+k[S] in

[y7 = A] [y8 = B] [y9 = y3].0)

S � s1(z1).case z1 of {z2}+k[z3] in s2{z3, z2}−k[S].s2{z3, z2}−k[S].0

SY SZG �A‖B‖S

3.2 Probing Transformation

Given a process P , the context P [.] is obtained when all occurrences of 0 in P
are replaced by holes, [.]. Let φ(P) be the set of holes in P [.].

Definition 4 (Probing transformation). Given a process P that represents a
protocol, a probing transformation is generated from P , by applying the following
two transformations, and returns a process (named a probing process).

– Declaration process insertion: Let P [.] be the context of P . Given a set ψ ⊆
φ(P), and a message M , Pψ,M is a probing process generated from P , such
that holes in ψ are inserted by the same process c M.0 with a fresh label c
(named declaration process), and holes in φ(P)−ψ are inserted by 0 in P [.].

– Guardian process composition: A probing process Pg is formed of P composed
with a process c(x).0 with a fresh label c (named guardian process), that is,
P‖c(x).0.

Intuitively, declaration process insertion is used to show that a principal can
provide a message M at the end of the session. Guardian process composition is
used to check whether a message is observable in the environment.

3.3 Action Terms

Definition 5. Let α range over the set of actions. Action terms are defined as
follows:

T ::= α | ¬T | T ∧ T | T ∨ T
σ ::= T | T ←↩ T | T ↪→F T

Action terms inductively defined by T are state action terms, and those defined
by σ are path action terms. A state action term is also a path action term.

516 G. Li and M. Ogawa

We define two relations: the relation |=t between a concrete trace and a state
action term, and |= between a concrete configuration and a path action term.

– s |=t α: there exists a ground substitution ρ from variables to ground mes-
sages such that αρ occurs in s.

– s |=t ¬T : s �|=t T .
– s |=t T1 ∧ T2: s |=t T1 and s |=t T2.
– s |=t T1 ∨ T2: s |=t T1 or s |=t T2.
– 〈s, P 〉 |= T : for each concrete trace s′ generated by 〈s, P 〉, s′ |=t T holds.
– 〈s, P 〉 |= T1 ←↩ T2: for each concrete trace s′ generated by 〈s, P 〉, if there is

a ground substitution ρ such that s′ |=t T2ρ, then s′ |=t T1ρ, and T1ρ occurs
before T2ρ in s′.

– 〈s, P 〉 |= T1 ↪→F T2: for each concrete configuration 〈s′, P ′〉 reached by 〈s, P 〉,
if there is a ground substitution ρ such that s′ |=t T1ρ, then for every path
starting from 〈s′, P ′〉, there exists a concrete trace s′′ such that s′′ |=t T2ρ.

3.4 Representing Security Properties

For the simplified ZG protocol, evidences M1 and M2 in Section 3.1 correspond
to the two non-repudiation properties [21,9], respectively.

– Non-repudiation of origin (NRO) is intended to protect against the sender’s
false denial of having sent the messages.

– Non-repudiation of receipt (NRR) is intended to protect against the re-
ceiver’s false denial of having received the message.

The evidence M1 (resp. M2) is the pair of messages in (1) and (5) (resp. (2)
and (4)). In the protocol description, they are messages received at b1 and b3
(resp. a2 and a4) as y1 and y6 (resp. x3 and x9). Then the declaration process
is evidA(y1, y6).0 (resp. evidB(x3, x9).0).

Each process may have several action paths, since it may contain the sum-
mation +. The probing transformation replaces 0 reachable by paths containing
both b1 and b3 (resp. a2 and a4) with the declaration process.

Ap � (νNA)(newx1, x2) a1{x1, NA, x2}−k[A]).a2(x3).
case x3 of {x4, x5, x6}+k[x1] in [x4 = A] [x5 = NA] [x6 = x2] (0+

(newx7, x8) a3{x7, x8}−k[A].a4(x9). case x9 of {x10, x11, x12, x13}+k[S]

in [x10 = A] [x11 = x1] [x12 = NA] [x13 = x8].evidB(x3,x9).0)

Bp � b1(y1).case y1 of {y2, y3, y4}+k[A] in[y2 = B] (0+

(new y5) b2{A, y5}−k[B].b3(y6).case y6 of {y7, y8, y9, y10}+k[S] in

[y7 = A] [y8 = B] [y9 = y3].evidA(y1,y6).0)

SY SZG
p �Ap‖Bp‖S

On-the-Fly Model Checking of Fair Non-repudiation Protocols 517

(PINPUT) 〈ŝ, a(x).P 〉 −→p 〈ŝ.a(x), P 〉
(POUTPUT) 〈ŝ, aM.P 〉 −→p 〈ŝ.aM, P 〉

(PDEC) 〈ŝ, case {M}L of {x}L′ in P 〉 −→p 〈ŝθ, P θ〉
θ = Mgu({M}L, {x}Opp(L′))

(PPAIR) 〈ŝ, let (x, y) = M in P 〉 −→p 〈ŝθ, P θ〉 θ = Mgu((x, y), M)
(PNEW) 〈ŝ, (new x)P 〉 −→p 〈ŝ, P{y/x}〉 y /∈ fv(P) ∪ bv(P)

(PRESTRICTION) 〈ŝ, (νn)P 〉 −→p 〈ŝ, P{m/n}〉 m /∈ fn(P)
(PMATCH) 〈ŝ, [M = M ′]P 〉 −→p 〈ŝθ, P θ〉 θ = Mgu(M, M ′)

(PLSUM) 〈ŝ, P + Q〉 −→p 〈ŝ, P 〉

(PLCOM)

〈ŝ, P 〉 −→p 〈ŝ′, P ′〉
〈ŝ, P‖Q〉 −→p 〈ŝ′, P ′‖Q′〉 Q′ = Qθ if ŝ′ = ŝθ else Q′ = Q

Fig. 4. Parametric transition rules

Characterization 1 (NRO in simplified ZG protocol). Given the descrip-
tion with probing process of simplified ZG protocol, the NRO is satisfied, if

〈ε, SY SZG
p 〉 |= a1{B, x, y}−k[A] ∧ a3{B, x, z}−k[A] ←↩

evidA({B, x, y}−k[A], {A, B, x, z}−k[S])

Characterization 2 (NRR in simplified ZG protocol). Given the descrip-
tion with probing process of simplified ZG protocol, the NRR is satisfied if

〈ε, SY SZG
p 〉 |= evidB({A, x, y}−k[B], {A, B, x, z}−k[S]) ↪→F

b2{A, x, y}−k[B] ∧ s2{A, B, x, z}−k[S]

4 Parametric Simulation

All messages in concrete traces generated by transition rules in Fig. 3 are ground.
In this section, parametric traces, in which irrelevant messages to a protocol
execution are replaced with free variables, are presented.

4.1 Parametric Model

Definition 6 (Parametric trace and configuration). A parametric trace ŝ
is a string of actions. A parametric configuration is a pair 〈ŝ, P 〉, in which ŝ is
a parametric trace and P is a process.

The transition relation of parametric configurations [3] is given by the rules listed
in Fig. 4. Two symmetric forms (PRSUM) of (PLSUM), and (PRCOM) of
(PLCOM) are omitted from the figure. A function Mgu(M1, M2) returns the
most general unifier of M1 and M2.

Definition 7 (Concretization and abstraction). Given a parametric trace
ŝ, if there exists a substitution ϑ that assigns each parametric variable to a ground

518 G. Li and M. Ogawa

message, and which satisfies s = ŝϑ, where s is a concrete trace, we say that s
is a concretization of ŝ and ŝ is an abstraction of s. ϑ is named a concretized
substitution.

According to the definition of parametric configurations, a concrete configuration
〈ε, P 〉 is also a parametric configuration. We name it an initial configuration.
From an initial configuration, each concrete trace has an abstraction generated
by parametric transition rules. On the other hand, if a parametric trace has a
concretization, then the concretization is generated by concrete transition rules.
Otherwise the parametric trace cannot be instantiated to any concrete trace.

Theorem 1. (Soundness and completeness) Let 〈ε, P 〉 be an initial configura-
tion, and let s be a concrete trace. 〈ε, P 〉 generates s, if and only if there exists
ŝ, such that 〈ε, P 〉 −→∗

p 〈ŝ, P ′〉 for some P ′, and s is a concretization of ŝ.

4.2 Satisfiable Normal Form

Theorem 1 shows that each concrete trace generated by an initial configuration
has an abstraction. However, a parametric trace may or may not have concretiza-
tions.

Example 1. Consider a naive protocol, A sends a message {A, M}KAB to B.
There exists a parametric trace b1({A, x}k[A,B]). Since k[A, B] was not leaked to
the environment, before A or B sends an encrypted message protected by k[A, B],
B cannot accept any message encrypted by k[A, B]. Thus, the parametric trace
b1({A, x}k[A,B]) has no concretizations.

We name a message like {A, x}k[A,B] a rigid message. A rigid message is the
pattern of a requirement of an input action. The requirement can only be satisfied
by the messages generated by a proper principal. If there are no appropriate
messages satisfying the requirement, the parametric trace has no concretizations.

Definition 8 (Rigid message). Given a parametric trace ŝ, {N}L in M is a
rigid message if

– M is included in an input action such that ŝ = ŝ′.a(M).ŝ′′, and
• if L is a shared key or a private key, then ŝ′ �� L and ŝ′ �� {N}L;
• if L is a public key, then there exists a rigid message, or at least one

name or binder in N , which cannot be deduced by the ŝ′, and ŝ′ �� {N}L.
– M is included in an output action such that ŝ = ŝ′.a M.ŝ′′, and

• {N}L satisfies the above three conditions, and
• L is not known by the principal that contains the label a.

A parametric trace with a rigid message needs to be further substituted by trying
to unify the rigid message to the atomic messages in output actions of its prefix
parametric trace. Such unification procedures will terminate because the number
of atomic messages in the output actions of its prefix parametric trace is finite.
We name these messages elementary messages, and use el(ŝ) to represent the
set of elementary messages in ŝ.

Given a parametric trace ŝ and a message N , we say N is ρ̂-unifiable in ŝ, if
there exists N ′ ∈ el(ŝ) such that ρ̂ = Mgu(N, N ′).

On-the-Fly Model Checking of Fair Non-repudiation Protocols 519

Definition 9 (Deductive relation). Let ŝ be a parametric trace such that
ŝ = ŝ1.l(M).ŝ2, in which l is an input or an output label. If there exists a rigid
message N in M such that N �∈ el(ŝ1), and N is ρ̂-unifiable in ŝ1, then ŝ � ŝρ̂.

For two parametric traces ŝ and ŝ′, if ŝ �∗ ŝ′ and there is no ŝ′′ that satisfies
ŝ′ � ŝ′′, we name ŝ′ the normal form of ŝ. The set of normal forms of ŝ is
denoted by nf�(ŝ). “A parametric trace has concretizations” is equivalent to
there exists a parametric trace in its nf�(ŝ) that has concretizations.

Lemma 1. Let ŝ be a parametric trace, and let ŝ′ be a normal form in nf�(ŝ).
ŝ′ has a concretization, if and only if, for each decomposition ŝ′ = ŝ′1.l(M).ŝ′2 in
which l is either an input label or an output label, each rigid message N in M
satisfies N ∈ el(ŝ′1).

A satisfiable normal form is a normal form of ŝ that satisfies the requirements
in Lemma 1. snf�(ŝ) denotes the set of satisfiable normal forms of ŝ.

Theorem 2. A parametric trace ŝ has a concretization iff snf�(ŝ) �= ∅.

4.3 Simulation on a Parametric Model

Definition 10. Let T be a state action term, and let ŝ be a parametric trace that
has concretizations. We say ŝ |=t T , if for each concretization s of ŝ, s |=t T .

Definition 11. Let σ be a path action term, and let 〈ŝ, P 〉 be a parametric
configuration, where ŝ has concretizations. We say 〈ŝ, P 〉 |= σ, if for each con-
cretization s of ŝ, where s = ŝϑ, 〈ŝϑ, Pϑ〉 |= σ.

An action α is ρ̂-unifiable in a parametric trace ŝ if the parametric message in
α can be unified to the message attached to the same label as α in ŝ, and ρ̂ is
the result of the unification.
Lemma 2. Given a parametric trace ŝ,

1. ŝ |=t α if and only if, α is ρ̂-unifiable in ŝ, and for each satisfiable normal
form in snf�(ŝρ̂) satisfying ŝρ̂ρ̂′, αρ̂ρ̂′ occurs in ŝρ̂ρ̂′.

2. ŝ |=t ¬α if and only if snf�(ŝρ̂) = ∅ when α is ρ̂-unifiable in ŝ.
3. For any state action term T , ŝ |=t T is decidable.

Theorem 3. Given an initial configuration 〈ε, P 〉,
1. Given a state action term T , 〈ε, P 〉 |= T , if and only if for each parametric

trace ŝ generated by 〈ε, P 〉, ŝ |=t T .
2. Given two state action terms T1 and T2, 〈ε, P 〉 |= T2 ←↩ T1, if and only if for

each parametric trace ŝ generated by 〈ε, P 〉, if T1 is ρ̂-unifiable in ŝ, then for
each normal form in snf�(ŝρ̂) satisfying ŝρ̂ρ̂′, T2ρ̂ρ̂′ occurs before T1ρ̂ρ̂′.

3. Given two state action terms T1 and T2, 〈ε, P 〉 |= T1 ↪→F T2, if and only
if for each parametric configuration 〈ŝ′, P ′〉 reached by 〈ε, P 〉, if T1 is ρ̂-
unifiable in ŝ′, then for each terminated parametric configuration 〈ŝ′′ρ̂, P ′′ρ̂〉
reached by 〈ŝ′ρ̂, P ′ρ̂〉, either ŝ′′ρ̂ cannot deduce any satisfiable normal forms,
or T2ρ̂ρ̂′ occurs in each satisfiable normal form ŝ′′ρ̂ρ̂′ in snf�(ŝ′ρ̂).

Actually, Theorem 3 implicitly shows the algorithm to check whether a system
satisfies a path action term.

520 G. Li and M. Ogawa

5 Experimental Results

We implement the on-the-fly model checking method using Maude [6], since
Maude can describe model generation rules by equational rewriting, instead of
describing a model directly. Thus each property can be checked at the same time
when a model is generated. It is named an on-the-fly model checking method.

Due to the space limitation, we have only explained the non-repudiation
property. Fairness for fair non-repudiation protocols [17,9] that is classified into
FAIRO, FAIRR, and FAIRM, is presented in the extended version [13].

In experiments with one session bound, the attacks for NRO, FAIRO and
FAIRM of simplified ZG protocol were detected automatically. For comparison,
we also implemented the analysis for the full ZG protocol, which guarantees
those three properties 1. We also tested some protocols proposed by the ISO [8].

The results are summarized in Fig. 5, in which the column “protocol spec.” is
the number of lines for a protocol specific part. In addition to these lines, each
Maude file also contains about 400 lines for the common description.

protocols property protocol spec. states times(ms) flaws

Simplified ZG protocol NRO 50 513 3,954 detected
NRR 50 780 3,905 secure

FAIRO 55 770 2,961 detected
FAIRR 55 846 3,903 secure
FAIRM 50 4,109 45,545 detected

Full ZG protocol NRO 50 633 7,399 secure
FAIRO 55 788 3,394 secure
FAIRM 60 788 3,490 secure

ISO/IEC13888-2 M2 NRO 50 1,350 7,710 detected
FAIRO 65 1,977 6,827 detected
FAIRR 65 2,131 7,506 secure

ISO/IEC13888-3 M-h FAIRO 60 295 918 detected
FAIRR 60 305 1,040 secure

Fig. 5. Experimental results

The experiments were carried out using Maude 2.2, and were performed on a
Pentium 1.4 GHz, 1.5 GB memory PC, under Windows XP.

6 Related Work

Gavin Lowe first used trace analysis on process calculus CSP, and implemented
a model-checker FDR to discover numerous attacks [14,15]. In his work, the
intruder was represented as a recursive process. He restricted the state space to
be finite by imposing upper-bounds upon messages generated by intruders, and
also upon the number of principals in the network.
1 For formal definitions of the properties of full ZG protocol, refer to [17].

On-the-Fly Model Checking of Fair Non-repudiation Protocols 521

Many of our ideas are inspired by Michele Boreale’s symbolic approach [3].
In his research, he restricted the number of principals and intruders, and repre-
sented that each principal explicitly communicates with an intruder. Our model
finitely describes an unlimited number of principals and intruders in the network.

David Basin et al. proposed an on-the-fly model checking method (OFMC) [4].
In their work, an intruder’s messages are instantiated only when necessary,
known as lazy intruder, which is similar to the use of a rigid message in our
model. Unlike our method, an intruder’s role is explicitly assigned. This is ef-
ficient, but the process needs to be performed several times to ensure that no
intruders can attack a protocol in any roles.

Schneider proposed a trace analysis to prove non-repudiation and fairness
properties of the ZG protocol based on CSP [17]. He used a deductive system to
describe a dishonest principal and failures of a process to define these properties.
We borrow the idea of the dishonest principal description from his research.

Jianying Zhou et al. proposed several non-repudiation protocols, and proved
their correctness by SVO logic in their papers and book [19,20,21]. We use their
definition for non-repudiation in this paper.

G. Bella and L. Paulson extended their previous Isabelle/HOL theorem prov-
ing approach for authentication property [2,16] to the ZG protocol, and proved
the correctness of its non-repudiation and fairness properties [5]. The approach
need not restrict the number of states to be finite, yet cannot be fully automated.

There were several studies based on game-theoretic model checking method on
the fairness property. S. Kremer firstly analyzed several protocols, and also sum-
marized and compared many formal definitions of fairness in his thesis [11]. Re-
cently, D. Kähler et al. proposed a more powerful AMC-model checking method
for verifying the fairness property [10].

V. Shmatikov et al. analyzed fairness of two contract signing protocols based
on a finite-state model checker Murϕ [18]. His model was limited to a bounded
number of sessions and principals, and bounded number of messages that an
intruder generates. We have released the bounds for principals and messages,
using a parametric abstraction on an unlimited number of messages.

7 Conclusion

This paper proposed a sound and complete on-the-fly model checking method
for fair non-repudiation protocols under the restriction of a bounded number
of sessions. It extended our previous work [12] to handle all infinity factors of
fair non-repudiation protocols. We implemented the method using Maude. It
successfully detected the flaws of several examples automatically.

Our future work will be: First, to extend the method with pushdown model
checking for recursive processes, so that a protocol with infinitely many sessions
can be analyzed. Second, to check properties of other kinds of fair exchange pro-
tocols, such as digital contract signing protocols, and certified e-mail protocols.

Acknowledgements. The authors thank Dr. Yoshinobu Kawabe for discus-
sions. This research is supported by the 21st Century COE “Verifiable and

522 G. Li and M. Ogawa

Evolvable e-Society” of JAIST, funded by Japanese Ministry of Education, Cul-
ture, Sports, Science and Technology.

References

1. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Cal-
culus. In: Proceedings of the CCS 1997, pp. 36–47. ACM Press, New York (1997)

2. Bella, G.: Inductive Verification of Cryptographic Protocols. PhD thesis, University
of Cambridge (2000)

3. Boreale, M.: Symbolic Trace Analysis of Cryptographic Protocols. In: Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 667–681.
Springer, Heidelberg (2001)

4. Basin, D., Mödersheim, S., Viganò, L.: OFMC: A Symbolic Model Checker for
Security Protocols. International J. of Information Security 4(3), 181–208 (2005)

5. Bella, G., Paulson, L.C.: A Proof of Non-repudiation. In: Christianson, B., Crispo,
B., Malcolm, J.A., Roe, M. (eds.) SPW 2001. LNCS, vol. 2467, pp. 119–125.
Springer-Verlag, Heidelberg (2002)

6. Clavel, M., Durán, F., Eker, S., Lincolnand, P., Mart́ı-Oliet, N., Meseguer, J.,
Talcott, C.: Maude Manual (2005), http://maude.cs.uiuc.edu/maude2-manual/

7. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Trans. on
Information Theory 29, 198–208 (1983)

8. ISO/IEC13888: Information Technology - Security Techniques - Non-repuduation
- Part 1–Part 3 (1997)

9. Kremer, S., Markowitch, O., Zhou, J.: An Intensive Survey of Fair Non-repudiation
Protocols. Computer Communications 25, 1606–1621 (2002)

10. Käehler, D., Küesters, R., Truderung, T.: Infinite State AMC-Model Checking for
Cryptographic Protocols. In: Proceedings of the LICS 2007 (2007)

11. Kremer, S.: Formal Analysis of Optimistic Fair Exchange Protocols. PhD thesis,
Universite Libre de Bruxelles (2003)

12. Li, G., Ogawa, M.: On-the-fly Model Checking of Security Protocols and Its Im-
plementation by Maude. IPSJ Trans. on Programming 48 (SIG 10) 50–75 (2007)

13. Li, G., Ogawa, M.: On-the-fly Model Checking of Fair Non-repudiation Protocols
(extended version) (2007) http://www.jaist.ac.jp/∼guoqiang/Fullnon.pdf

14. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-key Using FDR.
In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166.
Springer, Heidelberg (1996)

15. Lowe, G.: Some New Attacks upon Security Protocols. In: Proceedings of the
CSFW 1996, pp. 162–169. IEEE Computer Society Press, Los Alamitos (1996)

16. Paulson, L.C.: The Inductive Approach to Verifying Cryptographic Protocols. J.
of Computer Security 6, 85–128 (1998)

17. Schneider, S.: Formal Analysis of a Non-repudiation Protocol. In: Proceedings of
the CSFW 1998, pp. 54–65. IEEE Computer Society Press, Los Alamitos (1998)

18. Shmatikov, V., Mitchell, J.C.: Finite-state Analysis of Two Contract Signing Pro-
tocols. Theoretical Computer Science 283, 419–450 (2002)

19. Zhou, J., Gollmann, D.: A Fair Non-repudiation Protocol. In: Proceedings of the
S&P 1996, pp. 55–61. IEEE Computer Society Press, Los Alamitos (1996)

20. Zhou, J., Gollmann, D.: Towards Verification of Non-repudiation Protocols. In:
Proceedings of 1998 International Refinement Workshop and Formal Methods Pa-
cific, pp. 370–380. Springer, Heidelberg (1998)

21. Zhou, J.: Non-repudiation in Electronic Commerce. Artech House (2001)

http://maude.cs.uiuc.edu/maude2-manual/
http://www.jaist.ac.jp/~guoqiang/Fullnon.pdf

Model Checking

Bounded Prioritized Time Petri Nets

Bernard Berthomieu, Florent Peres, and François Vernadat

LAAS-CNRS, Université de Toulouse, Toulouse, France
fax: +33 (0)5.61.33.64.11; Tel.: +33 (0)5.61.33.63.63

{Bernard.Berthomieu,Florent.Peres,Francois.Vernadat}@laas.fr

Abstract. In a companion paper [BPV06], we investigated the expres-
siveness of Time Petri Nets extended with Priorities and showed that it
is very close to that Timed Automata, in terms of weak timed bisimilar-
ity. As a continuation of this work we investigate here the applicability
of the available state space abstractions for Bounded Time Petri Nets to
Bounded Prioritized Time Petri Nets. We show in particular that a slight
extension of the “strong state classes” construction of [BV03] provides
a convenient state space abstraction for these nets, preserving mark-
ings, states, and LTL formulas. Interestingly, and conversely to Timed
Automata, the construction proposed does not require to compute poly-
hedra differences.

1 Introduction

Since their introduction in [Mer74], Time Petri nets (TPN for short) have been
widely used for the specification and verification of systems in which time plays
an essential role like communication protocols, hardware, or realtime systems.

TPNs extend Petri nets with temporal intervals associated with transitions,
specifying firing delay ranges for the transitions. Assuming transition t became
last enabled at time θ, and the end-points of its time interval are α and β, then
t cannot fire earlier than time θ + α and must fire no later than θ + β, unless
disabled by firing some other transition. Firing a transition takes no time.

Finite state space abstractions for bounded TPN ’s, preserving various classes
of properties, can be computed in terms of so-called state classes [BM83] [BD91]
[YR98] [BV03] [Had06]. State classes abstract sets of states by a marking and a
polyhedron capturing temporal information. The polyhedra can be represented
by difference systems, built and compared in polynomial time.

Though priorities are pervasive in some families of realtime systems, they are
not supported by the Time Petri Net models, and cannot be generally encoded
within. In a companion paper [BPV06] we proposed an extension of TPNs with
Priorities: in a Prioritized TPN (PrTPN for short) a transition is not allowed
to fire if some transition with higher priority is firable at the same instant. We
then proved that priorities strictly extend the expressiveness of Time Petri nets,
and in particular that Bounded PrTPNs can be considered equivalent to Timed
Automata, in terms of weak timed bisimularity.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 523–532, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

524 B. Berthomieu, F. Peres, and F. Vernadat

As a continuation of this work, we investigate in this paper state space abstrac-
tions for Bounded Prioritized Time Petri Nets. We first explain why the classical
”state classes” construction of [BM83] is unable to cope with priorities. Then, we
show that a minor extension of the ”strong state classes” construction of [BV03]
(also called ”state zones” by some authors) is a suitable state space abstraction,
preserving the markings, states, and the formulas of linear time temporal logics
of the state space of PrTPNs. A refinement of this construction also preserves
the CTL properties of the state space. Interestingly, and conversely to the con-
structions proposed for model checking Prioritized Timed Automata [LHHC05],
[DHLP06], the constructions required for PrTPNs preserve convexity of state
classes; they do not require to compute expensive polyhedra differences.

The paper is organized as follows. Section 2 recalls the definition, semantics
and main properties of Prioritized Time Petri Nets. Section 3 discusses their state
space abstractions; not all available abstractions for TPNs can be extended to
cope with priorities. The modeling power of PrTPNs and the capabilities of the
proposed abstractions is illustrated in Section 4 by a simple scheduling example.
Finally, related work and some side-issues are discussed in Section 5.

2 Time Petri Nets with Priorities

2.1 Definition

Let I+ be the set of non empty real intervals with non negative rational end-
points. For i ∈ I+, ↓ i denotes its left end-point, and ↑ i its right end-point, or
∞ if i is unbounded. For any θ ∈ IR+, let i

�– θ = {x − θ|x ∈ i ∧ x ≥ θ}.

Definition 1. [BPV06] A Prioritized Time Petri Net (PrTPN for short) is a
tuple 〈P,T,Pre,Post, 	, m0, Is〉 in which:

– 〈P,T,Pre,Post, m0〉 is a Petri net. P is the set of places, T is the set of
transitions, m0 is the initial marking, and Pre, Post : T → P → IN+ are
the precondition and postcondition functions, respectively.

– Is : T → I+ is the static interval function.
– 	 is the priority relation, assumed irreflexive, asymmetric and transitive.

TPNs extend PNs with the static Interval function Is, PrTPNs extend TPNs
with the priority relation 	 on transitions. Priorities will be represented by
directed arcs between transitions, the source transition having higher priority.

For f, g : P → N+, f ≥ g means (∀p ∈ P)(f(p) ≥ g(p)) and f{+|−}g maps
f(p){+|−}g(p) with every p. A marking is a function m : P → N+. A transition
t ∈ T is enabled at m iff m ≥ Pre(t).

Definition 2. A state of a TPN is a pair s = (m, I) in which m is a marking
and I is a function called the interval function. Function I : T → I+ associates
a temporal interval with every transition enabled at m.

The temporal components in states can be conveniently seen as firing domains,
rather than interval functions: The firing domain of state (m, I) is the set of real
vectors {φ|(∀k)(φ

k
∈I(k))}.

Model Checking Bounded Prioritized Time Petri Nets 525

2.2 Semantics

Definition 3. The semantics of a PrTPN 〈P,T,Pre,Post, 	, m0, Is〉 is the
timed transition system 〈S, s0, �〉 where:

– S is the set of states (m, I) of the PrTPN
– s0 = (m0, I0) is the initial state, where m0 is the initial marking and I0 is

the static interval function Is restricted to the transitions enabled at m0.
– � ⊆ S × T ∪ IR+ × S is the state transition relation, defined as follows

((s, a, s′) ∈ � is written s
a� s′):

• Discrete transitions: we have (m, I) t� (m′, I ′) iff t ∈ T and:
1) m ≥ Pre(t)
2) 0 ∈ I(t)
3) (∀t′ ∈ T)(m ≥ Pre(t) ∧ (t′ 	 t) ⇒ 0 /∈ I(t′))
4) (∀k ∈ T)(m′ ≥ Pre(k) ⇒

I ′(k) = if k �= t ∧ m − Pre(t) ≥ Pre(k) then I(k) else Is(k))
• Continuous transitions: we have (m, I) θ� (m, I ′) iff θ ∈ IR+ and:

5) (∀k ∈ T)(m ≥ Pre(k) ⇒ θ ≤↑ I(k))
6) (∀k ∈ T)(m ≥ Pre(k) ⇒ I ′(k) = I(k) �– θ)

Transition t may fire from (m, I) if t is enabled at m, firable instantly, and no
transition with higher priority satisfies these conditions. In the target state, the
transitions that remained enabled while t fired (t excluded) retain their intervals,
the others are associated with their static intervals. A continuous transition by
θ is possible iff θ is not larger than the right endpoint of any enabled transition.

This definition differs from that used for Time Petri nets [BPV06] by the
addition of condition (3), that prevents a transition to fire when some other
transition also firable instantly has higher priority. Note that priorities do not
modify the time-elapsing rules: all enabled transitions k are considered in con-
dition (5), whether or not t has priority over k.

The State Graph of a PrTPN is the timed transition system SG = (S, s0, �).
From the properties of continuous transitions, any sequence of transitions of SG
ending with a discrete transition is equivalent to a sequence alternating delay
and discrete transitions, called a firing schedule or a time transition sequence.

Following [BM83], an alternative definition of the state space is often used for
TPNs, capturing only the states reachable by some firing schedule. It amounts
to interpret time-elapsing as nondeterminism. The Discrete State Graph of a
PrTPN is the triple DSG = (S, s0, →), with →⊆ S × T × S and:

s
t→ s′ ⇔ (∃θ)(∃s′′)(s θ� s′′ ∧ s′′ t� s′).

Any state of SG which is not in DSG is reachable from some state of DSG
by a continuous transition. Both the SG and DSG are dense graphs: states may
have uncountable numbers of successors.

A property of the state graphs of PrTPNs is worth to be mentioned: As in
TPNs, but conversely to Timed Automata, at least one of the enabled transitions
at a state is guaranteed to be firable after some delay. Time-elapsing may only
increase the number of firable transitions and temporal deadlocks cannot happen.

526 B. Berthomieu, F. Peres, and F. Vernadat

2.3 Properties

Boundedness: A PN is bounded if the marking of each place is bounded,
boundedness implies finiteness of the set of reachable markings. Boundedness
is undecidable for TPNs, and thus for PrTPNs, but there are a number of
decidable and convenient sufficient conditions for this property [BM83], [BV07].

Composability: Adding to their definition a labeling of transitions by actions,
a product operator can be defined for Prioritized Time Petri Nets. Under certain
restrictions, this product is compositional in the sense that the semantics of a
product of PrTPNs is equal to the product of their semantics [BPV06]. Com-
positional verification in presence of priorities has been investigated in length in
a more general framework in [GS03] and other works by these authors.

Expressiveness: It was shown in [BCH+05] that bounded TPNs are equivalent
to Timed automata (TAs for short) in terms of language acceptance, but that
TAs are strictly more expressive in terms of weak timed bisimilarity. Adding pri-
orities to TPNs preserves their expressiveness in terms of language acceptance,
but strictly increases their expressiveness in terms of weak timed bisimilarity:
it is shown in [BPV06] that any TA with invariants of the form ∧i(ki ≤ ci) is
weak time bisimilar to some bounded PrTPN , and conversely.

To illustrate this result, let us consider the TA and nets in the figure below.
As shown in [BCH+05], no TPN is weakly timed bisimilar with TA (a). In
particular, the TPN (b) is not: when at location q0 in the TA, time can elapse of
an arbitrary amount, while time cannot progress beyond 1 in TPN (b). Consider
now the PrTPN (c), in which t ≺ t′. Transition t′ is silent and is firable at any
time greater than 1, transition t bears label a and the default interval [0, ∞[. t
may fire at any time not larger than 1, but not later, since t′ is then firable and
it has priority over t. Indeed, PrTPN (c) is weakly timed bisimilar with TA (a).

3 State Space Abstractions for PrTPNs

The state graphs of PrTPNs are generally infinite, even when bounded. To
model check PrTPNs, one needs finite abstractions of their state graphs. If G is

Model Checking Bounded Prioritized Time Petri Nets 527

some state space, A some abstraction of it, and f a logical formula of the family
one wish to preserve, then we must have G |= f iff A |= f . Traditionally, we will
focus on abstractions of the DSG rather than the SG.

For Time Petri nets, state space abstractions are available that preserve mark-
ings (including deadlocks) [BV07], markings and all traces [BM83], [BD91], states
[BH06], states and traces [BV03], [Had06], and states, traces and branching prop-
erties [YR98], [BV03], [BH06]. We investigate in this section extensions of these
abstractions to Prioritized Time Petri Nets, when applicable.

3.1 Abstractions Preserving Markings and Traces

Definition 4. For each firable sequence σ ∈ T∗, let Cσ be the set of states
inductively defined by: Cε ={s0} and Cσ.t ={s′|(∃s∈Cσ)(s t−→s′)}

Cσ the set of states reached in the discrete state graph by firing schedules of
support sequence σ. Each state of the DSG is in some Cσ. For each such set
Cσ, let M(Cσ) be the marking of any state in Cσ (all states in Cσ bear the
same marking), and F(Cσ) be the union of the firing domains of all states in
Cσ. Finally, let Cσ

∼= Cσ′ iff M(Cσ) = M(Cσ′) and F(Cσ) = F(Cσ′).
The classical state class construction of [BM83], [BD91], termed SCG in the

sequel, stems from the observation that, if Cσ
∼= Cσ′ , then any firing schedule

firable from some state in Cσ is firable from state in Cσ′ , and conversely. The
state classes of [BM83] denote the above sets Cσ, for all firable sequences σ,
considered modulo equivalence ∼=. The set of classes is equipped with a transition
relation: Cσ

t−→ X ⇔ Cσ.t
∼= X , it is finite iff the net is bounded.

The SCG is a convenient abstraction for LTL model checking, it preserves
the markings and traces of the net. A weaker abstraction, only preserving mark-
ings, is obtained from the SCG by merging the classes related by inclusion
of their firing domains. Unfortunately, both these abstractions are too coarse
to preserve the effects of priorities. In fact, the founding observation that sets
of states equivalent by ∼= have same futures in terms of firing schedules sim-
ply does not hold in presence of priorities, as illustrated by the following
example.

Firing t0 or t1 in the above net leads to the same SCG class. Now, because t3
has higher priority than t2 and remains enabled while t0 or t1 fires, t2 can never
fire after t0, and may only fire after t1 if t1 fired earlier than time 1.

528 B. Berthomieu, F. Peres, and F. Vernadat

3.2 Abstractions Preserving States and Traces

The previous SCG construction considers the sets Cσ in Definition 4 mod-
ulo equivalence ∼=. In contrast, the strong state classes construction (SSCG
for short) proposed in [BV03], also called state zones by some authors, exactly
coincides with those sets Cσ. For building the SSCG, one first needs a canonical
representation for the sets Cσ, clock domains serve this purpose.

Clock domains: With each reachable state, one may associate a clock func-
tion γ. Function γ associates with each transition enabled at the state the time
elapsed since it was last enabled. Clock functions may also be seen as vectors γ
indexed over the transitions enabled.

In the SSCG construction, a class is represented by a marking and a clock
system, but classes still denote sets of states as in Definition 2 (defined from
interval functions). The set of states denoted by a marking m and a clock system
Q={Gγ ≤ g} is the set {(m, Φ(γ))|γ ∈ 〈Q〉}, where 〈Q〉 is the solution set of Q
and firing domain Φ(γ) is the solution set in φ of:

0 ≤ φ , e ≤ φ + γ ≤ l where ek = ↓Is(k) and lk = ↑Is(k)

Each clock vector denotes a state, but, unless the static intervals of all transi-
tions are bounded, different clock vectors may denote the same state, and clock
systems with different solution sets (possibly an infinity) may denote the same
set of states. For this reason we introduce equivalence ≡:

Definition 5. Given c = (m, Q = {Gγ ≤ g}) and c′ = (m′, Q′ = {G′γ′ ≤ g′}),
let c ≡ c′ iff m = m′ and clock systems Q and Q′ denote the same sets of states.

Equivalence ≡ is clearly decidable, efficient methods for checking it are discussed
e.g. in [BV03] and [Had06], relying upon some relaxations of clock systems. When
the static intervals of all transitions are bounded, ≡ reduces to equality of the
solution sets of the clock systems.

Construction of the SSCG: Strong state classes are represented by a marking
m and a system Q = {Gγ ≤ g} describing a clock domain for the enabled
transitions. Clock variable γ

i
is associated with the ith transition enabled at m.

The first step in the computation of a successor class, when building the
SSCG, is to determine which transitions are firable from the current class. In
absence of priorities, transition t is firable from some state in class (m, Q) iff
there is some delay θ ∈ IR+ such that, augmented by θ, the clocks of all en-
abled transitions are not larger than the right endpoint of their respective static
intervals, and within that interval for transition t:

(a1) θ ≥ 0
(a2) θ + γ

t
∈ Is(t)

(a3) (∀i �= t)(m ≥ Pre(i) ⇒ θ + γ
i
≤ ↑Is(i))

Model Checking Bounded Prioritized Time Petri Nets 529

In presence of priorities, a fourth condition must be added, asserting that no
enabled transition with higher priority than t is firable at θ:

(a4) (∀i)(m ≥ Pre(i) ∧ i 	 t ⇒ θ + γ
i
�∈ Is(i))

θ + γ
i
�∈ Is(i) holds iff θ + γ

i
> ↑Is(t) or θ + γ

i
< ↓Is(t), but the former case

may not happen since it contradicts condition (a3). The SSCG for a PrTPN
is built as for a TPN , just augmenting the enabling conditions as explained:

Algorithm 1. Computing the Strong State Class Graph with Priorities
– Rε = (m0, {0 ≤ γ

t
≤ 0 | m0 ≥ Pre(t)})

– If σ is firable and Rσ = (m,Q) then σ.t is firable iff
(i) m ≥ Pre(t)
(ii) Q augmented with

θ ≥ 0 , θ ≥ ↓Is(t) − γ
t

{θ ≤ ↑Is(i) − γ
i

| m ≥ Pre(i)}
{θ < ↓Is(j) − γ

j
| m ≥ Pre(j) ∧ j � t}

is consistent
– If σ.t is firable then Rσ.t = (m′, Q′) is computed from Rσ = (m,Q):

m’ = m - Pre(t) + Post(t)
Q’ obtained by :
(a) A new variable is introduced, θ, constrained by (ii) above;
(b) ∀k ∈ T : m′ ≥ Pre(k), introduce a new variable γ′

k
, such that:

γ′
k

= γ
k

+ θ if k
= t ∧ m − Pre(t) ≥ Pre(k)

0 ≤ γ′
k

≤ 0 otherwise
(c) The variables γ and θ are eliminated.

The temporary variable θ stands for the possible delays after which t can
fire. There is an arc labeled t between Rσ and c iff c ≡ Rσ.t. As for Time
Petri Nets, the SSCG of a PrTPN is finite iff the net is bounded. The clock
systems are difference systems, for which canonical forms can be computed here
in time complexity O(n2), following the observation of [Rok93] that they can
be computed incrementally. The SSCG preserves all traces of the net and also
permits to decide state reachability [BV07].

Compared to the methods proposed for model checking Prioritized Timed
Automata [LHHC05] [DHLP06], Algorithm 1 does not require the expensive
(O(n4)) DBM subtractions mandatory there. As was explained, this follows from
the fact that time-elapsing in PrTPNs is bounded by the smallest of the dead-
lines of the enabled transitions, whatever the priority relation.

3.3 Abstractions Preserving Branching Properties

The branching properties are those one can express in branching time temporal
logics like CTL, or modal logics like HML or the μ-calculus. Neither the SCG
(for TPNs) nor the SSCG (for TPNs or PrTPNs) preserve these properties.

530 B. Berthomieu, F. Peres, and F. Vernadat

An abstraction preserving branching properties of the DSG was first proposed
in [YR98], called the Atomic state class graph (ASCG for short), for the subclass
of TPNs in which all transitions have bounded static intervals. An alternative
construction was proposed in [BV03], in which the ASCG is obtained from the
SSCG of the net by a partition refinement process. This construction remains
applicable to PrTPNs, it can be summarized as follows.

Bisimilarity is known to preserve branching properties. Let → be a binary
relation over a finite set U , and for any S ⊆ U , let S−1 = {x|(∃y ∈ S)(x → y)}.
A partition P of U is stable if, for any pair (A, B) of blocks of P , either A ⊆ B−1

or A ∩ B−1 = ∅. Computing a bisimulation, starting from an initial partition
P of states, is computing a stable refinement of P [ACH+92]. In our case, a
suitable initial partition of the state space is the set of classes of the SSCG (it is
a cover rather than a partition, but the method remains applicable). Computing
the ASCG is computing a stable refinement of the SSCG, the technical details
can be found in [BV03], [BV07].

4 An Example: Rate Monotonic Scheduling

This example illustrates the use of priorities for expressing scheduling policies
on systems of tasks. The system is made of three realtime tasks, to be scheduled
by a rate monotonic policy, the corresponding PrTPN is shown in Figure 1.

Task i has the following transitions:

Pi Periodically generates a token in place newPi, representing a new
period event from which a task will be released,

Ri Marks the task release, i.e. the instant at which the task enter its
idle state and waits to be started. Updates its state from donei to
notdonei,

Si Starts the task, changes its state from idlei to execi,
Ei Completes the task: frees the resource and restores its state to donei,

DLi Signals a deadline miss, occuring when the task is still executing and
a new period event is generated.

A scheduler in a realtime system is often coded by a policy, which tells, when
the unpoliticized system is nondeterministic, how to resolve this nondeterminism.
The rate monotonic policy gives priorities to tasks according to their period
value, the task with smaller period having the highest priority. The policy is
expressed here using priorities. In this example, the upper task has the smallest
period (3), followed by the middle task (5), and the lower task (11).

Thus, the RM policy requires here that every transition of T1 that can
lead to a state enabling Si in zero time has to possess a higher priority than
all the corresponding transitions in T2, and similarly for T2 and T3. That is
P1, R1, S1 	 P2, R2, S2 	 P3, R3, S3 (to preserve readability, priorities are omit-
ted in Figure 1). This priority relation represents exactly the RM policy.

Algorithm 1 has been implemented and integrated in an experimental ver-
sion of the T ina toolbox [BRV04]. For this example, the unprioritized SSCG,
computed by T ina for the net with priorities removed, is unbounded. Taking

Model Checking Bounded Prioritized Time Petri Nets 531

Fig. 1. A task system (P1, R1, S1 � P2, R2, S2 � P3, R3, S3)

priorities into account, the tool builds a finite SSCG with 557 state classes
and 671 transitions. All markings are safe (the places hold at most one token)
and it can be checked on the graph produced that no deadline miss can occur
(transitions DLi are dead).

5 Conclusion

The results presented in this paper increase the range of systems one can repre-
sent and analyze using Time Petri nets and similar models. Beside their modeling
convenience, priorities do extend the expressiveness of Time Petri nets. Further,
it has been shown that Prioritized Petri nets can be analyzed with methods
similar to the well known state class based methods for Time Petri nets. These
methods are easy to implement and have a tractable complexity.

As mentioned in the text, analyzing Prioritized Time Petri nets does not
require to use polyhedra differences, adding priorities to TPNs does not augment
the complexity of computation of classes.

The version of Prioritized TPNs introduced in this paper makes use of the
simplest possible notion of priority: static priorities. Technically, nothing

532 B. Berthomieu, F. Peres, and F. Vernadat

prevents to replace it by more flexible notions of priorities like dynamic priorities
depending on markings.

References

[ACH+92] Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D.L., Wong-Toi, H.: Mini-
mization of timed transition systems. In: Cleaveland, W.R. (ed.) CONCUR
1992. LNCS, vol. 630, pp. 340–354. Springer, Heidelberg (1992)

[BCH+05] Bérard, B., Cassez, F., Haddad, S., Roux, O.H., Lime, D.: Comparison
of the Expressiveness of Timed Automata and Time Petri Nets. In: Pet-
tersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 211–225.
Springer, Heidelberg (2005)

[BD91] Berthomieu, B., Diaz, M.: Modeling and verification of time dependent
systems using time Petri nets. IEEE Tr. on Soft. Eng. 17(3), 259–273 (1991)

[BH06] Boucheneb, H., Hadjidj, R.: Using inclusion abstraction to construct
atomic state class graphs for time petri nets. International Journal of Em-
bedded Systems 2(1/2) (June 2006)

[BM83] Berthomieu, B., Menasche, M.: An enumerative approach for analyzing
time Petri nets. IFIP Congress Series 9, 41–46 (1983)

[BPV06] Berthomieu, B., Peres, F., Vernadat, F.: Bridging the gap between timed
automata and bounded time petri nets. In: Asarin, E., Bouyer, P. (eds.)
FORMATS 2006. LNCS, vol. 4202, pp. 82–97. Springer, Heidelberg (2006)

[BRV04] Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool TINA – construction
of abstract state spaces for Petri nets and time Petri nets. International
Journal of Production Research 42(14), 2741–2756 (2004)

[BV03] Berthomieu, B., Vernadat, F.: State class constructions for branching anal-
ysis of time Petri nets. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003.
LNCS, vol. 2619, pp. 442–457. Springer, Heidelberg (2003)

[BV07] Berthomieu, B., Vernadat, F.: State Space Abstractions for Time Petri
Nets. In: Lee, I., Leung, J.Y.T., Son, S. (eds.) Handbook of Real-Time and
Embedded Systems, CRC Press, Boca Raton (2007)

[DHLP06] David, A., H̊akansson, J., Larsen, K.G., Pettersson, P.: Model checking
timed automata with priorities using DBM subtraction. In: Asarin, E.,
Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 128–142. Springer,
Heidelberg (2006)

[GS03] Goessler, G., Sifakis, J.: Priority systems. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp.
314–329. Springer, Heidelberg (2004)

[Had06] Hadjidj, R.: Analyse et validation formelle des systèmes temps réel. PhD
Thesis, EcolePolytechniquedeMontréal,Univ. deMontréal (February 2006)

[LHHC05] Lin, S.-W., Hsiung, P.-A., Huang, C.-H., Chen, Y.-R.: Model checking
prioritized timed automata. In: Peled, D.A., Tsay, Y.K. (eds.) ATVA 2005.
LNCS, vol. 3707, pp. 370–384. Springer, Heidelberg (2005)

[Mer74] Merlin, P.M.: A Study of the Recoverability of Computing Systems. PhD
Thesis, Irvine (1974)

[Rok93] Rokicki, T.G.: Representing and Modeling Circuits. PhD Thesis, Stanford
Univ. Stanford, CA (1993)

[YR98] Yoneda, T., Ryuba, H.: CTL model checking of Time Petri nets using
geometric regions. IEEE Trans. on Inf. and Systems E99-D(3), 1–10 (1998)

Using Patterns and Composite Propositions to

Automate the Generation of LTL Specifications

Salamah Salamah, Ann Q. Gates, Vladik Kreinovich, and Steve Roach

Dept. of Computer Science, University of Texas at El Paso
El Paso, TX 79968, USA

Abstract. Property classifications and patterns, i.e., high-level abstrac-
tions that describe common behavior, have been used to assist practi-
tioners in generating formal specifications that can be used in formal
verification techniques. The Specification Pattern System (SPS) provides
descriptions of a collection of patterns. Each pattern is associated with
a scope that defines the extent of program execution over which a prop-
erty pattern is considered. Based on a selected pattern, SPS provides a
specification for each type of scope in multiple formal languages includ-
ing Linear Temporal Logic (LTL). The (Prospec) tool extends SPS by
introducing the notion of Composite Propositions (CP), which are clas-
sifications for defining sequential and concurrent behavior to represent
pattern and scope parameters.

In this work, we provide definitions of patterns and scopes when de-
fined using CP classes. In addition, we provide general (template) LTL
formulas that can be used to generate LTL specifications for all combi-
nations of pattern, scope, and CP classes.

1 Introduction

Although the use of formal verification techniques such as model checking [4]
and runtime monitoring [8] improve the dependability of programs, they are not
widely adapted in standard software development practices. One reason for the
hesitance in using formal verification is the high level of mathematical sophisti-
cation required for reading and writing the formal specifications required for the
use of these techniques [3].

Different approaches and tools such as the Specification Pattern System (SPS)
[2] and the Property Specification Tool (Prospec) [5] have been designed to pro-
vide assistance to practitioners in generating formal specifications. Such tools
and approaches support the generation of formal specifications in multiple for-
malizations. The notions of patterns, scopes, and composite propositions (CP)
have been identified as ways to assist users in defining formal properties. Pat-
terns capture the expertise of developers by describing solutions to recurrent
problems. Scopes on the other hand, allow the user to define the portion of
execution where a pattern is to hold.

The aforementioned tools take the user’s specifications and provide formal
specifications that matches the selected pattern and scope in multiple formaliza-
tions. SPS for example provides specifications in Linear Temporal Logic (LTL)

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 533–542, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

534 S. Salamah et al.

and computational Tree Logic (CTL) among others. On the other hand, Prospec
provides specifications in Future Interval Logic (FIL) and Meta-Event Definition
Language (MEDL). These tools however, do not support the generation of spec-
ifications that use CP in LTL. The importance of LTL stems from its expressive
power and the fact that it is widely used in multiple formal verification tools.
This work provides a set of template LTL formulas that can be used to specify
a wide range of properties in LTL.

The paper is organized as follows: Section 2 provides the background related
information including description of LTL and the work that has been done to
support the generation of formal specifications. Section 3 highlights the problems
of generating formal specifications in LTL. Sections 4 and 5 provide the general
formal definitions of patterns and scopes that use CP. Section 6 motivates the
need for three new LTL operators to simplify the specifications of complex LTL
formulas. Last, the general LTL template formulas for the different scopes are
described followed by summary and future work.

2 Background

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) is a prominent formal specification language that
is highly expressive and widely used in formal verification tools such as the model
checkers SPIN [4] and NUSMV [1]. LTL is also used in the runtime verification
of Java programs [8].

Formulas in LTL are constructed from elementary propositions and the usual
Boolean operators for not, and, or, imply (neg, ∧, ∨, →, respectively). In addi-
tion, LTL allows for the use of the temporal operators next (X), eventually (�),
always (�), until, (U), weak until (W), and release (R). In this work, we only
use the first four of these operators. These formulas assume discrete time, i.e.,
states s = 0, 1, 2, . . . The meaning of the temporal operators is straightforward.
The formula XP holds at state s if P holds at the next state s + 1. P U Q is
true at state s, if there is a state s′ ≥ s at which Q is true and, if s′ is such a
state, then P is true at all states si for which s ≤ si < s′. The formula �P is
true at state s if P is true at some state s′ ≥ s. Finally, the formula �P holds
at state s if P is true at all moments of time s′ ≥ s. Detailed description of LTL
is provided by Manna et al. [6].

2.2 Specification Pattern System (SPS)

Writing formal specification, particularly those involving time, is difficult. The
Specification Pattern System [2] provides patterns and scopes to assist the prac-
titioner in formally specifying software properties. These patterns and scopes
were defined after analyzing a wide range of properties from multiple industrial
domains (i.e., security protocols, application software, and hardware systems).
Patterns capture the expertise of developers by describing solutions to recur-
rent problems. Each pattern describes the structure of specific behavior and

Using Patterns and CP to Automate the Generation 535

Table 1. Description of CP Classes in LTL

CP Class LTL Description (P LTL)
AtLeastOneC p1 ∨ . . . ∨ pn

AtLeastOneE (¬p1 ∧ . . . ∧ ¬pn) ∧ ((¬p1 ∧ . . . ∧ ¬pn) U (p1 ∨ . . . ∨ pn))
ParallelC p1 ∧ . . . ∧ pn

ParallelE (¬p1 ∧ . . . ∧ ¬pn) ∧ ((¬p1 ∧ . . . ∧ ¬pn) U (p1 ∧ . . . ∧ pn))
ConsecutiveC (p1 ∧ X(p2 ∧ (. . . (∧Xpn)) . . .))
ConsecutiveE (¬p1 ∧ . . .∧¬pn)∧ ((¬p1 ∧ . . .∧¬pn) U (p1 ∧¬p2 ∧ . . .∧¬pn ∧X(p2 ∧¬p3 ∧

. . . ∧ ¬pn ∧ X(. . . ∧ X(pn−1 ∧ ¬pn ∧ Xpn)) . . .))
EventualC (p1 ∧ X(¬p2 U (p2 ∧ X(. . . ∧ X(¬pn−1 U (pn−1 ∧ X(¬pn U pn)))) . . .))))
EventualE (¬p1 ∧ . . .∧¬pn)∧ ((¬p1 ∧ . . .∧¬pn) U (p1 ∧¬p2 ∧ . . .∧¬pn ∧ ((¬p2 ∧ . . .∧

¬pn) U (p2 ∧ ¬p3 ∧ . . . ∧ ¬pn ∧ (. . . ∧ (pn−1 ∧ ¬pn ∧ (¬pn U pn)) . . .)))))

defines the pattern’s relationship with other patterns. Patterns are associated
with scopes that define the portion of program execution over which the prop-
erty holds.

The main patterns defined by SPS are: Universality, Absence, Existence,
Precedence, and Response. In SPS, each pattern is associated with a scope
that defines the extent of program execution over which a property pattern is
considered. There are five types of scopes defined in SPS: Global, Before R,
After L, Between L And R, and After L Until R. A detailed description of
these patterns and scopes can be found in Dewyer [2].

2.3 Composite Propositions (CP)

The idea of CP was introduced by Mondragon et al. [5] to allow for patterns
and scopes to be defined using multiple propositions. In practical applications,
we often need to describe properties where one or more of the pattern or scope
parameters are made of multiple propositions, i.e., composite propositions (CP).
For example, the property that every time data is sent at state si the data is
read at state s1 ≥ si, the data is processed at state s2, and data is stored at
state s3, can be described using the Existence(P) pattern within the Between
L and R scope. In this example L stands for “data is sent”, R stands for ’date
is stored’ and P is composed of p1 and p2 (data is read and data is processed,
respectively).

To describe such patterns, Mondragon et al. [5] extended SPS by in-
troducing a classification for defining sequential and concurrent behavior to
describe pattern and scope parameters. Specifically, the work formally de-
scribed several types of CP classes and provided formal descriptions of these
CP classes in LTL. Mondragon et al defined eight CP classes and de-
scribed their semantics using LTL. The eight CP classes defined by that
work are AtLeastOneC , AtLeastOneE , ParallelC , ParallelE, ConsecutiveC ,
ConsecutiveE, EventualC , and EventualE . The subscripts C and E describe
whether the propositions in the CP class are asserted as Conditions or Events

536 S. Salamah et al.

respectively. A proposition defined as a condition holds in one or more consec-
utive states. A proposition defined as event means that there is an instant at
which the proposition changes value in two consecutive states.

This work modified the LTL description of the CP classes AtLeastOneE ,
EventualC , and EventualE. The work changed the the semantics of the
AtLeastOneE class to one that is more consistent with the other CP classes
of type E. The LTL description of the other two CP classes were modified to
a semantically equivalent LTL formulas. Table 1. provides the semantics of the
CP classes used in this paper in LTL.

3 Problem with Direct Substitution

Although SPS provides LTL formulas for basic patterns and scopes (ones that
use single, “atomic”, propositions to define L, R, P, and Q) and Mondragon
et al. provided LTL semantics for the CP classes as described in Table 1., in
most cases it is not adequate to simply substitute the LTL description of the
CP class into the basic LTL formula for the pattern and scope combination.
Consider the following property: “The delete button is enabled in the main
window only if the user is logged in as administrator and the main window
is invoked by selecting it from the Admin menu.”. This property can be de-
scribed using the Existence(EventualC(p1, p2)) Before(r) where p1 is “the
user logged in as an admin”, p2 is “the main window is invoked”, and r is
“the delete button is enabled”. As mentioned above, the LTL formula for the
Existence(P)Before(R) is “(�¬R) ∨ (¬R U (P ∧ ¬R))”, and the LTL formula
for the CP class EventualC , as described in Table 1, is (p1∧X(¬p2 U p2)). By re-
placing P by (p1 ∧X(¬p2 U p2)) in the formula for the pattern and scope, we get
the formula: “(�¬R)∨(¬R U ((p1 ∧X(¬p2 U p2))∧¬R))” This formula however,
asserts that either R never holds or R holds after the formula (p1 ∧X(¬p2 U p2))
becomes true. In other words, the formula asserts that it is an acceptable be-
havior if R (“the delete button is enabled”) holds after p1 (“the user logged in
as an admin”) holds and before p2 (“the main window is invoked”) holds, which
should not be an acceptable behavior.

As seen by the above example, the temporal nature of LTL and its operators
means that direct substitution could lead to the description of behaviors that
do not match the actual intent of the specifier. For this reason, it is necessary to
provide abstract LTL formulas that can be used as templates for the generation
of LTL specifications for all patterns, scopes, and CP classes combinations, which
is the goal of this paper.

4 Patterns Defined with Composite Propositions

As we mentioned in Section 2.2, Dwyer et al. defined the notions of patterns
and scopes to assist in the definition of formal specifications. Patterns provide
common solutions to recurring problems, and scopes define the extent of program
execution where the pattern is evaluated. In this work we are concerned with

Using Patterns and CP to Automate the Generation 537

the following patterns: the absence of P , the existence of P , Q precedes P , Q
strictly precedes P , and Q responds to P .

Note that the strict precedence pattern was defined by Mondragon et al. [5],
and it represents a modification of the precedence pattern as defined by Dwyer
et al. The following subsections describe these patterns when defined using single
and composite propositions.

The absence of P means that the (single or composite) property P never
holds, i.e., for every state s, P does not hold at s. In the case of CP classes, this
simply means that PLTL (as defined in Table 1 for each CP class) is never true.
The LTL formula corresponding to the absence of P is:

�¬PLTL

The existence of P means that the (single or composite) property P holds at
some state s in the computation. In the case of CP classes, this simply means that
PLTL is true at some state of the computation. The LTL formula corresponding
to the existence of P is:

�PLTL

For single proposition, the meaning of “precedes”, “strictly precedes”, and
“responds” is straightforward. To extend the meanings of these patterns to ones
defined using CP, we need to explain what “after” and “before” mean for the
case of CP. While single propositions are evaluated in a single state, CP, in
general, deal with a sequence of states or a time interval (this time interval may
be degenerate, i.e., it may consist of a single state). Specifically, for every CP
P = T (p1, . . . , pn), there is a beginning state bP – the first state in which one
of the propositions pi becomes true, and an ending state eP – the first state in
which the condition T is fulfilled. For example, for ConsecutiveC , the ending
state is the state s+(n−1) when the last statement pn holds; for AtLeastOneC ,
the ending state is the same as the beginning state – it is the first state when
one of the propositions pi holds for the first time.

For each state s and for each CP P = T (p1 . . . , pn) that holds at this state s,
we will define the beginning state bP (s) and the ending state eP (s). The following
is a description of bP and eP for the CP classes of types condition and event
defined in Table 1 (to simplify notations, wherever it does not cause confusion,
we will skip the state s and simply write bP and eP):

• For the CP class P = AtLeastOneC(p1, . . . , pn) that holds at state s, we
take bP (s) = eP (s) = s.

• For the CP class P = AtLeastOneE(p1, . . . , pn) that holds at state s, we
take, as eP (s), the first state s′ > s at which one of the propositions pi

becomes true and we take bP (s) = (eP (s) − 1).
• For the CP class P = ParallelC(p1, . . . , pn) that holds at state s, we take

bP (s) = eP (s) = s.
• For the CP class P = ParallelE(p1, . . . , pn) that holds at state s, we take,

as eP (s), the first state s′ > s at which all the propositions pi become true
and we take bP (s) = (eP (s) − 1).

538 S. Salamah et al.

• For the CP class P = ConsecutiveC(p1, . . . , pn) that holds at state s, we
take bP (s) = s and eP (s) = s + (n − 1).

• For the CP class P = ConsecutiveE(p1, . . . , pn) that holds at state s, we
take, as bP (s), the last state s′ > s at which all the propositions were
false and in the next state the proposition p1 becomes true, and we take
eP (s) = s′ + (n).

• For the CP class P = EventualC(p1, . . . , pn) that holds at state s, we take
bP (s) = s, and as eP (s), we take the first state sn > s in which the last
proposition pn is true and the previous propositions p2, . . . , pn−1 were true
at the corresponding states s2, . . . , sn−1 for which s < s2 < . . . < sn−1 <
sn.

• For the CP class P = EventualE(p1, . . . , pn) that holds at state s, we take
as bP (s), the last state state s1 at which all the propositions were false and
in the next state the first proposition p1 becomes true, and as eP (s), the
first state sn in which the last proposition pn becomes true.

Using the notions of beginning and ending states, we can give a precise defini-
tions of the Precedence, Strict Precedence, and Response patterns with Global
scope:

Definition 1. Let P and Q be CP classes. We say that Q precedes P if once P
holds at some state s, then Q also holds at some state s′ for which eQ(s′) ≤ bP (s).
This simply indicates that Q precedes P iff the ending state of Q is the same as
the beginning state of P or it is a state that happens before the beginning state
of P .

Definition 2. Let P and Q be CP classes. We say that Q strictly precedes P
if once P holds at some state s, then Q also holds at some state s′ for which
eQ(s′) < bP (s). This simply indicates that Q strictly precedes P iff the ending
state of Q is a state that happens before the beginning state of P .

Definition 3. Let P and Q be CP classes. We say that Q responds to P if
once P holds at some state s, then Q also holds at some state s′ for which
bQ(s′) ≥ eP (s). This simply indicates that Q responds to P iff the beginning
state of Q is the same as the ending state of P or it is a state that follows the
ending state of P .

5 Non-global Scopes Defined with Composite
Propositions

So far we have discussed patterns within the “Global” scope. In this Section, we
provide a formal definition of the other scopes described in Section 2.2.

We start by providing formal definitions of scopes that use CP as their
parameters1.
1 These definitions use the notion of beginning state and ending state as defined in

Section 4.

Using Patterns and CP to Automate the Generation 539

• For the “Before R” scope, there is exactly one scope – the interval
[0, bR(sf)), where sf is the first state when R becomes true. Note that
the scope contains the state where the computation starts, but it does not
contain the state associated with bR(sf).

• For the scope “After L”, there is exactly one scope – the interval
[eL(sf), ∞), where sf is the first state in which L becomes true. This scope,
includes the state associated with eL(sf).

• For the scope “Between L and R”, a scope is an interval [eL(sL), bR(sR)),
where sL is the state in which L holds and sR is the first state > eL(sL)
when R becomes true. The interval contains the state associated with
eL(sL) but not the state associated with bR(sR).

• For the scope “After L Until R”, in addition to scopes corresponding to
“Between L and R”, we also allow a scope [eL(sL), ∞), where sL is the
state in which L holds and for which R does not hold at state s > eL(sL).

Using the above definitions of scopes made up of CP, we can now define what
it means for a CP class to hold within a scope.

Definition 4. Let P be a CP class, and let S be a scope. We say that P s-
holds (meaning, P holds in the scope S) in S if PLTL holds at state sp ∈ S and
eP (sP) ∈ S (i.e. ending state eP (sp) belongs to the same scope S).

Table 2 provides a formal description of what it means for a pattern to hold
within a scope.

6 Need for New Operations

To describe LTL formulas for the patterns and scopes with CP, we need to define
new “and” operations. These operations will be used to simplify the specification
of the LTL formulas in Section 7.

In non-temporal logic, the formula A ∧ B simply means that both A and B
are true. In particular, if we consider a non-temporal formula A as a particular
case of LTL formulas, then A means simply that the statement A holds at the
given state, and the formula A ∧ B means that both A and B hold at this same
state.

In general a LTL formula A holds at state s if some “subformulas” of A hold in
s and other subformulas hold in other states. For example, the formula p1 ∧Xp2
means that p1 holds at the state s while p2 holds at the state s + 1; the formula
p1 ∧ X � p2 means that p1 holds at state s and p2 holds at some future state
s2 > s, etc. The statement A ∧ B means that different subformulas of A hold at
the corresponding different states but B only holds at the original state s. For
patterns involving CP, we define an “and” operation that ensures that B holds
at all states in which different subformulas of A hold. For example, for this new
“and” operation, (p1 ∧Xp2) and B would mean that B holds both at the state s
and at the state s+1 (i.e. the correct formula is (p1 ∧B ∧X(p2 ∧B))). Similarly,
(p1∧X �p2) and B should mean that B holds both at state s and at state s2 > s

540 S. Salamah et al.

Table 2. Description of Patterns Within Scopes

Pattern Description
Existence We say that there is an existence of P within a scope S if P s-holds at some

state within this scope.
Absence We say that there is an absence of P within a scope S if P never s-holds at

any state within this scope.
Precedence We say that Q precedes P within the scope s if once P s-holds at some state

s, then Q also s-holds at some state s′ for which eQ(s′) ≤ bP (s).
Strict
Precedence

We say that Q strictly precedes P within the scope s if once P s-holds at
some state s, then Q also s-holds at some state s′ for which eQ(s′) < bP (s).

Response We say that Q responds to P within the scope s if once P s-holds at some
state s, then Q also s-holds at some state s′ for which bQ(s′) ≥ eP (s).

when p2 holds. In other words, we want to state that at the original state s, we
must have p1 ∧ B, and that at some future state s2 > s, we must have p2 ∧ B.
This can be described as (p1 ∧ B) ∧ X � (p2 ∧ B).

To distinguish this new “and” operation from the original LTL operation ∧,
we will use a different “and” symbol & to describe this new operation. However,
this symbol by itself is not sufficient since people use & in LTL as well; so, to
emphasize that our “and” operation means “and” applied at several different
moments of time, we will use a combination &r of several & symbols.

In addition to the A&r, B operator, we will also need two more operations:

• The new operation A&l B will indicate that B holds at the last of A-
relevant moments of time.

• The new operation A&−l B will indicate that B holds at the all A-relevant
moments of time except for the last one.

For the lack of space, this paper does not include the detailed description of
these new LTL operators. The formal descriptions of these LTL operators along
with examples of their use is provided by Salamah [7].

7 General LTL Formulas for Patterns and Scopes with
CP

Using the above mentioned new LTL operators, this work defined template LTL
formulas that can be used to define LTL specifications for all pattern/scope/CP
combinations. The work defined three groups of templates; templates to gen-
erates formulas for the Global scope, templates to generate formulas for the
BeforeR scope, and templates to generate formulas for the remaining scopes.
The templates for these remaining scopes use the templates for the Global and
BeforeR scopes. For the lack of space, we show an example template LTL for-
mula from each of these three groups. The remaining templates are available in
Salamah [7].

Using Patterns and CP to Automate the Generation 541

An example of a template LTL formula within the Global scope, is the tem-
plate LTL formula for Q Responds to P :

• �(PLTL → (PLTL &l � QLTL))

An example of a template LTL formula within the Before R scope, is the tem-
plate LTL formula for Q Precedes PC Before RC :

• (�RLTL) → ((¬(PLTL&r¬RLTL))U ((QLTL&−l¬PLTL) ∨ RLTL))

Finally, template formulas for the three remaining scopes can be constructed
based on the templates for the Global and BeforeR scopes. The formulas for
the AfterL scope can be built using the formulas for the Global scope as follows:

• ¬((¬LLTL)U (LLTL&l¬PLTL
G))

This means that for any pattern, the formula for this pattern within the
ASfterL scope can be generated using the above formula and simply substitut-
ing the term PLTL

G by the formula for that pattern within the Global scope.
In these examples and the remaining templates, the subscripts C and E at-

tached to each CP indicates whether the CP class is of type condition or event,
respectively. In the case where no subscript is provided, then this indicates that
the type of the CP class is irrelevant and that the formula works for both types
of CP classes.

8 Summary and Future Work

The work in this paper provided formal descriptions of the different compos-
ite propositions (CP) classes defined by Mondragon et al. [5]. In addition, we
formally described the patterns and scopes defined by Dweyer et al. [2] when
using CP classes. The main contribution of the paper is defining general LTL
formulas that can be used to generate LTL specifications of properties defined
by patterns, scopes, and CP classes. The general LTL formulas for the Global
scope have been verified using formal proofs [7]. On the other hand, formulas for
the remaining scopes were verified using testing and formal reviews [7].

The next step in this work consists of providing formal proofs for formulas
of the remaining scopes. In addition, we aim at enhancing the Prospec tool by
including the generation of LTL formulas that use the translations provided by
this paper.

Acknowledgments. This work is funded in part by the National Science Foun-
dation (NSF) through grant NSF EAR-0225670, by Texas Department of Trans-
portation grant No. 0-5453, and by the Japan Advanced Institute of Science and
Technology (JAIST) International Joint Research Grant 2006-08. The authors
are thankful to the anonymous referees for important suggestions.

542 S. Salamah et al.

References

[1] Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: a new Symbolic
Model Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
Springer, Heidelberg (1999)

[2] Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specification for
Finite State Verification. In: Proceedings of the 21st international conference on
Software engineering, Los Angeles, CA, pp. 411–420 (1999)

[3] Hall, A.: Seven Myths of Formal Methods. IEEE Software 11(8) (1990)
[4] Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley Professional, Reading (2004)
[5] Mondragon, O., Gates, A.Q.: Supporting Elicitation and Specification of Software

Properties through Patterns and Composite Propositions. Intl. Journal Software
Engineering and Knowledge Engineering 14(1) (2004)

[6] Manna, Z., Pnueli, A.: Completing the Temporal Picture. Theoretical Computer
Science 83(1), 97–130 (1991)

[7] Salamah, I.S.: Defining LTL formulas for complex pattern-based software prop-
erties, University of Texas at El Paso, Department of Computer Science, PhD
Dissertation, July (2007)

[8] Stolz, V., Bodden, E.: Temporal Assertions using AspectJ. In: Fifth Workshop on
Runtime Verification (July 2005)

Pruning State Spaces with Extended Beam Search

Mohammad Torabi Dashti and Anton J. Wijs

CWI, Amsterdam
{dashti,wijs}@cwi.nl

Abstract. This paper focuses on using beam search, a heuristic search algorithm,
for pruning state spaces while generating. The original beam search is adapted to
the state space generation setting and two new search variants are devised. The
resulting framework encompasses some known algorithms, such as A∗. We also
report on two case studies based on an implementation of beam search in μCRL.

1 Introduction

State space explosion is still a major problem in the area of model checking. Over the
years a number of techniques have emerged to prune, while generating, parts of the state
space that are not relevant given the task at hand. Some of these techniques, such as par-
tial order reduction algorithms (e.g. see [8]), guarantee that no essential information is
lost after pruning. Alternatively, this paper focuses mainly on heuristic pruning methods
which heavily reduce the generation time and memory consumption but generate only
an approximate (partial) state space. The idea is that a user-supplied heuristic function
guides the generation such that ideally only relevant parts of the state space are actually
explored. This is, in fact, at odds with the core idea of model checking when studying
qualitative properties of systems, i.e. to exhaustively search the complete state space to
find any corner case bug. However, heuristic pruning techniques can very well target
performance analysis problems as approximate answers are usually sufficient.

In this paper, we investigate how beam search can be integrated into the state space
generation setting. Beam search (BS) is a heuristic method for combinatorial optimisa-
tion problems, which has extensively been studied in artificial intelligence and opera-
tions research, e.g. see [9,12]. BS is similar to breadth-first search as it progresses level
by level through a highly structured search tree containing all possible solutions to a
problem, but it does not explore all the encountered nodes. At each level, all the nodes
are evaluated using a heuristic cost (or priority) function but only a fixed number of
them is selected for further examination. This aggressive pruning heavily decreases the
generation time, but may in general miss essential parts of the search tree, since wrong
decisions may be made while pruning. Therefore, BS has so far been mainly used in
searching trees with a high density of goal nodes. Scheduling problems, for instance,
have been perfect targets for using BS as their goal is to optimally schedule a certain
number of jobs and resources, while near-optimal schedules, which densely populate
the tree, are in practice good enough.

The idea of using BS in state space generation is an attempt towards integrating
functional analysis, to which state spaces are usually subjected, and quantitative anal-
ysis. Since model checkers, such as SPIN, UPPAAL and μCRL, which generate these

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 543–552, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

544 M. Torabi Dashti and A.J. Wijs

state spaces, usually have highly expressive input languages, BS for state spaces can
be applied in a more general framework compared to its traditional use. Applying BS
to search state spaces tightly relates to directed model checking (DMC) [3] and guided
model checking (for timed automata) [1], where heuristics are used to guide the search
for finding counter-examples to a functional property (usually in LTL) with a minimal
exploration of the state space. Using A∗ [3] and genetic algorithms [5] to guide the
search are among notable works in this field. In contrast to DMC, we generate a partial
state space in which an arbitrary property can be checked afterwards (the result would
not be exact, hence being useful when near-optimal solutions suffice). However, there
are strong similarities as well: A∗ can be seen as an instantiation of BS (see § 3.4).

Contributions. We motivate and thoroughly discuss adapting the BS techniques to deal
with arbitrary structures of state spaces. Next, we extend the classic BS in two direc-
tions. First, we propose flexible BS, which, broadly speaking, does not stick to a fixed
number of states to be selected at each search level. This partially mitigates the problem
of determining this exact fixed number in advance. Second, we introduce the notion of
synchronised BS, which aims at separating the heuristic pruning phase from the under-
lying exploration strategy. Combinations of these variants create a spectrum of search
algorithms that, as will be described, encompasses some known search techniques, such
as A∗. We have implemented these variants of BS in the μCRL state space generation
toolset [2]. Experimental results for two scheduling case studies are reported.

Road map. BS is described in § 2. § 3 deals with the adaptation of existing BS vari-
ants to the state space generation setting. There we also propose our extensions to BS.
Memory management and choosing heuristics are also discussed there. § 4 reports on
two case studies, § 5 presents our related work and § 6 concludes the paper.

2 Beam Search

Beam search [9,12] is a heuristic search algorithm for combinatorial optimisation prob-
lems, which has extensively been applied to scheduling problems, for example in sys-
tems designed for job shop environments [12].

BS is similar to breadth-first search as it progresses level by level. At each level of the
search tree (in § 3 we extend BS to handle cycles), it uses a heuristic evaluation function
to estimate the promise of encountered nodes1, while the goal is to find a path from the
root of the tree to a leaf node that possesses the minimal evaluation value among all
the leafs. In each level, only the β most promising nodes are selected for further exam-
ination and the other nodes are permanently discarded. The beam width parameter β is
fixed to a value before searching starts. Because of this aggressive pruning the search
time is a linear function of β and is thus heavily decreased. However, since wrong deci-
sions may be made while pruning, BS is neither complete, i.e. is not guaranteed to find
a solution when there is one, nor optimal, i.e. does not guarantee finding an optimal
solution. To limit the possibility of wrong decisions, β can be increased at the cost of
increasing the required computational effort and memory.

1 In this section we use nodes and edges, as opposed to states and transitions, to distinguish
between the traditional setting of BS and our adaptations.

Pruning State Spaces with Extended Beam Search 545

Two types of evaluation functions have traditionally been used for BS [12]: priority
evaluation functions and total-cost evaluation functions, which lead to the priority and
detailed BS variants, respectively. In priority BS at each node the evaluation function
calculates a priority for each successor node and selects based on those priorities. At the
root of the search tree, up to β most promising successors (i.e. those with the highest
priorities) are selected, while in each subsequent level only one successor with the high-
est priority is selected per examined node. In detailed BS at each node the evaluation
function calculates an estimate of the total-cost of the best path that can be found con-
tinuing from the current node. At each level up to β most promising nodes (i.e. those
with the lowest total-cost values) are selected regardless of who their parent nodes are.
When β → ∞, detailed and priority BS behave as exhaustive breadth-first search.

3 Adapting Beam Search for State Space Generation

Motivation. In its traditional setting, BS is typically applied on highly structured search
trees, which contain all possible orderings of a given number of jobs, e.g. see [7,14].
Such a search tree starts with n jobs to be scheduled, which means that the root of the
tree has n outgoing transitions. Each node has exactly n− k outgoing transitions, where
k is the level in the tree where the node appears. State spaces, however, supposedly con-
tain information on all possible behaviours of a system. Therefore, they may contain
cycles, confluence of traces, and have more complex structures than the well-structured
search trees usually subjected to BS. This necessitates modifying the BS techniques to
deal with arbitrary structures of state spaces. Moreover, the BS algorithms search for a
particular node (or schedule) in the search space, while in (and after) generating state
spaces one might desire to study a property beyond simple reachability. We therefore
extend BS to a state space generation (SSG) setting, as opposed to its traditional set-
ting that focuses only on searching. The notion of a particular “goal” (cf. § 2) is thus
removed from the adapted BS (see § 3.5 for possible optimisations when restricting BS
to verify reachability properties). This along with the necessary machinery for handling
cycles raise memory management issues in BS, that we discuss in § 3.5.

Below, DBS and PBS correspond, respectively, to the detailed and priority beam
searches extended to deal with arbitrary state spaces (§ 3.1 and § 3.2). The F and S
prefixes refer to the flexible and synchronised variants (§ 3.3 and § 3.4). we start with
introducing labelled transition systems.

Labelled transition system. (LTS) is a tuple (Σ ,s0,Act,Tr), where Σ is a set of states,
s0 ∈ Σ is the initial state, Act is a finite set of action labels and Tr ⊆ Σ × Act × Σ . We
write s a−−→ s′ when (s,a,s′) ∈ Tr. In this paper we consider LTSs with finite Σ .

3.1 Priority Beam Search for State Space Generation

Below we first present the PBS algorithm and then describe and motivate the changes
that we have made to the traditional priority BS.

PBS is shown in figure 1. The sets Current, Next and Expanded denote, respectively,
the set of states of the current level, the next level and the set of states that have been

546 M. Torabi Dashti and A.J. Wijs

expanded. The user-supplied function priority : Act → Z provides the priority of ac-
tions, as opposed to states.2 We motivate this deviation by noting that jobs in the BS
terminology correspond more naturally with actions in LTSs.

Current := {s0}
Expanded := /0; Buffer := /0
level := 0; limit := α
while Current \Expanded �= /0 do

Next := /0
for all s ∈ Current \Expanded do

for all s a−−→ s′ ∈ en(s) do
if priority(a) > priomin(Buffer) then

if |Buffer| = limit then
Buffer := Buffer\

{getpriomin(Buffer)}
Buffer := Buffer ∪ {s a−−→ s′}

Next := Next ∪ nxt(s,Buffer)
Buffer := /0

Expanded := Expanded ∪ Current
Current := Next
level := level+1
if level = l then limit := 1

Fig. 1. Priority BS

The set Buffer temporarily keeps
seemingly promising transitions. The
function priomin : P(Tr) → Z re-
turns the lowest priority of the ac-
tions of a given set of transitions,
with priomin(/0) = −∞. The func-
tion getpriomin : P(Tr) → Tr, given
a set of transitions, returns one of
the transitions having an action with
the lowest priority. Expanding the set
Current\Expanded in the while loop
ensures that no state is revisited in
case cycles or confluent traces exist
in the search space. The algorithm
terminates when it has explored all
the states in its beam.

In priority BS, originally, up to β
children of the root are selected. The
resulting beam of width β is then
maintained by expanding only one
child per node in subsequent levels.
In state spaces, however, the root has
typically much less outgoing transi-
tions than the average branching factor of the state space. Fixing the beam width at
such an early stage is therefore not reasonable.

To mitigate this problem, instead of β , the algorithm of figure 1 is provided with the
pair (α, l), where α, l ∈ N and α l = β . The idea is that the algorithm uses the priority
function to prune non-promising states from the very first level, but in two phases:
before reaching nearly β states in a single level, it considers the most promising α
transitions for further expansion, but after that, it expands only one child per state.

3.2 Detailed Beam Search for State Space Generation

In detailed BS a total-cost evaluation function f : Σ → N is used to guide the search.
This function is decomposed into f (s) = g(s)+ h(s). The g(s) function represents the
cost taken to reach s from the initial state s0, which is defined as g(s) = g(s′)+cost(a) if
s′ a−−→ s. The user-supplied function cost : Act → N assigns weights to actions that can,
e.g., denote the time needed to perform different jobs in a scheduling problem. These
weights are fixed before search starts. Since the range of cost is non-negative numbers,
we have s →∗ s′ =⇒ g(s′) ≥ g(s). The user-supplied function h(s) estimates the cost it
would take to efficiently reach a goal state (or complete the schedule) continuing from s.

2 In general, priority can also depend on states: priority : Σ → Act → Z. In this paper, we only
consider fixed priorities, which resembles dispatch scheduling in AI terminology [12].

Pruning State Spaces with Extended Beam Search 547

Thus, for a goal state s, h(s) = 0. The f function is called monotonic if s →∗ s′ implies
f (s) ≤ f (s′).

The original idea of detailed BS does not need to change much to fit into the SSG
setting except for when handling cycles. When exploring a cyclic LTS, to guarantee the
termination of the algorithm, it is necessary to store the set of explored states to avoid
exploring a state more than once (cf. the Expanded set in figure 1). However, if a state
is reached via a path with a lower cost, the state has to be re-examined. This is because
the total-cost of each state depends on the cost to reach that state from the root, cf. § 3.4.

3.3 Flexible Beam Search

A major issue that still remains unaddressed in the BS adaptations of § 3.1 and 3.2 is
the tie-breaking problem: How should equally competent candidates, e.g. having the
same f values, be pruned? These selections are beyond the influence of the evaluation
function and can undesirably make the algorithm non-deterministic. Hence, we propose
two variants of BS that we call flexible detailed and flexible priority beam searches, in
which the beam width can change during state space generation.

In flexible detailed BS, at each level, up to β most promising states are selected
plus any other state which is as competent as the worst member of these β states. This
achieves closure on the worst (i.e. highest) total-cost value being selected. Similarly, in
flexible priority BS, at each state, all the transitions with the same priority as the most
promising transition of that particular state are selected. Note that in FPBS, in contrast
to FDBS, if the beam width is stretched, it cannot be readjusted to the intended β .

3.4 Synchronised Beam Search

As is described in § 2, the classic BS algorithms were tailored for the breadth-first explo-
ration strategy. Below, we explain a way to do BS on top of best-first [10] exploration
algorithms. Broadly speaking, we separate the exploration strategy from the pruning
phase, so that the exploration is guided with a (possibly different3) heuristic function.
This is particularly useful when checking reachability properties on-the-fly.

Below, we inductively describe G -synchronised xBS, where G : Σ → N is the
function that guides the exploration and x ∈ {D,P,FD,FP} (denoting the BS variants
described previously). Let Ŝi denote the set of states to be explored at round i.4 We parti-
tion this set into equivalence classes c0, · · · , cn, where n ∈N, such that Ŝi = c0 ∪·· ·∪cn

and ∀s ∈ Ŝi. s ∈ c j ⇐⇒ G (s) = j. The pruning algorithm xBS is subsequently applied
only on ck where ck �= /0 ∧ ∀ j < k. c j = /0. According to the pruning algorithm (which
can possibly employ an evaluation function different from G), some of the successors
of ck are selected, constituting the set Ŝ. The next round starts with Ŝi+1 = Ŝ ∪ Ŝi \ ck.
Since synchronised beam search separates the exploration algorithm from the pruning
algorithm, it can be perfectly combined with the other variants of BS introduced earlier.

3 Using different functions for guiding exploration and pruning in principle allows dealing with
multi-priced optimisation problems, cf. [1].

4 “Round” i corresponds to a logical (i.e. not necessarily horizontal) level in the state space,
which is processed in the ith iteration of SSG algorithm.

548 M. Torabi Dashti and A.J. Wijs

Using any constant function as G in SDBS would clearly result in BS with breadth-first
exploration strategy.

s0.g := 0; Current := {〈s0,s0.g〉}
Expanded := /0
while Current �= /0 do

Next := /0; i := −1; found := F
while found = F do

i := i+ 1
ci := {〈s,s.g〉 ∈ Current| G (s) = i}
if ci �= /0 then

Current := Current \ ci

found := T
while |ci| > β do

ci := ci \ {get fmax(ci)}
for all s ∈ ci do

for all s a−−→ s′ ∈ en(s) do
s′.g := s.g + cost(a)
Next := Next ∪ {〈s′,s′.g〉}

Expanded := unify(Expanded∪ ci)
Current := update(unify(Next∪

Current),Expanded)

Fig. 2. Synchronised detailed BS

Figure 2 shows G -SDBS in de-
tail. The sets Current, Next and
Expanded contain pairs of states and
corresponding g values, i.e. 〈s,s.g〉.
The function get fmax : P(Σ) → Σ ,
given a set of states, returns one
of the states that has the high-
est f value. Here unify(X) and
update(X ,Y) are defined as follows:
unify(X) = {〈s,g〉 ∈ X | ∀〈s,g′〉 ∈
X . g ≤ g′} and update(X ,Y) =
{〈s,g〉 ∈ X | ¬∃〈s,g′〉 ∈ Y. g′ ≤ g}. In
this algorithm, a state will be revis-
ited only if it is reached via a path
with a lower cost than the g cost as-
signed to it (see also § 3.2).

To mention a practically interest-
ing candidate for G , we temporar-
ily deviate from our general setting.
Consider the problem of finding a
path of minimal cost that leads to a
particular state in the search space.
Recall that the total-cost function in
DBS can be decomposed into f (s) = g(s)+ h(s), where g(s) is the cost of the trace
leading from the root to s. If G (s) = g(s) in G -synchronised DBS, once the goal state is
found, searching can safely terminate. This is because at a goal state s, f (s) = g(s) and
since the algorithm always follows paths with minimal g (remember that g is mono-
tonic), state s is reached before another state s′ iff g(s) ≤ g(s′). We observe that in
g-SDBS no state is re-explored, because states with minimal g are taken first and thus
a state can be reached again only via paths with higher costs (cf. § 3.2). Both g-SDBS
and g-SPBS have been used in our experiments of § 4, where minimal-time traces to a
particular state are searched for.

As another variant of synchronised search, we note that given a monotonic total-cost
function f (s) = g(s)+ h(s) (cf. § 3.2), f -SFDBS with arbitrary β > 0, corresponds to
the well-known A∗ search algorithm (e.g. see [10]).5 Due to space constraints, we refer
to [13] for a proof of this relation.

3.5 Discussions

Memory management is a challenging issue in SSG. Although BS reduces memory
usage due to cutting away parts of the state space, still explored states need to be ac-
cessed to guarantee the termination of SSG in case of cyclic LTSs. This can be partially

5 The monotonicity assumption on f is necessary for optimality of A∗ [10].

Pruning State Spaces with Extended Beam Search 549

counter-measured by taking into account specific characteristics of the problem at hand
and the properties that are to be checked:

1. When aiming at a reachability property (such as reachability of a goal state, checking
invariants and hunting deadlock states), once a state satisfying the desired property is
reached the search can terminate and the witness trace can be reported. This however
cannot be extended to arbitrary properties.
2. If there are no cycles in the state space, there is in principle no need to check whether
a state has already been visited (in order to guarantee termination). Therefore, only the
states from the current level need to be kept and the rest can be removed from memory6,
i.e. flushed to high latency media such as disks.

Heuristic functions and selecting the beam width. Effectiveness of BS hinges on
selecting good heuristic functions. Heuristic functions heavily depend on the problem
being solved. As our focus here is on exploration strategies that utilise heuristics, we do
not discuss techniques to design the heuristic functions themselves. Developing heuris-
tics constitutes a whole separate body of research and, here, we refer to a few of them.
Among others, [3,6,12] complement the work we present in this paper, as they explain
how to design heuristic functions when, e.g., analysing Java programs or provide ap-
proximate distance to deadlocks, etc.

Selecting the beam width β is another challenge in using BS. The beam width in-
tuitively calibrates the time and memory usage of the algorithm on one hand and the
accuracy of the results on the other hand. Therefore, in practice the time and memory
limits of a particular experiment determine β . To reduce the sensitivity of the results
to the exact value of β , flexible BS variants can be used. This, however, comes at the
price of losing a tight grip on the memory consumption (see also § 3.3). For a general
discussion on selecting β and its relation to the quality of answer see [12].

4 Experimental Results

In this section we report our experimental results.7

Cannibals and missionaries (C&M) problem is a classic river crossing puzzle and pro-
duces state spaces with interesting structures: they contain cycles, deadlocks and con-
fluent traces. Assume that C missionaries and C cannibals stand on the left bank of a
river that they wish to cross. The goal is to find a schedule for ferrying all the can-
nibals and all the missionaries across using a boat that can take up to B people at a
time. The condition is that the cannibals never outnumber the missionaries, on a shore
or in the boat. Moving the boat costs 1 time unit per passenger, and we wish to find a
minimal cost path towards the goal. We use a μCRL implementation of BS and a SPIN

implementation of the depth-first branch-and-bound algorithm to solve this problem.

6 In this case, some states may be revisited due to confluent traces, hence undesirably increasing
the search time.

7 The experiments have been performed on a single machine with a 64 bit Athlon 2.2 GHz CPU
and 1 GB RAM, running SUSE Linux 9.2. See http://www.cwi.nl/∼wijs/TIPSy for a
complete report along with specs.

http://www.cwi.nl/~wijs/TIPSy

550 M. Torabi Dashti and A.J. Wijs

Table 1. Experimental results C&M. Times are in min:sec. o.o.t.: out of time (set to 12 hours);
o.o.m.: out of memory (set to 900 MB).

Problem Result μCRL MCS μCRL g-SFDBS SPIN DFS SPIN DFS BnB Prop.

(C,B) T # States Time T β # States Time # States Time # States Time

(3,2) 18 147 00:03.80 18 3 142 00:03.73 28,535 00:00.32 26,062 00:00.29

(20,4) 104 2,537 00:05.32 106 10 2,191 00:05.38 445,801 00:02.66 408,053 00:02.34

(50,20) 116 90,355 00:20.15 120 15 17,361 00:11.45 12,647,000 02:05.25 12,060,300 01:49.59

(100,10) 292 49,141 00:19.65 296 10 16,274 00:14.46 14,709,600 02:49.32 13,849,300 02:23.34

(100,30) 222 366,608 01:05.79 228 15 61,380 00:32.06 o.o.m. o.o.m. o.o.m. o.o.m.

(300,30) 680 1,008,436 04:10.72 684 15 205,556 02:30.11 o.o.m. o.o.m. o.o.m. o.o.m.

(500,50) 1,076 4,365,536 21:40.52 1,080 20 685,293 10:33.28 o.o.m. o.o.m. o.o.m. o.o.m.

(500,100) 1,036 17,248,979 77:16.36 1,040 20 1,170,242 16:47.10 o.o.m. o.o.m. o.o.m. o.o.m.

(1000,250) o.o.t. o.o.t. o.o.t. 2,032 20 5,317,561 240:22.11 o.o.m. o.o.m. o.o.m. o.o.m.

The results are shown in table 1. Since μCRL and SPIN count states in different ways,
the numbers of states of the experiments using different tools are not comparable.

In μCRL, we first applied g-SFDBS with constant h (i.e. no estimation) with any
β > 0, denoted minimal cost search MCS in table 1. MCS is an exhaustive search
method, where the states are ordered based on the cost needed to reach them from
the initial state. This search is used to find the minimum number of time units needed
to solve the problem (shown in the Result column). As a comparison, we have also
performed experiments with SPIN. In those cases, we followed the algorithm of [11],
a prominent technique to use heuristics within SPIN. The idea is that the LTL formula
that is checked is modified during verification to reflect the best solution found so far.
This can effectively implement a branch-and-bound mechanism in SPIN, denoted DFS
BnB Prop in table 1. This algorithm avoids exhaustive search, yet it is complete.

Besides that we used g-SFDBS with h(s) =C(s)+M(s)+(〈C(s) �= M(s)〉×(2×C))
as the heuristic part of DBS, where C(s) and M(s) are the numbers of cannibals and
missionaries on the left bank in state s, respectively, and 〈C(s) �= M(s)〉 is a Boolean
expression returning 1 if C(s) �= M(s), and 0 otherwise. In table 1, the T column un-
der g-SFDBS shows the minimum number of time units needed to solve the problem
approximated by this search. The results show an example of what can be achieved
when near-optimal solutions are acceptable. Our g-SFDBS algorithm should ideally be
compared with other heuristic state space generation tools, such as HSF-SPIN [4]. We
however leave this as future work.

Clinical Chemical Analyser (CCA) is a case study taken from industry [15]: it is used to
analyse batches of test receipts on patient samples (blood, plasma, etc) that are uniquely
described by a triple which indicates the number of samples of each fluid (see table 2).
We have extensively described the CCA case in [16].

Table 2 reports the results of applying MCS, g-SDBS, g-SPBS and g-SFPBS to solve
the problem of scheduling the CCA. The result column provides the total-cost (i.e.
required time units) of the solution found. We remark that all these searches are tuned
to find the optimal answer (for those cases where it was known to us). In case of g-
SFPBS, the value of (α, l) is fixed to (1,1). The benefit of flexible variants of BS is

Pruning State Spaces with Extended Beam Search 551

Table 2. Experimental results CCA. o.o.t.: out of time (set to 30 hours).

Case Result MCS g-SDBS g-SPBS g-SFPBS

β Time β #States Time (α , l) #States Time #States Time

(3,1,1) 36 3,375 00:10.35 25 1,461 00:03.43 1,1 48 00:03.03 821 00:03.70

(1,3,1) 39 13,194 00:30.48 41 2,234 00:03.93 1,1 179 00:03.08 1,133 00:04.06

(6,2,2) 51 341,704,322 1524:56.00 81 7,408 00:07.76 2,9 479 00:03.06 45,402 02:33.65

(1,2,7) 73 o.o.t. o.o.t. 75,000 6,708,705 84:38.41 1,1 90 00:02.99 122,449 04:02.94

(7,4,4) 75 o.o.t. o.o.t. 35,000 3,801,607 41:01.80 3,25 155,379 08:14.66 20,666,509 872:55.71

thus clear here: A stable beam width is mostly sufficient. However, as a draw-back we
observe that FPBS exhibits early state space explosion, compared to PBS.8

We observe that β is not directly related to the number of fluids in a test case. We
believe this can be due to the ordering of states while searching, since a stable β suffices
when using the flexible SFPBS. We conclude this discussion with noting that CCA pro-
vides a case study which can better be tackled using priority BS, compared to detailed
BS variants.

5 Related Work

BS is extended to a complete search in [18], by using a new data structure, called a beam
stack. Thereby, it is possible to achieve a range of searches, from depth-first search
(β = 1) to breadth-first search (β → ∞). Considering our extensions for arbitrary state
spaces, it would be interesting to try to combine these two approaches.

Notable works on scheduling using formal method tools are [1] and [11]. In [1],
Behrmann et al. have extended timed automata with linearly priced transitions and lo-
cations, resulting in UPPAAL CORA tool. They deal with reachability analysis using the
standard branch-and-bound algorithm. A number of basic exploration techniques can
be used for branching, and bounding is done based on heuristics. In [11], the depth-first
branch-and-bound technique is used for scheduling in SPIN. See also § 4.

In [17], we report on a distributed implementation of the BS variants proposed in
this paper, where a number of machines together perform these search algorithms.

6 Conclusions

In this paper, we extended and made available an existing search technique to be used
for quantitative analysis within a setting used for system verification.

Our experiments showed the usefulness and flexibility of these extensions. We ob-
served that BS can be tuned to encompass some other (heuristic) search algorithms,
thus providing a flexible state space generation framework.

Future work. Comparing our implementation with other heuristic state space genera-
tion tools, such as HSF-SPIN, is certainly a next step for this work. Also, BS can in

8 In FPBS once the beam width is stretched, it cannot be readjusted to its initial value, see § 3.3.

552 M. Torabi Dashti and A.J. Wijs

principle deal with infinite state spaces given that the heuristic function does not cut
away all finite paths. This application of BS has yet to be investigated.

Acknowledgements. We are grateful to Jaco van de Pol and Michael Weber for their
insightful comments on the paper, and to Bert Lisser for implementing parts of BS
variants.

References

1. Behrmann, G., Larsen, K., Rasmussen, J.: Optimal scheduling using priced timed automata.
SIGMETRICS Perform. Eval. Rev. 32(4), 34–40 (2005)

2. Blom, S., Fokkink, W., Groote, J., van Langevelde, I., Lisser, B., van de Pol, J.: μCRL: A
toolset for analysing algebraic specifications. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV
2001. LNCS, vol. 2102, pp. 250–254. Springer, Heidelberg (2001)

3. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the
validation of communication protocols. STTT 5(2), 247–267 (2004)

4. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit model checking with HSF-
SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Heidelberg
(2001)

5. Godefroid, P., Khurshid, S.: Exploring very large state spaces using genetic algorithms. In:
Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 266–
280. Springer, Heidelberg (2002)

6. Groce, A., Visser, W.: Heuristics for model checking Java programs. STTT 6(4), 260–276
(2004)

7. Oechsner, S., Rose, O.: Scheduling cluster tools using filtered beam search and recipe com-
parison. In: Proc. 2005 Winter Simulation Conference, pp. 2203–2210. IEEE Computer So-
ciety Press, Los Alamitos (2005)

8. Peled, D.: Ten years of partial order reduction. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 17–28. Springer, Heidelberg (1998)

9. Pinedo, M.: Scheduling: Theory, algorithms, and systems. Prentice-Hall, Englewood Cliffs
(1995)

10. Russell, S., Norvig, P.: Artificial intelligence: A modern approach. Prentice-Hall, Englewood
Cliffs (1995)

11. Ruys, T.: Optimal scheduling using Branch-and-Bound with SPIN 4.0. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 1–17. Springer, Heidelberg (2003)

12. Si Ow, P., Morton, E.: Filtered beam search in scheduling. Intl. J. Production Res. 26, 35–62
(1988)

13. Dashti, M.T., Wijs, A.J.: Pruning state spaces with extended beam search. Technical Report
SEN-R0610, CWI, 2006. ftp.cwi.nl/CWIreports/SEN/SEN-R0610.pdf .

14. Valente, J., Alves, R.: Filtered and recovering beam search algorithms for the early/tardy
scheduling problem with no idle time. Comput. Ind. Eng. 48(2), 363–375 (2005)

15. Weber, S.: Design of Real-Time supervisory control systems. PhD thesis, TU/e (2003)
16. Wijs, A., van de Pol, J., Bortnik, E.: Solving scheduling problems by untimed model check-

ing. In: Proc. FMICS 2005, pp. 54–61. ACM Press, New York (2005)
17. Wijs, A.J., Lisser, B.: Distributed extended beam search for quantitative model checking. In:

MoChArt 2006. LNCS (LNAI), vol. 4428, pp. 165–182 (2007)
18. Zhou, R., Hansen, E.: Beam-stack search: Integrating backtracking with beam search. In:

Proc. ICAPS 2005, pp. 90–98. AAAI (2005)

ftp.cwi.nl/CWIreports/SEN/SEN-R0610.pdf

Using Counterexample Analysis to Minimize the

Number of Predicates for Predicate Abstraction

Thanyapat Sakunkonchak, Satoshi Komatsu, and Masahiro Fujita

VLSI Design and Education Center, The University of Tokyo
2–11–16 Yayoi, Bunkyo-ku, Tokyo, 113–0032, Japan

{thong,komatsu}@cad.t.u-tokyo.ac.jp, fujita@ee.t.u-tokyo.ac.jp

Abstract. Due to the success of the model checking technique in the
hardware domain, over the last few years, model checking methods have
been applied to the software domain which poses its own challenges, as
software tends to be less structured than hardware. Predicate abstrac-
tion is widely applied to reduce the state-space by mapping an infinite
state-space program to an abstract program of Boolean type. The cost
for computation of abstraction and model checking depends on the num-
ber of state variables in the abstract model. In this paper, we propose a
simple, yet efficient method to minimize the number of predicates for
predicate abstraction. Given a spurious counterexample, at least one
predicate is assigned at each program location during the refinement pro-
cess. The computational cost depends proportionally to the number of
assigned predicates. In this paper, instead, we search the counterexample
to find the conflict predicates that caused this counterexample to be spu-
rious. Then, we assign the necessary predicates to the abstract model. We
compare the performance of our technique with the interpolation-based
predicate abstraction tool like BLAST. The proposed method presents
significantly better experimental results on some examples with large set
of predicates.

1 Introduction

Model checking is the formal verification technique most-commonly used in the
verification of RTL or gate-level hardware designs. Due to the success of the
model checking technique in the hardware domain [1,2], over the last few years,
model checking methods have been applied to the software domain, and we have
seen the birth of software model checkers for programming languages such as
C/C++ and Java.

There are two major approaches to software model checking. The first ap-
proach emphasizes state space exploration, where the state space of a system
model is defined as the product of the state spaces of its concurrent finite-state
components. The state space of a software application can be systematically
explored by driving the “product” of its concurrent processes via a run-time
scheduler through all states and transitions in its state space. This approach is
developed in the tool Verisoft [3]. The second approach is based on static anal-
ysis and abstraction of software. It consists of automatically extracting a model

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 553–563, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

554 T. Sakunkonchak, S. Komatsu, and M. Fujita

out of a software application by statically analyzing its code and abstracting
away details, and then applying symbolic model checking to verify this abstract
model.

In the context of the second approach, predicate abstraction [4,5,6] is widely
applied to reduce the state-space by mapping an infinite state-space program to
an abstract program of Boolean type while preserving the behaviors and control
constructs of the original. The generated abstract model is conservative in the
sense that for every execution in the original model there is a corresponding
execution in the abstract model. Each predicate in the original model is cor-
responding to a Boolean variable in the abstract model. Abstraction is coarse
in the beginning. The spurious counterexample from model checker gives an
information to refine the abstract model to be more precise.

We address three problems on refinement of predicate abstraction.

• Select new predicates: The choice of selection of new predicates is im-
portant. At every refinement loop, spurious behaviors can be removed by
adding new predicates to make the relationships between existing predicates
more precise. New predicates from the wrong selection can cause the abstract
model to be intractable during the refinement.

• Scope of predicates: When predicates are used globally, coping with rela-
tionship of all predicates through the entire model is impossible when the size
of the abstract model is large. Hence, the idea of localizing predicates should
be considered.

• Number of predicates: Although localization of predicates is utilized, the
computation of predicate abstraction and model checking are exponential with
the number of predicates. The cost of computation in abstraction process can
be reduced drastically when the number of predicates is smaller.

There are many software model checking tools that apply predicate abstrac-
tion, e.g. SLAM [5], BLAST [6] or F-Soft [7]. The problems addressed above can
be handled by these tools.

• SLAM uses the techniques called Cartesian approximation and maximum cube
length approximation to reduce the number of predicates in each theorem
prover query. The selection of new predicates is conducted by a separate
refinement algorithm.

• In BLAST toolkit, besides lazy abstraction technique which does on-the-fly
abstraction and refinement of abstract model, the new refinement scheme
based on Craig interpolation [8] was proposed. With this method, localization
for predicates and predicate selection problems can be handled.

• Recent work [7] describes localization and register sharing to reduce the num-
ber of predicates at each local part of the abstract model. Weakest pre-
conditions are used to find new predicates. This approach has been imple-
mented to the F-Soft toolkit.

This work is inspired by a localization and register sharing [7] which applied
to reduce the number of predicates in the abstraction refinement process. In this

Using Counterexample Analysis to Minimize the Number of Predicates 555

paper, we propose a different perspective to minimize number of predicates by
analyzing counterexample. For any spurious counterexample, there is at least
one variable that makes it infeasible. In contrast to BLAST and F-Soft where
the computation of new predicates can be performed by using interpolation and
weakest pre-conditions techniques, respectively, we traverse through the coun-
terexample and use propagation-and-substitution of variables to find infeasible
variables then assign new predicates. The proposed method produces equal or
smaller number of predicates comparing to other approaches. The cost of travers-
ing counterexample to find new predicates is small comparing to model checking
and abstraction computation.

This paper is organized as follows. Some related researches on software model
checking describes in next section. An illustrative example used to describe the
idea of the proposed method is shown in Section 3. Formal definitions of pred-
icate abstraction and refinement are presented in Section 4, while in Section 5
describes our approach of minimizing the number of predicates by analyzing the
counterexample. Some experimental results comparing our approach with the
public tool BLAST are presented in Section 6 and we conclude with Section 7.

2 Related Work

Software model checking poses its own challenges, as software tends to be less
structured than hardware. In addition, concurrent software contains processes
that execute asynchronously, and interleaving among these processes can cause
a serious state-space explosion problem. Several techniques have been proposed
to reduce the state-space explosion problem, such as partial-order reduction and
abstraction. In the software verification domain, predicate abstraction [4,5,9]
is widely applied to reduce the state-space by mapping an infinite state-space
program to an abstract program of Boolean type while preserving the behav-
iors and control constructs of the original. Counterexample-Guided Abstraction
Refinement (CEGAR) [10] is a method to automate the abstraction refinement
process. More specifically, starting with a coarse level of abstraction, the given
property is verified. A counterexample is given when the property does not hold.
If this counterexample turns out to be spurious, the previous abstract programs
are then refined to a finer level of abstraction. The verification process is contin-
ued until there is no error found or there is no solution for the given property.
Toolkits of various platforms like C or the system-level design languages like
SystemC or SpecC have been implemented. We briefly introduce some of them.

The SLAM project [5] conducted by Ball and Rajamani has developed a model
checking tool based on the interprocedural dataflow analysis algorithm presented
in [11] to decide the reachability status of a statement in a Boolean program.
The generation of an abstract Boolean program is expensive because it requires
many calls to a theorem prover.

Clarke et al. [12] use SAT-based predicate abstraction. During the abstraction
phase, instead of using theorem provers, a SAT solver is used to generate the ab-
stract transition relation. Many theorem prover calls can potentially be replaced

556 T. Sakunkonchak, S. Komatsu, and M. Fujita

by a single SAT instance. Then, the abstract Boolean programs are verified with
SMV. In contrast to SLAM, this work is able to handle bit-operations as well.
This idea is also extended to use with SpecC language [13]. The synchronization
constructs notify/wait can be modeled, but it does not explain how to handle
the timing constraints that are introduced by using waitfor.

Sakunkonchak et al. [14] propose a SpecC/synchronization verification tool (S-
VeT) based on the predicate abstraction of ANSI-C programs of SLAM project
[5]. Concurrency and synchronization can be handled by mathematically model
SpecC programs by equalities/inequalities formulae. These formulae are solved
by using the Integer Linear Programming (ILP) solver.

3 Motivating Example

Similar to existing methods, abstraction and refinement processes are automated
based on the state-of-the-art model checking and counterexample-guided ab-
straction refinement (CEGAR). More specifically, starting with a coarse level of
abstraction, the given property (e.g. reachability of a statement that caused an
error in the model) is used to verify the abstract model. A counterexample is
given when this property is not satisfied. If this counterexample turns out to
be spurious, the previous abstract programs are then refined to a finer level of
abstraction. The verification process continues until there is no error found or
there is no solution for the given property.

Let us consider the program as shown in Figure 1(a). We would like to check
whether a statement labeled “ERROR” is reachable. Predicate abstraction of
the original program is applied as shown in Figure 1(b) where Abstract0 ab-
stracts Original. At this moment, we do not consider any particular predicate.
Statements are not considered (represented as “...”) and branching conditions
are considered as non-deterministic choices (represented as “*”). Note that the
behaviors and control constructs at every abstraction and refinement step are
preserved.

When model check the abstract model Abstract0 in Figure 1(b), ERROR
label is reachable as shown by an abstract counterexample which goes through
all program locations starting from 1 to 8 (for simplicity, we omit the declaration
of variables in line 0). Concretization of this counterexample with respect to
Original is applied. Concretize as shown in the left of Figure 1(c) is obtained
by corresponding every location from an abstract counterexample to the same
location in Original. Decision procedure is used to simulate this concrete path.
The concrete path Concretize is obviously infeasible (explain below). To find
new predicates to refine Abstract0, the technique described in [8,7] can be used
to remove the infeasible trace by tracking exactly one predicate at each program
location from 1 to 8. The method in [7] can further remove more predicates by
traversing the counterexample with weakest pre-conditions.

The proposed method is simpler and more efficient. Simulation of the con-
crete path and finding new predicates can be done by storing information while
traversing the counterexample. Concretize is simulated starting from location 1.

Using Counterexample Analysis to Minimize the Number of Predicates 557

0: int a,b,i,x,y,z;
1: if (a != b){
2: x = m;
3: y = m + 1;
4: }
5: if (x == i – 1)
6: if (y == i)
7: if (a != b)
8: ERROR:;

0: ...;
1: if (*){
2: ...;
3: ...;
4: }
5: if (*)
6: if (*)
7: if (*)
8: ERROR:;

BB1

(a) (b)

0: ...;
1: if (c0){
2: ...;
3: ...;
4: }
5: if ((PC=BB1)->c1)
6: if ((PC=BB1)->!c1)
7: if (c0)
8: ERROR:;

BB1

(d)

Original Abstract0

0: int a,b,i,x,y,z;
1: assume (a != b){
2: x = m;
3: y = m + 1;
4: }
5: assume (x == i - 1)
6: assume (y != i)
7: assume (a != b)
8: ERROR:;

BB1

(a != b) ↔ c0

(m == i – 1) ↔ (PC=BB1)-> c1
(m + 1 != i) ↔ (PC=BB1)->!c1
(a != b) ↔ c0

(c)

Propagate/
Substitute

Assign Boolean
variable

Concretize

Abstract1

Store
variable

x = m;
y = m + 1;

Fig. 1. (a) Original program. (b) First abstraction. The counterexample is 1 → 2 →
3 → 4 → 5 → 6 → 7 → 8. (c) Concretized the counterexample and use the propagate-
and-substitute of variables x and y. Assign Boolean variables to corresponding pred-
icates that caused infeasibility in counterexample. Note that only two predicates are
used. (d) Abstract1 is the refined version of Abstract0 in (b). After model check, label
ERROR is not reachable.

At each location during traversal, the program locations and assignment of vari-
ables are stored. For example, at location 2 and 3, the assignments of variables
x and y are stored and these locations can be referred as they are in the same
basic block BB1. As traversing to location 5 and 6, variables x and y are used.
The symbolic values of x and y (x ⇒ m and y ⇒ m + 1) in location 2 and
3 are propagating-and-substituting to location 5 (x == i − 1) and 6 (y != i).
We obtain (m == i − 1) and (m + 1 != i) in location 5 and 6, respectively.
This makes this counterexample infeasible. The process is repeated until error
statement is found. Up to this point, the process of simulating the concrete path
is the same with other methods except that the program locations and the as-
signments of variables are stored in memory. The concrete path is traversed and
predicates that caused infeasibility are found. Boolean variables c0, c1, !c1, c0 can
be assigned at location 1, 5, 6, and 7, respectively. However, at location 5 and 6,
variables x and y depend on the execution of BB1. The conditions of dependent
path must be added. Finally, the predicates assigned at location 1, 5, 6, 7 are
c0, (PC = BB1) → c1, (PC = BB1) → !c1, c0, respectively.

Note that only two Boolean variables (c0 and c1) are used in this example. Al-
though there is a program location (PC = BB1) to cooperate with c1, this is not
an additional variable in the abstract model when performing model checking.

558 T. Sakunkonchak, S. Komatsu, and M. Fujita

This is because all the program locations are already included in the abstract
model. Therefore, only c0 and c1 are added for model checking and abstraction
computation. According to this example, equal or larger number of predicates is
produced by methods [8,7] and so as the cost of computation.

Finally, the abstract model Abstract1 in Figure 1(d) is constructed according
to these new predicates. As the result of model checking, the error statement at
location 8 is unreachable. Hence, this program is safe.

4 Predicate Abstraction and Refinement

4.1 Predicate Abstraction

Predicate abstraction is a technique to construct a conservative abstraction
which maps an infinite state-space concrete program to an abstract program.
Formally the concrete transition system is described by a set of initial states
represented by I(s̄) and a transition relation represented by R(s̄, s̄′) where S
is a set of all states in concrete program and {s̄, s̄′} ∈ S are a set of current
and next states, respectively. The variables in the concrete program are repre-
sented by Boolean variables which correspond to one predicate on the variables
in the concrete program. The abstraction is determined by a set of predicates
Pred = {φ1, . . . , φk} over the given program. If applying all predicates to a con-
crete state, a k-width vector of Boolean values, b̄, is obtained. In other words,
b̄ = abs(s̄) maps the concrete states s̄ ∈ S into the abstract states b̄ where abs(·)
is an abstraction function.

The term conservative abstraction means a transition from the abstract states
b̄ to b̄′ in the abstract model exist if and only if there is a transition from s̄ to s̄′

in there concrete model where b̄ = abs(s̄) and b̄′ = abs(s̄′). The abstract initial
states Î(b̄) is

Î(b̄) := ∃s̄ ∈ S : (abs(s̄) = b̄) ∧ I(s̄)

where the abstract transition relation R̂(b̄, b̄′) can be shown as

R̂ := {(b̄, b̄′)|∃s̄, s̄′ ∈ S : R(s̄, s̄′) ∧ (abs(s̄) = b̄) ∧ (abs(s̄′) = b̄′)}

With this conservative abstraction, if the property ˆProp holds on an abstract
state b̄ in the abstract model, then the property must hold on all states s̄ where
abs(s̄) = b̄.

ˆProp(b̄) := ∀s̄ ∈ S : (abs(s̄) = b̄) ⇒ Prop(s̄)

Therefore, when model checking the abstract model, if property ˆProp holds on
all reachable states, then Prop also holds on all reachable states in concrete
model. Otherwise, an abstract counterexample is obtained. In order to check if
this abstract counterexample corresponds to a concrete counterexample, we need
to simulate this abstract trace by concretizing it with the concrete model. If the
simulation result tells that the abstract trace is really not feasible in the concrete
model, this abstract counterexample is then called the spurious counterexample.
To remove the spurious behaviors from the abstract model, the refinement of
abstraction is needed.

Using Counterexample Analysis to Minimize the Number of Predicates 559

4.2 Abstraction Refinement

If the abstract counterexample cannot be simulated, it is because the abstraction
is too coarse. Spurious transitions make the abstract model not corresponding
to the concrete model. In order to eliminate the spurious transitions from the
abstract model, we find variables that caused infeasibility in the concrete trace.

A sequence of length L + 1 in the abstract model is a sequence of abstract
states, b̄0, . . . , b̄L such that Î(b̄0) holds and for each i from 0 to L−1, R̂(b̄i, b̄i+1)
holds. An abstract counterexample is a sequence b̄0, . . . , b̄L for which ˆProp(b̄L)
holds. This abstract trace is concrete or so called real counterexample if there
exists a concrete trace corresponding to it. Otherwise, if there are no concrete
traces corresponding to this abstract trace, then it is called a spurious coun-
terexample.

The abstraction function was defined to map sets of concrete states to sets of
abstract states. The concretization function, conc(·), does the reverse. There is
a concrete counterexample trace s̄0, . . . , s̄L, where s̄i corresponds to a valuation
of all the k predicates φ1, . . . , φk, corresponding to the abstract counterexample
trace b̄0, . . . , b̄L if these conditions are satisfied:

• For each i ∈ 0, . . . , L, conc(b̄) = s̄ holds. This means that each concrete state
s̄i corresponds to the abstract state b̄i in the abstract trace.

• I(s̄0)∧R(s̄i, s̄i+1)∧¬Prop(s̄L) holds, for each i ∈ 0, . . . , L−1. With this, the
concrete counterexample of length L + 1, starting from initial state, exists.

Thus, with the following formula,

L−1∧
i=0

(
k∧

j=1

φj = s̄i) ∧
L−1∧
i=0

R(s̄i, s̄i+1)

if it is satisfiable then the abstract counterexample is concrete. Otherwise, it is
a spurious counterexample.

5 Spurious Counterexample Analysis for Predicate
Refinement

Let |P | be the size of a given program (number of statements) and |Pred| be the
number of predicates in the abstraction refinement process. Computation cost of
this model is |P | ·2|Pred|. It is obvious that the smaller the number of predicates
in the abstraction refinement process, the exponential reduction in the cost of
abstraction computation and model checking. Also, the size of the program can
be considered.

This section describes the proposed method to reduce the size of the abstract
model used in abstraction refinement process. The program size |PBB| where
|PBB| ≤ |P | is considered (instead of number of statements, number of basic
blocks are considered). The number of predicates used in the proposed method

560 T. Sakunkonchak, S. Komatsu, and M. Fujita

is |PredProposed| where |PredProposed| ≤ |Pred|. Thus, the computation cost of
the proposed method is

|PBB| · 2|PredProposed| ≤ |P | · 2|Pred|

Given a spurious counterexample, the proposed abstraction refinement method
by analyzing the spurious trace is shown in Algorithm 1. In [7], localization and
register sharing methods are used to reduce the number of predicates used in re-
finement process. Their refinement algorithm performs a backward weakest pre-
condition propagation for each branching condition (assume statement) in the
infeasible trace.

The abstraction refinement algorithm described in Algorithm 1 performs an
analysis by traversing the spurious counterexample from the initial state. First,
the spurious trace is traversed and information on the program locations and the
assignments of variables are stored. Then, it is traversed again to find the conflict
variables which can be represented by a conflict predicate. If this predicate is
depending on execution of some program locations, then those program locations
are associated to the predicate in the abstract model.

In [7], the number of predicates used depends proportionally on the number
of branching conditions. In contrast, the number of predicates used in our ap-
proach is depending on the number of conflict predicates. Back to the example
shown in Section 3, the method of [7] needs four predicates plus extra global
constraints to make the relationship of those predicates more precise, while the
proposed method needs only two predicates with some path dependences. And
these conditions of path dependences do not make the abstract model larger
because they are already represented the abstract states in the abstract model.

6 Experimental Results

The proposed method for abstraction refinement by counterexample analysis is
implemented in SpecC/Synchronization Verification Tool (S-VeT) [14]. S-VeT
tool accepts SpecC descriptions as input. In order to compare with BLAST, we
generate SpecC wrappers for the C descriptions that used to verify with BLAST.
These wrappers just make the program to be able to process by S-VeT tool. They
do not introduce additional behaviors to the program.

The experiments are performed on a Pentium4 2.8GHz machine with 2GB
memory running Linux. Several experiments are conducted to compare our tech-
nique against a public C-based verification tool, BLAST.

As reported in [7], BLAST fails to find the new set of predicates during re-
finement when applying with the default predicate discovery scheme. Options
craig2 and predH7 were reported to give best performance. For comparison in
this paper, we use the same options. Table 1 shows the comparison of various
benchmarks running BLAST against our approach. Size of the program can be
defined by the number of branching conditions used. The “TP” column gives the
to total number of predicates in the program. “Pred” columns give the maximum
number of predicates active at any program location in refinement process. Run-
time related columns, “Abs”, “MC”, “Ref” and “Time” denote the execution

Using Counterexample Analysis to Minimize the Number of Predicates 561

Algorithm 1. Abstraction refinement by analyzing counterexample to find con-
flict predicates and program location dependents
Declare
1: A spurious counterexample s̄0, . . . , s̄L

2: Pred is a set of predicates (for simplicity, the subscript Proposed is omitted)
3: φ is a predicate that found to make counterexample infeasible
4: Program locations are defined in term of basic block instead of individual state-

ments (to make abstract model smaller)
5: The stored information Store = (PC, V ar, Symb) where PC is a set of program

locations, V ar is a set of variables to be assigned, and Symb is a set of symbolic
values corresponding to the variable in that location

Begin

/* Initially, store program locations and variable assignments */
6: for i = 0 to L do
7: if s̄i is an assignment then
8: PCi := program location
9: V ari := the assigned variable (left hand side of the assignment)

10: Symbi := symbolic value (right hand side of the assignment)
11: end if
12: end for

/* Traverse counterexample to find conflict variables and assign new predicates */

13: for i = 0 to L do /* Outer loop */
14: if s̄i is a branching condition then
15: for j = 0 to i do /* Inner loop #1 */
16: if variables in s̄j contains the variable V arj then
17: Propagate-and-substitute all existence of V arj in s̄j

18: end if
19: end for
20: Simulate this path s̄0, . . . , s̄j

21: if predicate φ presents a conflict in the path is found then
22: for j = i downto 0 do /* Inner loop #2 */
23: Track back to find if variables in φ are depending on any pro-

gram location PCj

24: if variables in φ depends on execution of PCj then
25: Associate PCj to φ when constructing abstract model1

26: end if
27: end for
28: Pred := Pred ∪ φ
29: end if
30: end if
31: end for
End

1Abstract model M = (PC, φ) and we can check M using NuSMV.

562 T. Sakunkonchak, S. Komatsu, and M. Fujita

Table 1. Experimental results comparing our approach implemented in S-VeT againt
BLAST verification tool

BLAST S-VeTBenchmark TP
Pred Time Pred Abs MC Ref Time

Bug

TCAS0 54 13 20.97 12 5 9 10 24 No
TCAS1 111 37 381.20 20 24 58 39 122 No
TCAS2 55 13 22.38 13 3 10 10 23 No
TCAS3 63 14 25.84 13 5 12 9 26 Yes
TCAS4 83 23 41.56 13 7 18 13 39 Yes
TCAS5 73 20 39.78 15 6 15 7 28 No
TCAS6 73 19 32.82 10 3 12 10 25 Yes
TCAS7 74 18 33.18 16 4 16 15 36 Yes
TCAS8 61 14 31.99 11 7 11 9 28 No
TCAS9 83 20 55.78 14 8 22 17 38 Yes
PredAbs1 29 26 1.38 1 0.45 0.97 0.99 2.45 No
PredAbs2 57 52 21.88 1 0.43 1.54 1.46 3.44 No
PredAbs3 88 78 140.16 1 0.43 3.46 2.28 6.19 No

time in seconds for abstraction, model checking, refinement process, and total
runtime, respectively. The pre-process time is omitted.

The benchmarks Traffic Alert and Collision Avoidance System (TCAS) are
tested with ten different properties. The benchmarks PredAbs are the fabri-
cated examples used to validate the predicate abstraction refinement process. In
all PredAbs benchmarks, only one predicate is sufficient to show that the coun-
terexample is spurious. While our approach can find this predicate directly from
analyzing the spurious trace, BLAST needs to interpret a large set of predicates
before it knows that this trace is spurious. Although, BLAST is implemented
with lazy abstraction technique and the complex refinement scheme based on
Craig interpolation method, our approach can outperform by 8 out of the total
of 13 benchmarks.

7 Conclusion

Predicate abstraction is a common and efficient technique in software verification
domain. However, when the size of the program (number of branching conditions)
is large, predicate abstraction suffers from the computation cost that increases ex-
ponentially as the number of predicates increases. Choice of predicate selection,
scope and number of predicates are major artifacts for performance improvement.
In this paper, we described a technique for improving the performance of the ab-
stract refinement loop by analyzing the spurious counterexample. In order to get
the smaller set of predicates, we analyze the spurious counterexample to find the
conflict predicates. If any predicate is depended on any program location, that
program location was associated with that predicate in the abstract model. Our
approach is implemented with S-VeT toolkit. Experimental results present the

Using Counterexample Analysis to Minimize the Number of Predicates 563

comparison of our method against BLAST toolkit. The results show that fewer
number of predicates can be found with our approach.

Acknowledgement

We would like to thank Himanshu Jain for the Traffic Alert and Collision Avoid-
ance System (TCAS) benchmarks.

References

1. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dor-
drecht (1993)

2. Clarke, E.M., Grumberg, O., Dill, D.E.: Model checking and abstraction. In: ACM
Transactions on Programming Languages and System TOPLAS, vol. 16 (1994)

3. Godefroid, P.: Model checking for programming languages using verisoft. In: Proc.
of the 24th ACM Symposium on Principles of Programming Languages (1997)

4. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, Springer, Heidelberg (1997)

5. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, Springer, Heidelberg (2001)

6. Henzinger, T.A., Jhala, R., Mujumdar, R., Sutre, G.: Lazy abstraction. In: ACM
SIGPLAN-SIGACT Conference on Principles of Programming Languages (2002)

7. Jain, H., Ivancic, F., Gupta, A., Ganai, M.K.: Localization and register sharing for
predicate abstraction. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, Springer, Heidelberg (2005)

8. Henzinger, T.A., Jhala, R., Mujumdar, R., McMillan, K.L.: Abstractions from
proofs. In (POPL 2004). Proc. of the 31st Annual Symposium on Principles of
Programming Languages (2004)

9. Henzinger, T.A., Jhala, R., Mujumdar, R., Sutre, G.: Lazy abstraction. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, Springer, Heidelberg (2003)

10. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, Springer, Heidelberg (2000)

11. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In (POPL 1995). Principles of Programming Languages (1995)

12. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of
ANSI-C programs using SAT. In: Proceeding of the Model Checking for Dependable
Software-Intensive Systems Workshop (2003)

13. Clarke, E.M., Jain, H., Kroening, D.: Verification of SpecC using predicate ab-
straction. In: Second ACM-IEEE International Confernece on Formal Methods
and Models for Codesign (MEMOCODE 2004) (2004)

14. Sakunkonchak, T., Komatsu, S., Fujita, M.: Synchronization verification in system-
level design with ILP solvers. In: Third ACM-IEEE International Confernece on
Formal Methods and Models for Codesign (MEMOCODE2005) (2005)

Author Index

Abadi, Mart́ın 1
Alizadeh, Bijan 129

Bauer, Jörg 35
Berthomieu, Bernard 523
Bošnački, Dragan 300
Boudali, Hichem 441
Bozzano, Marco 162
Bruttomesso, Roberto 237

Cassez, Franck 192
Cimatti, Alessandro 162, 237
Crouzen, Pepijn 441

Damm, Werner 425
David, Alexandre 192
Dax, Christian 223
Disch, Stefan 425
Donaldson, Alastair F. 300

Eisinger, Jochen 223
Elkind, Edith 378

Finkbeiner, Bernd 268, 474
Fujita, Masahiro 129, 553

Gates, Ann Q. 533
Gawlitza, Thomas 177
Geeraerts, Gilles 98
Genest, Blaise 378
Grumberg, Orna 410, 457

Habermehl, Peter 145
Haddad, Serge 362
Han, Tingting 331
Hasegawa, Atsushi 15
Hermanns, Holger 207
Hu, Alan J. 237
Huang, Geng-Dian 51
Hungar, Hardi 425

Iosif, Radu 145

Jacobs, Swen 425
Johnson, Jordan 1
Jones, Kevin 114

Katoen, Joost-Pieter 331
Kim, Moonzoo 489
Klaedtke, Felix 223
Komatsu, Satoshi 553
Kreinovich, Vladik 533
Kupferman, Orna 316

Larsen, Kim G. 192
Leuschel, Michael 300
Li, Guoqiang 511
Lime, Didier 192
Little, Scott 66, 114
Lustig, Yoad 316

Massart, Thierry 300
McMillan, K.L. 17
Merayo, Mercedes G. 501
Misra, Janardan 284
Mooij, Arjan 347
Myers, Chris 66, 114

Nain, Sumit 19
Núñez, Manuel 394, 501

Ogawa, Mizuhito 511
Oshman, Rotem 410

Pace, Gordon 82
Pang, Jun 425
Peled, Doron 378
Peres, Florent 523
Pigorsch, Florian 425
Pinchinat, Sophie 253
Prisacariu, Cristian 82

Rakamarić, Zvonimir 237
Raskin, Jean-François 98, 192
Recalde, Laura 362
Roach, Steve 533
Rodŕıguez, Ismael 394, 501
Rogalewicz, Adam 145
Romijn, Judi 347
Roy, Suman 284

Saha, Indranil 284
Sakunkonchak, Thanyapat 553

566 Author Index

Salamah, Salamah 533
Schewe, Sven 268, 474
Schneider, Gerardo 82
Scholl, Christoph 425
Schuster, Assaf 457
Seidl, Helmut 177
Silva, Manuel 362
Spoletini, Paola 378
Stoelinga, Mariëlle 441

Tapparo, Francesco 162
Toben, Tobe 35
Torabi Dashti, Mohammad 543

Van Begin, Laurent 98
Vardi, Moshe Y. 19

Vernadat, François 523
Vojnar, Tomáš 145

Waldmann, Uwe 425
Walter, David 66, 114
Wang, Bow-Yaw 51
Wesselink, Wieger 347
Westphal, Bernd 35
Whitehead, Nathan 1
Wijs, Anton J. 543
Wirtz, Boris 425

Yadgar, Avi 457

Zhang, Lijun 207

	Title Page
	Preface
	Organization
	Table of Contents
	Policies and Proofs for Code Auditing
	Introduction
	Example: Auditing Function Calls
	Language
	Policy
	Correctness

	Example: Trust in the λ-Calculus
	Language
	Policy
	Correctness

	Implementation
	Conclusion

	Recent Trend in Industry and Expectation to DA Research
	History of Semiconductor Design
	Recent Design Flow
	Expectation to Future DA Research

	Toward Property-Driven Abstraction for Heap Manipulating Programs
	References

	Branching vs. Linear Time: Semantical Perspective
	Introduction
	The Basic Argument Against Linear Time
	Process Equivalence Revisited
	Case Study: Transducers
	Nondeterministic Transducers
	Synchronous Parallel Composition
	Executions and Traces

	What Is Linear Time Logic?
	Discussion

	Mind the Shapes: Abstraction Refinement Via Topology Invariants
	Introduction
	Dynamic Communication Systems
	Data Type Reduction
	Topology Analysis
	Putting It Together: Respecting Topology Invariants
	Conclusion

	Complete SAT-Based Model Checking for Context-Free Processes
	Introduction
	Preliminaries
	Proof Search by SAT
	Algorithm
	Experiments
	Implementation
	Experimental Results

	Conclusion

	Bounded Model Checking of Analog and Mixed-Signal Circuits Using an SMT Solver
	Introduction
	Motivating Example
	Labeled Hybrid Petri Nets
	Symbolic Model of LHPNs
	SMT Based Bounded Model Checking
	Results
	Conclusions

	Model Checking Contracts – A Case Study
	Introduction
	A Formal Language for Contracts
	A Contract Case Study
	Translating the \mathcal{CL} Specification into \mathcal{C}\mu
	From \mathcal{C}\mu to the LTS
	From the LTS to the NuSMV Input Syntax
	Model Checking the Contract

	Final Discussion

	On the Efficient Computation of the Minimal Coverability Set for Petri Nets
	Introduction
	Preliminaries
	The Karp Miller and the MCT Algorithms
	Counter-Example to the MCT Algorithm
	The Covering Sequence
	Practical Implementation

	Analog/Mixed-Signal Circuit Verification Using Models Generated from Simulation Traces
	Introduction
	Motivating Example
	Labeled Hybrid Petri Nets
	LHPN Model Generation
	Case Study
	Coverage Metrics
	Conclusion

	Automatic Merge-Point Detection for Sequential Equivalence Checking of System-Level and RTL Descriptions
	Introduction
	Related Works
	Hybrid Bit and Word Levels Representation
	Sequential Equivalence Checking
	Merge-Point and Cut-Plane Detection Approaches
	Example

	Case Studies
	64-Point FFT Benchmark
	Viterbi Benchmark

	Conclusion and Future Work
	References

	Proving Termination of Tree Manipulating Programs
	Introduction
	Preliminaries
	The Termination Analysis Loop
	Abstraction of Programs with Trees into Counter Automata
	Abstract Control Flow Graphs
	Translation to Counter Automata

	Checking Spuriousness of Counterexamples
	Deciding Spuriousness of Lassos Without Destructive Updates
	Analysing Lassos with Destructive Updates

	Abstraction Refinement
	Implementation and Experimental Results
	Conclusion

	Symbolic Fault Tree Analysis for Reactive Systems
	Introduction
	Background
	Modeling Reactive Systems
	Symbolic Model Checking

	Fault Tree Analysis for Reactive Systems
	Symbolic Fault Tree Analysis
	Forward Fault Tree Analysis
	Backward Fault Tree Analysis
	Backward Fault Tree Analysis with Dynamic Cone of Influence
	Dynamic Pruning

	Implementation in the FSAP Platform
	Experimental Evaluation
	Related Work
	Conclusions

	Computing Game Values for Crash Games
	Introduction
	Crash Games
	Hierarchical Systems of Simple Integer Equations
	Computing Game Values
	Solving Hierarchical Systems
	General Canonical Solutions
	Conclusion

	Timed Control with Observation Based and Stuttering Invariant Strategies
	Introduction
	Timed Games and Observation Based Strategies
	Subset Construction for Timed Games
	Symbolic Algorithms
	Example and Experiments
	Conclusions and Future Works

	Deciding Simulations on Probabilistic Automata
	Introduction
	Preliminaries
	Algorithms for Fully Probabilistic Systems
	Algorithms for Probabilistic Automata
	Algorithms for Continuous-Time Probabilistic Automata
	Conclusion

	Mechanizing the Powerset Construction for Restricted Classes of ω-Automata
	Introduction
	Background
	Determinization with the Powerset Construction
	Determinization of Automata with Languages in $WDBA$
	The General Case
	Remarks on the Precondition of the Algorithm

	Applications
	Projection of Definable Sets in Linear Arithmetic
	Model Checking Finite State Systems

	Conclusion

	Verifying Heap-Manipulating Programs in an SMT Framework
	Introduction
	Motivating HMP Example
	Logic for Verifying Heap-Manipulating Programs
	Theory of Unbounded Reachability
	Example

	Theory Integration into MathSAT
	Efficient and Flexible Nelson-Oppen in SMT
	Handling Uninterpreted Functions Via Ackermann's Expansion
	Theory Integration

	Experimental Results
	Conclusions and Future Work

	A Generic Constructive Solution for Concurrent Games with Expressive Constraints on Strategies
	Introduction
	The Models
	The Logical Framework
	Strategies and Outcomes
	Expressiveness Issues
	Automata Constructions
	Alternating Time Logics
	The Alternating-Time μ-Calculus
	The Logic GL
	A Note on Automata Constructions for Alternating Time Logics

	References

	Distributed Synthesis for Alternating-Time Logics
	Introduction
	The Synthesis Problem
	Concurrent Game Structures
	Alternating-Time μ-Calculus
	Realizability and Synthesis

	The Synthesis Algorithm
	Preliminaries: Automata over Infinite Objects
	Realizability in 1-Black-Box Architectures
	Realizability in Hierarchical Architectures
	Synthesis

	Completeness
	Conclusions

	Timeout and Calendar Based Finite State Modeling and Verification of Real-Time Systems
	Introduction
	Finitary Reduction
	Timeout and Calendar Based Clockless Models
	Timeout Based Models: Clockless Modeling
	Calendar Based Models: Clockless Modeling

	Models for Time
	Experimental Results
	Conclusion

	Efficient Approximate Verification of Promela Models Via Symmetry Markers
	Introduction
	Scalarsets in Promela
	Symmetry Markers
	A First Naïve Approach
	The New Marker Methods for Promela
	Empirical Results
	Related and Future Work

	Latticed Simulation Relations and Games
	Introduction
	Preliminaries
	Latticed Simulation
	Latticed Bisimulation

	Latticed Games
	Properties of Lattice Games
	The Simulation Game

	Discussion

	Providing Evidence of Likely Being on Time: Counterexample Generation for CTMC Model Checking
	Introduction
	Preliminaries
	Evidences and Counterexamples
	The Likelihood of a Symbolic Evidence
	A First Attempt to Find Probable Symbolic Evidences
	Involving Time Bounds
	Conclusion

	Assertion-Based Proof Checking of Chang-Roberts Leader Election in PVS
	Introduction
	The Owicki-Gries Theory and the Tool ProPar
	Annotated Programs
	Proof Obligations
	Proof Scripts
	User Input

	The Chang-Roberts Leader Election Algorithm
	The Algorithm in Assertion-Based Style
	Related Work

	A Correct Chang-Roberts Annotation (Phase 1)
	ProPar Results

	A Correct Chang-Roberts Annotation (Phase 2)
	ProPar Results

	A Correct Chang-Roberts Annotation (Phase 3)
	ProPar Results
	Manual Proofs

	Conclusions and Future Work
	PVS Discussion
	Future Work

	Continuous Petri Nets: Expressive Power and Decidability Issues
	Introduction
	Continuous Petri Nets
	Autonomous Continuous Petri Nets
	Timed Continuous Petri Nets

	Decidability of Basic Properties of Autonomous Continuous Petri Nets
	Timed Continuous Petri Nets and Timed Differentiable Petri Nets
	Decidability Issues on Timed Continuous Petri Nets
	Conclusions

	Quantifying the Discord: Order Discrepancies in Message Sequence Charts
	Introduction
	Preliminaries
	Message Sequence Charts
	Allen's Logic

	Relationships Between Messages
	Definition of Discord
	Computing the Discord of a Pair of Messages
	Computational Hardness
	Polynomial-Time Algorithms for Bounded Number of Processes

	From Pairs of Messages to HMSCs
	Conclusions

	A Formal Methodology to Test Complex Heterogeneous Systems
	Introduction
	Informal Presentation of the Methodology
	Basic Definitions
	Specifications with Circular Dependencies
	Conclusions and Future Work

	A New Approach to Bounded Model Checking for Branching Time Logics
	Introduction
	Preliminaries
	Alternating Parity Tree Automata
	Kripke Structures
	Namjoshi-Style Temporal Proofs
	Notation and Terminology

	The Encodings
	Encoding Namjoshi-Style Proof Obligations
	Eliminating the Use of Ranks

	A Dynamic Completeness Criterion
	Related Work
	Experimental Results
	Conclusion

	Exact State Set Representations in the Verification of Linear Hybrid Systems with Large Discrete State Space
	Introduction
	System Model
	An Informal Description
	Formal Model

	Approach
	Flow Extrapolation
	Redundancy Elimination
	Experimental Results
	Conclusion

	A Compositional Semantics for Dynamic Fault Trees in Terms of Interactive Markov Chains
	Dynamic Fault Trees
	Input/Output Interactive Markov Chains
	Formalizing DFTs
	DFT Syntax
	DFT Element Semantics
	DFT Semantics

	Compositional Aggregation Approach
	Tool Support and Case Studies
	Conclusions and Future Work

	3-Valued Circuit SAT for STE with Automatic Refinement
	Introduction
	Preliminaries
	Symbolic Trajectory Evaluation (STE)
	The SAT Problem
	Bounded Model Checking
	Circuit SAT Solvers

	3-Valued Justification
	$not-0$ and $not-1$ Variables
	3-Valued Justification Algorithm

	STE with 3-Valued Justification
	Constructing Circuits for STE Assertions
	Running STE

	Refinement
	Experimental Results
	Related Work
	Conclusions and Future Work

	Bounded Synthesis
	Introduction
	Preliminaries
	Annotated Transition Systems
	Universal Co-Büchi Automata
	Bounded Annotations
	Estimating the Bound

	Automata-Theoretic Bounded Synthesis
	Constraint-Based Bounded Synthesis
	Distributed Synthesis
	Conclusions

	Formal Modeling and Verification of High-Availability Protocol for Network Security Appliances
	Introduction
	Overview of the HA Protocol of NXG2000
	The HA protocol Model
	A New Debugging Technique to Detect Multiple Bugs
	An Automated Process to Detect Multiple Bugs
	Overview of the MacDebugger Framework
	Meta Event Definition Language

	Verification of the HA protocol
	Conclusion

	A Brief Introduction to \mathcal{THOTL}
	Introduction
	A Short Summary of \mathcal{HOTL}
	Observations
	Predicates
	The \mathcal{HOTL} Rules

	Timed $FSMs$ and Timed Implementations Relations
	Timed Extension of $\mathcal{HOTL: THOTL}$
	Temporal Observations
	New Model Predicates
	Changing the Existing Rules

	Conclusions and Future Work

	On-the-Fly Model Checking of Fair Non-repudiation Protocols
	Introduction
	Concrete Model for Protocol Description
	Representing Protocols and Security Properties
	Representing Protocols
	Probing Transformation
	Action Terms
	Representing Security Properties

	Parametric Simulation
	Parametric Model
	Satisfiable Normal Form
	Simulation on a Parametric Model

	Experimental Results
	Related Work
	Conclusion

	Model CheckingBounded Prioritized Time Petri Nets
	Introduction
	Time Petri Nets with Priorities
	Definition
	Semantics
	Properties

	State Space Abstractions for $PrTPNs$
	Abstractions Preserving Markings and Traces
	Abstractions Preserving States and Traces
	Abstractions Preserving Branching Properties

	An Example: Rate Monotonic Scheduling
	Conclusion

	Using Patterns and Composite Propositions to Automate the Generation of LTL Specifications
	Introduction
	Background
	Linear Temporal Logic
	Specification Pattern System (SPS)
	Composite Propositions (CP)

	Problem with Direct Substitution
	Patterns Defined with Composite Propositions
	Non-global Scopes Defined with Composite Propositions
	Need for New Operations
	General LTL Formulas for Patterns and Scopes with CP
	Summary and Future Work

	Pruning State Spaces with Extended Beam Search
	Introduction
	Beam Search
	Adapting Beam Search for State Space Generation
	Priority Beam Search for State Space Generation
	Detailed Beam Search for State Space Generation
	Flexible Beam Search
	Synchronised Beam Search
	Discussions

	Experimental Results
	Related Work
	Conclusions

	Using Counterexample Analysis to Minimize the Number of Predicates for Predicate Abstraction
	Introduction
	Related Work
	Motivating Example
	Predicate Abstraction and Refinement
	Predicate Abstraction
	Abstraction Refinement

	Spurious Counterexample Analysis for Predicate Refinement
	Experimental Results
	Conclusion

	Author Index

